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Merino for making sure that my incorporation to the University and the department of

Biochemistry and Biotechnology was as smooth as possible, and for helping me with any

query on administrative procedures I might have had. Moreover, I would like to thank
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ABSTRACT

Vinification and winematuration consist the two main phases of the winemaking pro-

cess. In each phase the microbial communities exhibit a dynamic behaviour, derived

mainly from their endeavour to cope with the limited source of nutrients. This micro-

bial activity is crucial for the final wine product, since it results in the production of

metabolites which in turn modulate the organoleptic characteristics of the wine and, in

combination with environmental factors, it may have beneficial or catastrophic conse-

quences for the wine quality. The past years, the main focus has merely been the detec-

tion of certain microorganisms, notorious for their wine spoiling capacities, along with

the adoption of empirical strategies for the prevention and control of undesirable mi-

crobial growth. Nevertheless, the known limitations of the conventional methodologies

used for such detection and monitoring, as well as the realization of the multifactorial

basis of the wine spoilage have urged for the development of innovative strategies that

could overcome these drawbacks and provide an in-depth view of the microbial diver-

sity. Next-generation-sequencing has emerged as the technology that promises to fulfill

such expectations, and in this dissertation various aspects related to its implementation

on the wine metataxonomic analysis have been evaluated. These aspects concern its

performance in comparison to conventional methodologies, and the establishment of a

NGS-based bioinformatic and statistical framework, suitable for the analysis of metatax-

onomic data. Furthermore, various factors closely related to the winemaking process

have been studied in various chapters, in order to assess the alignment of the derived re-

sults to previous studies, and the ability of NGS to provide with new insights. Overall, in

this work NGS managed to corroborate previous findings and suggest subsequent studies,

while the developed analytical framework was proven to be a solid foundation to support

further meta-analysis.

1
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PROJECT OUTLINE

Project justification

The current thesis has been conducted at the Faculty of Oenology of the University

Rovira i Virgili as part of the Oenological Biotechnology research group (BIOTENOL)

coordinated by Dr. Albert Mas. As a research group, BIOTENOL has been for many

years analyzing the field and industrial ecology of the wine microorganisms, having nu-

merous published articles dedicated to the winemaking process. Moreover, the thesis was

part of the project “Aplicación de Metagenomica y Metatranscriptomica al Control
Microbiologico del Vino de Crianza” (abbreviated as METACONVIN) whose funding

was provided by the Spanish government and granted to Dra. Maria del Carmen Portillo

(project code AGL2015-73272). A series of objectives were attached to the project, how-

ever they could be summarized as the process of applying novel omic techniques for the

study, evaluation and control of the microbial dynamics in ageing wine. Finally, the cur-

rent work has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Marie Skodowska-Curie grant agreement No. 713679

and from the University Rovira i Virgili (Marti Franquès - COFUND). In order to be

awarded the Doctorate with international mention, I conducted a 3-month research stay

at the Technical University of Denmark from June 1st, 2018 to August 31st, 2018. The

results from the conducted research during that stay are summarized in the appendix A.

Moreover, chapter 3 has been the outcome of a research collaboration with the Charles

Sturt University of Australia, where a bioinformatic study was performed on the provided

metataxonomic raw data.

3
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Project outline

Hypothesis and objectives

The main focus of this work is to demonstrate the benefits of applying NGS tech-

nology to the wine analysis, since its implementation has been advocated and praised by

numerous studies covering various biological fields. Therefore, the main hypothesis of

the dissertation can be formulated as following:

Hypothesis:

The development of NGS-based bioinformatic and statistical framework can pro-

vide with novel insights into the microbial dynamics during winematuration.

In order to test this hypothesis, the structure of the thesis has been developed in the

form of several objectives, presented in several chapters. During the introduction, various

details are given regarding the wine making process, wine diversity, key microorganisms

that affect wine quality, conventional methodologies that have been applied in wine anal-

ysis, as well as the necessity of developing and implementing NGS-based methodologies

into the wine analysis.

Chapter 1 focuses on the control of alcoholic fermentation, since it has been for a

long time under research due to its importance in winemaking. Its motivation arose from

the fact that several studies have shown that non-Saccharomyces yeasts, previously con-

sidered as wine spoilers, not always lead to wine spoilage. In fact, various beneficial

organoleptic characteristics have been attributed to their use. Furthermore, wine spoilage

has been described as a consequence of intricate microbial interactions combined with

exogenous environmental factors [1]. The advent of NGS technologies has opened new

possibilities to studying these interactions, promising at the same time the ability of over-

passing the limitations of conventional methodologies such as PCR-DGGE, qPCR and

plate culturing. Therefore, chapter 1 is based on the following objectives:

Objective 1:

Determine the state-of-art of NGS implementation in wine metataxonomic analy-

sis and its usefulness for the control of alcoholic fermentation based on literature

review.

Since the literature review yielded positive results regarding the use of NGS technolo-

gies, the next research question concerned the comparison of the performance between

NGS and conventional methodologies in a study of spontaneous fermentations of sound,

sour rot and Botrytis-infected grapes (Chapter 2):

4
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Objective 2:

Comparison between NGS and conventional microbiological methodologies on

their ability to monitor alcoholic fermentation of grapes based on the factors grape

health and fermentation stage.

The insights provided from chapter 2 corroborated the increasing utility of the NGS

technologies, however raised certain concerns regarding its subsequent implementation.

First and foremost, combination of conventional and NGS methodologies is not pos-

sible in every study due to the cost ineffectiveness and labour intensity of the whole

process. Furthermore, NGS implementation is related with laboratory and bioinformatic

workflows, each one inherently associated with a series of factors and parameters that

potentially could influence the analytical outcome. All these considerations led to the

following objective dealt in chapter 3:

Objective 3:

Evaluation of the parameters applied to the bioinformatic pipelines destined to be

implemented to subsequent NGS studies.

As soon as the bioinformatic framework was established, the focus was turned to-

wards the improvement of the statistical methodology addressing certain limitations of

current implementations. Thus, the main objective of chapter 4 was the following:

Objective 4:

Establishment of a non-parametric statistical framework for an unbiased inference

of the microbial communities by NGS technologies.

The completion of the last two objectives set the basis for studying the winemat-

uration process. During this process the dynamics of the microbial communities were

examined from wine samples that were aged in oak barrels. Additionally, the impact of

various factors on these dynamics was assessed leading to the following objective (Chap-

ter 5):

Objective 5:

Factor-based NGS analysis of microbial dynamics in wine samples aged in oak

barrels.

Along with the study of the microbial dynamics, the analysis of the wine metabolome

during the maturation process is equally important. Therefore, the same experimental

5
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design as in chapter 5 was used in order to study the metabolome of oak-aged wine

samples. Moreover, targeted and untargeted metabolomic analytical methodologies were

compared using the same factors as in chapter 5 formulating the following objective:

Objective 6:

Study of wine metabolome of wine samples that aged in oak barrels and factor-

based comparison of metabolomic analytical methodologies.

All the aforementioned objectives incorporate various aspects related to the labora-

tory and bioinformatic procedures involved in the winemaking and winematuration pro-

cess that are elaborated in the introduction.

6
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GENERAL INTRODUCTION

Winemaking consists one of the oldest crafts in the realm of alcoholic beverages, hav-

ing for centuries great socioeconomic impact. As a process, it encompasses a series of

stages that can be grouped into two phases. The first phase includes the stages grape har-

vesting, grape crushing and fermentation that collectively are referred as “vinification”

process. The second phase is referred as “winematuration” process and includes the

period of wine ageing into barrels till the wine bottling [2]. Nevertheless, not all wines

undergo this phase, since wines, characterized as “young wines”, are bottled and com-

mercialized after the vinification process and without being aged, or after being stored in

oak-barrels for a very short period of time.

All the aforementioned stages are inextricably connected to the wine quality, since

intrinsic factors of each stage could potentially lead to wine spoilage. Although, this

work has been restricted to focusing on the analysis of the fermentation and winematu-

ration process in oak barrels, factors concering the grape harvesting stage have also been

examined.

Wine microbial diversity

The wine microbiota is a mixture of fungal and bacterial communities. The fun-

gal communities include filamentous fungi and yeasts, though the latter play the most

significant role during the winemaking and are separated into the Saccharomyces and

non-Saccharomyces yeasts. They are ubiquitous in nature and are transferred onto the

grape surface via wind and insects. Nevertheless, a very narrowed number of yeasts can

be isolated from the grape surface, with some of the most common genera belonging to

the non-Saccharomyces yeasts, such as Hanseniaspora, Debaryomyces, Metschnikowia,

Issatchenkia and Pichia [3]. Overall, the main purpose of the yeasts concerns the pro-

duction of ethanol and carbon dioxide during the primary fermentation, a process known

7
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as “alcoholic fermentation” with the Saccharomyces genera having higher fermentation

capacity than non-Saccharomyces [3]. The most notorious Saccharomyces species that

exhibits such high fermenting capability is Saccharomyces cerevisiae, which although

is rarely isolated on the grape surface, it reaches high abundance during the alcoholic

fermentation [3]. On the other hand, non-Saccharomyces are characterized by a less

competitive nature and for many years they were considered undesirable and wine spoil-

ers as there were species, with the most dreadful belonging to the genus Brettanomyces,

that were connected to the production of foul odors and off-flavours [3]. Nevertheless,

this notion has been contradicted by results showing beneficial organoleptic characteris-

tics attributed to their use, since they increase the wine complexity [4, 5], and it has been

shown that wine spoilage is a consequence of intricate microbial interactions combined

with exogenous environmental factors [1, 6]. Moreover, due to these intrinsic attributes

of the non-Saccharomyces, a typical description of the fungal dynamics during the alco-

holic fermentation has been the initial prevalence of the non-Saccharomyces genera, such

as Hanseniaspora, Metschnikowia and Starmerella, followed by the rise and dominance

of Saccharomyces genera [7–12].

Regarding the bacterial communities, they are mainly grouped into the acetic acid

(AAB) and lactic acid bacteria (LAB), whose growth usually follows the fungal growth.

AAB are Gram-negative and strictly aerobic microorganisms that are found on the ripe

grape, with the most common described genera being Acetobacter, Gluconobacter and

Gluconoacetobacter [2]. Their main role is the oxidation of alcohols into the correspond-

ing acids, with the main ones being glucose to gluconic acid and ethanol to acetic acid.

Although, these compounds are usually found in the wine metabolome, their low per-

ception threshold may lead to undesirable wine characteristics when produced in high

amounts, classifying this way the AAB as potential wine spoilers [13].

As far as the LAB are concerned, they are Gram-positive bacteria having as main

role the conversion of the malic acid into lactic acid during the secondary fermentation,

a process known as “malolactic fermentation”. Its implementation depends on the goals

of the winemaker, since it is not performed by each cellar, and mainly aims at wine

deacidification [2]. Among the most commonly described lactic acid bacteria in wine

are Lactobacillus, Leuconostoc, Pediococcus and Oenococcus, though the latter repre-

sents the genus that has better been adapted to the malolactic fermentation and to the

winemaking process overall [2].

The growth of the bacterial communities are greatly affected by the fungal activity,

due to the production of high levels of ethanol and CO2, causing it to follow fungal

growth. However, bacterial activity may lead to stuck fermentations in cases where fungal

8
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growth has been delayed [2, 14], showing their opportunistic nature. Moreover, it has

been demonstrated that the production of acetic acid and lactic acid, in combination with

low pH, may inhibit the growth of S. cerevisiae [15]. Although, the production of the

acetic acid has been attributed to AAB activity, its production has also been reported from

LAB [3]. Contrary to the fungal communities, still little is known regarding the growth

competition withing the bacterial communities, with results coming from the studies of

Joyeux et al. [16] and Guillamón et al. [17] suggesting the lack of rival relationship.

In general, the study of the microbial dynamics during the fermentation process is an

active research field, since there is limited knowledge on the underlying microbial inter-

actions. There could be numerous reasons behind these interactions, but they are mainly

driven by the limited amount of nutrients. Thus, each microorganism has developed its

own strategy to cope with such a competitive environment, producing compounds which

in turn modulate the wine characteristics. These interactions become even more intricate

during winematuration, since the wine microbiota comes in contact with the microbiota

developed inside the barrel [18]. Under ideal conditions, during the winematuration the

wine should be characterized by the lack of living microbial communities [3]. However,

this seems impossible since events such pH alteration, oxidation and cell autolysis may

consist the right ingredients for microbial growth [13]. Therefore, during wine ageing

the final wine product is a result of compounds produced by the wine’s intrinsic micro-

biota as well as those released by the microbiota and the wood of the barrel. Nevertheless,

there are also additional factors that may influence the final product such as grape variety,

storage conditions and barrel age.

Limitations of conventional methodologies

Since the microbial interactions represent a factor that is difficult to control, in the

past years most endeavors have been restricted to the identification and monitor of wine

spoilers with classical methodologies, such as plate culturing, and molecular techniques,

such as quantitative polymerase chain reaction (qPCR) and denaturing gradient gel elec-

trophoresis (PCR-DGGE), collectively referred as “conventional” methodologies in this

dissertation.

Plate culturing is aiming at the isolation of microorganisms or microbial communi-

ties on culture media, that favour their growth by taking advantage their physiological

features and peculiarities. Nevertheless, the main drawback of this methodology consists

the fact that wine microbiota includes many unculturable microorganisms that enter the

viable but non-culturable state (VBNC) due to the change of their environment. One
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microbial group well known for this behaviour are the AAB [13].

Due to these shortcomings of the plate culturing, the molecular techniques appeared

more promising approaches since they are culture-independent. The main principle be-

hind qPCR is the microbial quantification based on the density changes of fluorescent

probes, and has been used for the detection of specific microbial groups, genera or species

[19, 20]. Nevertheless, its limitations becomes obvious in cases where a more broad ex-

ploratory study of the wine microbiota is necessary, due to the scalability constraints

[21, 22].

On the other hand, PCR-DGGE aims at the separation of PCR products of rDNA

amplicons and is more appropriate for microbial profiling. It has been utilized for the

study of bacterial [23] and fungal communities [24] and has the advantage that the indi-

vidual bands can be used for subsequent sequencing and species identification. However,

its main drawback comes from the fact that less abundant microorganisms cannot be

detected [21, 22].

In addition to these methodologies, the wine industry has adopted empirical ap-

proaches such as addition of microbial growth inhibitors (such as SO2) and starter cul-

tures. The growth inhibitors are utilized in order to suppress and maintain at low lev-

els undesirable microorganisms that belong to non-Saccharomyces yeasts, AAB or LAB.

Nonetheless, their efficacy may be reduced due to their binding by wine metabolites, such

as gluconic acid and acetaldehyde [13], and adverse health effects have been ascribed to

their usage [13]. Furthermore, the role of started cultures has been the enhancement

of certain wine features, however their implementation embodies the risk of causing a

fermentation that cannot be controlled and potentially lead to spoiled wine.

In addition to all these limitations, the aforementioned approaches do not ensure the

final wine quality and most importantly they do not represent adequate predictors of wine

spoilage, since the distinction of the microbial activity as beneficial or harmful is much

more complex and poorly defined [25]. Therefore, the understanding of the underlying

mechanisms that drive the microbial dynamics is of paramount importance since on one

hand will reduce the loses that the wine industry suffers due to spoiled wine, and on the

other hand will provide a better mean of controlling the quality and characteristics of the

final wine product.

NGS aspects of main objectives

In order to control the microbial dynamics during the fermentation process, or to

monitor the wine quality during the winematuration, we have to understand the way that
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microbial interactions affect the dynamics of the microbial communities. To do so, we

need to be able to study and quantify, at any given moment, the wine diversity in its

entirety. Thus, a methodology is needed that overcomes the aforementioned limitations

of the conventional approaches. As a solution, next-generation-sequencing (NGS) rep-

resents a new and innovative strategy promising the ability to tackle these challenges,

with various studies corroborating this claim and mentioned in chapter 1. Additionally,

this claim also was experimentally evaluated in chapter 2. Nevertheless, as a methodol-

ogy, it incorporates various aspects each one associated with a series of pitfalls that this

dissertation is trying to address.

Laboratory aspects

In Figure 1 a brief schema is given regarding the stages a researcher has to follow

when applying NGS-based methodologies in wine analysis. The process starts with a

wine sample where the microbial DNA has been extracted using a DNA extraction pro-

tocol. There is a variety of protocols, however the one implemented in this work fol-

lows the steps defined in chapter 2. The extracted microbial DNA could be analyzed

via shotgun sequencing, an approach known as “metagenomic analysis”, or by targeting

a short amplicon of marker genes used for taxonomic classification, a strategy known

as “metataxonomic analysis” [26]. The latter is the method commonly implemented in

wine analysis, due to the cost-effectiveness and low computational resources needed, and

in chapter 1 various studies are cited regarding the different regions of the rRNA gene that

researchers have been targeting in yeasts and bacteria. Despite the difference between the

two methods, as terms, they are frequently used interchangeably due to the fact that the

metagenomic term can be generalized and include any type of analysis associated with

the entire genetic content of a biological sample, irrespectively of the fact whether the

genetic content concerns the whole genome or not.

Prior to sequencing, the chosen amplicon should be amplified through the PCR pro-

cess. During this process, one of the parameters that should be considered is the number

of PCR cycles, since it has been demonstrated that high number of PCR cycles produce

higher number of chimeric sequences [27]. These chimeric sequences represent artifacts

of the sequencing process where an artificial sequence is produced from two different bi-

ological sequences [28]. Regarding the amplicons per se, although for reconstructing the

bacterial communities the use of the 16S amplicon is well established, for yeasts there

was research interest regarding the performance of two common targets; the 18S and ITS

amplicons. Furthermore, although Illumina represents the most popular NGS-platform,

Ion Torrent is another platform still in use whose performance consisted an additional
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aspect to investigate. These laboratory aspects have been incorporated into the objectives

1 and 3 and could be summarized as following:

Laboratory aspects of Objective 1:
• NGS-platforms used for metataxonomic analysis.

• rRNA gene regions commonly targeted in metataxonomic analysis.

Laboratory aspects of Objective 3:
• Performance evaluation of Ion Torrent and Illumina NGS-platforms.

• Amount of chimeras produced by 30 and 45 PCR cycles.

• Comparison of 18S and ITS amplicons for yeast classification.

Figure 1: Brief representation of the typical stages of a metataxonomic analysis, from the biological sample
until the taxonomic assignment of the amplicon-based sequences.

Bioinformatic aspects

During the sequencing process, the NGS-platform reads every amplicon and writes

its sequence to a dedicated “fastq” file, a process known as “base calling”. Depending on

the NGS-platform, the reads in the resulting fastq file may include the barcodes attached

to the amplicons during the PCR process. These barcodes serve to separate the resulted

reads based on the biological sample they originated from, and are helpful when many

samples are sequenced together. If barcode removal is necessary, it is performed through

a process that is called “demultiplexing”. Regarding the base calling, it is a probabilistic

approach expressed in a form of a score, known as “Phred quality score”, that refers to

the base call error [29]; the higher the Phred quality score, the lower the base call error.

This Phred quality score is also included in the fastq file for each read. Afterwards, the

fastq file becomes the input of a subsequent bioinformatic analytical pipeline that aims

to provide a taxonomy to each of the raw sequences, and thus reconstruct the microbial

communities.

A known limitation of the NGS-platforms is the fact that Phred quality scores tend

to decrease towards the end of the sequences due to the signal decay overtime. In order
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to solve this issue, Illumina platforms produce, for each amplicon, a “forward” and a

“reverse” read that are usually called “paired-ends”. By merging the paired-ends into

one read, the resulted sequence has higher Phred quality scores towards the end reducing

this way the need for excessive trimming. Nevertheless, prior to taxonomic assignment,

low Phred quality sequences should be filtered-out based on a defined quality threshold

(Figure 1). The lower this threshold is set, the higher number of sequences are left to

pass to the following steps. Additionally, as part of the quality filtering process of reads

produced by Illumina platforms, the removal of optical duplicates is also included, a

process known as “reads dereplication”.

After the quality filtering step, taxonomies could be assigned to the filtered sequences.

However, in order to reduce the demand in computational resources, the filtered se-

quences are grouped into the so-called “Operational Taxonomic Units” (OTUs), where

each OTU represents a group of sequences that are similar based on a predefined simi-

larity threshold (Figure 1). In the next step, OTUs that contain a single read, known as

singletons, are removed, and from each of the remaining OTUs, the sequence with the

highest length is chosen as the representative sequence of that cluster. On these repre-

sentative sequences, taxonomic assignment is performed by a taxonomic algorithm using

dedicated and curated taxonomic databases based on the sequenced amplicon (Figure

1). Thus, each OTU is characterized by three pieces of information; the number of se-

quences it encompasses, known as “OTU counts”, the representative sequence and the

assigned taxonomy. All this information is incorporated into what is known as “OTU
table”. Before the OTU table is being used in the downstream analysis, taxonomies that

do not pose research interest, such as those related to chloroplasts or mitochondria, are

removed, along with taxonomies that have relative abundance below a certain threshold

across all samples. Moreover, in case the assigned taxonomy has reached the species

level, in addition to the OTU table the construction of a “phylogenetic tree” is a common

practice. This phylogenetic tree is built by aligning the representative sequences to pre-

defined templates provided by the curated databases, and holds the information regarding

the phylogenetic relation of the sequences at species level.

Chapter 1 served as a starting point providing valuable insights into the state-of-art of

the metataxonomic analysis, with the following bioinformatic aspects being incorporated

into objective 1:
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Bioinformatic aspects of Objective 1:
• Determination of available bioinformatic frameworks for metataxonomic

analysis.

• Determination of available taxonomic databases for metataxonomic classi-

fication.

From the various bioinformatic frameworks that are available, QIIME was chosen

in this work due to its popularity and its configuration based on the versatile Python

programming language. By utilizing QIIME framework and applying parameters derived

from the literature, the first bioinformatic pipeline was constructed, given in Table 1, in

order to satisfy the objective 2.

Bioinformatic aspects of Objective 2:
• Implementation of QIIME-based bioinformatic pipeline with parameters

derived from literature.

Steps Parameters

1. Demultiplexing
2. Phred quality filtering → Q10 Phred quality threshold.

3. Chimeras filtering
4. OTU clustering → 99% similarity threshold.

5. Singletons filtering → Remove OTUs with 1 read.
6. Representative sequences picking

7. Taxonomic assignment → UCLUST taxonomic algorithm (species
level classification), databases Greengenes
(16S) and SILVA (18S).

8. Phylogenetic tree building
9. Taxonomic filtering → Remove chloroplasts, mitochondria and tax-

onomies with relative abundance below
0.1% across all samples.

Table 1: Ion Torrent bioinformatic pipeline applied in chapter 2. Main implemented parameters are given.

Upon this initial bioinformatic implementation, further improvements were necessary

in order to ensure, as much as possible, the robustness of its performance. One of the

main parameters that were initially targeted was the Phred quality threshold, since very

low thresholds may allow sequences with high base call error to pass, which in turn could

lead to higher probability of erroneous taxonomic assignments. As a result, the dilemma

14

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



General introduction

of higher number of sequences or higher overall quality was one of the aspects dealt in

chapter 3.

Regarding the OTU clustering, it has been a classical approach implemented in nu-

merous studies, with 97% been a popular similarity threshold. However, its efficiency

and reliability has been questioned by Callahan et al. [30] suggesting an alternative strat-

egy called “Amplicon Sequence Variants” (ASV). Nevertheless, a comparison of the two

clustering strategies was conducted in the study of Van Der Pol et al. [31] where simi-

lar outcome was observed when the similarity threshold of the OTU clustering was set

to 99%. Due to the popularity of the OTU clustering method, a confirmation on these

findings was sought in chapter 3.

As far the taxonomic assignment is concerned, there are various classification algo-

rithms currently available, however the main interest was confined to the incorporation of

either the naive Bayes classification algorithm (SKLEARN) [32], or the BLAST+ algo-

rithm [33] since their performance has been benchmarked by Bokulich et al. [34] against

other algorithms that are included in QIIME. The former represents a classification ap-

proach based on machine learning, whereas the latter is based on the local alignment

strategy. The assessment of their performance included the evaluation of their ability to

reconstruct bacterial and fungal microbial communities of known composition, their es-

tablished QIIME default parameters, as well as the possibility of improving taxonomic

misclassification. All these bioinformatic aspects were included in the objective 3 that

could be summarized as following:

Bioinformatic aspects of Objective 3:
• Performance evaluation of Q10 and Q20 Phred quality filtering thresholds.

• Comparison of OTU (99% similarity) and ASV clustering methods.

• Comparison between SKLEARN and BLAST+ classification algorithms.

• Improvement of taxonomic misclassification.

• Evaluation of QIIME default parameters.

• Establishment of a bioinformatic pipeline.

The investigation of the laboratory and bioinformatic aspects of the objective 3, led to

the establishment of the bioinformatic pipeline that is given in Table 2 and to the decision

of retaining the taxonomic assignment at genus level. This pipeline was destined to be

implemented in chapter 5 formulating this way the bioinformatic aspect of the objective

5:
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Bioinformatic aspects of Objective 5:
• Implementation of bioinformatic pipeline established in chapter 3.

Steps Parameters

1. Paired ends merging
2. Phred quality filtering → Q20 Phred quality threshold.

3. Reads dereplication
4. OTU clustering → 99% similarity threshold.

5. Chimeras filtering
6. Singletons filtering → Remove OTUs with <10 reads.

7. Representative sequences picking
8. Taxonomic assignment → BLAST+ taxonomic algorithm (genus level

classification), databases SILVA (16S) and
UNITE (ITS).

9. Taxonomic filtering → Remove chloroplasts, mitochondria and tax-
onomies with relative abundance below 1%
across all samples.

Table 2: Illumina bioinformatic pipeline derived from chapter 3. Main implemented parameters are given.

Statistical aspects

After the construction and filtering of the OTU table, the next step concerns the com-

parison of the observed microbial diversity between the samples. Nevertheless, due to

the sequencing and quality filtering process, each biological sample included in the OTU

table contains different amount of sequences. Thus, in order to make comparisons be-

tween them this unevenness should be corrected, with “rarefaction” being the most com-

mon strategy applied to the OTU table. Rarefaction is a stochastic normalization process

where, based on a threshold, assigns a fixed amount of sequences to each sample. This

threshold is selected either from the minimum of the maximum amount of sequences

observed between the samples, or by plotting “rarefaction curves” which , based on a

diversity metric, show the maximum number of sequences after which the chosen metric

does not change.

The rarefied OTU table is then utilized for the evaluation of the “alpha” and “beta”

diversity. The alpha diversity refers to the observed biodiversity within each biological

sample, and there are various metrics that can express it. However, the most commonly

used are the phylogenetic diversity [35], and Shannon or Simpson indices [36]. The
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phylogenetic diversity is derived from the previously constructed phylogenetic tree, and

hence is applied in cases where the taxonomic assignment has reached species level. On

the other hand, the Shannon and Simpson indices are based on the OTU counts.

The beta diversity refers to the observed biodiversity between the biological sam-

ples. As with the alpha diversity, it can be expressed from various metrics with weighted

UniFrac distance [37] being implemented in cases of species level taxonomic classifi-

cation. The weighted UniFrac distance is a quantitative method that shows differences

between samples taking into consideration the information provided by the phylogenetic

tree [38]. In contrast, in cases where the assigned taxonomies were constrained at genus

level, the Bray-Curtis distance [39] is the common metric of choice as it based on the

OTU counts.

These statistical aspects have been incorporated into the objectives 2 and 3 as follow-

ing:

Statistical aspects of Objective 2:
• Evaluation of rarefaction as normalization methodology.

• Evaluation of species level taxonomic classification.

• Evaluation of phylogenetic diversity as alpha diversity metric.

• Evaluation of weighted UniFrac distance as beta diversity metric.

Statistical aspects of Objective 3:
• Evaluation of genus level taxonomic classification.

• Evaluation of Shannon index as alpha diversity metric.

• Evaluation of Bray-Curtis distance as beta diversity metric.

Although rarefaction is a popular normalization process, it has the limitation that cer-

tain amount of sequences have to be discarded to correct the sample size unevenness.

Furthermore, one usual strategy of statistical inference on the microbial dynamics is the

transformation of the OTU counts to relative abundances. This compositionality transfor-

mation process, adds the constrain of the abundances having to sum to 1 and could lead

to misinterpretations especially when Pearson’s correlation is applied. Moreover, imple-

mentation of parametric statistics, such as ANOVA, on the rarefied OTU counts could

lead to false positives since they assume that the OTU counts follow a certain distribution

(usually the normal distribution). These type of assumptions usually do not hold due to

the sparse nature of this kind of data. Therefore, a non-parametric statistical framework

was necessary to infer changes in the microbial communities.
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The statistical framework chosen was the compositional analysis toolbox GNEISS

[40] that introduces the concept of “balances” that could be explained with the follow-

ing example. Figure 2 represents a hypothetical microbial community of a sample that

contains 5 taxa (yellow, red, green, blue, purple) and has been analyzed in two different

time-points to infer the changes among the microbial communities. From the 5 taxa, we

know a priori that only the purple taxa has increased its abundance during the second

time-point, whereas the rest have remained the same. Initially, the limitation of convert-

ing the OTU counts into relative abundances can be observed, since the change of one

taxa causes the rest of the relative abundances to change as the constraint of having to

sum to 1 must be applied. This gives the false impression that all the taxa have changed

during the second time-point. GNEISS uses the unrarefied OTU counts, which initially

imputes them by adding a pseudocount, and by applying Ward hierarchical clustering,

clusters the taxa into two groups; one called “numerator” and the other “denominator”.

In this example, the numerator is consisted by the yellow taxa, whereas the denominator

by the red, green, blue and purple taxa. It then calculates the number of taxa in the numer-

ator (r) and the denominator (s), as well as the geometric mean of the OTU counts of the

taxa in the numerator (g(Xr)) and the denominator (g(Xs)). Finally, for each time-point it

calculates the balance using the following equation:

b =

√
rs

r + s
log

g(Xr)

g(Xs)
(1)

Figure 2: Example of the balances calculated by GNEISS for a sample at two different time-points. Each
color represents a specific taxa. Counts refer to OTU counts and percentages to relative abundances. Image
has been taken from Morton et al. [40] and modified for the purpose of the example.

Using the equation 1, the balance at time-point 1 is 0.84 and 0.59 at time-point 2.

Since the balances are mainly affected by the log-ratio of the geometric means, this de-

crease reflects the increase of the purple taxa. However, in reality it is not possible to
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know which taxa are changing. Therefore, an increase or decrease in the balances could

indicate a change in the taxa of the numerator, the denominator or both. Therefore, the

balances provided by GNEISS can be used to apply statistics such as PERMANOVA or

regression in order to perform differential abundance or factor analysis. In order to infer

which taxa drive the changes between the samples, additional visual analysis is required

that could lead to a narrowed range of candidate microorganisms that could be studied in

a subsequent more controlled experiment.

Biological aspects of main objectives

Apart from the NGS aspects, the main objectives included biological extensions that

on one hand raised research interest due to their relevance in the winemaking process, and

on the other hand they served as a mean to evaluate certain of the previously mentioned

bioinformatic and statistical aspects.

In chapter 1, the view inside the alcoholic fermentation concerning the state-of-art

of the metataxonomic analysis, was complemented with insights from the literature re-

garding the microbial diversity revealed by NGS approaches, as well as with strategies

regarding the control of the alcoholic fermentation by NGS-based implementations.

Biological aspects of Objective 1:
• Literature review of the described microbial diversity of the alcoholic fer-

mentation using NGS methodologies.

• Literature review of NGS-based implementations for the control of the al-

coholic fermentation.

In chapter 2, the initial bioinformatic pipeline given in Table 1 along with the sta-

tistical aspects of the objective 2, were implemented for the performance comparison

between NGS and conventional methodologies. However, this comparison was based on

a spontaneous alcoholic fermentation study of grape must, with the aim to investigate

the impact of the grape health on the microbial dynamics. Spontaneous fermentations

are characterized by their unpredictability regarding the fermentation outcome, since the

whole process is not controlled [3]. Therefore, the microbial dynamics can be observed

in the absence of any human intervention.

The surface of the grape berry houses numerous microorganisms, and any grape dam-

age could alter the microbial diversity in a way that it can influence negatively the wine

quality [41]. The most common grape infections are sour rot and grey mold that cause

significant crop losses. Thus, the factor grape health was divided into the groups of grapes
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with rotten, Botrytis-affected, and healthy characteristics. Additionally, the alcoholic fer-

mentation was divided into three stages (initial, mid and final fermentation), where the

evolution of the microbial communities was followed during each stage leading to the

following biological aspects:

Biological aspects of Objective 2:
• Impact of the factor grape health on the microbial dynamics of grape must

spontaneous alcoholic fermentation.

• Impact of the factor fermentation stage on the microbial dynamics of grape

must spontaneous alcoholic fermentation.

Apart from grape diseases, the wine quality can be influenced by other factors such

as the grape variety, the grape maturation state and the regional characteristics of the

vineyard, since they constitute factors that can influence the grape microbiota. The soil

of the vineyard represents an important aspect for the winemaking, since it provides the

necessary nutrients for the development of the plant and hosts fungi and bacteria that

influence the plant’s health and growth [42]. These characteristics of the soil are regional

specific and, along with climatic conditions and human practices in the vineyard (such as

irrigation), consist of what is termed as “terroir”. Nowadays, there are numerous studies

showing strong association between the terroir and the grape microbiome [42–49].

Furthermore, it is well understood that an additional factor that influences the grape

microbiota is the berry development process [50, 51]. For instance, it has been demon-

strated that the abundance of the fungal communities increases when the grape reaches

maturation state, exhibiting the importance of the harvest time [22, 44, 50, 52–54]. More-

over, grape variety was another factor to consider, since the physiochemical changes that

occur during the development of the grape varies between grapes [55]. Although, the in-

fluence of these factors on the grape microbiome is known, the amount of the variability

concerning the observed microbial diversity that is accounted by each factor consisted

the main focus. This research interest was pursued with a study involving grape sam-

ples from two grape varieties, originated from 4 different vineyards and harvested in two

different harvest periods determined by the grape maturation state.

Biological aspects of Objective 4:
• Impact factor determination for the factors geographical origin, grape vari-

ety and maturation state on the microbial diversity of the grapes.

After establishing the bioinformatic and statistical framework in chapters 3 and 4,

the research focus was directed towards the winematuration process. Wine ageing in
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wooden barrels has become a common practice for the production of red wines of higher

quality, due to the organoleptic characteristics added by this type of maturation process.

However, still little is known regarding the microbial dynamics during the wine ageing

and the underlying factors associated to these changes. There are many factors that could

be incorporated to the studying of the wine ageing, however the ones considered in this

work are time of wine ageing in oak barrels and amount of barrel’s prior usage expressed

in time. These two factors are shortly referred as time and barrel-type correspondingly.

