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Abstract

This thesis belongs to the fields of algebraic combinatorics and mathematical
information theory. Motivated by the computational advantage of the full pro-
pelinear structure, we study different kinds of error-correcting codes endowed
with this structure. Since a full propelinear code is also a group, it is possi-
ble to generate the code from the codewords associated to the generators as a
group, even if the code is nonlinear. This offers the data storage benefits of a
linear code. Rifà and Suárez introduced full propelinear codes based on binary
Hadamard matrices (HFP-codes) and they proved an equivalence with Hada-
mard groups. The existence of Hadamard matrices of orders a multiple of four
remains an open problem. Therefore, the study of new Hadamard codes may
contribute to address the Hadamard conjecture. A code with a full propelinear
structure is composed of two sets, i.e., codewords and permutations. We define
the associated group of an HFP-code as the group comprised of the permu-
tations. Firstly, we study the HFP-codes with a fixed associated group. The
next step is to generalize the binary HFP-codes to finite fields. Subsequently,
we prove that the existence of generalized Hadamard full propelinear codes
is equivalent to the existence of central relative (v, w, v, v/w)-difference sets.
Furthermore, we build infinite families of nonlinear generalized Hadamard full
propelinear codes. Finally, we introduce the concept of quasi-Hadamard full
propelinear code. We also give an equivalence between quasi-Hadamard groups
and quasi-Hadamard full propelinear codes. In all codes studied, we analyze
the rank and the dimension of the kernel. Two parameters that provide in-
formation about the linearity of a code, and also about the nonequivalence of
codes.
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Resum

Aquesta tesi pertany als camps de la combinatòria algebraica i de la teo-
ria matemàtica de la informació. Motivada per l’avantatge computacional
de l’estructura full propelinear, estudiem diferents tipus de codis correctors
d’errors dotats d’aquesta estructura. Com que un codi full propelinear és
també un grup, és possible generar el codi a partir de les paraules associades
als generadors com a grup, fins i tot si el codi és no lineal. Això ofereix els be-
neficis d’emmagatzematge d’un codi lineal. Rifà i Suárez van definir els codis
full propelinear sobre matrius Hadamard binàries (HFP-codis) i van provar
una equivalència amb els grups Hadamard. L’existència de matrius Hadamard
d’ordres múltiple de quatre segueix sent un problema obert. Per tant, l’estudi
de nous codis Hadamard pot contribuir a abordar la conjectura de Hadamard.
Un codi amb una estructura full propelinear està compost per dos conjunts;
paraules i permutacions. Definim el grup associat d’un HFP-codi com el grup
format per les permutacions. Primerament, estudiem els HFP-codis amb un
grup associat fixat. El següent pas és generalitzar a cossos finits els HFP-codis
binaris. Després vam provar que l’existència de codis Hadamard full propelin-
ear generalitzats és equivalent a l’existència de conjunts de diferències relatius
amb paràmetres (v, w, v, v/w). A més, construïm famílies infinites de codis
Hadamard full propelinear generalitzats no lineals. Finalment, definim el con-
cepte de codi quasi-Hadamard full propelinear. També donem una equivalència
entre els grups quasi-Hadamard i els codis quasi-Hadamard full propelinear. En
tots els codis estudiats, analitzem el rang i la dimensió del nucli. Dos paràme-
tres que proporcionen informació sobre la linealitat d’un codi i sobre la no
equivalència de codis.
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Resumen

Esta tesis pertenece a los campos de la combinatoria algebraica y de la teoría
matemática de la información. Motivada por la ventaja computacional de la
estructura full propelinear, estudiamos diferentes tipos de códigos correctores
de errores dotados de dicha estructura. Como un código full propelinear es
también un grupo, es posible generar el código a partir de las palabras asociadas
a los generadores como grupo, incluso si el código es no lineal. Esto ofrece los
beneficios de almacenamiento de un código lineal. Rifà y Suárez definieron los
códigos full propelinear sobre matrices Hadamard binarias (HFP-códigos) y
probaron una equivalencia con los grupos Hadamard. La existencia de matrices
Hadamard de órdenes múltiplo de cuatro sigue siendo un problema abierto. Por
tanto, el estudio de nuevos códigos Hadamard puede contribuir a abordar la
conjetura de Hadamard. Un código con una estructura full propelinear está
compuesto por dos conjuntos; palabras y permutaciones. Definimos el grupo
asociado de un HFP-código como el grupo formado por las permutaciones.
Primeramente, estudiamos los HFP-códigos con un grupo asociado fijado. El
siguiente paso es generalizar a cuerpos finitos los HFP-códigos binarios. Des-
pués probamos que la existencia de códigos Hadamard full propelinear genera-
lizados es equivalente a la existencia de conjuntos de diferencias relativos con
parámetros (v, w, v, v/w). Además, construimos familias infinitas de códigos
Hadamard full propelinear generalizados no lineales. Finalmente, definimos
el concepto de código quasi-Hadamard full propelinear. También damos una
equivalencia entre los grupos quasi-Hadamard y los códigos quasi-Hadamard
full propelinear. En todos los códigos estudiados, analizamos el rango y la
dimensión del núcleo. Dos parámetros que proporcionan información sobre la
linealidad de un código y sobre la no equivalencia de códigos.
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Chapter 1

Introduction

“It’s always best to start at the beginning.”

Glinda the Good Witch. The Wizard of Oz.

With the purpose of making the information flow reliable, coding theory was
born. When a message is sent from a source to a receiver, the information
travels through a channel. There does not exist a perfect channel. The infor-
mation could be corrupted due to noise produced in the channel. Therefore,
the receiver obtain a message which differs from the initial one. In order to
detect and correct channel errors, the communication scheme is performed as
shows Figure 1.1. Firstly, the message is encoded obtaining codewords. The
codewords are sent across the channel. Again the channel is noisy and the
codeword suffers errors, but then this information is decoded. Finally, the re-
ceiver get an estimated message which is ‘quite’ similar to the sent one by the
source.

Source Encoder Channel Decoder Receiver

message

codeword

codeword with errors

estimated message

Figure 1.1: Communication scheme.

The engineering problem of noisy channels is addressed by means of math-
ematics. Coding theory, sometimes called algebraic coding theory, was created
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2 Chapter 1. Introduction

under the influence of the theory of information transmission developed by
Claude Shannon in 1948 [72]. Coding theory is linked with several areas of
discrete mathematics such as combinatorics, graph theory, experimental de-
signs, and number theory. Moreover, finite fields and group theory are also
essential tools involved in coding theory. The usual way to represent, ma-
nipulate and transmit information is to use bit strings, i.e., n-tuples over the
finite field F2 called codewords. Therefore, we say that a code is a subset of
Fn2 that contains all codewords. A code is said to be linear if also is a sub-
space. Classically, linear codes have been studied and developed more than
nonlinear codes due to their nice properties in the process of coding and de-
coding messages. Nevertheless, there exist nonlinear codes that are capable
of detecting and correcting more errors than linear codes. For instance, there
are nonlinear codes having twice as many codewords as any linear code with
the same length and minimum distance, e.g., Preparata and Kerdock codes
[42, 57]. In this dissertation, we focus on Hadamard codes, which are codes
based on Hadamard matrices [40]. These matrices have several applications in
engineering and computer science, as signal transforms, spreading sequences,
error-correcting codes, and cryptographic primitives. The existence of Hada-
mard matrices for any order multiple of four is an open problem called the
Hadamard conjecture [59]. This conjecture has stimulated advances in design
theory and combinatorics. Terms such as Hadamard groups, relative differ-
ence sets, cocyclic Hadamard matrices, and Hadamard full propelinear codes
are related in different ways [28, 37, 48, 66]. These concepts involve the main
techniques to generate new Hadamard matrices.

1.1 Objectives

The core objective of this dissertation is to deepen into the study of error-
correcting codes endowed with a propelinear structure. These codes are called
propelinear codes. They have an underlying group structure. In general, all
codewords of nonlinear codes have to be stored due to there does not exist a
generator matrix of the code. One of the benefits of the propelinear codes is
to exploit their group structure in order to generate the code from a subset
of codewords even if the code is nonlinear. The concept of generator matrix
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of a code is replaced by two sets. The set of generators as a group of the
propelinear code and a set of associated permutations to each generator. When
the nontrivial permutations of the previous set have no fixed coordinates, then
the structure is called full propelinear. Along this dissertation, we endow
different kind of codes with a full propelinear structure. The principal tasks
that we have followed to achieve the main objective are:

1. Study binary Hadamard full propelinear codes with a fixed associated
group.

2. Generalize the full propelinear structure to finite fields.

3. Endow a subclass of generalized Hadamard codes with a full propelinear
structure.

4. Study the values of the rank and the dimension of the kernel of all codes
introduced since they give us information about the linerarity of the code.

1.2 Outline

A summary of each chapter follows.
Chapter 2 covers basic definitions and properties of coding theory, Hada-

mard matrices, Hadamard groups, relative diference sets, cocyclic Hadamard
matrices, and propelinear codes.

In Chapter 3 we introduce the Hadamard full propelinear codes that fac-
torize as direct product of groups such that their associated group is C2t ×C2

or Ct × C2 × C2. We study the rank, the dimension of the kernel, and the
structure of these codes. For several specific parameters we establish some
links from circulant Hadamard matrices and the nonexistence of the codes we
study. We also get an equivalence between circulant complex Hadamard ma-
trix and a type of Hadamard full propelinear code, and we find a new example
of circulant complex Hadamard matrix of order 16.

In Chapter 4 we present codes from generalized Hadamard matrices. Here
we deal with these codes when the generalized Hadamard matrices are cocyclic.
As a consequence, a new class of codes that we call generalized Hadamard full
propelinear codes turns out. We prove that their existence is equivalent to



4 Chapter 1. Introduction

the existence of central relative (v, w, v, v/w)-difference sets. Moreover, some
structural properties of these codes are studied and examples are provided.

In Chapter 5 we give a characterization of quasi-Hadamard groups in terms
of full propelinear codes. We define a new class of codes that we call quasi-
Hadamard full propelinear codes. Some structural properties of these codes
are studied and examples are provided.

Chapter 6 recaps the main results of the rest of chapters, and proposes
future lines of research on this topic.

1.3 Contributions

Part of the results presented in Chapter 3 has been published in [11, 12]:

• Bailera I., Borges J., Rifà J.: About some Hadamard full propelinear
(2t,2,2)-codes. Rank and kernel. Electron. Notes Discret. Math. 54,
319–324 (2016).

• Bailera I., Borges J., Rifà J.: On Hadamard full propelinear codes with
associated group C2t × C2. To appear in Adv. Math. Commun. (2020).

The results of Chapter 4 has been submitted to the international journal De-
signs, Codes and Cryptography. A preprint is available in [8]:

• Armario J.A., Bailera I., Egan R.: Generalized Hadamard full propelin-
ear codes. arXiv:1906.06220 [math.CO].

The results of Chapter 5 has been published in [6]:

• Armario J.A., Bailera I., Borges J., Rifà, J.: Quasi-Hadamard Full Pro-
pelinear Codes. Math. Comput. Sci. 12(4), 419–428 (2018).

Moreover, several results of this dissertation has been presented in national
and international workshops and conferences:

• About some Hadamard full propelinear (2t, 2, 2)-codes. Rank and Kernel.
Discrete Mathematics Days (JMDA16). Barcelona, Spain. July 6–8th,
2016.

https://arxiv.org/abs/1906.06220
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• Hadamard full propelinear codes of type CQ. 5th Workshop on Real
and Complex Hadamard Matrices and Applications. Budapest, Hungary.
July 10–14th, 2017.

• Hadamard full propelinear codes of type C4t × C2 and C2t × C2. Rank
and kernel. IV Congreso de Jóvenes Investigadores de la Real Sociedad
Matemática Española. València, Spain. September 4–8th, 2017.

• Existence of Hadamard full propelinear codes which are extensions of
Ct×C2

2 by C2. Escuela de Doctorandos de la Red de Matemáticas en la
Sociedad de la Información. Tenerife, Spain. November 27–28th, 2017.

• Códigos de Hadamard full propelinear. Seminario Rubio de Francia. Uni-
versity of Zaragoza, Spain. May 3rd, 2018.

• On Hadamard full propelinear codes with associated group C2t×C2. Six-
teenth International Workshop on Algebraic and Combinatorial Cod-
ing Theory (ACCT 2018). Svetlogorsk (Kaliningrad region), Russia.
September 2–8th, 2018.

• Hadamard and quasi-Hadamard full propelinear codes. Seminar za kon-
ačnu matematiku, Department of mathematics, University of Rijeka,
Croatia. October 4th, 2018.

• Códigos Hadamard full propelinear. IMUS Seminar. Seville, Spain. June
25th, 2019.

• Generalized Hadamard full propelinear codes. Seminar za konačnu mate-
matiku, Department of mathematics, University of Rijeka, Croatia. Sep-
tember 19th, 2019.

• Códigos Hadamard generalizados full-propelineales. V Congreso de Jóve-
nes Investigadores de la Real Sociedad Matemática Española. Castelló,
Spain. January 27–31th, 2020.

During the academic years of this thesis, I was granted with three competitive
research fellowships that allowed me collaborating with distinct researchers:
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• Erasmus+ scholarship. From September to December, 2018. I visited the
Department of Mathematics at the University of Rijeka, Croatia. Prof.
Dean Crnković was the supervisor.

• Borsa Ferran Sunyer i Balaguer. From June to July, 2019. I visited the
Department of Applied Mathematics at the University of Seville, Spain.
Prof. José Andrés Armario was the supervisor.

• UAB stay grant. From September to October, 2019. I visited the Depart-
ment of Mathematics at the University of Rijeka, Croatia. Prof. Dean
Crnković was the supervisor.

Along the first research stay in Rijeka, we studied the orbit matrices of Ha-
damard matrices associated to Hadamard full propelinear codes. For more
information about orbit matrices, we refer to [25]. In the second stay in Ri-
jeka, we proposed a new model for network coding based in propelinear codes,
and a generalization of subspace codes. This work is in preparation. For
more information about linear network coding and subspace codes, we refer to
[1, 54, 56]. In the research stay in Seville, we studied generalized Hadamard full
propelinear codes (see Chapter 4). The results were submitted to the journal
Designs, Codes and Cryptography.

This Thesis has been partially supported by the Spanish grants TIN2013-
40524-P, TIN2016-77918-P (AEI/FEDER, UE) and MTM2015-69138-REDT,
and by the Catalan AGAUR grant 2014SGR-691.



Chapter 2

Preliminaries

“Remember, all I’m offering is the truth,
nothing more.”

Morpheus. The Matrix.

This chapter presents some background necessary to follow the results pre-
sented throughout the thesis. Along this chapter we establish the notation
that will be used across the dissertation. Any other background material re-
quired will be referenced just before it is used.

2.1 Propelinear codes

Let Fq denote the finite field of order q = pr, where p is prime. In particular,
Fq is an additive elementary abelian group of order q. For q = 2, we denote
by F the binary field F2. Let Fnq be the n-dimensional vector space over Fq.
The Hamming distance between two vectors x, y ∈ Fnq , denoted by d(x, y), is
the number of coordinates in which x and y differ. The Hamming weight of x
is given by wtH(x) = d(x,0), where 0 is the all-zero vector. Throughout this
dissertation, the all-one vector of length n is denoted by 1n, and the vector
(1, 0, . . . , 1, 0) of length 2n by ω2n, but we will write 1 and ω when the length
is clear from the context.. The support of x ∈ Fnq , denoted by Supp(x), is
defined as the set of its nonzero positions. The complement of x ∈ Fn, denoted
by x̄, is defined as x̄ = x+ 1.

Any nonempty subset C of Fnq is a code over Fq (or a q-ary code) of length
n. Usually, a code C is presented by the triple (n,M, d)q where n is the length,

7
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M = |C| is the size of the code, and d is the greatest value such that d(x, y) ≥ d

for all x, y ∈ C with x 6= y. The elements of a code are called codewords and d
is called minimum distance. The parameter d determines the error-correcting
capability of C which is given by

t =

⌊
d− 1

2

⌋
,

and C is said to be a t-error-correcting code.

Throughout this dissertation, when a codeword v will appear as v = (α, β,

γ, δ, . . .), assume α, β, γ, δ have the same length. For example, if C is a code
of length n and v = (α1, α2, . . . , αm) ∈ C, then the length of each αi is n/m.

A q-ary code C of length n is linear if any linear combination of codewords
is also a codeword, i.e., C is a subspace of Fnq . The dimension of a q-ary
linear code is its dimension as a subspace. A q-ary linear code of length n and
dimension k is presented by the triple (n, k, d)q. Note that the size of C is
|C| = qk.

Let Sn be the symmetric group of permutations of the set {1, . . . , n}. For
any π ∈ Sn and x = (x1, . . . , xn) ∈ Fnq , we write π(x) to denote (xπ−1(1), . . . ,

xπ−1(n)). Two codes C1, C2 of length n are said to be isomorphic if there is a
coordinate permutation π ∈ Sn such that C2 = {π(x) | x ∈ C1}. They are
said to be equivalent if there is a vector y ∈ Fnq and a coordinate permutation
π ∈ Sn such that C2 = {y + π(x) | x ∈ C1}.

In order to study the linearity of a code, we introduce two structural param-
eters. The rank of a q-ary code C, denoted by rank(C) or r, is the dimension of
the linear span of C. The kernel of a q-ary code, denoted by K(C), is defined
as

K(C) = {x ∈ Fnq | C + αx = C for allα ∈ Fq}.

The p-kernel of C is defined as the set of vectors which keeps the code invariant
by translation, Kp(C) = {x ∈ Fnq | C + x = C}, where q is a power of a prime
p. Note that K(C) is a subspace of Fnq and Kp(C) is Fp-additive. If C is
binary, then K(C) = Kp(C). Assuming the all-zero vector is in C, K(C) ⊆ C.
The dimension k of the kernel of C is denoted by ker(C). The rank r and
the dimension of the kernel k do not always give a full classification of codes,
since two nonisomorphic codes could have the same rank and dimension of the
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kernel. In spite of that, they can help in classification, since if two codes have
different rank or dimension of the kernel, they are nonisomorphic. In some
sense, these two parameters give information about the linearity of a code.

Remark 2.1. A code is linear if and only if its rank and the dimension of its
kernel are equal to the dimension of the code.

From now on, assume 0 ∈ C for every code C. The following result shows
a bound for the rank of a code in terms of the length and the dimension of the
kernel.

Lemma 2.2 ([67, Lemma 6]). Let C be a code of length n. The rank r of C
fulfils

r ≤ 2n

2k
+ k − 1,

where k is the dimension of the kernel of C.

For q = 2, Rifà, Basart, and Huguet [64] introduced a concept which is use-
ful to study nonlinear codes, since it permits endow with an algebraic structure
to certain codes.

Definition 2.3 ([64]). A binary code C of length n has a propelinear struc-
ture if for each codeword x ∈ C there exists πx ∈ Sn satisfying the following
conditions for all y ∈ C:

(i) x+ πx(y) ∈ C.

(ii) πxπy = πz, where z = x+ πx(y).

Assuming C has a propelinear structure, for all x, y ∈ C, we denote by ?
the binary operation such that

x ? y = x+ πx(y).

Then, (C, ?) is a group, which is not abelian in general. The vector 0 is always
a codeword and π0 = Id is the identity permutation. Hence, 0 is the identity
element in C and x−1 = π−1

x (x), for all x ∈ C. We call (C, ?) a propelinear
code. Note that the binary operation ? can be extended to Fn as an action of
C over Fn. Therefore, for all x ∈ C and for all y ∈ Fn, x ? y = x+ πx(y) ∈ Fn.
Henceforth we use xy instead of x?y if there is no confusion. Binary propelinear



10 Chapter 2. Preliminaries

codes were introduced by Rifà et al. in [64]. They have been deeply studied
in the literature, see [15, 61, 65] among other references. These codes have a
group structure that allows them to be studied from an algebraic point of view.
As a propelinear code is also a group, it is possible to define a kind of generator
matrix even if the code is nonlinear. The rows of the generator matrix are the
codewords that are associated with the generators of the group. Thus, the code
can be built from a few codewords using the propelinear operation associated
to the propelinear code.

Remark 2.4. Let G be the wreath product (Fn,+) o Sn, i.e., an n-dimensional
vector space over F with the natural action of Sn on coordinates. A propelinear
code is a subgroup of G.

An automorphism of a binary code C is a permutation on the set of co-
ordinates leaving the code invariant. We denote by Aut(C) the set of all
automorphisms of C. We call it the automorphism group of the code C. A
code C is called transitive if Aut(C) acts transitively on its codewords, i.e.,
the code satisfies the property (i) of Definition 2.3. The following result is a
characterization of propelinear codes in terms of the automorphism group.

Proposition 2.5 ([61, Proposition III.1]). Let (C, ?) ⊂ Fn2 be a group. C is
a propelinear code if and only if Aut(C) contains a regular subgroup acting
transitively on C.

Example 2.6. Every binary linear code has a propelinear structure. Let C be
a linear code over F. For any x ∈ C, set πx = Id. Then C ' Zlog2 |C|

2 .

Let x be in a propelinear code, we denote the element x ? xi−1 by xi, with
x1 = x, for any i > 1.

Lemma 2.7. Let C be a propelinear code. Then xi = x+πx(x)+ . . .+πi−1
x (x),

for all x ∈ C.

Proof. We proceed by induction on i. The base case is x2 = x+ πx(x). Let us
see the inductive step, xi = x ? xi−1 = x+ πx(x

i−1) = x+ πx(x+ πx(x) + . . .+

πi−2
x (x)) = x+ πx(x) + . . .+ πi−1

x (x). QED
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Lemma 2.8 ([15, Lemma 5.1]). Let C be a propelinear code. Then:

(i) For x ∈ C we have x ∈ K(C) if and only if πx ∈ Aut(C).

(ii) The kernel K(C) is a subgroup of C and also a binary linear space.

(iii) If c ∈ C then πc ∈ Aut(K(C)).

2.2 Hadamard matrices

In 1893 Jacques Hadamard raised the following problem: Let A be a square
matrix of order n with entries in the closed unit disk. How large can the
absolute value of the determinant of A be? This is known as the Hadamard
maximum determinant problem. Hadamard proved in [40] that if all elements
of the matrix A are complex numbers, then

| detA| ≤ nn/2.

The matrices that achieve the equality are called Hadamard matrices. A square
matrix H = (zij) of order n is a complex Hadamard matrix, if ‖zij‖ = 1 and
HH∗ = nIn, where In is the identity matrix of order n and H∗ is the conjugate
transpose of H. It is known that there exist complex Hadamard matrices of
order n for each positive integer n.

Example 2.9. Let n be positive a integer and ζn = e
2πi
n be the complex nth

root unity .The Fourier matrices

Fn =



1 1 1 1 · · · 1

1 ζn ζ2
n ζ3

n · · · ζn−1
n

1 ζ2
n ζ4

n ζ6
n · · · ζ

2(n−1)
n

1 ζ3
n ζ6

n ζ9
n · · · ζ

3(n−1)
n

...
...

...
... . . . ...

1 ζn−1
n ζ

2(n−1)
n ζ

3(n−1)
n · · · ζ

(n−1)(n−1)
n


are complex Hadamard matrices.

Usually, the term Hadamard matrix refers to Hadamard matrices with en-
tries in {1,−1}.
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Definition 2.10. A Hadamard matrix of order n is a n × n matrix H con-
taining entries from the set {1,−1}, with the property that

HHT = nIn,

where In is the identity matrix of order n.

Example 2.11. The Hadamard matrices of order 1, 2, 4 are

H1 = (1) , H2 =

(
1 1

1 −1

)
, H4 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 .

For n > 2, any three rows (columns) agree in precisely n/4 coordinates.
Thus, if there is a Hadamard matrix of order n, with n > 2, then n is multiple
of 4. The existence of real Hadamard matrices is a question that remains
still open. In 1933 Paley [59] formulated a conjecture that now is known as
Hadamard’s conjecture.

Conjecture 2.12 (Hadamard’s conjecture). There exists real Hadamard
matrices of order 4n for every positive integer n.

The smallest order, for which no Hadamard matrix is yet known, is 668.
Other orders smaller than 1000, for which Hadamard matrices have not been
found yet, are 716 and 892.

Several constructions of Hadamard matrices have been developed (Paley
[59], Williamson [78], Goethals and Seidel [38, 39], Ito [47]). Here is presented
one due to James Joseph Sylvester which realized that if H is a Hadamard
matrix, then so is (

H H

H −H

)
.

Let A = (aij) and B be m×n and s× t matrices, respectively. The Kronecker
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product A⊗B is a ms× nt matrix given by

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... . . . ...
am1B am2 · · · amnB

 .

The Kronecker product of two Hadamard matrices is a Hadamard matrix
(Ryser [68]). In Example 2.11, clearly H4 = H2 ⊗ H2. The Sylvester con-
struction [76] is the iterated Kronecker product of the Hadamard matrix H2

from Example 2.11. Let S be the matrix H2, the Sylvester construction define
the matrices

St = S ⊗ St−1

for t ∈ {2, 3, . . .}, which form an infinity family of Hadamard matrices of orders
2t. St is called the Sylvester matrix of order 2t.

Two Hadamard matrices are Hadamard-equivalent (or just equivalent) if one
can be obtained from the other by permuting rows and/or columns and multi-
plying them by −1. Determine the number of equivalence classes of Hadamard
matrices for each order is also an open problem. For orders 2, 4, 8, 12, 16, 20, 24,

28 the number of nonequivalent Hadamard matrices are 1, 1, 1, 1, 5, 3, 60, 487

(see Sloane’s A007299).
A n× n matrix of the form

c1 c2 c3 . . . cn

cn c1 c2 . . . cn−1

...
...

