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Abstract

The presence of renewables in energy systems optimization have generated a high level
of uncertainty in the data, which has led to a need for applying stochastic optimization
to modelling problems with this characteristic. The method followed in this thesis is
Multistage Stochastic Programming (MSP). Central to MSP is the idea of representing
uncertainty (which, in this case, is modelled with a stochastic process) using scenario
trees. In this thesis, we developed a methodology that starts with available historical
data; generates a set of scenarios for each random variable of the MSP model; defines
individual scenarios that are used to build the initial stochastic process (as a fan or an
initial scenario tree); and builds the final scenario trees that are the approximation of
the stochastic process.

The methodology proposes consists of two phases. In the first phase, we developed a
procedure similar to Muñoz et al. (2013), with the difference being that the VAR models
are used to predict the next day for each random parameter of the MSP models. In the
second phase, we build scenario trees from the Forward Tree Construction Algorithm
(FTCA), developed by Heitsch and Römisch (2009a); and an adapted version of Dynamic
Tree Generation with a Flexible Bushiness Algorithm (DTGFBA), developed by Pflug
and Pichler (2014, 2015). This methodology was used to generate scenario trees for two
MSP models. A first model, Multistage Stochastic Wind Battery Virtual Power Plant
model (MSWBVPP model) and to a second model, which is the Multistage Stochastic
Optimal Operation of Distribution Networks model (MSOODN model). We developed
extensive computational experiments for the MSWBVPP model and generated scenario
trees with real data, which were based on MIBEL prices and wind power generation
of the real wind farm called Espina, located in Spain. For the MSOODN model, we
obtained scenario trees by also using real data from the power load provided by FEEC-
UNICAMP and photovoltaic generation of a distribution grid located in Brazil. The
results show that the scenario tree generation methodology proposed in this thesis can
obtain suitable scenario trees for each MSP model.

In addition, results were obtained for the model using the scenario trees as input
data. In the case of the MSWBVPP model, we solved three different case studies
corresponding to three different hypotheses on the virtual power plant’s participation
in electricity markets. In the case of the MSOODN model, two test cases were solved,
with the results indicating that the EDN satisfied the limits imposed for each test case.
Furthermore, the BESS case gave good results when taking into account the uncertainty
in the model. Finally, the MSWBVPP model was used to study the relative performance



of the FTCA and DTGFBA scenario trees, specifically by analyzing the value of the
stochastic solution for the 366 daily optimal bidding problems. To this end, a variation
of the classical VSS (the so-called “Forecasted Value of the Stochastic Solution”, FVSS)
was defined and used together with the classical VSS.



Resumen

La presencia de energías renovables en la optimización de sistemas energéticos
hagenerado un alto nivel de incertidumbre en los datos, lo que ha llevado a la necesidad
de aplicar técnicas de optimización estocástica para modelar problemas con estas
características. El método empleado en esta tesis es programación estocástica multietapa
(MSP, por sus siglas en inglés). La idea central de MSP es representar la incertidumbre
(que en este caso es modelada mediante un proceso estocástico), mediante un árbol
de escenarios. En esta tesis, desarrollamos una metodología que parte de una data
histórica, la cual está disponible; generamos un conjunto de escenarios por cada variable
aleatoria del modelo MSP; definimos escenarios individuales, que luego serán usados
para construir el proceso estocástico inicial (como un fan o un árbol de escenario inicial);
y, por último, construimos el árbol de escenario final, el cual es la aproximación del
proceso estocástico.

La metodología propuesta consta de dos fases. En la primera fase, desarrollamos
un procedimiento similar a Muñoz et al. (2013), con la diferencia de que para las
predicciones del próximo día para cada variable aleatoria del modelo MSP usamos
modelos VAR. En la segunda fase construimos árboles de escenarios mediante el
“Forward Tree Construction Algorithm (FTCA)”, desarrollado por Heitsch and Römisch
(2009a); y una versión adaptada del “Dynamic Tree Generation with a Flexible
Bushiness Algorithm (DTGFBA)”, desarrolado por Pflug and Pichler (2014, 2015).
Esta metodología fue usada para generar árboles de escenarios para dos modelos
MSP. El primer modelo fue el “Multistage Stochastic Wind Battery Virtual Power
Plant model (modelo MSWBVPP)”, y el segundo modelo es el “Multistage Stochastic
Optimal Operation of Distribution Networks model (MSOODN model)”. Para el modelo
MSWBVPP desarrollamos extensivos experimentos computacionales y generamos
árboles de escenarios a partir de datos reales de precios MIBEL y generación eólica
de una granja eólica llamada Espina, ubicada en España. Para el modelo MSOODN
obtuvimos árboles de escenarios basados en datos reales de carga, provistos por FEEC-
UNICAMP y de generación fotovoltaica de una red de distribución localizada en Brasil.
Los resultados muestran que la metodología de generación de árboles de escenarios
propuesta en esta tesis, permite obtener árboles de escenarios adecuados para cada
modelo MSP.

Adicionalmente, obtuvimos resultados para los modelos MSP usando como datos de
entrada los árboles de escenarios. En el caso del modelo MSWBVPP, resolvimos tres
casos de estudio correspondiente a tres hipótesis basadas en la participación de una



VPP en los mercados de energía. En el caso del modelo MSOODN, dos casos de prueba
fueron resueltos, mostrando que la EDN satisface los límites impuestos para cada caso
de prueba, y además, que el caso con BESS da mejores resultados cuando se toma
en cuenta el valor la incertidumbre en el modelo. Finalmente, el modelo MSWBVPP
fue usado para estudiar el desempeño relativo de los árboles de escenarios FTCA y
DTGFBA, específicamente, analizando el valor de la solución estocástica para los 366
problemas de oferta óptima. Para tal fin, una variación del clásico VSS (denominado
“Forecasted Value of the Stochastic Solution”, FVSS) fue definido y usado junto al
clásico VSS.
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key to success is human thought full of wisdom and
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— Marlyn Cuadrado (1998)
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Introduction

Contents
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1.1. Motivation

Given the share of renewables in the energy industry, decision-making involves a
high level of uncertainty in the data, which is gradually revealed over time. One way
to take into account the uncertainty is through Multistage Stochastic Programming
(MSP). The term MSP refers to an optimal decision executed for subsequent stages
(multistage); and different events may occur during these stages (stochastic) (Pflug and
Pichler, 2014). An MSP can be stated in nested form as (Shapiro et al., 2009)

min
x0∈χ0

f0(x0) + E

[
inf

x1∈χ1(x0,ξ1)
f1(x1, ξ1) + E

[
. . .+ E

[
inf

xS∈χS(xS−1,ξS)
fS(xS, ξS)

]]]
(1.1.1)

where, s = 0, . . . , S is the sequence of the data process; ξs ∈ Rms is viewed as a
stochastic process1; the decision variables are xs ∈ Rns ; and the continuous functions
are fs : Rns × Rms → R. And for s = 1, . . . , S, χs : Rns−1 × Rms ⇒ Rns are measurable

1 A stochastic process is defined as a collection of random variables defined in a common probability
space (Ω,F , P ), where Ω is a sample space, F is a σ-algebra , and P is a probability measure; and
the random variables, indexed by some set S = {0, . . . , S}, all take values in the same mathematical
space Ξ , which must be measurable with respect to some σ-algebra Σ (Lamperti, 1977).

1



2 1.1. Motivation

closed valued multifunctions2. For the first stage, the vector decision ξ0, the function
f0 : Rn0 → R, and the set χ0 ⊂ Rn0 are deterministic.

For the formulation (1.1.1), a solution can hardly be found in practice. The usual
way to solve this problem is reducing it to a solvable one. This aim can be achieved by,
first, approximating the stochastic process (which we will describe as {ξs}s∈S) through
a discrete stochastic process based on scenario trees3 (the main aim is to obtain these
scenario trees) and then, second, by defining a formulation related to this approximation.

On the other hand, recent decades have been a notable increase in the use of
MSP in renewable energy systems optimization, resulting in applications much more
complex and realistic. Also, the progress in numerical methods, software, and computer
technologies are offering the possibility to obtain solutions to these applications in short
periods of time. As a consequence, the appropriate representation of the stochastic
process using scenario trees is crucial for this context. Scenario trees are the basic data
structure for the MSP problems, and they serve as a tool for us to develop and represent
uncertainty in the applications that we develop here. Accordingly, the present study
attempt to answer the following main question:

Is it possible to generate scenario trees which are a good representation of the
uncertainty for renewable energy systems optimization?

In order to answer this question, we propose to develop a methodology which allows
generating scenario trees, beginning with the available data and using it to obtain the
scenario trees. This has two phases: In the first phase, scenarios are generated and are
then used to obtain a first approximation of the stochastic process, which may be either
a initial tree-structure or a fan of scenarios. To do this, the characterization of the
random parameters is first defined. Thereafter, the statistical models are determined. We
used Time Series Factor Analysis (TSFA), which was developed by Gilbert et al. (2005)
to reduce the high dimensionality of the data. We also use the Vector Autoregressive
(VAR) model developed by (Sims, 1980) as a technique to determine the statistical
models for each random parameter. Subsequently, we integrate these two techniques to
calculate the predictions of the next day for each random parameter. Finally, scenarios
are generated based on bootstrapping techniques, and the initial discrete stochastic
process is defined by either a initial tree-structure or a fan of scenarios. This procedure
is similar to that developed in Muñoz et al. (2013). In the second phase, we build
an approximation of the stochastic process by using a scenario tree obtained from
algorithms. The first algorithm is the Forward Tree Construction Algorithm (FTCA)

2 See Appendix A for the basic probability theory.
3 A scenario tree is an approximated discretized representation of the uncertainty in the data (Kaut,
2003).
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developed by Heitsch and Römisch (2009a); and the second algorithm is an adapted
version of Dynamic Tree Generation with Flexible Bushiness Algorithm (DTGFBA)
developed by Pflug and Pichler (2015).

Additionally, the object of this study is given by two MSP models developing in this
thesis: The first model is the Multistage Stochastic Wind Battery Virtual Power Plant
model (MSWBVPP model) optimizes participation in the EM (Day-Ahead Market
(DM), Intra-day Market (IM) and Secondary Reserve Market (RM)) considering the
Imbalance Settlements (IB), of a Virtual Power Plant4 (VPP), which comprises a
Wind Power Plant5 (WPP) and Battery Energy Storage System (BESS). The second
model is the Multistage Stochastic Optimal Operation of Distribution Networks model
(MSOODN model), which seeks to optimize the operation of EDN while considering
BESS, such that it minimizes the total cost of energy purchased from the Distribution
Substation (DSS) and the dispatchable Distributed Generators (DG). Scenario trees
need to be built to represent the uncertainty (which, in these cases, will be represented by
EM prices, Wind Power (WP) generation, power load and Photovoltaic (PV) generation)
for the previous models and for founding optimal solutions. This is the crucial objective
of this thesis. We have run extensive computational experiments in order to obtain
different configurations of the scenario trees based on real data. These experiments
were also used to obtain optimal solutions for each MSP model. Finally, to evaluate the
performance of the scenario trees, we define parameters based on the defined bounds for
the optimal values of the objective functions in our MSP models, which were inspired
by Escudero et al. (2007).

1.2. Objectives

The main objectives of this thesis are as follows:

(i) To develop a literature review of the approaches for generating scenario trees for
renewable energy systems optimization. This objective includes the selection of
some algorithms for its implementation.

(ii) To develop a scenario tree generation methodology based on forecast models,
bootstrapping techniques and the algorithms selected in objective (i) to obtain
scenario trees for renewable energy systems optimization.

4 A VPP is a cluster of dispersed generator units, controllable loads and storage systems, all of which
are aggregated in order to operate as a single power plant (Lombardi et al., 2009).

5 A wind farm is also called a wind park, wind power station or Wind Power Plant (WPP) (Gasch
and Twele, 2011).
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(iii) To develop appropriated MSP models in renewable energy systems optimization.
This objective includes defining the uncertainty and decision process associated
with these models.

(iv) To obtain scenario trees by implementing the algorithms developed in objective
(ii) for the MSP models developed in objective (iii).

(v) To obtain computational results for the MSP models developed in objective (iii)
and to compare the performance of the scenario trees obtained in objective (iv).

1.3. Contributions

There are three main contributions of this thesis.

In Section 3.3, a methodology for generating scenario trees has been designed.
This methodology was developed to generate scenario trees for the MSWBVPP
model, but also, its use has been demonstrated in the scenario trees generation
for the MSOODN model. This fact prove that the methodology can be used to
generate scenario trees for renewable energy systems optimization.

In Section 3.4, parameters for studying the relative performance of previous
scenario trees presented has been developed. These parameters allow a comparison
of the scenario trees and determining which tree (or set of trees) provides the best
stochastic solution of a model. This comparison is given by the best stochastic
solution and the value of the deterministic solution when using the forecasted
values of the random variables.

Two novel MSP models for the renewable energy systems optimization presented
in Sections 4.1.3 and 4.2.3 have been formulated: the first model is the MSWBVPP
model for the optimal participation of a VPP-BESS, considering all the sessions
together with the elements already contemplated DM, RM and IB. And the second
model is a formulation for the optimal operation of a radial EDN composed of
a DSS, SCB, loads, RS and BESS, called the MSOODN model. Different case
studies were solved in order to obtain optimal solutions for each one of these
models.

1.4. Structure

This thesis is organized as follows.
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Chapter 2 provides an extensive literature review of the generation of scenario
trees. It presents literature reviews first of the general framework, then in regard
to the energy industry and, finally, a specific literature review relating to the
generation of scenario trees for each model developed in this thesis.

Chapter 3 introduces the concepts and theoretical foundations needed to contex-
tualize the thesis framework. Firstly, this chapter gives a formal definition for the
scenario trees and some associated concepts. Also, it presents MSP formulations in
the context of scenario trees. Then it describes the methodology used to generate
them, namely by showing the theoretical foundations for the procedure that
generates a set of scenarios that are then used for generating scenarios trees,
followed by a presentation of the algorithms implemented and the theoretical
foundations for generating the trees. Finally, the chapter presents the proposed
parameters for evaluating the performance of the trees obtained.

Chapter 4 presents the scenario tree structure for the models that have been
developed in this work. For each model, this chapter introduces the problem
addressed. After that, the chapter presents a study of the uncertainty that governs
the problem, the decision process defined for this problem, and the scenario tree
structure. Finally, the chapter ends by presenting an MSP model for each problem
addressed in this thesis.

Chapter 5 reports the computational results from generating scenario trees based
on real data from the Iberian Electricity Market and Naturgy. The trees generated
are used as input data for resolving the MSWBVPP model developed in Chapter 4
and which thus obtained the optimal participation of a VPP in an EM. These trees
are used as input in the MSWBVPP model. Then, based on these model result,
the quality of these scenario trees are evaluated by the parameters developed in
this thesis.

Chapter 6 reports the computational results from generating scenario trees based
on real data from an actual photovoltaic power plant and distribution plant in
Brazil. The trees generated are used as input data to resolve the MSOODN model
developed in Chapter 4. These results are based on the work developed during my
pre-doctoral stay in the Faculty of Electrical and Computer Engineering (FEEC)
at the University of Campinas (UNICAMP) in the state of Sao Paulo.

Chapter 7 presents the conclusions and discuses future directions for this work.

The appendices provides complementary information for a better understanding
of this thesis.



6



Research is to see what everybody else has seen,
and to think what nobody else has thought.

— Albert Szent-Gyorgyi

2
Literature Review

Contents

2.1 Scenario Trees for MSP Models . . . . . . . . . . . . . . . . . 7
2.2 Scenario Trees for Renewable Energy Systems Optimization 9
2.3 Scenario Trees for EM Optimization with Renewables . . . 12
2.4 Scenario Trees for EDN Optimization with Renewables . . 13

This literature review is divided into four sections. Section 2.1 reviews the approaches
to generating scenario trees that are commonly used in the existing literature, specifically
in multistage optimization. Section 2.2 takes a general point of view to compile
the different approaches to generating scenario trees that the literature proposes for
representing uncertainty in Multistage Stochastic Programming (MSP) models used in
the field of renewable energy system optimization, specifically in Electricity Markets
(EM) and Electrical Distribution Networks (EDN). Sections 2.3 and 2.4, review the
most specific literature on generating scenario trees in the study areas addressed by
this thesis: EM (Section 2.3) and EDN (Section 2.4).

2.1. Scenario Trees for MSP Models

In the context of MSP models, scenarios have to satisfy certain constraints known as
non-anticipativity conditions. Such constraints can lead to the tree-structured scenarios
that are commonly known as scenario trees. In accordance with the definition given
by Pflug and Pichler (2014), scenario trees are circle-free directed graphs with a single
root, for which the distance of all leaves are at the same level; to each node, a k-vector
of values is assigned and to the leaf nodes probabilities are assigned such that the leaf
nodes can be seen as a discrete probability space. To our knowledge, the term “scenario

7
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tree” in the context of MSP was first used in Kall et al. (1976) to represent a random
vector (uncertainty) through a set of realizations and its corresponding probabilities by
generating a finite discrete distribution for a Multistage Stochastic Linear Programming
(MSLP) model. The use of the scenario trees continues to be developed by different
authors, both in theory and in applications. Among the theoretical references, we can
find: Dupačová et al. (2000); Heitsch and Römisch (2003); Shapiro et al. (2009); Pflug
and Pichler (2014). The most cited references for most cited for developed applications
are: Escudero et al. (1993); Pflug (2001); Growe-Kuska et al. (2003); Pallottino et al.
(2005); Latorre et al. (2007); Xu et al. (2015). Nowadays, generating scenario trees for
MSP problems constitutes a great theoretical and computational challenge in this area
of research.

Currently, several approaches are used to generate scenario trees for the representa-
tion of uncertainty in MSP models. They are based on different principles: (i) bound-
based construction (Frauendorfer, 1996; Kuhn, 2006); (ii) conditional random sampling
(Dempster, 2006; Kouwenberg, 2001; Shapiro et al., 2009) and Quasi-Monte Carlo
sampling (Pennanen, 2009); (iii) optimization methods based on the moment-matching
principle (Høyland and Wallace, 2001; Gülpınar et al., 2004); and (iv) probability
metric-based approximations (Heitsch and Römisch, 2011; Pflug and Pichler, 2015).
More details of some of the recent works for each principle are shown. Approach (i)
attempts to construct two discrete probability measures such that the optimal values of
the associated approximate problems represent, respectively, upper and lower bounds
for the optimal value of the original stochastic programs. In this context, Frauendorfer
(1996) developed a work related to the approximation of convex MSP in which the
future uncertainty was modeled as a probability space with a known joint probability
distribution; and, from that, sequences of barycentric scenario trees were derived for
minorizing and majoring the given problem. Later, Kuhn (2006) investigated this
approach in a more general setting for convex MSP. As the name suggests regarding the
conditional random sampling approach in (ii), it utilizes conditional sampling schemes
and leads to a large number of (pseudo-) random number generators, called conditional
distributions. Dempster (2006) took a comprehensive approach to Expected Value
of Perfect Information (EVPI) based sequential importance sampling algorithms for
dynamic (multistage) stochastic programming problems. Kouwenberg (2001) developed
and tested a scenario generation method based on random sampling, an adjusted
random sampling approach and the tree-fitting method. Shapiro (2003) presented the
Sample Average Approximation (SAA) for MSP problems. This method approximates
an MSP model through an explicit function, which is defined as an SAA problem in
which estimates of the values are obtained by conditional sampling. Later, Pennanen
(2009) developed a general procedure for generating scenario trees by approximating
each random variable using Quasi-Monte Carlo sampling. Regarding approach (iii),
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this is based on the resolution of programming models that generate a limit number of
discrete solutions for satisfying certain statistical properties. The idea is to minimize any
measurement that is based on the statistical properties of the results and those specified
a priori. Høyland and Wallace (2001) developed an algorithm that produces a consistent
and discrete joint distribution with specified values for the first four marginal moments.
Their algorithm also produces the correlations for the stochastic programming model.
The distribution is constructed by decomposing the multivariate problems into univariate
ones using an iterative procedure that combines simulation, Cholesky decomposition, and
various transformations. This procedure provides correct correlation without changing
the marginal moments. And Gülpınar et al. (2004) developed an optimization method
that generates a number of discrete outcomes for satisfying specified statistical properties.
The outcomes are obtained by resolving either a sequence of nonlinear optimization
models (one at each node of the scenario tree) or one large optimization problem. In
this hybrid approach, the optimization problem is reduced in size by the values of
the price variables obtained through simulation. Finally, approach (iv) is based on
probability distances that are relevant to the stability of MSP. Heitsch and Römisch
(2011) broadened the theoretical foundations of generating scenario trees through their
study of stability analysis. Numerical experiences were conducted in order to represent
the uncertainty of MSP problems by constructing different scenario trees configurations
based on demand and price data. And Pflug and Pichler (2015) developed new MPS
algorithms for the dynamic generation of scenario trees. The different methods described
are based on random vectors, which are drawn from past conditional distributions, and
on sample trajectories. The tree structure is not determined beforehand but is instead
dynamically adapted in order to meet a distance criterion, which measures the quality
of the approximation.

Based on the literature review previously presented, the approach that we are going
to select for generating scenario trees in MSP models will be defined by the approach
most used in renewable energy systems optimization. The following section shows the
literature review into this sense.

2.2. Scenario Trees for Renewable Energy Systems
Optimization

Nowadays, there are lots of problems that involve decisions under conditions of
uncertainty. In our particular case of a given MSP formulation, our main objective is to
represent this uncertainty with scenario trees and use then to obtain optimal results
from the MSP models. Table 2.2.1 shows the last two decades’ most relevant works
about generating scenario trees for MSP in the energy industry. First, the references
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are shown (first column). In the second column, the applications for each reference
are given. The third column shows the uncertainty, which is equivalent to the random
parameter, namely: demand; prices (day-ahead, intra-day, balancing, adjustment, real-
time); and renewable supply (wind speed, wind power). The fourth column presents
the information with respect to the stages and number of scenarios for the scenario
trees of each application. The maximum number of stages and scenarios was 28 and
2500, respectively. Finally, the fifth column shows the approach developed and/or used
in each one of the references. The selection of the approach that we are going to use
for the generation of scenario trees is defined through the approach most utilized in
this literature review. Table 2.2.1 shows that the most used approach is (iv), which we
described in Section 2.1. This approach was used in the following works: (a) Plazas et al.
(2005) modeled the uncertainty with an asymmetric scenario tree (Gröwe-Kuska et al.,
2002) then used a technique for reducing the number of scenarios (Heitsch and Römisch,
2003). (b) Kumbartzky et al. (2017) represented the information structure of MSP models
using a scenario tree. They performed a sampling strategy for generating scenarios and
developed another strategy for reducing these scenarios similarly to Boomsma et al.
(2014). For the reduction of scenarios, they applied the forward selection algorithm
developed by Heitsch and Römisch (2009a, 2011). (c) Heredia et al. (2018) presented an
MSP model for optimizing the participation of a Virtual Power Plant (VPP) (comprising
a Wind Power Plant (WPP) and a Battery Energy Storage System (BESS)) in the
EM (Day-Ahead Market (DM), first Intra-day Market session (IM1) and Secondary
Reserve Market (RM)) and the imbalance settlement. The uncertainty in this problem
was represented by a scenario tree with 28 stages and 83 scenarios consisting of electric
energy prices and wind power generation. The Forward Tree Construction Algorithm
(FTCA) developed in Heitsch and Römisch (2009a) was used to construct the scenario
tree.

Based on this review, one of the algorithms that we are going to use to construct
the scenario trees in this thesis is the FTCA developed by Heitsch and Römisch (2009a).
This algorithm is based on techniques of recursive scenario reduction and bundling steps,
and it was developed chronologically in Dupačová et al. (2003); Heitsch and Römisch
(2003); Heitsch and Romisch (2005); Heitsch and Römisch (2009a,b, 2010, 2011). For
our purposes, we are going to use the FTCA and Forward Selection Algorithm (FSA)
presented in Heitsch and Römisch (2009a). Another recently developed and important
algorithm we will use for generating scenario trees is the Dynamic Tree Generation
with Flexible Bushiness Algorithm (DTGFBA) for MSP, developed by Pflug and
Pichler (2014, 2015). Currently, This algorithm has been used in applications for energy
production (Pflug and Pichler, 2014). In this thesis, we are going to develop a version
of DTGFBA for generating scenario trees for renewable energy systems optimization.
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Reference Application Uncertainty Stages and Scena-
rios

Approaches

Singh and Mason (2004) Capacity-expansion
planning of
electricity
distribution
networks

Demand 2–6 stages and 2–32
scenarios

Binary scenario tree
with prefixed struc-
ture

Plazas et al. (2005) Multimarket
optimal bidding for
a power producer

Day-ahead spot
prices, automatic
generation control
and balancing
market prices

3 stages and 2500
scenarios

A symmetric scena-
rio tree and scena-
rio reduction techni-
que

Triki et al. (2005) Capacity allocation
in multi-auction
electricity markets

Day-ahead spot pri-
ces, adjustment and
balancing clearing
prices

3 stages and 32–192
scenarios

Their own scenario
tree

Musmanno et al. (2009) Operation of a
producer in a multi-
auction electricity
market

Clearing prices 4 stages and 300 sce-
narios

Means of a scenario
tree

Morales et al. (2010) Offering strategy
for a wind power
producer in an
electricity market

Wind speed
and day-ahead,
adjustment, and
balancing market
prices

3 stages and 10000
scenarios

A symmetric scena-
rio tree specifically
built as a defined
procedure

Lorca and Prina (2014) Medium term po-
wer portfolio opti-
mization for a po-
wer producer in a
competitive electri-
city market

Market prices and
customer demand

6 stages and 128 sce-
narios

Method based on
moment-matching
principle

Boomsma et al. (2014) Bidding in sequen-
tial electricity mar-
kets

Spot and balancing
prices

26 stages and 500
scenarios

Alternately
sampling (with
stage-wise scenario
generation)
and reducing
(with the k-
medoids clustering
algorithm)
scenarios

Del Granado et al. (2016) Valuation of
distributed
electricity storage

Wind power 5 stages and 81 sce-
narios

Univariate stochas-
tic process

Kumbartzky et al. (2017) Bidding in a pay-as-
bid market

Spot price 3 stages and 5nd−1,
n = 2,1, d = 2, ..., 5
scenarios

Alternately
sampling and
reducing (with
the forward
selection algorithm)
scenarios

Fatouros et al. (2017) Optimal operation
of Distributed
Energy Resource
(DER) aggregators

Wind power 6 stages and 1–243
scenarios

Algorithms for
reducing scenarios
and building
scenario trees,
developed by
Growe-Kuska et al.
(2003)

Laur et al. (2018) The operational
issues faced
by emerging
distribution system
operators

Day-ahead, intra-
day and real-time
prices, demand and
generation

3 stages and 81 sce-
narios

Scenario tree with
prefixed structure

Bhattacharya et al. (2018) Managing energy
storage in
microgrids

Demand, renewable
supply and prices

25 stages and
50–250 scenarios

Sampling procedure
for mutually inde-
pendent random va-
riables

Heredia et al. (2018) Participation in the
EM of WPP with
BESS

Markets prices and
wind power

28 stages and 83 sce-
narios

The FTCA

Hafiz et al. (2019) Energy manage-
ment and optimal
storage sizing for a
shared community

Solar generation
and electricity
demand

1441 stages and 100
scenarios

A similar procedure
to that described in
Infanger and Mor-
ton (1996)

Shang et al. (2020) Optimizing the
maintenance
schedules in
active Distribution
Networks

Wind speed and so-
lar irradiation

3 stages and 6 sce-
narios

Scenario tree with
prefixed structure

Cuadro 2.2.1: Scenario trees for renewable energy systems optimization.
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We will present a review of the latest research about scenario tree generation on
each study area of this thesis. Two study areas will be the focus of this study. The first
area is the EM, specifically, the optimization of EM operation with the presence of
renewables. The second area is the EDN, about the optimal operation of EDN with
renewables. More details are provided in the following sections.

2.3. Scenario Trees for EM Optimization with Re-
newables

As mentioned previously, one of the objectives of this thesis is to use scenario trees
to represent uncertainty in MSP models that are applied to optimal participation of
an EM producer. Based on the literature review, the scenario trees have been used in
several works in recent years. Plazas et al. (2005) considered a profit-maximizing thermal
producer that participates in three spot markets (day-ahead, Automatic Generation
Control (AGC) and balancing markets). In this case, the uncertainty was provided
by prices in the day-ahead, AGC, and balancing market. For the characterization of
the scenarios, seasonal Autoregressive Integrated Moving Average (ARIMA) models
were employed. For the approximation of the stochastic process, a symmetric scenario
tree was used. The scenario reduction technique was applied to the stages and then
to the resulting tree. For this case, the scenario tree had 3 stages and 2500 scenarios.
Musmanno et al. (2009) presented an MSP model of a decision problem for a Generation
Company (GENCO) operating in a multi-auction electricity market. The uncertainty
was modeled by means of a scenario tree with 4 stages (including the root), while the
random variables that were considered are prices in: (a) the day-ahead market, (b) the
Adjustment Market (AM), and (c) the Ancillary Services Markets (ASM). The scenario
tree had 4 stages and 300 scenarios. Boomsma et al. (2014) focused on bidding in the
sequential EM (DM and the hour-ahead balancing market) of a Nordic power producer.
In both markets, clearing prices and dispatched volumes were unknown, and the bidding
problem was formulated as an MSP. Scenario fans1 were given for each market and
were reduced using a k-medoids clustering algorithm. For this case, the scenario tree
had 26 stages and 500 scenarios. These works justify the use of the scenario trees in
MSP, although the producers considered do not have to deal with additional conditions
such as the “non-dispatchability” and uncertainty that govern the availability of wind
and/or solar power.

1 A tree for which every internal node except possibly the root has only one successor is called a fan
(Pflug and Pichler, 2016).
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An example of a producer that considers these conditions is shown in Morales et al.
(2010). They presented the best bid strategy of a Wind Power (WP) producer in an
EM. This problem was formulated as an MSP model in which each stage was a market.
The uncertainty was governed by the wind availability and the hourly prices of: a DM,
the adjustment markets and balancing energy. The characterization of the uncertainty
was studied by ARIMA models, and, later a symmetric scenario tree was obtained
through a defined procedure. Finally, a fast-forward reduction algorithm (as described
in Heitsch and Römisch (2003)) was used to reduce the scenario tree. For that case, the
scenario tree had 3 stages and 106 scenarios, which were reduced to 10000 scenarios.
Related to Imbalance Settlements (IB), (Heredia et al., 2015) developed an MSP model
for the optimal participation of a VPP in three different electricity markets: DM, first
IM session and RM. The following factors were taken into account: the producer was a
VPP composed of WP and BESS; the profitability of private investment in storage units
had been analyzed and demonstrated in Akhavan-Hejazi and Mohsenian-Rad (2013);
the economic feasibility of investing in BESS could be guaranteed only if the VPP
participated in some ancillary services (Heredia et al., 2015); and regulation services
were supported by the technical feasibility of a VPP. The uncertainty was base on the
historical data of electricity prices, wind power, and imbalance settlement prices. The
FTCA was used to obtain a scenario tree with 28 stages and 100 scenarios, which were
reduced to 83 scenarios.

The objective of this thesis, in a more general sense, is to formulate an MSP model,
to optimize VPP participation in an EM considering all intra-day markets. In order
to mitigate the uncertainty in the model, we will generate scenario trees through a
procedure based on forecasting and bootstrapping techniques. We will also use set of
scenarios and scenario tree construction algorithms. Additionally, we will develop a
process for evaluating of the quality of scenario trees.

2.4. Scenario Trees for EDN Optimization with Re-
newables

The Optimal Operation of Distribution Networks (OODN) problem consists of
minimizing the total purchase cost of energy from the Distribution Substation (DSS)
and the dispatchable Distributed Generators (DG) over a predetermined period of time,
and it is subject to a set of decision variables (Ali, 2013). In this case, the uncertainty
occurs in the prices of energy from the dispatchable DG, the prices of energy from the
DSS, and in the active/reactive power load. Additionally, when the Renewable Sources
(RS) are considered, the energy storage devices (ESD) are increasingly considered
to be a means for mitigating challenges introduced by the integration of RS in the
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Distribution Network (DN). In this case, new uncertainty enters into the problem and
this is associated with the active power generation of non-dispatchable RS. Considering
these uncertainties in an optimization model increases the complexity of the problem,
which leads to formulating models that are much more difficult to solve and to the
need for sophisticated techniques that approximate the stochastic process governing
the problem. This thesis is focused on this last point, which is a topic that has taken
on more importance in the past decade. To describe these uncertainties and their
influence on the OODN, an MSP model can be formulated together with a scenario
tree to represent the uncertainty. To date, no study has used an MSP model based
on scenario trees for representing uncertainty in the OODN. However, some slightly
related works have been published recently. Fatouros et al. (2017) resolved a multi-stage
stochastic problem with recourse for the operation of DER aggregators. They propose
a novel Stochastic Dual Dynamic Programming (SDDP) approach that captures the
temporal dependency of uncertain wind power output, specifically by the integration of
an n-order Autoregressive (AR) model. Although the solution strategy does not use
scenario trees, this solution was compared with the results obtained from 6 MSP models
that represent the uncertainty with different scenario trees that were obtained through
a scenario reduction process based on Kantorovich distance Growe-Kuska et al. (2003).
The defined scenario trees had 6 stages and from 1 to 243 scenarios. Another work
by Bhattacharya et al. (2018) presents an MSP model for managing energy storage in
microgrids. This work presents a tree-like network of interconnected buses and power
lines emanating from a reference bus (the feeder), which is connected to the main
grid. The feeder is often connected to a distribution substation and delivers power
procured from the main grid to other microgrid buses. Some or all of those buses have
access to distributed storage systems. The operators use both distributed generation
(e.g., wind and/or solar), and electricity procured from the main grid to satisfy the
net demand and power flow constraints in each stage of the planning horizon. The
uncertainty pertains to demand, renewable supply and prices, all of which are modeled
as random variables represented in a finite scenario tree. The samples were built from a
multivariate truncated normal distribution in which each marginal distribution is also
truncated normal. A 25-stage scenario tree was generated for this work. Hafiz et al.
(2019) proposed an MSP model for new energy management and storage sizing in the
framework of a community composed of multiple houses and distributed solar generation.
In this case, the uncertainty represented by the solar Photovoltaic (PV) generation
and electricity demand was sampled from probability distributions, which were defined
using information based on existent data. It then constructed a sampled scenario tree
with different scenarios similar to the procedure described in Infanger and Morton
(1996). The test system considered a tree with 1441 stages and 100 scenarios. Finally,
Shang et al. (2020) formulated a Stochastic Mixed Integer Nonlinear Programming
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model (SMINP) for optimizing the maintenance schedules in active DN. In this case,
the uncertainties of DER and the post-outage operation strategies of switching devices
are incorporated into the model. In the tree search procedure, an SAA technique is
developed for considering uncertainties when estimating the multistage maintenance
costs. The scenario tree defined in this work assumed 6 scenarios over 2 stages.

Based on this literature review, we will formulate a novel MSP model that considers
energy storage devices for the OODN, where an EDN has Voltage Regulators (VR),
Switchable Capacitor Bank (CB), and dispatchable DG. Furthermore, our methodology
for resolving the MSP model is innovative because the strategy first defines the scenario
trees through construction and reduction techniques, then resolves the optimization
model in which the uncertainty serves as input to a scenario tree input. In addition, we
are able to obtain scenario trees that better represent the stochastic process governing
the problem, due to the possibility of obtaining scenario trees with high dimensionality.
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True optimization is the revolutionary contribution
of modern research to decision processes.

— George Dantzig

3
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Multistage Stochastic Programming (MSP) is used to formulate and solve decision
problems with uncertain data modeled as a stochastic process. Defining a good
representation of the stochastic process is a crucially relevant aspect and the focus
of this thesis. The starting point is the fact that historical data is accessible and
allows generating scenarios using statistical models, one-step-ahead forecasting and
bootstrapping, all of which represent the stochastic process in scenario trees. The final
step in this procedure is to evaluate the quality of the obtained scenario trees by defining
quality parameters. This chapter is organized as follows. Section 3.1 and Section 3.2,
respectively, present a formal definition of scenario trees and the MSP formulations.
Section 3.3 presents the scenario tree generation methodology developed in this thesis.
Finally, Section 3.4 describes the theoretical development underlying how we evaluate
the performance of the obtained scenario trees.

3.1. Formal Definition of Scenario Trees

When the stochastic process has infinite support, the associated MSP model is
an infinite-dimensional optimization problem and the solution can hardly be found in
practice. Nevertheless, if the stochastic process is approached by a discrete process with
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finite support, then the MSP model can be equivalent to a deterministic mathematical
model that can be solved with efficient solvers. A discrete stochastic process can be
represented by the scenario tree, which is a way to model stochastic processes as a
discretized probability distribution. Mathematically speaking, a scenario tree is a circle-
free directed graph with a single root, for which the distance of all leaves (i.e., nodes
with no outgoing edges) are at the same level; a vector of values is assigned to each
node; and probabilities are assigned to the leaf nodes such that the leaf nodes can be
seen as a discrete probability space (Pflug and Pichler, 2014).
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Figura 3.1.1: Illustration of a scenario tree.

However, one may always take a single representative of a class and assign labels or
numbers to the nodes. One way consists of defining a node set N = {1, . . . , N} (where
1 is the root), and then to each node n ∈ N (except the root) establish a predecessor
pred(n) and a stage s, which is its distance from the root (this is defined as the stage
of the node n ∈ N ). Let S = {0, . . . , S} be the set of stages; then we can dissect the
set N at each stage Ns, such that (cf. Figure 3.1.1):

N0 = 1 is the root node,

NS are the leaves, and

N1,N2, . . . ,NS−1 are the inner nodes (the complement set of the leaves).

For all nodes n ∈ Ns, pred(n) ∈ Ns−1 such that s ∈ S. For example, for n = 5 ∈ N2

then pred(5) = 2 ∈ N1 (cf. Figure 3.1.1). While pred(n) represents the immediate
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predecessor, one may also define the predecessor of a node at each earlier stage. For
n ∈ Ns and s′ < s, we have

preds′ (n) = m,

where m ∈ Ns, such that m = pred(pred(. . . pred(n) . . .)), and this predecessor mapping
satisfies the relationship preds′(preds(·)) = preds(·) for s′ < s, and pred0(·) = 1 is
identical to the root. We can also denote the direct predecessor of a node n by −n, and
the set of all direct successors by n+. If a node n is any successor (direct or not) of
node m, we write m ≺ n (or n ≺ m). Thus:

m ≺ n is equivalent to: there exist a s such that m = preds(n).

Alternatively, one may begin with a probability space (Ω,F , P ) in which mappings
are defined in the following way:

pred : Ω→ ΩS−1,

pred : ΩS−1 → ΩS−2,

...
pred : Ω1 → Ω0.

It is required that all spaces Ω = ΩS,ΩS−1, . . . ,Ω0 are distinct and that the mappings
pred are all different, since they are defined in different spaces, where Ω0 is required as
a singleton. Let the compositions preds be defined as

preds = pred ◦ . . . ◦ pred : Ω→ ΩS−s. (3.1.1)

Let Fs be the σ−algebra generated by preds. The sequence of σ−algebra Fs is a
filtration F = (F0, . . . ,FS), with F0 = {∅,Ω} being the trivial σ−algebra, since Ω0 is a
singleton and FS is the power set of Ω. If Ω is finite, it may be identified by the leaf set
Ns of the tree, and the sets Ωt may be identified with the node sets Ns at the respective
stage s.

Definition 3.1.1 (Tree Process). A tree process is a stochastic process (vs), s ∈ S with
values in some state space Ns, s ∈ S, where the Ns are pairwise disjoint and N0 is a
singleton if the generated σ−algebras ω(vs) for all s ∈ S satisfy

σ(vs) = σ(v0, . . . , vs). (3.1.2)
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The tree process induces a probability distribution P on Ns, and the image space NS
may be introduced as the basic probability space. Then, we do not lose the generality
Ω = NS. The generated sigma algebras Fs := σ(vs) form a filtration F = (F0, . . . ,FS),
which is evident from Equation (3.1.2).

Another equivalent description that is important to mention is the leaf-path
correspondence. This means that the leaves of a tree uniquely determine the paths,
which lead from the root to the leaf nodes. As a tree represents a probability space
with a filtration structure F , and the elements of Ω are renamed as 1, . . . , |Ω|, then the
following correspondence can be used.
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Figura 3.1.2: Illustration of a scenario tree in the leaf-path correspondence form.