The samples originated from DOQ Priorat and DOCa Rioja regions, where at the samples

of the latter an additional factor was studied. This factor concerned the comparison of

wine ageing in oak barrels against glass bottles, a factor shortly referred as bottled-wine.

Thus, objective 5 embedded the following biological aspects:

Biological aspects of Objective 5:
• Determination of microbial evolution of wine samples that mature in oak

barrels.

• Comparison of microbial dynamics between barrels based on the factor

barrel-type and time.

• Comparison of 1-year microbial evolution between wine samples based on

the factor bottled-wine.

In addition to studying the dynamics of the microbial communities, the study of the

evolution of the metabolomic profile during the winematuration is equally important as

the chemical composition represents the conditions during ageing and storage [56]. Al-

though, targeted analysis, such as nuclear magnetic resonance (NMR), provide useful

insights into a wide range of analytes, untargeted analyses have been proposed of be-

ing necessary for a more comprehensive analysis [56, 57]. Therefore, the wine samples

from the experimental design of chapter 5 were used as a source for the study of the wine

metabolome during winematuration. The same factors of chapter 5 were utilized in chap-

ter 6 as the basis for comparing targeted and untargeted metabolomic analytical method-

ologies on their capacity to reveal informative patterns regarding the wine metabolome.

Apart from the NMR method, the additional implemented methodologies were targeted

and untargeted gas chromatography-mass spectrometry (GC-MS) and high-performance

liquid chromatography-mass spectrometry (HPLC-MS). This is an exploratory approach

due to the lack of established bioinformatic methodologies and dedicated databases re-

garding the organoleptic characteristics added to the wine by the detected analytes.
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Biological aspects of Objective 6:
• Determination of metabolome of wine samples that mature in oak barrels.

• Comparison of metabolomic analytical methodologies based on their abil-

ity too reveal patterns within the wine metabolome that could explain differ-

ences between the groups of the factors time, barrel-type and bottled-wine.

Research value

Wine industry holds a significant share of the global market with revenues estimated

of reaching 377 billion Euros by 2023 [58]. However, these projections cannot be easily

attained if the losses due to wine spoilage cannot be controlled. Therefore, any research

trying to shed light towards that direction would benefit the wine industry overall.

Furthermore, the study of microbial interactions extend also to other fields of biology

with studies such as Yan et al. [59] showing growth inhibition of S. aureus by a colony

of C. pseudodiphtheriticum in an agar plate. Similar studies have spurred the study of

the human gut microbiome where, as in wine studies, it has been demonstrated that the

pathogenicity of certain microorganisms, or the onset of certain diseases, has a multi-

factorial basis and is strongly associated with microbial interactions [60]. Although the

context of the analysis of the microbial dynamics is different and field dependant, the

need for the development of laboratory and bioinformatic methodologies for the analysis

of microbial DNA and RNA in a biological sample appears universal.

Finally, implementation of NGS methodologies into the wine analysis is a promising

practice. However, its high degrees of freedom regarding the potential choices renders

the whole process quite overwhelming. Thus, the systematic development and evaluation

of various analytical and statistical frameworks may serve as a way of simplifying the

whole process for the subsequent studies.
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Abstract

In wine industry, there is a prevalent use of starter cultures to promote a controlled

and efficient alcoholic fermentation preventing the growth of spoilage microbes. How-

ever, current trends in enology aim to combine the guaranteed success of monitored pro-

cess and the complexity of fermentations either by inoculating autochthonous starters or

by performing spontaneously to produce distinctive wines. To understand the complex

roles of microorganisms on wine fermentation, we must understand their population dy-

namics and their relationships with wine quality and metabolome. Current metagenomics

techniques based on massive sequencing are gaining relevance to study the diversity and

evolution of microbial population on every stage of the wine making process. This new

tool and technique increases the throughput and sensitivity to study microbial communi-

ties. This review focuses on the current knowledge about wine alcoholic fermentation,

the contribution of massive sequencing techniques and the possibility of using this tool

for microbial control.
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Introduction

Wine is an alcoholic beverage with great cultural and economic importance, which

results from the alcoholic fermentation process. During this process, yeasts derive energy

by consuming sugars that occur naturally in the grapes and at the same time produce

ethanol and carbon dioxide as byproducts [2]. From the yeasts genera the most widely

used, due to its fermentation capacities, is the yeast Saccharomyces [2], whereas non-

Saccharomyces yeasts contribute to wine flavor, although they can also spoil wines [61–

63].

In addition to the different fermentation techniques used currently by the industry, the

characteristics of the wine also depend upon other factors such as climate, soil and grape

variety where variation of these factors attribute to the distinctiveness of the wine [64].

Moreover, the interplay between the wine microbiota and the microbiota of the fermen-

tation facilities has been verified but not completely understood [65]. Due to this com-

plexity of interactions between microorganisms in the wine itself, during fermentation,

but also between wine microbiota and environment, the wine industry has adopted the

use of starter cultures as a mean of control and quality improvement [66]. Nevertheless,

more in-depth knowledge in needed in order to understand how microbial interactions

may affect the wine quality.

The diversity of the vineyard and grape microbiota has been long ago investigated

via traditional microbiological techniques involving agar plate cultivation, microscopy

and biochemical characterization, focusing primarily on identifying pathogenic microor-

ganisms or microorganisms that have been associated with wine spoilage. Nevertheless,

these techniques fail to identify unculturable microorganisms that comprise a consider-

able fraction of the wine microbiota [67, 68].

Nowadays, molecular techniques such as qPCR (quantitative polymerase chain reac-

tion) and PCR-DGEE (polymerase chain reaction denaturing gradient gel electrophore-

sis) are widely used for detection and monitoring of microbial communities in wine. The

former technique is more appropriate for detection and monitoring of a desired microor-

ganism, whereas the latter for microbial community profiling. Although both techniques

are supplemented with culture-dependent methods, however PCR-DGEE fails to detect

species in low abudance, and qPCR suffers from scalability problems when many strains

should be targeted [21, 22].

These drawbacks of the aforementioned culture-dependent and molecular techniques

come to solve recent novel techniques that are based on massive sequencing, and which in

recent years have been regarded as the tool of choice for studying microbial communities
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during the various stages of alcoholic fermentation. Although there have been encourag-

ing findings demonstrating the superiority of the massive sequencing over the classical

methods concerning speed, sensitivity and accuracy, however most of the research has

been confined to describing the constituents microorganisms and their abundance fluctu-

ation over time. Therefore, the aim of this review, apart from exhibiting the contribution

of massive sequencing to monitoring alcoholic fermentation, is to demonstrate the possi-

bility of using this method as a tool for microbial control.

Sequencing methods

The metagenomic analysis of wine samples is mainly performed via amplicon-based

sequencing which through marker-genes amplification facilitates the taxonomic and phy-

logenetic profiling of the microbiome [69]. After the Sanger sequencing, that was de-

veloped back in 1977 by Sanger et al. [70] and was considered the first generation se-

quencing, second (SGS) and third (TGS) generation sequencing, collectivelly referred

as next-generation sequencing (NGS), have been introduced in research as fast and cost-

effective solutions.

Despite the fact that TGS solves many of the disadvantages of the SGS, still is under

development and not widely applied in research. From the area of SGS, which is based

on sequencing by synthesis method, the most popular platforms will be presented.

Ion Torrent

Introduced back in 2010 [71], Ion Torrent sequences the template DNA strand by

detecting hydrogen ions that are released during the polymerization process. As a tech-

nology, with an error rate of 1.71% [72], it does not require modified nucleotides and

it generates reads of around 200 bp in length allowing for multiple runs and more data

generation [73].

Pyrosequencing

The most recent variant of pyrosequencing, 454 pyrosequencing, was introduced

back in 2005 [74], and was the first affordable platform allowing whole genome sequenc-

ing. As a technology, it relies on the light signal detection that is emitted after the release

of phosphate during the incorporation of a nucleotide by the DNA polymerase. With an

error rate below 1% [75] 454 pyrosequencing is capable of generating reads of over 400

bp in length [76].
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Illumina

With the first Illumina sequencer being available back in 2006, Illumina technology

is based on the usage of fluorescently labeled dNTP terminators and the detection of light

signal upon incorporation. Recent Illumina machines, HiSeq and MiSeq, have decreased

the error rate below 1% and are capable of generating reads of around 300 bp in length

[77].

From the aforementioned platforms, Illumina is the most widely used, with 52%

of the published research citing it, followed by pyrosequencing that holds 48% of the

total citations [78]. However, pyrosequencing technology has been discontinued, and

currently Illumina is being considered as the largest contributor to SGS.

Amplified genomic regions

Apart from choosing the most appropriate sequencing platform, researchers have to

decide the genomic region that is going to be used for the taxonomic classification of the

metagenomic wine sample. As far as bacteria are concerned, the 16S ribosomal RNA

(rRNA) gene is the common target that is used in research for taxonomic assignment.

The 16S rRNA gene contains nine hypervariable regions (V1-V9), which all have

been used as potential classification targets generating different results. For instance,

Bokulich et al. [79] used the V4 and V5 domain so as to ascertain which one is the most

taxonomically informative for profiling bacterial communities. Based on the results, the

V4 domain was regarded as more suitable for profiling lactic acid bacteria (LAB), as it

gave more taxonomic depth comparing to the V5 domain.

Campisano et al. [80] used a 700 bp region that includes the domains from V5 up

to V9 in order to assess the impact of pest management on bacterial endophytic com-

munities of Merlot and Chardonnay grapevines, with the results indicating abundance

differences of operational taxonomic units (OTUs) between organic and intergrated pest

management (IPM) grapevines. The same genomic region was also targeted by Perazzolli

et al. [81] in a study of leaf microbiota, that resulted in identification of beneficial micro-

bial communities that could be used as a tool for crop protection. In the same manner,

in the past years other researchers have been focusing on other domains for classification

purposes. For instance, Sundquist et al. [82] favored the domains V1,V2 and V4, Liu

et al. [83] the domains V2, V3 and V4, and Chakravorty et al. [84] the domains V2 and

V3.

Regarding fungal classification, researchers have also displayed variability concern-

ing genomic region preference. For instance, David et al. [85] sequenced the 18S rRNA
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gene to show that 454 pyrosequencing is much more reliable than classical techniques

for studying yeast communities in alcoholic fermentation. Holland et al. [86] pyrose-

quenced the D1-D2 regions of the 26S rRNA, demonstrating that changes in arbuscular

mycorrhizal fungal communities do not depend on irrigation frequency. Bokulich and

Mills [87] targeted the IT1, ITS2 and the whole ITS in order to compare their classifi-

cation efficiency by utilizing a mock community. Although they favored the IT1 region,

nevertheless they urged for caution as none of these regions reconstructed reliably the

whole mock community. Encouraging results targeting the ITS region have been yielded

also from the researches of Pinto et al. [43] and Stefanini et al. [88] indicating this region

as a suitable target for yeast classification.

Bioinformatic Tools

Regardless the NGS platform a researcher decides to utilize, the sequencing of wine

metagenomic samples generates a significant amount of data that necessitate the use of

bioinformatic pipelines. Despite the plethora of bioinformatic tools available, the most

widely used will be presented.

QIIME

QIIME, which stands for Quantitative Insights Into Microbial Ecology, is a bioinfor-

matic package, offering a variety of microbial community analyses and visualizations,

that wraps other software packages with python code [89]. Some of the most frequent

wrapped applications include mothur [90], blast [91], PyNAST (Python Nearest Align-

ment Space Termination) [92], RDP (Ribosomal Database Project) Classifier [93], Fast-

Tree [94] and USEARCH (unique word count search) [95].

MOTHUR

Mothur is a bioinformatic package that re-implements in C and C++ code other soft-

ware packages removing that way any external dependecies during installation. Some

of the re-implemented algorithms include DOTUR (Distance-Based OTU and Richness),

SONS (Shared OTUs and Similarity), TreeClimber, LIBSHUFF, and UniFrac, and ad-

ditioanlly the mothur team has incorporated its own analytical features to the platform

[90].
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MG-RAST

MG-RAST, which stands for Metagenomics Rapid Annotation using Subsystem Tech-

nology, is a server based platform with initial aim the annotation of complete or draft

microbial genomes [96]. Currently, MG-RAST offers an automated solution for phylo-

genetic classification and functional classification of metagenomic samples.

A comparison of these three bioinformatic pipelines has been conducted by Plummer

et al. [97] using 16S rRNA gut microbial data. The study concluded that all of the three

pipelines were able to generate similar and reliable results with common limitation the

ability to classify at the species level due to the type of data. The main differences

between the pipelines concerned the usability and duration of analysis. MG-RAST is a

more user friendly pipeline compared to the command-line based QIIME and MOTHUR,

whereas QIIME required approximately 1 h to complete the analysis with MOTHUR and

MG-RAST 10 h and 2 days respectively.

Databases

One of the most crucial steps of metagenomic analysis is the taxonomic classification

of the microbial community. Apart from other factors, such as the sequence length,

the parameters used for quality filtering and the implemented algorithm, this step can

be greatly influenced by the chosen database. Currently, there are a number of highly

curated databases available, such as Greengenes for 16S rRNA [98], SILVA for small

(16S/18S, SSU) and large (23S/28S, LSU) subunit rRNA [99], UNITE for ITS region

[100] and RDP for 16S and 28S rRNA classification [101]. However, classification based

on these databases should be regarded as a rough estimation of the microbial composition

as genera abundances or even taxonomic assignments can be greatly influenced by the

chosen percentage of homology.

Analysis of alcoholic fermentation

There are numerous studies dedicated to the microbial analysis of wine alcoholic fer-

mentation, but until now great focus has been given on describing microbial abundance

succession during the various stages of alcoholic fermentation. These studies have at-

tested the superiority of NGS over classical methods [85] and offered novel insights into

the microbial communities.

Although bacteria are not directly connected to wine quality, acetic acid bacteria

(AAB) and lactic acid bacteria (LAB) play a significant role to the final wine product.
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Portillo and Mas [102], in a Grenache variety wine fermentation study, showed that AAB

and LAB are more abundant than previously thought, with a dominance of Gluconobac-

ter during the mid fermentation. The latter finding contradicts the previous notion that

Gluconobacter, being alcohol sensitive, usually declines during the alcoholic fermenta-

tion [16, 103, 104]. Similar results have also been yielded in other studies of low-sulfited

or unsulfited wine fermentations [105].

Additionally, NGS analysis has created the notion that apart from AAB, other bacte-

ria, not previously described, may be present during the process. Support to this hypoth-

esis came from Godálová et al. [106] in a study of Blaufränkisch and Grüner Veltliner

vines, where in addition to genera already found in other studies, such as Sphingomonas,

Variovorax, Pantoea, Enterobacter and Tatumella, new genera were detected, namely

Amycolatopsis, Hydrogenophilus, Snodgrassella, Telluria, Gilliamella, Lelliottia, and

Lonsdale quercina. However, the possible impact of these newly described genera is

still to be demonstrated.

Other studies come to supplement existing ones. For instance, Bokulich et al. [79]

showed that Acetobacter, Gluconobacter, and Gluconoacetobacter are dominant in wine-

making processes, whereas Campanaro et al. [107] in a grape marc study added that

Gluconobacter and Gluconoacetobacter do not survive a prolonged grape marc storage

period.

Moreover, the empirically based concept of the coined term terroir, that is distinction

of wine quality due to regional features, has been put under the prism of NGS analysis and

verified recently. Results from Zarraonaindia et al. [108] suggested that the soil serves

as a bacterial reservoir for the vines and subsequently Bokulich et al. [109], in a 200

commercial wine fermentations study, demonstrated the correlation of wine microbiota,

wine performance and wine metabolome. These authors even predicted the metabolome

of the wine from the microbial composition by using machine learning techniques [109].

Similar results have also been generated from other studies [110, 111].

Besides bacteria, NGS analysis has also given significant insights into the yeast pop-

ulation during fermentation. The most frequent fungi described by NGS analysis are

Saccharomyces, Hanseniaspora, Issatchenkia, Rhodotorula, Penicillium, Cladosporium,

Botrytis, Sporobolomyces, Aspergillus, Cryptococcus and Pichia [42, 111, 112], with

most studies reporting high abundance of Hanseniaspora and Saccharomyces during the

mid and end of the fermentation respectively. Stefanini et al. [88] in a Vino Santo study,

found that fungal species composition undergoes a dynamic change with a declining

tendency overtime, and that small changes in fermentation procedures may result in

significant differences in microbial communities. As advocates to these findings come
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older studies that have demonstrated that aerobic yeasts are the first to decrease in abun-

dance, and that the mid fermentation yeast genera, such as Hanseniaspora, Candida,

Metschnikowia and Torulaspora, cannot be recovered on plates at high ethanol concen-

tration in presence of Saccharomyces [8, 9]. Interestingly, S. cerevisiae, found in very

low abundance at the beginning of the fermentation, manages to rise in dominance at

the end of the it. In accordance to this, Lleixà et al. [113] drew a comparison between

the dynamics of Saccharomyces cerevisiae and Hanseniaspora vineae after inoculation

in Macabeo and Merlot grape varieties. The results indicated that fermentation of S.

cerevisiae inoculated must was faster than the one with H. vineae inoculation, and that

inoculation with S. cerevisiae is necessary as H. vineae alone leads to incomplete alco-

holic fermentation. However H. vineae was able to dominate the microbiota in Macabeo

must but not the Merlot perhaps due to high exhibited yeast diversity of Merlot must.

Another important question that NGS analysis has been called to answer, is whether

grapes are the source of spoilage microorganisms [50], or the wine-making equipment

[114]. Even though there is no clear answer to this debate, studies from Suárez et al.

[115] and Pinto et al. [111] seem to support the latter hypothesis.

Control of alcoholic fermentation

Controlling the alcoholic fermentation of wine-making is a very complex process.

Unlike fed-batch alcoholic fermentation in bioreactors, where algorithms have been de-

veloped for the estimation of parameters that may lead to higher biomass concentrations

and yield of a specific compound [116], wine alcoholic fermentation incorporates higher

order of complexity, as it concerns (i) the determination of all the microbial composition

throughout the fermentation process; (ii) the comprehension of the interplay between

different microbial communities; (iii) the definition of a series of metabolites that con-

tribute to the wine quality, and (iv) the integration of all these information into a predictive

machine-learning model.

In the past, a series of studies have set the ground for controlling alcoholic fermenta-

tion by monitoring or modifying certain fermentation parameters, but most of the results

were empirical and their interpretation was not an easy task. Various studies have shown

that yeasts increase their production of volatile compounds at low fermentation temper-

atures [117–119]. Therefore, wine-makers that aim at enhancing wine aroma could take

advantage of this factor. Another popular method, is choosing a specific yeast strain for

improving specific aspects of the wine, with studies having used this technique so as to

improve wine characteristics of Sauvignon [120] and Chardonnay [121]. Furthermore,
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addition of certain nutrients that will prevent the fermentation from stucking, is a com-

mon practice. For instance, Cramer et al. [122] developed a fermentation kinetic model

which showed that fermentation rate can be increased upon addition of ammonium salts,

whereas Birch et al. [123] supported that yeast growth rate and sugar degradation could

be influenced by magnesium concentrations. On the other hand, adaptive evolution ap-

proaches are aiming towards the creation of non-recombinant yeast strains that could

modify wine characteristics, as for instance in the study of McBryde et al. [124]. Addi-

tionally non-S. cerevisiae yeasts are known of adding distinct flavors to the wine but due

to the fact that they can easily become replaced by S. cerevisiae, authors such as Soden

et al. [125] have suggested the use of mixed cultures controlled by sequential inoculation.

Although all the above practices are means of manipulating specific aspects of wine

fermentation towards a specific outcome, they treat alcoholic fermentation as a black-

box without controlling the microbial composition of the wine and consequently the

wine quality consistency they are aiming to provide may not be certain. NGS analy-

sis is aiming to tackle these obstacles, but as a relatively new approach so far has yielded

descriptive results on the bacteria and yeast genera abundances that have been encoun-

tered during the various fermentation stages. Until now, studies from the food industry

have already evinced this type of analysis as a promising strategy for the detection of

previously undescribed spoiler bacteria [126, 127], underlying its suitability for control-

ling alcoholic fermentation. Nevertherless, NGS analysis has as an intrinsic difficulty

the overwhelming amount of metagenomic analysis tools, machine-learning algorithms,

databases and parameters that the researcher has to choose from. Because small changes

of parameters may result in singificantly altered taxonomic assignment results [83], a

possible solution may come from the use of mock communities datasets with known

species compositions [128]. This strategy has already been implemented in studies such

as the one by Bokulich et al. [129] in order to compare the performance of different

classifiers. Even though mock communities datasets cannot lead to the development of a

standardized NGS analysis with fixed parameters, as metagenomic samples are bound to

laboratory protocols, NGS platforms, environmental and grape variety differences, they

may nonetheless serve as a way to validate the robustness of a bioinformatic pipeline or

as a starting point for the subsequent metagenomic analysis.

Setting a solid ground for metagenomic analysis is of paramount importance, so ad-

ditional analyses such as metatranscriptomics and metabolomics can function as deter-

minant factors for the development of system-biology networks aiming for the under-

standing of microbial communities interaction, and machine-learning prediction models

focusing on the quality of the final wine product. With encouraging results coming from
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studies such as the one by Bokulich et al. [109] where it has been demonstrated that mi-

crobial composition of grape must can predict wine metabolome, the future of controlling

alcoholic fermentation via NGS analysis seems nothing but promising.

Conclusions

The aim of this review is to cite contemporary contributions of massive sequencing

techniques to wine alcoholic fermentation, and the possibility of being used as a tool for

microbial control. Wine alcoholic fermentation is a complex process that encompasses an

intricate and dynamic interaction between microbial populations that leads towards the

composition of a wine metabolome that defines the final wine quality and characteristics.

As a way of controlling alcoholic fermentation, the industry has adopted various

techniques, such as starter cultures and process monitoring and modification, but these

approaches rely on empirical results as little is known about the relationships within the

wine microbiome and its correlation to the final wine product.

High-throughput sequencing, based on NGS platforms, has been presented as a metage-

nomic analysis tool that offers higher speed, accuracy and taxonomic resolution com-

pared to classical culture-dependent and molecular techniques. Till now, the implemen-

tation of this technology has yielded significant yet descriptive research results on mi-

crobial dynamics in connection to the fermentation stages. Although, NGS metagenomic

analysis comprises a vast amount of bioinformatic tools, databases and machine-learning

algorithms, however publicly available mock communities datasets may serve as ways

of algorithm benchmarking, robustness check of bioinformatic pipelines, and parameters

initialization.

These mock communities and highly curated taxonomic databases could set a solid

foundation for the metagenomic analysis, upon which metatranscriptomics and meta-

bolomics will be based and provide all the necessary knowledge for the development

of system-biology networks and prediction models for deciphering microbial population

dynamics and prediction of final wine product, correspondingly. Regarding the latter, re-

search has provided encouraging results highlighting the potential and benefits of massive

sequencing as a tool for controlling alcoholic fermentation.

34

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



CHAPTER 2

Microbiome dynamics during spontaneous fermentations
of sound grapes in comparison with sour rot and Botrytis

infected grapes.
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Abstract

The main losses in viticulture around the world are normally associated with rot-

ten grapes affecting both the chemical composition and the grape microbiota that later

might affect the alcoholic fermentation. We analyzed the population in musts obtained

from sour rotten, botrytized and healthy Macabeo grapes and the population dynamics

during the spontaneous alcoholic fermentation by culture dependent and various culture

independent methods including, for the first time, qPCR and massive sequencing. Grape

health state affected the fermentation kinetics and also the microbial diversity and com-

position. Unexpectedly, the fermentation proceeded the fastest in the rotten must fol-

lowed by the healthy and the botrytized grapes. As in previous studies, plate cell counts

and qPCR results confirmed the increase in the number of both bacteria and fungi in

the musts from damaged grapes. Massive sequencing detected higher biodiversity than

the other techniques at each stage, with Saccharomyces and Oenococcus found already

in the grape must. Hanseniaspora osmophila replaced to Hanseniaspora uvarum as the

predominant yeast during the mid-fermentation stage for both damaged grapes. Further-

more, musts and beginning of fermentation from rotten and botrytized grapes consistently

had a higher presence of the fungi Zygosaccharomyces, Penicillium and Aspergillus while

high abundance of Botrytis were observed just for botrytized grapes. As expected, the

acetic acid bacteria number increased in musts from rotten and botrytized grapes, mostly

due to changes in proportion of the genus Gluconoacetobacter which remained more

abundant during damaged grapes fermentation than during healthy ones. Interestingly,

the presence of Oenococcus oeni at the end of the alcoholic fermentation was strongly

affected by the health status of the grapes.
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Introduction

The grape berry surface hosts a microbiota of filamentous fungi, yeast, and bacteria

that can have an impact on grape and wine quality [2, 130]. When the grape surface is

altered (e.g. by damaged skin of the berry, highly compact bunches, excess of humidity,

phytopathogen infections) the diversity and the population sizes of the microbiota are af-

fected and can lead to the spoilage of the berry. Grape damage of the harvested bunches

and the alteration of the grape ecological balance may compromise the vinification pro-

cess and the final wine quality typically adding off-flavors [41]. Thus, it is important to

further investigate the microbiota diversity changes in damaged grapes and its influence

on the alcoholic fermentation.

Sour rot and Botrytis infections are the most common causes of heavy grape berry

crop losses. The sour rot affects mostly dense bunches close to harvesting and is typically

characterized by vinegar odour and brown berries [53]. Disease aetiology is related with

the skin rupture of the berry caused by physical factors (e.g. rain, hail, berry abrasion) or

biological factors (e.g. insects, birds, moulds). The injuries on grape skin contribute to

the development of yeasts and bacteria considered as the main responsible agents of this

rot [131]. Moreover, insects are an important source of microorganisms that can colonize

grapes and proliferate once the injury in the skin is done [132]. Botrytis infection (also

known as grey mold) is frequent in vineyards exposed to cold and wet conditions during

the ripening period [133]. In the case of sweet wines, where the presence of Botrytis

cinerea is desired, the grapes are subjected to an extended ripening before harvesting and

to a prolonged period of drying before crushing to enhance the abundance of B. cinerea

[88].

Previous studies have documented the microbiota in sound and damaged grapes, in-

cluding sour rotten and Botrytis-affected grapes [132, 134–136].

The results described how grape spoilage affects the grape microbiota, with damaged

grapes harboring the highest yeast and acetic acid bacteria (AAB) population [134, 135,

137]. However, most of these studies use culture based techniques probably leading to

underestimation of the microbial species involved. Currently, it is accepted that culture-

isolated microorganisms are not necessarily representative of the microbial diversity [67,

138]. Thus, the reported species selected during grape damaged by sour rot or Botrytis

might be biased by the composition of culture media and the capacity of the microbes to

grow on them [23, 139].

Recently, several culture-independent methods based on the genetic background have

been used to analyze the microbial diversity from grapes to wine (reviewed in Cocolin
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et al. [140]). Generally, the use of molecular biology methods has not only endorsed the

traditional results but has also been able to identify higher microbial diversity than previ-

ously expected [141]. Despite the potential of molecular techniques, we have just found

one work where these were applied to study the microbial diversity of Botrytis-affected

grapes [142]. Specifically, these authors used PCR-DGGE to monitor the yeast popu-

lation changes during spontaneous fermentations of sound and Botrytis-affected grapes.

The results included the detection of some bacterial genera not detected before in sour

rot or botrytized musts like Enterobacter, Bacillus and Staphylococcus, some of them

capable to survive in fermenting musts [142].

Among molecular methods, massive sequencing (MS) technologies are becoming a

widely used methodology to characterize more precisely the microbial community of

complex environmental ecosystems, including food samples [143]. For example, MS

technologies have allowed metagenomic analysis of vineyard and wine microbiome de-

ciphering which microorganisms are present with higher sensitivity than previous tech-

niques and how their communities are affected by several magnitude factors (reviewed in

Morgan et al. [78]).

In this study, we aim to establish the relationship between the sour rot and Botrytis

infection affecting Macabeo grapes with specific changes on the grape microbiota. In

order to achieve this objective, sound and damaged grapes were harvested and their mi-

crobial diversity monitored during subsequent spontaneous alcoholic fermentations by

both culture dependent and independent methods including PCR-DGGE, qPCR and MS

to weigh the biases introduced by the techniques in an effort to estimate the community

changes introduced by sour rot and Botrytis infection.

Materials and methods

Grape samples and experimental wines

During 2016 vintage, grape clusters from the experimental vineyard of the Faculty

of Oenology (Mas dels Frares, Tarragona Spain) were collected. The sampled vineyard

plot produced Macabeo cultivars. Samples were collected using gloves, ethanol, steril-

ized scissors and sterile plastic bags. Between 10 and 12 replicate grape clusters from

different plants within the plot were collected from each grape state in order to capture

the heterogeneity present in the sampled lot. Samples without damaged grapes or infec-

tion signals were denominated healthy or “H”, grape clusters presenting brown, damaged

grapes (typical from sour rot) were denominated rotten or “R” and grape clusters with

gray mold in the surface (typical from the Botrytis affected grapes) were denominated
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botrytized or “B”. H and R grapes were collected just before normal harvest, at the be-

ginning of September and the B ones were collected two weeks later. Samples were

immediately transported to the experimental cellar located 100 m away from the sampled

plot and were crushed by a manual press, skins and seeds were removed by using a sieve

resulting in approximately 3 L of each grape health state. 50 mL of grape juice was di-

rectly sampled corresponding to Must samples. Afterwards, as a normal procedure in the

cellar, 80 mg L-1 potassium metabisulphite (40 ppm SO2 ) was added to the rest of the

juice. Must samples and the rest of the juice were transported refrigerated to the labora-

tory within the next hour. Part of the must samples was directly used for microbiological

culture and the rest of the must was stored at -80◦C until DNA extraction. The sulfited

juice was incubated during 24 h at 4◦C to allow clarification. From each health status

juice, triplicates of 400 mL clarified juice were incubated at 23◦C under agitation of 120

rpm in 500 mL flask and allowed to ferment spontaneously without inoculation.

Sampling and monitoring during spontaneous fermentations

The fermentation kinetics was followed considering the time needed to consume the

50% (t50) and the 90% (t90) of sugars. In order to easily monitor the fermentations, the

density was measured daily with Densito 30PX Portable Density Meter (Mettler Toledo,

Spain).

Glucose and fructose concentration was daily measured by Miura One Multiana-

lyzer (TDI, Barcelona, Spain) using the enzymatic kit from Biosystems S. A. (Barcelona,

Spain). Acetic acid and ethanol were just evaluated during late fermentation, in the last

juice sampling point (when the juice density was below 1000 g/L and stable for two

consecutive days). Acetic acid content was analyzed by Miura One Multianalyzer (TDI,

Barcelona, Spain) using the enzymatic kit from Biosystems S. A. (Barcelona, Spain). In

the case of ethanol, due to volume limitation, it was measured on the last sampling point

by enzymatic method using Ethanol Boehringer Mannheim kit (R-biopharm).

Samples for plating, qPCR, PCR-DGGE and massive sequencing were taken from the

must, the beginning of the fermentation (24 h after the incubation), middle fermentation

(juice density between 1050 and 1040 g/L) and, finally, late fermentation when the juice

density was below 1000 g/L and stable for two consecutive days.

Plate culturing

Samples for plating were serially diluted in sterile MilliQ water (Millipore Q-PODTM

Advantage A10), plated on (i) YPD medium (Glucose 2%, Peptone 2%, Yeast Extract

1%, Agar 1.7%) and (ii) lysine agar medium (Oxoid, England) plates incubated at 28◦C
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for 48h; (iii) MRS Agar medium [144] supplemented with 4 g/L L-malic acid, 5 g/L

fructose, 0.5 g/L L-cysteine, 100 mg/L nystatin and 25 mg/L sodium azide adjusted to

pH 5.0 and incubated at 28◦C in a 10% CO2 atmosphere and (iv) GYC Agar (glucose 5%,

yeast extract 1%, CaCO3 and agar 2%, pH 6.3) supplemented with 100 mg/L natamycin

and incubated at 28◦C for 35 days under aerobic conditions. Appropriate dilution plates

were counted. The YPD medium provided the total yeast counts, whereas the lysine agar

medium is considered to provide the non-Saccharomyces cell counts since most S. cere-

visiae strains have limited growth using lysine as a unique nitrogen source [145, 146].

However, it has to be considered that probably not all the non-Saccharomyces yeast re-

lated to wine environment are able to use lysine as nitrogen source [147]. MRS medium

and GYC-Ca provided LAB and AAB counts, respectively.

DNA extraction, qPCR and PCR-DGGE

Genomic DNA was extracted from grape must and spontaneous fermentation stages

using the recommended procedure for the DNeasy Plant Mini kit (Qiagen, Hilden, Ger-

many), including three bead-beating steps for 3 min in a FastPrep-24 bead beater (MP

Bio, Solon, OH) to homogenize the samples. Extracted DNA concentration was mea-

sured by nanodrop, adjusted with molecular grade water to a concentration of 50 ng/µl

and stored at -20◦C until further processing.

Quantitative PCR (qPCR) was performed in an Applied Biosystems 7300 Fast Real-

Time PCR System (Applied Biosystems). SYBR Premix Ex Taq (Tli RNase H Plus)

was used according to the manufacturer’s instructions (Takara). An ABI PRISM96 well

optical plate was used for the reaction. This instrument automatically determined the

Ct. Yeast quantification was performed using the primers YEASTF/YEASTR for to-

tal yeast [148], CESPF/SCERR for Saccharomyces genus, generic CESPF/HUVR for

Hanseniaspora genus [149], AF/ 200R for Starmerella bacillaris [150], TodsL2/TodsR2

for Torulaspora delbrueckii [151], Mp5-fw/Mp3bw for Metschnikowia spp. [152] and

Bc3F/Bc3R [153] for B. cinerea. Bacterial quantification was performed using AQ1F/AQ2R

primers for general AAB [154] and WLAB1/WLAB2 for general LAB [155]. All the

primers anneal the ribosomal gene region. Standard curves were calculated for each type

of microorganism in triplicate samples using serial dilutions of purified DNA (Supple-

mentary Table 1 1).

For the PCR-DGGE analysis, the primer pairs U1GC/U2 and 341fGC/518r were used

to amplify the specific U1/U2 of the 28S ribosomal region of yeast [156] and the 16S

ribosomal region of bacteria [157], respectively. The DGGE procedure followed the

1Supplementary materials are available at https://doi.org/10.1016/j.ijfoodmicro.2018.05.016.
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description in Lleixà et al. [113]. DNA from excised bands was re-amplified with the

same primer pair without the GC-clamp and sequenced by Macrogen Company (South

Korea). The BLASTN algorithm was applied to the GenBank database to identify the

closest relative at species level. However, the accuracy of the taxonomic identification at

species level is not accurate due to the length of the sequences.