...
...

c2 c3 c4 . . . c1


is called circulant matrix. No circulant Hadamard matrices of order larger than
4 has ever been found, but the nonexistence is still a non proven result (Ryser,
[68]).

Conjecture 2.13 (Circulant Hadamard conjecture). There do not exist
circulant Hadamard matrices of order n > 4.

The main work on circulant Hadamard conjecture seems to be due to Turyn
[77]. He proved that a circulant Hadamard matrix of order n fulfils that n =

https://oeis.org/A007299
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4u2 with u odd or n = 1. Schmidt [69, 71] showed that there is no Hadamard
circulant matrix of order n with 4 < n ≤ 1011 with three possible exceptions.

Any Hadamard matrix is equivalent to a Hadamard matrix whose first row
and columns is the all-one vector. This matrix is called normalized. The matrix
obtained from a normalized Hadamard matrix, by replacing all 1’s by 0’s and
all −1’s by 1’s, is called binary normalized Hadamard matrix. A (binary)
Hadamard code is a binary code consisting of the rows of a binary Hadamard
matrix and their complements, which is of length n, with 2n codewords, and
minimum distance n/2, i.e., a Hadamard code is a (n, 2n, n/2)2-code. A binary
normalized circulant matrix is a binary normalized matrix which is equivalent
to a binary circulant matrix. The binary code consisting of the rows of a
binary normalized circulant Hadamard matrix and their complements is called
a circulant Hadamard code.

Example 2.14. Let H4 be the Hadamard matrix from Example 2.11. The
binary Hadamard matrix H associated to H4 and the corresponding (4, 8, 4)2-
Hadamard code CH are

H =


0 0 0 0

0 1 0 1

0 0 1 1

0 1 1 0

 , CH =



0 0 0 0

0 1 0 1

0 0 1 1

0 1 1 0

1 1 1 1

1 0 1 0

1 1 0 0

1 0 0 1


.

2.3 Hadamard full propelinear codes

Rifà and Suárez [66, 67] introduced a subclass of propelinear codes based on
Hadamard matrices. These codes are called Hadamard full propelinear codes.

Definition 2.15 ([66]). A Hadamard full propelinear code (HFP-code) is a
Hadamard propelinear code C such that πa(i) 6= i for any i, where a ∈ C \
{0,1}, and π0 = π1 = Id.
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Definition 2.16. The associated group Π of a propelinear code C is the set of
permutations of all elements of C, Π = {πx ∈ Sn | x ∈ C}, which is a subgroup
of Sn.

Example 2.17. Let H be the binary Hadamard matrix of order 2, and CH be
the corresponding Hadamard code. That is,

H =

(
0 0

0 1

)
, CH =


0 0

0 1

1 1

1 0

 .

Let a be the codeword (0, 1). Thus, CH = {0, a,1, ā}. Set π0 = π1 = Id ∈ S2,
πa = πā = (1, 2) ∈ S2. Let ? be the propelinear operation. Computing ai we
obtain:

a1 = a = (0, 1) ∈ CH ,
a2 = a ? a = a+ πa(a) = (0, 1) + (1, 0) = 1 ∈ CH ,
a3 = a ? a2 = a+ πa(a

2) = (0, 1) + (1, 1) = (1, 0) = ā ∈ CH ,
a4 = a ? a3 = a+ πa(a

3) = (1, 0) + (1, 0) = 0 ∈ CH .

Therefore, (CH , ?) is an HFP-code of length 2 with a group structure C4 ' 〈a〉
and associated group Π ' C2 ' 〈πa〉, where Ci is the cyclic group of order i.

Remark 2.18. The HFP-code CH from previous example is also a linear code.
A linear code could have a full propelinear structure but there is not a charac-
terization about that.

Proposition 2.19 ([11, Proposition 2.8]). Let C be a Hadamard full prope-
linear code. Then 1 ∈ K(C) and the associated group of C is isomorphic to
C/〈1〉.

Proof. Let x ∈ C. Since x+1 = x+πx(1) = x?1 ∈ C, we have 1 ∈ K(C). Let
ϕ : C → Π be the mapping given by ϕ(x) = πx for all x ∈ C. As πx?y = πxπy

for all x, y ∈ C, the mapping ϕ is a group homomorphism. Since C is full
propelinear, the kernel of this homomorphism is 〈1〉. Thus, C/〈1〉 ' ϕ(C) =

Π. QED
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Note that a code could have different group structures depending on the
permutation associated to each codeword. The following example illustrates
this fact.

Example 2.20. Let CH be the code from Example 2.14. Let

Π = {Id, (1, 3)(2, 4), (1, 2)(3, 4), (1, 4)(2, 3)} ' C2 × C2

be the associated group, where C2 is the cyclic group of order 2. If we assign
to each codeword the elements of Π in the following three ways:

π0 = Id π0 = Id π0 = Id

π(0101) = (1, 3)(2, 4) π(0101) = (1, 3)(2, 4) π(0101) = (1, 2)(3, 4)

π(0011) = (1, 2)(3, 4) π(0011) = (1, 4)(2, 3) π(0011) = (1, 4)(2, 3)

π(0110) = (1, 4)(2, 3) π(0110) = (1, 2)(3, 4) π(0110) = (1, 3)(2, 4)

π1 = Id π1 = Id π1 = Id

π(1010) = (1, 3)(2, 4) π(1010) = (1, 3)(2, 4) π(1010) = (1, 2)(3, 4)

π(1100) = (1, 2)(3, 4) π(1100) = (1, 4)(2, 3) π(1100) = (1, 4)(2, 3)

π(1001) = (1, 4)(2, 3) π(1001) = (1, 2)(3, 4) π(1001) = (1, 3)(2, 4)

Then we obtain three Hadamard full propelinear codes with group structures
C2 × C2 × C2, C4 × C2, Q, respectively, where Q is the quaternion group of
eight elements. Note that

(C2 × C2 × C2)/〈1〉 ' (C4 × C2)/〈1〉 ' Q/〈1〉 ' C2 × C2.

Definition 2.21. An extension of a group H by a group N is a group G with
a normal subgroup M such that M ' N and G/M ' H. This information can
be encoded into a short exact sequence of groups

1→ N → G→ H → 1.

Let C be a Hadamard full propelinear code with associated group Π. Thus,
from Proposition 2.19 we have C/〈1〉 ' Π. Hence, a Hadamard full propelinear
code is a central extension of the associated group by the cyclic group of order
2. The search for Hadamard full propelinear codes is an extension problem
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with the following short exact sequence

1→ 〈1〉 → C → Π→ 1.

Next lemmas are well known. We omit the proofs.

Lemma 2.22 ([66, Lemma 3.3]). Let (C, ?) be a Hadamard propelinear code
of length 4t. Then C is not a cyclic group of order 8t.

Lemma 2.23 ([63, Prop. 2.2 and Prop. 2.3]). Let C be a circulant Hadamard
code of length 4t, then C is an HFP-code with a cyclic associated group Π of
order 4t. Vice versa, an HFP-code C with a cyclic associated group Π of order
4t is a circulant Hadamard code of length 4t.

Lemma 2.24 ([63, Proposition 2.5]). Let C be a nonlinear circulant Hadamard
code of length 4t. Then the dimension of the kernel is k = 1.

Lemma 2.25 ([62, Theorem 1]). Let C be a nonlinear Hadamard code of length
2st′, where t′ is odd. The dimension of the kernel k fulfils 1 ≤ k ≤ s− 1.

Lemma 2.26 ([10, Thm. 2.4.1 and Thm. 7.4.1]). Let C be a Hadamard code
of length 4t = 2st′, where t′ is odd.

(i) If s ≥ 3 then the rank of C is r ≤ 2t, with equality if s = 3.

(ii) If s = 2 then r = 4t− 1.

To finish this subsection, we recall a notation introduced in [11] to denote
the Hadamard full propelinear codes that we will use in the next chapters. An
HFP(t, 2, 2, 21) code means a Hadamard full propelinear code of type Ct×C2×
C2×C2 where the codeword 1 is the generator of the last C2. So the numbers
in parentheses mean the orders of the cyclic groups. If the parameter in the
parentheses is Q, then it means the quaternion group of eight elements.

2.4 Relative difference sets

In 1938, Singer [74] introduced the concept of difference set. Later Hall [41] and
Bruck [19] laid down the first stone in the systematic study of difference sets.
Hall studied cyclic planar difference sets, and Bruck started the investigation
of difference sets in arbitrary groups.
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Definition 2.27. A (v, k, λ)-difference set is a k-subset D of a group G of
order v for which the multiset {d1d

−1
2 | d1, d2 ∈ D, d1 6= d2} contains each

nonidentity element of G exactly λ times.

A difference set is called abelian, nonabelian or cyclic according to the prop-
erties of the underlying group. A difference set with parameters (4m2, 2m2 −
m,m2 −m) is called Hadamard difference set. Hadamard difference sets have
been deeply studied, see [30, 50] and their references. The exponent of a group
G, exp(G), is the smallest positive integer n such that gn = 1 for all g ∈ G.

Proposition 2.28 (Kraemer [55, Theorem 3]). There exists a Hadamard dif-
ference set in an abelian group G of order 22s+2 if and only if exp(G) ≤ 2s+2.

Proposition 2.29 ([12]). Let C be a Hadamard full propelinear code of length
4t. If C ' G× 〈1〉, then there exists a Hadamard difference set in G.

Proof. From [48, Proposition 1], if C = G× 〈1〉 is a Hadamard group of order
8t, then there exists a Hadamard difference set in G. From [66, Proposition
3.2, Proposition 3.5], C is a Hadamard full propelinear code if and only if C
is a Hadamard group. QED

Conjecture 2.30 (Ryser’s conjecture). There is no cyclic (v, k, λ)-differ-
ence set with gcd(v, k − λ) > 1.

Remark 2.31. Ryser’s conjecture implies the circulant Hadamard conjecture.

Bose [17] presented the first examples of relative difference set in 1942.
Butson and Elliot [21, 36] studied more deeply this concept.

Definition 2.32 (Butson [21]). Let G be a group of order mn with a normal
subgroup N of order n. A relative (m,n, k, λ)-difference set in a group G with
forbidden subgroup N is a k-subset D of G such that the multiset of quotients
d1d
−1
2 of distinct elements d1, d2 ∈ D contains each element of G \ N exactly

λ times, and contains no elements of N .

Let D be a relative difference set in a group G with forbidden subgroup
N . If N is a central subgroup of G, then we call D a central relative dif-
ference set. Note that a (v, k, λ)-difference set in G is a relative (v, 1, k, λ)-
difference set in G with trivial forbidden subgroup. The existence of a relative
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(m,n, k, λ)-difference set implies the existence of an (m, k, nλ)-difference set.
Let D be a relative difference set in a group G with forbidden subgroup N .
If H is a normal subgroup of G contained in N , then there exists a relative
difference set in G/H with forbidden subgroup N/H. Moreover, if D has pa-
rameters (m,n, k, λ), then the corresponding relative difference set in G/H has
parameters (m,n/h, k, λh), where h = |H|. Therefore, D is an extension of
an (m, k, nλ)-difference set in G/N . Hence, difference sets are the images of
relative difference sets via an homomorphism.

The existence of relative difference sets with parameters (4t, 2, 4t, 2t) im-
plies the existence of binary Hadamard matrices of order 4t. Relative difference
sets with the parameters k = nλ have been constructed in many ways (Elliot
and Butson [36], Jungnickel [51], Davis [26]).

2.5 Hadamard groups

In 1994, Ito [47, 48] introduced the concept of Hadamard groups and he showed
a relation between Hadamard difference sets and Hadamard groups. Later in
1997, Ito [49] conjectured that the dicyclic group Q8t = 〈a, b | a4t = 1, a2t =

b2, b−1ab = a−1〉 is always a Hadamard group. Schmidt [70] verified Ito’s
conjecture for all t ≤ 46.

Definition 2.33 (Ito [47]). A Hadamard group G of order 8t is a group con-
taining a 4t-subset D and a central involution u such that:

(i) D and Da intersect exactly in 2t elements, for any a /∈ 〈u〉 ⊂ G.

(ii) Da and {b, bu} intersect exactly in one element, for any a, b ∈ G.

The subset D is called Hadamard subset corresponding to u. From the
previous definition, it follows that G = D ∪Du, and D ∩Du = ∅.

Remark 2.34. Let D be a central relative (4t, 2, 4t, 2t)-difference set in a group
G with forbidden subgroup N ' F2. The group G is a Hadamard group of order
8t.

Conjecture 2.35 (Ito’s conjecture). The dicyclic group Q8t is always a
Hadamard group.
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Lemma 2.36 (Ito [47, Proposition 5]). Let G be a Hadamard group of order
8t such that G = N × 〈u〉, where N is a normal subgroup of G of index 2.
Then the order of N is a square.

Proposition 2.37 (Dillon [30, Theorem 3.1]). Let C be a Hadamard group
of order 22s+2 and suppose that C has a normal subgroup G such that C/G is
cyclic. Then C/G has order at most 2s+2.

Rifà and Suárez [66] showed that the concept of Hadamard group is equiv-
alent to Hadamard full propelinear code.

Proposition 2.38 ([66, Prop. 3.2, Prop. 3.5]). If (C, ?) is an HFP-code of
length 4t, then C is an Hadamard group with a Hadamard difference subset
D1 corresponding to 1, where D1 is the set of codewords with a zero in the
first coordinate. Conversely, if G is Hadamard group of order 8t with D as
the prescribed Hadamard subset corresponding to a central involution u. Then
we can construct an HFP-code C isomorphic to G as a group. This group
isomorphism θ : G→ C is such that θ(D) = D1 and θ(u) = 1.

2.6 Cocyclic Hadamard matrices

Flannery [37] proved that the concepts of cocyclic Hadamard matrix and Ha-
damard group are equivalent. De Launey, Flannery and Horadam [28] proved
that the existence of a cocyclic Hadamard matrix of order 4t is equivalent to
the existence of a normal relative difference set with parameters (4t, 2, 4t, 2t).

Conjecture 2.39 (Cocyclic Hadamard conjecture). There is a cocyclic
Hadamard matrix of order 4t for every positive integer t.

The cocyclic Hadamard conjecture (de Launey and Horadam [29]) implies
Ito’s conjecture, but not conversely.

Let G and U be finite groups, with U abelian, of orders v and w, respec-
tively. A map ψ : G×G→ U such that

ψ(g, h)ψ(gh, k) = ψ(g, hk)ψ(h, k) ∀ g, h, k ∈ G (2.1)

is a cocycle over G with coefficients in U . We may assume that ψ is normalized,
i.e., ψ(g, 1) = ψ(1, g) = 1 for all g ∈ G. For any (normalized) map φ : G→ U ,
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the cocycle ∂φ defined by

∂φ(g, h) = φ(g)−1φ(h)−1φ(gh)

is a coboundary. The set of all cocycles ψ : G×G→ U forms an abelian
group Z2(G,U) under pointwise multiplication. Factoring out the subgroup
of coboundaries gives H2(G,U), the second cohomology group of G with coef-
ficients in U .

Given a group G and ψ ∈ Z2(G,U), denote by Eψ the canonical central
extension of U by G; this has elements {(u, g) | u ∈ U, g ∈ G} and multiplica-
tion (u, g) (v, h) = (uvψ(g, h), gh). The image U×{1} of U lies in the centre of
Eψ and the set T (ψ) = {(1, g) : g ∈ G} is a normalized transversal of U ×{1}
in Eψ. In the other direction, suppose that E is a finite group with normalized
transversal T for a central subgroup U . Put G = E/U and σ(tU) = t for
t ∈ T . The map ψT : G×G→ U defined by ψT (g, h) = σ(g)σ(h)σ(gh)−1 is a
cocycle; furthermore, EψT ∼= E.

Each cocycle ψ ∈ Z2(G,U) is displayed as a square matrix Mψ whose rows
and columns are indexed by the elements of G under some fixed ordering, and
whose entry in position (g, h) is ψ(g, h). The matrix

Mψ = [ψ(g, h)]g,h∈G

is called G-cocyclic matrix. To check if a cocyclic matrix is Hadamard, it
can be applied the cocyclic Hadamard test [45]. It claims that it suffices to
check whether the summation of every row but the first is zero. This test runs
in O(t2) time instead of O(t3) which is the time for the algorithm for usual
Hadamard matrices.

A cocycle ψ ∈ Z2(G,U) is called orthogonal if, for each g 6= 1 ∈ G and each
u ∈ U , |{h ∈ G : ψ(g, h) = u}| = v/w. This definition arose as an equivalent
formulation of the condition that the G-cocyclic matrix Mψ be a generalized
Hadamard matrix GH(w, v/w) over U .

Definition 2.40. A v×v matrix H = (hij) with entries in a finite abelian group
U of order w, where w divides v, is a generalized Hadamard matrix GH(w, v/w)

if, for every i, j, 1 ≤ i < j ≤ v, each of the multisets {hikh−1
jk | 1 ≤ k ≤ v}

contains every element of U exactly v/w times.
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A GH(w, v/w) is normalized if the first row and first column consist entirely
of the identity element of U . We can always assume that our GH matrices are
normalized.

For certain parameters, the existence of relative difference sets is equivalent
to the existence of Hadamard matrices. The following result addresses this
situation.

Theorem 2.41 (Perera and Horadam [60, Theorem 4.1]). The following state-
ments are equivalent.

(i) ψ ∈ Z2(G,U) is orthogonal.

(ii) Mψ is a (normalized) GH(w, v/w).

(iii) T (ψ) = {(1, g) | g ∈ G} is a (central) relative (v, w, v, v/w)-difference set
in the central extension Eψ of U by G with forbidden subgroup U × {1}.



Chapter 3

HFP-codes with a fixed associated
group

“Structures are the weapons of the
mathematician.”

Bourbaki.

The goal of this chapter is to study the rank and dimension of the kernel
of the Hadamard full propelinear codes whose group structure consists of a
nontrivial direct product of groups such that their associated group is C2t×C2

(see Section 3.1) or Ct×C2×C2 (see Section 3.2). In Section 3.1, we introduce
Hadamard full propelinear codes with associated group C2t×C2 obtaining four
kinds of codes that are studied in Subsections 3.1.1–3.1.4. In each subsection,
we study the rank and the dimension of the kernel of every kind of code that we
have introduced. Also, we prove that the parameter t is even if the Hadamard
full propelinear code has an abelian group structure, and the parameter t is odd
if the code has a non-abelian group structure. In Subsections 3.1.1 and 3.1.4,
we prove that the dimension of the kernel is equal to 1. In Subsection 3.1.2,
we prove that if the dimension of the kernel is greater than 1, then either there
exists a circulant Hadamard matrix or there exist a code of Subsection 3.1.1.
In Subsection 3.1.3, we present a conjecture about the nonexistence of a kind
of Hadamard full propelinear code that is equivalent to Arasu et al. conjecture
[5] about the nonexistence of circulant complex Hadamard matrices. Also, we
show that the circulant complex Hadamard matrix of order 2t = 16, introduced
by Arasu et al. in [5], corresponds to a Hadamard full propelinear code with a

23
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group structure isomorphic to C2t × C4 with rank equal to 11 and dimension
of the kernel equal to 2. Moreover, we have found another nonequivalent
Hadamard full propelinear code with a group structure isomorphic to C2t×C4

of length 4t = 32 with rank equal to 13 and dimension of the kernel equal to
1 which corresponds to a circulant complex Hadamard matrix of order 16.

In Section 3.2, we introduce Hadamard full propelinear codes with asso-
ciated group Ct × C2 × C2 obtaining five kinds of codes that are studied in
Subsections 3.2.1–3.2.5. In Subsection 3.2.1, we prove that if the length of
the code is a power of two, then the length is bounded by 64. In Subsec-
tion 3.2.2, we present two constructions to obtain codes from the codes of
Subsections 3.1.2 and 3.1.3. In Subsection 3.2.3, we prove that the dimension
of the kernel is bounded by 3, and we explicit the codewords of the kernel.

The study of HFP-codes depending on its associated group Π is related with
the study of cocycles over the group Π. Let H be a cocyclic Hadamard matrix
over a finite group Π. We call associated group to this group Π in the context
of Hadamard full propelinear codes. A Hadamard full propelinear code, as a
group, is a central group extension of Π by C2. In order to study Hadamard full
propelinear codes with a determined associated group, it seems that the easiest
way to start is to set the cyclic group as associated group. If the associated
group is the cyclic group C4t of order 4t then the corresponding Hadamard full
propelinear code has one of the two following group structures, C8t or C4t×C2.
Rifà and Suárez [66] proved that a Hadamard full propelinear code cannot be
a cyclic group and Rifà [63] showed that a Hadamard full propelinear code
of type C4t × C2 is equivalent to a circulant Hadamard code. Remind that
circulant Hadamard conjecture states that there are no circulant Hadamard
matrices for orders greater than 4. Therefore, the next natural step is to study
Hadamard full propelinear codes with associated group whose structure is a
product of two cyclic groups, C2t × C2, which are equivalent to the cocyclic
Hadamard matrices over C2t×C2. Baliga and Horadam [13] studied this class
of cocyclic Hadamard matrices for the case t odd, i.e., the cocycles over the
groups Ct ×C2

2 for t odd. The solution set includes all Williamson Hadamard
matrices, so this family of groups is potentially a uniform source for generation
of Hadamard matrices. Any Hadamard matrix of order less than or equal to
20 is cocyclic. For orders less than or equal to 200, only order 4t = 188 = 4 ·47
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is not yet known to have a cocyclic construction.

3.1 Associated group C2t × C2

Now, we introduce a subclass of Hadamard full propelinear codes whose group
structure consists of direct product of groups, fulfilling that its associated group
Π is C2t × C2. In other words, we study the short exact sequence

1→ C2 → C → C2t × C2 → 1,

where C is a nontrivial direct product of groups.

Proposition 3.1. Let C be a Hadamard full propelinear code of length 4t with
associated group C2t × C2. If C as a group is a nontrivial direct product, then
C is some of the following HFP-codes:

(i) HFP(4t1, 2) ' C4t × C2 = 〈a, b | a4t = b2 = 0, a2t = 1〉.

(ii) HFP(2t, 2, 21) ' C2t × C2 × C2 = 〈a, b,1 | a2t = b2 = 0〉.

(iii) HFP(2t, 41) ' C2t × C4 = 〈a, b | a2t = b4 = 0, b2 = 1〉.

(iv) HFP(t, Q1) ' Ct × Q = 〈d, a, b | dt = 0, a2 = b2 = 1, aba = b〉, where Q
is the quaternion group of eight elements.

Proof. Note that there are two different cases depending on the parity of the
value of t. Firstly, we suppose that t is odd, so C2t × C2 ' Ct × C2

2 . Let E be
an HFP-code with Π = Ct × C2

2 . From Proposition 2.19, Π = E/〈1〉. Thus,
the code E is an extension of Ct × C2

2 by 〈1〉 ' C2. From [37, Table 2], we
have that the central extensions of Ct × C2

2 by C2 with t odd are Ct × C3
2 ,

Ct × C4 × C2, Ct ×Q and Ct ×D (where D is the dihedral group of order 8).
Furthermore, as t is odd we have that Ct × D cannot be a Hadamard group
by [47, Proposition 6]. Hence, from Proposition 2.38 there are no HFP-codes
of type Ct ×D.

Now, we suppose that t is even. Let E be an HFP-code with associated
group Π = C2t × C2. From Proposition 2.19, Π = E/〈1〉. Thus, the code E is
an extension of C2t × C2 by 〈1〉 ' C2. The extensions of C2 by C2 are C4 and
C2×C2. We denote by E1 any of these extensions. Making the direct product
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E1×C2t we get two extensions of C2t×C2 by C2. Thus, we obtain HFP(2t, 41)

and HFP(2t, 2, 21).
Let t = 2st′ with t′ odd, so C2t ×C2 is isomorphic to C2s+1 ×Ct′ ×C2. Let

E2 be the extensions of C2s+1 by C2. As E2/C2 is cyclic, E2 is abelian. Thus,
E2 is C2s+2 or C2s+1 ×C2. Making the direct product E2×Ct′ ×C2 we get two
extensions of C2t×C2 by C2. Thus, we obtain HFP(4t1, 2) and HFP(2t, 2, 21).
Let E3 be the extension of Ct′ by C2, which is abelian since E3/C2 is cyclic.
Hence, E3 is C2t′ . Therefore, the direct product C2t′ × C2s+1 × C2 ' C2t × C2

2

is an extension of C2t × C2 by C2, which corresponds with an HFP(2t, 2, 21)-
code. QED

Remark 3.2. In the conditions of Proposition 3.1, if t is even, then C cannot
be an HFP(t, Q1)-code because its associated group is Ct×C2

2 . If the value of t is
odd, then HFP(t, 2, 2, 21) ' HFP(2t, 2, 21) and HFP(t, 41, 2) ' HFP(2t, 41) '
HFP(4t1, 2).

Proposition 3.3. Let C be a nonlinear Hadamard full propelinear code of
length 4t with associated group C2t × C2. Then:

(i) If t is odd, then r = 4t− 1 and k = 1.

(ii) If t is even, then r ≤ 2t, and r = 2t if t ≡ 2 mod 4.

Proof. (i) and (ii) follow from Lemma 2.26 and [67, Lemma 4]. QED

Proposition 3.4. Let C = 〈a, b,1〉 be an HFP-code of type HFP(4t1, 2) or
HFP(2t, 2, 21) or HFP(2t, 41). Then, up to equivalence, we have:

(i) πa = (1, 2, . . . , 2t)(2t+ 1, 2t+ 2, . . . , 4t).

(ii) πb = (1, 2t+ 1)(2, 2t+ 2) . . . (2t, 4t).

(iii) Knowing the value of a is enough to define b.

