UNRB

Universitat Autonoma de Barcelona

The theory of quantum coherence

Maria Garcia Diaz

ADVERTIMENT. L’accés als continguts d’aquesta tesi queda condicionat a I'acceptacié de les condicions d’Us
establertes per la seglent lliceéncia Creative Commons: @ M) http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptacion de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: @@@@ http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set

by the following Creative Commons license: @@@@ https://creativecommons.org/licenses/?lang=en




Universitat Autonoma de Barcelona

The theory of quantum
coherence

by

Maria Garcia Diaz
under supervision of
Prof. Andreas Winter

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in
Unitat de Fisica Teorica: Informacioé i Fenomens Quantics

Departament de Fisica
Facultat de Ciencies

Bellaterra, December, 2019

g I Q Grup d’Informacié Quantica >






“The arts and the sciences all draw together
as the analyst breaks them down into their
smallest pieces: at the hypothetical limit, at
the very quick of epistemology, there is
convergence of speech, picture, song, and

instigating force.”

Daniel Albright,

Quantum poetics: Yeats, Pound, Eliot, and the
science of modernism






Abstract

Quantum coherence, or the property of systems which are in a superpo-
sition of states yielding interference patterns in suitable experiments, is the
main hallmark of departure of quantum mechanics from classical physics.
Besides its fascinating epistemological implications, quantum coherence also
turns out to be a valuable resource for quantum information tasks, and has
even been used in the description of fundamental biological processes. This
calls for the development of a resource theory which rigorously formalizes
the notion of coherence, that further allows both to quantify the coherence
present in physical systems and to study its manipulation in order to better
leverage it. This thesis intends to make a contribution to the recently built
resource theory of coherence in a number of ways.

First, we show that coherence, as formalized by its resource theory, is
soundly grounded in the physics of interferometers—at least in the con-
text of Strictly Incoherent Operations—and thus embodies its operational
foundations.

Second, we note that states can be thought of as constant-output channels,
and start to generalize the coherence theory of states to that of channels.
In particular, we propose several measures of the coherence content of a
channel and further compute them when considering two different classes
of free operations: Incoherent Operations and the largest set of Maximally
Incoherent Operations.

Finally, we investigate the question whether coherence can witness some
other manifestations of non-classicality (we mean, beyond interference effects).
In particular, we analyze the connection of coherence to the non-classicality of
quantum stochastic processes both in the Markovian and in the non-Markovian
regimes.



Resum

La coherencia quantica, o la propietat dels sistemes que es troben en
una superposicio d’estats capag¢ de donar lloc a patrons d’interferéncia en els
experiments adequats, és el segell distintiu de la mecanica quantica. Més enlla
de les seves fascinants implicacions epistemologiques, la coherencia quantica
resulta també un recurs valuds a 'hora de dur a terme diferents tasques
quantic-informacionals i ha estat fins i tot emprada en la descripcio de certs
processos biologics. Per aquest motiu s’ha fet necessari el desenvolupament
d’una teoria de recursos que formalitzi rigorosament la nocié de coherencia, i
que permeti aixi quantificar la coheréncia present en els sistemes fisics, aixi
com estudiar la seva manipulacié amb vista a un millor aprofitament d’aquest
recurs. Aquesta tesi doctoral pretén contribuir a la teoria de la coheréncia de
la segiient manera.

En primer lloc, demostrem que la coherencia, tal com la teoria la formalitza,
esta solidament ancorada en la fisica dels interferometres —almenys en el
context de les Operacions Estrictament Incoherents—, i encarna, per tant, el
seu propi principi operacional.

En segon lloc, després de fer notar que els estats poden ser entesos com a
canals de “output” constant, emprenem la generalitzacié de la teoria de la
coherencia dels estats a la teoria dels canals. En concret, proposem diverses
maneres de mesurar el contingut en coherencia d’un canal quantic i el calculem
considerant dues classes diferents d’operacions del tipus “free”: Operacions
Incoherents i Operacions Maximament Incoherents.

