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Abstract  
 
Genome spatial organisation and transcriptional activity are tightly 

coordinated to ensure the correct function of the cell. Thus, proper 

understanding of the chromatin organisation is needed to deepen 

into the processes regulating the activity of specific loci of interest. 

In this matter, Chromatin Conformation Capture (3C)-based 

technologies have helped to increase the understanding of the 

genomic interaction landscape. Particularly, sparse 3C technologies, 

like promoter capture Hi-C (pcHi-C), have focused on specific 

interactions of interest to unveil the interaction landscape associated 

with functional elements, like promoters. However, to properly 

characterize the sparse interaction profiles of pcHi-C, it is important 

to contextualize these interactions in a 3D perspective. Hence, in 

this thesis, we have developed a tool for the 3D modelling and 

analysis of sparse 3C-based datasets like pcHi-C, and we have 

probed its utility to help interpreting the regulatory architecture 

surrounding genes associated with cell-type or tissue-specific 

activity. 
 

Resumen 
 
La organización espacial del genoma y la actividad transcripcional 

están estrechamente coordinadas para garantizar el correcto 

funcionamiento de la célula. Por lo tanto, se necesita una 

comprensión adecuada de la organización de la cromatina para 

profundizar en los procesos que regulan la actividad de loci de 

interés. Tecnologías basadas en la captura de conformación de 

cromatina (3C) han facilitado la comprensión de la arquitectura 

genómica. Particularmente, las tecnologías 3C sparse, como 

promoter capture Hi-C (pcHi-C), se han centrado en interacciones 

específicas de interés para desvelar el panorama de interacción 

asociado con elementos funcionales como los promotores. Sin 

embargo, para comprender adecuadamente los perfiles sparse de 

interacción de pcHi-C, es importante contextualizar la perspectiva 

3D que subyace a estas interacciones. En esta tesis, hemos 

desarrollado una herramienta para el modelado y análisis 3D de 

datos sparse derivados de 3C como pcHi-C, y hemos probado su 

utilidad en la comprensión de la arquitectura reguladora de genes 

asociados con una actividad específica del tipo celular o tejido. 
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Preface  
 

The genomic content is encoded in chains of instructions needed for 

the proper proliferation and function of the cell. In Eukaryotes it is 

enclosed inside of the cell nucleus and undergoes various steps of 

compaction and compartmentalisation that ensure its functionality. 

Starting from the DNA double helix, the first step of compaction 

involves the wrapping of the DNA around the histone octamer to 

form the basic unit of the chromatin, the nucleosome complex. 

Nucleosomes can further arrange in groups of variable density, 

conforming fibres that range between 11 and 30 nm width. The 

width of this fibre has an effect on how accessible the chromatin is 

to regulatory proteins associated with promoter and enhancer 

activity, among others. Interestingly, the genome tends to distribute 

in the cell nucleus by aggregation of accessible and non-accessible 

areas into compartments. These compartments, likewise segregate 

at different scales into high-frequency interacting areas, defining 

self-interacting domains or TADs and long-range chromatin loops 

and interactions. 

 

New molecular biology methods based on Chromatin Conformation 

Capture (3C), together with microscopy imaging-based 

technologies, have helped to shed light on the forces driving 

chromatin architecture and dynamics from the whole genome to the 

locus-specific scale. In this way, they have also shed light into the 

genome organisation changes associated with cell disease and 

malfunction. Some 3C-based technologies have focused on the 

analysis of genome-wide interactions involving specific dispersed 

loci in the genome with important functional roles, as promoters in 

the case of promoter capture Hi-C (pcHi-C). However, due to the 

difficulties associated with the analysis of sparse datasets, and the 

novelty of the technology, there are few tools available for the 

analysis of these datasets and none of them takes into account their 

original 3D context. 

 

This thesis is composed of multiple chapters. In the introduction, we 

review the processes driving the genome organisation, and their 

importance for the proper function of the cell. We also review 

methods for the analysis of this architecture by molecular-biology-

based and imaging-based technologies, and different strategies for 

the 3D modelling of the chromatin. The core of the thesis, in 
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chapters 1 and 2 presents the results obtained in the two main 

publications of the candidate, whereas annexe 1 shows an 

application of the developed method orthogonal to the scope of the 

thesis. In chapter 1, we present a chromatin 3D modelling approach, 

focused on the normalisation, 3D modelling, and further analysis of 

sparse 3C-based datasets like pcHi-C. In chapter 2, we show an 

application of the method to analyse enhancer 3D hubs in regions 

containing key regulatory elements associated with type 2 diabetes. 

In annexe 1, we present an application of the method on a dense 3C-

based dataset, specifically in Hi-C, to analyse the differential 

organisation of two loci before and after CTCF depletion. Finally, a 

conclusion is added to highlight the main contributions of this 

thesis.
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Objectives 

 

The main objective of this thesis is to provide a reliable tool for the 

modelling and further analysis of sparse Chromatin Conformation 

Capture (3C)-based datasets. Specifically, we focused on the 

reconstruction and analysis of promoter capture Hi-C (pcHi-C) 

datasets, and subdivided the work into two projects: 

 

1. We developed and tested a tool for the modelling of pcHi-C 

datasets, paying particular attention to the reliability of the 

obtained models and the limitations associated with the 

amount of available data. 

 

• Additionally, we designed new methods for the 

differential organisation analysis of the chromatin. 

 

2. We applied the new tool for the analysis of the chromatin 

organisation in loci associated with the development of type 

2 diabetes. 
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INTRODUCTION 
 

1 DNA structure and organisation 

The cell nucleus encloses, and at the same time protects, the 

instructions booklet for the formation, maintenance, and function of 

eukaryotic life: the DNA. DNA's information is encoded in chains 

of molecules named nucleotides, which are classified into four types 

according to the nitrogenous base that conform them: Cytosine (C), 

Guanine (G), Adenine (A), or Thymine (T). These nitrogenous 

bases are complementary to each other in pairs. Specifically, A is 

complementary to T, and C to G. This allows the covalent joining 

and stabilisation of two polynucleotide chains with a 

complementary sequence, thus containing the same biological 

information, to form a coiling structure named as the DNA double 

helix (Figure 1.1). The redundancy of information facilitates the 

accessibility to the DNA content and ensures the recovery of 

damaged DNA strands by using its complementary template. 

 

Around 1% of the DNA sequence in humans encodes information 

for the transcription and subsequent translation of RNA into 

proteins, which will be actively involved in most of the chemical 

processes of the cell (Bernstein, Birney et al. 2012). At the same 

time, some proteins are involved in regulatory processes by their 

interactions with the non-coding DNA, which represents the 

remaining 99% of the DNA sequence. Non-coding DNA contains 

regions with regulatory function like: i) non-coding RNAs 

(transcribed RNA molecules that although not translated into 

proteins, are involved in many steps of gene regulation, 

transcription, and translation for instance) (Zhang, Wu et al. 2019); 

ii) enhancers (target regions for protein binding that can modulate 

the transcription of a particular gene or set of genes); and iii) 

promoters (protein binding regions associated with the transcription 

initiation of the nearest gene in the DNA sequence) (Zabidi and 

Stark 2016). Since these regions are dispersed through the DNA and 

do not necessarily influence the linearly closest gene, their 3D 

organisation inside of the cell nucleus is crucial for the correct 

function of the genetic machinery. 
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Figure 1. DNA compaction in the nucleus from the double helix to chromatin. 
Schematic representation of the DNA structure and folding in the cell nucleus. (1) 2 
nm wide DNA double helix structure, with the phosphate backbone in green and 
the four nucleotides in green (A), yellow (G), blue (C), and purple (T). (2) The four 
core histones present in the cell nucleus can aggregate together conforming a protein 
complex of a maximum with of 11 nm. Additionally, this complex can interact with 
a fifth histone, the Histone H1. (3) When the DNA helix is wrapped around a 
histone complex it conforms the nucleosome, a protein-DNA complex that 
increases the DNA compaction. (4) Different organisation of the nucleosomes can 
result in a variable degree of compaction of the chromatin, from the 11 nm width of 
a single nucleosome, to the 30 nm width organisation of many nucleosomes. (5) This 
arrangement is variable through the length of the chromosomes, and influences its 
disposition in the nuclear space. Figure adapted from (Pierce 2012). 

 

Hence, DNA folding and unfolding in the cell nucleus must be 

highly efficient. Furthermore, the DNA needs to be accessible to the 

proteins associated with the replication, transcription and various 

regulatory processes of the cell, so it also needs to be extremely 

organised and dynamic. To this end, proteins interplay with the 

DNA at different genomic scale levels (Wani, Boettiger et al. 2016, 

van Steensel and Furlong 2019). At the nucleotide scale, DNA is 

associated with different sets of proteins to form the chromatin 

fibre. Specifically, segments of 145-147 bp of DNA wrap around 
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eight core histones (two copies of H2A, H2B, H3, and H4) (Luger, 

Mader et al. 1997) to form the basic unit of chromatin, the 

nucleosome (Figure 1.2-3). Nucleosomes are connected by free 

DNA strings of variable length named linker DNA, which are 

usually associated with linker histones. Linker histones are a group 

of histones which bind to nucleosomes by interacting with both 

their DNA and protein components. They modify the DNA exit 

angle from the nucleosome and help to neutralise the charge of the 

linker DNA, thereby affecting the level of compaction and 

accessibility of the chromatin fibre (Klemm, Shipony et al. 2019).  

 

2 Structural organisation of the chromatin 

Chromatin is arranged in a variety of conformations that ensure its 

proper compaction levels. The degree of compaction is dependent 

on the density of nucleosomes, which will be low and more 

dynamic on accessible chromatin, and high and stable in closed 

chromatin (Schones, Cui et al. 2008, Deal, Henikoff et al. 2010, 

Ricci, Manzo et al. 2015). Although still under debate, the 

chromatin appears to be organised in irregular nucleosomal 

organisation patterns, resulting in ranges of compaction of the 

chromatin that might vary between 5 and 30 nm, depending on the 

used experimental measure (Finch and Klug 1976, Ou, Phan et al. 

2017, Hsieh, Cattoglio et al. 2020) (Figure 1.4). This variability 

would be suited for the sharp opening or closing of target genomic 

regions by modifying their compaction and thus, accessibility level. 

Interestingly, the percentage of accessible chromatin can be as low 

as the 2-3% of the whole genome in a given cell (Thurman, Rynes et 

al. 2012), covering ranges of non-continuous genomic regions. In 

consequence, chromosomes will show irregular compaction patterns 

that might shape their positioning in the cell nucleus (Figure 1.5). 

 

Nevertheless, the activity and compaction stage of a given genomic 

loci is cell type and stage-dependent (Lieberman-Aiden, van 

Berkum et al. 2009, Ricci, Manzo et al. 2015), thus requiring 

reversible mechanisms to guide the switch. Among them we have 

ATP-driven chromatin remodelling complexes (remodellers) and 

the changes driven by modifications in the N-terminal tails of the 

histones conforming the nucleosome (Figure 2). 
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Figure 2. Mechanisms regulating chromatin compaction. (A) Functional 
classification of chromatin remodellers (remodellers). The classification englobes 
their role in: (i) Chromatin access, by which they modify the accessibility of the 
DNA; (ii) nucleosome assembly, that regulate the spacing of the nucleosomes; and 
(iii) nucleosome editing, that modulate the exchange of nucleosomes with histone 
variants. Figure adapted from (Clapier, Iwasa et al. 2017). (B) Representation of the 
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core histone complex. The four core histones (H3, H2B, H4, and H2A) are 
represented with different colours, and gather in pairs to conform the histone 
octamer. The histone tails of the upper half of the histone octamer are represented 
in grey, with two of the possible N-terminal modifications (methylation and 
acetylation). 

 

Although it is not fully known how remodellers select their target 

nucleosomes, their function has been well characterised over the 

years (Clapier, Iwasa et al. 2017). Specifically, remodellers are 

mainly specialised in one of 3 functions: i) chromatin access, ii) 

nucleosome assembly and organisation, and iii) nucleosome editing 

(Figure 2A). Hence, they promote silencing or expression of 

genomic loci by the packing and unpacking of nucleosomal arrays (i 

and ii) and also by the turnover and exchange of canonical or 

variant histones (iii). By these means, remodellers affect 

nucleosome stability, factor recruitment, and exclusion, having an 

impact on the activity of the involved loci (Clapier, Iwasa et al. 

2017).  

 

Similarly, histone N-terminal tail modifications, like methylation 

and acetylation, add a second level of dynamicity to nucleosomes 

(Figure 2B). Histone methylation, for instance, affects to the 

binding affinity of numerous proteins, specifically by the individual 

or combinatorial methylation of Lysine 4 on histone H3 (H3K4), 

H3K9, and H3K27 (Bartke, Vermeulen et al. 2010). Depending on 

the direction in the affinity change and the proteins involved, some 

histone methylations are generally associated with active or inactive 

stages of the chromatin. For example, on the one hand, histone 

methylations like di/trimethylation of lysine 9 on histone H3 

(H3K9me2/me3) and H3K27me3 are associated with different 

processes of chromatin condensation and hence with inactivity. On 

the other hand, H3K4me1 and H3K4me3, and H3K36me3 are 

associated with an active stage, specifically with the presence of 

enhancer elements, and transcription. Besides, histone acetylation 

marks are also associated with the activation of wrapped DNA locus 

by the loosening of its bound to the histone, specifically in loci 

containing regulatory elements. Altogether, these modifications and 

their combinations have profound effects on the activity sates of the 

chromatin, which result in changes in the chromatin organisation 

itself (Siggens and Ekwall 2014). 
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2.1 Organisation of the chromatin at the megabase 

scale 

 
 

Figure 3. Chromosome positioning in the cell nucleus. Four examples of simplified 
chromosomes are represented in blue, purple, brown, and green. Their associated 
chromosomal territories are displayed in shadows of the same colour, and two of the 
peripheries of the brown chromosome appear highlighted by a dotted line circle. 
 

In the cell nucleus, chromatin is hierarchised at different genomic 

scale levels. At the whole chromosome level, it is evident that 

chromosomes preferentially interact within themselves than 

between each other, leading to the formation of so-called 

chromosomal territories (CT) (Cremer and Cremer 2010). CTs are 

distinct nuclear volumes preferentially occupied by a single 

chromosome (Figure 3). Interestingly, within the nucleus, the CTs 

of long and gene-poor chromosomes tend to be located more 

towards the periphery of the nucleus. In contrast, the CTs of short 

and gene-richer chromosomes usually locate closer to the centre of 

the nucleus.  

The borders between the CTs are characterised by a low density of 

chromatin, which enables the intermingling of loci from different 

chromosomes (Ulianov, Gavrilov et al. 2015), thus facilitating 

inter-chromosomal interactions. Some of these interactions have 

shown to be physiologically relevant and tend to form domains that 

are likewise co-occupied by specific chromosomal regions (Maass, 

Barutcu et al. 2019). Indeed, chromosomal arms can occupy distinct 

chromosomal territories (Dietzel, Jauch et al. 1998), which will 

likely compartmentalise in preferentially interacting regions. This 
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compartmentalisation can result in the observed polar distribution of 

gene-rich areas of the chromosomes towards the nuclear centre and 

of the gene depleted ones towards the periphery (Kupper, Kolbl et 

al. 2007).  

 

Figure 4. Compartments. As we move deeper into the organisation scale of the 
chromatin, the compartment arise. Compartments are megabase scale domains with 
specific activity, segregation, and epigenetic features. In this representation, active 
compartments are displayed in red, whereas inactive compartments appear 
represented in blue. 

Given the resolution and the different types of experimental data 

used, compartments have been classified in groups that range from 

2 to 6 according to different interaction, epigenetic and expression 

patterns (Lieberman-Aiden, van Berkum et al. 2009, Filion, van 

Bemmel et al. 2010, Rao, Huntley et al. 2014, Vilarrasa-Blasi, 

Soler-Vila et al. 2019). The classification usually involves different 

levels of active and inactive states. However, to date, most of the 

research groups divide them into two main categories that define 

mainly active (and open) and mainly inactive (and close) chromatin 

regions. Furthermore, these two categories overlap with the 

previously described euchromatin and heterochromatin (Pueschel, 

Coraggio et al. 2016). On the one hand, the heterochromatin is 

characterised by a higher density of nucleosomes and histone marks 

and variants associated with inactivity stages, resulting in a more 

compacted organisation. It tends to distribute more towards the 

periphery of the cell nucleus and associate with components of the 

nuclear envelope (Schneider and Grosschedl 2007). On the other 
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hand, the euchromatin is more accessible as a consequence of both 

the lower density of nucleosomes and the enrichment in acetylated 

histones (Klemm, Shipony et al. 2019) that characterise active 

chromatin regions. It tends to distribute more towards the centre of 

the cell nucleus, segregating from the heterochromatin. However, 

the genomic boundaries of these compartments are not consistent 

across different cell types, and cells can switch between 30% to 

60% of their compartments as they get differentiated to other cell 

types and tissues (Dixon, Jung et al. 2015, Schmitt, Hu et al. 2016). 

Thus, the compartmentalisation of the chromosomes will be specific 

to the functional activity and stage of the cell (Lieberman-Aiden, 

van Berkum et al. 2009), segregating active and inactive areas, and 

in consequence, defining areas with ranges of active and absence 

transcription.  

2.2 Organisation of the chromatin at the kilobase 

scale 

 
 
Figure 5. Topologically Associating Domains (TADs). As we move deeper into the 
organisation scale of the chromatin, TADs and globular domains appear. TADs are 
linearly contiguous fragments of the genome with a higher tendency to interact 
within each other than between themselves, and are usually represented as the 
globular domain highlighted by the red circle. 

 

As we reduce the scale at which the genomic organisation is 

analysed, we find another layer of self-interacting domains named 

Topologically Associating Domains or TADs. TADs are linearly 

contiguous fragments of the genome with a higher tendency to 

interact within each other than between themselves (Dixon, Selvaraj 
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et al. 2012, Nora, Lajoie et al. 2012). Their borders are statistically 

detectable at the cell population level and not ubiquitously defined 

in individual cells from the same type (Bintu, Mateo et al. 2018). 

Hence, each cell from a population will most likely have globular 

structures whose start and end coordinates partially overlap the ones 

of a TAD (Figure 5). TADs can have a size that ranges from 40 kb 

to 3 Mb (Rao, Huntley et al. 2014) and their definition is influenced 

by the resolution of the experiment and the tool used to detect them. 

This explains the lack of consensus between experiments at the time 

to define the exact borders of the TADs. However, TAD 

boundaries, unlike compartments, are relatively conserved between 

species and tissues. Thus, suggesting that the interactions within the 

regions enclosed inside are functionally more relevant for the 

correct function of the cell than the ones involving other TADs 

(Lieberman-Aiden, van Berkum et al. 2009, Ulianov, Khrameeva et 

al. 2016).  

 

Indeed, the genomic regions delimited inside the same TAD 

generally show similar trends of histone signatures, expression 

levels, and replication timing. Additionally, their boundaries 

overlap with those of replication domains (Pope, Ryba et al. 2014, 

Bouwman and de Laat 2015). They also facilitate cell-type-specific 

enhancer-promoter interactions (Bonev, Mendelson Cohen et al. 

2017) and insulate them from unwanted interactions with elements 

from contiguous TADs (Lupianez, Kraft et al. 2015). However, 

experiments disrupting TAD patterns show different outcomes. 

Sometimes cells can survive without most of the TADs (Nora, 

Goloborodko et al. 2017) or are minorly affected after rearranging 

some of them (Ghavi-Helm, Jankowski et al. 2019), other times 

they lose strength in their response to external stimuli (Stik, Vidal et 

al. 2020), and in others the disruption of specific TADs is enough to 

drive to malfunction (Lupianez, Kraft et al. 2015). Thus, suggesting 

that different factors might be involved in the formation of the TAD 

patterns and that each of them might have a variable degree of 

importance for the function and sensitivity of the cellular processes. 

 

In mammals, TAD borders are characterised by the presence of the 

structural maintenance of chromosome (SMC) complex and the 

CCCTC-binding factor (CTCF) (Szabo, Bantignies et al. 2019) 

(Figure 6). SMC complexes are ring-shaped proteins involved in 

the formation and further enlargement of chromatin loops, among 
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other functions (Sedeno Cacciatore and Rowland 2019). CTCF on 

the other hand, is a zinc finger protein that binds to the genome to 

exert as a transcriptional activator, repressor, or insulator (Kim, Yu 

et al. 2015). Specifically, it binds to non-palindromic consensus 

sequences that are usually found at both of the TAD borders in a 

convergent orientation (de Wit, Vos et al. 2015).  

 

 

 
Figure 6. TADs in detail. As we move deeper into the organisation scale of the 
chromatin, the features characterising globular domains appear with more detail. 
These features are proposed to be the result of a loop extrusion process that is 
driven by the SMC complex. It finishes when the SMC complex collides with two 
CTCF proteins oriented towards the extruding loop. Thus defining the boundary of 
the globular domain. 
 

 

There is increasing evidence suggesting that both SMC complex 

proteins and CTCF are involved in TAD patterns formation. 

Concretely, a mechanism called loop extrusion (Alipour and Marko 

2012) is rapidly earning support in the scientific community. 

According to it, an SMC complex ring would load to the DNA by 

the mediation of the heterodimeric complex NIPBL-MAU2, then 

surround a small chromatin loop, and push it out from both edges 

(or extrude it) until colliding with a convergently oriented CTCF 

protein (Davidson, Bauer et al. 2019). Concordantly TAD patterns 

are generally lost in populations of cells depleted of CTCF or 

cohesin (a protein member of the SMC complex). However, CTCF 

depletion is not sufficient to remove all TADs (Nora, Goloborodko 

et al. 2017, Rao, Huang et al. 2017). This suggests that processes 

related with transcription and promoter-enhancer looping might be 

involved in the formation of the remaining ones. 
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2.3 Organisation of the chromatin at the bp scale 

Chromatin loops are chromatin structures by which two linearly 

distant regions (defined as anchors) converge in the 3D space 

(Figure 7). Loops tend to bring together regulatory and target 

elements (Greenwald, Li et al. 2019) separated by genomic 

distances that range from 40 kb to 3 Mb (median of 185 kb). 

Previous studies comparing human and mouse cell lines have 

shown that loops can be conserved between cell lines (55-75%) and 

species (50%) (Rao, Huntley et al. 2014).  

 

Figure 7. Loops. As we move deeper into the organisation scale of the chromatin, 
loops emerge. Loops, as their name state, are chromatin folding that result from the 
bending of the chromatin to bring two distant loci, usually containing regulatory 
elements like enhancers and promoters, together. This process is usually regulated by 
a structural regulator protein like CTCF, mediator, and Yin Yan 1 (YY1), among 
others. 

Most of the loop anchors present CTCF and the cohesin subunits 

SMC3 and RAD21 (86%, 87%, and 86% of them respectively) 

(Rao, Huntley et al. 2014). However, although loops enclosed by 

CTCF sites can be involved in coordinating the expression of the 

contained genes, CTCF-binding sites are generally far from 

promoters in the human genome (Kim, Abdullaev et al. 2007). This 

disposition suggests that other structural proteins might be involved 

in their direct looping. Indeed, Yin Yan 1 (YY1), a zinc finger 

protein like CTCF, is involved in looping processes that promote 

enhancer-promoter interactions (Weintraub, Li et al. 2017). 

Mediator, a multi-subunit protein complex, has also been found in 

loop anchors connecting enhancers and promoters of actively 
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transcribed genes in a cell-type-specific manner. Mediator 

facilitates transcription by bounding the transcription factors 

attached to the enhancer sequences with the transcription machinery 

assembled at promoters (Kagey, Newman et al. 2010, Soutourina 

2018). 

The correct control on the formation and maintenance of these 

structures is mandatory for the functioning of the cell and aberrant 

loop formation can drive to cancer and diseased processes that are 

related with abnormal enhancer-promoter interactions (Norton and 

Phillips-Cremins 2017). 

 

2.4 Promoters, enhancers, and super-enhancers 
 

Promoters and enhancers are critical players in the regulation of the 

specific subsets of genes needed during cell function, interplay and 

survival. Historically, promoters have been classified both by their 

positioning at 50 bp around the transcription start site of the 

downstream gene and by their role recruiting the RNA Polymerase 

II (Andersson and Sandelin 2020). They also define the preferential 

direction of transcription and are usually characterised by 

H3K4me3 marks. On the other hand, enhancers are classified as 

elements located farther away from their target gene or genes (even 

up to 1Mb) and by their role in modulating target gene expression. 

They usually are characterised by a high H3K4me1 to H3K4me3 

ratio and activity-dependent presence of H3K27ac (Andersson and 

Sandelin 2020). Nevertheless, both promoters and enhancers can 

have different ranges of mixed enhancer and promoter role, and 

similarly occupy nucleosome depleted regions that facilitate the 

access of proteins, like chromatin regulators, to the DNA (Lai and 

Pugh 2017).  

 

Enhancers have also been grouped into additional categories 

according to their arrangement with other enhancers. The term 

super-enhancer for example, generally defines groups of enhancers 

proximally located in the linear genome and highly enriched in the 

occupancy of transcriptional coactivators like Mediator. This 

definition does not involve any functional property for super-

enhancers, and the different classifications criteria associated with 

the group makes their definition a bit loose (Pott and Lieb 2015). 
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Other classifications however, have tried to address this issue by 

adding a functionality level. For example, the term enhancer hub 

includes a spatial dimension and defines enhancer enriched 3D 

domains that have shown to work as functional units (Miguel-

Escalada, Bonas-Guarch et al. 2019). 

 

2.5 Wrap up 

Altogether, it is clear that to maintain proper cellular function and 

avoid diseased stages, enhancer-promoter interactions need to be 

finely regulated. Structural regulators play a crucial role in this 

processes by facilitating their looping interactions and further 

aggregation of sets of these loops into the frequently interacting 

areas defined as TADs (Clapier, Iwasa et al. 2017, Soutourina 

2018, Szabo, Bantignies et al. 2019). TADs can, in the same way, 

arrange together in linearly distant groups by random movement in 

the cell nucleus, homotypic attraction, or activity stage, for instance 

(Fraser, Ferrai et al. 2015, Robson, Ringel et al. 2019). Some of 

them can gather in the same compartment and similarly, active 

compartments show a tendency to colocalise. This intermingling is 

present at all the levels of the chromatin organisation and errors 

altering this arrangement can lead to diseased stages of the cell 

(Maass, Barutcu et al. 2019). Hence, tools for the study of the 

chromatin organisation hold the potential to characterise the 

mechanisms behind specific gene expression and regulation, and so 

the ones that lead to disease and malfunction. 

 

3 Experimental procedures for the analysis of 

chromatin organisation 

The analysis of the organisation of the chromatin is mainly divided 

into two approaches: imaging-based methods and molecular 

biology-based methods. 



 

 14 

3.1 Imaging methods 

 
Figure 8. Simplification of the imaging-based methods approach. Overall, this 
methods involve the observation of the chromatin organisation by different types of 
microscopes. To track the location of specific genomic loci, cells are previously 
treated to introduce an spotter that binds to these specific loci to facilitate a 
fluorescent signal. Spotters can be nucleic sequences like probes or oligos, or protein 
complexes like CRISPR-cas9 for instance. 

 

Imaging methods rely on the usage of different types of microscope 

modalities for the analysis of the chromatin organisation and, as 

such, they are limited by the resolution of the microscope. 

Nevertheless, the achievable resolution ranges from 250 nm with 

light microscopes to 10-30 nm with super-resolution microscopy. 

The majority of the microscope methods designed to investigate 

chromatin are based on fluorescence in situ hybridisation (FISH) 

protocols (Bauman, Wiegant et al. 1980) that rely on the usage of 

labelling probes to track the location of genomic loci and require 

the fixation of the cells prior to the visualisation step. Nevertheless, 

there are alternatives to FISH methods that do not require the DNA 

labelling and fixation steps, like CARGO for example (Gu, Swigut 

et al. 2018). 
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3.1.1 FISH-based methods 
 

FISH-based methods are widely used for the analysis of the 

genomic 3D organisation. FISH is one of the first imaging 

approaches introduced for the 3D location of specific loci. FISH 

uses specifically designed fluorescent DNA probes of few kilobases 

that bind to the genomic DNA by complementarity, pointing the 

nuclear locations in which they attach. The experimental set up was 

initially limited to the introduction of small sets of probes that were 

suited for the detection of long-range interactions (Bauman, 

Wiegant et al. 1980, Bienko, Crosetto et al. 2013). Nevertheless, 

new advances in microscopy and molecular biology methods have 

led to the development of a wide variety of methods aimed for 

resolving different needs (Volpi and Bridger 2008). Cryo-FISH for 

instance, has aimed for a greater accuracy by a step of cryo-

sectioning the cells (in layers of ~100-200 nm). This helps to set 

finer boundaries for the location of the signal (Xie, Lavitas et al. 

2010). Other methods have aimed for the optimisation of the 

process. HIPMap for example, redesigned the protocol in a high 

throughput way. For that, it tags thousands of cells in a 94- or 384-

well plate and images all them at once. It then uses a specific 

bioinformatic tool to place all the cell nuclei and track the relative 

positions of the genes within themselves and the nuclear border 

(Shachar, Pegoraro et al. 2015).  
 

One of these adaptations, Oligopaint (Beliveau, Joyce et al. 2012), 

has done a step forward laying the foundations for a new set of 

techniques. Oligopaint is capable of locating more loci in the 

genome than most of the previous FISH approaches and to even 

trace different ranges of continuous genomic coordinates. It 

involves the bioinformatic design and production of thousands of 

oligos that can reach a density of around 10 per kb. This design in 

conjunction with super-resolution microscopy (OligoSTORM) 

(Beliveau, Boettiger et al. 2017) improved the quality of the data 

obtained from 25 to 100 nm resolutions, but at the same time 

allowed the analysis of regions at the megabase scale.  

Further optimisations adapted the Oligopaints method by sequential 

rounds of labelling and diffraction limited imaging (Wang, Su et al. 

2016). In this way, a set of primary oligos are hybridised to the 
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genomic sequences of interest in order to track them in space. Then, 

a series of steps of photobleaching and hybridisations are used to 

sequentially label and image the loci of interest by the use of 

secondary probes. Specifically, each primary oligo is labelled by 

appending a specific barcode sequence that facilitates the selective 

hybridisation of the secondary oligos. With this method, they were 

able to track the position of tens of TADs from different 

chromosomes. Additionally, the sequential Oligopaints method has 

also been used in conjunction with super-resolution (Bintu, Mateo et 

al. 2018, Nir, Farabella et al. 2018) allowing to sequentially label 

continuous genomic coordinates of the genome with fixed size steps 

of 30 kb (Bintu, Mateo et al. 2018) or variable size steps (10 kb-1.8 

Mb) (Nir, Farabella et al. 2018). Thus, unveiling the folding of 

contiguous regions of the genome at the level of single gene, loops, 

TADs and compartments. Another technique that adapted sequential 

imaging is ORCA that allowed to increase its resolution to 2-10 kb 

and tagging regions from 100 to 700 kb long (Mateo, Murphy et al. 

2019). 

Other flavours of Oligopaints-based microscopy have aimed at the 

joint detection of the positioning and transcriptional activity of loci. 

In this mater, Hi-M simultaneously tracks the 3D position of the 

tagged loci and their transcriptional activity, covering regions of 

400kb at an average resolution of 17 kb (Cardozo Gizzi, Cattoni et 

al. 2019). Other approaches have aimed for the automation of the 

process. Specifically, OligoFISSEQ (Nguyen, Chattoraj et al. 

2020) has taken a massive step towards the high throughput 

imaging and tracing of genomic loci in thousands of cells. It uses a 

combination of fluorescence in situ sequencing (FISSEQ) (Lee, 

Daugharthy et al. 2015), a method for in-situ RNA sequencing, and 

Oligopaints. OligoFISSEQ can be used for characterising multiple 

genomic loci at high resolution or chromosomes at a lower 

resolution. Most recently, DNA-MERFISH (Su, Zheng et al. 2020) 

has also allowed the genome-wide tracking of 1,000 genomic loci 

together with their associated transcripts. Altogether, FISH-based 

techniques are rapidly evolving towards a higher resolution and 

throughput, making it even possible to jointly observe chromatin 3D 

organisation and expression. However, these methods are limited by 

the cell fixation step, which hampers the analysis of the dynamic 

behaviour of the chromatin. 
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3.1.2 Alternative methods 

As an alternative to FISH-based methods, some approaches are 

focused on the usage of DNA-binding proteins that do not require 

previous fixation of the cells. Among them, CRISPR-cas9 system-

based methods are gaining in popularity (Lakadamyali and Cosma 

2020). These methods rely on the prior integration in the genome of 

an endonuclease-deactivated Cas9 protein (dCas9) tagged with an 

enhanced green fluorescent protein. Then the sgRNA that guides the 

attachment of the dCas9 system is introduced in the cell. Since the 

introduction of the specific gRNAs is the limiting factor in these 

experiments, most of them have focused in the detection of regions 

containing sequences of repetitive elements (Chen, Gilbert et al. 

2013). However, further adaptations like CARGO (Gu, Swigut et al. 

2018) have allowed locating non-repetitive genomic sequences of 5 

kb and 2 kb length by improving the delivery of the gRNAs. In this 

way, Gu and colleagues were able to study the dynamic behaviour 

of cis-regulatory elements. 

3.2 Molecular biology methods 
 

Molecular biology methods focus on the retrieval and further 

sequencing of interacting chromatin regions located in the 

proximity of other loci or proteins in the cell nucleus. Most of the 

molecular biology methods have been adapted from chromatin 

conformation capture (3C) technique (Dekker, Rippe et al. 2002). 

3C-based approaches are based in the chromatin cross-linking, 

digestion (either with Restriction Enzymes, sonication of both 

methods), and proximity re-ligation of the loose ends to produce 

chimeric DNA molecules (Figure 9). However, some variations 

avoid this step by different labelling strategies. In both methods, the 

chimeric or barcoded DNA molecules are amplified by PCR, 

sequenced, and mapped to different genomic coordinates relating 

the regions that colocalised in the genome. Then, the genome is 

fragmented into specific length bins depending on both the 

sequencing depth and the length of the digested fragments. Finally, 

the number of times in which two bins coincide in the same 

chimeric read are counted and assigned as frequencies of 

interactions between the involved genomic loci (Kempfer and 
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Pombo 2020). We can further classify these methods by the type of 

information they provide. 