(iv) Π = C2t × C2.

Proof. In any case, we have that a2t, b2 ∈ {0,1}, so πa has order 2t and πb

has order 2. As πa has order 2t, πa is the product of two cycles of length 2t.
Indeed, if we have a cycle of length j < 2t then πaj = πja has a fixed point,
which contradicts that C is full propelinear. Without loss of generality, we can
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set πa = (1, 2, . . . , 2t)(2t+1, 2t+2, . . . , 4t), which shows (i). As πb has order 2,
πb is a product of disjoint transpositions. Each one of the transpositions sends
an element of the first half of {1, 2, . . . , 4t} to the second half and vice versa.
Indeed, assume πb(1) = i for i ≤ 2t. We also have πai−1(1) = i, so πb−1ai−1

has a fixed point which contradicts that C is full propelinear. Furthermore, if
πb(1) = i for i ≥ 2t+1 then πb is uniquely determined. Indeed, as πaπb = πbπa,
we have that πa−1(2) = 1, πb(1) = i, and πa(i) = i + 1. Hence, πb(2) = i + 1,
and so on. Thus, we can assume πb = (1, 2t + 1)(2, 2t + 2) . . . (2t, 4t), which
shows (ii).

Since ab = ba, we have b = πa(b) + a + πb(a) = πa(b) + â, where â =

a+πb(a) = (â1, . . . , â2t, â1, . . . , â2t), then bi =
∑2t

j=i+1 âj for i ∈ {1, . . . , 2t− 1}
and b2t ∈ {0, 1}. We know that b2 ∈ {0,1}.
If b2 = 0, then b = πb(b), and bi = b2t+i for i ∈ {1, . . . , 2t}. Thus

b =

(
b2t +

2t∑
j=2

âj, b2t +
2t∑
j=3

âj, . . . , b2t + â2t, b2t,

b2t +
2t∑
j=2

âj, b2t +
2t∑
j=3

âj, . . . , b2t + â2t, b2t

)
.

If b2 = 1, then b = πb(b) + 1, so bi = b2t+i + 1 for i ∈ {1, . . . , 2t}. Thus

b =

(
b2t +

2t∑
j=2

âj, b2t +
2t∑
j=3

âj, . . . , b2t + â2t, b2t,

1 + b2t +
2t∑
j=2

âj, 1 + b2t +
2t∑
j=3

âj, . . . , 1 + b2t + â2t, 1 + b2t

)
.

(iv) follows from Proposition 2.19. QED

Note that item (iii) saves us computing time because, by brute-force search,
we only need to check different values of a.
In Subsections 3.1.1–3.1.3 we will use the permutations associated to the gen-
erators as in Proposition 3.4.

The following lemma will be useful in some proofs in the next sections. It
is an stronger version of [67, Proposition 6].

Lemma 3.5. Let C be a Hadamard code of length 4t with dimension of the
kernel k, and s ∈ K(C) \ 〈1〉. Then C|s consists of two copies of a Hadamard
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code of length 2t and dimension of the kernel equal to k − 1, where C|s is the
projection from C onto Supp(s).

Proof. In [67, Proposition 6], it is proved that C|s consists of two copies of a
Hadamard code of length 2t. As we project the code C over the support of s,
we have that s|s = 12t. Thus, the kernel of C|s decreases in one unit. QED

3.1.1 HFP(4t1, 2)-codes

In this subsection we assume that C = 〈a, b | a4t = b2 = 0, a2t = 1〉.

Proposition 3.6. Let C be an HFP(4t1, 2)-code of length 4t with t > 1. Then
t is even.

Proof. Suppose that t is odd. Thus, C4t ×C2 ' C2t ×C4 and an HFP(4t1, 2)-
code is equivalent to an HFP(2t, 41)-code. Without loss of generality, we can
assume that C = 〈a, b | a2t = b4 = 0, b2 = 1〉. From Proposition 3.3, r = 4t−1.
We know that the rank of C is r ≤ rank(H) + 1 (due to the vector 1) but
r ≤ rank(H) if 1 is a combination of rows of H, where

H =



a

a2

...
a2t−1

0

b

ba

ba2

...
ba2t−1



=



a

a+ πa(a)
...
a+ πa(a

2t−2)

a+ πa(a
2t−1)

b

b+ πb(a)

b+ πb(a
2)

...
b+ πb(a

2t−1)



.

If we sum the first half of rows, then we obtain a+ a2 + . . .+ a2t−1 = πa(a) +

. . . + πa(a
2t−1) = πa(a + . . . + a2t−1). Thus, a + a2 + . . . + a2t−1 = w, such

that w = πa(w). Therefore w ∈ {04t,14t, (02t,12t), (12t,02t)}. If w = 04t,
then in the first half of rows there is at most 2t − 2 independent rows, but if
w ∈ {14t, (02t,12t), (12t,02t)}, then there is at most 2t − 1 independent rows.
Making the sum of the second half of rows we obtain πb(a+a2 + . . .+a2t−1), so
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the number of independent rows in the second half of rows is at most equal to
the number of independent rows in the first half plus one, due to the vector b.
Therefore, if w = 04t then rank(H) ≤ 4t− 3, and as a consequence r ≤ 4t− 2.
But if w = 14t, then 14t appears as combination of the rows of the first half and
also as combination of the rows of the second half. Hence, rank(H) ≤ 4t− 2,
and thus r ≤ 4t − 2. If w ∈ {(02t,12t), (12t,02t)}, then the sum of all rows
of H is the vector 14t and so in each column of H there is an odd number of
ones, which contradicts that H is a Hadamard matrix for t > 1. Therefore,
r < 4t− 1 which contradicts that t is odd by Proposition 3.3. QED

Proposition 3.7. Let C be a nonlinear HFP(4t1, 2)-code. If t is a power of
two, then r = 2t.

Proof. We suppose that t is a power of two, then 4t = 2s for some integer
s ≥ 2. Let A be the matrix whose rows are a, a2, . . . , a2t. Thus,

r ≥ rank(A).

Vectors in F4t can be written as polynomials in F[x]/(x4t − 1), where the
coordinates of the vector have been substituted by the coefficients of the
polynomial. That is, v = (v0, v1, . . . , v4t−1) ∈ F4t is represented by v(x) =

v0 + v1x+ . . .+ v4t−1x
4t−1.

Let a = (a1, a2), where a1 and a2 are the first and the second half of
components of the generator a, respectively. Since a2t = 1, we have that
wt(ai) is odd, so ai(x) does not contain the factor (x− 1), for i ∈ {1, 2}. Note
that

rank(A) = 2t− deg(gcd(a1(x), a2(x), x2s−1 − 1)).

Since a1(x) and a2(x) do not contain the factor (x − 1), and x2s−1 − 1 =

(x− 1)2s−1 , we have that deg(gcd(a1(x), a2(x), x2s−1 − 1)) = 0. Thus,

r ≥ rank(A) = 2t.

From Proposition 3.3, we have that r ≤ 2t, so r = 2t. QED

Proposition 3.8. Let C be an HFP(4t1, 2)-code. Then b /∈ K(C).

Proof. We are going to show that b /∈ K(C). Assume the contrary and take
a = (a1, a2). We know that b = (β, β), where wt(β) = t. As b ∈ K(C),
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we have ba, b + a ∈ C. Thus, (β + a2, β + a1), (β + a1, β + a2) ∈ C and the
first vector should be at distance 2t to the second vector, so wt(a1 + a2) = t.
Indeed, if d(ab, a + b) = 0, then b = πa(b) so b ∈ {0,1}, which is impossible.
If d(ab, a + b) = 4t, then a = (a1, ā1) and b ∈ {ω4t, ω̄4t}. We denote the
first and the second half of aj by aj1 and aj2, respectively, for any j. We have
that a2i = (a2i

1 , a
2i
1 ) for i ∈ {1, . . . , t}. Hence, the projection of the first half

a2i
1 onto the support of β, a2i

1 |β, conform a Hadamard matrix of order t, and
a2

1|β generates a cyclic group, which is impossible by Lemma 2.22. Note that
this lemma is only applicable if t ≥ 4, but if t = 3 it is clear that k = 1.
Thus, d(ab, a + b) = 2t and wt(a1 + a2) = t. Now, using the same argument
for all elements ai of C instead of a, we obtain wt(ai1 + ai2) = t and also
d(ai1+ai2, a

j
1+aj2) = t. Indeed, d(ai1+ai2, a

j
1+aj2) = wt(ai1+aj1+ai2+aj2), and using

Lemma 2.7, wt(ai1 + aj1 + ai2 + aj2) = wt(πai(a
j−i
1 + aj−i2 )) = wt(aj−i1 + aj−i2 ) = t.

Hence, the elements (ai1 +ai2), for i ∈ {1, . . . , 4t}, give a cyclic Hadamard code
of length 2t, which is impossible. Therefore, b 6∈ K(C). QED

Proposition 3.9. Let C be an HFP(4t1, 2)-code. The vectors (02t,12t), ω4t,
and (ω2t, ω̄2t) are not in the kernel of C for t ≥ 4.

Proof. Firstly, suppose that (02t,12t) ∈ K(C). Note that (02t,12t) = atb.
Indeed, if (02t,12t) = ai for some i, then (02t,12t)

2 = 0 which is not possible.
If (02t,12t) = aib for some i, then (02t,12t)

2 = 1, so i = t. From Lemma 3.5,
the projection of C over the support of (02t,12t) consists of two copies of a
Hadamard code. We denote by x|(02t,12t) the projection of a vector x over
the support of (02t,12t). As b2 = 0 and b atb = atb b, we have that b =

(β, β̄, β, β̄) for some β. Thus, at = (β̄, β, β, β̄) and at|(02t,12t) = b|(02t,12t). As
aib atb = atb aib, we have that aib = (ᾱi,1, ᾱi,2, αi,2, αi,1), for some αi,j where
i ∈ {1, . . . , 2t} and j ∈ {1, 2}. Therefore, at+i = (αi,1, αi,2, αi,2, αi,1) and
aib|(02t,12t) = at+i|(02t,12t). Let α be the vector a|(02t,12t) of length 2t, and let
πα = (1, . . . , 2t). Note that α2t = a2t|(02t,12t) = 12t. We have that 〈α〉 is a
cyclic HFP-code of length 2t, which contradicts Lemma 2.22 when t ≥ 2.

Secondly, we suppose that ω4t ∈ K(C). We have that ω4t ∈ {ai, aib} for
some i. If i is even, then ω2

4t = 0, so ω4t ∈ {b, b̄} which contradicts Proposi-
tion 3.8. If i is odd, then ω2

4t = 1, so i = t, which contradicts Proposition 3.6.

Finally, suppose (ω2t, ω̄2t) ∈ K(C). We will see that (ω2t, ω̄2t) = atb. Let
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(ω2t, ω̄2t) = ai for some i. If i is even, then (ω2t, ω̄2t)
2 = 0, which is not possi-

ble. If i is odd, then (ω2t, ω̄2t)
2 = 1, so i = t which contradicts Proposition 3.6.

Now, let (ω2t, ω̄2t) = aib for some i. If i is odd, then (ω2t, ω̄2t)
2 = 0 which is

not possible. If i is even, then (ω2t, ω̄2t)
2 = 1, so i = t. Hence, atb = (ω2t, ω̄2t).

As a2iatb = atba2i, it derives that a2i = (α2i,1, α2i,2, α2i,2, α2i,1) for some α2i,j,
with i ∈ {1, . . . , t} and j ∈ {1, 2}. From Lemma 3.5, the projection of C over
the support of (ω2t, ω̄2t) has a Hadamard structure. Taking the first half of
coordinates of a2i and projecting it over the support of ω2t we obtain a cyclic
Hadamard code of length t, which contradicts Lemma 2.22 when t ≥ 4. QED

Proposition 3.10. Let C be an HFP(4t1, 2)-code. Then k 6= 2 for t ≥ 4.

Proof. Suppose k = 2. Hence, there exists a vector v ∈ K(C) \ 〈1〉. From
Lemma 2.8, as a ∈ C, we have that πa(v) ∈ K(C). If πa(v) ∈ 〈1〉, then
it contradicts v /∈ 〈1〉. If πa(v) = v, then v = (02t,12t), which contradicts
Proposition 3.9. If πa(v) = v̄, then v ∈ {ω4t, (ω2t, ω̄2t)}, which contradicts
Proposition 3.9. QED

Lemma 3.11. Let C be an HFP(4t1, 2)-code. If v ∈ K(C) \ 〈1〉 and jv is the
smallest value such that πjva (v) = v, then jv is even.

Proof. Let v ∈ K(C) \ 〈1〉. As ai ∈ C for i ∈ {1, . . . , 2t}, from Lemma 2.8
we have that πia ∈ Aut(K(C)), so πia(v) ∈ K(C). Therefore, there is some j
such that πja(v) = v. Note that j 6= 1. Indeed, j = 1 implies that πa(v) = v,
so v ∈ {0,1, (02t,12t), (12t,02t)}, which is not possible by Proposition 3.9. As
πja(v) = v, it derives that v = (v1, . . . , vj, v1, . . . ||v2t+1, . . . , v2t+j, v2t+1, . . .),
where || separates the first half from the second. Since wt(v) = 2t, we have
2t = (4t/2j)wt(v1, . . . , vj, v2t+1, . . . , v2t+j), so wt(v1, . . . , vj, v2t+1, . . . , v2t+j) =

j. Suppose that j is an odd number. Without loss of generality, we can assume
that the first j coordinates of v have an odd weight, and the first j coordinates
of the second half of v have an even weight. Note that v + πa(v) = (v1 +

vj, . . . , vj+vj−1, v1 +vj, . . . ||v2t+1 +v2t+j, . . . , v2t+j+v2t+j−1, v2t+1 +v2t+j, . . .) ∈
K(C). Moreover, since wt(v + πa(v)) = 2t, we have 2t = (4t/2j)wt(v1 +

vj, . . . , vj + vj−1, v2t+1 + v2t+j, . . . , v2t+j + v2t+j−1), so wt(v1 + vj, . . . , vj + vj−1,

v2t+1 + v2t+j, . . . , v2t+j + v2t+j−1) = j, but wt(v1 + vj, . . . , vj + vj−1, v2t+1 +

v2t+j, . . . , v2t+j + v2t+j−1) is even, then we have a contradiction and therefore
j cannot be odd. QED
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Proposition 3.12. Let C be an HFP(4t1, 2)-code. If k > 1, then the length
of C is a power of two.

Proof. Let 4t = 2st′, where t′ is odd. For any binary vector x of even length
we say that x(1), x(2) are the projections over the first and the second half part
of x, respectively. Let v ∈ K(C)\〈1〉. From Lemma 2.8, as b ∈ C we have that
πb ∈ Aut(K(C)). Hence, πb(v) ∈ K(C), and v+πb(v) ∈ K(C) since the kernel is
a subspace. We denote v+πb(v) by v1. Since v+πb(v) = (v(1) +v(2), v(1) +v(2)),
we have v(1)

1 = v
(2)
1 . As at ∈ C, v1 + πat(v1) ∈ K(C). We denote v1 + πat(v1)

by v2. Note that v(1)(1)
1 = v

(1)(2)
1 , since v1 + πat(v1) = (v(1)(1) + v(1)(2), v(1)(1) +

v(1)(2), v(1)(1) + v(1)(2), v(1)(1) + v(1)(2)). If we repeat the same construction for v2

using πat/2 , we obtain v3 = (α3, . . . , α3) ∈ K(C), where the length of α3 is t/2.
If we repeat this process until we can apply πat/2s , we obtain a vector w in the
kernel which can be divided in 2s parts of length t′ which are exactly equal.
Thus, we have πt′a (w) = w, and from Lemma 3.11, it is only possible if t′ = 1

and w ∈ {0,1}.
In each iteration of the construction of vi’s it could happen two exceptions.

We could get a vector vj which is compounded by a combination of 0l’s and
1l’s. As vj + πa(vj) ∈ K(C),wt(vj + πa(vj)) ∈ {0, 2t, 4t}, which is not possible
by the shape of vj, unless vj = (0l,1l, . . . ,0l,1l) with l ∈ {1, 2, 2t} or vj =

(0l,1l,1l,0l, . . . ,1l,0l) where only appear two consecutive equal parts with
l = 1. Firstly, we suppose that vj = (0l,1l, . . . ,0l,1l) with l ∈ {1, 2, 2t}. If
l = 1, then ω4t ∈ K(C) which contradicts Proposition 3.9. If l = 2t, then
vj = (02t,12t), which contradicts Proposition 3.9. If l = 2, then vj + πa(vj) =

ω4t ∈ K(C), which contradicts Proposition 3.9. Now, we suppose that vj =

(0l,1l,1l,0l, . . . ,1l,0l) where only appear two consecutive equal parts with
l = 1. It is clear that there exists a permutation πai for some i such that
πai(vj) = (0l,0l,1l,1l, . . . ,0l,0l,1l,1l), which is the same case as before where
l = 2.

The other exception is that we could obtain a vector vj ∈ {0,1} for some
j. This means that vj−1 = (γ, . . . , γ) or vj−1 = (δ, δ̄, . . . , δ, δ̄) with γ, δ of
length i and vj = vj−1 + πai(vj−1) ∈ {0,1}. Note that i is even. On the
contrary, if vj−1 = (γ, . . . , γ), then πia(vj−1) = vj−1 which is not possible by
Lemma 3.11. If vj−1 = (δ, δ̄, . . . , δ, δ̄), then wt(vj−1 + πa(vj)) /∈ {0, 2t, 4t}.
Therefore, i is even. In order to try to solve this case, we have to take vj =
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vj−1 + πai/2(vj−1). Thus, we obtain vj = (γ(1) + γ(2), . . . , γ(1) + γ(2)) or vj =

(δ(1) + δ(2), . . . , δ(1) + δ(2)). If we obtain vj ∈ {0,1} again, then we have to take
vj = vj−1 + πai/4(vj−1) and we can repeat this until we get vj /∈ {0,1} unless
vj−1 ∈ {0,1, (0l,1l, . . . ,0l,1l)}. But, if vj−1 ∈ {0,1} then we can repeat an
analogous argumentation as for vj obtaining v ∈ {0,1} which contradicts the
hypotheses. If vj−1 = (0l,1l, . . . ,0l,1l), then we obtain the first exception that
we have treated in the previous paragraph. QED

Theorem 3.13. Let C be an HFP(4t1, 2)-code. Then k = 1 for t ≥ 4.

Proof. Suppose k > 1. From Proposition 3.10, we have k ≥ 3. From Proposi-
tion 3.12 and Proposition 3.7, t is a power of two and r = 2t, which contradicts
Lemma 2.2 for any t ≥ 3. QED

3.1.2 HFP(2t, 2, 21)-codes

In this subsection we assume that C = 〈a, b,1 | a2t = b2 = 12 = 0〉.

Proposition 3.14. Let C be an HFP(2t, 2, 21)-code of length 4t with t > 1.
Then t is an even square number.

Proof. We have that C ' C2t×C2×〈1〉 = N×〈1〉, where N = C2t×C2. From
Lemma 2.36 we have that |C2t×C2| is a square, thus t is a square. The proof of
Proposition 3.6 only depends on the associated permutations to the generators
of the code, so we can use the same proof to get that t is even. QED

Proposition 3.15. Let C be an HFP(2t, 2, 21)-code of length 4t. If t is a
power of two, then t ∈ {1, 4}.

Proof. From Proposition 2.29, as C = C2t × C2 × 〈1〉, we have a Hadamard
difference set in C2t×C2. From Proposition 3.14, t is also a square, so t = 22s

for some s. Thus, the order and the exponent of C2t ×C2 are 22s+2 and 22s+1,
respectively. From Proposition 2.28, it derives that s ≤ 1. QED

The next lemmas will be helpful in some proofs.

Lemma 3.16. Let C be an HFP(2t, 2, 21)-code. Then (02t,12t) /∈ K(C).
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Proof. Firstly, we note that if (02t,12t) ∈ C, then (02t,12t) = at. Indeed,
if (02t,12t) = aib for some i ∈ {1, . . . , 2t}, then (02t,12t)

2 = 1, which is
not possible. If (02t,12t) = ai for some i ∈ {1, . . . , 2t}, then (02t,12t)

2 =

0 and so i = t. Now we assume that at = (02t,12t) ∈ K(C). Let a =

(α0, α1, α2, α3). Since aat = ata, we have α0 = α1 and α2 = α3. From
Lemma 2.7, it derives that at = a + πa(a) + . . . + πt−1

a (a) = (02t,12t), so∑t
i=1 ai = 0 and

∑3t
i=2t+1 ai = 1. From Lemma 3.5, the projection of C over

Supp(at) has a Hadamard structure. Therefore, wt(αi) = t/2, where i ∈ {0, 2}.
As
∑3t

i=2t+1 ai = 1, we have that wt(α2) is odd, which is not possible since t is
an even square number, and so (02t,12t) /∈ K(C). QED

Lemma 3.17. Let C be an HFP(2t, 2, 21)-code. If v ∈ K(C) \ 〈1〉 and jv is
the smallest value such that πjva (v) = v, then jv is even.

Proof. The proof is analogous to the one in Lemma 3.11. QED

Lemma 3.18. Let C be an HFP(2t, 2, 21)-code of length 4t. Let v be the
codeword ω4t or (ω2t, ω̄2t) in the kernel of C. If v 6= at, then there exists a
circulant Hadamard code of length t. If v = at, then there exists an HFP(t1, 2)-
code of length t. The vectors ω4t and (ω2t, ω̄2t) are not simultaneously in K(C).

Proof. Let v = ω4t ∈ K(C). We suppose that v ∈ {ai, aib} for some i, then
v2 = 0 if i is even, and v2 = 1 if i is odd. Due to the structure of the code,
there are no elements whose square is the vector 1. Thus, we have v2 = 0

implying that i ∈ {0, t}. Hence v ∈ {b, atb, at}.
Firstly, we suppose that v = b. From Lemma 3.5, the projection of the code

onto Supp(b) should have a Hadamard structure, which is not necessarily full
propelinear. However, from a2b = ba2 we obtain a2 + πb(a

2) = b + π2
a(b) = 0.

Thus, a2 has the same values in the first and in the second half part. The
subgroup of C generated by a2 projected over the first half part of Supp(b) is
an HFP(t, 21)-code, Ĉ, of length t. From Lemma 2.23, we know that Ĉ is a
circulant Hadamard code and the dimension of its kernel is k̂ = 1.

Secondly, we suppose that v = atb. From Lemma 3.5, the projection of the
code onto Supp(atb) should have a Hadamard structure, which is not neces-
sarily full propelinear. However, from a2atb = atba2 we obtain a2 + πatb(a

2) =

atb+ π2
a(a

tb) = 0. Hence, a2 has the same values in the first and in the second
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half part, but in different order. The subgroup of C generated by a2 pro-
jected over the first half part of Supp(atb) is an HFP(t, 21)-code. Thus, from
Lemma 2.23 it is a circulant Hadamard code and the dimension of its kernel
is 1.

Thirdly, we suppose that v = at. Since ajat = ataj, we have that aj =

(αj,1, αj,1, αj,2, αj,2) if j is even, and aj = (γj,1, γ̄j,1, γj,2, γ̄j,2) if j is odd. Let
b = (β1, β2, β1, β2) for some β1, β2, since b2 = 0. As bat = atb, β1 = β2.
Hence, b = (β1, β1, β1, β1). From Lemma 3.5, the projection of the code onto
Supp(at) should have a Hadamard structure, which is not necessarily full pro-
pelinear. The subgroup 〈(α2,1, α2,2)〉× 〈(β1, β1)〉 projected onto Supp(at) is an
HFP(t1, 2)-code.

Now, let v = (ω2t, ω̄2t) ∈ K(C). Therefore v /∈ {b, aib} for any i. If v = b,
then b2 = 1 which is not possible. If v = aib, then v2 = 0 if i is odd, and
v2 = 1 if i is even, which is not possible since t is even. Thus, v = at, but if we
apply an analogous argumentation as before we obtain an HFP(t1, 2)-code.

To conclude, we suppose that ω4t and (ω2t, ω̄2t) are in K(C). Since K(C) is
a linear subspace, then ω4t + (ω2t, ω̄2t) = (02t,12t) ∈ K(C) which contradicts
Lemma 3.16. QED

Theorem 3.19. Let C be an HFP(2t, 2, 21)-code of length 4t. If k > 1, then
we have some of the following:

(i) k = 5, t = 4, and C is linear.

(ii) k = 3, t = 1, and C is linear.

(iii) k = 3, t = 4, and r = 6.

(iv) k = 2, and there exists a circulant Hadamard code of length 4t′ = t, where
t′ is an odd square.

(v) k = 2, and there exists an HFP(4t′1, 2)-code of length 4t′ = t, where t′ is
even.

Proof. Firstly, we see that t is a power of two except in two cases. We can
use the same proof that in Proposition 3.12, since the associated permutations
to the generators are the same. To approach the two exceptions that appears
in the proof of Proposition 3.12, here we use Lemma 3.17 and Lemma 3.18
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instead of Lemma 3.11 and Proposition 3.9. Therefore, there exists a circulant
Hadamard code of length 4t′ or an HFP(4t′1, 2)-code, where 4t′ = t. If there
are any of these two exceptions, then from Lemma 2.24, Theorem 3.13 and
Lemma 3.5, k = 2.

If t is a power of two, then t ∈ {1, 4} by Proposition 3.15. Finally, mak-
ing use of the software Magma [18], we compute all the possibilities for
HFP(2t, 2, 21)-codes with t ∈ {1, 4}. For t = 1, there is a linear code with
r = k = 3. For t = 4, there is a linear code with r = k = 5, and there is a
nonlinear code with r = 6 and k = 3. QED

3.1.3 HFP(2t, 41)-codes

In this subsection we assume that C = 〈a, b | a2t = b4 = 0, b2 = 1〉.

