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Signature: .......................................................

I certify that I have read this dissertation and that, in my opinion, it is fully ade-

quate in scope and quality as a dissertation for the degree of Doctor of Philosophy:

Committee Member: Name: ........................................

Signature: ........................................
I certify that I have read this dissertation and that, in my opinion, it is fully ade-

quate in scope and quality as a dissertation for the degree of Doctor of Philosophy:

Committee Member: Name: ........................................

Signature: ........................................
I certify that I have read this dissertation and that, in my opinion, it is fully ade-

quate in scope and quality as a dissertation for the degree of Doctor of Philosophy:

Committee Member: Name: ........................................

Signature: ........................................

vii





Motto:

Axiom 5B : “Be good, beyond better, to become the best”.

I.T. Vlad

ix





Abstract

by Ing. Iulian Teodor Vlad

The aim of this research is to observe the dynamics of cancer tumors and to develop

and implement new methods and algorithms for prediction of tumor growth. We

offer some tools to help physicians for a better understanding and treatment of

this disease. Using a prediction method, and comparing with the real evolution a

physician can note if the prescribed treatment has the desired effect, and according

to this, if necessary, to take the decision of surgical intervention.

In this thesis we analyze the spatio-temporal dynamics of shape evolution and we

apply these to a particular case of brain tumors.

The plan of the thesis is the following. In Chapter 1 we briefly recall some proper-

ties and classification of points processes with some examples of spatio-temporal

point processes. Chapter 2 presents a short overview of the theory of Lévy bases

and integration with respect to such basis is given, we recall standard results about

spatial Cox processes, and finally we propose different types of growth models and

a new algorithm, the Cobweb, which is presented and developed based on the pro-

posed methodology. Chapters 3, 4 and 5 are dedicated to present new prediction

methods. The implementation in Matlab software comes in Chapter 6. The thesis

ends with some conclusion and future research.
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Notations

In this work, we use the following notations throughout the text:
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P (A) probability measure
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f(x) probability density function
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N(t) N(t) = N(0, t] = N
(
(0, t]

)
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k(·, ·) probability kernel
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The rest of notation used in this dissertation is explained as it appears in the text.
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Chapter 1

Introduction: basics of stochastic

processes

Cancer is a widely spread disease that affects a large proportion

of the human population. Recently developed technologies such as

controlled chemotherapy, IMRT (intensity modulated radiotherapy),

IGRT (image guided radiation therapy) and hadronotherapy, do pro-

vide good results in the detection, control and follow-up of cancer

growing. In this context, it is needed a precisely detection of the

tumor boundary, and a further prediction of the tumor dynamics to

verify the result of a particular treatment.

Prediction, a statement about the future, is meant to have a a pri-

ori information about one event that can be observable. Over time,

this subject has created a lot of controversy and discussion. From

ancient times to present, people have tried to find and predict some

facts and how they evolve in the future. The power to have such in-

formation sometimes turns on the perception that this is magic (e.g.

to know when a solar eclipse will happen in the Maya civilisation,

to know when the wind will turn on the direction in a sea battle of

ships in 17th-18th Century, to depict the cholera source by clusters

in London 1854, etc.). This kind of scientific worries was contemned

1



Introduction 2

but a number of researchers were continuing to study and make ex-

periments to develop revolutionary theories and methodologies for

prediction.

Talking about future it is obvious that we must refer to time and to

the next values of this abstract variable. Actually, even mathemat-

ical formalism can contain multiple abstract notions may be hard

to explain and analyze intuitively. For example the “lineal element”

defined by eq.(3) in the article “The foundation of general relative

theory of relativity” by Albert Einstein, has no direct physical mean-

ing.

In this research we are concerned with observing and modeling the

effect of time on the evolution of cancer.

In modern societies, mathematicians and statisticians developed the-

ories and methodologies to equipe with some probability the realiza-

tion of one event in the study experiment. Some evolution aspects

over time and the dynamic of phenomenon can be defined a priori

if we have enough input data and the developed theory to do this.

Otherwise we can use empirical methods,based on input data and the

researcher experience, to find an approximate solution of the interest

variable.

If we look at the pairs of terms synthetic/analytic and a priori/a pos-

teriori we see that a mathematical interpretation can be represented

diagrammatically as follows: the overlap of the synthetic with the a

priori indicates that he asserts that there are synthetics statements a

priori, but we would also regard logical laws and certain fundamen-

tal principles of mathematic as a priori synthetic. By means of these

distinctions between the a priori and a posteriori, and between the

analytic and synthetic, is called formalism. Also the formalism can

be defined in simple words as a description of something in formal

mathematical or logical terms.
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Mathematical formalism always tries to find a compromise between

simplicity of analysis and requirements of realism. On the one hand,

we have extremely complex natural and biological systems; on the

other hand, we need to formally address some quantitative issues

about these systems which can be often done only through the use

of mathematical models that may rest on grossly over-simplified as-

sumptions.

On some occasions, a particular mathematical formalism seems to

be “pre-adapted” to a variety of natural and biological systems and

can be profitably used to model a diverse set of processes.

Stochastic Geometry, Bayesian methods, Inference Methods, SPDE,

Functional data Analysis are some class of such models, used now to

solve real problems in the field of:

- epidemiology (home locations of infected patients),

- computational neuroscience (spikes of neurons),

- forestry and plant ecology (positions of trees or plants in general),

- meteorology (weather prediction),

- geography (positions of human settlements, towns or cities),

- seismology (epicenters of earthquakes),

- materials science (positions of defects in industrial materials),

- astronomy (locations of stars or galaxies, revealing regularity in the

spatial distribution of point-like objects, identification of important

scales in the spatial distribution of point-like objects, etc.),

- stellar statistics (deriving distributions, testing of predicted distri-

bution functions, identification of clusters and associations of stars,

search for wide binaries and multiple systems),

- cosmological problems (testing of predicted distribution functions,

identification of galaxy clusters, voids, etc.),

- medicine (snapshots of a growing brain tumors),

- zoology (burrows or nests of animals),

- communication systems (wireless network, telephony), etc.
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In this research we analyze the spatio-temporal dynamics of shape

evolution in order to develop new prediction methods and we apply

these to a particular case of brain tumors. These objects are origi-

nally processed from CT and MRI images, and can be depicted as

a collection of image pixels with varying degrees of color intensity

levels. We consider spatio-temporal stochastic processes within a

Bayesian framework to model spatial heterogenity, temporal depen-

dence and spatio-temporal interactions amongst the pixels, providing

a general modeling framework for such dynamics. We aim at pre-

dicting cancer growth in space and time. We analyze real data on

brain tumor based on a set of images taken at several visits and

also simulated closed curves to randomly generate the tumor cancer

contours.

Let us begin with a brief introduction to stochastic theory, define the

basic notations and show some important characteristics and types

of point processes.

A stochastic process, or sometimes a random process, is the counter-

part to a deterministic process (or deterministic system) in proba-

bility theory. Instead of dealing with only one possible“reality” of

how the process might evolve under time (as is the case, for example,

for solutions of an ordinary differential equation), in a stochastic or

random process there exist some indetermination in its future evo-

lution described by probability distributions. This means that even

if the initial condition (or starting point) is known, there are many

possibilities when the process might go, but some paths are more

probable and others less (Cox (1994)[5] and Daley and Vere-Jones

(2003)[6]).

In the simplest possible case (“discrete time”), a stochastic process

amounts to a sequence of random variables known as a time series

(for example, see Markov chain). Another basic type of a stochastic
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process is a random field, whose domain is a region of space, in other

words, a random function whose arguments are drawn from a range of

continuously changing values. One approach to stochastic processes

treats them as functions of one or several deterministic arguments

(“inputs”, in most cases regarded as “time”) whose values (“out-

puts”) are random variables: non-deterministic (single) quantities

which have certain probability distributions. Random variables cor-

responding to various times (or points, in the case of random fields)

may be completely different. The main requirement is that these

different random quantities all have the same “type”. Although the

random values of a stochastic process at different times may be inde-

pendent random variables, in most commonly considered situations

they exhibit complicated statistical correlations.

When we use the word “point” we shall refer to an object or an event

in a “location” or in the “sample space”.

The sample space will be denoted by Ω ⊆ S ⊂ Rd dimensional space

(usually the Euclidean space, with d=2 or d=3 in applications).

The distribution of such n points in the sample space or in the “study

region” Ω can be random or governed by some laws. Each point n

must accomplish at least one condition to be observed (it represents

a value of the observed phenomenon) and can contain also some

supplementary “information”.

If we talk about “point process” in terms of stochastic theory, then

we shall deal with words like: “random” or “probability” refer to

values, and “measure” or “topology” with reference to the sample

space.

Let us consider that we have n points, in an observable space Ω

included or equal in the sample space S ( Ω ⊆ S ) and let A be a

realization of these events.
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Then:

A = {ω1, ω2, . . . , ωn}.

Definition 1.1. The “atoms” of Ω are the events {ω} having just

one outcome ω ∈ Ω.

We say that the atom {ω} of the outcome ω is the event “ω occurs”

The events are subsets of the sample space and by additivity, any

probability measure P must satisfy:

P (A) = P ({ω1}) + P ({ω2}) + . . .+ P ({ωn}) (1.1)

Every probability measure P on a finite sample space Ω is determined

by its values on the atoms. The value on an arbitrary event A ⊆ Ω

is then computed by the formula:

P (A) =
∑
ω∈A

P ({ω}) (1.2)

The values of P on the atoms may be assigned arbitrary as long as:

1. For every atom {ω} , 0 ≤ P ({ω}) ≤ 1

2.
∑

ω∈Ω P ({ω}) = 1

whenever (1) and (2) hold, P defines a consistent probability

measure on Ω.

Definition 1.2. Let Ω 6= ∅. A field on Ω is a system A of subsets

A ⊆ Ω satisfying the following conditions:

1. Ω ∈ A, ∅ ∈ A

2. If A1, A2 ∈ A then A1 ∪ A2 ∈ A and A1 ∩ A2 ∈ A

3. If A ∈ A then Ac ∈ A
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Definition 1.3. A content is a set function µ defined on a field A
such that:

1. µ(A) ∈ [0,∞] whenever A ∈ A

2. µ(∅) = 0

3. µ(A1∪A2) = µ(A1)+µ(A2) wheneverA1, A2 ∈ A andA1∩A2 = ∅

Definition 1.4. Let A be a field and let µ|A be a content. The

content µ is called σ-additive if:

µ

(⋃
i∈N

Ai

)
=
∑
i∈N

µ(Ai) (1.3)

for every pairwise disjoint sequence (Ai)k∈N ⊆ A such that:⋃
i∈NAi ∈ A.

If a content is σ-additive then the content has several continuity

properties which make calculations easier.

Definition 1.5. A field F on Ω is a σ-field if:

(Ai)i∈N ⊆ F ⇒
⋃
i∈N

Ai ∈ F (1.4)

A pair (Ω,F) where F is a σ-field on Ω is called a measurable

space.

Definition 1.6. A σ-additive content which is defined on a σ-field

is called a measure.

A probability space is a measure space such that the measure of the

whole space is equal to 1.

Definition 1.7. A probability space is a triplet (Ω,F , P ) con-

sisting of a set Ω (called the sample space), a σ-algebra (also called

σ-field) F of subsets of Ω (these subsets are called events), and a

measure P such that P (Ω) = 1 (called the probability measure).
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Definition 1.8. Let (Ω,F , P ) be a probability space and let A ⊆
F be a sub-σ-field. Let X be a nonnegative or integrable random

variable. The conditional expectation E(X|A) of X given A is

an A-measurable random variable Y satisfying:∫
A

X dP =

∫
A

Y dP , for all A ∈ A (1.5)

Definition 1.9. Let (Ω,F , P ) be a probability space. Any F -measurable

real-valued function X : Ω → R is called a random variable

(R.V.).

An integer random variable is a function X defined on a sample space

Ω, that takes only integer values. Namely, for every sample point

ω ∈ Ω, X(ω) is a integer. The probability distribution of X is the

sequence of numbers pn such that pn is the probability of the event

“X equals n”. The event “X equals n” can be writen (X = n). As

a subset of Ω this event is:

(X = n) = {ω ∈ Ω : X(ω) = n}

Definition 1.10. Suppose X is a integer R.V. with distribution pn =

P (X = n). The expectation or mean or average value of X is:

E(X) =
∑
n

n · pn =
∑
n

n · P (X = n) (1.6)

Definition 1.11. Let X be a random variable. Then the function

FX : R→ [0, 1] is the distribution function of X defined by:

FX(x) := P (X ≤ x), x ∈ R (1.7)

and satisfies:

1. F (−∞) = 0

2. F (∞) = 1
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3. F (x) ≤ F (x′) if x < x′.

The distribution of X is PX , i.e. the image of P under X defined

by:

PX(B) := P (X−1(B)) = P (X ∈ B), B ∈ B,

where B is the Borel σ-algebra.

Thus, the distribution function FX determines the values of the dis-

tribution PX on intervals by:

PX((a, b]) = P ({a ≤ X ≤ b}) = F (b)− F (a).

A probability distribution has density f.

Definition 1.12. Let X be a random variable. Then the function

f : R → R is the probability density function (P.D.F.) of the

random variable X if:

PX((a, b]) = P ({a ≤ X ≤ b}) =

∫ b

a

f(x)dx (1.8)

and satisfies:

1. F (x) = P ({X < x}) =
∫ x
−∞ f(x)dx.

2. f(x) > 0, ∀x ∈ R

3.
∫∞
−∞ f(x)dx = 1

4. if X ∈ (a, b), then f(x) = 0 for ∀x /∈ (a, b)

5.
∫ b
a f(x)dx = F (b)− F (a)

Example 1: Consider the experiment of flipping a coin once. Then:

Ω = {H,T} (the possible outcomes: “Heads” and “Tails”)

F = P (Ω) (F contains all subsets of Ω)

P ({H}) = P ({T}) =
1

2
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Example 2: We pick a real number at random in the interval [0,

2]. Ω = [0, 2], F is the Borel σ-field of [0, 2]. The probability of an

interval [a, b] ⊂ [0, 2] is:

P ([a, b]) =
b− a

2

Example 3: If A is an event in a probability space, the random

variable:

1A(ω) =

{
1, ω ∈ A;

0, ω /∈ A.

is called the indicator function of A. Its probability law is called the

Bernoulli distribution with parameter p = P (A).

The set of all possible sequences is called “the Bernoulli sample

space” Ω, and the correspondent experiment process is called “the

Bernoulli process”

Example 4: We say that a random variable X has the Binomial

law B(n, p) if:

P (X = k) =

(
n

k

)
pk(1− p)n−k (1.9)

for k = 0, 1, 2, . . . , n

Example 5: We say that a random variable X has the Normal

law N(m,σ2) if:

P (a < X < b) =
1√

2πσ2

∫ b

a

e−
(x−m)2

2σ2 dx (1.10)



Introduction 11

Example 6: If X is a random variable with normal law N(0, σ2)

and λ is a real number,

E(exp(λX)) =
1√

2πσ2

∫ ∞
−∞

eλxe−
x2

2σ2 dx

=
1√

2πσ2
e
σ2λ2

2

∫ ∞
−∞

e−
(x−σ2λ)2

2σ2 dx

= e
σ2λ2

2

(1.11)

Example 7: Consider an experiment that consists of counting the

number of traffic accidents at a given intersection during a specified

time interval.

Ω = {0, 1, 2, . . .}

F = P (Ω) (F contains all subsets of Ω)

P ({k}) = e−λ
λk

k!
(Poisson probability with parameter λ > 0)

Example 8: If X is a random variable with Poisson distribution of

parameter λ > 0, then:

E(X) =
∞∑
n=0

n
e−λλn

n!
= λe−λ

∞∑
n=1

e−λλn−1

(n− 1)!
= λ

With these concepts in mind we can now state that:

• if in the probability space (Ω,F , P ), the random variable X has

associated a time series then we have a “temporal process”

• if the sample space is d dimensional (d ≥ 2) Euclidean then we

have a “spatial process”

• if in the probability space (Ω,F , P ), the measure N(A) repre-

sents the number of points falling in the subset A of Ω ⊆ S,

then we have a “point process”
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• if in the probability space (Ω,F , P ), each event occurred in the

subset A of Ω ⊆ S has associated a location s then the measure

N(s) represents the number of events that are considered and

we have a “spatial point process”

• if the point process N(s) is “marked” then we have a particular

point process named “marked point process”

• if in the case of point process N(s), the random variable X has a

Poisson distribution then we have a “poisson point process”

• if in the case of point processes N(s) the random variable X

in distributed in clusters over the sample space then we have a

“cluster point process”

• if the time series values ti are index the spatial random set

Ω ⊆ S of spatial point processes N(s) then we have a “spatio-

temporal point process” N(s, t)

Figure 1.1: Several distributions of points in a 2-dimensional region:
a) Cluster distribution; b) Poisson distribution; c) Regular distribution

In Figure 1.1 it is shown several possible distributions of points in a

region. They are realizations of spatial point processes.

1.1 Temporal processes

Definition 1.13. A stochastic process observed over time is called

a time series.
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Define a real-valued time series by:

{Xt ∈ R : −∞ < t <∞} (1.12)

the stochastic process is said to be a second-order (weakly) stationary

if:

E(Xt) = µ(= 0) (1.13)

and

Cov(Xt, Xt−k) = c(k) (1.14)

where c(k) is the auto-covariance function and is completely specified

by the time lag k.

Analysis of time series data is typically conducted in the time or in

the frequency domain. The analysis of the time series autocorrela-

tion function (ACF) is discussed in Box et al. (1994)[7], Bhansali

(1980)[8], Brockwell and Davis (1991)[9], Hamilton (1994)[10], etc.

Estimating, for example, Auto-Regressive Moving Average (ARMA)

models is straightforward in the time domain (Postcher and Srini-

vasan (1994)[11]).

Fuller (1976)[12], Harvey (1981)[13], Lűtkepohl (1991)[14], etc, pre-

fer the time domain approach because of the relative ease of inter-

pretation. Conversely, the frequency domain of time series data is

steeped in the Hilbert space algebra. However, the spectral analy-

sis has advantages in its nonparametric approach to data analysis.

Although ARMA models can be obtained in the frequency domain,

the spectral approach does not require any parametric model for

inference.
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1.2 Spatial processes

Definition 1.14. A stochastic process with a spatial domain is called

a spatial process. A spatial process is defined by:

{N(s) : s ⊆ Ω ⊂ Rd} (1.15)

where Ω is an index set and N(s) is the attribute of interest at

location s .

For simplicity, the dimension of space is R2, representing observa-

tions in the plane. The main difference between (1.12) and (1.15)

is that the “information” about the locations is not necessary well-

ordered like a temporal process which is directed in time (t = {t1, t2,
t3, . . . , tn}, where t1 < t2 < t3 < · · · < tn). Time flows unidirection-

ally, whereas there is no equivalent to past, present, or future in a

spatial domain. For this reason many of the methods used to analyze

time series must be modified to be appropriate in the spatial context

and many techniques of spatial data analysis have been developed

independently to time series analysis.

In the geostatistical literature N(s), the attribute of interest observed

at location s, is often viewed in the context of random functions (see,

e.g., Juornel and Huijbregts (1978)[15], Goovaerts (1997)[16], Chilés

and Delfiner (1999)[17]).

Briefly, N(s, ω) depends on the realization ω of a random experiment.

For a given realization N(·, ω) is a function of spatial locations and n

observations N(s1),N(s2), ...,N(sn) represent an n-dimensional sam-

ple of size one from the set of all possible random functions. The

stochastic behavior of the attribute N at location s is induced by con-

sidering all possible realizations of the random experiment at that

location N(s).
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1.2.1 Types of spatial processes

Viewing spatial processes as stochastic processes according to (1.15)

is general in that the nature of the index set Ω permits the definition

of different types of spatial data. Three spatial data types are defined

as follows, according to Cressie (1993)[18]:

I. Geostatistical Data: N(s) is a random variable observed at lo-

cations s ∈ Ω, where Ω is fixed and continuous.

Examples: Random or systematic sampling of a surface, plant

yields across a corn field, drilling for ore.

II. Lattice Data: N(s) is a random variable observed at locations

s ∈ Ω, where Ω is fixed and discrete.

Examples: Unemployment rates by census tracts, coloring on

remotely sensed pixel images.

III. Point Patterns: N(s) is a random variable observed at loca-

tions s ∈ Ω, where Ω is a random set of indices.

Examples: Positions of lunar craters, locations of trees in a for-

est, residences that reported break-ins in 1999.

1.3 Point processes

The theory of point processes has undergone an explosive expansion

in the last two decades. Point processes and random measures are

common in many physical applications found in engineering, astrol-

ogy, biology, etc. These processes can be observed in one-dimension

as a time series or two-dimensions as a spatial point pattern with

extensive amounts of literature devoted to their analysis.
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The analysis of point pattern data in a compact subset S of Rn

is a major object of study within spatial statistics. There are dif-

ferent ways to build and characterize a point process (using finite-

dimensional distributions, void probabilities, capacity functionals, or

generating functions). An easier way to build a point process is by

transforming an existing point process (by thinning, superposition,

or clustering).

Point processes are covered in detail by Bartlett (1975)[19] and Daley

and Vere-Jones (2003)[6]. Bartlett (1964)[20], [21], Bartlett (1975)[19]

extends analysis of the spatial point process to the frequency domain

through the spatial periodic functions.

Ripley (1976)[22] introduced the analysis in the spatial domain through

K -function. Currently, Ripley’s approach to studying the depen-

dency structure of point patterns remains the dominant method for

analysis. Daley and Vere-Jones (2003)[6] in their book: An Introduc-

tion to the Theory of Points Processes, offer a complete background

about this type of Stochastic Processes.

Informally, a point process on a suitable state space S is understood

to be a locally finite collection of distinct random elements k , (k =

1, 2, ..., n) in S. With these specifications we can make the first

general definition:

Definition 1.15. A point process is a random distribution of

points in a sample space.

In mathematics, a point process is a random element whose values

are “point patterns” on a set S ⊆ Rd. While in the exact mathemat-

ical definition a point pattern is specified as a locally finite counting

measure, it is sufficient for more applied purposes to think of a point

pattern as a countable subset of S that has no limit points.
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Definition 1.16. A point process N is a stochastic model governing

the locations of events si in some bounded set A.

When estimated from point process data, the empirical product den-

sity function (1.28) provides a description of the density of inter-event

distances in an observed point pattern. For instance, high values

for small distances are indicative of an overabundance of short inter-

event distances (this is a typical situation for cluster processes, where

data tend to form groups). Conversely, if short inter-event distances

are rare, this will indicate that an inhibitory structure is present,

and points tend to separate from each other. In the homogeneous

and isotropic case (Cressie (1993)[18]; Stoyan and Stoyan (1994)[23];

Stoyan et al. (1995)[24]), the product density (1.28) depends only on

the distance r =‖ si − sj ‖ between the points si and sj, and thus

we write, for the sake of simplicity l(r) for the product density.

If the points in this space have associated the time axis, we have a

time point process, and its random points Pi are time instants ti,

which are called the events.

Attention is typically restricted to points in some time interval [T0, T1],

and to processes with only a finite number of points in any compact

subset of S.

Traditionally the points of a point process are thought to be indistin-

guishable, other than by their times and locations. Often, however,

there is other important “information” to be stored along with each

point. For example, one may wish to analyze a list of points in

time and space where a member of a certain species was observed,

along with the size or age of the organism, or alternatively a catalog

of arrival times and locations of hurricanes along with the amounts

of damage attributed to each. Such processes may be viewed as

marked spatiotemporal point processes, i.e. random collections of
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points, where each point has associated with it a further random

variable called a mark.

Much of the theory of spatiotemporal point processes carries over

from that of spatial point processes. However, the temporal aspect

enables a natural ordering of the points that does not generally exist

for spatial processes. Indeed, it may often be convenient to view

a spatiotemporal point process as a purely temporal point process,

with spatial marks associated with each point. Sometimes investigat-

ing the purely temporal (or purely spatial) behavior of the resulting

marginalized point process is of interest.

The spatial region of interest is often a rectangular portion of R2

or R3, but not always. Cases where the points are spatially dis-

tributed in a sphere or an ellipse are investigated by Brillinger et al.

(1997)[25] and Brillinger (2001)[26]. When the domain of possible

spatial coordinates is discrete (e.g. a lattice) rather than continuous,

it may be convenient to view the spatiotemporal point process as a

sequence {Ni} of temporal point processes which may interact with

each another.

For modeling and statistical inference purposes we consider point

processes in a bounded region of space. Under this restriction it is

possible to define point processes by writing down their probability

densities.

A point process on the line may be taken as modeling the occurrences

of some phenomenon at the time instants ti with i in some suitable

index set. For such a process, there are four equivalent descriptions

of the sample paths:

1. counting measures;

2. nondecreasing integer-valued step functions;
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3. sequences of points; and

4. sequences of intervals.