 

 
Figure 9. Simplification of the molecular biology methods. 1) Most of molecular 
biology methods involve the chemical fixation of the chromatin followed by 
digestion with restriction enzymes or sonication. 2) After a set of technique-specific 
steps, fragments can be related, either by proximity ligation or barcoding, as 
colocalising (or interacting) between each other. 3) These technologies provide 
interaction profiles that involve different subsets of genomic regions. Figure adapted 
from (Kempfer and Pombo 2020). 
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3.2.1 One vs one 

Some experiments focus on the interactions involving an already 

known locus (viewpoint) or defined genomic region. 3C for 

example, retrieves interactions involving two previously targeted 

loci (Dekker, Rippe et al. 2002), returning the number of times both 

loci are found together in a population of cells. It produces a one vs 

one interaction profile whose importance can be weighted by 

comparison with a control locus.  

3.2.2 Many vs many 

Chromosome conformation capture carbon copy (5C) (Dostie, 

Richmond et al. 2006) is a tool suited to obtain high resolution 

interacting matrices in a set of continuous loci of interest. 5C 

focuses on the retrieval of interactions within a contiguous genomic 

region of interest, by capturing all or most of the chromatin 

fragments located inside. Thus, it is classified as a many vs many 

approach. Its resolution is dependent on the size of the produced 

restriction fragments inside of the focus regions, and on 

experimental limitations that come with the requirement of 

capturing all of them.  

3.2.3 One vs all 

The scope of one vs one experiments can be increased by looking at 

all the interactions involving a viewpoint. In this way, circular 

chromosome conformation capture (4C) provides a one vs all 

picture, in which we can track how frequently a locus of interest 

interacts with the rest of the genome at resolutions of few kilobases 

(Simonis, Klous et al. 2006, van de Werken, de Vree et al. 2012). 

The 4C approach has been enhanced to retrieve interactions 

between groups of 3 or more genomic loci. Tri-C (Oudelaar, 

Davies et al. 2018) for example, has reduced the size of the digested 

fragments to fit more of them in the strand length optimal for 

Illumina sequencing. On the other hand, multi-contact 4C (MC-4C) 

(Allahyar, Vermeulen et al. 2018, Vermeulen, Allahyar et al. 2020) 

has taken advantage of long-read sequencing to increase the length 

of the sequenced chimeric reads in a way that can retrieve 

interactions between groups of 3 or more genomic loci. Both 
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technologies reach resolutions of few kilobases and can be treated 

to obtain matrices of pairwise interactions enriched around the 

viewpoint.  

3.2.4 All vs all  

Some experiments, classified as all vs all approaches, have been 

designed for the detection of unbiased whole-genome interactions. 

From these methods, Hi-C (Lieberman-Aiden, van Berkum et al. 

2009, Rao, Huntley et al. 2014) is the most popular one. The Hi-C 

protocol relies on the labelling with biotin of the loose ends of the 

digested DNA fragments. This labelling allows the later retrieval 

and enrichment of the fragments that were re-ligated (and thus still 

hold the biotin label) by using streptavidin beads. Some of the 

adaptations of Hi-C, like single-cell Hi-C (Nagano, Lubling et al. 

2015) and single-cell combinatorial indexed Hi-C (sciHi-C) 

(Ramani, Deng et al. 2020), have allowed moving from the 

population-based interaction data to the single-cell interaction data. 

Hence, addressing the subset of interactions that are present at once 

in a single cell, either by isolation of single cells or tagging with 

unique barcodes, respectively.  

Other methods, though, have focused on the retrieval of interactions 

at a higher resolution, like micro-C (Hsieh, Weiner et al. 2015, 

Hsieh, Fudenberg et al. 2016). Micro-C uses a micrococcal 

nuclease, instead of sonication or restriction enzymes, to achieve 

single nucleosome resolution (~200 bp). Methods like split-pool 

recognition of interactions by tag extension (SPRITE) (Quinodoz, 

Ollikainen et al. 2018), have removed the proximity ligation of the 

digested loose ends, and instead rely in series of steps of dilution, 

tagging and, mixing. This process promotes the equal barcoding of 

the chromatin complexes that are maintained together through all 

the process, giving information of multiple interacting regions at 

few kilobases resolution. Further adaptations have allowed setting 

this method also to track interactions involving RNA (RD-

SPRITE) (Quinodoz, Bhat et al. 2020) and single cells 

(scSPRITE) (Arrastia, Jachowicz et al. 2020).  

Lastly, genome architecture mapping (GAM) (Beagrie, Scialdone 

et al. 2017, Beagrie, Thieme et al. 2020) also avoids the re-ligation 
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step at the time to get the co-localisation between genomic areas. 

Instead, GAM sections cells in 220 nm thin layers to separate more 

easily in space the interactions found on each of them. Then it relies 

on a mathematical model named SLICE to assess the degree of co-

localisation of the different genomic regions at tens of kilobases 

resolution. 

3.2.5 Many vs all 
 

The last type of 3C-based experiments retrieve interactions 

involving dispersed loci with the rest of the genome, returning 

profiles defined as many vs all. Capture-C (Hughes, Roberts et al. 

2014), Capture Hi-C (CHi-C) (Mifsud, Tavares-Cadete et al. 2015), 

and Promoter Capture Hi-C (PCHi-C) (Schoenfelder, Javierre et al. 

2018), for example, use biotinylated RNA probes to pull-down 

interactions involving a set of viewpoints of interest, which can be 

as many as of thousands of them. These experiments are enriched 

for the interactions involving the loci of interest. In this way, they 

reduce costs in the sequencing of interactions that are not initially in 

the scope of the designed experiment and reach resolutions of few 

kilobases.  

 

On the other hand, methods like HiChIP (Mumbach, Rubin et al. 

2016) and Proximity Ligation-Assisted ChIP-seq (PLAC-seq) 

(Fang, Yu et al. 2016) are designed for the retrieval of interactions 

involving a protein of interest. These methods use ChIP to retrieve 

the re-ligated chromatin complexes where the protein of interest is 

present. Interestingly, CRISPR based technologies are also finding 

their way in molecular biology methods for the analysis of the 

chromatin. For example, CRISPR affinity purification in situ of 

regulatory elements (CAPTURE) (Liu, Zhang et al. 2017) retrieves 

interactions involving a set of locus of interest. Concretely, it uses a 

biotinylated engineered dCas9 which allows the recovery of protein, 

RNA, and DNA complexes associated with the target locus. This 

process relies on previously designed sgRNAs that will load into the 

dCas9 and target it to a specific locus or repetitive DNA sequences. 

 

As can be seen, molecular biology methods are quite diverse, what 

is not surprising given that they do not require any specific 

machinery or installations apart from the ones usually found in a 
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standard laboratory. This situation promotes the usage and 

evolution of the technology together with the improvement of the 

data retrieval, which lately has shown to significantly agree with 

observations measured by imaging (Bintu, Mateo et al. 2018, Nir, 

Farabella et al. 2018, Cardozo Gizzi, Cattoni et al. 2019).  

 

4 Analysis of molecular-biology-based chromatin 

organisation experiments 

As all experimental techniques, molecular biology methods for the 

detection of the chromatin structure are not exempt from 

experimental biases. Furthermore, the fast evolution of the field is 

resulting in the development of more ambitious approaches, that 

sometimes need specialised tools for the contextualisation, filtering 

and normalisation of the data. For this reason, many of the new 

molecular biology methods for chromatin architecture come 

accompanied by a well-defined set of instructions or a specific 

bioinformatic tool for the treatment and normalisation of the 

experimental results. With these tools, they try to remove most of 

the biases of the experiments in an effort to make the obtained 

information as reliable as possible. SPRITE, 4C, and Tri-C are 

examples of techniques that provided an innovative way to 

normalise their data at the time of the release. The authors of GAM 

and MC-4C, on the other hand, went a step further and designed a 

specific bioinformatic tool for the treatment and further analysis of 

their datasets. 

 

Meanwhile, some tools have become popular enough to see the 

release of different normalisation and treatment approaches 

developed by different groups. Hi-C and its adaptations, for 

instance, have a long list of alternatives regarding the filtering and 

normalisation of the data. Each of them has its own approach for the 

normalisation step and try to remove biases specific for different 

data sources. To name some, ICE (Imakaev, Fudenberg et al. 2012), 

HiCNorm (Hu, Deng et al. 2012), HiC-Pro (Servant, Varoquaux et 

al. 2015), HiCUP (Wingett, Ewels et al. 2015), Juicer (Durand, 

Shamim et al. 2016), and OneD (Vidal, le Dily et al. 2018) are some 

of the most common tools and approaches. Promoter Capture 

protocols have also seen the rise of some tools for the treatment and 
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detection of significant interactions in the datasets. Examples of 

these tools are CHiCAGO (Cairns, Freire-Pritchett et al. 2016) and 

ChiCMaxima (Ben Zouari, Molitor et al. 2019). Other tools have 

focused in the differential analysis between datasets, like diffHic 

(Lun and Smyth 2015), FIND (Djekidel, Chen et al. 2018), and 

Selfish (Ardakany, Ay et al. 2019) for HiC, and Chicdiff (Cairns, 

Orchard et al. 2019) for capture Hi-C. 

 

5 Bioinformatic methods for the 3D representation 

and analysis of chromatin structure 

The major issue of working with chromatin interaction data is the 

loss of the 3D perspective. This loss makes it difficult to 

contextualise the interaction profiles in the original 3D organisation 

of the chromatin. In this mater, tools for the chromatin 3D 

modelling emerge as an essential instrument, for both the 

contextualisation and further analysis of the genome architecture. 

Chromatin 3D models have a double function. The first one is to 

help in the 3D visualisation behind the interaction profiles, which 

can help researchers to better interpret their data. The second one is 

the inclusion of the data in the third dimension, which allows 

analysing the genome in the context of its distribution in space. 

Most modelling approaches subdivide the genome in chunks by 

some underlying features or a defined genomic length. Then each 

chunk is represented by connected points or spheres, although some 

methods go a step further and model them as elements composing a 

polymer (Oluwadare, Highsmith et al. 2019). These particles are 

then constrained by a series of parameters or physics rules that will 

define how they fold and interact with the rest of the particles of the 

model and the simulated environment.  

 

Chromatin 3D models can be divided into two categories by the 

input data used. Ab initio models use as input statistical physics and 

features that shape the behaviour of the simulated chromatin. On the 

other hand, data-driven models are focused on the treatment and 

transformation of experimental data to reliably reconstruct its 3D 

organisation. In this way, Ab initio models will aim at the 

understanding of the processes shaping genome folding, while data-

driven models will have as focus the more refined analysis of the 
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represented chromatin (Marti-Renom and Mirny 2011, Lin, Bonora 

et al. 2019, Bendandi, Dante et al. 2020) 

 

5.1 Ab initio modelling  

 

Figure 10. Ab initio modelling workflow. The forces driving chromatin organization 
are inquired by testing the hypotheses or accepted truths involving specific and well-
defined physical properties of the modelled environment. These hypotheses might 
focus on different genomic scales, from the nucleosome level to the loops, TADs or 
the whole genome level. Once the model is obtained, experimental data is used to 
test how well do the imposed rules explain the ground truth.  

Ab initio chromatin models (Figure 10) aim to reproduce and 

understand specific features of the chromatin by applying a 

conjunction of already known, and sometimes also hypothesised, 

properties of the elements that conform the chromatin. These 

methods have a broad scope and can aim from the analysis of the 
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organisation of the DNA at the nucleosome level to the study of the 

chromatin organisation at the level of TADs, chromosomes, and the 

whole genome (Bendandi, Dante et al. 2020). Methods that are 

more specific to the analysis of the DNA at the nucleosome level 

focus in the understanding of forces related with the bending angle 

of the nucleosomes (Koslover, Fuller et al. 2010), the presence of 

the linker histone (Pachov, Gabdoulline et al. 2011), and the 

molecular mechanic force fields associated to nucleotides 

(Cheatham and Case 2013) among others. The bigger it is the scope 

of these models, the more elements it will have to take into account 

for the modelling step, until reaching a scale that is not 

computationally feasible with such a level of the detail. For this 

reason, models aiming to analyse large chromatin regions often 

simplify the structure and biological factors involved at the small 

scales, like single atomic or nucleosome dispositions, that are not 

the focus of those experiments. 

Models aiming to analyse large chromosomic regions use properties 

inferred from experimental observations to represent the chromatin 

fibre. Usually, the chromatin fibre is modelled assuming a 30 nm 

packing conformation (Finch and Klug 1976) and the behaviour of 

the bead-spring polymer models (Kremer and Grest 1990, Rosa and 

Everaers 2008). Polymers, as chromatin, are large macromolecules 

composed of chains of repetitive subunits. This organisation 

together with the added mass of the macromolecule results in 

specific, and extensively studied, physical properties regarding their 

toughness, elasticity, and behaviour. Hence, the genome can be 

treated as a polymer in which each subunit represents a genomic 

chunk with well-defined start and end coordinates (Lin, Bonora et 

al. 2019). At the chromatin organisation scale, polymer folding can 

be modelled as a fractal globule (Grosberg, Nechaev et al. 1988) 

and as an equilibrium globule (Mirny 2011) for instance. Indeed, the 

fractal globule organisation was proposed based on the first 

genome-wide chromosome interaction maps (Lieberman-Aiden, van 

Berkum et al. 2009). This organisation is the consequence of a 

condensation event in which regions of the polymer chain are 

prevented from passing across each other, resulting in a 

configuration that can be rapidly unfolded and refolded. This 

configuration change would promote the accessibility of specific 

regions of the polymer as it happens in the nuclear chromatin during 
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transcriptional activation events that promote the accessibility of the 

DNA.  

Methods following these approaches have helped to proof that loop 

extrusion processes could be sufficient to drive chromatin 

compaction (Goloborodko, Marko et al. 2016) and form 

chromosomal domains (Fudenberg, Imakaev et al. 2016), and that 

coregulated genes could colocalise in the nuclear space shaping 

chromatin organisation (Di Stefano, Rosa et al. 2013). Similarly, 

these methods can also be useful in the analysis of specific loci. In 

fact, a genome folding strategy based on the bridging between 

inferred binding sites has already been used to recover most of the 

structural organisation of specific loci (Chiariello, Annunziatella et 

al. 2016, Chiariello, Bianco et al. 2020).  

5.2 Data-driven modelling  
 

Data-driven modelling (Figure 11) aims to represent the chromatin 

organisation in a way in which its 3D folding can be contextualised, 

allowing further analysis based on the spatial conformation of the 

modelled regions and their relative distances. To do so, these 

methods usually represent the genome as a concatenation of points 

or spheres that subdivide the genome in chunks. The resolution of 

the experiment and the computational workload are the limiting 

factors at the time to define the length of the chromatin fibre 

represented in these chunks. For this reason, models aiming to 

analyse the chromatin organisation of long genomic coordinates, 

like the whole human genome, usually have low resolutions of 

about a megabase. On the other hand, models focused on the sharp 

analysis of previously selected regions of interest typically have 

resolutions of around few kilobases, that are closer to the limit 

defined by the experiment (Serra, Di Stefano et al. 2015).  

 

Once the representation is set, most data-driven models need a way 

to score the input interaction data. In this way, they can infer how 

well do the output 3D distances between the model particles 

represent the input interaction data. These scoring functions are 

mainly designed by taking into account restraints inferred from the: 

interaction data, additional experimental observations, and physic 

properties of the chromatin (Serra, Di Stefano et al. 2015). The 
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restraints inferred from interaction data usually follow an inverse 

relationship with the interaction frequency and are modified by an 

exponent parameter. Additional experimental restraints can include 

information about the nuclear dimensions and the distribution of 

specific chromatin structures on it, among others. Lastly, physics-

based restraints usually take into account the connectivity of the 

polymer, the overlapping degree between particles, and the bending 

rigidity between consecutive particles (Serra, Di Stefano et al. 

2015). 

 

 
Figure 11. Data driven modelling workflow. 3C-based interaction data, and 
sometimes other sources of chromatin organisation data, are used to restrain in 
space the modelled system. These systems are usually represented as a chain of 
points or spheres, or as a polymer. Then, the inferred restraints are applied and 
scored in order to select the model (consensus modelling) or ensemble of models 
(ensemble-based modelling) that best represent the input data. 



 

 28 

Finally, the conformation or conformations that best satisfy the 

imposed restraints, and hence also show the lowest scoring 

function, are sampled. In this matter, most of the data-driven 

modelling methods can be broadly characterised by their output into 

two groups; consensus-based modelling and ensemble-based 

modelling (Lin, Bonora et al. 2019). Consensus-based models 

analytically identify a single 3D conformation returning a consensus 

structure that best explains the input interaction data. On the other 

hand, ensemble-based models comprise many conformations that 

try to account for the variability of the 3C-based datasets. 

 

5.2.1 Consensus-based modelling 
 

Consensus-based modelling methods focus on the modelling of a 

unique 3D conformation that fits most of the restraints inferred from 

the input data. These methods have been applied mainly to Hi-C 

datasets, and they just need to reconstruct one model per dataset, 

which reduces a lot the computational time.  

 

miniMDS (Rieber and Mahony 2017) for example, uses a 

multidimensional scaling (MDS) algorithm to transform the input 

interaction matrix into a distance matrix. It combines modelling at 

three resolution levels that decrease from local to chromosomal 

structures in order to reconstruct the whole genome with a 

minimum amount of time and computational costs. In this way, the 

method first divides the genome into a set of partitions. It then 

transforms the interaction matrices of each partition into distance 

matrices by applying an exponent of -0.25 to non-zero values. 

These partitions are finally modelled independently and arranged 

together by using as a guide a lower resolution reconstruction of the 

whole set. MDS performed better than previously available 

methods, showing correlations with the input data close to 0.7 in 

particles smaller than 10,000 loci, and of around 0.5 in bigger ones.  

 

Some methods like GEM-FISH (Abbas, He et al. 2019) try to 

obtain more reliable models by combining distance measures from 

FISH with Hi-C interaction data. Concretely, GEM-FISH first 

simulates the chromatin organisation at TAD resolution by 

optimising a cost function that weights the Hi-C and FISH data, and 

by applying polymer physical properties. Then, it reconstructs the 



 

 29 

individual TADs separately by a similar cost function, that uses Hi-

C data and the radius of gyration estimated by FISH. Finally, both 

models are combined by integrating the TADs models centred in the 

TAD-level resolution models. This process is optimised by gradient 

descent and aims at reducing the calculated cost functions in order 

to find the best possible conformation of the model. With this 

approach, Abbas and colleagues showed that a combination of 

different experimental interaction and distance data could be 

beneficial to improve the accuracy of chromatin 3D models. 

 

Other methods like MDSGA (Kapilevich, Seno et al. 2019) work 

with a combination of graph shortest path algorithms, genetic 

algorithms, and MDS. Specifically, MDSGA converts the input 

interaction matrices into distance matrices (known distances) and 

uses a shortest path algorithm to calculate missing long-range 

distance data (calculated distances). Then a population of distance 

matrices are created by modifying the calculated distances based on 

a defined distribution, and a series of steps of model scoring, 

merging and mutation (by a genetic algorithm) are applied to obtain 

the final distance matrix. This matrix will be the one in which the 

known distances are more similar to the ones calculated from the 

input data.  

 

These three examples are just a few from the many available 

methods (Oluwadare, Highsmith et al. 2019) and have shown to be 

useful to model whole-genome structures. However, it is important 

to note that since most of these methods use population-based 

interaction data as input, they assume that a single conformation can 

explain the 3D organisation of the chromatin in the population. In 

contrast, the experimental data suggest that this not right at the long 

nor the short genomic scale level (Nagano, Lubling et al. 2013, 

Bintu, Mateo et al. 2018, Nir, Farabella et al. 2018). 

 

5.2.2 Ensemble-based modelling 

Ensemble-based modelling focuses on the modelling of an 

ensemble of 3D structures in an attempt to reproduce the structural 

variability found in a population of cells. These methods have also 

been applied primarily in Hi-C datasets. However, since the 

modelling step can be quite CPU intensive, most of them focus on 
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the detailed analysis of specific regions or chromosomes of interest, 

with some exceptions. The followed approaches diverge depending 

on the method and its initial focus.  

TADbit (Serra, Bau et al. 2017) for example, using only Hi-C data 

as input was able to reconstruct models with enough detail (at the 

kilobase scale) to detect distinct 3D organisations associated with 

previously defined specific epigenetic states (Filion, van Bemmel et 

al. 2010). TADbit serves of the Integrative Modeling Platform 

(IMP) (Russel, Lasker et al. 2012) for the application of spatial 

restraints to a 3D model of the chromatin. For that, Serra and 

colleagues first normalised the input interaction data and treated it 

by applying a log10 and a Z-score transformation. Then, they 

represented the chromatin as a chain of particles with a diameter 

defined by the resolution of the data. Once all set, they used a 

combination of parameters to transform the Z-scores of non-

consecutive particles into three types of restraints that aimed at 

placing each pair of particles into a range of allowed distances 

while consecutive particles were spatially restrained by their 

occupancy. Finally, the restraints were applied starting from 

randomly distributed particles and fitted by a series of rounds of 

Monte Carlo combined with standard simulated annealing. The 

output of this process is an ensemble of models that best fit the 

input restraints and minimise the defined scoring function for the 

given parameter combinations. These ensembles are subsequently 

compared with the input interaction matrix, and the parameters are 

optimised to best match the input data.  

Hierarchical3DGenome (Trieu, Oluwadare et al. 2019), is one of 

the few ensemble-based modelling methods which aims at high-

resolution whole-genome reconstructions, reaching the 5 kb 

resolution. For this, they split the genome into domains by the 

arrowhead domain algorithm (Rao, Huntley et al. 2014), 

reconstructing at low resolution the relative position between large 

scale domains, and then increasing the resolution to resolve the 

organisation within the domains. In more detail, they first normalise 

the individual domains interaction data at 5 kb resolution with KR 

method (Knight and Ruiz 2012), and the entire chromosome 

interaction data at domain resolution with ICE (Imakaev, 

Fudenberg et al. 2012). Then they convert the normalised 

interaction frequencies into spatial distances by a specific function. 
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These distances are used to reconstruct both resolution matrices 

with LorDG (Trieu and Cheng 2017). After scaling of the domain 

resolution models, the method places the centres of mass of the 

high-resolution models in their corresponding locations. Finally, 

further optimisation steps are used to fit the inter-domain distances. 

This process achieves high correlations with the input data.  

As a completely different approach, Genomic organisation 

reconstructor based on conformational Energy and Manifold 

learning (GEM) (Zhu, Deng et al. 2018), instead of transforming 

interaction frequencies into restraints, embeds neighbouring 

affinities from the interactions into a 3D Euclidean space. To do so, 

it first uses normalised interaction frequencies as edges to build an 

interaction network connecting the different genomic bins (nodes) 

with interaction data. The edges are further optimised by 

minimising the conformational energy and the Kullback-Leibler 

(Kullback and Leibler 1951) divergence between the inferred 3D 

Euclidean space and the Hi-C data. This optimisation first retrieves 

an average conformation of the modelled chromatin, and after a 

multi-conformation optimisation gives rise to an ensemble of 

conformations. In this way they have modelled the human 

chromosome 14 at a 1 MB resolution, obtaining a correlation above 

0.9 with the original Hi-C data, and concordance with distances 

measured by FISH. Furthermore, the method allows the inference of 

a latent function between the input Hi-C and the output distance 

data, which is useful to compute the interaction frequency values 

not present in the input interaction data. 

 

The previous methods mainly focus on the modelling of dense 

interaction matrices, where most of the possible interactions have 

frequency data. However, experiments like 4C, single-cell Hi-C, 

pcHi-C, or HiChIP result in sparse interaction matrices missing 

most of the possible interactions within the surrounding loci. Hence, 

to recover the 3D organisation of the defined region, their data has 

to be treated and modelled in a specific way. In this matter, the 

number of available methods decreases a lot.  

Among these methods, single-cell Hi-C is the one with more 

alternatives. As an example, Single-cell lattice (SCL) (Zhu and 
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Wang 2019) is used to build models of whole chromosomes. In 

SCL, interactions are binarised by presence or absence of 

interaction data, and the resulting matrix is transformed into a 

propensity contact matrix. Specifically, a Gaussian function is used 

to estimate the propensity of contacts between loci with no 

interaction data by their linear proximity to other loci with 

interaction data. Then, the modelling process represents 

chromosomes as chains of beads with a size proportional to the 

resolution of the experiment, and places them in cubic cells inside 

of a 3D cubic lattice. While the modelling process tries to satisfy 

the restraints from the propensity contact matrix, particles are only 

allowed to move to their neighbouring cell in each step, reducing 

the available coordinates in the space, limiting particles movement 

range, and hence, saving computational time. The final 

conformation is obtained following an optimisation by simulated 

annealing to minimise the loss function. With this method, they 

managed to get twice as correlation with the original data than a 

previously developed approach.  

On the other hand, 4Cin (Irastorza-Azcarate, Acemel et al. 2018) is 

one of the few methods focused on modelling of sparse capture 3C-

based datasets. It uses an approach similar to TADbit but has been 

optimised to use as input a conjunction of 4C-seq datasets that are 

treated and combined to obtain sparse interaction matrices. 

Specifically, the read counts of a minimum of four 4C-seq datasets 

per modelled region are scaled to the experiment with the biggest 

number of read counts. Then, interaction data is binned to the size 

of the produced 4C-seq DNA fragments, transformed into log10, and 

into Z-scores as in TADbit. The chromatin is then represented as a 

string of beads with a size proportional to the binned DNA 

segments lengths. Once all set, a combination of parameters are 

used to define a viewpoint-specific reach window, in which 

harmonic distance restraints are applied proportionally to the 

absolute Z-score values. Outside the reach-window, particles are 

restrained with harmonic Lower-bound restraints. Jointly, harmonic 

upper-bound distances are used to restraint consecutive particles. As 

in TADbit, these restraints are applied starting from randomly 

distributed particles and fitted by a series of rounds of Monte Carlo 

combined with standard simulated annealing. The output of this 

process is an ensemble of models that best fit the input restraints 

and minimise the defined scoring function. These ensembles of 
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models can be used to compute a virtual Hi-C interaction matrix 

from it, and the method has proved to be accurate enough to detect 

TAD pattern modifications driven by a mutation.  

 

Overall, this picture shows that modelling strategies have focused 

their attention on technologies like Hi-C, which have been wildly 

used in the last decade. However, the increase in the usage of other 

chromatin interaction technologies, like 4C-seq, pcHi-C or HiChIP, 

that produce sparse interaction datasets requires a step forward for 

the design of methods suited for them. 
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CHAPTER 1 
 
3D reconstruction of genomic regions from sparse interaction 

data 
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ABSTRACT 

 

Chromosome Conformation Capture (3C) technologies measure the 

interaction frequency between pairs of chromatin regions within the 

nucleus in a cell or a population of cells. Some of these 3C 

technologies retrieve interactions involving non-contiguous sets of 

loci, resulting in sparse interaction matrices. One of such 3C 

technologies is Promoter Capture Hi-C (pcHi-C) that is tailored to 

probe only interactions involving gene promoters. As such, pcHi-C 

provides sparse interaction matrices that are suitable to characterise 

short- and long-range enhancer-promoter interactions. Here, we 

introduce a new method to reconstruct the chromatin structural (3D) 

organisation from sparse 3C-based datasets such as pcHi-C. Our 

method allows for data normalisation, detection of significant 

interactions, and reconstruction of the full 3D organisation of the 

genomic region despite of the data sparseness. Specifically, it 

produces reliable reconstructions, in line with the ones obtained 

from dense interaction matrices, with as low as the 2-3% of the data 

from the matrix. Furthermore, the method is sensitive enough to 

detect cell-type-specific 3D organisational features such as the 

formation of different networks of active gene communities. 
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INTRODUCTION 

 

Chromatin within the nucleus is organised into higher order 

structures that emerge at different genomic scales, from 

chromosome territories (at tens of megabases scale), active and 

inactive chromatin domains (at few megabases scale) [1], self-

interacting domains or TADs (at hundreds of kilobases scale) [2-4], 

and long-range chromatin loops between regulatory elements (at 

tens of kilobases scale). This multi-scale organization has a direct 

impact on many biological processes such as gene regulation, DNA 

replication, and cell differentiation [5-7]. Indeed, genome structure 

typically reflects cell-type-specific differences in the transcription 

pattern, and it is frequently rewired upon cell state changes and 

disease onset [8]. Thus, investigating the principles shaping 

chromosome three-dimensional (3D) structure is pivotal to shed 

light into the relationship between genome structure and function. 

 

Several experimental techniques are available to examine chromatin 

organisation [9]. Among them, molecular biology methods such as 

Chromatin Conformation Capture (3C) and its derivatives are 

widely used [10]. These experiments retrieve information about the 

frequency of interaction between loci in single [11-13] or in 

populations of thousands to millions of cells and have been 

designed to analyse the chromatin landscape at different genomic 

scales [1, 14-16]. For example, some cell population-based 

experiments allow the retrieval of unspecified interactions in the 

whole genome (e.g., Hi-C [1], Micro-C [14], GAM [15], and 

SPRITE [16]). Complementarily, other 3C-based experiments are 

tailored to capture interactions centred on a specific locus with the 

rest of the genome (e.g., 4C [17] and multi-contact 4C (MC-4C) 

[18]) or on sets of dispersed loci in the genome, such as loci 

enriched for a specific protein (HiChIP) [19] or loci harbouring 

gene promoters (pcHi-C) [20]. Each class of 3C-based experiments 

provide different but complementary insights on particular aspects 

of the genome organization, and their analysis is dependent on the 

experimental genomic resolution and on the inherent technical 

biases of each experimental procedures. 

 

A variety of physics- and data-driven approaches for genome 3D 

reconstruction have been developed to expose the principles 

shaping chromosome 3D structure [21-24]. For instance, data-
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driven (restraint-based) modelling approaches as PSG [25, 26], 

TADbit [27], 4Cin [28], and TADdyn [29] have been implemented 

to reconstruct ensembles of chromatin 3D models from cell 

population-based datasets. Others are focused on the 3D modelling 

of chromatin based on single-cell Hi-C data, like manifold based 

optimization [30] and NucDynamics [31]. However, the majority of 

the data-driven methods are based on interaction experiments that 

have been designed to retrieve dense contact information from a 

continuous set of loci or the whole genome, while other interaction 

experiments are characterised by data sparseness (e.g., HiChIP or 

pcHi-C). As such, data-driven methods for sparse data modelling 

are needed.  

 

Generally, the interaction profiles of sparse 3C-based datasets have 

specific properties that set them apart from other 3C-like techniques 

characterised by a dense interaction profile. Indeed, protein or 

promoter capture-based interaction profiles are heavily biased on 

interactions between captured fragments and devoid of interactions 

between non-captured fragments. This fact poses the question of 

whether this lack of information prevents the 3D reconstruction of 

the whole loci of interest and its analysis, or whether it is sufficient 

to allow for accurate 3D modelling. To answer this question, we 

have implemented a new method, which is tailored to integrative 

modelling and analysis of sparse 3C-based datasets. We have also 

validated the procedure comparing the resulting reconstructed 

models with available dense experimental datasets, unveiling that 

the 3D chromatin organisation can be well recovered by 

interrogating only a small percentage of loci. Additionally, we have 

designed new tools to facilitate a robust differential analysis of the 

resulting models and showcased their usability in comparative 

analyses using the β-globin locus as a test case. Interestingly, 

comparing different cell-types, we unveiled that the β-globin locus 

in cord-blood Erythroblasts (cb-Ery), where its foetal and adult β-

globin genes are highly expressed, is hierarchically organised in a 

3D network of active gene communities that follows an expression 

gradient. 
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RESULTS 

 

Overall modelling strategy for sparse 3C data 

Sparse 3C datasets provide information of interactions that involve 

a limited number of specific loci in the genome. pcHi-C, for 

example, provides a promoter-centred view of chromatin 

interactions, helping to assign distal regulatory regions to their 

target genes, thus providing insights on how gene expression might 

be controlled [32-34] and how disease-associated genomic variation 

could affect gene regulation [35]. The main limitation of these 

sparse technologies, however, is the scarcity of specialized tools for 

their analysis. Here we have developed an integrative 3D modelling 

method capable of dealing with data sparsity, enabling the analysis 

and interpretation of pcHi-C data, and tested it on 12 distinct loci 

(Benchmarking datasets; Methods and Supplementary Table 1). 

Our method follows an integrative modelling procedure comprising 

five steps [36]: (i) gather experimental data and process them to 

obtain the input interaction matrix for the modelling approach, (ii) 

represent the selected chromatin regions using a bead-spring 

polymer model with a particle size proportional to the genomic 

resolution of the experimental data, (iii) transform the frequency of 

interactions into spatial retrains, (iv) sample the conformational 

space by steered molecular dynamics, and (v) analyse and validate 

the obtained ensemble of 3D models (Methods and Figure 1A).  
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Figure 1. Integrative modelling for sparse datasets efficiently reconstructs the 
3D organisation of genomic loci. (A) Workflow of the integrative modelling 
approach followed to build ensembles of chromatin 3D models from pcHi-C: i) 
gathering the input interaction matrices with subsequent normalisation and filtering; 
ii) representation of the chromatin fibre as a polymer with the particle size 
proportional to the resolution of the experiment; iii) definition of the scoring 
function used in the modelling procedure. Here, the scoring function comprises 
spatial restraints derived directly from the input interaction data and from properties 
of the chromatin fibre (Method); iv) sampling the conformational space by steered 
molecular dynamics (Method); and v) validation of the obtained ensemble of 
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models and further analysis. Model images in all panels were created with Chimera 
[73]. (B) Representation of the input and output data from region 2 
(Supplementary table 1). The upper half of the panel refer to the dense dataset (Hi-
C), whereas the lower half refer to the sparse-datasets (pcHi-C). From left to right, 
the matrices of normalised interaction frequency (Methods) between each pair of 
bins, the contact matrix obtained from the ensemble of models of region 2 displays 
the percentage of models in which two bins are found bellow the defined distance 
cut-off for the contact (Methods), and the best model from the ensemble as 
assesses by the scoring function. The colour bar shows the colour coding from low 
(blue) to high (yellow) interaction or contact frequencies signal. (C) Comparison 
between models ensembles derived from sparse (pcHi-Cvirt and pcHi-C in grey and 
blue, respectively) and dense (Hi-C) datasets assessed by the particle-to-particle 
median distance correlation (ppMdC; Methods). Three subsets of particles have 
been compared given the enclosed loci: (i) captured loci (capture), (ii) non-captured 
loci (other), and (iii) all the loci (all). The grey dashed line indicates the median 
ppMdC in the 12 analysed regions. (D) Element-wise Spearman correlation 
coefficients between the experimental Hi-C interaction matrices and the contact 
maps derived from the model ensembles reconstructed from sparse data (pcHi-Cvirt 
and pcHi-C in grey and blue, respectively). The grey dashed line indicates the median 
element-wise Spearman correlation coefficients in the 12 regions analysed. 