In addition, the process {ξs}s∈S takes the values ξω for all ω with probability pω;
thus, they induce a distribution on the filtered probability space Rm0 ×Rm1 × . . .×RmS

with filtration (F0, . . . ,FS). This stochastic process is represented by{{ξsω}s∈S}ω∈Ω,
where a scenario is an outcome of the random process. The induced filtration can be
represented in a tree form, the so-called scenario tree. The corresponding scenario values
are (ξ0ω, . . . , ξsω) for s ∈ S and ω ∈ Ω. Assuming a deterministic first stage (only in
root node), then ξω = (ξ0, ξ1ω, . . . , ξSω), ω ∈ Ω. A scenario defines the edges in the tree,
implying that (ξ0ω, . . . , ξsω, ξs+1ω) is an ancestor of node (ξ0ω, . . . , ξsω), s = 1, . . . , S − 1.
The leaf nodes of the scenario tree correspond to the scenarios themselves (having
assumed that FS = F). An example of a scenario tree is displayed in Figure 3.1.2. It
has 18 nodes and 8 leaves, with the nodes being enumerated from 1 to 18. This tree has
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4 stages and represents a probability space Ω with a filtration F . The elements of Ω are
the leaves (Ω = N3), which can be renamed 1, . . . , 8, that is, Ω = {1, 2, 3, 4, 5, 6, 7, 8}.

The leaves determine the entire root path; therefore, it makes sense to use the
following correspondence:

ω Path

1 corresponds to the path (1,2,5,11)
2 corresponds to the path (1,2,6,12)
3 corresponds to the path (1,3,7,13)
4 corresponds to the path (1,3,7,14)
5 corresponds to the path (1,3,8,15)
6 corresponds to the path (1,4,9,16)
7 corresponds to the path (1,4,9,17)
8 corresponds to the path (1,4,10,18)

The filtration F = (F0, . . . ,FS) consists of the σ−algebra sequence generated by
the sets:

F0 = σ({1, . . . , 8}) = {∅,Ω},
F1 = σ({1, 2}, {3, 4, 5}, {6, 7, 8}),
F2 = σ({1}, {2}, {3, 4}, {5}, {6, 7}, {8}),
F3 = σ({1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}).

As the stochastic process {ξω}ω∈Ω is adapted to the filtration F , the scenarios and
probabilities of the tree become:

ω Scenario Probability

1 ξ1 = (ξ0, ξ11, ξ21, ξ31) p1

2 ξ2 = (ξ0, ξ12, ξ22, ξ32) p2

3 ξ3 = (ξ0, ξ13, ξ23, ξ33) p3

4 ξ4 = (ξ0, ξ14, ξ24, ξ34) p4

5 ξ5 = (ξ0, ξ15, ξ25, ξ35) p5

6 ξ6 = (ξ0, ξ16, ξ26, ξ36) p6

7 ξ7 = (ξ0, ξ17, ξ27, ξ37) p7

8 ξ8 = (ξ0, ξ18, ξ28, ξ38) p8

The scenario trees are a distinctive representation of the random process in MSP.
The next section presents the MSP formulations and their corresponding relationships
with the scenario trees.
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3.2. MSP Formulations

The concepts and formulations for the MSP shown in this section are inspired by
Shapiro et al. (2009); Defourny et al. (2013); Pflug and Pichler (2014). The process
begins by defining the following notation, where the random process starts with a
random variable ξ0 with a single, trivial value.

s stage index, running from 0 to S.

S = {0, . . . , S}: the set of stages of uncertainty and any decisions should be
adapted to this process.

ξs ∈ Rms : the sequence of either the data vector or random variables for stage
s ∈ S.

ξ[s] = (ξ0, ξ1, . . . , ξs): the history of the stochastic process up to stage s ∈ S.

xs ∈ Rns : the values of the decision vectors, chosen at stage s ∈ S, may depend
on the information (data) ξ[s] available up to stage s ∈ S.

fs(·): the cost function at stage s ∈ S, depending on xs and ξ[s].

As the stochastic process {ξs}s∈S has been adapted to the filtration F , the stochastic
decision process {xs}s∈S (with xs : Ω → Rns) is nonanticipative with respect to the
stochastic process; that is, decisions xs can incorporate only information available before
or at stage s ∈ S, but not as a result of future observations. The condition expressed
above shows a relationship between decisions and observations. The initial decision x0

is followed by the observation of the random variable ξ1; then, immediately afterward, a
subsequent decision x1 is followed by the observation of ξ2 and so on up to the terminal
stage S. This defines the following decision process:

ξ0 → x0 → ξ1 → x1 → . . .→ xS−1 → ξS → xS,

Let the sequence of the random data process be ξs ∈ Rms , s ∈ S, the decision
variables xs ∈ Rns , s ∈ S, the continuous functions fs : Rns × Rms → R, s ∈ S and
measurable closed valued multifunctions χs : Rns−1 × Rms ⇒ Rns , s ∈ S, such that
it fulfills first-stage ξ0 while the function f0 : Rn0 → R and the set χ0 ⊂ Rn0 are
deterministic. Thus, the MSP problem can be written in the nested formulation:

min
x0∈χ0

f0(x0) + E

[
inf

x1∈χ1(x0,ξ1)
f1(x1, ξ1) + E

[
. . .+ E

[
inf

xS∈χS(xS−1,ξS)
fS(xS, ξS)

]]]
. (3.2.1)

Another approach is to consider decision variables as functions of the data process ξ[s]

up to time s ∈ S, that is: xs = xs(ξ[s]), s ∈ S. Such a sequence of (measurable) mapping
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xs : Rm1×. . .×Rms → Rns , s ∈ S is called an implementable policy formulation (recalling
that ξ0 is deterministic). The MSP model in (3.2.1) can be reformulated considering
decision variables as xs = x(ξ[s]), s ∈ S in the scenario tree form:

minimize
x0,x1,...,xS

E
[
f0(x0) + f1(x1(ξ[1]), ξ1) + . . .+ fS(xS

(
ξ[S]), ξS

)]
subject to x1 ∈ χ1, xs(ξ[s]) ∈ χs(xs−1(ξ[s−1]), ξs), ∀ s = 1, . . . , S, (3.2.2)

where x1, . . . ,xn are functions of the data process and, hence, are elements of appropriate
functional spaces, while x0 ∈ Rn0 is a deterministic vector. If the multistage stochastic
process {ξs}s∈S is finite, the formulation in Equation (3.2.2) leads to a finite, dimensional
optimization problem.

As long as a scenario tree is given, each leaf node ω is determined by its path
from the root node. Let ξω = (ξ0, ξ1ω, . . . , ξSω) be the scenario in ω ∈ Ω, with an
associated probability pω, such that ∑ω∈Ω pω = 1. A mathematical program can be
formulated wherein, for each scenario ω ∈ Ω, the optimization variables x0, x1ω, . . . , xSω

are associated for each node on the path from the root to the leaf ω. By aggregating the
nonanticipativity condition to the optimization problem, a deterministic formulation of
the MSP problem is established as:

minimize
x0,x1ω ,x2ω ,...,xSω

∑
ω∈Ω

pω [f0(x0, ξ0) + f1(x1ω, ξ1ω) + f2(x2ω, ξ2ω) + . . .+ fS(xSω, ξSω)]

subject to x0 ∈ χ0, xsω ∈ χs(xsω, ξsω), ∀ s = 1, . . . , S, ∀ω ∈ Ω, (3.2.3)
xsω = xsl such that ξ[s]ω = ξ[s]l, ∀s ∈ S, ∀ω, l ∈ Ω,

where ξ[s]ω is the history of random vectors up to stage s ∈ S for scenario ω ∈ Ω. The
final constraints are the nonanticipativity constraints.

The MSP model is then formalized as a mathematical programming problem (3.2.3).
The formulation is based on a particular representation of the uncertainty characterized
by the stochastic process {{ξsω}s∈S}ω∈Ω in relation to the decision stages, specifically
by means of the scenario trees described in Section 3.3.2. This formulation is used to
model the problems presented in this thesis.

3.3. Scenario Tree Generation Methodology

3.3.1. Phase I: Scenario Generation Procedure

In order to generate scenarios ξsω, with s ∈ S, ω ∈ Ω, we have developed a four-step
procedure based on Time Series Factor Analysis (TSFA), Vector Autoregressive (VAR)
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models and bootstrapping techniques. This is a similar procedure as the one employed
in Muñoz et al. (2013), with the difference being that the VAR models are used to
predict the next day for each random parameter of the MSP models. The step procedure
is as follows. In the first step, the random parameters of the model are characterized as
a multivariate time series (Section 3.3.1.1). In the second step, the statistical models for
the given time series are determined (Section 3.3.1.2). In the third step, the forecasting
models are obtained (Section 3.3.1.3). Finally, in the fourth step, the scenarios are
obtained (Section 3.3.1.4). A detailed description of these steps is provided below in
each of the following sections.

3.3.1.1. First Step: Time Series Characterization

The stochastic data present in the MSP models of this study are given by the random
variables that involve the Electricity Markets (EM) prices, Wind Power (WP) generation,
electricity power loads and Photovoltaic (PV) generation. The available historical
data from these random variables are time series that are cleared simultaneously
that day or one hour before. These time series are commonly involved with multiple
interrelated random variables. The time series with these conditions are studied through
a multivariate time series analysis. In this part, the basic characteristics of the time
series are introduced, and we provide the definition and concepts of Multivariate Time
Series (MTS), which are necessary for this study and are based on Peña (2005); Tsay
(2013). Finally, we show the characterization of the random variables used in this thesis.

Stationary or non-stationary time series: when a time series oscillates around
a constant level, the series is considered stable or stationary; otherwise, it is
nonstationary.

Trend: when the level of a nonstationary time series increases or decreases with
time, it is said that it presents a certain trend.

Seasonal: if overlapping behavior is presented and it repeats over time, then the
time series is seasonal.

Outliers: these determine the presence of atypical data that may affect the
interpretation of the results.

Variance: this determines whether or not if it is constant over time, or if significant
changes exist in the level of variance.

Definition 3.3.1 (MTS). A t-dimensional time series ξ′d = (ξd1, . . . , ξdt, . . . , ξdM) is a
random vector consisting of t random variables. As such, an underlying probability
space exists in which the random variables are defined. Let 1 ≤ t ≤M be the number of
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variables (or characteristics) and 1 ≤ d ≤ N be the number of periods. The N number
of observations can be collected in a matrix ξ of order N ×M :

ξ =



ξ′1

ξ′2
...
ξ′d
...
ξ′N


=



ξ11 ξ12 . . . ξ1t . . . ξ1M

ξ21 ξ22 . . . ξ2t . . . ξ2M
... ... . . . ... . . . ...
ξd1 ξd2

... ξdt
... ξdM

... ... . . . ... . . . ...
ξN1 ξN2 . . . ξNt . . . ξNM


, (3.3.1)

where d is the number of observations and t is the number of variables (or characteristics).

Definition 3.3.2 (Weakly and strictly stationary MTS). An MTS is said to be weakly
stationary if:

i) the expectation is a constant vector (E[ξd] = µ),

ii) the autocovariance function depends only on τ :

Cov[ξd, ξd+τ ] = γ(τ).

If τ = 0, this implies that both the variance and the expectation are constant.

In addition, the MTS is strictly stationary if the joint distribution of the r vector
(ξ′d1 , ξ

′
d2 , . . . , ξ

′
dr)′ is the same as that of (ξ′d1+i, ξ

′
d2+i, . . . , ξ

′
dr+i)′, where r, i are arbitrary

positive integers.

In this study, the t index corresponds to the hour of the day for which the multivariate
random variables occur, and we focus mainly on the weakly stationary series, because
the strictly stationary series are difficult to verify in practice.

Unit Root Test to Verify Stationarity

The Augmented Dickey–Fuller (ADF) test is based on assuming that a time series
Yd can be approximated by a process AR(p) with three variants: zero mean, non-zero
mean and linear trend. The null hypothesis of this test is that a unit root is present
and that the process is nonstationary. Initially, it is assumed that Yd follows an AR(p)
and the model is transformed as follows.

Yd = φ1Yd−1 + φ2Yd−2 + . . .+ φp−1Yd−p+1 + εd

Yd − Yd−1 = (φ1 − 1)Yd−1 + φ2Yd−2 − Yd−1 + . . .+ φp−1Yd−p+1 − Yd−1 + εd

∆Yd = ρYd−1 + δ1∆Yd−1 + . . .+ δp∆Yd−p + εd,
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where ρ = φ1 − 1. The existence of a unit root is equivalent to φ1 = 1, i.e., ρ = 0. The
Dickey-Fuller Unit Root test has three cases.

Case 1 (none): assuming that Yd ∼ AR(p) has a mean of zero, then

∆Yd = ρYd−1 + δ1∆Yd−1 + . . .+ δp∆Yd−p + εd,

The null hypothesis is H0 : ρ = 0, versus the alternative hypothesis H0 : ρ < 0.
The test statistic is denoted by τ , and the rejection criterion can be defined as τ̂ <
τ0,05. In R, the ADF test is implemented through the library urca by the function
ur.df(y,type="none").

Case 2 (drift): assuming that Yd ∼ AR(p) has non–zero mean, then

∆Yd = α + ρYd−1 + δ1∆Yd−1 + . . .+ δp∆Yd−p + εd,

with the same hypothesis. In R, it is ur.df(y,type="drift").

Case 3 (trend): assuming that Yd ∼ AR(p) has a linear trend, then

∆Yd = α + βt+ ρYd−1 + δ1∆Yd−1 + . . .+ δp∆Yd−p + εd,

with the same hypothesis. In R, it is ur.df(y,type="trend").

It should be noted that the random variables studied in this thesis are data set
sequence that depends on the time interval. Therefore, it is appropriate to define and
treat the random variables as MTS and show the descriptive statistics for each of them.
These are given below.

EM Prices: These are represented by the prices in the following EM: Day-Ahead
Market (DM), Secondary Reserve Market (RM), Intra-day Market (IM) sessions,
and Imbalance Settlements (IB). These prices can be considered as MTS that
are described as a high-dimensional panel of hourly series (García-Martos et al.,
2011; Liebl et al., 2013; Ziel and Weron, 2018). The characteristics that are often
considered in this time series are: (a) non-constant mean and variance; (b) daily
and weekly seasonality due to the dependence of electricity supply and demand,
weather conditions, and social and economic activities that consequently have
a calendar effect on weekends and holidays; (c) complex, time-varying volatility
structures that are considered typical features of electricity markets; (d) the
presence of the mean-reversion effect, meaning there the prices return back to the
long-run interpretation of the entire dataset; (e) the presence of jumps and spikes
that can be attributed to the difficulty in storing large quantities of electricity; and
(f) the presence of outliers (Conejo et al., 2005; Huisman et al., 2007; Koopman
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et al., 2007; Panagiotelis and Smith, 2008; Trück, 2011; Liebl et al., 2013). Table
3.3.1 presents the random vectors that define the MTS for the different electricity
prices and the dimensionality of this multivariate time series for each hour’s prices.

WP Generation: This is represented by the MTS of WP generation (Table
3.3.1). The characteristics of this MTS are: (a) non-constant mean and variance;
(b) a strong nonstationary time series due to multiple seasonality and a high
percentage of abrupt changes; (c) seasonality due to the seasonal wind speed (the
wind is stronger in the spring and autumn than in the winter and summer); (d)
the high volatility of the wind; and (e) intermittency, which considered equivalent
to high variability (Fan et al., 2009; Giebel et al., 2011; Wu et al., 2013; Ren et al.,
2017).
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Cuadro 3.3.1: MTS for the participation of a VPP in the EM.

Electricity Power Load: One of the parameters of uncertainty for the optimal
operation of distribution networks is the active and reactive power load. Table
3.3.2 shows the structure of this MTS. In general, the characteristics of this MTS
are: (a) seasonal variation data patterns (daily, weekly and annual) and random
noise; (b) nonstationary mean and variance due to weather, socioeconomic factors
and randomness; and (c) variations in trend for periods longer than daily periods
(these variations are consequences of many external factors such as weather,
time, demography, economy, geographical conditions, consumer types and their
circumstances) (Nowicka-Zagrajek and Weron, 2002; Hahn et al., 2009; Muñoz
et al., 2010; Liu et al., 2014; Dudek, 2016).

PV Generation: This is the MTS considered to be an hourly panel time series
(Table 3.3.2). The characteristics are usually: (a) a nonstationary nature; (b)
cyclicity due to the nonlinear characteristic of PV power output (total irradiance,
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spectral content, and angle of incidence), ambient temperature, wind speed, and
prominent variation at different time scales (variation is more frequent in winter
due to variable solar irradiation and minor in summer, because of high irradiation);
and (c) the influence of load peaking in different seasons. When the power grids
generate high solar power, the peak-load will has an impact on the power system
(Bacher et al., 2009; Phinikarides et al., 2015; Zhu et al., 2017).

MTS Time Series
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Cuadro 3.3.2: MTS in the operation of the Electrical Distribution Networks.

3.3.1.2. Second Step: Determining the Statistical Models

In view of high dimensionality of the observed process and the multiple interrelated
random variables, it is a top priority to reduce the number of variables (or characteristics)
in unobserved variables. For this reason, the technique TSFA proposed by Gilbert et al.
(2005, 2006) is applied. After applying the TSFA, we determine the statistical models
to obtain forecasting for future use of the following steps in the procedure. The VAR
models is used for this purpose (Sims, 1980).

Time Series Factor Analysis

Factorial analysis is a statistical technique for data reduction. The objective is
to explain the correlations between the observed variables in terms of a smaller
number of unobserved variables, which are called factors. Specifically, the aim is
to represent the observed variables as linear combinations of these factors, plus a
certain error term.

When the observed data have a temporal structure (i.e., they are time series),
the standard factorial analysis is not adequate because it requires the hypothesis
of uncorrelated observations in each variable. To solve these problems, TSFA
models were developed in order to summarize most of the information from a
large number of time series that are correlated in a smaller number of underlying
factors (unobserved variables).

Definition 3.3.3 (TSFA model). Let Fd be an k × 1 vector of unobserved
processes of interest (the factors) for a sample N time periods, which are indicated
by Fdt, d = 1, . . . , N, t = 1, . . . , k. Let ξd be an M × 1 vector of observed processes
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(the indicators) indicated by ξdt, d = 1, . . . , N, t = 1, . . . ,M . The model that
relates the indicators to the factors is thus given by

ξd = α +BFd + εd, (3.3.2)

where α is an M × 1 vector of intercept parameters, B is an M × k matrix
parameter of factor loadings (or, simply, loadings), and εd is a random M × 1
vector of measurement errors, disturbances, and unique or idiosyncratic factors.

The estimation of the factor loadings can be carried out by the maximum likelihood
method, as defined in Equation (3.3.4). In addition to the loadings B, this also
obtains the covariance matrix σ and the covariance matrix for the errors Ω,
both of which are M ×M matrix. The factor score on the latent variables F d is
predicted.

Definition 3.3.4 (Bartlett Predictor for TSFA). The best linear unbiased predic-
tor of the factor score can be calculated using the Bartlett predictor (Wansbeek
and Meijer, 2000) obtained from Equation (3.3.3)

F̂d =
(
B̂
′

Ω−1B̂
)−1

B̂
′

Ω−1ξd, (3.3.3)

where B̂ and Ω are the loading and covariance error matrix, respectively.

The new values ε̂d of the error, are obtained from

ε̂d = ξd −
(
α̂− B̂F̂d

)
, (3.3.4)

where α̂ and B̂ are the estimate intercept and estimate loadings from the original
data, respectively.

An adequate selection of the number of factors is necessary for defining the
TSFA model. For this purpose, several criteria are available. We will set down the
Comparative Fit Index (CFI) and the Root Mean Square Error of Approximation
(RMSEA), which are presented in the following.

• The CFI developed by Bentler (1990), which compares the χ-square of
two models, is an independent model that has no relationship between the
variables model and the model proposed by the researcher. This comparison
is corrected by the degrees of freedom of both models. The CFI indicates
that values greater than 0.95 are acceptable as an indicator of good fit.
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• The RMSEA developed by Steiger (1980) is a potential mechanism for
accommodating large sample sizes. RMSEA is a non-negative number, based
on the χ-squared statistic that measures the lack of fit per degree of freedom.
The RMSEA advises that values less than 0.05 constitute a good fit, values
between 0.05 to 0.08 are an acceptable range, values between 0.08 and 0.10
are a marginal range of fit, and values greater than 0.10 are a bad fit.

More details about the TSFA models can be found in the references (Gilbert et al.
(2005), Gilbert et al. (2006)).

VAR Models

The vector Autoregressive (VAR) model (Sims, 1980) is a stochastic process model
used to capture the linear interdependencies among MTS. This generalizes the
Autoregressive models (AR), but for multiple time series. To understand the VAR
models of order p (VAR(p)), we developed the VAR(1) models for trivariate time
series. However, the results continue to hold for models of order greater than 1
and j-dimensional time series:

Consider the trivariate VAR(1) model:

Fd = φ0 + φ1Fd−1 + εd. (3.3.5)

The explicit form of the model can be written as
Fd1

Fd2

Fd3

 =


φ0,1

φ0,2

φ0,3

+


φ1,11 φ1,12 φ1,13

φ1,21 φ1,22 φ1,23

φ1,33 φ1,32 φ1,33



F(d−1)1

F(d−1)2

F(d−1)3

+


εd1

εd2

εd3

 , (3.3.6)

or equivalently

Fd1 = φ0,1 + φ11F(d−1)1 + φ1,12F(d−1)2 + φ1,13F(d−1)2 + εd1

Fd2 = φ0,2 + φ21F(d−1)1 + φ1,22F(d−1)2 + φ1,23F(d−1)3 + εd2

Fd3 = φ0,3 + φ31F(d−1)1 + φ1,32F(d−1)2 + φ1,33F(d−1)3 + εd3.

(3.3.7)

The φ1,23, shows the linear dependence of Fd2 on F(d−1)2 in the presence of F(d−1)1

and F(d−1)2. All parameters in φ1 can be interpreted in a similar form.

The back-shift operator for VAR(1) can be written as

φ(B)Fd = φ0 + εd, (3.3.8)

where φ(B) = I3 − φ1B1 is a matrix polynomial of order 1.
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A necessary condition for the VAR(1) series Fd to be stationarity is that all
eigenvalues of φ1 must be less than 1 in absolute value. If all eigenvalues of φ1

are less than 1 in absolute value, then the VAR(1) series Fd is also stationary.
The eigenvalues of φ1 are solutions of the determinant equation:

|λIj − φ1| = 0

The necessary and sufficient condition for the stationarity of a VAR(1) model is
that the solution of the determinant equation |λIj − φ1B| = 0 is greater than 1
in absolute value; that is, the solutions of the determinant equation |φ(B)| = 0
are outside the unit circle.

Definition 3.3.5 (VAR(p) model). Stationary multivariate processes (Fd) follow
an autoregressive multivariate model, a vectorial of order p, or VAR(p) (Vectorial
autoregressive) if and only if

Fd = Φ0 + Φ1Fd−1 + Φ2Fd−2 + . . .+ ΦpFd−p + εd, (3.3.9)

for all d = 1, . . . , N , where (εd) ∼ IID(0,Σε) and Φ0,Φ1,Φ2, . . . ,Φp are a
parameters matrix, such that all the roots of the equation

∣∣∣I−Φ1x−Φ2x
2 − . . .−Φpx

p
∣∣∣ = 0

are outside the unit circle.

Definition 3.3.6 (Vector Autoregression with exogenous variables (VARX) mo-
del). Let Fd be a k-dimensional time series and Xd an l-dimensional series of
exogenous variables or leading indicators. The general form of a VARX model is

Fd = Φ0 + Φ1Fd−1 + Φ2Fd−2 + . . .+ ΦpFd−p +β1Xd−1 +β2Xd−2 + . . .+βlXd−l + εd,
(3.3.10)

where εd is a sequence of i.i.d. random vectors with mean zero and positive-
definite covariance matrix Σε, p and w are non-negative integers, Φd are the usual
coefficient matrices, and βj are k ×m coefficient matrices. This model allows for
Xd to affect Fd instantaneously if β0 6= 0.

The vector autoregressive model with exogenous variables was the first approach
in the literature for including exogenous variables in multivariate time series
modeling. This type of model is referred to as the VARX(p, l) model, with X
signifying exogenous variables. The term exogenous variable is used loosely here,
as it may contain independent (or input) variables.
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3.3.1.3. Third Step: Calculating Forecasting Models

Prediction is one of the objectives of this study. Our interest is in predicting the
following day for the random parameters. As data has been reduced into estimated
factors through TSFA, these factors are employed to calculate the one-step-ahead
forecasting. VAR(p) models are used for this objective. Lastly, the one-step-ahead
forecasting factors for the MTS of this study have been calculated.

One-step-ahead Forecasting TSFA Models

In order to obtain the one-step-ahead forecasting for the factors, Equation (3.3.11)
specifies the forecasting model.

ξd+1 = α̂+ B̂F̂d+1 + εd+1, (3.3.11)

with F̂d+1 being the vector of predictive factors for d+ 1, α̂, B̂ are the estimation
parameters of the model, and εd+1 is the resulting forecast error for d+ 1.

Keeping in mind that 1 ≤ d ≤ N , then the out-of-sample forecast for ξN+1 is
conditional to the information observed until period N . This is demonstrated in
Equation (3.3.12).

ξ̂(N+1)/N = α̂ + B̂F̂N+1/N , (3.3.12)

where F̂N+1/N has been estimated for the VAR models. The forecasting error is
calculated with:

ε̂N+1 = ξN+1 − ξ̂(N+1)/N . (3.3.13)

where ξN+1 is the original values and ξ̂(N+1)/N is the out-if-sample forecast.

One-step-ahead Forecasting VAR(p) Models

The vector predicted factor F̂d+1 of Equation (3.3.11) for the forecast of the
following day for the random parameters of this study must be obtained.

Definition 3.3.7 (One-Step-Ahead prediction VAR). Therefore, assuming that
the VAR model is known, the one-step ahead prediction is:

F̂d+1 = Φ0 + Φ1F̂d + Φ2F̂d−1 + . . .+ ΦpF̂d−p+1 + εd+1. (3.3.14)
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In order to obtain the out-of-sample forecast for F̂N+1, the Equation (3.3.14) will
be used. This is:

F̂N+1 = Φ̂0 + Φ̂1F̂N + Φ̂2F̂N−1 + Φ̂3F̂N−2 + . . .+ Φ̂pF̂N−p+1. (3.3.15)

The forecasting error is calculated with:

ε̃N+1 = FN+1 − F̂N+1. (3.3.16)

where FN+1 is the original values and F̂N+1 is the out-if-sample forecast.

Measurement Error

In this study we use three measurements that are common used as forecast error
measures in forecasting (Shcherbakov et al., 2013). These are:

• Mean Absolute Error (MAE) is a measure of error between paired obser-
vations expressing the same phenomenon. This is a common measure of
forecast error in time series analysis. MAE is given by:

MAE = 1
n

n∑
i=1
|εi|

• Root Mean Square Error (RMSE) is a frequently measure of the differen-
ces between values predicted by a model or an estimator and the values
observed.This measure is calculated as:

RMSE =
√√√√ 1
n

n∑
i=1

ε2
i

3.3.1.4. Fourth Step: Generating Scenarios

The next step in the methodology is to obtain representative scenarios for ap-
proximating the multivariate stochastic process of each MSP model in this thesis.
For this purpose, we will take care to build an empirical distribution function and
its corresponding probabilities in order to approximate the theoretical multivariate
stochastic processes. Bootstrap techniques (Efron and Tibshirani, 1994) are applied
to obtain representative scenarios that approximate the stochastic process. We use
a procedure developed by Muñoz et al. (2013), which is based on TSFA models and
bootstrap techniques.

1. The model is estimated, and the estimated parameters are obtained for each
random parameter data set, taking into consideration the hourly dependence for
these parameters.
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2. The estimated residual errors ε̂d are obtained with Equation (3.3.4).

3. An i.i.d. resampling of ε̃d from Fε̂d , for d = 1, . . . , N is obtained, wherein Fε̂d is
the empirical distribution function of ε̂d.

4. A bootstrap replica of the data is built, defined by ξ̃d = α̂− B̂F̂ d + ε̃d.

5. A sample of the future ε̃d+1 is generated by resampling from Fε̂ one time.

6. The ω ∈ Ω ⊂ N future bootstrap observations ξ̃N+1,ω are calculated by using the
equation in step 4.

This procedure is applied to each set of random variables described in Section 3.3.1.1.
Given that the day N + 1 is fixed and the decision process of the MSP problem has
been established, we proceed to redefine ξ̃N+1,ω for ξ̃ω, where ξ̃sω is a column random
vector for stage s ∈ S under scenario ω ∈ Ω. Therefore, a scenario ξ̃ω of the scenario
tree {{ξ̃}s∈S}ω∈Ω is defined as a vector ξ̃ω = (ξ̃0, ξ̃1ω, . . . , ξ̃sω, . . . , ξ̃Sω) for a certain
scenario index ω ∈ Ω.

3.3.2. Phase II: Scenario Tree Generation

In this section, we will present two algorithms that allow generating scenario trees
for the MSP models presented in this thesis. These algorithms obtain scenario trees
that are an approximation of the original multivariate stochastic process. Section 3.3.2.1
shows the Forward Tree Construction Algorithm (FTCA), and Section 3.3.2.2 presents
a slightly modified version of the Dynamic Tree Generation with Flexible Bushiness
Algorithm (DTGFBA). The theoretical foundation is presented for both algorithms.

3.3.2.1. Forward Tree Construction Algorithm (FTCA)

The FTCA is based on recursive deletion and the bundling of scenarios from some
given scenario set originating from historical or simulated data. The strategy consists
of modifying a given fan of individual scenarios by bundling scenarios according to the
scenario reduction technique. The scenario reduction approach was first developed in
Dupačová et al. (2003) and enhanced in Heitsch and Römisch (2003). Let us recall its
main ideas. We consider a discrete distribution P with scenarios ξi and probabilities
pi, i = 1, . . . , N , and another discrete distribution Q supported by a subset of scenarios
ξj, j ∈ {1, . . . , N}J , of P and probabilities qj, j ∈ J , i.e, the index set J describes the
set of deleted scenarios. The procedure uses a certain Monge-Kantorovich transportation
distance for multivariate probability distributions. The theoretical foundation and the
FTCA are shown below.
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Theoretical Foundation

The theoretical foundation is a summary of the theory developed in Heitsch
et al. (2006); Heitsch and Römisch (2009a,b). Details are provided regarding
the concepts of probability metrics for measuring the distance distance between
probability distributions, specifically in terms of distances and metrics for the
Monge-Kantorovich mass transportation problem.

The Monge-Kantorovich mass transportation problems take the form:

inf


∫

Ξ×Ξ

c(ω, ω̃)ηd(ω, ω̃) : η ∈ P(Ξ× Ξ), π1η = P andπ2η = Q

 , (3.3.17)

where Ξ is a closed subset of Rm (for somem ∈ N); η1 and η2 denote the projections
onto the first and second component, respectively; c is a non-negative, symmetric
and continuous cost function; and P and Q are probability measures in P(Ξ).

A type of cost function is

c(ξ, ξ̃) = d(ξ, ξ̃)r = |ξ − ξ̃|r (ξ, ξ̃ ∈ Ξ), (3.3.18)

for some r ≥ 1, and | · | is a norm or semi-norm in Rm.

The cost in Equation (3.3.18) leads to the Lr-minimal metric `r, which is defined
by

`rr(P,Q) = inf


∫

Ξ×Ξ

|ξ − ξ̃|rη(dξ, dξ̃) : η ∈ P(Ξ× Ξ), π1η = P andπ2η = Q

 .
(3.3.19)

For stochastic programs that containing information constraints, distance between
probability distributions may fail. An alternative study of multistage models
consists of optimization problems in functional spaces (Heitsch and Römisch,
2009a), and it explains the norm (which is called filtration distance)

‖ξ‖r =
∑
ω∈Ω

E[|ξω|r]
 1

r

, (3.3.20)

in the Banach space Lr(Ω,F ,P,Rm) with m =
s∑
s=1

ms for the Ξ-value random
inputs.

Furthermore, the Lr-seminorm ‖ · ‖r,s with m =
S∑
s=1

ms, is defined as:

‖ξ‖rs = (E[|ξ|rs])
1
r =

(
N∑
i=1

pi|ξi|rs

) 1
r

, (3.3.21)
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where | · |s is the semi-norm in Rm, which is defined by |ξ|s = |(ξ1, . . . , ξs, 0, . . . , 0)|
for each ξ = (ξ1, . . . , ξS) ∈ Rm.

Let ξ and ξ̃ be random vectors in any given probability space (Ω,F ,P) with
probability distributions P and Q. Since the probability distribution η̄ of the pair
(ξ, ξ̃) of two random vectors is feasible for the minimization problem (3.3.19), the
following is obtained:

`r(P,Q) ≤ ‖ξ − ξ̃‖r, (3.3.22)

where ξ and ξ̃ are discrete random vectors with, respectively, scenarios ξi and
probabilities pi, i = 1, . . . , N and scenarios ξj with probabilities qj, j = 1, . . . ,M
respectively are the result. Consequently,

`rr(P,Q) = min
∑ ηij|ξi − ξ̃j|r : ηij ≥ 0,

∑
i

ηij = qj,
∑
j

ηij = pi

 , (3.3.23)

is the optimal value of a linear transportation problem.

Taking into account the inequality in Equation (3.3.22) and the optimal `rr(P,Q)
in Equation (3.3.23), a scenario tree ξtr can be constructed from ξ̃ such that the
Lr-distance

‖ξ̃ − ξtr‖r,

is bounded by a prescribed tolerance ε > 0.

Algorithm

The study and implementation of FTCA is described in Heitsch and Römisch
(2009a). A summary of this algorithm is given below.

Let ξ̃ be a stochastic process on any probability space (Ω,F ,P), with scenarios
ξ̃i = (ξ0i, . . . , ξSi) ∈ Rm, probabilities pi > 0, i = 1, . . . , N , and fixed initial node
ξ̃∗0 = ξ̃01 = . . . = ξ̃0N . The stochastic process ξ̃ can be structured by a fan of
scenarios. The FTCA is implemented for constructing a tree process ξtr can be
constructed from ξ̃, such that the Lr-distance is ‖ξ̃ − ξtr‖r ≤ ε with ε > 0.

The idea behind FTCA consists of using recursive scenario reduction to form
clusters of scenarios on the time horizon 0, . . . , S in order to increase stage s. The
Lr−seminorm ‖ · ‖r,s is used in stage s.

The procedure recursively determines the stochastic processes ξ̃s that have scena-
rios ξ̃si with probabilities pi, i ∈ I = {1, . . . , N} and Cs = {C1

s , . . . , C
k
s , . . . , C

Ks
s }

of I, such that
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Ck
s ∩ Ck

′

s = ∅, k 6= k
′ and

Ks⋃
k=1

Ck
s = I,

where Cs is called the scenario cluster index set.

FTCA is described below:

• Initialization: fixed ξ̃0 = ξ̃, i.e., ξ̃0ω = ξ̃ω, ω ∈ I, and C0 = {I}.
• Stage s: every cluster Ck

s−1 (i.e., every scenario subset
{
ξ̃s−1ω

}
ω∈Cks−1

) is
considered separately and subjected to scenario reduction with respect to the
semi-norm | · |s that leads to index sets Iks and Jks of remaining and deleted
scenarios being created, where:

Iks ∪ Jks = Ck
s−1

and

Jks = ∪
s∈Iks

Jksi = {j ∈ Jks : s = iks(j)} and iks(j) ∈ arg min
ω∈Iks
|ξ̃s−1ω − ξ̃s−1j|

A mapping shall be defined as αs : I −→ I, such that

αs(j) =
 iks(j), j ∈ Jks , k = 1, ..., Ks−1

j, otherwise.
(3.3.24)

Thereunto the scenario of the stochastic process ξ̃s = {ξ̃sl}Ω
l=1 is defined by

ξ̃siτ =
 ξ̃ατ (i)

τ , τ ≤ s

ξ̃iτ , otherwise,
(3.3.25)

with probabilities pω for each ω ∈ I. The partition Cs at stage s is defined by

Cs =
{
α−1
s (i) : i ∈ Iks , k = 1, . . . , Ks−1

}
.

Each element of the index set Iks defines a new cluster; thus, the partition
Cs is a refinement of the partition Cs−1. The scenario set Is is defined with
scenario cluster Īsi, and the cluster probabilities πis take the following form:

Is =
Ks−1⋃
k=1

Iks

Īsi = {i, j : j ∈ Jksi} = Cks and πsi =
∑
j∈Cks

pj if i ∈ Iks for some k = 1, . . . , Ks−1.

The branching degree of scenario ω at s coincides with the cardinality of Īsi.
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• State S + 1: the scenario and the probabilities of the scenario tree ξtr = ξ̃S

are given by the structure of the final partition CS, which takes the form (for
each k = 1, . . . , KS.)

ξktr =
(
ξ∗0 , ξ

α1(i)
1 , . . . , ξ

αT (i)
T

)
and πωS if i ∈ Ck

S.

Therefore, the summarized FTCA generates a variety of scenario trees that satisfy
a given approximation tolerance with respect to the Lr-distance, which is shown
in Algorithm 1. The Forward Selection Algorithm (FSA) is used to calculate the
disjoint index sets Jks and Iks . It is shown in Algorithm 2.

Algorithm 1: FTCA
Input: ξ̃1,pω,εs
Output: ξtr,pω,CS

1 Initialization: ξ̃1ω = ξ̃, and C0 = {{1, . . . , N}}
2 Step s: Let Cs−1 = {C1

s−1, . . . , C
Ks−1
s−1 }.

Determine:
- Disjoint index sets Iks and Jks such that Iks ∪ Jks = Ck

s−1.
- The mapping αs(·) according to Equation (3.3.24).
- A stochastic process ξ̃s having N scenarios ξ̃sω with probabilities pω according
to Equation (3.3.25) such that ‖ξ̃s − ξ̃s−1‖r,s ≤ εs.
- Set Cs = {α−1

s (ω) : ω ∈ Iks , k = 1, . . . , Ks−1}
3 Step S + 1: Let CS = {C1

S, . . . , C
KS
S }.

Construct:
- A stochastic process ξtr having KS scenarios ξktr,s = αs(ω) if ω∈Ck

S, k=1, ..., KS

s = 1, . . . , S.

Algorithm 2: FSA
Input: ξ̂s, pω, Jks1, Iks1
Output: Jks , Iks

1 Initialization: Jks1 = Ck
s−1, I

k
s1 = ∅

2 Step i: for certain stop criterion for i,
Let ui ∈ arg min

u∈J ls,i−1

∑
l∈J ls,i−1\{u}

pl min
j 6∈J ls,i−1\{u}

|ξ̃l − ξ̃j|r.

Jksi = Jksi−1\{ui}
Iksi = Iksi−1 ∪ {ui}

3 Final Step:Stop criterion for i satisfied, then:
Jks = Jksi
Iks = Iksi.

At stage s, the FTCA stops clustering scenarios as soon as the Lr−seminorm
between the tree at s and s− 1 is reduced as follows for εs:

‖ξ̃s − ξ̃s−1‖r,s ≤ εs. (3.3.26)

The individual tolerances εs at branching points are chosen, such that:

εs = εrel,s · εmax,s. (3.3.27)
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At this point, the maximum tolerance for each stage εmax,s is the best possible
distance between the following values: the probability distribution in stage s of
the initial scenario tree and the distribution of one of its scenarios having gained
unit mass for stage s, thus:

εemax,s = min ‖ξ̃sl − ξ̃s‖r,s ∀s ∈ S, (3.3.28)

where l = arg min
l∈C0
‖ξ̃l − ξ̃‖r.

In addition, the relative tolerance for each stage εrel,s for stage s ∈ S, is defined
by the recursive equation

εerel,s = εerel,s−1 + δs−1, (3.3.29)

with δs = δs−1 + ∆.

3.3.2.2. Dynamic Tree Generation with Flexible Business Algorithm (DTGF-
BA)

An algorithm is presented in this section for the dynamic generation of scenario trees.
It approximates probability measures using a concept that is appropriated for providing
a distance for the stochastic process, which is the Nested Distance. The theoretical
foundation and the DTGFBA are shown below.

Theoretical Foundation

The theoretical foundation is a summary of the theory developed in Pflug and
Pichler (2015) and Pflug and Pichler (2014), as presented below.

Let P be a probability model and P̃ another probability model. The focus is on
exactly how close P̃ is to P . For this purpose, we lay out the concept of closeness
for probability measures based on distances and norm.

Definition 3.3.8 (Distance and Semi-Distance). Let P be a set of probability
measures on Rm. A distance d on P × P satisfies the following three conditions:

i) Non-negativity: for all P1, P2 ∈ P ,

d(P1, P2) ≥ 0.

ii) Symmetry: for all P1, P2 ∈ P ,

d(P1, P2) = d(P1, P2).
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iii) Triangle Inequality: for all P1, P2, P3 ∈ P ,

d(P1, P2) ≤ d(P1, P3) + d(P3, P2).

A semi-distance d(·, ·) is called a distance if it satisfies the strictness property:
iv) Strictness: if d(P1, P2) = 0, then P1 = P2

A principle for defining distances and semi-distances consists of choosing a family
of integrable functions H, which are defined by

dH = sup
h∈H

∣∣∣∣∫ hdP1 −
∫
hdP2

∣∣∣∣ .
If H is separating, i.e., if for every pair P1, P2 there is a function h ∈ H such that∫
hdP1 6=

∫
hdP2, then dH is strict and is thus a distance.

The function c is often associated with the interpretation that moving a particle
ω ∈ Ω to ω̃ ∈ Ω costs c(ω, ω̃); therefore, it is often called a cost function, which is

c : Ω× Ω→ R, (3.3.30)

thus linking two sample spaces Ω and Ω̃.