Finalment, investiguem si la coherencia pot ser també testimoni d’alguna
manifestacié de no classicitat diferent dels propis efectes interferometrics.
En particular, analitzem la connexié de la coherencia amb la no classicitat
dels processos estocastics quantics, tant en el régim markovia com en el no
markovia.

vi



Resumen

La coherencia cudntica, o la propiedad de los sistemas que se encuentran en
una superposicién de estados capaz de dar lugar a patrones de interferencia en
los experimentos adecuados, es el sello distintivo de la mecénica cuantica. Més
alla de sus fascinantes implicaciones epistemoldgicas, la coherencia cuantica
resulta también un recurso valioso a la hora de llevar a cabo diferentes tareas
cuantico-informacionales y ha sido incluso empleada en la descripcion de
ciertos procesos bioldgicos. Por este motivo se ha hecho necesario el desarrollo
de una teoria de recursos que formalice rigurosamente la nociéon de coherencia,
y que permita asi cuantificar la coherencia presente en los sistemas fisicos, asi
como estudiar su manipulaciéon con vistas a un mejor aprovechamiento de este
recurso. Esta tesis doctoral pretende contribuir a la teoria de la coherencia
del siguiente modo.

En primer lugar, demostramos que la coherencia, tal y como la teoria la
formaliza, esta solidamente anclada en la fisica de los interferémetros —al
menos en el contexto de las Operaciones Estrictamente Incoherentes—, con
lo que encarna su propio principio operacional.

En segundo lugar, tras hacer notar que los estados pueden ser entendidos
como canales de “output” constante, emprendemos la generalizacién de la
teoria de la coherencia de los estados a la teoria de los canales. En concreto,
proponemos diversas maneras de medir el contenido en coherencia de un
canal cuantico y lo calculamos considerando dos clases diferentes de opera-
ciones de tipo “free”: Operaciones Incoherentes y Operaciones Méximamente
Incoherentes.

Finalmente, investigamos si la coherencia puede ser también testigo de
alguna manifestacion de no clasicidad distinta de los propios efectos inter-
ferométricos. En particular, analizamos la conexién de la coherencia con
la no clasicidad de los procesos estocasticos cuanticos, tanto en el régimen
markoviano como en el no markoviano.
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Introduction

“When I gathered flowers, I knew it was myself plucking my own flowering.”

D. H. Lawrence,
“New heaven and earth”, Complete Poems

Imagine that an electron gun fires electrons towards a wall which has two
holes in it. After going through such a wall, each electron impacts on a screen
where a detector has been placed. One could think that, in this scenario,
every electron behaves as a proper silver bullet—it is, after all, ourselves
(slaves of an imagination nurtured by the macroscopic world we inhabit) who
have used the metaphor of a gun in the first place—, in the sense that it goes
either through one slit or through the other one. However, we know by now
that this is not the only possible outcome of such an experiment. It is true
that, when we actually look at the holes to discover which path each electron
has decided to take, the detector in our screen reveals that it has behaved as
a particle—or a bullet—(see Fig. . Yet if we do not look at the slits, then
the detector shows that the electron has performed in the fashion of water
and light, that means, as a proper wave—in that both paths have given rise
to an interference pattern on the screen—(see Fig. [1b]). Feynman was the
first to undress such an experiment, that is, to take away all specificity from
it, and understand it in its barest form. His conclusions are quoted in the
following [1]:

1. The probability of an event in an ideal experiment is given by the
square of the absolute value of a complex number ¢ which is called
the probability amplitude: P =probability, ¢ =probability amplitude,
P =|of.
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Figure 1: An experiment with electrons. a) Each electron behaves as a
particle. b) Each electron behaves as a wave. Source: [1].

2. When an event can occur in several alternative ways, the probability
amplitude for the event is the sum of the probability amplitudes for
each way considered separately. There is interference: ¢ = ¢ + ¢o,

P = |¢ + ¢o|? (see Fig. ,

3. If an experiment is performed which is capable of determining whether
one or another alternative is actually taken, the probability of the event
is the sum of the probabilities for each alternative. The interference is

lost: P = P, + P, (see Fig. [La).

We could also think of this in Aristotelian terms. For Aristotle, potentiality
is the capacity something has to be in a different and more completed state
[2]. For instance, consider a piece of wood which can be carved into a violin
or into a flute. According to Aristotle, the wood has at least two different
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potentialities, for it is potentially a violin and also potentially a flute. Only
when the wood is carved can we say it is actually a violin (or a flute). In the
same manner, an event may have different potentialities. Feynman tells us
that, when it is not possible to know which potentiality has been realized,
there is interference. Otherwise, the interference is lost.