In describing a point process as a counting measure, it does not

matter that the process is on the real line. However, for the three

other methods of describing the process, the order properties of the

reals are used in an essential way. While the methods of description

may be extended into higher dimensions, they become less natural

and, in the case of (4), definitely artificial. We mostly used the

intuitive notion of a point process as a counting measure. To make

this notion precise, take any subset A of the real line and let N(A)

denote the number of occurrences of the process in the set A; i.e.

N(A) = number of indices i for which ti lies in A = ]{i : ti ∈ A}.
(1.16)

When A is expressed as the union of the disjoint sets A1, . . . , Ar, say,

that is,

A =
r⋃
i=1

Ai where Ai ∩ Aj = ∅ for i /∈ j,

it is a consequence of (1.16) that:

N

(
r⋃
i=1

Ai

)
=

r∑
i=1

N(Ai) for mutually disjoint A1, . . . , Ar

A natural way of measuring the average density of points of a point

process is via its mean, or in the case of a stationary point process,

its mean density, which Daley and Vere-Jones (2003)[6] define as

m = E(N(0, 1]). (1.17)

Defining the function

M(x) = E(N(0, x]), (1.18)
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is a consequence of the additivity properties of N(·) as in (1.17), of

expectations of sums, and of the stationarity property in (1.18), the

following properties for x, y ≥ 0,

M(x+ y) = E (N(0, x+ y]) = E (N(0, x] +N(x, x+ y])

= E (N(0, x]) + E (N(x, x+ y]) =

= E (N(0, x]) + E (N(0, y]) =

= M(x) +M(y)

In other words, M(·) is a nonnegative function satisfying Cauchy’s

functional equation:

M(x+ y) = M(x) +M(y) (0 ≤ x, y <∞)

Consequently

M(x) = M(1)x = m(x) (0 ≤ x <∞) (1.19)

irrespective of whether M(x) is finite or infinite for finite x > 0

There is another natural way of measuring the rate of occurrence

of points of a stationary point process, due originally to Khintchine

(1960)[27].

Proposition 1.17. For a stationary (or even crudely stationary)

point process, the limit:

λ = lim
h↓0

Pr{N(0, h] > 0}
h

(1.20)

exists, though it may be infinite.

PROOF:

Introduce the function

φ(x) = Pr{N(0, x] > 0}. (1.21)
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Then φ(x) ↓ 0 as x ↓ 0, and φ(·) is subadditive on (0,∞) because

for x, y > 0,

φ(x+ y) = Pr{N(0, x+ y] > 0} =

= Pr{N(0, x] > 0}+ Pr{N(0, x] = 0, N(x, x+ y] > 0}

≤ Pr{N(0, x] > 0}+ Pr{N(x, x+ y] > 0} =

= φ(x) + φ(y) �

Parameter λ is called the intensity of the point process, and when it

is finite, (1.20) can be written as:

Pr{N(x, x+ h] > 0} = Pr{there is at least one point in (x, x+ h]}

= λh+ o(h) (h ↓ 0)
(1.22)

These two measures of the ”rate” of a stationary point process coin-

cide when the point process has the following property (text of propo-

sition, proof and definition from Daley and Vere-Jones (2003)[6]).

Definition 1.18. A point process is simple when:

Pr{N({t}) = 0 or 1 for all t} = 1 (1.23)

Daley and Vere-Jones (2003)[6] called this sample-path property al-

most sure orderliness to contrast it with the following analytic prop-

erty due to Khintchine (1960)[27].

Definition 1.19. A crudely stationary point process is orderly

when

Pr{N(0, h] ≥ 2} = o(h) (h ↓ 0) (1.24)

Notice that stationarity plays no role in the definition of a simple

point process. In addition, it does not matter whether the point

process is defined on the real line or an a Euclidean space (Daley

and Vere-Jones (2003)[6]).

Definition 1.20. A regular point process (see Snyder (1975)[28]) is

such that the probability of an event occurring in the time interval
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[t, t+4t] is given by:

Pr[one event in [t, t+4t)|Nt, wt] = µ(t;Nt, wt)4t

Pr[more than one event in [t, t+4t)|Nt, wt] = o(t,4t)
(1.25)

where:

Nt is the number of events that have occurred up to time t

(observations are assumed to start at time t = 0);

wt is the vector of occurrence times of these Nt events:

wt = [w1, . . . , wNt]; and

o(t,4t) decreases to zero as 4t decreasing faster than

linearly: lim
∆t→0

o(t,4t)/4t = 0

These equations mean that no more than one event can occur in a

sufficiently small interval and that the probability of one event occur-

ring within a small interval, is proportional to the interval’s duration.

The quantities Nt and wt describe the history of the process, giv-

ing the number and the times at which all events occurred prior to

time t. Note that the probabilities are conditional probabilities: they

depend on the point process’s history.

Definition 1.21. a) Let {Ni}i∈{1,2,...} be a sequence of nonnegative

random variables on some probability space (Ω,F , P ) such that 0 <

Ni ≤ Ni+1. Then the sequence {Ni} is called a point process on

[0,∞). If in addition, Ni < Ni+1 ∀i then the point process is said to

be a simple point process.

b) Let {Ni}i∈{1,2,...} be a simple point process on [0,∞), defined on

(Ω,F , P ), and let {Zi}i∈{1,2,...} be a sequence of {1, 2, . . . ,M}- val-

ued random variables (also defined on (Ω,F , P ), with 1 ≤M <∞).

Then the double sequence {Ni, Zi}i∈{1,2,...} is called a M-variate
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point process on [0,∞). Define for all m, 1 ≤ m ≤ M , and

all t ≥ 0

Vm(t) =
∑
i≥1

1(Ni ≤ t)1(Zi = m). (1.26)

Then the M-vector process V (t) = (V1(t), V2(t), . . . , VM(t)) is the

M-variate counting process associated with {Ni, Zi}.

In our context, Ni will be the occurrence time of the ith market

event and Zi will indicate the event’s type. Vm(t) gives the random

number of events of type m that have occurred up to and including

time t. Because {Ti} in the above definition is simple, the possibility

of the simultaneous occurrence of two events (of either the same or

different types) is ruled out.

Ripley’s K -function

The K -function, defined by Ripley (1976)[22], Ripley (1977)[29] is a

good indicator for spatial structures (Besag and Diggle (1977)[30],

Cressie (1993)[18], Diggle (1983)[31]).

The probability to find a neighbor at a given distance r is very

important in applications. The neighbors of point i represents all

the points located at a distance less than or equal to a given value r

(basically, it represents the number neighbors in a circle of radius r

centered on the point i). We denote the expected value by ν(r). Its

estimator, the observed average number of neighbors, is denoted by

V (r).

Ripley (1977)[29] showed that:

ν(r)

λ
=

∫ r

ρ=0

g(ρ)2πρ dρ (1.27)

and offers an interpretable measure for the spatial dependence in

isotropic stationary point processes.
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Thus the K -function is defined as

λK(r) =E[ number of extra events within a

distance r of an arbitrary event]

The K-function provide an interpretable measure of clustering in

a point process. The expected number of pairs of events N(A) in

a region A with area | A | with pairwise distance less or equal to

r is: λ2 | A | K ′(r). The K-function is a cumulative function and

the derivative is another interpretable function called “the product

density function”, defined by:

λ(2)(r) =
λ2K ′(r)

2πr
, r > 0 (1.28)

Definition 1.22. Ripley (1977)[29] defined the K function as:

K(r) =

∫ r

ρ=0

g(ρ)2πρ dρ (1.29)

where g(ρ) is the pair-correlation function.

If points are distributed independently from each other, g(ρ) = 1 for

all values of ρ, so K(r) = πr2. This value is used as a benchmark:

• K(r) > πr2 indicates that the average value of g(ρ) is greater

than 1. The probability to find a neighbor at the distance ρ is

then greater than the probability to find a point in the same

area anywhere in the domain: points are aggregated.

• Inversely, K(r) < πr2 indicates that the average neighbor den-

sity is smaller than the average point density on the studied

domain. Points are then dispersed.

K(r) is estimated by the ratio of the average number of neighbors

over the density, the latter being estimated by the total number of
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points divided by the domain area:

λ̂ =
N

|A|
(1.30)

Thus we have:

K̂(r) =
v̂(r)

λ̂
=

V (r)

N/|A|
(1.31)

The average number of neighbors can be expressed more explicitly

by defining the indicator c(i, j, r) = 1 if the distance between points

i and j is at most r, 0 otherwise:

K̂(r) =
1

λ̂N

N∑
i=1

N∑
j=1,i 6=j

c(i, j, r) (1.32)

Points located close to the domain borders are problematic because

possible neighbors of these points lying outside the domain are not

counted. This is so called “edge effect”. Ignoring this edge effect

results in underestimating K. Ripley (1977)[29] proposed to correct

the indicator c(i, j, r) introduced in equation (1.32). We denote Lir

the portion of the circle of radius r centered on the point i located

inside the domain. If a part of the crown of width dr, inside of which

a neighbor is counted, is outside the domain, the neighbor is given

a weight equal to the inverse of the ratio between the inside part of

the crown (Lirdr) and the whole crown (2πrdr). The idea is that the

outside part of the crown could have contained the same neighbor

density than the inside part. The correction is then given by:

K̂(r) =
1

λ̂N

N∑
i=1

N∑
j=1,i6=j

2πr

Ljr
c(i, j, r) (1.33)

Cressie (1993)[18] also refers to the K -function as the reduced second-

order measure. If we assume the process is completely random then

the extra number of events within a distance r will be uniform on a
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disc. From this we see that:

λK(r) =

∫ 2π

0

∫ r

0

{λ2(x)/λ}x dxdθ =

=
2π

λ

∫ r

0

λ2(x)x dx

(1.34)

and as a result, the second-order intensity function, λ2(·), is:

λ2(r) =
λ2

2πr

∂K(r)

∂r
(1.35)

The K -function has many appealing features not shared by λ2(r),

such as its invariance to random thinning, physical interpretation,

and simple estimation (Cressie (1993)[18]). Several approaches for

estimation and interpretation of the K -function are given by Cressie

(1993)[18] and Diggle et al. (2003)[32]. However, it must be noted

that K(r) does not uniquely determine the distribution of a point

process. Different point processes can produce identical K -functions

(Baddeley and Silverman (1984)[33]). Furthermore, though the K -

function is used to analyze second-order properties of a spatial point

pattern, it cannot distinguish between deviations from Complete

Spatial Random (CSR) due to lack of uniformity or lack of indepen-

dence of events. However, since K(r) is defined only for first-order

stationary processes, uniformity is a requirement of K -function anal-

ysis.

Under CSR, λ2(r) ≡ λ2, thus (1.35) reduces to:

K(r) = πr2 (1.36)

Testing for CSR can be done by comparing the empirical K -function

to πr2. Quite often, inference is based on the L-function defined by:

L(r) =
√
K(r)/π, (1.37)

and a plot of L(r)− r versus r is used to test for CSR.
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Because the probability distribution of the K -function (or the L-

function) is intractable, inference about a process is based on simu-

lated K -functions. An envelope is built by simulating the teoretical

point process a number of times and defining the K -function for a

set of distances r.

For every distance r, (Kmin(r), Kmax(r)) is stored. The upper and

lower envelopes are then overlaid on the observed K -function K̂(r).

Inference can be obtained by comparing the observed K - function

to the simulated envelope. If K̂(r) > K̄sim(r) then the number of

events within a distance r of an arbitrary event is greater than ex-

pected under the hypothesized process. If the hypothesized process

is CSR then this would imply an aggregated process if r is small or a

regular process if r is large. Conversely, if K̂(r) < K̄sim(r) then the

number of events within a distance r of an arbitrary event is less than

expected under the hypothesized process. Reversing our conclusion

we would infer that the observed process is regular if r is small or

aggregated if r is large. If K̂(r0) > K̄max(r0) or K̂(r0) < K̄min(r0),

the hypothesis is rejected for that particular distance.

1.4 Spatial point processes

A spatial point process differs from the first two types of spatial data

in that the domain Ω is a random set containing location s of events.

Whereas interest with geostatistical and lattice data lies in studying

the properties of N(s) or E[N(s)], for spatial point processes, studying

the properties of the set Ω is the primary goal. Note that we can

write:

N(s) =

{
1, if s ∈ Ω

0, if s /∈ Ω
(1.38)

since locations not in Ω are locations without events.
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Definition 1.23. A process where N(s) = 1,∀ s ∈ Ω is called a

simple point process to emphasize that only the random locations

at which events occur are of interest.

Furthermore, point processes are considered to be orderly in the

sense that:

lim P(N(ds) > 1) = 0

where ds is an infinitesimal disk at location s with area (volume)

| ds | and N (ds) denotes the number of events in the disk. In other

words, only those processes where any given location can record at

most one event are considered.

For geostatistical and lattice data, a weakly stationary process is

defined similarly to a second-order (or weakly) stationary temporal

process. Specifically, a spatial process is weakly stationary if:

E[N(s)] = µ (1.39)

and

Cov[N(si), N(sj)] = c(r) (1.40)

where r = si − sj is a two-dimensional vector containing the shift in

location from site si to site sj . This is analogous to weak temporal

stationarity in that the stochastic process is location invariant and

self-replicating.

For spatial point patterns, weak stationarity is defined through the

first and second-order intensities.

Definition 1.24. The first-order intensity of a spatial point pro-

cess is defined as the expected number of points per unit area:

λ(s) = lim
|ds|→0

E[N(ds)]

|ds|
(1.41)
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Here ds is an infinitesimal region containing the site s , N(ds) repre-

sents the number of points located in ds, and |ds| is the area (volume)

of the region ds. Throughout the text, the notation | · | will represent

the Lesbesgue measure on the spatial region Ω.

Definition 1.25. The second-order intensity is a measure of the

dependency structure of the events in Ω and is given by:

λ2(si, sj) = lim
|dsi|→0
|dsj |→0

E[N(ds i)N(dsj)]

|ds i||dsj|
(1.42)

The second-order intensity λ2(si, sj) contains information about the

stochastic dependence between events in two regions. Although

λ2(·, ·) is akin to c(·) defined previously, it is not a covariance func-

tion.

As with the other types of spatial data, a spatial point process is

weakly stationary if the process is location invariant. This is equiva-

lent to saying λ(s) ≡ λ so that the expected number of events at an

arbitrary location s is constant for all s ∈ D; and λ2(si, sj) = λ2(r)

so that the dependence between events at two arbitrary locations si

and sj depends only on the distance r.

A spatial process has the distinction from a temporal process in that

its observations typically cannot be ordered. However, if a spatial

process is weakly stationary, we can write the covariance between

any two observations as a function of the distance between them.

We can define two types of weakly stationary covariance functions:

anisotropic and isotropic ones. An anisotropic process has covariance

function defined by (1.40) but covariances that differ with direction.

In an isotropic process the covariance function does not depend on

direction and r can be replaced by:

r =‖ si − sj ‖= [(six − sjx)
2 + (siy − sjy)

2]1/2 (1.43)
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the Euclidean distance between si and sj. An isotropic process is

thus invariant under coordinate shifts and rotations.

Definition 1.26. Stationarity and isotropy mean that:

N + s = {xi + s} and rN = {rxi}

have the same distribution as N for any s ∈ Rd and any (Euclidean)

rotation r around the origin, respectively.

Spatial point patterns can be classified into three classes:

- Regular processes

- Aggregated processes

- Complete spatial randomness

All three types can be observed with isotropic or anisotropic covari-

ance functions (Cressie (1993)[18]).

1.4.1 Regular processes

The simplest type of regular process is one that does not allow two

events to be within a distance r of each other (Cressie (1993)[18]).

Other subclasses of regular processes are listed by Cressie (1993)[18]

and back in time referred in Matern (1986)[34], Stoyan and Stoyan

(1994)[23], and Bartlett (1975)[19].

Figure 1.2: A sequential inhibition processes (Diggle, 1976)
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An example of a regular pattern in shown in Figure 1.2. Two hundred

events were generated using an inhibition radius (r = 0.05) on a unit

square.

1.4.2 Cluster processes

Aggregated, or clustered, processes include the Poisson cluster pro-

cess, the Neyman- Scott process, and the Cox process. A general ag-

gregated point pattern can be thought of a parent-offspring process

where offsprings are dispersed around a parent event. The Poisson

cluster process is generated by first obtaining parent events from a

homogeneous Poisson process with mean measure µp, where µp is the

expected number of parents. Each parent event produces a random

number of offspring positioned around the parent according to some

bivariate probability density. The parent events are then removed

leaving only the offspring point process.

Figure 1.3: A Poisson cluster process

Figure 1.3 shows an example of two-hundred events in a Poisson

cluster process on a unit square with µp = 15 and a bivariate normal

distribution with radius 0.075 for the offsprings events according to

a standard bivariate normal distribution.
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1.4.3 Complete spatial randomness

A CSR process is one that generates events uniformly and indepen-

dently in a region A with area |A|. The number of events N (A),

A ⊂ Ω, follows a Poisson distribution with mean λ|A|, where λ is

the average number of events per unit area. Further, given n events

si ∈ A, the si are independent realizations from a uniform distribu-

tion on A.

Figure 1.4: A CSR pattern

Figure 1.4 show a CSR process with n = 200. Note that conditioning

on n, yields a Binomial process. The importance of the CSR hypoth-

esis lies in the fact that it is often used as a null hypothesis for testing

a spatial point pattern. Under CSR, a spatial point pattern has no

structure and thus failing to reject such a hypothesis warrants no

further examination of the data (Diggle (1983)[31]). A CSR spatial

point pattern implies uniformity of events (E[N(A)] = λ|A|) as well

as independence:

Cov[N(A), N(B)] = 0 if A ∩B = ∅
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1.5 Marked spatial point processes

A flexible marked point process of the form:

Nm = {[xi;m(xi)]}

can be built starting from an unmarked point process N = {xi} and

providing each point xi ∈ N by a real-valued mark m(xi). This

procedure is called ”marking”.

Definition 1.27. Given a point process N a marked point process

Nm = {[xi;m(xi)]} is obtained if each point xi ∈ N is provided with

a random variable m(xi) called mark.

The focus here is in the intensity-dependence which means that

the local point density affects the marks. For example, intensity-

dependence allows the marks to be large (small) in areas of low point

intensity and small (large) in areas of high intensity.

The simplest marking strategy is independent marking, where the

marks are drawn for each point xi from a probability distribution

independent of each other and independent of the point process.

This model is often used as a reference model. In geostatistical

marking (Mase (1996)[35]; Schlather et al. (2004)[36]; Illian et al.

(2008)[37]) the marks are drawn from a random field {U(s)} which

is independent of the point process N : the marks are m(xi) = U(xi).

This marking generates correlated marks but is not able to model

intensity-dependence by construction.

A step forward is intensity-dependent marking suggested by Stoyan

(2008)[38] and Myllymäki (2006)[39] for the stationary log Gaus-

sian Cox process generated by a random intensity {Λ(s)}. In these

markings the mean of the conditional mark distribution of m(xi)

given Λ(xi) is a function of Λ(xi) and the marks are conditionally
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independent given the intensity {Λ(s)}. Although the marks are

conditionally independent, they are marginally correlated. The log

Gaussian Cox process as a point process model is a natural choice

for two reasons. First, intensity-dependent marking presumes the

existence of local variation in the point intensity, and thus, only

clustered or heterogeneous point process models are relevant. Cox

processes are such models, see Møller et al. (1998)[40] and Møller

and Waagepetersen (2004)[41]. Second, the log Gaussian Cox pro-

cess is a flexible model with nice theoretical properties. The existing

intensity-dependent markings are useful models but assume that the

variance of the conditional mark distribution does not depend on the

point intensity.

In this case the intensity function λ = E(Λ(s)), that gives the mean

number of points per unit volume, can be used to write

λ2g(‖ o− r ‖) dodr

which gives the probability that two infinitesimal disjoint regions of

volumes do and dr both contain exactly one point of N. For further

details see e.g. Stoyan and Stoyan (1994)[23], Stoyan et al. (1995)[24]

or Illian et al. (2008)[37].

Stationarity means that the translated process {[xi + s;m(xi)]} has

the same distribution as Nm. Note that the marks are kept un-

touched in the translation. Isotropy is defined in a similar way when

translation is replaced by rotation around the origin.

Various first-order and second-order mark characteristics have been

suggested to describe the properties of marked point processes (Stoyan

and Stoyan (1994)[23]; Stoyan et al. (1995)[24]; Schlather (1999)[42];

Schlather et al. (2004)[36] and Illian et al. (2008)[37]). Their empir-

ical counterparts are used in model identification, parameter esti-

mation, evaluation of goodness-of-fit and in model interpretation.



Introduction 35

These mark characteristics are conditional quantities (in the Palm

sense): let Ex and varx stand for the conditional expectation and

variance, respectively, given that there is a point of N at the loca-

tion x. Further let Exy refer to the conditional expectation given

there are two points of N at locations x and y. Because of stationar-

ity and isotropy, it suffices to consider expectations Eo and Eor with

‖ r ‖= r.

Then, the mean mark µm = Eo(m(o)) and the mark variance σ2
m =

Varo(m(o)), which are the mean and variance of the mark distri-

bution function FM(m), are first-order characteristics of marks and

conditional on “there is a point of N at o”.

1.6 Poisson processes

Many processes in everyday life that “count” events up to a particu-

lar point in time can be accurately described by the so-called Poisson

process, named after the French scientist Siméon Poisson (1781-1840;

appointed as full professor at the Ecole Polytechnique, Paris, in 1806

as a successor of Fourier). An (ordinary) Poisson process is a spe-

cial Markov process, in continuous time, in which the only possible

jumps are to the next higher state.

The simplest Poisson process is the stationary Poisson process on the

line who is completely defined by the following equation, in which

we use N(ai, bi] to denote the number of events of the process falling

in the half-open interval (ai, bi] with ai < bi ≤ ai+1:

Pr{N(ai, bi] = ni, i = 1, . . . , k} =
k∏
i=1

[λ(bi − ai)]ni
ni!

eλ(bi−ai). (1.44)

This definition embodies three important features:

(i) the number of points in each finite interval (ai, bi] has a Poisson
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distribution;

(ii) the number of points in disjoint intervals are independent random

variables; and

(iii) the distributions are stationary: they depend only on the lengths

bi − ai of the intervals.

Thus, the joint distributions are multivariate Poisson of the special

type in which the variates are independent.

Let us first summarize a number of properties that follow directly

from above. The mean M(a, b] and variance V (a, b], of the number

of points falling in the interval (a, b] are given by:

M(a, b] = λ(b− a) = V (a, b]. (1.45)

The constant λ here can be interpreted as the mean rate or mean

density of points of the process. It also coincides with the intensity

of the point process.

The fact that the mean and variance are equal and that both are

proportional to the length of the interval provide a useful diagnostic

test for the stationary Poisson process: estimate the mean M(a, b]

and the variance V (a, b] for half-open intervals (a, b] over a range of

different lengths, and plot the ratios V (a, b]/(b − a). The estimates

should be approximately constant for a stationary Poisson process

and equal to the mean rate. Any systematic departure from this

constant value indicates some departure either from the Poisson as-

sumption or from stationarity (see Cox and Lewis (1966)[43] (Section

6.3) for more discussion).

A Poisson process may also be viewed as a counting process that

has particular, desirable, properties. A counting process {N(t), t ≥
0} is a stochastic process that counts the number of events that

have occurred up to time t. Obviously, N(t) is non-negative and

integer-valued for all t ≥ 0. Furthermore, N(t) is nondecreasing in
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t. N(ti) − N(ti+1) equals the number of events in the time interval

(ti, ti+1], ti < ti+1.

N(t) could denote the number of arrivals of customers at a railway

station in (0, t], or the number of accidents on a particular highway in

that time interval, or the number of births of animals in a particular

zoo in (0, t], or the number of calls to a telephone call-center during

that period. A Poisson process is a counting process that has the

desirable additional properties that the number of events in disjoint

intervals are independent (“independent increments”) and that the

number of events in any given interval depends only on the length of

that interval, and not on its particular position in time (“stationary

increments”). In the case of the arrivals at the railway station, the

stationarity assumption is clearly not fulfilled; there will be many

more arrivals between 5 p.m. and 6 p.m. than between, say, 5

a.m. and 6 a.m. Still, one might wish to study the arrival process

at the railway station during the rush hour. Restricting oneself to

subsequent working days between 5 p.m. and 6 p.m. does allow one

to use the stationary increments assumption.

Definition 1.28. A Poisson process N(t), t ≥ 0 is a counting process

with the following additional properties:

(i) N(0) = 0.

(ii) The process has stationary and independent increments.

(iii) P (N(h) = 1) = λh + o(h) and P (N(h) ≥ 2) = o(h), h ↓ 0, for

some λ > 0.