Sequencing library construction

The library construction was done with the amplification of 1 sample for each of the

musts and 2 samples for each of the fermenting points in the case of bacterial library. In

the case of fungal library, 1 sample for each of the must and 1 sample of each of the fer-

mented points were taken. The universal primer pairs 515F/806R [158] and FR1/FF390

[159] with adapters for the sequencing by the equipment PMG from Ion Torrent with

chips 318 were used to amplify a region of the 16S and 18S ribosomal gene of bacteria

and fungi, respectively. The use of 18S as taxonomic marker for eukaryotic genera is

considered limited because many yeast species have no 18S sequence available in the

databases, thus we used SILVA (v119) database as described later on because it is more

updated and includes more eukaryotic genera than other databases. The universal for-

ward primers included a 10-bp barcode unique to each amplified sample. PCR reactions

contained 5-100 ng DNA template, 1x GoTaq Green Master Mix (Promega), 1 mM MgCl

2 , and 2 pmol of each primer. Reaction conditions consisted of an initial 94◦C for 3 min

followed by 35 cycles of 94◦C for 45 s, 50◦C (for Bacteria) or 52◦C (Fungi) for 60 s, and

72◦C for 90 s, and a final extension of 72◦C for 10 min. PCR reactions were performed

in triplicate for each sample replicate, pooled by sample and cleaned using a GeneRead

Size Selection kit (Qiagen, Hilden, Germany). Cleaned PCR products were submitted to

Centre for Omic Sciences (Reus, Spain) where their quality was checked by a Bionalyzer

and their quantity adjusted for sequencing.

Data analysis

Raw sequences were demultiplexed and quality filtered using QIIME v1.9.1 [89].

Reads were discarded if the length of the read was < 200 or > 1000 and if any read

contained one or more ambiguous base calls. Additionally, reads were truncated at any

site containing 3 or more consecutive bases receiving quality score below 10 and reeval-

uating the remaining length with the aforementioned length rule. After quality filtering,

3,672,972 sequences remained with an average of 306,081 sequences per sample (Sup-

plementary Table 2). Operational taxonomic units (OTUs) were picked by using QIIME’s

open-reference pipeline, where Greengenes (13 8) and SILVA (v119) were used as ref-
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erence databases for 16S and 18S rRNA sequences correspondingly, at a 99% similarity

threshold. The same databases and threshold have also been used for sequence alignment

using PYNAST [92] and OTU taxonomy assignment [99]. The taxonomic assignment up

to level species is not accurate for such a small fragment of DNA so the genera level was

indicated except when the species was confirmed by qPCR and PCR-DGGE analysis.

A final OTU table was created, excluding singletons (sequences observed just once), se-

quences detected by less of 0.001 abundance and sequences matching plant mitochondria

or chloroplast. To avoid biases generated by differences in sequencing depth, bacterial

and eukaryotic reads were rarefied to an even depth of 790 and 84,000 sequences per

sample, respectively.

Alpha diversity (within-sample species richness) estimates were calculated by ana-

lyzing the observed OTUs, the phylogenetic diversity by the PD whole tree index, and

Shannon and Simpson diversity indexes.

Statistical analysis

Beta-diversity (between-sample microbial community dissimilarity) estimates were

calculated within QIIME using weighted UniFrac distances [160] between samples for

bacterial sequences and eukaryotic sequences. Principal coordinate analysis (PCoA) was

used to summarize and visualize patterns in species composition. ANOSIM (an ana-

logue of univariate ANOVA which tests for differences between groups of samples) was

performed in QIIME to determine significant differences in phylogenetic or species di-

versity among experimental factors (grape health state and fermentation stage). Kruskal-

Wallis test was used to determine which taxa differed between sample groups. Taxonomic

groups were considered to present significant differences in abundances across samples

when False discovery rate (FDR)-corrected P values were lower than 0.05 for bacteria

and P < 0.05 for fungi with no FDR correction due to the lack of replicated samples.

Results

Effect of grape health state on fermentation kinetics

Clarified musts from each health state, healthy (H), rotten (R) and botrytized (B),

were divided into three biological replicates and allowed to ferment spontaneously (with

no yeast or bacteria inoculation, Fig. 3). Sugar concentration in R and B initial musts

was higher than in the H one (Table 3). Despite the higher sugar content, R fermentations

were the faster to consume the 50% (t50) and the 90% (t90) (Table 3). Both fermentations
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from H and B grapes consumed the 50% of the sugars in 5 days. However, H fermen-

tations reached t90 in 11 days, 5 days earlier than the B ones that resulted in the slowest

fermentations.

We also evaluated the sugar, ethanol and acetic acid concentration of the last sampling

point, when density reached 1000 mg/L. In the case of H grapes, the fermentation was not

complete on this time point considering the high sugar and low ethanol concentration. On

the other hand, the low sugar and amount of ethanol suggested that R and B fermentations

were almost finished at the last measured point. Interestingly, H and damaged grape

juices presented similar acetic acid content (Table 3).

Figure 3: Fermentation density and population dynamics in YPD, Lysine Agar, MRS and GYC medium of
(A) healthy, (B) rotten and (C) botrytized grapes fermentations.

Fermentation Initial sugar content (g/L) t50 (days) t90 (days) Residual sugars (g/L) Ethanol (% v/v) Acetic acid (g/L)
Healthy 205,26 ± 0,59 5 11 11,40 ± 1,36 11,30 ± 0,09 0,79 ± 0,07
Rotten 225,45 ± 4,12 4 7 2,97 ± 1,51 12,83 ± 0,65 0,52 ± 0,03

Botrytized 226,21 ± 1,12 5 16 5,21 ± 2,63 12,74 ± 0,54 0,79 ± 0,04

Table 3: Fermentation kinetics of healthy, rotten and botrytized grapes. The values indicate initial sugar
content, sugar (residual sugars), ethanol and acetic acid concentration of the last sampling point of healthy,
rotten and botrytized grapes. t50 and t90 are the time used to consume the 50% and 90% of initial sugars,
respectively.
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Fungal and bacterial taxonomic composition of healthy, rotten and botrytized musts and fer-
mentations

Changes in microbial population were monitored along the alcoholic fermentation

(must, beginning, middle fermentation and, finally, late fermentation (density was below

1000 g/L for two consecutive days) of H, R and B Macabeo grapes.

As we have previously mentioned, culture dependent (plate culturing in specific me-

dia) and independent techniques (qPCR, PCR-DGGE and MS) were applied and com-

pared.

Plate culturing

The yeast population quantification was based on the colony growth in YPD (total

yeast population) and lysine agar medium (most non-Saccharomyces yeasts) while LAB

and AAB populations were quantified using MRS and GYC media, respectively. Total

yeast, non-Saccharomyces yeast, and AAB counts were higher in the musts and the be-

ginning of the fermentation from R and B grapes compared with the same stages from H

grapes (Table 4). However, during the mid and late fermentation, yeast populations were

comparable for both damaged and healthy grapes (Table 4).

LAB population was also higher in R must than in the H one. Nevertheless, LAB

colonies count increased slightly through the end of H must fermentation while decreased

to undetectable levels in R samples. In Botrytis-affected samples no LAB colonies were

detected at any stage of the fermentation (Table 4).

Even if the AAB populations were higher in R and B musts samples, the number of

colonies decreased through the fermentation to undetectable levels while it remained low

but constant in H samples (Table 4).

Quantitative PCR (qPCR)

The population levels of total yeast, total LAB, total AAB, Saccharomyces spp.,

Hanseniaspora spp., Torulaspora delbrueckii, Metschnikowia spp., Starmerella bacil-

laris and Botrytis cinerea were separately quantified by qPCR with specific primers (Ta-

ble 4). The total yeast population determined by qPCR was higher in R and B musts

than in H one. Apparently, the increase of total yeast in R and B musts was due to an

increase in the genera Hanseniaspora and S. bacillaris while Saccharomyces remained

at the same level than in H must. Moreover, Saccharomyces spp. population in R and B

did not increase as much as in H during the fermentation (Table 4). The quantification of

B. cinerea was only positive for damaged grape samples and it was considerably higher
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in the B ones that were obtained from grapes visibly affected by this filamentous fungus.

However, B. cinerea population gradually decreased through the end of fermentation (Ta-

ble 4). The anaerobic conditions during alcoholic fermentation would explain the sharp

decrease of B. cinerea in the last fermentation stages and, probably, the quantification

could correspond to DNA from dead cells as no viable fungi was recovered on YPD from

the mid fermentation stage onwards.

T. delbrueckii was detected in low proportion in the three musts just increasing through

the mid and end of alcoholic fermentation of H samples. The last yeast species quantified,

Metschnikowia spp., was only detected in low proportion in B samples (Table 4).

In the case of bacteria, the quantification of AAB was at least three orders of mag-

nitude higher in musts from damaged grapes than in the healthy ones. Finally, it was

remarkable the increase of LAB population on the late fermentation of H samples (Table

4).
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PCR-DGGE

Microbial communities from H, R and B grapes were analyzed at different fermenta-

tion stages by PCR-DGGE for Eukarya. The excised DGGE bands were re-amplified and

identified by sequencing. Occasionally, some bands migrating differently were identified

as the same taxon. Though the identification to species level from the short sequences

obtained by PCR-DGGE analysis was not reliable, we were able to detect eight differ-

ent yeast species (closest relatives: S. cerevisiae, Hanseniaspora uvarum, S. bacillaris,

Candida spp., Issatchenkia spp., Kazachstania spp., Zygosaccharomyces spp. and Au-

reobasidium pullulans) and two filamentous fungi (Rhizopus spp. and B. cinerea). Sac-

charomyces cerevisiae was not detected with this technique in any grape must (Table 4).

However, it was detected during mid and late fermentation in H, R and B fermentations.

Moreover, the highest intensity of S. cerevisiae was reached at late fermentations regard-

less of grape health status. Hanseniaspora uvarum and S. bacillaris exhibited a similar

behavior being present along all grape fermentations and showing higher band intensity

from mid to late fermentation (Table 4).

Kazachstania spp., Zygosaccharomyces spp., B. cinerea and A. pullulans were just

identified in damaged grape samples. Concretely, Kazachstania was detected just in the

must and the beginning of the fermentation while Zygosaccharomyces was present in all

stages. Besides, B. cinerea was observed during all B fermentation phases while it was

just detected in the must and the beginning of R fermentations. As previously mentioned,

the detection of B. cinerea in the last fermentation phases could correspond to DNA from

dead cells. In the case of A. pullulans, this yeast like fungus was only identified in the

first part of B grape fermentation (Table 4).

Apart from B. cinerea, we observed another filamentous fungus identified as Rhizo-

pus spp. This fungus was present in all grape musts and it was detected until the middle

of the R fermentation and late fermentation of B (Table 4).

The PCR for the DGGE analysis with bacterial specific primers did not result in

strong amplifications indicating less proportion of bacteria in comparison with yeast pop-

ulation (results not shown). The different DGGE bands from bacterial profiles were ex-

cised and amplified for their identification, but most of the resulting sequences did not

have a match on the NCBI database probably due to co-migration of bands from similar

species and thus, cloning of the excised bands should have been done in order to have

single sequences from co-migrating bands. Just two bands recovered from must and the

beginning of the fermentation of R grapes were identified as Gluconoacetobacter and

Gluconobacter (Table 4).
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Massive sequencing

Barcode amplicon sequencing was used to analyze the bacterial and fungal commu-

nities of the different grapes through their fermentation. A total of 382,990 bacterial

sequences and 1,954,049 eukaryotic sequences were used to build the OTU tables with

an average of 31,916 and 162,837 sequences per sample, respectively (Supplementary

Table 2). The massive sequencing analysis detected a higher diversity of fungal and bac-

terial genera than the other techniques (Table 4 and Supplementary Fig. S1). However,

considering those genera more abundant than 1% on average, 9 fungal and 6 bacterial

genera were detected (Table 4).

The most abundant yeast on average across all samples was Hanseniaspora (38.2%),

detected mainly in the beginning and mid fermentation (Fig. 4). Interestingly, two dif-

ferent abundant OTUs within Hanseniaspora were identified and the closest relatives

were H. uvarum (23.1%) and H. osmophila (15.1%). Hanseniaspora uvarum was more

abundant in H than in R or B samples, while H. osmophila was more abundant in mid

fermentations of R and B (Fig. 4). Other non-Saccharomyces yeast were detected in less

proportion on average, for example, Starmerella (3.3%), and Zygosaccharomyces (5.3%)

(Fig. 4). Saccharomyces (19.8% on average) was detected in all musts and every stage

of fermentations, being the predominant yeast (between 50.2 and 59.9% of sequences)

during late fermentations samples. Yeast like Hanseniaspora or Saccharomyces quickly

replaced to filamentous fungi or molds detected by this technique in the first stages of the

fermentation. Within these molds, Rhizopus was abundant (13.6% on average) in H and

R, while B. cinerea, (6.1% on average) predominated in must and beginning of the fer-

mentation of B grapes (ranging between 36.4 and 40.6%), Aspergillus (6.9% on average)

was more abundant in R must at the beginning of the fermentation (23 and 22.4%, respec-

tively) than in the rest of the samples, Penicillium was just detected in damaged samples

(ranging between 3.1 and 5.2% and Cladosporium (1.1%) slightly more abundant on H

and B musts and the beginning of fermentation (ranging between 2.2 and 4.4%) than in

the respective R samples (0.50.8%). Other fungal genera detected in lower proportion

than 1% but higher than 0.1% on average across all samples are indicated on the heatmap

(Supplementary Fig. S1). Some of these low abundance genera were present just in sam-

ples from damaged grapes, like Saccharomycopsis. On the other hand, Fusarium was

detected just in H samples. All these taxa, except the fermentative yeast Saccharomy-

codes, disappeared at the late fermentation, indicating a low implication during wine

fermentation.

In the case of bacteria detected by MS, the 6 most abundant genera were the AAB

genera Gluconobacter, Gluconoacetobacter, Acetobacter, Tantiocharoenia, and Ameya-
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maea (accounting for 82.4% on average across all samples) and the LAB genus Oeno-

coccus. The abundance of these bacterial genera varied among the samples with differ-

ent health states (Fig. 4B). Oenococcus was predominant during late fermentation of H

(90.9%) and also represented an important proportion of the sequences during the rest

of H fermentation stages while it was scarcely detected in damaged grapes samples (Fig.

4). R and B samples harbored higher proportion of Gluconoacetobacter than H samples

and the genus Gluconobacter was clearly the most abundant from the must to mid fer-

mentation of H grapes (52.7 - 88.6%). In addition, sequences related to Tantiocharoenia

were more abundant in damaged samples than in H ones. Finally, R samples harbored

higher proportions of the genera Acetobacter and Ameyamaea than H or B. Other bac-

terial genera detected in lower abundance than 1% but higher than 0.1% are listed on

Supplementary Fig. S1. Within these genera, some LAB like Aerococcus, Lactococcus

or Streptococcus were also identified. All these genera disappeared during late fermen-

tation of H grapes while some of them remained in damaged grapes (Supplementary

Fig. S1). In addition, some of the genera detected just at late fermentation of R and B

grapes increased their abundance with respect to the must and beginning of fermentation

samples, for example, Acinetobacter, Bacillus, Staphylococcus and Tatumella.

Bacterial and fungal alpha diversity

The highest microbial diversity as determined by the number of different genera iden-

tified by the PCR-DGGE analysis was observed in the must and at the beginning of the

Figure 4: Relative abundance of fungal (A) and bacterial (B) taxa detected at> 1% by MS. Taxa that differed
significantly (P value< 0.05) by fermentation stage (for fungi) or by health status (for bacteria) are indicated
by an asterisk.
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fermentation of each health type grape, with higher diversity in the must samples and

also more diversity in R and B samples than in H ones (Table 4). The diversity was lower

through the end of H fermentation that for the damaged ones (Table 4).

According to MS analysis, fungal diversity ranged from 1 to 1.6 for the PD whole

tree index and from 42 to 68 observed OTUs (Fig. 5A, Supplementary Table 3). Higher

diversities were reached for all samples in the musts and during the first stages of fermen-

tation with similar values for damaged and H samples in those stages. However, diversity

decreased sharply for H samples during the second half of the fermentation while, in the

case R samples, diversity remained high and relatively constant along the fermentation

and in the case of B samples, diversity decreased just a little during late fermentation

stage (Fig. 5A). The lowest fungal diversity belonged to late fermentation of H grapes.

Simpson and Shannon indexes pointed to H samples during the mid-fermentation as the

ones with the lowest diversity values (Supplementary Table 3).

Figure 5: Alpha diversity graphs showing the PD whole tree index (left) and number of different OTUs
(right) for the fungal (A) and bacterial (B) communities determined by MS.

This scenario was slightly different for bacterial diversity. The PD whole tree index

for bacterial sequences ranged from 1 and 3.1 while observed OTUs ranged from 15

to 49 (Fig. 5B, Supplementary Table 4). The bacterial taxonomic diversity increased
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through the end of fermentations for damaged samples while decreased sharply from the

first 24 h to late fermentation for H samples. The same tendency was observed for the

number of OTUs with the exception of R samples harbored a relatively constant number

of OTUs through the fermentation (Fig. 5B). Other indexes like Simpson or Shannon

also revealed that the lower bacterial diversity was observed for Healthy samples from

mid to late fermentation while the values for the other samples remained quite constant

(Supplementary Table 4).

Health status of the grapes influences must and fermentation communities

Fungal and bacterial communities changed across the different fermentation stages

and between the different health statuses of the grapes used for the alcoholic fermentation

(Fig. 6). Unifrac distance matrices [160] were calculated with the taxonomic composition

and abundance data from samples analyzed by MS in order to be used for the analysis of

similarities (ANOSIM) of the microbial communities from the different samples. Fungal

communities resulted significantly different and clustered by the different fermentation

stages (Table 5, Fig. 6A). According to statistical analysis, Aspergillus, Rhizopus and

Saccharomyces were the fungal genera that varied significantly across all fermentation

stages, thought other additional genera showed variation in their proportions across the

fermentation stages and different health statuses (Fig. 4). Bacterial populations from

the different samples of H, R and B were significantly different and clustered by health

status (Table 5 and Fig. 6B). The bacterial genera that varied significantly in abundance

between the H, R and B samples were Acetobacter, Aeyamaea, Gluconoacetobacter,

Gluconobacter, Oenococcus and Tanticharoenia (Fig. 4).

Factor ANOSIM bacterial ANOSIM fungal

R P R P

Health 0.355 0.001 0.013 0.356
Ferm. stage 0.005 0.455 0.598 0.003

Table 5: ANOSIM results showing the analysis of similarities of the different fungal and bacterial commu-
nities calculated from the weighted Unifrac distances matrices for the factors health status of the grape and
the fermentation stage.
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Discussion

Grape health status is a primordial fact during winemaking and it can negatively

impact on the fermentation process and the composition and quality of wine [2]. In the

present work, we described the ecological changes along the fermentation of Macabeo

grapes with different health status, H, R and B, using various techniques.

Analyzing the influence of grape health state on fermentation kinetics, Botrytis infec-

tion had the strongest effect on the delay of the fermentation evolution since fermenta-

tions affected by this fungus were the slowest to consume 90% of the sugars. Neverthe-

less, undamaged grape fermentation presented the highest amount of sugar and ethanol in

the last sampling point (density below 1000 g/L for two consecutive days). Previous stud-

ies have reported higher residual sugar when non-Saccharomyces yeasts were abundant

during alcoholic fermentation [161, 162], which can occur in spontaneous fermentations

[163, 164].

In the present study, the techniques of plate culturing, qPCR, PCR-DGGE and MS

have been used to monitor the changes of microbial community on grapes with three dif-

ferent health statuses. All these techniques allowed for the differentiation of the microbial

communities in musts and fermentations of the three types of grapes, but differences in

the results were observed depending on the technique.

Most of the studies on sour rot and Botrytis-affected grape ecology have been based

on plate counts [53, 134–136, 142]. However, the inability of some microorganisms

to grow in some media and/or under certain conditions [67] can give a biased result of

Figure 6: Weighted Unifrac distance PCoA plots for fungal (A) and bacterial (B) communities from Macabeo
must and fermentations.
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the microbial diversity [138]. Considering these facts, we additionally used molecular

methods since they have shown to be more informative about environmental microbial

diversity.

One of the most used molecular techniques to quantify microbial populations is the

qPCR. Nevertheless, the specific primer design limits the quantification to the targeted

groups or species. The PCR-DGGE using general primers is a good molecular technique

to obtain a fingerprint of the microbial community in a sample, but hardly detects popu-

lations with lower density than 103 CFU/mL or two orders of magnitude lower than the

most abundant members [22, 163, 165]. Recently, high-throughput sequencing or MS

techniques can be used to obtain a more detailed image of the microbial communities

of various ecosystems, including food processing [143]. To our knowledge, this is the

first study analyzing microbial populations in sour rot or Botrytis-affected grape musts

and fermentations by qPCR and MS. It is important to consider that the used molecular

methods detect both viable and non-viable cells. Thus, it is possible that DNA of dead

or non viable cells lead at some point to the overestimation of a taxonomic group. How-

ever, an increase in the proportion of DNA probably will correspond to an increase of the

population.

In general, our plate counts agreed with similar studies analyzing sound and damaged

grapes with a higher fungal and bacterial population in the affected grapes [130, 134,

166].

Total yeast and AAB bacteria quantification by qPCR was higher than the counts

detected by plating probably due to the quantification of viable but non culturable and

dead cells by qPCR [19, 149]. In addition, the primers used to quantify total yeast have

been described to also detect many filamentous fungi apart from yeast [148].

Fungal communities varied significantly across the different fermentation stages as

shown in this study by the used techniques. As in previous studies, the yeast population

number and diversity resulted higher in damaged grape musts than in H one [134, 137,

142, 167]. The higher yeast number might have been induced by physically damaged

grapes [134, 167] together with the release of nutrients from the berry that encourage

their growth [130].

The high proportion of non-Saccharomyces in damaged musts, determined by plate

counts, qPCR and MS, could interfere with Saccharomyces imposition along the fermen-

tation as a consequence of interactions between both populations. Among others, these

interactions involve the competition for substrate, yeast-yeast cell contact or the release

of antimicrobial compounds [168, 169]. However, R must presented higher difference

between total yeast and non-Saccharomyces, indicating a higher initial concentration of
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Saccharomyces, which could explain why the R microbial population was the fastest to

consume the 90% of the sugars.

Higher populations of Hanseniaspora and Candida (or Starmerella) observed by

qPCR in damaged grapes coincided with previous ecological studies on damaged grape

berries [22, 25, 170]. Nevertheless, these species are also predominant worldwide in

healthy grapes and during the first stages of fermentation [4, 7, 25, 171]. In our study,

independently on the grape status, H. uvarum and S. bacillaris were detected in high

proportions across the alcoholic fermentations by qPCR and PCR-DGGE. A previous

study using PCR-DGGE to monitor yeast populations during sound and Botrytis-affected

fermentations [136] found a similar behavior of H. uvarum to what we describe by PCR-

DGGE but they did not found Saccharomyces. In our study, Saccharomyces was not

detected in any must sample by PCR-DGGE but was detected from mid fermentation of

damaged and H grapes fermentation. MS together with qPCR allowed Saccharomyces

detection and quantification, respectively, in all samples from the must onwards.

MS also enabled us to identify abundantly H. uvarum sequences in all fermentations,

but above all, during the middle of H fermentations. Despite the low proportion of S.

bacillaris identified by MS, its quantification by qPCR was proportional to the values

obtained for H. uvarum. Other sequences related to H. osmophila were more abundant

than H. uvarum in damaged grapes but there were not detected or differentiated by PCR-

DGGE or qPCR techniques. A previous study on Dolce wine fermentation was able to

differentiate H. osmophila from H. uvarum by PCR-DGGE analysis [170], indicating

that their bands migrated differently. However, differentiation of different species of

Hanseniaspora is not possible by qPCR with the used primers.

Some key yeast species previously associated with damaged grapes as Botrytis, Kazach-

stania and Zygosaccharomyces [136, 137] were observed by PCR-DGGE just in R and

B samples. Barata et al. [53] proposed as biomarkers for sour rot the presence of the

yeast Zygoascus hellenicus and Issatchenkia. However, in our case, Zygoascus was not

detected by PCR-DGGE in any sample while Issatchenkia was detected in both damaged

and H samples by both PCR-DGGE and MS techniques.

B. cinerea was detected by qPCR and PCR-DGGE in damaged samples, although its

quantification in R samples was low and constant. In contrast, MS analysis revealed a

very small proportion of Botrytis in H must and even lower proportion in R grapes. In

B samples though, Botrytis represented > 30% of the sequences analyzed by MS in the

must and beginning of the fermentation. This proportion lowered close to the end of the

fermentation evidencing the sensibility of this fungus to the semi anaerobic conditions

and the increasing concentration of ethanol along the fermentation [41].
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Rhizopus and A. pullulans were detected also by both DGGE and MS techniques.

Rhizopus was present in all must and beginning stages. This fungus has been described as

a saprophytic organism that can be a secondary bunch rot invader infecting grape berries

[41] and lead to organoleptic defects in grapes and wines when is associated with B.

cinerea [172]. Furthermore, A. pullulans was identified in must and initial fermentations

of H and damaged grapes by MS analysis. This coincides with previous studies where it

was isolated from both sound and damaged grapes [22, 137, 173].

In general, MS analysis revealed a higher number of yeast genera than PCR-DGGE.

The higher proportion of some yeasts could inhibit or impede the detection of other less

abundant yeasts or microorganisms by PCR-DGGE [22]. However, some of the genera

that PCR-DGGE failed to detect were more abundant than 1% on average as determined

by MS (for example, Aspergillus, Penicillium and Cladosporium). On the other hand,

PCR-DGGE analysis detected additional genera that were not abundant or even not de-

tected by MS, like Kazachstania, Issatchenkia or Candida. These differences in the de-

tection of genera by both techniques might be due to PCR amplification preferences as the

primers used for DGGE and MS were not the same. Recent studies using MS technique

to analyze the wine fermentation process of different grape varieties have detected the

fungal genera Hanseniaspora, Issatchenkia, Rhodotorula, Penicillium, Cladosporium,

Botrytis, Sporobolomyces, Aspergillus, Cryptococcus and Pichia [42, 44, 111], all of

them also detected in the present study and making our fungal community results solid

(Table 2, Supplementary Fig. S1).

LAB and AAB are the most relevant bacterial groups related to grapes and wine fer-

mentation. In this study, GYC and MRS media were employed to count AAB and LAB

populations, respectively. As in previous studies, our plate counts revealed an evident

increase of AAB population in musts and beginning of the fermentations of R and B

grapes [134, 136, 137, 142, 167] . As explained above, the reason could be the release

of nutrients from the berry that encourages AAB and yeast growth [130]. The evalu-

ation of AAB population by plate culture is usually complicated [19, 174] mainly for

its ability to enter in VBNC (viable but non-culturable state) [139] or because they die

under inappropriate conditions. Thus, the use of specific primers to quantify AAB by

qPCR [154] allowed us to detect higher populations of AAB in all fermentations than

the plate culturing, indicating the capacity of qPCR to detect VBNC and dead bacteria

(Table 2). In order to identify the AAB genera, PCR-DGGE and MS techniques were

applied. Unfortunately, PCR-DGGE allowed the identification of just Gluconoacetobac-

ter and Acetobacter in the must and beginning of R fermentation. This might be due to

the limitation of PCR-DGGE to detect populations two orders of magnitude lower than
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the most abundant members [22], and, as noticed by qPCR results, yeast population was

mostly two or even three orders above the bacterial one. On the other hand, MS technique

allowed the identification of up to 21 bacterial genera, most of them related to AAB gen-

era. Clear differences in bacterial composition were detected between H and damaged

grapes. Gluconobacter followed by Gluconoacetobacter were the most abundant until

the mid-fermentation of H grapes. In R grapes though, Gluconoacetobacter represented

the most abundant genus in all fermentation stages and it was also more abundant in

Botrytized samples than in H ones. Thus, the abundance ratio between Gluconobacter

and Gluconoacetobacter was higher in H samples than in R and B ones. This fact is

really aligned with previous observations where the health status of the grapes indicated

that Gluconobacter is more abundant in healthy grapes, whereas Gluconoacetobacter (or

even Acetobacter) are more abundant in damaged grapes [13].

In a wine fermentation study in a Grenache variety using MS [102], we showed that

AAB and LAB were more abundant during fermentation than previously thought, with a

dominance of Gluconobacter during the mid-fermentation. The latter finding contradicts

the previous notion that Gluconobacter, being alcohol sensitive, usually declines during

the alcoholic fermentation [103, 104, 175]. Similar results have also been reported in

other studies using MS analysis on low-sulfited or unsulfited wine fermentations [176].

The same authors found Acetobacter, Gluconobacter, and Gluconoacetobacter as domi-

nant bacteria during winemaking processes [79].

Plate culturing also allowed the quantification of considerable LAB populations in H

and R musts, contrasting with previous studies where LAB populations were not detected

or detected in low concentrations [137, 142]. In fact, our MRS counts overestimated LAB

population respect to those of qPCR analysis using LAB specific primers, probably due

to non-LAB species that may grow in MRS media [137]. However, both techniques

detected a LAB population increase at the H late fermentation.

MS analysis also supported qPCR results, with low percentages of LAB taxa in com-

parison with those of AAB populations, except during the last sampled point of H fer-

mentation, making solid this tendency. This LAB population increase at late H fermenta-

tion suggests that the spontaneous evolution of malolactic fermentation might not occur

spontaneously in damaged grapes fermentations. No LAB genus was identified by the

PCR-DGGE technique but MS analysis deciphered the LAB community composition in

our samples and the main player was Oenococcus oeni. Thus, to our knowledge, this is

the first study relating the presence of Oenococcus oeni to the grape health status.

The diversity of fungal and bacterial communities as determined by the quantifica-

tion of the identified genera by DGGE gels resulted in higher diversity in the musts and
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beginning of every type of fermentations and, in general, higher diversity for damaged

grapes. However, according to MS results, similar diversity indexes were observed for

the different types of grapes in the musts and the health status of the grapes influenced

on fungal and bacterial diversities in a different way. For the fungal communities, H

fermentation decreased the diversity through the last fermentation point while R and

B samples remain almost constant. In the case of bacterial communities, the diversity

declined sharply along H fermentation while increased (PD whole index) or remained

relatively constant (number of OTUs) for damaged grapes fermentations. Both DGGE

and MS analysis suggest that the microbial diversity of must obtained from H grapes

decreased along the alcoholic fermentation while musts from damaged grapes maintain

or increase their diversity. The higher diversity during the mid and late damaged fermen-

tations may result from the additional metabolisms present in the infected grapes and

musts, making possible the survival of non-conventional yeast for longer time respect

to H fermentations but also, compromising the success of the alcoholic fermentation or

including off-flavours to the final wine.

Conclusions

The present study is the first to include the molecular techniques qPCR and MS to

evaluate the population evolution along spontaneous fermentation of sour rot and Botry-

tis affected grapes in comparison with healthy grapes. Both culture and molecular based

analyses showed differences in fungal and bacterial communities of Macabeo grapes de-

pending on its health status. However, MS analysis provided higher diversity at each

stage than the other compared techniques and detected Saccharomyces and Oenococcus

even in the initial must samples. The main differences in the fermentations revealed by

MS were that H. osmophila was predominant during mid-fermentation of damaged sam-

ples instead of H. uvarum. Besides, Oenococcus oeni and Gluconobacter were more

abundant in healthy samples than in damaged ones, while the later had higher proportion

of Gluconoacetobacter with respect to the healthy samples. The microbial diversity of

healthy fermentations decreased from the middle to the end. Similarly to other studies

that used MS to describe the microbial population, in this work MS was the technique that

contributed the most in the deciphering of the community microbiome and for the first

time, the health status of the grape was related to the relative abundance of Oenococcus

oeni during the alcoholic fermentation.
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Abstract

Metataxonomic analysis represents a fast and cost-effective approach for acquiring

informative insight into the composition of the microbiome of samples with variable di-

versity, such as wine samples. Nevertheless, it comprises a vast amount of laboratory

procedures and bioinformatic frameworks each one associated with an inherent variabil-

ity of protocols and algorithms, respectively. As a solution to the bioinformatic maze,

QIIME bioinformatic framework has incorporated benchmarked, and balanced param-

eters as default parameters. In the current study, metataxonomic analysis of two types

of mock community standards with the same microbial composition has been performed

for evaluating the effectivess of QIIME balanced default parameters on a variety of as-

pects related to different laboratory and bioinformatic workflows. These aspects concern

NGS platforms, PCR protocols, bioinformatic pipelines, and taxonomic classification al-

gorithms. Several qualitative performance expectations have been the outcome of the

analysis, rendering the mock community a useful evaluation tool.
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Introduction

During the past years significant improvements in Next Generation Sequencing (NGS)

platforms and computational performance have given a considerable momentum to the

research of microbial communities. Primarily there are two sequencing-based methods

for the classification analysis of a microbiome, the metagenomic approach which con-

cerns the shotgun sequencing of microbial DNA, and the metataxonomic approach which

refers to the sequencing of a marker gene, having as a usual target the ribosomal RNA

gene [26]. Due to the cost-effectiveness and decreased demands on computational re-

sources of the latter, it has been used quite broadly in research and consists the focus of

the current study.

A typical metataxonomic analysis includes a process that combines laboratory and

bioinformatic workflows. The steps involved in the laboratory process concern the col-

lection of a microbiome sample, the DNA extraction, the library preparation based on

the preferred rRNA gene marker and the massive sequencing with the NGS platform of

choice. The bioinformatic workflow concerns the quality filtering of the resulted data,

the clustering of sequences based on a specific clustering strategy and the taxonomic

assignment to the representative sequence of each cluster.