This leads us to the following question: how is it possible that knowledge
and reality are correlated in this particular way? In other words, why is
the potentiality to know—a property inherent to the observing subjects—
inextricably linked to the actual future of a physical event? We seem to have
come across the empirical manifestation of Wittgenstein’s prescription:

Whereof one cannot speak thereof one must be silent [3].

Indeed, Feynman seems to be telling us that, when we cannot know the path
that the electron has taken (since we have not placed a light source by the
slits to check it), then we must refrain from posing the question in the first
place; nature will only give us a blurry answer in the form of an interference
pattern. In Merce Rodoreda’s words:

[...] alld era una cosa que no es podria saber mai: si a dintre
del cargol de mar hi havia onadas quan a l’entrada del forat no hi
havia cap orella [4].

At the microscopic level, subject and object appear to coalesce. Heisenberg
put it in this way:

The object of research is no longer nature in itself but rather
nature exposed to man’s questioning, and to this extent man here
also meets himself [5].

When interrogating nature, the scientist encounters herself, as the poet, when
gathering flowers, plucks his own flowering [6].

One may have guessed by now that it is the double-slit experiment [I]
which we have just been describing, a well-known thought experiment which
has already been realized in the laboratory a number of times [7]. Our purpose
was to emphasize how quantum mechanics, brimming with counterintuitive
features, plunges its roots into it. In fact, quantum coherence, the corner-
stone of this thesis, is precisely the property of systems displaying different
potentialities—of which the one to be realized cannot be known—, i.e. the
property of systems that can be in a superposition of states.
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Aristotle gives actuality priority over potentiality. For him, potentialities
exist not for the sake of existing, but in order for one of them to be realized.
He would be surprised by how things have changed in the contemporary
world: quantum states with coherence, that means, raw potentialities by
themselves, allow for quantum protocols to achieve an enhanced performance
over comparable classical ones, and therefore could be considered prior to
incoherent states. One could compare states with coherence with Donna
Haraway’s cyborg] both exhibiting a sort of ubiquity that renders them
particularly advantageous:

The ubiquity and invisibility of cyborgs are precisely why these
Sunshine Belt machines are so deadly [§].

In this thesis we will address quantum coherence from a framework that
puts its already mentioned value at the center. Such kind of frameworks
receive the name of resource theories.

But let us begin by introducing the basic principles of the quantum theory
itself.

The quantum theory

Born to parents such as Planck, Bohr, Heisenberg, Born, Einstein, Von
Neumann, Dirac, among others, quantum mechanics arrived in the beginning
of the 20th century to explain a number of experiments such as the study of
blackbody radiation or the photoelectric effect, which could not be understood
within the realist paradigm of classical physics. As argued before, such a
realist worldview, assuming that sovereign subjects are able to read, in all its
truth, a physical world that is separated from them, had to be replaced by
a paradigm of immersion: systems do not have definite properties that are
independent of us observers, but rather these get defined when we measure
them. Quantum mechanics demonstrates that subjects are not anymore
spectators in the theater which is the world, as Descartes would put it [9],
but rather actors and spectators, in Bohr’s words [10]. Physicist Paul Davies
phrased it as follows [11]:

The common division of the world into subject and object,
inner world and outer world, body and soul, is no longer adequate...
Natural science does not simply describe and explain nature; it is
part of the interplay between nature and ourselves.

LCyborgs: creatures simultaneously animal and machine, who populate worlds ambiguously
natural and crafted [§].
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Thus, the new quantum paradigm promised outstanding physical features,
such as superposition, non-locality, indeterminism or contextuality, which
would remain veiled if the classical worldview had prevailed.

Mathematically, the quantum theory is articulated by the following set of
postulates [12]:

1.

At each instant the state of a physical system is represented by a ket
|1)) in a Hilbert space H. More generally, a state can be represented
by a density operator, which is a trace class, nonnegative Hermitian
operator p normalized to be of trace 1.

. The Hilbert space of a composite system is the Hilbert space tensor

product of the state spaces associated with the involved systems.

. Every observable attribute of a physical system is described by a Her-

mitian matrix on H.