Above, the o(h) symbol indicates that the ratio

P (N(h) ≥ 2)

h
tends to zero for h ↓ 0

The last property may look awkward at first sight, but is insightful.

It states that having two or more events in a small time interval
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is extremely unlikely, while the probability of a single event is ap-

proximately proportional to the length of that small interval. An

equivalent definition is the following.

Definition 1.29. A Poisson process {N(t), t ≥ 0} is a counting

process with the following additional properties:

(i) N(0) = 0.

(ii) The process has stationary and independent increments.

(iii) P (N(t) = n) = e−λt (λt)n

n! , n = 0, 1, 2, . . ..

Of course, the last property states that the number of events in any

interval of length t is Poisson distributed with mean λt. λ is called

the rate of the Poisson process.

It readily follows that the Probability Generating Function of N(t)

is given by:

E[zN(t)] = Σ∞n=0 z
nP (N(t) = n) = e−λ(1−z)t.

Differentiation yields:

E[N(t)] = λt

E[N(t)(N(t)− 1)] = (λt)2

and hence:

Var(N(t)) = λt.

We close this section by giving yet another two equivalent definitions

of the Poisson process, and we enumerate three types of Poisson

Processes.

Definition 1.30. A Poisson process {N(t), t ≥ 0} is a counting

process with the following additional properties:

(i) N(0) = 0

(ii) The only changes in the process are unit jumps upward. The



Introduction 39

intervals between jumps are independent, exponentially distributed

random variables with mean 1/λ, λ > 0.

Definition 1.31. A Poisson process is a continuous-time counting

processes {N(t), t ≥ 0} that possesses the following properties:

(i) N(0) = 0.

(ii) Independent increments: in disjoint intervals the numbers of

occurrences counted are independent from each other.

(iii) Stationary increments: the probability distribution of the

number of occurrences counted in any time interval only depends on

the length of the interval.

(iv) No counted occurrences are simultaneous.

1.6.1 Homogeneous Poisson process

A homogeneous Poisson process is characterized by a rate param-

eter λ, also known as intensity, such that the number of events in

time interval (t, t+ τ ] follows a Poisson distribution with associated

parameter λτ . This relation is given as:

P [(N(t+ τ)−N(t)) = k] =
e−λτ(λτ)k

k!
k = 0, 1, . . . (1.46)

where N(t+τ)−N(t) describes the number of events in time interval

(t, t + τ ]. Just as a Poisson random variable is characterized by its

scalar parameter λ, a homogeneous Poisson process is characterized

by its rate parameter λ, which is the expected number of “events”

or “arrivals” that occur per unit time.

1.6.2 Non-homogeneous (inhomogeneous) Poisson process

In general, the rate parameter may change over time. In this case,

the generalized rate function is given as λ(t). Now the expected
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number of events between time a and time b is:

λa,b =

∫ b

a

λ(t)dt (1.47)

Thus, the number of arrivals in the time interval (a, b], given as

N(b)−N(a), follows a Poisson distribution with associated param-

eter λa,b

P [(N(b)−N(a)) = k] =
e−λa,b(λa,b)

k

k!
k = 0, 1, . . . (1.48)

A homogeneous Poisson process may be viewed as a special case

when λ(t) = λ, a constant rate.

1.6.3 Spatial Poisson processes

A further variation of the Poisson process, called the spatial Poisson

process, introduces a spatial dependence on the rate function and is

given as λ(−→x , t) where −→x ∈ V for some vector space V . For any set

S ∈ V (a spatial region) with finite measure, the number of events

occurring inside this region can be modeled as a Poisson process with

associated rate function λS(t) such that:

λS(t) =

∫
S

λ(−→x , t)d−→x

In the special case that this generalized rate function is a separable

function of time and space, we have:

λ(−→x , t) = f(−→x )λ(t)

for some function f(−→x ). Without loss of generality, we assume that

this property is satisfied:∫
V

f(−→x )d(−→x ) = 1

(If this is not the case, λ(t) can be scaled appropriately.)
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f(−→x ) represents the spatial probability density function of these ran-

dom events in the following sense. Sampling this spatial Poisson pro-

cess is equivalent to sampling a Poisson process with rate function

λ(t), and associated with each event a random vector −→x sampled

from the probability density function f(−→x ).

1.7 Cluster processes

Clustering often occur in application such as botany, where a plant

sets seed around itself, resulting in a cluster of plants of this species

the following year.

This clustering mechanism is the idea behind the construction of

Neyman-Scott points processes (Stoyan et al. (1995)[24]; Diggle and

Chetwynd (1991)[44]) where each parent point in a stationary Pois-

son Process of parent point gives rise to a stochastic number of off-

spring points, independently distributed around the parent points

according to a specified density f. The cluster mechanism is also a

natural way to describe the locations of individuals from consecutive

generations of a branching process, an application with unexpectedly

rich mathematical structure as well as its obvious practical applica-

tions.

The intuitive motivation of such processes involves two components:

the locations of clusters and the locations of elements within a clus-

ter. The superposition of the latter constitutes the “observed” pro-

cess. To model the cluster elements, we specify a countable family

of point processes N(·|yi) indexed by the cluster centers {yi}. To

model the cluster locations, we suppose there is given a process Nc

of cluster centers, is given often unobserved, whose generic realiza-

tion consists of the points {yi} ⊂ Y . The centers yi act as the germs

(ancestors in the branching process context) for the clusters they
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generate; it is supposed in general that there are no special features

attached to the points of a given cluster that would allow them to be

distinguished from the points in some other cluster. More formally,

we have the following definition.

Definition 1.32. N is a cluster process on the complete separable

metric space (CSMS) X, with center process Nc on the CSMS Y

and a component processes the measurable family of point processes

{N(·|y) : y ∈ Y }, when for every bounded A ∈ BX ,

N(A) =

∫
Y

N(A|y)Nc(dy) =
∑

yi∈Nc(·)

N(A|yi) <∞ (1.49)

The definition requires the superposition of the clusters to be almost

surely finite. There is, however, no requirement in general that the

individual clusters must themselves be a.s. finite (i.e. the condition

N(X|y) < ∞ a.s. is not necessary), although it is a natural con-

straint in many examples. A general cluster random measure can be

introduced in the same way by allowing the component processes to

be random measures.

For the remainder of this section, we require the component pro-

cesses to be mutually independent. We shall then speak of the com-

ponent processes as coming from an independent measurable family

and thereby defining an independent cluster process. In this defini-

tion, it is to be understood that multiple independent copies ofN(·|y)

are taken when Nc{y} > 1. If Y = X (i.e. the cluster centre pro-

cess and the component processes are all defined on the same space

X, and X admits translations), then the further constraint that the

translated components N(A−y|y) are identically distributed may be

added, thus producing a natural candidate for a stationary version

of the process.
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Conditions for the existence of the resultant point process are not

so easily obtained as for the Cox process, even though the superpo-

sition of the cluster member processes involves only operations that

are clearly measurable. The difficulty revolves around the finiteness

requirement embodied in equation (1.49). The number of clusters

that are potentially able to contribute points to a given bounded set

soar as the dimension of the state space increases, imposing delicate

constraints that have to be met by any proposed existence theorem.

For independent cluster processes, the finiteness condition can be

rephrased somewhat more formally.

Lemma 1.33. An independent cluster process exists if and only if,

for any bounded set A ∈ BX ,∫
Y

pA(y)Nc(dy) =
∑
yi∈Nc

pA(yi) <∞,
∏

c-a.s., (1.50)

where pA(y) = Pr{N(A|y) > 0} for y ∈ Y and A ∈ BX , and
∏

c is

the probability measure for the process of cluster centres.

PROOF:

The sum (1.50) is required to converge a.s. as part of the definition

of a cluster process. The converse, for given Nc, is an application of

the second Borel Cantelli lemma to the sequence of events:

Ei = {cluster i contributes at least one point to the set A}

�

The condition of Lemma 1.33 can alternatively be rephrased in terms

of generating functionals. When the components of the process are

stationary (i.e. their cluster centre process is stationary and the

distribution of the cluster members depends only on their positions

relative to the cluster centre), a simple sufficient condition for the
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resultant cluster process to exist is that the mean cluster size be

finite.

The moments are easier to handle. Thus, taking expectations con-

ditional on the cluster centres yields:

E[N(A)|Nc] =
∑
yi∈Nc

M1(A|yi) =

∫
Y

M1(A|y)Nc(dy), (1.51)

where M1(E|y) denotes the expectation measure of the cluster mem-

ber process with centre at y, assuming this latter exists. From the

assumption that the cluster member processes form a measurable

family, it follows also that whenever M1(A|y) exists, it defines a mea-

surable kernel (a measure in A for each y and a measurable function

of y for each fixed Borel set A ∈ BX ). Then we can take expectations

with respect to the cluster centre process to obtain:

E[N(A)] =

∫
Y

M1(A|y)M c(dy), (1.52)

finite or infinite, where M c(·) = E[Nc(·)] is the expectation measure

for the process of cluster centers. From this representation, it is clear

that the first-moment measure of the resultant process exists if and

only if the integral in (1.52) is finite for all bounded Borel sets A.

Similar representations hold for the higher-order moment measures.

In the case of the second factorial moment measure, for example,

we need to consider all possible ways in which two distinct points

from the superposition of clusters could fall into the product set

A × B(A,B ∈ BX). Here there are two possibilities: either both

points come from the same cluster or they come from distinct clus-

ters. Incorporating both cases, supposing the cluster centre process
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is given, we obtain:

E[N [2](A×B|Nc)] =

∫
Y

M[2] (A×B|y)Nc(dy)+

+

∫
Y (2)

M1(A|y1)M1(B|y2)N
[2]
c (dy1 × dy2),

where the superscript in N [2] denotes the process of distinct pairs

from N and in the second integral we have used the assumption

of independent clusters. Taking expectations with respect to the

cluster centre process, we obtain for the second factorial moment of

the cluster process:

E
[
N [2](A×B)

]
=

∫
Y

M[2] (A×B|y)M c(dy)+

+

∫
Y (2)

M1(A|y1)M1(A|y2)M
c
[2](dy1 × dy2),

(1.53)

Again, the second factorial moment measure of the cluster process

exists if and only if the component measures exist and the integrals

in (1.53) converge. Restated in terms of the factorial cumulative

measure, equation (1.53) reads:

C[2](A×B) =

∫ (2)

Y

M (A|y1)M(B|y2)C
c
[2](dy1 × dy2)+

+

∫
Y

M[2](A×B|y)M c(dy).

(1.54)

Many of these relationships are derived most easily, if somewhat me-

chanically, from the portmanteau relation for the probability gener-

ating functionals, which takes the form, for h ∈ V(X) and exploiting

the independent cluster assumptions,

G[h] = E(G[h|Nc]) = E

[
exp

(
−
∫
Y

(− logGm[h|y])Nc(dy)

)]
=

= Gc [Gm [h|·] ] ,
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where Gm[h|y] for h ∈ V(X) is the p.g.fl. of N(E|y), and

G[h|Nc] =
∏
yi∈Nc

Gm[h|yi] = exp

[
−
∫
Y

(− logGm[h|y])Nc(dy)

]
is the conditional p.g.fl. of N given Nc. The a.s. convergence of the

infinite product in the last equation is equivalent to the a.s. conver-

gence of the sum in Lemma 1.33. The measurable family require-

ments of the family of p.g.fl.s for the cluster centers follow from the

initial assumptions for the process. Thus, the p.g.fl. representation

is valid whenever the cluster process exists.

One class of cluster processes occurs so frequently in applications,

and is so important in the theory, that it warrants special atten-

tion. If in this class, the cluster centers are the points of a Poisson

process, we speak of a Poisson cluster process, and the clusters are

independent and finite with probability 1.

1.8 Spatio-temporal point processes

Spatiotemporal point processes will be considered as a hybrid of

spatial and temporal components. Extending the definition of spatial

processes N (s) defined in formula (1.20) to include time, we obtain

the following definition of a spatio-temporal point process:

{N(s, t) : s ⊆ Ω(t) ⊂ R2, t ∈ T} (1.55)

where Ω(t) is the spatial index at time t. Notice that a spatiotem-

poral process is a composite of a spatial and temporal process. This

distinction is critical, since time flows unidirectionally, whereas space

is not directed.
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Spatiotemporal point processes have been studied thoroughly in the

context of earthquake data. Ogata (1999)[45] wrote a summary pa-

per of parametric, maximum likelihood techniques. Choi and Hall

(1999)[46], Choi and Hall (2000)[47] added nonparametric estima-

tors of the intensity function using a kernel estimator approach and

discuss asymptotic theory for many of the parametric estimators.

Rathbun (1993)[48] and Rathbun and Cressie (1994)[49] discuss spa-

tiotemporal point processes in the context of tree growth. In their

paper, they present methods of parametric estimation by splitting

the process into three components: a spatial birth process, a spatial

growth process, and a space-time survival process.

There also exists literature on spatiotemporal processes for lattice

and geostatistical data. See, for example, Kooperberg and OSullivan

(1996)[50] and Haas (1995)[51]. Haas (1995)[51] develops the idea

of a spatiotemporal covariance function through the construction of

spatiotemporal cylinders for use in prediction of wet sulfate deposi-

tion (a geostatistical process). Essentially, Haas creates a cylinder

centered at location s0 = (x0, y0) with length mT = tU − tL for a

user-defined time interval (tL, tU). He then uses nc, the number of

points located inside the cylinder, to make a prediction of wet sulfate

deposition at the location s0.

Here, we have separated the spatiotemporal point processes into four

distinct scenarios, all this inspired from nature:

• the earthquake process,

• the explosion process,

• the birth-death process,

• and point patterns sampled in time.
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1.8.1 Earthquake processes

The type of data that would be observed from an earthquake pro-

cess corresponds to the location s where an event occurred at time

t. Characteristic for this process is that it is orderly in both space

and time: only one event can occur at a particular location and

time. Analysis of earthquake processes are discussed extensively in

the geophysical literature: Rathbun (1996)[52], Ogata (1999)[45],

Choi and Hall (1999)[46]. Depending on whether we record “when”

(time) and “where” (space) an earthquake occurred or also its

magnitude, the process is simple or marked. Cressie (1993)[18]

refers to this type of space-time process as a space-time shock pro-

cess because events occur simultaneously over time and space. The

realization of such a process consists of locations si ∈ Ω∗ at times

ti ∈ T ∗, i = 1, 2, ..., where Ω∗ and T ∗ are realizations of a particular

point pattern (see Figure1.5).

Figure 1.5: An earthquake process

Integration of events over a time interval [0, t ] results in a spatial

point pattern that can be analyzed by standard methods for such

data. Cressie (1993)[18] suggests that this type of space-time process

can be viewed as a marked spatial point process with mark space

T ∗.
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1.8.2 Explosion processes

The basic explosion process combines a point process in space with

a point process in time. Realizations of such a process consist of

locations si1, ..., sini ∈ Ω∗ at times ti ∈ T ∗ (see Figure1.6 ).

Figure 1.6: An explosion process

The name relates to the type of data that might be observed from

this process. At each time t a scatter of points with intensity λ(s)

is observed. Furthermore, the explosions occur as a point process

with intensity λ(t). In other words, a temporal event triggers the

generation of a spatial point pattern.

One example of such a process is when temporal events occur com-

pletely at random and N(si, ti ∈ T ∗) is a sequential inhibition pro-

cess.

1.8.3 Birth-death processes

This process is typically used to model objects that are born at

some random location and live for a random time. Cressie (1993)[18]

refers to these as space-time survival point processes. See, for ex-

ample, Rathbun and Cressie (1994)[49]. Realizations of birth-death

processes often consist of locations of events at fixed points in time

t1, ..., tn. Key to these processes is that events remain at the same
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location during their lifetime, in contrast to, e.g., a Brownian motion

where particles move through a volume (see Figure1.7).

Figure 1.7: A birth-death process

1.8.4 Point patterns sampled in time

This process consists of T spatial point patterns observed at equally

or unequally spaced time intervals. In contrast to the explosion

process where ti ∈ T ∗ represent a complete “mapping” of the time

points at which temporal events occurred, the sample times in a

sequence of sampled point patterns are fixed by a probability or non-

stochastic sample design. At each time point the spatial locations of

events are “completely recorded” in the domain of interest, i.e., the

spatial point pattern is mapped (see Figure1.8).

Figure 1.8: Points patterns sample in time
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A sampled point pattern can be indistinguishable from a birth-death

process with fixed points in time. Whereas birth-death processes

are excellent models to describe the survival of stationary objects,

a sampled point pattern can also be thought of as recording the

locations of non-stationary objects that move through space and

time.

If an event is observed at locations s∗ at time ti−1 but not at ti could

be due to the death of a stationary object that lived at s∗ at ti−1 or

the displacement of a non-stationary object that occupies a different

location at ti. Combinations of these processes are obvious. In the

study of animals, for example, individuals are born between ti−1 and

ti, their locations are observed at times ti, ti+1, ..., tj−1, die between

times tj−1 and tj and are no longer recorded at sample times t ≥ tj .

The inference of interest in sampled point patterns depends on the

nature of the process as pure birth-death, continuous motion, or a

mixture thereof. Regardless of the genesis, however, studying the

inter-relationship among point patterns over time is common to all

sampled point patterns.

1.8.5 Intensity measures of spatio-temporal point patterns (First-Order

Properties)

Any analytic spatial temporal point process is uniquely characterized

by its associated conditional rate process λ (Fishman and Snyder

(1976)[53]). λ(s, t) may be thought of as the frequency with which

events are expected to occur around a particular location (s, t) in

space-time, conditional on the prior history Ht of the point process

up to time t. Note that in the statistical literature (e.g. Daley and

Vere-Jones (2003)[6]; Karr (1991)[54]), λ is more commonly referred

to as the conditional intensity rather than conditional rate. The idea

is to express the relationship of points not only by distance but by
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time lag. Our initial concern is to modify the first- and second-order

intensity functions to incorporate temporal and spatial dimensions.

The intensity function λ(·) can be modified to include a time com-

ponent as:

λ(s, t) = lim
|ds|→0
|dt|→0

E[N(ds, dt)]

|ds||dt|
(1.56)

where N(A) represents the number of events in volume A, ds is an

infinitesimal disk containing the location s, and dt is an infinitesimal

interval containing time t. Following Haas (1995)[51] we consider A

as a cylinder with face ds and height dt. Note that this is an obvious

extension of the first-order intensity in a spatial point process which

considers the expected number of points in a disc ds. Thus, N(ds, dt)

represents the number of points in the cylinder. The limit in (1.56)

shrinks the cylinder around the point (s, t).

Definition 1.34. The marginal spatial intensity is defined as:

λ(s, ·) =

∫
T

λ(s, t)dt (1.57)

where the integration is over all times in T.

Definition 1.35. The marginal temporal intensity is defined as:

λ(·, t) =

∫
A

λ(s, t)ds (1.58)

where
∫
A represents integration over the region A.

The marginal intensities allow us to view one component, either spa-

tial or temporal, while ignoring the other component. Furthermore,

if λ(s, t) is equal to either or both of the marginal intensities then the

process is said to be first-order stationary in time, space, or both.

Conditioning on either location or time allows us to isolate either

component in a spatiotemporal process. Conditioning on t reduces



Introduction 53

the spatiotemporal intensity defined in (1.56) to conditional spa-

tial intensity:

λ(s|t = t∗) = lim
|ds|→0

E[N(ds, t∗)]

|ds|
(1.59)

Similarly, conditioning on s leads to the conditional temporal

intensity:

λ(t|s = s∗) = lim
|dt|→0

E[N(s∗, dt)]

|dt|
(1.60)

Definition 1.36. The average spatial intensity represent the av-

erage intensity over the interval dt at location s :

λ(s, dt) = lim
|ds|→0

E[N(ds, dt)]

|ds||dt|
(1.61)

Definition 1.37. The average temporal intensity represent the

average intensity over the space |ds| at time t:

λ(ds, t) = lim
|dt|→0

E[N(ds, dt)]

|ds||dt|
(1.62)

This notation will allow us to collapse (1.56) one component at a

time: spatially or temporally. Also note that:

λ(s, t) = lim
|dt|→0

λ(s, dt) = lim
|ds|→0

λ(ds, t) (1.63)

Combining the notation of (1.60) and (1.61) with the notation of

(1.62) and (1.63), similar expressions for the average conditional spa-

tial intensity, λ(ds|t), and the average conditional temporal intensity,

λ(dt|s), are obtained as:

λ(ds|t = t∗) =
E[N(ds, t∗)]

|ds|
(1.64)
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and

λ(dt|s = s∗) =
E[N(s∗, dt)]

|dt|
(1.65)

The first-order intensities defined in this section may not be ap-

propriate for all spatiotemporal point patterns. For the earthquake

process which is both orderly in space and time the concept of a con-

ditional intensity at time t or location s has no meaning. However,

conditional intensities for earthquake processes can be constructed

on intervals in time or regions in space (Rathbun (1996)[52]). The

conditional intensities on intervals in space and/or time are denoted

above by the average conditional intensities.

1.8.6 Second-order intensities

The extension of λ(·) to include a temporal component leads, by

analogy, to the general definition of the second-order spatiotem-

poral intensity λ2(·) as:

λ2(si1, sj2, t1, t2) = lim
|Ai1|→0
|Aj2|→0

E[N(Ai1)N(Aj2)]

|Ai1||Aj2|
(1.66)

where Ai1 = dsi1×dt1 is an infinitesimal cylinder containing the point

(si1, t1) and Aj2 = dsj2 × dt2 is an infinitesimal cylinder containing

the point (sj2, t2).

The marginal second-order intensity removes either the spatial or

temporal component by integrating over the spatial or temporal

space.

Definition 1.38. The marginal second-order spatial intensity

is defined by:

λ2(si∗, sj∗, ·, ·) =

∫
T

∫
T

λ2(sik, sjl, t1, t2)dt1dt2 (1.67)
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where the integration is over all times.

Definition 1.39. The marginal second-order temporal inten-

sity is defined by:

λ2(·, ·, t1, t2) =

∫
A1

∫
A2

λ2(s1, s2, t1, t2)ds1ds2 (1.68)

where the integration is over the region A at time t.

Conditioning on time in (1.66) gives us the conditional second-

order spatial intensity defined by:

λ2(si∗, sj∗|t = t∗) = lim
|dsi∗|→0
|dsj∗|→0

E[N(dsi∗, t
∗)N(dsj∗, t

∗)]

|dsi∗||dsj∗|
(1.69)

Similarly, conditioning on location in (1.66) yields the conditional

second-order temporal intensity defined by:

λ2(t1, t2|s = s∗) = lim
|dt1|→0
|dt2|→0

E[N(s∗, dt1)N(s∗, dt2)]

|dt1||dt2|
(1.70)

As with the first-order conditional intensities, the second-order con-

ditional intensities allow examination of one component, either spa-

tial or temporal, while holding the other component fixed.

Using similar notation to (1.61) and (1.62) we define the average

second-order spatial intensity as:

λ2(si1, sj2, dt1, dt2) = lim
|dsi1|→0
|dsj2|→0

E[N(dsi1, dt1)N(dsj2, dt2)]

|dsi1||dsj2||dt1||dt2|
(1.71)

and the average second-order temporal intensity as:

λ2(dsi1, dsj2, t1, t2) = lim
|dt1|→0
|dt2|→0

E[N(dsi1, dt1)N(dsj2, dt2)]

|dsi1||dsj2||dt1||dt2|
(1.72)
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Combining the definitions in (1.69) and (1.70) an expression for av-

erage conditional second-order spatial intensity is given by:

λ2(dsi∗, dsj∗|t = t∗) =
E[N(dsi∗, t

∗)N(dsj∗, t
∗)]

|dsi∗||dsj∗|
(1.73)

and an expression for average conditional second-order tem-

poral intensity is given by:

λ2(dt1, dt2|s = s∗) =
E[N(s∗, dt1)N(s∗, dt2)]

|dt1||dt2|
(1.74)



Chapter 2

Spatial point processes for tumor

growth. Cobweb algorithm1

Lévy theory provides a potential mathematical framework to model

space and space-time stochastic processes. In addition, spatial point

processes define stochastic models for random patterns of points in

R2. These processes play a special role in stochastic geometry as

the building blocks of more complicated random set models. In this

paper we focus on a family of Lévy-based spatial Cox processes to

model and predict tumor growth. We develop a procedure to sim-

ulate the growing of tumors. This algorithm can be used to study

the evolution in time of any 2 and 3-dimensional geometrical forms

such as cancer skin and all type of boundary evolution. We analyze

real data and show that the procedure developed works fine and is

useful for prediction purposes.