A common definition considers the cost function as:

c(·, ·) = d(·, ·)r : Ω× Ω→ R,

where d is a distance on Ω and r ≥ 1.

Typically, the probability space (Ω,F , P ) does not carry. However, it has been
assumed that Ω inherits a distance or semi-distance from a random variable
ξ : Ω→ Rms (for s ∈ N) by

d(ω, ω′) = ‖ξω − ξω′‖,

where ‖ · ‖ is a certain norm in Rms .

Definition 3.3.9 (Inherited Distance). If ξ is an Rms-valued random variable
on Ω and ξ̃ is an Rms-valued random variable on Ω̃, then the inherited distance
between elements Ω and Ω̃ can be defined by the transportation cost function
c(ω, ω̃)

d(ω, ω̃) = c(ω, ω̃) = d(ξω, ξ̃ω̃),

for a given distance d ∈ Rms , which is often d(w, v) = ‖w− v‖ for a certain norm
‖ · ‖ in Rms .
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Multiple and subsequent stages are considered in multistage stochastic problems.
To this end, let (Ω,F , P ) and (Ω̃, F̃ , P̃ ) be two probability spaces, and let ξ :
Ω −→ Ξ and ξ̃ : Ω̃ −→ Ξ be two random variables with a common image space
Ξ ⊆ RmS , which is endowed with a metric d. It is assumed that (Ξ,d) is a Polish
space and the Wasserstein distance dr in Pr(Ξ) is well-defined. At this point,
this distance is extended for the stochastic process {ξ}Ss=0, which is defined on
a filtered probability space (Ω,F , P ), and for another process {ξ̃}Ss=0, which is
defined on (Ω̃, F̃ , P̃ ).

If a stochastic process ξs : Ω −→ (Ξs,ds), s = 0, . . . , S is considered, then these
random variable {ξs}Ss=0 can be compounded to a single random variable ξ via

ξs : Ω −→ Ξ0 × Ξ1×, . . . ,×ΞS

ω 7−→ (ξ0ω, . . . , ξSω) , (3.3.31)

where each ω is mapped to its path (the trajectory) in the space Ξ = Ξ0×Ξ1, . . . ,ΞS.
This setting generalizes the usual definition of a stochastic process as the state of
the partial observations:

ξs = projs ◦ ξ : Ω→ Ξs, s = 0, . . . , S,

which may vary at different times (projs ◦ ξ : Ξ→ Ξs is the natural projection).

From this point forward, any one of the spaces Ξs is equipped with a distance
function ds, there being many metrics d such that (Ξ,d) is a metric space. Given
two processes {ξ}Ss=0 and {ξ̃}Ss=0 (in the same space Ξs) in, respectively, Ω(Ω̃) a
semi-distance becomes inherent to Ω× Ω̃ in an analogous way, as in Definition
3.3.9. Let us look, for example, at the `2−distance:

d(ω, ω̃) =
(

S∑
s=0

ws · ds
(
ξsω, ξ̃sω̃

)2
) 1

2 (
ξ, ξ̃ ∈ Ξ

)
, (3.3.32)

The Wasserstein distance must be extended to stochastic processes that take into
account all sigma algebras contained in the filtration of the filtered probability
spaces. The nested distance is this generalization.

Definition 3.3.10 (The nested distance). assuming that the two probability
models P = (Ω, (Fs), P, ξ) and P̃ = (Ω̃, (F̃s), P̃ , ξ̃) are given, then the nested
distance of order r ≥ 1, for which a distance d : Ω × Ω̃ → R is defined, is the
optimal value of the optimization problem:



42 3.3. Scenario Tree Generation Methodology

minimize
(in π)

(∫ ∫
d(u, v)rπ(du, dv)

)
subject to π

(
A× Ω̃|Fs ⊕ F̃s

)
= P (A|Fs) (A ∈ Fs, s = 0, . . . , S) and

π
(
Ω×B|Fs ⊕ F̃s

)
= P̃ (B|F̃s) (B ∈ F̃s, s = 0, . . . , S), (3.3.33)

where the infimum in Problem (3.3.33) is among all bivariate probability measures
π ∈ P(Ω× Ω̃), which are measures for F ⊕ F̃ . Its optimal value (the nested, or
multistage distance) is denoted by

dr
(
P, P̃

)
,

In order to establish the corresponding linear program for the nested distance,
trees that model the whole space and filtration are used. It is essential that j ≺ i

is denoted as that node j, which is a predecessor of node i, although it is not
necessarily the immediate predecessor. Problem (3.3.33) is redefined as:

minimize
(in π)

∑
i,j

πi,j · dri,j

subject to P (i) ·
∑

i′�k,j′�l

πi′ ,j′ = P (k) ·
∑
j′�n

πi,j′ (k ≺ i), (3.3.34)

P̃ (j) ·
∑

i′�k,j′�l

πi′ ,j′ = P̃ (l) ·
∑
i′�k

πi′ ,j (l ≺ j),

πi,j ≥ 0,
∑
i,j

πi,j = 1,

where P and P̃ are given. Problem (3.3.34) is a linear program.

Algorithm

The goal of DTGFBA algorithm (Algorithm 3) is to construct a valuated process
that best represents the process {ξ}Ss=1. The basic stochastic process {ξ}Ss=1

is defined in a probability space (Ω,F , P ), which has been estimated, i.e., its
distribution P has been identified. The construction of a discretization stochastic
process becomes the next priority {ξ̃}Ss=1, which is defined in Ω̃ where its valuated
probability tree P̃ (the scenario tree) will be identified with a distance between
elements of u ∈ Ω and v ∈ Ω̃, which are defined by

d(u, v) =
S∑
s=1

ds
(
ξsu, ξ̃sv

)
.

For this purpose, the nested distance has been calculated for Problem (3.3.33). In
order to study and implement the DTGFBA, the algorithm developed in Pflug
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and Pichler (2015) was used as the basis. This allows for a predetermined error
εt, which must not be exceeded, and it also requires that the bushiness at each
node be predetermined. Algorithm 3 presents the DTGFBA that we will use.
In addition, Algorithm 4 is a Typical Hierarchical Cluster Algorithm (THCA),
which is used for partitioning a larger set of points into k clusters in item (ii) of
Algorithm 3. This is an acceptable configuration for the subsequent optimization
algorithm.
Algorithm 3: DTGFBA
1 Parameters: let S be the desired height of the tree, (b1, . . . , bS), be the minimal

bushiness values and (ε1, . . . εS) the maximal stagewise transportation distances.
These two vectors are fixed in advance.

2 Determining the Root: the value of the process at the root is ξ̃0 and its stage
is 0. The root is set as the current open node.

3 While there are open nodes, Do
(i) Let l be the next open node and let s < S be its stage. Let ξ̃0, . . . , ξ̃s−1, ξ̃s be
the already fixed values at node l and its predecessors. The initial number of
successors of l is set to k = bs+1.
(ii) Call a typical hierarchical cluster algorithm (Algorithm 4) to find the k
cluster. Let

(
z(1), . . . , z(k)

)
be the cluster’s medians of k observed samples taken

from the distribution by Fs+1(·|ξ̃s, ξ̃s−1, . . . , ξ̃0). Next, compute the distance d by
means of the linear program in Problem (3.3.34).
(iii) If d is larger than ds+1, then b is increased by one and return to (ii) then
returned to. Otherwise step (iv) is implemented.
(iv) The b successor nodes of node l are stored using the values z(l) and their
optimal conditional probabilities pl. The new successors are then marked as open.

4 Stopping criterion: if all nodes at stage S − 1 have been considered as parent
nodes, the generation of the tree is finished.

Algorithm 4: THCA
1 Sampling: Suppose that n points {z(1), . . . , z(n)} ∈ Rm are given, endowed with

metric d. The set Z = {z(i) : i = 1, . . . , n} is iteratively partitioned into disjoint
clusters, such that their number decreases from step to step. At the beginning,
each point is a cluster of itself.

2 Iteration: Supposing that the current partition of the set is Rm = ⊎
j Cj , the pair

of clusters (Cj, Cl) must be found for which

sup{d(z, z′) : z ∈ Cj, z
′ ∈ Cl},

is minimal. A new cluster is then created by merging Cj and Cl.
3 Stopping criterion: if the number of clusters has decreased to the desired

number k, then the end has been reached. Otherwise it continues by going to 2.

3.4. Performance Evaluation of Scenario Trees

To evaluate the performance of the generated scenario trees, we establish parameters
that have been inspired by the ideas developed in Escudero et al. (2007). These
parameters are based on the definitions of the Value of the Stochastic Solution(VSS),
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which were established for two-stage models. These definitions are applied to the new
parameters for the MSP models presented in this study.

The deterministic equivalent model is expanded:

minimize
x0,x1ω ,x2ω ,...,xSω

∑
ω∈Ω

pω [f0(x0, ξ0) + f1(x1ω, ξ1ω) . . .+ fS(xSω, ξSω)]

subject to x0 ∈ χ0, xsω ∈ χs(xsω, ξsω), ∀ s = 1, . . . , S, ∀ω ∈ Ω, (3.4.1)
xsω = xsl such that ξ[s]ω = ξ[s]l, ∀s ∈ S, ∀ω, l ∈ Ω,

where xsω denotes the decision variables related of stage s ∈ S under scenario ω ∈ Ω,
ξsω, which is the realization of stage s ∈ S under scenario ω ∈ Ω in the scenario tree;
pω is the probability of scenario ω ∈ Ω. The decision variables xsω are participated to
stage s. The recourse variables denoted by ysω correspond to recourse actions that are
taken at stage s in order to correct the strategic decision elevated to stage s. The state
decision variable denoted by zsω, (the first stage is deterministic and called z0, as it is
the first state decision variable). Thus, xsω = (ysω, zsω).

Let the Recourse Problem (RP) be the optimal value of the objective function of
the model given in Equation (3.4.1), that is:

RP = minimize
x0,x1ω ,x2ω ,...,xSω

∑
ω∈Ω

pω [f0(x∗0, ξ0) + f1(x∗1ω, ξ1ω) + . . .+ fS(x∗Sω, ξSω)] , (3.4.2)

where x∗sω, is the optimal decision variable in stage s ∈ S and scenario ω ∈ Ω.

Let the vector ξsω = ξEs be defined as the average scenario for stage s ∈ S and a
certain scenario ω ∈ Ω. The Expected Value (EV) problem is defined as the following
deterministic model:

EV = minimize
(ys,zs), s∈S

[
f0((y0, z0), ξE0 ) + f1((y1, z1), ξE1 ) + . . .+ fS((yS, zS), ξES )

]
(3.4.3)

subject to (ys, zs) ∈ χs, ∀ s ∈ S,

where xEs = (yEs , zEs ) is the optimal solution for the model in Equation 3.4.3, and the
optimal value of the objective function is called the Expected Value (EV).

If zsω = zEs and z0 = zE0 in Equation 3.4.3, we obtain the problem:

EEV = minimize
(ys,zEs ), s∈S

∑
ω∈Ω

pω
[
f0((y0ω, z

E
0 ), ξ0) + f1((y1ω, z

E
1 ), ξ1) + . . .+ fS((ySω, zES ), ξS)

]
subject to xE0 ∈ χ0, (ysω, zEs ) ∈ χs((ysω, zEs ), ξsω), ∀ s = 1, . . . , S, ∀ω ∈ Ω,

(3.4.4)
ysω = ysl such that ξ[s]ω = ξ[s]l, ∀s ∈ S, ∀ω, l ∈ Ω.
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The value of the objective function of model 3.4.4 at the optimal solution is known
as the Expectation of the Expected Value (EEV), and can be used to define the solution
called Expected Value of the Stochastic Solution (EVSS).

EVSS = RP − EEV. (3.4.5)

A value that relates the EV SS to the RP is detailed, that is:

EVSSr = 100× EV SS

RP
. (3.4.6)

This represents how much the RP solution x∗ = (x0, x1ω, . . . , xSω), ∀ω ∈ Ω improves
the EV solution xE in terms of the expectation of the total profits, according to the
representation of the future expressed through ξ = (ξ0, ξ1ω, . . . , ξSω), ∀ω ∈ Ω.

On the other hand, consider the Forecasted Value Problem (FVP):

FV P = minimize
(ys,zs), s∈S

[
f0((y0, z0), ξF0 ) + f1((y1, z1), ξF1 ) + . . .+ fS((yS, zS), ξFS )

]
(3.4.7)

subject to (ys, zs) ∈ χs, ∀ s ∈ S,

where xFs = (yFs , zFs ) is the optimal solution (called the Forecast Value (FV)) and ξFs is
a scenario forecast in stage s ∈ S.

The Expectation of the Forecasted Value (EFV) is the expected value associated to
the optimal objective function of 3.4.8, as illustrated in the following model:

EFV = minimize
(ys,zFs ), s∈S

∑
ω∈Ω

pω
[
f0((y0ω, z

F
0 ), ξ0) + f1((y1, z

F
1 ), ξ1) + . . .+ fS((yS, zFS ), ξS)

]
subject to xF0 ∈ χ0, (ysω, zFs ) ∈ χs((ysω, zFs ), ξsω), ∀ s = 1, . . . , S, ∀ω ∈ Ω,

(3.4.8)
ysω = ysl such that ξ[s]ω = ξ[s]l, ∀s ∈ S, ∀ω, l ∈ Ω.

Then, the Forecasted Value of the Stochastic Solution (FVSS) is defined as:

FV SS = RP − EFV. (3.4.9)

This parameter represents how much the RP solution x∗ improves the FV solution
xFs , s ∈ S in terms of the expectation of the total profits, according to the representation
of the future expressed through ξ.

The same relationship shown in Equation 3.4.6 is defined for FV SS and RP . This
is:

FVSSr = 100× FV SS

EFV
. (3.4.10)
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The definition of a good mathematical problem
is the mathematics it generates rather
than the problem itself.

— Andrew Wiles
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As has been introduced, the scenario trees are a way to represent the uncertainty that
results from a sequence of decisions in the stages of Multistage Stochastic Programming
(MSP) problems. In this chapter, two MSP models are presented. The first of these
models is an Electricity Markets (EM) application for optimizing Virtual Power Plant
(VPP) (which comprises a Wind Power Plant (WPP) and Battery Energy Storage
System (BESS)) participation in the MIBEL (Day-Ahead Market (DM), Intra-day
Market (IM) and Secondary Reserve Market (RM)) considering Imbalance Settlements
(IB) (Section 4.1). The second model is an Electrical Distribution Networks (EDN)
application for the optimal operation of EDN while considering BESS (Section 4.2), such
that it minimizes the total cost of energy purchased from the Distribution Substation
(DSS), Distributed Generators (DG) and RSs. For each model, several important aspects
are presented in the following. Firstly, the real problems being treated are introduced
(Sections 4.1.1 and 4.2.1). Secondly, we study the uncertainty and decision process of
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each problem, which have resulted in the scenario tree structures we apply to the MSP
models (Sections 4.1.2 and 4.2.2). Finally, the Multistage Stochastic Wind Battery
Virtual Power Plant model (MSWBVPP model) and the Multistage Stochastic Optimal
Operation of Distribution Networks model (MSOODN model) are presented in Sections
4.1.3 and 4.2.3, respectively. The scenario tree structures and MSP models are the main
results of this chapter.

4.1. Scenario Tree for the MSWBVPP Model

In this section, we provide all the details about the general structure of the scenario
tree for the MSWBVPP model. Firstly, Section 4.1.1 provides a brief introduction
to EM and renewables. In this case, we explain how a WPP-BESS (our VPP) can
participate in EM. Then, Section 4.1.2 gives details about the uncertainty and decision
process that govern the problem and thus result in the definition of the scenario tree.
Finally, Section 4.1.3 presents the modeled MSWBVPP.

4.1.1. EM and Renewables

An EM is a system that allow producers and consumers to buy and sell energy,
thereby fixing an electricity clearing price by means of the price mechanism. On the
Iberian peninsula, the EM is known as the Iberian electricity market (MIBEL1 being
its Spanish acronym), and it integrates both the Portuguese and Spanish electrical
systems. In general, EM involve two different entities: 1) the market agents, which are
companies authorized to participate in the EM as sellers or buyers; and, 2) the market
operators, who are public companies committed to the organization and management of
the markets. Regarding the market operators, there are two types: 1) the Independent
Market Operators (IMO), which are responsible for the economic management; and
2) the Independent System Operators (ISO), who are in charge of the operations
management of the system. In the MIBEL, the IMO is called OMIE2; and the ISO is
called REE3. OMIE manages the DM where agents (producers, consumers, retailers,
etc.) sell and buy electricity, as well as the IM where agents may once again buy and sell
electricity, if necessary, to fill the gap between scheduled and current production. REE
guarantees optimal operation of the electricity system through technical restrictions,
ancillary services markets (primary, secondary and tertiary markets), and IB. Figure

1 Mercado Ibérico de la Electricidad – MIBEL. http://mibel.com/es/home_es/
2 Operador del Mercado Ibérico de Electricidad – OMIE. http://www.omie.es/inicio
3 Red Eléctrica de España – REE. https://www.ree.es/es

http://mibel.com/es/home_es/
http://www.omie.es/inicio
https://www.ree.es/es
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4.1.1 shows a graphic description of the MIBEL, where the squares with red borders
indicate the services will be taken into account this study.

The MIBEL works in the following way. Tomorrow is day N and today is day N − 1.
At 12:00 on day N − 1, the first auction takes place: the DM. In this market, the energy
price (clearing price) for the next 24 hours is negotiated before the DM closes. The REE
checks the program (technical restriction) resulting from the DM. In the event this is
not technically feasible, modifications are generally sent to the OMIE. After the DM
closes, the REE manages the ancillary services markets that aim to ensure that the
supply is carried out under conditions of safety and profitability at all times. There are
three ancillary services: primary, secondary and tertiary. Primary corresponds to small
imbalances, which are obligatory for all generators. Secondary (or RM) maintains the
generation-demand balance by correcting deviations. Tertiary restores the reserve in
the case that it is being used, which would be carried out at the last hour of day N .
After the RM, we have the first IM session, which allows the agents participating in the
DM to manage their previous positions. This is an effective mechanism for resolving
incidents and changes in the forecasted supply and demand.

EM
(MIBEL)

DM
(Day-ahead Market)

IMO
(OMIE)

ISO
(REE)

IM
(Intraday Market)

Spot Markets
RM

(Secondary Reserves Market)

Ancillary

Services Markets

IB
(Imbalances Settlements)

Primary Reserves

Technical

Restrictions

Tertiary Reserve

Services Adjustment Markets

Figura 4.1.1: The MIBEL structure.

The sequence of processes in each session of the IM are as follows: throughout the six
sessions that are distributed throughout each day, supply and demand can be adjusted
at all hours. The opening hours are 17:00, 21:00, 01:00, 04:00, 09:00 and 14:00, from
the first to the final session, respectively. In each IM trading session, the deviation can
be identified a few hours before dispatch and is treated by the IB4. In Figure 4.1.2, we

4 More details in: https://www.boe.es/eli/es/res/2015/12/23/(3) for the day-ahead and intraday
markets, and https://www.boe.es/diario_boe/txt.php?id=BOE-A-2015-13875 for the ancillary
services markets and imbalance settlement.

 https://www.boe.es/eli/es/res/2015/12/23/(3)
https://www.boe.es/diario_boe/txt.php?id=BOE-A-2015-13875
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summarize the MIBEL operation. Regarding the IM, the arrows show the opening hours
for each IM session and the bars under the blue arrow, their respective programming
horizon. The arrows of each IM session has the same colour as their bar.

On the other hand, the market participants are companies authorized to buy and
sell energy. Among these, two must be highlighted: 1) the price maker, which is a
firm whose products have a single demand and is able to set its cum price; and 2) the
price taker, who mandatorily accepts the common price of the market, which is usually
imposed by the price maker. As the objects of this study, we deal with a special type
of price takers known as renewable energy producers. These producers are renowned
for their irrefutable significance in recent decades, due to environmental concerns, the
intense growth of emerging countries, the ensuing inflationary effect on primary energy
sources, and liberalization of Europe’s energy sector. In particular, the renewable energy
producers that we study are producers that use wind to provide power through turbines.
These are known as wind energy producers (referred to here as WPP5).

Day N-1 Day N
12:00 2:00

Day-Ahead
Market

Secondary Reserves
Market

Technical
Restrictions

17:0021:00

Intraday
Market

Imbalance
Settlement

17:00

IM1, ..., IM6
IM1

RM

DM

...

IB

1:00

D+1

Figura 4.1.2: The MIBEL operation.

In the MIBEL, WPP started participating in the spot market before 1 January 2008
and received a clearing price plus a fixed subsidy in accordance with an incentive system.
The rules of this participation were defined in RD 436/20046. Later, the initial regulation
was modified to establish an efficient incentive system for stimulating investment. This
modification is mandated in RD 661/20077. During 2010, a strong debate began on the
regulation of new installations, with diverging opinions on the role of developing wind
energy in the Spanish market. On the one hand, the government underlined the necessity
to reduce the subsidy deficit; while on the other hand, wind energy companies rejected
any possibility of performing like other technologies in the market, since investment
costs in the sector were still very high. In recent years, the maturity and volume achieved

5 A WPP is a collection of wind turbines that act together as a single power station (Breeze, 2016).
6 RD 436/2004, from March 12: https://www.boe.es/eli/es/rd/2004/03/12/436
7 RD 661/2007, from May 25: https://www.boe.es/eli/es/rd/2007/05/25/661/con

https://www.boe.es/eli/es/rd/2004/03/12/436
https://www.boe.es/eli/es/rd/2007/05/25/661/con
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by renewable energy sources (mainly wind) have driven important regulatory changes
in Spain. These took effect in 2014 when RD 413/20148 authorized participation in the
services adjustment market of WPP, who in 2016 began to participate in at least two
of the Services Adjustment Markets, specifically the IB and tertiary market. All these
reasons justify the need to develop competitive strategies for a WPP participation in
the EM, and this has been the goal of researchers in the last few years.

Currently, Wind Power (WP) is the renewable energy source that, together with
photovoltaic solar energy, represents the first of the modern renewable technologies.
Nevertheless, due to its intermittency, this source acts without any control, which may
lead to inefficiency in both a technical and economical sense. In recent years, studies
have focused on smoothing out WP fluctuation in order to dispatch it correctly to
the power grid, thus avoiding system faults. On the other hand, in a competitive,
deregulated electricity market, the financial issues relevant to economic revenue are
of the most significance for these types of energy sources, because the amortization
of investment and operability cost is a priority for these producers. Nowadays, one
solution for addressing these challenges can be found in the use of a storage system
with proper control mechanisms; thus, these drawbacks can be resolved by means of a
VPP comprising a WPP and storage system.

VPP
WPP

BE
SS

Secondary
reserve market

Day-ahead
market

Intraday
market

Imbalance settlement

Figura 4.1.3: Operation of a VPP in the EM.

A VPP is a cluster of generator units, controllable loads and storage systems
aggregated together to operate as a single power plant (Lombardi et al., 2009). In our
case, the VPP consists of a WPP and BESS. We are interested in this producer sending
bids to the MIBEL, especially in the spot markets (DM and IM) and in two of the

8 RD 413/2014, from June 6: https://www.boe.es/eli/es/rd/2014/06/06/413.

https://www.boe.es/eli/es/rd/2014/06/06/413
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services adjustment markets (RM and IB). Figure 4.1.3 displays the representation of
the VPP operating in the MIBEL. This figure illustrates the VPP comprising of a WP
and a BESS that can offer energy to the DM and it can offer or sell to all IM sessions;
henceforth, the deviations of this operation can be controlled by participation in the
IBs. In particular, the energy stored in the BESS can be offered and sold directly in the
RM.

In Spain, two experimental projects where conducted using a VPP comprising WPP
and BESS: 1) by Acciona in Barasoain (2013)9, and 2) by Gamesa in La Muela (2016)10.
The first is a wind storage solution connected to the network and which provides
advanced technology services for analyzing and improving the quality of the energy
that is injected into the system. The second is an ‘off-grid’ system that supplies energy
to areas with no access to the electricity network. Neither of these exceeds the MW
of storage and they are connected to a single wind turbine. Nowadays, Iberdrola has
the first non-experimental wind farm with a storage system, generating 21 MW of
power with 12 MW of storage11. These latest developments confirm that a VPP can be
an efficient tool for supporting intermittence, and it can attenuate the fluctuations of
WP to the point that even VPP can participate in the MIBEL just like as any other
producers.

In general, the operation of the VPP is justified through some research by Ding
et al. (2016); Heredia et al. (2018); Wang et al. (2019); González-Garrido et al. (2019);
Banshwar et al. (2019); Wozabal and Rameseder (2020). In each of these studies, a VPP
strategy is proposed for optimal participation in the EM. In particular, we propose a
generalization of the study shown in Heredia et al. (2018), although here we consider
the entire spot market.

4.1.2. Uncertainty and the Decision Process

As part of the study, the uncertainty presents in the MSWBVPP model is analyzed.
Thus, we propose using scenario trees to obtain an appropriate representation of this
uncertainty. In order to achieve this goal, we need to define the relationship between
the model’s parameters and variables as well as the elements of these scenario trees,
which is the objective of this section. Firstly, the random parameters are defined in
Table 4.1.1. Note that each random variable is a vector, which in most cases is high

9 Available at: https://www.acciona-energia.com/areas-of-activity/wind-power/major-
projects/experimental-wind-power-area-barasoain/

10 Available at: http://www.ite.es/en/gamesa-completa-desarrollo-sistema-offgrid-la-
puesta-marcha-una-bateria-almacenamiento-prototipo/

11 Available in Spanish at: https://elperiodicodelaenergia.com/iberdrola-promueve-el-
primer-parque-eolico-con-sistema-de-almacenamiento-de-espana-en-canarias/

 https://www.acciona-energia.com/areas-of-activity/wind-power/major-projects/experimental-wind-power-area-barasoain/
 https://www.acciona-energia.com/areas-of-activity/wind-power/major-projects/experimental-wind-power-area-barasoain/
http://www.ite.es/en/gamesa-completa-desarrollo-sistema-offgrid-la-puesta-marcha-una-bateria-almacenamiento-prototipo/
http://www.ite.es/en/gamesa-completa-desarrollo-sistema-offgrid-la-puesta-marcha-una-bateria-almacenamiento-prototipo/
https://elperiodicodelaenergia.com/iberdrola-promueve-el-primer-parque-eolico-con-sistema-de-almacenamiento-de-espana-en-canarias/
https://elperiodicodelaenergia.com/iberdrola-promueve-el-primer-parque-eolico-con-sistema-de-almacenamiento-de-espana-en-canarias/
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dimensionality. Secondly, the uncertainty is represented by the decision variables that
are defined by the VPP operations, which are subject to market bidding and the hourly
operations of the BESS (charges and discharges), as well as the hourly IB. In Table
4.1.2, the decision variables associated with this problem are laid out. These also have
the characteristic of high dimensionality.

λD ∈ R24 Clearing prices of the DM.
λR ∈ R24 Clearing prices of the RM.
λI1 ∈ R24 Clearing prices of the first IM session (IM1).
λI2 ∈ R24 Clearing prices of the second IM session (IM2).
λI3 ∈ R20 Clearing prices of the third IM session (IM3).
λI4 ∈ R17 Clearing prices of the fourth IM session (IM4).
λI5 ∈ R13 Clearing prices of the fifth IM session (IM5).
λI6 ∈ R9 Clearing prices of the sixth IM session (IM6).
λI7 ∈ R3 Clearing prices of the seventh IM session (IM7),

(This is the first session the of present day).
λIB+ ∈ R24 Prices for positive IB.
λIB− ∈ R24 Prices for negative IB.
pW ∈ R24 Hourly WP production.

Cuadro 4.1.1: Random parameters of VPP participation in the EM.

pD ∈ R24 Energy of the price-accepting bid for the 24 DM auctions.
rU , rD ∈ R24 upward/downward secondary reserve bid for the 24 RM auctions.
pI1 ∈ R24 Energy of the price-accepting bid for the 24 IM1 auctions.
pI2 ∈ R24 Energy of the price-accepting bid for the 24 IM2 auctions.
pI3 ∈ R20 Energy of the price accepting bid for the 20 IM3 auctions.
pI4 ∈ R17 Energy of the price-accepting bid for the 17 IM4 auctions.
pI5 ∈ R12 Energy of the price-accepting bid for the 13 IM5 auctions.
pI6 ∈ R6 Energy of the price-accepting bid for the 6 IM6 auctions.
pI7 ∈ R3 Energy of the price-accepting bid for the 3 IM7 auctions,

(this is the IM1 of the present day).
c,d ∈ R24 Hourly charges/discharges of the BESS.
pIB+ ,pIB− ∈ R24 Imbalances (positive and negative) of the 24 VPP auctions.

Cuadro 4.1.2: Operational decision variables of VPP participation in the EM.

Regarding IB, these are deviations between the true real-time generation of the VPP
and the energy cleared in the DM and IM. These IB satisfy the following conditions: If
the real generation exceed the cleared energy, some collection rights will be paid to the
VPP owner (λIB′+). Otherwise, if the real generation is less than the cleared energy, the
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VPP owner must face some payment obligations (λIB′−). To simplify the notation, we
will apply λIB =

(
λIB

′
+ ,λIB

′
−
)′

for the prices and pIB =
(
pIB′+ ,pIB′−

)′
for energy to

refer to the complete set of positive and negative imbalances.

On the other hand, to relate the random variables with decision variables is
appropriate to define the decision process that explain the situation. In this case,
for optimal VPP participation in the EM, the initial day is today (day N − 1). For this
day, it is necessary to define the VPP’s operational plan for the next day (day N). We
take into consideration that various market elements have been negotiated and cleared
on day N − 1 and that other elements have been settled on day N + 1. The decision
process with the temporal distribution is defined as follows:

Stage 0 is associated with the DM. At this stage, the DM bid (the first-state
variables pD) is submitted to OMIE no later than 12:00.

Stage 1 is where OMIE makes the DM clearing prices (λD) public by 13:00, and
the state variable of the bid to the RM (rU , rD) is submitted to OMIE no later
than 14:00. There are no recourse variables for this stage.

Stage 2 is associated with the RM and the IM1. OMIE makes the RM clearing
prices λR public by 14:00, and the bid to IM1 (state variable pI1) can be submitted
to OMIE until 16:00. Again, there are not any recourse variables for this stage.

Stage 3 is associated with the IM1 and the IM2. The clearing prices to the IM1
(λI1) are published at 19:00 and the bid to IM2 (state variable pI2) can be submitted
to OMIE until 22:00. Again, there are no recourse variables for this stage.

Stage 4 to 33 have two forms for the decision sequence.

i) Stages 4 , 7 , 11 , 16 , 21 , 28 : the clearing prices for the remaining IM
sessions (λI2, . . . , λI7) are publicly communicated some time after each stage.
The operation of the BESS for these stages is decided (whether energy
is charged or drained from the batteries, indicated, respectively, by state
variables ct and dt for t ∈ {1, 3, 6, 10, 14, 20}). There are no recourse variables
for these stages.

ii) Stages 5–6 , 8–10 , 12–15 , 17–20 , 22–27 , 29–33 : the VPP and BESS opera-
tions. During these stages, there will be some wind production (the state varia-
bles pWt , t = 1, . . . , 24), each possible outcome of which sets a different value
for the imbalances (the recourse variables pIBt , t = 1, . . . , 24). Following this,
the BESS operation is decided (ct, dt, t = 2, 4, 5, 7, 8, 9, 11, 12, 13, 15, . . . , 19, 21
, . . . , 24).

Stage 34 : the final imbalance value is known.
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Table 4.1.3 describes the decision process along with the different stages of the
problem. Each row corresponds to a decision stage.

Let S = {s ∈ N : s = 1, ..., 34} be the set of stages for this problem. The stochastic
process that governs this problem is defined as follows

{
ξ̃s
}
s∈S

(4.1.1)

and xs = (ys, zs)′ is the decision variable for stage s ∈ S. For instance:

Index of stage s (first column)

Random variable ξ̃s of stage s ∈ S (second column)

Recourse variables zs of stage s ∈ S (third column): recourse actions to be taken
after the random variables at the given stage s ∈ S are disclosed

State variables ys of stage s ∈ S (fourth column): these are the decisions to be
taken at stage s ∈ S, before the random variable at state s+ 1 is known.

Therefore, the decision sequences for this stage (as defined by the decision process)
are:

decided x0
observed−−−−−−−→ ξ̃1

decided−−−−−−→ x1
observed−−−−−−−→, . . . , decided−−−−−−→ x34

observed−−−−−−−→ ξ̃34

where x0 = y0,x1 = y1,x2 = y2,x3 = y3,x4 = y4, coincide with state variables,
respectively, of the energy of the price-accepting bid for the 24 DM auctions, upward/-
downward secondary reserve bid for the 24 RM auctions, energy of the price-accepting
bid for the 24 IM1 auctions, energy of the price-accepting bid for the 24 IM2 auctions
and the charges/discharges of the BESS in hour 1. On the other hand, the decision
process ends with the observation of IB parameter λIB in stage 34.

As an example:

For s = 5, the random variable is given by ξ̃5 = p̃W1 , where p̃W1 is the first
component of the scenario vector p̃W ; the decision variable is given by x5 =
(pIB1 , c2, d2)′.

For s = 17, the random variable is given by ξ̃17 = λ̃
I

5 = (λ̃I5,1, . . . , λ̃I5,24)′, and the
decision variable is given by x16 = (c10, d10)′.
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Cuadro 4.1.3: Decision stages of the MSWBVPP model.
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Figure 4.1.4 illustrates the structure of the scenario tree for the case study. For the
sake of clarity, a binary tree (2 realizations per node) is represented, but there can be
more branches. The branches correspond to the disclosure of some random variable
of stage s ∈ S; the nodes are associated with different sets of the decision variables.
The scenario tree in Figure 4.1.4 has 34 stages. The nodes are associated with the
decision variables xs, s ∈ S. The edges are the realizations of a multistage stochastic
process {ξ̃s} s∈S . The red path is a scenario of the tree. By establishing as a basis that
Ω = {ω : ω = 1, ..., N} is the scenario index, the scenario associated with index ω ∈ Ω
therefore has the related probabilities Pω > 0, ω ∈ Ω, such that ∑

ω∈Ω
Pω = 1, which is

defined as:

ξ̃ω =
(
λ̃
D′

ω , λ̃
R′

ω , λ̃
I′

1ω, λ̃
I′

2ω, p̃
W
1ω, p̃

W
2ω, λ̃

I′

3ω, p̃
W
3ω, . . . , p̃

W
5ω, λ̃

I′

4ω, p̃
W
6ω, . . . , p̃

W
9ω, λ̃

I′

5ω,

p̃W10ω, . . . , p̃
W
13ω, λ̃

I′

6ω, p̃
W
14ω, . . . , p̃

W
19ω, λ̃

I′

7ω, p̃
W
20ω, . . . , p̃

W
24ω, λ̃

IB
′

ω

)′
(4.1.2)

Figure 4.1.4, shows the representation of scenarios ξ̃ω in the tree (red line) with its
probability Pω.
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Figura 4.1.4: Scenario tree structure for the MSWBVPP model.

If two scenarios belong to the same group in a given stage and have the same
realization of the uncertain parameter up to that stage, then they belong to the same
set. This set is defined as a scenario cluster. There are as many clusters as there are
different possible values for the associated random variable that is defined at every
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stage. Let C be the set of scenario clusters and Cs the subset of scenario clusters that
belong to state s ∈ S, such that C = ⋃

s∈S Cs; and Cks is the scenario cluster k for stage
s ∈ S. For instance, Figure 4.1.4 shows two clusters associated with the first stage
(DM), where each one has a different value for the DM clearing prices. Consequently,
the set of clusters for stage 1 is:
C1 = {C1

1 , C
2
1}, |C1| = 2

with the following two clusters:
C1

1 = {C1
11, C

1
12 . . . , C

1
1|C1

1 |
} , C2

1 = {C2
1 , C

2
1 . . . , C

1
1|C2

1 |
}.

The DM clearing price for each scenario λ̃D1 , λ̃
D

2 is assigned to clusters C1
1 , C2

1 ,
respectively. If the DM has 4 time periods, then λ̃D1 = (λ̃D11, λ̃

D
21, λ̃

D
31), λ̃D2 = (λ̃D12, λ̃

D
22, λ̃

D
32),

where the second index indicates the hour where the DM clearing price is known. Also,
as the scenario clusters are related in accordance with non-anticipativity principle for the
MSP model, we have the following assertions; λ̃Dtω = λ̃Dt1 for every ω ∈ C1

1 , t ∈ {1, 2, 3}
and λ̃D1ω = λ̃D12 for every ω ∈ C2

1 , t ∈ {1, 2}. In general, this is λ̃D1ω = λ̃
D

1k for every ω ∈ Ck1 .
This establishes that the values in the decision variables at every stage s ∈ S must
coincide with those scenarios belonging to the same cluster Cks , that is:

rUtω = rUtl and rDtω = rDtl , ∀t ∈ T , ω, l ∈ Cks , ω 6= l, Cks ∈ Cks , k = 1, . . . , |Cs|, s ∈ S.

For stage 2, the scenario clusters have a size of four: C2 = {C1
2 , C

2
2 , C

3
2 , C

4
2}, |C2| = 4,

with the four clusters being C1
2 = {C1

21, C
1
22, . . . , C

1
2|C1

2 |
} , C2

2 = {C2
21, C

2
22, . . . , C

2
2|C2

2 |
},

C3
2 = {C3

21, C
3
22, . . . , C

3
2|C3

2 |
}, and C4

2 = {C4
21, C

4
22, . . . , C

4
2|C4

2 |
}. These are associated with

the RM clearing prices λ̃Rω , ω = 1, . . . , 4. The first two scenarios belong, respectively, to
the first two clusters C1

2 , C2
2 and the final two scenarios are associated to the final two

clusters C3
2 , C4

2 . Figure 4.1.4 demonstrates the scenario clusters pertaining to the two
first stages. The same definitions and relationships can be sequentially applied to the
next stages.

4.1.3. The MSWBVPP Model

Heredia et al. (2018) introduced a MSP model of a VPP comprising a WPP and
BESS that operated in the DM, RM, IM1, and IB. Here, we proposed expanding on
that work by generalizing the VPP’s participation in all IM sessions are considered.
The MSP model to be developed has many periods for each decision stage of the VPP’s
participation in the EM. Regarding the operability of the VPP, each hourly time period
represents a stage. The decision variables for the optimal participation of a VPP will
correspond to the quantity bids of all markets in each stage of the BESS together
with the associated imbalances. The sets, subsets, parameters, random parameters, and
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decision variables of the model are listed. Then, the objective function and constraints
are presented. The mathematical formulation is as follows:

Sets

S: Index set of stage s.
Ω: Index set of scenarios ω.
T : Index set of time period t.
I: Index set of IM session i.
C: Set of scenario clusters.
Ti ⊆ T : Set of hours where the IM session i acts.
It ⊆ I: Subsets of IM session i ∈ I that act in time period t ∈ T .
Cs ⊆ C: Subset of scenario clusters that belong to stage s ∈ S
Cks ⊆ Cs: Subset of scenario clusters k for stage s ∈ S.

Random Parameters

λ̃Dtω: DM clearing price in time period t ∈ T and scenario ω ∈ Ω (e/MWh).
λ̃Rtω: RM clearing price in time period t ∈ T and scenario ω ∈ Ω (e/MWh).
λ̃Iitω: Clearing price of IM session i ∈ I in time period t ∈ Ti and scenario ω ∈ Ω

(e/MWh).
λ̃Iitω: Clearing price of IM session i ∈ I in time period t ∈ Ti and scenario ω ∈ Ω

(e/MWh).
λ̃
IB+
tω , λ̃

IB−
tω : Positive and negative IB price at time period t ∈ T and scenario ω ∈ Ω

(e/MWh).
p̃Wtω : WP Production at time period t ∈ T and scenario ω ∈ Ω (MWh).
Pω: Probability of scenario ω ∈ Ω.

Parameters

dmax: BESS’s maximum charging/discharging rate (MW).
γRTE : Round trip efficiency.
emax: Battery capacity (MWh).
soc0, soc|T |: Minimum/maximum State Of Charge (SOC).
cycmax: Maximum number of charge/discharge cycles before end of life.
EOL: End of life of BESS (years).
pW
t
, pWt : Lower/upper bound of forecasted wind production for a given time period

t ∈ T (MWh)
∆tSR: Time response of the RM (hours).
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pI
itω
, pIitω: Lower/upper bound of the IM session i ∈ I energy bid for

time period t ∈ Ti and scenario ω ∈ Ω (MWh).
p
IB+
tω , p

IB−
tω : Upper bound to the positive and negative IB price at time

period t ∈ T and scenario ω ∈ Ω (e/MWh).
pD
t

= 0,1 ·mins∈S p̃Wtω ): Lower bound of the energy bid in DM at time period t ∈ T
(MWh).

pDt = (dmax +maxs∈S p̃
W
tω ): Upper bound of the energy bid in DM at time period t ∈ T

(MWh).