. The expectation value of the observable A for the system in state [¢) is

given by (| A [¢). In general, the expected value of A in the state p
is given by Tr(Ap). If p, is pure (not mixed), i.e. it is the orthogonal
projector onto the one-dimensional subspace of H spanned by [¢), then

Tr(Apy) = (Y| Ald).

. The only possible result of the measurement of an observable A with

discrete spectrum is one of the eigenvalues of the corresponding operator

A.

(Born rule) When a measurement of an observable A is made on a
generic state [¢), the probability of obtaining an eigenvalue a,, is given
by the square of the inner product of |¢)) with the eigenstate |a,),
| (an]®) |2. For a state p, such probability is given by Tr(|a, Xan|p).

. Immediately after the measurement of an observable A has yielded a

value a,, on [1), the state of the system is the normalized eigenstate |a,,).
If the measurement has been performed on p, then the post-measurement
|an)an|planXanl

Tr(JanXanlp)

state is

. The time evolution of a quantum system preserves the normalization of

the associated ket. The time evolution of the state of a quantum system
is described by |¢(t)) = U(t,to) [t(tg)), for some unitary operator U.
For a mixed state, we have p(t) = U(t,to)p(to)U(t, to)'.

Having this in mind, let us now introduce what quantum resource theories
are all about.
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Quantum resource theories

Sticking to Aristotle’s worldview, knowledge can be conceived as a garden
of two forking paths. On the one hand, there is theoria or the activity of
contemplation, aiming to answer the question why with no particular practical
purpose. Theoria is just knowledge-for-the-sake-of-knowledge; things are not
regarded in terms of utility, for theoria, like art, suffices itself. On the other
hand, poiesis or creation reaches for a goal that is independent from the action
involved in its achievement. Unlike theoria, poiesis is focused on production,
rather than on the creative process itself.

One could then classify scientific theories according to this mindset: de-
pending on the nature of their purposes, they could be separated either into
theoretically-inclined or into practically-inclined. For instance, in physics,
theoria could be linked to the dynamicist tradition, aiming to explain and
predict the natural behaviour of systems, whereas poiesis could be related
to the more pragmatic one, intending to understand phenomena in order to
make use of them. Most of the time, though, such a binary classification does
not prove accurate enough. Indeed, it is not always trivial to detach purely
theoretical intentions from practical consequences, or to remove contemplative
joy from a process exclusively conceived towards practicality. Saddled between
theoria and poiesis are, in fact, resource theories.

Every resource theory is born from a constraint, that is, from the fact
that some longed-for holy grail exists which cannot be easily achieved. Such
a restriction then leads to the definition of two complementary antonyms:
the resource (our target) and the free objects (the things that can be easily
procured) or free operations (what can be done cheaply). A paradigmatic
example of a resource theory—a really early one—is alchemy: gold, the
resource, acquires value due to its scarcity; free objects, on the contrary, like
iron or zinc, are easy to find; free operations would include, for instance,
heating, melting or mixing.

So what is then the goal of a resource theory? To analyze what can still be
achieved under the given constraints, how the available resources can be better
leveraged and what resources can be interconverted (and how), among other
questions. Alchemists, for example, aimed to turn base metals into noble ones
by means of simple operations; thermodynamics, another well-known resource
theory, was born during the development of steam engines to optimize the
manipulation of heat in order to obtain work.

Quantum features, such as superposition and non-locality, can also be cast
as proper resources, insofar as they can be exploited to overcome some physical
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Thermodynamics Entanglement Coherence
theory theory
non-equilibrium entangled
states states
. thermodynamical incoherent
free operations N LOCC .
operations operations

free states thermal states separable states -

Figure 2: Some examples of quantum resource theories.

constraints that prevent certain operations to be realized. For instance, in a
scenario where Alice cannot send a quantum state to Bob’s distant lab, shared
entanglement between both parties together with classical communication
allows Alice to accomplish her task via teleportation [I3]. Resource theories
based on genuinely quantum resources are called quantum resource theories
[14] and are defined by the following elements (see Fig. [2| for some examples):

e Resource states: they contain the resource, that is, the property useful
to overcome the considered physical constraints.

e [ree operations: transformations on the considered state space that are
cheap or easy to implement.

e ['ree states: they can always be prepared by applying free operations to
resource states.