 

 

In this work, we gathered pcHi-C interaction data (Methods), 

whose processing step is pivotal to minimize the experimental 

biases from the capture protocol. To this end, we designed a multi-

stage normalisation procedure named PRoportion of INTeraction 

approach (PRINT, Methods). PRINT weighs each interaction by 

dividing it by the cumulative whole-genome interaction frequencies 

of both of the interacting bins, regularising the interaction patterns 

for the fact that captured loci are highly enriched in contacts. It also 

removes the pcHi-C unspecific interactions between non-probed 

bins. To test quantitatively the performance of our normalisation 

procedure, we compared each of the normalisation stages of the 

pcHi-C matrices with the respective Hi-C matrices normalised with 

OneD in each of the selected loci [37]. The median correlation 

between bins with interaction data in both matrices was 0.27 (+/- 

0.025 Median Absolute Deviation (MAD)) for raw pcHi-C matrices 

(pcHi-C-raw), increasing to 0.44 (+/- 0.032 MAD) with the pcHi-C 

pre-normalisation step (pcHi-C-pre), and reaching 0.60 (+/- 0.056 

MAD) for fully normalised pcHi-C matrices (pcHi-C-norm) 

(Supplementary Figure 1A), suggesting that PRINT reduced 

successfully the target biases. Then, we represented the selected loci 

as a bead-spring polymer model with a particle size set to 5 kb, 

taking into account the restriction fragment lengths distribution in 
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the benchmarking datasets (Supplementary Figure 1B). Similarly 

to TADbit [27] and TADdyn [29], to simulate the structural 

conformation of genomic loci, we then transformed the interaction 

frequencies associated with each bin pair into spatial restraints 

(Methods). The latter were then imposed on the model using 

steered molecular dynamics as sampling method in which the spring 

constant associated to each restraint was ramped up as a function of 

simulation time from zero to the value computed from the 

interaction data. Lastly, we implemented new means for a robust 

quantitative spatial differential analysis of genomic loci. 

 

Comparison between sparse and dense 3C-derived models 

Dense Chromatin Conformation Capture data has been extensively 

used to reconstruct the 3D organisation of genomic loci [25, 27, 29, 

30]. Here, to test the reliability of our modelling approach, we used 

sparse and dense datasets to build ensembles of models of the same 

loci. Specifically, we applied our integrative method for sparse data 

modelling to previously published pcHi-C datasets of GM12878 

cells [32] to reconstruct 3D model ensembles of 12 distinct loci 

(Figure 1B and Supplementary Table 1) at a 5kb resolution and 

compared them with the corresponding ones reconstructed using Hi-

C [6] at the same genomic resolution. Additionally, to quantify the 

effect of sparsity in the comparison independently of the 

experimental protocol biases, we generated virtual pcHi-C (pcHi-

Cvirt) interaction matrices from the normalised Hi-C datasets 

extracting the rows and columns probed in the pcHi-C experiment 

(Methods). These virtual sparse matrices were then used to 

reconstruct 3D model ensembles of the selected loci.  

 

The comparison between the sparse and dense derived 3D model 

ensembles revealed that it is possible to recover most of the 3D 

organisation of the dense dataset in spite of the data sparsity 

(Figure 1C). Indeed, the all-vs-all particle-to-particle median 

distance correlation (ppMdC) between the sparse and dense derived 

3D model ensembles was 0.81 (+/- 0.019 MAD) and 0.93 (+/- 0.024 

MAD) for both pcHi-C and pcHi-Cvirt. Additionally, when 

comparing distances between particles that have both been captured 

in the pcHi-C experiment (capture-capture), the ppMdC was higher, 

reaching 0.91 (+/- 0.054 MAD) for pcHi-C and 0.96 (+/- 0.019 

MAD) for pcHi-Cvirt. Consistently, when comparing distances 

between non-captured particles with captured particles (capture-
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other) or between non-captured particles (other-other), the ppMdC 

indicated good agreement with values of 0.84 (+/- 0.03 MAD) and 

0.95 (+/- 0.02 MAD), and 0.81 (+/- 0.02 MAD) and 0.93 (+/- 0.02 

MAD) respectively for pcHi-C and pcHi-Cvirt in both comparisons 

(Figure 1C). The results indicate that the sparse derived ensembles 

of 3D models are a good representation of the dense experiment and 

that the intrinsic experimental biases of the capture experiment only 

minorly affect the 3D reconstruction. Indeed, comparing the whole 

contact map computed from the 3D model ensembles derived from 

sparse data directly with the whole experimental Hi-C interaction 

matrices revealed that the reconstructed ensembles of models are in 

good agreement with the dense experimental data having an 

element-wise Spearman’s rank correlation coefficient of 0.73 (+/- 

0.02 MAD) and 0.86 (+/- 0.02 MAD), for pcHi-C and pcHi-Cvirt 

derived ensembles of models, respectively (Figure 1D). Overall, 

this suggest that the ensembles of models reconstructed by our 

approach represent well the 3D organisation of the selected 

genomic regions and, more importantly, recover the spatial 

arrangements of loci that are not interrogated by the sparse 

experiment. 

 

Reconstruction efficiency and data sparsity  

To investigate the relationship between the reconstruction 

efficiency and data sparsity, we simulated ‘synthetic’ capture data. 

Briefly, we generated 10 different sets of ‘synthetic’ capture 

matrices that represent generic capture-like experiments. We started 

from the contact matrix derived from a 3D toy-genome models 

ensemble that simulates roughly a one Mb length genome 

(comprising more than 600 particles) with a TAD-like architecture, 

a high level of interaction noise, and low variability between 

models [38] (Methods and Figure 2A). To build each of the 10 

‘synthetic’ sets, we randomly selected 22 captured loci and 

constructed 6 additional datasets of different sparsity down-

sampling each set considering 2, 4, 6, 10, 14, and 18 loci at a time, 

which mimics the distribution of captured probes per Mb present in 

a typical genome-wide pcHi-C experiment (Figure 2B). The 

constructed 70 capture-like matrices thus aim to represent typical 

pcHi-C experimental design. Using our integrative modelling 

method for sparse datasets, we reconstructed, from each of the 

‘synthetic’ capture matrices in the dataset and their down-sampled 

counterparts, ensembles of 100 models, and compared them with 
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the reference toy-genome ensemble (Figure 2A). Independently of 

the sets, the ppMdC between the sparse and dense model ensembles 

increased with the number of captured particles used in the 

modelling procedure reaching a median correlation between sets of 

0.82 (+/- 0.02 MAD with just 10 captures per Mb (Figure 2C). 

Notably, also with 4 and 6 captures per Mb the ppMdC reached 

0.69 (+/- 0.04 MAD) and 0.79 (+/-0.05 MAD) for 4 and 6 captures, 

respectively, although with greater variation within sets. This 

suggests that with 10 captured loci per Mb the uncertainty in the 

input information is smaller, leading to more precisely 

reconstructed models. Nevertheless, it is possible to reconstruct 

good models also with fewer as 4 captured loci per Mb although 

with a higher degree of variability. To quantify the effect of data 

sparseness on model reconstruction, we next measured the amount 

of input information used during the modelling as the percentage of 

all possible interaction pairs in the contact matrix (dense data input) 

and then assessed it with the ppMdC. The results indicate that it was 

possible for the majority of the sets (8/10) to reliably reconstruct the 

reference toy genome (ppMdC > 0.8) with just 2-3% of all the 

interaction pairs in the contact matrix used as restraints (Figure 

2D). Taken together, this analysis shows that it is possible to 

consistently recover most of the 3D organisation of a region of 

interest with 10 captured loci per Mb and with just 2-3% of all 

possible interactions within a region captured. 
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Figure 2. A low percentage of the interaction data is needed to produce 
reliable 3D reconstructions. (A) Workflow for the generation of 3D model 
ensembles from ‘synthetic’ sparse datasets and comparison with the toy genome. A 
total of 70 ‘synthetic’ captured map were generated representing 10 different capture 
experiments with different level of data sparsity (Methods). Model images were 
created with Chimera [73]. (B) Distribution of pcHi-C probes per megabase 
windows in the genome [32]. (C) Distribution of the ppMdC between the ‘synthetic’ 
models and the toy genome grouped by subsets of captures per megabase. Box 
boundaries represent 1st and 3rd quartiles, middle line represents median, and 
whiskers extend to 1.5 times the interquartile range. The ten sets of captured 
positions are displayed with the colour code shown in the insert. (D) Relationship 
between the ppMdC and the percentage of cells in the matrix used as restraints in 
each set represented with an exponential fit. The used colour code is the same as in 
C, the grey line represents the mean fit of all the datasets in analysis.   
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Cell-type specific organisation of the β-globin locus 

To illustrate the utility of our integrative approach in unveiling the 

differential organisation of loci, we applied it to the genomic region 

surrounding the β-globin locus in 3 different cell types for which 

pcHi-C data are available [33], namely cord-blood derived 

Erythroblasts (cb-Ery), naive CD4+ T-cells (nCD4), and Monocytes 

(Mon). The selected genomic region contains five coding genes 

(HBB, HBD, HBG1, HBG2, and HBE1) with developmental-stage-

dependent expression [39], which is finely regulated by a set of 

upstream enhancers known as the Locus Control Region (LCR) 

[40]. This locus is known to be in an active conformation in cb-Ery, 

where the LCR is interacting mainly with expressed genes as HBB 

and HBD, but not in nCD4 and Mon cells [33]. 

 

First, we defined the optimal region to be modelled based on the 

interaction networks (in all cell types) of the embryonic (HBG1 and 

HBG2) and adult (HBB and HBD) globin genes with the rest of the 

genome at 5 kb resolution (Methods). The defined region spanned 

4.7 Mb of chr11 (chr11:3,795,000-8,505,000 base-pairs (bp)) 

comprising several neighbouring genes and multiple long-range 

regulatory elements. By applying our integrative approach, we 

generated an ensemble of 1,000 3D models for each cell type. The 

packing of the genomic region was significantly different in each 

cell types with median radius of gyration of 248+/-3, 242+/-2, and 

237+/-2 nm for cb-Ery, nCD4 and Mon, respectively (p-values < 

9.1e-163 in each of the pairwise comparisons using two-samples 

Kolmogorov-Smirnov statistics) (Supplementary Figure 3A), with 

the topology of the region in cb-Ery being less tightly packed than 

in nCD4 and Mon. Each ensemble was then clustered by structural 

similarity [27] and the models from the most populated cluster were 

selected for the comparative analysis between cell-types. Clustering 

by distance root-mean-square deviation (dRMSD), confirmed that 

the topology of the region was markedly different in the three cell 

types, with nCD4 and Mon folds being more similar between each 

other than with cb-Ery (Figure 3A). Particularly interesting is how 

the topology of the β-globin locus (chr11:5,201,270-5,302,470) 

varied in the three cell types. Indeed, in Erythroblasts the β-globin 

locus appeared to be located further from the main core of the 

region as compared with naïve CD4+ T-cells and Monocytes, with 

median distances between the centre of mass of the β-globin locus 

of 286, 243, and 207 nm in cb-Ery, nCD4, and Mon, respectively 
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(p-values < 3.46e-101 in all the pairwise cell-type comparisons; two-

samples Kolmogorov-Smirnov statistic) (Supplementary Figure 

3B).  

 

 
 
Figure 3. Cell-type specific organisation patterns of the β-globin locus. (A) β-
globin locus in cb-Ery, nCD4, and Mon cell-types. From left to right: representation 
of the contact matrix derived from each of the model ensembles colour coded from 
low (blue) to high (yellow) contact frequency (columns filtered due to low 
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interaction data are coloured grey); best model from ensemble as assesses by the 
scoring function; zoom up of the β-globin locus in the model. Models are 
represented as a tube with thickness proportional to the cell-type expression profile 
(Methods), the regulatory elements and genes in the β-globin locus are coloured as 
follow: HBB and HBD in red, HBG1 and HBG2 in green, HBE1 in yellow, LCR in 
blue and 3’HS1 and HS5 in orange. Model images were created with Chimera [73]. 
(B) Clustering tree (see Hierarchical clustering of ensembles of 3D models in Chromatin 
ensemble 3D analysis) of cb-Ery (purple), nCD4 (orange) and Mon (pink) model 
ensembles. (C) Cell-type specific distance distributions between the particle 
containing HS3 site of the LCR and the β-globin genes (HBB, HBD, HBG1, HBG2, 
and HBE1, colour coded as in (A)) as observed in the ensemble of models. Box 
boundaries represent 1st and 3rd quartiles, middle line represents median, and 
whiskers extend to 1.5 times the interquartile range (two-samples Kolmogorov-
Smirnov test, asterisk indicate p < 0.007). (D) Radial plot showing the 3D 
enrichment around HS3 (Method). Each circumference shows the enrichment or 
depletion of features around HS3 on layers (up to 560 nm away from HS3) of non-
overlapping volumes equal to the one of the initial sphere with radius of 200 nm. 
The colour bar shows the colour coding from highly depleted (blue) to highly 
enriched (red) features.  

 

 

To characterise this further, we focused specifically on the β-globin 

locus and quantified its spatial organisation with respect to 

hypersensitive site 3 (HS3) in the LCR, which is forming an 

intricate network of interaction with the β-globin genes [41] and is 

required for their activation [42]. In line with this evidence, in the 

3D ensemble of models representing cb-Ery cells, HS3 was 

significantly closer to HBB, HBD, HBG1, HBG2, and HBE1 genes 

than in the 3D ensemble of models representing nCD4 and Mon (p-

values < 0.007, two-samples Kolmogorov-Smirnov test). In the 

latter two cell-types HS3 had a similar distance distribution with 

HBB, HBD, HBG1, and HBG2 genes (p-values > 0.01, two-

samples Kolmogorov-Smirnov test) (Figure 3B). 

 

Performing 3D enrichment analysis of varied epigenetic features 

and expression levels around HS3 (Methods), we unveiled a stark 

enrichment of active chromatin marks (H3K27ac, H3K36me, 

H3K4me1, and H3K4me3) and expression levels, and a clear 

depletion of inactive marks (H3K9me3 and H3K27me3) in cb-Ery. 

This 3D functional signature was absent in nCD4 and Mon, where 

active chromatin marks and transcript levels were depleted (Figure 

3C). Overall, our models recapitulated the different 3D organisation 

of the β-globin locus and highlight the existence of a specific 3D 
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functional signature enriched in active chromatin features that 

characterised the active β-globin locus in cb-Ery. 

 

Active gene communities in cb-Ery: a cell-type specific 3D 

signature 

To examine whether the specific 3D functional signature of the 

active β-globin locus influence its genomic neighbourhood, we 

investigated its long-range interaction patterns. Comparative 

analysis of the distance profile between HBG2 (the most expressed 

gene in cb-Ery) and each of the selected loci (chr11: 3,795,000-

8,505,000 bp), revealed the existence of an intricate cell-type 

specific network of spatially proximal expressed genes (Figure 

4A), in line with previous observations of transcribed genes co-

localizing in space [24, 43-46]. This network comprised distal 

transcribed sites (even located at 1.4 Mb away as STIM1) that 

showed cell-type specific spatial proximity. Indeed, HBG2 in cb-

Ery was in closer proximity with all other expressed loci of the 

genomic neighbourhood than in nCD4 and Mon (Figure 4B). 

To further characterise the cell-type specific spatial distribution of 

these transcribed loci, we clustered their relative distances within 

the ensembles of 3D models and identified communities of 

expressed genomic loci (Figure 4C-E and Methods). Then, we 

quantified the amount of times a given community of expressed 

genomic loci occurred within the ensembles of 3D models (i.e., the 

co-occurrence score, Methods) and used this quantification as a 

proxy to define the “community stability”. This analysis revealed 

the existence of highly variable communities of expressed genomic 

loci that followed a cell-type specific segregation in the 3D space. 

Interestingly, the organization of these communities was overall 

more stable in cb-Ery than in nCD4 and Mon, where less defined 

communities were identified. Indeed, as assessed by the mean inter-

community co-occurrence scores (Methods), the cb-Ery network 

was characterised by the presence of four stable communities 

(Methods and Table 1). While, the nCD4 network was formed by 

three communities with overall low co-occurrence (although 

community 2 in this network showed a stability in line with the 

communities in the cb-Ery network), and the Mon network formed 

by only two unstable communities (Methods and Table 1). Overall, 

the results highlight the presence of more defined 3D communities 

of expressed genes in cb-Ery as compared to nCD4 and Mon, 

suggesting that the co-occurrence of these segregated communities 
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within an ensemble of possible folds is part of the cell-type specific 

3D signature. 

 

 
 
Figure 4. Communities of active genes as a cell-type specific 3D signature in 
cb-Ery. (A) Line plot of the mean distances between the TSS of HBG2 (focus 
point, blue vertical line) and all other particles in the genomic region 
(chr11:3,795,000-8,504,999 bp) for cb-Ery (purple), nCD4 (orange), and Mon (pink) 
as calculated in each model ensembles. Error bar, indicating one standard deviation, 
is displayed for particles enclosing a transcribed gene (in at least one cell). The grey 
dashed line indicates 200 nm cut-off used in the analysis (Methods). (B) Cell-type 
specific distance distribution between particles enclosing the HBG2 gene and all 
transcribed genes in the genomic region (chr11:3,795,000-8,504,999 bp) for cb-Ery 
(purple), nCD4 (orange), and Mon (pink) as calculated in each model ensembles. 
Box boundaries represent 1st and 3rd quartiles, middle line represents median, and 
whiskers extend to 1.5 times the interquartile range (two-samples Kolmogorov-
Smirnov test, asterisk indicate p-values < 7.5e-6). (C-E) Hierarchical clustering of 
each genes based on the co-occurrence analysis (Methods) in cb-Ery (C), nCD4 (D) 
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and Mon (E). Co- occurrence value range from 0 (low, dark blue) to 100 (high, 
bright yellow). In each hierarchical tree the communities are labelled at their root 
branch. Per each gene the relative expression (log(FPKM) is shown in a scale of reds 
from 0 to 5. (F) Hierarchical clustering of the distances between the communities 
defined in cb-Ery (Methods). Distance values are coloured in the matrix from dark 
blue to bright yellow and the average expression in log(FPKM) per community is 
coloured by ranking from lowest (lightest) to highest (darkest) in 3 different shades 
of red. (G) Relationship between gene expression in log(FPKM) and the median 
distance of the gene particles to the centre of mass of its own community in cb-Ery 
ensemble of models (Methods). Purple line denotes the linear regression fit, the 
shading around the regression line represents the confidence interval, each 
community is represented with different symbols (circle community 1; inverse 
triangle community 2; square community 3; and ex community 4).  

 

Table 1. Communities stability assessment 

Cell Community 

Mean inter-

community 

co-occurrence 

Average inter-

community co-

occurrence per 

cell 

cb-Ery 

1 2.96 

3.06 
2 4.90 

3 0.54 

4 3.85 

nCD4 

1 11.49 

9.16 2 3.83 

3 12.17 

Mon 
1 10.33 

10.33 
2 10.33 

 
Description: Cell, the cell-type data used to reconstruct the chromatin; Community, 
the defined communities by Ward’s clustering; Mean inter-community co-
occurrence, Communities stability score as defined in Methods; and Average 
inter-community co-occurrence per cell, average Mean inter-community co-
occurrence value of all the communities in each of the cells. 

 

Next, we investigated whether the stability of the 3D communities 

of expressed genes in cb-Ery could be related to the high levels of 

expression of the β-globin genes (highest as HBG2 with 10.86 

FPKM, while the mean expression of all the other expressed genes 

in nCD4 and Mon was 2.45 and 2.10 FPKM respectively). 

Clustering the distance distribution between the centres of mass of 
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each community in cb-Ery (Figure 4F) revealed a clear hierarchical 

organisation with the most expressed community, which included 

the highly expressed β-globin locus (Supplementary Table 2), 

located in the centre, and the least expressed community in the 

periphery. This pattern was not present in nCD4, and impossible to 

address in Mon with just two communities (Supplementary Figure 

4A-B). This suggests a hierarchical organisation in cb-Ery, in which 

the location in space of each of the communities and their levels of 

expression are related. Surprisingly, this hierarchy was also overall 

present at the community level in cb-Ery, where the distance 

between each gene to the centre of mass of the community and its 

expression were negatively correlated (CC: -0.55, p-value=0.002; 

Figure 4G). This suggests the formation in cb-Ery of a gradient of 

expression within the community were the most expressed genes 

are located in the centre of their communities and the less expressed 

ones are preferentially located in the periphery in line with the 

organisation previously observed for the alpha-globin locus [24]. 

This overall community organisation was not evident in nCD4 and 

Mon (Supplementary Figure 4C-D), thus suggesting that the high 

expression of the β-globin loci in cb-Ery could be associated with 

the establishment of a hierarchical organisation in the loci.  

 

DISCUSSION 

 

Here, we have introduced an integrative modelling method for the 

3D reconstruction, analysis, and interpretation of sparse 3C-based 

datasets such as pcHi-C. We also demonstrate its usability in the 

comparative 3D analysis of genomic regions using the β-globin 

locus as an example, showing that our method can detect cell-type-

specific 3D organisational features within genomic regions that can 

lead to several important implications on the relationship between 

genomic function and spatial genome organisation, such as the 

expression dependent organisation of active loci. 

 

Generally, the analysis and interpretation of sparse 3C-datasets is 

not trivial and specialised analytical tools are required. In the case 

of pcHi-C, the available tools (ChiCMaxima, Chicago, Gothic, 

Chicdiff, HiCapTools [47-51]) are mainly focused on the 

implementation of normalization strategies to reduce the impact of 

non-biological biases and on strategies to detect interaction between 

captured loci. Conversely, the integrative modelling method 
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presented in this study has been designed for the analysis and 

interpretation of sparse 3C-datasets in their third dimension, 

allowing for data normalisation, detection of significative 

interaction, and most importantly, the recovery of the full structural 

organization of a genomic region despite of the data sparseness. 

 

Indeed, here we extensively tested our procedure by comparing 

models reconstructed directly from sparse and dense datasets, 

showing that 3D models reconstructed by the integrative modelling 

method for sparse data modelling are a good representation of the 

dense experiment. In fact, model reconstruction is only minorly 

affected by the intrinsic experimental biases of the capture 

experiment. Additionally, and most importantly, our model 

procedure reproduces remarkably well the whole 3D organisation of 

the selected genomic regions even recovering the organisation of 

loci that are not included as input restraints and are not readily 

observable in the sparse experiment.  

 

Next, to assess whether the 3D reconstructed models were not only 

a bona fide representation of models based on Hi-C datasets, we 

used a ‘synthetic’ toy genome with known 3D organisation [38] and 

proved that we can efficiently model sparse pcHi-C-like datasets 

using as few as 2-3% of all possible interaction data. Importantly, 

this quantification highlights how the degree of sparseness of the 

data is related to the efficiency of the 3D reconstruction process and 

provide a general guideline for sparse data modelling. In light of 

this, we speculate that our integrative approach could easily be 

applied to different type of 3C datasets with similar sparseness. For 

example, protein-centric chromatin conformation method such as 

HiChIP [19] could be used as input experiment to reconstruct the 

chromatin folding, assuming that the protein-capture biases of this 

type of experiments are similar to the promoter-capture biases 

observed in the pcHiC experiments.  

 

Finally, to illustrate the utility of our integrative approach, we 

applied it to the β-globin locus, whose 3D organisation has been 

extensively studied [39, 41, 52-54]. We investigated this locus in 

three different cell types (cb-Ery, nCD4, and Mon) and performed a 

comparative analysis between them. In agreement with previous 

studies [33], our models show that the topology of the β-globin 

locus varies in the three cell types owing to their differential 
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expression. Interestingly, our models also unveil that the globin 

HBG2 gene is embedded in an epigenetically active and highly 

transcribed neighbourhood in cb-Ery giving rise to a locus-specific 

3D functional signature. This functional signature is absent in the 

models of other cell-types (nCD4 and Mon), where the locus is not 

expressed. We also show that this cell-specific organisation, not 

only occurs proximally to the β-globin genes but also involves loci 

located at longer genomic distances (more than 1 Mb away). 

Indeed, our 3D comparative analysis unveiled the existence of an 

intricate cell-type specific network of spatially-proximal expressed 

genes that forms gene communities that are segregated in the 3D 

space in a cell-type specific fashion. The identified communities are 

compatible with the formation of chromatin foci in which 

transcribed genes co-localize as a general mechanism to organise 

gene transcription [24, 43-46, 55]. Interestingly, we observed that 

the co-occurrence within the ensemble of models of the identified 

cell-type specific communities is cell-type dependent, with the cb-

Ery communities network formed by more persistent communities 

than the nCD4 and Mon community networks. This suggests that 

also the degree of co-occurrence of the communities within the 

ensemble is an important feature for the identification of a cell-type 

specific 3D signature. Additionally, we observed that in cb-Ery, 

where the β-globin genes are highly expressed, the communities 

present an overall hierarchical spatial organisation, both between 

and within communities. This topology is dependent on the level of 

transcription with highly expressed entities (entire community or 

specific gene within a community) located in the core of the 

hierarchical 3D organisation and low expressed entities found at the 

periphery. We hypothesise that the observed communities could 

represent cell-type specific transcription factories [24, 55-57] or 

phase-separated foci [58-60] organised following a gradient of 

transcription with high concentration of nascent transcripts and 

transcription machinery in the core of the assemblies that create a 

“sticky” environment to the less expressed peripheral loci. This 

hierarchical organisation is only marginally present in nCD4 and 

Mon, suggesting that it also contributes to the cell-type specific 3D 

signature characterising the β-globin region in cb-Ery. 

 

In summary, we have shown that sparse datasets like pcHi-C can be 

effectively used to model in 3D the spatial conformation of genomic 

domains. The resulting models retain most of the genomic region 
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organization and recover also the organisation of loci that are not 

readily observable in the sparse experiment. Importantly, this is 

achievable with a very small percentage (~2-3%) of all possible 

interaction data in the genomic region. Additionally, our study not 

only provides a novel approach for sparse-data 3D modelling but 

also introduces new tools for the comparative analysis of genomic 

regions. Thus, it will aid the discovery of cell-type specific 3D 

signatures and help deciphering complex mechanism underlying the 

cell-type specific 3D genome organization. 

 

METHODS 

 

Experimental datasets 

Structural data were obtained from publicly available 3C-based 

chromatin interaction experiments of GM12878 cells (Hi-C GEO: 

GSE63525 and pcHi-C ArrayExpress: E-MTAB-2323) [6, 32], and 

cb-Ery, nCD4, and Mon cells (pcHi-C EGA: EGAS00001001911) 

[33]. 

 

Hi-C datasets processing. The reads for each replicate were mapped 

onto the GRCh38 reference genome, filtered, and merged using 

TADbit with default parameters [27]. Then, starting from the 

merged filtered fragments, the genome-wide raw interaction maps 

were binned at 5 kilo-base (kb) and normalized using OneD [37] as 

implemented in TADbit [27]. 

 

pcHi-C datasets processing. For each experiment, the reads were 

mapped onto the GRCh38 reference genome using TADbit [27] and 

were filtered applying the following filters: (i) self-circles, (ii) 

dangling-ends, (iii) errors, (iv) extra dangling-ends, (v) duplicated 

reads, and (vi) random breaks. Next, we computed the 

reproducibility score to measure the similarity between replicates 

from each pcHi-C dataset [61]. Then, for each cell-type, the 

different replicates from the same experiment were merged into one 

dataset for further analysis, making an exception with replicate 

ERR436029 from the GM12878 pcHi-C dataset (E-MTAB-2323), 

which was discarded due to a clearly low reproducibility score 

when compared with the rest of the replicates (average of 0.24 with 

the other replicates as compared to the average of 0.84 obtained 

between the other replicates). Using the merged filtered fragments, 

the genome-wide raw interaction maps of each cell-type were 
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binned at 5 kb and normalised using the PRoportion of INTeraction 

approach (PRINT, next section).  

 

Sparse data normalization: PRoportion of INTeraction approach 

(PRINT). PRINT, a multi-stage normalisation procedure, weighs 

each pair of interacting bins with the same philosophy as the 

visibility approach for Hi-C [62]. Starting from a raw interaction 

matrix as input, PRINT first transforms the raw interaction between 

two bins (i and j) into a percentage of interaction with respect to the 

rest of the genome as: 

 

where (binij) represent the number of times in which bin i and j 

interact, and rowi and rowj are the sum of all the interactions of 

bins i and j respectively with all the genome (self-interactions 

included). Then, the non-baited interactions (that is, those bins 

containing only pcHi-C off-target reads) are filtered out. 

 

PRINT assessment. Using the benchmarking datasets described 

above, each stage of PRINT normalisation (pcHi-C-raw, pcHi-C-

pre and pcHi-C-norm) was assessed in comparison with the dense 

Hi-C interaction matrix by calculating the Spearman’s rank 

correlation coefficient between interactions (binij) present in both 

interaction matrices.  

 

Reconstructed 3D genomic regions 

Benchmarking datasets. We selected 12 genomic regions of interest 

(Supplementary Table 1) as defined by Rao and colleagues [6]. 

This set of genomic regions were predicted to result in reliable 3D 

models based on their > 0.7 MMP scores [38] (Supplementary 

Table 3). Briefly, MMP score takes into account the interaction 

matrix size, the contribution of significant eigenvectors in the 

matrix, and the skewness and kurtosis of the z-scores distribution of 

the matrix to assess their potential for being modelled [38]. 

 

Comparative analysis datasets. We selected a genomic region 

around a locus of interest (here the β-globin) defining it in a semi-

automatic manner in each cell type. Briefly, a viewpoint, which 

may be constituted by a bin or a set of bins of interest, is selected. 
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Here, as viewpoint we used bins enclosing the active haemoglobin 

genes in cb-Ery (HBB, HBD, HBG1, and HBG2). Then, all the 

other bins that interacted with the viewpoint bins in the normalised 

genome-wide interaction matrix were selected. Each of these bins 

were then scored by their cumulative normalised interaction 

frequency values with the viewpoint bins. From this set only the top 

intra-chromosomal 200 bins were selected since, by visual 

inspection, they were the bins spanning the genomic region that best 

enclosed the viewpoint. Then an unweighted interaction network 

was generated with the nodes corresponding to the top 200 bins and 

the viewpoint bins. Edges between nodes were added if their 

pairwise cumulative normalised interaction frequency value was in 

the top 200 interacting bins. Then, a series of transformations were 

applied to the unweighted interaction network: (i) nodes that are 

highly proximal in 1D genomic resolution (closer than 25 kb) were 

merged into one node; and (ii) poorly connected nodes in the 

network that had less than 5 edges were filtered out (average 

number of edges per node in Mon, nCD4, and cb-Ery were 200, 

214, and 214, respectively). The extreme nodes in terms of genomic 

coordinates were selected from the final unweighted interaction 

network to represent the optimal genomic region around the 

viewpoint. Here, to perform comparative analysis, we defined the 

optimal genomic region around the viewpoint as the broader 

genomic region that enclosed all of the genomic coordinates 

identified in each cell-type.   

 

3D chromosome ensemble reconstruction from sparse datasets 

Model representation. Each genomic region was described with a 

beads-on-string model based-on the previously implemented 

protocols [29, 63] without bending rigidity potential. Thus, a 

chromosome was represented with N spherical beads with 

diameter σ = 50 nm that contain 5 kb of chromatin which 

determined the genomic unit length of each model. 

 

System set up for molecular dynamics. All simulations were done 

using TADdyn [29]. A generic random self-avoiding walk 

algorithm was used to define the initial conformation of each 

model. The potential energy of each system comprised the terms of 

the Kremer-and-Grest polymer model [64] including chain-

connectivity (Finitely Extensible Nonlinear Elastic, FENE) [65] and 

excluded volume (purely repulsive Lennard-Jones) interactions. The 
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initial conformation was placed randomly inside a cubic simulation 

box of size 1,000 σ centred at the origin of the Cartesian axis O = 

(0.0, 0.0, 0.0), tethered at the centre of the box using a harmonic 

(Kt=50.0 kBT/  and deq=0.0 σ) to avoid any border effect and 

energy minimized using a short run of the Polak-Ribiere version of 

the conjugate gradient algorithm [66] to favour smooth adaptations 

of the implementations of the excluded volume and chain 

connectivity interaction. 

 

Encoding sparse data into TADdyn restraints. TADdyn [29] 

empirically identifies the three optimal parameters to be used for 

modelling based on a grid search approach. This are: (1) maximal 

distance between two non-interacting particles (maxdist); (2) a 

lower-bound cut-off to define particles that do not frequently 

interact (lowfreq); and (3) an upper-bound cut-off to define particles 

that frequently interact (upfreq). All possible combinations of the 

parameters were explored in the intervals lowfreq = (-1.0,-0.5, 0, 

0.5), upfreq = (-1, -0.5, 0, 0.5), maxdist = (200, 300, 400, 500) nm, 

and assessing each combination using distance thresholds to 

determine if two particles are in contact (dcutoff) at 100,150, 200, 

250, 300, 350, 450, 500 nm. For each of the combinations an 

ensemble of 100 3D models was generated and the Spearman 

correlation coefficient between the contact map derived from each 

ensemble and the experimental input interaction matrix was 

calculated. The top set of parameters for each region in each cell-

type were set for those resulting in the highest Spearman correlation 

coefficient between the models contact map and the input 

interaction matrix. To allow for a robust comparative analysis 

(Methods) the optimal maxdist and the dcutoff parameters were 

selected based on the consensus within the top optimal values for 

each region in each cell-type. Optimal maxdist and the dcutoff were 

set at 300 nm and 200 nm, respectively for the ensembles of models 

reconstructed from the GM12878, cb-Ery, nCD4, and Mon pcHi-C 

datasets. Once the three optimal parameters were defined, the type 

of restraints between each pair of particles was set considering an 

inverse relationship between the frequencies of interactions of the 

contact map and the corresponding spatial distances. Non-

consecutive particles with contact frequencies above the upper-

bound cut-off were restrained by a harmonic oscillator at an 

equilibrium distance, while those below the lower-bound cut-off 

were maintained further apart than an equilibrium distance by a 
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lower-bound harmonic oscillator. To identify 3D models that best 

satisfy all the imposed restraints, the optimization procedure was 

then performed using a steered molecular dynamic protocol. A total 

of 1,000 replicate trajectories were generated for each genomic 

region and dataset. Per each of the 1,000 replicate trajectories, the 

conformation at the end of the steering protocol (when the target 

spring constant and equilibrium distance are reached) was retained 

to form the final ensemble of 1,000 3D models. For the cb-Ery, 

nCD4, and Mon datasets, to account for possible mirrored 3D 

models within the final ensemble of 3D models, each ensemble was 

then clustered based on structural similarity score as implemented 

in TADbit [27] and only the models from the most populated cluster 

were retained for further analysis. 