Variables

pDt : Energy of the price-accepting bid for time period t ∈ T of the DM (MWh).
rUtω, r

D
tω: Upward/downward RM bid of the VPP at time period t ∈ T and scenario ω ∈ Ω

(MW ).
pIitω: Energy of the price-accepting bid of IM session i ∈ I at time period t ∈ Ti and

scenario ω ∈ Ω (MWh).
pITtω : Total energy of the price-accepting bid of IM at time period t ∈ T and scenario

ω ∈ Ω (MWh).
ctω, dtω: Charges/discharges of the BESS at time period t ∈ T and scenario ω ∈ Ω.
p
IB+
tω , p

IB−
tω : IB (positive and negative) of the VPP at time period t ∈ T and scenario

ω ∈ Ω (MWh).
soctω: SOC at time period t ∈ {0} ∪ T finalization and scenario ω ∈ Ω.

ipDt =

 1 if the VPP is bidding to the DM at time period t ∈ T ,
0 otherwise.

idt =

 1 if BESS is discharging at time period t ∈ T and scenario ω ∈ Ω,
0 otherwise.

The formulation of the MWBVPP is as follows:

Max
∑
t∈T

λ
D
t · pDt +

∑
t∈T , ω∈Ω

Pω · λ̃Rtω ·
(
rUtω + rDtω

)
+

∑
i∈I, t∈Ti, ω∈Ω

Pω · λ̃Iitω · pIitω

+
∑

t∈T , ω∈Ω
Pω · λ̃IB+

tω · pIB+
tω +

∑
t∈T , ω∈Ω

Pω · λ̃IB−tω · pIB−tω (4.1.3)

s.t.
pD
t
· ipDt ≤ pDt ≤ pDt · ipDt ∀t ∈ T (4.1.4)

pIitωip
D
t ≤ pIitω ≤ pIitωip

D
t ∀i ∈ I, ∀t ∈ Ti,∀ω ∈ Ω (4.1.5)

pITtω =
∑
i∈It

pIitω ∀t ∈ T , ∀ω ∈ Ω (4.1.6)

0 ≤ dtω ≤ dmax · idtω ∀t ∈ T , ∀ω ∈ Ω (4.1.7)
0 ≤ ctω ≤ dmax · (1− idtω) ∀t ∈ T , ∀ω ∈ Ω (4.1.8)
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soctω = soct−1ω +
∆t(ctω −

dtω
γRTE

)

emax
∀t ∈ T , ∀ω ∈ Ω (4.1.9)

socmin ≤ soctω ≤ socmax ∀t ∈ T , ∀ω ∈ Ω (4.1.10)
soc0ω = soc0, soctω = socT ∀ω ∈ Ω (4.1.11)∑
t∈T ,ω∈Ω

Pω (dtω + ctω)

2 · emax
≤ cycmax

(365 · EOL) ∀t ∈ T , ∀ω ∈ Ω (4.1.12)

rUtω + rDtω ≤ 2 · dmax · ipDt ∀t ∈ T , ∀ω ∈ Ω (4.1.13)
0 ≤ rUtω ≤ dmax − (dtω − ctω) ∀t ∈ T , ∀ω ∈ Ω (4.1.14)
0 ≤ rDtω ≤ dmax − (ctω − dtω) ∀t ∈ T ,∀Ω ∈ Ω (4.1.15)

socmin+
∆tSR rUtω

γRTE

emax
≤soctω≤socmax+ ∆tSR · rDtω · γRTE

emax
∀t ∈ T , ∀ω ∈ Ω (4.1.16)

(4.1.17)

p
IB+
tω − pIB−tω =

(
p̃Wtω + dtω

)
−
(
pDt + pITtω + ctω

)
∀t ∈ T , ∀ω ∈ Ω (4.1.18)

0 ≤ pIB+
tω ≤ pIB+

tω , 0 ≤ pIB−tω ≤ pIB−tω ∀t ∈ T , ∀ω ∈ Ω (4.1.19)
rUtω = rUtl s = 1,∀t ∈ T ,∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.20)
rDtω = rDtl s = 1,∀t ∈ T ,∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.21)
pIitω = pIitl i = 1, s = 2,∀t ∈ T ,∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.22)
pIitω = pIitl i = 2, s = 3,∀t ∈ Ti, ∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.23)
ctω = ctl s = 4, 5,∀t ∈ T ,∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.24)
pIitω = pIitl i = 3, s = 6,∀t ∈ Ti, ∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.25)
ctω = ctl s = 7, ..., 9,∀t ∈ T , ∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.26)
pIitω = pIitl i = 4, s = 10,∀t ∈ Ti,∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.27)
ctω = ctl s = 11, ..., 14, ∀t ∈ T , ∀ω, l ∈ Cks−1, ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.28)
pIitω = pIitl i = 5, s = 15,∀t ∈ Ti,∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.29)
ctω = ctl s = 16, ..., 19, ∀t ∈ T , ∀ω, l ∈ Cks−1, ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.30)
pIitω = pIitl i = 6, s = 20,∀t ∈ Ti,∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.31)
ctω = ctl s = 21, ..., 26, ∀t ∈ T , ∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.32)
pIitω = pIitl i = 7, s = 27,∀t ∈ T , ∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k = 1, ..., |Cs| (4.1.33)
ctω = ctl s = 28, ..., 32, ∀t ∈ T \{0}, ∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k=1, ..., |Cs| (4.1.34)

p
IB+
tω =p

IB+
tl s = 33,∀t ∈ T \{0},∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k=1, ..., |Cs| (4.1.35)

p
IB−
tω =p

IB−
tl s = 33,∀t ∈ T \{0}, ∀ω, l ∈ Cks , ω 6= l, Cks ∈ Cs, k=1, ..., |Cs| (4.1.36)

The objective function (4.1.3) maximizes the expected value of the total profit of
the VPP. The constraints (4.1.4) and (4.1.5) are associated with the conditions for spot
markets (DM and IM), which define the relationships of energy bids in the DM and
IM as well as the binary variables in accordance with the DM offer. The constraints



62 4.2. Scenario Tree for the MSOODN Model

(4.1.6)–(4.1.12) are conditions for the BESS operation. Specifically, the constraints
(4.1.6) defines the total energy bid of IM as being equal to the sum of energy bid in each
IM session. The constraints (4.1.7) and (4.1.8) describe the charging/discharging state
and limits and defines the binary variable idtω. The constraint (4.1.9) expresses the
value of the SOC at the end of time period t ∈ T in terms of the charge/discharge. The
constraint (4.1.10) imposes the safety and technical limits on the SOC. The constraint
(4.1.11) defines the value of the SOC at the beginning and end of the optimization
horizon. The constraint (4.1.12) limits the total number of cycles. The constraints
(4.1.13)–(4.1.18) are conditions for the RM. Thus, The constraint (4.1.13) defines the
VPP period t ∈ T in which it is allowed to bid on the RM, as this is specifically where
the DM bid has been accepted. The constraints (4.1.14) and (4.1.15) determine the limits
of the BESS’s reserve availability. The constraint (4.1.16) modifies the operational range
of the SOC according to the value of the downward and upward reserve bid. Finally,
constraints (4.1.18) and (4.1.19) impose some limits to the value of the imbalances. In
order to represent the decision-making process in the MSP model, the nonanticipativity
constraints in (4.1.20)–(4.1.36) are established. These constraints maintain that, at
every stage of the scenario tree, the variables associated with those scenarios in the
same scenario cluster must have the same value.

4.2. Scenario Tree for the MSOODN Model

The focus of this section is on the problems of optimizing the operation of EDN
while taking into account the presence of renewables in the network. First, Section 4.2.1
defines the problem under consideration. Section 4.2.2 elaborates on the uncertainty
and on the decision process, which are represented in a scenario tree. Finally, Section
4.2.3 presents the novel MSOODN model.

4.2.1. EDN and Renewables

EDN is a system of interconnected elements such as, storage facilities and transpor-
tation systems that receive inventories to be delivered to the customers. Deciding on an
EDN involve evaluating minimum losses, voltage deviations at the consumer end, and
maximum reliability. All together, these are referred to as: the Optimal Operation of
the EDN problem (OODN).

The specific components of an EDN are as follows. The Loads (L) are network
components that consume active electric power. An On-Load Tap-Charger (OLTC)
and a Voltage Regulator (VR) aim to improve voltage levels in EDN. A Distribution
Substation (DSS) is a synchronous machine source of both active and reactive power;
it transforms voltage from high to low, or vice versa; and it performs a number of
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several other vital functions. A Switchable Capacitor Bank (SCB), is a group of several
capacitors with the same rating that are connected in series or parallel to each other
in order to store electrical energy, and it is thus used to counteract or correct a power
factor lag or phase shift in an alternating power current supply. The Impedance (R)
is the effective resistance of an electrical circuit or component of alternating currents,
which arise from the combined effects of ohmic resistance and reactance. Finally, we
have the Ground, which is a direct electrical connection to the earth. The objective
of OODN is to minimize the total cost of energy purchased from the DSS and DG
while taking into account the following control variables: active and reactive DG of
dispatchable power; the number of SCB units in operation; and the tap position of
OLTC. Figure 4.2.1 illustrates an EDN with seven nodes and several transmission lines.

Traditionally, dispatchable generated power consists of conventional energy sources,
which are primarily coal, natural gas, and oil. However, recent sources of renewable energy
have more and more been receiving considerable attention. The most common Renewable
Sources (RS) are; Solar, Wind, Water (Hydropower), Biomass and Geothermal. RS
is propitious to reducing carbon emissions. A drawback is they cannot usually be
scheduled, due to their intermittent character, thus resulting in power-supply issues
in the EDN. Therefore, a BESS is normally used to mitigate the adverse effects that
the RS may have on a consumer’s renewable energy, specifically by reducing the active
power loss, alleviating the voltage fluctuations, and minimizing the electricity cost.
Figure 4.2.2 shows an EDN with solar and wind RS.
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67
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Figura 4.2.1: Illustration of a EDN.
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Figura 4.2.2: Illustration of a EDN with RS.

The presence of RS in EDN injects uncertainty into the process of optimization,
because the decisions that must be made depend on power generation produced by RS.
Other sources of uncertainty in the OODN are related to DG energy loads and purchase
prices. This study scrutinizes the uncertainty in loads and RS power generation having
that the OODN can be view as a Stochastic Optimal Operation of Distribution Network
(denoted by SOODN). Also, when we optimize the SOODN in a given future horizon,
the use of multistage (or multiperiod) is recommended. This is called MSOODN. Here,
we develop a new MSOODN model that considers a radial EDN with DSS, RS, BESS,
Loads, Impedances and SCB, together with uncertainty in the loads and RS power
generation.

4.2.2. Uncertainty and the Decision Process

The uncertainty for the MSOODN problem is reflected in the loads and power
generation of the RS, and it is represented by the random parameters of the MSP model.
In Table 4.2.1, the vectors of random parameters for MSOODN are shown.

PD
i ∈ R24 Active power load in node i of EDN.

QD
i ∈ R24 Reactive power load in node i of EDN.

Ppv
i ∈ R24 Active power generation of solar photovoltaic RS in node i of EDN.

Cuadro 4.2.1: Random parameters of the MSOODN problem.

The decision variables correspond to the BESS operation and the EDN steady-state
operation. Decision variables are presented in Table 4.2.2.
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Vi: Voltage magnitude for 24 hours at node i (kV ).
Iij: Current magnitude for 24 hours of branch ij (A).
PS
i : Active power supplied for 24 hours by substation at node i (kV ).

QS
i : Reactive power supplied for 24 hours by substation at node i (kvar).

Pij: Active power flow of branch ij for 24 hours (kV ).
Qij: Reactive power flow of branch ij at time period t and scenario w (kvar).
Pch
i ,Pdis

i : Active power of charge and discharge of the BESS at node i for 24 hours
of EDN operation (kW ).

SOCi: State of charge of the BESS at node i for 24 hours of EDN operation. ( %).
Lshed
i : Load shedding at node i for 24 hours of EDN operation.

bchi ,bdisi : Operation state of the BESS at node i, for 24 hours of EDN operation
( %).

Cuadro 4.2.2: Decision variables of the MSOODN problem.

On the other hand, the decision process for MSOODN is programmed during different
time periods. Today is day N − 1, and a plan for each time period in day N needs to
be defined. This is:

Hour 0: decisions are made after hour 1 for the BESS operation in the EDN (the
first-state variable).

Hour 1-23: loads and PV generation corresponding to each hour are known
(random variables). During these hours, there will be some voltage and current
magnitude and active/reactive power supplied by DSS, and active/reactive power
flow in the transmission lines (recourse variables). Prior to these hours, decisions
are made regarding the charges and discharges of the BESS in the EDN (state
variables).

Hour 24: the loads and PV generation after hour 24 are known; the recourse
variables are decided on for this hour.

Table 4.2.3 shows the decision process that lays out the sequences of the decision
stage and the events in an hourly time period per day.

The stages (time periods) are defined as Ωt = {t : t = 0, ..., 24}, and they correspond
to the hourly time period per day. The stochastic process is defined by:

ξ̃ =
{
ξ̃t
}24

t=1
, (4.2.1)

where ξ̃t =
(
P̃D
it , Q̃

D
it , P̃

uv
it

)
, is the realization of the random variable for t ∈ Ωt.
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Let xt = (yt, zt) be the sets of the decision variables in the MSOODN model.
The yt, zt that correspond to the recourse variables and state variables are defined by
Equations (4.2.2) and (4.2.3):

yt =
(
Vit, Iijt, P

S
it , Q

S
it, Pijt, Qijt, P

ch
it , SOCit, L

shedit , bchit , b
dis
it

)
, (4.2.2)

and
zt =

(
bchit , b

dis
it , α

+
it , α

−
it , β

+
it , β

+
it

)
, (4.2.3)

where yt defines decisions for the voltage and current magnitude, active/reactive power
supplied by the DSS, and active/reactive power flow at the transmission lines; and zt
decides the charges and discharges of the BESS in the EDN.

Therefore, the decision sequences for this stage (as defined by the decision process)
are:

decided x0
observed−−−−−−−→ ξ̃1

decided−−−−−−→ x1
observed−−−−−−−→, . . . , observed−−−−−−−→ ξ̃24

decided−−−−−−→ x24

where x0 = z0 defines the operation of the BESS at the beginning of hour 1, and
x24 = y24 is the possible outcomes solution, which is composed of different values for
the network’s electrical magnitudes, BESS load, and load shedding at the end of hour
24.

The sequential decision process is modeled appropriately as an MSP problem. The
multivariate stochastic process (Equation (4.2.1)) is approximated by a multivariate
stochastic process ξtr with scenarios ω ∈ Ωω, and it presumed to be as follows:

ξ ≈ ξtr = {{ξt}t∈Ωt : ω ∈ Ωω} ,

By establishing as a basis that Ω = {ω : ω = 1, ..., N} is the scenario index, the scenario
associated with index ω ∈ Ω therefore has the related probabilities Pω > 0, ω ∈ Ω, such
that ∑

ω∈Ω
Pω = 1, which is defined as:

ξ̃ω =
(
P̃D

1ω, Q̃
D
1ω, P̃

uv
1ω , . . . , P̃

D
24ω, Q̃

D
24ω, P̃

uv
24ω

)′
A scenario tree approximates the multistage stochastic process ξtr. Figure 4.2.3,
represents a binary scenario tree structure; moreover, without losing generality, the
scenario tree can have more scenarios for this problem. The scenario tree has 32 scenarios
(|Ωω| = 32) with their associated probabilities, which are denoted by πω, ω ∈ Ωω, and
24 time periods (running time t = 0).
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Cuadro 4.2.3: Sequence of random disclosures and decision stage.
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ξ11

ξ12

t = 0 t = 1 t = 2 t = 3 t = 4 ...
t = 23 t = 24 = Ωt
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...

ω = l
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ω = |Ωω|
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y24, z24
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ξ4l

ξ23l
ξ24l

ξtl

y23l, z23l

C11

C12

C21

C22

C23

C24

Figura 4.2.3: Scenario tree structure for the MSOODN model.

Due to the tree structure of the process ξtr, the value of the random parameter for
all the scenarios shares a node at time period t. For instance, scenarios 1 to 4 share the
same node 1 at time period 1; consequently, the value ξ̃1,ω = ξ̃11 for ω = 1, ..., 4, is as
stated:

ξ̃1ω = ξ̃11, ω = C1
1 = {1, 2, 3, 4}.

The same relationships are found for every edge k and stage t, as follows:

ξ̃tω = ξ̃tk, ω = Ckt , ∀k ∈ Ct, ∀t ∈ Ωt/{0},

where the set Ct is defined as the scenario cluster set of stage t, and Ckt is the scenario
cluster k at stage t.

Figure 4.2.3 demonstrates the scenario cluster for stages 1 and 2 (or time periods).
Time period 1 has the scenario clusters C1

1 , C2
1 ; and time period 2 has C1

2 , C2
2 , C3

2 , C4
2 .

For t = 1, . . . , 23, the recourse variable yt and the optimal value of time period
zt depend on the realization of the random variables ξ̃[t]. This condition is called the
non-anticipativity principle for MSP. Optimal decisions are made at every stage t; i.e.,
variables yt, zt, cannot depend on the realizations of the random parameter in future
stages. In other words, the value of y∗tω and z∗tω must be the same for every scenario ω
sharing the same value of ξ̃[t] (i.e., sets Ckt ). What guarantees this principle is denoted
as Non-anticipativity Constraints (NAC), being:

ytω = ytω′ , ∀ω, ω
′ = Ckt , ∀k ∈ Ct, ∀t ∈ Ωt \ {0}
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ztω = ztω′ , ∀ω, ω
′ = Ckt, ∀k ∈ Ct, ∀t ∈ Ωt \ {|Ωt|}

The NAC applied for t = 0 implies that there will be a single value of the variable
x0, which is the only set of variables that does not depend on the scenario. This is
recorded before the first time period corresponding to what is known as the here and
now, which includes the optimal operation of the BESS for the next stage (time period)
with respect to any possible outcome of the stochastic process ξ̃.

ξ11

t = 0 t = 1 t = 2 t = 3 t = 4 ...
t = 23 t = 24 = Ωt

ξ21

ξ22

ξ34

ω = 1

ω = 4
...

ω = l

...

ω = |Ωω|

...

...

...

y11, z11

y21, z21

y22, z22

y34, z34

y4l, z4l

ytl, ztl

y24l
y22l, z22l

ξ4l

ξ23l
ξ24l

ξtl

y23l, z23l

Figura 4.2.4: Scenario tree for stage 2, to known ξ1.

Before stage 0, the value of ξ̃1 is known, which allows for a new analogous problem
to be solved one step ahead with a scenario tree being the subtree of ξtr associated
with ξ̃1. For instance, should ξ̃1 = ξ̃11, then the scenario tree would be the one shown
in Figure 4.2.4.

In the scenario tree of Figure 4.2.4, the value of the decision for stage 1 has been
set at its optimal values y∗1 and z∗1. At this point, the value of ξ̃2 is known. The new
problem’s decision variables y and z are those associated with scenarios ω = 1, ..., 8 and
time periods t = 2, ..., |Ωt|. The variables z21 becomes the new “here and now”. This
procedure can be applied to the successive stages in order to obtain the BESS’s optimal
operation for all time periods of interest.

4.2.3. The MSOODN model

Here, a new MSOODN model for the optimal operation of distribution networks
with BESS is set out. This model contemplates the following assumptions:
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A radial EDN composed of a DSS, SCB, L, photovoltaic RS and BESS.

The loads are represented as random active and reactive power.

The power generation of photovoltaic RS are represented as a random active
power.

For any time period t ∈ Ωt, we apply the structure of the multistage stochastic
process in the form of a scenario tree, the different elements, sets, parameters and
decision variables. The mathematical formulation for this as follows:

Sets

Ωn: Index set of nodes.
Ωb: Index set of branches.
Ωt: Index set of time periods/decision stages.
Ωw: Index set of scenarios.
ΩS : index set of distribution substation nodes.
Ωcb: Index set of fixed capacitor banks.
Ωvr: Index set of voltage regulators.
Ωdg: Index set of dispatchable distributed generators.
Ωpv: Index set of solar photovoltaic RS.
Ωbt: Index set of battery storage systems.
Ct: Cluster set of time period t ∈ Ωt.
Ckt ⊆ Ct: Cluster k of cluster set Ct for time period t ∈ Ωt (k = 1, . . . , |Ct|).

Parameters

γi: Load curtailment penalty i ∈ Ωn (US$/KWh).
cSt : Energy procurement price by the utility in time period t ∈ Ωt (US$/KWh).
∆t: Duration time of each load level in time period t ∈ Ωt (hours).
Rij: Resistance of branch ij ∈ Ωb (Ω).
Xij: Reactance of branch ij ∈ Ωb Ωb (Ω).
Zij: Impedance of branch ij ∈ Ωb (Ω).
Iij: Maximum current magnitude of branch ij ∈ Ωb (A).
V , V : Minimum/maximum voltage magnitude (kV).
V : Nominal voltage magnitude (kV).
S
S
i : Maximum apparent power limit of substation at node i ∈ Ωn (kVA).

P ch
i , P

ch
i : Minimum/maximum charging power of BESS at node i ∈ Ωn (kW).
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SOCi, SOCi: Minimum/maximum stage of of BESS charge at node i ∈ Ωn (%).
ηchi , η

dis
i : Charging/discharging efficiency of the BESS at node i ∈ Ωn.

∆cb

ij : Maximum variation of capacitor bank units at node i ∈ Ωcb operating
in the considered time period.

∆vr

ij : Maximum variation of steps of the tap of the voltage regulator in
branch ij ∈ Ωvr in the considered time period.

∆bt,ch

i ,∆bt,dis

i : Maximum number of BESS charging/discharging cycles at node i ∈ Ωn.
Qcb
i : Reactive power injection of the fixed capacitor bank at node i ∈ Ωn

(kVAr).
pfdg

i
, pf

dg

i : Lower/upper limit of the capacity power factor for the distributed
generator at node i ∈ Ωn.

Sdgi : Maximum apparent power limit of the distributed generator at node
i ∈ Ωn (kVA).

qcbi : Reactive power capacity of each module of the capacitor bank at node
i ∈ Ωcb (kVAr).

ncbi : Maximum integer number of capacitor bank units at node i ∈ Ωcb.
rvrij : Regulation percentage of the voltage regulator connected to branch

ij ∈ Ωvr.
l
vr

ij : Maximum number of steps of the voltage regulator in branch ij ∈ Ωvr.

Random Parameters

πω: Probability of scenario ω ∈ Ωω.
P̃Ditω: Active power load at node i ∈ Ωn at time period t ∈ Ωt and scenario ω ∈ Ωω

(kW).

Q̃Ditω: Reactive power load at node i ∈ Ωn at time period t ∈ Ωt and scenario ω ∈ Ωω

(kvar).
P̃ pv
itω: Active power generation of solar photovoltaic plant at node i ∈ Ωn at time period

t ∈ Ωt and scenario ω ∈ Ωω (kW).

Decision Variables

Vitω: Voltage magnitude at node i ∈ Ωn at time period t and scenario ω ∈ Ωω

(kV).
V c
ijtkω: Correction variable used in the linearization of the voltage regulator model

ij ∈ Ωvr at time period t and scenario ω ∈ Ωω (kV).
Iijtω: Current magnitude of branch ij ∈ Ωb at time period t ∈ Ωt and scenario

ω ∈ Ωω (A).
V sqr
itω , I

sqr
ijtω: Squares of Vitw and Iijtω (kV 2)/A2).



72 4.2. Scenario Tree for the MSOODN Model

P Sitω: Active power supplied by substation at node i ∈ Ωn, at time
period t ∈ Ωt and scenario ω ∈ Ωω (kW).

P dg
itω ≥ 0: Active power generation of the distributed generator at node

i ∈ Ωn, at time period t ∈ Ωt and scenario ω ∈ Ωω (kW).
QSitω: Reactive power supplied by substation at node i ∈ Ωn, at time

period t ∈ Ωt and scenario ω ∈ Ωω (kVAr).
Qdg
itω: Reactive power generation of the distributed generator at node

i ∈ Ωn, at time period t ∈ Ωt and scenario ω ∈ Ωω (kVAr).
Qcb
it : Reactive power injection of the capacitor bank i ∈ Ωcb, at time

period t ∈ Ωt and scenario ω ∈ Ωω (kVAr).
Pijtω: Active power flow of branch ij ∈ Ωb, at time period t ∈ Ωt and

scenario ω ∈ Ωω (kW).
Qijtω: Reactive power flow of branch ij ∈ Ωb, at time period t ∈ Ωt and

scenario ω ∈ Ωω (kvar).
SOCitω: State of charge of BESS at node i ∈ Ωn at time period t ∈ Ωt,

and scenario ω ∈ Ωω (%).
n+
itω ≥ 0, n−itω ≥ 0: Auxiliary variables used to linearize the term |ncbitω − ncbit−1ω|.
l+ijtω ≥ 0, l−ijtω ≥ 0: Auxiliary variables used to linearize the term |lvrijtω − lvrijt−1ω|.
α+
itω ≥ 0, α−itω ≥ 0: Auxiliary variables used to linearize the term |bchitω − bchit−1ω|.
β+
itω ≥ 0, β−itω ≥ 0: Auxiliary variables used to linearize the term |bdisitω − bdisit−1ω|.
Lsheditω : Load shedding at node i ∈ Ωn, at time period t ∈ Ωt and scenario

ω ∈ Ωω.
bchitω, b

dis
itω: BESS operation state at node i ∈ Ωn, time period t ∈ Ωt, and

scenario ω ∈ Ωω.
Binary Variables

P ch
itω, P

dis
itω : Active power of BESS charge and discharge at node i ∈ Ωi at time period

t ∈ Ωt, and scenario ω ∈ Ωω (kW).
bvrijtkω: Binary variable that defines the operation region for the tap of the voltage

regulator in branch ij ∈ Ωvr, time period t ∈ Ωt and scenario ω ∈ Ωω.

Integer Variables

ncbitω: Number of capacitor bank units in operation at node i ∈ Ωcb, time period
t ∈ Ωt and scenario ω ∈ Ωω.

lvrijtω: Number of tap steps of the voltage regulator connected to branch ij ∈ Ωvr,
time period t ∈ Ωt and scenario ω ∈ Ωω.

The MSOODN formulation is the following:
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Min
∑
ω∈Ωω

πω
∑
t∈Ωt

∆t

∑
i∈ΩS

cSt P
S
itω +

∑
i∈Ωn

γiP̃
D
itωL

shed
itω

 (4.2.4)

s.t.∑
ki∈Ωb

Pkitω −
∑
ij∈Ωb

(
Pijtω +RijIsqrijtω

)
+PSitω+

∑
i∈Ωpv

P̃ pvitω

+
∑
i∈Ωbt

(
P disitω + P chitω

)
= P̃Ditω

(
1− Lsheditω

)
∀i ∈ Ωn, ∀t ∈ Ωt,∀ω ∈ Ωω (4.2.5)

∑
ki∈Ωb

Qkitω −
∑
ij∈Ωb

(
Qijtω +XijI

sqr
ijtω

)
+QSitω+Qcbit

= Q̃Ditω

(
1− Lsheditω

)
∀i ∈ Ωn, ∀t ∈ Ωt,∀ω ∈ Ωω (4.2.6)

0 ≤ Lsheditω ≤ 1 ∀i ∈ Ωn, ∀iΩt ∈ ∀ω ∈ Ωω (4.2.7)
Isqrijtω · V

sqr
ijtω ≥ P

2
ijtω +Q2

ijtω ∀ij ∈ Ωb, ∀t ∈ Ωt,∀ω ∈ Ωω (4.2.8)

0 ≤ Isqrijtω ≤ I
2
ij ∀ij ∈ Ωb, ∀t ∈ Ωt,∀ω ∈ Ωω (4.2.9)

V 2 ≤ V sqr
itω ≤ V

2 ∀i ∈ Ωn, ∀t ∈ Ωt,∀ω ∈ Ωω (4.2.10)
V sqr
itω − V

sqr
jtω = 2 (RijPijtω +XijQijtω) + Zsqrij Isqrijtω ∀ij ∈ Ωb, ∀t ∈ Ωt,∀ω ∈ Ωω (4.2.11)(

P dgitω

)2
+
(
Qdgitω

)2
≤
(
S
dg
)2

∀ij ∈ Ωdg,∀t ∈ Ωt, ∀ω ∈ Ωω (4.2.12)

− P dgitω · tan
(
cos−1

(
pf

dg
i

))
≤ Qdgitω ∀i ∈ Ωdg,∀t ∈ Ωt, ∀ω ∈ Ωω (4.2.13)

Qdgitω ≤ P
dg
itw · tan

(
cos−1

(
pfdg

i

))
∀i ∈ Ωdg,∀t ∈ Ωt, ∀ω ∈ Ωω (4.2.14)

Qcbitw = ncbitω · qcbi ∀i ∈ Ωcb, ∀t ∈ Ωt,∀ω ∈ Ωω (4.2.15)
0 ≤ ncbitω ≤ ncbi ∀i ∈ Ωcb, ∀t ∈ Ωt,∀ω ∈ Ωω (4.2.16)∑
tinωt

(
n+
itω + n−itω

)
≤ ∆cb

i ∀i ∈ Ωcb, ω ∈ Ωω (4.2.17)

ncbitω − ncbit−1ω ≤ n+
itω + n−itω ∀i ∈ Ωcb, ∀t ∈ Ωt, ω ∈ Ωω (4.2.18)

V sqr
jtω =

2lvrij∑
k=0

(1 + rvrij
(k − lvrij )
l
vr
ij

)2

· V c
ijtωk

 ∀ij ∈ Ωvr,∀t ∈ Ωt, ∀ω ∈ Ωω (4.2.19)

V sqr · bvrijtkω ≤ V c
ijtkω ≤ V

sqr · bvrijtkω ∀ij ∈ Ωvr,∀t ∈ Ωt, ∀ω ∈ Ωω

∀k = 0, . . . , 2lvrij (4.2.20)
V sqr(1− bvrijtkω) ≤ V sqr

id − V
c
ijtkω ≤ V

sqr(1− bvrijtkω) ∀ij ∈ Ωvr,∀t ∈ Ωt, ∀ω ∈ Ωω

∀k = 0, . . . , 2lvrij (4.2.21)∑
tinωt

(
l+itω + l−itω

)
≤ ∆vr

i ∀i ∈ Ωcb, ω ∈ Ωω (4.2.22)

2lvrij∑
k=0

[
(k − lvrij )bijtkω

]
−

2lvrij∑
k=0

[
(k − lvrij )bijt−1kω

]
∀ij ∈ Ωvr,∀t ∈ Ωt, ω ∈ Ωω

= l+ijtω − l
−
ijtω ∀k = 0, . . . , 2lvrij (4.2.23)(

PSitw

)2
+
(
QSitw

)2
≤
(
S
S)2

∀ij ∈ ΩS , ∀t ∈ Ωt,∀ω ∈ Ωω (4.2.24)
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SOCitω = SOCit−1ω + ∆t

(
P chitωη

ch
i −

P disitω

ηdisi

)
∀i ∈ Ωbt,∀t ∈ Ωt,∀ω ∈ Ωω (4.2.25)

SOCi ≤ SOCitω ≤ SOCi ∀i ∈ Ωbt,∀t ∈ Ωt,∀ω ∈ Ωω (4.2.26)

P chi · bchitω ≤ P chitω ≤ P
ch
i · bchitω ∀i ∈ Ωbt,∀t ∈ Ωt,∀ω ∈ Ωω (4.2.27)

P disi · bdisitω ≤ P disitω ≤ P
dis
i · bdisitω ∀i ∈ Ωbt,∀t ∈ Ωt,∀ω ∈ Ωω (4.2.28)

bchitω + bdisitω ≤ 1 ∀i ∈ Ωbt,∀t ∈ Ωt,∀ω ∈ Ωω (4.2.29)
bchitω + bchit−1ω = α+

itω + α−itω ∀i ∈ Ωbt,∀t ∈ Ωt,∀ω ∈ Ωω (4.2.30)∑
t∈Ωt

(α+
itω + α−itω) ≤ ∆ch

ij ∀i ∈ Ωbt,∀ω ∈ Ωω (4.2.31)

α+
itω ≤ 1 ∀i ∈ Ωbt,∀ω ∈ Ωω (4.2.32)
α−itω ≤ 1 ∀i ∈ Ωbt,∀ω ∈ Ωω (4.2.33)
bchitω + bchit−1ω = β+

itω + β−itω ∀i ∈ Ωbt,∀t ∈ Ωt,∀ω ∈ Ωω (4.2.34)∑
t∈Ωt

(β+
itω + β−itω) ≤ ∆dis

ij ∀i ∈ Ωbt,∀ω ∈ Ωω (4.2.35)

β+
itω ≤ 1 ∀i ∈ Ωbt,∀ω ∈ Ωω (4.2.36)
β−itω ≤ 1 ∀i ∈ Ωbt,∀ω ∈ Ωω (4.2.37)
V sqr
itω =V sqr

itω′
∀i∈Ωbt,∀t∈Ωt\{0},∀ω, ω

′ ∈Ckt , ω6=ω
′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.38)

PSitω=PS
itω′

∀i∈Ωbt,∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=ω

′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.39)

QSitω=QS
itω′

∀i∈Ωbt,∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=ω

′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.40)

P dgitω=P dg
itω′

∀i∈Ωdg, ∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=ω

′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.41)

Qdgitω=Qdg
itω′

∀i∈Ωdg,∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=ω

′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.42)

ncbitω=ncb
itω′

∀i∈Ωcb,∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=ω

′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.43)

Qcbitω=Qcb
itω′

∀i∈Ωcb,∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=ω

′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.44)

V c
ijtkω=V c

ijtkω′
∀i, j∈Ωvr,∀t∈Ωt\{0},∀ω, ω

′ ∈Ckt , ω6=ω
′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.45)

bvrijtkω=bvr
ijtkω′

∀i, j∈Ωvr,∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=ω

′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.46)

I2
itω=I2

itω′
∀i∈Ωbt, ∀t∈Ωt\{0},∀ω, ω

′ ∈Ckt , ω6=ω
′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.47)

Pijtω=Pijtw′ ∀ij∈Ωb,∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=ω′, Ckt ∈Ct−1, k=1, ..., |Ct| (4.2.48)

Qijtω=Qijtω′ ∀ij∈Ωb,∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=ω′, Ckt ∈Ct−1, k=1, ..., |Ct| (4.2.49)

Lsheditω =Lshed
itω′

∀i∈Ωbt, ∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=ω

′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.50)

Qscbitω=Qscb
itω′

∀i∈Ωbt, ∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=w

′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.51)

P chitω=P ch
itω′

∀i∈Ωbt, ∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=ω

′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.52)

P disitω=P dis
itω′

∀i∈Ωbt, ∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=ω

′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.53)

SOCitω=SOCitω′∀i∈Ωbt, ∀t∈Ωt\{0},∀ω, ω
′ ∈Ckt , ω6=ω

′
, Ckt ∈Ct, k=1, ..., |Ct| (4.2.54)

bchitω = bch
itω
′ ∀i∈Ωbt,∀t ∈ Ωt\{|Ωt|},∀ω, ω

′ ∈Ckt , ω 6=ω
′
, Ckt ∈ Ct, k=1, ..., |Ct| (4.2.55)

bdisitω = bdis
itω′

∀i∈Ωbt,∀t ∈ Ωt\{|Ωt|},∀ω, ω
′ ∈Ckt−1, ω 6=ω

′
, Ckt ∈ Ct, k=1, ..., |Ct| (4.2.56)

n+
itω = n+

itω′ ∀i∈Ωcb,∀t ∈ Ωt\{|Ωt|}, ∀ω, ω
′ ∈Ckt , ω 6=ω

′
, Ckt ∈ Ct, k=1, ..., |Ct| (4.2.57)

n−itω = n−itω′ ∀i∈Ωcb,∀t ∈ Ωt\{|Ωt|}, ∀ω, ω
′ ∈Ckt , ω 6=ω

′
, Ckt ∈ Ct, k=1, ..., |Ct| (4.2.58)
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l+itω = l+itω′ ∀i, j∈Ωvr,∀t ∈ Ωt\{|Ωt|}, ∀ω, ω
′ ∈Ckt , ω 6=ω

′
, Ckt ∈ Ct, k=1, ..., |Ct| (4.2.59)

l−itω = l−itω′ ∀i, j∈Ωvr,∀t ∈ Ωt\{|Ωt|}, ∀ω, ω
′ ∈Ckt , ω 6=ω

′
, Ckt ∈ Ct, k=1, ..., |Ct| (4.2.60)

α+
itω = α+

itω′ ∀i∈Ωbt,∀t ∈ Ωt\{|Ωt|},∀ω, ω
′ ∈Ckt , ω 6=ω

′
, Ckt ∈ Ct, k=1, ..., |Ct| (4.2.61)

α−itω = α−itω′ ∀i∈Ωbt,∀t ∈ Ωt\{|Ωt|},∀ω, ω
′ ∈Ckt , ω 6=ω

′
, Ckt ∈ Ct, k = 1, ..., |Ct| (4.2.62)

β+
itω = β+

itω′ ∀i ∈ Ωbt, ∀t ∈ Ωt\{|Ωt|},∀ω, ω′∈Ckt , ω 6= ω′, Ckt ∈ Ct, k=1, ..., |Ct| (4.2.63)
β−itω = β−itω′ ∀i ∈ Ωbt, ∀t ∈ Ωt\{|Ωt|},∀ω, ω

′ ∈Ckt , ω 6= ω
′
, Ckt ∈ Ct, k=1, ..., |Ct| (4.2.64)

From the main grid, the objective function (4.2.4) minimizes the expected value
for the energy procurement cost, and the expected cost is not served. The constraints
(4.2.5)–(4.2.11) represent the conditions of the EDN’s steady-state operations. Specifi-
cally, the constraint (4.2.5) represents the steady-state operation of a balanced radial
EDN, which includes the active power losses of branch ij, the active power injected by
the photovoltaic-RS plants, the active power injected or consumed by the BESS, and the
active power consumed by loads. The constraint (4.2.6) represents the reactive power
balance, which considers the reactive power losses of the branch ij, the reactive power
injection of a capacitor bank for voltage support, and the reactive power consumed by
loads. The constraint (4.2.7) provides the conditions to enable load shedding. In order
to cope with the non-linearities of the steady-state operation model of the EDN, certain
constraints for the MSOODN model are redefined with other constraints resulting from
the linearization of some variables. The constraint (4.2.8) calculates the branch current
magnitudes. The constraints (4.2.9) and (4.2.10) express in linear form, respectively,
the voltage limits of the nodes and the conductor currents at their maximum supported
current. The constraint (4.2.11) is the sum of contributions from all devices to the
active and reactive power balance equations. The constraints (4.2.12)–(4.2.14) model
the operation of dispatchable DG. The constraints (4.2.15)–(4.2.18) model the SCB
operations. The constraints (4.2.19)–(4.2.23) model the VR operations. The constraints
(4.2.24) models the generation capacity of DSS. The constraints (4.2.25)–(4.2.37), in
general, provide the BESS conditions. More specifically, Constraints (4.2.25) and (4.2.26)
are the conditions and limits for the SOC value; the set of constraints (4.2.27)–(4.2.29)
define the BESS operation based on a binary variable for the charging mode and the
discharging mode, both of which are restricted by their minimum and maximum limits;
and the constraints (4.2.30)–(4.2.37) provide the linearization of conditions related
to the maximum number of charging cycles. First, the different binary variables for
two auxiliary continuous variables are replaced. Then, the BESS charging mode is
identified by the sum of the auxiliary variables. Lastly, limits are imposed on these
auxiliary variables. The constraints (4.2.38)–(4.2.64) show the NAC associated with
to the optimal operation of a distribution network while considering BESS. These
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constraints result of in the information that represents the problem’s uncertainty that
is gathered the scenario tree.

4.3. Analysis of the Decision Processes Developed

In this section, a brief analysis of the differences between the decision processes
presented in Sections 4.1.2 and 4.2.2 of the MSWBVPP and MSOODN models is
developed. Table 4.3.1 shows the main characteristics of the decision processes. Firstly,
the uncertainty is defined by different sets of the random variables for each decision
process. For the MSWBVPP model, the uncertainty is defined by the EM prices and WP
generation. By contrast, for the MSOODN model, it is defined by the power load and
PV generation. Secondly, the stages are defined by different facts. For the MSWBVPP
model, the stages refer to the steps and time periods in the decision process. In this
case, a stage is defined by the EM bid (step) or charge/discharge of the BESS or IB bid
in hour(s) defined. On the other hand, the stages of the MSOODN model are referred
to time periods where the decision variable is known (decisions are made after hour t for
the BESS operation in the EDN or loads and PV generation after hour t are decided).
Lastly, the lengths between subsequent stages are different. For the MSWBVPP model,
these lengths are unequal, because they depend on the time periods in occur a step.
For example, the horizon for the IM1 session is 24 hours, and the horizon for IM6 is
9 hours. Conversely, for the MSOODN model, the length between subsequent stages
is equal for each stage. This length is defined by random variables that occur in each
hour t, i.e., in each hour the values of the loads and PV generation are known.

MSWBVPP model MSOODN model

Uncertainty EM prices and PW generation Power Loads and PV generation
Stages Steps and time periods Time periods
Lengths between stages Unequal lengths Equal lengths

Cuadro 4.3.1: Main characteristics of the decision processes.