Proposition 3.20. Let C be an HFP(2t, 41)-code of length 4t with t > 1.
Then t is even.

Proof. Suppose that t is odd. From Remark 3.2, HFP(2t, 41) ' HFP(4t1, 2).
Thus, t cannot be odd by Proposition 3.6. QED

Proposition 3.21. Let C be an HFP(2t, 41)-code of length 4t. If t is a power
of two, then t ≤ 8.

Proof. Let t = 2s for some s. Thus, we have that C4 is a normal subgroup
of C and C/C4 ' C2s+1 . From Proposition 2.37, |C/C4| ≤ (s + 5)/2. Hence,
s ≤ 3. QED

Proposition 3.22. Let C be an HFP(2t, 41)-code. If (02t,12t) ∈ K(C), then
k = 2 and there exists a circulant Hadamard code of length 2t.

Proof. Note that if v = (02t,12t) ∈ C, then v ∈ {at, b, atb}. Indeed, if v = aib

for some i ∈ {1, . . . , 2t}, then (02t,12t)
2 = 1, so i ∈ {t, 2t}. If v = ai for some

i ∈ {1, . . . , 2t}, then (02t,12t)
2 = 0 and so i = t. Now, we suppose v ∈ K(C).

From Lemma 3.5, the projection of C over the support of v has a Hadamard
structure. Thus, the second half of coordinates of each codeword has weight 0

or t or 2t. We denote the second half of coordinates of a vector x by x(2). If
we set πa(2) = (1, 2, . . . , 2t), then a(2) generates a cyclic group or order 2t.

Firstly, we suppose that v = b. Thus, b(2) = 1 and we set πb(2) = I. Hence,
〈a(2), b(2)〉 ' C2t×C2, which is an HFP(2t, 21)-code. Since t is even, we have an
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HFP(4(t/2), 21)-code, which is a circulant Hadamard code. From Lemma 2.24,
circulant Hadamard codes have dimension of the kernel equal to 1. Therefore,
k = 2 by Lemma 3.5.

Secondly, we suppose that v = atb. Thus, (atb)(2) = 1, and let π(atb)(2) = I.
We have that 〈a(2), (atb)(2)〉 ' C2t×C2 which is an HFP(2t, 21)-code. Since t is
even, we have an HFP(4(t/2), 21)-code. As before, it is a circulant Hadamard
code. From Lemma 2.24 and Lemma 3.5, k = 2.

Finally, we suppose that v = at. Let aj = (αj0, αj1, αj2, αj3). Since ajat =

ataj, we have that αj0 = αj1, and αj2 = αj3. Since b2 = 1 and bat = atb, we
have that b = (β1, β̄1, β̄1, β1). We have the following Hadamard matrix,

H =

(
A1 A1 A2 A2

B1 + A2 B̄1 + A2 B̄1 + A1 B1 + A1

)
,

where A1, A2 are matrices whose rows are αj0, αj2, respectively, for j ∈ {1, . . . ,
2t}, and B is the matrix whose rows are β1. Since H is a Hadamard matrix,
if we set the matrix

Ĥ =

(
A1 A2

B1 + A2 B̄1 + A1

)
,

then Ĥ is a matrix whose rows have weight t, except the last row of (A1, A2)

which is 0, and the distance between any pair of rows is t. Note that (A1, A2) is
a Hadamard matrix of order 2t. Moreover, (α0, α2) generates a cyclic group of
order 2t. Thus, the rows of (A1, A2) and their complements are an HFP(2t, 21)-
code. As before, we have that k = 2. QED

Proposition 3.23. If there exists a circulant Hadamard code C of length 4t,
then there also exists an HFP(4t, 41)-code of length 8t with kernel 〈1, (04t,14t)〉.

Proof. From [63, Proposition 2.2], as C is a circulant Hadamard code, we have
that C = 〈a,1〉 is an HFP(4t, 21)-code. Let b = (04t,14t), and H be the
Hadamard matrix whose rows are a, a2, . . . , a4t. Let Ĥ be the matrix obtained
by Sylvester’s construction,
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Ĥ =

(
H H

H H̄

)
=



a a

a2 a2

...
...

a4t a4t

a a+ 1

a2 a2 + 1
...

...
a4t a4t + 1


.

We note that the rows of Ĥ and its complements form an HFP(4t, 41)-code, Ĉ,
of length 8t given by 〈(a, a), b〉. As (04t,14t) +w ∈ Ĉ for every w ∈ Ĉ, we have
that (04t,14t) ∈ K(Ĉ). Since C is a circulant Hadamard code, dim(K(C)) = 1

by Lemma 2.24. Hence, K(Ĉ) = 〈1, (04t,14t)〉. QED

From Proposition 3.22 and Proposition 3.23, we have a link between the
existence of HFP(2t, 41)-codes with K(C) = 〈1, (02t,12t)〉 and the existence
of circulant Hadamard matrices. Even if Conjecture 2.13 is true, there could
exist HFP(2t, 41)-codes with a kernel different from 〈1, (02t,12t)〉.

Remark 3.24. Arasu, de Launey and Ma [5] proved that a circulant complex
Hadamard matrix of order 2t is equivalent to a relative (4t, 2, 4t, 2t)-difference
set in the group C4×C2t where the forbidden subgroup is the unique subgroup of
order two which is contained in the C4 component. Thus, HFP(2t, 41)-codes are
equivalent to circulant complex Hadamard matrices of order 2t. Arasu et al. [5]
also conjectured that there is no circulant complex Hadamard matrix of order
greater than 16, and they proved several non-existence results for circulant
complex Hadamard matrices. The following orders up to 1000 have yet to be
excluded: 260, 340, 442, 468, 520, 580, 680, 754, 820, 884, 890.

A complex Hadamard matrix of order 2t is a matrix H whose entries are in
{1, i,−1,−i} such that HH∗ = 2tI2t, where H∗ denotes the conjugate trans-
pose of H. Let H be a circulant complex Hadamard matrix with first row
g. From [5, Theorem 1.2], a Hadamard difference set can be built from g.
From Proposition 3.4, an HFP(2t, 41)-code can be built from only one gen-
erator a. Next, we will make explicit the relationship between the first row
g = (g1, g2, . . . , g2t) of a circulant complex Hadamard matrix and a generator
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a of an HFP(2t, 41)-code. Let φ be the isomorphism from the abelian multi-
plicative group of fourth roots of unity to the additive group Z4, whose ele-
ments {0, 1, 2, 3} after a Gray map [22], are taken as {(0, 0), (0, 1), (1, 1), (1, 0)}.
Hence, for each coordinate of g, we have

φ

1 → (0, 0)

i → (0, 1)

−1 → (1, 1)

−i → (1, 0)

Set φ(g) = (φ(g1), . . . , φ(g2t)) ∈ F4t and rearrange the coordinates of φ(g)

putting the first coordinates φ(gi)1 of each φ(gi) in the first half, and the
second coordinates φ(gi)2 in the second half. Thus,

φ(g) = (φ(g1)1, . . . , φ(g2t)1, φ(g1)2, . . . , φ(g2t)2).

Define πa = (1, 2, . . . , 2t)(2t + 1, . . . , 4t) and take a = φ(g) + π−1
a (φ(g)). It is

straightforward to show that a is a generator of an HFP(2t, 41)-code.

Reciprocally, if we know a generator a of an HFP(2t, 41)-code, then we can
obtain the first row g of a circulant complex Hadamard matrix. Set φ(g) =

(φ(g1)1, . . . , φ(g2t)1, φ(g1)2, . . . , φ(g2t)2). There are 4 possibilities for the pair
(φ(g1)1, φ(g1)2), that is, there are 4 possibilities for the first coordinate of g,
g1 ∈ {1, i,−1,−i}. Thus, without loss of generality, we can assume φ(g1)1 =

φ(g1)2 = 0. This assumption will make that the first coordinate of g will be
g1 = 1. Let a = (a1, a2, . . . , a4t). From a = φ(g) + π−1

a (φ(g)), we have

φ(g) =

(
0, a1, a1 + a2, . . . ,

2t−1∑
j=1

aj, 0, a2t+1, a2t+1 + a2t+2, . . . ,

4t−1∑
j=2t+1

aj

)
.

Rearrange φ(g) = ((φ(g1)1, φ(g1)2), . . . , (φ(g2t)1, φ(g2t)2) and apply φ−1 to ob-
tain g.

In [5, Example 1.1], for order 4t = 32, the first row of a circulant complex
Hadamard matrix is (1, 1, i,−i, i, 1, 1, i,−1, 1,−i,−i,−i, 1,−1, i), which corre-
sponds to the generator a = (0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0,

1, 0, 1, 0, 0, 0, 0, 1, 0, 1) of an HFP(2t, 41)-code with r = 11 and k = 2. We have
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found another HFP(2t, 41)-code of length 4t = 32 with r = 13 and k = 1 whose
generator a is (0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1,

0, 1, 0) which corresponds to the first row of a circulant complex Hadamard
matrix equal to (1, i, i, i, i, 1, i,−i,−1,−i, i, i,−i,−1, i,−i). Now we state a
conjecture about HFP-codes that is equivalent to the conjecture presented by
Arasu et al. [5] about circulant complex Hadamard matrices.

Conjecture 3.25. There do not exist HFP(2t, 41)-codes of length 4t for t > 8.

3.1.4 HFP(t, Q1)-codes

In this subsection we assume that C = 〈d, a, b | dt = a4 = b4 = 0, a2 = b2 =

1, aba = b〉 and the value of t is odd. These codes are equivalent to cocyclic
Hadamard matrices for which the Sylow 2-subgroup of the indexing group
is Q, which have been considered by several authors. Baliga and Horadam
[13] proved that the Williamson Hadamard matrix of order 4t is a cocyclic
Hadamard matrix over C2t × C2 with t odd. Álvarez, Gudiel and Güemes [4]
established some bounds on the number and distribution of 2-coboundaries
over Ct × C2

2 in order to obtain a Ct × C2
2 -cocyclic Hadamard matrix. Also,

they completed the computational results obtained by Baliga and Horadam.
Barrera and Dietrich [14] proved that there is a 1-1 correspondence between
the perfect sequences of length t over Q ∩ qQ, with q = (1 + i+ j + k)/2, and
the (4t, 2, 4t, 2t)-relative difference sets in Ct ×Q relative to C2. They showed
that if t = pa + 1 for a prime p and integer a ≥ 0 with t ≡ 2 mod 4, then there
exists a (4t, 2, 4t, 2t)-relative difference set in Ct ×Q with forbidden subgroup
C2. Suárez also studied HFP-codes with group structure Ct × Q in his PhD
thesis [75].

Proposition 3.26. Let C be an HFP(t, Q1)-code. Then, up to equivalence,
we have:

(i) πd = (1, 5, . . . , 4t− 3)(2, 6, . . . , 4t− 2)(3, 7, . . . , 4t− 1)(4, 8, . . . , 4t).

(ii) πa = (1, 2)(3, 4) . . . (4t− 1, 4t).

(iii) πb = (1, 3)(2, 4) . . . (4t− 3, 4t− 1)(4t− 2, 4t).
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(iv) a = (A1, A2, . . . , At) where

Ai ∈ {(0, 1, 0, 1), (1, 0, 1, 0), (0, 1, 1, 0), (1, 0, 0, 1)}.

(v) Knowing the value of d is enough to define a.

(vi) Knowing the value of a is enough to define b.

(vii) Π = C2t × C2.

Proof. (i), (ii) and (iii) are analogous to the proof of Proposition 3.4.
(iv) Let a = (a1, . . . , a4t) = (A1, . . . , At), where

Ai = (a4i−3, a4i−2, a4i−1, a4i) with i ∈ {1, . . . , t}.

Since a2 = a+ πa(a) = 1, we have

Ai = (a4i−3, ā4i−3, a4i−1, ā4i−1).

(v) Since ad = da, we have a = πd(a) + d + πa(d) = πd(a) + d̂, where
d̂ = d+πa(d). Thus, a4i−3 = a4t−3+

∑i
j=1 d̂4j−3, and a4i−1 = a4t−1+

∑i
j=1 d̂4j−1,

for any i ∈ {1, . . . , t}. Since a2 = 1, we have a4i−3 = ā4i−2 and a4i−1 = ā4i.
(vi) From aba = b, a+ πa(b) = b+ πb(a

−1) = b+ πb(a
3) = b+ πb(ā). Thus,

a+πb(ā) = b+πa(b). Note that a+πb(ā) = (Â1, . . . , Ât) where Âi = (1, 1, 1, 1)

or (0, 0, 0, 0). Hence,

Âi =

{
(1, 1, 1, 1) if Ai ∈ {(0, 1, 0, 1), (1, 0, 1, 0)}
(0, 0, 0, 0) if Ai ∈ {(0, 1, 1, 0), (1, 0, 0, 1)}

.

Let b = (b1, . . . , b4t) = (B1, . . . , Bt) where Bi = (b4i−3, b4i−2, b4i−1, b4i). Since
b2 = 1, we have Bi = (b4i−3, b4i−2, b̄4i−3, b̄4i−2). Thus,

Bi ∈
{(0, 1, 1, 0), (1, 0, 0, 1)} if Ai ∈ {(0, 1, 0, 1), (1, 0, 1, 0)}
{(0, 0, 1, 1), (1, 1, 0, 0)} if Ai ∈ {(0, 1, 1, 0), (1, 0, 0, 1)}

.

(vii) It follows from Proposition 2.19 and since t is odd. QED

Proposition 3.27. Let C be an HFP(t, Q1)-code, where t is odd. Then r =

4t− 1 and k = 1.
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Proof. It follows from Proposition 3.3 and since t is odd. QED

3.1.5 Magma computations

In Table 3.1, we show the values of the rank and the dimension of the kernel of
the HFP codes that we have computed with Magma [18], fulfilling the analytic
results, for length 4t. Ó Catháin and Röder [58] built the cocyclic Hadamard
matrices for t ≤ 9 that correspond to many of the HFP-codes in Table 3.1, but
we have computed the rank and the dimension of the kernel.

t (4t1, 2) (2t, 2, 21) (2t, 41) (t, Q1)
r k r k r k r k

1 3 3 3 3 3 3 x x
2 4 4 X X 4 4 - -
3 X X X X X X 11 1

4 x x 5 5 7 2 - -6 3
5 X X X X X X 19 1
6 x x X X x x - -
7 X X X X X X 27 1

8 x x X X
11 2 - -13 1

9 X X X X X X 35 1
10 x x X X x x - -

Table 3.1: Rank and dimension of the kernel of Hadamard full propelinear
codes with associated group C2t×C2. Symbol x means that the non-existence
was checked with Magma by exhaustive search, symbol Xmeans that the non-
existence was proved analytically, and “-” means that the code does not have
C2t×C2 as associated group. When the values for the rank and the dimension
of the kernel appears in a box it means that they are the only values for that
box.

Remark 3.28. In this section, all values for the dimension of the kernel are
less than or equal to 3 when the code is nonlinear. Note that if k = 3, then
r ≤ t+ 2 by Lemma 2.2.

Now we present some examples of the Hadamard full propelinear codes
introduced in this section.
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Example 3.29. Let a and b be the following vectors of F16

a = (0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0),

b = (1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1)

with associated permutations

πa = (1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12, 13, 14, 15, 16),

πb = (1, 9)(2, 10)(3, 11)(4, 12)(5, 13)(6, 14)(7, 15)(8, 16).

Computing the powers of a, b, ab, we obtain a8 = 0, b2 = 1 and ab = ba. Thus,
the code C = {a, a2, . . . , a8, ab, a2b, . . . , a8b, ab2, a2, b2, . . . , a8b2, ab3, a2b3, . . . ,

a8b3} is an HFP(8, 41)-code of length 16, which is an HFP(2t, 41)-code with
t = 4. Computing with magma the rank and the dimension of the kernel of C
we obtain r = 7 and k = 2. Moreover, K(C) = 〈1, a4〉. The Hadamard matrix
of order 16 associated to C is

a

a2

a3

a4

a5

a6

a7

a8

ab

a2b

a3b

a4b

a5b

a6b

a7b

a8b



=



0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0

1 1 0 1 1 1 0 1 1 0 0 0 1 0 0 0

1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1

0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 0

1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0

0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0

0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0

0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1

0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1

1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1

1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1



.



44 Chapter 3. HFP-codes with a fixed associated group

Example 3.30. Let a and b be the following vectors of F16

a = (1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0),

b = (0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0)

with associated permutations

πa = (1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12, 13, 14, 15, 16),

πb = (1, 9)(2, 10)(3, 11)(4, 12)(5, 13)(6, 14)(7, 15)(8, 16).

Computing the powers of a, b, ab, we obtain a8 = b2 = 0 and ab = ba. Thus, the
code C = {a, a2, . . . , a8, ab, a2b, . . . , a8b, a1, a21, . . . , a81, ab1, a2b1, . . . , a8b1} is
an HFP(8, 2, 21)-code of length 16, which is an HFP(2t, 2, 21)-code with t = 4.
Computing with magma the rank and the dimension of the kernel of C we
obtain r = 6 and k = 3. Moreover, K(C) = 〈1, a4, b〉. The Hadamard matrix
of order 16 associated to C is

a

a2

a3

a4

a5

a6

a7

a8

ab

a2b

a3b

a4b

a5b

a6b

a7b

a8b



=



1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0

0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1

1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 1 1 0 1 0 0 1 0 0 1 1

1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 0 0 0 0 1 1 1 1 0 1 0 1

1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0

0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0



.
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Example 3.31. Let d, a, and b be the following vectors of F12

d = (1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0),

a = (0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1),

b = (0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0)

with associated permutations

πd = (1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12),

πa = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12),

πb = (1, 3)(2, 4)(5, 7)(6, 8)(9, 11)(10, 12).

Computing the powers of d, a, b and their products, we obtain d3 = a4 = b4 = 0,
a2 = b2 = 1, da = ad, db = bd, and aba = b. Therefore, the code C =

{d, d2, d3, da, d2a, d3a, db, d2b, d3b, dab, d2ab, d3ab, d1, d21, d31, da1, d2a1,

d3a1, db1, d2b1, d3b1, dab1, d2ab1, d3ab1} is an HFP(3, Q1)-code of length 12,
which is an HFP(t, Q1)-code with t = 3. Computing with magma the rank
and the dimension of the kernel of C we obtain r = 11 and k = 1. Moreover,
K(C) = 〈1〉. The Hadamard matrix of order 12 associated to C is

d

d2

d3

da

d2a

d3a

db

d2b

d3b

dab

d2ab

d3ab



=



1 1 1 0 1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 1 0 1

1 0 1 1 0 1 0 1 1 0 0 0

0 1 1 0 0 1 0 1 0 1 0 1

1 0 0 0 1 1 0 1 0 1 1 0

1 0 0 0 0 1 1 0 1 1 0 1

0 0 1 1 0 1 1 0 0 1 1 0

0 0 1 0 1 0 1 1 1 1 0 0

0 0 1 0 1 1 0 0 1 0 1 1

0 1 0 1 1 1 0 0 1 1 0 0
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3.2 Associated group Ct × C2 × C2

Now we introduce a subclass of Hadamard full propelinear codes whose group
structure consists of direct product of groups, fulfilling that its associated group
Π is Ct × C2 × C2. In other words, we study the short exact sequence

1→ C2 → C → Ct × C2 × C2 → 1,

where C is a nontrivial direct product of groups.

Proposition 3.32. Let C be a Hadamard full propelinear code of length 4t

with associated group Ct × C2
2 . If C as a group is a nontrivial direct product,

then C is some of the following HFP-codes:

(i) HFP(t, 2, 2, 21) = Ct × C2 × C2 × C2 = 〈a, b, c,1 | at = b2 = c2 = 0〉.

(ii) HFP(t, 41, 2) = Ct × C4 × C2 = 〈a, b, c | at = b4 = c2 = 0, b2 = 1〉.

(iii) HFP(t, Q1) = Ct × Q = 〈d, a, b | dt = 0, a2 = b2 = 1, aba = b〉, where Q
is the quaternion group of eight elements.

(iv) HFP(t,D1) = Ct ×D = 〈d, a, b | dt = b2 = 0, a2 = 1, aba = b〉, where D
is the dihedral group of eight elements.

(v) HFP(2t1, 2, 2) = C2t × C2 × C2 = 〈a, b, c | b2 = c2 = 0, at = 1〉.

Proof. Note that there are two different cases depending on the parity of the
value of t. Firstly, we suppose that t is odd, so Ct × C2

2 ' C2t × C2. The
HFP-codes with associated group Π = C2t × C2 have been studied in Sec-
tion 3.1. When t is odd, we have proved that the unique HFP-code whose
group structure is isomorphic to a direct product that has associated C2t×C2

is the HFP(t, Q1)-code.
Now, we suppose t is even. From [37, Table 1], the central extensions of

C2×C2 by 〈1〉 ' C2 are C3
2 , C4×C2, Q and D. Let E be one of this extensions.

We have that C2�E, so C2�E×Ct and (E×Ct)/C2 ' (E/C2)×Ct ' Ct×C2
2 .

Therefore Ct×C3
2 , Ct×C4×C2, Ct×Q and Ct×D are extensions of Ct×C2

2

by C2. Now, depending on where is the vector 1 we have different possibilities
for the HFP-codes. For Ct × C4 × C2, the vector 1 can only be the element
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of order 2 of C4 because the quotient (Ct × C4 × C2)/〈1〉 must be Ct × C2
2

by Proposition 2.19. Thus we obtain the HFP(t, 41, 2)-code. For Ct × Q and
Ct ×D, the vector 1 is the center of Q and D, respectively, and so we obtain
the HFP(t, Q1)-code and the HFP(t,D1)-code. For Ct × C3

2 , the vector 1 can
be a generator of a cyclic group of order 2, obtaining the HFP(t, 2, 2, 21)-code,
or an element of Ct. If 1 ∈ Ct, then Ct/〈1〉 = Ct/2, thus t/2 must be odd (i.e.,
t is not a multiple of 4) to get Π = Ct × C2

2 . But this is a particular case of
the HFP(t, 2, 2, 21)-code when t = 2t′ where t′ is odd.

Note that we also can compute the central extensions, Et, of Ct by 〈1〉 ' C2,
and later we can obtain the extensions of Ct×C2

2 making the product Et×C2
2 .

Let Et be an extension of Ct by C2, then C2 � Ct and Et/C2 ' Ct. Et cannot
be non-abelian because the quotient by a central subgroup is cyclic. As t is
even, we have Et = Ct×C2 or C2t. If Et = Ct×C2, the extension of Ct×C2

2 by
C2 is Ct × C3

2 , obtaining the HFP(t, 2, 2, 21)-code. If Et = C2t, the extension
of Ct ×C2

2 by C2 is C2t ×C2
2 , with 1 ∈ C2t, obtaining the HFP(2t1, 2, 2)-code.

Note that there exist no more possibilities for central extensions. If we
compute the extensions of C2 by C2, denoted by E2, we obtain E2 = C4 or
C2×C2, so the extensions of Ct×C2

2 are E2×Ct×C2, which are contained in
the set of extensions obtained by making the extensions of C2×C2. Similarly,
if we compute the extensions of Ct×C2, we obtain extensions contained in the
set of extensions obtained by making the extensions of Ct. QED

Corollary 3.33. Let C be an HFP(t, Q1)-code. If t is odd, then C is the
unique Hadamard full propelinear code whose group structure consists of direct
product of groups that has Π = Ct × C2

2 as associated group.

Proof. It is proved in the first part of the previous proof. QED

Proposition 3.34. Let C be a nonlinear Hadamard full propelinear code of
length 4t with associated group Ct × C2

2 . Then:

(i) If t is odd, then r = 4t− 1 and k = 1.

(ii) If t is even, then r ≤ 2t, and r = 2t if t ≡ 2 mod 4.

Proof. (i) and (ii) follow from Lemma 2.26 and [67, Lemma 4]. QED
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Proposition 3.35. Let C = 〈a, b,1〉 be a code of type HFP(t, 2, 2, 21) or
HFP(t, 41, 2) or HFP(2t1, 2, 2). Then, up to equivalence, we have

(i) πa = (1, 2, . . . , t)(t+ 1, . . . , 2t)(2t+ 1, . . . , 3t)(3t+ 1, . . . , 4t),

(ii) πb = (1, 2t+ 1)(2, 2t+ 2) . . . (2t, 4t),

(iii) πc = (1, 3t+ 1)(2, 3t+ 2) . . . (t, 4t)(t+ 1, 2t+ 1) . . . (2t, 3t),

(iv) Knowing the value of a is enough to define b and c,

(v) Π = Ct × C2
2 .

Proof. In any case at ∈ {0,1}, so πat = π0 = π1 = Id and πa has order t.
Thus, πa is the product of four cycles of length t. Indeed, if we have a cycle of
length j < t then πja = πaj has a fixed point, which contradicts that C is full
propelinear. Without loss of generality, we can set πa = (1, 2, . . . , t)(t+ 1, t+

2, . . . , 2t)(2t+ 1, 2t+ 2, . . . , 3t)(3t+ 1, 3t+ 2, . . . , 4t), which shows (i).
As πb and πc have order 2, they are products of transpositions. The per-

mutation πa divides the set of coordinates {1, 2, . . . , 4t} in 4 blocks of t co-
ordinates. Each one of the transpositions sends an element of one block to
another block. Indeed, assume πb(1) = i for some i ∈ {1, . . . , t}. We also
have πai−1(1) = i, so πb−1πai−1 has a fixed point, which contradicts that C is
full propelinear. The same argument is valid for πc. Thus, πb and πc move
coordinates from a block to another different block. Furthermore, if we assume
that πb(1) = i with i ∈ {2t + 1, . . . , 3t}, i.e., i is in the third block, then πb is
uniquely determined. Indeed, as πaπb = πbπa, we have πa−1(2) = 1, πb(1) = i,
and πa(i) = i+ 1. Hence, πb(2) = i+ 1, and so on. Therefore, we can assume
πb = (1, 2t+ 1)(2, 2t+ 2) . . . (2t, 4t), which shows (ii).