 

Steered Molecular Dynamics protocol. A steered molecular 

dynamics protocol was used to progressively favour the imposition 

of the defined set of restraints between non-consecutive particles. 

For each restraint, the equilibrium distance was set to 1 particle 

diameter (σ). The spring constant k(L,t) was weighted with the 

sequence-separation L between the constrained beads as in TADdyn 

[29] to ensure that the steering process was not dominated by the 

target pairs at the largest sequence separation. However, here the 

k(L,t) was smoothly ramped during the steering phase from zero to 

its maximum value. 

 

3D chromosome ensemble reconstruction from dense datasets 

The reconstruction of 3D models of genomic regions from dense 

data followed the modelling protocol described above. That is, a 

grid search approach was used to select for the optimal parameters 

to be used for modelling. The optimal maxdist and the dcutoff 

parameters were selected based on the consensus within the top 

optimal values for each region in the GM12878 pcHi-C dataset and 

set at 300 and 200 nm, respectively. Using these parameters, the 

final ensemble of 1,000 3D models was obtained starting from the 

computed 1,000 steered molecular dynamics trajectories. 

 

3D chromosome ensemble reconstruction from Virtual pcHi-C 

derived from dense datasets 

A dataset of Virtual pcHi-C interaction matrices was produced 

starting from the normalised Hi-C interaction matrices at 5kb 

resolution (GM12878 cells GEO: GSE63525; Methods) and from 
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the liftover (https://genome.ucsc.edu/cgi-bin/hgLiftOver) list of 

captured fragments in pcHi-C GM12878 experiment [32]. The 

obtained Virtual pcHi-C interaction matrices comprised only 

interactions (binij) in which either i or j enclose the coordinates of a 

captured fragment. These interaction matrices were used as input 

for the reconstruction of 3D models of genomic regions following 

the modelling protocol described above. The optimal maxdist and 

the dcutoff parameters were set at 300 and 200 based on their 

consensus with the parameters used in the GM12878 pcHi-C 

dataset. A total of 1,000 steered molecular dynamics trajectories 

were computed, and for each trajectory the conformations satisfying 

the majority of the imposed constraints within a radius of 2 σ were 

retained.  

 

3D chromosome ensemble reconstruction from ‘synthetic’ 

sparse dataset 

We used a previously published “toy genome” [38] (that is, the 

ensemble of models accounting for the formation of TAD-like 

architecture with low structural variability and high noise levels that 

comprises a total of 626 particles at the highest genomic resolution) 

to randomly select 10 sets of 22 loci from the toy genome contact 

map (or synthetic interaction maps). These loci mimic pcHi-C to 

generate reliable sparse interaction matrices comprising only 

interactions (binij) in which either i or j have been selected as 

random captured loci. Each of these sets was then randomly 

subsampled to generate ‘synthetic’ capture matrices with 2, 4, 6, 10, 

14, and 18 selected captured loci. The obtained ‘synthetic’ capture 

matrices (70 in total) were next used as input for the reconstruction 

of 3D models of genomic regions following the modelling protocol 

described above. The optimal maxdist and the dcutoff parameters 

were set at 500 and 200 nm. Using these parameters, a final 

ensemble of 100 3D models was reconstructed for each ‘synthetic’ 

capture matrices comprising the conformations that best satisfied 

the imposed restraints in each of the computed 100 steered 

molecular dynamics trajectories. 

 

Analysis of the ensemble of 3D models   

Contact map generation. For each ensemble of 3D models, a 

contact map was calculated at 5kb resolution to visualize the 

frequencies of contacts in the ensemble. Two beads were considered 

https://genome.ucsc.edu/cgi-bin/hgLiftOver
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to constitute a contact when their Euclidean distance was below 200 

nm cut-off. 

Matrix Comparison. The degree of similarity between two matrices 

was computed by comparing each cell from the matrices, or a subset 

of them, using the Spearman’s rank correlation coefficient (rs) as 

implemented in the Python library SciPy [67, 68]:  

 

 

Where  is the rank of the ith observation in one matrix,  is 

the rank of the ith observation in the other matrix, and n states for 

the number of pairs of observations. 

 

Particle-to-particle median distance correlation (ppMdC). For each 

ensemble of 3D models, we differentiated 3 sets comprising 

particles enclosing the coordinates of: (i) captured loci (capture), (ii) 

non-captured loci (other), and (iii) all the loci (all). For each of the 

pairs of particles in a given set we calculated the particle-to-particle 

median distance. Then, the degree of similarity between two given 

sets was computed using the Spearman’s rank correlation 

coefficient between their particle-to-particle median distances. The 

ppMdC measure varies between −1.0 and 1.0 for comparisons 

where the particle-to-particle median distances perfectly anti-

correlate or correlate, respectively.  

 

Hierarchical clustering of ensembles of 3D models. Multiple 

ensembles of 3D models were merged in a unique set and the 

models were structurally superpose using pair-wise rigid-body 

superposition. Next, the all-vs-all distance root mean square 

deviation (dRMSD) was calculated and the resulting dRMSD 

matrix was hierarchically clustered using Ward’s sum of squares 

method [69] as implemented in the Python library SciPy [67]. 

 

Cell-specific expression profile. Publicly available [33] expression 

matrix containing the expression values (log(FPKM)) of each gene 

in cb-Ery, nCD4, and Mon cell types was downloaded 

(GeneExpressionMatrix.txt.gz at https://osf.io/u8tzp/). The 3 

datasets had two or more replicates each (2 cb-Ery, 5 Mac, and 8 

nCD4, respectively), thus the average expression value of each gene 

https://osf.io/u8tzp/
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from all replicates was used. Then, a cell-specific per-bin 

cumulative expression profile of the chr11:3,795,000-8,505,000 

genomic region at 5kb resolution was obtained assigning the mean 

expression value of each gene (with log(FPKM)>0) to bins 

enclosing for the coordinates of its transcription start site 

(coordinates retrieved from bioMart [70]).  

 

3D enrichment analysis. To study the spatial co-localization of 

different regulatory elements and the local levels of transcription 

(based on genome-wide ChIP- and RNA-seq data) around a selected 

locus (central viewpoint) we implement a 3D enrichment analysis 

tool (named ‘radial-plot’) that allows the comparison of 

heterogeneous sets of data from multiple data sources. Per each cell 

type a per-particle binarized chromatin marks profile in the genomic 

region was generated starting from the ChIP-seq signal of 

H3K27ac, H3K36me3, H3K4me1, H3K4me3, H3K9me3, and 

H3K27me3 in cb-Ery, nCD4, and Mon cell types [33]. A particle 

was considered enclosing for a chromatin mark if a peak was 

present. Similarly, we also constructed, for each cell type, a per-

particle binarized transcription profile starting from the cell-specific 

expression profile (Methods). Then the 3D spatial distribution of 

the 3D enrichment based on the per-particle binarized profile 

around the chosen central viewpoint was calculated as follow: (i) 

starting from the central viewpoint an initial sphere with a radius of 

200 nm was constructed; (ii) a series of spherical shells, that 

occupied a volume equal the initial sphere, were added; (iii) per 

each model in the ensemble of 3D models a particle of the binarized 

profile was assigned to a spherical shell based on its relative 

distance to the central viewpoint; (iv) per each spherical shell we 

performed Fisher's exact tests for 2 × 2 contingency tables 

comparing the amount of particles with or without signal in the 

spherical shell with the outside ones, and the log of the odd ratios 

was assigned to the shell if the p-value < 0.01. The obtained 3D 

enrichment was then visualised as a 2D radial plot. 

 

Defining gene communities: co-occurrence of expressed genes. For 

each ensemble of 3D models, based on their cell-specific expression 

profile (Methods), we defined the set of expressed particles 

(log(FPKM) > 0). Then, considering this set of particles, an all-vs-

all pairwise distances matrix was calculated in each model and 

hierarchically clustered using Ward’s sum of squares method [69] 
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as implemented in the Python library SciPy [67]. Then the Calinski-

Harabasz index [71], as implemented in the Python library Scikit-

learn [72], was used to determinate the optimal number of clusters 

in each dendrogram. Then, for each ensemble, a co-occurrence 

matrix was generated considering the percentage of models in 

which a pair of particles belonged to the same cluster. The co-

occurrence measure varies between 0 and 100, where 0 indicates 

absence of co-occurrence and 100 indicates a stable co-occurrence 

within the ensemble of 3D models. The co-occurrence matrix was 

next hierarchically clustered using Ward’s sum of squares method 

[69] and communities of co-occurrent active genes were identified 

using the Calinski-Harabasz index analysis in the dendrogram. 

 

Communities stability within the ensemble of models. To assess the 

stability of each community within the ensemble we introduced the 

inter-community co-occurrence score that defines the degree of 

unstable compositions of a community. It is computed as the mean 

co-occurrence values between each gene in a community and the 

rest of the communities.  

 

Distance between communities and within community. To describe 

the spatial arrangement of each community for a given ensemble of 

3D models, we treated each community as a rigid body and 

calculated its centre of mass (COM) in each 3D model of the 

ensemble. Per each model the all-vs-all pairwise distances between 

the COMs of each communities were computed and the mean 

distance values assigned as the typical distance between 

communities. Similarly, per each model, we also calculated the 

distance of each particle in a given community and the COM of its 

community. The within community distance of a given particle was 

defined by its mean value in the ensemble of 3D models. 
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SUPPLEMENTARY FIGURES AND TABLES 

 

 

 
 
Supplementary Figure 1. Integrative modelling procedure: assessing Print 
normalisation procedure and defining the model representation. (A) Assessing 
Print multi-step procedure. Element-wise Spearman correlation between each stage 
of Print normalisation (pcHi-C-raw in light blue; pcHi-C-pre in dark blue; and pcHi-
C-norm in medium blue) and the Hi-C interaction matrix. The grey dashed line 
indicates the median correlation in the entire benchmark dataset at each stage. (B) 
Distribution of the sizes (in kb) of the restriction fragments in each of the regions 
comprised in the benchmark dataset. 
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Supplementary Figure 2. Comparison of each ‘synthetic’ capture sets and the 
toy genome. (A-J) Relationship between the ppMdC and the percentage of cells in 
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the matrix used as restraints in each set. The dots in the plot represent the degree of 
sparseness in each subset (2, 4, 6, 10, 14, 18, and 22 captures) and the coloured line 
indicates the fitted exponential function. The colour code used is the same as in 
Figure 2C. 
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Supplementary Figure 3. Cell-type-specific 3D features in the model 
ensembles. (A) Cell-type specific distribution of the radius of gyration of the 
models in the ensemble. Box boundaries represent 1st and 3rd quartiles, middle 
line represents median, and whiskers extend to 1.5 times the interquartile range 
(two-samples Kolmogorov-Smirnov test, asterisk indicate p < 9.1e-163). (B) Cell-
type specific distance distribution of the centres of mass of the particles 
containing the β-globin genes (HBB, HBD, HBG1, HBG2, and HBE1) from 
the centre of the model as calculated in each model of the ensemble. Box 
boundaries represent 1st and 3rd quartiles, middle line represents median, and 
whiskers extend to 1.5 times the interquartile range (two-samples Kolmogorov-
Smirnov test, asterisk indicate p < 3.46e-101). 
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Supplementary Figure 4. Hierarchical 3D organisation of expressed entities 
in nCD4 and Mon. (A-B) Hierarchical clustering of the distances of mass 
(Methods) between the communities defined in nCD4 (A) and Mon (B). Distance 
value is coloured in the matrix from dark blue (low) to bright yellow (high) and the 
average expression in log(FPKM) per community is coloured by ranking from lowest 
(lightest) to highest (darkest) in 3 (A) and 2 (B) different shades of red. (C-D) 
Relationship between gene expression in log(FPKM) and the median distance of the 
gene particles to the centre of mass of its own community in nCD4 (C) and Mon 
(D) ensemble of models (Methods). Orange (C) and pink (D) line denote the linear 
regression fit, the shading around the regression line represents the confidence 
interval, each community is represented with different symbols (circle community 1; 
inverse triangle community 2; square community 3; and ex community 4) ; NS stand 
for not significant.  
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Supplementary Table 1. Benchmark datasets 

 

Locus Chromosome Start End 

Region 1 chr7 137,515,000 138,120,000 

Region 2 chr8 132,755,000 133,560,000 

Region 3 chr20 50,745,000 52,515,000 

Region 4 chr3 49,325,000 51,095,000 

Region 5 chr3 63,110,000 64,715,000 

Region 6 chr8 119,785,000 120,190,000 

Region 7 chr17 68,500,000 70,005,000 

Region 8 chr2 10,705,000 11,210,000 

Region 9 chr10 88,890,000 89,495,000 

Region 10 chr1 169,590,000 169,745,000 

Region 11 chr21 26,625,000 28,930,000 

Region 12 chr13 84,575,000 86,180,000 

 
Description: Locus, the name of the region modelled starting from Hi-C, pcHi-C, 
and pcHi-Cvirt datasets; Chromosome, the chromosome where the region is 
located; Start and End, represent the genomic coordinates (GRCh38 assembly).  
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Supplementary Table 2. Gene communities expression statistics 

 

Cell Community nGenes MeanExp σ 

cb-Ery 

1 8 2.48 0.81 

2 11 4.57 3.28 

3 3 1.57 1.99 

4 6 2.78 0.78 

NCD4 

1 8 2.48 0.81 

2 6 4.57 3.28 

3 12 1.57 1.99 

Mon 
1 8 2.48 0.81 

2 20 4.57 3.28 

 
Description: Cell, source cell type data used for the modelling approach; 
Community, the number assigned to each community; nGenes , number of active 
genes composing each community; MeanExp, mean expression of the genes within 
the community; σ, standard deviation of the mean expression of genes within the 
community. 
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Supplementary Table 3. MMP scores of the 12 modelled Hi-C 

interaction matrices 

 

Dataset Locus 
MMP 

score 

HiC data 

(GSE63525) 

Region 1 0.80 

Region 2 0.78 

Region 3 0.76 

Region 4 0.78 

Region 5 0.78 

Region 6 0.81 

Region 7 0.78 

Region 8 0.81 

Region 9 0.82 

Region 10 0.84 

Region 11 0.72 

Region 12 0.75 

 
Description: Dataset, experimental dataset used to reconstruct the 12 ensembles of 
models; Locus, the name of the region modelled starting from the Hi-C dataset; 
MMP score, Value of the MMP score of the interaction matrix of each of the locus. 
It predicts the reliability of the 3D models based on the interaction matrix size, the 
contribution of significant eigenvectors in the matrix, and the skewness and kurtosis 
of the z-scores distribution of the matrix [1, 2]. 
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Assessing the limits of restraint-based 3D modeling of genomes and genomic 
domains. Nucleic Acids Res. 2015;43(7):3465-77. doi: 10.1093/nar/gkv221. PubMed 
Central PMCID: PMCPMC4402535. 
2. Serra F, Bau D, Goodstadt M, Castillo D, Filion GJ, Marti-Renom MA. 
Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural 
features of the fly chromatin colors. PLoS Comput Biol. 2017;13(7):e1005665. doi: 
10.1371/journal.pcbi.1005665. PubMed Central PMCID: PMCPMC5540598. 
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CHAPTER 2 
 
Human pancreatic islet three-dimensional chromatin 

architecture provides insights into the genetics of type 2 

diabetes  
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ABSTRACT 

 

Genetic studies promise to provide insight into the molecular 

mechanisms underlying type 2 diabetes (T2D). Variants associated 

with T2D are often located in tissue-specific enhancer clusters or 

super-enhancers. So far, such domains have been defined through 

clustering of enhancers in linear genome maps rather than in 3D 

space. Furthermore, their target genes are often unknown. We have 

created promoter capture Hi-C maps in human pancreatic islets. 

This linked diabetes-associated enhancers to their target genes, 

often located hundreds of kilobases away. It also revealed > 1,300 

groups of islet enhancers, super-enhancers and active promoters that 

form 3D hubs, some of which show coordinated glucose-dependent 

activity. We demonstrate that genetic variation in hubs impacts 

insulin secretion heritability, and show that hub annotations can be 

used for polygenic scores that predict T2D risk driven by islet 

regulatory variants. Human islet 3D chromatin architecture, 

therefore, provides a framework for interpretation of T2D GWAS 

signals. 

 

INTRODUCTION 

 

Type 2 diabetes (T2D) affects more than 400 million people 

worldwide 1, and is a classic example of a polygenic disease in 

which the genetic susceptibility is largely driven by noncoding 

variants2,3. T2D susceptibility variants are enriched in active islet 

enhancers that cluster in linear genome maps – variably defined as 

mailto:j.ferrer@imperial.ac.uk
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super-enhancers, COREs, enhancer clusters, or stretch enhancers 4-7. 

Enhancer clusters from other tissues or cell types are similarly 

enriched in risk variants for various common diseases5,7-11. So far, 

however, genome-wide maps of enhancer clusters have been largely 

defined with unidimensional epigenomic maps, which do not 

necessarily reflect the capacity of enhancers to cluster in three-

dimensional (3D) space, as shown for well characterized loci such 

as Hbb (-globin) and Hoxd12,13. Linear maps also do not reveal the 

target genes of enhancers, which are often separated by hundreds of 

thousands of base pairs. Therefore, there is a need to obtain accurate 

representations or enhancer domains, and to connect them to the 

target genes that underpin disease mechanisms. 

 

Here, we used promoter capture Hi-C (pcHi-C) 14 to generate a 

genome-scale map of interactions between gene promoters and their 

regulatory elements in human pancreatic islets. This uncovered 

~1,300 hubs of islet enhancers that cluster in 3D space. We show 

that islet enhancer hubs are connected with key islet gene 

promoters, and exhibit properties of regulatory domains. We use 

genome/epigenome editing to demonstrate the functional 

connectivity of hubs, and validate functional interactions between 

enhancers bearing T2D risk variants and their target genes. Finally, 

we show that islet hubs are not only enriched for T2D association 

signals, but can be used to partition polygenic scores to identify 

T2D genetic susceptibility driven by pancreatic islet regulatory 

variation. 

 

RESULTS 

 

The promoter interactome of human islets. 

To create a genome-wide, high-resolution map of long-range 

interactions between gene promoters and distant regulatory 

elements in human pancreatic islets, we prepared Hi-C libraries 

from four human islet samples, and then performed hybridization 

capture of 31,253 promoter-containing HindIII fragment baits and 

their ligated DNA fragments. These were then sequenced and 

processed with the CHiCAGO algorithm to define 175,784 high-

confidence interactions (CHiCAGO score > 5) between annotated 

promoters and distal genomic regions promoter-interacting DNA 

fragments 14,15 (Fig. 1a,b and Supplementary Fig. 1). These high-

confidence interactions were called with pooled samples, but for 
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89% of interactions all individual samples showed CHiCAGO 

scores above the 95% confidence interval of random distance-

matched regions (Supplementary Fig. 1d-g). We also validated 

pcHi-C landscapes by 4C-seq analysis in the EndoC-βH1 human β 

cell line in two selected loci (Supplementary Fig. 1h,i). 

 

 
 
Figure 1. The promoter interactome of human pancreatic islets. a, Overview of 
promoter-capture Hi-C (pcHi-C) in human islets. b, Integrative map of the KCNJ11-
ABCC8 locus, showing human islet ATAC-seq and ChIP-seq, HindIII bait 
fragments, and arcs representing high-confidence pcHi-C interactions in human 
islets and erythroblasts. c, High-resolution annotations of islet open chromatin. 
ATAC-seq data from 13 islet samples were used to define consistent open 
chromatin regions, which were classified with k-medians clustering based on 
epigenomic features. Mediator and H3K27ac binding patterns allowed sub-
classification of active enhancer classes I-III. Post-hoc analysis of islet CAGE tags 
confirmed that transcription start sites are highly enriched in promoters and weakly 
in class I enhancers. These islet regulome annotations are hereafter Supplementary 
Data Set 1. d, Average H3K27ac and Mediator signal centered on open chromatin 
regions for active enhancer subtypes in three human islet (HI) samples and input 
DNA. e, Overlap of promoter-interacting regions with epigenomic features, 
expressed as average log2 ratios (and 95% confidence intervals) over the overlaps 
obtained with 100 sets of distance-matched fragments. Error bars show s.d. across 
control sets. 

 

To define the chromatin landscape of interacting regions, we refined 

existing human islet epigenome annotations by generating human 

islet ATAC-seq maps and 30 new ChIP-seq datasets (Fig. 1b-d, 

Supplementary Table 1). This enabled a subclassification of active 
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enhancers according to Mediator, cohesin, and H3K27ac occupancy 

patterns (Fig. 1b-d, Supplementary Data Set 1). Expectedly, 

promoter-interacting genomic regions were enriched in active 

enhancers, promoters, and CTCF-bound regions (Fig. 1e, 

Supplementary Fig. 2a-c). pcHi-C interactions observed in pcHi-C 

maps from distant cell types were enriched in CTCF binding sites 

and active promoters, whereas islet-selective interacting regions 

were enriched in active enhancers (particularly those with strongest 

Mediator occupancy, which we term class I enhancers) and were 

connected with genes showing islet-specific expression 

(Supplementary Fig. 2d-f). This genome-scale map of the human 

pancreatic islet promoter interactome is accessible for visualization 

along with pcHi-C maps of other human tissues (www.chicp.org) 16, 

or as virtual 4C representations of all genes along with islet 

regulatory annotations (isletregulome.org) 17. 

 

Identification of target genes for islet enhancers.  

Long-range chromatin interactions are largely constrained within 

topologically associating domains (TADs), which typically span 

hundreds of kilobases and are often invariant across tissues 

(Supplementary Fig. 3a-e) 18,19. TADs, however, define broad 

genomic intervals that do not necessarily inform on the specific 

interactions that take place in each tissue between individual cis-

regulatory elements and their target genes. Human islet pcHi-C 

maps identified high-confidence pcHi-C interactions (CHiCAGO 

score > 5) between gene promoters and 18,031 different islet 

enhancers (Fig. 2a). Remarkably, 42.2% of enhancers that showed 

interactions with gene promoters had high-confidence interactions 

with more than one gene, thereby illustrating an unexpected 

complexity of islet enhancer-promoter interactions (Supplementary 

Fig. 3f).  

 

We used pcHi-C maps to further expand the number of enhancers 

that could be assigned to target genes. We reasoned that interactions 

between enhancers and their target genes can be missed due the 

stringency of detection thresholds, the strong bias of Hi-C methods 

against proximal interactions, or their dependence on specific 

environmental conditions. To impute additional enhancer-promoter 

assignments, we considered promoter-associated three-dimensional 

spaces (PATs). A PAT was defined as the space containing all 

pcHi-C interactions that stem from a promoter bait (Supplementary 

http://www.chicp.org/
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Fig. 3g,h). We observed that PATs that had one high-confidence 

enhancer-promoter interaction were more likely to show other 

enhancer-promoter interactions, and exhibited chromatin features 

that distinguished them from other PATs (Supplementary Fig. 3 i-

k). This prompted us to leverage PAT features to impute plausible 

target promoter(s) of an additional 18,633 islet enhancers that did 

not show high-confidence interactions (Fig. 2a; see Supplementary 

Fig. 3l and Methods for a detailed description of the imputation 

pipeline). Imputed promoter-enhancer pairs showed higher 

CHiCAGO scores than distance-matched regions (Kruskall-Wallis 

P < 10-16), suggesting that many imputed assignments represent 

physical interactions that do not reach our stringent significance 

thresholds (Supplementary Fig. 3m). In total, we used high-

confidence interactions and imputations to assign 36,664 human 

islet active enhancers (80% of all enhancers) to at least one target 

gene (Fig. 2a, Supplementary Data Set 2).  

 

We validated these enhancer-to-gene assignments with 

complementary approaches. First, we calculated normalized 

H3K27ac signals in assigned enhancer-promoter pairs across human 

tissues and human islet samples, and found that assigned pairs had 

distinctly higher correlation values than enhancers paired with 

distance-matched promoters from the same TAD or an overlapping 

PAT (Fig. 2b). Importantly, this was true for both high-confidence 

and imputed assignments (Fig. 2b). Islet-selective expression was 

expectedly enriched in enhancer-assigned genes but not in 

unassigned genes from the same TAD (Supplementary Fig. 3n). 

Furthermore, we determined 1,091 eQTL-genes (eGenes) from 183 

human islet samples (Supplementary Table 2), and found that 

eQTLs were enriched in enhancer-to-gene assignments determined 

through either high-confident interactions or imputations, compared 

with distance-matched regions (odds ratio 3.18 and 4.36; P = 3.05 × 

10-9 and 9.01 × 10-23, respectively) (Fig. 2c). 
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Figure 2. Identification of target genes of islet enhancers. a, We assigned target 
genes to 39.5% of all 45,683 active enhancers through high-confidence interactions. 
PAT features allowed imputing the assignment of promoters to another 40% of all 
active enhancers (see Supplementary Fig. 3l,m for further details and evidence that 
imputed assigments are enriched in sub-threshold interactions). b, Functional 
correlation of enhancer-gene pairs assigned through high-confidence interactions (n 
= 18,637 pairs) or imputations (n = 28,695 pairs). Spearman’s Rho values for 
normalized H3K27ac signal in enhancer-promoter pairs across 14 human islet 
samples and 51 Roadmap Epigenomics tissues. Control enhancer-gene pairs were 
enhancers that overlapped a PAT in linear maps but were not assigned to the PAT 
promoter (n = 9,770 pairs), or other unassigned gene-enhancer pairs from the same 
TAD (n = 20,186 pairs). c, Concordance of enhancer eQTL-eGene pairs and 
enhancers-gene pairs assigned through high-confidence interactions (n = 351 pairs) 
or imputations (n = 293 pairs), relative to distance-matched control regions (n = 579 
and 593 pairs, respectively), shown as a fold-change. P values were derived from 
one-sided Fisher’s exact test. d, Genes assigned to glucose-induced enhancers show 
concordant glucose-induced expression. Top: glucose-induced enhancers showed 
enriched high-confidence (n = 439) or imputed (n = 640) assignments to glucose-
induced genes, compared with distance-matched genes from the same TAD. 
Bottom: glucose-induced enhancers showed no enrichment for assignments to genes 
that were inhibited by high glucose concentrations (n = 196 interacting and n = 218 
imputed pairs). OR = odds ratio. P values were calculated with Chi-square tests. e, 
Genes assigned to glucose-induced enhancers through high-confidence interactions 
(n = 275) or imputations (n = 321 pairs) were enriched for glucose-induced 
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promoter H3K27ac, compared with control genes from the same TAD. Box plots 
represent IQRs, notches are 95% confidence intervals of median, P values are from 
Wilcoxon’s two-sided signed ranked tests. See also Supplementary Data Set 2.  

 

We further tested enhancer-promoter assignments in a dynamic 

perturbation model. We exposed human islets from 7 donors to 

moderately low (4 mM) or high (11 mM) glucose 72 hours, which 

correspond to quasi-physiological glucose concentrations. This led 

to glucose-dependent H3K27ac changes in 3,850 enhancers at 

adjusted P < 0.05, most of which showed increased activity at high 

glucose (Supplementary Fig. 3o). This result, therefore, showed that 

changes in glucose concentrations elicit quantitative chromatin 

changes in a large number of human islet enhancers. We next 

reasoned that glucose-regulated enhancers should tend to cause 

glucose-regulated expression of their target genes. Indeed, we 

observed that glucose-induced enhancers were preferentially 

assigned to genes showing glucose-induced mRNA, compared with 

distance-matched active control genes from the same TAD (odds 

ratio 2.7 and 2.6, Fisher’s P = 4.9 × 10-16 and 6.4 × 10-12, for high-

confidence or imputed assignments, respectively) (Fig. 2d). 

Likewise, genes assigned to glucose-induced enhancers showed 

greater glucose-induction of promoter H3K27ac than distance-

matched promoters in the same TAD (Fig. 2e). Collectively, these 

studies validated pcHi-C maps for the identification of functional 

target genes of transcriptional enhancers in human pancreatic islets. 

 

Genome editing of T2D-relevant enhancers.  

A fundamental challenge to translate GWAS data into biological 

knowledge lies in identifying the target genes of noncoding 

elements that carry disease-associated regulatory variants. To link 

noncoding variants to their target genes, we compiled T2D- and 

fasting glycemia (FG)-associated variants from 109 loci, most of 

which have been fine-mapped to a credible variant set 

(Supplementary Fig. 4a, Supplementary Data Set 3). For fine-

mapped loci, variants with a high posterior probability (PP > 0.1) of 

being causal were most enriched in active islet enhancers (Z = 20.9 

relative to control regions in the same locus) and promoters (Z = 

7.2)(Z < 2 for other accessible chromatin regions) (Supplementary 

Fig. 4b). In 61 loci we identified T2D- and/or FG-associated 

variants overlapping islet enhancers, and assigned one or more 

candidate target genes for 53 (87%) of these (Fig. 3a, 
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Supplementary Table 3). Some of these target genes were expected 

based on their linear proximity to the variants (e.g. ADCY5, 

TCF7L2, ZFAND3, PROX1, FOXA2), but for 75% of loci we 

identified more distant candidate genes. Examples of unexpected 

distal target genes, sometimes in addition to previously nominated 

proximal genes, include SOX4 (in the CDKAL1 locus), OPTN 

(CDC123/CAMK1D), TRPM5 (MIR4686), PDE8B (ZBED3), 

SLC36A4 (MTNR1B), POLR3A and RPS24 (ZMIZ1), MDGA1 

(ZFAND3) and PHF21A (CRY2) (Fig. 3a, Supplementary Table 3, 

see isletregulome.org or www.chicp.org). Selected unexpected 

targets, including ABCB9 and STARD10, were additionally 

supported by concordant eQTLs (Supplementary Fig. 4c-d). 

 

We used genome editing to validate target genes of 10 enhancers 

bearing T2D- or FG-associated variants from 8 loci (Fig. 3b, 

Supplementary Table 4). We performed these experiments in 

EndoC-βH3 cells, a glucose-responsive human β cell line20.  

 

In the CDC123 and CAMK1D locus, only one SNP from a small set 

of fine-mapped T2D-associated variants is located in an islet 

enhancer (Fig. 3c, Supplementary Fig. 5a,b, Supplementary Table 

3). This variant was previously proposed to be a regulatory variant 

based on plasmid reporter studies21, allele-specific chromatin 

accessibility22 and as an eQTL for CAMK1D 23,24 (Supplementary 

Table 2). The enhancer showed moderate-confidence interactions 

(CHiCAGO = 4.42) with CAMK1D, but, more surprisingly, showed 

high-confidence pcHi-C interactions with a more distant gene, 

OPTN (Fig. 3c, Supplementary Fig. 5a). Accordingly, deletion of 

this enhancer (but not an adjacent region), or silencing with KRAB-

dCas9, led to selectively decreased expression of both OPTN and 

CAMK1D, whereas targeted activation of the enhancer stimulated 

their expression (Fig. 3d, Supplementary Fig. 5c,d). These results, 

therefore, confirm functional relationships predicted by pcHi-C 

maps. Although the role of OPTN and CAMK1D as mediators of 

this T2D-associated genetic signal remains to be defined, the 

findings highlight an example of a diabetes-relevant enhancer with 

multiple target genes.  

 

 

http://isletregulome.org/isletregulome/
http://www.chicp.org/
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Figure 3. Identification of gene targets of T2D-relevant enhancers. a, We 
assigned gene targets through high-confidence interactions or imputations for 53 
(87%) out of 61 T2D-FG associated loci with genetic variants in islet enhancers 
(Supplementary Table 3). b, Summary of T2D-associated enhancer perturbations 
presented in this study (see also Supplementary Table 4). NT, not tested. c, Islet 
pcHi-C analysis defines gene targets of enhancers bearing T2D-associated variants 
near CDC123/CAMK1D. The only T2D risk credible set variant that maps to an 
islet enhancer in the locus (rs11257655, zoomed inset) is assigned to CAMK1D and 
OPTN (dashed horizontal lines). Islet pcHi-C virtual 4C representations from pooled 
samples show interactions stemming from both CAMK1D and OPTN promoters 
towards rs11257655 with ChICAGO > 3, but not from CDC123. d, CAMK1D and 
OPTN mRNA are regulated by the rs11257655-containing enhancer. We deleted the 
rs11257655-containing enhancer and a nearby control region with a T2D-associated 
variant (rs33932777) that lacked active chromatin marks in human islets. Cas9 only: 
n = 6 (2 independent experiments with triplicates). Deletions: n = 8 (2 gRNA pairs 
in 2 independent experiments with biological duplicates). Bars are means ± s.e.m., 
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normalized by TBP and expressed relative to mean levels of the Cas9 only controls. 
Statistical significance: two-tailed Student's t test. 

 

 

We also examined rs7903146, a plausible causal SNP in the 

TCF7L2 locus. This is the strongest known genetic signal for T2D, 

and it is known to influence islet-cell traits in non-diabetic 

individuals2,25,26. SNP rs7903146 lays in a class I enhancer with 

unusually high Mediator occupancy (Supplementary Fig. 6a). The 

SNP alters allele-specific accessibility and episomal enhancer 

activity6, and has been associated with differences in TCF7L2 

mRNA27. However, deletion of this enhancer in human colon 

cancer cells affects ACSL5 rather than TCF7L2 28, thereby 

questioning the true target genes of this enhancer in islet cells. We 

found that the rs7903146-bearing enhancer has imputed and 

moderate-confidence pcHi-C interactions with TCF7L2, but no 

evidence of proximity with any other gene in human islets 

(Supplementary Fig. 6a). Consistently, targeted deletion, functional 

inhibition, or stimulation of the enhancer caused selective changes 

in TCF7L2 mRNA (Supplementary Fig. 6b,c). Therefore, the 

enhancer that harbors rs7903146 regulates TCF7L2 in human β 

cells. Regardless of the possible metabolic role of this locus in other 

cell types29, this finding indicates that TCF7L2 is a likely mediator 

of the genetic association between rs7903146 and islet-related traits.  