Indeed, the quantitative theory of entanglement [I5HI8] can be identified
as the first example of a theory constructed on the premise that quantum
traits are physical resources. This framework assumes that Alice and Bob are
allowed to create any local state in their respective labs and to communicate
classically with each other, that means, that the free operations of the theory

are Local Operations and Classical Communication (LOCC) [19, 20]. The
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states they are able to produce for free are then separable
PAB = Zpiﬂfl ® pl,

where >, p; = 1, and any entanglement they may share immediately becomes
a valuable resource. Furthermore, thermodynamics can also be formulated
at the quantum level in terms of a resource theory [21H29]. There the free
operations are energy-preserving unitaries, which, when applied to resourceful
non-equilibrium states of a system with Hamiltonian H, may freely yield
thermal states of the form sn

Zy '

where 8 = (kT)~!. Yet another example is the resource theory of asymme-
try [30-32], where one is restricted to symmetry-preserving operations, i.e.
any channel £ such that for any unitary representation Ug, g € G,

(&

f)/:

E[U,()U;] = Uge (U},
as well as to symmetric states, i.e. any state p such that VU,,
UypUl = p.

Asymmetry measures, which quantify the resource, are the figure of merit
for metrology tasks [32, [33], which pursue highly sensitive measurements of
physical parameters—yet another case demonstrating the usefulness of the
resource theory approach.

As we have seen, resource theories do not respond to Aristotle’s binary
classification of scientific theories: their conceptual body both addresses
primordial foundations of physical reality and is built up from pragmatic
inspiration. It is also worth mentioning that resource theories, because of their
intimate relation to problems that are closer to society, are daughters of their
time. In fact, only at the historical period when agents are constrained in a
particular way it makes sense to develop a framework to study the possibilities
accessible to them. For instance, consider a reality where energy was never
dissipated: there the resource theory of thermodynamics would not be of
particular use, since work would be in fact unlimited.

In this thesis we will address quantum coherence from a resource-theoretic
approach. In Chapter [If we will argue why coherence can be dubbed resource-
ful and set up the main elements of the coherence theory of states. In Chapter
we will prove that coherence, as formulated by its resource theory, is soundly
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related to the physics of interference, at least under some particular class of
free operations. In Chapter [3| we will realize that any state can be thought
of as a constant output channel and start to build the coherence theory of
channels, from which the theory of states can still be recovered. In particular,
we will propose several quantifiers of the coherence content of a map, which
we will then compute in the IO-theory (Chapter 4)) and in the MIO-theory
(Chapter . In Chapter @ we will set the stage for investigating how coherence
can be related to other forms of non-classicality (we mean, beyond interference
effects), in particular, the non-classicality of quantum stochastic processes. In
Chapter [7| we will explore how this can be done when the dynamics that under-
lies the stochastic process is Markovian and of Lindblad type, and in Chapter
we will generalize this framework to also encompass non-Markovian settings.

The various chapters are based on the following papers and preprints:

e Chapter [2} Tanmoy Biswas, Maria Garcia Diaz, and Andreas Winter,
Interferometric visibility and coherence, 473, Proc. R. Soc. A. (2017).
arXiv:1701.05051

e Chapters [3, 4 Khaled Ben Dana, Maria Garcia Diaz, Mohamed
Mejatty, and Andreas Winter, Resource theory of coherence: Beyond
states, Phys. Rev. A 95, 062327 (2017). arXiv:1704.03710

e Chapters [3| [ Marfa Garcia Diaz, Kun Fang, Xin Wang, Matteo
Rosati, Michalis Skotiniotis, John Calsamiglia, and Andreas Winter,

Using and reusing coherence to realize quantum processes, Quantum 2,
100 (2018). arXiv:1805.04045

e Chapters [6], [7], 8} Andrea Smirne, Dario Egloff, Maria Garcia Diaz,
Martin B. Plenio, Susana F. Huelga, Coherence and non-classicality of
quantum Markov processes, Quantum Sci. Technol. 4, 01LTO01 (2019).
arXiv:1709.05267

e Chapter [7} Marfa Garcia Diaz, Benjamin Desef, Matteo Rosati, Dario
Egloff, John Calsamiglia, Andrea Smirne, Michalis Skotiniotis, Susana