If we assume that πc(1) = i with i ∈ {3t + 1, . . . , 4t}, i.e., i is in the
fourth block, then πc is uniquely determined. Indeed, as πaπc = πcπa, we have
πa−1(2) = 1, πc(1) = i, and πa(i) = i + 1. Hence, πc(2) = i + 1, and so on.
Therefore, we can assume πc = (1, 3t+ 1)(2, 3t+ 2) . . . (t, 4t)(t+ 1, 2t+ 1)(t+

2, 2t+ 2) . . . (2t, 3t), which shows (iii).
Since ab = ba, we have b = πa(b) + a + πb(a) = πa(b) + â, where â =

a + πb(a) = (â1, . . . , â2t, â1, . . . , â2t). Then bi = bt +
∑t

j=i+1 âj, bt ∈ {0, 1},
bt+i = b2t +

∑2t
j=t+i+1 âj, and b2t ∈ {0, 1} for i ∈ {1, . . . , t− 1}. If b2 = 0, then
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b = πb(b), and bi = b2t+i for i ∈ {1, . . . , 2t}. Thus

b =

(
bt +

t∑
j=2

âj, bt +
t∑

j=3

âj, . . . , bt + ât, bt,

b2t +
2t∑

j=t+2

âj, b2t +
2t∑

j=t+3

âj, . . . , b2t + â2t, b2t,

bt +
t∑

j=2

âj, bt +
t∑

j=3

âj, . . . , bt + ât, bt,

b2t +
2t∑

j=t+2

âj, b2t +
2t∑

j=t+3

âj, . . . , b2t + â2t, b2t

)
.

If b2 = 1, then b = πb(b) + 1, and bi = b2t+i + 1 for i ∈ {1, . . . , 2t}. Thus

b =

(
bt +

t∑
j=2

âj, bt +
t∑

j=3

âj, . . . , bt + ât, bt,

b2t +
2t∑

j=t+2

âj, b2t +
2t∑

j=t+3

âj, . . . , b2t + â2t, b2t,

1 + bt +
t∑

j=2

âj, 1 + bt +
t∑

j=3

âj, . . . , 1 + bt + ât, 1 + bt,

1 + b2t +
2t∑

j=t+2

âj, 1 + b2t +
2t∑

j=t+3

âj, . . . , 1 + b2t + â2t, 1 + b2t

)
.

Since ac = ca, we have c = πa(c) + a + πc(a) = πa(c) + â, where â =

a + πc(a) = (â1, . . . , ât, ât+1, . . . , â2t, ât+1, . . . , â2t, â1, . . . , ât), then ci = ct +∑t
j=i+1 âj, ct ∈ {0, 1}, ct+i = c2t +

∑2t
j=t+i+1 âj, and c2t ∈ {0, 1} for i ∈

{1, . . . , t− 1}. As c2 = 0, we have ci = c3t+i and ct+i = c2t+i for i ∈ {1, . . . , t}.
Thus

c =

(
ct +

t∑
j=2

âj, ct +
t∑

j=3

âj, . . . , ct + ât, ct,

c2t +
2t∑

j=t+2

âj, c2t +
2t∑

j=t+3

âj, . . . , c2t + â2t, c2t,

c2t +
2t∑

j=t+2

âj, c2t +
2t∑

j=t+3

âj, . . . , c2t + â2t, c2t,

ct +
t∑

j=2

âj, ct +
t∑

j=3

âj, . . . , ct + ât, ct

)
.
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(v) follows from Proposition 2.19. QED

From a computational point of view, (iv) saves us computing time. As
knowing the value of the generator a, we know the value of b and c. Therefore,
by brute-force search, we only need to check different values of a.

In Subsections 3.2.1–3.2.3 we will use the permutations associated to the
generators as in Proposition 3.35.

3.2.1 HFP(t, 2, 2, 21)-codes

In this subsection we assume that C = 〈a, b, c,1 | at = b2 = c2 = 0〉, with t

even.

Proposition 3.36. Let C be an HFP(t, 2, 2, 21)-code. Then t is a square
number.

Proof. We have C ' Ct × C2
2 × 〈1〉 = N × 〈1〉, where N = Ct × C2

2 . From
Lemma 2.36, |Ct × C2

2 | is a square. Thus t is a square number. QED

Proposition 3.37. Let C be an HFP(t, 2, 2, 21)-code of length 4t. If t is a
power of two, then t ∈ {1, 4, 8, 16}.

Proof. As C = Ct × C2 × C2 × 〈1〉, we have a Hadamard difference set in
Ct × C2 × C2 by Proposition 2.29. From Proposition 3.36, t is also a square,
so t = 22s for some s. Thus, the order and the exponent of C2t × C2 are 22s+2

and 22s, respectively. From Proposition 2.28, it derives that s ≤ 2. QED

3.2.2 HFP(t, 41, 2)-codes

In this subsection we assume that C = 〈a, b, c | at = b4 = c2 = 0, b2 = 1〉, with
t even.

Next lemma about Hadamard groups will be useful to build HFP(2t, 41, 2)-
codes from HFP(2t, 41)-codes.

Lemma 3.38 ([23, Corollary 2.2]). Suppose that G is a Hadamard group with
respect to u. If G contains an element x with x2 = u then G×C2 is Hadamard.

Note that an HFP(2t, 41)-code has a Hadamard group structure C2t×C4 =

〈a, b〉 respect to 1, and b2 = 1. Then C2t × C4 × C2 is an HFP(2t, 41, 2)-code
by Lemma 3.38. We explicit the construction in the following proposition.
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Proposition 3.39. Let C = 〈a, b〉 be an HFP(2t, 41)-code of length 4t with
rank r and dimension of the kernel k. Then there exists an HFP(2t, 41, 2)-code
of length 8t with rank r + 1 and dimension of the kernel k + 1.

Proof. Let Ĉ be the HFP(2t, 41, 2)-code generated by 〈â, b̂, ĉ〉, where â = (a, a).
We know that âb̂ = b̂â. Since â = (a, a), we have b̂ = πâ(b̂). Without loss of
generality, b̂ = (0,1). Since πb̂ĉ = (πb, πb) and b derives from a, then b̂ĉ = (b, b).
As ĉ = b̂+ πb̂(b̂ĉ) + 1, we have ĉ = (b, b). Note that b2 = 1 so ĉ have order 2.

Let H be the Hadamard matrix associated to the code C. It is clear that

Ĥ =

(
H H

H H

)

is the associated matrix to the code Ĉ. Note that

H =



a

a2

...
a2t

ab

a2b
...

a2tb


, Ĥ =



â
...
â2t

âb̂
...

â2tb̂

âĉ
...

â2tĉ

âb̂ĉ
...

â2tb̂ĉ



=



a a
...

...
a2t a2t

a a
...

...
a2t a2t

ab ab
...

...
a2tb a2tb

ab ab
...

...
a2tb a2tb



.

As the matrix

Ĥ =

(
H H

H H

)
corresponds to Sylvester’s construction, we have that the rank and the dimen-
sion of the kernel increase in one. QED

Corollary 3.40. There exist at least two nonequivalent HFP(16, 41, 2)-codes
of length 64. The values for the rank and the dimension of the kernel are
r = 12, k = 3, and r = 14, k = 2.
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Proof. From Table 3.1, there exist HFP(16, 41)-codes of length 32 with r = 11,
k = 2, and r = 13, k = 1. The result follows from Proposition 3.39. QED

Remark 3.41. By brute force-search we cannot obtain the codes of Corol-
lary 3.40. But we have checked with Magma that the construction in Propo-
sition 3.39 works.

The next lemma about Hadamard groups will be useful to build codes of
type HFP(2t, 41, 2) from HFP(2t, 2, 21)-codes.

Lemma 3.42 ([23, Lemma 2.3]). Suppose G and H × C2 are Hadamard with
respect to involutions u1 ∈ G and u2, respectively, where C2 = 〈u2〉. Then
G×H is Hadamard with respect u1.

Note that an HFP(2t, 2, 21)-code has a Hadamard group structure C2t ×
C2×C2 = 〈a, b,1〉 respect to 1, and C2 = 〈1〉. As G = C4 is an HFP-code, we
have that C2t×C4×C2 is an HFP(2t, 41, 2)-code by Lemma 3.42. We explicit
the construction in the following proposition.

Proposition 3.43. Let C = 〈a, b〉 be an HFP(2t, 2, 21)-code of length 4t with
rank r and dimension of the kernel k. Then there exists an HFP(t, 41, 2)-code
of length 8t with rank r + 1 and dimension of the kernel k + 1.

Proof. Let Ĉ be the HFP(2t, 41, 2)-code generated by 〈â, b̂, ĉ〉, where â = (a, a).
We know that âb̂ = b̂â. Since â = (a, a), we have b̂ = πâ(b̂). Without loss of
generality, b̂ = (0,1,1,0). Since πb̂ĉ = (πb, πb) and b derives from a, then
b̂ĉ = (b, b). As ĉ = b̂ + πb̂(b̂ĉ) + 1, we have ĉ = (β̄, β, β, β̄), where b = (β, β).
Note that b2 = 0 so ĉ have order 2.

Let H be the Hadamard matrix associated to the code C. Rearranging the
columns, we have that

Ĥ =

(
H H

H H

)

is the associated matrix to the code Ĉ. Note that
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H =



a

a2

...
a2t

ab

a2b
...

a2tb


, Ĥ =



â
...
â2t

âb̂
...

â2tb̂

âĉ
...

â2tĉ

âb̂ĉ
...

â2tb̂ĉ



=



a a
...

...
a2t a2t

a a
...

...
a2t a2t

ab ab
...

...
a2tb a2tb

ab ab
...

...
a2tb a2tb



.

As the matrix

Ĥ =

(
H H

H H

)
corresponds to Sylvester’s construction, we have that the rank and the dimen-
sion of the kernel increase in one. QED

Attending to the computations with magma, we present the following con-
jecture.

Conjecture 3.44. There do not exist HFP(t, 41, 2)-codes of length 4t for t >
16.

Remark 3.45. The previous conjecture implies Conjecture 3.25, which implies
that there is no circulant complex Hadamard matrix of order greater than 16.

3.2.3 HFP(2t1, 2, 2)-codes

In this subsection we assume that C = 〈a, b, c | b2 = c2 = 0, at = 1〉, with t

even.

Lemma 3.46. Let C = 〈a, b, c〉 be an HFP(2t1, 2, 2)-code of length 4t = 8τ .
Let h be a divisor of τ . Then πha(aτ ) 6= aτ .

Proof. Assume the contrary, so πha(aτ ) = aτ , where τ = hh′. Hence, 1 =

aτ + πτa(aτ ) = aτ + (πha)h
′
(aτ ) = aτ + aτ = 0, which is impossible. QED
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Proposition 3.47. Let C = 〈a, b, c〉 be a nonlinear HFP(2t1, 2, 2)-code of
length 4t = 2st′, where t′ is odd. Then, for all j such that aj /∈ {0,1} we have
aj, ajb, ajc /∈ K(C).

Proof. Suppose that t = 2τ , for some τ . We begin by showing that aτ /∈ K(C).
Assume the contrary. From Lemma 2.8, πa ∈ Aut(K(C)) and also, since K(C)

is a linear space and πa is a linear morphism, πa is a linear isomorphism of
K(C). We have |K(C)| = 2k. The amount of available values for πa(aτ ) is
bounded by 2k − 2. We know that πτa(aτ ) = aτ + 1 and so π2τ

a (aτ ) = aτ .
Hence, if i is the smallest index 1 ≤ i ≤ 2τ such that πia(aτ ) = aτ then,
i ≤ 2k − 2. Indeed, if i > 2k − 2, then πja(aτ ) ∈ K(C) for j ∈ {1, . . . , i}, which
contradicts |K(C)| = 2k.

Now, since C is nonlinear we can apply Lemma 2.25,

i ≤ 2k − 2 ≤ 2s−1 − 2. (3.1)

Set d = gcd(i, τ) with d = λi + µτ , for some integers λ and µ. Compute
πda(a

τ ) = aτ + δ1, where δ has the value 0 or 1, depending on the parity of µ
is either even or odd, respectively. Hence, 2d ≥ i and d is a proper divisor of
i (otherwise, i would be a divisor of τ , which is impossible from Lemma 3.46)
and therefore 2d = i. Hence, d is a divisor of τ and 2d = i is not a divisor of τ .
As t = 2s−2t′ we have d = 2s−2t∗, where t∗ | t′. Finally, i = 2d = 2s−1t∗ ≥ 2s−1,
which contradicts (3.1), so this proofs that aτ /∈ K(C).

Suppose aj ∈ K(C) for some j /∈ {t/2, t}. Since the order of each element
in K(C) is a power of two, ajν = aτ for some ν, and so aτ ∈ K(C) which is a
contradiction.

Now, if ajb ∈ K(C), then a2j ∈ K(C) which contradicts (i) except for
2j = t. For j = t/2 we can use the same arguments that in the first item when
τ = t/2. Analogously ajc /∈ K(C). QED

Corollary 3.48. Let C = 〈a, b, c〉 be a nonlinear HFP(2t1, 2, 2)-code of length
4t. Then,

(i) if k = 2, then K(C) = 〈1, g〉 with g ∈ {b, c, bc},

(ii) if k = 3, then K(C) = 〈1, b, c〉 and r ≤ t+ 2.
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Proof. It follows from Proposition 3.47. If k = 3, from Lemma 2.2, then
r ≤ t+ 2. QED

Let G be an HFP(4t1, 2)-code ' 〈a, b〉. As G is also a Hadamard group
with respect to 1 and a2t = 1, we have that G × C2 is a Hadamard group
by Lemma 3.38. Therefore, G× C2 is an HFP(4tu, 2, 2)-code. We explicit the
construction in the following result.

Proposition 3.49. Let C = 〈a, b〉 be an HFP(4t1, 2)-code of length 4t with
rank r and dimension of the kernel k. Then there exists an HFP(4t1, 2, 2)-code
of length 8t with rank r + 1 and dimension of the kernel k + 1.

Proof. Applying the Sylvester construction, we obtain that C × C2 is an
HFP(4t1, 2, 2)-code with rank r + 1 and dimension of the kernel k + 1, as
in the proof of Proposition 3.39. QED

3.2.4 HFP(t, Q1)-codes

In this subsection we assume that C = 〈d, a, b | dt = 12 = 0, a2 = b2 = 1, aba =

b〉. These codes have been studied in Subsection 3.1.4 for t odd. We recall a
method to obtain an HFP(2t′, Q1)-code of length 8t′ and an HFP(4t′, Q1)-code
of length 16t′ from an HFP(t′, Q1)-code of length 4t′, where t′ is odd.

Proposition 3.50 ([75, Prop. 145]). Let C be an HFP(t, Q1)-code of length
4t with t odd. Then,

(i) There exists an HFP(2t, Q1)-code of length 8t with rank 4t and dimension
of the kernel 2.

(ii) There exists an HFP(4t, Q1)-code of length 16t with rank 4t + 1 and
dimension of the kernel 3.

Remark 3.51. A construction to obtain HFP(t, Q1)-codes for any t remains
open.

In the following, we show that we can build an HFP(t, Q1)-code from a
Williamson Hadamard matrix, and vice versa. For convenience, we set the
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following permutations to the generators of an HFP(t, Q1)-code:

πd̂ =(1, 2, . . . , t)(t+ 1, . . . , 2t)(2t+ 1, . . . , 3t)(3t+ 1, . . . , 4t),

πâ =(1, t+ 1)(2, t+ 2) . . . (t, 2t)

(2t+ 1, 3t+ 1)(2t+ 2, 3t+ 2) . . . (3t, 4t),

πb̂ =(1, 2t+ 1)(2, 2t+ 2) . . . (2t, 4t).

(3.2)

Note that these permutations are equivalent to the permutations of Propo-
sition 3.26. Let H be a Williamson Hadamard matrix of order 4t with the
following block distribution,

H =


A B C D

−B A −D C

−C D A −B
−D −C B A

 ,

where A,B,C,D are circulant matrices. Let a, b, c, d be the first rows of
A,B,C,D, respectively. Let πd̂ be the permutation result of the product of
the permutations πd1πd2πd3πd4 , where πd1 = (1, 2, . . . , t), πd2 = (t + 1, . . . , 2t),

πd3 = (2t + 1, . . . , 3t), and πd4 = (3t + 1, . . . , 4t). We can state the matrices
A,B,C,D in the following way

A =



a

πd1(a)

π2
d1

(a)
...

πt−1
d1

(a)


, B =



b

πd2(b)

π2
d2

(b)
...

πt−1
d2

(b)


, C =



c

πd3(c)

π2
d3

(c)
...

πt−1
d3

(c)


, D =



d

πd4(d)

π2
d4

(d)
...

πt−1
d4

(d)


.

Let d̂ be the vector

d̂ = (a+ πt−1
d1

(a), b+ πt−1
d2

(b), c+ πt−1
d3

(c), d+ πt−1
d4

(d))

= (d̂1, d̂2, d̂3, d̂4).

Thus, d̂ is the generator of an HFP(t, Q1)-code of length 4t. Indeed, if we sum
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πt−1
d1

(a) to each row of A we obtain

a+ πt−1
d1

(a)

πd1(a) + πt−1
d1

(a)

π2
d1

(a) + πt−1
d1

(a)
...

πt−1
d1

(a) + πt−1
d1

(a)


=



d̂1

d̂2
1

d̂3
1
...
d̂t1


= D̂1.

Repeating the same operation to b, c, d, and from the permutations (3.2) we
have that

D̂1 D̂2 D̂3 D̂4

Â1 + D̂2 Â2 + D̂1 Â3 + D̂4 Â4 + D̂3

B̂1 + D̂3 B̂2 + D̂4 B̂3 + D̂1 B̂4 + D̂2

ˆ(AB)1 + D̂4
ˆ(AB)2 + D̂3

ˆ(AB)3 + D̂2
ˆ(AB)4 + D̂1

 ,

which is the Hadamard matrix corresponding to an HFP(t, Q1)-code, where

Âi =


âi
...
âi

 , B̂i =


b̂i
...
b̂i

 , ˆ(AB)i =


ˆ(ab)i
...
ˆ(ab)i


with

â = (â1, â2, â3, â4),

b̂ = (b̂1, b̂2, b̂3, b̂4), and
ˆ(ab) = ( ˆ(ab)1,

ˆ(ab)2,
ˆ(ab)3,

ˆ(ab)4).

3.2.5 HFP(t,D1)-codes

In this subsection we assume that C = 〈d, a, b | dt = b2 = 12 = 0, a2 = 1, aba =

b〉, with t even.

Proposition 3.52. Let C be an HFP(t,D1)-code. Then, up to equivalence,
we have

(i) πd = (1, 5, . . . , 4t− 3)(2, 6, . . . , 4t− 2)(3, 7, . . . , 4t− 1)(4, 8, . . . , 4t),

(ii) πa = (1, 2)(3, 4) . . . (4t− 1, 4t),
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(iii) πb = (1, 3)(2, 4) . . . (4t− 3, 4t− 1)(4t− 2, 4t),

(iv) a = (A1, A2, . . . , At) where Ai ∈ {(0, 1, 0, 1), (1, 0, 1, 0), (0, 1, 1, 0),

(1, 0, 0, 1)},

(v) Knowing the value of a is enough to define b,

(vi) Π = Ct × C2
2 .

Proof. i),ii) and iii) are analogous to the proof of the Proposition 3.35.
iv) Let a = (a1, . . . , a4t) = (A1, . . . , At) where

Ai = (a4i−3, a4i−2, a4i−1, a4i).

As a2 = a+ πa(a) = 1 then

Ai = (a4i−3, ā4i−3, a4i−1, ā4i−1).

v) From aba = b we have that a + πa(b) = b + πb(a
−1) = b + πb(a

3) =

b + πb(ā), so a + πb(ā) = b + πa(b). Note that a + πb(ā) = (Â1, . . . , Ât) where
Âi = (1, 1, 1, 1) or (0, 0, 0, 0).

Âi =

{
(1, 1, 1, 1) if Ai ∈ {(0, 1, 0, 1), (1, 0, 1, 0)}
(0, 0, 0, 0) if Ai ∈ {(0, 1, 1, 0), (1, 0, 0, 1)}

Let b = (b1, . . . , b4t) = (B1, . . . , Bt) where

Bi = (b4i−3, b4i−2, b4i−1, b4i),

as b2 = 0 then
Bi = (b4i−3, b4i−2, b4i−3, b4i−2).

Thus,

Bi ∈
{(0, 1, 0, 1), (1, 0, 1, 0)} if Ai ∈ {(0, 1, 0, 1), (1, 0, 1, 0)}
{(0, 0, 0, 0), (1, 1, 1, 1)} if Ai ∈ {(0, 1, 1, 0), (1, 0, 0, 1)}

vi) It follows from Proposition 2.19. QED
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3.2.6 Magma computations

In Table 3.2, we show the values of the rank and the dimension of the kernel
of the HFP-codes with associated group Ct ×C2 ×C2 that we have computed
with Magma, fulfilling the analytic results.

t (t, 2, 2, 21) (t, 41, 2) (t, Q1) (t,D1) (2t1, 2, 2)
r k r k r k r k r k

1 3 3 3 3 x x x x 3 3
2 X X 4 4 4 4 x x x x
3 X X X X 11 1 X X X X

4 5 5 5 5 5 5 5 5 5 5
x x 7 2 7 2 7 2 x x

5 X X X X 19 1 X X X X
6 X X x x 12 2 x x x x
7 X X X X 27 1 X X X X

8 X X

6 6 8 3 6 6 8 3
7 4 9 2 7 4 x x
8 3 11 2 9 3 x x
9 2 x x 9 2 x x
11 2 x x 11 2 x x
12 1 x x 12 1 x x

9 X X X X 35 1 X X X X

10 X X
20 2
20 1

16 12 3
16 14 2

Table 3.2: Rank and dimension of the kernel of Hadamard full propelinear
codes with associated group Ct × C2 × C2. Symbol x means that the non-
existence was checked with Magma by exhaustive search, and symbol Xmeans
that the non-existence was proved analytically. When the values for the rank
and the dimension of the kernel appears in a box it means that they are the
only values for that box.

Making use of the shape of the generators a and b from Proposition 3.26, we
can apply some restrictions on the generators of HFP(t, Q1)-codes. Therefore,
we were be able to build codes of larger order (see Table 3.3).
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t 2 3 4 5 6 7 8 9 10
r 4 11 5 7 19 12 27 8 9 11 35 20 20
k 4 1 5 2 1 2 1 3 2 2 1 2 1
t 11 12 13 14 15 16 17 18 19 20
r 43 13 51 22 59 67 36 75 21
k 1 3 1 2 1 1 2 1 3
t 21 22 23 24 25 26 27 28 29 30
r 83 91 99 52 107 23 60
k 1 1 1 2 1 3 2

Table 3.3: Rank and dimension of the kernel of HFP-codes with group structure
Ct ×Q.

Now, we present some examples of the Hadamard full propelinear codes
introduced in this section.

Example 3.53. Let a, b, and c be the following vectors of F32

a = (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1,

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0),

b = (0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0,

0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0),

c = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0),

with associated permutations

πa =(1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12, 13, 14, 15, 16)

(17, 18, 19, 20, 21, 22, 23, 24)(25, 26, 27, 28, 29, 30, 31, 32),

πb =(1, 17)(2, 18)(3, 19)(4, 20)(5, 21)(6, 22)(7, 23)(8, 24)

(9, 25)(10, 26)(11, 27)(12, 28)(13, 29)(14, 30)(15, 31)(16, 32),

πc =(1, 25)(2, 26)(3, 27)(4, 28)(5, 29)(6, 30)(7, 31)(8, 32)

(9, 17)(10, 18)(11, 19)(12, 20)(13, 21)(14, 22)(15, 23)(16, 24).

Computing the powers of a, b, c and their products, we obtain a8 = 1, b2 =
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c2 = 0, ab = ba, ac = ca, and bc = cb. Thus, the code

C = {a, a2, . . . , a16,

ab, a2b, . . . , a16b,

ac, a2c, . . . , a16c,

abc, a2bc, . . . , a16bc}

is an HFP(161, 2, 2)-code of length 32, which is an HFP(2t1, 2, 2)-code with
t = 8. Computing with magma the rank and the dimension of the kernel of
C we obtain r = 8 and k = 3. Moreover, K(C) = 〈1, b, c〉. The Hadamard
matrix of order 32 associated to C is



62 Chapter 3. HFP-codes with a fixed associated group



a

a2

a3

a4

a5

a6

a7

a8

ab

a2b

a3b

a4b

a5b

a6b

a7b

b

ac

a2c

a3c

a4c

a5c

a6c

a7c

c

abc

a2bc

a3bc

a4bc

a5bc

a6bc

a7bc

bc



=



0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0

0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0

1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0

0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0

1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0

0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1

0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1

1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0

1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0

0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1

0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1

1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0

0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1

0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0

0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1

0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0

0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1

0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0

0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0

0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0

1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1

1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1

0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0

0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0

1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1

1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1

1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0



.
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Example 3.54. Let d, a, and b be the following vectors of F32

d = (1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,

1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0),

a = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1),

b = (1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1,

1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1).

with associated permutations

πd =(1, 5, 9, 13, 17, 21, 25, 29)(2, 6, 10, 14, 18, 22, 26, 30)

(3, 7, 11, 15, 19, 23, 27, 31)(4, 8, 12, 16, 20, 24, 28, 32),

πa =(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)

(17, 18)(19, 20)(21, 22)(23, 24)(25, 26)(27, 28)(29, 30)(31, 32),

πb =(1, 3)(2, 4)(5, 7)(6, 8)(9, 11)(10, 12)(13, 15)(14, 16)

(17, 19)(18, 20)(21, 23)(22, 24)(25, 27)(26, 28)(29, 31)(30, 32).