For all 8 tested loci, at least one of the genes assigned by pcHi-C to 

an enhancer showed gene expression changes, and four showed 

changes in expression of more than one gene (Fig. 3b, 

Supplementary Table 4, Supplementary Data Set 4). This included 

functionally validated imputed target genes, such as VEGFA as well 

as MDGA1 and ZFAND3 (Supplementary Fig. 7). These functional 

studies, therefore, underscore the complexity of enhancer-promoter 

interactions, with long-range interactions that cannot be predicted 

from linear genome maps, interactions that are not functionally 

essential, and frequent target gene multiplicity. Importantly, the 

results validate the use of human pcHi-C maps to connect 

regulatory elements that harbor T2D-associated variants with the 

genes that can mediate disease susceptibility mechanisms. 

 

Islet-specific transcription is linked to enhancer hubs.  

Earlier studies demonstrated that risk variants for common diseases 

such as T2D are enriched in clusters of enhancers that regulate key 
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cell identity genes4-7. However, spatial clustering of enhancers is 

not necessarily apparent from linear genome maps. To identify 3D 

enhancer clusters, we again considered promoter-associated 3D 

spaces, or PATs, and empirically defined enhancer-rich PATs as 

those containing three or more class I enhancers (enhancers with 

high H3K27ac and Mediator occupancy, Fig. 1c). This definition of 

enhancer-rich PATs was supported by a multivariate analysis of 

genomic and epigenomic PAT features that were most predictive of 

islet-specific gene expression (Supplementary Fig. 8a and 

Methods). In total, we identified 2,623 enhancer-rich PATs 

(Supplementary Fig. 8b). As noted above, many active enhancers 

(~40%) had interactions with 1 promoter (Supplementary Fig. 3f). 

Thus, separate enhancer-rich PATs were often connected. We 

therefore merged enhancer-rich PATs with other PATs connected 

through enhancer-mediated high-confidence interactions, yielding 

1,318 islet enhancer hubs (Fig. 4a, Supplementary Fig. 8c). 

Compared to alternate enhancer hub definitions, this definition 

maximized the enrichment of islet cell functional annotations and 

the number of mapped hubs (Supplementary Fig. 9). The 1,318 islet 

enhancer hubs are, in essence, 3D chromatin domains that contain a 

median of 18 enhancers, two active promoters, and two shared 

enhancer interactions (Supplementary Fig. 8d). They are often 

tissue-selective interaction domains, because hub promoters had 

2.8-fold higher fraction of islet-selective interactions than non-hub 

promoters (Wilcoxon’s P = 2.8 × 10-36) (Supplementary Fig. 8e, 

examples in Figs. 1b, 5a, Supplementary Figs. 1h,i and 10a). 

Furthermore, the genes that form part of enhancer hubs were 

enriched in islet-selective transcripts, and in functional annotations 

that are central to islet cell identity, differentiation, and diabetes 

(Fig. 4b,c, Supplementary Table 5, Supplementary Data Set 5). 

 

Hubs exhibit domain-level chromatin changes. 

Consistent with the high internal connectivity of hubs, gene pairs 

from the same hub showed increased RNA expression correlation 

values across tissues and islet samples, as compared to control 

active gene pairs in the same TAD as the hubs (P = 6.3 × 10-8)(Fig. 

4d). Moreover, hub enhancers showed higher H3K27ac correlations 

with their target promoters than when were paired with non-hub 

promoters from the same TAD (P = 2.2 × 10-16) (Fig. 4e). These 

findings are consistent with enhancer interaction hubs as functional 

regulatory domains.  
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Figure 4. Tissue-specific enhancer hubs regulate key islet genes.  
a, Hubs are composed of one or more enhancer-rich PATs (≥ 3 class I enhancers) 
connected through at least one common interacting enhancer. Turquoise and dashed 
green lines depict high-confidence and imputed assignments, respectively. 
Descriptive features of hubs are summarized in Supplementary Figure 8c. b, Islet 
hubs are enriched in genes showing islet-selective expression. Ratios were calculated 
relative to all annotated genes. c, Islet hub genes are enriched in annotations 
important for islet differentiation, function and diabetes. Benjamini-Hochberg 
adjusted P values from EnrichR are shown (see complete lists in Supplementary 
Table 5). d, Gene pairs from the same hub show higher RNA correlations across 
human islet samples and 15 control tissues than gene pairs from the same TAD in 
which only one gene or neither gene is in a hub. P values were derived with 
Kruskall-Wallis analysis of variance. e, Enhancer-promoter pairs from the same hub 
show high H3K27ac correlations across 14 human islet samples and 51 Epigenome 
RoadMap tissues, compared with pairs from the same TAD in which only one 
element or neither are in a hub. P values were derived with a Kruskall-Wallis test. f,-
g, Culture of 7 human islet donor samples at 4 vs. 11 mM glucose shows concerted 
changes in H3K27ac in hub enhancers connected with glucose-dependent genes. 
Hub promoters were ranked by their median fold-change in H3K27ac at high 
glucose, so that glucose-induced promoters are on the left of the X axis. (f) Median 
mRNA for genes associated with each hub. (g) Median glucose-dependent fold-
change of H3K27ac in enhancers from hubs connecting with each promoter, IQR 
values in blue shade. In both graphs values are shown as running averages (window 
= 50). h, Coordinated glucose-induced H3K27ac in enhancers of a hub connected to 
KIRREL3. Top tracks show RNA and H2K27ac in one representative sample. 
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Bottom insets highlight H2K27ac at 11 mM glucose (red) vs. 4 mM (blue) in regions 
showing coordinated glucose-induced changes in most hub enhancers, highlighted 
with black arrows (n = 4 human islet samples). See also Supplementary Table 6, 
Supplementary Data Set 5. 

 

To further explore the behavior of hubs as functional domains, we 

again examined islets exposed to moderately low vs. high glucose 

concentrations. Glucose-induced enhancers and mRNAs were 

highly enriched in hubs, compared with non-hub counterparts 

(Fisher’s P = 1.1 × 10-7 and 2.2 × 10-16, respectively). Of 297 

promoters that showed glucose-induced H3K27ac, 94 were 

contained in hubs, and 65% of these showed glucose-induced 

mRNA (Supplementary Tables 6,7). We predicted that if hubs are 

functional regulatory domains, hub enhancers connected to glucose-

induced genes should tend to show coordinated glucose-dependent 

changes. Our analysis showed that hub enhancers assigned to 

glucose-induced promoters showed a widespread parallel increase 

in H3K27ac (Fig. 4f-h, Supplementary Table 8). Thus, varying 

glucose concentrations elicit chromatin changes in human islets at 

the level of broad regulatory domains. Taken together, our findings 

indicate that enhancer hubs have properties of functional units.   

 

Enhancer hubs contain super-enhancers and enhancer clusters.  

We compared islet enhancer hubs with previously defined islet 

enhancer domains, such as linear enhancer clusters and super-

enhancers (Supplementary Fig. 8f). This showed that hubs have at 

least some spatial overlap with 70% of enhancer clusters 7, and with 

87% of super-enhancers defined with a standard algorithm 4 

(Supplementary Fig. 8g-i). Hubs, however, differ in that they can be 

connected with their target genes. Furthermore, enhancer hubs 

capture spatial clusters of Mediator-bound (class I) enhancers that 

do not cluster in the linear genome and therefore do not fulfill 

definitions of super-enhancers and enhancer clusters 

(Supplementary Fig. 8j-l) 4,7. In fact, many hubs contained several 

inter-connected enhancer clusters or super-enhancers 

(Supplementary Fig. 8m-o). This is illustrated by the ISL1 locus, 

which has several enhancer clusters and super-enhancers distributed 

across an entire TAD, whereas pcHi-C points to a single hub that 

connects dozens of enhancers with ISL1 and lncRNA HI-LNC57 

(Fig. 5a). Thus, enhancer hubs are 3D domains that often include 
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one or more enhancer clusters or super-enhancers and their target 

gene(s).  

 

 
 
Figure 5. Tissue-specific topology of the ISL1 enhancer hub. a, Epigenomic 
annotations and high-confidence pcHi-C interactions from pooled islet samples and 
total B lymphocytes are shown to illustrate active enhancers, super-enhancers and 
enhancer clusters distributed across a TAD, while sharing islet-selective 3D 
interactions with ISL1 and HI-LNC57. b-c, 3D chromatin conformation models of 
the ISL1 enhancer hub generated from pcHi-C libraries from human islets (b) and 
total B lymphocytes (c). Images represent the top scoring model from the ensemble 
of structures that best satisfied spatial restraints. Class I, II and III enhancers are 
colored in dark to light red and promoters in blue if they are within 200 nm of the 
ISL1 promoter, or as white spheres if they are further than 200 nm. Note the 
proximity of lncRNA HI-LNC57 and ISL1 promoters in islets. The models show 
that active islet regulatory elements interact in a restricted 3D space in islet nuclei. 
See also Supplementary Figure 10b,c and Supplementary Videos 1 and 2. 
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Tissue-specific architecture of the ISL1 enhancer hub. 

To gain insight into the 3D conformation of enhancer hubs, we built 

3D models of hubs using islet pcHi-C interaction data (Fig. 5a). We 

focused on the ISL1 locus because it contains a single hub within a 

TAD-like domain, with few other annotated genes. We used islet 

pcHiC data to build interaction matrices at 5-kb resolution, and 

transformed the frequency of interactions between genomic 

segments into spatial restraints 30,31. We then used molecular 

dynamic optimization to generate an ensemble of 500 models that 

best satisfied the imposed restraints. This showed co-localization of 

islet enhancers and target genes in a constrained space of the TAD, 

whereas models built from B lymphocyte pcHi-C libraries showed 

decreased aggregation of these regions (Fig. 5b,c, Supplementary 

Fig. 10b,c, Supplementary Videos 1-2). Quantitative analysis of 

ISL1 and six other T2D-relevant hubs showed analogous tissue-

specific aggregation of hub enhancers and promoters 

(Supplementary Figs. 10d-I, 13f-h). These models, which capture 

the average topology in a population of cells, serve to highlight that 

whereas TADs are defined as single intervals in linear genome 

maps, hubs are formed by multiple interspersed regions that occupy 

a shared 3D subspace within a TAD.   

 

Epigenome editing of T2D-associated islet hubs. 

We used enhancer perturbations to test the functional connectivity 

of selected enhancer hubs. In the ZBED3 locus, we targeted a class I 

enhancer that contains a variant with highest posterior probability 

for causality in T2D fine-mapping studies (PP = 0.461) (Fig. 6a, 

Supplementary Fig. 11a, Supplementary Table 4). Targeted 

epigenomic activation or inhibition of this single enhancer led to 

significant changes in the expression of five of the six genes 

connected with this hub, but not of non-hub genes from the same 

TAD (Fig. 6b). In three other hubs we perturbed single enhancers 

containing candidate T2D susceptibility causal variants, which led 

to expression changes in CRY2 and PHF21A (Supplementary Fig. 

11b,c), VPS13C, C2CD4A and C2CD4B (Supplementary Fig. 12) 

and GLIS3 (Supplementary Fig. 13). These findings highlight a 

remarkable functional connectivity of enhancer hubs.  
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Figure 6. The ZBED3 enhancer hub links an enhancer bearing a T2D SNP 
with multiple target genes. a, pcHi-C and virtual 4C representations from pooled 
islet samples for three viewpoints (see also Supplementary Fig. 10). The variant with 
highest posterior probability in this locus (rs7732130) maps to a class I islet enhancer 
(yellow line, and zoomed inset) that shows interactions with PDE8B (CHiCAGO > 
5), and ZBED3, ZBED3-AS1, snoRA47 and S100Z (CHiCAGO > 3, see also 
Supplementary Fig. 11). WDR41 is assigned to rs7732130 by imputation. Dashed 
horizontal lines show all targets assigned through imputation or high-confidence 
interactions. b, Analysis of hub and non-hub transcripts after CRISPR activation or 
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inhibition of the transcriptional start site of ZBED3 or the rs7732130-enhancer in 
EndoC-βH3 cells. Data are presented as means ± s.e.m. of all gRNAs combined per 
target region (enhancer CRISPRa: 3 gRNAs, CRISPRi: 4 gRNAs, all n = 3 
independent experiments). Statistical significance: two-tailed Student's t test. 

 

 
Figure 7. Islet hub variants impact insulin secretion and provide tissue-
specific risk scores. a, Variant Set Enrichment (VSE) for T2D and FG (n = 2,771 
variants; Supplementary Table 9) and breast cancer (n = 3,048 variants) in high-
confidence islet interacting fragments. Box plots show 500 permutations of matched 
random haplotype blocks. Red dots indicate significant enrichments (Bonferroni–
adjusted P < 0.01). b, T2D and FG GWAS significant variants are selectively 
enriched in hub class I islet enhancers. Boxplots show median and IQR. c, Genomic 
inflation of T2D association P values for non-GWAS significant variants (P > 5 × 
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10-8) from a T2D GWAS meta-analysis (12,931 cases, 57,196 controls) in islet high-
confidence interacting regions (magenta), non-interacting islet open chromatin 
(beige), and all other variants (brown). d, Genomic inflation of T2D association P 
values for non-GWAS significant variants in hub class I islet enhancers (blue), non-
hub islet open chromatin (beige) and all other variants (brown). e, Heritability 
estimates based on GWAS summary statistics for T2D (12,931 cases, 57,196 
controls), insulinogenic index (OGTT, 7,807 individuals), homeostasis model 
assessment of β-cell function (HOMA-B) and insulin resistance (HOMA-IR) 
(~80,000 individuals), for indicated islet enhancer domains. Bars show category-

specific per-SNP heritability coefficients ( ) divided by LD score heritability (h2) of 
each trait. coefficients were obtained independently for each trait, controlling for 
53 functional annotation categories. Values were multiplied by 107 and shown with 
s.e.m. f, T2D frequency across 40 bins, each representing 2.5% of individuals in the 
UK Biobank test dataset (226,777 controls, 6,127 T2D cases) with increasing PRS, 
calculated with hub (pink dots) or genome-wide variants (light green). g, Odds ratios 
(OR) for T2D calculated for 2.5% individuals with highest PRS vs. all other 
individuals, using islet hub (pink) or genome-wide models (green), stratified by BMI 
and T2D age of onset. Boxplots show ORs for PRS from 100 permutations of 
pseudo-hubs (IQRs). Z-scores are standard deviations of pseudo-hub averages. See 
also Supplementary Figure 15 and Supplementary Table 17. 

 

Islet hub variants impact insulin secretion. 

Previous evidence that T2D susceptibility variants are enriched in 

islet enhancer clusters 5-7,24,32 prompted us to examine the 

enrichment of diabetes-associated variants in our newly defined 

annotations. T2D/FG-associated SNPs were enriched in islet pcHi-

C interaction regions (Fig. 7a), and in islet enhancer hub class I 

enhancers, rather than in other active enhancers (Fig. 7b, 

Supplementary Fig. 9, 14a-f, Supplementary Table 9). This 

indicates that hub class I enhancer variants are important for T2D 

susceptibility. 

 

A major portion of the heritability of common diseases is driven by 

many variants that individually have not achieved genome-wide 

significance, yet exert a large aggregate effect 33-35. Consistent with 

this notion, common variants that have so far not shown genome-

wide significance for T2D association, but are located in pcHi-C 

interacting regions or hub class I enhancers, showed more 

significant association P values than expected distributions (Fig. 

7c,d). This observation prompted us to quantify the overall 

contribution of common variants in islet hubs to the heritability of 

T2D. We used stratified LD score regression 36, and found that hub 

class I enhancers showed the most significantly increased per-SNP 

T2D heritability coefficient (q = 1.64 × 10-2) compared with various 
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islet and non-islet genomic annotations (Fig. 7e, Supplementary 

Fig. 15a, Supplementary Table 10).  

 

Although islet dysfunction is central to the pathophysiology of T2D, 

other tissues (liver, adipose, muscle, brain, among others) are also 

critically important37. Genetic variation in islet hub enhancers 

should, therefore, predominantly impact on the heritability of 

pancreatic islet function. Indeed, islet hub variants showed higher 

heritability enrichment estimates for islet-cell traits than for T2D 

(Fig. 7e, Supplementary Fig. 15a-f, Supplementary Table 10). 

Consequently, common variation in hub class I enhancers (0.26% of 

genomic SNPs) explained 9.9% of observed genetic heritability for 

T2D, 21.9% for acute insulin secretory response in intravenous 

glucose tolerance tests26, 17.2% for HOMA-B models of -cell 

function, and 31.2% for an insulinogenic index based on oral 

glucose tolerance tests38 (Supplementary Table 10). In sharp 

contrast, islet hub variants showed no enrichment for HOMA-IR, an 

estimate of insulin resistance (Supplementary Fig. 15e). Of note, 

significant heritability enrichments were generally also observed for 

enhancer clusters, stretch enhancers, or super-enhancer annotations, 

yet estimates were consistently larger for hub enhancers (Fig. 7e, 

Supplementary Fig. 15a-d). These results indicate that enhancer 

hubs define genomic spaces that play a prominent role in the 

heritability of T2D and insulin secretion. 

 

Online content  

Any methods, additional references, Nature Research reporting 

summaries, source data, statements of code and data availability and 

associated accession codes are available at https://doi.org/10.1038/ 

s41588-019-0457-0.  
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METHODS 

 

Human islets. Human pancreatic islets from organ donors without a 

history of glucose intolerance were purified using established 

isolation procedures1-4, shipped in culture medium and re-cultured 

at 37°C in a humidified chamber with 5% CO2 in glucose-free 

RPMI 1640 supplemented with 10% fetal calf serum, 100 U/ml 

penicillin, 100 U/ml streptomycin and 11 mM glucose for three 

days before analysis. RNA was extracted from flash-frozen islet 

pellets using TRIrizol Reagent (Thermo Scientific). For glucose 

regulation studies, islets were cultured in identical time and 

medium, except that glucose-free RPMI 1640 medium was 

supplemented with glucose to achieve final concentrations of either 

4 or 11 mM glucose. Donor and sample characteristics are provided 

in Supplementary Table 11.  

Compliance with ethic regulations for human research studies is 

described in Supplementary Note 1.   

 

pcHi-C. 30-60 million human islet cells/donor from four islet 

donors were cultured as described above for three days prior to 

fixation in 2% paraformaldehyde (Agar Scientific) at room 

temperature for 10 minutes with mixing, quenched in 125 mM 

glycine for 5 minutes at room temperature and 15 minutes in ice, 

and washed twice in PBS. Dry pellets were flash frozen and stored 

at -80°C.  

 

Hi-C libraries were prepared with in-nucleus ligation and processed 

to capture 22,076 HindIII fragments containing 31,253 annotated 

promoters for 18,202 protein-coding and 10,929 non-protein coding 

genes (Ensembl v.75), using SureSelect target enrichment (Agilent 

Technologies), as described previously5,6. After library enrichment, 

a post-capture PCR amplification step was carried out with 4 PCR 

amplification cycles.  

 

Twelve sequencing replicates from 4 human islet donor libraries 

were processed using a reported pipeline which maps di-tags 

against the human genome (GRCh37), filters out experimental 

artefacts such as re-ligations, and removes PCR duplicates7. Reads 
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from replicates from each donor were then pooled. Alignment 

statistics are shown in Supplementary Tables 12,13.  

 

Interaction confidence scores were computed with CHiCAGO6,8. 

High confidence interactions were defined as CHiCAGO scores >5, 

as described6. pcHi-C datasets from unrelated tissues6 were 

processed identically. CHiCAGO analysis is generally performed 

with pooled libraries as this increases sensitivity and mitigates 

subsampling in individual libraries6,8. We assessed reproducibility 

across individual samples, and observed that high-confidence 

interaction calls showed (a) high CHiCAGO scores in individual 

samples, with limited overlap with distance-matched regions 

(Supplementary Fig. 1d), (b) pairwise Pearson ρ values of 

individual sample CHiCAGO scores ranging 0.62-0.74 

(Supplementary Fig. 1e), (c) consistent above-background scores in 

individual samples (Supplementary Figs. 1f,g and 5a). 

 

ChIP-seq and ATAC-seq. ChIP and ATAC were performed as 

previously described9,10, with modifications (Supplementary Note 

2). Adaptor trimming of ChIP-seq reads was performed with 

cutadapt 1.9.1 (options: -m 20)11. For ATAC-seq, low quality bases 

and adaptor trimming were processed using Trimgalore 0.4.1 

(options --quality 15 –nextera). Trimmed reads were aligned to 

hg19 using bowtie2 2.1.0 (options: --no-unal) allowing no 

mismatches12, retaining uniquely mapped reads (MAPQ>=30) using 

samtools 1.2 13, removing duplicate reads (picard 2.6.0)14, 

blacklisted regions15, and, for ATAC-seq, mitochondrial reads. Data 

quality was assessed with SPP.R script from phantompeaktools16. 

ChIP-seq and ATAC-seq information is shown in Supplementary 

Table 1. 

 

For histone modifications, broad enriched regions were called with 

MACS217 using --g hs --extsize=300 --keep-dup all --nomodel --

broad and narrow regions were called without using --broad flag. 

For TF and co-factors, narrow regions were called using –g hs –

extsize=300 --keep-dup all. For ATAC-seq, we used --shift 100 --

extsize=200 --keep-dup all --nomodel. 

 

To obtain a robust set of ChiP-seq peaks, we called peaks in 

individual human islet samples with relaxed stringency (P < 0.01), 

and in pooled samples using a stringent threshold (FDR q < 0.05 for 
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Mediator and cohesin; and q < 0.01 for histone modification marks). 

We then identified peaks present in at least 3 individual samples, or 

at least 2 samples if only 3 replicates were processed, as well as in 

the pooled set. For accessible chromatin sites, we called peaks at P 

< 0.01 in 13 individual samples, and FDR q < 0.05 from pooled 

samples. We then defined consistent peaks present in at least 3 

samples as well as in the pooled set. Consistent ATAC peaks that 

showed multiple sub-peaks in > 3 islet samples were manually split, 

leading to n = 241,481 ATAC peaks. A final set of accessible 

chromatin regions (n = 249,582) was defined by adding regions 

lacking ATAC-seq peaks that showed either Mediator or CTCF 

binding (n = 1,319, n = 9,596 respectively) or were bound by at 

least two islet transcription factors (n = 1,514)9. bigwig files were 

generated using bamCoverage from deepTools (-e=300 --

normalizeTo1x 2451960000). 

 

Classification of human islet accessible chromatin. We classified 

249,582 consistent islet open chromatin regions using k-medians 

clustering of ChIP-seq signal distribution of H3K27ac, H3K4me1, 

H3K4me3, Mediator, cohesin and CTCF, using islet samples with 

greatest signal to noise for these marks. Briefly, -log10 (P value) 

signal was calculated for each mark using 100 bp bins across a 6-kb 

window centered on consistent open chromatin regions. K-median 

clustering (flexClust 18) was used to classify open chromatin regions 

into 14 clusters, which were manually merged into 8 clusters based 

on the chromatin mark enrichment patterns. Each open chromatin 

class was ranked by CTCF binding to highlight a subset of CTCF-

bound enhancers. Post-hoc analysis showed that human islet 

transcription start sites defined by CAGE were markedly enriched 

in regions classified as active promoters, and to a lesser extent in 

class I enhancers (Fig. 1c). See Supplementary Data Set 1 for 

genomic locations. 

 

PATs and enhancer-promoter assignments. We defined 16,030 

Promoter-Associated Territories (PATs) as the linear space covered 

by all interactions originating from a pcHi-C bait, within the same 

islet TAD-like compartment (Supplementary Note 3).  

 

We used PAT features to assign enhancers to promoters, following 

a stepwise approach such that each step was performed on 

unassigned enhancers from previous steps. We assigned enhancers 
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to baits with at least one active islet promoter according to our 

regulome annotations (Supplementary Data Set 1) or ChromHMM 

analyses (Supplementary Note 6), and report target genes with 

average human islet RNA expression > 1.5 TPM (Supplementary 

Data Set 2), based on the following criteria: 

1. Presence of high-confidence interactions (CHiCAGO score > 5) 

to one or more baits, including those that cross TAD boundaries 

(also referred to as assignment by interaction).   

2. For enhancers with no high-confidence interactions, we defined 

PAT(s) in which they were contained. We did not assign enhancers 

to all overlapping PATs because only some active genes are 

regulated by enhancers, and instead only imputed orphan enhancers 

to PAT(s) anchored by an active promoter that already showed 

high-confidence interactions with other islet enhancers. 

3. For remaining enhancers located < 10 kb away from a bait 

containing active promoter(s), we assumed that (a) this linear 

distance is more likely to provide functional enhancer-promoter 

communication than promoters located more distally that do not 

show high-confidence interactions, and (b) random collisions are 

too frequent to detect high confidence interactions above 

background noise, and thus imputed these enhancer-promoter 

assignments. 

4. For remaining enhancers that were exclusively contained within a 

single PAT with an active promoter, we imputed the assignment to 

expressed genes in that PAT bait. We refer to assignment criteria 2-

4 as imputations in the manuscript.  

Enhancer-promoter assignments can be found in Supplementary 

Data Set 2, and were validated by analysis of (a) CHiCAGO scores 

in imputations (b) increased enhancer-promoter correlations, (c) 

islet-specificity of assigned genes, (d) concordance with eQTLs, 

and (e) coordinated changes after exposure to varying glucose 

concentrations (Supplementary Note 7).  

 

Candidate target genes of T2D-FG associated variants. We 

integrated lists of T2D/FG-associated variants (Supplementary Note 

8) with enhancer-promoter assignments to identify candidate target 

genes. We associated 555 enhancer variants from 51 loci to islet-

expressed genes using high-confidence interactions and 

imputations. Supplementary Table 3 provides a more extensive list 

of 830 T2D/FG-associated variants overlapping an active enhancer 

or promoter, with information on connections to candidate target 



 

 114 

genes through (a) high-confidence interactions (CHiCAGO score > 

5), (b) moderate-confidence interactions (CHiCAGO 2.5-5), (c) 

imputations, (d) indirect connections through a common hub, and 

(e) location of actively expressed gene within 10 kb. This category 

also included actively transcribed genes from associated variant-

containing promoters that overlap pcHi-C baits. Supplementary 

Table 3 additionally lists T2D-FG variants overlapping a promoter 

interacting region that do not overlap an annotated regulatory 

element. 

 

Cell-based genome and epigenome editing. Experimental 

validation of T2D-relevant enhancer-promoter assignments in 

EndoC βH3 cells19 is described in the Supplementary Note 10, and 

Nature Protocol Exchange (I.C. and Anthony Beucher). 

 

Classification of PATs based on enhancer content.  

We defined enhancer-rich PATs as those with three or more class I 

enhancers (Supplementary Fig. 8b). This was supported by logistic 

regression analysis (Supplementary Note 11) showing that the 

number of class I enhancers assigned to a PAT was independently 

predictive of islet-selective expression of PAT genes. This effect 

was optimized with PATs with ≥ 3 assigned class I enhancers 

(Supplementary Fig. 9). 

 

Enhancer hubs. Enhancer-rich PATs were frequently 

interconnected through one or more shared enhancers (42.4% of all 

active enhancers had high-confidence interactions with > 1 bait). 

We thus merged enhancer-rich PATs with other PATs that were 

connected by one or more common enhancers through high-

confidence interactions (CHiCAGO score > 5). For 99.5% of hubs 

all hub components were restricted to one chromosome. Alternative 

definitions of hubs were created to test how a) the number of 

enhancers in enhancer-rich PATs, b) the inclusion of enhancer-gene 

imputed assignments, and c) criteria to merge PATs, influence 

definitions of enhancer hubs (Supplementary Fig. 9).  

 

To annotate hub genes, we considered annotated promoters of genes 

with median RNA expression > 1.5 TPM in human islets. In few 

cases (n = 426), pcHi-C bait fragments contained active enhancers 

that established high-confidence pcHi-C interactions with non-

baited fragments containing active islet promoters, which were also 
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considered as constituents of islet hubs. A list of human islet 

enhancer hubs is presented in Supplementary Data Set 5. Functional 

enrichments of hub Ensembl genes were performed with Enrichr20.  

The analysis of correlated hub promoter and enhancer activity, and 

islet-selectivity of enhancer interactions is described in 

Supplementary Note 12. 

 

3D modeling of hubs. 3D modeling and analysis of enhancer hubs 

were partly based on previously described methods21,22, and are 

described in Supplementary Note 13.  

 

T2D-FG variant enrichments in regulatory annotations. Variant 

Set Enrichment (VSE)23 was used to compute the enrichment of 

T2D and FG-associated variants in regulatory annotations, using 

lead SNPs from 109 loci (Supplementary Table 9), and is described 

in Supplementary Note 14.   

 

GWAS meta-analysis of insulin secretion. 7,807 individuals from 

four population studies were included in these analyses: the Inter99 

study (ClinicalTrials ID-no: NCT00289237) (n = 5,305)24, the 

Health2008 cohort (n = 605)25, the 1936 Birth Cohort (n = 709)26 

and the ADDITION-Pro cohort (n = 1,188)27. All study participants 

gave informed consent and studies were approved by the 

appropriate Ethical Committees in accordance with scientific 

principles of the Helsinki Declaration II. 

 

In all cohorts, glucose-stimulated insulin secretion was evaluated by 

measurement of plasma glucose and serum insulin at 0, 30 and 120 

minutes during a 75 g oral glucose tolerance test (OGTT). We 

calculated Insulinogenic index = (s-insulin at 30 minutes [pmol/l] - 

fasting s-insulin [pmol/l]) / p-glucose at 30 minutes (mmol/l). 

Individuals with known diabetes were excluded.  

  

Two sample sets (Inter99 and Health2008) were genotyped by 

Illumina OmniExpress array and others by Illumina CoreExome 

array. Genotypes were called by Illumina GenCall algorithm. 

Genotype data were filtered for variants with call rate <98% and 

Hardy-Weinberg equilibrium P < 10-5. Samples were excluded if 

they were ethnic outliers, had mismatch between genetic and 

phenotypic sex or had a call rate <95%.  
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Genotype data were imputed to the Haplotype Reference 

Consortium (HRC) reference panel v1.128 at the Michigan 

Imputation Server using Minimac3 after phasing genotypes into 

haplotypes with Eagle229. Post-imputation SNP filtering included 

exclusion of variants MAF < 0.01 or info score < 0.70. In each 

cohort, association analysis was performed by applying a linear 

regression model including age and sex as covariates via SNPTEST 
30. The phenotype was rank-normalized within each cohort before 

analysis. A fixed-effects meta-analysis implemented in the R 

package meta 31 was finally performed. 

 

Heritability estimates (see also Supplementary Notes 16 and 17). 

To estimate the polygenic contribution of different genomic 

annotations to GWAS-based heritability of T2D and related traits 

we applied the stratified LD Score regression method32,33. The 

method leverages the relationship between LD structure and 

association test statistics to estimate the average per-SNP 

contribution to heritability (  coefficient) of functional genomic 

categories. We used a baseline panel of 53 baseline genomic 

annotations32,33, and interrogated broad range of islet regulatory 

annotations including enhancer hubs, as well as control annotation 

sets such as Central Nervous System functional annotations, 

random non-open chromatin regions, and pseudo-enhancer hubs. 

We provide the per-SNP heritability coefficient for each 

regulatory annotation. To facilitate comparisons across traits and 

annotations, we normalized the  estimates by dividing them by the 

LD Score heritability for each phenotype, and multiplied by 107. To 

correct for multiple testing, we generated  q-values (FDR-

adjusted P values calculated from the Z-scores of the  

coefficients) with the qvalue R package over 17 functional 

categories and 6 traits. FDR significance threshold was set at 0.05.  

 

Polygenic risk scores (PRS)(see also Supplementary Note 18). We 

created PRS based on T2D GWAS summary statistics from 

70kfort2d34 (base dataset). UK Biobank individuals 35 were used as 

the target datasets, which comprised training and testing datasets. 

To select markers for PRS we first considered all genetic markers 

that were used as input for phasing and genotype imputation by UK 

Biobank, and filtered for variants with MAF ≥ 5% and imputation 
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quality score > 0.8. We then reconciled the base and target datasets 

by looking at the variant overlap between summary statistics and 

the imputed UK Biobank data, discarding variants showing allele 

inconsistency between both datasets. We also removed those 

located in the MHC region, resulting in a final collection of 

5,352,737 variants.  

 

We excluded UK Biobank individuals with: (i) excess of relatives 

(showing > 10 putative third-degree relatives, as provided by UK 

Biobank), (ii) greater than third-degree of relatedness (from each 

pair of related individuals we excluded the subject with the highest 

missing rate for a set of high-quality markers, as provided by UK 

Biobank), (iii) no gender information, (iv) ICD10 codes E10 

(insulin-dependent diabetes mellitus), E13 (other specified diabetes 

mellitus) and E14 (unspecified diabetes mellitus), (iv) no body mass 

index (BMI) information. T2D cases were defined by the E11 

ICD10 code.  

 

The sample size of UK Biobank qualifying individuals was 377,981 

controls and 15,764 cases, which was divided in training and testing 

datasets. For the training dataset, we included only control subjects 

with age at recruitment ≥ 55 years and no family history of diabetes 

mellitus, yielding a final training dataset sample size of 6,305 T2D 

cases and 73,922 controls. The remaining 236,236 individuals were 

used as a test dataset, and were not filtered by age or family history.  

PRS models were calculated from abovementioned base and 

training datasets using the PRsice software36 with default settings 

and clumping parameters (--clump-r2 0.6 --clump-p 0.01). We 

included 11 covariates in the analysis: the 7 principal components 

provided by UK Biobank investigators as well as BMI, age at 

recruitment, batch information, and sex.  

 

We generated PRS models based on the following common genetic 

variants: (a) the entire genome-wide set shared by the training and 

testing dataset (total of 5,352,737 variants; 1,152 qualifying variants 

in the model), (b) variants overlapping hub pcHi-C baits and 

enhancers (total variants = 86,158; 179 qualifying variants in the 

model), (c) variants overlapping islet open chromatin regions, 

excluding islet hub baits and enhancers and those in LD (r2 > 0.1) 

with islet hub index variants (total variants = 269,342; 160 

qualifying variants in the model), (b) the remaining genome, 
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excluding variants overlapping islet hub regions or other islet open 

chromatin regions or those in LD with islet hub index variants (total 

variants = 4,913,005; 355 qualifying variants in the model).  