There are a plethora of bioinformatic frameworks for the analysis of the microbiome

data with Quantitative Insights Into Microbial Ecology (QIIME) being one of the most

popular and thus, implemented in the current study [89, 177]. As a bioinformatic frame-

work, it contains a significant amount of algorithms and parameters to select and tweak,

respectively, but studies such as Bokulich et al. [34, 178] have provided informative and

useful benchmarks with the resulted balanced parameters being incorporated into QI-

IME as default parameters. Nevertheless, microbiome samples are subjects to different

laboratory procedures and protocols and as such implementation of parameters must be

evaluated. For that reason, a mock community, which represents a microbiome sample

of known composition [128], consists a valuable tool in assessing both laboratory and

bioinformatic workflows prior to establishment of parameters. There are many studies

dedicated to mock communities, such as Yuan et al. [179] where a mock community was

used for the comparison of six common DNA extraction protocols, or Yeh et al. [180]

where mock communities were the tool for the establishment of a methodology that could

verify similar performance between sequencing runs. However, the way that the current

study differs from the rest is based on the fact that the main focus is given on assessing the

effectiveness of QIIME balanced default parameters on our laboratory and bioinformatic

workflows destined to the metataxonomic analysis of wine samples.
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Wine samples are characterized by extremely dynamic microbial populations. During

wine ageing, these populations tend to be quite sparse with most of the microorganisms

being difficult to detect as they enter the viable but non-culturable state (VBNC) [139],

and thus making NGS technology the most appropriate detection tool. Therefore, sparse

microbial communities are quite important since wine spoilage microorganisms may go

undetected due to their low abundance and significantly alter the wine quality later on.

For that reason, the mock community in the current study was chosen to be simple. Ad-

ditionally to the main focus, the mock community will serve a double qualitative role

on a series of aspects related to our workflows. Regarding the laboratory procedure, to

evaluate 16S metataxonomic analysis on data produced by Ion Torrent and Illumina plat-

forms, the impact of 18S and ITS amplicons on the metataxonomic classification and

the effect of the PCR cycles during the library preparation on the downstream bioinfor-

matic analysis of the Ion Torrent data. As far as the bioinformatic analysis is concerned,

the mock community will assist in ascertaining the impact on classification of different

quality filtering thresholds, the performance of different sequence clustering methods and

the classification performance of two different algorithms. Moreover, we are examining

the possibility of utilizing the confidence of the assigned taxonomy, as reported by the

classification algorithms, as a tool for eliminating false positives.

Methods

Laboratory workflow

Two microbial community standards from ZymoBIOMICSTM with the same mi-

crobial composition of 8 prokaryotes and 2 eukaryotes and impurity level < 0.01% have

been used. The first standard contained DNA extracted from pure cultures (DNA standard

D6305 200 ng), whereas the second standard was constructed by pooling pure cultures

(Microbial Community standard D6300). The microbial species along with the 16S theo-

retical relative abundance, as provided by the standards specifications, are given in Table

6. The theoretical relative abundances have been calculated by the standards provider

taking into consideration differences in the number of copies each amplicon has among

the species. However, such correction is rendered impossible when estimating relative

abundances in real wine samples. Therefore, the estimated relative abundances have not

been corrected in order to examine the amount of deviation between estimated and ideal

relative abundance. The aim of using the DNA standard (DS) was to assess the perfor-

mance of different PCR primers and amplicons used with the NGS platforms, the impact

of PCR cycles on the number of chimeric sequences in the Ion Torrent platform, as well
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as the performance of the bioinformatic pipelines at reconstructing the 16S theoretical

relative abundance as well as assigning correct taxonomy to the eukaryotic DNA. The

additional goal of using the culture standard (CS) was to ascertain the effectiveness of

the in-house DNA extraction protocol that follows the recommended procedure of the

DNeasy Plant Mini kit (Qiagen, Hilden, Germany), including three bead-beating steps

for 3 minutes in a FastPrep-24 bead beater (MP Bio, Solon, OH) [181].

Species NRRL Accession NO. Theoretical Composition of 16S rRNA(%)

Culture standard DNA standard

Pseudomonas aeruginosa B-3509 4.2 4.6
Escherichia coli B-1109 10.1 10.0

Salmonella enterica B-4212 10.4 11.3
Lactobacillus fermentum B-1840 18.4 18.8

Enterococcus faecalis B-537 9.9 10.4
Staphylococcus aureus B-41012 15.5 13.3
Listeria monocytogenes B-33116 14.1 15.9

Bacillus subtilis B-354 17.4 15.7
Saccharomyces cerevisiae Y-567 - -
Cryptococcus neoformans Y-2534 - -

Table 6: Culture and DNA standard microbial composition of the mock communities used during the current
study and 16S theoretical relative abundance. Based on ZymoBIOMICSTM, the strain information was
extracted from the website of the Agricultural Research Service Culture Collection and can be accessed with
the NRRL accession number (NRRL, https://nrrl.ncaur.usda.gov/).

Amplicon based sequences were generated by two different platforms, Ion Torrent

(Centre for Omics Sciences, Reus, Spain) and Illumina (Centre for Genomic regulation,

Barcelona, Spain). In the case of Ion Torrent, the sequencing libraries were prepared in

the in-house laboratory of the University Rovira i Virgili using both the DNA and culture

standard. For the libraries creation, the 16S rRNA region was amplified by PCR with

the primers 515F and 806R [158] whereas the 18S rRNA region was amplified using

the primers FR1 and FF390 [159]. Since a positive correlation between PCR cycles and

amount of chimeric sequences has been reported [27], 30 and 45 PCR cycles were used

for the libraries creation. The PCR products were purified using GeneRed Size selection

Kit (Qiagen, Hilden, Germany) and sent to COS for sequencing with the 530 chip using

the Gene Studio S5 System of the Ion Torrent platform. On the other side, the DNA

standard and extracted DNA from the culture standard were sent directly to CRG to be

sequenced by Illumina MiSeq 2x300 yielding paired end sequences for the v3 region of

the 16S (primers 341F and 785R, [182]) and for the ITS region (primers ITS1F/ITS2R,

[183]). Schematic representation of the experimental design is given in Figure 7.
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The Ion Torrent platform generated in average 300 bp reads for the 16S amplicon

and 350 bp reads for the 18S amplicon, with an average Phred33 quality score of 29

and 27, respectively. On the other hand, Illumina generated in average 300 bp reads

for both amplicons with an average Phred33 quality score of 36 for both 16S and ITS

forward reads and 34 and 35 for the 16S and ITS reverse reads, respectively. Due to

the fact that the Phred33 quality of the Ion Torrent reads dropped below 10 in positions

located in the middle of the read, two filtering strategies were applied. One applying

a quality threshold at 10 (Q10) and one at 20 (Q20). The motivation behind these two

strategies was to examine whether higher number of sequences or higher overall quality

will produce better results. Contrarily, for the Illumina reads, only the Q20 threshold was

applied.

Bioinformatic workflow

Bokulich et al. [178] benchmarked different quality filtering strategies with QIIME

1 and Bokulich et al. [34] benchmarked the performance of difference classification al-

gorithms between QIIME 1 and QIIME 2. Therefore, the bioinformatic pipelines were

based on two versions of QIIME, QIIME 1 (version 1.9.1) and QIIME 2 (version 2018.2),

Figure 7: Two commercial mock community standards from ZymoBIOMICSTM with exactly the same mi-
crobial composition of 8 prokaryotes and 2 eukaryotes have been used in the current study. The Microbial
Community standard (referred as CS) consisted of microbial cells from which DNA was extracted using an
in-house DNA extraction protocol. The DNA standard (referred as DS) contained DNA from the same 10
microbial cells as the CS but extracted by ZymoBIOMICSTM. Both standards were sequenced using Ion
Torrent and Illumina platforms. Regarding the DNA from the prokaryotic cells, both platforms sequenced
the 16S amplicon. Regarding the DNA from the eukaryotic cells, Ion Torrent sequenced the 18S amplicon
whereas Illumina the ITS amplicon. In the case of Ion Torrent 30 and 45 PCR cycles have been implemented
in both amplicons, whereas in Illumina only 30 PCR cycles were implemented. Sequencing data derived
from both NGS platforms have been analyzed using QIIME 1 and QIIME 2.
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with the processing and taxonomic assignment steps mentioned in Table 7. Along with

QIIME, bioinformatic tools such as FastQC [184], Trimmomatic [185] and FLASH [186]

were executed externally.

Ion Torrent OTU Illumina OTU Illumina ASV
Barcode extraction1 Paired ends merging3 Paired ends merging3

Quality filtering (Q10 or Q20)1 Quality filtering (Q20)4 DADA2 quality filtering (Q20)2

Reads dereplication2 Reads dereplication2 DADA2 reads dereplication2

Open reference OTU2 Open reference OTU2 DADA2 Chimeras filtering (only ITS)2

Chimeras filtering2 Chimeras filtering2 DADA2 ASV2

SKLEARN classifier training2 SKLEARN classifier training2 SKLEARN classifier training2

SKLEARN taxonomy assignment2 SKLEARN taxonomy assignment2 SKLEARN taxonomy assignment2

BLAST+ taxonomy assignment2 BLAST+ taxonomy assignment2 BLAST+ taxonomy assignment2

1 QIIME 1 (version 1.9.1)
2 QIIME 2 (version 2018.2)
3 FLASH
4 Trimmomatic

Table 7: Bioinformatic pipelines based on NGS platform and method of clustering used during this study
for comparisson of their performance over the mock community standards.

From the default parameters of QIIME 1 for the quality filtering of raws reads, only

the Phred33 quality threshold was altered. Generally, the quality filtering concerned dis-

carding reads with consecutive bases above a given Phred33 threshold but occupying <

75% of the total read length, truncating reads at positions with more than 3 consecutive

bases with Phred33 quality less than the desired and reassessing the discarding rule after

truncation. Due to the fact that QIIME 1 quality filtering steps require the sequences

to be multiplexed, for the demultiplexed Illumina sequences the quality filtering steps of

QIIME 1 were replicated in Trimmomatic. Moreover, the DADA2 algorithm [187], as in-

corporated into QIIME, truncated reads at the first base instance of undesired quality and

discarded reads with >2 expected errors. An additional filtering step was implemented

by removing chimeric sequences with VSEARCH UCHIME de novo [188] or DADA2.

Regarding the Illumina reads two clustering methods were applied. One that creates

clusters of sequences, called operational taxonomic units (OTU) based on a similarity

threshold [189] and one that defines sequence variants called amplicon sequence vari-

ants (ASV) [30]. The OTU method produces an OTU-table where, for each sample, the

number of sequences in each OTU has been recorded [188], whereas the ASV method

is related with an ASV-table of the frequency that each ASV has been observed in each

sample [187]. OTUs containing < 10 sequences across all samples were filtered-out as

noise [190], and the similarity threshold for the OTU clustering was set to 99% as this

threshold returns more comparable results between OTU and ASV [31].

For the metataxonomic classification the database SILVA (version 132) has been the
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source of taxonomy for the 16S and 18S amplicons [99] as it is the most recent and

updated database, whereas the ITS taxonomy relied on the UNITE database (version

7.2) [191]. The taxonomic assignment was carried out by two algorithms, the k-mer

based multinomial naive Bayes algorithm integrated in the Python Scikit-learn library

(SKLEARN) [32] and the Basic Local Alignment Search Tool+ (BLAST+) algorithm

which represents an enhanced version of the very popular BLAST algorithm available

from 1997 [33]. Both algorithms report a confidence percentage, with the SKLEARN al-

gorithm referring to the amount of confidence for the taxonomy assigned at a specific tax-

onomic level and BLAST+ referring to the fraction of top hits that matched the consensus

taxonomy at a given level. As SKLEARN represents a machine learning approach, the

additional flexibility provided was to assign taxonomy after training the algorithm with

extracted reference sequences from the SILVA and UNITE databases using the aforemen-

tioned PCR primers and trimmed to a length equal to the maximum length of the reads

after quality filtering. The training process of SKLEARN is based on k-mers where the

value 7 was used as it is the default balanced QIIME 2 parameter. In relaxed terms, during

the training process SKLEARN splits each reference sequence into a series of overlap-

ping heptamers and assigns a level of taxonomy to a given collection of heptamers. Later

on, during the classification process SKLEARN splits each sequence once again into a

collection of overlapping heptamers, and tries to assign a level of taxonomy by taking

into consideration the collections of heptamers from the reference sequences. The bal-

anced default parameters of BLAST+ remained unaltered whereas the performance of

SKLEARN improved after reducing the confidence parameter from the default 0.7 value

down to 0.5.

Results

Figure 8 shows the number of sequences for each sample after applying Phred33

quality filtering and removing chimeras. For the Ion Torrent a mild filtering was applied

after setting the quality threshold at Q10 with an average of 8.6% of the sequences fil-

tered, across all samples, for the 16S amplicon and 14.1% for the 18S whereas at Q20 an

average of 62 and 72.4% was removed, respectively. An additional average of 13.5% of

the sequences were identified as chimeras for the 16S amplicon and 1.2% for the 18S at

Q10, while at Q20 the identified chimeras were 5.9 and 1.3%, respectively. Considering

the PCR cycles, their impact on the production of chimeras was not clear for the 16S am-

plicon as at Q10, 45 cycles generated 3.5% more chimeras than 30 cycles for the CS but

for the DS they produced 4.2% less. The same pattern repeated for the 16S amplicon at
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Q20 with 45 cycles of the CS producing 1.6% more chimeras but for the DS 3.5% more

chimeras produced from 30 cycles. On the other hand, the difference was more apparent

for the 18S amplicon producing more chimeras at 45 than 30 cycles, but the difference

was marginal representing only 1.6% of the sequences in average (Figure 8A).

For the Illumina platform, the merging of the paired ends caused a≈ 2% loss of reads

for the 16S amplicon in both standards, whereas for the ITS amplicon of the DS the loss

was 38%. Due to the fact that the sequencing of the ITS amplicon for the CS generated

very low amount of sequences which had very low Phred33 quality, this sample was

excluded from the study. This was the additional reason for not reporting the theoretical

abundance of 18S and ITS amplicons, along with the fact that from the two standards only

the CS reports 18S theoretical abundance in the specifications. However, research interest

still remained on examining whether the classification algorithms could assign correct

taxonomy to the eukaryotic DNA and which amplicon of the two improves classification

performance. For the 16S amplicon of the CS, the Illumina OTU pipeline removed 1.2%

of sequences during the quality filtering step and an additional 23.7% was identified

as chimeras. The pipeline performed quite similar for the DS removing 1 and 17.9%,

respectively. On the contrary, for the 16S amplicon of the two standards the Illumina

ASV pipeline identified≈ 80% of the sequences as chimeric. This high percentage could

be justified in cases where non-biological nucleotides, such as primers or adapters, have

not been removed prior to analysis 2, but since this rationale did not hold for the given

dataset, the chimera filtering step was omitted for both standards. Therefore, the only loss

was during the quality filtering with both standards losing≈ 5% of sequences. Regarding

the ITS amplicon of the DS, the Illumina OTU pipeline filtered 0.8% of sequences based

on quality but did not identify any chimeras, and the Illumina ASV pipeline removed

1.9% during quality filtering and a further 5% during chimera filtering (Figure 8B).

The metataxonomic classification was performed at genus level since accurate clas-

sification at species level is a known limitation of rRNA amplicon sequencing due to the

fact that it is a highly conserved region [192]. This limitation became apparent also in

the current study as the only bacterium identified consistently and accurately at species

level was Listeria monocytogenes whereas Salmonella was the only one whose classi-

fication never reached species level. From the rest, Bacillus demonstrated the highest

variability with overall 7 different species being identified, 5 species for Staphylococcus

and Pseudomonas, and ≤ 3 for Escherichia, Lactobacillus, and Enterococcus. Although

this broad variability concerned the OTU clustering method, the variability in the ASV

method was more constrained including only the cases of either correct species identifi-

2https://benjjneb.github.io/dada2/tutorial.html
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cation, no species identification or species identification as uncultured bacterium.

Figures 9 - 12 depict 16S estimated relative abundance (orange color) being juxta-

posed against theoretical relative abundance (blue color) for both standards and NGS

platforms. Overlapping between the two abundances is being represented with dark gray

color and estimated abundance below 1% or undefined (0%) is being represented nu-

merically. Excess of orange color at the bar edges denotes abundance overestimation

whereas excess of blue color abundance underestimation. Next to each figure the taxo-

nomic assignment confidence is being displayed as it has been reported by the classifi-

cation algorithm at genus level (All). An additional step has been performed where the

assigned taxonomies have been filtered by setting a confidence threshold which is dis-

played next to the unfiltered confidence. This threshold was initially set to 90% (>0.90)

and gradually decreased until an optimal balance between amount of false positives and

theoretical abundance reconstruction is achieved. Apart from Figures 11B, 12B,D this

confidence threshold matches the minimum unfiltered confidence reported by the clas-

sification algorithm giving an identical estimated relative abundance before and after

confidence filtering as well as the same amount of false positives (FP).

For the Ion Torrent platform, SKLEARN failed to identify Salmonella regardless

Figure 8: Number of sequences resulted after applying quality and chimeras filtering. (A) Ion Torrent. First
letter of the sample names (C or D) represents type of mock community standard (Culture or DNA). What
follows is the number of PCR cycles (30 or 45) with the amplicon (16S or 18S) at the end. The raw number
of sequences are represented in green and in red and blue the two Phred33 quality filtering strategies Q20
and Q10, respectively. (B) Illumina. First letter of the sample names (C or D) represents type of mock
community standard (Culture or DNA) with the amplicon (16S or ITS) at the end. The raw number of
sequences are represented in green and in red and blue the sequences resulted from the filtering steps of the
Illumina ASV and Illumina OTU pipeline, respectively.
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quality filtering threshold, PCR cycles or standard type, while achieved best performance

with the DS, 45 PCR cycles, Q20 and confidence threshold 80% (Figure 10G). Overall,

the maximum number of false positives was 2 with the genera Carnobacterium, Cit-

robacter, Oenococcus, and Pediococcus consisting the pool of false positives. At the

same time, BLAST+ seems to have exhibited a better performance than SKLEARN with

optimal performance also with the DS, 45 cycles and Q20 (Figure 10H), but generating

higher amounts of false positives and requiring a lower confidence threshold for optimal

performance. In general, BLAST+ proved to be more sensitive than SKLEARN with

5 as the maximum number of false positives and a persistent confidence threshold of

60%. The false positives identified by BLAST+ were the genera Cedecea, Citrobacter,

Enterobacter, Klebsiella, Oenococcus, and Pediococcus.

With Illumina generated data, the landscape was more clear. Both pipelines, Illu-

mina OTU and ASV, yielded similar results with both classification algorithms perform-

ing better with the DS (Figure 12). Once again BLAST+ held the best performance

managing to approximate quite accurately the theoretical composition (Figures 12B,D).

However, it demonstrated overall higher sensitivity producing more false positives with

their number being affected by even a slight increase of the confidence threshold by just

1% from the minimum reported confidence of 69% (Figures 11B, 12B,D). The pool of

false positives for SKLEARN was comprising the genera Acetobacter, Enterobacter, and

Oenococcus, whereas for BLAST+ the genera Citrobacter, Acetobacter, Cronobacter,

Enterobacter, and Oenococcus. In general, although the relative abundance of the false

positives remained below 0.01%, the only excemption was with the CS and the Illumina

ASV pipeline where Cronobacter reached 0.3%. Moreover, even if the confidence level

of the classification assignment was quite low for the false positives in both algorithms

(60%), the genera that defied this trend were Acetobacter, Enterobacter and Oenococcus

reaching as high as 90% confidence.

With respect to fungi, none of the algorithms detected Cryptococcus regardless NGS

platform or standard type, contrary to Saccharomyces which was detected though not

always at species level. In both Illumina OTU and ASV pipelines, both algorithms ex-

hibited similar performance by identifying only Saccharomyces with 100% confidence

without yielding any false positives. On the other hand, BLAST+ in Ion Torrent man-

aged to identify Saccharomyces with 99.9% confidence in both standards regardless qual-

ity threshold and PCR cycles, but produced Zygosaccharomyces as a false positive with

CS at Q10 and 30 cycles and Kazachstania with DS at Q20 and 45 cycles having a 60%

confidence in both cases. On the side of SKLEARN, Saccharomyces occupied ≈ 61%

of the relative abundance in average across the different PCR cycles in both standards
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at Q10 with the rest of the abundance being occupied by a taxonomy assigned as uncul-

tured fungus. At Q20, Saccharomyces occupied 99% of the relative abundance with the

DS at 45 cycles and 50% in the rest of the samples, with the remaining abundance once

again assigned as uncultured fungus. Although in the case of BLAST+ the false positives

could be removed by raising the confidence threshold, in the case of SKLEARN confi-

dence filtering did not improve the result as the confidence level was in average 90% for

Sacchraromyces and 85% for the false positives.
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Figure 9: 16S theoretical (blue color) and estimated (orange color) relative abundance for culture standard
using Ion Torrent. Overlapping between the two abundances is being represented with dark gray color.
Cult 30 and Cult 45 represent 30 and 45 PCR cycles, Q10, and Q20 Phred33 quality filtering threshold and
FP false positives without (first number) and with confidence filtering (second number). Figures to the left
(A,C,E,G) represent estimated abundance based on SKLEARN algorithm and to the right (B,D,F,H) based
on BLAST+. Estimated relative abundance to the left side of 0 is based on unfiltered confidence (All) and
to the right on filtered (> %).
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Figure 10: 16S theoretical (blue color) and estimated (orange color) relative abundance for DNA standard
using Ion Torrent. Overlapping between the two abundances is being represented with dark gray color.
DNA 30 and DNA 45 represent 30 and 45 PCR cycles, Q10, and Q20 Phred33 quality filtering threshold
and FP false positives without (first number) and with confidence filtering (second number). Figures to the
left (A,C,E,G) represent estimated abundance based on SKLEARN algorithm and to the right (B,D,F,H)
based on BLAST+. Estimated relative abundance to the left side of 0 is based on unfiltered confidence (All)
and to the right on filtered (> %).
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Figure 11: 16S theoretical (blue color) and estimated (orange color) relative abundance for culture standard
using Illumina. Overlapping between the two abundances is being represented with dark gray color. OTU
and ASV represent Illumina OTU and Illumina ASV pipelines and FP false positives without (first number)
and with confidence filtering (second number). Figures to the left (A,C) represent estimated abundance
based on SKLEARN algorithm and to the right (B,D) based on BLAST+. Estimated relative abundance to
the left side of 0 is based on unfiltered confidence (All) and to the right on filtered (> %).

Figure 12: 16S theoretical (blue color) and estimated (orange color) relative abundance for DNA standard
using Illumina. Overlapping between the two abundances is being represented with dark gray color. OTU
and ASV represent Illumina OTU and Illumina ASV pipelines and FP false positives without (first number)
and with confidence filtering (second number). Figures to the left (A,C) represent estimated abundance
based on SKLEARN algorithm and to the right (B,D) based on BLAST+. Estimated relative abundance to
the left side of 0 is based on unfiltered confidence (All) and to the right on filtered (> %).
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Discussion

A mock community represents a microbiome sample of known microbial compo-

sition and in the current study two types of mock community standards with the same

species composition have become the tool for evaluating the effectiveness of QIIME

balanced default parameters on metataxonomic analysis workflows destined to the anal-

ysis of wine aging samples. The evaluation was performed with QIIME framework

and two classification algorithms, one representing a popular local alignment algorithm

(BLAST+) and the other one a popular machine learning approach (SKLEARN). These

two algorithms have been introduced for the first time in QIIME 2 and their perfor-

mance compared to the classification algorithms of QIIME 1 have been benchmarked

by Bokulich et al. [34] where they exhibited similar as well as enhanced performance on

different performance metrics. Moreover, Bokulich et al. [178] in QIIME 1 benchmarked

different quality-filtering strategies so as to provide guidelines for processing Illumina

amplicon-based sequencing data. Although the suggested parameters of these studies

have been incorporated as balanced default parameters in QIIME, microbiome samples

undergo different laboratory procedures and protocols and thus these parameters should

be evaluated prior to implementation. Therefore, the aim of the present study was to ex-

amine the effect of these parameters on a series of aspects related to our laboratory and

bioinformatic workflows using a mock community and focusing on reconstructing the

theoretical 16S relative abundance or yeast composition based on 18S and ITS amplicon

sequencing. Furthermore, the mock community facilitated the qualitative assessment of

other aspects such as the performance of the classification algorithms, the possibility of

utilizing the reported taxonomic assignment confidence from the classification algorithms

as a tool for eliminating false positives, the performance of Ion Torrent and Illumina NGS

platforms with the 16S amplicon, the effect of PCR cycles on the analysis of Ion Torrent

data, as well as the outcome of the in-house DNA extraction protocol by using a culture

based standard (CS).

The 16S metataxonomic analysis of the CS approximated quite closely the outcome

of the DS analysis in the Illumina platform, while it demonstrated an apparent variability

in the case of the Ion Torrent platform. On the other hand, the Ion Torrent 18S analysis

produced similar results in both standards. This denotes that pinpointing a performance

culprit among the NGS platforms, PCR protocols or bioinformatic pipelines is rendered

difficult as a further variability is being added by the DNA extraction protocol. Regarding

the discard of the ITS amplicon based sample of the CS due to low quality, it has been

attributed to the poor performance of the DNA extraction protocol since good quality
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Illumina sequences were generated with the corresponding sample of the DS.

With Ion Torrent, both classification algorithms performed better with the DS linked

to 45 PCR cycles and Q20 as a quality threshold signifying that optimal performance is

more related to better overall sequence quality rather than higher amount of sequences as

produced by the Q10 threshold. This could be associated with the fact that Q20 is related

to 1% base call error rate while Q10 to 10% [29], indicating that low Phred33 quality

threshold might lead to higher possibility of misclassification. Nevertheless, this result

could not be easily attributed to the PCR cycles as 45 cycles in DS produced the highest

amount of sequences among all samples and on the other hand in CS both algorithms

favored 30 cycles. Moreover, the impact of PCR cycles on the amount of chimeric se-

quences was either marginal or unclear, however a negative correlation between quality

threshold and amount of chimeras became apparent with the 16S amplicon, with fewer

chimeras being identified at Q20 threshold. This indicates that a small increase of the

PCR cycles does not influence greatly the production of chimeras and many of those

chimeric sequences had overall low quality as they represent PCR artifacts. Similarly,

slight difference on the production of chimeric sequences was also observed by a small

increase of PCR cycles in the study of Ahn et al. [27] when 25 PCR cycles were com-

pared to 30 cycles, however great disparity on the amount of chimeras was observed

between 15 and 30 cycles with the authors suggesting the lowest PCR cycles possible.

As Van Der Pol et al. [31] suggested, setting the similarity threshold to 99% for the

OTU clustering method produced similar results as the ASV method in Illumina, how-

ever the latter demonstrated a narrower variability of taxonomic assignment at species

level. Furthermore, the omitted chimera filtering step in Illumina ASV pipeline for the

16S amplicon highlighted its importance as false positives above the impurity level of

0.01% were emerged. Additionally, the two NGS platforms presented different filtering

behaviors at Q20 with Ion Torrent removing more sequences during the Phred33 qual-

ity filtering and less during chimera filtering, whereas Illumina performed the opposite.

That could indicate that more chimeric sequences with high Phred33 quality score were

generated with Illumina.

As a whole, BLAST+ exhibited better and more balanced performance in both NGS

platforms than SKLEARN, however it demonstrated higher sensitivity producing more

false positives and overall lower confidence regarding taxonomic assignment. The low

amount of false positives generated by SKLEARN with the 16S amplicon could be asso-

ciated with its training process as higher amount of reference sequences were extracted

from the database with the PCR primers of this amplicon compared to 18S and ITS.

Nonetheless, its enhanced performance with the Illumina data could be connected to
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the fact that its default parameters were linked with this NGS platform in the study of

Bokulich et al. [34]. Moreover, the lack of false positives from both algorithms with

the ITS amplicon could be explained by its higher specificity compared to 18S [193], and

overall the reported taxonomic assignment confidence from the algorithms could not lead

to an effective filtering tool of false positives as some of the false taxonomies have been

assigned with high confidence level.

Conclusions

Overall, the mock community standards have been proven a useful tool demonstrat-

ing good performance of QIIME balanced default parameters on our workflows espe-

cially with the Illumina platform. Nevertheless, the performance of the NGS platforms

or the classification algorithms should not be considered deterministic since an exhaustive

benchmarking process is needed for that purpose. As underlined by Bokulich et al. [34],

further fine-tuning of the QIIME default parameters with limited number of mock com-

munities could lead closer to an overfitted rather than generalized performance. More-

over, a series of qualitative performance expectations could be proposed that could be

summarized as better metataxonomic outcome when setting the Phred33 quality filter-

ing threshold as high as possible, marginal difference in chimeras production between

30 and 45 PCR cycles, less false positives with ITS amplicon sequencing compared to

18S, similar performance between ASV and OTU clustering method when the clustering

similarity threshold of the latter is set to 99% and more comparable results between Ion

Torrent and Illumina platforms using the BLAST+ classification algorithm.
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Abstract

We used barcoded sequencing to analyze the eukaryotic population in the grape

berries at different ripening states in four Australian vineyards. Furthermore, we used an

innovative compositional data analysis for assessing the diversity of microbiome com-

munities. The novelty was the introduction of log-ratio balances between the detected

genera. Altogether, our results suggest that fungal communities were more impacted by

the geographical origin of the Australian vineyards than grape variety and harvest time.

Even if the most abundant genera were Aureobasidium and Mycosphaerella, they were

ubiquitous to all samples and were not discriminative. In fact, the balances and the fungal

community structure seemed to be greatly affected by changes of the genera Penicillium,

Colletotrichum, Aspergillus, Rhodotorula, and Botrytis. These results were not evident

from the comparison of relative abundance based on OTU counts alone, remarking the

importance of the balance analysis for microbiome studies.

83

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



Chapter 4

Introduction

The concept of terroir in oenology refers to a geographic area characterized mainly by

its climate, soil, and human factors that contribute to producing typical wines. However,

the term microbial terroir is recently gaining interest in viticultural studies to indicate the

importance of the vineyard microbiome composition over the regional wine typicity. The

grapevine microbiome is the complex community of microorganisms, including fungi

and bacteria that interact with the whole plant and play a key role in plant health, growth,

and nutrient uptake [194].

Recently, due to advances in metagenomics and the development of high-throughput

sequencing (HTS) techniques, the grapevine microbiome is receiving increasing atten-

tion. Metagenomic analyses suggest that the microbial communities associated with

grapes and grape must resemble the ones present on leaves [42, 43] and have their source

mainly in the soil and surrounding fields [108]. Furthermore, grape microorganisms can

be transferred to the winery where, ultimately, they may affect wine chemical composi-

tion and influence its quality, even at the regional scale [78, 109, 110, 195].

Several factors and vineyard characteristics have recently shown that grape micro-

biome is influenced by vineyard characteristics like climate, region, site, and grape culti-

var, suggesting that there is a nonrandom microbial fingerprint associated with the terroir

[42–49]. One important factor that has been proven to induce changes in grape micro-

biome composition and structure is the berry development process [50, 51]. The grape

ripening stages are defined mainly by physiochemical changes, such as increase in lev-

els of phenolic compounds and accumulation of sugars [196]. Large numbers of yeast

species have been identified on grape berries with population densities ranging from 101

to 103 CFU/g (Colony Forming Units) on immature grapes but increasing to 103106

CFU/g at harvest time [22, 42, 50, 52–54]. However, previous studies analyzing micro-

biome changes through berry maturation have been mostly based on culture-dependent

techniques that have been proven to be insufficient to reveal the environmental microbial

diversity and ecology [67, 138]. As a consequence, currently little is known about the

real influence of the grape berry maturation state on its microbiome.

One of the major drawbacks of the studies analyzing microbiome diversity by means

of HTS techniques is the derivation of statistical inferences after converting the OTU

(operational taxonomic unit) counts of the identified genera to relative abundance. The

transformation of the OTU counts to compositional data, on one hand, adds the constraint

of the abundances having to sum to a constant (i.e., 1), and on the other hand, may lead

to misinterpretations when multivariate statistics are applied [197]. Moreover, the nature
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of compositional data is known to hinder proper differential abundance analysis since

various normalization methods and statistical assumptions could potentially not be ap-

propriate for this type of data [198]. Therefore, in the current study inferences on the

differences of the microbial communities have been derived by using the compositional

analysis toolbox GNEISS [40], as incorporated into Quantitative Insights Into Microbial

Ecology framework (QIIME version 2019.1) [199]. GNEIIS introduces the concept of

balances which refer to the log-ratio between specific microbial subsets of the commu-

nity, eliminating the need of using relative abundances and statistical assumptions.

In this work, we use HTS to investigate the fungal biota (mycobiome) composition at

two maturation stages of grape berries from two grapevine cultivars, Cabernet Sauvignon

and Syrah, growing under two different geographical and environmental conditions. We

also compare the usefulness of balances obtained by the GNEISS toolbox for the micro-

bial diversity analysis on our data set.

Materials and Methods

Experimental Vineyard and Harvesting

Grapes were sourced from two Australian wine regions sampled during 2015 and

denominated Griffith (G) (Riverina, New South Wales, Australia) and Orange (O) (Co-

ordinates and elevation in Table S1 3). These wine regions represent two distinctively

different grape growing regions. The Griffith region is classified as a warm to very warm

grape growing area with temperate nights [200] and is characterized by a flat terrain

(around 130 m above sea level, a.s.l.) and secure water supply, enabling it to maintain a

15% share in the total Australian grape production. In contrast, the Orange (O) region has

an undulating to mountainous terrain with vineyard elevations spanning from 600 up to

1000 m a.s.l. The Orange region is classified as temperate to temperate/warm with cool

to very cool nights. Two commercial vineyards were selected in both regions (designated

G1, G2, O1, and O2), for Shiraz vines (S) whereas Cabernet Sauvignon (C) vines were

sampled only at vineyard G1 and O2.

Between G1 and G2 there is less than 5 m altitude difference whereas the O1 site is

at 607 m a.s.l. and the O2 site at 876 m a.s.l. thus having an approximate difference of

270 m (Table S1). Both S and C vines were own rooted, grown under drip irrigation, and

trellised to a sprawling system in G. In O, vines were trellised to vertical shoot position-

ing. The nitrogen management throughout the season was similar for both cultivars and

3Supplementary materials are available at https://www.mdpi.com/2076-2607/7/12/669/s1
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the average crop yields of both plots were approximately 15-20 tons per hectare. Dur-

ing the season, mesoclimatic temperatures, stem water potential, and soil moisture were

monitored in an attempt to characterize experimental plots. Harvest dates for vineyards

(H1 and H3) were determined at the point where sugar accumulation per berry and berry

fresh mass in conjunction with ◦Brix. The first harvest for both cultivars occurred at

approximately 21◦Brix and was designated H1. The second harvest, designated as H3,

occurred at 23◦Brix for both cultivars. At each harvest date, 60 kg of grapes was ran-

domly harvested across the vineyards for each variety with an addition of 40 mg/kg of

potassium metabisulfite prior to transport to the Charles Sturt University (CSU)/ National

Wine and Grape Industry Centre (NWGIC) experimental winery. On arrival, a 100-berry

subsample from each replicate was collected and immediately frozen at -20◦C for further

analyses with a total of 50 subsamples.