Figure 4.3.1 presents the two final characteristics represented in a time line. The
first time line (Figure (a)) represents the stages and the lengths between them, the early
stages of the decision process for the MSWBVPP model. The stages are characterized
by a combination of decision step and time periods and the length between stages are
unequal. On the other hand, for the MSOODN model, the second time line (Figure
(b)) shows that the stages are time periods with equal lengths between these stages.
The scenario tree generation methodology was developed taking into account these
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differences. The scenario trees structure resulting for the MSWBVPP and MSOODN
models are shown in Figures 4.1.4 and 4.2.3, respectively.

(b)

time
period

time
period

...
DSSBESS and DSSBESS

time
period

DM RM IM1 IM2 BESS IB and BESS IB and IM3

...
step step step step time period time

period
time period and

step

(a) Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Stage 0 Stage 1 Stage 24

24 hours 24 hours 24 hours24 hours 20 hours

1 hour 1 hour 1 hour

1 hour1 hour

Stage 7 ...

Stage 2 ... Stage 23

Figura 4.3.1: Some characteristics of the decision processes for the MSP models.

4.4. Optimizer Selection to Solve the MSP Models
Developed

Since the MSP models of this research have been modelled in its deterministic
representation (see Section 3.2), and that the main objective of this thesis is the
representation of the uncertainty using scenario trees, we have limited to use available
general-purpose solvers to solve the models. In this regard, we show the type of
programming model which represents each MSP model in order to use appropriate
algorithms to solve these models. The MSWBVPP model is a Mixed-Integer Linear
Program (MILP) model for which exists solvers that lead to good solutions in a relatively
short amount of time (Frangioni and Gentile, 2006). On the other hand, the MSOODN
model is a Mixed-Integer Second-Order Cone Programming (MISOCP) model which is
a generalization of Mixed-Integer Linear Optimization. In this case, convergence to the
optimum is guaranteed using classical optimization techniques (Macedo et al., 2015).

Based on this information, we propose to use CPLEX - an executable program
developed by IBM ILOG - to solve both models. CPLEX is a software that can read a
problem interactively or from files in standard formats, solve the problem, and deliver
the solution collectively or into text files (Cplex, 2009). This program includes an
optimization suite of state-of-the-art solvers to resolve several types of programming
models (Linear Programming (LP), Mixed-Integer Programming (MIP), Quadratic
Programming (QP) and Quadratically-Constrained Programming problems (QCP),
among others). For MILP models, CPLEX has the branch-and-cut algorithm which
comprises a full set of presolving techniques, cutting planes, search strategies, and
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heuristic techniques for finding feasible solutions. Also, it has the dynamic search
algorithm which is a type of special search algorithm that can solve MILP. For MISOCP
models, CPLEX has two basic algorithms: (a) Second Order Cones Programming-Branch
and Bound (SOCP-B&B); (b) Outer Approximation-Branch and Bound (OA-B&B). In
our case, we have used the branch-and-cut algorithm to solve the MSWBVPP model,
with the following parameters definitions: presolve_eps=1.0e-07; and mipgap=0.005.
And for the MSOODN model, we have used the SOCP-B&B algorithm to obtain optimal
solutions, with a mipgap=0.01.
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In this chapter, we present and discuss the numerical results obtained from using
the scenario tree generation methodology (presented in Chapter 3) on the Multistage
Stochastic Wind Battery Virtual Power Plant model (MSWBVPP model) given in
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Chapter 4. Firstly, Section 5.3 presents the numerical results obtained after implementing
of the procedure described in Section 3.1. After that, Section 5.4 presents the numerical
results of scenario trees obtained through implementing the algorithms given in Section
3.3.2. Finally, Section 5.7 shows the numerical results for the quality evaluation of the
trees developed in Section 3.4.

5.1. VPP in EM Test

Our test considers the daily operations over the 24-h time periods T = {1, . . . , 24}
of a Virtual Power Plant (VPP) operating in Day-Ahead Market (DM), Secondary
Reserve Market (RM), Intra-day Markets (IM) and Imbalance Settlement (IB). Figure
5.1.1 shows the VPP in the Electricity Markets (EM) test that contains a Wind Power
(WP) with power peaks of 18 MW and a Battery Energy Storage System (BESS) with
a maximum capacity of 30 MWh. The objective was to maximize the expected value of
the total profit of the VPP. The total profit was given by the incomes generated by
sales of energy in the EM.

VPP

WPP

BE
SS

Secondary
reserve market

λRω

pWω

Day-ahead
market
λDω

Intraday
markets
λI1
ω , ..., λ

I7
ω

Imbalance settlement
λIBω

10 MW

BESS

18 MW

Figura 5.1.1: Operation of the VPP in the EM test.

As already stated, our aim is to find the optimal operation of the VPP with respect
to any possible outcome of the random variables. The random variables are associated
with the EM prices (λD,λR,λI1, . . . ,λI7,λIB) and WP generation (pW ). These are given
in Figure 5.1.1. The purpose of the following is to represent these random parameters
through a scenario tree built by the scenario tree procedure developed in this thesis.

5.2. Initial Considerations

All implementations of this chapter were carried out on a DELL PowerEdge R630
Server with 2 x Xeon E5-2697 v4 (2,3 GHz, 18Cores/36Threads, 45 MB cache) and
RAM 256 GB (8 x 32 GB RDIMM, 2400 MT/s). The first phase of the methodology
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generated scenarios by implementing the statistical and forecasting models together
with the bootstrapping technique, all of which were done using the software R-studio
(Team et al., 2015). For the second phase of the methodology, the algorithms were
implemented in AMPL (A Mathematical Programming Language) (Fourer et al. (1993)).
Finally, all runs of the MSWBVPP model were performed using AMPL to call the
optimizer CPLEX 12.8.0.01

5.3. Phase I: Scenario Generation

Similarly to Muñoz et al. (2013), we use factors when applying the Time Series
Factor Analysis (TSFA) technique for the data reduction. However, in contrast with
that study, we decided to use Vector Autoregressive (VAR) models for the one-step-
ahead forecast of the factors. Subsequently, we undid the TSFA transformation used for
obtaining the prediction of the next day for each hour’s random variables. Lastly, we
generated scenarios through bootstrap techniques. Section 5.3.1 shows the time series
characterization, and Sections 5.3.2–5.3.3 present the numerical experience resulting
from the adjusted statistical models and developed forecasts. Finally, we present the
numerical experience which yields the sets of scenarios that we use to generate the
scenario trees (Section 5.3.4).

5.3.1. MTS Characterization

As is well known for the optimal participation of a VPP in the EM, the uncertainty
is based on clearing prices and WP generation. This uncertainty is unknown and needs
to be forecasted. If the forecast is more accurate, the VPP can control its expected
benefits and bidding strategies, for which our objective in this case is to define good
accuracy. We previously focused on developing an easy procedure based on the TSFA
models used in electricity prices, but we are now going to use it in WP generation
too. The procedure is inspired by the work developed in Muñoz et al. (2013), with the
difference being that we use VAR models for one-step-ahead forecasting. Remembering
the Multivariate Time Series (MTS) concept, an MTS can be collected in a matrix as
shown in (5.3.1).

Our procedure is based on the interpretation of the EM prices and WP generation
as an MTS of an M -hour panel. The data used are the MIBEL prices and the WP
generation of one wind farm called Espina, located in Leon, Spain. The period covered

1 CPLEX, 2016. [Online]. Available: http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/


82 5.3. Phase I: Scenario Generation

is 1 January 2015 to 31 December 2016 (in this case, N = 731). We used this data for
the model’s adjustment and the verification of generated forecasts.

ξ =



ξ′
1

ξ′
2
...
ξ′

d

...
ξ′

N


=



ξ11 ξ12 . . . ξ1t . . . ξ1M

ξ21 ξ22 . . . ξ2t . . . ξ2M

...
...

. . .
...

. . .
...

ξd1 ξd2
... ξdt

... ξdM

...
...

. . .
...

. . .
...

ξN1 ξN2 . . . ξNt . . . ξNM


(5.3.1)

For the MIBEL prices, data come from the website of System Operator Information
System (e·sios: https://www.esios.ree.es/es), and they consist of the twenty-four
hourly prices for each day (in e/Mwh) of the MIBEL. Figure 5.3.1 represents the
plots of each MTS for the EM in the MIBEL (in this case DM, IM, RM, and IB). We
showed the MTS plots in such a way that the concept of MTS can be understood.
Figure 5.3.1 exhibits the MTS of the DM, RM and IM hourly prices. Figures 5.3.1a
and 5.3.1b show the MTS of the DM hourly prices

(
λD
)
and the RM hourly prices(

λR
)
, respectively. As seen in these figures, they have M= 24 random variables. Figures

5.3.1c–5.3.1i refer to the MTS of the IM hourly prices
(
λI1,λ

I
2,λ

I
3,λ

I
4,λ

I
5,λ

I
6,λ

I
7

)
. In

this case, the number of random variables varies, depending on the IM referenced, that
is M = {24, 24, 20, 17, 13, 9, 3}, respectively.

In the context of the MSP methodology applied to EM problems, the issue of
generating scenarios for imbalancing prices arises. The special relationship linking
the imbalancing prices and the day-ahead market makes generating scenarios for the
imbalancing prices quite different from generating scenarios for the rest of the random
variables involved in these kinds of problems. For this reason, instead of working directly
with λIB+

,λIB
− , we are going to use a transformation of parameter λIB, which is

defined by the terms λIB+ , λIB− and λD. This is given by the following function (with
d = 1, · · · , N, t = 1, · · · ,M .)

λIBdt (λIB+
dt , λIB

−
dt , λDdt) =



λIB
+

dt

λD
dt

≤ 1 if λIB
−

dt = λDdt

λIB
−

dt

λD
dt

≥ 1 if λIB
+

dt = λDdt

1 if λIB
+

dt = λIB
−

dt

E

[
λIB
−

dt

λD
dt

| rt > 1
]

if λIB
+

dt = λDdt = 0,

λIB
−

dt = λDdt > 0

(5.3.2)

Table 5.3.2 defines the MTS for the IB transformation parameter, where λIBdt is
defined by Equation (5.3.2)).

https://www.esios.ree.es/es
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MTS Time Series

λIB =
(
λIB

′

1 , . . . , λIB
′

d , . . . , λIB
′

N

)′
, 1 ≤ d ≤ N λIB

′

d =
(
λIBd1 , . . . , λ

IB
dt , . . . , λ

IB
dM

)
, 1 ≤ t ≤M

Cuadro 5.3.1: MTS of the IB transformation parameter.
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(a) Time series of λD.
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(b) Time series of λR.
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(c) Time series of λI1.
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(d) Time series of λI2.
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(e) Time series of λI3.
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(f) Time series of λI4.
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(g) Time series of λI5.
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(h) Time series of λI6.
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(i) Time series of λI7.

Figura 5.3.1: MTS of DM,RM and IM prices.
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Figure 5.3.2 exhibits the MTS of IB hourly prices and its transformation parameter,
where they have M = 24 random variables. Figures 5.3.2a–5.3.2b, show the MTS of
positive and negative IB hourly prices, respectively

(
λIB

+
,λIB

−). Figure 5.3.2c shows
the plots of λIB.

s
e

rie
.1

s
e

rie
.2

s
e

rie
.3

s
e

rie
.4

s
e

rie
.5

s
e

rie
.6

s
e

rie
.7

s
e

rie
.8

s
e

rie
.9

s
e

rie
.1

0

s
e

rie
.1

1

s
e

rie
.1

2

s
e

rie
.1

3

s
e

rie
.1

4

s
e

rie
.1

5

s
e

rie
.1

6

s
e

rie
.1

7

s
e

rie
.1

8

s
e

rie
.1

9

s
e

rie
.2

0

s
e

rie
.2

1

s
e

rie
.2

2

s
e

rie
.2

3

s
e

rie
.2

4

0 25
5

0
7

5
1

0
0

1
2

5
0 20

4
0

6
0

8
0 0 20

4
0

6
0 0 20

4
0

6
0 0 20

4
0

6
0 0 20

4
0

6
0

8
0 0 20

4
0

6
0

8
0 0 25

5
0

7
5 0 20

4
0

6
0

8
0 0 25
5

0
7

5
1

0
0

1
2

5
0 50

1
0

0
1

5
0

3
0

6
0

9
0 2
5

5
0

7
5

1
0

0
2

5
5

0
7

5 0 30
6

0
9

0 0 25
5

0
7

5
1

0
0

0 25
5

0
7

5 0 25
5

0
7

5

2
5

5
0

7
5

2
5

5
0

7
5

2
5

5
0

7
5

3
0

5
0

7
0

9
0

2
0

4
0

6
0

8
0

2
0

4
0

6
0

8
0

0
2

0
0

4
0

0
6

0
0

7
3

1

Euro/MWh

T
im

e
 [d

a
y
]

(a) Time Series of λIB+ .
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(b) Time Series of λIB− .
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(c) Time Series of λIB.

Figura 5.3.2: MTS of IB prices and its IB parameter.

Looking at all the plots (Figures 5.3.1 and 5.3.2), the general characteristics of the
MTS of the EM hourly prices and the IB transformation parameter show that the series
has no constant mean and variance, suggesting that the series are nonstationary. Also,
other characteristics can be observed, such as multiple seasonality (corresponding to a
daily and weekly periodicity); high frequency and volatility; and the presence of picks,
outliers and calendar effects (such as weekends and holidays).

Furthermore, the WP generation relied on data provided by Naturgy (https://
www.naturgy.es/) for the wind farm called Espina, located in Leon, Spain. Table 5.3.2
shows the general features of this wind farm.

Wind farm name: Espina
Wind farm type: Onshore wind farm
Country/zone/city: Leon/Castilla/La Espina
Turbine numbers: 9 turbines (power 2000 kW , diameter 87 m)
Total nominal power: 18,000 kW

Cuadro 5.3.2: Description of the wind farm Espina2.

2 Information available online at: https://www.thewindpower.net/windfarm_en_10569_espina.
php.

https://www.naturgy.es/
https://www.naturgy.es/
https://www.thewindpower.net/windfarm_en_10569_espina.php
https://www.thewindpower.net/windfarm_en_10569_espina.php
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Figure 5.3.3 refers to the MTS of WP generation (pW ), which has M = 24 random
variables (hours a day). The characteristics that we observed are strong non-stationary
processes, high volatility and variability, and the presence of outliers.
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Figura 5.3.3: Time series of pW .

5.3.2. Statistical Models

This section shows the numerical experience of the adjusted statistical models for a
particular set of data. In Section 5.3.2.1, we defined the data that we use as a sample
for model adjustment and the data that we use for model validation. Then, Section
5.3.2.2 presents the results obtained from the computational experiences that were
performed in order to achieve a reduction in the number of MTS variables that the
TSFA technique produced in this part of the study. Finally, Section 5.3.2.3 shows the
results obtained from adjusting the VAR models for either the common factors and
some MTS of this study. The validation of each adjusted model is also presented in this
section.

5.3.2.1. Initial Data

The MIBEL prices and WP generation are the random variables that we are going
to treat in this part of the study. The goal is to determine statistical models in order to
obtain short-term forecasts. Concerning this, we use the data over the period 1 January
2015 to 30 December 2016 as a sample for the estimation and model selection. The
first year (1 January to 31 December 2015) is used for initial calibration, and then we
update this data by adding a new day, e.g., 1 January 2016. This process is repeated
until 30 December 2016. This is the rolling calibration window. In Summary, we will
have 365 data calibrations and will adjust 366 models, by which the data calibration
of the final model has as between 1 January 2015 to 30 December 2016. Furthermore,
we define models for each MTS, where the number of variables is t = 1, . . . ,M , with
M ∈ {24, 20, 17, 13, 9, 3}.
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5.3.2.2. TSFA Models

Given that the MTS are highly dimensional, we wish to reduce these using TSFA.
This technique allows identifying common unobserved factors, which represent the
relationship between the hours of the day. The TSFA model is given by

ξd = α̂ + B̂F̂d + ε̂d (5.3.3)

where for all d = 1, . . . , N , ξd is an M × 1 vector of random variables, α is an M -row
vector of intercept parameters, B̂ is an M × k matrix parameter of factor loadings, F̂d

is an k× 1 vector of the Bartlett predictor (or common factors) values obtained through
the estimation, and ε̂d is a random M × 1 vector of estimated measurement errors.

We fix a number of the model’s factors given by Equation 5.3.3, which is based on the
the Comparative Fit Index (CFI) and the Root Mean Square Error of Approximation
(RMSEA) criteria described in Section 3.3.1.2. Table 5.3.3 presents the CFI and RMSEA
values that were defined in order to obtain the number of factors in each case. The third
column gives the CFI, showing that the values are greater than 0.95. The fourth-column
presents the RMSEA values. For λD,λR,λI1,λI2,λI3,λR,PW , the values are between
0.05 and 0.08, thus constituting an acceptable range of fit. Then, for the cases λI4,λI5,
the values are lower than 0.05, establishing a good fit. Lastly, for λI6, the criterion
presents a bad fit in certain cases and an acceptable range of fit in the other cases.
Table 5.3.3 shows the relationship between the MTS and the common factors. The
first and fourth columns show the names of the original MTS and the common factors,
respectively. The second and sixth columns present the original numbers of variables
(M) and numbers of factors (k) obtained, respectively. The reduction in the data is
clear, as we were able to reduce 203 variables to 97 factors. Finally, it is important to
stress that, due to the low dimensionality of λI7, the use of TSFA was not necessary.

MTS Number of Variables (M) CFI RMSEA MTS Common Factor (F̂) Number of Factors (k)

λD 24 [0.993,0.995] [0.0658,0.0785] F̂D 11
λR 24 [0.986,0.986] [0.0756,0.0770] F̂R 10
λI1 24 [0.994,0.997] [0.0685,0.0678] F̂I

1 11
λI2 24 [0.996,0.995] [0.0623,0.0575] F̂I

2 11
λI3 20 [0.996,0.996] [0.0557,0.0588] F̂I

3 9
λI4 17 [0.998,0.991] [0.0389,0.0445] F̂I

4 8
λI5 13 [0.998,0.999] [0.0226,0.0499] F̂I

5 6
λI6 9 [0.993,0.999] [0.0564,0.124] F̂I

6 4
λIB 24 [0.987,0.982] [0.0783,0.0798] F̂IB 12
pW 24 [0.996,0.998] [0.0562,0.0796] F̂W 15

Total 203 97

Cuadro 5.3.3: Number of TSFA factors defined for each MTS.
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To show the results of the models selected, we present the numerical experience
for one day. For the rest of the days, the results are very similar. For the sample, the
data chosen corresponds to 1 January 2015 to 30 December 2016, and we adjust the
TSFA model for this case. Figure 5.3.4 shows the common factor plots resulting from
the adjustment.
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Figura 5.3.4: MTS Common factors (F̂).
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As an estimation result, we use the communality, which represents the proportion of
common variance present in a variable. A variable that has no unique variance would
have a communality of 1; by contrast, a variable that shares none of its variance with
any other variable would have a communality of 0 (Field, 2013).
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Figura 5.3.5: Communality boxplots for F̂.
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Figure 5.3.5 shows the communalities. In almost all cases, the communalities have
values near 1 (except for hour 7 of F̂D and hours 16, 24 of F̂R), showing that the
proportion of the variance of the original variables are adequately explained by the
common factors.

5.3.2.3. VAR Models

The following step is to estimate models for the common factors and λI7. We will
use VAR models for this purpose. As is well known, the VAR models are used to model
stationary MTS where there are dynamic dependencies between the different series.
Therefore, before we estimate a model through VAR models, one of the important points
is to always check if the time series we analyzed are stationary. This is important because,
if the MTS are non-stationary, we could get improper estimate tests, which might lead
to choosing the wrong model. Based on this information, we check if the common factors
and λI7 are stationary. There are statistical tests to check whether a series is stationary.
Among these tests are the Dickey–Fuller, KPSS, and the Phillips–Perron test. For our
purpose,we used the Augmented Dickey–Fuller (ADF) test (see Section 3.3.1.1 for more
details), which is a version of the Dickey–Fuller test. We check the stationarity using
case 2 of the ADF, because the common factors and the IM7 prices are governed by
weak stationarity in mean.

Figure 5.3.6 gives the boxplots of the values of the test statistics at the 95%
significance level. We compared the ADF test statistics (In R, these are the boxplots of
tau2) to the critical values (red line). We reject the null hypothesis of a unit root with
drift if the value of the test statistics is lower than the critical value. Also, Figure 5.3.6
shows that the boxplots are below the red line, which indicates that the null-hypothesis
is rejected for all the cases. Therefore, the MTS are stationary.

After verification of the stationarity, we proceed to estimate models for the common
factors and λI7. For all cases, the adjustment is significantly affected by the weekend
data, such that we defined exogenous variables based on the penalization imposed by
this. Furthermore, the order of the VARX model was fixed at p = 8, in such a way that
it was greater than the weekly seasonal component of the original MTS. Based upon
the above considerations, the VARX model is given by:

F̂d = Φ0+Φ1F̂d−1+Φ2F̂d−2+Φ3F̂d−3+Φ4F̂d−4+Φ5F̂d−5+. . .+Φ8F̂d−8+β0Xd+εd (5.3.4)

for all d = 1, . . . , N , where (εd) ∼ IID(0,Σε), Φ0,Φ1,Φ2, . . . ,Φ8 are parameter
matrices, β0 is the coefficient matrix for the exogenous variable, Xd is the exogenous
variable and F̂ is the time series of the common factors F̂D, F̂R, F̂I

1, . . . , F̂I
6, F̂IB, F̂W or

λI7.
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Figura 5.3.6: Boxplots of unit root test for F̂.
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On the other hand, the adjusted models are validated by some plots that study
the effects of noncompliance with fundamental assumptions. Appendix B.1 shows a
brief overview of these plots. Assumptions such as homoscedasticity, normality, and
independence are established. We present the validation for only one day at a time,
while the rest were validated in the same way and the results are similar. Appendix
B.1 presents four plots for this fact: (a) Residual Plots; (b) QQ-plot; and (c–d) the
ACF and PACF of the residuals. All these are obtained for each common factor
(F̂D, F̂R, F̂I

1, . . . , F̂I
6, F̂IB, F̂W ) and λI7 (Figures B.1.1–B.1.11, respectively). Each of the

plots show that the assumptions of the models are verified and, thereby, we can be sure
that the adjusted models are suitable for forecasting.

5.3.3. Forecasting Models

The use of MSP models in the electric power industry is supported by a good
representation of the stochastic process that governs the situations to be modeled.
Therefore, the objective is to obtain forecasts fairly accurately with appropriate statistical
methods. In the above section, the statistical models based on TSFA and Vector
Autoregression with exogenous variables (VARX) techniques were defined and, now, our
interest is in using them to define the forecasting models in order to, first, predict future
values of the real problem’s random variables and, second, define an approximation of
the stochastic process for modeling the problem’s stochasticity in the future. On the
basis of these considerations, Section 5.3.3.1 gives the one-step-ahead forecast models for
the common factors and the MTS of λI7; while Section 5.3.3.2 defines the one-step-ahead
forecast model for these original random variables and presents their respective results
(with the exception of λI7, because it has already been predicted by VARX models).

5.3.3.1. Forecasting with VAR Models

In order to be able to predict future values for the random variables, we need to
forecast the common factors and the respective residuals ε̂′d. As shown in Section 5.3.2.3,
we use VARX models in this case. The sample covers the period 1 January 2015 to
30 December 2016 (in a sense of the rolling calibration window), and we conduct the
out-of-sample tests through the one-step-ahead forecast (typically 24 hours ahead)
for all days of the year 2016 (in total, 366 forecasts). On the other hand, we will use
the same technique to obtain forecasts for the seventh intraday prices. The forecast
VARX(8) model is defined as

F̂N+1 = Φ̂0 + Φ̂1F̂N−1 + Φ̂2F̂N−2 + Φ̂3F̂N−3 + Φ̂4F̂N−4 + . . .+ Φ̂8F̂N−8 + β̂0X̂N (5.3.5)

whereN+1 indicates the one-step-ahead, F̂N+1 is the common factor and β̂0, Φ̂0, Φ̂1, . . . , Φ̂8

are the estimated parameters of the model.
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Figura 5.3.7: F̂′N+1 forecast with the VARX models.

Figure 5.3.7 shows the one-step-ahead forecasts for the common factors over the
period 1 January 2016 to 31 December 2016.
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Figura 5.3.8: λ̂I7N+1 forecast with VARX model.

Furthermore, the forecast for λI7 is shown in Figure 5.3.8. The real values are the
blue line and the forecast values are the red line.

5.3.3.2. Forecasting with TSFA Models

To obtain the forecasts for the remaining MTS, we used the forecasting TSFA model.
This is given by:

ξ̂N+1 = α̂ + B̂F̂N+1, (5.3.6)

where N + 1 indicates the one-step-ahead, F̂N+1 are the forecasts of the common factor
and α̂, B̂ are the estimate parameters of the model.

A simple substitution of these elements in Equation (5.3.6) gives the one-step-ahead
forecasting models for the original MTS. Figure 5.3.9 shows the one-step-ahead forecasts
for the year 2016 (1 January to 31 December). The real values (blue line) are compared
with the estimates (red line) provided by the model. Therefore, Table 5.3.4 shows the
out-of-sample errors for each forecast model.

λ̂DN+1 λ̂RN+1 λ̂I1N+1 λ̂I2N+1 λ̂I3N+1 λ̂I4N+1 λ̂I5N+1 λ̂I6N+1 λ̂I7N+1 λ̂IBN+1 p̂WN+1

MAE 4.6732 5.5526 4.6732 4.9538 5.1361 5.1739 5.0711 5.4028 5.7401 0.5139 2.9905
RMSE 6.1364 8.7220 6.1364 6.5145 6.8348 6.8909 6.7893 7.0709 7.8263 0.9297 4.2799

Cuadro 5.3.4: Average errors for each forecasting model.
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(a) λ̂DN+1 forecast.
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(b) λ̂RN+1 forecast.
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(c) λ̂I1N+1 forecast.
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(d) λ̂I2N+1 forecast.
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(e) λ̂I3N+1 forecast.
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(f) λ̂I4N+1 forecast.
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(g) λ̂I5N+1 forecast.
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(h) λ̂I6N+1 forecast.
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Figura 5.3.9: MTS forecasts with TSFA models.
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To conclude this part of the study, we can say that the development of the forecasting
models does not require profound knowledge for identifying the models, being this,
which is an advantage that facilitates the automatic implementation and regular use by
the electricity companies.

5.3.4. Scenario Generation

For the scenario generation, we used the procedure based on forecasting results
and bootstrapping techniques, which was given in Section 3.3.1.4. The results of this
procedure are the scenario sets of the random variables, which will be used to define a
configuration of the initial scenarios that is adequate enough to build scenario trees.
The bootstrap procedure was tested with the same year used for testing the forecasting
models (1 January to 31 December 2016). As a result, we obtained 366 sets of scenarios.
Figures B.3.1–B.3.22 show scenario sets for four specific days: (a) Friday, 15 January
2016; (b) Monday, 06 June 2016; (c) Sunday, 16 October 2016; and (d) Thursday, 17
November 2016. In each of the figures, the real value is the red line, the forecasted value
is the blue line and the bootstrap replicas are the black lines. In Appendix B, Figures
B.3.1–B.3.11 present the scenario sets composed of 1000 scenarios, which will be used
to build scenario trees by means of the Forward Tree Construction Algorithm (FTCA).
Figures B.3.12–B.3.22 show the scenario sets with 10000 scenarios that will be used
for generating scenario trees by means of the Dynamic Tree Generation with Flexible
Bushiness Algorithm (DTGFBA).

Overall, the results show that, in general, scenario sets cover the red and blue lines,
a condition which is positive for obtaining scenario trees in the future. Nevertheless, in
cases when the forecasted value (red line) is really far from the real value (blue line),
the bootstrap replicas do not cover the real value. This fact can be inconvenient for
obtaining good results for the MSWBVPP model. Figures B.3.3d, B.3.10d, B.3.11d,
B.3.13d, B.3.21d and B.3.22d of Appendix B show this fact.

5.4. Phase II: Scenario Tree Generation

The uncertainty analysis and definition of the decision process developed in Section
4.1.2 of Chapter 4 has allowed us to define the structure of the scenario tree for the MSP
Models in EM and Electrical Distribution Netwoks (EDN). In the following sections, we
will present the development of Phase II, which concerns scenario tree generation for the
MSP models developed in this thesis. Section 5.4.1 draws on the initial considerations
of the numerical experience by generating scenario trees; and Sections 5.4.2 and 5.4.3,
respectively, present the computational results of the scenario trees obtained with the
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FTCA and DTGFBA. Finally, Section 5.5 shows an analysis for the total instances
executed by each scenario trees algorithm.

5.4.1. Initial Considerations for the Algorithms

The scenario tree algorithms used in this thesis are based on the assumption that
an initial set of individual scenarios are available and that these are used for defining a
fan or an initial scenario tree. For this reason, it is necessary to define the individual
scenarios to be used for this purpose. Section 4.1.2 shows the definition of the individual
scenario in Equation (4.1.2). We remind the reader of this definition below:

ξ̃ω =
(
λ̃
D′

ω , λ̃
R′

ω , λ̃
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1ω, λ̃
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2ω, p̃
W
1ω, p̃
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W
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5ω,

p̃W10ω, . . . , p̃
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6ω, p̃
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W
19ω, λ̃

I′

7ω, p̃
W
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where each component of the vector is called a realization of the individual scenario.

The initial data consist of a finite number of these scenarios (Section 5.3.4). The
components of the vector are the EM prices and WP generation that are organized in
accordance with the decision process. Equal probabilities are assigned to each scenario.
Table D.1.1 of Appendix D shows the dimensionality of these individual scenarios. Note
that the total length of the individual scenarios is 206, a considerably large length that
will produce a scenario tree of great size. Furthermore, these scenarios have 34 stages,
and each of these has a time horizon going from 1 to 24 time steps per day, a further
indication that the resulting scenario trees will be very large.

5.4.2. Scenario Trees Obtained by FTCA

The main objective of the FTCA strategy consists of modifying a given fan of
individual scenarios by bundling scenarios according to the scenario reduction technique.
Therefore, we are interested in defining fans in order to apply the FTCA and obtain
scenario trees for each test of the MSWBVPP model. In this numerical experience, we
defined fans with the first node (root node) that corresponds to a fixed value at stage
s = 0. Furthermore, the scenarios have equal probabilities. Table 5.4.1 provides the
general characteristics of the initial fan structure.
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Components Scenarios Stages Initial Nodes
206 1000 34 34000

Cuadro 5.4.1: Dimensions of the initial fan provided by the MSWBVPP model.

Figure 5.4.1 shows the plot of the initial fan for the MSWBVPP model. The idea is
to reduce the fan in such a way that we get a scenario tree with at least half of the
scenarios. The initial values of the input parameters of the FTCA were fixed while
taking this purpose into account.
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Figura 5.4.1: Initial fan structure for the FTCA.

After having defined the fan, we proceed to obtain scenario trees using the FTCA.
To this end, we used Algorithm 1, which iteratively applies Algorithm 2, to every stage
of ξ̃. The implementations of these algorithms are given in Appendix C. The tests were
performed to generate scenario trees for the year 2016 (in total, 366 scenario trees).
Regarding the algorithm, the FTCA stops clustering scenarios at stage s as soon as the
norm between the tree t at t− 1 is reduced below εs:

‖ξ̃s − ξ̃s−1‖r,s ≤ εs (5.4.2)

The relative tolerances εs were calculated by Equation (3.3.26) in all test runs,
where εrel,s and εmax,s were calculated by Equations (3.3.28) and (3.3.29), respectively.
The initial values of the parameters associated with these calculations are εrel,0 = 0,
δ0 = 0,85 and ∆ = 0,005. Tables D.1.1 and D.1.2 show the values of εrel,s, εs and εmax,s
for one test. The εrel,s values are equal for the all tests, in contrast to εs, εmax,s, where
the values are different for each test. We defined the norm ‖ · ‖r,s by Equation (3.3.21),
where r is fixed at 2.

Table 5.4.2 displays the results of some numerical tests for the year 2016 (1 January
to 31 December). The second and third column enables us to compare the sizes of the
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initial scenario fan given in Table 5.4.1 with the scenario trees in terms of the number
of, respectively, scenarios and nodes. On the other hand, Figure 5.4.2 illustrates the
structure of some scenario trees generated by the FTCA. This figure shows the plots
of four scenario trees with the branching structure and epsilon tolerances specified in,
Tables D.1.1 and D.1.2. The numerical results illustrate that the FTCA can get scenario
trees to represent the uncertainty in the MSWBVPP model. Also, one characteristic
of the results obtained is that, for tolerance fixes, the numbers of scenarios and nodes
vary for each day of the test. This is because these depend on the distances between
probability distributions.

Scenario Tree Number of Scenarios Final Nodes

Scenario Tree for Friday 15-January-2016 553 13522
Scenario Tree for Monday 06-June-2016 621 12505

Scenario Tree for Sunday 16-October-2016 620 12833
Scenario Tree for Thursday 17-November-2016 587 11932

Cuadro 5.4.2: Results of the FTCA for some days of the year in 2016.
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(a) Friday 15-January-2016.
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(b) Monday 06-June-2016.
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(c) Sunday 16-October-2016.
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(d) Thursday 17-November-2016.

Figura 5.4.2: Some scenario trees obtained by the FTCA for the MSWBVPP model.
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5.4.3. Scenario Trees Obtained by DTGFBA

Another algorithm used to identify the random input data for the MSWBVPP
model was the DTGFBA (Algorithm 3 together with Algorithm 4 of Section 3.3.2.2).
Remember that the DTGFBA is an algorithm for constructing an approximating tree
from observed paths in terms of the nested distance up to a prescribed precision. In this
case, the observed paths are vectors, as in Equation (5.4.1), and they are individual
scenarios obtained by the procedure for generating scenario trees. These paths are
assumed to be a sequence of random variables that are independent and identically
distributed (i.i.d.) with an arbitrary length of known distribution. the DTGFBA was
implemented in AMPL and the details are given in Serra Castilla et al. (2019). The
tests started out with a matrix that containing a total of 10,000 paths, where the length
of each path is 206 (the order of the matrix is 10,000 rows and 206 columns). The paths
have associated equal probabilities and the number of stages is 34. The initial values
of the algorithm for one test are shown in Table D.1.3 of Appendix D and the values
of bs are the same for all tests. Conversely, the values of εs are different for each test
because it depends on the input values of each test day. The εs (the maximal stagewise
transportation distances) was calculated in the following form:

εs = ∆j max
s∈S

∑
s′∈S

ds,s′

|S|
(5.4.3)

where ds,s′ is the Euclidean distance, and ∆j is a penalization that causes the difference
between the ∆j values for the EM prices (j = 1) and WP generation (j = 2).

In addition, for the case of WP generation, ∆1 was fixed at 0.99; and, for the EM
prices, ∆2 is equal to 1. On the other hand, the implemented DTGFBA allows choosing
of deciding the minimum number of scenarios for each stage. This parameter was defined
as ns = bs+4. Table D.1.3 of Appendix D shows the values defined in this case. Another
feature to take into account when building scenario trees with this algorithm is the
selection of scenario values. For the EM prices, the selection was defined randomly by a
uniform distribution between 1 and 10,000, with the values of the matrix being selected
according to the positions of this distribution. For WP generation, the selection was
made considering the values of previous stages that have the same nature.

In the same way as with the FTCA, the tests were performed to generate scenario
trees for the year 2016 (1 January to 31 December). Thus, scenario trees can be built
by the DTGFBA. Table 5.4.3 presents the results obtained for the DTGFBA over four
days. This table shows the number of scenarios and final nodes for the same days as
those of the FTCA. Figure 5.4.3 displays the scenario trees. Analysing the results, we
can observe that the scenario trees for each day varies notably according to the number
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of scenarios and nodes. As a final remark, we can say that DTGFBA is able to get
scenario trees to represent the uncertainty in the MSWBVPP model.

Scenario Tree Number of Scenarios Final Nodes

Scenario Tree for Friday 15-January-2016 829 3629
Scenario Tree for Monday 06-June-2016 182 4278

Scenario Tree for Sunday 16-October-2016 594 5845
Scenario Tree for Thursday 17-November-2016 502 5316

Cuadro 5.4.3: Results of the DTGFBA for some days of the year 2016.
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(c) Sunday 16-October-2016.
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(d) Thursday 17-November-2016.

Figura 5.4.3: Some scenario trees obtained by the DTGFBA for the MSWBVPP model.

5.5. Comparative Analysis of the Sets of Scenario
Trees Obtained

Figure 5.5.1 displays the boxplots of the elapsed time, number of scenarios and
number of nodes for the 366 scenario trees obtained by the FTCA and DTGFBA. The
elapsed time was obtained in ampl with built-in timing parameter _ampl_elapsed_time.
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Figura 5.5.1: Execution time and number of scenarios and nodes of the total scenario trees.

Figure 5.5.1a shows that the execution time is not an issue for concern when
generating scenario trees, because it is very low for both algortihms. The elapsed time
not exceeding 250 seconds for both algorithms, only with some outliers data that, in the
worst case, reached a little more than 250 seconds for the FTC and, at the utmost, 1000
seconds for the DTGFBA. Regarding the number of scenarios, Figure 5.5.1b displays
boxplots of the number of scenarios of the trees obtained in all instances. In both
algorithms, the number of scenarios was on average approximately equal (at around
500 to 650 scenarios). The initial parameters of both algorithms were fixed in a way
that the average number of scenarios were about the same. However, the variability
of the number of scenarios was most obvious in the DTGFBA. Finally, Figure 5.5.1c
shows the comparison of the number of nodes of the set of scenario trees generated by
each algorithm. In this case, the variability observed in the number of nodes for both
set of trees is very clear. The number of nodes of the scenario trees generated by the
FTCA is, on average, a little more than 12000 nodes. By contrast, the number of nodes
of the trees obtained by the DTGFBA is less than the number of nodes of the trees
obtained by the FTCA. In average, it is a little more than 4000 nodes.

5.6. Computational Results for the MSWBVPP
Model with Scenario Trees

In this section, a set of computational tests have been performed in order to validate
the MSWBVPP model developed in Section 4.1.3. The model was used to analyze the
optimal operation of a VPP in the Iberian Electricity Market, and it consists of:

An on-shore wind plant called Espina, located in the north of Spain with 9 wind
turbines and a total nominal output of 18MW.
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A Li-ion-based BESS with the characteristics shown in Table 5.6.1. These cha-
racteristics are based on the systems described in Díaz-González et al. (2012);
we energize the world 2019 (2019)

dmax = 10 MW EOL = 20years soc0 = soct = 0,6 socmin = 0,3
emax = 30 MW cycmax = 6000 socmax = 0,9 γRTE = 0,8

Cuadro 5.6.1: BESS parameters.

5.6.1. Case Studies

Three different case studies were solved in order to analyze the impact of the BESS
and the participation in the RM:

Case study 1 (WDI): a standalone Wind Power Plant (WPP) bidding to the
DM and IM.

Case study 2 (VDI): a VPP (that is, a WPP plus a BESS) participating in the
DM and IM but not allowed to participate in the RM.

Case study 3 (VDIR): a VPP participating in the DM, IM and RM.

The optimal solution of the three case studies can be visualized with the help of
several graphical representations:

(a) The mean WPP generation scenarios, the optimal value of the DM, IM and RM
quantity bid: pD∗tω , pIT

∗
itω , r

U∗
tω , r

D∗
tω

(b) The optimal value of imbalances: pIB+∗
tω , pIB

−∗
tω

(c) The optimal value of the battery charge and discharge: c∗tω, d∗tω
(d) The optimal value of the state of charge (SOC): soc∗tω.

The complete set of graphs (a)–(d) for the scenarios shown in Tables 5.4.2 and
5.4.3 were included in Section D.2 of Appendix D. Although a detailed analysis of
the optimal solution of the MSWBVPP model is beyond the objectives of this thesis,
it is worth commenting on the graphs in order to have a general understanding of
the results. As an example, let us briefly analyze the results for the three test cases
corresponding to Thursday, 17 November 2016, specifically regarding both the FTCA
and DTGFBA scenario trees. Algorithmic options for CPLEX were a relative MILP
gap of 0.5% (mipgap=0.005) and 9 threads (threads=9). Regarding the formulation
options for AMPL, a value of presolve_eps=1.0e-07 was set to avoid some numerical
infeasibilities.
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5.6.1.1. Case Study 1 (WDI): WPP Bidding to the DM and IM.

In this first test case, the WPP operates alone without BESS backup. Of course,
graphs (c) and (d) are void due to the absence of the BESS. The results for Thursday,
17 November 2016 are depicted in Figures 5.6.1 and 5.6.2.

Model WDI / Instance #322 / Thu, 17-Nov-2016 / RP=3701.41 EUR.

(a) DM and IM Bid. (b) Imbalances.

Figura 5.6.1: Results for the WDI case with scenario tree obtained by the FTCA.

Model WDI / Instance #322 / Thu, 17-Nov-2016 / RP=5084.72 EUR.

(a) DM and IM Bid. (b) Imbalances.