Computing the powers of d, a, b, and their products, we obtain d8 = b2 = 0,
a2 = 1, aba = b, ad = da, and bd = db. Thus, the code

C = {d, d2, . . . , d8,

da, d2a, . . . , d8a,

db, d2b, . . . , d8b,

dab, d2ab, . . . , d8ab,

da2, d2a2, . . . , d8a2,

da3, d2a3, . . . , d8a3,

da2b, d2a2b, . . . , d8a2b,

da3b, d2a3b, . . . , d8a3b}

is an HFP(8, D1)-code of length 32. Computing with magma, we obtain we
obtain r = 7 and k = 4. Moreover, K(C) = 〈1, d4, a, b〉. The Hadamard matrix
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of order 32 associated to C is

d

d2

d3

d4

d5

d6

d7

d8

da

d2a

d3a

d4a

d5a

d6a

d7a

a

db

d2b

d3b

d4b

d5b

d6b

d7b

b

dab

d2ab

d3ab

d4ab

d5ab

d6ab

d7ab

ab



=



1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0

1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1

0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1

1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1

1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1

0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1

0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1

1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0

0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0

1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1

1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1

1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0

1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0

1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1

1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0

0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1

0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0

1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1

0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0

0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0

0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1

0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1

1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1



.



Chapter 4

Generalized Hadamard full
propelinear codes

“It’s not what you know, it’s what you can
prove.”

Alonzo Harris. Training Day.

Robust or secure communications are often based on codes built from Hada-
mard matrices or from relative difference sets. When it is necessary to have an
alphabet larger than the binary field, then generalized Hadamard matrices are
used. The concept of binary Hadamard matrices was generalized by Butson
[20] and Drake [33] independently. Butson Hadamard matrices have entries in
the complex mth roots of unity such that its rows are pairwise orthogonal un-
der the Hermitian inner product, but they are not necessarily pairwise row and
column balanced. The generalized Hadamard matrices introduced by Drake
have entries in a finite group. The main characteristics that they have in com-
mon with the binary Hadamard matrices is that rows are pairwise balanced,
and exhibits a kind of orthogonality over the group ring, but they are not nec-
essarily invertible. Throughout this chapter, generalized Hadamard matrices
are the matrices presented by Drake. The codes built from generalized Hada-
mard matrices meet the Plotkin bound, i.e., when the length and minimum
distance are fixed, the generalized Hadamard codes have the maximum number
of codewords.

Cocyclic generalized Hadamard matrices have been studied by Horadam
[43] and Horadam and Perera [60]. However, aside from [16] not much has
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66 Chapter 4. Generalized Hadamard full propelinear codes

been done for q-ary propelinear codes, especially for the class of full propelinear
codes. To build generalized Hadamard full propelinear codes we will endow
generalized Hadamard matrices with a full propelinear structure. We take the
theory of cocycles as starting point.

Example 4.1 ([44, Example 9.2.1.4 and Theorem 9.48]). Let G be the additive
group of the finite field F3a and φ(a,b)(g) = g(3b+1)/2, g ∈ G where gcd(a, b) = 1,
b is odd and 1 < b < 2a− 1. Then

∂φ(a,b)(g, h) = φ(a,b)(g + h)− φ(a,b)(g)− φ(a,b)(h)

is an orthogonal coboundary. Hence, M∂φ(a,b) is a GH(3a, 1). Later in Exam-
ple 4.24, we will deal with a = 4 and b = 3.

Remark 4.2. (i) Coulter and Mathews found φ(a,b) as a new class of planar
power functions over F3a (see [24]).

(ii) The symmetric orthogonal coboundaries ∂φ(a,b) cannot be multiplicative.
In particular, the resulting ternary Hadamard codes are nonlinear 3a-ary
codes (see [44, p.227]).

(iii) The orthogonal coboundaries ∂φ(a,b) and ∂φ(a,2a−b) determine equivalent
Hadamard codes (see [46, Lemma 4.1]). Hence we may restrict to the
range 3 ≤ b ≤ a− 1.

Remind that Fq denote the finite field of order q = pr, where p is prime.
In particular, Fq is an additive elementary abelian group of order q. Let H
be a normalized generalized Hadamard matrix GH(q, v/q) over Fq (see defini-
tion 2.40), we denote by FH the q-ary code consisting of the rows of H, and
CH the one defined as

CH =
⋃
α∈Fq

(FH + α1),

where α1 denotes the all-α vector. The code CH over Fq is called generalized
Hadamard code (briefly, GH-code) of length v, which has qv codewords and
minimum distance v−v/q, i.e., CH is a (v, qv, v−v/q)q-code. Hence, generalized
Hadamard codes meet the Plotkin bound [44]. Note that FH and CH are
generally nonlinear codes over Fq.
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A binary Hadamard matrix of order v = 4t corresponds to a GH(2, 2t),
where U = 〈−1〉. In this case two further equivalences are known.

Proposition 4.3. When U = 〈−1〉 ' Z2, the equivalent statements of Theo-
rem 2.41 are further equivalent to the following statements.

(iv) There is a Hadamard group Eψ [37].

(v) CH is a Hadamard full propelinear code [67].

In this chapter, we prove the analog of Proposition 4.3 when U is the ad-
ditive group of a finite field (i.e. additive elementary abelian group). As a
consequence, the class of generalized Hadamard full propelinear codes is intro-
duced. Concerning equivalence (iv), let us mention that the Hadamard group
Eψ in the binary case is effectively what is referred to as the extension group
of a cocyclic Hadamard matrix, which is also defined for generalized Hada-
mard matrices with entries in U . Therefore, if the existence of a generalized
Hadamard full propelinear code is equivalent to the existence of an orthogo-
nal cocycle ψ, then there is an extension group Eψ. Finally, let us point out
that it seems that a generalized Hadamard matrix over any abelian group U
(should it exist) would afford the same theory, assuming similar definitions of
propelinear codes over groups and so forth.

4.1 q-ary propelinear codes

Assuming the Hamming metric, any isometry of Fnq is given by a coordinate
permutation π and n permutations σ1, . . . , σn of Fq. We denote by Aut(Fnq )

the group of all isometries of Fnq :

Aut(Fnq ) = {(σ, π) | σ = (σ1, . . . , σn)withσi ∈ SymFq, π ∈ Sn}

where SymFq and Sn denote, respectively, the symmetric group of permuta-
tions on Fq and on the set {1, . . . , n}.

For any σ = (σ1, . . . , σn) where σi ∈ SymFq, π ∈ Sn and v = (v1, . . . , vn) ∈
Fnq , we write σ(v) and π(v) to denote (σ1(v1), . . . , σn(vn)) and (vπ−1(1), . . . ,

vπ−1(n)), respectively.
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The action of (σ, π) is defined as

(σ, π)(v) = σ(π(v)) for any v ∈ Fnq ,

and the group operation in Aut(Fnq ) is the composition

(σ, π) ◦ (σ′, π′) = ((σ1 ◦ σ′π−1(1), . . . , σn ◦ σ′π−1(n)), π ◦ π′)

for all (σ, π), (σ′, π′) ∈ Aut(Fnq ). Here and throughout the entire chapter, we
use the convention f ◦ g(v) = f(g(v)), for v ∈ Fnq . We denote by Aut(C) the
group of all isometries of Fnq fixing the code C and we call it the automorphism
group of the code C.

At this point, we introduce some basic background on automophism group
of a matrix. LetK be a multiplicative group isomorphic to the additive elemen-
tary abelian group Fq, and let φ : Fq → K be an isomorphism. An automor-
phism of a matrix M with entries in a group K is a pair of monomial matrices
(P,Q) with non-zero entries in K such that PMQ∗ = M , where Q∗ denotes
the matrix obtained from the transpose of Q by replacing each non-zero entry
with its inverse in K, and matrix multiplication is carried out over the group
ring Z[K]. The automorphism group Aut(M) of M is the set of all such pairs
of matrices, closed under the multiplication (P,Q)(R, S) = (PR,QS). The
permutation automorphism group of M is the subgroup PAut(M) ⊂ Aut(M)

comprised of all pairs of permutation matrices in Aut(M).

Lemma 4.4 ([27]). Let M be a K-monomial matrix of order n. Then M has
a unique factorization DMPM where DM is a diagonal matrix and PM is a
permutation matrix.

Here we will focus on GH-codes, CH , where H denotes a generalized Hada-
mard matrix of order v with entries in the additive elementary abelian group
Fq and write φ(H) = [φ(hij)]1≤i,j≤v.

In what follows, we will make explicit the correspondence between the
elements of the automorphism group Aut(φ(H)) and certain isometries of CH
(elements of Aut(CH)). Let (M,N) ∈ Aut(φ(H)), x = [[DM ]1,1, . . . , [DM ]v,v]

and X be the v×v matrix such that each column is equal to xT . It follows that
φ(X +H) = DMφ(H). Likewise, if Y is a v× v matrix over Fq such that each
row is equal to y = [[DN ]1,1, . . . , [DN ]v,v], then φ(H−Y ) = φ(H)D∗N . So, φ(X+
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PMHP
T
N −Y ) = Mφ(H)N∗ = φ(H). Thus X+PMHP

T
N −Y = H and (σ, π) ∈

Aut(CH) where σi(u) = u+[DN ]i,i and π(1, . . . , v) = (1, . . . , v)PN . We will say
that (σ, π) is the isometry of CH associated to the automorphism (M,N) of
φ(H). Now, the following question arises naturally: Given an isometry (σ, π)

of CH , is it possible to define an automorphism (M,N) of φ(H) associated to
(σ, π)? We will answer this question affirmatively in a particular case in the
next section.

Definition 4.5 (Borges et al. [16]). A q-ary code C of length n, 0 ∈ C, has
a propelinear structure if for any codeword x ∈ C there exist πx ∈ Sn and
σx = (σx,1, . . . , σx,n) with σx,i ∈ SymFq satisfying:

(i) (σx, πx)(C) = C and (σx, πx)(0) = x,

(ii) if y ∈ C and z = (σx, πx)(y), then (σz, πz) = (σx, πx) ◦ (σy, πy).

A q-ary code C is called transitive if the Aut(C) acts transitively on its
codewords, i.e., the code satisfies the property (i) of the above definition.

Assuming that C has a propelinear structure then a binary operation ? can
be defined as

x ? y = (σx, πx)(y) for any x, y ∈ C.

Therefore, (C, ?) is a group, which is not abelian in general. This group struc-
ture is compatible with the Hamming distance, that is, d(x ?u, x ? v) = d(u, v)

where u, v ∈ Fnq . The vector 0 is always a codeword where π0 = Idn is the
identity coordinate permutation and σ0,i = Idq is the identity permutation on
Fq for all i ∈ {1, . . . , n}. Hence, 0 is the identity element in C and πx−1 = π−1

x

and σx−1,i = σ−1
x,πx(i) for all x ∈ C and for all i ∈ {1, . . . , n}. We call (C, ?) a

propelinear code. Henceforth we use C instead of (C, ?) if there is no confusion.
Clearly, the propelinear class is more general than the linear code class.

Since, every linear code C has the following trivial propelinear structure:

σa(x) = a+ x, and πa(x) = x ∀a, x ∈ C.

In Examples 4.21, 4.22, 4.23 we show linear codes which can be endowed with
a nontrivial propelinear structure. In Example 4.24 we present a nonlinear
propelinear code. The following result is the q-ary generalization of Proposi-
tion 2.5.
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Proposition 4.6. Let (C, ?) ⊂ Fnq be a group. C is a propelinear code if and
only if the group Aut(C) (the isometries) contains a regular subgroup acting
transitively on C.

Proof. Firstly, we assume C is propelinear. Let ρx : C → C given by ρx(v) =

x ? v. Let x, y, z be any codewords in C, we have ρxρy(z) = ρx(y ? z) = x ? (y ?

z) = (x?y)?z = ρx?y(z). From [16, Lemma 5], we have d(x?y, x?z) = d(y, z),
and so d(ρx(y), ρx(z)) = d(x ? y, x ? z) = d(y, z). Therefore, G = {ρx | x ∈ G}
is a subgroup of Aut(C), and |G| = |C|. Given x, y ∈ C, we take z = y ? x−1,
and so we have ρz(x) = z ? x = y ? x−1 ? x = y. Hence, G acts transitively on
C.

Conversely, we assume Aut(C) contains a regular subgroup G acting tran-
sitively on C, so |G| = |C|. We call ρx the element of G such that ρx(0) = x.
Note that G → C given by ρx → x is a bijection since G is regular and
acts transitively on C. For x ∈ C, we define (σx, πx)(y) = ρx(y). Note
that (σx, πx) ∈ Aut(C) because ρx is an isometry on C. We define x ? y =

(σx, πx)(y) = ρx(y), where x ∈ C. Let us see that the operation ? is prope-
linear, and so C has a propelinear structure. It is clear that (σx, πx)(C) =

ρx(C) = C, and x ? 0 = ρx(0) = x for any x ∈ C. As G acts transitively
on C, we have ρxρy = ρx?y if and only if ρxρy(0) = ρx?y(0). Let x, y ∈ C,
then ρx?y(0) = x ? y = ρx(y) = ρx(ρy(0)) = ρxρy(0). Thus, (σx?y, πx?y)(z) =

ρx?y(z) = ρxρy(z) = ρx((σy, πy)(z)) = (σx, πx) ◦ (σy, πy)(z). QED

Let C be a binary propelinear code. From Lemma 2.8, x ∈ K(C) if and
only if πx ∈ Aut(C). As a code is linear if and only if its dimension is equal to
the dimension of its kernel and to its rank, we have that a binary propelinear
code C is linear if and only if πx ∈ Aut(C) for all x ∈ C. The analog of this
result about the linearity for q-ary propelinear codes remains an open problem.

Definition 4.7. A full propelinear code is a propelinear code C such that for
every a ∈ C, σa(x) = a + x and πa has no fixed coordinates when a 6= α1 for
α ∈ Fq. Otherwise, πa = Idn.

A generalized Hadamard code, which is also full propelinear, is called gen-
eralized Hadamard full propelinear code (briefly, GHFP-code).

Lemma 4.8. Let C be a GHFP-code and a, b ∈ C. If a− b = λ1 where λ ∈ Fq
then πa = πb.
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Proof. We have b ? λ1 = b+ πb(λ1) = b+ λ1 = a and a ? λ1 = λ1 ? a. On the
other hand, πa(x) = a?x−a = (b?λ1)?x− (b+λ1) = (b?x)?λ1− (b+λ1) =

(b ? x) + λ1− (b+ λ1) = b ? x− b = πb(x), for all x ∈ C. QED

Lemma 4.9. Let C be a GHFP-code and ei be the unitary vector with only
nonzero coordinate at the i-th position. If x, y ∈ C then π−1

x (ei) = π−1
y (ei) if

and only if x = y + λ1, λ ∈ Fq. Furthermore, if x, y ∈ FH then x = y.

Proof. We have π−1
x (ei) = π−1

y (ei)⇔ ei = πxπ
−1
y (ei) = πxπy−1(ei) = πx?y−1(ei).

Since C is full propelinear then x ? y−1 = λ1, λ ∈ Fq. QED

Lemma 4.10. Let C be a GHFP-code, Π = {πx | x ∈ C} and C1 = {λ1 | λ ∈
Fq}. Then C1 ⊂ K(C) and Π is isomorphic to C/C1.

Proof. It is immediate that C1 = {λ1 | λ ∈ Fq} ⊂ K(C). The map x→ πx is a
group homomorphism from C to Π. Since C is full propelinear, the kernel of
this homomorphism is C1. Hence, we conclude with the desired result. QED

4.2 GHFP-codes and cocyclic GH matrices

From now on, H denotes a generalized Hadamard matrix of order v with entries
in the additive elementary abelian group Fq. K denotes a multiplicative group
isomorphic to the additive elementary abelian group Fq, and let φ : Fq → K

be an isomorphism. Write

φ(H) = [φ(hij)]1≤i,j≤n.

Consider the qv × v matrix Eφ(H) comprised of the q blocks

k0φ(H), . . . , kq−1φ(H),

where K = {k0 = 1, k1, . . . , kq−1}. Assuming that CH is a GHFP-code and
a, x ∈ CH , then the action of a on CH defined by

ρa(x) = a ? x = a+ πa(x) ∈ CH ,

(ρa ∈ Aut(CH)) is equivalent to the action of N∗ on Eφ(H) by right ma-
trix multiplication where N∗ = Q∗D∗−a, with Q being the permutation ma-
trix according to πa, and Da the diagonal matrix with diagonal φ(a). Since
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the action of a on C preserves C, there is a qv × qv permutation matrix P ′

such that P ′Eφ(H)N
∗ = Eφ(H). Moreover, the rows of Eφ(H) are the rows of

φ(H), k1φ(H), . . . , kq−1φ(H). Thus there is a v×v monomial matrixM = DkP

with k a vector of length v over K such that Mφ(H)N∗ = φ(H), where for all
1 ≤ i, j ≤ v and 0 ≤ d ≤ q − 1, if P ′ permutes row j + dv to row i then

• P permutes row j to row i, and

• the i-th entry of k is kd.

Thus (M,N) is an automorphism of φ(H). If a = λ1 for some λ ∈ Fq, then the
corresponding automorphism is of the form (φ(−λ)I, φ(−λ)I). This proves the
following result where R denotes the subset of the Aut(φ(H)) with elements
(M,N), the corresponding automorphism associated to a ∈ CH .

Theorem 4.11. If H is a generalized Hadamard matrix over the additive
abelian group of Fq such that the rows of H comprise a GHFP-code C, then
the group (C, ?) ' R ⊆ Aut(φ(H)). Moreover, (kI, kI) ∈ R for all k ∈ K,
and R acts transitively on rows of φ(H).

Remark 4.12. R acts transitively on rows of φ(H) since ρa(x) = ρb(x) if and
only if a = b but not regularly since |R| 6= v.

Now, for a generalized Hadamard matrix M with entries in K, Aut(M) '
PAut(EM) where EM = [kikjM ]0≤i,j≤q−1 (this is a special case of [27, Theorem
9.6.14]). Where Θ : Aut(M)→ PAut(EM) is the isomorphism outlined in [27,
pp. 110–111]), we note that the center of Aut(M) contains the group of pairs of
diagonal matrices Z = {(kI, kI) | k ∈ K}, and thus Θ(Z) is a central subgroup
of PAut(EM). We require that πλ1 = Idn in order for C to be full propelinear.
The transitivity requirement of the group (C, ?) on C for full propelinear codes
then gives the following.

Theorem 4.13. C is a generalized Hadamard full propelinear code if and only
if there is a subgroup R ⊆ Aut(φ(H)) with Z ⊆ R such that PAut(Eφ(H))

contains a regular subgroup Θ(R), with Θ(Z) ⊆ Θ(R).

Proof. LetK = {k0 = 1, k1, . . . , kq−1} and Z = {zi = (kiI, kiI) | i ∈ {0, . . . , q−
1}} and let C be a generalized Hadamard full propelinear code. Theorem 4.11
gives that (C, ?) ' R ⊆ Aut(φ(H)) where Z ⊆ R, and R acts transitively on
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the rows of φ(H). Since Z is central and acts only by multiplication on rows
of φ(H), there is a right transversal S of Z in R where for any j ∈ {1, . . . , n}
there is sj ∈ S such that φ(H)j = (sjφ(H))1. Thus Θ(zisj) permutes row 1
of Eφ(H) to row iq + j, proving that Θ(R) is transitive on rows of Eφ(H). By
Theorem 4.11, |R| = |(C, ?)| and thus Θ(R) acts regularly.

Conversely, assuming that H is generalized Hadamard over Fq and that
there is a subgroup R ⊆ Aut(φ(H)) with Z ⊆ R such that Θ(R) ⊆ PAut(Eφ(H))

is regular and Θ(Z) ⊆ Θ(R). Label the rows of Eφ(H) with the codewords of
CH in the order of the rows of EH such that the first n entries of the row of
Eφ(H) are the entries in the codeword labelling the row. For any x ∈ CH there
is (Mx, Nx) ∈ Θ(R) such that Mx sends row x to row 0. In the preimage of Θ,
Nx corresponds to a monomial matrix D−xQx. For each x, let πx be coordinate
the permutation according to the action of Q∗ on columns of φ(H), and let
σx(a) = a + x for all a ∈ EH , (i.e., πx and σx are determined by the column
action of Nx). It follows that if (πx, σx) ◦ (πy, σy) = (πz, σz) then NxNy = Nz.
It also follows that (σx, πx)(0) = x for all x.

Then let f : Θ(R)→ CH be the map such that f(Mx, Nx) = x. Clearly this
map is bijective. Further, where λ ∈ Fq, it follows that (Mλ1, Nλ1) ∈ Θ(Z),
where πλ1 = Idn. Because R ⊆ Aut(φ(H)), it follows that (σx, πx)(CH) = CH

for all x.
Now, if NxNy = Nz, then we have z = (σz, πz)(0) = (σx, πx)(σy, πy)(0) =

(σx, πx)(y) and so z = x ? y. Thus f(Mx, Nx) ? f(My, Ny) = x ? y = z =

f(Mz, Nz). Hence, f is a homomorphism and CH has a propelinear structure.
QED

Let G be a group of order n and let ψ : G×G→ K be a 2-cocycle. Then
let Eψ denote the canonical central extension of K by G obtained from ψ. The
following is a special case of [27, Theorem 14.6.4].

Theorem 4.14. A generalized Hadamard matrix H over K is cocyclic with
cocycle ψ if and only if there exists a centrally regular embedding of Eψ into
PAut(EH).

Corollary 4.15. The code CH comprised of the rows of EH is a generalized
Hadamard full propelinear code if and only if the matrix H is cocyclic over
some cocycle ψ, with extension group Eψ ' R ' (CH , ?) where R is a regular
subgroup of PAut(EH).
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Remark 4.16. We observe that a generalized Hadamard matrix H may be
cocyclic over several distinct cocycles ψ, and that the extension groups Eψ are
not necessarily isomorphic. As such, given a cocyclic generalized Hadamard
matrix H, there may be several codes (CH , ?) that are equal setwise, i.e., they
contain the same set of codewords, but are not isomorphic as groups.

In what follows, we will make explicit the correspondence between the
elements of Eψ and (CH , ?).

Assuming ψ ∈ Z2(G,K). We recall that K denotes the multiplicative
group isomorphic to the additive elementary abelian group Fq. For a fixed
order in G = {g0 = 1, g1, . . . , gv−1} and in K = {k0 = 1, k1, . . . , kq−1}, we can
define the following map:

Φ: Eψ → Kv

given an element (k, g) ∈ Eψ,

[Φ(k, g)]j = kl, if (k, g)−1tj ∈ T (ψ) (kl, 1),

where T (ψ) = {(t0 = (1, 1), t2 = (1, g1), . . . , tv−1 = (1, gv−1)}. Obviously,
T (ψ) (ci, 1) = (ci, 1)T (ψ) and Φ is well-defined. After some calculations,

[Φ(k, g)]j = (kψ(g, g−1))−1 ψ(g−1, gj).

Hence, Φ(k, g) is equal to (kψ(g, g−1))−1-times the row of Mψ indexed with
the element g−1.

Clearly, Φ is an injective map. The inverse of Φ (over the ImΦ) is

Φ−1(λ (ψ(g, g1), . . . , ψ(g, gv))) = ((λψ(g−1, g))−1, g−1),

where λ ∈ K and g ∈ G.

Proposition 4.17. If ψ ∈ Z2(G,K) is orthogonal then C = (Φ(Eψ), ?) is a
GHFP-code where x ? y = Φ(Φ−1(x) · Φ−1(y)) with x, y ∈ Φ(Eψ).

Proof. Firstly, we will show that πx ∈ Sv where πx(y) = x ? y − x. We
know that every codeword has to be a multiple of a row of Mψ. We take
x = λ (ψ(g, g1), . . . , ψ(g, gv)) and y = µ (ψ(h, g1), . . . , ψ(h, gv)). By a routine
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computation, we get that

[x ? y]j = λµψ(g−1, g)ψ(h−1, h)
(
ψ(g−1, h−1)ψ((hg)−1, hg)

)−1
ψ(hg, gj).

Putting together,

[πx(y)]j = [x ? y]j − [x]j

= µψ(g−1, g)ψ(h−1, h) (ψ(g−1, h−1)ψ((hg)−1, hg))
−1

ψ(hg, gj)(ψ(g, gj))
−1

= µψ(h, ggj).

In the last identity we have used these properties coming from (2.1)

• ψ(hg, gj)(ψ(g, gj))
−1 = ψ(h, ggj)(ψ(h, g))−1.

• ψ(h−1, h)(ψ(h, g))−1 = ψ(h−1, hg).

• ψ(g−1, h−1)ψ(g−1h−1, hg) = ψ(g−1, g)ψ(h−1, hg).

Hence, the map πx is an element of Sv. Specifically, for any y, πx moves the
l-th coordinate of y to j-th coordinate where gl = ggj. As a consequence of
this fact, it is immediate that if x = λ1, with λ ∈ Fq, then πx = Idv since
g = 1 is the identity of G. Furthermore, if g 6= 1 (or equivalently x 6= λ1),
then πx has no fixed coordinates.