DNA Extraction

Must samples were defrosted and centrifuged at 3500 g for 15 min, washed three

times with ice cold phosphate buffered saline and the pellet resuspended in 200 L of

DNeasy lysis buffer (Qiagen, Valencia, CA, USA) supplemented with 40 mg/mL lysozyme

and incubated at 37◦C for 30min. After this point, DNA extraction continued following

the protocol of the QIAmp Fast DNA Stool Mini Kit (Qiagen,), with the addition of a

bead beater cell lysis step for 2 min using a FastPrep-24 (MP Bio) and 100 µL of DNA

eluted using AE buffer (Qiagen). DNA concentration and quality were assessed using

a Quantus Fluorometer (Promega, Madison, WA, USA) followed by gel electrophoresis

of 5 µL of eluant in 1.5% agarose submerged in 1X TAE buffer. Gels were stained with

GelRedTM (Biotium, Fremont, CA, USA) nucleic acid gel stain and viewed under UV

light using Gel Doc XR+ Imaging system (Bio-Rad, Hercules, CA, USA) DNA sam-

ples (approx. 70 ng) were subject to PCR amplification and sequencing performed by

the Australian Genome Research Facility. PCR amplicons were generated using as for-

ward primer (ITS1: CTTGGTCATTTAGAGGAAGTAA or 341 F: CCTAYGGGRBG-

CASCAG) and reverse primer (ITS2: GCTGCGTTCTTCATCGATGC or 806 R: GGAC-

TACNNGGGTATCTAAT), with 35 cycles, an initiation temperature of 95◦C for 7min,

disassociate conditions of 94◦C for 30sec, annealing conditions of 55◦C for 45sec for ITS

or 50◦C for 60sec for 16S RNA, extension at 72◦C for 60sec and a final temperature of

72◦C for 7min. Thermocycling was completed with an Applied Biosystem 384 Veriti and

using AmpliTaq Gold 360 mastermix (Applied Biosystems, Foster City, CA, USA) for

the primary PCR. The first stage PCR was cleaned using magnetic beads, and samples

were visualized on 2% Sybr Egel (Thermo-Fisher, Carlsbad, CA, USA). A secondary
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PCR to index the amplicons was performed with TaKaRa Taq DNA Polymerase (Takara

Shuzo, Otsu, Japan). The resulting amplicons were cleaned again using magnetic beads,

quantified by fluorometry by the Promega Quantifluor ST fluorometer (Promega), and

normalized. The eqimolar pool was cleaned a final time using magnetic beads to con-

centrate the pool and then measured using a High-Sensitivity D1000 Tape on an Agilent

2200 TapeStation. The pool was diluted to 5nM and molarity was confirmed again using

a High-Sensitivity D1000 Tape. This was followed by sequencing on a MiSeq platform

(Illumina, San Diego, CA, USA) with a V3, 600 cycle kit (2 x 300 base pairs paired-end).

Paired-ends reads were assembled by aligning the forward and reverse reads using

PEAR (version 0.9.5) [201]. Primers were identified and trimmed. Trimmed sequences

were processed using Quantitative Insights into Microbial Ecology (QIIME 1.8) [89]

USEARCH [95] (version 8.0.1623) and UPARSE software (version 8.1.1861) [202].

Using USEARCH tools sequences were quality filtered, full length duplicate se-

quences were removed and sorted by abundance. Singletons or unique reads in the data

set were discarded.

The 16S rRNA sequences were clustered followed by chimera filtering using rdp gold

database as the reference. To obtain the number of reads in each OTU, reads were clus-

tered with a minimum identity of 97%. Using Qiime taxonomy was assigned using

Greengenes database (version 13 8, Aug 2013).

ITS sequences were clustered followed by chimera filtering using “Unite” database as

reference. To obtain number of reads in each OTU, reads were clustered with a minimum

identity of 97%. Using Qiime, taxonomy was assigned based on Unite database [203]

(Unite Version7.1 Dated: 22.08.2016).

Data Analysis

The data processing and part of the statistical analysis has been performed with QI-

IME (version 2019.1). The OTU table has undergone a series of filtering steps including

removing OTUs with < 10 counts across all samples, removing OTUs whose assigned

taxonomy did not reach genus level and removing genera whose relative abundance was

< 1% across all samples. After collapsing the OTU table at genus level, in order to com-

pensate for the uneven sequencing depth across the samples, the OTU table was rarefied

at a value equal to the maximum amount of sequences observed across all samples so as

each sample to include 11.579 sequences
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Statistical Analysis

The factors considered for the statistical analysis were region (G1, G2, O1, and O2),

variety (C and S) and harvest period (H1 and H3). Statistical analysis has been performed

in QIIME with the ADONIS permutation-based statistical test [204] and GNEISS, as well

as externally using the Python (version 3.7) libraries STATSMODELS [205], SCIPY

[206], and PANDAS [207]. Using the rarefied OTU table, alpha diversity was calculated

based on the Shannon index, whereas beta diversity was based on the Bray-Curtis index

since taxonomy was constrained at genus level. Using the Shannon index, the replicates

were examined for outliers resulting in the removal of two samples. The distribution of

the Shannon index proved of being bimodal, with one mode concerning only the region

O1. The two modes were separated and two-way ANOVA was performed on each mode.

Prior to ANOVA, the assumptions of heteroskedasticity and normality on each mode

were examined and satisfied using the Levene and Shapiro-Wilk test, respectively. Sim-

ilarities between regions, varieties, and harvest periods were examined with Principal

Coordinate Analysis (PCoA) using the Bray-Curtis distance metric, whereas ADONIS

multivariate analysis of variance (MANOVA) with 999 permutations helped to identify

significance. The unrarefied OTU table became the input source for GNEISS since it

applies its own normalization method. The analytical pipeline for GNEISS included the

initial steps of imputing zero OTU counts with a pseudocount equal to 1 and partitioning

of genera into two groups using Ward hierarchical clustering. Each group contains gen-

era that are highly correlated based on their co-occurrence and therefore the two groups

are anti-correlated. Subsequently, GNEISS applied isometric log-ratio transformation

which calculates, for each sample, the log-ratio between these two groups. That means

one group represents the numerator of the ratio and the other group the denominator,

whereas the log-ratio is referred as balance. This balance may have positive or negative

value signifying that for a given sample the abundances of some genera have changed and

these genera are either from the numerator, the denominator, or both the numerator and

denominator. Finally, based on these balances GNEISS performed ordinary least squares

regression (OLS) using the regressors region, variety, and harvest period, where 10-fold

cross validation of 10 partitions showed that over fitting did not occur. Since OLS regres-

sion is more appropriate for continuous than categorical independent variables, from the

reported results the only statistical measure considered was the explained variance (R2

adjusted).
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Results

Sequences Analysis Results

DNA of 50 samples of grapes representative of the 4 vineyards (G1, G2, O1, and O2)

were massively sequenced by the Illumina platform resulting in a minimum of 30K reads

for both the ITS and 16S rRNA gene regions, respectively. After quality filtering and

exclusion of sequences matching to chloroplast or mitochondria, 1.187.046 and 24.610

reads remained for fungal and bacterial community analysis, respectively. In the case

of ITS sequences the median number of sequences per sample was 23.028 whereas for

the 16S rRNA sequences it was 366. Given the low number of 16S rRNA sequences per

sample combined with the fact that the majority of these sequences have been identified

of belonging to the genus Sphingomonas, we considered that the obtained sequences for

this amplicon were not enough for a robust analysis of the bacterial community.

Fungal Diversity Was Mainly Impacted by the Wine Region

Figure 13 shows alpha diversity of the fungal community based on Shannon index.

The Shiraz samples from the Griffith region (G1 and G2) exhibited higher diversity com-

pared to the rest of the samples, whereas the samples with the lowest diversity have been

the ones from the O1 region. Additionally, the harvest period (H1 and H3) seemed to have

affected the observed diversity of the Shiraz samples from O1. Two-way ANOVA on the

Shannon index for the region O1 revealed significant differences between the groups of

the factors variety and harvest which had relatively equal amount of impact on the total

variance explained by these two factors (54% in total) (Table 8). For the rest of the sam-

ples significance was observed only between the groups of the factors region and variety

which combined explained 73% of the total variance with the factor region having the

greatest impact (53%) (Table 9).

Factor DF R2 F Pr(>F)
Variety 1 0.25 5.218 0.048
Harvest 1 0.29 5.522 0.043

Table 8: Results from Shannon index two-way ANOVA on region O1.

Fungal Community Clustered Distinctly According to Wine Region, Variety and Harvest

The clustering of the samples in the PCoA based on Bray-Curtis distance metric (Fig-

ure 14) suggested that the factor region has the greatest effect on the distinction of the
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Figure 13: Samples alpha diversity based on Shannon index. Each value corresponds to the average of
samples replicates and bars correspond to standard deviation. Samples abbreviation includes information of
the region, Griffith (G1 and G2) or Orange (O1 and O2), the harvest time points (H1 or H3), and the grape
varietals, Shiraz (S) or Cabernet (C).

Factor DF R2 F Pr(>F)
Region 2 0.53 33.575 1.74E-08
Variety 1 0.2 25.71 1.75E-05
Harvest 1 0.02 2.807 0.103

Table 9: Results from Shannon index three-way ANOVA on all the regions apart region O1.

samples with O2 samples being the most different. Moreover, higher order of influence

was observed on the G2 samples by the factor variety, whereas on the O1 samples the

factor harvest was the most influent, as suggested also by the Shannon index. After per-

forming MANOVA with ADONIS on the BrayCurtis distance metric, the results showed

that there are significant differences between the groups of the factors region, variety and

harvest period (Table 10). From the three factors, region accounts for the highest amount

of variance (53%) followed by variety (7%) and harvest period (2%).

Factor DF R2 F Pr(>F)
Region 3 0.532 20.694 0.001
Variety 1 0.079 9.267 0.001
Harvest 1 0.027 3.229 0.029

Table 10: Results of the MANOVA analysis performed with ADONIS on BrayCurtis distance metric.
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Figure 14: PCoA based on Bray-Curtis distance.

Genera Balances Affected the Fungal Community Structure

The high-throughput sequencing analysis allowed the detection of 18 different gen-

era represented by more than 1% of the sequences for each sample. Table 11 shows all

the genera that have been identified as well as the range of their OTU counts based on

the rarefied OTU table. The most abundant genera in general were Aureobasidium and

Mycosphaerella with a range of OTUs representing 5099 and 1991 on average, respec-

tively. Other abundant genera were Botrytis, Aspergillus, Colletotrichum, Rhodotorulla,

and Penicillium.

Using the tool GNEISS, 9 genera were included by GNEISS in the numerator and

9 in the denominator in order for the balances to be calculated (Figure 15). Further-

more, the range of the OTU counts for each genus is being depicted along with the

fold-change between the minimum and maximum observed OTU count. Additionally,

for each genus, the samples were grouped based on the factors (region, variety and har-

vest) and KruskalWallis H-test was performed in order to identify non-significant genera.

After applying Bonferroni correction on the resulted p-values and setting the significance
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threshold at 0.01, the genera Aureobasidium, Phoma, and Diplodia were identified as

non-significant. Figure 16 shows the balances calculated by GNEISS for each sample

showing again that the factor region seems to have the greatest impact on the separation

of the samples.
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Figure 15: Range of collapsed OTU counts for genera in the numerator and denominator of the balances.
OTU counts concern the rarefied OTU table. To the right of each bar, the fold-change between the minimum
and maximum observed OTU count is shown. Purple color represents non-significant genera whereas green
color significant.

Figure 16: Balances calculated for each sample. Values represent balances median value of replicates.

Since GNEISS calculates log-ratio for each sample, it is difficult to conclude whether

the calculated log-ratio has been the outcome of changes in the genera of either the nu-
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merator, the denominator or both. However, based on the Figure 15 we may assume that

the genera that could greatly influence the resulted log-ratio are genera with quite high

fold-change between the minimum and maximum observed OTU count. These genera

are Penicillium, Colletotrichum, and Aspergillus for the numerator, and Rhodotorula and

Botrytis for the denominator. Figure 17 shows the abundances of the identified genera

based on their observed OTU counts. The OTU counts have been converted to relative

abundance in order to be compared to their log2 values.

Figure 17: Plots AC represent relative abundances of the OTU counts for the genera of the rarefied OTU
table. Plots BD represent log2 transformation of the OTU counts for the genera of the rarefied OTU table.
Genera have been split into the groups Numerator (A and B) and Denominator (C and D) as defined by
GNEISS.

The log2 transformation of the OTU counts in Figure 17 will be used as a means of

explaining the calculated balances depicted in Figure 16, taking into consideration the

aforementioned genera of Figure 15 that could greatly influence the resulted balance.

Starting with the Shiraz samples from G1, the calculated balances are close to zero sig-

nifying that the abundances of the genera in the numerator are counter-balanced by the

abundances of the genera in the denominator (Figure 16). For instance, the abundances of

Aspergillus, Colletotrichum, and Penicillium are relatively equal to those of Rhodotorula

and Botrytis. Therefore, the samples from G1 could conveniently be used as a reference
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for explaining the change of the balances for the rest of the samples. Consequently, al-

though the abundances of Aspergillus and Penicillium of the Cabernet samples from G2

are lower than the samples of G1, the higher positive balance of these samples could

be attributed to the lower abundance of Rhodotorula and Botrytis as well as the higher

abundance of Colletotrichum resulting in an overall more positive balance for G2 sam-

ples (Figure 16). Within the G2 Shiraz samples, Aspergillus and Penicillium had almost

the same abundance as the G1 samples, whereas great difference was observed with

Rhodotorula and Colletotrichum (Figure 17). Moreover, the H3 harvest period seems

to have influenced positively the abundance of Aspergillus and Colletotrichum, compar-

ing to H1, and quite negatively the abundance of Rhodotorula making these samples the

ones with the highest positive balance. All the genera considered for the numerator in

the balances had very low relative abundance and log2 of the OTU counts for O1 and O2

samples (Figure 17), resulting in negative balances (Figure 16). As far as the O1 region

is concerned, the negative balance was the result of the very low abundances of As-

pergillus, Colletotrichum, and Penicillium comparing to G1. Also, comparing the Shiraz

and Cabernet samples from O1, the lower abundance of Aspergillus and Colletotrichum

resulted in higher negative balance. Considering the harvest period, the genus that seems

to be greatly affected for the Cabernet samples is Penicillium, whereas for the Shiraz

samples it is Botrytis. The Shiraz samples from O2 followed the same pattern as the

corresponding samples from O1 (Figure 16), however the higher abundance of Botrytis

(Figure 17) compared to the rest of the samples was the reason for having the highest

negative balance.

The OLS regression performed by GNEISS on the calculated balances using the re-

gressors region, variety and harvest revealed a 75% of total variance explained. From the

three factors, region is responsible for the 63% of the total observed variance, whereas

variety for 11% and harvest period for 1%.

Discussion

Microbial communities on grape surfaces have been previously studied due to their

perceived importance for contribution to wine characteristics, style, and quality [49, 108,

109]. Bacterial and fungal populations on the grape surface and the vine plant are af-

fected by various biotic and abiotic factors, such as insects, interactions between resi-

dent populations, geography, climate, and viticultural practices [42, 48, 108]. Generally,

many of these variables are not independent and may be clustered into broad groups

of effects. Particular attention needs to be paid to the population dynamics of fungi
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during grape berry development which may be related to the increased surface area of

each berry, and to the availability of nutrients such as carbohydrates and organics acids

[50, 54, 208]. Most of the studies analyzing microbial changes during the maturation

of the grape have been based on culture-dependent analysis [22, 44, 50, 52–54]. Those

studies found changes in structure and dynamics of the bacterial and fungal communi-

ties during grape maturation. However, the limitation of culture-dependent techniques to

assess the real microbial diversity in natural environments is well recognized [67, 138].

Recent investigations have characterized significant and consistent changes in grape and

wine composition and wine sensory profiles, associated with grape maturities at harvest

and vineyard site [209, 210]. Besides, higher levels of carotenoids are present in grapes

from hot or dry climates, or exposed vineyards to solar radiation [211].

In the present study we used barcoded sequencing to analyze the mycobiome of

Cabernet Sauvignon and Shiraz grapes varieties sampled at two ripening times in four

vineyards situated at two different Australian wine regions.

Our results show that fungal diversity of the grapes was mainly influenced by region

while the varietal and harvest time had a slighter weight. As the climate at O is colder

and drier than at G, the pattern of lower fungal species richness in the highest altitude

regions hints that selection might have a role in determining these patterns. Within the

two O vineyards, greater differentiation between fungal communities was observed than

for the G vineyards probably due to a higher heterogeneity of the terrain and differences

in altitude (about 270 m) between sampling points O1 and O2. In fact, previous studies

have observed changes in microbial diversity and composition due to altitude and geo-

graphical orientation [49, 212]. In addition, within the O1 samples, the factors variety

and harvest had significant influence on the fungal diversity while the weight of harvest

or maturation time for the rest of samples was not significant. Except for the absence of

Acremonium or Colletotrichium in most O samples, the list of genera is the same in the

rest of samples, thus, the observed changes in alpha diversity should be due to changes

in species within each genus. In fact, both genera are usually related to humid or moist

climates, which would justify their low abundance in the area O that is qualified as dry.

Our results also show that the fungal community composition varied significantly

across the different vineyards. The BrayCurtis distance metric was used for the clustering

of the samples and indicated that the samples clustered significantly different by region,

variety and harvest time, being again the region the factor that had the strongest effect on

sample differentiation by taxa composition.

The most abundant genera across all samples were Aureobasidium and Mycosphaerella.

While Aureobasidium has been frequently isolated and also detected by culture-independent
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techniques in previous studies analyzing wine grape berries surfaces around the world

[42, 43, 46, 51, 53, 166, 212], the genera Mycosphaerella has been seldom reported. Be-

cause several species of Mycosphaerella are considered plant pathogens, the presence of

this genus may be directly related to the vine health. However, as different species of

the same genus may behave totally different and Mycosphaerella was highly abundant

in all the analyzed samples, it could represent a characteristic genus of the Australian

grapes. In fact, previous studies using HTS analysis to analyze the grape microbiome

have also suggested the presence of specific genera or species in different wine regions

[42, 46, 112, 213]. Recently, Dissanayake et al. [214] identified both Aureobasidium and

Mycosphaerella within the endophytic community in stems grapevine. Other epiphytic

filamentous fungi usually associated with plant diseases and frequently found by HTS

in the grape mycobiome were Aspergillus, Botrytis, Colletotrichium, Rhodotorula, and

Penicillium. The results obtained by QIIME corroborated these findings and additionally

GNEISS identified these five genera as the ones with the strongest effect on the balances

driving the differentiation in fungal composition across samples. Most analyses of mi-

crobiome based on HTS relies on multivariate analysis. From the comparison between

relative abundance and log2 OTU counts it becomes apparent that the constraint applied

when the OTU counts are converted to compositional data could lead to misinterpreta-

tions. For instance, the fluctuation of the relative abundance of Aureobasidium across

all samples seems significant. However, the log2 transformation of the OTU counts of

Aureobasidium reveals a relatively stable abundance across all samples corroborating its

identification as non-significant genus by the current analysis. Thus, the balances analysis

applied during the present study lead to more realistic results than those of transforming

OTU counts of genera to relative abundance.

Limitations

Metataxonomic analysis is notorious of incorporating various laboratory and bioin-

formatic procedures that assign a degree of inaccuracy to the overall analysis by introduc-

ing variability among the samples. The numerous factors that are associated with these

procedures, along with the fact that the taxonomy and microbial abundance of the sam-

ples is unknown render difficult the estimation of the produced variability. Moreover,

the nature of the microbial data necessitates the use on non-parametric statistics such

as Kruskal-Wallis that do not make assumptions regarding the distribution of the OTU

counts. Nevertheless, such non-parametric statistics may lose statistical power in small

datasets. Finally, GNEISS does not provide an explicit information regarding differential

98

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



Chapter 4

abundance of taxa. As the results demonstrate, it rather servers as an useful exploratory

analysis tool aiming at producing comparative insights between the samples utilizing the

concept of balances. This way it sets the basis for a subsequent controlled experimental

design that focuses to analysing specific microbial dynamics.

Conclusions

This study used barcoded massive sequencing to analyze the effect of the grape ripen-

ing state, the vineyard region, and grape variety on the grape mycobiome. The results

revealed that both fungal composition and diversity were mainly influenced by the vine-

yard region while the grape variety or the ripening state had less impact. However, within

each region the fungal communities were affected differentially by the ripening state ap-

parently due to the climatology. Even if the most abundant genera across samples were

Aureobasidium and Mycosphaerella, the results obtained by GNEISS identified five gen-

era with the strongest effect on the balances driving the changes in fungal composition.

This result manifests that the analysis of the microbiome changes based on transformed

OTU counts to relative abundance could lead to misinterpretations.
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Abstract

Wine aged in barrels or bottles is susceptible to alteration by microorganisms that

affect the final product quality. However, our knowledge of the microbiota during ageing

and the factors modulating the microbial communities is still quite limited. The present

work uses high throughput (HTS) techniques to deal with the meta-taxonomic character-

ization of microbial consortia present in red wines along 12 months ageing. The wines

obtained from two different grape varieties were aged at two different cellars and com-

pared based on time of wine ageing in the barrels, previous usage of the barrels and

differences between wine ageing in oak barrels or glass bottles. The ageing in barrels did

not affect significantly the microbial diversity but changed the structure and composition

of fungal and bacterial populations. The main microorganisms driving these changes

were the bacterial genera Acetobacter, Oenococcus, Lactobacillus, Gluconobacter, Lac-

tococcus and Komagataeibacter and the fungal genera Malassezia, Hanseniaspora and

Torulaspora. Our results showed that the oak barrels increased effect on the microbial

diversity in comparison with the glass bottles, in which the microbial community was

very similar to that of the wine introduced in the barrels at the beginning of the age-

ing. Furthermore, wine in the bottles harbored higher proportion of Lactobacillus but

lower of Acetobacter. Finally, it seems that one year of previous usage of the barrels was

not enough to induce significant changes in the diversity or composition of microbiota

through ageing compared with new barrels. This is the first meta-taxonomic study on

microbial communities during wine ageing and shows that the microorganism composi-

tion of barrel-aged wines was similar at both cellars. These results hint the possibility

of a common and stable microbiota after ageing in the absence of exogenous alterations.

Further corroborations on the current outcome would be valuable for the comparison and

detection of microbial alterations during ageing that could potentially prevent economic

losses in the wine industry.
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Introduction

Winemaking is a process in which Saccharomyces cerevisiae is the main yeast re-

sponsible of the alcoholic fermentation of grape must to produce wine. However, a wide

diversity of yeast and bacterial species from the grape surfaces, the field or the cellar

facilities and equipment might contribute to the final wine quality [2, 109]. These mi-

croorganisms can exert a positive or negative influence through all the winemaking pro-

cess including wine maturation and ageing [50, 215]. The maturation and ageing process

starts with the introduction of wine in wooden barrels and it continues after bottling until

its consumption.

Nowadays, the wood barrel ageing is a common practice in winemaking for wine

maturation of higher red quality wine [216]. The main reason is that barrel ageing im-

proves many red wines from a visual, olfactory and gustatory point of view because

the extractable compounds of the casks induce positive changes in the composition and

flavour of the aged wine [217–220]. However, during ageing, microorganisms surviving

the winemaking process, remain in the pores of the wood or occasional contaminants

might produce metabolic compounds that can cause deviations from the olfactory opti-

mum and spoilage of the wine. Bottle ageing is also susceptible to undesirable microbial

growth even though fining or racking (filtration and clarification) are applied with the aim

of microbiological stabilization [50, 221].

Several authors have manifested that controlling the growth of spoiler microorgan-

isms is one of the most important challenges of the current winemaking process [222,

223]. This issue is critical for aged wines because of their added value. Multiple methods

detect spoilage wine bacteria and yeast, but most are based on culture-dependent tech-

niques [224–228]. This resistance phenomenon may be reversed when the environmental

parameters change (SO2, pH, O2) and trigger additional fermentation start during barrel

maturation or bottle-ageing. The metabolic activities of microorganisms at these stages

might be detrimental to the wine flavour [50]. The introduction of molecular methods

based on DNA has improved the detection of present cells even at low concentrations.

However, most of the studies dealing with microbiological spoilage of wine are focused

on the detection of a few specific species that had been previously associated with such

deterioration [148, 229, 230]. Thus, the use of high throughput sequencing (HTS) tech-

niques could provide a more realistic view of the complex microbial community present

during wine ageing. These techniques have been recently used in wine samples mostly

focusing in grapes, grape must or fermentation stages [42, 105, 109, 111, 181, 212, 231–

235]. However, little attention has been paid to changes of microbial communities during
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wine ageing process or factors driving its evolution. It is well recognized that factors

affecting wine composition are grape variety, ageing time, wood origin along with its

toasting level during barrel ageing [217–220] and SO2 addition or the stopper composi-

tion during bottle aging [236, 237]. Nevertheless, the influence of these factors over the

present microbial communities during ageing is not known.

In the present study, red wines were analysed during ageing to monitor the taxonomic

composition of prokaryotic and eukaryotic communities by HTS of short amplicons of

hypervariable domains of 16S rDNA gene and ITS1-ITS2. The ageing process of wines

was performed in the only two Spanish Qualified Appellations of Origin; DOQ Priorat

(Catalonia) and DOCa Rioja (Spain) regions. The factors considered for the comparison

included time of wine ageing in the barrels, prior usage of the barrels and, in the case of

Rioja wines, differences between wine ageing in oak barrels or glass bottles.

Methods

Samples

The barrels source of red wine samples were the traditional bordelaise barrel of 225L

and made of French oak, mid-toasted. Two of them located in a winery of the DOQ

Priorat (cellar Ferrer Bobet, FB) and the other two in the DOCa Rioja (Bodega institu-

cional, Instituto de Ciencias de la Vid y el Vino, ICVV). Besides the high price of the

HTS analysis, we have to consider that the sampled barrels had an increase probability

of contamination or oxygenation due to sampling and that is the main reason to keep the

number of barrels and the sampled volume low. The procedure of sampling and exper-

imental set up is represented Figure 18. In each region the two barrels differed in time

of usage, with one barrel being new, without any prior usage (BAN), while the other had

been used for one year and is referred as old (BAO). Cleaning of the used barrels were

done with the standard cellar practices (washing with pressurized hot water and rinsing).

The main parameters of the wine before being introduced in the barrels were similar:

13.8 and 14,1% ethanol; pH 3,3 and 3,4; 0,29 and 0.34 g/L acetic acid; 4,4 and 4,3 g/L

tartaric acid (total acidity); 80 and 90 ppm total SO2 ; 1,5 and 1,2 g/L residual sugar;

0,88 and 0,94 g/L malic acid at the end of malolactic fementation for FB and ICVV,

respectively. The barrels followed the habitual cellar management and were maintained

with the rest of the barrels from the same vintage. In FB, grape variety was Carignan,

which is the main and characteristic variety in DOQ Priorat, and the wine samples were

collected at the end of malolactic fermentation inoculated with an autochthonous strain

of Oenococcus oeni, completed inside BAO and BAN and denoted as 0 time-point, at the
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time-points of 3, 6 and 9-months of barrel ageing from both barrels, and at the 12-month

time-point from BAN only, as BAO was accidentally used to refill other barrels due to

common practices in the cellar. On the other hand, the grape variety at ICVV winery was

Tempranillo, which is the main variety in DOCa Rioja, and the wine samples were col-

lected at the end of spontaneous malolactic fermentation, completed inside the steel tank

and denoted as FML or 0 time-point, and after 3, 9 and 12-months of barrel ageing from

both barrels. Additionally, the same day that the wine finished the FML at ICVV win-

ery and transferred into BAO and BAN, a sample of 750mL from each barrel was taken

and bottled into a dark glass bottled as the cellar uses for its wine commercialization.

These bottle-aged wine samples, from the old (BTO) and new (BTN) barrel, were stored

in the same cellar as the barrels and analyzed after 12-months of bottle ageing. At each

sampling point, we sampled 3 bottles of 50mL of aged wines with a sterilized pipette

of 100mL introduced into the barrel by a top overture and used for stirring the wine in

the barrel and sampling. At the laboratory, we used one of the sample bottles and keep

the others at -80◦C . From the 50mL of one bottle, we used 3-10mL for plating on the

different culture media (described at section 2.5) and 40mL were filtered through a 0.2

µm polycarbonate filter. The filter was frozen at -80◦C and used to extract the DNA once

all the samples had been collected in order to avoid differences due to DNA extraction.

All the acronyms used for the samples and their descriptions are in Table 12.

Figure 18: Schematic representation of the experimental setup. The green color represents new barrels and
the orange color the used ones, at FB and ICVV cellars. Barrels of 225L were sampled at different time-
points, expressed in months, taking 50 mL of wine. In FB, the malolactic fermentation was performed inside
the steel tank, whereas in ICVV it was performed inside the barrels. In addition, in ICVV the moment the
wine was introduced in the barrels, a sample of 750mL was taken and placed into glass bottles. The bottled
wines were sampled after 12 months of maturation at cellar conditions.
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Abbreviation Description
BAO barrel with 1-year prior usage.

BAN barrel with no prior usage.

BTO 1-year wine sample that was sampled from BAO barrel and aged in bottles.

BTN 1-year wine sample that was sampled from BAN barrel and aged in bottles.

FML 0 malolactic fermentation completed inside steel tank.

BAO 0 malolactic fermentation completed inside BAO.

BAO 3 3-months wine sample aged in BAO.

BAO 6 6-months wine sample aged in BAO.

BAO 9 9-months wine sample aged in BAO.

BAO 12 12-months wine sample aged in BAO.

BAN 0 malolactic fermentation completed inside BAN.

BAN 3 3-months wine sample aged in BAN.

BAN 6 6-months wine sample aged in BAN.

BAN 9 9-months wine sample aged in BAN.

BAN 12 12-months wine sample aged in BAN.

Table 12: Description of the acronyms used for the samples of this study.

Bioinformatic and statistical analysis

The processing of the raw amplicon sequences has been performed using Quanti-

tative Insights into Microbial Ecology (QIIME versions 1.9.1 and 2018.2) implementing

the Illumina OTU pipeline steps previously described [238] with Phred33 quality filtering

threshold of <20, 99% similarity threshold during OTU clustering and BLAST+ as taxo-

nomic classification algorithm [33]. After quality filtering and taxonomic classification,

exclusion of sequences matching to chloroplast or mitochondria was performed. The se-

quences obtained during this study have been included in the SRA database of the NCBI

under the BioProject accession number PRJNA635684. Moreover, due to the nature of

the OTU counts data, such as sparsity and lack of normality, as well as the compositional-

ity constraint applied after converting the OTU counts to relative abundancies, nonpara-

metric methodologies are necessary for the statistical analysis of the resulted OTU counts

that do not depend on relative abundancies and assumptions [197, 198]. Therefore, in the

current study we have implemented the compositional analysis toolbox GNEISS [40],

as incorporated into Quantitative Insights Into Microbial Ecology framework (QIIME

version 2019.1) [199].

Statistical analysis has been based on the factors barrel-type and time. For FB, the
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factor barrel-type included the 0, 3, 6 and 9-month barrel-aged wine samples separated

in the groups of old and new barrel resulting in 4-samples per group, whereas the factor

time concerned the barrel-aged wine from old and new barrel grouped by the attributes

0, 3, 6 and 9-month timepoints leading to 2-samples per group. Similarly, for ICVV the

factor barrel-type concerned the 3, 9 and 12-month barrel-aged wine samples divided

into the groups of old and new barrel, and the factor time comprised the 4-groups of 3,

9, 12-month barrel-aged and 12-month bottle-aged 1 wine samples. Moreover, ICVV

included the additional factor bottled-wine which included the 12-month barrel-aged and

12-month bottle-aged wine samples. Summarizing, for the statistical analysis the samples

were distributed as 4 of old barrel compared to 4 of new barrels (at each cellar), 2 samples

for each of the four time points (at each cellar) and 2 samples for glass bottle compared

with barrel samples (just for ICVV cellar) (Table 12). Using the rarefied OTU table, alpha

diversity was calculated based on the Shannon index and statistical significance at alpha-

level 0.05 was evaluated using Students t-test for the factor barrel-type and ANOVA for

the factor time. The rarefied OTU table became also the source for assessing the beta

diversity that was based on the Bray-Curtis index since taxonomy was constrained at

genus level. The resulted Bray-Curtis distance matrix became the input for principal

coordinate analysis (PCoA) as well as permutational multivariate analysis of variance

(PERMANOVA) using alpha-level 0.05 and the factors barrel-type and time. On the other

hand, GNEISS utilized the unrarefied OTU table since it applies its own normalization. In

a nutshell, GNEISS performed zero OTU counts imputation and clustering of the genera

into two groups via Ward-hierarchical clustering. Upon these two groups, which are

considered anti-correlated, GNEISS applied isometric log-ratio transformation with one

group being the numerator and the other the denominator. Therefore, this transformation

provides a log-ratio, which is referred as balance, that may have positive or negative value

and reflects for a given sample the changes that might have occurred in the OTU counts

of the genera from the numerator, the denominator or both in relation to another sample.

Finally, the average impact of each one of the identified genera on the balances has been

calculated by the following equation:

impacti =
1

n

n∑
j=1

2|Bj−bj | (2)

where n refers to the total number of samples, Bj to the log2-ratio of all OTU counts

of the genera included in the numerator and denominator, and bj to the log2-ratio for

the j-th sample after subtracting the OTU counts of the i-th genus belonging to either the

numerator or the denominator. Therefore, this impact represents the average fold-change
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caused on the log2-ratio from a given genus. The greater the impact, the greater the

influence of this genus on the balances calculated by GNEISS.

qPCR analysis

Quantitative PCR (qPCR) was performed on the extracted DNA to quantify the main

microorganisms previously detected in wine according to Lleixà et al. [181]. The used

primers anneal the ribosomal gene region and allowed the quantification of total yeasts,

Saccharomyces genus, Hanseniaspora genus, Starmerella bacillaris, Botrytis cinerea,

acetic acid bacteria (AAB) and lactic acid bacteria [181] and DBRUXF/DBRUXR for

Brettanomyces bruxellensis [239]. Standard curves were created by plotting the Ct (Cycle

threshold) values of the qPCR performed on dilution series of cells against the log input

cells/mL. Samples and cultures for standard curves were analysed in triplicate.