Figura 5.6.2: Results for the WDI case with scenario tree obtained by the DTGFBA.

Figures 5.6.1 and 5.6.2 show the value of the recourse variables corresponding to
each scenario (thin continuous lines), their mean value (thick coloured dashed lines)
and the maximum and minimum values at each time period (thin dashed lines). Figures
5.6.1a and 5.6.2a show the optimal bid to the DM and IM for every scenario, pD∗t + pIT

∗
itω .

In these same graphs, the continuous dark blue thick line is the bid to the DM alone
(pD∗t , the first-stage variable) while the pale blue thick dashed line is the bid to the
DM plus the average bid to the IM (that is, pD∗t + pIT

∗
it ). We can observe some big

differences between the two lines representing pD∗t and pD∗t + pIT
∗

it , specifically for the
DTGFBA tree. It also merits mentioning the big discrepancies among the optimal bids
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and expected profits (value of Recourse Problem (RP)) when comparing the two FTCA
and DTGFBA scenario trees.

5.6.1.2. Case Study 2 (VDI): VPP Bidding to DM and IM.

In this second test case, the BESS is allowed to operate in coordination with the
WPP, but the resulting VPP can only submit bids to the DM and IM; that is, bids
to the RM are forbidden. Figures 5.6.3 and 5.6.4 show the optimal solution for this
test case. The most important difference with respect to the previous case study is, of
course, the BESS activity and how it affects the optimal bid to the DM and IM (see
Figures 5.6.3c and 5.6.4c):

In the FTCA solution, the operation of the BESS consists of a deep charging
period at around t = 5 and two other charging periods: a very shallow first one at
around t = 10 and a very deep second one at t = 20.

In the DTGFBA solution, charges and discharges are always shallower than in
the FTCA case, with two charging periods at around t = 5 and t = 17 and two
discharging periods at around t = 10 and t = 20.

Model VDI / Instance #322 / Thu, 17-Nov-2016 / RP=5206.39 EUR.

(a) DM and IM Bid. (b) Imbalances.

(c) Battery Charge (-) / Discharge (+). (d) State of Charge (SOC).

Figura 5.6.3: Results for the VDI case with scenario tree obtained by the FTCA.
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Model VDI / Instance #322 / Thu, 17-Nov-2016 / RP=3798.31 EUR.

(a) DM and IM Bid. (b) Imbalances.

(c) Battery Charge (-) / Discharge (+). (d) State of Charge (SOC).

Figura 5.6.4: Results for the VDI case with scenario tree obtained by the DTGFBA.

The SOC of the BESS (Figures 5.6.3d and 5.6.4d) varies according to the charge-
s/discharges. Again, we can observe the great difference between the solution of the
FTCA and DTGFBA, not only in terms of both the optimal bids and BESS operation,
but also with respect to the expected net profits RP, which are 37% greater with the
FTCA than with DTGFBA. It should be pointed out that this result does not mean
the actual profits using the FTCA are 37% higher than when using DTGFBA (as we
will see later on), because those net benefits depend on the tree itself, which is therefore
an unfair value to compare. In contrast to what is usually assumed in the literature, the
availability of a BESS does not necessary imply a drastic reduction in the imbalances
(see Figure 5.6.3d for the FTCA and Figure 5.6.4b for the DTGFBA). In fact, that
result is not surprising at all, for two reasons. First, IM is a highly efficient balancing
tool for reducing the mismatch between forecasted and actual WP generation. Second,
the proposed model does not try to explicitly reduce imbalances, as these imbalances
are evaluated only in terms of the its economic value/penalization. In other words, the
imbalance prices are only relatively important when compared to both DM/IM prices
and the value of the stored energy; therefore, from a merely economic point of view, it
would sometimes be worth incurring some imbalances.

5.6.1.3. Case Study 3 (VDIR): A VPP Participating in DM, IM and RM.

In this last case study, we analyze the results when the VPP is allowed to participate
in the RM. One of the most interesting consequences of incorporating the RM into the
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model is that the different decision variables are distributed more narrowly than in the
WDI and VDI test cases. This is a general trend, but it can be very clearly observed
in that VPP–RM example when looking at the BESS operation obtained through
the DTGFBA tree, as well as through in Figures 5.6.4c, 5.6.4d, 5.6.6c and 5.6.6d. In
particular, the graphed charges/discharges in Figure 5.6.6c for the DTGFBA tree are
the same for every scenario from t = 1 to t = 12. Consequently, so are the SOC (graph
in Figure 5.6.6d). The reduction in the dispersion of the value of the decision variables
is a result of the RM having paramount importance relative to the spot markets, DM
and IM. This is explained bellow.

Again, the purpose of attaching a BESS to a WPP is not so that the DM+IM bid
can better track the actual WP generation but, rather, to maximize the net profit of
the VPP operation (see, for instance, the graph in Figure 5.6.6d). There is a great
discrepancy between the expected total DM+IM bid at 10:00 (dotted pale blue thick
line) and the expected WP generation (solid thick green line) at t = 10. This is because
of the BESS’s deep discharge during that period, which allows the maximum possible
profits from the RM prices throughout the whole day.

Model VDIR / Instance #322 / Thu, 17-Nov-2016 / RP=8593.66 EUR.

(a) DM and IM Bid. (b) Imbalances.

(c) Battery Charge (-) / Discharge (+). (d) State of Charge (SOC).

Figura 5.6.5: Results for the VDI case with scenario tree obtained by the FTCA.
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DTGFBA: Model VDIR / Instance #322 / Thu, 17-Nov-2016 / RP=6817.09
EUR.

(a) DM and IM Bid. (b) Imbalances.

(c) Battery Charge (-) / Discharge (+). (d) State of Charge (SOC).

Figura 5.6.6: Results for the VDI case with scenario tree obtained by the DTGFBA.

The last great difference between the VDIR test case and the previous ones: the
huge increase in the expected net profit RP. While the increase in the RP between the
WDI and VDI test cases is less than 3%, the RP for the VDIR is greater than in the
VDI test case by 65% (FTCA) and 79% (DTGFBA). This is a well known result that
has been reported in several previous studies (see, for instance, Heredia et al. (2015,
2018)). Regarding the reason for this increase in the value of RP when the VPP is
allowed to bid to the RM, a detailed analysis can be found in Heredia et al. (2018).
However, to state it plainly: while the DM remunerates the VPP proportionally for
real-time WPP generation, the RM proportionally pays for the VPP’s reserve band,
rU
∗

tω + rD
∗

tω , which is much greater than the average WPP generation. Despite the fact
that the mean prices of the DM are usually greater than the mean RM price, the final
result is that the incomes from the RM are much higher than those from the DM.

5.7. Study of the Performance of Scenario Trees

The analysis conducted in the previous sections revealed two problems in regard
to assessing the comparative performance of the two sets of scenario trees obtained
through the scenario tree generation methodology:

First, the results (optimal bids, net profit RP, and others) depend strongly on the
calendar date of the instance being optimized. As an example, when we look at
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the RP for the FTCA trees of the four dates considered in the VDIR test case (see
the following section), it ranges from e8,329.49 to e16,034.59 (92% variation),
and the Value of the Stochastic Solution (VSS) goes from 0.89% to 3.45% of the
RP value. Thus, we cannot justifiably arrive at any significant conclusions from
analyzing just one or a reduced number of instances of the MSWBVPP model.

Second, the previous section has shown that, in order to compare the relative
performance of the two FTCA and DTGFBA methodologies implemented in this
thesis, we must be very careful to select a set of key indicators that does not
depend on the tree itself. The classical key indicators for assessing the value of the
stochastic solution is usually the RP (that is, the optimal value of the objective
function of the MSWBVPP model); the Expected Value of Perfect Information
(EVPI); and VSS. The issue here is that all these three indicators depend on the
tree, and they therefore do not allow for a proper comparison between the FTCA
and DTGFBA.

In order to overcome these two concerns, we propose performing an ex ante analysis
based on the solution of 366 models (one model for each day of 2016) of the day D with
information about the day D − 1, through the following methodology:

i. To cope with the issue of the results depending strongly on the specific calendar
date, we propose performing a statistical analysis of the results for a full one-year
period using the same VPP as in the previous section. To this end, the MSWBVPP
model was solved for the three case studies (WDI, VDI and VDIR) and for the
two scenario trees (FTCA and DTGFBA), covering the complete one-year period
from 1 January to 31 December 2016, thus making a total of 2196 instances. We
have called this dataset 2016_MSWBVPP.

ii. To analyze the quality of the solution independently of the tree distribution, we
proposed using – in addition to the usual variables RP and VSS – a modification
of the classical VSS (which we denote hereafter as EVVS in order make the
notation uniform), called Forecasted Value of the Stochastic Solution (FVSS).
This indicator is calculated using the forecasted values of the random variables
that were used to generate the two kinds of scenario trees. The FVSS are identical
for the two trees under comparison. This is an alternative to using the same
expected random variables calculated with the probability distribution of the tree,
which, needless to say, depends on the tree itself.

iii. Finally, to determine if the value of variables of the RP, Expected Value of
the Stochastic Solution (EVSS) and FVSS have significant statistical differences
between the different test cases (WDI, VDI and VDIR) and tree scenarios (FTCA
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and DTGFBA), we are going to compare the distributions of these variables in
the 2016_MSWBVPP dataset, both informally and formally:

• Informally, we compare the notched boxes in the boxplot representation,
assuming that, if the notches of two boxes do not overlap, there is ‘strong
evidence’ (95% confidence) that their medians differ (Chambers et al., 1983).

• Formally, we calculate the p−value of the null hypothesis of equal median
values, specifically by using the Wilcoxon signed-rank test (pWSR) (Gibbons
and Chakraborti, 2014)

5.7.1. 2016_MSWBVPP Data Set

Figure 5.7.1 shows the distribution (boxplots, minimum, average and maximum
values) of the size and RP (or expected net profits) for the 2196 instances of the
2016_MSWBVPP. The first row is for the FTCA and the second row is for the
DTGFBA. The data displayed in this figure are:

nS: number of scenarios.

nv: total number of variables (continuous and binary), after the presolve phase of
AMPL.

nb: number of binary variables, after the presolve phase of AMPL.

nc: total number of constraints, after the presolve phase of AMPL.

etime: elapsed time, in seconds (command solve_elapsed_time of AMPL). All
the runs were performed keeping the workload of the workstations low enough
to avoid conflict between the different processes so the elapsed time is a fair
approximation of the actual execution time.

RP : value of RP (in euros).

Figure 5.7.1 shows that the larger number of DTGFBA scenario trees of course
leads to larger greater problems (larger nv, nb and nc) and execution times (etime).
Nevertheless, execution time is not a concern in these kinds of problems, as it is
always below ten minutes even for the largest instance (nv = 492, 970, nb = 34, 320,
nc = 1, 035, 982), which is completely reasonable for a day-ahead optimization problem.
Figure 5.7.1 also shows that the optimal value of the objective function (which is the
RP) is consistently greater for the FTCA trees than for the DTGFBA trees. We analyse
that relationship in detail later in this section. However, as pointed out before, RP
does not give a fair comparison between the FTCA and DTGFBA, because the RP
value is a calculated expectation with respect to the two different trees, and it would
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only be comparable if the two trees were absolutely identical, which is not the case
even though they were generated from the same forecasting model. In fact, in order to
fairly compare the performance of the two families of trees, we are going to introduce in
the next section the idea of FVSS, which is based on the exogenous forecasting of the
random variables of the MSWBVPP model. This is a variation of the classical EVSS,
based on endogenous expectations.

Figura 5.7.1: Size, execution time and optimal value of the objective function (RP).

5.7.2. Forecasted Value of the Stochastic Solution (FVSS)

To assess the quality of the stochastic solution for the 2016_MSWBVPP dataset,
we use the procedure to find the VSS for multistage problems proposed in Escudero
et al. (2007). The key idea in this approach is to split all the decision variables into
two sets. The first one is the so-called state variables, which play the role of the first-
stage variables in two-stage SP problems. The second is so-called recourse variables,
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which are analogous to the second-stage variables in two-stage stochastic programming
problems. Actually, this variable’s separation was already introduced in Section 5.7.1,
where the vector of decision variables was split into two parts: x′ = (y′, z′), with
y′ = (pD′ , rD′ , rU ′ , pI′i , c′, d′) being the vector of state variables; and z′ = pIB

′ , which is
the vector of the recourse variables (see Table 4.1.3). The procedure for calculating the
FVSS is:

1. The solution x̂ = (ŷ, ẑ)′ is found for the deterministic MSWBVPP model associated
with to the forecasted value of the random parameters ξ̂N+1 (see Equation (5.3.6)).
That is, we solve an instance of the MSWBVPP model with a scenario tree
consisting of a single scenario ξ̂1 = ξ̂N+1,Ω = {1}. Let the value of the optimal
solution (called FV) of the MSWBVPP model for the solution x̂.

2. Let Expectation of the Forecasted Value (EFV) be the optimal value of the
objective function of the MSWBVPP model, with y := ŷ, and solving for the
recourse variables ẑ (Equation (4.1.19)) to enforce feasibility.

3. Finally, the forecasted value of the stochastic solution is defined as (Equation
(3.4.9))

FV SS = RP − EFV. (5.7.1)

The meaning of the FVSS is analogous to the meaning of the EVSS: it is the
improvement of the objective function (expected net profit) that is achieved by
MSWBVPP model in comparison to the deterministic solution with ξ̂N+1. To
facilitate the analysis, we are going to forego using the value of the FVSS and
instead use the relative FVSS referred to as VFSSr, which is defined as (Equation
(3.4.10)):

FVSSr = 100× FV SS

EFV
. (5.7.2)

5.7.3. The Value of the Stochastic Solution’s Dependency on
the Test Cases WDI, VDI and VDIR

Figure 5.7.2 shows the distribution of the values of RP, EVSSr and FVSSr for the
2016_MSWBVPP dataset. Observing the boxplots, it is quite clear that the distributions
of the indicators RP, EV SSr and FV SSr do not follow a normal distribution, as they
are strongly skewed to the right. Every graph is accompanied with a table displaying
some descriptive statistics (minimum and maximum value, mean and median) and the
p-value for the Wilcoxon signed-rank test pWSR for every set of paired data: WDI–VDI,
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WDI–VDIR, VDI–VDIR. Due to the existence of extreme outliers, which are especially
strong for the FVSSr value, outliers to the right of the vertical dashed lines were
compressed for the sake of clarity. We observe in Figure 5.7.2 that the value of pWSR is
virtually zero for every set of paired data, showing that the null hypothesis of equal
median values can be rejected in all instances, even for the value of RP in the test
cases WDI and VDI, where notches overlap. Therefore, the graphical comparison is not
conclusive.

Figura 5.7.2: Dependency of the RP, EVSSr and FVSSr on the WDI, VDI and VDIR test
cases.

Figure 5.7.2 allows us to state some conclusions about the numerical study, which
are valid for both the FTCA and DTGFBA instances:
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Although statistically different, the value of RP is quite similar for the WDI and
VDI instances. It is much greater for the VDIR instances than for the WDI and
VDI instances. The reason for that was explained in the previous section.

The value of the stochastic solution (both EV SSr and FV SSr) consistently
decreases for the WDI, VDI and VDIR cases. The explanation for that trend
is that, on the one hand, incorporating the BESS into the VDI test case allows
mitigating the intrinsic randomness of wind generation in the WDI test case.
This consequently reduces the importance of stochasticity. On the other hand,
the incomes from the RM are of paramount importance in comparison with the
DM, IM and IB, and this induces an optimal solution for both the stochastic
and deterministic problems that are close to the BESS operation, which in turn
maximizes the RM returns.

The value of FV SSr is consistently greater that the value of EV SSr (this is
supported again by the Wilcoxon SR test). Likewise, outliers are far more severe
in FVSSr than in EVSSr. Outliers in FV SSr can be as high as 1363.4% (the
WDI case, Wednesday, 6 April 2016), at more than 70 times the interquartile
distance from the 3rd quartile. It is worth mentioning that this extreme value
of FV SSr does not reveal any flaw in the calculation of this quantity: the value
of the EFV for this outlier is very small (actually negative) at EFV=e-46.10,
meaning that the deterministic solution based on the forecasted values is very
bad (actually, incurring losses). Furthermore, the value of the expected profits
for the stochastic program is RP=e582.9, and therefore the relative Forecasted
Value of the Stochastic Solution (FVSS) is:

FV SSr = 100× RP − EFV
|EFV |

= 100× 629
46,1 = 1363,4 % (5.7.3)

5.7.4. Comparative Performance of the FTCA and DTGFBA
Scenarios Trees

In this section, we would like to compare the performance of the two FTCA and
DTGFBA families of trees in terms of the values they provide for RP, namely EV SSr
and FV SSr. We would also like to pay special attention to key indicator FV SSr, thus
following the same methodology as in the previous section.

Figure 5.7.3 shows the comparison of the results from the FTCA and DTGFBA
trees with respect to the value of RP, specifically for the three test cases of WDI, VDI
and VDIR. We see that, in all cases, the median is greater for the FTCA trees than
for the DTGFBA trees (36%, 30% and 9%, respectively, for WDI, VDI and VDIR).
Indeed, not only is RP better, so is every indicator: min, max, quartiles and mean.
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Figura 5.7.3: Comparison of the RP medians in the FTCA and DTGFBA trees.

Figure 5.7.4 displays the same results for the variable EV SSr, that is, the value
of the stochastic solution compared to the deterministic solution. This variable is
associated with the mean ξ̃FTCA and ξ̃DTGFBA of the FTCA and DTGFBA scenario
trees, respectively, and with ξ̃FTCA 6= ξ̃DTGFBA A in general. Therefore, the value of
EV SSr completely depends on the structure of every scenario, which compromises its
suitability for a fair comparison. Contrary to what happened with the variable RP,
in this case, it is the DTGFBA tree family that outperforms almost every indicator
(min, max, mean, median and quartiles). Regarding the median comparison, it is 60%,
65% and 5% greater for, respectively, the WDI, VDI and VDIR test cases. It is worth
mentioning that the graphical test does not allow rejecting the null hypothesis of equal
median for the VDIR test case, as the notches overlaps; however, it does the value of
pWSR = 0,000123.
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Figura 5.7.4: Comparison of the EVSSr medians in the FTCA and DTGFBA trees.

Finally, Figure 5.7.5 displays the results from comparing the variables FV SSr in
the FTCA and DTGFBA tree families. Remember that this variable is the one that
provides the most reliable results, as it uses the deterministic solution associated with
the forecasted values of the random variables ξ̂, which is the same for the two FTCA
and DTGFBA families. Therefore, although the calculation of FV SSr still depends
partially on the tree itself, it allows for a fairer comparison than the variable EV SSr.
The results in Figure 5.7.5 confirm and strengthen the conclusions of the EV SSr
analysis: the value of the stochastic solution provided by the DTGFBA scenario trees
unambiguously outperforms the one provided by the FTCA scenario trees. Every single
indicator (except the minimum value for the VDIR test case) is better, and the medians
for the DTGFBA scenario trees are 120%, 130% and 41% higher for, respectively, the
WDI, VDI and VDIR test cases.
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Figura 5.7.5: Comparison of the FVSSr medians in the FTCA and DTGFBA trees.

Table 5.7.1 summarizes the results of our study on the relative performance of the
FTCA and DTGFBA scenario trees. Based on these results, we can conclude that
the DTGFBA scenario trees provide the best stochastic solutions, as they generally
improve the value of the deterministic solution obtained with the forecasted values of
the random variables (the mean value of FV SSr, see Figure 5.7.5) by 35.4% in the
WDI instances, by 25.2% for VDI and by 5.9% in the VDIR instances.

DTGFBA−FTCA
FTCA

WDI VDI VDIR

RP 36% 30% 9%
EVSSr 60% 65% 5%
FVSSr 120% 130% 40%

Cuadro 5.7.1: Relative performance between the FTCA and DTGFBA trees.
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6
Numerical Experience with Scenario Trees

for the MSOODN Model

Contents

6.1 11-node Test System . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Phase I: Scenario Generation . . . . . . . . . . . . . . . . . . 119

6.2.1 MTS Characterization . . . . . . . . . . . . . . . . . . . . . . 119
6.2.2 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2.3 Forecasting Models . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2.4 Scenario Generation . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Phase II: Scenario Tree Generation . . . . . . . . . . . . . . 129
6.3.1 Initial Considerations for the Algorithms . . . . . . . . . . . . 130
6.3.2 Scenario Trees Obtained by FTCA . . . . . . . . . . . . . . . 130
6.3.3 Scenario Trees Obtained by DTGFBA . . . . . . . . . . . . . 132

6.4 Computational Results for the MSOODN Model with
Scenario Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

The main purpose of this chapter is to apply the scenario tree generation methodology
developed in this thesis to another real-world problem in the energy environment. In
this case, we apply it to a problem in Electrical Distribution Systems (EDN) suggested
by the Faculty of Electrical and Computer Engineering (FEEC) at the University
of Campinas (UNICAMP), which was part of a pre-doctoral stay developed in this
university. The proposed problem is linked to the Optimal Operation of Distribution
Networks (OODN) and using the MSP to consider the uncertainty that governs this
problem. The aim is to establish scenario trees and obtain the final results that explain
and optimize the situation that is being modeled. This chapter is organized as follows.
First, Section 6.1 describes the test system used for obtaining scenario trees for the
Multistage Stochastic Optimal Operation of Distribution Networks (MSOODN) model.
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Second, Section 6.2 presents the development of the first phase of the methodology
that obtains the scenario sets used to generate the scenario trees. Third, Section 6.3
shows the scenario trees obtained with the algorithms and, finally, Section 6.4 gives the
results for the MSOODN model with the scenario trees obtained.

6.1. 11-node Test System

In order to validate the proposed MSP model, an 11-node test system by Levron
and Shmilovitz (2012) was used to generate scenario trees. Figure 6.1.1 shows the test
system with 11 nodes containing two photovoltaic RS with power peaks of 1 MW and
0.5 MW at nodes 8 and 5, respectively; two BESS at nodes 4 and 11 with capacities for
0.4 MWh each and a self-discharge rate of βsdi = 0,021; a CB of 0.3 MVAr at node 2;
and five loads. Additionally, for each load, level the duration is ∆t = 0,5 h, and the
minimum/maximum voltage magnitude is V = 0,95 pu and V = 1,05 pu, respectively.
The objective was to minimize the cost of energy purchase from node 1, where the costs
are deterministic parameters. Impedances are in percentages of the basis (power and
voltage magnitude) and equal to the transformer’s nominal ratings. It was also assumed
that both ESDs had the same value of efficiency: ηchi = ηdisi = 0,95. The maximum daily
change in the operation of the ESDs was equal to 2.

DSS

1 2 3

5

6

RS8
1 MW

BESS11

0,4 MW

0.07+j0.2%

10

8 9 11

L5

L4L3

L2

4 7
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0.13+j0.45%

1.1+
j2.6%
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j1.7%

1.4+
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j2.6%
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j4.4%

1.5+
j4.7%

BESS4

0,4 MW

P pv5

PD1
QD1

PD2
QD2

PD3
QD3

PD4
QD4

PD5
QD5

69kV/13.8kV

CB2
0.3MVar

0.6+j5.0%
5 MVA

RS5
0,5 MW

P pv8

Figura 6.1.1: 11-node test system of Levron et al.

Uncertainty is represented by the active/reactive power loads PD
1 , Q

D
1 , . . . , P

D
5 , Q

D
5

and active power of the photovoltaics ppv5 , ppv8 (red parameters in Figure 6.1.1). The
goal is to represent this uncertainty correctly. In this case, we applied the two phases of
the scenario tree procedure developed in this thesis to obtain scenario trees in order to
approximate the stochastic process associated with the MSOODN model.
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6.2. Phase I: Scenario Generation

As discussed above, the uncertainty in the optimal operation problem of radial EDN
is present in: the active and reactive power loads; and the active power of the PV source.
On the other hand, one of the aims of this study is to obtain the scenario sets from real
data using the developed techniques. Based on these considerations, this section shows
the development of the first phase of the methodology of this thesis, which results in
obtaining the scenario sets needed to build scenario trees for the MSOODN model. This
section is organized as follows. Section 6.2.1 presents the characterization of the MTS
for this problem. Sections 6.2.2 and 6.2.3 show, respectively, the defined statistical and
forecasting models for obtaining the final forecasts, and Section 6.2.4 gives the scenario
sets, which are the final results of this section.

6.2.1. MTS Characterization

The data for the active power load (in MWh) was provided by FEEC–UNICAMP
and is based on 110 distribution transformers located in São Paulo. Each MTS for an
active power load has M = 24 random variables (corresponding to 24 hours a day)
covering 8 April to 16 August 2016. In view of the discontinuity of the data in the
time period mentioned above, we had to find a period of time where measurements are
available for 5 transformers. This period was from 21 April to 26 May 2016. Regarding
the reactive power loads, historical data was not available; therefore, this data was
calculated based on the active power load. On the other hand, these loads do not have
acceptable values to use in the node test system of Levron. For this reason, we had to
standardize this data to obtain comparable values. This consideration was calculated as
follows:

PD
itω =

PD
levron,it

E[PD
orig,itω] ·P

D
orig,itω, and QD

itω =
QD
levron,it

E[QD
levron,itω] ·Q

D
calc,itω

where PD
levron,it, Q

D
levron,it are the active and reactive power load values of Levron,

respectively; PD
orig,itω is the original MTS of the active power load; and QD

calc,itω is
the reactive power load, which is calculated as follows:

QD
orig,itω = PD

orig,itω ·
√

1
fp2 − 1, fp = cos

(
tan−1

(
QD
levron,it

PD
levron,it

))
.

Figures 6.2.1 and 6.2.2 display the MTS of, respectively, the PD
i ,QD

i , i = 1, . . . , 5.
The MTS of PD

i and QD
i have N = 36 number of observations.
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Figura 6.2.1: MTS of Active Power Load.
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Figura 6.2.2: MTS of Reactive Power Load.
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According to Figure 6.2.2, the statistical characteristics of these MTS are: a certain
seasonal variation for weekly and non-stationary behaviour. These conditions may
result from external factors like weather, geographical conditions and other types of
circumstances.

About the active power generation of the non-dispatchable renewable source, the data
was provided by CPFL energy (https://www.cpfl.com.br/Paginas/default.aspx),
who own the Usina Solar Fotovoltaica Tanquinho plant, one of the largest in Brazil and
the first in the state of São Paulo. The installed capacity is of 1.1 MWp (megawatt-
peak). The data available is from the period 1 April 2017 to 27 March 2018 (in this case,
N = 315). The historical data is used to represent the Photovoltaic (PV) generation
for RS8. Regarding the PV generation of RS5 the data was fixed as the data of RS8
divided by two. Figure 6.2.3 shows the MTS of PV generation (in kWh) for RS5 (ppv5 )
and RS8 (ppv8 ).
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(b) Time series of ppv8 .

Figura 6.2.3: MTS of Active Power Load of the PV.

Looking at the plots in Figure 6.2.3, the PV generation is an hourly panel of time
series (M = 24). Also, the statistical characteristics that we observe in the plots are high
variability and the presence of peaks. On the other hand, the MTS of PV generation
has positive values during the hours of sunlight (between 6:00 am to 7:00 pm), while
the remaining hours equal zero.

6.2.2. Statistical Models

In this section, we proceed to adjust statistical models for each of the MTS associated
with the MSOODN model. Firstly, Section 6.2.2.1 presents the characteristics of the
initial data for the test system, and Sections 6.2.2.2 and 6.2.2.3 show the adjusted
statistical models.

https://www.cpfl.com.br/Paginas/default.aspx
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6.2.2.1. Initial Data

Concerning the adjusted models, we defined the time period used for the calibration.
In the case of active and reactive power load, the calibration data were fixed for the
period from 21 April to 25 May 2016 and, in the case of PV generation, the period
was defined from 1 April 2017 to 7 February 2018. For these cases, we obtained the
day-ahead forecasts for the final day (26 May 2016 for the power load and 8 February
2018 for PV generation) of each time period. Unfortunately, the availability of data that
coincided with the forecast day was impossible to obtain. However, according to our
main purpose, which is to build scenario trees for the test system of Levron, we focused
our efforts on getting acceptable statistical forecasts for the days mentioned previously.

6.2.2.2. Statistical Models for Power Load

In the case of the MTS, PD
i and QD

i , i = 1, . . . , 5, the Time Series Factor Analysis
(TSFA) techniques could not be applied for reducing their dimensionality. That is
because the statistical proofs, the Root Mean Square Error of Approximation (RMSEA)
and the Comparative Fit Index (CFI), did not yield results that could define a number
of factors. In this case, the next option was to check if Vector Autoregressive (VAR)
models could be used to adjust each MTS. For this, the first step was to verify if
the MTS are stationary. Figures 6.2.4 and 6.2.5 display the plots of the Augmented
Dickey–Fuller (ADF) test values for MTS. This test was evaluated at a 95% significance
level and defined in the drift case. Neither case satisfied the test in its entirety, since
not all points were below the red line, proving that the VAR models cannot be used.

In view of the non-stationarity condition of some time series of PD
i ,QD

i , i = 1, . . . , 5,
we chose to adjust the Autoregressive Integrated Moving Average (ARIMA) models for
each time series individually. In general, the ARIMA model in its backshift notation is
given by:

(1− φ1B − . . .− φpBp) (1−B)l yd = c+ (1 + θ1B + . . .+ θpB
p) εd (6.2.1)

where p is the order of the autoregressive part, l is the degree of the first differentiation
involved, q is the order of the moving average part, B is the backward shift operator,
yd is the time series of each MTS (PD

i ,QD
i , i = 1, . . . , 5), εd is white noise, c is the

average of the changes between consecutive observations, and φ1, . . . , φp, θ1, . . . , θp, are
the parameters for the AR and MA part, respectively.

To implement the statistical models, we used a function of R studio called au-
to.arima1, which returns the best ARIMA model according to AIC, AICc or BIC values.

1 Information available on: https://cran.r-project.org/web/packages/forecast/forecast.pdf

https://cran.r-project.org/web/packages/forecast/forecast.pdf
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This function conducts a search over a possible model within the order constraints
provided. The models that we obtained through this approach for each series of PD

i

and QD
i with i = 1 . . . , 5, are given in Tables B.2.1-B.2.5 of Appendix B.
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Figura 6.2.4: Unit Root Test for PD
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Figura 6.2.5: Unit Root Test for QD
i .
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6.2.2.3. Statistical Models for PV Generation

At this point, it is important to note that we defined statistical models only for
all the MTS whore. As seen in Figure 6.2.3, the time series are serie.h6 to serie.h18,
with a total of 13 time series (M = 13, in this case). Thus, we reduce the data of PV
generation through the TSFA technique. The TSFA model is given by:

ppvi,d = α̂ + B̂F̂pv
i,d + ε̂i,d (6.2.2)

where i = 5, 8, d = 1, . . . , N , ppvi,d is an M × 1 vector of random variables in this study, α̂
is an M -row vector of intercept parameters, B̂ is an M × k matrix parameter of factor
loadings, F̂pv

i,d is a k× 1 vector of Bartlett predictor (or common factors) values obtained
through the estimation, and ε̂i,d is an M × 1 random vector of estimated measurement
errors.

The number of factors were fixed using the CFI and RMSEA criteria. The values
are given in Table 6.2.1. Analyzing the results, the CFI is greater than 0.95, which
verifies a good fit. Furthermore, the RMSEA shows a value between 0.05 and 0.08,
which constitutes an acceptable range of fit. Based on these results, we reduced 26
variables to 10 factors.

MTS Number of Variables (M) CFI RMSEA MTS of the Factor Number of Factors (k)

ppv5,d 13 0.977 0.0764 F̂pv
5 5

ppv8,d 13 0.977 0.0764 F̂pv
8 5

Total 26 10

Cuadro 6.2.1: Number of factors in the TSFA defined for PV Generation.

We choose the sample data from 21 April to 25 May 2016 and adjust the TSFA
model for the MTS of the PV generation. Figure 6.2.6 shows the plots of the common
factors resulting from the TSFA models.

Furthermore, Figure 6.2.7 displays the proportion of common variance or, stated
simply, communality. In general, the random variables did not have a unique variance,
with the exception of 17th and 18th hours, which share none of their variance with any
other variable.

Building on the methodology of scenario generation, we proceed to verify if the time
series of the common factors are stationary. This verification was done using the ADF
test. Figure 6.2.8 shows the values of the ADF test for the common factors of the PV
generation. In this case, the null hypothesis was accepted because all points were below
the red line, resulting in the MTS of common factors being stationarity.



6. Numerical Experience with Scenario Trees for the MSOODN Model 125

serie.Factor.1

serie.Factor.2

serie.Factor.3

serie.Factor.4

serie.Factor.5

0 1 2 3 4 −6 −4 −2 0 0 1 2 3 4 0 1 2 3 −4 −2 0 2

0
100

200
314

Value

T
im

e [hour]

(a) Time Series of ppv5 .
serie.Factor.1

serie.Factor.2

serie.Factor.3

serie.Factor.4

serie.Factor.5

0 1 2 3 4 −6 −4 −2 0 0 1 2 3 4 0 1 2 3 −4 −2 0 2

0
100

200
314

Value

T
im

e [hour]

(b) Time Series of ppv8 .

Figura 6.2.6: Common Factors of ppv5 and ppv8 .
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Following the previous results, we proceed to adjust the VAR models. Furthermore,
as with the random variables in the previous MTS model, the VAR model was fixed at
p = 8. The VAR model for the common factors is given for the following equation

Fpv
i,d = Φ̂0 + Φ̂1Fpv

i,d−1 + Φ̂2Fpv
i,d−2 + Φ̂3Fpv

i,d−3 + Φ̂4Fpv
i,d−4 + . . .+ Φ̂8Fpv

i,d−8 + εd (6.2.3)

where d = 1, ..., N and i = 5, 8, (εd) ∼ IID(0,Σε), Φ0,Φ1,Φ2, . . . ,Φ8 are the
parameters to be estimated, and Fpv

i,d are the MTS of PV generation. The VAR model
validations are given in Figures B.1.12 and B.1.13 of Appendix B.

6.2.3. Forecasting Models

The aim of this section is to define forecast models in order to predict future values
of the random variables for the purpose of obtaining scenario trees that represent the
uncertainty of the MSOODN model. The forecasting models and their results will be
presented in the following sections. Section 6.2.3.1 shows the one-step-ahead forecast
models for the active and reactive power load using ARIMA models, and Section 6.2.3.2
gives the one-step-ahead forecast models based on the TSFA and VAR models for the
PV generation.

6.2.3.1. Forecast Models for Power Load

On the basis of future observations, the forecasts, residuals and errors obtained
for the statistical models, we proceed to define the forecast models for the active and
reactive power loads in order to obtain the one-day-ahead forecast. In this case, we
obtained a one-day-ahead for 26 May 2016 using ARIMA models. The full model can
be written as:

yN+1 = c+ φ1yN + φ2yN−1 + . . .+ φpφ1yN+1−p + θ1εN + θ2εN−1 + . . .+ θpεN+1−q (6.2.4)

where N + 1 indicates the one-step-ahead, y is each of the time series of PD
i and QD

i

i = 1, . . . , 5, c, φ1, . . . , φp, θ1, . . . , θp, are the model parameters.

As a result of these forecast models, Figures 6.2.9 and 6.2.10 show the forecast day
of the active and reactive power loads, respectively. The plots show that the forecast
curve (red line) lies inside the confidence interval (dotted lines) and, in the majority of
cases, the forecast curve (red line) is very close to the observed curve (blue line). These
results indicate that the ARIMA models are adequate for forecasting the power load.
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Figura 6.2.9: Forecast for P̂D
i,N+1 with ARIMA Models.
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Figura 6.2.10: Forecast for Q̂D
N+1 with ARIMA Models.
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6.2.3.2. Forecast Models for PV Generation

In accordance with the methodology developed in this thesis, we used the TSFA and
VAR models to obtain forecasts for PV generation. First, we define the TSFA model
for the PV generation forecast for 7 February 2018 (N+ 1). This model is defined by:

ppvi,N+1 = α̂ + B̂F̂pv
i,N+1 (6.2.5)

where i = 5, 8, N + 1 indicates the one-day-ahead, ppvi,d is an M × 1 vector of random
variables, α̂, B̂ are the model parameters, and F̂pv

i,N+1 is the forecast of the common
factors.

We need to estimate the parameters α̂, B̂ and obtain the forecast of the common
factor F̂pv

i,N+1. For this purpose, we use VAR models. The model is the following:

Fpv
i,N+1 = Φ̂0 + Φ̂1ppvi,N + Φ̂2Fpv

i,N−1 + Φ̂3Fpv
i,N−2 + Φ̂4Fpv

i,N−3 + . . .+ Φ̂8Fpv
i,N−7 (6.2.6)

where N + 1 is the one-day-ahead, i = 5, 8, Φ0,Φ1,Φ2, . . . ,Φ8 are the parameters to
be estimated, and Fpv

i,d are the values of PV generation.

The results obtained using the models of Equation 6.2.6 are given in Figure 6.2.11.
These are the forecasts of the common factors Fpv

5,d and Fpv
8,d. Once these forecasts have

been generated, we substitute them into the model of Equation (6.2.5) and obtain the
forecast values for the random variables of the MSOODN model. These are shown in
Figure 6.2.12. The observed values (blue line) are compared with the estimates (red
line) provided by the TSFA-VAR models. These results conclude that the adjusted
models obtain satisfactory forecasts for the PV generation.
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Figura 6.2.11: Common Factors of PV Generation.
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Figura 6.2.12: Forecast of PV Generation.

6.2.4. Scenario Generation

This section presents the results obtained from the scenario generation. In this case,
we generated scenario sets based on the four-step scenario generation procedure and
obtained scenario sets for the same days of the forecasting tests: 26 May 2016 for the
power load; and 8 February 2018 for PV generation. In addition, the size of the scenario
sets was fixed in accordance with the specific needs of each scenario tree algorithm.
the Forward Tree Construction Algorithm (FTCA) can work with scenario sets that
are smaller than those needed by Dynamic Tree Generation with Flexible Bushiness
Algorithm (DTGBA). For this test, we generated scenario sets of 300 scenarios for the
FTCA, which are displayed in Figures B.4.1–B.4.5, and scenario sets of 500 scenarios
for DTGBA, shown in Figures B.4.2–B.4.6, all of which are in Appendix B.

Looking at the plots, we can note that the scenario sets (black lines) cover the
forecast values (red line) and observed values (blue line) of each MTS. This can be more
beneficial at the time of representing the uncertainty through scenario trees, and it
obtains satisfactory results for the MSOODN model. In conclusion, we can say that the
procedure for generating scenarios obtained promising results at the time of obtaining
scenario sets for the random variables of the MSOODN model.

6.3. Phase II: Scenario Tree Generation

Following the results obtained by the scenario procedure, we now dedicate ourselves
to approximating the stochastic process through a scenario tree. To this end, Section
6.3.1 presents the initial considerations for generating scenario trees, and Sections 6.3.2
and 6.3.3 present the scenario trees resulting from the algorithms implemented in this
thesis. More to the point, Section 6.3.2 shows the numerical experience of the FTCA,
and Section 6.3.3 gives the results obtained through the DTGFBA.
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6.3.1. Initial Considerations for the Algorithms

In accordance with the decision process of the MSOODN model, a good approxima-
tion of the stochastic process using scenarios depends, first of all, on an appropriate
definition of the individual scenarios. Based on this consideration, we have defined an
individual scenario for each ω ∈ Ωω, as follows:

ξ̃ω =
(
P̃D

1,1ω, Q̃
D
1,1ω, P̃

D
2,1ω, Q̃

D
2,1ω, P̃

D
3,1ω, Q̃
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4,1ω, Q̃

D
4,1ω, P̃

D
5,1ω, Q̃
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5,1ω, p̃

pv
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pv
8,1ω, . . . ,
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D
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D
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D
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D
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D
4,24ω, P̃

D
5,24ω, Q̃

D
5,24ω, p̃

pv
5,24ω, p̃

pv
8,24ω

)′ (6.3.1)

For the test, the ξ̃ω had a length of 288 components and 24 stages. Table D.1.4 of
Appendix D shows more details about the dimensionality of ξ̃ω. Also, we defined a
realization as a vector composed of the active/reactive power loads, and PV generation
(with a total length of 12 components). In mathematical terms, we defined a realization
as the vector ξ̃tω = (P̃D

1,tω, Q̃
D
1,tω, P̃

D
2,tω, Q̃

D
2,tω, . . . , P̃

D
5,tω, Q̃

D
5,tω, p̃

pv
5,tω, p̃

pv
8,tω), where ξ̃tω is a

realization ω at stage t. On the other hand, the initial data of the test was represented
by a scenario set that can be viewed as a fan or a matrix of an individual scenarios,
depending on the algorithm used to generate the scenario tree. Moreover, equal
probabilities were assigned to the elements of this initial data. Lastly, the algorithms
were implemented in AMPL, and the test runs were performed on a DELL PowerEdge
R630 Server with 2 x Xeon E5-2697 v4 (2,3 GHz, 18Cores/36Threads, 45 MB cache)
and RAM 256 GB (8 x32 GB RDIMM, 2400 MT/s).