The evolution in time of some objects is the subject of study of many

researchers worldwide. Special attention has been given to cancer,

and a way to understand this disease is to know how it evolves over

time.
1This chapter is based on the published paper: “A geometric approach to cancer growth prediction

based on Cox Processes” by Vlad and Mateu (2014)[1]

57
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We can find, in reading, many studies about mathematical model-

ing of tumors; see, for example, Bramson and Griffeath (1981)[55],

Cressie (1991)[56], Qi et al. (1993)[57], Lee and Cowan (1994)[58],

Kansal et al. (2000)[59], Barndorff-Nielsen and Schmiegel (2004)[60],

Jónsdóttir and Jensen (2005)[61], Jónsdóttir and Jensen (2008)[62].

In Richardson (1973)[63], the growth object in the plane at time t is

a random subset Yt of Z2 consisting of the “infected sites”, described

also by a Markov process. An uninfected site is transferred to an in-

fected site with a rate proportional to the number of infected nearest

neighbors. It can be shown that if Y0 consists of a single site, then

Yt/t has a non-random shape as t→∞.

Bramson and Griffeath (1981)[55] denote the set of sites occupied by

cancer cells ξAt , at time t and given that the original cancerous pop-

ulation (ξ0
t ) occupies A ∈ S0, and the processes (ξαt )t≥0 are Markov,

they define for λ > 0, a jump (growth) rate as

A→ A ∪ {x} (x /∈ A) at rate λ|{y ∈ A :‖ y − x ‖= 1}|,

A→ A− {x} (x ∈ A) at rate 1

where |Λ| is the cardinality of Λ ∈ S0 and ‖ x ‖ is the Euclidean

distance from x to 0. This study is a extension of the stochastic

model defined by Williams and Bjerknes (1972)[64] to accommodate

expansion of cancer cells. That model treats each cell as normal

and abnormal (cancerous) independently and assume that both are

located in a planar lattice Z2. Starting with a single abnormal cell

at the origin and from the hypothesis that abnormal cells reproduce

faster that normal cells, they assume that with each cellular division,

one daughter cell stays fixed while the other usurps the position of

a neighbor.

A related growth model in continuous space has been discussed in

Deijfen (2003)[65]. For planar objects, the model is constructed from
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a spatio-temporal Poisson point process on R3,

Ψ = {(xi, ti)}

The random growing object Yy ⊂ R2 is a subset of⋃
{i:ti≤t}

B(xi, r)

constructed such that Yt is always connected. Here, B(x, r) is a cir-

cular disc with center x and radius r. In this model, ti is thought

of as a time point of outburst and xi as the location of the out-

burst in the tumor. A closely related discrete-time Markov growth

model has been proposed by Cressie (1991)[56]. This model can be

characterized as a sequence of Boolean models,

Yt+1 = ∪{B(xi, r) : xi ∈ Yt}

where {xi} is a homogeneous Poisson point process in R2; see Cressie

and Laslett (1987)[66], Cressie (1991)[56] and Cressie (1993)[18].

In all these papers it is obvious that the form of the cancer in the

future depends by the edge and structure of the cancer in the past

(function f ) and also by some external factors like mitosis, nature

of cancer (benign or malign), biological tissue density, etc (all these

factors can be included in a function g). So, a very general growth

model can be expressed as

Yt+1 = f(Yt) + g (2.1)

To avoid complicating the model we only consider the external edge

of the tumor and do not deal with its internal structure. Then we

assume that the object of study can be a shape with a particular

boundary of whose genesis is a single point. Let us study this as a

point process and let us make some geometrical interpretations to
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calculate the rate growth. For this it is not strictly necessary to

have deterministic expressions of the functions f and g and make a

complex model which aims to offer the values of the boundary object

at any instant time. We can calculate these values with an algorithm

by observing the speed of expansion of the tumor, expressed as a

constant velocity of vectors in some directions.

The aim of this research is to observe the dynamics of cancer tumors

and to develop and implement new methods and algorithms for pre-

diction of tumor growth. We offer some tools to help physicians for a

better understanding and treatment of this disease. Using a predic-

tion method, and comparing with the real evolution a physician can

note if the prescribed treatment has the desired effect, and according

to this, if necessary, to take the decision of surgically intervention.

The plan of the chapter is the following. Section 2.1 presents a short

overview of the theory of Lévy bases and integration with respect

to such bases is given, we recall standard results about Spatial Cox

processes, and finally we propose different types of growth models. In

Section 2.2 a new algorithm, the Cobweb, is presented and developed

based on the proposed methodology. The implementation in Matlab

software comes in Section 2.3. Section 2.4 presents some real data

analysis.

2.1 Spatial Cox point processes

A spatial point pattern is a set of points {xi ∈ A : i = 1, . . . , n} for

some planar region A. Often A is a sampling window within a much

larger region and it is reasonable to regard the point pattern as a

partial realization of a stochastic planar point process, the events

consisting of all points of the process which lie within A.
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Let N be a spatial point process that is defined on R2 but is observed

on a finite observation window W . For an arbitrary Borel set A ∈ R2,

let |A| and N(A) denote the area of A and the number of events from

N that are in A, respectively. In some applications, it is reasonable

to think of the spatially varying intensity function, λ(x) of a point

process to be itself a realization of an underlying stochastic process

Λ(x).

A point process X is a Cox process if: (a) Λ(x) is a non-negative

valued stochastic process; and (b) conditional on the realization of

Λ(x), the point process is an inhomogeneous Poisson process with

intensity function Λ(x) Cox (1994)[5]. In this case, we say that X

is a Cox process driven by Λ. In this context, the resulting point

process inherits the properties of the Λ(x) process in a natural way.

Cox processes provide useful and frequently applied models for ag-

gregated spatial point patterns where the aggregation is due to a

stochastic heterogeneity. Indeed, Λ usually models this unobserved

random heterogeneity. Shot noise Cox processes, log Gaussian Cox

processes and log shot noise Cox processes will appear as natural

building blocks in a modeling framework for Cox processes.

2.1.1 Lévy-based Cox processes

Let (Ω,A) be a measurable space. We assume that Ω is a Borel

subset of Rd, and A is the δ-ring Bb(Ω) of bounded Borel subsets

of Ω. We consider a collection of real-valued random variables L =

{L(A), A ∈ A} with the following properties:

• L(A1), . . . , L(An), . . . are independent random variables for

every sequence {An} of disjoint sets in A, and L(∪nAn) =∑
n L(An) a.s. provided ∪nAn ∈ Bb(Ω),

• for every A in A, L(A) is infinitely divisible.
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If L has these properties, L is called a Lévy basis. In addition, L is

a non-negative Lévy basis if L(A) ≥ 0 for all A ∈ A (cf. Barndorff-

Nielsen and Schmiegel (2004)[60]).

For a random variable X, Jónsdóttir and Jensen (2008)[62] denote

the cumulant function logE(e i ν X) by C(ν,X). If L is a Lévy basis,

then the cumulant function of L(A) is expressed as

C(ν, L(A)) = iνa(A)− 1

2
ν2b(A) +

∫
R

(
eiνr − 1− iνr1[−1,1](r)

)
U(dr,A), (2.2)

where a is a σ-additive set function on A, b is a measure on A,

U(dr,A) is a measure on A for fixed dr and a Lévy measure on B(R)

for each fixed A ∈ A (i.e. U ({0}, A) = 0 and
∫
R(1∧r2)U(dr,A) <∞,

where ∧ denotes minimum).

The measure U is referred to as the generalised Lévy measure and L

is said to have the characteristic triplet (a, b, U). In addition, (a) if

b = 0 then L is called a Lévy jump basis, and (b) if U = 0 then L is

a Gaussian basis. A general Lévy basis L can always be written as

a sum of a Gaussian basis and an independent Lévy jump basis.

A particular example of a Gaussian Lévy basis is obtained by attach-

ing independent Gaussian random variables {Xi} to a locally finite

sequence {ηi} of fixed points and defining

L(A) =
∑
ηi∈A

Xi , A ∈ A.

Let S be a Borel subset of Rd. A point process X on S is called a

Lévy driven Cox Process (LCP) if X is a Cox process with a driving

field

Λ(ξ) =

∫
Ω

k(ξ, η)L(dη), ξ ∈ S, (2.3)

where L is a non-negative Lévy basis on Ω.
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Furthermore, k is a non-negative function on S ×Ω such that k(ξ, ·)
is integrable with respect to L for each ξ ∈ S and k(·, η) is integrable

with respect to the Lebesgue measure on S for each η ∈ Ω.

Note that it is always possible for each pair (k, L) to construct an

associated pair (k̄, L̄) generating the same driving field Λ where now

k̄(·, η) is a probability kernel. We may simply let

k̄(ξ, η) = k(ξ, η)/α(η),

L̄(dη) = α(η)L(dη)

where

α(η) =

∫
S
k(ξ, η)dξ.

It is important to note that from the non-negativity of the Lévy

basis L, we get that L is equivalent to a random measure on Ω.

Thus, the measurability of Λ follows from the measurability of k as

a function of η and ξ. Therefore, Λ is a well-defined random field

and (under the condition of local integrability) the driving measure∫
B Λ(ξ)dξ, B ∈ Bb(S), is also a well-defined random measure deter-

mined by the finite-dimensional distributions of L.

The function k and the Lévy basis L will be chosen such that Λ is

almost surely locally integrable, i.e.
∫
B Λ(ξ)dξ <∞ with probability

1 for B ∈ Bb(S). A sufficient condition for the last property is that,

(cf. Møller (2003)[67], Remark 5.1)∫
B

EΛ(ξ)dξ <∞, B ∈ Bb(S) (2.4)

2.1.2 Lévy-based tumor growth modeling

Let us denote the growing object as a planar object at time t by

Yt ∈ R2, and assume that Yt is compact and star-shaped with respect

to a point O(x0, y0) ∈ Yt for all t. We treat here a star-shaped object
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like a two-dimensional geometric shape and the growth model like

a rigid transformation in time of the primary star-shaped object,

defining a second star-shaped object that includes the boundary of

the initial object.

In geometry, two subsets of a Euclidean space have the same shape

if one can be transformed into the other by a combination of transla-

tions, rotations (together also called rigid transformations), and uni-

form scalings. Note that we talk about star-shaped that can grow its

boundary in a random way. So we can not say that the transforma-

tion of the initial star-shape object in time is a rigid transformation.

The boundary of Yt can be determined from the variation in time t

and direction (from angle) φ ∈ [0, 2π) of the vector ~Rt(φ) denoted

by the radial function,

Rt(φ) = max{r : (x0, y0) + r(cosφ, sinφ) ∈ Yt}; φ ∈ [0, 2π) (2.5)

In Figure 2.1 we show an example of such star-shape object noted

with Yt and Rt(φ) is the distance from a reference point O(x0, y0) to

the boundary of the object.

Figure 2.1: The star-shape object Yt.

Jónsdóttir and Jensen (2008)[62] consider this as a random variable

Xt(σ) depending on time t and position σ in space. They assume

that (σ, t) ∈ Ω = S × R, where S ⊆ Rn. A Lévy-based spatio-

temporal model for X = {Xt(σ) : (σ, t) ∈ Ω} is based on the ambit
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set At(σ) associated with each point (σ, t) ∈ Ω, which defines the

dependency on the past at time t and position σ, and satisfies the

conditions

(σ, t) ∈ At(σ)

At(σ) ⊆ S× (−∞, t]

The linear spatio-temporal Lévy model for X = {Xt(σ) : (σ, t) ∈ Ω}
is defined as

Xt(σ) =

∫
At(σ)

ft(ξ, σ)L(dξ) (2.6)

where L is a Lévy basis and ft(ξ, σ) is the deterministic weight func-

tion. The process

X̄ = {exp (Xt(σ) ) : (σ, t) ∈ Ω}

is said to follow an exponential spatio-temporal Lévy model.

So, the model that describes the growth of a planar star-shaped object,

using its radial function Rt(φ) at time t and angle φ, can start from

the time derivative of the radial function equation

∂

∂t
Rt(φ) = µt(φ) +

∫
At(φ)

ft(ξ;φ)L(dξ); φ ∈ [0, 2π) (2.7)

which is the growth rate (cf Jónsdóttir and Jensen (2008)[62]). Here,

L is the Lévy-basis on [0, 2π) × R; At(φ) ⊆ [0, 2π) × (−∞, t] is a

subset of the past of time t, called ambit set (Barndorff-Nielsen and

Schmiegel (2004)[60]); ft(·, φ) : [0, 2π) × R → R is a deterministic

weight function (assumed to be suitable for the integral to exist)

and the deterministic function µt : [0, 2π) → R contributes to the

overall growth pattern while the stochastic integral determines the

dependence structure in the growth process.

The ambit set At(φ) plays an important role in this modeling ap-

proach and affects the degree of dependence on the past. The extent
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of the dependence on the past may be specified by the minimal time-

lag T (t) such that

At(φ) ⊆ [0, 2π)× [t− T (t), t]; φ ∈ [0, 2π)

The form of the ambit set At(φ) will depend on the specific growth

process being modeled. For the interpretation of (2.7) as a growth

model, Jónsdóttir and Jensen (2008)[62] represent the ambit set as

a stochastic subset of the growing object. This is possible if the

stochastic time transformation t→ Rt(φ) is non-decreasing for each

φ ∈ [0, 2π). They represent the ambit set At(φ) as a subset of Yt,

Āt(φ) =
{(
Rs(θ) cos θ, Rs(θ) sin θ

)
: (θ, s) ∈ At(φ)

}
(2.8)

Figure 2.2: Stochastic representation of Āt(φ).

It follows from the fact that At(φ) ⊆ [0, 2π)× (−∞, t] that Āt(φ) is

actually a subset of Yt (see Figure 2.2).

Furthermore, since (φ, t) ∈ At(φ), the set Āt(φ) touches the bound-

ary of Yt at the point
(
Rt(φ) cosφ,Rt(φ) sinφ

)
. It is the “events” in

Āt(φ) that influence the growth rate at time t in direction φ.

In the particular case where L is a Poisson basis and Ψ the associated

Poisson point process on [0, 2π) × R, then the growth model can be
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written as
∂

∂t
Rt(φ) = µt(φ) +

∑
ξ̄∈Ψ̄t∩Āt(φ)

f̄t(ξ̄;φ) (2.9)

where the parameter Ψ̄t of the sum is a subset of Yt

Ψ̄t =
{(
Rti(θi) cos θi, Rti(θi) sin θi

)
: ti ≤ t

}
(2.10)

Finally, if

f̄t
(
(s cos θ, s sin θ); φ

)
= ft

(
(θ, s);φ

)
(2.11)

and according to (2.9), the growth rate at time t in the direction

φ depends on the outbursts at time points before t which lie in the

stochastic neighborhood Āt(φ). Under (2.7), the induced model for

Rt(φ) will be (cf Jónsdóttir and Jensen (2008)[62]) of the same linear

form, since

Rt(φ) = R0(φ) + µ̄t(φ) +

∫ t

0

∫
As

fs(ξ;φ)L(dξ)ds =

= R0(φ) + µ̄t(φ) +

∫
Āt

f̄t(ξ;φ)L(dξ) (2.12)

where R0 is the radial function at time t = 0, and

µ̄t(φ) =

∫ t

0

µs(φ)ds (2.13)

Āt(φ) =
⋃

0≤s≤t
As(φ) (2.14)

f̄t(ξ;φ) =

∫ t

0

1As(φ) (ξ)fs(ξ;φ)ds (2.15)

Note that the ambit sets associated with the radial function itself

are increasing, that is,

t1 ≤ t2 ⇒ Āt1(φ) ⊆ Āt2(φ)
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Another model proposed by Jónsdóttir and Jensen (2008)[62] is ex-

pressed in terms of the time derivative of ln
(
Rt(φ)

)
∂

∂t

(
ln
(
Rt(φ)

))
= µt(φ) +

∫
At(φ)

ft(ξ;φ)L(dξ) (2.16)

and the induced model is an exponential spatio-temporal Lévy model

Rt(φ) = R0(φ) exp

(
µ̄t(φ) +

∫
Āt(φ)

f̄t(ξ;φ)L(dξ)

)
(2.17)

The choices of Lévy basis L, ambit sets At(φ), weight functions

ft(ξ;φ) and µt(φ) completely determine the growth dynamics. These

four ingredients can be chosen arbitrarily and independently, which

results in a great variety of different growth dynamics.

Finally, Jónsdóttir and Jensen (2005)[61] propose a Gaussian radial

model for star-shaped objects. The object at time t+1 is a stochastic

transformation of the object at time t such that the radius vector

function of the object fulfils

Rt+1(φ) = Rt(φ) + Zt(φ), φ ∈ [0, 2π) (2.18)

where Zt is a cyclical Gaussian process

Zt(φ) = µt + Σ∞k=1[At,k cos(kφ) +Bt,k sin(kφ)]

and assumed that the coefficients µt, At,k and Bt,k are the coeffi-

cients of the Fourier series of Zt which has an important geometric

interpretations relating to the growth process.

In the next section we offer a geometric interpretation of the growth

tumor determined by the radius Rt and angle φ values at different

instants of time t and we propose new algorithm to calculate the

growing rate.
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2.2 Modeling tumor growth: a new algorithm

Principal questions for this subject are how fast the tumor grows,

how rapidly does it invade and replace brain tissue, and what is the

life expectancy of the patient? In general, tumor growth depends on

the rate of mitosis (birth of new cells) and the rate of apoptosis (cell

death). A tumor in which the rate of mitosis is equal to the rate of

apoptosis does not appear to grow - it stays the same size as new

tumor cells and simply replaces cells which die and the number of

tumor cells stays the same.

To make a prediction about tumor growth we first need data (at least

two images) at a predetermined interval time, to see if the tumor is

growing and what is the relative velocity. Once we have located the

tumor, the next step is to make a second tomography and compare

the boundary of the tumor. In Figure 2.3 we show a tomography of

a tumor and its location within the brain.

Figure 2.3: Brain tumor (a) and its location (b)

The tomography should be done in the same conditions as the pre-

vious image. The time period between two consecutive analysis is

set as a parameter resolution k. Prediction of tumor growth directly

depends on a good image acquisition.

In Figure 2.4 we have the second image after one month from when

the disease was discovered. With the red line the tumor is marked
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Figure 2.4: Second image acquisition after one month: a) original image acquisition;
b) boundary of tumor (red) within the sample space (blue)

and in the right-hand picture we consider a sample space like a “star-

shape” delimited by the blue line.

The sample space must be as large as possible, in the worst case

it could be the entire cranial box. But we can also assume that in

a period of time, the tumor can not grow over certain limits which

depend on the structure of the brain.

We can easily construct a sample space which includes the boundary

of the future tumor. The form of this sample space is directly influ-

enced by the shape and positioning of the brain bulbs. It is a fact

that the tumors grow more easily in some directions which depend

on the density and the nature of nearby biological material. Now we

can compare the images to see the evolution in time of the tumor.

As we can see the tumor tends to grow more in certain directions

which can be defined with vectors of growth of the tumor.

In Figure 2.5 we note the discovered tumor at time t with the yellow

boundary, the growth tumor at time t + ∆T (∆T = 30 days) with

red boundary, and the star-shape representing the sample space with

a blue line. In the right-hand side we show in black lines the vectors

from the center of tumor to the limits of the sample space.

The intersections of these vectors with each boundary give the value

of the vector at time t, respectively t+ ∆T . ∆T represents the time



Cobweb Algorithm 71

Figure 2.5: Superimposed images of tumor

period between analysis (here one month).

In Figure 2.6 we graphically explain how we use the vectors ~Rj
t

to predict the growth of the tumor. The direction of each vector

~Rj
t , j = 1, . . . , n is given by the line from the center O(x0, y0) to

each n inflexion of the star-shape (in this case we consider only

n = 7). We denote the starting point time when we make the first

tomography with t0 as the initial time for our computation.

Figure 2.6: Tumor growth in star-shape

The area of the initial tumor At0 for a time t0 is given by the bound-

ary of the Yt0 (yellow line in Figure 2.6), and the area of the tumor

At0+∆T at time t0 + ∆T (after one month) is given by the boundary

of Yt0+∆T (red line in Figure 2.6).

Suppose that the velocity of growth is constant in time, then the

value of the vector ~Rj
ti at the moment ti = t0 +α∆T , represented by
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the radius rji , is given by

rji =‖ ~Rj
t0+α∆T ‖=‖ ~R

j
ti−1+∆T ‖ +k−1

(
‖ ~Rj

t0+∆T ‖ − ‖ ~R
j
t0 ‖
)
, (2.19)

for i = 1, . . . , k and j = 1, . . . , n.

The parameter α is the period of time whereupon we wish to make

the estimation and this is given by the linear resolution

k =
∆T

α
(2.20)

The angular resolution represents the circle divided by the number

of vectors, which in cylindrical coordinates, means

n =
2π

φ
(2.21)

In equation (2.19) the final term of the right-hand side, is a constant

defining the “length step”

lk = k−1
(
‖ ~Rj

t0+∆T ‖ − ‖ ~R
j
t0 ‖
)

and if we write ‖ ~Rj
ti−1+∆T ‖= rji−1 then (2.19) becomes

rji = rji−1 + lk (2.22)

We use the cylindrical coordinates to calculate the area of Āt(φ) (see

Figure 2.2) which help to calculate the predicted area Āt+∆T (φ) of

the tumor after a period of time. To calculate this area we make a

discretization of the area region Āt(φ), in n angles φj, j = 1, . . . , n

and k radius ri, i = 1, . . . , k. So, we split this region into n × k

surfaces.

In Figure 2.7, the gray region represents the j th rate of growing

tumor in time ∆T , noted here as Āj
t0+∆T (φ)−Āj

t0(φ) with j = 1, . . . , n
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(n = angular resolution). In this case, the linear resolution is k = 1.

Figure 2.7: Calculation of the growth tumor at time t+ ∆T

Therefore the j th portion of area at time t0 is

Āj
t0(φ) =

∫
φj

Rj
t0

(
sin(φj) + cos(φj)

)
dφj (2.23)

and the j th portion of area at time t0 + ∆T is

Āj
t0+∆T (φ) =

∫
φj

Rj
t0+∆T

(
sin(φj) + cos(φj)

)
dφj (2.24)

Now we have the area of the initial tumor

Āt0(φ) = ε+
n∑
j=1

Āj
t0(φ) (2.25)

and the area of the tumor from the second tomography is given by

Āt0+∆T (φ) = ε+
n∑
j=1

Āj
t0+∆T (φ) (2.26)

The area of the growth tumor after a time period is composed from

n× k elementary areas Āj
i (φj), and is given by
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At0+α∆T = ε+
k∑
i=1

Āj
ti(φ) (2.27)

where Āj
ti(φ) is the j th predicted portion of area at time ti + α∆T ,

given by

Āj
ti(φ) = ε+

n∑
j=1

Āj
i (φ) (2.28)

and Āj
i (φ) is the ith and j th predicted portion of area

Āj
i (φj) =

∫
φj

rji
(
sin(φj) + cos(φj)

)
dφj (2.29)

Let us now formulate our proposed algorithm. We name it Cobweb

(see below in step 3 for further explanations). We need to choose

the number of vectors (angular resolution) and decide for the pe-

riod of prediction (linear resolution). The precision of the prediction

depends on these choices. Once we have this and the values of the

vectors at time t0 and t0 + ∆T we can start the procedure:

Step 1 We compute the value of vector ~Rj
ti+1

= rji+1 using the cur-

rent value of this vector (at time ti) and we add the difference of

the value of this vector at the current time with the value of the

immediate past time, with expression (2.22). This is represented

by a point of the future bounded tumor in the direction of this

vector. The union of all these points gives the entire tumor.

Step 2 We calculate the area Āj
i (φ) with expression (2.29).

Step 3 The general formula for computing the growing rate after a

period ti of time is given from the fact that a portion of area

calculated in the step before is used in the current step, and in

turn it is used on the following step (like a spider who is building
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its cobweb)

Aj
i+1 = ε+

k∑
i=1

n∑
j=1

(
Āj
i + n−1k−1

(
Āj
i − Ā

j
i−1

))
(2.30)

Figure 2.8: Error propagation

The error ε (red region in Figure 2.8) is given by the fact that we

compute an approximated area with this method. This error can

be diminished using a numerical method such as least squares, the

trapezium method or just by increasing the resolution.

In Figure 2.9 we provide an estimation of the growth tumor after

two months and the result comes in the green region. In this case

the time period is 2∆T . This algorithm can be extended to a three-

dimensional space by replacing the vector ~Rj
t with a surface gener-

ated from this vector with spherical coordinates. In this case we

should define a new resolution (radial resolution).

Figure 2.9: Predicted tumor after two months
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2.3 Software

We implemented a set of new functions in Matlab software to proceed

with our approach based on images coming from magnetic resonance

imaging (MRI), computed tomography (CT) or another such tech-

niques.

2.3.1 Input data

As input data we need at least two images (ideally three) of the same

brain tumor, taken at predetermined or known time intervals. The

precision of our method of prediction is given mainly by the number

of vectors in which the direction of the tumor growth is forecast;

they divide the circle counterclockwise in a number of angles equal

to the number of vectors, so that we can say that they represent the

angular resolution. We also need to input the time between any two

images, and the elapsed time since the second image.