Plate culture

Samples were serially diluted in sterile water and plated on (i) YPD medium (Glu-

cose 2% Peptone 2%, Yeast Extract 1%, Agar 1.7%) and incubated at 28◦C for 49h;

(ii) modified WLN medium (DifcoTM WL Nutrient Medium, BD) with the addition of

cycloheximide to suppress yeast growth (100 mg/L) and incubated from 7 to 10 days

at 28◦C ; (iii) MRS Agar medium [144] supplemented with 4 g/L L-malic acid, 5 g/L

fructose, 0.5 g/L L-cysteine, 100 mg/L nystatin and 25 mg/l sodium azide adjusted to pH

5.0 and incubated at 28◦C in a 10% CO2 atmosphere; (iv) GYC-Ca Agar medium (glu-

cose 5%, yeast extract 1%, CaCO3 and agar 2%, pH 6.3) supplemented with 100 mg/L

natamycin to suppress yeast growth and incubated at 28◦C for 3-5 days under aerobic

conditions. Appropriate dilution plates were counted. The YPD medium provided the to-

tal yeast counts, modified WLN medium is selective for Brettanomyces genus, whereas

MRS medium and GYC-Ca provided LAB and AAB counts, respectively.

Results

Sequence analysis and alpha diversity

From the initial 1,066,085 16S amplicon raw sequences for FB and 1,520,976 for

ICVV, a corresponding sequence filtering of 11% and 5% resulted after applying all the

filtering steps, leading to a rarefication threshold of 30,815 sequences per sample for

FB and 10,1243 sequences per sample for ICVV. The rarefaction curves of 16S and ITS

sequences are included in the supplementary Figure S25. Shannon alpha diversity did
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not reveal statistical significance for FB (Figure 19A) for any of the factors, whereas

statistical significance (p-value 0.02) for the factor time was observed for ICVVs samples

(Figure 19B). Overall, the barrel-aged wine from old and new barrel exhibited similar

trends in both cellars, whereas the 12th month bottle-aged wine resulted in lower diversity

than the 12th month barrel-aged wine in the case of ICVV.

Figure 19: Alpha diversity based on Shannon index for FB 16S (A) and ITS (C) amplicon samples, as well
as for ICVV 16S (B) and ITS (D) amplicon samples. Acronyms BAN or NEW and BAO or OLD refer to
barreled wine from new and old barrel respectively, FML to final malolactic fermentation stage and BTN
and BTO to bottled wine from new and old barrel respectively.

For the ITS amplicon, the initial 1,252,877 raw sequences of FB were filtered by

38% and by 29% the initial 1,366,522 raw sequences of ICVV, resulting in a rarefica-

tion threshold of 2,832 sequences per sample for FB and 2,381 sequences per sample for

ICVV. Shannon alpha diversity was found of having statistically non-significant differ-

ences between the groups of the factors barrel-type and time for FB (Figure 19C) and

ICVV (Figure 19D) with the bottle-aged wine having once again lower diversity than the

barrel-aged wine.
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Principal Coordinate Analysis of samples

After performing PCoA based on Bray-Curtis distance metric, bacterial communities

presented a separation between early (<6) and late (>9) maturation wine samples across

the first principal component for FB (Figure 21A) accompanied by statistical significance

(p-value 0.05) for the factor time. Similar clustering of bacterial communities became

apparent also across the first principal component between the early (<9) and late (>9)

maturation wine samples of ICVV (Figure 21B) with a reported statistical significance

(p-value 0.03) for the factor time. Along the same component, a clear separation between

the barrel and bottle-aged wine bacterial communities could also be observed.

For FB, PCoA analysis based on Bray-Curtis of the fungal communities (Figure 21C)

presented separation of the 3-month and 9-month BAO samples from the rest, however

PERMANOVA reported non-significant differences between the groups of factors barrel-

type and time. On the other hand, for the fungal communities of ICVV samples (Figure

21D) the reported statistical significance based on the factor time (p-value 0.03) seems

to refer to the 3-month BAN and 12-month BAO samples due to their greater distance

to the rest of the samples. Regarding the factor bottled-wine, a higher degree of separa-

tion could be observed between the fungal communities of BTO and BAO samples than

between BTN and BAN samples.

Influence of studied factors on bacterial communities

The identified bacterial genera for FB along with their rarefied OTU counts are given

in Table 13, and the calculated balances by GNEISS based on these bacterial genera are

provided in Figure 22A. Overall, the balances did not show statistically significant dif-

ferences between the groups of the factors barrel-type and time and the genera that seem

to have greatly influenced the balances are Acinetobacter, Cutibacterium, Lactobacillus,

Pelomonas, Acetobacter and Oenococcus. In Figure 20A the relative abundances of these

genera are given, and in Figure 23A,B their log2-transformed OTU counts are shown.

The most abundant bacterial genus at FB was Oenococcus that had an average of over

80% of the bacterial sequences the first 6 months of maturation, followed by Acetobacter,

which increased in abundance at the end of barrel maturation representing avobe 85% of

the sequences at the 9th month samples (Figure 20A).

Regarding ICVV samples, Table 15 holds the rarefied OTU counts of the identified

bacterial genera, Figure 22B provides their calculated balances, and their relative abun-

dance is displayed in Figure 20C. Similarly to FB, the most abundant bacterial genus was

Oenococcus that had an average of relative abundance above 60% the first 9 months of
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maturation. However, even though Acetobacter increased at the end of barrel maturation,

its abundance was slightly lower than in FB, representing 30 and 50% of the bacterial

sequences at the 9th and 12th months of barrel maturation (Figure 20C). Interestingly,

the relative abundances of the detected bacterial genera did not change after 12 month

of glass bottle maturation (Figure 20C). The balances revealed statistically significant

differences between the groups of the factor time with Acetobacter, Oenococcus, Lacto-

bacillus, Gluconobacter, Lactococcus and Komagataeibacter being the main genera that

drove these differences (Figure 24A,B). In both cellars Acetobacter and Oenococcus have

been included in the same group by GNEISS as they have been identified of being cor-

related. Acetobacter exhibited increasing trend through time in both cellars, whereas the

abundance of Oenococcus was relatively stable in ICVV but decreased over time in the

case of FB. That could be explained by the fact that the initial wine samples of FB were

taken at the end of malolactic fermentation where the abundance of Oenococcus was at

higher levels. On the other hand Lactobacillus displayed different behaviour between the

two cellars, with an increasing tendency in the case of FB and a decreasing one in the

case of ICVV. Overall, the barrel-aged wine did not present great differences between the

old and new barrels. The observed differences between the 12th month bottle and barrel-

aged wine, could be attributed to Acetobacter and Lactobacillus whose abundances in

the bottle-aged wine were similar to those of the early maturation period (<9).

The analysis of qPCR showed a deep decrease with time of LAB after the introduc-

tion of the wine in barrels but the number of AAB remained constant with time in the

barrels and also in the glass bottles (Table 17). The cfu of LAB on plates were just one or-

der bellow the cells detected by qPCR. However, no cells were recovered on the medium

for AAB (Table 17).
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Figure 20: Relative abundances for FB 16S (A) and ITS (B) amplicon samples, as well as for ICVV 16S (C)
and ITS (D) amplicon samples. Acronyms BAN or NEW and BAO or OLD refer to barreled wine from new
and old barrel respectively, FML to final malolactic fermentation stage and BTN and BTO to bottled wine
from new and old barrel respectively.

Figure 21: PCoA based on Bray-Curtis distance metric for FB 16S (A) and ITS (C) amplicon samples, as
well as for ICVV 16S (B) and ITS (D) amplicon samples. Acronyms BAN or NEW and BAO or OLD refer
to barreled wine from new and old barrel respectively, FML to final malolactic fermentation stage and BTN
and BTO to bottled wine from new and old barrel respectively.
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Figure 22: Calculated balances by GNEISS for FB 16S (A) and ITS (C) amplicon samples, as well as for
ICVV 16S (B) and ITS (D) amplicon samples. Acronyms BAN or NEW and BAO or OLD refer to barreled
wine from new and old barrel respectively, FML to final malolactic fermentation stage and BTN and BTO
to bottled wine from new and old barrel respectively.

114

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



Chapter 5

ta
xo

no
m

y
FB

B
A

O
0

FB
B

A
O

3
FB

B
A

O
6

FB
B

A
O

9
FB

B
A

N
0

FB
B

A
N

3
FB

B
A

N
6

FB
B

A
N

9
FB

B
A

N
12

Le
uc

on
os

to
c

a
0

1
0

0
0

27
0

0
0

B
ra

dy
rh

iz
ob

iu
m

a
0

60
4

0
1

1
0

52
0

0
La

ct
ob

ac
ill

us
a

0
15

70
22

1
13

4
4

18
7

16
9

63
3

27
6

C
or

yn
eb

ac
te

ri
um

a
0

92
6

0
0

0
1

0
0

0
D

el
fti

a
a

3
15

76
14

2
0

0
25

21
9

74
1

0
St

ap
hy

lo
co

cc
us

a
4

62
2

14
6

28
1

58
0

25
7

10
9

St
re

pt
oc

oc
cu

s
a

0
0

13
4

0
0

10
0

23
3

50
1

14
5

D
ei

no
co

cc
us

a
0

0
15

18
1

0
0

0
0

0
St

en
ot

ro
ph

om
on

as
a

2
15

47
15

5
2

0
0

0
72

0
Pe

lo
m

on
as

a
21

49
29

91
7

10
6

24
31

3
38

7
51

0
27

4
A

ci
ne

to
ba

ct
er

a
13

29
5

18
4

18
1

0
0

35
9

47
7

Th
er

m
ic

an
us

a
0

86
3

0
0

0
0

0
0

0
R

ot
hi

a
a

0
39

8
0

0
0

56
0

1
0

C
lo

ac
ib

ac
te

ri
um

a
0

32
53

0
0

0
0

0
0

0
Vu

lc
an

iib
ac

te
ri

um
a

0
0

19
7

19
0

0
0

0
0

P
se

ud
om

on
as

a
4

16
67

0
25

0
32

0
22

9
57

B
ac

te
ro

id
es

a
0

13
0

0
0

0
0

0
0

C
ut

ib
ac

te
ri

um
a

0
19

19
11

83
75

3
59

4
82

4
16

79
23

0
G

lu
ta

m
ic

ib
ac

te
r
a

0
40

0
3

0
0

0
0

3
0

O
en

oc
oc

cu
s
b

25
55

3
96

97
22

80
8

49
3

30
67

9
21

54
1

27
10

1
43

05
20

A
ci

do
vo

ra
x

b
10

32
3

0
0

0
0

0
1

1
A

qu
ab

ac
te

ri
um

b
47

4
1

0
0

0
0

0
13

8
0

K
om

ag
at

ae
ib

ac
te

r
b

0
0

0
0

9
0

0
0

0
Lo

ns
da

le
a

b
2

0
0

0
0

0
0

0
0

A
ce

to
ba

ct
er

b
36

69
53

1
32

07
29

91
3

55
78

70
18

30
21

38
5

29
15

8
C

an
di

da
tu

s
Fi

nn
ie

lla
b

3
0

0
0

0
0

0
0

0

115

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



Chapter 5

G
lu

co
no

ba
ct

er
b

0
0

0
0

21
11

0
1

0
F

la
vo

ba
ct

er
iu

m
b

35
0

0
0

17
0

0
0

68

Ta
bl

e
13

:
R

ar
efi

ed
O

T
U

co
un

ts
fo

r
FB

(P
ri

or
at

)
ce

lla
r

16
S

ta
xo

no
m

y.
G

en
er

a
in

cl
ud

ed
in

th
e

nu
m

er
at

or
of

th
e

ca
lc

ul
at

ed
ba

la
nc

es
by

G
N

E
IS

S
ar

e
de

no
te

d
w

ith
(a

)
w

he
re

as
th

os
e

in
cl

ud
ed

in
th

e
de

no
m

in
at

or
ar

e
de

no
te

d
w

ith
(b

).
B

A
N

,B
ar

re
lN

ew
;B

A
O

,B
ar

re
lO

ld
.

ta
xo

no
m

y
FB

B
A

O
0

FB
B

A
O

3
FB

B
A

O
6

FB
B

A
O

9
FB

B
A

N
0

FB
B

A
N

3
FB

B
A

N
6

FB
B

A
N

9
FB

B
A

N
12

un
id

en
tifi

ed
a

1
0

1
1

1
1

0
2

0

Tr
am

et
es

a
0

0
0

0
0

0
0

6
0

D
eb

ar
yo

m
yc

es
a

0
0

0
0

0
0

0
0

1

H
an

se
ni

as
po

ra
a

6
0

13
1

11
10

32
63

0

Sa
cc

ha
ro

m
yc

es
a

28
25

17
20

28
16

26
63

28
20

28
21

27
93

27
61

28
27

A
sp

er
gi

llu
s
b

0
0

0
11

4
0

0
0

0
0

M
al

as
se

zi
a

b
0

11
12

2
53

0
0

7
0

4

Ta
bl

e
14

:
R

ar
efi

ed
O

T
U

co
un

ts
fo

r
FB

(P
ri

or
at

)
ce

lla
r

IT
S

ta
xo

no
m

y.
G

en
er

a
in

cl
ud

ed
in

th
e

nu
m

er
at

or
of

th
e

ca
lc

ul
at

ed
ba

la
nc

es
by

G
N

E
IS

S
ar

e
de

no
te

d
w

ith
(a

)
w

he
re

as
th

os
e

in
cl

ud
ed

in
th

e
de

no
m

in
at

or
ar

e
de

no
te

d
w

ith
(b

).
B

A
N

,B
ar

re
lN

ew
;B

A
O

,B
ar

re
lO

ld
.

116

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



Chapter 5

ta
xo

no
m

y
R

io
ja

FM
L

0
R

io
ja

B
A

N
3

R
io

ja
B

A
N

9
R

io
ja

B
A

N
12

R
io

ja
B

A
O

3
R

io
ja

B
A

O
9

R
io

ja
B

A
O

12
R

io
ja

B
T

N
12

R
io

ja
B

TO
12

O
en

oc
oc

cu
s
a

87
26

5
82

87
7

67
45

7
55

56
3

97
91

8
61

88
3

45
72

0
95

02
6

94
12

9

A
ce

to
ba

ct
er

a
59

96
17

84
8

21
02

0
45

64
6

29
35

35
98

5
55

45
7

58
93

67
15

La
ct

ob
ac

ill
us

a
77

96
49

4
20

4
38

0
26

30
29

5
36

4

K
om

ag
at

ae
ib

ac
te

r
b

18
6

60
00

10
8

24
43

10
0

5

G
lu

co
no

ba
ct

er
b

15
9

11
46

53
13

1
82

1
25

27
27

La
ct

oc
oc

cu
s
b

9
7

20
93

7
1

85
1

2
3

Ta
bl

e
15

:
R

ar
efi

ed
O

T
U

co
un

ts
fo

rI
C

V
V

(R
io

ja
)c

el
la

r1
6S

ta
xo

no
m

y.
G

en
er

a
in

cl
ud

ed
in

th
e

nu
m

er
at

or
of

th
e

ca
lc

ul
at

ed
ba

la
nc

es
by

G
N

E
IS

S
ar

e
de

no
te

d
w

ith
(a

)
w

he
re

as
th

os
e

in
cl

ud
ed

in
th

e
de

no
m

in
at

or
ar

e
de

no
te

d
w

ith
(b

).
FM

L
,F

in
al

M
al

ol
ac

tic
Fe

rm
en

ta
tio

n;
B

A
N

,B
ar

re
lN

ew
;B

A
O

,B
ar

re
lO

ld
;B

T
N

,B
ot

tle
N

ew
;B

TO
,

B
ot

tle
O

ld
.

ta
xo

no
m

y
R

io
ja

FM
L

0
R

io
ja

B
A

N
3

R
io

ja
B

A
N

9
R

io
ja

B
A

N
12

R
io

ja
B

A
O

3
R

io
ja

B
A

O
9

R
io

ja
B

A
O

12
R

io
ja

B
T

N
12

R
io

ja
B

TO
12

C
op

ri
ne

llu
s
a

0
0

0
0

0
0

17
8

0
0

Lo
ph

od
er

m
iu

m
a

0
0

0
0

0
0

28
0

0

M
al

as
se

zi
a

a
0

32
3

77
11

0
12

4
0

0

To
ru

la
sp

or
a

a
2

0
1

79
27

0
71

1
0

A
sp

er
gi

llu
s
a

1
21

0
0

0
0

44
0

2

Sa
cc

ha
ro

m
yc

es
a

22
73

18
38

22
98

22
25

21
68

23
44

19
36

23
13

23
21

C
an

di
da

b
0

99
21

0
0

7
0

0
0

H
an

se
ni

as
po

ra
b

10
5

39
1

58
0

17
5

30
0

67
58

Ta
bl

e
16

:
R

ar
efi

ed
O

T
U

co
un

ts
fo

rI
C

V
V

(R
io

ja
)c

el
la

rI
T

S
ta

xo
no

m
y.

G
en

er
a

in
cl

ud
ed

in
th

e
nu

m
er

at
or

of
th

e
ca

lc
ul

at
ed

ba
la

nc
es

by
G

N
E

IS
S

ar
e

de
no

te
d

w
ith

(a
)

w
he

re
as

th
os

e
in

cl
ud

ed
in

th
e

de
no

m
in

at
or

ar
e

de
no

te
d

w
ith

(b
).

FM
L

,F
in

al
M

al
ol

ac
tic

Fe
rm

en
ta

tio
n;

B
A

N
,B

ar
re

lN
ew

;B
A

O
,B

ar
re

lO
ld

;B
T

N
,B

ot
tle

N
ew

;B
TO

,
B

ot
tle

O
ld

.

117

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



Chapter 5

A
)

FB
B A

O
0

BA
O

3
BA

O
6

BA
O

9
BA

N
0

BA
N

3
BA

N
6

BA
N

9
BA

N
12

qP
C

R
To

ta
ly

ea
st

2,
95

E
+0

6
5,

46
E

+0
3

4,
12

E
+0

5
1,

98
E

+0
4

2,
14

E
+0

6
6,

71
E

+0
5

2,
81

E
+0

5
2,

05
E

+0
4

4,
06

E
+0

4

S.
ce

re
vi

si
ae

1,
22

E
+0

6
1,

67
E

+0
3

1,
51

E
+0

5
1,

95
E

+0
3

6,
77

E
+0

5
3,

16
E

+0
5

1,
95

E
+0

3
5,

41
E

+0
3

2,
29

E
+0

4

S.
ba

ci
lla

ri
s

2,
28

E
+0

4
-

-
-

2,
44

E
+0

4
-

-
-

-

H
.u

va
ru

m
2,

71
E

+0
4

-
-

-
2,

66
E

+0
4

1,
23

E
+0

4
-

-
-

B
.b

ru
xe

lle
ns

is
-

-
-

6,
80

E
+0

1
-

-
2,

70
E

+0
1

-
-

L
A

B
1,

27
E

+0
6

-
-

-
2,

08
E

+0
6

1,
59

E
+0

4
-

-
-

A
A

B
5,

31
E

+0
6

-
-

2,
06

E
+0

6
2,

06
E

+0
6

8,
76

E
+0

5
2,

06
E

+0
6

1,
85

E
+0

5
8,

62
E

+0
5

Pl
at

e
co

un
t

Y
PD

(Y
ea

st
s)

1,
01

E
+0

3
2,

00
E

+0
2

1,
24

E
+0

3
5,

00
E

+0
1

4,
25

E
+0

2
9,

00
E

+0
1

1,
70

E
+0

2
7,

35
E

+0
2

5,
70

E
+0

2

W
L

N
(B

re
tta

no
m

yc
es

)
-

-
-

9,
50

E
+0

1
-

-
-

-
-

M
R

S
(L

A
B

)
1,

67
E

+0
5

1,
30

E
+0

3
-

-
1,

13
E

05
-

-
-

-

G
Y

C
-C

a
(A

A
B

)
-

-
-

-
-

-
-

-
-

B
)

IC
V

V
FM

L
0

BA
O

3
BA

O
9

BA
O

12
BA

N
3

BA
N

9
BA

N
12

B
TO

12
B

T
N

12
qP

C
R

To
ta

ly
ea

st
2,

34
E

+0
6

4,
76

E
+0

3
6,

34
E

+0
4

3,
39

E
+0

3
6,

80
E

+0
5

1,
97

E
+0

4
1,

16
E

04
2,

14
E

+0
5

9,
28

E
+0

5

S.
ce

re
vi

si
ae

5,
97

E
+0

5
1,

59
E

+0
3

2,
30

E
+0

4
6,

58
E

+0
2

1,
87

E
+0

4
5,

23
E

+0
4

3,
74

E
+0

3
8,

26
E

+0
4

2,
87

E
+0

5

S.
ba

ci
lla

ri
s

4,
12

E
+0

5
-

-
-

-
-

-
5,

39
E

+0
4

3,
72

E
+0

4

H
.u

va
ru

m
2,

14
E

+0
4

-
-

-
3,

92
E

+0
3

1,
33

E
+0

4
-

2,
56

E
+0

4
8,

10
E

+0
4

B
.b

ru
xe

lle
ns

is
-

-
2,

14
E

+0
3

3,
06

E
+0

2
2,

74
E

+0
2

5,
34

E
+0

2
-

2,
12

E
+0

2
-

L
A

B
3,

58
E

+0
6

1,
59

E
+0

6
2,

08
E

+0
5

1,
06

E
+0

5
4,

38
E

+0
6

2,
41

E
+0

5
6,

48
E

+0
4

6,
41

E
+0

5
1,

69
E

+0
6

A
A

B
2,

98
E

+0
6

1,
40

E
+0

6
4,

06
E

+0
6

2,
80

E
+0

6
2,

13
E

+0
6

2,
26

E
+0

6
1,

85
E

+0
6

3,
09

E
+0

6
3,

41
E

+0
6

Pl
at

e
co

un
t

Y
PD

(Y
ea

st
s)

1,
30

E
+0

3
4,

50
E

+0
2

3,
00

E
+0

2
2,

50
E

+0
2

2,
38

E
+0

2
7,

00
E

+0
1

9,
50

E
+0

1
5,

20
E

+0
2

3,
00

E
+0

2

W
L

N
(B

re
tta

no
m

yc
es

)
-

-
-

-
-

-
-

-
-

M
R

S
(L

A
B

)
6,

72
E

+0
5

1,
20

E
+0

4
-

-
3,

15
E

+0
5

-
-

-
-

G
Y

C
-C

a
(A

A
B

)
-

-
-

-
-

-
-

-
-

Ta
bl

e
17

:M
ea

n
va

lu
es

of
qP

C
R

(c
el

ls
/m

L
)a

nd
pl

at
e

cu
ltu

re
co

un
t(

cf
u)

an
al

ys
is

on
th

e
st

ud
ie

d
sa

m
pl

es
fo

rm
FB

(A
)a

nd
IC

V
V

(B
)

118

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



Chapter 5

Influence of studied factors on fungal communities

The identified fungal genera are reported in Table 14 for FB and in Table 16 for ICVV.

The calculated balances of the fungal detected genera are displayed in Figures 22C and

22D and their corresponding relative abundances are displayed in Figures 20B and 20D,

respectively. According to the relative abundances of the detected fungal genera (Figure

20B,D), Saccharomyces was the predominant yeast at both cellars with an average of 90%

of the sequences. Secondly, Malassezia was detected at the FB old barrels just at the 3rd

and 9th month samples, whereas Hanseniaspora was detected at ICCV the firsts 9 months

of the new and old barrel maturation (6%) and at the 12-month bottle-aged samples (3%).

Statistical analysis based on the balances of fungal genera verified the statistically non-

significant differences between the groups of barrel-type and time for FB and showed

statistically significant differences for the factor time in ICVV (p-value 0.03). In both

cellars the most abundant genus was Saccharomyces with relatively stable abundance

over time, and the genera mainly responsible for the observed differences between the

samples were Malassezia and Hanseniaspora for FB (Figure 23C,D) and Malassezia,

Hanseniaspora and Torulaspora for ICVV (Figure 24C,D). GNEIIS analysis of fungal

genera identified Hanseniaspora and Malassezia as anti-correlated in both cellars. The

statistical significance for the factor time in ICVV appear to concern the higher number of

fungal genera of the 3-month and 12-month old barrel samples in comparison to the rest

(Figure 24C,D). Finally, once again the fungal communities of the 12-month bottle-aged

wine were different than that of the barrel-aged wine with the BTN and BTO samples

having similar composition to FML samples (Figure 24C).

Taking into account qPCR results, the number of yeast represented mostly by S. cere-

visiae, trended to decrease with ageing 2 or 3 orders of magnitude. However, yeast num-

ber in the bottles remained constant or decreased just one order (Table 17). The detection

by qPCR of yeasts species other than S. cerevisiae was non important except in the case

of S. bacillaris at ICCV wine at the beginning of ageing. The number of yeast cells re-

covered in plate media was three order of magnitude lower than the number detected by

qPCR but also trend to decrease with ageing time (Table 17).
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Figure 23: FB log2-transformed OTU counts of the genera with the highest impact on the balances for the
amplicons 16S (A,B) and ITS (C,D) that correspond to the numerator or the denominator of the balances.
The indicators NEW and OLD refer to the new and old barrel respectively and numbers at the beginning of
the indicators refer to the sampling period.
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Figure 24: ICVV log2-transformed OTU counts of the genera with the highest impact on the balances
for the amplicons 16S (A,B) and ITS (C,D) that correspond to the numerator or the denominator of the
balances. Acronyms BAN and BAO refer to barreled wine from new and old barrel respectively, FML to
final malolactic fermentation stage and BTN and BTO to bottled wine from new and old barrel respectively.
Numbers at the beginning of the acronyms refer to the sampling period.
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Discussion

Although deterioration of ageing wines in barrels or bottles caused by microorgan-

isms consists a real threat for product quality and marketability, our knowledge on the

microbial status of those wines is still quite limited. The present work is one of the first

studies dealing with the meta-taxonomic characterization of microbial consortia during

ageing of wines using a HTS approach. To our knowledge, just one previous meta-

taxonomic study included samples from aged wine prior to bottling but it was mainly

focused on the vineyard microbiota and its correlation with the chemical composition of

the finished wines [240]. That study, used HTS at aged wines and detected high number

of bacterial and fungal genera allowing to differentiate wines from different vineyards

[240]. In addition, for the first time, our work used a meta-taxonomic approach to mon-

itor the effect of time of ageing in the barrels, prior usage of the barrels and ageing in

glass bottles over the bacterial and eukaryotic communities.

Diverse studies found that species diversity trend to decrease over time during the

winemaking process, being the two most significant decrease during alcoholic fermen-

tation and after SO2 addition once fermentation is finished [228]. The lower species

diversity could be explained by the stressing conditions (high ethanol concentration, low

pH and scarcity of nutrients) that characterise the process resulting in a strong selection.

However, through the ageing period the microbial diversity has been shown to be

relatively constant although the number of cells tend to decrease [150]. Overall, our re-

sults showed non-significant changes in microbial diversity during ageing for the factor

ageing-time and barrel-type. The exception was found for ICVV samples that showed an

inflexion point in bacterial and fungal diversity over time at 9 months of ageing, harbour-

ing the 3 and 12 month samples higher diversity. Meanwhile, our qPCR results pointed to

a decrease in yeast and LAB numbers through time whereas AAB population were kept

constant, as previously observed [229]. However, no AAB cell were recovered by cultur-

ing in each stage manifesting the difficulty to grow them in laboratory conditions or their

VBNC state [19, 241]. These results point out that either the death of the cells or their

entrance into VBNC state in the barrels, lead to a decreased cell number but nonetheless a

scarce fluctuation of their diversity based on the factors time or barrel-type. However, the

12 month bottle-aged wine resulted in significantly lower diversity of bacterial and fun-

gal communities compared to the 12 month barrel-aged wine while the number of cells

were similar or even one order higher than in the bottles, suggesting that the barrel have

a positive influence on the microbial diversity. In fact, the diversity and number of cells

of bottle samples were similar to those of the wine samples just introduced in the barrels
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after FML. Wood is more or less porous depending on being the origin of the wood. For

example, American and French oak have different porosity and their absorbent structure

allows progressive microbial penetration, especially during the first time it is used [50].

These microorganisms can develop when they come into contact with wine, increasing

the diversity and with a possibly harmful effect on wine quality.

The relative abundances alone of the detected bacterial and fungal genera give little

information about the microbial communities changes according to the studied factors.

Thus, in this study, we analysed the calculated balances by GNEISS based on these gen-

era. Even if no profound changes were observed for microbial diversity across ageing-

time in barrels, bacterial communities of early and late maturation differed significantly

at both ICVV and FB wines. The bacterial changes between early and late ageing are in

agreement with the chemical evolution previously observed for the wines during ageing

[217–220]. On the other hand, fungal communities behaved differently at the two cellars

but they have in common that the final communities at 12th months of barrel ageing were

similar to the samples of the initial ageing, harbouring the intermediate ageing samples

different fungal communities. The HTS and qPCR techniques based on DNA do not

allow the differentiation between lives, VBNC or death cells. But the combination of

both techniques allowed to known that number of yeasts was decreasing with time while

their structure and diversity was not changing deeply. Also, the cells detected by plate

culture were the those culturable while the rest detected by qPCR but not recovered on

plates would be either dead or in VBNC state. The VBNC state may be reversed when

the environmental parameters are adequate and the metabolic activities of recovered mi-

croorganisms might be detrimental to the wine flavour [50].

The number of times the barrels are used determines the oak composition and the

rate of chemical compounds extracted from the wood [218]. Similarly, it is well known

that aroma of wines aged in oak barrels differ significantly from that aged in glass bottles

[242]. Thus, changes in the concentration of different compounds during oak ageing due

to those factors could potentially affect the population of microorganisms in the samples.

In fact, in our study 12 month barrel and bottle-aged wines harboured different bacterial

communities. This was also the case for fungal communities specially for wine in older

barrels. Changes in microbial composition together with the higher diversity observed in

the barrel respect the glass bottle indicated at possible positive effect of the former on the

development of new species even if the total number of yeasts and LAB was decreasing

with time. However, the factor barrel-type did not influence significantly the bacterial or

fungal communities composition, probably because just one year of barrel usage was not

enough to infer deep changes.
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Nisiotou and Gibson [227] were the first to study culturable yeast on bottled wine and

the yeast isolates were mainly Brettanomyces bruxellensis, Saccharomyces cerevisiae and

Rhodotorula pinicola. Other microorganisms like the bacteria Oenococcus oeni or Pe-

diococcus parvulus or the yeasts Pichia anomala or Zygosacharomyces bailii have been

previously isolated and detected during wine ageing [228]. Furthermore, Rubio et al.

[243] found that Brettanomyces presence (cfu/ml and strains) and ethylphenol produc-

tion during ageing was affected more by the ageing conditions (aerobic/anaerobic and

sulfiting) than by the origin of the oak. However, most of the microbiological studies

of ageing wines have been focused on specific spoilage microorganisms and their effects

over wine quality. In our study, the HTS allowed us the detection of high diversity of bac-

terial and fungal genera in the absence of any sign of wine spoilage or off-odors according

to cellar monitoring. Overall, the observed changes in bacterial communities across the

different studied factors resulted from changes in the balances of the genera Acetobac-

ter, Oenococcus, Lactobacillus, Lactococcus and Komagataeibacter, with the two firsts

being the most abundant at both cellars. In the case of fungal genera, the most abundant

was Saccharomyces and together with Malassezia and Hanseniaspora (and Torulaspora

for ICVV) determined the differentiation of the samples at intermediate ageing time. The

fact that Hanseniaspora and Malassezia have been identified as anti-correlated in both

cellars. could suggest an underlying competition between these two genera. Saccha-

romyces, Hanseniaspora and Torulaspora are frequently reported genera in wine using

either culture or molecular based techniques [1, 111]. Malassezia though, is found on the

skin surface thus is possible that this yeast-like fungus contaminated the samples or the

DNA during extraction. Nevertheless, this genus has been recently reported in studies

of must and wine samples using HTS [244, 245]. This methodology has detected minor

and rare species that are sometimes overlooked with culture-dependent methods and can

detect non-culturable cells at the end of fermentation. However, it is still unknown if

these microorganisms have wine environments as their natural niche and have a specific

role during winemaking or if they are simply contaminants.

Our results showed that two wines from two cellars obtained from different grape

varieties and aged under different conditions resulted in a common number of genera

indicating that the microbial community detected could be the normal in the absence of

wine deterioration. However, Bokulich et al. [109] used also HTS on wine samples after

several months of barrel ageing and detected more than 95% of bacterial sequences be-

longing to Leuconostoc (same family than Oenococcus) and fungal sequences related to

Cladosporium, Botrytis and S. cerevisiae, in that order of abundance and accounting over

80% of the eukaryotic sequences. Herein, further studies using the newest sequencing
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technologies would be necessary to elucidate the regular microbial communities during

wine ageing.

Conclusions

Barrel ageing of wine improves its organoleptic characteristics by the physicochem-

ical reactions occurring between wine and wood compounds. The microorganism are

supposed not to interfere or have a relevant role during wine ageing unless uncontrolled

growth occurs, affecting thus wine quality. A plethora of studies about the presence of

contaminant microorganisms and their by-products both during winemaking and barrel

ageing are available. However, it is still missing an holistic view of the normal micro-

biota of aged wine and how the different factors and management affect that microbiota.

In the present study we have used HTS of short amplicons to characterize the bacterial

and fungal communities of wines aged for 12 months. The ageing in barrels did not affect

significantly the microbial diversity with time but changed the structure and composition

of fungal and bacterial population. Also, the barrels exert a positive effect on the micro-

bial diversity in comparison with the glass bottles, in which the microbial communities

were very similar to those of the samples at the beginning of the ageing. Finally, one year

difference in the usage of the barrels was not enough to induce significant changes in

the diversity or composition of wine microbiota through ageing. Our results showed that

wines from different grape varieties and from different cellars, aged under different con-

ditions resulted in a similar microbial composition. Nevertheless, more studies would be

necessary to know if that microbiota is the standard after barrel ageing or if other factors

not considered here could influence it.
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Figure S25: Rarefaction curves based on Shannon index of 16S (A, B) and ITS (C, D) amplicons obtained
for FB (A, C) and ICVV (B, D) samples.

127

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



CHAPTER 6

Qualitative factor-based comparison of NMR, targeted
and untargeted GC-MS and LC-MS on the metabolomic

profiles of Rioja and Priorat red wines.