Secondly, we show an important property of these permutations. Con-
cretely, given x, y ∈ C, we have that πxπy = πx?y. To prove it, let z be an
element of C then

πx?y(z) = (x ? y) ? z − x ? y
= x ? (y ? z)− x ? y
= x+ πx(y ? z)− πx(y)− x
= πx(y ? z − y) = πx(πy(z)).

QED

Let H be a normalized generalized Hadamard matrix GH(q, v/q) over Fq
and f be any row of H. Dj denotes the subset of CH such that x ∈ Dj if
[x]j = 0 ∈ Fq. Let us observe the following facts:
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(i) Dj =
⋃
α∈Fq

{f + (−α)1 | f ∈ FH and [f ]j = α}.

(ii) D1 = FH .

(iii) For j > 1, |{f ∈ FH : [f ]j = α}| = v/q. Since Fq is abelian, then HT is a
GH(q, v/q) (over Fq) too [44, Lemma 4.10]. Thus, the number of entries
equal to α in the j-th column of H is v/q, for all α ∈ Fq.

(iv) |Dj| = v and C =
⋃
i≥1

Di.

Proposition 4.18. Let (C, ?) be a GHFP-code of length v over Fq coming from
H, which is a GH(q, v/q). Then FH = D1 is a (central) relative (v, q, v, v/q)-
difference set in C relative to the normal subgroup C1 = {α1 | α ∈ Fq} ' Fq.

Proof. C1 is a central subgroup. We have to prove:

|FH ∩ x ? FH | =


v x = 0

0 x ∈ C1 \ {0}
v/q x ∈ C \ C1

• Let us observe that if x ∈ C1 then πx = Idv. Now, if f ∈ FH then the
first entry of x?f = x+ f is 0 if and only if x = 0. So, we conclude with
the desired result for the first and the second identities.

• Let x /∈ C1 and πx(1) = j, (j 6= 1 since C is full propelinear). Let
α0 ∈ Fq be such that [x + α01]j = 0. Since (x + α01) ? f ∈ Dj for all
f ∈ FH and |y ? FH | = v for all y ∈ CH , then (x+ α01) ? FH = Dj. As a
consequence,

x ? FH = Dj − α01.

Therefore, |FH ∩ x ? FH | = number of entries equal to −α0 in the j-th
column of H what it is equal to v/q. This concludes the proof.

QED

Corollary 4.19. Let (C, ?) be a GHFP-code of length v over Fq coming from
H a GH(q, v/q). Let G = C/C1 and σ(f ? C1) = f for f ∈ FH . The map
ψFH : G×G→ K defined by

ψFH (g, h) = k, if σ(g) ? σ(h) ∈ k1 ? FH
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is an orthogonal cocycle, i.e., MψFH
is a GH(w, v/w). Furthermore, (C, ?) '

EψFH where F ?
H = {(1, g) | g ∈ G} is the isomorphic image of FH .

Proof. It is a consequence of [60, Theorem 3.1] and Proposition 4.18. QED

4.3 Examples

In this section, we provide some examples of generalized Hadamard full pro-
pelinear codes coming from cocyclic generalized Hadamard matrices. The last
one (Example 4.24) has a special interest since it is a family of nonlinear GHFP-
codes. We will study their rank and the dimension of their kernel. Dougherty,
Rifà, and Villanueva [32] initiated the study of the rank and dimension of the
kernel of codes coming from generalized Hadamard matrices. We begin with a
definition of an infinite family of cocyclic generalized Hadamard matrices.

Definition 4.20 ([27, Section 9.2]). Let q = pm be a prime power and denote
the k-dimensional vector space over Fq by V . Then

D(p,m,k) = [xy>]x,y∈V

is a GH(q, qk−1). These are known as the generalized Sylvester matrices.

It is well known that the generalized Sylvester matrices are cocyclic, see [44,
p. 122] for example. Egan and Flannery [34] analyzed the generalized Sylvester
matrices in terms of their cocyclic development. The analysis shows that these
matrices have several non-isomorphic indexing and extension groups, and the
number of non-isomorphic indexing and extension groups grows with k and m.
They are closely related to the regular subgroups of the affine general linear
group AGLk+1(V ). Therefore the matrix H = D(p,m,k) of order qk is cocyclic
with multiple cocycles ψ and has multiple non-isomorphic extension groups Eψ
of order qk+1. As such, for each ψ the associated codes (C, ?) each have the
same set of codewords (the rows of EH), but are non-isomorphic as groups.
Some of the examples below are members of the generalized Sylvester matrices.
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Example 4.21. If G = U = 〈a, b | a2 = b2 = (ab)2 = 1〉 ' Z2
2 (the additive

group of F4 but with multiplicative notation) with indexing {1, a, b, ab}, then
the G-cocyclic matrix with coefficients in U

H =


1 1 1 1

1 a ab b

1 ab b a

1 b a ab


is a generalized Hadamard matrix, GH(4, 1), with entries in F4. Now, set
Ci = {fi + α1 | α ∈ G}, where fi denotes the vector corresponding to the i-th
row of H and 1 denotes the all-one vector. (We will follow this notation in the
sequel examples). For instance,

C1 = {(1, 1, 1, 1), (a, a, a, a), (b, b, b, b), (ab, ab, ab, ab)}.

The generalized Hadamard code over U

C = C1 ∪ C2 ∪ C3 ∪ C4

can be endowed with a full propelinear structure with the associated group Π

comprised of the following permutations

πx =


Id x ∈ C1

(1, 2)(3, 4) x ∈ C2

(1, 3)(2, 4) x ∈ C3

(1, 4)(2, 3) x ∈ C4

That is, x ? y = x + πx(y) where (C, ?) ' Z2
4 and Π ' Z2

2. The rank and the
dimension of the kernel of this code are 2.
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Example 4.22. If G = Z2
3 with indexing {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1),

(1, 2), (2, 0), (2, 1), (2, 2)}, then the G-cocyclic matrix over Z3

H =



0 0 0 0 0 0 0 0 0

0 1 2 0 1 2 0 1 2

0 2 1 0 2 1 0 2 1

0 0 0 1 1 1 2 2 2

0 1 2 1 2 0 2 0 1

0 2 1 1 0 2 2 1 0

0 0 0 2 2 2 1 1 1

0 1 2 2 0 1 1 2 0

0 2 1 2 1 0 1 0 2


is a generalized Hadamard matrix (of Sylvester type), GH(3, 3), with entries in
F3. The generalized Hadamard code over G

C = C1 ∪ C2 ∪ . . . ∪ C9

can be endowed with a full propelinear structure with the associated group Π

comprised of the following permutations

πx =



Id x ∈ C1

(1, 2, 3)(4, 5, 6)(7, 8, 9) x ∈ C2

(1, 3, 2)(4, 6, 5)(7, 9, 8) x ∈ C3

(1, 4, 7)(2, 5, 8)(3, 6, 9) x ∈ C4

(1, 5, 9)(2, 6, 7)(3, 4, 8) x ∈ C5

(1, 6, 8)(2, 4, 9)(3, 5, 7) x ∈ C6

(1, 7, 4)(2, 8, 5)(3, 9, 6) x ∈ C7

(1, 8, 6)(2, 9, 4)(3, 7, 5) x ∈ C8

(1, 9, 5)(2, 7, 6)(3, 8, 4) x ∈ C9

We have C ' Z3
3 and Π ' Z2

3. The rank and the dimension of the kernel
of this code are 3.
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Example 4.23. Let G = U = Z3
2 be with indexing {0, 1, x, x2, x3, x4, x5, x6}

where

+ 0 1 x x2 x3 x4 x5 x6

0 0 1 x x2 x3 x4 x5 x6

1 0 x3 x6 x x5 x4 x2

x 0 x4 1 x2 x6 x5

x2 0 x5 x x3 1

x3 0 x6 x2 x4

x4 0 1 x3

x5 0 x

x5 0

then the G-cocyclic matrix over U

H =



0 0 0 0 0 0 0 0

0 1 x x2 x3 x4 x5 x6

0 x x2 x3 x4 x5 x6 1

0 x2 x3 x4 x5 x6 1 x

0 x3 x4 x5 x6 1 x x2

0 x4 x5 x6 1 x x2 x3

0 x5 x6 1 x x2 x3 x4

0 x6 1 x x2 x3 x4 x5


is a generalized Hadamard matrix, GH(8, 1), with entries in F8. The general-
ized Hadamard code over G

C = C1 ∪ C2 ∪ . . . ∪ C8

can be endowed with a full propelinear structure with the associated group Π



4.3. Examples 81

comprised of the following permutations

πx =



Id x ∈ C1

(1, 2)(3, 5)(4, 8)(6, 7) x ∈ C2

(1, 3)(2, 5)(4, 6)(7, 8) x ∈ C3

(1, 4)(2, 8)(3, 6)(5, 7) x ∈ C4

(1, 5)(2, 3)(4, 7)(6, 8) x ∈ C5

(1, 6)(2, 7)(3, 4)(5, 8) x ∈ C6

(1, 7)(2, 6)(3, 8)(4, 5) x ∈ C7

(1, 8)(2, 4)(3, 7)(5, 6) x ∈ C8

We have (C, ?) ' Z3
4 and Π ' Z3

2. The rank and the dimension of the kernel
of this code are 2.

Example 4.24. Let G = U = Z4
3 be with indexing {0000, 0001, 0002, 0010, . . . ,

2222}, the irreducible polynomial which defines multiplication in the field is
2 +x+x4 and let φ(4,3) as in Example 4.1. Then the G-cocyclic matrix over U

[H]g,h = ∂φ(4,3)(g, h)

is a generalized Hadamard matrix, GH(81, 1), with entries in F81.

C = C1 ∪ C2 ∪ . . . ∪ C81

can be endowed with a full propelinear structure. The associated group Π and
the matrix [H]g,h can be downloaded from ddd.uab.cat/record/204295 [7].

We have that (C, ?) ' Z8
3 and Π ' Z4

3. The rank of this code is 11 and the
dimension of its kernel is 1. Thus, C is nonlinear as we knew.

In Table 4.1, we consider the codes associated to ∂φ(a,b) of Example 4.1.
Let us recall that φ(a,b)(g) = g(3b+1)/2, with g ∈ F3a . Moreover, if (a, b) = 1, b
odd and 3 ≤ b ≤ a− 1 then ∂φ(a,b) are orthogonal cocycles and the associated
GHFP-codes Ca,b are not linear but are they nonequivalent? that is, fixed
a and assuming that b1 and b2 with b1 6= b2 are admissible values, are Ca,b1
and Ca,b2 nonequivalent? If the conjecture below were true, we would have an
affirmative answer. For instance, for a = 7 we have two (cocyclic) GH(37, 1)

matrices (one for b = 3 and another for b = 5) where their codes (C7,3 and

https://ddd.uab.cat/record/204295?ln=en
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C7,5) are nonequivalent since they have different rank. Consequently, the GH

matrices are nonequivalent as well.

b\a 4 5 6 7 8 9 10

3 (11,1) (11,1) (11,1) (11,1) (11,1)
5 (47,1) (47,1) (47,1) (47,1)
7 (191,1) (191,1) (191,1)
9 (767,1)

Table 4.1: The pairs (r, k) of the entries of this table denote the rank and
the dimension of the kernel of the GHFP-codes Ca,b associated to ∂φ(a,b) of
Example 4.1.

Let us notice that in Table 4.1, we have computed the rank and dimension
of the kernel for all admissible value of b for each a in the range 3 ≤ b ≤ a− 1

and 4 ≤ a ≤ 10. All these computations have been carried out with magma

[18]. We prove in Corollary 4.30 that always k = 1 and for the rank we
conjecture that r depends only on b by r(b) = 3 · 2b−1 − 1 with b odd.

4.4 Kronecker sum construction

In this section we extend the classical construction of Hadamard codes, based
on Kronecker products, to the case of GHFP-codes. As application, we con-
struct an infinite family of nonlinear GHFP-codes for each GH(3a, 1) matrix
as in Example 4.1. Some properties of their rank and the dimension of their
kernel are studied and they have been used to prove their nonlinearity.

The Kronecker sum construction [73] is a standard method to construct GH

matrices from other GH matrices. That is, if H = (hi,j) is any GH(w, v/w)
matrix over U and B1, B2, . . . , Bv are any GH(w, v′/w) matrices over U then
the matrix

H ⊕ [B1, B2, . . . , Bv] =


h11 +B1 . . . h1v +B1

... . . . ...
hv1 +Bv . . . hvv +Bv


is a GH(w, vv′/w) matrix. If B1 = B2 = . . . = Bv = B, then we denote
H ⊕ [B1, B2, . . . , Bv] by H ⊕B.
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If ψ ∈ Z2(G,U) and ψ′ ∈ Z2(G′, U), then their tensor product is ψ ⊗ ψ′ ∈
Z2(G×G′, U), where

(ψ ⊗ ψ′)((g, g′), (h, h′)) = ψ(g, h)ψ(g′, h′),

and Mψ⊗ψ′ = Mψ ⊕Mψ′ .

Let Sq be the normalized GH(q, 1) matrix given by the multiplicative table
of Fq. We can recursively define St as a GH(q, qt−1) matrix, constructed as
St = Sq ⊕ St−1 for t > 1, (this is an alternative definition for the generalized
Sylvester Hadamard matrices). It is well-known that Sq is cocyclic (see [44,
p. 122]) and rank(CSq) = ker(CSq) = 2.

Lemma 4.25 ([32, Lemma 3]). Let H1 and H2 be two GH matrices over
Fq and H = H1 ⊕ H2. Then rank(CH) = rank(CH1) + rank(CH2) − 1 and
ker(CH) = ker(CH1) + ker(CH2)− 1.

Immediate consequences of the previous result are that

rank(CSl) = ker(CSl) = l + 1.

On the other hand, if H1 is linear and H2 is not (or vice versa) then H =

H1 ⊕H2 is not linear.

Lemma 4.26 ([32, Corollary 28]). Let H be a GH(q, qh−1) matrix over Fq, with
q > 3 and h ≥ 1, or q = 3 and h ≥ 2. Then rank(CH) ∈ {h+ 1, . . . , bqh/2c}.

Lemma 4.27 ([32, Proposition 9]). Let H be a GH(q, λ) over Fq, where q = pe

and p prime. Let v = qλ = pts such that gcd(p, s) = 1. Then 1 ≤ ker(CH) ≤
kerp(CH) ≤ 1 + t/e.

Lemma 4.28. Let C be a generalized full propelinear code. Then K(C) is a
subgroup of C.

Proof. As 0 ∈ C, we have that K(C) is linear. Let x, y be in K(C), so αx+C =

C and αy+C = C for all α ∈ Fq. Therefore, α(x?y)+C = α(x+πx(y))+x?C =

αx+απx(y)+x+πx(C) = αx+x+πx(αy+C) = αx+x+πx(C) = αx+x?C =

αx + C = C, and so x ? y ∈ K(C). Thus, the operation ? is closed on K(C).
Since K(C) is finite and 0 ∈ C, we have that K(C) is a subgroup. QED
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Proposition 4.29. Let H be a GH(3a, 1) over F3a where CH is a GHFP-code.
Then ker(CH) ∈ {1, 2}. If ker(CH) = 2, then CH is linear. Furthermore, if
a > 1, then rank(CH) ≥ 2.

Proof. From Lemma 4.27, we have that ker(CH) ∈ {1, 2}. We suppose that
K(CH) = 〈1, x〉, for some x ∈ CH with x 6= α1 for any α ∈ F3a . Since the
kernel is a linear subspace of CH , K(CH) = {α1 + βx | α, β ∈ F3a}. Thus,
|K(CH)| = 32a = |CH |. Hence CH = K(CH) and so CH is linear. From Lemma
4.26, rank(CH) ≥ 2 if a > 1. QED

Corollary 4.30. Let H = M∂φ(a,b) be as in Example 4.1. Then the dimension
of the kernel of CH is 1.

Proof. CH is a nonlinear GHFP-code by Remark 4.2. QED

Corollary 4.31. If q = 3a with a > 1, H a GH matrix over Fq where CH is a
nonlinear GHFP-code and H ′ = Sq ⊕H. Then rank(CH′) = rank(CH) + 1 >

ker(CH′) = 2.

Proposition 4.32 ([44, Theorem 6.9]). Let ψi ∈ Z2(Gi, U), 1 ≤ i ≤ n and
ψ = ψ1 ⊗ · · · ⊗ ψn ∈ Z2(G1 × · · · × Gn, U). Then ψ is orthogonal if and only
if ψi is orthogonal, 1 ≤ i ≤ n.

Remark 4.33. As a consequence of Proposition 4.32, the Sylvester generalized
Hadamard matrix Sl is cocyclic.

Proposition 4.34. Let B1 be a GH(w, v/w) matrix over U and B2 be a
GH(w, v′/w) matrix over U . If CB1 and CB2 are GHFP-codes, then CH is
a GHFP-code too where H = B1 ⊕B2. Moreover,

πa⊕b(x⊕ y) = πa(x)⊕ πb(y),

(a⊕ b) ? (x⊕ y) = (a ? x)⊕ (b ? y).

where a = (a1, a2, . . . , av), b = (b1, b2, . . . , bv′) and a ⊕ b = (a1 + b1, . . . , a1 +

bv′ , a2 + b1, . . . , a2 + bv′ , . . . , av + b1, . . . , av + bv′) are rows in B1, B2 and H,
respectively; x ∈ CB1 and y ∈ CB2.

Proof. By Corollary 4.19, we have that Bi = Mψi for ψi ∈ Z2(Gi, U) for
a specific ordering of the elements of Gi (for the rest of this proof, we are
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assuming fixed this ordering in Gi) with i = 1, 2. Now, using Proposition 4.32,
we have H = Mψ1 ⊕Mψ2 = Mψ1⊗ψ2 for ψ1 ⊗ ψ2 ∈ Z2(G1 ⊗ G2, U) which is
orthogonal, i.e., H is a cocyclic GH(w, vv′/w). Therefore, CH is a GHFP-code
by Proposition 4.17.

Now, assume that a (resp. b) corresponds with a row of B1 (resp. B2)
indexed with the element g ∈ G1 (resp. h ∈ G2). By the proof of Proposition
4.17, we have πa(l) = i⇔ gl = ggi and πb(m) = j ⇔ hm = hhj, where gj ∈ G1

and hj ∈ G2. For the same reason, πa⊕b((l − 1)v + m) = (i − 1)v + j ⇔
(gl, hm) = (g, h)(gi, hj). Therefore, πa⊕b(x ⊕ y) = πa(x) ⊕ πb(y). Finally, as
a direct consequence, we conclude with the desired result (a ⊕ b) ? (x ⊕ y) =

(a ? x)⊕ (b ? y). QED

Corollary 4.35. Let ∂φ(a,b) be as in Example 4.1. Then CH are nonlinear
GHFP-codes where H = Sl ⊕M∂φ(a,b) are GH(3a, 3al) matrices with S = S3a,
for all l ≥ 1. Moreover, ker(H) = l + 1 < rank(H).





Chapter 5

Quasi-Hadamard full propelinear
codes

“Ignoranti, quem portum petat, nullus suus
ventus est.”

Lucius Annaeus Seneca.

In 2018, Armario and Flannery [9] started the study of the existence, classi-
fication and combinatorics of quasi-orthogonal cocycles. For instance, equiva-
lences with relative quasi-difference sets, quasi-Hadamard groups, and certain
partially balanced incomplete block designs, afforded by the analogy with or-
thogonal cocycles, have been found. Keeping with the analogy, in this chapter
we give a characterization of quasi-orthogonal cocyles in terms of propelinear
codes. Furthermore, some structural properties of these codes are studied.

5.1 Quasi orthogonal cocycles

The Hadamard (maximal) determinant problem asks for the largest n× n de-
terminant with entries ±1. This is an old question which remains unanswered
in general. Throughout this chapter, for convenience, when we say determi-
nant of a matrix we mean the absolute value of the determinant. Let M be
a (−1, 1)-matrix of order n. We call M a D-optimal design if the determi-
nant of M is the maximum determinant among all (−1, 1)-matrices of order
n, (i.e., det(M) is a solution of the Hadamard determinant problem). Hada-
mard showed in [40] that nn/2 was an upper bound for the determinant of an

87
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n × n D-optimal design. This bound can be attained only if n = 1, 2 or n
is a multiple of 4. Recall that a matrix that attains it is called a Hadamard
matrix, and it is an outstanding conjecture that one exists for any multiple
of 4. Hadamard’s inequality can be improved if we restrict to matrices whose
orders are not divisible by 4. Indeed, if n ≡ 2 mod 4 and n 6= 2, Ehlich [35]
and independently Wojtas [79] proved that

det(M) ≤ (2n− 2)(n− 2)
1
2
n−1, (5.1)

and, moreover, there exists a (−1, 1)-matrix achieving equality in (5.1) if and
only if there exists a (−1, 1)-matrix B of order n such that

BB> = B>B =

(
L 0

0 L

)
, (5.2)

where L = (n−2)I+2J . The symbols I and J will (respectively) always denote
the identity matrix and the all-ones matrix; the order of each matrix will be
clear from the context in which it is used. A (−1, 1)-matrix of order n is called
an EW matrix if it satisfies (5.2) (or more generally, when its determinant
reaches the bound in (5.1)). Clearly Hadamard matrices and EW matrices
are D-optimal designs. Note that it is known that EW matrices exist only if
2(n−1) is the sum of two squares, a condition which is believed to be sufficient
(order 198 is the lowest for which the question has not been settled yet, [31]).
The interested reader is addressed to [53] for further information on what is
known about maximal determinants.
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Example 5.1. The following matrix is a EW matrix of order 10.

1 1 1 1 1 1 1 1 1 1

1 1 −1 −1 −1 1 1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1 −1 −1

1 −1 −1 1 −1 1 −1 −1 1 −1

1 −1 −1 −1 1 1 −1 −1 −1 1

1 1 1 1 1 −1 −1 −1 −1 −1

1 1 −1 −1 −1 −1 −1 1 1 1

1 −1 1 −1 −1 −1 1 −1 1 1

1 −1 −1 1 −1 −1 1 1 −1 1

1 −1 −1 −1 1 −1 1 1 1 −1



. (5.3)

In the early 1990s, de Launey and Horadam discovered cocyclic development
of pairwise combinatorial designs. This discovery opened up a new area in
design theory, that emphasizes algebraic methods drawn mainly from group
theory and cohomology. Cocyclic construction has been successfully used for
Hadamard matrices [44] and, more recently, for EW matrices [2, 3]. In this
context, the notions of orthogonal (resp. quasi-orthogonal) cocycles associated
to cocyclic Hadamard (resp. EW) matrices arose naturally.

Let G and U be finite groups, with U abelian. Let ψ ∈ Z2(G,U) and
assume that ψ is normalized, i.e., ψ(1, 1) = 1. Our principal focus in this
chapter is the case U = 〈−1〉 ' Z2. Recall that ψ is orthogonal if Mψ is a
Hadamard matrix, i.e., MψM

>
ψ = M>

ψMψ = nIn, where n = |G|. For n ≡ 2

mod 4 we say that ψ is quasi-orthogonal if Mψ satisfies

abs(MψM
>
ψ ) =

(
L 0

0 L

)
(5.4)

up to row permutation, where abs(M) denotes the matrix (|mij|) for M =

(mij). By (5.2) it follows that any cocyclic EW matrix is quasi-orthogonal, but
the reciprocal does not hold (i.e., not every quasi-orthogonal cocyclic matrix is
an EW matrix). Moreover, [9, Remark 6] claims that if ψ is quasi-orthogonal
then MψM

>
ψ = M>

ψMψ.

When |G| = 4t+ 2 and ψ ∈ Z2(G, 〈−1〉) is a coboundary then the identity
(5.4) never holds [9, Prop 2.5.]. We say that ψ is a quasi-orthogonal coboundary
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if Mψ satisfies
abs(MψM

>
ψ ) = L. (5.5)

up to row permutation. As far as we are aware, quasi-orthogonal coboundaries
are only known over abelian groups and the dihedral group of six elements. In
this case, MψM

>
ψ = M>

ψMψ.

5.2 QHFP-codes

In this section we introduce the notion of quasi-Hadamard full propelinear
codes and their equivalence with quasi-Hadamard groups is studied.

Definition 5.2. A quasi-Hadamard matrix of order 4t + 2 is a normalized
square matrix M of order 4t + 2 with entries from the set {−1, 1}, with the
property such that

abs(MM>) = abs(M>M) =

(
L 0

0 L

)
(5.6)

up to row and column permutation, where L = 4tI + 2J .

Clearly, EW matrices are quasi-Hadamard matrices but not every quasi-
Hadamard matrix is a D-optimal design. In Definition 5.2, M is said to be an
extremal quasi-Hadamard matrix when abs(MM>) = abs(M>M) = L, where
L = 4tI + 2J .

The matrix obtained from a quasi-Hadamard matrix, by replacing all 1’s
by 0’s and all −1’s by 1s, is called binary quasi-Hadamard matrix. The binary
code consisting of the rows of a binary quasi-Hadamard matrix and their com-
plements is called a quasi-Hadamard code, which is of length 4t + 2 and with
8t+ 4 codewords. Since M is normalized, 0 and 1 are always codewords.

Proposition 5.3. The minimum distance of a quasi-Hadamard code C of
length 4t+ 2 is 2t.