In our case, these last two input data are days but can also be months

or hours (entire unit time). The accuracy of prediction also depends

on these elections based on longitudinal resolution, which gives the

unit time of growth rate per vector.

2.3.2 Procedures that must be fulfilled

The main objective of this code is to implement the algorithm pre-

sented in the previous section, and obtain a prediction of the tumor

boundary. To perform this, we need to follow some stages:

(a) Comparison of the two (or three) images taken as input data to

determine the rate of increase or decrease of the tumor from each

chosen vector (direction);

(b) To obtain the most accurate growth rate in each direction it is
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absolutely necessary that the images are taken under the same condi-

tions, observing a single point of reference, respecting and preserving

the same cartesian reference for all future tests of the same patient;

(c) In a two-dimensional situation we have to determine the approx-

imate tumor center for the first image, and it will be preserved for

all other images (second and/or third image if necessary);

(d) A good precision is obtained if the images to be compared are

taken on the same plane and do overlap. If this is not the case, this

means that the patient does not have the same position and then we

have to apply some transformations (translations and/or rotations);

(e) To get a more precise outline of the tumor prediction, we need

to compare the different stages of the tumor development. This will

be done by entering the coordinate points of the contour for each in-

stance of time. By default the number of points is set to 20 but the

user can modify this to increase the precision in detriment of com-

puting time. The user must choose the coordinates of designated

points (number of contour points) exactly at the intersection of the

line vector with the contour line of the edge of the tumor (see Figure

2.2 and Figure 2.7);

Pi(xi; yi) =
−→
Rj
t

⋂
Yt

(f) Besides the angular resolution (the number of vectors that will

calculate the prediction) accuracy of calculation will be influenced

by how precise and accurate the contour points are chosen. To ease

the task we use the image segmentation function (“imcontour” in

Matlab [68]) that will depict more clearly the outline of the tumor;

(g) We can interpolate the outline by using splines over the existing

points. to get a more precise outline.

The output of these functions represent the contour of the predicted

tumor after the time designated by the user. This will be plotted in
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the same two-dimensional plane with the last tumor, together with

all stages of the tumor development in time.

Figure 2.10: Diagram of the script

In Figure 2.10 we show a diagram of the built software.

2.4 Real data analysis

We study a particular tumor located in the Central Nervous System

and called glioblastoma multiform. In conformity with the World

Health Organization, this tumor is the most aggressive tumor with

type and grade according to the IV-th classification. Observing the

scaned images, it is clear that there is presence of multiple tumors

in the body, a fact called metastasis. These metastatic tumors are

children of primary tumors from breast, lung, colon, stomach and

skin (melanoma), but in our case, the first one was the brain tumor.

A patient with glioblastoma multiform has an average life span of

one year, receiving radiation therapy, steroids, and anticonvulsants.
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Otherwise the patient dies long before one year. For the patients

affected by this type of tumor, a neurological deterioration is noted

producing difficulty in organizing and coherently expressing ideas,

and then losing the mobility function, all depending on the order

in which the tumor affects the brain and areas focused on memory,

speech, motor function, etc.

Here we selected three images taken in the same plane: two from

2009, November the 9th, and December the 8th, and one from 2010,

in January the 10th. Using the first two images we can make a

prediction of the tumor growth for the next temporal instant, and

we can thus compare the prediction with the original third image.

Using the function “linie.m”(Matlab[68]), we can determine the ap-

proximate center point of the tumor by choosing 4 points in the

contour of the tumor, and opposite two by two. This will plot two

lines, whose intersection provides the coordinate of the center point.

We then determine the sample space (blue contour) and the growing

directions (vectors, black lines). By default the angular resolution

is 20, meaning that the user should choose 20 points to design the

“Sample Space”.

The choice of these points must take into account physical consider-

ations such as:

(a) the coordinates of each chosen point can be at the limit of the

tumor after a certain time but not too far away;

(b) if the tumor grows very quickly in one direction and the coordi-

nate value that it can take in that direction is not physically possible

(for example, it can get out of the head box) then, the prediction

takes as value the limit point of the sample space, which represents

the maximum allowed values in this direction;

(c) the designation of the sample space points can be seen as an out-

line of the tumor when the time is very large;
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(d) the last point in the sample space must have the same coordinates

as the first point, and if the user misses this, the Matlab program

will do this automatically.

The sample space must include the tumor contour at time t and

t + ∆T with which we can make the prediction. The user must

select the same number of points, but this time, at the intersection

of the vectors (black lines) with the boundary of the tumor. This

action will draw the outline of the first tumor with a yellow line (see

Figure 2.11).

Figure 2.11: Real data analysis. A yellow line represents the tumor at time t (time
when it was discovered), and a red line represents the tumor after time t+ ∆T .

Then, we upload the next magnetic resonance image (the second

analysis) and follow the same procedure to enter the contour points

for the second tumor. This set of points should belong to the vectors

and also to the boundary of the tumor, and so each point Pi must

be chosen at the intersection of each vector Rj
t+∆t with the boundary

tumor Yt+∆T . This will draw a red spline curve corresponding to the

boundary of the tumor at time t+ ∆T (see Figure 2.11).

In the next step, we apply our algorithm to predict the growing

tumor after 33 days. The prediction (green line in Figure 2.12) will

be drawn and calculated as a spline curve. If we have a third image

that represents the tumor stage at time t+ ∆T + α, we can directly

compare the predictive results with the original ones.
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Figure 2.12: Predicted tumor

In Figure 2.12 we can see the result of the prediction. We use a

segmented picture for a better observation of the contour of the tu-

mor. The boundary of the predicted tumor is plotted in green on

the background image from December. We can note the evolution

of the tumor in time: the first stage comes in a yellow line, and sec-

ond stage in a red line. In the right-hand side window we show the

predicted tumor over the background image of the tumor from 10 of

January.

2.5 Conclusions

The double stochastic process theory offers a mathematical back-

ground to study some natural and physical phenomena in the real

world and it takes some conclusions and supplementary information

about understanding what is happening in these complex systems.

Mathematical modeling always tries to find a compromise between

simplicity of analysis and requirements of realism. On the one hand,

we have extremely complex natural and biological systems; on the

other hand, we need to formally address some quantitative issues

about these systems which can be often done only through the use

of mathematical models that may rest on grossly over-simplified as-

sumptions.
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On some occasions, a particular mathematical formalism seems to

be pre-adapted to a variety of natural and biological systems and

can be profitably used to model a diverse set of processes. Double

stochastic Cox processes are one class of such models, used here to

solve real problems in the field of medicine.

For most of the realistic problems, the solution of the corresponding

exact equation is in practice impossible, so we need to make approx-

imations. Making approximations to solve difficult problems is not

a new idea. Appropriate models enable accurate prediction of future

behavior, which can be used to control and optimize various aspects

of the system in question. However, these approximations are asso-

ciated with noise induced upon the real problem. The aim is to keep

to a minimun this added noise, as this will increase the prediction

quality.

We have presented here a mathematical-statistical approach to an-

alyze the spatio-temporal dynamics of brain tumors. They come in

form of processed computer tomography images. We interpret them

as collections of image pixels with varying degrees of color inten-

sity levels. As such, they can be considered as a stochastic process,

and we make use of spatio-temporal stochastic processes as the right

statistical framework. Using this framework, we are able to predict

cancer growth in space and time, and show real data analysis. The

results are shown to be satisfactory, as noted in the prediction shown

in Figure 2.12.

In addition, we have implemented a Matlab software. The code is

available upon contacting the authors.

We should also note that we have assumed a constant growth, and in

some cases, this growth can not be assumed constant, and we should

adapt our modeling strategy to the case of acceleration motion. This

is clearly subject of a further research.



Chapter 3

Geometric prediction methods of

tumor growth1

In present day societies, cancer is a widely spread disease that affects

a large proportion of the human population, many research teams are

developing algorithms to help medics to understand this disease. In

particular, tumor growth has been studied from different viewpoints

and different mathematical models have been proposed. Our aim is

to make predictions about shape growth, where shapes are given as

domains bounded by a closed curve in R2.

These predictions are based on geometric properties of plane curves

and vectors. We propose two methods of prediction and a compari-

son between them is shared. Both methods can be used to study the

evolution in time of any 2D and 3D geometrical forms such as cancer

skin and other types of cancer boundary. The first method is based

on observations in the normal direction to the plane curve (bound-

ary) at each point (normal method). The second method is based

on observations at the growing boundaries in radial directions from

the “center” of the shape (radius method). The real data consist of

at least two input curves that bind a plane domain.
1This chapter is based on the published paper: “Two handy geometric prediction methods of cancer

growth” by Vlad et al. (2015)[2]

83
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The evolution in time of some objects is the subject of study of many

researchers worldwide. Special attention has been given to cancer,

and a way to understand this disease is to know how it evolves over

time.

We can find, in reading, many studies about mathematical modeling

of tumors, which attempt to predict the growth of tumors from a

mathematical point of view.

Williams and Bjerknes (1972)[64] introduced a stochastic model for

the spread of cancer cells. Cells, both healthy and diseased, are

situated on a planar lattice. Tumor extension is through cell division,

one daughter keeps his position, while the other usurps the position

of a neighbor; abnormal cells reproduce at a faster rate than normal

cells.

One model that has been used to describe tumor growth is the expo-

nential growth model (see Yorke et al. (1993)[69]) and another model

used to describe tumor dynamics is a Gompertz curve or Gompertz

function (Qi et al. (1993)[57]). This is a type of mathematical model

for a time series, where growth is slowest at the end of a time period

(Yorke et al. (1993)[69]). A proposed mathematical model based on

energy conservation (Universal Law model) was derived to model tu-

mor growth (West et al. (2001)[70]). This model was tested against

empirical data and the results fit a variety of in vitro and in vivo

data (Guiot et al. (2003)[71]).

The development of tumor models is important as they offer a way

to better understand the kinetic growth of malignant tumors which

may lead to the development of successful treatment strategies.

Our aim is to propose two simple prediction methods of the shape

growth, where shapes are given as bounded domains by a closed

curve in R2.
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Let us assume that the cells, both normal and abnormal, are situated

on a planar lattice R2 and let Dt (Dt ∈ S , where S = sample

space or Region of Interest) denote a bounded domain occupied by

cancer cells at time t. Given the domain Dt ∈ R2 we consider that

it is bounded by a simple closed curve parameterized by arc length

αt : [0, L] −→ R2. So, the original cancerous population occupies the

planar domain D0. For simplicity, Williams and Bjerknes (1972)[64]

restricted their attention to the process α0 starting with a single

abnormal cell at the origin. In this context, the following question

arises: how fast does α0 grow, and what is the geometric nature of

αt for time t > 0 (but not too large).

To make the prediction we use two geometrical methods and start

from the hypothesis that the speed of variation in time (growing)

is constant in each direction (but not equal). So the evolution in

time of the tumor can be expressed by the variation of each vector.

Starting from this, the problem is resumed to determine the values

of each vector for a future time (t+ ∆t).

In the first method (normal method) we construct the vectors in the

normal direction to the curve and in the second one (radial method)

we construct the vectors as an extension of the radius of a circle in

which the tumor can be enrolled.

The usual data consist of in at least two curves that bound two

growing planar domains. The first curve can be the contour of one

tumor when it was discovered (at time t), and the second curve is

the same tumor after a while ∆t. For real data analysis both curves

can be provided by two analysis with computed tomography (CT),

at a time interval.

Although these curves are continuous (parameterized) curves, all our

calculations, which are based on the comparison of these curves, are
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done on digital curves, that is, a discretized version of the parame-

terized curves using contour points of each curve.

The values of the vectors from a specific time can be calculated if

we know the parametric function or the discretized step. From both

methods of calculus the input data represent the coordinates of the

contour points.

In next section we present a brief theory of growth shapes and curve

deformations, and we propose our two prediction methods of tumor

growing, depending on the direction of growing chosen from each

point of the curves.

In Section 3.2 we implement all the mathematical calculations in

Matlab software, and we build a library of functions to run both

methods. We present the results of stimulation study based on ran-

dom and parametric curves. We also present the analysis of a real

data set.

3.1 Methodology

3.1.1 Shape and growth description

At present, there exists a variety of growth models for objects in

discrete space; see for instance Bramson and Griffeath (1981)[55],

Qi et al. (1993)[57], Lee and Cowan (1994)[58], and Kansal et al.

(2000)[59]. In Richardson (1973)[63], the growth model is described

by a Markov process. For a growing object in the plane, the state at

time t is a random subset Yt of Z2 consisting of the “infected sites”,

and Y0 (initial tumor) consists of a single site.

So, it is deduced from the preceding results that the tumor shape

Yt at present time t, depends on the structure of the initial tumor

shape Y0. Then the tumor shape in a future Yt+∆t, is a function which
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depends on the edge and structure of the cancer in the present time

Yt, and also on some external factors like mitosis, nature of cancer

(benign or malign), density, etc
(
all these factors can be included in

a function g(t)
)

then,

Yt+∆t = f(Yt) + g(t) (3.1)

In our study we consider the boundary of the tumor at different times

(not the entire tissue). This boundary is represented by a closed

curve which may be star-shaped or of any other random form. In

real studies, a tumor is discovered time after starting its development

and, for this reason, the initial domain D0 does not consist in just

one cell but in a closed domain bounded by a curve α0. So, each

domain Dt ∈ R2 is bounded by a closed curve αt and we propose two

simple methods to predict the tumor growth.

To predict the tumor growth means to find the curve αt+∆t based

on observations at times ti < t + ∆t. Both methods are based on

geometric properties of curves and vectors and the main differences

between them consist in the directions of the vectors chosen at points

Pi ∈ αt(si).

The first method (normal method) can be applied to general curves

(not necessarily star-shaped) but the observed curves must be close

enough to avoid self-intersections between normal lines. The second

method (radial method) can be applied only to star-shaped domains

with respect to a point in D0.

3.1.2 Normal method

The first method is based on observations in the normal direction to

the plane curve (boundary) at each point. We consider negatively

oriented planar closed curves α : I −→ R2 (that is, when traveling
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on α one always has the curve interior to the right). Moreover, when

the curve α is parameterized by arc length s (see Carmo (1976)[72]);

then, the signed curvature function of α(s) is defined as

dT

ds
= κ(s)N(s), (3.2)

where T (s) is the unit tangent vector and N(s) is the unit normal

vector oriented to the exterior of D (like the sunlight).

The sign of the signed curvature κ indicates the direction in which

the unit tangent vector rotates as a function of the parameter along

the curve. If the unit tangent rotates counterclockwise, then κ > 0.

If it rotates clockwise, then κ < 0 (see Figure 3.1).

For a plane curve given by a parametrization α(s) =
(
x(s), y(s)

)
,

the signed curvature is expressed as

κ(s) =
x′y′′ − y′x′′(

(x′)2 + (y′)2
)3/2

. (3.3)

Figure 3.1: Signed curvature κ for a negatively oriented planar closed curve α

To describe growth shape, our data consists of a discrete number of

shapes D0, D1, . . . Dn obtained at times ti = t0 + i∆t, respectively,

and bounded by closed simple curves αi, i = 1, 2, . . . n, where each
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curve αi is defined from the preceding one as

αi(s) = αi−1(s) + fi−1(s)Ni−1(s), i = 1, 2, . . . n− 1, (3.4)

where Ni−1(s) is the unit normal to αi−1(s) and fi−1(s) is a differen-

tiable function.

In order to make a prediction, that is, in order to construct a curve

αn+1(s) from the information provided by α0, α1, . . . , αn and there-

fore a function fn(s) from fi−1(s), i = 1, 2, . . . n, we consider the

curve:

αn+1(s) = αn(s) + fn(s)Nn(s), (3.5)

where αn(s) and Nn(s) are defined in (3.4) and we suppose that

fn(s) = fn−1(s), ∀s ∈ I.

Then, we suppose that fi(s) = fi−1(s), ∀s ∈ I and for i = 1, 2, . . . n

which means that the function fi(s) at time ti is fi(s) = if0(s).

Note that if fi(s) = k, constant, then αi+1(s) is the parallel curve to

αi(s) at a distance k (see Gray (2004)[73]). This is the simplest case

when the evolution in time in each direction is constant and equal

to k. Note that to ensure that the curve αn+1 is well defined it is

necessary that, for all s ∈ I, the distance from the curve αn to the

point αn+1(s) will be fn(s).

Therefore, in our prediction, we take into consideration that the

growing rate is different for each normal direction but constant for

equal periods of time. In real studies the tumor is discovered after

some time t and instead of a parameterized curve the study is based

on digital curves.

In Figure 3.2a we show the digitization of a brain tumor at time t1

which corresponds to curve α1(s) plotted at points P t1
i (xi, yi), with

coordinates xi and yi, i = 1, . . . , n.
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After a time ∆t, for t2 = t1 + ∆t, the same growing tumor has a

different contour (Figure 3.2b), α2(s), represented at points P t2
j (xj),

j = 1, . . . ,m.

Figure 3.2: Evolution in time of a tumor brain cancer: a) first image acquisition of
curve α1 and a points P t1i ; b) the same tumor after time ∆t

The number of points n and m are factors which represent the reso-

lution or the step of digitization for each brain tumor contour.

Note that since the curves are digital we only know a discrete number

of points P t1
i , i = 1, 2, . . . n and P t2

j , j = 1, 2, . . .m for each curve:

α1(si) and α2(sj). Then, in general, it is possible that the estimated

point P t2
j ∈ α2(sj) with j ∈ {1, . . . ,m} does not correspond to a

point Pj ∈ α2(sj). For this reason, we join the points P t2
j (xj, yj) by

straight segments and we obtain an approximated polygonal curve

to α2(sj) that, as there is no confusion, we will denote it also by

α2(s).

Now, from the n points P t1
i (xi, yi) in curve α1 and an approximation

of the values of N(si), we will compute the points in the polygonal

curve α2. We will suppose that we have two curves α1 and α2 and

we will predict, under our assumptions, the curve α3.

We proceed as follow. We consider three consecutive points P t1
i−1, P

t1
i

and P t1
i+1 and the segment P t1

i−1P
t1
i+1; then we draw the perpendicular
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line to this segment which passes through the point P t1
i . The in-

tersection between this line and the polygonal curve α2 corresponds

to the calculated point P t2
j and the distance between P t1

i and P t2
j is

f1(P
t1
i ). We repeat this process for i = 1, 2, . . . , n and we obtain all

the points of P
t2
j , for i = 1, 2, . . . , n.

Other methods to approximate the normal direction to a point P t1
i ,

like the bisector direction or the median direction, can be found in

Belyaev et al. (1999)[74].

At each point P t2
j we determine the normal vector N2(P

t2
j ) to the

polygonal curve α2 and, following that direction, at a distance f1(P
t1
i ),

we plot the predicted points P t3(xj, yj), j = 1, 2, . . . ,m, of the pre-

dicted curve α3(s), at time t0 + 2∆t (see Figure 3.3).

Figure 3.3: Calculus of the predicted points P t3k with the normal method

The condition that must be required to apply this method is that

vectors
−−−−→
P t2
i P

t3
j do not intersect between them for i = 1, 2, . . . , n.

This can be accomplished when the distance f1(P
t1
i ) for each point

P t1
i does not exceed the value of the κ(P t1

i ) (Gray (2004)[73]). There

exist several different points approximation methods for the discrete

approximation of the curvature; for instance, circle approximation

or angle approximation (see for instance Nitzberg et al. (1993)[75]).
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However, we will apply the Archimede’s theorem of the area of a

parabolic segment to approximate the curvature from a parabola

(Gual-Arnau and Monterde (2015)[76]).

Given P t1
i and the segment P t1

i−1P
t1
i+1 whose length is c (Gual-Arnau

and Monterde (2015)[76]), we have that

A(4i) ≈
κ1(P

t1
i )c3

12
, (3.6)

where A(4i) is the area of the triangle of vertices P t1
i−1, P

t1
i and P t1

i+1.

Since the distance d from the point P t1
i to the line defined by P t1

i−1P
t1
i+1

(see the triangle 42 = 4P t1
1 P

t1
2 P

t1
3 in Figure 3.3) is:

d =

√
a2 − a2 − b2 + c2

2 ∗ c2
(3.7)

where: a =‖ PiPi+1 ‖=
√

(xi+1 − xi)2 + (yi+1 − yi)2

b =‖ Pi−1Pi ‖=
√

(xi − xi−1)2 + (yi − yi−1)2

c =‖ Pi+1Pi−1 ‖=
√

(xi−1 − xi+1)2 + (yi−11 − yi+1)2

The approximation of the curvature when we know the coordinates

of the points P t1
i−1, P

t1
i and P t1

i+1 is, from (3.6),

κ(P t1
i ) ≈ 6 d

c2
. (3.8)

Moreover, if we have the approximation of κ1(P
t1
i ) via (3.8) and

that of f1(P
t1
i ) we may know if there exists a relation between local

curvature and the growth shape. A discussion in this line that has

been considered in interesting applications (Brú et al. (1998)[77]).
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3.1.2.1 Curve evolutions

This method of predicting growth is a particular case of curve evo-

lution, where each point of a curve α moves in the normal direction

with speed equal to the function f(s) at that point. Consider a fam-

ily of smooth closed curves α(s, t) where t means time and s is the

parameter of the curve ( s and t are independent) and suppose that

α(s, ti) = αi(s), for i = 1, . . . , n.

The mathematical formulation in this case is

∂α(s, t)

∂t
= F (s)N(s, t), i = 1, . . . n− 1, (3.9)

where N(s, t) is the normal vector to the curve α(s, t) and F (s, t) is

the speed function. In principle the function F may depend on many

factors like local and global properties of the growing curve and time

t. However, in our method F does not depend on t.

For numerical implementation we approximate

∂αi(s, t)

∂t
|ti ≈

αi(s, ti + ∆t)− αi(s, ti)
∆t

= f(s)Ni(s), i = 1, . . . n−1.

(3.10)

Then, since ∆t is constat for each i, we have:

αi+1(s) ≈ αi(s) + ∆tf(s)Ni(s) = αi(s) + f0(s)Ni(t). (3.11)

Several examples of functions F (s, t) can be found in Belyaev et al.

(1999)[74] for instance, when the function is the curvature of the

initial curve, we have a curvature-driven evolution of the initial curve

α0.
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3.1.3 Radius method

In this case we consider star-shaped domains from an origin O(x0, y0)

and vectors which are represented by the radius line from this origin

to the each point P t1
i of first curve α1 in that direction.

This method is quite simple to understand from the theoretical view-

point and also from the point of view of calculus. Starting from the

center point of tumor O = O(x0, y0) we construct a line to each con-

tour point P t1
i of the curve α1 and continue to the intersection of the

second contour α2 which give us the points of the second contour

P t2
j , for each i = 1, 2, . . . ,m (see Figure 3.4a).

These lines with the direction from the center point O to the points

P t1
i will be called radius vectors and denoted by

−→
Rt1
i .

The estimated points P t2
j of the second curve αt1+∆t, as it is a second

time, are: P t2
1 , P t2

2 , P t2
j , here j = 1, 2, . . . , n. The third curve (the

simulated curve) is αt1+2∆t because the time intervals between t1, t2

and t3 are supposed to be equal. These three curves are denoted by

α1, α2 and α3 respectively.

For each j = 1, 2, . . . , n the distances between P t1
i and P t2

j are the

values of the function f1(P
t1
i ) and we can calculate the spatial coor-

dinate of the contour points P ti
k with j = 1, 2, . . . , n at time t1 +2∆t.

3.2 Simulations and application

3.2.1 Simulated data: random curves

The simulation consist in creating three discrete closed curves with

different areas, keeping the same center. Curves are created by join-

ing a predetermined number of points arranged in a circle of radius

defined by the user plus a uniformly distributed random variable.
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Each curve is simulated with a different number of contour points.

After generating the curves we apply both prediction methods, and

calculate the predicted contour for each method.

Radius method: we start to construct each vector
−−−−→
Ri(Pi) from the

center O(x0, y0) of the first tumor αt to each contour point Pi(xi, yi)

at time t, and we continue to the intersection of the second contour

Pj(xj, yj) at time t+ ∆t and so on by the predicted point Pk(xk, yk).

So as not to overload the picture, we plot just the first two iterations

and the corresponding points of calculus P t1
1 , P t2

1 , and the predicted

point P t3
1 (see Figure 3.4a).

Figure 3.4: Simulated tumors at time t, t+ ∆t and t+ 2∆t using random curves:
a) prediction with radius method; b) prediction with normal method

Normal method: in order to begin the simulation, the first vector

is the normal vector
−−−−−→
N1(P

t1
1 ) to surface αt in point P1(x1, y1), and in

that direction we find the point Pj(xj, yj) i.e P t2
1 at the intersection

with the second contour αt+∆t. Starting from this point in the direc-

tion of the normal vector to second contour, we calculate the spatial

coordinates of the predicted point (Figure 3.4b).