Dimitrios Kioroglou1, Albert Mas1 and Maria del Carmen Portillo1†

submitted

1 Departament de Bioquı́mica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lı́
Domingo s/n, 43007, Tarragona, Spain
† Corresponding author

129

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



Chapter 6

Abstract

Wine origin and ageing are two factors related to wine quality which in turn is associ-

ated to wine metabolome. In the current study, we implement NMR, targeted and untar-

geted GC-MS and LC-MS metabolomic analytical techniques so as to gain insights into

the volatile and non-volatile wine metabolome composition of red wines from two cellars

located in the only two Spanish Qualified Appellations of Origin; DOQ Priorat and DOCa

Rioja regions. The main goal was to qualitatively evaluate these metabolomic method-

ologies on their ability to provide informative patterns regarding wine metabolome based

on a set of factors, such as ageing of barrel-aged wine (factor time), prior usage of the

barrels (factor barrel-type) and differences between wine ageing in barrels or glass bottles

(factor bottled-wine). Overall, 95 differentially significant metabolites have been identi-

fied facilitating the evaluation of the analytical methodologies performance. The results

did not favor NMR as an effective technique on the current dataset whereas suggested

LC-MS as an adequate technique for revealing differences based on the factor time, tar-

geted GC-MS on the factor barrel-type and untargeted GC-MS on the factor bottled-wine.

Overall, a combination of different metabolomic techniques is necessary for a complete

overview of the metabolome changes.
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Introduction

Wine is a complex hydroalcoholic solution including hundreds to thousands of dif-

ferent molecules (e.g. sugars, amino acids, organic acids, lipids, phenolics, alkaloids,

sterols, lignans, terpenes, fatty acids). These compounds account for the metabolomic

profile of the wine which confers and modulates the quality and sensory properties of

the final wine [56, 246]. Several factors are involved in the wine metabolome and qual-

ity, such as the grape variety, the yeast and bacteria performing the alcoholic and mal-

olactic fermentations, the winemaking practices (e.g. SO2 addition, fining agents) and

ultimately, the ageing process [56, 246–248].

Wine ageing process is the period that starts at the end of winemaking with its in-

troduction in wooden barrels and continues after bottling until its consumption. Barrel

ageing improves wine stability, colour, aroma and flavour. It is well recognized that the

main factors related to the quality of barrel aged wines are the wine composition, ageing

time and wood composition along with its toasting level [218]. In addition, after barrel

ageing, factors such as storage conditions, SO2 addition and stopper composition may

also influence wine chemical composition during bottle aging [236, 237, 249].

Overall, the chemical composition of ageing wine reflects the history and conditions

during ageing and storage [56]. For instance, it is well recognized that compounds such

as 5-methylfurfural are formed during the toasting process and later transfered to the wine

during the ageing process, whereas other such as 4-ethylpenol and 4-ethylguaiacol have

microbial origin [250, 251]. Some authors have investigated the effect of selected factors

on the metabolomic profile of wines during ageing using mainly targeted metabolomic

or single analytical techniques [218, 249, 252]. The most widely analytical techniques

used in wine metabolomics are gas chromatography-mass spectrometry (GC-MS), high-

performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear mag-

netic resonance (NMR). GC-MS has preferably been used to profile wine volatile metabo-

lites whereas HPLC-MS has been the most widely used for non-volatiles. NMR spec-

troscopy gives a reproducible direct identification and quantification of a broad range

of analytes without sample pre-treatment [253]. Though, NMR is limited as it is un-

able to detect metabolites that are present in very small concentrations. Nevertheless, it

has been generally accepted that untargeted analysis is needed for a more comprehen-

sive and holistic analysis [56, 57]. The use of the kinetic correlations in time-dependent

processes as wine ages can further contribute to metabolomic monitoring, discovery of

new biomarkers and metabolic network investigations. Frequently, data are analyzed by

multivariate statistical methods but the choice of the proper statistical treatment plays an
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important role in drawing conclusions. The most frequently implemented methodologies

include Principal Component Analysis (PCA), correlation analysis, ANOVA, t-tests and

hierarchical clustering analysis. However, the reported statistical significance alone does

not provide enough evidence for the importance of the findings without estimating the

magnitude of the effect [254]. Thus, the determination of the practical significance (ef-

fect size) of different conditions or treatments is also of outstanding importance so as to

discern the most relevant changes in metabolites.

The aim of this study was to combine different metabolomic analytic techniques

(NMR, targeted and untargeted GC-MS and untargeted LC-MS) to monitor and compare

the kinetic evolutions of the detected metabolites between red wines aged in oak barrels

from two cellars located in the only two Spanish Qualified Appellations of Origin; DOQ

Priorat (Catalonia) and DOCa Rioja (Spain) regions. The factors considered for the com-

parison included time of wine ageing in the barrels, prior usage of the barrels and, in

the case of Rioja wines, differences between wine ageing in oak barrels or glass bottles.

These factors are shortly referred as time, barrel-type and bottled-wine respectively in the

study. Moreover, it needs to be underlined that among the aims of the current study is not

the direct comparison of the wine metabolome between the two cellars, as other factors

such as grape variety and climatic conditions would render such comparison incoherent.

Instead, the study focuses on the comparison between the different metabolomic analyti-

cal techniques in relation to their ability to reveal informative patterns regarding the wine

metabolome.

Methods

Samples

French oak mid-toasted barrels were the source of red wine samples. Two of them

located in a winery of the DOQ Priotat (cellar Ferrer Bobet, FB) and the other two in the

DOCa Rioja (Bodega institucional, Instituto de Ciencias de la Vid y el Vino, ICVV). In

each region the two barrels differed in time of usage, with one barrel being new, without

any prior usage (BAN), while the other had been used for one year and is referred as

old (BAO). The barrels followed the habitual cellar management and were maintained

with the rest of the barrels from the same vintage. In FB, grape variety was Carinyena,

which is the main and characteristic variety in DOQ Priorat, and the wine samples were

collected at the end of malolactic fermentation, completed inside BAO and BAN and

denoted as 0 time-point, at the time-points of 3, 6 and 9-months of barrel ageing from

both barrels, and at the 12-month time-point from BAN only as BAO was accidentally
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used to refill other barrels due to common practices in the cellar. On the other hand, the

grape variety at ICVV winery was Tempranillo, which is the main variety in DOCa Rioja,

and the wine samples were collected at the end of malolactic fermentation, completed

inside the steel tank and denoted as FML or 0 time-point, and after 3, 9 and 12-months

of barrel ageing from both barrels. Additionally, the same day that the wine finished the

FML at ICVV winery and transferred into BAO and BAN, a sample from each barrel

was taken and bottled. These bottle-aged wine samples, from the old (BTO) and new

(BTN) barrel, were stored in the same cellar as the barrels and analyzed after 12-months

of bottle ageing. All collected wine samples were immediately frozen and preserved at

-80◦C prior to analysis.

1H-NMR

1H NMR spectra were recorded at 300K on an Avance III 600 spectrometer (Bruker®,

Germany) operating at a proton frequency of 600.20MHz using a 5mm PBBO gradient

probe. Wine aqueous samples were measured and recorded in procno 11 using a One-

dimensional 1H pulse experiments were carried out using the nuclear Overhauser effect

spectroscopy (NOESY) pre-saturation sequence (RD–90◦–t1–90◦–tm–90◦ ACQ) to sup-

press the residual water peak, and the mixing time was set at 100ms. Solvent presat-

uration with irradiation power of 75Hz was applied during relaxation delay (RD = 5s)

and mixing time. (noesypr1d pulse program in Bruker®) to eliminate the residual water

moisture of deuterated water. The acquisition time (ACQ) was 3.42s for a total recycling

delay (RD+ACQ) of 8.42s. The 90◦ pulse length was calibrated for each sample and var-

ied from 10.12 to 11.68ms. The spectral width was 10kHz (20ppm), and a total of 256

transients were collected into 64k data points for each 1H spectrum. The exponential line

broadening applied before Fourier transformation was of 0.5Hz. The frequency domain

spectra were manually phased and baseline-corrected using TopSpin software (version

3.2, Bruker).

After pre-processing and visually assessing the NMR dataset, specific 1H regions of

compounds were identified in the spectra using a comparison into AMIX 3.9 software

and Chenomx 7.2 software. Curated identified regions across the spectra were integrated

using the same AMIX 3.9 software package and exported to excel spreadsheet in order

to give relative concentrations.

GC-MS

GC-MS analysis were performed on a GCxGC-TOF Pegasus 4D from Leco Instru-

ments equipped with a MPS autosampler from Guerstel. Chromatographic column was
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a CP-Sil 24 CB (30m x 0.25mm i.d., 0.25µm film) from Agilent Technologies. The in-

jection volume was 1µl and it was performed in pulsed splitless mode in a split/splitless

injector at 250◦C. He (99.999%) was used as mobile phase at a constant flow of 1.2

mL/min. For the elution of compounds, the following temperature program was used:

50◦C for 2min, 50-150◦C at 5◦C/min, 150-240◦C at 10◦C/min. The transfer line tem-

perature was 250◦C and ionization was made by electron impact at 70eV with a source

temperature of 250◦C. The MS acquisition was in full scan after a solvent delay of 5min

between 35-600m/z at 20scan/seg.

Data analysis for both target and untargeted experiments were performed in Chro-

matof 4.50.8 software from LECO. For untargeted analysis, the chromatograms were

deconvoluted by fixing a baseline offset of 1, a peak width of 1 and signal/noise ratio of

100. For targeted analysis, the method was validated by evaluating the Limits of detection

(LOD), limits of quantification (LOQ), linearity (R2), recovery, accuracy and repeatabil-

ity using standard solutions and standard additions to a representative pool of samples.

Quantification of target compounds was performed by an internal standard calibration

method.

LC-MS

LC-MS analysis were performed on a UHPLC-qTOF 6550 from Agilent Technolo-

gies. Chromatographic column was an Aquity BEH-C18 (100mm x 2.1mm., 1.7µm)

from Waters. For the elution of compounds, two different chromatographic methods

were used with a 5mM ammonium formate (pH=3.8) for positive ionization mode and

5mM ammonium acetate (pH=4.5) for negative ionization mode as aqueous mobile phase

and pure methanol as organic mobile phase component in both methods. The elution gra-

dient was the same for both mobile phases, consisting on (0%-0%, 1 min; 0-65% 7 min;

65-100% 8 min; and 100%-100%, 11min). The injection volume was 1µl, the flow rate

was 0.6 mL/min and column temperature was 40◦C. The ionization was performed both

in positive and negative electrospray in two separate runs and mass spectra was recorded

between 100-1100m/z at 3spec/seg.

Data analysis was performed with Mass Profinder Software from Agilent. This soft-

ware deconvolutes the chromatograms to find the molecular features present in the sam-

ples and align their mass and retention times resulting in a matrix containing the neutral

mass of the feature their retention time and the area of the chromatographic peak.
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Chemical classes

The assignment of chemical classes to the identified metabolites has been based

on the food database (fooddb.ca), the yeast metabolome database [255] and the human

metabolome database [256].

Statical analysis

Statistical analysis has been based on the factors barrel-type and time. For FB, the

factor barrel-type included the 0, 3, 6 and 9-month barrel-aged wine samples separated

in the groups of old and new barrel resulting in 4-samples per group, whereas the factor

time concerned the barrel-aged wine from old and new barrel grouped by the attributes

0, 3, 6 and 9-month time-points leading to 2-samples per group. Similarly, for ICVV

the factor barrel-type concerned the 3, 9 and 12-month barrel-aged wine samples divided

into the groups of old and new barrel, and the factor time comprised the 4-groups of

3, 9, 12-month barrel-aged and 12-month bottle-aged wine samples. Moreover, ICVV

included the additional factor bottled-wine which included the 12-month barrel-aged and

12-month bottle-aged wine samples.

For the analytical methods NMR and targeted GC-MS, statistical significance for

each metabolite was derived from Student’s T-Test based on the factor barrel-type and

ANOVA on the factor time using the Python module STATSMODELS [205]. The re-

sulted p-values were FDR-corrected (q-values) and the statistical significance (q-value

≤0.05) was coupled with practical significance which is defined as a minimum 2-fold

change between minimum and maximum value observed among the samples (FCMM

≥2).

For the methods LC-MS and GC-MS, differential metabolomic analysis has been

performed using the R package MetaboDiff [257]. The analytical steps followed by

MetaboDiff included the imputation of missing values using k-nearest neighbor impu-

tation, k-means clustering outlier detection, variance stabilizing normalization and dif-

ferential analysis based on Student’s T-Test or ANOVA using the factors barrel-type and

time respectively. The metabolites that were chosen for further analysis were those that

presented statistical significance with FDR-corrected p-value ≤0.05 and practical signif-

icance with FCMM ≥2.

Principal coordinate analysis (PCoA) for the methods NMR, LC-MS and GC-MS

was based on the euclidean distance and permutational multivariate analysis of vari-

ance (PERMANOVA) on the distance matrix was performed using the Python module

SCIKIT-BIO [258] and the factors barrel-type and time. Finally, hierarchical clustering
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was performed using the Python module SCIPY [206] after calculating the growth rates

of the barrel-aged wine samples for the periods 0-3, 3-6, 6-9 and 9-12-month time-points

for FB, and 0-3, 3-9 and 9-12-month time-points for ICVV. For comparison between

ICVV’s 12th-month bottle and barrel-aged wine samples, the hierarchical clustering was

based on their growth rates for the period 0-12-month.

Results

NMR

The 39 identified metabolites with NMR are reported in Table 18 for FB and ICVV.

For both cellars the concentration for the majority of the metabolites was very low rang-

ing between 0-90 mmols with exception ethanol that ranged between 1000-1600 mmols.

After performing differential analysis, none of the metabolites of FB was found to be

statistically significant for the factors barrel-type and time, whereas for the cellar ICVV

the metabolite formate was found to be statistically significant for the factor barrel-type

and methanol for the factor time. However, methanol had FCMM <2, leaving formate as

the only metabolite with both statical and practical significance (FCMM=5.6).

After performing PCoA for the cellar FB (supplementary Figure S27A), the metabo-

lites with the highest loadings across the principal components were saccharopine, 2,3

butanediol, tartaric acid and histidine, however without demonstrating practical signifi-

cance. The only metabolites with practical significance were formate (FCMM=2, sup-

plementary Figure S28A) and ethanal (FCMM=3, supplementary Figure S28B), with the

former having an impact on separating the early maturation samples (≤3 months) from

those of late maturation (≥6 months), and the latter showing differences between old and

new barrel for the samples of 3, 6 and 9 months. Nevertheless, their effect on the samples

clustering was minimal since PERMANOVA reported non-significant differences for the

factors barrel-type (p-value=0.46) and time (p-value=0.09), and overall the hierarchical

clustering based on the growth rates of the NMR metabolites did not reveal any informa-

tive clustering structure (Figure 26A, supplementary Figure S37).

Similarly to FB, most of the metabolites of the ICVV’s samples with the highest

loadings across the principal components (supplementary Figure S27B) were practically

non-significant apart sorbate (FCMM=2 , supplementary Figure S28D) that showed dif-

ferences between early (≤3 months) and late (≥9 months) maturation samples . The rest

of the metabolites with practical significance were acetoin (FCMM=2, supplementary

Figure S28C) with similar PCoA loadings as gluconate that showed differences between

early (≤3 months) and late (≥9 months) maturation samples, and formate (FCMM=5.6,
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supplementary Figure S28E) and ethanal (FCMM=3.5, supplementary Figure S28H)

where both showed differences between old and new barrel and had similar PCoA load-

ings as sorbate. Practical significance was also shown by uracil (FCMM=2.4, supplemen-

tary Figure S28F) and shikimic acid (FCMM=2.0, supplementary Figure S28G) which

had similar PCoA loadings as choline, however their capacity on demonstrating differ-

ences between the factors was minimal and mainly concerned the discrepancy between

the 9th month samples with the rest. After performing PERMANOVA, statistical signif-

icance was found only for the factor time (p-value=0.02) which upon the calculation of

the growth factors was attributed to the higher growth rates of formate and ethanal for

the period of 0-3 months of the new barrel and the fact that the majority of the metabo-

lites in both barrels had negative growth rates for the period 9-12 month (Figure 26C,

supplementary Figure S39).

Overall, the metabolites did not present differences between the 12th month samples

of bottle and barrel-aged wine with exception the case of formate that demonstrated prac-

tical significance between the 12th month BTN and BAN samples, an exception that also

influenced the hierarchical clustering of the samples due to its high growth rate for the

BAN sample (Figure 26B, supplementary Figure S38).

targeted GC-MS

The results for targeted GC-MS are given in Table 18 for FB and ICVV. For FB

the metabolites 4-ethylphenol (4-EP) and 4-ethylguaiacol (4-EG) demonstrated similar

trends between old and new barrel, with the former having almost identical values be-

tween the barrel-types across the time-points and the latter showing a converging ten-

dency of the barrel-types after the 3rd month (supplementary Figure S29A). After per-

forming differential analysis, the metabolite 5-methylfurfural (5-MF) showed statistical

significance for the factor barrel-type (q-value=0.009) and the metabolite 4-EG for the

factor time (q-value=0.002). However, only 5-MF was considered of presenting practical

significance having a median fold-change of 12.4 between the barrel-types.

Regarding ICVV, the metabolite 5-MF displayed practical significance of 3.9 fold-

change difference between the 12th month barrel and bottle-aged wine from new barrel

without being accompanied by statistical significance for the factor bottled-wine (sup-

plementary Figure S29B). However, it presented statistical significance for the factor

barrel-type (p-value=0.033) and practical significance of median fold-change of 96.4 be-

tween the barrel-types (supplementary Figure S29C). The rest of the metabolites were

statistically non-significant and ranged in low concentrations (<23µg/L).
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Figure 26: Growth rates hierarchical clustering of samples for region FB (A,D,G) and ICVV (B,C,E,F,H,I)
based on different analytical methods. Acronyms BAN and BAO refer to 12th month barrel-aged wine from
new and old barrel respectively and BTN and BTO to bottle-aged wine from new and old barrel respectively.
Samples containing the labels OLD and NEW refer to barrel-aged wine from old and new barrel respectively,
whereas numbers at the beginning of the labels represent growth rate periods.
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Chapter 6

LC-MS

From the 502 metabolites initially identified with LC-MS, only 14 metabolites were

found to be statistically and practically significant for FB (Table 19) with average FCMM

of 6.3 and 17 for ICVV (Table 20) with average FCMM of 6.

After performing PERMANOVA on the distance matrix for the cellar FB, statistically

significant differences were found only for the factor time (p-value=0.01). The impact

of the metabolites on the samples clustering (supplementary Figure S30A) could be dis-

tinguished in two groups with the metabolites of each group having similar loadings

across the first principal component. The first group contained the metabolites whose

concentrations had an increasing trend and had similar PCoA loadings as eriodictyol and

the second group those metabolites with decreasing trend and PCoA loadings similar to

isorhamnetin-3-o-glucoside (supplementary Figure S31A). From the comparison of the

groups becomes apparent that the calculated FCMM has been derived from the differ-

ences between the samples of 0 and 9th or 12th month. This is also being depicted in

the hierarchical clustering based on the growth factors where in both barrels the first

trimester appears to be the most distant to the rest mainly due to the high growth factors

of caffeic acid, jaceosidin, naringin and luteolin 7-glucoside during that period (Figure

26D, supplementary Figure S40).

In the same manner, the LC-MS metabolites for the ICVV samples were divided in

those with increasing and those with decreasing tendency (supplementary Figure S32),

with the metabolites of each group having similar PCoA loadings across the first principal

component (supplementary Figure S30B). Once more, PERMANOVA reported statical

significance only for the factor time (p-value=0.04), and in combination with the hierar-

chical clustering based on the growth factors it seems that these differences concern the

early (≤3 month) and late (≥9 month) maturation periods (Figure 26F, supplementary

Figure S42). Regarding the bottle and barrel-aged 12th month wine samples, although

they demonstrated practically non-significant differences with exception the metabolite

scopoletin with FCMM of 2 between BAO and BTO and 2.5 between BAN and BTN

(supplementary Figure S32), minor differences in their growth factors created a cumula-

tive effect able to differentiate the two sample groups (Figure 26E, supplementary Figure

S41). However, these differences could only be observed across the second principal

component of the LC-MS PCoA (supplementary Figure S30B), that accounted only for

9.5% of the overall observed variation in ICVV’s samples, suggesting weak differences.
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Chapter 6

untargeted GC-MS

From the 394 metabolites initially detected with GC-MS, 16 metabolites were found

of having statistical and practical significance for FB with mean FCMM of 8.2 (Table 21)

and 48 for ICVV with mean FCMM of 16 (Table 22).

As with the previous methods, PERMANOVA on the distance matrix showed sta-

tistical differences only for the factor time in both cellars (p-value=0.006 for FB and

p-value=0.01 for ICVV). For FB three groups of metabolites could be observed influ-

encing the sample clustering (supplementary Figure S33A). The first group included the

metabolites with increasing trend having similar PCoA loadings to diethyl succinate (sup-

plementary Figure S33A), the second group metabolites with decreasing trend and PCoA

loadings similar to indole-3-methyl acetate and the third group metabolites whose calcu-

lated FCMM derived from the differences between the 6th month sample against the rest

and had similar PCoA loadings to 4,6,8-trimethylon-1-ene (supplementary Figure S34).

The latter group appears to be the reason for the clustering of the periods 9-12 and 3-6

months after performing hierarchical clustering based on the growth rates (Figure 26G,

supplementary Figure S43).

For ICVV, two main groups of metabolites seemed to be influencing the sample clus-

tering (supplementary Figure S33B). As with LC-MS, the first group demonstrated an

increasing trend and had similar PCoA loadings to 2-methyltetrahydrothiophen-3-one

(supplementary Figure S33B) and the second group included metabolites with decreas-

ing tendency and similar PCoA loadings to dibutyl phthalate (supplementary Figures

S35, S36). These two groups could differentiate the early (≤3) from the late (≥9) mat-

uration wine samples, however due to the occasional non-linearity of the trends caused

mainly by the 9th month samples in cases such as 6-tridecene (supplementary Figure

S35), palmic acid and stearic acid (supplementary Figure S36) the periods 0-3 and 9-

12 months clustered together during the hierarchical clustering based on growth rates

(Figure 26I, supplementary Figure S45).

With regards the 12th month bottle and barrel-aged wine, a number of metabolites

displayed practical significance with a mean FCMM of 7.3 between BAO and BTO and

mean FCMM of 6.9 between BAN and BTN that could be separated into two groups. The

first group included the metabolites 4,6,8-trimethylnon-1-ene, palmitic acid, stearic acid,

1-dodecanol, and 6-tridecene whose values were higher for the bottle-aged wine samples

(supplementary Figures S35, S36) and had similar PCoA loadings to 4,6,8-trimethylnon-

1-ene (supplementary Figure S33B). The second group included the metabolites methyl

2-methoxy-2-phenylacetate, oxoglutaric acid, 2,10-dimethylundecane, 5-ethoxyoxolan-

2-one, 1-tetradecene and ethyl-3-hydroxybutyrate that displayed higher values for the
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barrel-aged wine samples (supplementary Figures S35, S36) and received similar PCoA

loadings to phenol, 2-(2h-benzotriazol-2-yl)-4,6-bis(1,1-dimethylpropyl) (supplementary

Figure S33B). These two groups appear to mainly have influenced the separation of the

12th month bottle and barrel-aged wine samples after performing growth rates hierarchi-

cal clustering (Figure 26H, supplementary Figure S44). Additionally, the separation of

these two groups of the factor bottled-wine occurs towards the second principal compo-

nent of GC-MS PCoA (supplementary Figure S33B) that accounts for 26.2% of the total

observed variation suggesting better separation capacity of GC-MS than LC-MS for this

factor.
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Discussion

In the current study the metabolomic profile of barrel-aged wines from two cellars

was surveyed by combining NMR, targeted GC-MS and untargeted GC-MS and LC-MS.

The statistical significance (p-value or q-value≤0.05) has been accompanied by practical

significance (FCMM≥2) for evaluating the differences between the groups of the factors

barrel-type, bottled-wine and time, since statistical significance alone does not provide

enough evidence for the importance of the findings [254].

From previous studies we know that NMR is an useful technique to differentiate

vintage, geographical origin, climate and ageing effect on bottle-aged wine quality [252,

259, 260]. Consonni et al. [252] used NMR to analyse different vintages and ageing times

of Amarone wines and found an increase of amino acids during ageing. These authors

attributed the increase in amino acids to grape protein degradation ascribed to hydrolysis

of yeast and bacteria proteins after their autolysis during ageing process. Nevertheless,

in the current study NMR had the least effectiveness in providing informative differences

between the groups of the studied factors. From all the metabolites detected by NMR,

formate was the only metabolite with both statistical and practical significance for the

factor barrel-type in wine samples coming only from ICVV. Although, formic acid has

been detected in wine before using NMR [261], neither of the two metabolites has been

linked to barrel ageing.

We designed a targeted GC-MS analysis focused on absolute quantification of 4-

ethylphenol (4-EP), 4-ethylguaiacol (4-EG), 5-methylfurfural (5-MF), 2-methylisoborneol

(2-MIB) and 5-hidroximethylfurfural (5-HMF) as previous studies have related those

compounds to wine quality [249, 262]. Additionally, forced ageing conditions during

bottle-aged wine storage resulted in a considerable influence on wine quality increasing

the production of dioxane and dioxolane isomers, furfural and 5-HMF [249]. However,

in ICVV and FB samples only 4-EP, 4-EG and 5-MF were detected by this methodology.

In fact, both cellars showed significant differences for the concentration of 5-MF between

new and old barrel, having lower concentration in the latter. This could be reasoned from

the fact that this compound is connected with the barrel’s toasting process justifying its

high concentration in the new barrel. Additionally, the high discrepancy of the 5-MF

levels between the new barrels in FB and ICVV could be attributed to the intensity of

the toasting process, whereas the detection of 5-MF in BTN indicates that merely a few

hours are enough to transfer this compound to the wine in the case of new barrel and that

the compound is stable in the bottle-aged wine even after a 12-month period. Finally, in

both cellars the compounds 4-EP and 4-EG were non-significant and ranged below their
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perception thresholds, 620 µg/L and 140 µg/L respectively [263].

Regarding LC-MS, in both cellars the majority of the identified metabolites were

flavonoids demonstrating a decreasing tendency with the exception of the metabolites

eriodictyol and jaceosidin in FB and 6-methoxyluteolin in ICVV that increased over

time. Total flavonoid content has been reported of decreasing after a 70-days storage

period [264], however the temporal concentrations of these three metabolites in the age-

ing wine have not been monitored before despite the fact that their antioxidant properties

have been reported [265–267]. Moreover, flavonoid compounds in the wine are repre-

sented by groups of flavonols, flavan-3-ols, and anthocyanins. Contact between wine and

wood results in a continuous decrease in the anthocyanins content [268] that could be

explained by oxidation reactions during ageing or from condensation reactions between

anthocyanins and certain wood molecules, all of which generate large, insoluble and

precipitable polymers. The second major group of metabolites identified was benzene

derivatives that displayed an increasing trend in both cellars, except the metabolites gallic

acid and vanillic acid in ICVV which despite their decreasing tendencies they exhibited

overall stable levels. Although the lack of time-series studies of benzene derivatives in

ageing wine, studies such as Kalua and Boss [269] have observed an increase of this

chemical class during the late Cabernet Sauvignon grape ripening stage. From the chem-

ical class of cinnamic acids, caffeic acid has been detected with increasing trend in both

cellars although it reached higher concentrations in FB. Assuming that the intensity of the

toasting process in FB was lower than ICVV, based on the levels of 5-methylfurfural, we

could explain this discrepancy of caffeic acid concentrations since studies such as Alañón

et al. [270] have shown that the content of caffeic acid was significantly lower in toasted

French oak woods compared to non-toasted. The same study also reports scopoletin and

syringaldehyde of having correspondingly similar and inverse relation to the toasting pro-

cess compared to caffeic acid. Although these two metabolites have been detected only

in ICVV’s wine samples, the similar levels of scopoletin to caffeic acid and the higher

concentrations of syringaldehyde in relation to caffeic acid could potentially corroborate

these findings. Overall, the two groups of metabolites with temporal increasing and de-

creasing concentrations, showed statistical and practical significance between the early

(≤3 months) and late (>3 months) maturation periods, in both cellars, but revealed no

differences for the factor barrel-type. Furthermore, although no statistical and practical

significance was reported for the factors barrel-type and bottled-wine, for the latter factor

subtle differences between the metabolites growth rates created a cumulative effect able

to separate the 12-month bottle-aged wines from the 12-month barrel-aged wines.

As far GC-MS is concerned, a higher variety of chemical classes was identified in
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both cellars, compared to the other methods, with carboxylic acids being one of the

chemical classes that included solely metabolites with increasing trends in both cellars.

Among these metabolites was methionol, in ICVV’s samples, whose degradation has

been suggested as a good indicator of oxidation in the wine and that its concentration

could be maintaned depending on the levels of oxygen and the amount of oxygen scav-

engers [271]. Given that the level of methionol increased during the first trimester and

thereafter remained relatively stable, suggests low initial oxidation levels that increased

over time. Another chemical class comprised of metabolites with increasing concentra-

tions in both cellars was keto acids with oxoglutaric acid being mutually identified and

being described as a metabolite that binds free SO2 [272]. The rest of the chemical classes

included metabolites that presented both increasing and decreasing trends, that could be

explained by small fluctuations of temperature and oxygen levels as well as lysing events.

Overall, in both cellars GC-MS did not reveal differences based on the factor barrel-type

and had better performance than NMR but worse than LC-MS in clustering the samples

in a sensible manner based on the growth rates suggesting an underlying noise. Neverthe-

less, GC-MS was the only method that detected metabolites with practical significance

for the factor bottled-wine, that mainly influenced the separation between the 12-month

bottle and barrel-aged wines. Regarding this factor, studies such as Aiken and Noble

[242] have shown significant differences in the aroma after comparing wine ageing in

oak barrels and glass bottles with a trained tasting panel. However, in the current study,

among these metabolites, the ones that have been connected to aromatic characteristics

are palmitic acid, stearic acid and 1-dodecanol [273, 274] all of them having higher con-

centrations in the bottle-aged wines.

Conclusions

From the four metabolomic analytical techniques implemented in the current study,

NMR was the least effective in providing informative insights based on the given dataset,

targeted GC-MS was the only technique that presented significant differences based on

the factor barrel-type, whereas LC-MS and GC-MS were the only methods displaying

significant differences for the factor time in both regions. From the latter two methods,

GC-MS was also the only one with sufficient separating capacity based on the factor

bottled-wine. Moreover, the lack of dedicated open source metabolomic database on the

organoleptic characteristics of metabolites, renders difficult the inference of the changes

imposed on the ageing wine based on the identified metabolites from the untargeted an-

alytical methods. However, in the current study the identified metabolites from these
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methods appear to aggregate in two groups; one with increasing and the other with de-

creasing concentrations.
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CHAPTER 6: SUPPLEMENTARY MATERIALS

Figure S27: PCA for cellars FB (A) and ICVV (B) based on the NMR metabolites. Metabolites with
highest loadings or practical significance are shown. Acronyms BAN and BAO refer to new and old barrel
respectively, FML to final malolactic fermentation stage and BTN and BTO to bottle-aged wine from new
and old barrel respectively.
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Chapter 6: Supplementary materials

Figure S28: Log2 values of NMR metabolites with practical significance for the cellars FB (A-B) and ICVV
(C-H). Acronyms BAN and BAO refer to barrel-aged wine from new and old barrel respectively, FML to final
malolactic fermentation stage and BTN and BTO to bottle-aged wine from new and old barrel respectively.

Figure S29: GC-MS targeted based on the factors barrel-type and time for cellar FB (A) and ICVV (C).
Figure B concerns the comparison between the 12th month bottle and barrel-aged wine from ICVV cellar.
For these samples the concentration of the 4-EG metabolite was zero.
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Figure S30: PCA for cellars FB (A) and ICVV (B) based on the LC-MS metabolites. Metabolites with
highest loadings acrosss the principal components are shown. Acronyms BAN and BAO refer to new and
old barrel respectively, FML to final malolactic fermentation stage and BTN and BTO to bottle-aged wine
from new and old barrel respectively.

Figure S31: LC-MS log2 values of metabolites for cellar FB. Acronyms BAO and BAN refer to barrel-aged
wine from old and new barrel respectively. Barplots of metabolites with blue background represent the
group of metabolites whose concentration has an increasing trend whereas in orange background the group
of metabolites with decreasing tendency.
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Figure S32: LC-MS log2 values of metabolites for cellar ICVV. Acronyms BAN and BAO refer to new and
old barrel respectively, FML to final malolactic fermentation stage and BTN and BTO to bottle-aged wine
from new and old barrel respectively. Barplots of metabolites with blue background represent the group
of metabolites whose concentration has an increasing trend whereas in orange background the group of
metabolites with decreasing tendency.

Figure S33: PCA for cellars FB (A) and ICVV (B) based on the GC-MS metabolites. Metabolites with
highest loadings acrosss the principal components are shown. Acronyms BAN and BAO refer to new and
old barrel respectively, FML to final malolactic fermentation stage and BTN and BTO to bottle-aged wine
from new and old barrel respectively.
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Chapter 6: Supplementary materials

Figure S34: GC-MS log2 values of metabolites for cellar FB. Acronyms BAO and BAN refer to barrel-aged
wine from old and new barrel respectively. Barplots of metabolites with blue background represent the group
of metabolites whose concentration has an increasing trend, in orange background the group of metabolites
with decreasing tendency and in red background the group of metabolites showing differences during the
6th and 12th month.
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Figure S35: GC-MS log2 values of first 25 out of 48 metabolites for cellar ICVV. Acronyms BAN and BAO
refer to new and old barrel respectively, FML to final malolactic fermentation stage and BTN and BTO to
bottle-aged wine from new and old barrel respectively. Barplots of metabolites with blue background rep-
resent the group of metabolites whose concentration has an increasing trend whereas in orange background
the group of metabolites with decreasing tendency.
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Figure S36: GC-MS log2 values of last 23 out of 48 metabolites for cellar ICVV. Acronyms BAN and
BAO refer to new and old barrel respectively. Barplots of metabolites with blue background represent the
group of metabolites whose concentration has an increasing trend whereas in orange background the group
of metabolites with decreasing tendency.
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Chapter 6: Supplementary materials

Figure S37: NMR growth rates heatmap for periods 0-3, 3-6, 6-9, and 9-12 based on barrel-type (OLD or
NEW) for cellar FB. Values represent percentage of increase or decrease for each metabolite for the given
period.
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Figure S38: NMR growth rates for period 0-12 of barrel-aged wine from new (BAN) and old (BAO) barrel
as well as of bottle-aged wine from new (BTN) and old (BTO) barrel for cellar ICVV. Values represent
percentage of increase or decrease for each metabolite for the given period.
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Chapter 6: Supplementary materials

Figure S39: NMR growth rates for period 0-3, 3-9 and 9-12 based on barrel-type (OLD or NEW) for cellar
ICVV. Values represent percentage of increase or decrease for each metabolite for the given period.
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Chapter 6: Supplementary materials

Figure S40: LC-MS growth rates heatmap for periods 0-3, 3-6, 6-9, and 9-12 based on barrel-type (OLD or
NEW) for cellar FB. Values represent percentage of increase or decrease for each metabolite for the given
period.
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Figure S41: LC-MS growth rates for period 0-12 of barrel-aged wine from new (BAN) and old (BAO) barrel
as well as of bottle-aged wine from new (BTN) and old (BTO) barrel for cellar ICVV. Values represent
percentage of increase or decrease for each metabolite for the given period.
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Chapter 6: Supplementary materials

Figure S42: LC-MS growth rates for period 0-3, 3-9 and 9-12 based on barrel-type (OLD or NEW) for cellar
ICVV. Values represent percentage of increase or decrease for each metabolite for the given period.
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Figure S43: GC-MS growth rates heatmap for periods 0-3, 3-6, 6-9, and 9-12 based on barrel-type (OLD or
NEW) for cellar FB. Values represent percentage of increase or decrease for each metabolite for the given
period.
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Chapter 6: Supplementary materials

Figure S44: GC-MS growth rates for period 0-12 of barrel-aged wine from new (BAN) and old (BAO) barrel
as well as of bottle-aged wine from new (BTN) and old (BTO) barrel for cellar ICVV. Values represent
percentage of increase or decrease for each metabolite for the given period.
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Chapter 6: Supplementary materials

Figure S45: GC-MS growth rates for period 0-3, 3-9 and 9-12 based on barrel-type (OLD or NEW) for cellar
ICVV. Values represent percentage of increase or decrease for each metabolite for the given period.
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GENERAL DISCUSSION

Winemaking is an intricate process involving a series of stages from the grape har-

vesting till the wine bottling and commercialization. During the whole process the micro-

bial communities appear quite dynamic, and in each stage various factors and microbial

interactions influence the microbial diversity in a way that could potentially confer ben-

eficial or detrimental organoleptic characteristics to the wine quality. For years the study

of the microbial dynamics has been performed with conventional methodologies, accom-

panied by empirical strategies for controlling undesirable microbial activity and growth.