 

To enable comparisons of PRS effects in stratified subgroups, we 

created regions with similar genomic space and distribution as hubs 

(pseudo-enhancer hubs). Pseudo-enhancer hubs were generated 

essentially as for LD score regression analysis, except that they 

resembled hubs used for PRS, in that they contained all enhancers 

and baits of hubs. We created 100 sets of ~1,000 pseudo-enhancer 

hubs by shuffling hub pcHi-C baits and their assigned enhancer 

fragments across randomly selected size-matched TADs, excluding 

those in TADs with real hubs, or if they crossed TAD boundaries. 

We then built PRS models using variants overlapping these pseudo-

baits and pseudo-enhancers (average of 265 qualifying variants per 

pseudo-hub PRS model). 

 

To assess PRS, we first stratified the entire UK Biobank test dataset 

(n = 236,236) in 40 bins, each one containing 2.5% of individuals 

ranked by the PRS score. To enable assessment of PRS for T2D 

stratified by BMI and age of diagnosis, all measures of T2D 

frequency were performed exclusively with the 6,127 T2D cases 

with known age of diagnosis, and diagnosed after 20 years of age, 

and all 226,777 controls, which were censored at enrolment to UK 

Biobank. We calculated either T2D frequency ratios in top vs. 

bottom bin, or the odds ratio for T2D in individuals with highest 

PRS scores (top 2.5% bin) vs. remaining individuals in the same 

age and BMI categories using a logistic regression model adjusted 

for the first seven principal components of ancestry, sex, age, BMI 

and batch information. We expressed values as z-scores relative to 

the distribution of 100 sets of pseudo-hub PRS to enable 

comparisons of hub scores in the different stratified subgroups.  

 

Reporting Summary. Further information on research design is 

available in the Nature Research Reporting Summary linked to this 

article.  

Data visualisation 

Data from this study can be visualized in the following browsers: 

Islet regulome browser (http://isletregulome.org/isletregulome)37, 

CHiCP browser (https://www.chicp.org)38 and WashU Epigenome 

browser using this session link: 

http://isletregulome.org/isletregulome)
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http://epigenomegateway.wustl.edu/browser/?genome=hg19&sessi

on=62hGf7nfcS&statusId=140947077 

 

Data availability 

 

Raw sequence reads from pcHi-C, RNA-seq, ChIP-seq, ATAC-seq 

and 4C-seq are available from EGA (https://www.ebi.ac.uk/ega), 

under accession number EGAS00001002917. Processed data files 

for islet pcHi-C interactions, islet regulome annotations, enhancer-

promoter assignments, hub coordinates and components and 3D 

model videos are provided as supplementary data. The robust set of 

ATAC-Seq peaks, consistent set of Mediator, cohesin, H3K27ac 

and H3K4me3 peaks, list of islet super-enhancers defined using 

ROSE algorithm, islet regulome, ChromHMM segmentation model, 

list of islet TAD-like domains, PATs and the list of high-confidence 

pcHiC interactions are provided as Supplementary Data Sets and 

also deposited at https://www.crg.eu/en/programmes-groups/ferrer-

lab#datasets. 

 

Code Availability 

Custom code in this manuscript is available upon request. 

 

References for Methods 

 

1. Melzi, R. et al. Role of CCL2/MCP-1 in islet 

transplantation. Cell Transplant 19, 1031-46 (2010). 

2. Kerr-Conte, J. et al. Upgrading pretransplant human islet 

culture technology requires human serum combined with 

media renewal. Transplantation 89, 1154-60 (2010). 

3. Bucher, P. et al. Assessment of a novel two-component 

enzyme preparation for human islet isolation and 

transplantation. Transplantation 79, 91-7 (2005). 

4. Ricordi, C., Lacy, P.E., Finke, E.H., Olack, B.J. & Scharp, 

D.W. Automated method for isolation of human pancreatic 

islets. Diabetes 37, 413-20 (1988). 

5. Nagano, T. et al. Comparison of Hi-C results using in-

solution versus in-nucleus ligation. Genome Biol 16, 175 

(2015). 

6. Javierre, B.M. et al. Lineage-Specific Genome Architecture 

Links Enhancers and Non-coding Disease Variants to Target 

Gene Promoters. Cell 167, 1369-1384 e19 (2016). 

http://epigenomegateway.wustl.edu/browser/?genome=hg19&session=62hGf7nfcS&statusId=140947077
http://epigenomegateway.wustl.edu/browser/?genome=hg19&session=62hGf7nfcS&statusId=140947077
https://www.ebi.ac.uk/ega)


 

 120 

7. Wingett, S. et al. HiCUP: pipeline for mapping and 

processing Hi-C data. F1000Res 4, 1310 (2015). 

8. Cairns, J. et al. CHiCAGO: robust detection of DNA 

looping interactions in Capture Hi-C data. Genome Biol 17, 

127 (2016). 

9. Pasquali, L. et al. Pancreatic islet enhancer clusters enriched 

in type 2 diabetes risk-associated variants. Nat Genet 46, 

136-143 (2014). 

10. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y. & 

Greenleaf, W.J. Transposition of native chromatin for fast 

and sensitive epigenomic profiling of open chromatin, DNA-

binding proteins and nucleosome position. Nat Methods 10, 

1213-8 (2013). 

11. Martin, M. Cutadapt removes adapter sequences from high-

throughput sequencing reads. 2011 17(2011). 

12. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment 

with Bowtie 2. Nat Methods 9, 357-9 (2012). 

13. Li, H. et al. The Sequence Alignment/Map format and 

SAMtools. Bioinformatics 25, 2078-9 (2009). 

14. McKenna, A. et al. The Genome Analysis Toolkit: a 

MapReduce framework for analyzing next-generation DNA 

sequencing data. Genome Res 20, 1297-303 (2010). 

15. Dunham, I. et al. An integrated encyclopedia of DNA 

elements in the human genome. Nature 489, 57-74 (2012). 

16. Kharchenko, P.V., Tolstorukov, M.Y. & Park, P.J. Design 

and analysis of ChIP-seq experiments for DNA-binding 

proteins. Nat Biotechnol 26, 1351-9 (2008). 

17. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). 

Genome Biol 9, R137 (2008). 

18. Leisch, F. A toolbox for K-centroids cluster analysis. 

Comput. Stat. Data Anal. 51, 526-544 (2006). 

19. Benazra, M. et al. A human beta cell line with drug 

inducible excision of immortalizing transgenes. Mol Metab 

4, 916-25 (2015). 

20. Kuleshov, M.V. et al. Enrichr: a comprehensive gene set 

enrichment analysis web server 2016 update. Nucleic Acids 

Res 44, W90-7 (2016). 

21. Bau, D. & Marti-Renom, M.A. Genome structure 

determination via 3C-based data integration by the 

Integrative Modeling Platform. Methods 58, 300-6 (2012). 



 

 121 

22. Di Stefano, M., Paulsen, J., Lien, T.G., Hovig, E. & 

Micheletti, C. Hi-C-constrained physical models of human 

chromosomes recover functionally-related properties of 

genome organization. Sci Rep 6, 35985 (2016). 

23. Ahmed, M. et al. Variant Set Enrichment: an R package to 

identify disease-associated functional genomic regions. 

BioData Min 10, 9 (2017). 

24. Gjesing, A.P. et al. Genetic and phenotypic correlations 

between surrogate measures of insulin release obtained from 

OGTT data. Diabetologia 58, 1006-12 (2015). 

25. Thuesen, B.H. et al. Cohort Profile: the Health2006 cohort, 

research centre for prevention and health. Int J Epidemiol 

43, 568-75 (2014). 

26. Drivsholm, T., Ibsen, H., Schroll, M., Davidsen, M. & 

Borch-Johnsen, K. Increasing prevalence of diabetes 

mellitus and impaired glucose tolerance among 60-year-old 

Danes. Diabet Med 18, 126-32 (2001). 

27. Johansen, N.B. et al. Protocol for ADDITION-PRO: a 

longitudinal cohort study of the cardiovascular experience of 

individuals at high risk for diabetes recruited from Danish 

primary care. BMC Public Health 12, 1078 (2012). 

28. McCarthy, S. et al. A reference panel of 64,976 haplotypes 

for genotype imputation. Nat Genet 48, 1279-83 (2016). 

29. Loh, P.R., Palamara, P.F. & Price, A.L. Fast and accurate 

long-range phasing in a UK Biobank cohort. Nat Genet 48, 

811-6 (2016). 

30. Marchini, J. & Howie, B. Genotype imputation for genome-

wide association studies. Nat Rev Genet 11, 499-511 (2010). 

31. Schwarzer, G. meta: An R package for meta-analysis. R 

News 7, 40-45 (2007). 

32. Bulik-Sullivan, B.K. et al. LD Score regression distinguishes 

confounding from polygenicity in genome-wide association 

studies. Nat Genet 47, 291-5 (2015). 

33. Finucane, H.K. et al. Partitioning heritability by functional 

annotation using genome-wide association summary 

statistics. Nat Genet 47, 1228-35 (2015). 

34. Bonas-Guarch, S. et al. Re-analysis of public genetic data 

reveals a rare X-chromosomal variant associated with type 2 

diabetes. Nat Commun 9, 321 (2018). 



 

 122 

35. Sudlow, C. et al. UK biobank: an open access resource for 

identifying the causes of a wide range of complex diseases 

of middle and old age. PLoS Med 12, e1001779 (2015). 

36. Euesden, J., Lewis, C.M. & O'Reilly, P.F. PRSice: Polygenic 

Risk Score software. Bioinformatics 31, 1466-8 (2015). 

37. Mularoni, L., Ramos-Rodriguez, M. & Pasquali, L. The 

Pancreatic Islet Regulome Browser. Front Genet 8, 13 

(2017). 

38. Schofield, E.C. et al. CHiCP: a web-based tool for the 

integrative and interactive visualization of promoter capture 

Hi-C datasets. Bioinformatics 32, 2511-3 (2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 123 

Supplementary Figures  

 

 
Supplementary Figure 1. pcHi-C in human pancreatic islets.. a, Schematic 
representation of the pcHi-C analysis workflow. b, Relative frequency of high-
confidence interactions between baits and interacting regions. c, Distances from bait 
to interacting regions for high-confidence interactions. The dashed line represents 
the median distance. d, CHiCAGO score distribution of high-confidence 
interactions in merged pcHi-C data (n=175,784) and individual islet samples , and in 
distance-matched interactions. Boxplots show IQR, and whiskers show 5th and 95th 
percentiles. e, Pairwise Pearson correlation values of CHiCAGO scores between 
individual islet samples and merged dataset. f-g. Epigenomic maps and virtual 4C 
profiles in merged and individual human islet samples in TCF7L2 and ISL1. h,i. 
pcHi-C recapitulates interactions identified by 4C-seq in human islets and the human 

 cell line EndoC-βH1 at ISL1 and MAFB loci. The top track depicts a virtual 4C 
representation of human islet pcHi-C data in both promoters. High-confidence 
interactions from 4 pooled human islet samples and naïve CD4+ T cells are shown 
below. Inverted triangles depict viewpoints. 
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Supplementary Figure 2. pcHi-C and chromatin landscape of human islets. a, 
Binding patterns for indicated epitopes in ± 25 Kb regions centered on interacting 
pcHi-C baits (top), and promoter-interacting regions (bottom). Expected occupancy 
profiles after randomizing 10 times the positions of indicated signals are represented 
with a red line, and IQR are shown as a shade. b, Relative frequency of CTCF 
binding sites in baits and non-bait interacting regions. Nearly 50% of interactions are 
associated with CTCF binding in at least one of the interacting regions. c, CTCF-
binding motif orientation at CTCF-bound interacting regions. 56.62% of 9,657 
interactions are convergent, consistent with expectations. d, Tissue-selectivity of islet 
pcHi-C interactions relative to identically processed pcHi-C from erythroblasts, 
macrophages, naïve CD4+ T cells and total B lymphocytes. e, Genes located in baits 
with islet-selective interactions show increased gene expression islet-specificity 
scores vs. genes with tissue-invariant interactions. The islet-specificity Z score was 
calculated with a gene expression distribution from 18 human tissues. P value was 
calculated with Wilcoxon’s two-sided signed ranked test. Boxplot represents IQRs. f, 
Ratio of tissue-invariant to islet-selective interactions overlapping major open 
chromatin classes, normalized by the total number of tissue-invariant and islet-
selective interactions. All categories showed significant differences with interactions 
in the remaining genome (Fisher’s P < 0.01). 
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Supplementary Figure 3. Definition of TAD-like domains, PATs, and 
enhancer-gene assignments. a, Features of islet TAD-like domains. b, 
Representative example of human islet TAD-like domains (chr 11:1132582-4719948, 
hg19). Negative and positive directionality index (DI) scores are represented in blue 
and red, respectively. ESC and IMR90 TADs generated with Hi-C are shown for 
reference. c, Size of TAD-like domains in human islets and Hi-C TADs from ESC 
and IMR90 cells. d, TAD-like domains display known features of TADs, such as 
enrichment of CTCF binding and convergent CTCF motif orientation in borders. e, 
Tissue-selectivity of islet TAD-like boundary regions was estimated by comparison 
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with TADs defined by Hi-C in 21 tissues. f, Enhancers frequently interact with more 
than one gene. Fraction of enhancers showing high-confidence (CHiCAGO > 5) 
interactions to 1-5+ promoter ”baits” in the same TAD. g, Schematic of promoter-
associated three-dimensional spaces (PATs), defined as the genomic space that spans 
high-confidence interactions originating from one bait. h, Fraction of islet TAD-like 
spaces occupied by each PAT. i. ChromHMM state enrichments in PATs were 
consistent with the expression level of their associated genes. The heatmap shows 
ChromHMM state median log2 fold-enrichments in PATs over their genomic 
distributions, in 5 bins based on bait gene expression levels in human islets. j. Active 
islet enhancer or H3K9me3-enriched ChromHMM states in PATs were enriched 
over the remaining TAD-like space in accordance with islet expression of PAT 
genes. Only PATs at least 25% smaller than their TAD were used (n=7,085). Median 
enrichments (circles) and IQR (shade) are shown. k. Emission probabilities of the 15 
ChromHMM states for all islet chromatin features used to create the model. l. 
Sequential steps used to impute the assignment of islet enhancers to target genes. m. 
CHiCAGO scores for imputed enhancer-promoter pairs vs. distance-matched 
controls (n=50 sets). P value is from Wilcoxon’s two-sided signed rank test. Boxplot 
represents IQRs. n. Genes assigned to enhancers were enriched in islet-specific 
genes, as compared with unassigned control genes from the same islet TAD-like 
structure (Chi-square P = 6 x 10-08). o. Islet exposure to 4 mM vs. 11 mM glucose 
causes widespread induction of H3K27 acetylation in islet enhancers. Dots represent 
H3K27ac-enriched regions, and are red if Benjamini-Hochberg adjusted P ≤ 0.05.  
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Supplementary Figure 4. eQTLs support the identification of unexpected 
T2D target genes. a, T2D and FG-associated variants used to examine gene targets 
(see Supplementary Table 3). b, Proportion of DIAGRAM credible set SNPs with 
high posterior probability (PP > 0.1) mapping to islet regulome elements within 
intervals containing credible sets. Note the enrichment in active enhancers and 
promoters vs.100 sets of elements shuffled within the genomic spaces that contain 
credible sets, shown as grey IQR boxplot distributions and outliers as black dots. Z-
scores represent deviations from the mean of the shuffled distribution. c-d, Selected 
examples of loci with T2D-risk variants with gene targets supported by both 
significant eQTLs and pcHi-C, showing enhancer-gene assignments through pcHiC 
high-confidence interactions (from pooled data, in magenta) and imputations (grey). 
Enhancer eQTL-eGene pairs are represented as horizontal black lines. A vertical 
yellow stripe highlights the eGene promoter. Concordant gene targets include c, 
STARD10 d, ABCB9. pcHiC interactions are represented as arcs connecting 
HindIII fragments. Boxplots shows first and third quartiles as boxes and 1.5 x IQR 
as whiskers of gene expression for different genotypes, shown as PEER residuals, 
along with P and adjusted P (q) values from eQTL meta-analysis. Red dots represent 
individual PEER residual values of gene expression for 183 samples across different 
genotypes. For additional eQTL findings see Supplementary Table 2. 
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Supplementary Figure 5. Functional perturbations of CAMK1D and OPTN. a, 
Long-range interactions of the enhancer carrying rs11257655 are replicated in 
individual human islet pcHi-C samples. Note how interactions between this 
enhancer and OPTN are detected with high confidence (ChICAGO >5) in each 
pcHi-C replicate. b, Luciferase assay in the human β cell line EndoC-βH3 shows 
allele-dependent activity for the rs11257655-enhancer. Data are means ± s.d. (n=3 
independent experiments, with 3-6 independent transfections). Statistical 
significance: two-tailed Student's t-test. c,d. Analysis of OPTN and CAMK1D 
mRNA after c, CRISPRi of the rs11257655-enhancer in HepG2 and d, CRISPRi or 
CRISPRa in EndoC-βH3 cells. Bars show average values of 3-4 gRNAs targeting 
either the rs11257655 enhancer, or the transcriptional start sites. Data are presented 
as means ± s.e.m. (enhancer activation: 4 gRNAs n=6; inhibition: 4 gRNAs n=3). 
Statistical significance: two-tailed Student's t-test. 
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Supplementary Figure 6. Functional perturbations of TCF7L2. a, Virtual 4C 
representations from pooled human islet samples centered on all genes in this locus 
show that the region containing rs7903146 connects with TCF7L2 through 
moderate-confidence interactions and an imputed assignment, without evidence for 
interactions with other genes. The HindIII fragment that contains the enhancer with 
rs7903146 is highlighted in yellow. The bottom panel reveals that this enhancer 
shows unusually high occupancy by Mediator and islet-enriched transcription factors 
in islet chromatin. b, RNA analysis in EndoC-βH3 cells after deletion of either the 
rs7903146-enhancer or a control region in the same locus. Deletions were tested 
with 2 different gRNA pairs, n=3 experiments. Statistical significance was 
determined using two-tailed Student's t-test. Only active genes in the locus were 
tested. c, RNA analysis in EndoC-βH3 cells after CRISPRa or CRISPRi of the 
rs7903146-enhancer. Statistical significance was determined using two-tailed 
Student's t-test (activation: 1 gRNA, n=3 experiments; inhibition: 3 gRNAs n=3 
experiments). 
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Supplementary Figure 7. Functional perturbations of VEGFA and ZFAND3. 
a,c. T2D variant-target gene assignments in VEGFA and ZFAND3 loci. pcHi-C 
and virtual 4C representations are from pooled samples. b,d. VEGFA or MDGA1 
and ZFAND3 mRNAs in EndoC-βH3 cells after CRISPRa or CRISPRi of T2D-
associated enhancers. C6orf223 was not detectable by qPCR. Note that we did not 
examine all potential targets near VEGFA (see other imputed genes in 
Supplementary Table 3). Data are presented as means ± s.e.m. (VEGFA enhancer 
CRISPRa: 3 guides n=3 experiments; VEGFA enhancer CRISPRi: 4 guides n=2 
experiments; ZFAND3-MDGA1 enhancer: 4 guides n=3 experiments). Statistical 
significance was determined using two-tailed Student's t-test. 
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Supplementary Figure 8. Tissue-specific enhancer hubs. a, Multiple logistic 
regression analysis was used to identify PAT features that predict islet-expressed 
genes with islet-selective vs. non islet-selective expression. Islet-selective expression 
was examined as a surrogate endpoint because it is a property of many (though not 
all) genes important for islet cell identity. The PAT feature with the highest logistic 
regression coefficient was the number of non-islet tissues with promoter 
H3K27me3-enrichment. This feature was considered as almost synonymous with 
islet-specific islet expression. The next highest coefficient was the number assigned 
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class I enhancers in the PAT. Further analysis showed that 3 assigned class I 
enhancers in a PAT optimized the prediction of islet-selective expression 
(Supplementary Figure 9). b, Classification of PATs based on assigned enhancers 

revealed 2,623 enhancer-rich PATs (3 assigned class I enhancers). Enhancers are 
shown as red boxes. Turquoise and dashed green lines are high-confidence 
interactions and imputed assignments, respectively. c, Enhancer hubs were defined 
as enhancer-rich PATs, which were merged with other PATs connected through at 
least one common enhancer-associated high-confidence interaction. d, Descriptive 
characteristics of enhancer hubs in human islets. Multi-target enhancers show high 
confidence interactions with two or more promoter-containing baits. e, Enhancer 
hubs are enriched in islet-selective interactions relative to non-hub PATs that had at 
least 1 high-confidence interaction. Boxes are IQR, notches are 95% CI of the 
median and P values are from Wilcoxon’s two-sided signed rank test. f, Linear 
genomic space occupied by class I enhancers in three-dimensional enhancer hubs 
compared with the space occupied by super-enhancers (SEs) calculated with the 
ROSE algorithm, all enhancers from linear enhancer clusters (ECs), and stretch 
enhancers. g-i. Venn diagrams depicting how often hub enhancers overlap with 
other human islet enhancer domains: g, SEs, h, highly-bound (top two TF 
occupancy quartiles) ECs, and i, stretch enhancers. j-l. Islet enhancer hubs often 
contain enhancers that do not form part of SEs or ECs. Charts show the fraction of 
hub class I enhancers that overlapped SEs, ECs or stretch-enhancers. Note that the 
genomic space occupied by stretch enhancers is an order of magnitude greater than 
hubs (panel g). m-o. Islet enhancer hubs very frequently contain multiple SEs, ECs 
or stretch enhancers. 
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Supplementary Figure 9. Alternative definitions of enhancer hubs. We 

considered alternative definitions of hubs as follows: a, enhancer-rich PATs with 3 
class I enhancers, but without merging interconnected PATs, b-e, enhancer-rich 

PATs with 2-5 assigned class I enhancers, merged with PATs interconnected 

through high-confidence enhancer interactions, f,g, enhancer-rich PATs with 2 or 

3 class I enhancers exclusively assigned through high-confidence interactions, and 
then merged to PATs interconnected through high-confidence enhancer 

interactions, h, enhancer-rich PATs with 3 assigned class I enhancers, merged to 
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PATs interconnected through promoter-promoter (instead of enhancer-promoter) 
interactions. We found that canonical islet-cell functional annotations ranked highest 

only in definitions with 3 assigned class I enhancers. Hubs with 4-5 assigned class 
I enhancers (d,e), as well as those defined exclusively with high-confidence 
interactions (f,g), showed high ranking islet cell functional annotation enrichments, 
at the expense of reducing the number of hubs. Panels in the right show post-hoc 
VSE analysis of T2D/FG-associated SNPs (n=2,771; Supplementary Table 9). 
Consistent with the notion that the hub definitions in d-g were restrictive, they 
failed to show selective enrichment of T2D/FG-associated SNPs. Boxplots show 
null distributions based on 500 permutations of matched random haplotype blocks. 
Red dots indicate significant enrichment relative to the null distribution 
(Bonferroni–adjusted P < 0.01). 
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Supplementary Figure 10. 3D models of enhancer hubs. a, The FOXA2 locus 
forms a tissue-specific enhancer hub. Human islet epigenome maps and high-
confidence pcHi-C interactions in islets and total B lymphocytes show that islet 
active enhancers, super-enhancers and enhancer clusters interact to form a single 
tissue-specific three-dimensional structure. b-c, 360o views of top-scoring 3D model 
of ISL1 enhancer hub in human islets and total B lymphocytes. Class I, II and III 
enhancers within 200 nm of ISL1 promoter are colored dark to light red, while 
promoters within 200 nm of ISL1 (including ISL1) are colored blue. Islet enhancers 
and promoters are otherwise represented as white spheres. These models show that 
active islet regulatory elements interact in a common restricted space in islet nuclei. 
See also Supplementary Videos 1 and 2. d-h, Left panels show the most populated 
community of the promoter-enhancer interaction network in chosen hubs, as 
obtained via MCODE clustering, in human islets and total B lymphocytes. Network 
nodes are promoters (blue) and enhancers (dark to light red for enhancer classes I to 
III). Edges are mean distance values in the most populated 3D structure cluster. The 
central panel compares the neighborhood connectivity distribution of networks in 
both tissues. The right panel shows the 3D distances between hub promoters and 
enhancers in both tissues. All boxplots show IQRs and outliers as grey diamonds. 
The number of nodes analysed for each locus is shown in Supplementary Table 16. 
Statistical significance was computed using two-sided Kolmogorov-Smirnov test. 
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Supplementary Figure 11. Epigenome editing of hubs carrying T2D risk 
noncoding variants. a, pcHi-C and virtual 4C representations from pooled human 
islet samples in the ZBED3 locus for all promoters with active transcripts in the 
region. b, Islet pcHi-C assigns CRY2 and PHF21A as gene targets of an enhancer 
containing a FG-associated variant (vertical yellow stripe). c, Analysis of CRY2 and 
PHF21A mRNA after CRISPRa or CRISPRi of their transcriptional start sites or of 
the islet enhancer bearing the FG-associated variant rs1401419 in EndoC-βH3 cells. 
Data are presented as means ± s.e.m. (enhancer CRISPRa: 4 gRNAs n=3; CRISPRi: 
2 gRNAs n=2). Statistical significance was determined using two-tailed Student's t-
test. 
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Supplementary Figure 12. Epigenome editing of the C2CD4A/B hub. a, Islet 
pcHi-C assigns C2CD4A and C2CD4B as gene targets of three enhancers containing 
T2D-associated variants (vertical yellow stripes) in the C2CD4A/B locus. pcHi-C 
and virtual 4C representations are from pooled human islet samples. 
b, Analysis of VPS13C, C2CD4A and C2CD4B mRNA after CRISPRa or CRISPRi 
targeting of their transcriptional start sites or of three islet enhancers bearing T2D-
FG variants in EndoC-βH3 cells. Data are presented as means ± s.e.m. (CRISPRa: 4 
gRNAs n=3 experiments; CRISPRi: 4 gRNAs n=2 experiments). Statistical 
significance was determined using two-tailed Student's t-test. 
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Supplementary Figure 13. Epigenome editing of the GLIS3 hub. a, Islet pcHi-
C virtual 4C representations from pooled samples, showing the T1D/T2D-
associated locus GLIS3. The inset shows the enhancer bearing rs4237150. b, 
Luciferase assays in EndoC-βH3 cells show haplotype-dependent activity of the 
rs4237150-enhancer. Data are means ± s.d. (n=3 independent experiments with 4-6 
independent transfections). Statistical significance: two-tailed Student's t-test. c, 
Analysis of GLIS3, RFX3 and RFX3-AS1 mRNA upon deletion of rs4237150-
enhancer or control regions. Data are presented as means ± s.e.m. (2 pairs of 
gRNAs per target region, n=3 experiments each). Statistical significance: two-tailed 
Student's t-test. d, Analysis of predicted target gene transcripts after CRISPRa or 
CRISPRi targeting of the GLIS3 transcriptional start site or the rs4237150-enhancer 
in EndoC-βH3 cells. Data are means ± s.e.m. (enhancer CRISPRa: 3 gRNAs n=3 
experiments; CRISPRi: 3 gRNAs n=2 experiments). Statistical significance: two-
tailed Student's t-test. e, Top-scoring GLIS3 hub model from the most populated 
cluster of the ensemble in human islets and total B lymphocytes. Enhancers and 
promoters within 200 nm GLIS3 or RFX3 promoters are colored in red and blue, 
respectively, or as white spheres if located further. f, Most populated community of 
the promoter-enhancer interaction network obtained via MCODE clustering of this 
locus in human islets and total B lymphocytes. Nodes represent promoters (blue) 
and enhancers (dark to light red for enhancer classes I to III). Edges are mean 
distances in most populated 3D cluster. Although GLIS3 and RFX3 are connected in 
a common hub, the networks suggest that they form part of separable sub-
communities. g, Neighborhood connectivity distribution between the islet and total 
B lymphocytes networks. h, 3D distance distribution between enhancers and 
promoters in GLIS3 hub. Boxplots show IQRs. Statistical significance was 
computed using two-sample Kolmogorov-Smirnov two-sided test as described in 
Supplementary Figure 10. See also Supplementary Table 16. 
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Supplementary Figure 14. T2D-associated variants are enriched in interacting 
regions and hub class I enhancers. a,b, VSE enrichment analysis of T2D and FG 
(n=2,771) and breast cancer (n=3,048) variants in islet active regulatory elements 
(see Supplementary Data Set 1). Box plots show null distributions based on 500 
permutations of matched random haplotype blocks. Each dot denotes VSE 
enrichment of disease-associated variants in each genomic feature. The red dot 
indicates significant enrichment relative to the null distribution (Bonferroni-adjusted 
P < 0.01). c, Breast cancer-associated variants show no enrichment in islet enhancer 
sub-classes. d-e, VSE enrichment analysis of T2D and FG and breast cancer SNPs 
in chromatin regions with high-confident pcHi-C interactions in islets. f, VSE 
enrichment analysis of T2D and FG-associated variants in indicated enhancer 
categories. All boxplots show IQRs. 
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Supplementary Figure 15. Class I enhancers in hubs contribute to heritability of 
beta cell-related traits. a-e, Per-SNP heritability estimates of variants in eight islet 
enhancer domain subtypes calculated using summary statistics data from: a, T2D 
(12,931 cases, and 57,196 controls); b, acute insulin release (AIR)-in vivo glucose 
tolerance test (IVGTT, up to 5,567 individuals); c, insulinogenic index (OGTT, 
7,807 individuals); d, HOMA-B; and e, HOMA-IR (up to ~80,000 individuals). Bars 

show category specific per-SNP heritability coefficients ( ) divided by the LD score 

heritability ( ) score observed for each trait. All normalized  coefficients were 

multiplied by 107 and shown with s.e.m.  coefficients were estimated using 
stratified LD score regression, controlling for 53 functional annotation categories 
included in the baseline model. f, Per-SNP T2D and Attention-
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Deficit/Hyperactivity Disorder (ADHD, up to 55,374 individuals) heritability 
estimates in islet regulatory elements and Central Nervous System (CNS) 

annotations.  coefficients, normalizations by  and representations are as explained 
in panels a-e. g, Impact of polygenic risk scores (PRS) on T2D frequency. T2D 
frequency (y-axis) was calculated in 40 bins, each one representing 2.5% of 
individuals in the UK Biobank test set. PRS values were calculated with common 
genetic variants in islet hub enhancers and baits (pink dots), other islet open 
chromatin regions (light blue dots) and in the rest of genome (black dots). h. T2D 
risk ratios stratified by BMI (left) and age of onset of T2D (right). Controls were 
censored at the age of recruitment. Boxplots show IQR of the risk ratio from 100 
sets of pseudo-hubs PRS, and with whiskers 1.5 x IQR. Color dots as in g. h, T2D 
risk stratified by BMI and age of onset of T2D. Odds ratios (OR) for T2D were 
calculated for 2.5% individuals with the highest PRS vs. all other individuals via 
adjusted logistic regression. Boxplots show IQR of the risk ratio from 100 sets of 
pseudo-hubs PRS, and with whiskers 1.5 x IQR. For all panels, Z-scores define 
standard deviations relative to average values from pseudo-hub PRS. See also 
Supplementary Figure 15 and Supplementary Table 17. 
 
Supplementary Tables and rest of Supplementary information available 
online: 
 
https://www.nature.com/articles/s41588-019-0457-0#Sec33 
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DISCUSSION 

 

3D reconstruction of genomic regions from sparse 

interaction data 

 
In the work presented in Chapter 1 of this thesis, we have 

introduced a new integrative modelling protocol for the 

normalisation, 3D reconstruction, and analysis of data coming from 

sparse 3C-based experiments. Specifically, we have optimised our 

tool for pcHi-C experiments and tested its limitations with 

decreasing levels of captures in a synthetic dataset that can 

represent a generic capture experiment. Moreover, we have 

demonstrated its usability for the differential analysis of cell-type-

specific chromatin architectural features, using as an example the β-

globin locus.  

 

As stated in the Introduction, 3C-based experiments rely on the 

usage of a diverse set of tools for normalisation (Hu, Deng et al. 

2012, Imakaev, Fudenberg et al. 2012, Servant, Varoquaux et al. 

2015, Wingett, Ewels et al. 2015, Durand, Shamim et al. 2016, 

Vidal, le Dily et al. 2018) and further analysis of the interaction data 

(Lun and Smyth 2015, Djekidel, Chen et al. 2018, Ardakany, Ay et 

al. 2019). In the case of pcHi-C, the novelty of the technique and 

the complexity associated to the sparseness of the data has resulted 

in a reduced number of available tools (Cairns, Freire-Pritchett et 

al. 2016, Mifsud, Martincorena et al. 2017, Anil, Spalinskas et al. 

2018, Ben Zouari, Molitor et al. 2019, Cairns, Orchard et al. 2019). 

Most of these tools focus on detecting significant interactions from 

the experimental data, or on the comparative analysis between 

datasets. Conversely, the integrative modelling tool we have 

designed in this work allows the user to assess the significance of 

the measured distance between two selected loci of interest and to 

perform differential analysis between cell-types (and stages, see 

annex 1). Additionally, it contextualises the interaction data into a 

3D space, facilitating its interpretation and further analysis based on 

spatial enrichment of selected features, and most importantly, 

recovering the organisation of the full loci despite of the data 

sparseness.   
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Firstly, we tested our procedure by comparing models reconstructed 

from sparse (pcHi-C) and dense (Hi-C) datasets. This comparison 

showed that the reconstructed sparse models similarly recovered the 

organisation from the dense ones when using both virtual pcHi-C 

datasets inferred from the dense Hi-C and real pcHi-C datasets. 

These results further indicated that the biases coming from the 

capture protocol had efficiently been reduced by our method. 

Additionally, and most importantly, the sparse models efficiently 

recovered most of the structure from the dense models, thus 

allowing the analysis of particles that had not been interrogated in 

the experimental assay. 

 

Next, we used synthetic toy genome models (Trussart, Serra et al. 

2015) to measure the minimum amount of restraints needed to 

reliably recover the architecture of a defined genomic region. 

Surprisingly, with just 2-3% of all possible interaction data from the 

matrix, we achieved a median correlation greater than 0.8 using ten 

random sets of capture distributions. In light of these results, we 

suggest that our integrative modelling protocol might also be useful 

for the 3D reconstruction of other sparse 3C-based datasets like 

HiChIP (Mumbach, Rubin et al. 2016), among others.  

 

Finally, we tested the utility of our method by applying it to the β-

globin locus, whose 3D organisation has been extensively studied 

before (Schübeler, Francastel et al. 2000, Palstra, Tolhuis et al. 