To show the precision of these methods we repeated simulation 100

times and calculated the values of absolute error (εa) and relative
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error (εr) between the area of the contour curve at time t+2∆t names

as t3 i.e αt+2∆t(s) or α3(P
t3
i ) (the area of the polygon determined by

the points P t3
i ) and the area of the predicted curve (the polygon

determined by the estimated points P t3
k ).

All the calculus proposed in these methods were done with Matlab

and did not require too many computing resources. The results are

given in Table 3.1.

METHOD ABSOLUTE ERROR (εa) RELATIVE ERROR (εr)
min. average max. min. average max.

Normal 103.6847 565.9698 1022.6573 0.0033 0.0180 0.0325
Radius 1.6078 195.1009 608.7794 0.00003 0.00368 0.01148

Table 3.1: Absolute and relative errors for areas obtained from the normal and radius
methods.

In a machine with i3 processor and 4 GB of RAM the time for sim-

ulating the growing tumor based on three curves, each one with res-

olution n = m = 50 points, based on normal method was 1.897642

sec, and it is very accurate.

The running time to simulate the growing of the tumor with the

radius method, in the same conditions as in the preceding method,

was 0.909440 sec, which means a decrease of the computational effort.

When star-shaped tumors are considered, both methods are accurate

in prediction and are computationally fast, and can be used with

success in lower computational machines.

Comparing the results we obviously note that the radius method is

more effective, and the user requires less recourses from the comput-

ing machine, so it is very clear that it is a better method.
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3.2.2 Simulated data: parametric curves

To check for the accuracy of each algorithm, we now consider a

parametric irregular form and its growth at regular intervals of time.

The curves come from a Fourier series expansion of a sine and cosine

function.

In Figure 3.5 we plot in red the curve αt1, in green the curve αt2 and

in blue the curve αt3. Taking into account the first two boundaries

of the shape we predict the third curve (drawn in magenta) and we

compare with the real evolution of the function.

Figure 3.5: Parametric and simulation shapes of curve at time t1, t2 and t3: a)
prediction with radius method; b) prediction with normal method

We also calculated the area of the surface drawn by the predicted

contour and the errors absolute and relative reported to the area of

surface bounded by curve αt3:

a) relative error :

radius method: εr = 0.005278

normal method: εr = 0.005389

b) absolute error :

radius method: εa = 0.002709

normal method: εa = 0.002766
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As can be noted, the absolute and relative errors for the normal

method are larger than these for the radius method.

3.2.3 Real data

We now show the performance of the two methods over real data.

It was necessary to implement, in one library, a series of functions

to process images from a magnetic resonance tomography, computed

tomography or any other analysis or image of a tumor. The input

data is represented by a complete set of images of a brain tumor

taken at intervals of one month, to which we apply the methods to

predict its growth.

This particular tumor is found in the Central Nervous System and is

called glioblastoma multiform. In conformity with the World Health

Organization, this tumor is the most aggressive tumor and the type

and grade is according to IV-th classification. In the scans that we

are studying it is clear that there is a presence of multiple tumors

in the body which is known as metastasis. These metastatic tumors

are children of primary tumors from the breast, lung, colon, stomach

and skin (melanoma), but in our case, the first was the brain tumor.

From this complete set of analysis we selected three images taken in

the same plane: one from November 9th, 2009 (see Figure 3.6a), one

from December 8th, 2009 (Figure 3.6b) and the last from January

10th, 2010 (Figure 3.6c).

The input data for this analysis was the first two curves. The

boundary tumor of November was digitalized in 64 points: αt1 =

{P t1
1 , P

t1
2 , . . . , P

t1
64}. The curve is closed, so P t1

1 ≡ P t1
64. The second

one (corresponding to December) was approximated with 61 points,

then: αt2 = {P t2
1 , P

t2
2 , . . . , P

t2
61}.
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Figure 3.6: Evolution in time of the real brain tumor: a) boundary of the tumor
at time t; b) boundary of the same tumor in december; c) boundary of the tumor in

January

We applied both prediction methods starting from the first two im-

ages and we calculated the prediction of growth of this tumor, which

we scheduled for January 10th, 2010. We can directly compare the

results of the prediction methods, with the third image from the set

of analysis.

The reference curve (plotted in blue in Figure 3.7) is the approx-

imation in 60 points of the real contour of brain tumor. Because

we start from the first curve and all the calculus are related to the

number of points P t1
i , (in this case i = 64), the number of points of

the prediction is identical, i.e k =64 points.

The area of the surface domain D3 representing a polygon with 59

sides is Area(D3) = 7852.13479 and the predicted areas are:

a) radius method: Area(D3) = 7774.37985;

b) normal method: Area(D3) = 7776.43387.

The absolute and relative errors are:

a) radius method :(see Figure 3.7a)

- absolute error: εa = 77.7549

- relative error: εr = 0.00990

b) normal method :(see Figure 3.7b)

- absolute error: εa = 75.7009

- relative error: εr = 0.00964
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Figure 3.7: Brain tumor: real evolution vs. prediction: a) prediction with radius
method; b) prediction with normal method

We note that the results are directly affected by the digitization of

the curves by the physicians when they choose the contour points

of the tumor. Also we must take into account that the resolution

of these kinds of images is low (512x512 pixels). We would obtain

better results if the input images have quite a better resolution and

if we plot the results with a B-spline curve, which gives a better

approximation of the predicted curve, defined in the first instance as

a polygon.



Chapter 4

Bayesian prediction of tumor

growth1

In this paper we analyze the spatio-temporal dynamics of brain tu-

mors. These objects are originally processed from computer tomog-

raphy images, and can be depicted as a collection of image pixels

with varying degrees of color intensity levels. We consider spatio-

temporal stochastic processes within a Bayesian framework to model

spatial heterogeneity, temporal dependence and spatio-temporal in-

teractions amongst the pixels, providing a general modeling frame-

work for such dynamics. We aim at predicting cancer growth in

space and time. We analyze real data on brain tumor based on a set

of images taken in several time lags.

Knowing the dynamics of a current real system can allow prediction

of the values that certain variables can take after a period of time.

This can be studied and characterized by using systems of differential

equations, their solutions representing the values that can be taken

by each variable at particular times.

To solve the complex systems of differential equations, to date, no

robust methodology has yet been developed to ensure solutions for
1This chapter is based on the published paper: “Bayesian spatio-temporal prediction of cancer dy-

namics” by Vlad et al. (2015)[3]

101
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all types of real problems. In this respect, there are alternative

methods for approximating solutions at a specific time, in restricted

areas. The Bayesian paradigm can be used in this context.

The goal of inference is to make probability statements about un-

known quantities using available information. In this sense, the like-

lihood contains all the relevant information needed for inference. In

general we can say that Bayesian inference delivers an integrated

approach to perform inference, prediction and decision.

Modern Bayesian models use simulation methods to generate draw-

ings from the posterior distribution. The simulation methods imply

an analysis which is performed depending on the data.

Markov Chain Monte Carlo (MCMC) combined with the Stochastic

Partial Differential Equation (SPDE) approach, were the motivation

for the Integrated Nested Laplace Approximation (INLA) package

for the R software.

The library was initiated by Rue and Martino (2007)[78] and sub-

sequently improved through contributions of Rue et al. (2007)[79],

Rue et al. (2009)[80], Lindgren et al. (2011)[81], Lindgren and Rue

(2013)[82]. At that time the library was used to design spatial mod-

els, non-stationary spatial models, spatio-temporal models, and log-

Gaussian Cox point process models. These Cox processes play an

important role in stochastic geometry as the building blocks of more

complicated random set models, and they also serve as instructive

simple examples of random sets. This methodology can be success-

fully applied in epidemiology, environmental risk assessments, ecol-

ogy, as well as general geostatistics.

We are here interested in modeling the growth of brain tumors. We

can find, in reading, a variety of studies about mathematical model-

ing of tumors. See, for example, Bramson and Griffeath (1981)[55],
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Cressie (1991)[56], Qi et al. (1993)[57], Lee and Cowan (1994)[58],

Kansal et al. (2000)[59], and many others. But in particular our aim

is to apply statistical methods to model cancer growth to further

obtain prediction maps in space and time. Our method will help the

physicians to approximate the growth rate and the regions in which

the tumor is growing faster. All these characteristics will help both

the physician and the patient to take a decision about his or her

treatment, and in the worst case, about his or her future life, in the

sense of living in dignity.

The plan of the chapter is the following. Next section presents the

data set and its preparation to further modeling strategies. In Sec-

tion 2 we present the statistical methodology based on a Bayesian

framework. We develop several competing models and Section 3

discusses the results.

4.1 Data set

Our input data is formed by three sets of images of a brain tumor,

from the same patient, taken with Computer Tomography (CT) at

intervals of one month between each of them, as can be depicted in

Figure 4.1.

Figure 4.1: Original CT image acquisition
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This particular tumor is found in the Central Nervous System and

is called glioblastoma multiforme. According to the World Health

Organization, it is the most aggressive kind of tumor and the type

and grade belongs to the IV-th classification. In the scans that were

studied, it is clear that there were multiple tumors present in the

body, called metastasis. These metastatic tumors are the “children”

of primary breast, lung, colon, stomach and skin (melanoma) tumors,

but in our case, the first was the brain tumor. This is why there are

few databases that can be used for this research. The number of CTs

taken over time from the same patient with this disease are usually

one or two. There are not many cases in which the patient survives

to make the third CT. From this complete set of analyses, we selected

three images taken in the same plane: one from November 9th 2009,

one from December 8th 2009, and the last from January 10th 2010.

These images form the input data of our modeling strategy.

The preparation and image cleaning follows two steps. Hence, to use

this set of data we must adjust the information taken from the images

in order to fit the data. Before image registration, the user needs

to know basic information from the image. This basic information

consists of obtaining the picture format, the number of colors of the

image, the dimension of the matrix, number of pixels, the region of

interest and the color intensity for each pixel. With this information

at hand, we can thus proceed to calculate basic statistics for each

image.

4.1.1 Image registration

We must first locate the cancer tumor and we have to make sure

that all three images have the same cartesian coordinates. This is

necesary to ensure that the results are based on directly compara-

ble input data which are. To perform all the transformations and
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calculus required to better locate the cancer tumor and overlap all

images, we build a Matlab library presented in the Appendix. The

registering and the normalization for all the images that we have for

the same tumor is a primary and essential step for further analysis.

In these sense we superimpose all the three images using “overlap.m”

in Matlab. If necessary we can apply some transformations to the

images (see description in the List of Matlab functions) as follows:

1. translate the image (use “transl.m” function);

2. rotate one or more images to fit the reference image (use “rot.m”);

3. if one or more images do not overlap the reference after applying

these two simple transformations, we can also use an affine transfor-

mation of the image (use “affine transform.m” function).

Moreover, for patient identity protection, we cleaned all personal

data contained in the CT images. The result of the registration

process is shown in Figure 4.2.

Once all three images have a good overlap (the second and third

images are fitted to the cartesian coordinates of the reference image),

we proceed to normalize the images.

Figure 4.2: Registered and normalized images

The normalization process scales the brightness values of the image

so that the darkest point becomes black and the brightest point

becomes as bright as possible, without altering its hue and contained

information. This method can be used for different types of images:
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RBG, grayscale or indexed images, with different types of data (uit8,

uit16, double). In our case the images are uit8 type and grayscale

color. In other words, the normalization process fits the intensity

values of the pixels within the range [0, 255]. A value of 0 represents

black and 255 refers to white.

This normalization procedure is necessary to ensure that the inten-

sity of color of one particular pixel from the first image is directly

comparable with the intensity of color of the same pixel from the

second and third images. The intensity of color from each pixel can

be an expressed form of cancer cells evolution. For the same reason

it is very important that the same pixel has identical cartesian coor-

dinates in all images (the registration procedure helps to ensure that

all the images are perfect overlapped).

To do this, we implement a linear interpolation with the “normaliz.m”

(see description in the List of Matlab functions) Matlab function and

we run it for all the three images.

Now having the images registered and normalized, we can move on

to the next step: extraction of the needed information.

4.1.2 Preparing the data

In order to better locate the cancer tumor we use the image his-

togram, also named intensity histogram. With this Statistical Image

Tool ([68]), the user will be able to judge the entire intensity distri-

bution at a glance.

The horizontal axis of the graph represents the variations in intensity

level, while the vertical axis represents the number of pixels in that

particular value. The left side of the horizontal axis represents the

black pixels, the middle represents medium gray, and the right-hand

side represents light and pure white pixels.
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This tool also provides the possibility to modify the plotted range

so as to show just the intensity level interval of the desired pixels

(thresholding).

Figure 4.3: Image histogram and thresholding

Because the information contained in the graph is a representation of

the pixel distribution as a function of the intensity variation, image

histograms can be analyzed for peaks and/or valleys which can later

be used to determine a threshold value. This threshold value can

then be employed for edge detection, as can be seen in Figure 4.3.

Once located the site of the cancer tumor, we then go on to define

the Region of Interest (ROI). The ROI must include the boundary of

the cancer tumor. Each point of ROI (i.e., each pixel of the cropped

image) can be treated as events of a point pattern with a mark given

by the intensity level color, which denotes if that event belongs to

the cancerous tissue or not.

The function “defineROI.m” (see description in the List of Matlab

functions) build in Matlab draws a squared region by defining the

length and height, respectively. To avoid overloading the computer
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by performing unnecessary calculations, we must choose the ROI

that is just enough to contain the tumor and the additional tissue

under study, but not so small as to not lose the influence of marginal

likelihood. In this particular case the input images have the dimen-

sion of (512 × 512) pixels and we define the ROI as a square with

opposite points S1(280, 410) respectively Sn(172, 302) with precisely

x-axis, respectively y-axis local coordinates (see Figure 5.4). So, we

define the matrix M1(x× y),M2(x× y) and M3(x× y) as ROI with

dimensions (130× 130).

From the ROI we will extract some information that is needed as

input data for further modeling tasks, such as:

1. spatial coordinates of each point from ROI;

2. at least one covariable (e.g., in our case, since we use images as

input data the covariable can be the intensity of each pixel);

3. a logical variable zero or one corresponding to the absence or pres-

ence of cancer (one if the cell-pixel is cancerous and zero otherwise).

Once the cancer cells have been determined, we can draw the points

and the shapes in time of the tumor. The boundaries can be associ-

ated with a center of mass and we can compute the distance to each

cancer cell.

Before we start the modeling tasks, we proceed to verify the extracted

data provided by the images and plot them in the same ROI. As can

be seen in Figure 5.4, all infected cells are represented as logical

variables and they are well overlapped.

The data set extracted and used for modeling tasks consists of three

matrices P1, P2 and P3 (one from each image) with dimension (n×m),

where n represents the number of pixels from ROI, and m are the co-

variables. The number of pixels are the elements of matrix M(x×y)

of the ROI as can see in Figure 4.4. We note not to make any
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Figure 4.4: ROI in registered images (left) and overlapped points for infected cells in
ROI (right)

misunderstanding between pixels matrix M1,M2 or M3 with ele-

ments (x × y), when x = y = 130 and the matrix P with elements

(n × m), when n = 16900 and m is the number of considered co-

variables. The input data represented by a collection of observations

p = {p (s1, t1) , . . . , p (sn, tn)}, where the set (s1, ..., sn) indicates the

spatial locations (x1, y1), . . . (xn, yn) at which the measurements are

taken, and (t1, ..., t3) are the temporal moments.

4.2 Methodology

4.2.1 Statistical framework

Spatio-temporal data can be idealized as realizations of a stochastic

process indexed by a spatial and a temporal dimension

Y (s, t) ≡
{
y(s, t)|(s, t) ∈ D × T ∈ R2 × R

}
(4.1)

where D is a (fixed) subset of R2 and T is a temporal subset of R.

The data can then be represented by a collection of observations

y = {y (s1, t1) , . . . , y (sn, tn)}, where the set (s1, ..., sn) indicates the



Bayesian Prediction 110

spatial locations at which the measurements are taken, and (t1, ..., tn)

are the temporal moments.

The mathematical theory of point processes in a general space is now

well established Bremaud (1981)[83], Daley and Vere-Jones (2003)[6].

However, most models for specific applications are restricted either

to point processes in time or to two-dimensional space. Cox pro-

cesses are widely used as models for point patterns which are thought

to reflect underlying environmental heterogeneity (Blangiardo et al.

(2013)[84] and Cameletti et al. (2013)[85]).

A spatio-temporal correlation structure is a complicated mathemat-

ical entity and its practical estimation is very difficult. We thus as-

sume separability in the sense that we model the spatial correlation

by the Matérn spatial covariance function and the temporal correla-

tion is modeled using a Random Walk model of order 1 (RW1). We

also introduce the interaction effect between space and time using

another RW1 structure. Nevertheless, this inclusion of the interac-

tion does not change the separability structure. The Random Walk

structure for the temporal dependence is justified by the apparent

random distribution over time.

4.2.2 Statistical inference

4.2.2.1 SPDE approach

The SPDE approach allows a Gaussian Field with the Matérn co-

variance function as a discretely indexed spatial random process

which produces significant computational advantages (see for in-

stance Lindgren et al. (2011)[81]). Gaussian Fields are defined di-

rectly by their first- and second-order moments and their implemen-

tation is highly time-consuming, and gives rise to the so-called “big

n problem”. This is due to the computational costs of O(n3) when
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it comes to performing a matrix algebra operation with n× n dense

covariance matrices, which is notably bigger when the data increase

in space and time. To solve this problem, we analyze an approxima-

tion that relates a continuously indexed Gaussian Field with Matérn

covariance functions to a discretely indexed spatial random process,

i.e., a Gaussian Markov Random Field (GMRF).

The idea is to construct a finite representation of a Matérn field

by using a linear combination of basis functions defined in a trian-

gulation of a given domain D. This representation gives rise to the

stochastic partial differential equation (SPDE), which is a link be-

tween the GF and the GMRF. This link allows the spatio-temporal

covariance function and the dense covariance matrix of a GF to be

replaced with a neighborhood structure and a sparse precision ma-

trix, respectively, both of which are typical elements that define a

GMRF. This, in turn, yields substantial computational advantages

(Lindgren et al. (2011)[81]).

In particular the SPDE approach consists in defining the continu-

ously indexed Matérn GF, X(s) as a discrete indexed GMRF by

means of the representation of a basis function defined on a triangu-

lation of the domain D

X (s) =
n∑
l=1

ϕl(s)ωl (4.2)

where n is the total number of vertices in the triangulation, {ϕl(s)}
is the set of basis functions, and {ωl} are zero-mean Gaussian dis-

tributed weights. The basis functions are not random, but are in-

stead chosen to be piecewise linear on each triangle

ϕl (s) =

{
1 at vertix l

0 elsewhere
(4.3)
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The key is to calculate the weights {ωl}, which report on the value of

the spatial field at each vertex of the triangle. The values inside the

triangle will be determined by linear interpolation (Simpson et al.

(2011)[86]).

Thus, the expression (4.2) defines an explicit link between the Gaus-

sian field X(s) and the Gaussian Markov Random Field, and it is

defined by the Gaussian weights {ωl} that can be given by a Marko-

vian structure.

Both the temporal dependence (on t) and the spatio-temporal inter-

action (on i and t) are assumed to be smoothed functions, in partic-

ular Random Walks of order 1 (RW1) (R-INLA project (2012)[87]).

Thus, RW1 for the Gaussian vector x = (x1, . . . , xn) is constructed

assuming independent increments

4xi = xi − xi−1 ∼ N(0, τ−1) (4.4)

The density for x is derived from its n− 1 increments as

π (x | τ) ∝ τ (n−1)/2exp
{
−τ

2

∑
(4xi)2

}
= τ (n−1)/2exp

{
−1

2
xTQx

}

where Q = τR and R is the structure matrix reflecting the neigh-

borhood structure of the model (R-INLA project (2012)[87]).

When considering spatio-temporal geostatistical data we need to

specify a valid spatio-temporal covariance function defined by

Cov (yit, yjq) = σ2
CM(si, sj|t, q)

where σ2
C > 0 is the variance component and M(si, sj|t, q) is the

Matérn spatio-temporal covariance function.
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Depending on our assumptions, the spatio-temporal covariance func-

tion can be adapted to each situation. In the case of stationarity in

space and time, the spatio-temporal covariance function can be spec-

ified as a function of the spatial Euclidean distance 4ij and of the

temporal lag Λtq = |t− q|, and so it is defined by

Cov (yit, yjq) = σ2
CM(4ij; Λtq)

If we assume separability, the spatio-temporal covariance function is

given by

Cov (yit, yjq) = σ2
CM1(4ij)M2(Λtq)

withM1 andM2 being the spatial and temporal correlation functions,

respectively. Alternatively it is possible to consider a purely spatial

covariance function given by

Cov (yit, yjq) = σ2
CM(4ij)

when t = q and 0 otherwise. In this last case, the temporal evolution

could be introduced assuming that the spatial process evolves in time

following autoregressive dynamics (Harvill (2010)[88]).

Assuming separability, we need to define the Matérn spatial covari-

ance function which controls the spatial correlation at distance ‖h‖ =

‖si − sj‖, and this covariance is given by

M (h | ν, κ) =
21−ν

Γ (ν)
(κ ‖h‖)νKν(κ ‖h‖) (4.5)

where Kν is a modified Bessel function of the second kind and κ > 0

is a spatial scale parameter whose inverse, 1/κ, is sometimes referred

to as a correlation length. The smoothness parameter ν > 0 defines

the Hausdorff dimension and the differentiability of the sample paths

(Gneiting et al. (2010)[89]). Specifically, we tried ν=1,2,3.
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Using the expression defined in (4.5), when ν + d/2 is an integer, a

computationally efficient piecewise linear representation can be con-

structed by using a different representation of the Matérn field x (s),

namely as the stationary solution to the SPDE (Simpson et al.

(2011)[86]).

(κ2 −4)
α/2
x (s) = W (s) (4.6)

where α = ν + d/2 is an integer, 4 =
∑d

i=1
∂2

∂s2i
is the Laplacian

operator, and W (s) is spatial white noise.

In the general spatial point process context, the intensity stands for

the number of events (infected cells in our case) per unit area. When

considering the total intensity in each cell, we refer to the number of

infected pixels per cell area. A particular problem in our dataset is

that the total intensity in each cell, Λit is difficult to compute, and

so instead we use the approximation, Λit ≈ |si| exp(ηit(si)), where

ηit(si) is a “representative value” (i.e., it represents the intensity

or number of infected pixels in a particular cell given by a linear

predictor of covariates and other terms) (Simpson et al. (2011)[86]),

within the cell and |si| is the area of the cell si.

To treat these kinds of problems, Cox processes are widely used. In

particular, Log-Gaussian Cox processes (LGCP), which define a class

of flexible models, are particularly useful in the context of modeling

aggregation relative to some underlying unobserved environmental

field (Illian and Hendrichsen (2010)[90]; Simpson et al. (2011)[86])

and they are characterized by their intensity surface being modeled

as

log (λ (s)) = x (s) (4.7)

where x(s) is a Gaussian random field as in (4.2).
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4.2.2.2 Bayesian computation

In a statistical analysis, to estimate a general model it is useful to

model the mean for the i-th unit using an additive linear predictor,

defined on a suitable scale

ηi = β0 +
M∑
m=1

βmzmi +
L∑
l=1

fl(vli) (4.8)

where β0 is a scalar which represents the intercept, β = (β1, .., βM)

are the coefficients which quantify the effect of some covariates z =

(z1, .., zM) on the response, and f = {f1 (.) , .., fL (.)} is a collection

of functions defined in terms of a set of covariates v = (v1, .., vL).

From this definition, by varying the form of the functions fl (.) we

can estimate different kind of models, from standard and hierar-

chical regression, to spatial and spatio-temporal models (Rue et al.

(2009)[80]). Given the specification in (4.8), the vector of parameters

is represented by θ = {β0, β, f}.

Our response variable is the pixel intensity, and based on Figure 4.3

we consider that an intensity between 38 and 60 was indicative of an

infected pixel. So considering si the pixel, and ηit (si) the value of its

intensity at time t, we specify the log-intensity of the Poisson process

by a linear predictor (Illian et al. (2012)[91]). The most simple model

(M1) is such that at each time t = {Nov,Dec, Jan}, we have

ηit (si) = β0 + Si (4.9)

where β0 represents the heterogeneity accounting for variation in rel-

ative infected risk across different brain regions and Si is the spatial

dependence. Starting from this first simple model (4.9) we can define

more complex models if we add covariables.
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In M2 with times t = {Nov,Dec, Jan} we add the distance Xi from

the center of mass of the cancer tumor to each infected pixel

ηit (si) = β0 + β1Xi (4.10)

and where β1 represents the coefficient that quantifies the effect of

the distance in the response.