Nevertheless, the known limitations of these approaches along with the acknowledge-

ment of the multifactorial basis of the wine spoilage have created the need for innovative

methodologies that could allow an in-depth analysis of the microbial diversity. Next-

generation-sequencing appears to be the technology that promises such capability, and

its implementation aims at providing better understanding of the underlying microbial

interactions and ultimately a better control over the final wine product.

The overall work of this dissertation could be summarized as an endeavor to evalu-

ate the performance of NGS technology in comparison to conventional methodologies, as

well as to establish a NGS-based bioinformatic and statistical framework for the studying

of microbial dynamics during fermentation and winematuration. Moreover, various fac-

tors related to the microbial diversity and winemaking process have been assessed, such

as grape health and fermentation stage in chapter 2, geographical origin, grape variety

and grape maturation state in chapter 4, as well as time, barrel-type and bottled-wine in

chapters 5 and 6. All these extensions are referred as NGS-based and biological aspects

of the main objectives, respectively.
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Evaluation of the NGS-based aspects

The literature review on the state-of-art of the NGS metataxonomic analysis concern-

ing the alcoholic fermentation revealed the potential of this technology since it allows the

observation of higher microbial diversity, with various studies confirming previous NGS

insights or complementing them with new findings. Nevertheless, it also showed the

necessity of a systematic benchmarking and evaluation of the available bioinformatic

frameworks, due to the variety of laboratory protocols and the plethora of algorithms and

parameters to choose and tweak respectively.

In this work, QIIME appeared to be a convenient and useful bioinformatic frame-

work, as it incorporates numerous algorithms dedicated to the various stages of the bioin-

formatic and statistical analysis of NGS-based metataxonomic data. Although, these

algorithms may be written in different programming languages, they are wrapped in

python code providing this way a unified user interface. However, not every aspect of

the wrapped algorithms are exposed to the user, making external implementations neces-

sary in cases where higher level of customization is desirable.

The first NGS-based bioinformatic pipeline implemented in chapter 2, corroborated

the claims over the enhanced performance of the NGS technology compared to the con-

ventional methodologies. From the latter, plate culturing provided the least informative

insights regarding the microbial communities, since the labor intensity of the culturing

and the fact tha only certain species are able to grow under laboratory conditions [13],

led to the monotoring of only culturable microorganisms, whereas qPCR [22, 150] was

limited to the detection of targeted species of the communities. On the other hand, PCR-

DGGE exhibited better performance from the side of the conventional methodologies.

However the limitation regarding its inability of detecting populations in low concentra-

tions [22, 150] became apparent, since it failed to detect species, such as Saccharomyces

cerevisiae, that were in low abundance in the must and the beginning of the alcoholic fer-

mentation. Overall, the trends of the microbial dynamics demonstrated by NGS were in

congruence with those shown by the conventional methodologies, however NGS exhib-

ited higher sensitivity at detecting low abundance microbial populations, revealed higher

bacterial diversity than any other method, and 70% of the yeasts that it identified were

also detected by other methods.

Although, in chapter 2 the phylogenetic diversity and weighted UniFrac distance

were useful metrics for the evaluation of the alpha and beta diversity respectively, an al-

ternative was sought for the study of these two types of diversity at genus level. Even

though, both metrics can be calculated at genus level, their current implementation in

QIIME renders the process of collapsing at this level a complicated process due to the
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way that the phylogenetic tree is constructed. By default, QIIME assigns taxonomy to the

maximum level that is possible, which is the species level. Although, an algorithm that

aggregates the OTU table at genus level and merges the OTU counts exists in QIIME,

currently there is no direct way of collapsing the representative sequences of the grouped

OTUs. This is a known limitation and has already been discussed in QIIME’s forums
4. Since the phylogenetic tree is constructed using the representative sequences, the re-

sulted diversity metrics cannot be collapsed at a given taxonomic level without resorting

to elaborate external procedures. This limitation along with the fact that the UniFrac dis-

tance may lead to misleading results with ITS amplicons [275], leave Shannon index and

Bray-Curtis distance as better metrics for studying alpha and beta diversity, respectively,

at genus level in QIIME.

In chapter 3, numerous aspects related to the laboratory and bioinformatic workflows

were examined, however their evaluation had a qualitative character since only a single

mock community was utilized in the study. Nevertheless, certain findings corroborated

previous results, such as those from the study of Van Der Pol et al. [31] regarding the sim-

ilar performance of OTU (with 99% similarity threshold) and ASV clustering methods,

and Trtkova et al. [193] concerning the higher specificity of the ITS amplicon compared

to the 18S amplicon. Furthermore, as it has been pointed-out by Ahn et al. [27], the

number of PCR cycles should be retained as low as possible, since small increase does

not confer any observed improvement compared to a previously established value. As

far the rest of the results are concerned, Illumina platform is a preferable choice espe-

cially in cases where machine learning taxonomic algorithms of QIIME are to be imple-

mented, since these algorithms are trained with Illumina generated metataxonomic data

[34]. Moreover, the Phred quality threshold should be set as high as possible, with Q20

being a suggested minimum, by this work, as it represents 99% base call accuracy [29],

and led to a better taxonomic performance than Q10. Overall, the established QIIME’s

default parameters exhibited good performance, and even though a significant amount

of mock communities is necessary for an in-depth modification of these parameters, the

usage of a single mock community is suggested, by this work, as a form of an initial

elementary performance evaluation of any bioinformatic pipeline.

The statistical analysis framework GNEISS represents a non-parametric alternative

that utilizes all the available metataxonomic data, and is not restricted to assumptions re-

garding homogeneous and randomly distributed microbial diversity within the samples,

as rarefaction assumes [276]. This kind of assumptions may affect the effectiveness of

setting a rarefaction threshold based on rarefaction curves, since the observed microbial

4https://forum.qiime2.org/t/genus-level-gene-trees/11369/4
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diversity, after the quality filtering of the raw sequencing, cannot be considered as true

microbial diversity. Moreover, inferences based on GNEISS do not run the risk of be-

ing underpowered due to small number of samples as with Kruskal-Wallis [277], since

GNEISS provides balances and not p-values. Therefore, detached from these limitations,

the calculated balances consist a normalized version of the OTU counts that could be

used for differential or factor analysis. Despite the benefits of using GNEISS, its main

drawback concerns the lack of direct information associated with the taxa that drive the

observed differences among the samples, making further analysis necessary for that pur-

pose.

Evaluation of the biological aspects

Despite the lack of common basis regarding the biological aspects of the main objec-

tives, due to the differences and peculiarities of the experimental design in each chapter,

the overall evaluation of these aspects concerns the impact of various factors on the ob-

served microbial diversity, as well as the insights provided by the NGS-based metataxo-

nomic implementation. These insights are assessed based on their level of alignment to

previous studies and the new information that they provide.

In chapter 2, the health status of the grapes seemed to represent a factor that cap-

tured better the changes of the bacterial dynamics, with the bacterial communities being

significantly different between healthy and damaged grapes. This demonstrates their op-

portunistic nature, where availability of nutrients may cause bacterial growth in early

stages [2, 14], and underlines the need of proper handling of the grapes during harvest-

ing. Although, NGS identified higher bacterial diversity than conventional methods, the

majority was below 1% abundance and considered as noise. From the rest, the most

abundant taxa, Acetobacter, Gluconobacter, Gluconoacetobacter and Oenococcus have

also been identified by other NGS studies [49, 79], and the results of chapter 2 indicated

Oenococcus as the taxa with the ability to draw distinctions between healthy and dam-

aged grapes. Even though, this inference was based on statistical analysis of the relative

abundances, it was also denoted by the weighted UniFrac PCoA (Figure 6B) where a

clear separation of the final fermentation stage could be observed between the healthy

and damaged grapes. These findings proved once again the well-adapted nature of Oeno-

coccus to the alcoholic fermentation compared to other LAB [2]. However, the fact that

its thriving appeared to be benefited only by the healthy grapes, raises doubts about the

suggested lack of rivalry between AAB and LAB [16, 17].

On the other hand, the fermentation stage was the factor that had greater discrimina-

tory power on the fungal communities, with their populations at the early fermentation
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stages being significantly different than those at the late stages. This factor, revealed the

previously described fungal dynamics with the rise and dominance of the Saccharomyces

cerevisiae towards the end of the fermentation, along with the parallel decline of the non-

Saccharomyces yeasts and the aerobic filamentous fungi [3]. Overall, NGS managed

to identify genera described also by other studies [42, 44, 111], and more specifically

it identified previously reported taxa that are associated with damaged grapes such as

Botrytis, Kazachstania, Zygosaccharomyces and Issatchenkia [53, 136, 137]. Addition-

ally, the potential wine spoilers Aspergillus and Penicillium were detected at the very

early stages of the fermentation in the healthy grapes, highlighting the capacity of NGS

to provide a more refined monitor of the quality-threatening microbial diversity.

In chapter 4, the results verified previous studies regarding the concept of “terroir”

and its connection to the wine microbiota [42–49], as well as the influence of the har-

vest time [22, 44, 50, 52–54] and grape variety [55] on the observed microbial diversity.

All three factors managed to capture 75% of the observed variance among the fungal

communities, with geographical origin having greater impact (63%) than grape variety

(11%) and maturation state (1%). This could be explained from the fact that terroir rep-

resents a broader factor, whose impact is derived from the cumulative effect of additional

factors such as soil, climate, and human field interventions, each one having its own

influence on the microbial diversity. Regarding the observed fungal diversity, the diffi-

culty of isolating Saccharomyces cerevisiae from the grape surface [3] was confirmed,

and the fungal populations were consisted of non-Saccharomyces and filamentous fungi.

Concerning the latter, GNEISS pointed-out the previously reported on the grape surface

Aspergillus, Botrytis, Colletotrichium, Rhodotorula, and Penicillium [278–280] as the

genera that mainly influenced the observed differences among the vineyards. Although,

filamentous fungi have received less attention regarding their beneficial contribution to

the final wine product than Saccharomyces and non-Saccharomyces yeasts, organoleptic

characteristics such as earthy or musty aromas have been attributed to their activity and

have been described as characteristics that are potentially vineyard dependant [281].

As in chapter 2, the limitations of the conventional methodologies could also be ob-

served in chapter 5, complemented by the inability to culture AAB in laboratory con-

ditions due to their VBNC state [19, 241]. Regarding the studied factors, the barrels

demonstrated similar microbial diversities, implying an insignificant impact of the factor

barrel-type on the microbiota when it concerns a new barrel and a barrel with 1-year of

prior use. On the other hand, the microbial diversity in the bottles was similar to that at

the end of FML, when the wine was introduced into the barrels, whereas higher diver-

sity was observed at the 12-month barrel samples (factor bottled-wine). This underlines
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the impact that the oak wood has on the microbial communities, since its porosity and

absorbent properties may allow the establishment of microorganisms that could be nour-

ished and grow once they come in contact with the wine [50]. Furthermore, the factor

time revealed a stable microbial diversity during the ageing process, and a more dynamic

bacterial communities that showed differences between the early and late maturation pe-

riods. These findings are aligned with previous studies showing stability of the microbial

diversity during wine ageing [150], and possibility of microbial growth due to alterations

in the wine caused by the characteristics of barrel’s wood, fluctuations of the storage

conditions and cell autolysis [13].

From the bacterial communities, one of the most abundant genera, in the barrels, was

Oenococcus and from the fungal communities Saccharomyces. This demonstrated the

well adapted nature, to the alcoholic and malolactic fermentation, of the former and the

dominating attitude of the latter [2, 3]; behaviours that were observed in both cellars.

Additionally, despite the differences regarding the grape variety and storage conditions

between the FB and ICVV cellars, the bacterial genera Acetobacter, Oenococcus and

Lactobacillus, as well as the fungal genera Saccharomyces, Hanseniaspora, Aspergillus

and Malassezia were detected in both cellars. These findings urge the need for further in-

vestigation, in order to infer whether these genera consist a regular microbial composition

during winematuration.

The metabolomic analysis in chapter 6 did not allow the extraction of direct con-

clusions regarding the properties that the identified metabolites could potentially confer

to the wine, due to the lack of dedicated and curated databases for this purpose. Fur-

thermore, the analysis of the metabolites at the chemical class level was hindered by the

different trends the metabolites demonstrate within a given chemical class. Therefore,

the growth rates of the metabolites were calculated for different maturation periods, and

were used to perform hierarchical clustering of the samples. This process revealed that

the clustering of the samples, based on the untargeted metabolic methods, was mainly

influenced by two groups of metabolites; one with increasing and the other with decreas-

ing tendency. Based on these two groups, untargeted GC-MS was found to be adequate

for showing differences based on the factor bottled-wine and LC-MS based on the factor

time. The latter, was the method also used by Fang et al. [282] for studying the flavonoid

content of red wines stored in three oak barrels, with the results suggesting great associ-

ation between flavonoid levels and wine ageing.

Regarding the targeted metabolomic methods, NMR did not manage to reveal any in-

formative pattern based on this dataset. Nevertheless, this result should not be considered

as doubt towards its usefulness, since there are many studies that have demonstrated the
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benefits of its application [252, 259, 260]. On the other hand, targeted GC-MS confirmed

the connection of 5-MF to the barrel’s toasting process and intensity [283, 284], making

it ideal for drawing distinctions for the factor barrel-type. Moreover, the differences of

5-MF in the bottled wines showed that this compound could be transferred, at detectable

and stable for 1-year levels, to bottled wines from a new barrel after a short maturation

period. The stability of the 5-MF inside the bottles could be extrapolated to the rest of

the volatile compounds, and explain thus the ability of the untargeted GC-MS to show

differences for the factor bottled-wine. These conclusions indicate that the combination

of targeted and untargeted metabolomic methods is necessary so as to obtain a more

spherical view of the wine metabolome based on different factors.

Future research and limitations

Next-generation-sequencing appears a very promising technology, and based on the

results presented by this work it seems capable of surpassing the limitations of the con-

ventional methodologies and provide an enhanced view into the microbial diversity.

Moreover, the derived results managed to corroborate previous findings associated with

the winemaking process, suggest improvements on the bioinformatic and statistical anal-

yses, and provide new insights regarding the various factors that influence the vinification

and winematuration process. Therefore, based on these considerations we may deduce

that the main hypothesis of this dissertation holds true.

Despite its potential, NGS requires further improvement in order to reach the level of

controlling the final wine product based on microbial interactions. From statistical stand-

point, the known shortcomings of hypothesis testing and the resulting p-value [285, 286],

urge the need of developing methodologies that could show the size of an effect associ-

ated with a discovery. In this work, the log2-transformation of the OTU counts has been

implemented, as it can easily be translated to fold-change. However, this transformation

has to be performed on the rarefied OTU table, with rarefaction carrying its own assump-

tions as already being discussed. Furthermore, an accurate estimation of the effect size is

hindered by the difficulty of determining the amount of the true microbial variation that

is accounted by the observed variation of the OTU counts, since the extracted DNA quan-

tity is usually inconsistent [287] and the microbial diversity is altered during the filtering

of low quality raw sequences.

In order to understand the microbial interactions, we need to incorporate metatran-

scriptomic data into the wine analysis, since this type of data can provide useful infor-

mation regarding the kind of microorganisms that are active on a given moment, and

potentially allow to discard assigned taxonomies originated from dead cells. However,
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this presupposes the ability of accurately identifying microorganisms at species level and

the availability of corresponding reference genomes. Additionally, such implementation

is impeded by the difficulty of extracting RNA from wine samples at adequate quan-

tity and quality, due to the presence of wine molecules such as phenols and enzymatic

inhibitors [288].

Therefore, machine learning approaches consist an alternative solution for the control

of the wine final product, with the incorporation of metataxonomic and metabolomic

data. As mentioned in chapter 1, such approximation has been applied by Bokulich

et al. [109], where the authors implemented the random forest classifier so as to predict

the wine metabolome using the wine microbiota. There are many supervised learning

solutions to achieve this goal, with neural networks being the most flexible machine

learning application. Nevertheless, the amount of input necessary for the training process

of such algorithms, prohibits even the consideration of such solutions due to the current

high financial burden of NGS. Therefore, more meta-analysis is necessary to provide the

necessary data pool, and on the other hand to corroborate findings presented either in this

dissertation or other studies.

Overall, in this work we have shown that the establishment of a NGS-based imple-

mentation for a metataxonomic analysis, requires an in-depth look and evaluation of the

available bioinformatic tools and methods. Therefore, according to the presented gen-

eral results, the analytical framework that this dissertation has established represents a

solid foundation upon which further research can be based in order to provide additional

improvements and insights.
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1. NGS-based metataxonomic analysis exhibits higher sensitivity regarding low abun-

dance microbial populations, and reveals higher microbial diversity than conven-

tional methodologies.

2. The dynamics of the fungal communities are more pronounced based on the fer-

mentation stage, whereas the bacterial communities are influenced more by the

grape health.

• Oenococcus abundance appears to be affected negatively by damaged grapes.

3. QIIME is a useful NGS-based bioinformatic and statistical framework for metatax-

onomic analysis. However, a systematic evaluation and benchmarking of its avail-

able algorithms and default parameters is necessary in order to achieve robust per-

formance.

• Q20 represents the suggested minimum threshold for filtering raw metataxo-

nomic data based on Phred quality scores, since it represents 99% base call

accuracy and provides better taxonomic classification results.

• Shannon index and Bray-Curtis distance are better metrics, compared to phy-

logenetic diversity and UniFrac distance, for studying alpha and beta diver-

sity, respectively, at genus level in QIIME.

• ASV and OTU clustering methods have similar performance at genus level,

as long as the similarity threshold of the latter is set at 99%.

4. The multifactorial nature of the concept of terroir, causes the factor geographical

origin to have greater impact on the fungal communities than grape variety and

berry maturation state.
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• The populations of the filamentous fungi on the grape surface appear quite

diverse in different vineyards, due to the geographical characteristics of the

latter.

• GNEISS represents a promising non-parametric statistical framework for an

unbiased inference of the microbial dynamics.

5. During a 1-year maturation period, the microbial diversity remains relative stable

with sporadic microbial growth that could be attributed to the material of the barrel,

fluctuations of the storage conditions and cell autolysis events.

• Similar microbial diversity should be expected between a new barrel and a

barrel with 1-year of prior use.

• Within a 1-year ageing period, the material and characteristics of an oak bar-

rel confers changes to the microbial diversity that would not be observed if

the wine was stored in glass bottles.

6. A combination of targeted and untargeted metabolomic methods is necessary in

order to infer changes of the wine metabolome based on different factors.

• LC-MS appears suitable technique for revealing differences based on the fac-

tor time, targeted GC-MS on the factor barrel-type and untargeted GC-MS on

the factor bottled-wine.

• The detected levels of 5-methylfurfural by targeted GC-MS verified its asso-

ciation with the barrel’s toasting process and intensity, and demonstrated that

this compound can be transferred at detectable and stable levels to bottled

wines from new barrels and after a short storage period.

178

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF MICROBIAL POPULATIONS IN WINES THROUGH NGS METHODOLOGIES 
Dimitrios Kioroglou



REFERENCES

[1] Padilla, B.; Gil, J.V.; Manzanares, P. Past and future of non-Saccharomyces yeasts: from
spoilage microorganisms to biotechnological tools for improving wine aroma complex-
ity. Frontiers in microbiology 2016, 7, 411.
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APPENDIX A

Research stay outline

The 3-months research stay was realized at the Technical University of Denmark

and hosted in the research group of the associate professor Dr. Jose Maria Gonzalez

Izarzugaza at the Center for Biological Sequence Analysis (CBS). The main focus of

CBS is the research in the field of bioinformatics and systems biology, and the past years

it has produced numerous computational methods that can be found in the following link:

http://www.cbs.dtu.dk/services/

The main activity of the stay concerned the RNASeq analysis of a dataset derived

from a trascriptomics experiment. The design and implementation of this experiment

was performed by Dr. Motlhalamme as part of her PhD thesis “Characterization of
melatonin production and physiological functions in yeast”.

Dr. Motlhalamme’s PhD was conducted at the south African grape and wine research

institute of the faculty of AgriSciences of the Stellenbosch university under the super-

vision of the professors Florian Bauer and Bernard Prior. Her PhD thesis can be found

at:

https://scholar.sun.ac.za/handle/10019.1/107867

The RNASeq experiment and the derived dataset is attached to chapter 4 (pages 75-

110), “Melatonin modulates the transcriptional response of S. cerevisiae to hydrogen
peroxide oxidative stress”, of Dr. Motlhalamme’s dissertation.

The RNASeq analysis and results presented here in the Appendix A, represent an

independent bioinformatic analysis of Dr. Motlhalamme’s transcriptomic data and the

derived results are not connected to the chapter 4 of Dr. Motlhalamme’s dissertation
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Appendix A

by any mean. The results included in the Appendix A have not been published and the

whole RNASeq analysis was performed for purely educational purposes, with the aim of

a potential similar implementation in this dissertation.

Experimental background

Introduction

The following passage has been taken from the chapter 4 of Dr. Motlhalamme’s

dissertation (pages 77-78):

“Several studies have documented the production of melatonin by S.

cerevisiae and non-Saccharomyces yeast strains. However, the biosynthetic

pathway and functions of this indoleamine in these microorganisms remain

obscure. The protective role of melatonin against H2O2-induced oxidative

stress and UV stress in yeast was recently described (Vzquez et al., 2017;

Bisquert et al., 2018). In these batch culture studies, melatonin reduced re-

active oxygen species (ROS) accumulation, enhanced the expression of en-

dogenous antioxidant genes in H2O2 stressed S. cerevisiae and increased

cell viability after exposure to UV and oxidative stress. However, the ex-

act mechanisms behind the protective effects observed remain unclear. This

study aimed to understand the transcriptional response of S. cerevisiae IWBT

Y805 to exogenous melatonin treatment and the temporal response of mela-

tonin treated cultures to H2O2-induced oxidative stress. Contrarily to previ-

ous studies, a steady state continuous culture set-up was used which reduced

the changes to the physico-chemical conditions associated with batch culture

systems. This constant environmental milieu focused the transcriptional re-

sponse on melatonin-specific mechanisms. Experiments were conducted in

nitrogen-limited continuous culture in order to control the cell growth rate

and environmental conditions.”

Methods

The following passage has been taken from the chapter 4 of Dr. Motlhalamme’s

dissertation (page 79):

4.3.4 Hydrogen peroxide induced stress in continuous culture condi-
tions
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“Steady state cultures were stressed with 0.6 and 1 mM H2O2 in or-

der to determine a sublethal concentration. H2O2 was injected aseptically

into the bioreactor and sampling was conducted at 0, 15 min, 30 min, 60

min, and 120 min. Growth was monitored spectrophotometrically at 600

nm. To assess the impact of melatonin on oxidative stress, this indoleamine

was injected into the feed reservoir to a final concentration of 300 µM. This

concentration was shown to protect S. cerevisiae yeast strains against redox

and oxidative stressors on plate assays reported in Chapter 5. In addition, a

study by Tan et al. (2000) found that 300 µM melatonin was able to scavenge

H2O2. The melatonin containing minimal medium was fed into the bioreac-

tor by a previously calibrated peristaltic pump for one residence time before

induction of H2O2 stress as described above. The bioreactor, feed reservoir

and all tubes were covered in aluminium foil to limit exposure of melatonin

to light.”

References of passages

Bisquert, R., Muñiz-Calvo, S., and Guillamón, J. M. (2018). Protective role of intracellular mela-
tonin against oxidative stress and UV radiation in Saccharomyces cerevisiae. Frontiers in Micro-
biology 9, 318. doi:10.3389/fmicb.2018.00318.

Tan, D. X., Manchester, L. C., Reiter, R. J., Plummer, B. F., Limson, J., Weintraub, S. T.,
Qi, W. (2000). Melatonin directly scavenges hydrogen peroxide: A potentially new metabolic
pathway of melatonin biotransformation. Free Radical Biology and Medicine 29, 11771185.
doi:10.1016/S0891-5849(00)00435-4.

Vázquez, J., González, B., Sempere, V., Mas, A., Torija, M. J., and Beltran, G. (2017). Melatonin

reduces oxidative stress damage induced by hydrogen peroxide in Saccharomyces cerevisiae.

Frontiers in Microbiology 8, 1066. doi:10.3389/fmicb.2017.01066

Research stay RNASeq analysis and results

Main objectives

• Identify differentially expressed (DE) genes among the experimental conditions.

• From the DE genes, identify genes with at least 2-fold over or under-expression due

to melatonine compared to theH202 unstressed and melatonine untreated samples.

These genes are named MDE genes in this analysis.
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• Perform enrichement analysis on the MDE genes in relation to the oxidative stress.

Experimental conditions and notation

4 conditions with 2 biological replicates per condition (a,b) and 4 technical replicates

per biological replicate:

• 1st condition: Melatonine untreated - H202 unstressed (denoted as 0 0)

timepoint T0: a 0 0 t0 - b 0 0 t0

timepoint 1 hour: a 0 0 1hr - b 0 0 1hr

• 2nd condition: Melatonine treated - H202 unstressed (denoted as 1 0)

timepoint T0: a 1 0 t0 - b 1 0 t0

timepoint 1 hour: a 1 0 1hr - b 1 0 1hr

• 3rd condition: Melatonine untreated - H202 stressed (denoted as 0 1)

timepoint 15min: a 0 1 15min - b 0 1 15min

timepoint 30min: a 0 1 30min - b 0 1 30min

timepoint 1hr: a 0 1 1hr - b 0 1 1hr

timepoint 2hr: a 0 1 2hr - b 0 1 2hr

• 4th condition: Melatonine treated - H202 stressed (denoted as 1 1)

timepoint 15min: a 1 1 15min - b 1 1 15min

timepoint 30min: a 1 1 30min - b 1 1 30min

timepoint 1hr: a 1 1 1hr - b 1 1 1hr

timepoint 2hr: a 1 1 2hr - b 1 1 2hr
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Data filtering and depth coverage

Figure S46: Left plot:The filtering of the raw fastq files was around 20%. Right plot: The depth after the
mapping process was estimated around 20X.

Excluded Samples

The following samples have been excluded from the analysis because the biological

replicates were not demonstrating strong correlation.

• a 1 0 1hr and b 1 0 1hr (Figure S47)

• a 1 1 1hr and b 1 1 1hr (Figure S48)
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Figure S47: Red plots: Correlation plots between biological replicats. Green plots: Correlation plots
between technical replicates for biological replicate a. Grey plots: Correlation plots between technical
replicates for biological replicate b.

Figure S48: Red plots: Correlation plots between biological replicats. Green plots: Correlation plots
between technical replicates for biological replicate a. Grey plots: Correlation plots between technical
replicates for biological replicate b.
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Diffential gene expression analysis

• Analysis performed with DESeq2 [289].

• 868 diffentially expressed genes were identified with p-value < 0.01 (p-values ad-

justed with Benjamini and Hochberg correction.)

• PCA was performed taking into consideration only the 868 differentially expressed

genes. (Figure S49)

Figure S49: Principal component analysis capturing 75.77% of the observed variance and performed by
taking into consideration only the 868 differentially expressed genes that were identified.

PCA remarks

• There is clear separation between the unstressed and H202 stressed samples.

• From the H202 stressed samples, the timepoints 15min and 30min clustered to-

gether whereas the 1hr timepoint is quite close to 2hr timepoint in both cases of

metalotine treated and untreated samples.

• Overall, for the H202 stressed samples, the melatonine treated and untreated sam-

ples exhibited the same pattern.
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• Melatonine treated and unstressed samples clustered together with theH202 stressed

samples of 1 and 2 hours. This suggests that melatonine has a potential effect equal

to that of a H202 stressed samples after 1 or 2 hours.

Genes expression profile of 868 DE genes

Genes over-expressed due to melatonin

Without oxidative stress, melatonin caused an at least 2-fold over-expression at 56
genes. From these 56 genes, the biological replicates did not show the same behaviour

of ≥2-fold over-expression for 26 genes.

In Figure S50 are the plots for the rest of the 30 genes for which the biological

replicates showed ≥2-fold over-expression:

Figure S50: Green lines represent biological replicates (a,b) without melatonin. Red lines represent biolog-
ical replicates (a,b) with melatonin. Time-points t0 and t1hr indicate no oxidative stress. Expression levels
are expressed in log2 scale.

Genes under-expressed due to melatonin

Without oxidative stress, melatonin caused an at least 2-fold under-expression at 87
genes. From these 87 genes, the biological replicates did not show the same behaviour
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of ≥2-fold under-expression for 47 genes.

Below are the plots (Figures S51, S52) for the rest of the 40 genes for which the

biological replicates showed ≥2-fold under-expression:

Figure S51: Green lines represent biological replicates (a,b) without melatonin. Red lines represent biolog-
ical replicates (a,b) with melatonin. Time-points t0 and t1hr indicate no oxidative stress. Expression levels
are expressed in log2 scale.

Figure S52: Green lines represent biological replicates (a,b) without melatonin. Red lines represent biolog-
ical replicates (a,b) with melatonin. Time-points t0 and t1hr indicate no oxidative stress. Expression levels
are expressed in log2 scale.

Genes unaffected by melatonin

Melatonine did not affect (that is <2-fold over or under-expression) the expression

levels of 725 genes. In Figure S53 are the expression profiles of 35 randomly selected

genes to demonstrate this.
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Figure S53: Green lines represent biological replicates (a,b) without melatonin. Red lines represent biolog-
ical replicates (a,b) with melatonin. Time-points t0 and t1hr indicate no oxidative stress. Expression levels
are expressed in log2 scale.

Gene profiling conclusions

Addition of melatonin have caused significant and similar changes to the expression

levels as the oxidative stress for 143 out of the 868 DE genes (56 over-expressed + 87

under-expressed). More specifically, the expression levels caused by the oxidative stress

at the time-point 2hr are quite close to the expression levels caused by melatonin prior to

stress. For that reason in the PCA plot the melatonin replicates at time-point t0 clustered

together with the ones at time-point 2hr. Additionally in most cases of these 143 MDE

genes, melatonin caused the expression levels to remain relatively stable, meaning that

melatonin prepared the yeast for the stress. From energy stand-point, prior to stress the

increase of energy demand for the over-expression of the 56 genes seems to have been

counter-balanced by the under-expression of the 87 genes.

Enrichment analysis report of 143 MDE genes

Oxidative stress related genes not found in the 143 MDE genes

The following genes have been found to be significantly (p-value <0.01) differen-

tially expressed due to oxidative stress and not melatonin:

• catalases: CTT1, CTA1

• peroxidases: CCP1. TSA1, TSA2
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• reductases: MXR1, TRR1

• glutathione: GSH1, GSH2

• thioredoxin: TRX2

• glutaredoxins: GRX2

• superoxide dismutase: SOD2

Over-expressed genes due to melatonin

Melatonin has caused an over-expression of genes involved in the following path-

ways:

• Biotin biosynthesis: BIO3, BIO4, BIO5

The following enzymes are biotin-dependent and related to oxidative stress as they

are involved in production of oxaloacetate: PYC1, PYC2

Both enzymes were found to be significantly differentially expressed after applying

oxidative stress but not over-expressed by melatonin prior to stress.

• Vitamin B6 biosynthesis: SNZ1, SNZ3, SNO1

Vitamin B6 has been identified as a potent antioxidant with a high ability to quench

reactive oxygen species (ROS) [290].

• Inhibition of mating type switching initiation:

Melatonin caused an over-expression of RPL22 which is required for the transla-

tion of the ASH1 gene [291] which in turn inhibits the transcription of HO gene.

RPL22 is also required by IME1 which activates transcription of early meiotic

genes.

Perhaps these events serve as a way for S. cerevisiae to conserve energy.

• Genes encoding GAPDH enzymes: GAPDH enzymes participate in many reac-

tions and are encoded by three genes: TDH1, TDH2, TDH3.

Melatonin causes an over-expression of TDH1 gene which has been found of being

over-expressed in low concentrations of H202 [292].

Under-expressed genes due to melatonin

Melatonin has caused an under-expression of genes involved in the following path-

ways:
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• Glutathione degradation: ECM38

• Arginine metabolism: CAR1

• Nitrogen degradation: DAL80

• Allantoin degradation: DAL1, DAL2

Allantoin degradation pathway is shown in Figure S54.

Figure S54: Allantoin degradation pathway. Enzymes in red circles represent under-expressed genes due to
melatonin. The DUR1,2 enzyme is biotin-dependent.

Allantoin has been proposed as a biomarker of oxidative stress [293]. Moreover,

allantoin participates in the bidirectional reaction of Figure S55.

Figure S55: Allantoin, urate bidirectional reaction.

Therefore increase of allantoin’s concentration may direct the reaction towards the

production of urate which is an important antioxidant.

Conclusions from the enrichment analysis of MDE genes

It seems that melatonin does not have a direct effect on the genes that are directly re-

lated to oxidative stress. It rather has a synergetic role preparing and helping S. cerevisiae

to cope with the oxidative stress.
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