2003, Brown, Leach et al. 2006, Huang, Keller et al. 2017, Liu, 

Zhang et al. 2017). We focused in the structural comparison of 

cord-blood Erythroblasts (cb-Ery), naïve CD4+ T-cells (nCD4), and 

Monocytes (Mon), where the β-globin locus was active (cb-Ery) or 

inactive (nCD4 and Mon) in a cell-type-specific manner. In 

agreement with previous works (Javierre, Burren et al. 2016), 

analysis of the 3D topology of these cells showed different 

conformations associated with the activity stage of the β-globin 

locus. Interestingly, our models showed an enrichment of 

expression and active epigenetic marks around HBG2, the most 

expressed gene of the locus in cb-Ery. This functional signature was 

absent in the β-globin-inactive cell types (nCD4 and Mon), where 

the β-globin locus occupied a region depleted of expression and 

active chromatin marks. 
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We also show that this enrichment arises as a consequence of the 

gathering in space of the haemoglobin genes with loci located at 

long genomic distances (> 1 megabase) in cb-Ery, but not in nCD4 

and Mon. Remarkably, our models show the formation of a 3D 

network that segregates the different cell-type-specific subsets of 

expressed genes in communities. This organisation is compatible 

with previous findings describing the gathering in space of 

transcribed genes as a general mechanism to organise gene 

transcription (Jackson, Hassan et al. 1993, Osborne, Chakalova et 

al. 2004, Fraser and Bickmore 2007, Osborne, Chakalova et al. 

2007, Baù, Sanyal et al. 2011, Sanyal, Bau et al. 2011). Further 

analysis showed that these communities have cell-type-specific 

community stabilities (as defined by the co-occurrence score values 

of the communities within the model ensemble), with more stable 

communities in cb-Ery as compared with the more unstable ones of 

nCD4 and Mon. Thus, stability metrics of expressed gene 

communities might be important features for the identification of 

cell-type-specific 3D signatures. Additionally, we observed that in 

cb-Ery, but not in the gene communities of nCD4 and Mon, both 

gene communities and genes embodied inside of each community, 

overall arranged following an expression gradient, with the most 

expressed entities placed in the centre, and the least ones on the 

periphery. Based on these evidences, we hypothesize that the 

defined communities might represent cell-type-specific 

transcription factories (Iborra, Pombo et al. 1996, Sutherland and 

Bickmore 2009, Baù, Sanyal et al. 2011, Sanyal, Bau et al. 2011) or 

phase-separated foci (Boija, Klein et al. 2018, Cho, Spille et al. 

2018, Gurumurthy, Shen et al. 2019). This would explain the 

gradient of transcription in terms of transcription machinery 

concentration in the core of the communities, with higher 

expression of the genes that are closer to it. Since this hierarchy of 

expression is not present in nCD4 and Mon, we suggest it is a cell-

type-specific 3D signature characterising the β-globin region in cb-

Ery. 
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Human pancreatic islet three-dimensional chromatin 

architecture provides insights into the genetics of type 2 

diabetes 
 

In the work presented in Chapter 2 of this thesis, we apply our 

integrative modelling protocol for the normalisation, 3D 

reconstruction, and analysis of human pancreatic islet pcHi-C data 

in the context of enhancer-promoter 3D clusters relevant for the 

development of type 2 diabetes (T2D). Specifically, this work 

linked diabetes-associated enhancers with their target promoters, 

defining a list of ~1,300 3D enhancer hubs which are enriched in 

T2D associated signals and show glucose-dependent activity. The 

3D enhancer hubs were also enriched in T2D risk variants, and 

further validation by genome editing of 8 selected loci showed their 

reliability to detect regulatory elements relevant for the 

development of T2D. 

 

In this collaborative effort, we used a previous version of our 

normalisation approach (PRINT), which instead of obtaining a 

proportion of interaction between the interacting bins, weighted 

their value by the summation of the whole-genome interactions of 

the least interacting bin (see Methods in Chapter 2). We then used 

our integrative modelling protocol to reconstruct the 3D 

organisation of seven T2D-relevant hubs in pancreatic islets and B 

lymphocytes. The epigenetic profile of pancreatic islets was used to 

define the enhancer location coordinates inside of each of the hubs. 

These coordinates, together with the already known locations of the 

captured promoters were used in islets and B lymphocyte data-

derived models to analyse the differential structural organisation of 

the hubs between both cells. Specifically, we measured the 

distances between enhancers and promoters to both build networks 

and calculate their neighbourhood connectivity, and to obtain and 

compare their distance distributions. 

 

Further analysis of the models and the networks built from the 

pcHi-C datasets showed that islet-specific enhancers and their target 

promoters overall colocalised in a more constrained space in islets 

than in B lymphocytes, thus forming more connected enhancer-

promoter networks, and highlighting the cell-type-specific 
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colocalization of multiple interspersed genomic regions to form 

defined 3D hubs inside of TADs.  
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CONCLUSIONS 
 

From chapter 1, we can specifically conclude that: 

1. We developed an integrative 3D modelling protocol to 

reconstruct the architecture of the chromatin from sparse 

3C-based datasets. 

2. We optimised this protocol for the normalisation, 3D 

reconstruction and differential analysis of pcHi-C datasets. 

3. The method reconstructs highly similar structures 

overcoming most of the different experimental biases 

coming from Hi-C and pcHi-C. 

4. The method retrieves reliable models with as low as 2-3% of 

all the possible interactions from the interaction matrix. 

5. The method is accurate enough to recapitulate the known 

structural organisation of the β-globin locus and cell-type-

specific arrangements associated with the level of 

expression of the involved loci. 

6. We introduced innovative tools for the differential analysis 

of genomic 3D structures. 

 

 

From chapter 2, we can specifically conclude that: 

1. Our tool can be used to reconstruct the sub-TAD 

organisation of 3D enhancer hubs. 

2. Distance data retrieved from the chromatin 3D models can 

be used to build regulatory elements networks. 

3. The data subtracted from the models can be used to perform 

differential organisation analysis that help characterizing 

cell-type-specific conformations relevant for the 

development of Diabetes Type II. 
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ANEX 1 
 
CTCF is dispensable for immune cell transdifferentiation but 

facilitates an acute inflammatory response 
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SUMMARY 

 

Three-dimensional (3D) organization of the genome is important for 

transcriptional regulation1–7. In mammals, CTCF and the cohesin 

complex create sub-megabase structures with elevated internal 

chromatin contact frequencies, called topologically associating 

domains (TADs)8–12. Although TADs can contribute to 

transcriptional regulation, ablation of TAD organization by 

disrupting CTCF or the cohesin complex causes modest gene 

expression changes13–16. In contrast, CTCF is required for cell cycle 

mailto:gregoire.stik@crg.eu
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regulation17, embryonic development, and formation of various 

adult cell types18. To uncouple the role of CTCF in cell state 

transitions and cell proliferation we studied the effect of CTCF 

depletion during the conversion of human leukemic B cells into 

macrophages with minimal cell division. CTCF depletion disrupts 

TAD organization but not cell transdifferentiation. In contrast, 

CTCF depletion in induced macrophages impairs the full-blown 

upregulation of inflammatory genes after exposure to endotoxin. 

Our results demonstrate that CTCF-dependent genome topology is 

not strictly required for a functional cell fate conversion but 

facilitates a rapid and efficient response to an external stimulus. 

 

MAIN TEXT 

 

Lineage instructive transcription factors establish new cell identities 

by activating a novel gene expression program while silencing the 

old one. Whereas they largely achieve this through binding to 

promoters and enhancers, genome topology has recently emerged as 

a new player in gene regulation. Chromatin contact maps, obtained 

by chromosome conformation capture techniques such as Hi-C, 

revealed that chromatin can be separated at the megabase level into 

active (‘A’) and inactive (‘B’) compartments19, themselves 

subdivided into TADs. Large deletions overlapping boundaries can 

cause a fusion of adjacent domains that can lead to developmental 

abnormalities20. In addition, inversion or deletion of individual 

CTCF binding sites can induce a loss of specific contacts or 

insulation from active chromatin21–23. Mechanistically, genomic 

insulation by TADs is thought to facilitate enhancer-promoter 

interactions while inhibiting cross-boundary communication 

between regulatory elements to prevent aberrant gene activation24. 

Hence, the importance of CTCF and TAD organization in 

facilitating transcriptional rewiring during cell state transitions – 

often accompanied by extensive cell division – remains 

controversial25. 

 

We have recently developed a system uniquely suitable to study the 

role of CTCF in cell state transitions, consisting of a B leukemia 

cell line (BLaER) that can be efficiently converted by exogenous 

CEBPA expression into functional induced macrophages (iMacs) 

with only one cell division on average (Fig. 1a; Supplementary 

Note 1)26. Using this system, we analyzed a time-series of 



 

 154 

transdifferentiating cells for genome-wide changes in 3D genome 

organization (in-situ Hi-C), enhancer activity (ChIP-seq of histone 

modifications), chromatin accessibility (ATAC-seq) and gene 

expression (RNA-seq). 

 

 
 

Fig. 1 | Transcription factor-driven transdifferentiation re-wires nuclear 
compartments and modulates TAD borders independently of CTCF binding. 
a, Schematic overview of the transdifferentiation system. CEBPA-ER in B cells 
(BLaER cell line) translocates to the nucleus after β-estradiol (β-est) treatment, 
activating the factor. A week after treatment the cells convert into induced 
macrophages (‘iMac’ stage). b, Representative in situ Hi-C contact maps (100-kb 
resolution) of a 50-Mb DNA region of B cells and iMacs. Color scale represents the 
normalized number of contacts per read. c, Transformation of the Hi-C map based 
on the PC1 values of a PCA on the Hi-C correlation matrix. PC1 values for A and B 
compartment are shown in yellow and blue, respectively; dotted rectangles highlight 
local compartment changes during transdifferentiation. d, PCA of PC1 compartment 
values (n = 28,749 bins), with grey arrow indicating transdifferentiation trajectory. e, 
Proportion of dynamic compartment bins (dyn.) including its distribution of 
different sub-categories. f, Integration of gene expression associated with dynamic 
compartment using RNA-seq (n represents the number of genes and P values are 
calculated using a two-sided Wilcoxon rank-sum test). g, Number of stable, 
transiently changed, gained or lost TAD borders in B cells and iMacs. h, CTCF-peak 
coverage at the different types of borders (n represents the number of borders in 
each category) in B cells and iMacs. i, Top: Differential contact map (iMac minus B 
cell signal) at the DDX54 locus. Color scale represents differential contacts per 
100,000 reads. Bottom: Snapshot of genome browser showing CTCF ChIP-seq 
signals at the locus. CTCF peaks at the newly created border are highlighted. All box 
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plots depict the first and third quartiles as the lower and upper bounds of the box, 
with a thicker band inside the box showing the median value and whiskers 
representing 1.5× the interquartile range. 
 

We first determined genome segmentation into A and B 

compartments on the basis of the first eigenvector values of a 

principal component analysis (PCA) on the Hi-C correlation matrix 

(‘PC1 values’). Overall, although most of the genome remained 

stable, around 14% of A or B compartments were dynamic during 

transdifferentiation, showing transcriptional changes correlating 

with the altered compartmentalization (Fig. 1b-f, Extended Data 

Fig. 1a-d; Supplementary Note 2). Next, we used chromosome-

wide insulation potential27 to identify between 3,100-3,300 TAD 

borders per time point (Fig. 1g). Boundaries were highly 

reproducible between biological replicates (Jaccard index > 0.99) 

and enriched in binding sites for CTCF (Extended Data Fig. 1e). 

Genome-wide insulation scores analyzed by PCA over time 

revealed progressive changes, reflecting a transdifferentiation 

trajectory (Extended Data Fig. 1f). While 70% of TAD borders 

were stable across all stages, 18% were lost or gained and 12% 

were transiently altered (Fig. 1g). CTCF binding was significantly 

more enriched at stable than at dynamic boundaries (Fig. 1h), as 

observed earlier28. Furthermore, while lost borders showed some 

CTCF occupancy in B cells that decreased in iMacs, gained borders 

were depleted for CTCF in both cell states (Fig. 1h), indicating 

CTCF-independent mechanisms driving local insulation. The 

dynamic rearrangement of TAD borders during transdifferentiation 

is illustrated by the DDX54 locus (Fig. 1i), in which a new 

boundary appears in iMacs without apparent changes in CTCF 

binding. Furthermore, border gain or loss did not correlate with 

changes in local gene expression (Extended Data Fig. 1g), 

indicating that transcription is not a driver of the observed changes. 

However, whereas motif analysis at ATAC-seq peaks within stable 

borders indeed showed a strong enrichment for the CTCF motif, 

dynamic borders were enriched for PU.1 and EBF1 motifs 

(Extended Data Fig. 1h), raising the possibility that lineage-

restricted transcription factors are involved in disrupting and/or 

establishing these borders. 

 

To directly assess the importance of CTCF during CEBPA-induced 

transdifferentiation we devised an auxin-inducible degron 
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approach29 (Fig. 2a; Supplementary Note 3). Addition of auxin to 

these cells triggered proteasome-dependent CTCF degradation, 

resulting in a loss of mCherry+ cells and rapid CTCF depletion to 

levels undetectable by Western blot (Fig. 2b-c). Likewise, 80% of 

CTCF peaks were no longer detected after auxin treatment, and the 

enrichment level of persistent peaks was substantially reduced 

(Extended Data Fig. 2a-b), as previously described for mouse 

embryonic stem cells14. We next performed Hi-C on cells cultured 

in the presence of auxin or DMSO (as a control) at 24 and 168 

hours post-induction (hpi) of transdifferentiation. Scaling of contact 

probabilities as a function of genomic separation did not change 

after CTCF depletion (Extended Data Fig. 2c). Analysis of 

chromosome-wide insulation potential in wildtype and CTCF-AID 

B cells showed that fusing the mAID tag to CTCF only had a 

negligible impact on TAD organization (Extended Data Fig. 2d-e). 

However, ~70% of TAD borders became undetectable and not 

visible in Hi-C contact maps after auxin treatment, both at 24 hpi 

and iMac stages (Fig. 2d and Extended Data Fig. 2f). Overall, 

insulation scores at borders detected in the control cells (DMSO) 

were dramatically reduced upon auxin treatment both at 24hpi and 

iMac stages (Extended Data Fig. 2g). Consequently, the ratio of 

contact enrichment inside TADs over outside was also strongly 

decreased (Extended Data Fig. 2h). Whereas stable borders 

exhibited a dramatic loss of insulation after CTCF depletion, 

dynamic borders showed essentially no change (Fig. 2e), in 

agreement with their low CTCF occupancy (Fig. 1h). 

 

We next used ATAC-seq and H3K4me1/H3K27ac ChIP-seq to 

identify promoters and enhancers that are either activated, 

inactivated or remain stable during transdifferentiation (Extended 

Data Fig. 2i-l; see Methods). Transdifferentiation was accompanied 

by extensive chromatin state dynamics focused at enhancers, which 

were preferential targets of CEBPA binding (Extended Data Fig. 

2j-k). We then interrogated how CTCF depletion affects intra-TAD 

enhancer-promoter (E-P) contacts at 0 h, 24 hpi and in iMacs. E-P 

interaction frequencies significantly decreased during inactivation, 

which was somewhat accelerated in auxin-treated cells at 24 hpi and 

iMac stages (Fig. 2f). Similarly, E-P interaction frequencies 

significantly increased during activation, while E-P interactions at 

stable regulatory elements were not affected by CTCF depletion 

(Fig. 2f). These data demonstrate that although auxin-treated 
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samples show a minor overall reduction of intra-TAD E-P contacts, 

E-P interaction dynamics accompanying transdifferentiation seem 

independent of CTCF. 

 

 
Fig. 2 | Auxin-mediated depletion of CTCF impairs chromatin insulation at 
stable but not dynamic TAD boundaries. a, Schematic representation of auxin-
mediated CTCF degradation, showing the constructs used and the design of the 
experimental setup. b, Flow cytometry analysis showing decreased mCherry 
fluorescence intensity after auxin treatment as a proxy for CTCF levels. The 
experiment was repeated 3 times with similar results. c, Western blot showing loss of 
CTCF in CTCF-mAID B cells treated with auxin. Detection of TUBA4A was used 
as a loading control. The blots have been cropped from original blots available in 
Source Data. The experiment was repeated 3 times with similar results. d, Top: 
Representative Hi-C contact maps (20-kb resolution) of a 10-Mb region in 
chromosome 7 from transdifferentiating cells (24 hpi) treated with DMSO or auxin. 
Color scale represents the normalized number of contacts. Bottom: insulation score 
line graphs across the locus. e, Insulation scores at stable, transient, gained and lost 
borders of cells treated with DMSO or auxin. Areas shown are centered on 
boundary regions ± 250-kb. f, Changes of enhancer-promoter (E-P) intra-TAD 
contacts during transdifferentiation with DMSO (n = 2 biologically independent 
samples) or auxin (n = 2 biologically independent samples) in comparison to B cells 
(n = 1). Dots represent point estimates and bars (wide and narrow) indicate 
confidence intervals (50% and 95%, respectively) for the log2 fold changes. 
Estimations are computed using all 9 samples in a single linear mixed model. 

 

To assess whether CTCF depletion and a loss of TAD organization 

impacts CEBPA-induced transdifferentiation, we monitored the 

expression of the B cell marker CD19 and the macrophage marker 

Mac-1 (CD11b) by flow cytometry at 0, 24, 48, 96 and 168 hpi. 

Surprisingly, CTCF-depleted cells converted into macrophage-like 

cells with even slightly accelerated kinetics at intermediate time 

points (Fig. 3a and Extended Data Fig. 3a), which was confirmed 
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using a different clone of CTCF-mAID B cells (Extended Data 

Fig. 3b). The iMacs obtained under conditions of CTCF depletion 

were phagocytic and activated inflammatory cytokine genes in 

response to endotoxin treatment (Extended Data Fig. 3c-d). Our 

findings show that CTCF depletion and widespread loss of TAD 

organization neither blocks nor delays transdifferentiation of B cells 

into functional macrophages. 

 

 
 
Fig. 3 | CTCF is dispensable for transcription factor-induced cell fate 
conversion. a, Flow cytometry analysis during transdifferentiation of cells treated 
with DMSO or auxin. Graphs show percentages of CD19+Mac1- cells (left) or 
CD19-Mac1+ (right) cells (n = 3 biologically independent samples, error bars show 
standard deviation and P unpaired two-tailed t test). b, PCA analysis of 
transcriptome changes during transdifferentiation of CTCF-mAID B cells treated 
with DMSO or auxin (n = 23,680 genes). Grey points connected by an arrow 
represent non-tagged B cell transdifferentiation. Ellipses group 24 hpi and iMac 
stage samples. c, RNA expression of selected B cell (n = 32) and myeloid cell genes 
(n = 136) during transdifferentiation with DMSO and auxin for the biological 2 
replicates (P, two-sided Wilcoxon rank-sum test). d, Heatmap of differentially 
expressed annotated transcripts (n = 2 biologically independent samples, FC > 2 and 
P < 0.01, two-tailed likelihood ratio test followed by FDR correction) in cells treated 
with DMSO or auxin. Myeloid and B cell regulator genes are indicated on the right. 
e, Top: saddle plot showing pairwise enrichment of the 20% top and bottom PC1 
values from Hi-C contacts at 100-kb bins (see Methods). Lower part: 
compartmentalization strength scores derived from B cell (n = 1) and DMSO (n = 
2) or auxin-treated cell (n = 2) biologically independent samples. The score 
corresponds to the ratio between same-compartment and different compartment 
contacts (diagonal corners over anti-diagonal corners in the saddle plots). f, Average 
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PC1 values of dynamic compartment bins (A to B n = 1,630 and B to A n = 731) in 
B cell (n = 1) and DMSO (n = 2) or auxin-treated cell (n = 2) biologically 
independent samples (P, two-sided Wilcoxon rank-sum test). g, Plot of PC1 values 
(100-kb bins) at the MAFB locus during transdifferentiation in the presence of 
DMSO or auxin. All box plots depict the first and third quartiles as the lower and 
upper bounds of the box, with a thicker band inside the box showing the median 
value and whiskers representing 1.5× the interquartile range. 

 

We next analyzed how gene expression is affected upon CTCF 

depletion in cells at 24 hpi and at the iMac stage. A PCA of the 

entire transcriptome showed that CTCF depletion does not impair 

the overall rewiring of gene expression induced during cell fate 

conversion (Fig. 3b). Instead, auxin-treated cells were more 

advanced towards transdifferentiation at 24 hpi, which was further 

confirmed by analyzing gene expression dynamics of B cell and 

myeloid cell signature genes (Fig. 3b-c). These observations agree 

with previous findings suggesting that a partial knockdown of 

CTCF accelerates myeloid commitment of common myeloid 

precursor cells30. A heatmap of 8,595 annotated transcripts that 

changed significantly (fold change > 2, P < 0.05) during 

transdifferentiation highlighted the overall similarity between 

DMSO and auxin-treated samples (Fig. 3d). In fact, 76% of 

differentially expressed genes in control iMacs were similarly 

regulated under conditions of CTCF depletion (Extended Data Fig. 

3e). This is illustrated for cell type-restricted transcription factors by 

activation of CEBPB, JUN, CEBPA and MAFB; by transient 

upregulation of IRF8; and by silencing of PAX5, EBF1 and 

BCL11A in a similar fashion under both conditions (Fig. 3d). 

Although iMacs produced in the presence of auxin functionally 

resemble macrophages, they still show substantial differences in 

gene expression (~13% of expressed genes) compared to DMSO 

controls, mostly involving ubiquitous cellular processes like the cell 

cycle, GTPase signaling or ribosome biogenesis (Extended Data 

Fig. 3f). 

 

The finding that CTCF depletion impacts TAD organization without 

substantially altering transdifferentiation capacity and kinetics 

prompted us to explore other features of 3D genome organization. 

Analyzing our Hi-C data for inter-TAD long-range E-P interactions 

(5 -10 Mb) revealed that their activation or inactivation is associated 

with the formation or dissolution of interacting clusters, 

respectively (Extended Data Fig. 3g). Remarkably, this occurred 
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independently of CTCF (Extended Data Fig. 3g), suggesting that 

the observed 3D clusters are linked to compartmentalization 

changes involving transcription factors bound to these regulatory 

regions. Further analyses revealed that 78% of the regions that 

switched during transdifferentiation from one compartment to 

another do so in both DMSO- and auxin-treated cells (Extended 

Data Fig. 3h), showing that CTCF is largely dispensable for these 

large-scale genome rearrangements. In line with a previous study14, 

we observed ~10% reduction in compartment strength in auxin-

treated samples (Fig. 3e), which could explain the slight 

acceleration of compartment transitions observed in auxin-treated 

cells at 24 hpi (Fig. 3f). An example is provided by the MAFB 

locus, a myeloid-expressed gene that is upregulated during 

transdifferentiation (Extended Data Fig. 3i), whereby the B-to-A 

switch was faster and more pronounced in auxin-treated cells than 

in DMSO controls (Fig. 3g), including at an enhancer region that 

becomes decorated with H3K27ac at 24 hpi (Extended Fig. 3j). In 

short, our Hi-C data revealed that although CTCF appears 

dispensable for genome compartmentalization, its depletion slightly 

decreased compartmentalization strength, which could facilitate 

compartmental rearrangements. 

 

Previous reports indicated that CTCF plays a role in controlling 

macrophage gene expression31 and that cohesin is required for an 

optimal inflammatory response of macrophages32. This raised the 

possibility of an involvement of genome topology in mounting an 

acute inflammatory response, as CTCF is known to stabilize the 

interaction between cohesin and chromatin33,34. Accordingly, 

aggregates of our Hi-C signals at previously described cohesin-

bound loops35 showed that these interactions disappeared after 

auxin treatment (Extended Data Fig. 4a). Using a public dataset of 

lipopolysaccharide (LPS) responsive genes36 we found that both the 

enhancers and promoters of such genes are enriched for CTCF and 

that their promoters are closer to enhancers as compared to 

unresponsive genes (Extended Data Fig. 4b-d). Therefore, we 

tested the effect of CTCF depletion in iMacs exposed for 2 h to LPS 

(Fig. 4a), revealing a reduced induction of critical LPS-responsive 

genes such as IL6, TNFA, CCL2 (Fig. 4b). Even more pronounced 

changes were observed at the level of secreted cytokines 8 h after 

LPS treatment (Fig. 4c). We next used RNA-seq to investigate the 

genome-wide effect of CTCF depletion on LPS-treated iMacs. Out 
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of 39,963 detected genes, 746 were found significantly upregulated 

(P < 0.01), although pathway enrichment analysis could not detect 

any significant associations (Extended Data Fig. 4e-f). Conversely, 

the 694 downregulated genes (among them IL-6, TNFA and CCL2) 

were strongly associated with pathways related to the inflammatory 

response to bacterial stimuli (Extended Data Fig. 4e-f). Although a 

sizeable fraction of differentially expressed genes were already 

altered in auxin-treated iMacs prior to LPS stimulation, the total 

number of affected genes doubled after LPS exposure (Extended 

Data Fig. 4g) and the observed upregulation upon LPS treatment 

was significantly blunted after CTCF depletion (Extended Data 

Fig. 4h). Of note, the expression of these genes was not 

significantly changed in CTCF-depleted iMacs prior to LPS 

treatment (Extended Data Fig. 4i) and most of the key 

transcription factors and receptors involved in the LPS response 

were unaffected after 24 h of auxin treatment (Extended Data Fig. 

4j), suggesting a direct role for CTCF in fine-tuning the expression 

of inflammatory response genes. A similar proportion of promoters 

of upregulated or downregulated genes after CTCF depletion and 

LPS stimulation were bound by CTCF in iMacs (Extended Data 

Fig. 4k), indicating no dominant role for CTCF as a promoter-

proximal repressor37 in this context. A phagocytosis assay with 

DMSO- or auxin-treated iMacs showed that although CTCF-

depleted cells were still functional, the number of engulfed beads 

per cell was reduced (Extended Data Fig. 4l-m), in line with the 

observed attenuation of the acute inflammatory response. 

 

We next investigated whether CTCF-mediated 3D genome 

organization could underlie the apparent sensitivity of inflammatory 

response genes to CTCF depletion. Genes activated by LPS that 

were downregulated in CTCF-depleted iMacs were located closer to 

TAD borders and also more strongly insulated than random gene 

sets (Extended Data Fig. 5a-b), suggesting they could be extra-

susceptible to deregulation by a loss of CTCF. To validate this and 

assess the impact of CTCF depletion on E-P interactions at key 

inflammatory response genes, we used our Hi-C data to conduct a 

‘virtual’ 4C analysis of the IL6 and CCL2 loci, centered on their 

promoters. Active enhancers within these loci were identified by 

H3K27ac enrichment. At the IL6 locus, CTCF depletion not only 

disrupted insulation from neighboring TADs but also decreased the 

frequency of IL6 E-P interactions (Fig. 4d and Extended Data Fig. 
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5c). Interestingly, the neighboring gene STEAPB1 located just 

upstream of the IL6 TAD was found to be ectopically expressed 

upon CTCF depletion, likely resulting from aberrant contacts with 

IL6 enhancers that are normally suppressed by the IL6 TAD border 

(Extended Data Fig. 5d-e). To gain further insight into local 

chromatin conformation changes we generated 3D models of the 

IL6 locus using Hi-C interaction data, transforming the interaction 

frequencies between genomic segments into spatial restraints38. This 

revealed that initially the IL6 locus resides in a constrained space 

isolated from adjacent regions and that upon CTCF depletion the 

regions collapsed into less well-defined domains, separating the 

enhancers from their cognate target promoter (Fig. 4e-f). These 

models also confirm the decreased distance between STEAPB1 and 

the IL6 enhancers in the absence of CTCF (Fig. 4f and Extended 

Data Fig. 5f). Similar observations were made at the CCL2 locus, 

where CTCF depletion also induced a loss of chromatin insulation 

and a decrease in E-P contacts (Extended Data Fig. 5g-j). These 

findings indicate that in macrophages, CTCF-mediated chromatin 

insulation and E-P interactions maintain acute inflammatory 

response genes in a primed configuration, permitting their rapid and 

robust activation in response to bacterial stimuli. 

 

 
 
Fig. 4 | CTCF depletion attenuates the acute inflammatory response of iMacs 
to endotoxin. a, Schematic overview of the experiment. iMacs generated in the 
presence of CTCF were treated with either DMSO or auxin for 24 h followed by 2-8 
h of LPS treatment and assayed for cytokine expression. b, qRT-PCR of selected 
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cytokine genes 2 h after LPS stimulation of iMacs pre-treated with DMSO or auxin. 
Error bars represent standard error; sample sizes (n) are indicated and represent 
biologically independent samples and P values derive from unpaired two-tailed t test. 
c, Secreted cytokine levels by iMacs treated with DMSO or auxin and stimulated for 
8 h with LPS. Error bars represent standard error (n = 3 biologically independent 
samples) d, Top: Differential in situ Hi-C contact maps (10-kb resolution) at the IL6 
locus (chr7: 21.72-23.72 Mb) in iMacs generated in the presence of DMSO or auxin. 
Color scale represents differential contacts per 100,000 reads. The location of the 
IL6 and STEAP1B genes is indicated; Middle part: Virtual 4C extracted from Hi-C 
data at the IL6 locus in iMacs treated with DMSO or auxin, using the IL6 
transcription start site (TSS) as a viewpoint; Bottom part: browser snapshot showing 
CTCF and H3K27ac ChIP-seq signals. IL6 enhancers (e1 and e2) are highlighted 
and the green, red and blue spheres represent the STEAP1B promoter, the IL6 
enhancers and the IL6 TSS, respectively. e, Distance distribution between TSS and 
enhancer regions (n = 1,000 3D models based on Hi-C data of iMacs treated with 
DMSO or auxin). Median (solid line), first and third quartile (dashed line) are 
indicated (P, two-sided Komogorov-Smirnov test). f, 3D chromatin conformation 
model of the IL6 locus in DMSO or auxin treated cells. 

 

 

Our study has shown that the architectural protein CTCF is 

dispensable for the transdifferentiation of B cells into macrophages, 

while it is required for a full-blown inflammatory response. These 

findings indicate that CTCF-mediated genome topology, including 

TADs formed by cohesin-mediated loop extrusion, are not essential 

for developmental gene regulation but instead provide robustness 

and precision to an acute transcriptional response to bacterial 

endotoxins. Nevertheless, we cannot exclude that in other biological 

contexts, gene regulatory circuits especially dependent on CTCF-

mediated genome topology might be more critically relevant. 

Importantly, our study uncouples the critical role of CTCF in cell 

proliferation from its role as genome organizer and transcriptional 

regulator and provides nuanced insights into the role of 3D 

chromatin organization for gene regulation. The observation that 

genome-wide CTCF is dispensable for a mammalian cell state 

transition significantly extends recent findings showing that CTCF 

or cohesin depletion during steady-state conditions, TAD 

rearrangements in flies or deletion of CTCF-mediated TAD 

boundaries in mice only caused minor changes in gene 

expression13,14,39–41. In addition, our findings indicate a critical role 

of 3D chromatin organization in providing an optimal response to 

external signals, in agreement with studies of developmentally 

regulated loci and nuclear hormone receptor signaling39,42. Future 

studies are required to assess whether this can be further generalized 



 

 164 

to signaling responses during differentiation or development. In 

summary, we propose that cell fate transitions can occur in the 

absence of CTCF, while the effects of CTCF on genome topology 

are highly relevant for an acute transcriptional response. The 

observation that CTCF and global TAD organization are not strictly 

required for cell fate changes raises the possibility that lineage 

instructive transcription factors themselves shape multi-level 

topological genome dynamics relevant for major transcriptional 

rewiring. 
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METHODS 

 

Cell Culture 

BLaER cell line26 is derived from the RCH-ACV lymphoblastic 

leukemia cell line in which CEBPA fused with the estrogen receptor 

(ER) hormone binding domain and the GFP marker are expressed. 

BLaER cells and subclones were cultured in RPMI medium (Gibco, 

22400089) supplemented with 10% fetal bovine serum (GIBCO, 

10100147), 1% glutamine (GIBCO, 25030081), 1% 
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penicillin/streptomycin antibiotic (Thermo Fisher Scientific, 

15140122), 550 µM β-mercaptoethanol (GIBCO, 31350010). Cells 

were maintained at a density of 0.1-6 × 106 cells/ml. Cells were 

checked for mycoplasma infection every month and tested negative. 

To induce transdifferentiation, BLaER cells were seeded at 0.3 

million cells per ml in a culture medium supplemented with 100 nM 

β-estradiol, IL3 and CSF1 (100 ng/ml). iMacs were collected after 7 

days of incubation. For auxin-inducible degradation, indole-3-acetic 

acid (IAA, a chemical analog of auxin) was added to the medium at 

500 µM from a 1,000× stock diluted in dimethyl sulfoxide. Stocks 

were kept at 4ºC up to 4 weeks or -20ºC for long-term storage. For 

endotoxin stimulation, cells were treated with LPS (1 µg/ml) for 2 h 

to collect RNA or 8 h to collect supernatant. 

 

Plasmid construction 

The CTCF-mAID-mCherry targeting vectors were cloned by serial 

modification of the base vectors pMK292 (Addgene #72830) and 

pMK293 (Addgene #72831). Homology arms (HA) of the last exon 

of CTCF were synthesized (IDT®). The TIR1-AAVS1 donor vector 

pMK232 (Addgene #105924) and the pX330 vector expressing the 

sgRNA to target the AAVS1 locus in human cells (Addgene #72833) 

were kindly provided by Masato Kanemaki29. CTCF-targeting 

sgRNAs were cloned in pX330 by annealing oligonucleotides 

caccgTGATCCTCAGCATGATGGAC and 

aaacGTCCATCATGCTGAGGATCAc. 