The third model M3 has both spatial Si and temporal τt components

ηit (si) = β0 + Si + τt (4.11)

Model M4 represents the previous model defined by (4.11), but

adding a distance covariable

ηit (si) = β0 + β1Xit + Si + τt (4.12)

Now the more complex model M5 includes all the previous models

as well as the interaction between space and time expressed in the

following equation

ηit (si) = β0 + β1Xit + Si + τt + υit (4.13)

where β0 represents the heterogeneity accounting for the variation

in relative risk across different infected cells, Xi is the distance from

the center of mass to each infected pixel, Si is the spatial depen-

dence, τt is the temporal dependence, and υit is the spatio-temporal

interaction. Note that we assume separability between the spatial

and temporal patterns and allow for interaction between the two

components.
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Following the Bayesian paradigm, we can obtain the marginal pos-

terior distributions for each of the elements of the parameters vector

p (θi|y) =

∫
p (ψ|y) p (θi|ψ, y) dψ (4.14)

and (possibly) for each element of the hyper-parameters vector

p (ψk|y) =

∫
p (ψ|y) pdψ−k (4.15)

Thus, we need to compute:

(i) p (ψ|y), from which all the relevant marginals p (ψk|y) can be

obtained,

(ii) p (θi|ψ, y), which is needed to compute the marginal posterior for

the parameters.

The INLA approach exploits the assumptions of the model to pro-

duce a numerical approximation to the posteriors of interest, based

on the Laplace approximation (Tierney and Kadane (1986[92]).

Operationally, INLA proceeds by first exploring the marginal joint

posterior for the hyper-parameters p̂(ψ|y) in order to locate the

mode; a grid search is then performed and produces a set G of “rel-

evant” points {ψ∗} together with a corresponding set of weights,

{wψ∗} to give the approximation to this distribution. Each marginal

posterior p̂(ψ∗|y) can be obtained using interpolation based on the

computed values and correcting for (probable) skewness, e.g., by us-

ing log-splines. For each ψ∗, the conditional posteriors p̂(θi|ψ∗, y) are

then evaluated on a grid of selected values for θi and the marginal

posteriors p̂(θi|y) are obtained by numerical integration (Blangiardo

et al. (2013)[84]).

p̂(θi|y) ≈
∑
ψ∗∈G

p̂(θi|ψ∗, y)p̂(ψ∗|y)wψ∗ (4.16)
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Given the specification in (4.13), the vector of parameters is rep-

resented by θi = {β0, β, S, τt, υit}, where we can consider xi =

(S, τt, υit) as the i-th realization of the latent GF x(s) with the

Matérn spatial covariance function defined in (4.5). We can assume

a GMRF prior on θ, with mean 0 and a precision matrix Q. In addi-

tion, because of the conditional independence relationship implied by

the GMRF, the vector of the hyper-parameters ψ = (ψS, ψτ , ψυ) will

typically have a dimension of order 4 and thus will be much smaller

than θ. The heterogeneity was specified as a vector of indepen-

dent and Gaussian distributed random variables on i, with constant

precision (R-INLA project (2012)[87]).

Note that in both parts of the model we control for heterogeneity,

spatial dependence, and spatio-temporal extra-variability. Models

are estimated using Bayesian inference for GMRF through the INLA.

The use of INLA and the SPDE algorithms yields massive savings

in computational time and allows the user to work with relatively

complex models in an efficient way. All analyses are carried out

using the R freeware statistical package (version 3.1) (R Development

Core Team (2011) [93]) and the R-INLA package (R-INLA project

(2012)[87]).

We have used the conjugate prior to the Poisson likelihood, which

is a Gamma distribution function. Indeed, with the aim of check-

ing the robustness of our methodological choice we have used several

other (non-conjugate) priors for the precision parameters (in partic-

ular Gaussian and flat priors), and the posterior distribution for the

precision hyper-parameters has not changed significantly.

In our models, we have include the Gamma conjugate priors used

generally in INLA. The priors are specified on the log of the un-

structured effect precision, logτ ∼ logGamma(1, 0.0005) and of the

log of the structured effect precision logτ ∼ logGamma(1, 0.0005).
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It is important to recall that the precision is defined as τ = 1
σ2 .

(Blangiardo et al. (2013)[84] and Cosandey-Godin et al. (2014)[94]).

In Simpson et al. (2014)[95], we can find an extensive study of se-

lection of priors for the models. Different ways for the selections are

presented and they develop a new method for use the PC-priors in

case of very complicated models. In our case, the models are not that

complex within the INLA framework, and thus we can use the de-

fault parameters. The presented models could be further developed

by choosing the PC-priors.

4.3 Modeling results

As we have a battery of competing models (M1 to M5, as com-

mented in previous section), we compare them using the Deviance

Information Criterion (DIC) (Spiegelhalter et al. (2002)[96]), which

is a Bayesian model comparison criterion given by

DIC = “goodness of fit” + “complexity” = D(θ) + 2pD (4.17)

where D(θ) is the deviance evaluated at the posterior mean of the

parameters and pD denotes the effective number of parameters, which

measures the complexity of the model (Spiegelhalter et al. (2002)[96]).

When the model is true, D(θ) should be approximately equal to the

effective degrees of freedom, n−pD. DIC may underpenalize complex

models with many random effects.

M1 Nov M1 Dec M1 Jan M2 Nov M2 Dec M2 Jan M3 M4 M5

DIC 112386.80 110154.95 109176.50 112393.48 110157.38 109181.96 470726.39 470723.51 368123.89

CPO 3.093191 3.217313 3.123008 3.093127 3.217338 3.12307 4.602935 4.602936 3.341009

nEp 2268.31 3817.56 2256.23 2274.85 3820.65 2259.99 2626.58 2621.20 17579.83

Table 4.1: DIC, CPO and nEp for each model
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We first show the summary results related to goodness-of-fit for all

five models in Table 4.1. This table shows the conditional predictive

ordinate (CPO) (Pettit (1990)[97]; Geisser (1993)[98]; Held et al.

(2009)[99]), which expresses the posterior probability of observing

the value (or set of values) of yi when the model is fitted to all data

except yi

CPOi = π
(
yobsi | y−i

)
(4.18)

Here, y−i denotes the observations y with the i -th component re-

moved. This facilitates computation of the cross-validated log-score

(Gneiting and Raftery (2007)[100] for model choice (− (mean (log(cpo)))).

Therefore, the lowest values of DIC and (− (mean (log(cpo)))) sug-

gest the best fitted model. The last line in Table 4.1 shows the

effective number of parameters (nEp) of the model. The larger this

is, the worse the data fits the model. A high number of parameters

means more complexity. The best models are those with a high level

of complexity and a high goodness-of-fit. In general, we choose that

model showing the lower CPO and DIC.

All analyses were carried out using the R freeware statistical package

(version 3.1) (R-Development Core Team (2011) [93] and R-INLA

(2012)[87]).

Fixed effects for all the five models (and denoted by β0) are expected

to have a systematic and predictable influence on data. Computing

standard errors of the fixed effects involves the inversion of a ma-

trix or other computationally demanding calculations to obtain the

diagonals of the inverse of a matrix.

When the matrix is large, estimating the standard errors is compu-

tationally very demanding. For this reason many procedures do not

provide standard error estimates for the fixed effects. In our case,
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the Bayesian approach based on Laplace approximation provides a

good and fast procedure to calculate standard errors for each model.

M1 Nov M1 Dec M1 Jan M2 Nov M2 Dec M2 Jan M3 M4 M5

Mean 4.4042 4.0205 4.2386 3.5939 2.5476 3.2087 4.102 2.9470 2.7470

St Dev 0.2663 0.4105 0.3641 0.3668 0.6992 0.4567 5.6533 1.6587 3.8353

0.025quant 3.8616 3.18 3.483 2.8367 1.0176 2.2450 -7.5037 -0.619 -6.3689

0.975quant 4.9465 4.8605 4.9933 4.3007 3.8227 4.0770 14.5683 6.3054 11.2738

Table 4.2: Fixed effects: Intercept

The fixed effects given by the intercept β0 are given in Table 4.2. We

note that β0 is only significative for models M1 and M2, but not for

M3,M4 and M5.

We now add the covariable distance as an additional fixed effect as

the distance from pixel to the center of the tumor is of interest. The

results are shown in Table 4.3.

M2 Nov M2 Dec M2 Jan M3 M4 M5

Mean 0.0137 0.0250 0.0175 - 0.0219 0.0249

St Dev 0.0051 0.0099 0.0061 - 0.0062 0.0065

0.025quant 0.0039 0.0070 0.0059 - 0.010 0.0126

0.975quant 0.0242 0.0465 0.0302 - 0.0344 0.0382

Table 4.3: Fixed effects: Distance

Note that, compared to the most simple previous models, without the

fixed effect distance, the variation that is associated with the random

effect increases considerably. The effect of adding the distance to the

explanatory variables as done with models M4 and M5, is clearly

significative in predicting the intensity level and thus the probability

of a pixel being infected.

M1 Nov M1 Dec M1 Jan M2 Nov M2 Dec M2 Jan M3 M4 M5

Correlation
Coefficient

0.9078 0.9080 0.9183 0.9079 0.9081 0.9083 0.9431 0.9431 0.9931

RMSE 3.0932 3.2173 3.1230 3.0931 3.2173 3.1231 4.6029 4.6029 3.3410

Table 4.4: Correlation coefficients for each model
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We calculated the correlation coefficient between the predicted and

observed values for all the models as shown in Table 4.4. We also

calculated the root mean square error (RMSE).

Figure 4.5: Correlations between the predicted and observed data for all models.
From top left to bottom right: ModelM1 for November, modelM1 for December, model
M1 for January, model M2 for November, December, January, model M3 (bottom
left), model M4 (bottom middle) and the complete model M5 with covariable distance

(bottom right).

Table 4.4 and Figure 4.5 highlight that model M5 is the one that

best fits the data.
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For this model we show in Figure 4.6 the posterior distribution of

the parameters playing a role in the model. We note that this model

reports spatial interaction, temporal interaction and spatio-temporal

one.

Figure 4.6: Posterior distribution of parameters for model M5: Intercept = 2.7470
(top left); φ = 2.68945162 (top right); Normal V ariance(σ2

X) = 0.5815021 (bottom
left); Practical Range = 107.1021 (bottom right).

Figure 4.7 shows the prediction map using this model M5, highlight-

ing the regions where the cancer has a higher probability of extending

in some future time.

Figure 4.7: Prediction map based on model M5





Chapter 5

Functional prediction of tumor

growth1

In this chapter we perform a functional data analysis approach for

the investigation of brain tumor contour deformation. The analysis is

conducted on a dataset of contour functions extracted from computer

tomography (CT) images from patients affected by Gioblastoma mul-

tiform (GBM). The procedure follows three steps: first we fit the raw

data and we define a global registration criterion for finding an op-

timal wrapping function for aligning the two set of contours; second

we observe and capture the deformation contour function; third step

is to recover the shape or pattern of the data from the collected

observations.

The plan of the chapter is the following. Next section deals with the

problem of registration of contour functions of Gioblastoma Multi-

form. Section 2 and 3 present our methodological approach. Section

4 presents the application and section 5 describe the results.
1This chapter is based on the submitted paper: “Principal differential analysis for modeling dynamic

contour evolution. A distance-based approach for the analysis of Gioblastoma Multiform” by Romano
et al. (2014)[4]

125
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5.1 Parametric contour functions of Gioblastoma Multi-

form: the problem of registration by FDA

Gioblastoma multiform is the most aggressive of the gliomas tumors

arising from glia within the central nervous system. Because most

patients with this pathology die in less than a year and essentially

none has long-term survival, these tumors have drawn significant

attention. Several mathematical models for studying the dynam-

ics of the cancer progression have been proposed (see Bauer et al.

(2013)[101], for example). These models provide a mathematical ex-

pression of the dependence of the tumor size on time. Most of them

show that any type of developing tumor has most of its proliferation

constrained to the border (Hobolth et al. (2003)[102]). We thus aim

at studying what affects the measured contours into different steps

of observation. In particular we focus on the problem of monitoring

the dynamics of the tumor contour growth.

The tumor contour functions are extracted by a registration algo-

rithm (Vlad et al. (2015)[2]) from CT. The theory related to func-

tions describing contours comes from the shape analysis context

(see Kindratenko (2003)[103]). We analyze contour functions by

Functional Data Analysis treated as two-dimensional functional data

(Epifanio (2011)[104] and Ramsay and Silverman (2005)[105]).

The dataset analysed here is composed by 15 brain tumor contour

functions. One of them is based on real data analysis and from

the rest we complete the data set with simulated closed curves. We

perform an explorative functional analysis of the dataset. We first fit

the raw data and then we define a global registration criterion to find

an optimal wrapping function for aligning the two set of contours.

The set of data has already been previously analysed with differ-

ent approaches in two previous exploratory works (Romano et al.
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(2014)[106], [107]) with the aim to exploring only the dynamics evo-

lution from the first to the second step.

Functional variability of the two set of contours is assessed by includ-

ing the derivatives and their relationship in a Principal Differential

Model (Ramsay and Silverman (2005)[105]).

Principal differential analysis estimates low-dimensional functional

variation as principal component analysis by estimating a differential

operator rather than a projection operator. Since we are interested in

how the contour functions vary from one replication to another and

longitudinally from one observation to another in the two steps of

observation, we propose to explore data by a Principal Differential

Equation model and to introduce a distance among two principal

equation models related to the two stages.

A Principal differential equation model includes estimation of a set

of functional coefficients. Then it is applied to the second step of

observation. In addition, by fitting a new model in the second step,

quantitative information about the degree of local similarity among

contour functions and their evolution is found by defining a distance

among the coefficients of the two Principal differential models.

We are interested in knowing whether there are any changes in the

shape of the tumor contour functions over a real data set. Thus the

first main issues consist of recovering the shape or pattern of the

data from the collected observations.

Let n be a set of individuals on which we monitor the brain tumor

boundary evolution in two different steps of observation. Tumor

contours are extracted by an automatic procedure for tumor image

segmentation (Romano et al. (2014)[107]). Brain tumor outlines can

be seen as a sampled closed contour of a figure in an Euclidean space.

Let the perimeter of the figures be S. Every point ps of the contours
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can thus be located with coordinates (Xi(s), Yi(s)), i = 1, . . . , n in a

first visit and (X∗i (s), Y ∗i (s)), i = 1, . . . , n in a second visit. The set

of contours can be identified by a set of closed curves, as depicted in

Figure 5.1.

Figure 5.1: Contour function. The red line identifies the first step of observation, the
green one the second step

As in shape analysis, several problems arise when comparing tu-

mor contour functions. We consider that sampled functional data

(Xi(s), Yi(s)),i = 1, . . . , n and (X∗i (s), Y ∗i (s)), i = 1, . . . , n can be ex-

pressed in terms of K known basis functions. We chose in particular

Fourier basis. Thus K couple of vectors of parameters α and β and

α∗ and β∗ are estimated by least squares fitting. The fit of the basis

function is not penalized since the differences among the contours

depend on the curvature.

Each curve is determined by the coefficients in these basis, and each

function is computable for any argument value. This has been per-

formed by means of FDA library (Ramsay and Silverman (2005)[105]).

Welch’s T test on the mean curvature of the first set of curves

(p − value = 0.0004) underlines that the mean curvature in a first

stage is significantly smaller than that of the second step.

Then, we need to scale the object to the same surface, to center

each profile function and to define a global registration criterion for

finding the shift δi for each curve in both the two steps. We scale

the shape contour to the same surface ST . We fix an anticlockwise

direction of rotation and standardise the profiles so that we can avoid

fictitious variability.
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Visual inspection of the first derivative shows that the data presents

amplitude variability into the two steps and phase variability among

the two steps. We thus look for the optimal wrapping functions

maximizing the similarity between the curves in both the two steps

and a target curve.

The mean curve of the first set of curves (the “not deformed” curves)

is used as target curve for the registration. We define the following

global registration criterion in order to search for a shift δi for each

curve i with respect to the target curve

∆ =
N∑
i=1

∫
S

[(xi(s+ δi)− x̄∗(s))2 + (yi(s+ δi)− ȳ∗(s))2ds] (5.1)

Each curve is then shifted so as to minimize ∆. The estimated means

are then updated by re-estimating them from the registered objects.

In order to have the same number of points for all functions, we eval-

uate the functions in 100 equidistant points from 0 to 1. We therefore

have two pairs of functions (representing coordinates) (Xi(s), Yi(s))

and (X∗i (s), Y ∗i (s)) for each individual, with s ∈ [0, 1].

The derivatives of functional observations play a role for this kind of

data as shown in this first explorative step. Now we look how velocity

of (Xi(s), Yi(s)), when i = 1, . . . , n may be employed in describing

changes of contour functions in the two steps of observation by Prin-

cipal Differential Analysis (Ramsay and Silverman (2005)[105]).

5.2 Principal differential analysis and tumor growth

Principal Differential Analysis extends the concept of differential

equation into the framework of functional data. In the context of

tumor growth we view the contour functions as a dynamic system

described by the linear relations among the derivatives. Because the
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structure of our data is sinusoidal it seems appropriate to set out

a second order differential equation model that can capture contour

function dynamics.

We define the following non-homogenous differential operator for the

couple of functional contours in the two steps (for simplicity we re-

port only the ones related to the first step):

LX(s) = αx(s) + εx(s) (5.2)

LY (s) = αy(s) + εy(s)

where LX(s) and LY (s) are defined as

LX(s) = β1x(s)DX(s) + β2x(s)D
2X(s) +D3X(s) (5.3)

LY (s) = β1y(s)DY (s) + β2y(s)D
2Y (s) +D3Y (s)

and where the differential operator D can be written as

D3X(s) = αx(s) + β1x(s)DX(s) + β2x(s)D
2X(s) (5.4)

D3Y (s) = αy(s) + β1y(s)DY (s) + β2y(s)D
2Y (s)

The two set of contours modeled by a linear differential operator are

respectively characterised by six functions αx(s),αy(s),β1x(s), β2x(s),

β1y(s), β2y(s) for the first step and αx∗(s),αy∗(s),β1x∗(s), β2x∗(s),

β1y∗(s), β2y∗(s) for the second step. The covariates αx(s),αy(s),

αx∗(s),αy∗(s) are the forcing functions and β1x(s), β2x(s), β1y(s),

β2y,β1x∗(s), β2x∗(s), β1y∗(s), β2y∗(s) are the weight functions with

s ∈ S = [0, 1].

Each derivative for both the components X and Y has a physical

meaning that can help the interpretation of the dynamic changes.

DX(s) can be seen as the velocity contour of the i − th patient;

D2X(s) can be seen as the acceleration contour of the i− th patient;

D3X(s) is the wide margin contour of the i− th patient. We look at
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linking derivatives and function values together so as to describe by

the coefficients the relationships among the physical characteristics.

Thus αx(s) is a space-varying intercept, β1x(s) is the space-varying

coefficient relating velocity to the wide margin contour and β2x(s)

is a space-varying coefficient relating acceleration to wide margin

contour. This stands for the X coordinate, but the same applies for

the Y coordinate.

A least square criterion is used for estimating these functions, in par-

ticular a 34 B-Spline basis functions of order 6 is used to estimate the

functional form. Figures 5.4 it can be seen that the forcing function

is the major source of variation rather than the second derivative for

both the steps. The problem we try to solve is how we can com-

pare these dynamics. Can we monitor the degree of the evolution

of the two steps? We propose two different solutions: a two-step

approach and a distance based approach, to compare and estimate

the dynamics.

In the two-step approach, once estimated the model of the first set

of contours, we propose to fit the data of the second step with the

first estimated model. Thus in analogy with regression we build the

equation with the first data set and then predict the response for a

new one related to the second step.

Once having found coefficients as components of the variability, we

pursue a somewhat different approach by introducing a distance

among the coefficients of the two models estimated into the two

steps. This distance seeks to investigate the modes of variability

from the first to the second step of observation.

The effect of introducing a distance among the models in two steps of

the observation is that, in evaluating particular curve candidates to

be more fast in the evolution, we can quantify the degree of changes.
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The twelve functions obtained by estimating the Principal Differ-

ential Equation give indication on the dynamic variability, thus we

define the following distance among the two models. Let us consider

two models Pdej, Pdej′ defined on the same support S:

- model 1: Pdej = {αx(s), αy(s), β1x(s), β2x(s), β1y(s), β2y(s)},

- model 2: Pdej′ = {αx∗(s), αy∗(s), β1x∗(s), β2x∗(s), β1y∗(s), β2y∗(s)}

each of them can be defined by a compound of six functions.

The distance between Pdej, Pdej′ is given by

d(Pdej, Pdej′) =

√∫
s∈S

(αx(s)− αx∗(s))2ds +

√∫
s∈S

(αy(s)− αy∗(s))2ds+

+

√∫
s∈S

(β1x(s)− β1x∗(s))2ds +

√∫
s∈S

(β2x(s)− β2x∗(s))2ds+

+

√∫
s∈S

(β1y(s)− β1y∗(s))2ds +

√∫
s∈S

(β2y(s)− β2y∗(s))2ds

(5.5)

This distance allows to quantify the diversity among two consecutive

steps. If more than two images are available it takes the dynamic

evolution of the distance among the contours.

5.3 Application: a Gioblastoma Multiform study

The early diagnosis of GBM is a very important issue in our society,

since GBM is the most common malignant histology and represents

a disproportionate cause of cancer mortality. The prognosis of GBM

remains dismal, with few patients surviving beyond 2 years.

Longitudinal studies indicate a direct relation between the contour

function and structural changes in morphological changes. In order

to understand the way in which tumor dimension varies, we have

their computer tomography scans, which will be transformed into
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functional data, as explained in the sequel. Then the two approaches

proposed in the previous section are applied.

5.3.1 Brain scans processing: from images to contour functions

Captured images using MRI, CT, or any medical image analysis

tool are built in different planes. Therefore the resulting images are

bi-dimensional. This involves the application of two-dimensional al-

gorithms for image segmentation and corresponding computational

methods (Gonzales et al. (2004)[108]). There is a wide variety of

semi-automatic segmentation techniques for delineating tumor bound-

aries in medical images (Barrett and Mortensen (1997)[109] and

Boykov and Jolly (2001)[110]). We make the automatic determi-

nation of tumor contour based on the observations of the intensity

on each pixel forming the image within the region of interest (ROI),

so the use of contrast agents on image acquisition, is recommended.

The use of standard ROI templates can reduce the spatial resolution

of the study. A small lesion in a large ROI will produce a minor

change in the overall result. The result will not be region specific

because the precise location of the lesion will be lost. Conversely,

a small ROI applied to a large lesion will not reveal the full ex-

tent of the lesion. Comparison of equivalent areas in left and right

hemispheres by manually drawing ROIs around lesions also is time-

consuming, is subjective, can suffer from localisation problems, and

can result in erroneous results if diaschisis is present. In our case we

choose to use a ROI as a circle form.

The user can choose the center of ROI and the radius of the circle.

This input together with the angular resolution provides the number

of these vectors. On the direction of these vectors we can calculate

the contour points of the tumor. The automatic determination of

the contour points is based on the longitudinal resolution (number
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of points of each vector) which is required to the user. In each vector

point we analyse and compare the intensity of the image gray levels.

Thus we obtain a number of contour points equal to the number of

vectors. These points together with the image are saved and will be

used to digitally reconstruct the shape of the tumor by functional

data analysis.

The dataset is composed of 15 brain tumor contour functions. The

tomography has been done in the same conditions for both the steps

of the observations and for all the patients. If there were some differ-

ences the images were registered to have the same benchmarks. We

thus remove the phase and the amplitude variability as explained in

Section 5.1. The data structure observed for longitudinal studies in

which functional data are obtained at each of two visits is shown in

Figure 5.2.

Figure 5.2: Tumor boundary from different patients at different times.

The procedure has removed most of the misalignments variation,

making it easier to compare curves from different subjects.

The variability captured by the optimal wrapping functions found

during this alignment process is shown in Figure 5.3.
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Figure 5.3: Registered curves: Xi(s), i = 1, . . . , 15 (top left); Yi(s), i = 1, . . . , 15 (top
right) X∗i (s), i = 1, . . . , 15(bottom left) dY ∗i (s), i = 1, . . . , 15(bottom right)

Here we use functional boxplots to visualize the variability within a

single step over the space. Figure 5.4 highlights that there are two

contour functions that seem to be anomalous, it means that they

have very different shape from the other.

Figure 5.4: Functional boxplot for the first step.

There is variability, but the distribution is geometrically symmetric

and compact without any significant outliers.

5.4 Results of principal differential analysis on the contour

functions

We apply the previous methodology to the contour functions, fol-

lowing the strategies presented in Section 5.2. First, we estimate a

structural equation model for the first step. As mentioned before,
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PDA is calculated for the first step, and then it is applied to the

second step.

Residual functions in Figure 5.5 show that the model for the first step

is not adequate for the second step since the percentage of explained

variability is higher.