Proof. By (5.4), the inner product x ·y is 0 or ±2, where x, y are different rows
of M (a binary quasi-Hadamard matrix associated to C). If x · y = 0 then
d(x, y) = 2t+ 1, if x · y = 2 then d(x, y) = 2t, and if x · y = −2 then d(x, y) =

2t+2. As d(x, y) = 4t+2−d(x, y+u), then d(x, y) ∈ {2t, 2t+1, 2t+2, 4t+2}
for any x, y ∈ C with x 6= y. QED
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The set of distances in a quasi-Hadamard code of length 4t+ 2 is the same
as in a Hadamard code of length 4t + 4 after puncturing two coordinates.
The number of codewords in the above codes is 8t + 4 and 8t + 8, respec-
tively. Hence, from an error-correction point of view it is slightly better the
2-punctured Hadamard code. However, quasi-Hadamard codes can be seen as
a good alternative to 2-punctured Hadamard codes in that cases when we do
not know about the existence of a Hadamard code of length 4t+ 4.

From a Hadamard code we can always obtain a quasi-Hadamard code by
puncturing twice. Let sayM is a normalized Hadamard matrix of length n and
fix any two different columns (also different from the first one). It is well known
the design structure ofM and so, in this case, the projection of the row vectors
of M over these two fixed coordinates gives exactly n/4 times each one of the
vectors (1, 1), (−1,−1), (−1, 1), (1,−1). Puncturing these fixed two columns
and removing any pair of rows such that its projection over the two punctured
coordinates give two orthogonal vectors, we obtain a quasi-Hadamard matrix.
However, the reciprocal is not true. It is easy to see that the quasi-Hadamard
matrix in eq. (5.3) could not be extended to a Hadamard matrix. Indeed,
adding two columns to that matrix the two coordinates added to the second
row should be (1, 1) to have this row orthogonal to the first one; also the two
coordinates added to the third row should be (1, 1) to have this row orthogonal
to the first one; but now the new second and third rows are not orthogonal.

An interesting bound which Hadamard codes fit is the so called Grey-
Rankin bound, applicable only to self-complementary codes to check its opti-
mality. The quasi-Hadamard codes do not attain this bound. For a (n,M, d)-
code the bound states that

M ≤ 8d(n− d)

n− (n− 2d)2

and in the case of the quasi-Hadamard code, we have a (4t+ 2, 8t+ 4, 2t)-code
which is almost optimal taking into account the Grey-Rankin bound as it is
easy to see. The left part of the inequality is M = 8t+ 4 and the right part is
8t+ 4 + (8 + 12

2t−1
).

A quasi-Hadamard code, which is also full propelinear, is called quasi-
Hadamard full propelinear code (briefly, QHFP-code). Now we present the
analogous of Lemma 2.2 which is proven for Hadamard codes in [67, Lemma
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6]. We note that the same proof is valid for quasi-Hadamard codes.

Lemma 5.4. Let C be a quasi-Hadamard code of length 4t+ 2. The rank r of
C fulfils

r ≤ 8t+ 4

2k
+ k − 1,

where k is the dimension of the kernel.

Henceforth, we will assume that E is a finite (multiplicatively written)
group of order 2n with identity e and normalized transversal T for a central
subgroup 〈u〉 ' Z2. We recall that this implies in particular that:

• T and uT are disjoints and T ∪ uT = E.

• aT and {b, bu} intersect exactly in one element, for any a, b ∈ E.

Now, we state a technical result that we will need later.

Lemma 5.5. Let a, b ∈ E and A = [T \ (a(T ∪ bT ) ∩ T )] ∪ [a(T ∩ bT ) ∩ T ].

Then,

(i) x ∈ T ∩ bT ⇒ either ax ∈ A or axu ∈ A.

(ii) x ∈ A⇒ either a−1x ∈ T ∩ bT or a−1xu ∈ T ∩ bT.

As a consequence, we have |T ∩ bT | = |A|.

Proof.

(i) x ∈ T ∩ bT ⇒ ax ∈ a(T ∩ bT ). Now, we have to possibilities:

• If ax ∈ T , then ax ∈ a(T ∩ bT ) ∩ T . Thus, ax ∈ A.

• If ax /∈ T , then axu ∈ T . Taking into account that ax ∈ aT ∧ ax ∈
abT and T is a transversal (the second property above), we have
axu /∈ aT ∪abT . Thus, axu ∈ T \(a(T ∪bT ) ∩ T ). Hence, axu ∈ A.

(ii) Follows by a similar argument.

QED



5.2. QHFP-codes 93

For a fixed order in T = {t1 = e, t2, . . . , tn} and given an element a ∈ E,
we can define a n-vector va ∈ Fn in the following manner:

[va]k =

{
0 a−1tk ∈ T,
1 otherwise

where [va]k denotes the k-th coordinate of va and

CE = {va ∈ Fn | a ∈ E}.

Let us point out that ve is the all-zeros vector and vu is the all-ones vector.
The next result follows immediately.

Lemma 5.6. Let b ∈ E, the set of positions where the vector vb has a 0 entry
is given by T ∩ bT (i.e., tk ∈ T ∩ bT ⇔ [vb]k = 0).

In the sequel, our main goal will be to endow CE with a propelinear struc-
ture using the transversal T , the central subgroup 〈u〉 and the law group of E.
The first step consists of finding a suitable permutation πva ∈ Sn associated
to an element a ∈ E. For any b ∈ E define πva(vb) = va + vab where + is
the componentwise addition in Fn. At this moment, it is not obvious that
πva(vb) has the same weight as vb and even if it did, this might not define a
unique permutation. Before trying to clarify this point, we will point out that
if πva ∈ Sn for any a ∈ E then (CE, ?) with va ? vb = va + πva(vb) is isomorphic
to E as a group since va ? vb = vab by the definition of πva . Furthermore,

Lemma 5.7. Let a, b ∈ E then πvaπvb = πva?vb.

Proof. For any c ∈ E, we have

πva?vb(vc) = πvab(vc) = vab + v(ab)c = va + πva(vb) + va(bc)

= va + πva(vb) + va + πva(vbc) = πva(vb + vbc) = πvaπvb(c)

QED

By abuse of notation, from now on we will use the same symbol a to denote
va. Similarly, for the underlying set of the group E and CE. The meaning of
a (resp. E) will be clear from the context in which it is used.

In the sequel, for any a, b ∈ E some properties of the map πa(b) (defined
above) are studied.
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Lemma 5.8. Let a, b and A as in Lemma 5.5. Then,

[πa(b)]k =

{
1 tk /∈ A,
0 tk ∈ A.

Proof. To check the value of the k-th coordinate of πa(b), we have to compute
[a]k + [ab]k mod 2. Therefore, [πa(b)]k = 0 if and only if [a]k = [ab]k. Now,
applying the definition of [a]k and Lemma 5.5, we conclude with the desired
result. QED

Taking into account |A| = |T ∩ bT | and Lemmas 5.6 and 5.8, it is proved
that πa(b) has the same weight as b. Moreover, the following result guarantees
the πa is a permutation depending only on a.

Proposition 5.9. The map πa is an element of Sn. Specifically, for any b, πa
moves the k-th coordinate of b to the h-th coordinate where

th =

{
atk atk ∈ T,
atku otherwise.

Proof. We have that [πa(b)]h = [a]h + [ab]h mod 2. It is straightforward to
check that [πa(b)]h = [b]k. QED

Remark 5.10. Let us observe that atk = th if a = e and atku = th if a = u.
Hence, the permutation πa does not fix any coordinate for all a ∈ E \ {e, u}
and πe = πu = Id.

We can always assume without loss of generality that the elements of T are
ordered in such a way so, πtk(ek) = e1 where ek is the unitary vector with only
one nonzero coordinate at the position k-th. A justification of the fact that
πa(ek) 6= πb(ek) for all a, b ∈ T with a 6= b is given in the proof of Theorem
5.16.

It is known in [67] that if E is a Hadamard group then the permutations of
Proposition 5.9 yields a full propelinear structure on the Hadamard code CE.
From now on, we will deal with the case E being a quasi-Hadamard group and
we will obtain the analog result.
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Definition 5.11 (Armario and Flannery [9]). Let E be a group of order 8t+4 ≥
12 with central subgroup Z = 〈u〉 ' Z2. We say that E is a quasi-Hadamard
group if there exists a transversal T for Z in E of size 4t + 2 containing a
subset S ⊂ T \ Z of size 2t+ 1 such that

|T ∩ xT | =

{
2t+ 1 x ∈ S,
2t or 2t+ 2 x ∈ T \ (S ∪ Z).

(5.7)

The transversal T is called a quasi-Hadamard subset of E. It may be assumed
that e ∈ T .

Remark 5.12. In [9, Thm 3.2], Armario and Flannery showed that quasi-
orthogonal cocycle and quasi-Hadamard group are essentially the same concept.

Let Q8t+4 denote the dicyclic group with presentation

〈a, b | a2t+1 = b2, b4 = e, b−1ab = a−1〉.

This family provides good candidates for quasi-Hadamard groups. For in-
stance, T = {e, a, a2, b, ab, a2b} is a quasi-Hadamard subset of Q12. Further-
more, in [9] it has been conjectured that Q8t+4 is always a quasi-Hadamard
group. It can be seen as the analog of Ito’s conjecture for Hadamard groups
(Conjecture 2.35).

We say that a quasi-Hadamard group E is extremal when in Definition 5.11
the subset S is the empty set, i.e, S = ∅. Quasi-orthogonal coboundary and
extremal quasi-Hadamard group are also essentially the same concept.

The following example will be useful in the proof of Proposition 5.14.

Example 5.13 ([52, Chapter 2]). Suppose that E is a finite group with nor-
malized transversal T for a central subgroup U = 〈−1〉 ' Z2, i.e., |xT∩yU | = 1

for any x, y ∈ E. Put G = E/〈−1〉 and σ(t〈−1〉) = t for t ∈ T . The map
ψT : G×G→ 〈−1〉 defined by

ψT (g, h) = σ(g)σ(h)σ(gh)−1 =

{
1 σ(g)σ(h) ∈ T,
−1 otherwise

is a cocycle.
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Proposition 5.14. Let E be a quasi-Hadamard group and T = {t1 = e, t2, . . . ,

tn} be a quasi-Hadamard subset of E. Then E is a quasi-Hadamard code with

[H(T )]i,j =

{
0 t−1

i tj ∈ T,
1 otherwise

as a binary quasi-Hadamard matrix (up to normalization).

Proof. Let us point out that the codewords of E are the rows of the following
(0, 1)-matrices H(T ) and H(T ) where H(T ) +H(T ) = J .

Let ψT ∈ Z2(E/〈u〉, 〈−1〉) be as in Example 5.13. By [9, Thm 3.2],

[MψT ]i,j =

{
1 titj ∈ T,
−1 otherwise

is a quasi-orthogonal cocyclic matrix. Hence, the matrices MψT and M>
ψT

satisfies (5.4).
Now, let us observe that the binary version of MψT is equivalent to H(T ).

Normalizing (i.e., taking the complement of the rows starting by 1 in H(T ))
we get the binary version of MψT up to rows permutation, due to the fact that
if a ∈ E then a ∈ T or au ∈ T and va is the complement of vau. Therefore, E
is a quasi-Hadamard code with H(T ) as a binary quasi-Hadamard matrix up
to normalization. QED

Now, we can define a propelinear structure on E by a ? b = a+ πa(b) = ab.
Finally, as an immediate consequence of the previous results above we have
the following theorem.

Theorem 5.15. Let E be a quasi-Hadamard group and T = {t1 = e, t2, . . . , tn}
be a quasi-Hadamard subset of E. Then (E, ?) is a quasi-Hadamard full pro-
pelinear code.

Proof. From Proposition 5.14, we have that E is a quasi-Hadamard code. Now,
let’s see that E has a propelinear structure. For each x ∈ E, we define πx(y) =

x + xy for any y ∈ E. From Proposition 5.9, πx ∈ Sn for every x ∈ E.
For any x, y ∈ E, x + πx(y) = x + x + xy = xy ∈ E, and by Lemma 5.7
πxπy = πxy = πx+πx(y). Thus (C, ?) is a propelinear code, which is full by
Remark 5.10. QED
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In the next result, we will show that the converse statement holds. An
analogous version for Hadamard full propelinear codes appears in [66].

Theorem 5.16. Let E be a quasi-Hadamard full propelinear code of length
4t+ 2. Then E is a quasi-Hadamard group of order 8t+ 4.

Proof. Define T1 to be the subset of E consisting of codewords with first co-
ordinate equal to zero. Let u denotes the codeword 1. It is easy to check
that

• T1 ∩ uT1 = ∅ and T1 ∪ uT1 = E.

• aT1 and {b, bu} intersect exactly in one element, for any a, b ∈ E.

• 〈u〉 ' Z2 is a central subgroup of E.

We associate to each codeword in x ∈ T1, the integer kx such that π−1
x (e1) =

ekx . Let us point out that if x, y ∈ T1 and x 6= y then kx 6= ky. Indeed,
if kx = ky then e1 = πxπ

−1
y (e1) = πxπy−1(e1) = πxy−1(e1). Now, taking into

account that E is full then xy−1 = e or xy−1 = u. Hence, x = y or {x, y} is
not a subset of T1. As a consequence, kx ranges over all the integers between
1 and 4t+ 2 when x moves in T1.

Let H be the binary quasi-Hadamard matrix associate to E where the kx-th
row of H corresponds with the codeword x. It is straightforward to check that

[H]kx,ky = 0 if and only if y ? x ∈ T1.

As a consequence,

|T1 ∩ T1 x| = number of zeros of the kx-th row of H.

|T1 ∩ xT1| = number of zeros of the kx-th colum of H.

Let S be the set of columns of H where their number of zeros is equal to 2t+1.
Since the (−1, 1) version of H satisfies (5.4), then

• |T1 ∩ xT1| =

{
2t+ 1 x ∈ S,
2t or 2t+ 2 x ∈ T \ (S ∪ 〈u〉).

• |S| = 2t+ 1.
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Obviously, S = ∅ when H is extremal. QED

Finally, we have studied the allowable values for the rank and for the di-
mension of the kernel of these codes.

Proposition 5.17. Let E be a quasi-Hadamard full propelinear code of length
4t+ 2. Then

(i) dim(K(E)) = k ≤ 2.

(ii) If k = 1, then K(E) = 〈1〉, and r ≤ 4t+ 2.

(iii) If k = 2, then K(E) = 〈1, s〉, with wt(s) = 2t+1, s2 ∈ 〈1〉, and r ≤ 2t+2.

Proof. It is trivial that 1 ∈ K(E). Let s 6= 1 be a codeword in K(E), then
s + x ∈ E for any x ∈ E. Suppose wt(s) ∈ {2t, 2t + 2}, then for each x ∈ E
with wt(x) = 2t+ 1, we have wt(s+ x) = 2t+ 1.

Note that we have an odd amount of rows ofH (the quasi-Hadamard matrix
associated to E) with weight equal to 2t+ 1 because the (−1, 1) version of H
satisfies (5.6). Thus, there are 4t+2 codewords with weight equal to 2t+1. As
1 ∈ K(E), we need to distribute the codewords with weight equal to 2t+ 1 in
sets of four elements, {x, x+ s, x+ 1, x+ s+ 1}, then there is a contradiction.
Thus wt(s) = 2t+ 1 for each codeword in K(E) \ 〈1〉.

Let s1, s2 be two different codewords in K(E) and s1 6= s2 + 1. Since
K(E) is a linear subspace, s1 + s2 ∈ K(E), but wt(s1 + s2) is 2t or 2t + 2.
Then K(E) is at most 〈1, s〉 where s is a codeword with wt(s) = 2t+ 1. Also
s2 = s+ πs(s) ∈ K(E), but the unique possibility is that s2 is 1 or 0.

The bounds for the rank are immediately from Lemma 5.4. QED
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5.3 Examples

In this section, we provide some examples of quasi-Hadamard full propelinear
codes coming from quasi-Hadamard groups.

Example 5.18. Let Q12 = 〈a, b | a3 = b2, b4 = e, b3ab = a5〉 be a dicyclic group
of order 12. We have that Q12 = {e, a, a2, a3, a4, a5, b, ab, a2b, a3b, a4b, a5b}.
Let T = {e, a, a2, b, ab, a2b} be a transversal, Z = 〈a3〉, where a3 = b2 is
an involution, and S = {b, ab, a2b}. Therefore, the quasi-Hadamard matrix
associated to T is

H(T ) =



0 0 0 0 0 0

1 0 0 1 0 0

1 1 0 1 1 0

1 0 0 0 1 1

1 1 0 0 0 1

1 1 1 0 0 0


.

Thus, the generators of the QHFP-code are

a = (1, 0, 0, 1, 0, 0) ,

b = (1, 0, 0, 0, 1, 1) ,

and the permutations are

πa = (1, 2, 3)(4, 5, 6),

πb = (1, 4)(2, 6)(3, 5).

Note that a3 = b2 = 1. With these values, the relation b3ab = a5 is fulfilled.
The rank of this code is 4 and the dimension of its kernel is 2, K(Q12) =

〈1, a2b〉.
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Example 5.19. Let E = {a, b | a6 = b2 = e, ab = ba} ' Z6 × Z2. Let
T = {e, a, a2, b, a4b, a5b} be a transversal, Z = 〈a3〉 where a3 is an involution,
and S = ∅. Therefore, the quasi-Hadamard matrix associated to T is

H(T ) =



0 0 0 0 0 0

1 0 0 0 1 0

1 1 0 0 1 1

0 1 1 0 1 1

1 1 0 0 0 0

1 1 1 0 1 0


.

Thus, the generators of the QHFP-code are

a = (1, 0, 0, 0, 1, 0) ,

b = (0, 1, 1, 0, 1, 1) ,

and the permutations are

πa = (1, 2, 3)(4, 5, 6),

πb = (1, 4)(2, 5)(3, 6).

Note that a3 = 1. The rank of this code is 5 and the dimension of its kernel is
1, K(E) = 〈u〉.
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Example 5.20. Let E = {a | a12 = e} ' Z12. Let T = {e, a, a2, a9, a10,

a5} be a transversal, Z = 〈a6〉 where a6 is an involution and S = {a, a9, a5}.
Therefore, the quasi-Hadamard matrix associated to T is

H(T ) =



0 0 0 0 0 0

1 0 0 1 0 1

0 1 0 1 1 1

1 1 0 0 0 1

0 1 1 1 0 1

1 1 0 1 0 0


.

Thus, the generator of the QHFP-code is

a = (1, 0, 0, 1, 0, 1) ,

and the permutation is
πa = (1, 2, 3, 4, 5, 6).

Note that a6 = 1. The rank of this code is 6 and the dimension of its kernel is
1, K(E) = 〈1〉.

Remark 5.21. We note that the values of the rank and the dimension of the
kernel obtained in the above examples tell us that the codes are nonlinear. In
the case of Hadamard full propelinear codes with length 4 and 8 do not appear
nonlinear codes. When the length is 4 the HFP-codes have rank and dimension
of the kernel equal to 3, and in the case of length 8 the rank and the dimension
of the kernel are 4.





Chapter 6

Conclusions

“I didn’t say it would be easy, Neo. I just said it
would be the truth.”

Morpheus. The Matrix.

The core objective of this thesis has been to deepen into the study of error-
correcting codes endowed with a propelinear structure. Along this dissertation
we have endowed with a full propelinear structure several codes such as binary
Hadamard codes, generalized Hadamard codes, and quasi-Hadamard codes.
This structure bring us a way to generate codes from a few codewords, even if
the code is nonlinear. The study of codes with an algebraic structure is a fruit-
ful path to generate infinite families of codes. In general, all codes introduced
in this thesis are nonlinear. Therefore, we have analyzed the allowable values
of the rank and dimension of the kernel. In some cases, we have obtained
bounds for these values, but in others we have determined the precise values.
Moreover, we have generalized to finite fields the full propelinear structure
introduced by Rifà and Suárez in [66] for binary Hadamard codes.

6.1 Summary of results

“Discutiremos el concepto con el fin de
discutirlo.”

Pazos. Airbag.

In Table 6.1 we summarize the results of Chapter 3. The table shows the
allowable values of the rank and the dimension of the kernel for nonlinear
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Hadamard full propelinear codes of length 4t with Π = C2t × C2 or Π =

Ct × C2 × C2. When the parameter t is odd, then there only exist codes with
a group structure isomorphic to Ct × Q. This group is not abelian, but this
property seems that is not the key of the existence in the odd case. Indeed,
the HFP(t,D1)-codes are also nonabelian, but they only exist when t is even.

HFP(·, ·, ·) t r k
(4t1, 2) even ≤ 2t 1

(2t, 2, 21) even square ≤ 2t 1, 2, 3
(2t, 41) even ≤ 2t 1, 2, 3

(t, 2, 2, 21) even square ≤ 2t 1, 2, 3
(t, 41, 2) even ≤ 2t 1, 2, 3, 4
(2t1, 2, 2) even ≤ 2t 1, 2, 3

(t, Q1)
odd 4t− 1 1
even ≤ 2t 1, 2, 3

(t,D1) even ≤ 2t 1, 2, 3, 4

Table 6.1: Allowable values of the rank r, and dimension of the kernel k for
nonlinear HFP(·, ·, ·)-codes of length 4t.

Attending to the results obtained in Chapter 3, we propose the following
conjecture.

Conjecture 6.1. Let C be a Hadamard full propelinear code of length 4t with
generators gi and associated permutations πgi which are products of ji-cycles,
with i ∈ {1, . . . , n} and ji ∈ {2, . . . , 2t}. Let jk be the maximum of {j1, . . . , jn}.
The dimension of the kernel of C is bounded by

k ≤ 2 + log2(4t/jk).

Note that the codes studied in Section 3.1 have 2t-cycles, so k ≤ 3, and the
codes presented in Section 3.2 have t-cycles, so k ≤ 4.

In Chapter 4 we have studied codes based on cocyclic generalized Hadamard
matrices. In Proposition 4.6, we have characterized the propelinear structure
of a q-ary code C depending on the existence of a regular subgroup in Aut(C)

acting transitively on C. This result extends the one for binary codes (see
Proposition 2.5). In Definition 4.7 we have introduced the full propelinear
structure for q-ary codes, and subsequently the generalized Hadamard full
propelinear codes. In Section 4.2, we have proved several results to establish
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the connection between generalized Hadamard full propelinear codes and the
cocyclic generalized Hadamard matrices. Furthermore, Proposition 4.18 gives
the equivalence between GHFP-codes and central relative difference sets. In
Proposition 4.34, we have showed a construction of GHFP-codes from two
GHP-codes, giving explicitly the structure. Making use of this construction,
in Corollary 4.35 we have provided an example of an infinite family of nonlinear
GHFP-codes.

In Chapter 5 we have introduced quasi-Hadamard full propelinear codes.
In Theorems 5.15 and 5.16, we have proved the equivalence between quasi-
Hadamard groups and QHFP-codes. In Remark 5.21 we have noted that there
exist nonlinear full propelinear codes based on quasi-Hadamard matrices for
lower length than based on Hadamard matrices. In Proposition 5.17, we have
established that the dimension of the kernel of any nonlinear QHFP-code is
lower than or equal to 2.

6.2 Future work

“But once we pass that windmill, it’s the future
or bust.”

Doc. Back to the future. Part III.

To conclude, we propose several research problems that have arisen as a con-
sequence of the work carried out in this thesis.

In Remark 2.18 we say that a linear code could have a full propelinear
structure, but there is not clear when a linear code have it. There would be
interesting to study invariants of linear codes to determine when they have a
full propelinear structure.

Research problem 1. Characterize when a linear code has a full propelinear
structure.

We also could try to solve this in general.

Research problem 2. Characterize when a code has a full propelinear struc-
ture.
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There could be useful to benefit from the structure of the permutations
associated to the generators of an HFP-code in order to establish a bound for
the dimension of the kernel, as Conjecture 6.1 proposes.

Research problem 3. Solve the Conjecture 6.1.

To build a family of nonequivalent nonlinear generalized Hadamard full
propelinear codes, we could prove the following conjecture about the value of
the rank of codes associated to the cocycles of Example 4.1. Note that the
conjecture is based in the results obtained in Table 4.1.

Research problem 4. Let Ca,b be the GHFP-codes associated to φ(a,b)(g) =

g(3b+1)/2, with g ∈ F3a . Moreover, if (a, b) = 1, b odd and 3 ≤ b ≤ a − 1 then
∂φ(a,b) are orthogonal cocycles and the associated GHFP-codes Ca,b are not
linear. Then r depends only on b by r(b) = 3 · 2b−1 − 1 with b odd.

Since we have defined GHFP-codes over finite fields, the next natural step
is to extend the concept to rings.

Research problem 5. Define Hadamard full propelinear codes over rings.

Recall that quasi-Hadamard codes can be seen as a good alternative to
2-punctured Hadamard codes in that cases when we do not know about the
existence of a Hadamard code of length 4t.

Research problem 6. Build quasi-Hadamard matrices of order 4t − 2 for t
such that there is not known Hadamard matrices of order 4t. Build QHFP-
codes of length 4t − 2 for t such that there is not known cocyclic Hadamard
matrices of order 4t.

The propelinear structure gives place to the propelinear operation x ? y =

x + πx(y). Thus, (C, ?) is a group. We could generalized the propelinear
structure in different ways. For instance, we could set an operation ?̂ given
by x ?̂ y = πα(x) + πx(y). Note that if πα = Id, then the operation ?̂ is the
propelinear operation ?.

Research problem 7. Generalize the propelinear structure over a code C in
order to obtain different algebraic structures (C, ?̂).
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In some cases we have detected that the generators of some HFP-codes
have autocorrelation properties (Golay pairs, negaperiodic Golay pairs, peri-
odic autocorrelation sequences).

Research problem 8. Study the relation between the structure of the gen-
erators of the HFP-codes and different types of autocorrelation sequences.

As a final comment, there is a proverb that says “rectify is of wise people.”
The Cambridge Dictionary defines rectify as “to correct something or make
something right”. Therefore, error-correction codes make humans, in part,
wiser.

“Condenado a estar toda la vida preparando
alguna despedida.”

Robe. Extremoduro.
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