 

Gene Targeting 

For transfection, plasmids were prepared using Plasmid Midi Kit 

(Qiagen) followed by ethanol precipitation. Constructs were not 

linearized. The BLaER cell line was used to generate the parental 

line expressing the OsTIR1 enzyme. Transfection was carried out 

by electroporation (Amaxa Nucleofector, Lonza®), using Kit C and 

program X-001, according to manufacturer’s instructions. One 

microgram of each plasmid (pMK232 and pX330-AAVS-sgRNA) 

was added per 100 µl of solution mix and 1 million cells. Eight 

millions of cells were transfected using the same conditions, and the 

day after the transfection, dead cells were eliminated by 

centrifugation and alive cells were pooled together. Three days after 

transfection, puromycin (1 µg/ml, Gibco A1113803) was added to 

the medium in order to select edited cells. Selection medium was 

changed each 2-3 days and the selection was performed for 10 days. 
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Single-cell sorting of resistant cells was performed and AAVS PCR 

genotyping allowed the selection of homozygous insertion of the 

TIR1 expression cassette at the AAVS locus. Several clones were 

selected and tested for TIR1 expression by qPCR allowing the 

selection of the clone with the most robust expression (cell line 

#2B10). This clone was used for the targeting of CTCF. Two runs 

of gene targeting were performed (the first using a Neomycin 

targeting plasmid and the second with a hygromycin targeting 

plasmid) to obtain homozygous recombined alleles. One μg of each 

plasmid (px330-mCherry-sgRNA; pHA-mAID-mCherry-Neo R or 

pHA-mAID-mCherry-Hygro R) was added per 100 µl of solution 

mix and 1 million cells. Eight millions of cells were transfected 

using the same conditions, and the day after the transfection, dead 

cells were eliminated by centrifugation and alive cells were pooled 

together. Three days after transfection, antibiotic was added to the 

medium in order to select edited cells (500 μg/ml G418, Life 

Technologies #11811031 and/or 100 μg/ml of Hygromycin B, 

GIBCO #10687010). Selection medium was changed each 2-3 days 

and the selection was performed for 17-20 days. Single-cell sorting 

of resistant cells expressing mCherry was performed and a 

genotyping PCR allowed the selection of homozygous mAID-

CTCF targeted cells. 

 

Flow Cytometry 

BLaER cells and derived clones were resuspended in culture 

medium, spun down, and resuspended in 4% FBS-PBS and live 

(DAPI-negative) were sorted by live flow cytometry on a BD 

InfluxTM instrument (BD Bioscience). For monitoring 

transdifferentiation, cells were subjected to a specific cell surface 

marker staining. Briefly, blocking was carried out for 10 min at 

room temperature (RT) using Human FcR Binding Inhibitor (1:20 

dilution, eBiosciences, 16-9161-73) and cells were then stained with 

antibodies against CD19 (APC-Cy7 Mouse Anti-Human CD19, BD 

Pharmingen, 557791) and Mac-1 (APC Mouse Anti-Human 

CD11b/Mac-1, BD Pharmingen, 550019) at 4 ºC for 20 min in the 

dark. After washing, DAPI staining was performed just before 

analysis. For monitoring phagocytosis, cells were seeded at a 

density of 0.5 million/ml in medium and fluoresbrite carboxy bright 

blue beads (1 µm, Polysciences 17458) were added (300 beads/cell) 

and incubated 24 h before FACS analysis. Dissociation, wash, and 

flow buffers were supplemented with auxin, when appropriate, to 
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avoid re-expression of the CTCF-mAID-mCherry fusion. All the 

analyses were performed using the LSR Fortessa instrument (BD 

Biosciences). Data analysis was performed using FlowJo software. 

 

Western Blots and antibody arrays 

One million cells were centrifuged, washed with PBS 1× and lysis 

was performed in 30 µl of Laemmli buffer 1× (50 nM Tris-HCl 

pH6.8, 2% glycerol, 2% SDS, 0.01% 2-Mercaptoethanol, 0.05% 

Bromophenol blue). After heating at 95ºC for 10 min, the protein 

extracts (corresponding to 5 × 105 cells) were separated by 

electrophoresis in a 7.5% polyacrylamide gel (Bio-Rad #4561023) 

before transfer to nitrocellulose membrane. Membranes were 

blocked with 5% non-fat milk TBS-Tween medium (50 mM Tris, 

150 mM NaCl, 0.1% Tween 20) for 1 h at RT. Incubation with 

primary antibody was performed at 4ºC shaking overnight (anti-

CTCF, 07-729 Millipore; anti-α-tubulin, ab7291 Abcam; anti-

mAID-tag MBL Life Science M214-3; 1:1,000 in 5% Milk in TBS-

Tween). Membranes were washed with TBS-Tween (3 × 10 min) 

before secondary incubation with antibodies fused to HRP (goat 

anti-mouse IgG, Sigma Aldrich #A3682, dilution 1:5,000) for 1 h at 

RT. After 3 final washes, membranes were incubated in ECL™ 

Start Western Blotting Detection Reagent mix (Sigma Aldrich, 

GERPN3243) for 2 min at RT before development on X-ray film. 

Cytokine arrays (R&D ARY006) were performed following 

manufacturer’s instructions using supernatant from iMacs collected 

8 h after LPS stimulation (1 µg/ml). Antibody arrays were imaged 

using an Odyssey CLx instrument (LI-COR). 

 

Immunofluorescence 

iMacs were grown on glass-coverslips, fixed with 3% formaldehyde 

in PBS 1× for 10 min at RT. After washing with PBS, imaging was 

performed using a Leica TCS SPE inverted microscope. Images 

were post-processed using Fiji Is Just ImageJ (FIJI). 

 

ChIP-seq 

Cells were cross-linked for 10 min using 1% formaldehyde and 

quenched using a final concentration of 0.125 M glycin. Cell pellets 

were lysed by incubating 10 min on ice with 5 mM Pipes pH 8, 85 

mM KCl, 0.5% IGEPAL, 1× protease inhibitor (Roche®). After 

centrifugation, pellets were incubated in 1% SDS, 10 mM EDTA 

pH 8, 50 mM Tris-HCl pH 8.1 and 1× PIC for 10 min on ice. 
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Chromatin was sheared on a Bioruptor pico sonicator (Diagenode) 

at 4ºC for 14 cycles of 30 sec ON and 30 sec OFF. After sonication, 

the solution was left on ice for 1 h to allow SDS precipitation and 

clarified by centrifugation at 16,000g at for 10 min at 4ºC. 

Supernatant was transferred in a new tube, 10% was saved as input 

and the rest was diluted to 1.2 ml with 1× cold IP buffer 

(Diagenode). 10 µg of anti-CTCF (Milipore, 07-729) was added 

followed by overnight incubation at 4ºC on a rotator. 42 µl of beads 

(Unblocked Protein A beads, kch-503-008, Diagenode) were used 

per IP after blocking them using 1% bovine serum albumin cold IP 

buffer for 15 min at 4ºC under rotation. Blocked beads were added 

to the chromatin solution and incubated 3 h at 4ºC with rotation. 

Beads were then collected by centrifugation for 2 min at 3,000 rpm 

at 4ºC and washed 3 times with cold IP buffer and 2 times with cold 

TE buffer (10 mM Tris pH 8, 1 mM EDTA). Beads were then 

eluted with freshly prepared elution buffer (1% SDS, 0.1 M 

NaHCO3) and incubated 25 min at RT. The supernatant was 

transferred into a new tube and cross-linking was reversed by 

adding NaCl (final concentration 200 mM) and incubating 

overnight at 65ºC. Protein digestion was achieved by adding Tris 

pH 6.5 (40 mM), EDTA pH 8 (10 mM) and proteinase K (4 µg/µl) 

and incubating 1 h at 45ºC. DNA was then purified by 

phenol:chloroform:isoamyl alcohol (25:24:1) extraction. The entire 

DNA sample was used to construct Illumina sequencing libraries. 

Library preparation was performed using the NEBNext DNA 

Library Prep Kit (New England BioLabs) with 2 µl NEBNext 

adaptor in the ligation step. Libraries were amplified for 14 cycles 

with Herculase II Fusion DNA Polymerase (Agilent) and were 

purified/size-selected with Agencourt AMPure XP beads (> 200 

bp). Libraries were sequenced on Illumina HiSeq2000 or NextSeq 

500 instrument using 50 or 75 nucleotides paired-end mode, 

respectively. 

 

Quantitative RT-PCR and RNA-seq 

RNA was extracted with the miRNeasy mini kit (Qiagen) and 

quantified with a NanoDrop spectrophotometer. cDNA was 

produced with a High Capacity RNA-to-cDNA kit (Applied 

Biosystems) and was used for qRT–PCR analysis in triplicate 

reactions with SYBR Green QPCR Master Mix (Applied 

Biosystems). Oligonucleotide sequence are indicated in 

Supplementary Table 1. Libraries were prepared with an Illumina 
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TrueSeq Stranded total RNA Library Preparation Kit after Ribo-

zero® depletion, and single-end sequencing (75 nt) was performed 

on an Illumina HiSeq2500 instrument.  

 

ATAC-seq 

ATAC-seq was performed as previously described43. Briefly, 5 

million cells were harvested and treated with Nextera Tn5 

Transposase (Illumina, FC-121-1030) for 45 min at 37°C. Library 

fragments were amplified using 1× NEBNext High-Fidelity 2× PCR 

Master Mix (NEB, M0541S) and 1.25 µM of custom Nextera PCR 

primers. PCR amplification was done with 11 cycles, determined by 

KAPA Real-Time Library Amplication Kit (Peqlab, KK2701) to 

stop prior to saturation. Then, the samples were purified using 

MinElute PCR Purification Kit (Qiagen, 28004) and with 

Agencourt AMPure XP beads (Beckman Coulter, A63881) in 3:1 

ratio. The libraries were sequenced paired-end (50 bp) on a 

HiSeq2000 instrument. 

 

In situ Hi-C library preparation 

In situ Hi-C was performed as previously described12 with the 

following modifications: (i) two million cells were used as starting 

material; (ii) chromatin was initially digested with 100 U MboI 

(New England BioLabs) for 2 h, and then another 100 U (2 h 

incubation) and a final 100 U were added before overnight 

incubation; (iii) before fill-in with bio-dATP, nuclei were pelleted 

and resuspended in fresh 1× NEB2 buffer; (iv) ligation was 

performed overnight at 24°C with 10,000 cohesive end units per 

reaction; (v) de-cross-linked and purified DNA was sonicated to an 

average size of 300-400 bp with a Bioruptor Pico (Diagenode; 7 

cycles of 20 sec on and 60 sec off); (vi) DNA fragment-size 

selection was performed only after final library amplification; (vii) 

library preparation was performed with an NEBNext DNA Library 

Prep Kit (New England BioLabs) with 3 µl NEBNext adaptor in the 

ligation step; (viii) libraries were amplified for 8–12 cycles with 

Herculase II Fusion DNA Polymerase (Agilent) and were 

purified/size-selected with Agencourt AMPure XP beads (> 200 

bp). Hi-C library quality was assessed by low-coverage sequencing 

on an Illumina NextSeq500 instrument, after which every biological 

replicate (n = 2) was sequenced at high coverage on an Illumina 

HiSeq2500 instrument to obtain ~0.5 billion reads in total per time 

point per biological replicate. 
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In-situ Hi-C data processing and normalization 

Hi-C data were processed using an in-house pipeline based on 

TADbit38. First, quality of the reads was checked using FastQC 

(http://www.bioinformatics.babraham.ac.uk /projects/fastqc/) to 

discard problematic samples and detect systematic artefacts. 

Trimmomatic44 with the recommended parameters for paired end 

reads was used to remove adapter sequences and poor quality reads 

(ILLUMINACLIP:TruSeq3-PE.fa:2:30:12:1:true; LEADING:3; 

TRAILING:3; MAXINFO:targetLength:0.999; and MINLEN:36). 

For mapping, a fragment-based strategy as implemented in TADbit 

was used, which is similar to previously published protocols45. 

Briefly, each side of the sequenced read was mapped in full length 

to the reference genome (hg38, Dec 2017 GRCh38). After this step, 

if a read was not uniquely mapped, we assumed the read was 

chimeric due to ligation of several DNA fragments. We next 

searched for ligation sites and discarded reads in which no ligation 

site was found. Remaining reads were split as often as ligation sites 

were found. Individual split read fragments were then mapped 

independently. These steps were repeated for each read in the input 

FASTQ files. Multiple fragments from a single uniquely mapped 

read will result in as many contacts as possible pairs can be made 

between the fragments. For example, if a single read was mapped 

through three fragments, a total of three contacts (all-versus-all) was 

represented in the final contact matrix. We used the TADbit 

filtering module to remove non-informative contacts and to create 

contact matrices. The different categories of filtered reads applied 

are: 

• self-circle: reads coming from a single restriction enzyme (RE) 

fragment and point to the outside. 

• dangling-end: reads coming from a single RE fragment and point 

to the inside. 

• error: reads coming from a single RE fragment and point in the 

same direction. 

• extra dangling-end: reads coming from different RE fragments but 

are close enough and point to the inside. The distance threshold 

used was left to 500 bp (default), which is between percentile 95 

and 99 of average fragment lengths. 

• duplicated: the combination of the start positions and directions of 

the reads was repeated, pointing at a PCR artefact. This filter only 

removed extra copies of the original pair. 
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• random breaks: start position of one of the reads was too far from 

RE cutting site, possibly due to non-canonical enzymatic activity or 

random physical breaks. Threshold was set to 750 bp (default), > 

percentile 99.9. From the resulting contact matrices, low quality 

bins (those presenting low contacts numbers) were removed as 

implemented in TADbit’s “filter_columns” routine. The matrices 

obtained were normalized for sequencing depth and genomic biases 

using OneD46. Then they were further normalized for local coverage 

within the region (expressed as normalized counts per thousand 

within the region) without any correction for the diagonal decay. 

For differential analysis, the resulting normalized matrices were 

directly subtracted from each other.  

 

Identification of subnuclear compartments and topologically 

associating domains (TADs) 

To segment the genome into A/B compartments, normalized Hi-C 

matrices at 100-kb resolution were corrected for decay as 

previously published, grouping diagonals when signal-to-noise was 

below 0.0512. Corrected matrices were then split into chromosomal 

matrices and transformed into correlation matrices using the 

Pearson product-moment correlation. The first component of a PCA 

(PC1) on each of these matrices was used as a quantitative measure 

of compartmentalization and AT content was used to assign 

negative and positive PC1 categories to the correct compartments. If 

necessary, the sign of the PC1 (which is randomly assigned) was 

inverted so that positive PC1 values corresponded to A 

compartment regions and vice versa for the B compartment. 

Significant differences of PC1 values between conditions were 

calculated using two-sided Wilcoxon rank-sum tests. Normalized 

contact matrices at 50-kb resolution were used to define TADs, 

using a previously described method27 with default parameters. 

First, for each bin, an insulation score was obtained based on the 

number of contacts between bins on each side of a given bin. 

Differences in insulation score between both sides of the bin were 

computed and borders were called searching for minima within the 

insulation score27. This procedure resulted in a set of borders for 

each time point and replicate. Between replicates, overlapping or 

borders distant of less than 1 bin were merged to obtain a list of 

conserved borders for each time point. Conserved borders 

overlapping or distant of less than 1 bin among each time point 

were considered as stable while the others were considered as 
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dynamic. Significant differences of insulation scores between 

conditions were calculated using two-sided Wilcoxon rank-sum 

tests. 

 

Inter- and intra-compartment strength measurements 

We followed a previously reported strategy to measure overall 

interaction strengths within and between A and B compartments15. 

Briefly, we based our analysis on the 100-kb bins showing the most 

extreme PC1 values, discretizing them by percentiles and taking the 

bottom 20% as B compartment and the top 20% as A compartment. 

We classified each bin in the genome according to PC1 percentiles 

and gathered contacts between each category, computing the log2 

enrichment over the expected counts by distance decay. Finally, we 

summarize each type of interaction (A-A, B-B and A-B/B-A) by 

taking the median values of the log2 contact enrichment. 

 

Meta-analysis of borders 

To study the behavior of TAD borders all TADs of sizes ranging 

from 0.5 to 1.5 Mb were selected. Then we defined a flanking 

region of 1 Mb around the border and gathered the observed and 

expected (by distance decay) matrix counts. Setting up their relative 

position to the corresponding border, the matrices were stacked to 

obtain a meta-contact matrix around TAD borders for each 

condition. This information was summarized by comparing the 

average log2 fold change of contact enrichment between bins inside 

and outside TAD. 

 

Enhancer-promoter intra-TAD contacts analysis 

By using Hi-C matrices at 5-kb resolution, we focused on TADs 

containing enhancers and promoters. Each bin was labelled as part 

of an enhancer, promoter or “others” if they did not belong to 

previous types. Then the observed contacts were gathered between 

the different types of bins within their TAD and expected contact 

frequencies were computed based on the genomic distance that 

separate each pair (the expected distance decay was calculated 

excluding entries outside TADs). Then a liner mixed models 

including TAD ID as random effect was used to estimate the 

quantities of interest. Results are expressed as log2 of the ratio 

observed on expected frequencies of contacts. 
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Long-range interactions between enhancers and promoters 

Hi-C matrices were generated at 10-kb resolution using 

HiCExplorer47 and long range interactions (5-10 Mb) between 

promoters and enhancers activated or inactivated were computed 

using the HiCExplorer tool hicAggregateContacts. 

 

Meta-analysis of cohesin loops 

Hi-C matrices in cool format were used to generate genome-wide 

aggregate plots at SMC1-bound loops detected by HiChIP35. We 

used coolpup.py48 to pile-up normalized Hi-C signals at a 10-kb 

resolution at SMC1-bound loops previously identified35, and plotted 

100 kb upstream and downstream of the SMC1 anchor coordinates. 

 

Virtual 4C analysis 

Hi-C matrices for virtual 4C profiles were further smoothed using a 

focal (moving window) average of one bin. The profiles were 

generated from these normalized matrices and correspond to 

histogram representation of the lines of the matrices containing the 

baits (therefore expressed as counts per thousand of normalized 

reads within the region depicted). 

 

Gene expression analysis using RNA-seq data 

Reads were mapped using STAR49 (standard options) and the 

Ensembl human genome annotation (GRCh38v27). Gene 

expression was quantified using STAR (--quantMode GeneCounts). 

Batch effects were removed using ComBat function from sva R 

package (v3.22). Sample scaling and statistical analysis were 

performed using the R package DESeq250 (R 3.3.2 and 

Bioconductor 3.0). Genes changing significantly at any time point 

were identified using the nbinomLRT test (FDR < 0.01) and fold-

change > 2 between at least two time points. Log2-vsd (variance 

stabilized DESeq2) counts were used for further analysis unless 

stated otherwise. To compare expression of various set of genes the 

data were mean-centered log-transformed and significant 

differences were calculated using two-sided Wilcoxon rank-sum 

tests.  

 

Chromatin accessibility analysis using ATAC-seq data 

Reads were mapped to the UCSC human genome build (hg38) 

using Bowtie251 with standard settings. Reads mapping to multiple 

locations in the genome were removed using SAMtools52; PCR 
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duplicates were filtered using Picard 

(http://broadinstitute.github.io/picard). Bam files were parsed to 

deepTools53 for downstream analyses and browser visualization. 

Peaks in ATAC-seq signal were identified using MACS254 

(callpeak --nolambda --nomodel -g hs -q 0.01). 

 

 

ChIP-seq data analysis 

Reads were mapped and filtered as described for ATAC-seq. CTCF 

peaks were identified using MACS254 with the narrowpeaks option. 

CTCF peaks not called in both independent biological replicates 

were excluded in all subsequent analyses. Coverage of CTCF peaks 

per TAD border was computed using BEDTools55. H3K27ac 

coverage and CTCF binding heatmaps were performed using 

deepTools53. 

 

DNA motif analysis 

ATAC-seq peaks specific to the TAD borders were identified using 

bedtools55. DNA motif analysis of the ATAC-seq peaks were 

analyzed using HOMER56 (findMotifs.pl) and the Homer motif 

results were shown. It uses ZOOPS scoring (zero or one occurrence 

per sequence) coupled with hypergeometric test to determine motif 

enrichment and statistical significance. 

 

Identification of dynamic regulatory regions  

Intersecting ATAC-seq peaks with H3K4me1 peaks allowed the 

identification of 63,665 enhancers, while the overlap with 

transcription start sites (TSS) revealed 24,932 promoters (Extended 

Data Fig. 2g). The intensity of H3K27ac signals at these regions 

was quantified using the Diffbind R package (v2.2.12) to define 

activated and inactivated regions from 0 h to 168 h. Differences 

were computed with using DBA_DESEQ2 method and -filter for 

significance was set at fold change > 2 and FDR < 0.05) as 

previously described57. This analysis allowed to profile 29,711 

dynamic enhancers and 8,439 dynamic promoters of which about 

half became activated and the other half inactivated (Extended 

Data Fig. 2h), also reflected by the expression of the associated 

genes (Extended Data Fig. 2i). 
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3D modeling and analysis 

The processed Hi-C datasets were binned at 10-kb resolution and 

then normalized using OneD46. Then, we defined the regions to be 

modelled given the genomic context around the enhancer and 

promoters of interest by following the steps: (i) select key elements 

contained in the region (i.e., enhancers and promoters); (ii) retrieve 

the top 5% interactors of each of these elements; (iii) build a 

network joining the key elements with their retrieved top 5% 

interactors, and the top 5% interactors among them in the cases 

where this interaction (interactor with interactor) was present in the 

top 5% of at least one of them. Added the edge twice if it was in the 

top 5% of both members; (iv) group the networks allowing a 

genomic distance gap of 50 kb and filtered out the groups in which 

the ratio between (number of edges) / (Number of nodes) was 

smaller than 5; and (v) for each of the regions, ensure that the 

modelled region contained most of the nodes (genomic coordinate 

from one bin start until end) appearing in the groups that passed the 

previous filter. Once regions were selected, normalized interaction 

matrices were modelled as previously described58 using TADdyn59, 

a molecular dynamic-based protocol implemented in the TADbit 

software38. Similarly to TADbit, TADdyn generates models using a 

restraint-based approach, in which experimental frequencies of 

interaction are transformed into a set of spatial restraints60. A total 

of 1,000 models were generated for each genomic region and cell 

type. Contact maps generated from the ensemble models highly 

correlated with the input Hi-C normalized interaction matrices. 

Each ensemble of models was next clustered based on structural 

similarity as implemented in TADbit38. The absence of major 

structural differences between clusters prompted us to use all them 

in further analysis. Next, TADbit was used to measure the following 

features of the models: (i) distance between particles containing 

genomic regions of interest in the model ensemble; distances 

distribution between selected pairs or particles, and (iii) significant 

differential distance distributions assessed by two-sample 

Kolmogorov-Smirnov statistic. Finally, model images were 

generated with Chimera61. 

 

Statistics and reproducibility 

RNA-seq and in situ Hi-C data throughout the paper were generated 

by analysis of 2 biologically independent samples from 2 

transdifferentiation experiments. Representative data are shown 
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only if results were similar for both biologically independent 

replicates. All box plots depict the first and third quartiles as the 

lower and upper bounds of the box, with a band inside the box 

showing the median value and whiskers representing 1.5× the 

interquartile range. Wilcoxon rank-sum tests were performed with 

the wilcox.test() function in R in a two-sided manner. Student’s t 

tests were performed with the t.test() function in R in an unpaired 

and two-sided fashion with (n-2) degrees of freedom. Kolmogorov-

Smirnov tests were performed in a two-side manner using the 

module scipy.stats.ks_2sam in the SciPy software. 

 

Reporting Summary 

Further information on research design is available in the Life 

Sciences Reporting Summary linked to this article. 

 

Data availability 

The Hi-C, RNA-seq, CTCF-ChIP-seq, ATAC-seq datasets 

generated and analyzed for the current study are available in the 

Gene Expression Omnibus (GEO) database under accession number 

GSE140528. ATAC-seq and CEBPA ChIP-seq datasets used in the 

current study are available in the GEO database under accession 

number GSE131620. The H3K27ac and H3K4me1 ChIP-seq 

datasets used in this study are available in ArrayExpress database 

under accession number E-MTAB-9010. 
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Supplementary Figures 

 

 
 
Extended Data Fig. 1 | Characterization of chromatin compartmentalization 
and TAD dynamics during transdifferentiation. a, Genome-wide Pearson 
correlation matrix between PC1 values of Hi-C samples at different time points. b, 
Scatter plots of PC1 values (n = 1,332 100-kb bins) showing changes relative to 
initial B cell genome compartmentalization for chromosome 12. c, Line chart 
depicting fractions of the genome assigned to A or B compartments at 10 time 
points during transdifferentiation. Y-axis represents the number of 100-kb bins. d, 
Gene ontology analysis of genes in regions switching from B to A (n = 980 genes) or 
A to B (n = 1,815 genes) compartments (P values, FDR corrected Fisher test). e, 
CTCF binding signal at TADs, normalized for TAD size in samples at various 
transdifferentiation time points. f, PCA of insulation score values at TAD borders 
during transdifferentiation (n = 4,006 TAD borders). Grey arrow depicts an 
averaged trajectory. g, RNA expression of genes at TAD borders gained (n = 254 
genes) or lost (n = 293 genes) during transdifferentiation. All box plots depict the 
first and third quartiles as the lower and upper bounds of the box, with a thicker 
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band inside the box showing the median value and whiskers representing 1.5x the 
interquartile range. h, Homer DNA motif analysis at ATAC-seq peaks detected at 
stable (n = 2,044), gained (n = 591) or lost (n = 135) TAD borders (P values are 
calculated using hyper-geometric statistical tests).  
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Extended Data Fig. 2 | Molecular characterization of CTCF-mAiD BLaER 
cells during transdifferentiation. a, Heatmap of CTCF binding signal at CTCF 
ChIP-seq peaks detected in untreated CTCF-mAID cells. b, Browser snapshot 
showing CTCF binding loss upon 24 h of auxin treatment. c, Overall scaling of Hi-C 
contact frequency as a function of genomic distance in cells treated with DMSO or 
auxin. d, Venn diagram showing the overlap of TAD borders detected in B cells and 
in CTCF-AID B cells. e, Scatter plots comparing insulation scores at TAD borders 
at B cell and at CTCF-AID B cells. Lower values indicate stronger insulation. f, Top: 
Representative in situ Hi-C contact maps (20-kb resolution) of iMacs obtained after 
treatment with DMSO or auxin. Color scale represents the normalized number of 
contacts. Bottom: plots of the corresponding insulation scores for each bin within 
the 10-Mb region shown. g, Scatter plots comparing insulation scores at TAD 
borders at 24 hpi and at the iMac stage after DMSO or auxin treatment. Lower 
values indicate stronger insulation. h, Contact enrichment of interactions inside 
TADs versus outside TADs at the indicated time points for B cell (n = 1), DMSO- 
(n = 2) or auxin-treated cell (n = 2) biologically independent samples. Dots 
represent point estimates and bars (wide and narrow) indicate confidence intervals 
(50% and 95 %, respectively) for the log2 fold changes. All estimations are 
computed using all 9 samples in a single linear mixed model. i, Outline of strategy 
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used to identify dynamic promoters and enhancers during transdifferentiation. 
Numbers of ATAC-seq peaks intersecting with TSS (promoters) and H3K4me1 
peaks (enhancers) are indicated. j, H3K27ac decoration at dynamic promoters and 
enhancers that become either inactivated or activated. k, CEBPA binding at 
activated and inactivated regulatory elements (RE) in B cell and iMacs. l, RNA 
expression of genes associated with inactivated (n = 1,259) and activated (n = 1,421) 
promoters during transdifferentiation. All box plots depict the first and third 
quartiles as the lower and upper bounds of the box, with a thicker band inside the 
box showing the median value and whiskers representing 1.5x the interquartile 
range.  
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Extended Data Fig. 3 | CTCF depletion does not impair transdifferentiation 
or long-range enhancer-promoter contact dynamics. a, Representative flow 
cytometry analysis of CD19 and Mac-1 marker expression during transdifferentiation 
of CTCF-mAID B cells treated with DMSO or auxin. The experiment was repeated 
3 times with similar results. b, Transdifferentiation kinetics of CTCF-mAID B cells 
(clone C1) in the presence of DMSO or auxin analysed 
at 0, 96 and 168 hpi by flow cytometry for CD19 and Mac-1 expression (n = 3 
biologically independent samples). Centre indicates mean, error bars show standard 
deviation and P unpaired two-tailed t-test. c, Phagocytosis assay of iMacs analyzed 
by flow cytometry showing uptake of blue fluorescent beads. The experiment was 
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repeated 3 times with similar results. d, RNA expression measured by qRT-PCR of 
cytokines in noninduced (NI) or 2h LPS-induced iMacs DMSO (n = 6), iMacs AUX 
(n = 6) or B cells (n = 3). Mean values are shown, error bars represent standard 
error and n represents biologically independent samples. e, Venn diagram showing 
the overlap of genes upregulated (left) and downregulated (right) in iMacs after 
transdifferentiation in the presence of DMSO or auxin based on RNA-Seq (n = 2 
biologically independent samples). f, Gene ontology analysis of genes specifically 
upregulated (n = 419) and downregulated (n = 744) specifically in CTCF-depleted 
iMacs (q-value, FDR corrected Fisher exact test). g, Aggregate metaplots (10-kb 
resolution) depicting long range (5–10-Mb) interaction frequencies between 
enhancers and promoter (E-P) during transdifferentiation. Area shown is centered 
on enhancers or promoters ± 250-kb). h, Venn diagram showing the number of 
switching compartment regions (100-kb bins) during transdifferentiation in presence 
of DMSO or auxin. i, Expression of MAFB during transdifferentiation with or 
without CTCF, as measured by RNA-seq (n = 2 biologically independent samples, 
lines connect mean values). j, Enhancer activity at the MAFB locus during 
transdifferentiation. Browser snapshot showing H3K27ac ChIP-seq profiles of a 4-
Mb domain surrounding the MAFB locus. The enhancer and the promoter shown in 
Fig. 3g are highlighted in light brown.  
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Extended Data Fig. 4 | CTCF depletion in iMacs attenuates the acute 
inflammatory response to endotoxins. a, Genome-wide aggregation of 
normalized Hi-C signal anchored at cohesin loops during transdifferentiation with 
DMSO or auxin. b, Distance distribution between enhancers and 
TSS of genes responsive (n = 378) or unresponsive (n = 380) to LPS (P, two-sided 
Wilcoxon rank-sum test). c, CTCF enrichment at promoters and enhancers d, of 
genes responsive (n = 378) or unresponsive (n = 378) to LPS (P, two-sided 
Wilcoxon rank-sum test). e, Differential gene expression between LPS-induced iMac 
treated with auxin or DMSO (n = 2 biologically independent samples, P-adj two-
tailed likelihood ratio test followed by FDR correction). f, Gene ontology analysis of 
the significantly (p < 0.01) upregulated (n = 746) and downregulated (n = 694) genes 
in LPS-induced iMacs treated with auxin compared to DMSO (q-value, FDR-
corrected Fisher exact test). g, Overlap of upregulated (top) and downregulated 
(bottom) genes (AUX vs DMSO) between non-induced iMacs (NI) and iMacs 
treated with LPS (LPS). h, LPS-upregulated genes in iMacs exposed to DMSO 
compared to auxin (n = 2,470 genes, P two-sided Wilcoxon rank-sum test). i, RNA 
expression in non-induced (NI) iMacs of genes upregulated after LPS stimulation of 
DMSO treated iMacs (n = 2,470). j, RNA expression of key transcription factors 
and receptors of the LPS signalling pathway (n = 2 biologically independent 
samples). k, CTCF binding at promoters of genes deregulated in LPS-induced iMacs 
treated with auxin as compared to DMSO. l, Micrographs show uptake of 
fluorescent beads (shown in red) by iMacs treated with DMSO or auxin (Scale bar 
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represents 10 μm). The experiment was repeated 3 times with similar results. m, 
Quantification of phagocytosis assay. Upper panel shows percentage of cells with 
bead uptake; lower panel shows mean fluorescent intensity (MFI). Bars represent 
mean values of n = 3 biologically independent samples and error bars denote 
standard deviation. All box plots depict the first and third quartiles as the lower and 
upper bounds of the box, with a thicker band inside the box showing the median 
value and whiskers representing 1.5x the interquartile range.  
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Extended Data Fig. 5 | CTCF depletion in iMacs impairs 3D chromatin 
organization at inflammatory response gene loci. a, Distance distribution 
between promoters and their closest TAD borders of genes downregulated in auxin 
treated iMacs after LPS induction (as compared to iMacs exposed to DMSO) or for 
a random set of genes with a similar size (n = 687) (P, two-sided Wilcoxon rank-sum 
test). Box plots depict the first and third quartiles as the lower and upper bounds of 
the box, with a thicker band inside the box showing the median value and whiskers 
representing 1.5x the interquartile range. b, Average insulation scores of TAD 
borders closest to genes downregulated in auxin treated iMacs after LPS induction 
or closest to a random set of genes with a similar size (n = 687). Area shown is 
centered on boundary regions ± 250-kb (P, two-sided Wilcoxon rank-sum test). c, 
Hi-C maps (10-kb resolution) at the IL6 locus. Color scale represents the normalized 
number of contacts and the genes within the locus are indicated on the right. d, 
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Virtual 4 C of iMacs treated with DMSO (dark blue) or auxin (light blue) using IL6 
enhancer 1 (e1) as viewpoint; Browser snapshot of H3K27ac ChIP-seq signal is 
shown and the STEAP1B promoter is highlighted. e, Differential expression of IL6 
and STEAP1B in LPS-induced iMacs treated with auxin as compared to DMSO 
(bars represent the mean values of n = 2 biologically independent samples). f, 
Distance distribution between STEAP1B promoter and IL6 enhancer regions (n = 
1,000 models). Median (solid line), first and third quartile (dashed line) are indicated 
(P, two-sided Komogorov-Smirnov test). g, Hi-C maps (10-kb resolution) at the 
CCL2 locus in iMacs generated in the presence of DMSO or auxin. Color scale 
represents the normalized number of contacts. Genes within the locus are indicated 
on the right. h, Top: Differential Hi-C maps of the CCL2 locus (10-kb resolution) in 
iMacs generated in the presence of DMSO or auxin; CTCF ChIP-seq signal and 
gene positions are shown below the Hi-C map. Middle: Virtual 4 C of the CCL2 
locus of iMacs treated with DMSO (dark blue) or auxin (light blue), using CCL2 
promoter as viewpoint. Bottom: browser snapshots showing H3K27ac ChIP-seq 
and PC1 A/B compartment tracks. The CCL2 enhancer is highlighted. i, Distance 
distribution between CCL2 TSS and enhancer regions (n = 1,000 models). Median 
(solid line), first and third quartiles (dashed line) are indicated (P, two-sided 
Komogorov-Smirnov test). j, 3D model of the CCL2 locus in DMSO or auxin 
treated iMacs.  
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Supplementary Table 1. Sequences of oligonucleotides used for 

qRT-PCR  
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