Figure 5.5: Residual function

Following the second approach we apply two PDA on the two stages.

Both the components in the two steps yield good fitted values. Points

around 0.9 are shown in Table 5.1. The estimated models in the two

steps and their explained functional variability can be summarized

by their coefficients.

Model components R2

X 0.984
Y 0.981
X∗ 0.971
Y ∗ 0.940

Table 5.1: Models fitting, R2 goodness of fit.

We illustrate in Figure 5.6 the estimated coefficients for the first and

second step, related to the the X-component, respectively: αx(s)

(top left), βx1(s) (top right) and αx∗(s) (bottom left), βx∗1(s) (bot-

tom right). The pick of the curves shows the zones in which the

contour functions increase most rapidly, which indicates that dif-

ferences between the two steps may be localized to particular tract

regions.
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Figure 5.6: Estimated coefficient functions for the X component. From top left to
bottom right: αx∗(s), βx∗1(s) for the first step; αx(s), βx1(s) for the second step.

The first coefficient, for both the steps (that is the forcing functions),

is roughly a mean shift indicating that the overall level of variability

varies across subjects over the full domain of the contour functions.

The forcing functions can be thus considered as an indicator of large

source of variability rather than the coefficients β2x and β2x∗ that

have no impact on the model as can be seen in Figure 5.7.

Figure 5.7: Estimated coefficient functions β2x(s), β2x∗(s) for the first and second
step

We want to investigate the shape variation among the two steps,

obtaining a distance among two fitted models. The normalised dis-

tance among the coefficient is 0.6, difference due mainly to the forc-

ing component. Despite the general similarities, there are important
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differences among the contour. It is likely that the first model is a

reference model to monitor the variability of the shape and the veloc-

ity of the tumor contour propagation has a big weight in controling

the model changes.

We deal with contours as continuous functions which better represent

the continuous form and the nature of the data. In this case we

have no restriction to objects. We have focused our attention to

tumor contour functions analysis by the use of FDA. Unlike other

papers in the framework of contour functions, we have proposed to

use Principal Differential Analysis as a novel application of FDA in

image analysis.

The space-varying coefficient function relating velocity to wide mar-

gin contour gives summary components. Moreover a linear com-

bination of the contour derivatives gives a prediction of the tumor

contour function deformation.



Chapter 6

Software: Prediction of the

Dynamic Shape Evolution of

Cancer

In the chapters above we have developed new methods and algo-

rithms to predict the evolution in space and time of irregular shapes

and their application to particular tumor growth. We implement all

these methods in a compact form to offer an ease-to-use program for

the interested user.

Taking into account that the methodology used to predict the dy-

namic shape evolution on cancer is based to mathematical calculus,

and the used algorithms require time-consuming mathematical com-

putation, we decided to implement all the methods with Matlab soft-

ware. In the case of Bayesian prediction we use the R-INLA package

for R software in combination with Matlab.

The advances of Matlab are based on the possibility to construct a

Graphical User Interface (GUI) and to work with R functions calling,

executing and saving results provided by calculus with R scripts. We

can also develop our own functions. The specialist can build his own

library and call the scripts from the interface. The advantage of

this operation consists in the fact that the final user of the program

139
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can not modify the script using the interface. So, the motivation

to implement these function in a GUI come from the fact that the

end-user of this research could be the physicians or the patients who

do not have the ability to use a mathematical language and execute

Matlab or R scripts.

Requirements engineering for GUI design is a key problem in devel-

oping many systems, e.g., operating systems, spreadsheets, search

engines, applications and software, etc. To design and build the

interface of a software the specialist must take into account some

generally accepted principles and technical considerations. In the

following we briefly expose some requirements to implement a soft-

ware interface.

The interface must be “closer” to the final user that in our case can

be the physicians to help them to predict the evolution of tumor.

To design the interface we must take into account that the program

must be friendly and easy-to-use. In this sense we used familiar GUI

patterns (e.g. radio buttons to make a election or decision, push

button to execute some commands, edit boxes and sliders to set up

a variable between a minimum and maximal accepted values, etc.).

We designed the interface in a way that allows the user to focus

on what is most important. The size, color, and placement of each

element work together, creating a clear path to understand the in-

terface. A clear hierarchy will play a role in reducing the appearance

of complexity (even when the actions themselves are complex). This

means that the final user does not necessary know and understand

the syntax of used algorithms, they must understand and learn how

to use the interface.

The interface makes the connection between user tools and syntax
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algorithms implemented in background to apply the desired opera-

tion to input data and obtain the desired output. As can be seen in

the diagram of the software (Figure 6.1) the hierarchy is easy to be

understood and follows a natural sense.

Figure 6.1: Diagram of PreDySEC
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The input are the images (provided by MRI or CT) and the output

are the predicted contours or the regions with high probability to

evolve in time.

The language, layout, and design are some interface elements that

need consistency. A consistent interface enables our users to have a

good understanding of how things work, increasing their efficiency.

In accordance with this concept we keep a consistency between dif-

ferent modules. As noted the graphical interface from all modules

are quite similar and have similar elements, respect more or less the

same design (e.g. the structure of the interface, the used colours,

the dimensions and position for buttons and tools, the figures and

graphs, etc.).

Figure 6.2: The main interface of PreDySEC

In Figure 6.2 we show the design of the main interface. The objective

of the software is to use the information from image analysis and to

apply the mathematical models in order to predict the evolution of

cancer in a simple and easy way for a normal user. The design is
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very intuitive and makes the connection between the modules of the

package and the mathematical algorithms.

The resources and requirements of the interface are minimal except

for the Bayesian prediction module. To use the interface the user

needs to have installed Matlab 7 and R software. It can run in

a x86 or x64 computer with minimum 2GB of RAM memory, 1.8

GHz of CPU and any operating system. For Bayesian prediction

module the execution of the algorithm on such computer are taking

approximately two days, so we recommend to use this module on a

more powerful computer.

The program is structured into three sections:

- image processing;

- tumor boundary;

- prediction of evolution.

We design the interface for all modules as simple as possible. A

modern paradox says that “ it is simpler to create complex interfaces

because it is so complex to simplify them”. We try to not overload

the application with unnecessary functions. We provide a clear and

concise labels for actions and we try to suggest and guide the user

with simple messages.

Each component of the interface is designed in such a way to allow

the change of information between them. Each module offers the

possibility to save the data that can be used by the other module. So

the interface offers the user the possibility to remember information

from one screen and then use that information on another screen.

Starting with data acquisition, passed through each module to obtain

the results, the used language clearly respects the proof structure.

In the following we describe the behaviour of each module and we

provide step-by-step instruction in order to explain the functionality
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and advances from one module to another.

6.1 Image processing

To make a prediction about tumor growth we first need data acqui-

sition (at least two images) at predetermined interval time, to see if

the tumor is growing . So the first module is designed to preprocess

the input data.

The input data consists in a set of images of the tumor taken with

CT or MRI at different intervals of time. To be used, all the data

must have the same format. Normally these king of images are DI-

COM format and the most common format are JPEG. The image

processing module (see Figure 6.3) offers the user the possibility to

convert the DICOM image to JPEG image.

Figure 6.3: Image processing module

The user can apply cartesian transformation to the input data in

order to register the images and also to normalize the intensity range

of each image. For patient identity protection, and to clean the
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personal information, the user can decide to clear the specific region

using the button designed for this.

Once the images are registered and normalized the user can verify

the results. To do this he can use the button to overlap the images

and see if the images have the same cartesian benchmark. If the

results are satisfactory then he can save the images for further use

in the next module.

6.2 Tumor contour

Here we provide two ways to perform the contour of the boundary of

brain tumor obtained through MRI or CT (automatic or manual).

The automatic method is based on interpretation of the intensity of

each pixel placed within the ROI. We implement a specific algorithm

to determine the brain tumor contour. Each contour defines a set of

points that are used in the next section to predict the dynamics of

the tumor growing.

Figure 6.4: Automatic tumor boundary
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The precision of the automatic method is given mainly by the number

of vectors in which the direction of the tumor growth is forecast.

They divide the circle counterclockwise in a number of angles equal

to the number of vectors (the angular resolution) and by the number

of iterations from each vector (the longitudinal resolution). The user

must decide about the values of these two resolutions and to define

the ROI (the radius and the center of the circle).

The manual method consists in the ability of the user to choose the

contour points of the tumor. To be accurate the user can apply to

each image different types of filters that can be used to segment the

image for better visualization of the tumor.

Once he obtains a good contour he can save the results and pass to

the next step to predict the evolution of tumor.

6.3 Prediction of the dynamic shape evolution using the

Cobweb algorithm

This module is the most interactive interface. The user is invited

to take decision and define different variables. He is guided by mes-

sage windows. To finalize this step and obtain good results he must

understand the requirements and respect the instructions.

The main objective of this code is to implement the cobweb algorithm

presented in the second chapter. To perform this, the user is invited

to follow some stages.

The first requirement is to determine the approximate tumor center

for the first image, and it will be preserved for all other images

(second and/or third image if necessary).

The sample space in this situation can be as large as possible, and

if the tumor is growing, it could be the entire cranial box. But we
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can also assume that in a period of time immediately following, the

tumor can not grow over certain limits which depend of the structure

of the brain.

We can easily construct a sample space which includes the boundary

of the future tumor. The choice of the form of this sample space

can be directly influenced by the shape and positioning of the brain

bulbs. It is a fact that the tumors grow more easily in some directions

which depend on the density and the nature of biological material

so it is recommended to take into account this information.

Comparison of the two (or three) images taken as input data to

determine the rate of increase or decrease of the tumor from each

chosen vector (direction) is necessary. In Figure 6.5 we show the

capture of the implemented algorithm.

Figure 6.5: The prediction with Cobweb module

To get a more precise outline of the tumor prediction, we need to

compare the different stages of the tumor development. This will

be done after we plot the ROI by entering the coordinate points

of the contour for each instance of time. By default the number
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of points is set to 20 but the user can modify this to increase the

precision in detriment of computing time. The user must choose the

coordinates of designated points (number of contour points) exactly

at the intersection of the line vector with the contour line of the edge

of the tumor, and repeat the same procedure for each image.

The output of these functions represent the contour of the predicted

tumor after the time designated by the user. This will be plotted in

the same two-dimensional plane with the last tumor, together with

all stages of the tumor development in time.

6.4 Bayesian prediction

In this module we use the R-INLA package for R software, so a

different type of dataset is needed. We must locate the tumor and

extract some information from each image. In order to better locate

the cancer tumor we use the image histogram, also named intensity

histogram. With this Statistical Image Tool ([68]), the user will be

able to judge the entire intensity distribution at a glance.

The horizontal axis of the graph represents the variations in intensity

level, while the vertical axis represents the number of pixels in that

particular value. The left side of the horizontal axis represents the

black pixels, the middle represents medium gray, and the right-hand

side represents light and pure white pixels.

This tool also provides the possibility to modify the plotted range

so as to show just the intensity level interval of the desired pixels

(thresholding). Because the information contained in the graph is a

representation of the pixel distribution as a function of the intensity

variation, image histograms can be analyzed for peaks and/or val-

leys which can later be used to determine a threshold value. This

threshold value can then be employed for edge detection
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Once located the site of the cancer tumor, we then go on to define

the Region of Interest (ROI). The ROI must include the boundary of

the cancer tumor. Each point of ROI (i.e., each pixel of the cropped

image) can be treated as events of a point pattern with a mark given

by the intensity level color, which denotes if that event belongs to

the cancerous tissue or not.

Figure 6.6: Bayesian prediction interface

With the button “choice ROI points” the user draws a squared re-

gion by defining the opposite points of the square (see Figure 6.6).

To avoid overloading the computer by performing unnecessary cal-

culations, we must choose the ROI that is just enough to contain the

tumor and the additional tissue under study, but not so small as to

not lose the influence of marginal likelihood.

From the ROI we will extract some information that is needed as

input data for further modeling tasks, such as:

- spatial coordinates of each point from ROI;

- at least one covariable (e.g., in our case, since we use images as

input data the covariable can be the intensity of each pixel);

- a logical variable zero or one corresponding to the absence or pres-

ence of cancer (one if the cell-pixel is cancerous and zero otherwise).
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Once the cancer cells have been determined, we can draw the outline

of the tumor. The boundaries can be associated with a center of mass

and we can compute the distance to each cancer cell.

The data set extracted and used for modeling tasks consists of three

matrices n×m (one from each image), where n represents the number

of pixels from ROI, and m are the covariables.

Once we construct the database we can proceed to load the R scripts

and execute. The result are saved in the current directory and can

be loaded to plot the results. The user have the possibility to plot

the data using a Matlab or R graphics.

6.5 Geometrical prediction

The predictions with these methods are based on geometric proper-

ties of vectors. We propose two methods of geometrical prediction.

Both algorithms can also be used to study the evolution in time of

any 2D and 3D geometrical forms. One of these methods is based

on using the normal vectors of the curvature in each point (normal

method) and the other method is based on using the radial vectors

from the center of the curvature to the each point (radius method).

All calculations are done using the comparison of contour tumors.

Each contour defines a set of points that are used as input of the

functional procedure to predict the dynamics of the tumors growth.

To perform the prediction, we start from the hypothesis that the

velocity of variation in time (the growth) is constant.

The data consists in at least two curves that bound a plane domain

provided by the previous interfaces.
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In order to obtain a prediction we can also make a simulation with

random curves and a verification with a parametric curve. We im-

plement all this mathematical calculations in MATLAB scripts and

we build the interface to run both methods (see Figure 6.7).

Figure 6.7: Geometrical predictions

For simulation we create a MATLAB function to generate two ran-

dom curves with increase radius and different number of contour

points. The dataset was used in Chapter 5.

6.6 Logical prediction in space and time

For this interface we must to develop a new algorithm based on a

logical variable. This algorithm can be used to predict in space and

time the rising of a new cancer cell based on logical model.

The interface is very intuitive but the background methodology is

not. We still work on this model and we hope that soon we can

publish the results. In this way we can offer a new method to predict

the dynamic of cancer evolution and to compare the result of all these
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methods. The result will be provided in tridimensional plot and the

possibility of rotation is offered.

Figure 6.8: Logical prediction module

In Figure 6.8 we implement the graphical user interface of such ap-

plication.

The communication with the user is very important, so for each

module we implement warning message windows that appear when

something unexpected is happened and the user introduces wrong

information or setups erroneous values from certain variables. We

also add a short description of each function in the help menu.

We plan to develop this software and to offer a complete version to

interest user as well we have the logical algorithm.
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Conclusions and future research

Mathematical modeling always tries to find a compromise between

simplicity of analysis and requirements of realism. On the one hand,

we have extremely complex natural and biological systems; on the

other hand, we need to formally address some quantitative issues

about these systems which can be often done only through the use

of mathematical models that may rest on grossly over-simplified as-

sumptions.

On some occasions, a particular mathematical formalism seems to

be pre-adapted to a variety of natural and biological systems and

can be profitably used to model a diverse set of processes. Double

stochastic Cox processes are one class of such models, used here to

solve real problems in the field of medicine.

The double stochastic process theory offers a mathematical back-

ground to study some natural and physical phenomena in the real

world and it takes some conclusions and supplementary information

about understanding what is happening in these complex systems.

For most of the realistic problems, the solution of the corresponding

exact equation is in practice impossible, so we need to make approx-

imations. Making approximations to solve difficult problems is not

a new idea. Appropriate models enable accurate prediction of future
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behavior, which can be used to control and optimize various aspects

of the system in question. However, these approximations are asso-

ciated with noise induced upon the real problem. The aim is to keep

to a minimun this added noise, as this will increase the prediction

quality.

An important problem where the use of models to predict the future

behavior is essential and important, is the analysis of tumor growth.

Modeling the natural growth of tumors is of value in the study of

tumor progression, along with that it will be supportive for opti-

mization of screening programs, prognostication, optimal scheduling

of chemotherapy and radiation therapy, and assessment of tumor

spread (number and size distribution of metastases).

Tumor response to therapy may also be studied by analyzing the

effect of therapy on the natural growth of tumor. However, there

are mainly two types of growth models for tumors: exponential and

non-exponential. According to the Exponential growth model, tu-

mor volume increases exponentially by time. However, studies have

shown that tumor growth rate may decline with time which results

in nonexponential growth model of tumors. Furthermore, volume

doubling time (DT) is the time needed for a tumor to double in vol-

ume. DT has been widely used as a quantity for tumor growth rate

since its introduction. There are flaws with DT as a quantity for tu-

mor growth rate: the frequency distribution of DT in a population

is not normal and there are tumors with very different DT values in

a population.

We have presented here a mathematical-statistical approach to an-

alyze the spatio-temporal dynamics of brain tumors. They come in

form of processed computer tomography images. We interpret them

as collections of image pixels with varying degrees of color inten-

sity levels. As such, they can be considered as a stochastic process,
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and we make use of spatio-temporal stochastic processes as the right

statistical framework.

In addition, in the case of bayesian prediction, we set our modeling

strategy within the Bayesian framework which opens doors to model

spatial heterogenity, temporal dependence and spatio-temporal in-

teractions amongst the pixels, providing a general modeling frame-

work for such dynamics.

Using this framework, we are able to predict cancer growth in space

and time, and show real data analysis. The results are highlighting

the regions where the cancer has a higher probability of extending

in some future time and shown to be satisfactory.

We have relied upon the Laplace approximation as used in INLA ap-

proach. This is a competing methodology with MCMC approaches,

and lately a widely used technique, which basically relies on the

Matérn spatial interaction structure. If we can not assume this struc-

ture on our pixel-based images, we should look for other approaches.

A comparison between INLA approach and other existing methods

such as spatial logistic regression based on MCMC would be a nice

idea.

From the geometric viewpoint we have proposed two methods of

tumor growth, where shapes are given as domains bounded by a

closed curve in the plane: the radial method (where the planar shape

is supposed to be star-shaped) and the normal method (where the

shapes estimates at two different occasions are supposed to be similar

enough). Both prediction methods proposed here are simple com-

puting, fast, and provide good results. They can help medics cure

and better understand the propagation of cancer.

When star-shaped tumors are considered, both methods are accurate

in prediction and are computationally fast, and can be used with
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success in lower computational machines. Comparing the results of

the prediction methods with the third image from the set of analysis

(boundary of the tumor in January) we note that the radius method

is more effective but the normal method is more precise. We must

note that the results are directly affected by the precision of contour

points and by the resolution of the images.

We should note that we have assumed a constant growth, and in

some cases, this growth can not be assumed constant, and we should

adapt our modeling strategy to the case of acceleration motion. This

is clearly subject of a further research.

For a better adjustment of the prediction models in the very near

future, we are trying to develop new models without restricting the

growing velocity. In these cases, the function f(x) which transforms

the curve αt into the curve αt+∆t is a second-order degree function

and from each point of the curve we must solve an equation system

in order to find the parameters of each function fi(x). We hope that

this will lead us to remove the predictions error in comparison with

real data.

The direction in which current research is going is based on inter-

operability between different branches of science. It has shown that

mixed research teams have much better results. The demands of re-

search topics are thus directed in such way to obtain a more objective

results and to the possibility to be used in practice.

Implement into a single interface of all these mathematical predic-

tion methods represent a step forward in this direction. The next

step is to implement the logical method and to compare the result

of all methods. We have a good feedback and a high interest from

the users to use this predictive tool, so we plan to maintain a strong
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communication with physicians and to develop the PreDySEC soft-

ware. Once we have funding, we will implement an online platform

to support and develop the application.





Appendix A

List of Matlab functions

In this appendix, we present and describe the functions built in Mat-

lab that have been used in this doctoral thesis. This code is available

upon contacting the author.

PreDySEC.m: This matlab function represent the source code of

the main interface. Here we implement all the action that the

code will execute when the user interact with the interface. For

example if the user push the button “IMAGE IMPORT AND

PROCESSING” the script call and execute the function “im-

agepr.m” together with “imagepr.fig” and display the module

of image processing.

PreDySEC.fig : The image of the PreDySEC interface are designed

in this function. Is mean that all the graphical object (images,

push buttons, radio buttons, text box, etc.) which user can see

on this interface are represented here with his own properties

(e.g. color, dimension, position, etc.).

auto boundary.m: This function load the input image and perform

different transformation on the image with the objective to ob-

tain an automatic tumor boundary. The user must define some

input variables such a longitudinal resolution, radius, etc. The
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option to save the results are offered. If the results are not sat-

isfactory the user can choice to manually determine the tumor

boundary.

auto boundary.fig : In this function we have define the interface pa-

rameters of the module “Automatic Tumor Boundary”.

man boundary.m: This function is quite similar to “auto boundary.m”

function with the difference that the contour points are defined

by the user, clicking on the point. The contour point are saved

and based on in we plot the boundary using B-spline.

man boundary.fig : The interface designed here is dedicated to guide

user to manually define the point of the boundary tumor.

imagepr.m: This script contain the commands of processing image

function in order to register (translate, rotate, etc.) and nor-

malize the input images. Here we implement the command of

each object (axis, uimenu, uipanel, slider, edit box, push but-

ton, text box, etc.) from the “Image Processing” interface. The

code is executed when the user make some modification on the

interface, set the value on edit box or sliders and/or he push

button.

imagepr.fig : Contain the objects and characteristics of all these

object used to design the “Image Processing” interface.

inla pred.m: This script call all necessary command implemented to

be executed in the case of Bayesian prediction. The source code

contain various sections to define and execute different functions

such as: define ROI, display histogram. create database, etc.

inla pred.fig : With this function we design the interface of “Bayesian

Prediction” module and we put here the objects that can be used

in order to call this procedure.
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geom pred.m: This function is the background script of commands

to be executed in order to obtain a geometrical prediction.

geom pred.fig : With this function we design the interface of “Ge-

ometrical Prediction” module. We use the design objects nec-

essary to implement the geometrical prediction methods and to

plot the result.

logical pred.m: Now this function is on a beta version and will have

a complete functionality as soon as possible.

logical pred.fig : The interface of “Logical Prediction” is also in a

beta version. We implement this interface maintain the same

characteristics of software design.

overlap.m: This script overlap two images. The first represent the

background and the second is transparent. Transparency of the

second image can be set by modifying the index transparency

“AlphaData” between 0 (transparently) and 1 (opaque).

transl.m: Using this script, we are able to translate an image in

both directions (x and y axis) in one time. The user must define

a reference point (taken as the origin) in the reference image.

In the translated image, the center of coordinates will be the

point selected by the user. The script calculates the translation

matrix between these two points and applies this translation to

the second image. The resulting image is saved.

rot.m: This function rotates an image in clockwise direction or back-

wards if the variable theta (the angle of rotation) is used with

negative sign. We apply the command “imrotate” [68] from

Matlab, and after the rotation with the given angle we save the

new rotated image for further use.

affine transform.m: This function performs an affine transforma-

tion to an image. Taking into account that the images come
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from a brain tomography, we define an ellipse to superimpose

to the reference image, as a reference. The first image repre-

sents the background or cover image. The user must choose the

eight reference points from the ellipse in both images (first in the

reference image, and after in the transformed image). The sec-

ond image is brought to the same cartesian coordinates with the

reference and saved with a different name in the same directory.

newaxes.m: This script plots the new axis x and y which are inter-

sected in the center of the image. The center of the image will

be saved and will become the origin axes.

defineROI.m: Using this script, the user can define a region of

interest within which the tumor is included. The ROI will be a

square or rectangle. To do this we must choose two points: one

situated on the top left and the other on the bottom right of the

future rectangle.

normalize.m: This function fits the intensity value of each pixel of

an image into a particular range. The user can manually set the

minimal and maximal values of the given interval and provide

compatibility amongst the images.

dicom2jpg.m: This function converts the .dicom (Digital Imaging

and Communications in Medicine) image file into a .jpg (Joint

Photographic Group) image file. The input argument is the

dicom file, and the output is the jpg file saved in the current

directory with the same name of the original image.

linie.m: The function of determining the geometric center of the

tumor. Is based on the intersection of different lines. The in-

put arguments are the number of lines and return the cartesian

coordinates of the intersection point.
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dist.m: This script calculates the Euclidean distance between points

P and Q with cartesian coordinates (xP , yP ), (xQ, yQ) respec-

tively.

pointsROI.m: The input argument of this function are the study

image, the ROI and a minimal and maximal values for the in-

fected pixels. The output data is a n ×m matrix. As rows we

have the number of points from ROI and as columns we give

the information desired: cartesian coordinates from each point

(column 1 contains the xP coordinates, column 2 contains the

yP coordinates), the intensity value of each pixel in column 3,

the logical variable (0 if the cell are cancerous and 1 otherwise)

and the distance from center of tumor to each pixel. The logical

variable is assigned automatically if the value of intensity pixel

belongs to the given interval or not.

verif points.m: This script plots in the same figure all infected cells

in ROI, for all the images, to graphically verify goodness-of-fit

of the fitted models.
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