6.3.2. Scenario Trees Obtained by FTCA

Recall that, to reflect the structure of the information required by the MSP model,
it is necessary to build scenario trees through algorithms developed for this purpose. In
this case, the FTCA is used. For this test, the fan structure has a root node at t = 0
and is composed of the scenarios obtained in Section 6.2.4. Also, more details about the
dimensionality of this fan are shown in Table 6.3.1. Figure 6.3.1a shows the structure of
this initial fan.

Components Stages Number of Scenarios Number of Nodes
188 24 300 7200

Cuadro 6.3.1: Dimension of Initial Fan for FTCA.

After defining the fan structure, we fixed the initial parameters values of the FTCA
in order to obtain different configurations of scenario trees. These values were defined
such that the obtained scenario trees were reduced to between 100 and 200 scenarios,
approximately. Table 6.3.2 shows the dimension of the final scenarios obtained by the
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FTCA. In this case, the numbers of reduced scenarios and nodes depend on the value
of εrel,1.

Tree εrel,1 δ0 Number of Scenarios Number of Nodes

1 0.87 0.00064 101 1728
2 0.83 0.00064 130 2228
3 0.69 0.00064 188 3866

Cuadro 6.3.2: Dimension of Final Scenario Trees Obtained by FTCA.

For each scenario tree obtained, the stop criteria εt that satisfies the condition of
Equation (3.3.26) was calculated from Equations (3.3.27), (3.3.28) and (3.3.29). To this
end, different values of δ0 and εrel, are fixed. Table D.1.5 of Appendix D shows these
different values. This brought about different scenario trees with different numbers
of scenarios and nodes. In total, three scenario trees were calculated. The εrel,t, εmax,t
values for each scenario tree are given in Table D.1.5. Finally, the resulting scenario
trees are displayed in Figures 6.3.1b and 6.3.1d.
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Figura 6.3.1: Fan and Scenario Tree for TSFA.
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The numerical results illustrate that the FTCA can obtain scenario trees for repre-
senting the uncertainty in the MSOODN model. In this case, the initial parameters that
define the dimensionality of the scenario tree allow us to obtain different configurations
with a specific number of scenarios and nodes for an initial fan defined. This is due to
the initial parameters defining the distance between probability distributions.

6.3.3. Scenario Trees Obtained by DTGFBA

For the DTGFBA, we start with an initial matrix of scenario set composed of
scenario sets obtained for each random variable in Section 6.2.4. They were ordered
according to the decision process, taking the form of the set of initial scenarios defined
in Equation (6.3.1). The test starts with a matrix containing a total of 500 individual
scenarios and 288 components that define, for each row, equal probabilities. Table D.1.6
of Appendix D shows the input values for the DTGFBA, where εt was computed as
follows:

εt = δ ·max
s∈T

∑
t′∈T

dt,t′

|T |
(6.3.2)

where dt,t′ is the Euclidean distance and δ is a branching parameter.

As in the case of the FTCA, the number of scenario trees to obtain is three. In
this case, several values of δ are fixed. These values are defined taking into account
the scenario number defined for the scenario trees obtained by the FTCA. The second
column of Table 6.3.3 shows the value of δ for each scenario tree obtained. Furthermore,
Table D.1.6 shows the εt values fixed for each scenario tree.

Tree δ Number of Scenarios Number of Nodes
1 0.99 104 2487
2 0.98 126 2901
3 0.97 189 3153

Cuadro 6.3.3: Dimension of the Final Scenario Trees Obtained by DTGFBA.

As a final result, Table 6.3.3 shows the number of scenarios and nodes for each
scenario tree obtained by the DTGFBA. Also, Figure 6.3.2 displays the resulting scenario
tree plots. As in the previous algorithm, these results show that using the DTGFBA
can also obtain scenario trees for the MSOODN.
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Figura 6.3.2: Scenario Trees obtained by DTGFBA.

6.4. Computational Results for the MSOODN
Model with Scenario Trees

The MSOODN Model was used to analyze the optimal operation of an 11-node test
system proposed by Levron and Shmilovitz (2012) (see Figure 6.1.1). The proposed
MSP model given in Section 4.2.3 was implemented in the mathematical programming
language AMPL (Fourer et al., 1993) and solved with CPLEX (version 12.8.0.0) using a
DELL PowerEdge R630 Server with 2x Xeon E5-2697 v4 (2,3 GHz, 18Cores/36Threads,
45 MB cache) and RAM 256 GB(8 x 32 GB RDIMM, 2400 MT/s). Numerical results
are shown for the model for each test case given by a set of scenario trees are shown. We
analyzed a slightly modified version of the microgrid proposed by Levron and Shmilovitz
(2012), which is displayed in Figure 6.1.1. This test system contains 2 RS at nodes 8
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and 5, respectively; 2 ESD at nodes 4 and 11; a CB at node 2; and five loads. The
objective is to minimize the cost of energy purchase from node 1 (this node has the
SDD). The energy cost and the load shedding at the nodes is shown for a time period
of 24 hours.

The cost of energy, cSt , is given in Table 6.4.1. The load shedding cost was transformed
into $/kWh for a better understanding of the objective function. This transformation
is given by the γi parameter (see Equation 4.2.4), which was defined by γi = 5,98
US$/KWh. Furthermore, the random parameters of the models (the active and reactive
power loads and the PV generation) are represented by the scenario trees built in
Section 6.3.

Time period t 1-6 7 8 9 10-15 16 17-22 23 24
cSt [$/kWh] 0.02838 0.04257 0.05676 0.07095 0.08514 0.07095 0.05676 0.04257 0.02838

Cuadro 6.4.1: Cost of Energy in the DSS at Node 1.

Two different case studies have been solved in order to analyze the impact of the
Battery Energy Storage System (BESS) in the optimal operation of the EDN:

Case A1: without BESS in the system and considering a transformer with increased
capacity Sdg1 = 6000 kVA.

Case A2: with both BESS in the system and considering the original transformer
capacity: Sdg1 = 6000 kVA.

The optimal solution of the two case studies can be visualized with the help of
several graphical representations:

(a) The optimal value of the state of charge and total active power extracted and
injected by the BESS: SOC∗itω, PBESS∗

itω = P ch∗
itω − P dis∗

itω .

(b) Apparent power generation at node 1 (Distribution Substation (DSS) node) with
and without the BESS in the EDN and the cost of energy purchase from node 1:
SS
∗ =

√
(P S∗)2 + (QS∗)2.

(c) Active power losses in the lines with and without the BESS in the EDN: P ls∗
tω =∑

ij∈Ωb Rij · (I∗ijtω)2.

(d) Voltage profile on the load nodes with the highest and lowest voltages during the
operation period: V min

tω = mini∈ΩnV
∗
itω, V

max
tω = maxi∈ΩnV

∗
itω.

(e) Load shedding on the load nodes: Lshed∗itω .

(f) Frequency of charge or discharge of the BESS: P ch∗
itω , P

dis∗
itω .
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The complete set of plots (a)–(e) for the scenario trees shown in Tables 6.3.2 and
6.3.3 are included in Appendix D. We have analyzed the results corresponding to
scenario tree 1 obtained for the FTCA and DTGFBA. The rest of the results are
analyzed in a very similar form.

Plots (a)–(e) in Figures 6.4.1 and 6.4.2 show the value of the most important recourse
variables corresponding to each scenario (blue thin continuous lines for the case A1

and grey thin continuous lines for the case A2), their mean value (red discontinuous
lines) and the maximum and minimum at each time period (black discontinuous lines).
Figures 6.4.1a and 6.4.2a show the optimal values of SOC and the power extracted
and injected by the BESS for the test case A2. We can observe similar results for both
scenario trees (FTCA and DTGFBA). The optimal values satisfy the maximum level of
the SOC (red continuous line), and the SOC varies according to the power extracted
and injected by the BESS. This last observation may be due to the demand obtained
with each load flow. Regarding the apparent power generation at SSD, Figures 6.4.1b
and 6.4.2b show the apparent power generation of the DSS with (Case A2) and without
(Case A1) the BESS in the system for the FTCA and DTGFBA tree, respectively. In
cases A1 and A2, the system operation satisfies the 6000 kVA capacity of the transformer
considered. Also, the largest apparent power generation coincides with the largest cost
of energy purchase, which can be benefits for the DSS. Observing the results for the
case A2 for the FTCA and DTGFBA tree, the results are very similar. In addition,
Figures 6.4.1c and 6.4.2c show the active power losses in the lines without (case A1)
and with (case A2) the BESS. Analysing the results obtained using each tree, the power
losses were lower in the cases with the BESS. Also, the losses increase when the BESS
injects power into the system. Another interesting result, is shown in Figures 6.4.1d
and 6.4.2d. This is the voltage profile on the load nodes of the case A2 (with BESS). In
these cases, the voltages satisfy their limits and the scenarios also take a similar form
for both the FTCA and DTGFBA trees. Finally, Figures 6.4.1e and 6.4.2e show the
active and reactive load shedding on the load nodes for the case A2. In general, the
mean is near zero only in some scenarios where the load sheddding is major. At nodes 7
and 9, active load shedding was the 50% at and the reactive load shedding was 10%.

On the other hand, Figures 6.4.1f and 6.4.2f show the value of the most important
state variables that represent the frequency of charge and discharge of the BESS (case
A2). The results obtained for the FTCA and DTGFBA scenario trees are very similar.
We observe that the discharge occurs in the first and final hours and the charge is
between t = 10 to t = 15 (hours with the maximum sunshine). This effect can be due
to the load demand on the EDN during these hours.
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Cases A1 and A2 / Instance 1 FTCA / Tree 1 (101 scenarios).
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Figura 6.4.1: Results for Cases A1 and A2 with Scenario Tree Obtained by FTCA.

Cases A1 and A2 / Instance 1 DTGFBA / Tree 1 (104 scenarios).
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Figura 6.4.2: Results for Cases A1 and A2 with Scenario Tree Obtained by DTGFBA.
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It was not possible to analyze the performance of the scenario trees for this study.
However, we show the effect of varying the number of scenarios in a scenario tree. Table
6.4.2 gives the number of constraints, variables and nonzero coefficients for each FTCA
and DTGFBA tree. We observe that the DTGFBA trees have a smaller size than the
FTCA trees, resulting in less computational time to resolve the MSOODN model tests
for the DTGFBA trees.

FTCA DTGFBA

Tree Scenarios Nodes Rows Columns Nonzeros CPU-Time Scenarios Nodes Rows Columns Nonzeros CPU-Time

1 101 1728 139628 167438 460056 3066.91 104 2487 118208 122517 345323 1309.34
2 130 2228 179802 215676 592566 4572.54 126 2901 142346 146800 412720 1247.18
3 188 3866 274186 339586 927110 76389.1 189 3153 212724 218646 615150 1939.89

Cuadro 6.4.2: Results for the Test of Case A2.

Table 6.4.3 shows the expected net cost RP for cases A1 and A2. Comparing the
means of the RP for case A1 with case A2, we observe that the mean of the RP is
91% (FTCA) and 97% (DTGFBA) smaller. Also, the expected net cost in the case
A2 is 97% smaller using the DTGFBA trees than with the FTCA trees. However, as a
mentioned in Section 5.6, these results do not mean that the cost when using FTCA
trees is better than the cost when using the DTGFBA trees.

FTCA DTGFBA

Test Case Tree 1 Tree 2 Tree 3 Mean Tree 1 Tree 2 Tree 3 Mean

A1 5320.08 5234.99 5247.67 5267.47 5328.68 5338.95 5047.76 5238.46
A2 4952.12 4961.29 4959.12 4957.51 5086.01 5080.9 5145.76 5104.22

Cuadro 6.4.3: RP Values in $/kWh for case A2.
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The great science [mathematics] occupies itself at
least just as much with the power of imagination as
with the power of logical conclusion.

— Johann Friedrich Herbart
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7.1. Conclusions

The objectives proposed for this thesis have been achieved. Throughout the chapters,
a literature review has been provided on the approaches for generating scenario trees.
This review was made in the context of Multistage Stochastic Programming (MSP)
models in renewable energy systems. As a result, we selected two algorithms based on
the principle of probability metric-based approximations. The chosen algorithms were
The Forward Tree Construction Algorithm (FTCA), developed by Heitsch and Römisch
(2009a), and an adapted version of Dynamic Tree Generation with Flexible Bushiness
Algorithm (DTGFBA), developed by Pflug and Pichler (2014, 2015), both of which were
integrated into the scenario tree generation methodology developed in this thesis. The
first phase of the methodology begins with available data and sets of scenarios obtained
through a procedure based on statistical models, one-step-ahead forecasting models
and bootstrap techniques. In the second phase, the obtained sets of scenarios serve as
the basis of an initial approximation that is defined and used as input to obtain the
final scenario trees with the selected algorithms. Two MSP models in renewable energy
systems we have presented and formulated. The one that models participation in the
EM is called the MSWBVPP model; and the other one is the MSOODN model, which
models the operation of the EDN. These models have been computationally implemented
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and tested with the data input defined by scenario trees that are based on: real data of
the MIBEL; and the Wind Power (WP) generation of a wind farm called Espina (for
the MSWBVPP model); and data provided by FEEC-UNICAMP for the active power
load; and the Photovoltaic (PV) generation on the Usina Solar Fotovoltaica Tanquinho
plant (for the MSOODN model). The comparative performance of the scenario trees
was analyzed for only the scenario trees obtained for the MSWBVPP model. We will
present the general contributions of the whole thesis in terms of the objectives proposed
in Chapter 1:

(i) Algorithms for generating scenario trees:

• The approaches for generating scenario trees have been revised (see Section
2.2). The FTCA was used more frequently in the electricity environment, and
the DTGFBA was chosen as a recent development for generating scenario
trees.

• A review of the most specific literature on generating scenario trees in the
study areas has been addressed in this thesis, specifically for EM (Section
2.3) and EDN (Section 2.4).

(ii) A two-phase methodology for generating scenario trees:

• One of the contributions of this thesis was the design of a methodology for
scenario tree generation. The methodology begins in the first phase with
available data and builds sets of scenarios for each random variable. Then,
these sets are used to build the individual scenarios of the stochastic process
and are used as inputs to the FTCA and DTGFBA. In the second phase,
the scenario trees are generated with the FTCA and DTGFBA. The main
contributions of this methodology are:

- A developed procedure similar to Muñoz et al. (2013) for generating
scenarios for each random parameter of the MSP models, but with the
difference being that Vector Autoregressive (VAR) models were used
instead to predict the next day (Section 3.3.1).

- A rigorous study of the algorithms that were selected for generating
scenario trees (Section 3.3.2).

• Another contribution is the development of a methodology for studying the
relative performance of scenario trees (Section 3.4). These parameters allow
comparing scenario trees to determine which tree (or set of trees) provides
the best stochastic solution of a model. This comparison is given by the best
stochastic solution and the value of the deterministic solution when using
the forecasted values of the random variables.
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(iii) Scenario trees for the MSP models in renewable energy systems optimization:

• An analysis of the uncertainty and decision process was developed. This
analysis allowed us to propose an original tree structure for each problem
formulated as an MSP model (Chapter 4). These scenario trees are one of
the main contributions of this thesis, and they consist of:

- A novel MSP formulation for the participation in the EM of a Virtual
Power Plant (VPP) comprising a Wind Power Plant (WPP) and Battery
Energy Storage System (BESS) (Section 4.1.3). This formulation is
called the MSWBVPP model. The contribution is based on considering
all Intra-day Markets (IM) sessions together with the elements already
considered (Day-Ahead Market (DM), Secondary Reserve Market (RM)
and Imbalance Settlements (IB)).

- A novel MSP formulation for the operation of a radial EDN composed
of a Distribution Substation (DSS), Switchable Capacitor Banks (SCB),
loads, non-dispatchable Renewable Sources (RS) and BESS (Section
4.2.3). This was called the MSOODN model.

(iv) Generating Scenario trees:

• First of all, we obtained scenario trees for the MSWBVPP model. The test
cases take into account a VPP that contains a WP with power peaks of 18
MW and a BESS with a maximum capacity of 30 MWh, which operates in the
MIBEL. The data used covers the period January 1st 2015 to December 31st
2016 for the MIBEL prices and WP generation of a wind farm called Espina.
We obtained 366 scenario trees from the FTCA and the same number of the
trees from the DTGFBA. The results obtained show that our methodology
can successfully generate suitable scenario trees for the MSWBVPP model
(Sections 5.1–5.4). Finally, an analysis based on boxplots of the elapsed time,
number of scenarios and number of nodes, for the 366 trees generated by
each algorithm is given. This analysis shows significant differences in the
number of nodes of the trees of both algorithms.

• We were also able to apply the scenario tree generation methodology to the
MSOODN model. The test case was based on an 11-node system (Levron
and Shmilovitz, 2012) containing two photovoltaic RS with power peaks of 1
MW and 0.5 MW at, respectively, nodes 8 and 5; and two BESS at nodes 4
and 11 with a capacity for 0.4 MWh each. The data used was provided by
FEEC-UNICAMP (active power load) and by the Usina Solar Fotovoltaica
Tanquinho plant in the state of São Paulo in Brazil (PV generation). The
operation was planned for one day, and a set of three scenario trees were
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built by each algorithm (FTCA and DTGFBA). These trees were obtained
by varying the tolerance error of the algorithms, thus obtaining scenario
trees with different numbers of scenarios. The results obtained show that the
scenario tree generation methodology can be applied to other MSP models
(Sections 6.1–6.3).

(v) Computational results for the MSP models and comparative performance of the
scenario trees:

• In the case of the MSWBVPP model, three different case studies have been
solved in order to analyze the impact of the BESS and the participation in
the RM. As an example, we briefly analyzed the results for the three test
cases corresponding to Thursday, November 17 2016 using both the FTCA
and DTGFBA scenario trees. The results lead to great differences between
the test cases, specifically in terms of a huge increase in the expected net
profit Recourse Problem (RP). The increase in the RP between the WDI
and VDI test cases is less than 3%, and the increase in the RP between the
VDI and VDIR test cases is 65% (FTCA) and 79% (DTGFBA). However,
these results do not mean that the actual profits for a test case are higher
than the previous test case, because that net benefit depends on the tree
itself and is not a fair value to compare (Section 5.6).

• To study the relative performance of the FTCA and DTGFBA scenario
trees for the MSWBVPP problem, we developed a methodology based on
two premises. First, we conducted a statistical analysis on the results for
a complete one-year period in the three cases (WDI, VDI and VDIR) and
applied two scenario trees (FTCA and DTGFBA). Second, we analyzed:
the quality of the solution in terms of the usual variables RP and Expected
Value of the Stochastic Solution (EVSS) (which completely depend on
the scenarios themselves); and a modification of the classical Value of the
Stochastic Solution (VSS), called Forecasted Value of the Stochastic Solution
(FVSS) (which depends only partially on the scenario trees). To determine
the significant statistical differences in the values of these variables for the
different test cases and scenario trees, we compared the distribution of
these variables in the 2016_MSWBVPP data. Based on the application of
this methodology, we can conclude that the relative value of the stochastic
solution FVSSr for the DTGFBA scenario trees is 120%, 130% and 40%
greater for, respectively, the test cases WDI, VDI and VDIR when compared
with the corresponding values for the FTCA scenario trees (Section 5.7).
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• In the case of the MSOODN model, two test cases have been solved in order
to analyze the impact of the BESS in the optimal operation of the EDN. We
briefly analyze the results from these two test cases for a 24-hour day using
both FTCA and DTGFBA scenario trees. In both cases, the operation of the
EDN satisfies the limits of the apparent power generation at the Distribution
Substation (DSS) node, and the active power losses in the lines were very
similar. Looking at the results of the most important recourse variables and
the state variables that represent the frequency of charge and discharge of the
BESS, these show that the EDN can operate correctly. However, as the tree
size increases, we observed that the load shedding on the load nodes increases,
which is not recommended for the real solution. On the other hand, varying
the number of scenarios in a scenario tree results in less computational time;
although the DTGFBA had better computational time than the FTCA, due
to the scenario trees obtained by the DTGFBA having a smaller number of
nodes than those by the FTCA. Finally, in terms of the net cost RP, the
case A1 had a smaller RP than case A2. With regard to the case A2, the
expected net cost was smaller when using trees obtained by the DTGFBA
than by the FTCA (Section 6.4).

7.2. Topic for Future Research

Based on the study developed in this thesis, we can define the following topics for
treatment in future research:

To generate the one-step forecast for the WP and PV generation, we used
TSFA and either VARX or VAR models. A topic that needs further study is
the development of statistical and forecast models that take into account the
particular statistical characteristics of these random variables.

In order to build our scenarios, we assume stage-wise independence of the data
process. A topic for future research is the generation of scenario trees in which
individual scenarios can be built while considering interstate dependence. For
example, a multi-level clustering scheme can be to exploit all sequences in the
data set.

For the MSOODN model, a test system could not be proven that had all elements
modeled (DSS, DG, RS, SCB, OLTC, RV and L). Furthermore, the data availability
for proving this model was limited. As a future topic, we recommend proving the
model with a bigger test system that considers all the elements. Due to the time
limitations, it was not possible for this thesis to compare the performance of the
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FTCA and DTGFBA scenario trees although it will be one of the next topics to
be developed in the future.

Based on the literature review developed in this thesis, we were able to define that
the approach most used in renewable energy systems optimization is the approach
based on probability distances and decided to use the FTCA and DTGFBA in
phase II of the methodology. As a future topic, we suggest implementing other
algorithms of this approach that take into account considerations about the
scenario trees generation who were outside the scope of this thesis.

As the main objective of this thesis was the scenario tree generation, and the
computational time to solve the MSWBVPP model was very short, we have
not been concerned about the development of algorithms to solve the MSP
models. However, running time was large for the MSOODN. As a future topic,
we recommend developing optimization methods that takes into account the
special structure of the MSP (e.g., branch and fix coordination, Bender, dual
decomposition and proximal bundle methods, specialized interior point methods).

The methodology developed in this thesis was only applied to two optimization
problems in renewable energy systems. A topic for future research is the application
of the methodology in other energy problems, e.g., capacity expansion plan-
ning, energy storage management, market clearing, optimal power flow, security-
constrained economic dispatch.
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My Ph.D. is in operations research. I was interested in
making things work better and using mathematics to
help do that. So operations research is what I studied
as an undergraduate and graduate student.

— Alvin E. Roth

A
Basic Probability Theory

Contents

A.1 Random Variables and Stochastic Process . . . . . . . . . . 149

A.1. Random Variables and Stochastic Process

Definition A.1.1. A set-valued mapping F : X ⇒ Y assigns to each element x of X
one or more elements of Y , or possible none. The set of elements y ∈ Y assigned by F
to x is denoted by F (x).

i) The domain of F : X ⇒ Y is the set domF = {x ∈ X : f(x) 6= ∅}.

ii) The range of F is the set range F = {y ∈ Y : y ∈ F (x) for some x ∈ X}.

iii) The inverse mapping F−1 is the set-valued function F−1 : Y ⇒ X denoted by

F−1(y) = {x ∈ X : y ∈ F (x)}

iv) The image of the set B ⊂ X by F is the set

F (B) =
⋃
x∈B

f(x) = {y ∈ Y : F−1(y) ∩B 6= ∅}

iv) The inverse image of the set C ⊂ Y (or pre-image of C) by F is the set

F−1(C) =
⋃
y∈C

F−1(y) = {x ∈ X : F (x) ∩ C 6= ∅}
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We adopt a compromise that consist in calling indifferently mapping or function the
relation F : X → Y that assigns to each element x of a subset domF ⊂ X, one element
y of a subset range F of Y , written y = F (x), and is empty-valued on X\domF . This
is because the function F : X → Y considered in the sequel are defined on the full
space X anyway. The inverse mapping of F , written F−1 is defined on the full space Y
as a set-valued mapping.

Definition A.1.2. Let (Ω,B) and (Ω, C) be measurable spaces. A mapping F : Ω→ Ω′

is said to be B/C−measurable is for each C ∈ C, the pre-image F−1(C) is B−measurable.

when Ω′ = R with C the Borel sigma-algebra B(R), then B/C−measurable mapping
is a real-valued mapping corresponding to real-valued random variable.

Definition A.1.3. A real-valued random variable f on the probability space (Ω,B,P)
is a real-valued mapping from Ω to R that is B/C−measurable.

Similarly, extended-real-value random variable f on the probability space (Ω,B, P )
correspond to mappings f : Ω→ R that are B/B(R)−measurable.

Random variables with values in Rk are called random vectors.

Definition A.1.4. The natural filtration associated to a sequence f1, . . . , fk of random
variables is the family {Fi : i = 0, . . . , k} of sub-sigma-algebras of B generated by the
growing subcollections {f1, . . . , fi} or random variables.

Definition A.1.5. Let (Ω,B) be measurable space. A function f : Ω→ Rn ismeasurable
if for every open set C ⊂ Rn , the pre-image f−1(C) is in B. If f is closed-valued (the
sets f(x) are closed), an equivalent measurability condition is f−1(C) ∈ B for every
close set C.

A random variable whose value evolves over time is known as a multivariate stochastic
process. A multivariate stochastic process ψ is defined as a collection of dependent
random vectors ψ = {ψt}Tt=1 such that, for each t in the index set T , ψt is a random
vector. A multivariate stochastic process ψ can be continuous or discrete depending
on whether its components random vector ψt, t = 1, . . . , T are continuous or discrete,
respectively.



Statistics is the grammar of science.

— Karl Pearson

B
Other Results of the Scenario Generation

Procedure

Contents

B.1 Validation of the Adjusted VARX-VAR models . . . . . . . 151
B.1.1 Validation of the Adjusted VARX Models of the MTS for the

MSWBVPP Model . . . . . . . . . . . . . . . . . . . . . . . . 152
B.1.2 Validation of the Adjusted VAR Models of the MTS for the

MSOODN Model . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.2 Adjusted ARIMA Models for the Active and Reactive
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B.3 Sets of Scenarios for the MSWBVPP Model . . . . . . . . . 157
B.4 Sets of Scenarios for the MSOODN Model . . . . . . . . . . 164

B.1. Validation of the Adjusted VARX-VAR mo-
dels

The plots we use to validate the VARX model are the following:

(a) Residual Plots: is used to study if the variance seems to be constant and if there
are any outliers in the residuals (homoscedasticity assumption). This plot looks for
any creasing or decreasing trend in the residuals, which would be a clear indication
of correlation could mean implies that the assumption of residual independence
has been violated.

(b) Normal Quantile-Quantile Plot: is used to establish if the Gaussian distribution is
appropriate for the residuals (normality assumption). If the points at the extreme
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positions lie far from the reference line, this could be due to the presence of
outliers or excess of kurtosis (heavy tails).

(c) ACF of the Residual: is a complete autocorrelation function which gives us values
of auto-correlation of any series with its lagged values.

(d) PACF of the Residual: is a partial autocorrelation function. Basically, instead of
finding correlations of present with lags like ACF, it finds a correlation of the
residuals with the next lag value hence partial and not complete as we remove
already found variations before we find the next correlation.

The plots of the items (c) and (d), all the lags must lie between the confidence
bands to establish that they are no lag different from zero. This is the condition
of independence of the residuals (independence assumption). We have to take into
account that the confidence bands are built by assuming confidence of% 95, so
for lags far from the origin, a small number can be outside the confidence bands
by randomness.

B.1.1. Validation of the Adjusted VARX Models of the MTS
for the MSWBVPP Model
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(c) ACF of the Residuals.
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(d) PACF of the Residuals.

Figura B.1.1: Validation of the Adjusted
VARX Model for F̂D.
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(c) ACF of the Residuals.
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(d) PACF of the Residuals.

Figura B.1.2: Validation of the Adjusted
VARX Model for F̂R.
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(c) ACF of the Residuals.
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(d) PACF of the Residuals.

Figura B.1.3: Validation of the Adjusted
VARX Model for F̂I
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(b) Normal QQ-plot.
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(c) ACF of the Residuals.
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(d) PACF of the Residuals.

Figura B.1.4: Validation of the Adjusted
VARX Model for F̂I
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(b) Normal QQ-plot.
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(c) ACF of the Residuals.
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(d) PACF of the Residuals.

Figura B.1.5: Validation of the Adjusted
VARX Model for F̂I
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(c) ACF of the Residuals.

−0.5

0.0

0.5

1.0

0 612182430364248

lag

P
A

C
F

−0.5

0.0

0.5

1.0

0 612182430364248

lag

P
A

C
F

−0.5

0.0

0.5

1.0

0 612182430364248

lag

P
A

C
F

−0.5

0.0

0.5

1.0

0 612182430364248

lag

P
A

C
F

−0.5

0.0

0.5

1.0

0 612182430364248

lag

P
A

C
F

−0.5

0.0

0.5

1.0

0 612182430364248

lag

P
A

C
F

−0.5

0.0

0.5

1.0

0 612182430364248

lag

P
A

C
F

−0.5

0.0

0.5

1.0

0 612182430364248

lag

P
A

C
F

(d) PACF of the Residuals.

Figura B.1.6: Validation of the Adjusted
VARX Model for F̂I

4.
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(b) Normal QQ-plot.
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(c) ACF of the Residuals.
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(d) PACF of the Residuals.

Figura B.1.7: Validation of the Adjusted
VARX Model for F̂I

5.

●

●

● ●
●

●
●

●

●
●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

● ●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●
●

●
●

●
●

●

●

●
●

●
●●●

●

●

●

●

●●
●

●
●

●●
●●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●
●

●

●

● ●
●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

● ●●

●
●

●

●

●

●
●●

●
●

●●

●

●

●

●
●

●

●
●

●

● ●
●

●
●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●
● ●

●
●

● ●

● ●
●

●●
●

●

●

●●●

●

●
●

●●●
●

●

●
●

●

●

●

●
● ● ●●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

● ●

●
●

●

●
●●

●

●

●
●

●
●

● ●
●

●

●

●

●

●
●
●

●

● ●

●

● ●

●

●
●

●

●
●

●
●

●

●

●
●● ●

●

●

●
●

●

●
●

●

● ●
●

●

●
●
●

●

●

−2

0

2

0 2 4 6

Price [Euro/MWh]

R
e

s
id

u
a

l

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●● ●
●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●●
● ●

●

●

●

●

●
●●●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●●

●●

●

●

●

●

●
●

● ●●

● ●●

●

●●

●●
●

●
●●●

●

● ● ●
●

●

●
●

● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●
● ●
●●

●

●

●

●

●
●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●
●

● ●

●
●●

●

●●
●

●●
● ●

●

●
●
●

●●

●

●

●
●

●
●

●

●●●●
●

●
●
●

●

●

●

●●●

●

●

●
●

●

●

●
●● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●●●
●

●

●

● ●
●

●

●

●

●

●
●
●
●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

−3

−2

−1

0

1

2

0.0 2.5 5.0 7.5

Price [Euro/MWh]

R
e

s
id

u
a

l

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●
●

●
●

●

● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

● ●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●
● ●

●

●

●

●

●
●

●

●

● ●
●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

● ●

●

● ●

●

●●
●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●
●

● ●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●●

●●
●

●
●

●

●

●

● ●●

●

●

●

●

● ●●●
●

●
●

●
●

●

●●●
●●●
●

●

●
●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●●

●
● ●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●
●●

●

●

●

● ●
●

●
●

●

●

● ●
● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

−3

−2

−1

0

1

2

2.5 5.0 7.5 10.0

Price [Euro/MWh]

R
e

s
id

u
a

l

●

●

●
●

● ●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●●
●

● ●

●
●

●●
●

●

●
●

●

●●

●
●

●

●

● ●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

● ●

●
●

●
●●

●

●●

● ●
●

●

●

●
●

●

● ●

●
●

●
●

● ●

●

●

●●

●●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●●

●●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●
●●

●
● ●

●

●●●

●● ●●

●●
●

● ●

●

●

●

● ●

● ●
●

●
●●
●

●
●

●

●
●

●
●

●

●●

●

●●

●
●●

●
●

●
●●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

−2

−1

0

1

2

3

−6 −4 −2 0

Price [Euro/MWh]

R
e

s
id

u
a

l

(a) Residual Plot.

●

●●

●
●●
●●
●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●

●●●●●●
●●

●

−2

0

2

−2 0 2

theoretical

s
a

m
p

le

● ●
●
●●●

●
●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●

●●
●

−3

−2

−1

0

1

2

−2 0 2

theoretical

s
a

m
p

le

● ●●●●
●
●●●●●●

●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●

●●
●●●

●●
●

●

−3

−2

−1

0

1

2

−2 0 2

theoretical

s
a

m
p

le

● ●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●●●

●●●●●●●
●●
●●●

●●
●

●

−2

−1

0

1

2

3

−2 0 2

theoretical

s
a

m
p

le

(b) Normal QQ-plot.

−0.5

0.0

0.5

1.0

0 6 12 18 24 30 36 42 48

lag

A
C

F

−0.5

0.0

0.5

1.0

0 6 12 18 24 30 36 42 48

lag

A
C

F

−0.5

0.0

0.5

1.0

0 6 12 18 24 30 36 42 48

lag

A
C

F

−0.5

0.0

0.5

1.0

0 6 12 18 24 30 36 42 48

lag

A
C

F

(c) ACF of the Residuals.
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Figura B.1.8: Validation of the Adjusted
VARX Model for F̂I
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(c) ACF of the Residuals.
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(d) PACF of the Residuals.

Figura B.1.9: Validation of the Adjusted
VARX Model for λ̂I7.
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(c) ACF of the Residuals.
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(d) PACF of the Residuals.

Figura B.1.10: Validation of the Adjusted
VARX Model for F̂IB.
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(a) Residual Plot.
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(b) Normal QQ-plot.
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(c) ACF of the Residuals.
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(d) PACF of the Residuals.

Figura B.1.11: Validation of the Adjusted
VARX Model for F̂W .

B.1.2. Validation of the Adjusted VAR Models of the MTS
for the MSOODN Model
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(a) Residual Plot.
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(b) Normal QQ-plot.
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(c) ACF of the Residuals.
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(d) PACF of the Residuals.

Figura B.1.12: Validation of the Adjusted
VAR Model for F̂pv
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(a) Residual Plot.

●
●

●
●
●●
●
●●●●

●●●●●
●●●●●●●●●

●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●

●●●
●●●

●●●●

●

−3

−2

−1

0

1

2

−3 −2 −1 0 1 2 3

theoretical

s
a

m
p

le

●
●

●
●●●

●●
●●
●●●●
●●●●
●●●●●
●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●

●●●
●●

●●

●

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

theoretical

s
a

m
p

le

● ●●●●
●●●

●●●
●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●
●●●●●

●●●●●
●●●

●●●

●

−2

−1

0

1

2

−3 −2 −1 0 1 2 3

theoretical

s
a

m
p

le

●

●
●●●

●●●●
●●●
●●●
●●●●●●●

●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●
●●●●●●

● ●

−2

0

2

−3 −2 −1 0 1 2 3

theoretical

s
a

m
p

le

●

●
●●●●

●
●●
●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●

●●●
●●●●

●●
●

● ●

−4

−2

0

2

−3 −2 −1 0 1 2 3

theoretical

s
a

m
p

le

(b) Normal QQ-plot.
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Figura B.1.13: Validation of the Adjusted
VAR Model for F̂pv
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B.2. Adjusted ARIMA Models for the Active and
Reactive Power Load

Serie ARIMA Models Models in Backshift Notation Parameters PD
1 Parameters for QD

1

PD
1,1 ARIMA(0,1,1) (1−B)PD

1,1t = c+ (1− θ1B)ε1,1t c = 0, θ1 = −0,3249 c = 0, θ1 = −0,3249
PD

1,2 ARIMA(0,1,0) (1−B)PD
1,2t = c+ ε1,2t c = 0 c = 0

PD
1,3 ARIMA(0,1,0) (1−B)PD

1,3t = c+ ε1,3t c = 0 c = 0
PD

1,4 ARIMA(0,1,0) (1−B)PD
1,4t = c+ ε1,4t c = 0 c = 0

PD
1,5 ARIMA(0,1,0) (1−B)PD

1,5t = c+ ε1,5t c = 0 c = 0
PD

1,6 ARIMA(0,1,0) (1−B)PD
1,6t = c+ ε1,6t c = 0 c = 0

PD
1,7 ARIMA(1,1,1) (1− φ1B)(1−B)PD

1,7t = c+ (1 + θ1B)ε1,7t φ1 = 0,4534, c = 0, θ1 = −0,8761 φ1 = 0,4534, c = 0, θ1 = −0,8761
PD

1,8 ARIMA(1,0,0) (1− φ1B)(1−B)PD
1,8t = c+ ε1,8t φ1 = 0,3141, c = 985,0170 φ1 = 0,3141, c = 20,4644

PD
1,9 ARIMA(0,1,2) (1−B)PD

1,9t = c+ (1 + θ1B + θ2B
2)ε1,9t c = 0, θ1 = −0,9442, θ2 = 0,3208 c = 0, θ1 = −0,9442, θ2 = 0,3208

PD
1,10 ARIMA(2,0,0) (1− φ1B − φ2B

2)PD
1,10t = c+ ε1,10t φ1 = 0,3680, φ2 = 0,3109, c = 1125,267 φ1 = 0,3680, φ2 = 0,3109, c = 86,8250

PD
1,11 ARIMA(0,0,0) PD

1,11t = c+ ε1,11t c = 1092,3653 c = 77,4784
PD

1,12 ARIMA(0,1,1) (1−B)PD
1,12t = c+ (1 + θ1B)ε1,12t c = 0, θ1 = −0,6280 c = 0, θ1 = −0,6280

PD
1,13 ARIMA(0,0,0) PD

1,13t = c+ ε1,13t c = 1108,8210 c = 46,2996
PD

1,14 ARIMA(1,0,0) (1− φ1B)PD
1,14t = c+ ε1,14t φ1 = 0,6288, c = 1184,7529 φ1 = 0,6288, c = 148,7075

PD
1,15 ARIMA(1,0,0) (1− φ1B)PD

1,15t = c+ ε1,15t φ1 = 0,4737, c = 1218,9021 φ1 = 0,4737, c = 239,7831
PD

1,16 ARIMA(0,1,1) (1−B)PD
1,16t = c+ (1 + θ1B)ε1,16t c = 0, θ1 = −0,7338 c = 0, θ1 = −0,7338

PD
1,17 ARIMA(1,0,0) (1− φ1B)PD

1,17t = c+ ε1,17t φ1 = 0,5162, c = 1149,1623 φ1 = 0,5162, c = 283,7119
PD

1,18 ARIMA(0,1,1) (1−B)PD
1,18t = c+ (1 + θ1B)ε1,18t c = 0, θ1 = −0,4834 c = 0, θ1 = −0,4834

PD
1,19 ARIMA(1,0,0) (1− φ1B)PD

1,19t = c+ ε1,19t φ1 = 0,4022, c = 873,8628 φ1 = 0,4022, c = 137,0247
PD

1,20 ARIMA(0,1,1) (1−B)PD
1,20t = c+ (1 + θ1B)ε1,20t c = 0, θ1 = −0,5689 c = 0, θ1 = −0,5689

PD
1,21 ARIMA(0,1,0) (1−B)PD

1,21t = c+ ε1,21t c = 0 c = 0
PD

1,22 ARIMA(0,1,1) (1−B)PD
1,22t = c+ (1 + θ1B)ε1,22t c = 0, θ1 = −0,7232 c = 0, θ1 = −0,7232

PD
1,23 ARIMA(1,1,0) (1− φ1B)(1−B)PD

1,23t = c+ ε1,23t φ1 = −0,5611, c = 0 φ1 = −0,5611, c = 0
PD

1,24 ARIMA(0,1,1) (1−B)PD
1,24t = c+ (1 + θ1B)ε1,24t c = 0, θ1 = −0,6950 c = 0, θ1 = −0,6950

Cuadro B.2.1: Adjusted ARIMA Models for PD
1 and QD

1 .

Serie ARIMA Models Models in Backshift Notation Parameters for PD
2 Parameters for QD

2

PD
1,1 ARIMA(0,1,2) (1−B)PD

1,1t = c+ (1− θ1B − θ2B
2)ε1,1t c = 0, θ1 = −1,0568, θ2 = 0,5870 c = 0, θ1 = −1,0568, θ2 = 0,5870

PD
1,2 ARIMA(0,1,1) (1−B)PD

1,2t = c+ (1 + θ1B)ε1,2t c = 0, θ1 = −0,4781 c = 0, θ1 = −0,4781
PD

1,3 ARIMA(0,1,1) (1−B)PD
1,3t = c+ (1 + θ1B)ε1,3t c = 0, θ1 = −0,6493 c = 0, θ1 = −0,6493

PD
1,4 ARIMA(1,1,0) (1− φ1B)(1−B)PD

1,4t = c+ ε1,4t φ1 − 0,5533, c = 0 φ1 − 0,5533, c = 0
PD

1,5 ARIMA(0,1,1) (1−B)PD
1,5t = c+ (1 + θ1B)ε1,5t c = 0, θ1 = −0,6806 c = 0, θ1 = −0,6806

PD
1,6 ARIMA(0,1,1) (1−B)PD

1,6t = c+ (1 + θ1B)ε1,6t c = 0, θ1 = −0,6564 c = 0, θ1 = −0,6564
PD

1,7 ARIMA(0,0,0) PD
1,7t = c+ ε1,7t c = 772,1471 c = 479,9791

PD
1,8 ARIMA(0,0,0) PD

1,8t = c+ ε1,8t c = 945,5663 c = 351,4502
PD

1,9 ARIMA(0,0,0) PD
1,9t = c+ ε1,9t c = 1071,7147 c = 251,1326

PD
1,10 ARIMA(0,0,1) PD

1,10t = c+ (1 + θ1B)ε1,10t c = 1143,1315, θ1 = 0,4178 c = 189,3260, θ1 = 0,4178
PD

1,11 ARIMA(0,0,0) PD
1,11t = c+ ε1,11t c = 1159,2878 c = 154,9220

PD
1,12 ARIMA(0,1,1) (1−B)PD

1,12t = c+ (1 + θ1B)ε1,12t c = 0, θ1 = −0,8816 c = 0, θ1 = −0,8816
PD

1,13 ARIMA(0,0,0) PD
1,13t = c+ ε1,13t c = 1094,3815 c = 131,9316

PD
1,14 ARIMA(0,0,0) PD

1,14t = c+ ε1,14t c = 1029,9504 c = 128,6034
PD

1,15 ARIMA(0,0,0) PD
1,15t = c+ ε1,15t c = 956,1867 c = 131,0181

PD
1,16 ARIMA(0,0,0) PD

1,16t = c+ ε1,16t c = 881,8436 c = 141,1169
PD

1,17 ARIMA(0,1,1) (1−B)PD
1,17t = c+ (1 + θ1B)ε1,17t c = 0, θ1 = −0,8205 c = 0, θ1 = −0,8205

PD
1,18 ARIMA(0,0,0) PD

1,18t = c+ ε1,18t c = 760,2395 c = 185,4920
PD

1,19 ARIMA(0,0,0) PD
1,19t = c+ ε1,19t c = 714,1984 c = 206,1902

PD
1,20 ARIMA(0,0,2) PD

1,20t = c+ (1 + θ1B + θ2B
2)ε1,20t c = 675,4775, θ1 = −0,0372, θ2 = 0,4806 c = 206,1902, θ1 = −0,0372, θ2 = 0,4806

PD
1,21 ARIMA(0,0,0) PD

1,21t = c+ ε1,21t c = 640,3886 c = 196,0186
PD

1,22 ARIMA(0,0,0) PD
1,22t = c+ ε1,22t c = 603,3126 c = 157,4372

PD
1,23 ARIMA(0,0,0) PD

1,23t = c+ ε1,23t c = 552,5695 c = 109,8067
PD

1,24 ARIMA(0,0,0) PD
1,24t = c+ ε1,24t c = 476,7002 c = 66,3320

Cuadro B.2.2: Adjusted ARIMA Models for PD
2 and QD

2 .



B. Other Results of the Scenario Generation Procedure 157

Serie ARIMA Models Models in Backshift Notation Parameters for PD
3 Parameters for QD

3

PD
1,1 ARIMA(0,0,0) PD

1,1t = c+ ε1,1t c = 345,5462 c = 115,3333
PD

1,2 ARIMA(0,0,0) PD
1,2t = c+ ε1,2t c = 297,0864 c = 222,2893

PD
1,3 ARIMA(0,1,1) (1−B)PD

1,3t = c+ (1 + θ1B)ε1,3t c = 0, θ1 = −0,7870 c = 0, θ1 = −0,7870
PD

1,4 ARIMA(0,0,0) PD
1,4t = c+ ε1,4t c = 310,1471 c = 377,0388

PD
1,5 ARIMA(0,1,1) (1−B)PD

1,5t = c+ (1 + θ1B)ε1,5t c = 0, θ1 = −0,3463 c = 0, θ1 = −0,3463
PD

1,6 ARIMA(0,1,1) (1−B)PD
1,6t = c+ (1 + θ1B)ε1,6t c = 0, θ1 = −0,7823 c = 0, θ1 = −0,7823

PD
1,7 ARIMA(0,1,1) (1−B)PD

1,7t = c+ (1 + θ1B)ε1,7t c = 0, θ1 = −0,6725 c = 0, θ1 = −0,6725
PD

1,8 ARIMA(0,0,0) PD
1,8t = c+ ε1,8t c = 887,0455 c = 203,3796

PD
1,9 ARIMA(0,1,1) (1−B)PD

1,9t = c+ (1 + θ1B)ε1,9t c = 0, θ1 = −0,8286 c = 0, θ1 = −0,8286
PD

1,10 ARIMA(0,1,1) (1−B)PD
1,10t = c+ (1 + θ1B)ε1,10t c = 0, θ1 = −0,7576 c = 0, θ1 = −0,7576

PD
1,11 ARIMA(0,0,0) PD

1,11t = c+ ε1,11t c = 1068,6999 c = 143,5188
PD

1,12 ARIMA(0,1,1) (1−B)PD
1,12t = c+ (1 + θ1B)ε1,12t c = 0, θ1 = −0,7125 c = 0, θ1 = −0,7125

PD
1,13 ARIMA(0,1,1) (1−B)PD

1,13t = c+ (1 + θ1B)ε1,13t c = 0, θ1 = −0,7490 c = 0, θ1 = −0,7490
PD

1,14 ARIMA(0,1,1) (1−B)PD
1,14t = c+ (1 + θ1B)ε1,14t c = 0, θ1 = −0,7259 c = 0, θ1 = −0,7259

PD
1,15 ARIMA(1,1,3) (1− φ1B)PD

1,15t = c+ (1 + θ1B + θ2B
2 + θ3B

3)ε1,15t φ1 = −0,5305, c = 0, θ1 = 0,6132, θ2 = −0,2877, θ3 = −0,8248 φ1 = −0,5305, c = 0, θ1 = 0,6132, θ2 = −0,2877, θ3 = −0,8248
PD

1,16 ARIMA(0,1,2) (1−B)PD
1,16t = c+ (1 + θ1B + θ2B

2)ε1,16t c = 0, θ1 = −0,4104, θ2 = −0,3078 c = 0, θ1 = −0,4104, θ2 = −0,3078
PD

1,17 ARIMA(0,1,1) (1−B)PD
1,17t = c+ (1 + θ1B)ε1,17t c = 0, θ1 = −0,6842 c = 0, θ1 = −0,6842

PD
1,18 ARIMA(0,0,0) PD

1,18t = c+ ε1,18t c = 828,8885 c = 14,7346
PD

1,19 ARIMA(2,0,0) (1− φ1B − φ2B
2)PD

1,19t = c+ ε1,19t φ1 = −0,4090, φ2 = 0,5976, c = 730,4430 φ1 = −0,4090, φ2 = 0,5976, c = 161,9262
PD

1,20 ARIMA(0,0,0) PD
1,20t = c+ ε1,20t c = 623,5259 c = 272,7485

PD
1,21 ARIMA(0,0,1) PD

1,21t = c+ (1 + θ1B)ε1,21t c = 553,6742, θ1 = −0,7853 c = 264,2963, θ1 = −0,7853
PD

1,22 ARIMA(0,0,1) PD
1,22t = c+ (1 + θ1B)ε1,22t c = 496,3446, θ1 = −0,5305 c = 124,6403, θ1 = −0,5305

PD
1,23 ARIMA(0,0,0) PD

1,23t = c+ ε1,23t c = 443,3808 c = 75,4726
PD

1,24 ARIMA(0,0,0) PD
1,24t = c+ ε1,24t c = 396,1133 c = 268,2114

Cuadro B.2.3: Adjusted ARIMA Models for PD
3 and QD

3 .

Serie ARIMA Models Models in Backshift Notation Parameters for PD
4 Parameters for QD

4

PD
1,1 ARIMA(0,0,0) PD

1,1t = c+ ε1,1t c = 368,7279 c = 497,1727
PD

1,2 ARIMA(0,1,1) (1−B)PD
1,2t = c+ (1 + θ1B)ε1,2t c = 0, θ1 = −0,5792 c = 0, θ1 = −0,5792

PD
1,3 ARIMA(0,1,1) (1−B)PD

1,3t = c+ (1 + θ1B)ε1,3t c = 0, θ1 = −0,4212 c = 0, θ1 = −0,4212
PD

1,4 ARIMA(1,1,0) (1− φ1B)(1−B)PD
1,4t = c+ ε1,4t φ1 = −0,3603, c = 0 φ1 = −0,3603, c = 0

PD
1,5 ARIMA(1,1,0) (1− φ1B)(1−B)PD

1,5t = c+ ε1,5t φ1 = −0,4974, c = 0 φ1 = −0,4974, c = 0
PD

1,6 ARIMA(1,1,0) (1− φ1B)(1−B)PD
1,6t = c+ ε1,6t φ1 = −0,5887, c = 0 φ1 = −0,5887, c = 0

PD
1,7 ARIMA(0,0,0) PD

1,7t = c+ ε1,7t c = 786,1083 c = 191,1949
PD

1,8 ARIMA(0,0,0) PD
1,8t = c+ ε1,8t c = 946,8231 c = 95,6265

PD
1,9 ARIMA(0,0,0) PD

1,9t = c+ ε1,9t c = 1056,7725 c = 18,3250
PD

1,10 ARIMA(0,0,0) PD
1,10t = c+ ε1,10t c = 1107,8540 c = 31,0283

PD
1,11 ARIMA(0,0,0) PD

1,11t = c+ ε1,11t c = 1118,4443 c = 45,9321
PD

1,12 ARIMA(0,0,1) PD
1,12t = c+ (1 + θ1B)ε1,12t c = 1114,9931, θ1 = −0,6144 c = 20,1484, θ1 = −0,6144

PD
1,13 ARIMA(0,0,1) PD

1,13t = c+ (1 + θ1B)ε1,13t c = 1096,5193, θ1 = −0,5952 c = 52,3375, θ1 = −0,5952
PD

1,14 ARIMA(0,0,0) PD
1,14t = c+ ε1,14t c = 1082,5050 c = 158,8550

PD
1,15 ARIMA(1,0,0) (1− φ1B)PD

1,15t = c+ ε1,15t φ1 = 0,3363, c = 1051,5891 φ1 = 0,3363, c = 269,2443
PD

1,16 ARIMA(0,0,0) PD
1,16t = c+ ε1,16t c = 992,9066 c = 354,3868

PD
1,17 ARIMA(0,0,0) PD

1,17t = c+ ε1,17t c = 885,0801 c = 383,1718
PD

1,18 ARIMA(2,0,0) (1− φ1B − φ2B
2)PD

1,18t = c+ ε1,18t φ1 = −0,4612, φ2 = −0,2973, c = 740,5262 φ1 = −0,4612, φ2 = −0,2973, c = 354,7861
PD

1,19 ARIMA(0,0,0) PD
1,19t = c+ ε1,19t c = 577,8388 c = 287,8005

PD
1,20 ARIMA(0,0,0) PD

1,20t = c+ ε1,20t c = 437,2399 c = 211,8423
PD

1,21 ARIMA(2,0,2) (1− φ1B − φ2B
2)PD

1,21t = c+ (1 + θ1B + θ2B
2)ε1,21t φ1 = −1,6529, φ2 = −0,8534, c = 344,4084, θ1 = 1,8762, θ2 = 0,8818 φ1 = −1,6529, φ2 = −0,8534, c = 149,5802, θ1 = 1,8762, θ2 = 0,8818

PD
1,22 ARIMA(0,0,0) PD

1,22t = c+ ε1,22t c = 304,1120 c = 114,1795
PD

1,23 ARIMA(0,0,0) PD
1,23t = c+ ε1,23t c = 299,2826 c = 108,7483

PD
1,24 ARIMA(1,0,0) (1− φ1B)PD

1,24t = c+ ε1,24t φ1 = 0,3041, c = 313,2272 φ1 = 0,3041, c = 136,5354

Cuadro B.2.4: Adjusted ARIMA Models for PD
4 and QD

4 .

Serie ARIMA Models Models in Backshift Notation Parameters for PD
5 Parameters for QD

5

PD
1,1 ARIMA(1,0,0) (1− φ1B)PD

1,1t = c+ ε1,1t φ1 = 0,6185, c = 333,1652 φ1 = 0,6185, c = 168,6776
PD

1,2 ARIMA(1,0,1) (1− φ1B)PD
1,2t = c+ (1 + θ1B)ε1,2t φ1 = 0,8737, c = 261,7695, θ1 = −0,3998 φ1 = 0,8737, c = 109,6354, θ1 = −0,3998

PD
1,3 ARIMA(0,1,1) (1−B)PD

1,3t = c+ (1 + θ1B)ε1,3t c = 0, θ1 = −0,5571 c = 0, θ1 = −0,5571
PD

1,4 ARIMA(1,1,0) (1− φ1B)(1−B)PD
1,4t = c+ ε1,4t φ1 = −0,4788, c = 0 φ1 = −0,4788, c = 0

PD
1,5 ARIMA(0,1,0) (1−B)PD

1,5t = c+ ε1,5t c = 0 c = 0
PD

1,6 ARIMA(0,1,1) (1−B)PD
1,6t = c+ (1 + θ1B)ε1,6t c = 0, θ1 = −0,5951 c = 0, θ1 = −0,5951

PD
1,7 ARIMA(0,0,0) PD

1,7t = c+ ε1,7t c = 667,6731 c = 418,5879
PD

1,8 ARIMA(0,0,1) PD
1,8t = c+ (1 + θ1B)ε1,8t c = 851,7040, θ1 = 0,358 c = 485,6111, θ1 = 0,358

PD
1,9 ARIMA(0,0,1) PD

1,9t = c+ (1 + θ1B)ε1,9t c = 980,2221, θ1 = 0,3355 c = 434,7019, θ1 = 0,3355
PD

1,10 ARIMA(0,0,0) PD
1,10t = c+ ε1,10t c = 1041,3964 c = 277,0536

PD
1,11 ARIMA(0,0,0) PD

1,11t = c+ ε1,11t c = 1060,5196 c = 92,9920
PD

1,12 ARIMA(4,0,0) (1− φ1B − φ2B
2 − φ3B

3 − φ4B
4)(1−B)PD

1,12t = c+ ε1,12t φ1 = −0,0425, φ2 = −0,4154, φ3 = −0,2163, φ4 = −0,5291, c = 1061,4256 φ1 = −0,0425, φ2 = −0,4154, φ3 = −0,2163, φ4 = −0,5291, c = 36,0064
PD

1,13 ARIMA(0,0,0) PD
1,13t = c+ ε1,13t c = 1063,4044 c = 31,1806

PD
1,14 ARIMA(0,0,1) PD

1,14t = c+ (1 + θ1B)ε1,14t c = 1072,5577, θ1 = 0,3421 c = 108,2635, θ1 = 0,3421
PD

1,15 ARIMA(0,0,0) PD
1,15t = c+ ε1,15t c = 1065,4964 c = 305,1137

PD
1,16 ARIMA(0,0,0) PD

1,16t = c+ ε1,16t c = 1024,3734 c = 1024,3734
PD

1,17 ARIMA(0,0,0) PD
1,17t = c+ ε1,17t c = 928,9658 c = 479,2664

PD
1,18 ARIMA(0,0,0) PD

1,18t = c+ ε1,18t c = 786,1470 c = 506,6386
PD

1,19 ARIMA(1,0,0) (1− φ1B)PD
1,19t = c+ ε1,19t φ1 = 0,4875, c = 629,7174 φ1 = 0,4875, c = 380,7409

PD
1,20 ARIMA(0,0,1) PD

1,20t = c+ (1 + θ1B)ε1,20t c = 491,5584, θ1 = 0,3522 c = 215,8650, θ1 = 0,3522
PD

1,21 ARIMA(0,0,0) PD
1,21t = c+ ε1,21t c = 407,3960 c = 55,2050

PD
1,22 ARIMA(0,0,1) PD

1,22t = c+ (1 + θ1B)ε1,22t c = 378,9702, θ1 = 0,4186 c = 72,0219, θ1 = 0,4186
PD

1,23 ARIMA(1,0,0) (1− φ1B)PD
1,23t = c+ ε1,23t φ1 = 0,4400, c = 383,6491 φ1 = 0,4400, c = 148,8331

PD
1,24 ARIMA(1,0,0) (1− φ1B)PD

1,24t = c+ ε1,24t φ1 = 0,3914, c = 384,0515 φ1 = 0,3914, c = 153,8799

Cuadro B.2.5: Adjusted ARIMA Models for PD
5 and QD

5 .

B.3. Sets of Scenarios for the MSWBVPP Model
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(d) Thursday 17-November-2016.

Figura B.3.1: Some scenario sets for λD with
1000 scenarios.
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(b) Monday 06-June-2016.
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(c) Sunday 16-October-2016.
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(d) Thursday 17-November-2016.

Figura B.3.2: Some scenario sets for λI1 with
1000 scenarios.
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(b) Monday 06-June-2016.
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(c) Sunday 16-October-2016.
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(d) Thursday 17-November-2016.

Figura B.3.3: Some scenario sets for λR with
1000 scenarios.
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(b) Monday 06-June-2016.
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(d) Thursday 17-November-2016.

Figura B.3.4: Some scenario sets for λI2 with
1000 scenarios.
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(c) Sunday 16-October-2016.
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(d) Thursday 17-November-2016.

Figura B.3.5: Some scenario sets for λI3 with
1000 scenarios.
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(c) Sunday 16-October-2016.

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time [Hour]

P
ric

e 
[E

ur
o/

M
W

h]

(d) Thursday 17-November-2016.

Figura B.3.6: Some scenario sets for λI4 with
1000 scenarios.
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(d) Thursday 17-November-2016.

Figura B.3.7: Some scenario sets for λI5 with
1000 scenarios.
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(d) Thursday 17-November-2016.

Figura B.3.8: Some scenario sets for λI6 with
1000 scenarios.
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(d) Thursday 17-November-2016.

Figura B.3.9: Some scenario sets for λI7 with
1000 scenarios.
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(d) Thursday 17-November-2016.

Figura B.3.10: Some scenario sets for λIB
with 1000 scenarios.

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [Hour]

G
en

er
at

io
n 

[M
W

]

(a) Friday 15-January-2016.

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [Hour]

G
en

er
at

io
n 

[M
W

]
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(c) Sunday 16-October-2016.
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(d) Thursday 17-November-2016.

Figura B.3.11: Some scenario sets for PW

with 1000 scenarios.
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(c) Sunday 16-October-2016.
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(d) Thursday 17-November-2016.

Figura B.3.12: Some scenario sets for λD
with 10000 scenarios.
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(c) Sunday 16-October-2016.
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(d) Thursday 17-November-2016.

Figura B.3.13: Some scenario sets for λR
with 10000 scenarios.
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(a) Friday 15-January-2016.
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(c) Sunday 16-October-2016.
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(d) Thursday 17-November-2016.

Figura B.3.14: Some scenario sets for λI1
with 10000 scenarios.
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(a) Friday 15-January-2016.
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(b) Monday 06-June-2016.
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(c) Sunday 16-October-2016.
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(d) Thursday 17-November-2016.

Figura B.3.15: Some scenario sets for λI2
with 10000 scenarios.
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(c) Sunday 16-October-2016.
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(d) Thursday 17-November-2016.

Figura B.3.16: Some scenario sets for λI3
with 10000 scenarios.
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(a) Friday 15-January-2016.
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(c) Sunday 16-October-2016.

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time [Hour]

P
ric

e 
[E

ur
o/

M
W

h]

(d) Thursday 17-November-2016.

Figura B.3.17: Some scenario sets for λI4
with 10000 scenarios.
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(c) Sunday 16-October-2016.
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(d) Thursday 17-November-2016.

Figura B.3.18: Some scenario sets for λI5
with 10000 scenarios.
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(d) Thursday 17-November-2016.

Figura B.3.19: Some scenario sets for λI6
with 10000 scenarios.
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(d) Thursday 17-November-2016.

Figura B.3.20: Some scenario sets for λI7
with 10000 scenarios.
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(d) Thursday 17-November-2016.

Figura B.3.21: Some scenario sets for λIB
with 10000 scenarios.
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(d) Thursday 17-November-2016.

Figura B.3.22: Some scenario sets for PW

with 10000 scenarios.
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Figura B.4.1: Scenario sets for P̂D
i,N+1 with 300 Scenarios.
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Figura B.4.2: Scenario Sets for P̂D
i,N+1 with 500 Scenarios.
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Figura B.4.3: Scenario Sets for Q̂D
i,N+1 with 300 Scenarios.
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Figura B.4.4: Scenario Sets for Q̂D
N+1 with 500 Scenarios.
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(b) Scenarios for ppv8,N+1.

Figura B.4.5: Scenario Sets for p̂pvi,N+1 with 300 Scenarios.
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Figura B.4.6: Scenario Sets for p̂pvi with 500 Scenarios.



An evolving system increases its complexity
unless work is done to reduce it.

— Meir M. Lehman

C
Implementation of the TSFA

reset;

param pas integer; # step wise

#Headboard of forward construction#
param nT integer; # number of stages
param nV integer; # number of time periods
set T=0..nT by pas; # index set of stages
set TT=1..nT by pas within T; # index subset of stages
param epst{TT}>=0; # epsilon tolerance for time period t
param eps>=0; # sum of epsilon tolerance

#Headboard of forward selection#
param nS integer; # scenarios numbers
param i; # auxiliary param for algorithm calculations
set S=0..nS by pas; # index set of scenarios
set SS=1..nS by pas within S; # index subset of scenarios
set J{S,T} ordered; # index set of scenarios deleted
set u{S,T} ordered default {}; # index set of scenarios preserved
set uu{2..4} ordered default {};# auxiliary index set for scenarios

preserved
param E {SS,1..nV}; # scenario values of stocastic process
param Scen0{SS,1..nV}; # actualization of scenario values for

stocastic process
param Scen0_re {SS,1..nV}; # actualization of scenario values

redistribution
param Prob0{SS}; # probabilities of scenarios
param U {SS}; # minimal argument of Lr-distance
param UU {SS,SS}; # Lr distance
set argmin_U ordered; # index set of scenarios deleted for each step i

167
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param F {SS,SS}; # distance between scenarios deleted to
scenarios preserved

set argmin_F{SS} ordered;# scenario preserved nearest to scenario
deleted

set index_F{SS,SS} ordered; # index for reordering scenario values
param snorm{SS}; # sum of norms
param norm{0..1,TT}; # norm
set c{T,SS} ordered default {}; # set of nodes preserved
set npres{T}; # number of scenarios
set aa ordered; # auxiliary set for algorithm calculations
param pp{SS}; # auxiliary set for algorithm calculations
set bb; # auxiliary parameter for algorithm

calculations
set mm{S} default {}; # auxiliary set for algorithm calculations
param d{T}; # time periods for stage t
param ddmin{T}; # first component of a time period of stage t
param ddmax{T}; # last component of a time period of stage t
param r; # distance type
param nesce; # number of final scenarios
param norm1{SS,SS}; # initial norm
set JJ{S,T} ordered; # index set of scenarios deleted
param eemax{SS}; # the initial best possible distance
set argmin_eemax; # minimal argument of the best possible

distance
param nSG; # final number of scenarios
param nRVSG{TT}; # final time periods for stage t

param nnodes{T} default 1; # number of nodes for stage t
param matt_clust{SS,T} default 0;# parameter for scenario tree plots
param pred{SS,T} default 0; # index of nodes preserved
param fila integer; # parameter for scenario tree plots
param cont{T} integer default 1;# parameter for scenario tree plots
param aux; # auxiliary parameter
#######################################################
#INICIAL PARAMETERS FORWARD CONSTRUCTION
param emaxt{TT}; # the best distance
param emax; # sum of the emaxt
param erel; # relative tolerance
param erelt{TT}; # relative tolerance for stage t
param norm11{SS,SS,TT}; # initial norm for stage t
param ssize integer > 0; # number of scenario preserved for stage t
param item symbolic; # dummy parameter to hold each selection
param sample {1..ssize} symbolic;# sample number for select scenario

preserved
#param VP{SS,1..nV}; #
param ScenO{1..nV}; # matrix of observed values
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param ScenF{1..nV}; # matrix of forecasted values
param snnodes;

set CASES = 322 .. 322;

for {jj in CASES}
{

display jj;
reset data;
data ("/home/ucct2/projectes/TSFA_7intradays_VE/FAN
/FAN_1000_Febrary-2020/20200219_1000_" & jj &".txt");

#######################################################
#INICIAL PARAMETERS

let pas:=1;
let r:=2;
let nS:=1000;
let nT:=34;
let nV:=sum{it in TT} d[it];
let{s in SS} Prob0[s]:=1/nS;

#######################################################
#let{s in SS, l in 1..nV} E[s,l]:=VP[s,l];

#######################################################
let ddmin[0]:=1;
let ddmax[0]:=0;
let{it in TT}ddmin[it]:=ddmin[it-1]+d[it-1];
let{it in TT}ddmax[it]:=ddmax[it-1]+d[it];

########################
# FORWARD CONSTRUCTION #
########################
### STEP 1 ###

let uu[3] := {floor(card(S)/2)};
let uu[4] := {floor(card(S)/2)};
let c[0,floor(card(S)/2)] := {floor(card(S)/2)} union ({SS} diff

{floor(card(S)/2)});
let npres[0]:={floor(card(S)/2)};
let{it in TT} JJ[0,it]:={};

#######################################################
let nnodes[0] := card(npres[0]);
let{ii in SS} pred[ii,0]:= floor(card(S)/2);
let{it in TT} cont[it]:=1;

#######################################################
### STEP t ###
#####################
# FORWARD SELECTION #
#####################
#######################################################
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#The best possible distance between the probability distribution of
the initial scenario set

# and the distribution of one of its scenarios endowed with unit mass
let{k in SS, s in SS:s<=k} norm1[k,s]:=sum{it in TT, j in

ddmin[it]..ddmax[it]}abs(E[s,j]-E[k,j]);
let{k in SS, s in SS:s>k} norm1[k,s] :=norm1[s,k];
let{k in SS} eemax[k]:=(sum{s in

SS:s<>k}Prob0[s]*norm1[k,s]^r)^(1/r);

#The minimum argument of the best previos distance possible.
let argmin_eemax:= {k in SS: eemax[k] = min {j in SS} eemax[j]};

#The best possible distance between the probability distribution of
the initial scenario set

# and the distribution of one of its scenarios endowed with unit mass
for each stage it
let{it in TT, k in SS, s in SS:s<=k} norm11[k,s,it]:=sum{j in

ddmin[it]..ddmax[it]}abs(E[s,j]-E[k,j]);
let{it in TT, k in SS, s in SS:s>k} norm11[k,s,it] :=norm11[s,k,it];
let{k in argmin_eemax, it in TT} emaxt[it]:=(sum{s in

SS}Prob0[s]*norm11[k,s,it]^r)^(1/r);
########################################################

let erel:=0.85;
let aux:=0;

for{t in TT}
{
let erelt[t]:=(erel-aux);
let aux:=aux+0.005;
}

let{t in TT} epst[t]:=erelt[t]*emaxt[t];
let eps:= sum{t in TT} epst[t];
let emax:=sum{t in TT} emaxt[t];
display erel,erelt,emaxt,epst,emax,eps;

#######################################################
### step 0 ###

for{it in TT}
{

let{l in SS, j in SS:l<=j} UU[l,j] := sum{m in
ddmin[it]..ddmax[it]}abs(E[l,m] - E[j,m]);

let{l in SS, j in SS: l>j} UU[l,j] :=UU[j,l];
let uu[2]:={};
let uu[4]:={};

##############################################################
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let ssize := card(npres[it-1]); # omit if sampling with
replacement

for {ii in 1..ssize}
{

let item := member(ceil(Uniform(1, card(uu[3]))), uu[3]);
let sample[ii] := item;
let uu[3] := uu[3] diff {item}; # omit if sampling with

replacement
let uu[4] := uu[4] union {item};

};#end ramdomness
###############################################################

for {k in uu[4]}
{

let norm[0,it]:=120000000;
### step i ###

let u[0,it] := {};
let J[0,it] := c[it-1,k];
let i:=0;
repeat while norm[0,it]>epst[it] and i<nS
{

let i:=i+1;
let{w in J[i-1,it]} U[w] := sum {l in J[i-1,it] diff

{w}}Prob0[l]*min {j in {w}} UU[l,j]^r;

if i=1 then
{

let argmin_U:= {l in J[i-1,it]: U[l] = min {j in
J[i-1,it]} U[j]};

let argmin_U:={first(argmin_U)};
let J[i,it] := J[i-1,it] diff argmin_U;
let u[i,it] := u[i-1,it] union argmin_U;
let{m in u[i,it],l in J[i,it]} pp[l]:= UU[m,l];
let aa:={l in J[i,it]: pp[l]=0};
let bb := J[i,it];
let mm[i]:=mm[i-1] union aa;
let bb:=bb diff mm[i];

}
else
{

let argmin_U:= {l in bb: U[l]= min {j in bb} U[j]};
let argmin_U:={first(argmin_U)};
let J[i,it] := J[i-1,it] diff argmin_U;
let u[i,it] := u[i-1,it] union argmin_U;
let{m in u[i,it],l in J[i,it]} pp[l]:= UU[m,l];
let aa:={l in J[i,it]: pp[l]=0};
let bb := J[i,it];
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let mm[i]:=mm[i-1] union aa;
let bb:=bb diff mm[i];

};#end if
for {j in J[0,it]}
{

let argmin_F[j]:= {l in u[i,it] : UU[j,l]^r = min {w in
u[i,it]} UU[j,w]^r};

let argmin_F[j]:={first(argmin_F[j])};
}; #end argmin_F

for{j in J[i,it],l in argmin_F[j],z in u[i,it]}
{

if z==l then
{

let index_F[j,z]:={j};
let{w in index_F[j,z], m in ddmin[it]..ddmax[it]}

Scen0_re[w,m]:=E[z,m];
};

}; #end index F
let JJ[0,it] := JJ[0,it] union J[0,it];
let{s in u[i,it],l in ddmin[it]..ddmax[it]} Scen0[s,l]:=E[s,l];
let{s in J[0,it] diff u[i,it],l in ddmin[it]..ddmax[it]}

Scen0[s,l] := Scen0_re[s,l];
let{s in SS diff JJ[0,it],l in ddmin[it]..ddmax[it]}

Scen0[s,l] := E[s,l];
let{s in SS} snorm[s]:=sum{l in

ddmin[it]..ddmax[it]}abs(Scen0[s,l]-E[s,l]);
let norm[1,it]:=(sum{s in SS}Prob0[s]*snorm[s]^r)^(1/r);
let norm[0,it]:=norm[1,it];
###################################################

}; #end repeat
let uu[2] := uu[2] union u[i,it];
let {w in u[i,it]} c[it,w]:= {w};
let {j in J[i,it], l in argmin_F[j]} c[it,l]:=c[it,l] union {j};

let{w in u[i,it]} pred[w,it]:=first(c[it,w]);
let{j in J[i,it], l in argmin_F[j]} pred[j,it]:=first(c[it,l]);

### step n+1: Optimal redistribution ###
}; #end k

let uu[3]:=uu[2];
let npres[it]:=uu[3];
let nesce:=card(npres[it]);
let nnodes[it] :=card(npres[it]);

#############################################
let nSG:=nT;



C. Implementation of the TSFA 173

let{t in TT} nRVSG[t]:=d[t];
}; #end it

let snnodes:=sum{it in TT}nnodes[it];
display snnodes;

let{it in {nT},l in uu[3]} Prob0[l] :=sum{k in c[it,l]} Prob0[k];
let{j in SS diff uu[3]} Prob0[j] := 0;

###############################Results###########################
#scenario tree#
#################################################################

if (jj<10) then
{

printf "#erel:= %.3f;\n",erel> ("20200219_1000-00"& jj &".dat");
printf "#emax:= %.3f;\n",emax> ("20200219_1000-00"& jj &".dat");
printf "#nesce:= %5i;\n",nesce> ("20200219_1000-00"& jj

&".dat");
printf "param nS:= %5i;\n", nS> ("20200219_1000-00" & jj

&".dat");
printf "param nSG:= %5i;\n", nSG> ("20200219_1000-00" & jj

&".dat");

printf "param "> ("20200219_1000-00" & jj &".dat");
display nRVSG > ("20200219_1000-00" & jj &".dat");

#ScenF
printf"param " > ("20200219_1000-00" & jj &".dat");
display ScenF> ("20200219_1000-00"& jj &".dat");

#ScenO
printf"param " > ("20200219_1000-00" & jj &".dat");
display ScenO> ("20200219_1000-00"& jj &".dat");

#Scen0
printf"param Scen0 (tr)\n " > ("20200219_1000-00" & jj &".dat");
printf":" > ("20200219_1000-00" & jj &".dat");
printf{l in 1..nV} " %5i\t",l > ("20200219_1000-00" & jj &".dat");
printf":=\n" > ("20200219_1000-00" & jj &".dat");
for{s in SS}
{

printf " %5i\t",s > ("20200219_1000-00" & jj &".dat");
for{l in 1..nV}
{

printf" %.6f\t",Scen0[s,l] > ("20200219_1000-00" & jj
&".dat");
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};
printf "\n" > ("20200219_1000-00" & jj &".dat");

};
printf";" > ("20200219_1000-00" & jj &".dat");
printf"\n" > ("20200219_1000-00" & jj &".dat");

#Prob0
printf"param Prob0 :=\n" > ("20200219_1000-00" & jj &".dat");
for{s in SS}
{

printf " %5i\t",s > ("20200219_1000-00" & jj &".dat");
printf" %.3f\n",Prob0[s] > ("20200219_1000-00" & jj &".dat");

}
printf";\n" > ("20200219_1000-00" & jj &".dat");
display c> ("20200219_1000-00"& jj &".dat");

}
else
{
if (jj>=10 and jj<=99) then

{
printf "#erel:= %5i;\n",erel> ("20200219_1000-0"& jj &".dat");
printf "#emaxt:= %.3f;\n",emax> ("20200219_1000-0"& jj &".dat");
printf "#nesce:= %5i;\n",nesce> ("20200219_1000-0"& jj &".dat");
printf "param nS:= %5i;\n", nS> ("20200219_1000-0" & jj &".dat");
printf "param nSG:= %5i;\n", nSG> ("20200219_1000-0" & jj

&".dat");

printf "param "> ("20200219_1000-0" & jj &".dat");
display nRVSG > ("20200219_1000-0" & jj &".dat");

#ScenF
printf"param " > ("20200219_1000-0" & jj &".dat");
display ScenF> ("20200219_1000-0"& jj &".dat");

#ScenO
printf"param " > ("20200219_1000-0" & jj &".dat");
display ScenO> ("20200219_1000-0"& jj &".dat");

#Scen0
printf"param Scen0 (tr)\n " > ("20200219_1000-0" & jj &".dat");
printf":" > ("20200219_1000-0" & jj &".dat");
printf{l in 1..nV} " %5i\t",l > ("20200219_1000-0" & jj &".dat");
printf":=\n" > ("20200219_1000-0" & jj &".dat");
for{s in SS}
{
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printf " %5i\t",s > ("20200219_1000-0" & jj &".dat");
for{l in 1..nV}
{

printf" %.6f\t",Scen0[s,l] > ("20200219_1000-0" & jj
&".dat");

}
printf "\n" > ("20200219_1000-0" & jj &".dat");

}
printf";" > ("20200219_1000-0" & jj &".dat");
printf"\n" > ("20200219_1000-0" & jj &".dat");

#Prob0
printf"param Prob0 :=\n" > ("20200219_1000-0" & jj &".dat");
for{s in SS}
{

printf " %5i\t",s > ("20200219_1000-0" & jj &".dat");
printf" %.3f\n",Prob0[s] > ("20200219_1000-0" & jj &".dat");

}
printf";\n" > ("20200219_1000-0" & jj &".dat");
display c> ("20200219_1000-0"& jj &".dat");

}
else
{
printf "#erel:= %5i;\n",erel> ("20200219_1000-"& jj &".dat");

printf "#emaxt:= %.3f;\n",emax> ("20200219_1000-"& jj &".dat");
printf "#q:= %.3f;\n",q> ("20200219_1000-"& jj &".dat");
printf "#nesce:= %5i;\n",nesce> ("20200219_1000-"& jj &".dat");
printf "param nS:= %5i;\n", nS> ("20200219_1000-" & jj &".dat");
printf "param nSG:= %5i;\n", nSG> ("20200219_1000-" & jj

&".dat");

printf "param "> ("20200219_1000-" & jj &".dat");
display nRVSG > ("20200219_1000-" & jj &".dat");

#ScenF
printf"param " > ("20200219_1000-" & jj &".dat");
display ScenF> ("20200219_1000-"& jj &".dat");

#ScenO
printf"param " > ("20200219_1000-" & jj &".dat");
display ScenO> ("20200219_1000-"& jj &".dat");

#Scen0
printf"param Scen0 (tr)\n " > ("20200219_1000-" & jj &".dat");
printf":" > ("20200219_1000-" & jj &".dat");
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printf{l in 1..nV} " %5i\t",l > ("20200219_1000-" & jj &".dat");
printf":=\n" > ("20200219_1000-" & jj &".dat");
for{s in SS}
{

printf " %5i\t",s > ("20200219_1000-" & jj &".dat");
for{l in 1..nV}
{

printf" %.6f\t",Scen0[s,l] > ("20200219_1000-" & jj &".dat");
}
printf "\n" > ("20200219_1000-" & jj &".dat");

}
printf";" > ("20200219_1000-" & jj &".dat");
printf"\n" > ("20200219_1000-" & jj &".dat");

#Prob0
printf"param Prob0 :=\n" > ("20200219_1000-" & jj &".dat");
for{s in SS}
{

printf " %5i\t",s > ("20200219_1000-" & jj &".dat");
printf" %.3f\n",Prob0[s] > ("20200219_1000-" & jj &".dat");

}
printf";\n" > ("20200219_1000-" & jj &".dat");
display c> ("20200219_1000-"& jj &".dat");

}#end if
}
##################################################################
#scenario tree plot#
##################################################################

for{t in T}
{

for{l in npres[t]}
{

if l==first(c[t,l]) then
{

let matt_clust[l,t]:=cont[t];
let{ss in c[t,l]} matt_clust[ss,t]:=cont[t];

}
let cont[t]:=cont[t]+1;

}

for{s in SS}
{

if Prob0[s]==0 then let matt_clust[s,t]:=0;
else let matt_clust[s,t]:=matt_clust[s,t];

}
}
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printf "param T:= %5i;\n", nT> ("grafics_" & jj &".dat");
printf "param nS:= %5i;\n", nS> ("grafics_" & jj &".dat");
printf "param fila:= %5i;\n",nesce> ("grafics_" & jj &".dat");

printf"param matt_clust[*,*] (tr) \n " > ("grafics_" & jj &".dat");
printf":" > ("grafics_" & jj &".dat");
printf{k in SS} " %5i\t",k > ("grafics_" & jj &".dat");
printf":=\n" > ("grafics_" & jj &".dat");
for{j in T}

{
printf " %5i\t",j > ("grafics_" & jj &".dat");

for{k in SS}
{

printf" %5i\t",matt_clust[k,j] > ("grafics_" & jj
&".dat");

}
printf "\n" > ("grafics_" & jj &".dat");

}
printf";" > ("grafics_" & jj &".dat");
printf"\n" > ("grafics_" & jj &".dat");
printf"param nnodes :=\n" > ("grafics_" & jj &".dat");
for{it in T}
{

printf " %5i\t",it > ("grafics_" & jj &".dat");
printf " %5i\t",nnodes[it] > ("grafics_" & jj &".dat");

}
printf";\n" > ("grafics_" & jj &".dat");

##################################################################
};#end cases
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The probability of success is difficult to estimate; but
if we never search the chance of success is zero.

— Philip Morrison
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D.2. Other Plots of the Numerical Results for the
MSWBVPP Model

Figura D.2.1: Results for case WDI of Instance #15.

Figura D.2.2: Results for case VDI of Instance #15.

Figura D.2.3: Results for Case VDIR of Instance #15.
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Figura D.2.4: Results for case WDI of Instance #158.

Figura D.2.5: Results for case VDI of Instance #158.

Figura D.2.6: Results for Case VDIR of Instance #158.
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Figura D.2.7: Results for Case WDI of Instance #290.

Figura D.2.8: Results for Case VDI of Instance #290.

Figura D.2.9: Results for Case VDIR of Instance #290.
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D.3. Other Plots of the Numerical Results for the
MSOODN Model

Cases A1 and A2 / Instance 2 FTCA / Tree 1 (130 scenarios).
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Figura D.3.1: Results for Cases A1 and A2 with Scenario Tree of 130 Scenarios Obtained
by FTCA.

Cases A1 and A2 / Instance 2 DTGFBA / Tree 1 (126 scenarios).
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Figura D.3.2: Results for Cases A1 and A2 with Scenario Tree of 126 Scenarios Obtained
by DTGFBA.
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Cases A1 and A2 / Instance 3 FTCA / Tree 1 (188 scenarios).
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Figura D.3.3: Results for Cases A1 and A2 with Scenario Tree of 188 Scenarios Obtained
by FTCA.

Cases A1 and A2 / Instance 3 DTGFBA / Tree 1 (189 scenarios).
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Figura D.3.4: Results for Cases A1 and A2 with Scenario Tree of 189 Scenarios Obtained
by DTGFBA.
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