F. Huelga, Accessible coherence in open quantum system dynamics,
arXiv:1910.05089 (2019).

e Chapter [8f Philipp Strasberg and Maria Garcia Diaz, Classical
quantum stochastic processes, Phys. Rev. A 100, 022120 (2019).
arXiv:1905.03018
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CHAPTER 1

Quantifying the coherence of states

“Bring me the sunset in a cup,
Reckon the morning’s flagons up
And say how many Dew”

E. Dickinson,
“Poem 1287, Complete Poems

Coherence, i.e. the property of systems which can be in a superposition
of states, is perhaps the only mystery of quantum theory [I], causing the
departure of the latter from classical ways of thought. As we attempted
to show in the Introduction, this intrinsically quantum trait having to do
with the potentialities of objects is crucial from an epistemological point of
view. In this chapter we will explain how coherence is also of great practical
value, that is, why it can be considered a physical resource, and how its
corresponding resource theory has been built up.

It should not be difficult to persuade the reader that coherence is indeed
resourceful: as a matter of fact, every advantage furnished by quantum
technologies over their classical counterparts is underlain by the fact that
quantum systems can exist in a superposition state, from condensed matter [34]
35] and thermodynamics [22), 23, B6H38], metrology [39H41], atomic clocks [42]
and non-classicality [43], computation [44-H48] and communication [49-51]
to quantum simulation [52] 53], and has even been used in the description
of fundamental biological processes [54H57]. Indeed, the aforementioned
advantages make quantum superposition a precious resource: having access to
it allows to perform tasks that are otherwise unfeasible; that is the reason why

13
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coherence can be cast within the general framework of a quantum resource
theory [58].

Building upon the works of Baumgratz et al. [59] and Aberg [60] (see
also [61]), a full-fledged resource theory of coherence has been under construc-
tion in recent years. As one may guess, there agents are restricted to preparing
states with no coherence; the resource, therefore, is withheld from them. This
comes as no surprise if we take into account that, in many contexts, the noisy
evolution of the state will average out superpositions between eigenstates of an
observable, making it hard to produce and control the off-diagonal elements
with respect to a given set of projectors. Knowing what the constraint to
overcome is, we are now ready to present the key elements of the framework
(see [62] for a more extensive review).

1.1 Free states: incoherent states

Given a fixed basis {|i)}i—o . a—1 of the d-dimensional Hilbert space H, that
comes determined by the problem—for instance, a natural choice of basis
in transport phenomena would be the energy basis—, an incoherent state is
one that is diagonal in that basis, i.e. it presents no off-diagonal terms or
coherences. The set of incoherent states is denoted as Z C S(#). Hence, all
density operators 0 € Z can be written as

d—1
6= Z:5i|i)<z'|. (1.1)

As we can see, coherence is a basis-dependent resource, since the eigenbasis
can always be chosen in order to make every state adopt the form of an
incoherent one.

1.2 Free operations: a plethora

Free operations are those that do not generate coherence (we will denote
them as NCG operations, ®ncg, for “non-coherence-generating”). Unlike the
resource theories of entanglement, thermodynamics and asymmetry, where
the free operations are uniquely identified on operational grounds, no such
consensus exists within coherence theory, and that is why a plethora of free
operations have been proposed in this field (see Fig. . Each of them
defines a different resource theory of coherence.

A comment is in order here: although Fig. shows that the set of MIOs
is not strictly the largest set of free operations, since there exists TIOs that
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Figure 1.1: Different sets of free operations in the resource theory of coherence.
Source: [63].

are not contained in the set of MIOs, in this work we will intentionally leave
TIOs out of the theory and consider MIOs as the largest set of free operations.
For this reason, we have that every kind of NCG operation that will be
considered hereafter is a MIO, and thus necessarily fulfills the MIO properties.
In what follows we will explain what these are, and we will enumerate the
other sets of NCG operations that we will focus on in this thesis:

o Mazimally incoherent operations (MIOs) [60]: it is the largest class of
free operations, comprising all completely positive and trace-preserving
(CPTP) quantum channels M such that

M(I) =Y K,IK! CT,

where K, are the Kraus operators of M, fulfilling 3, K] K, = 1.

This is equivalent to the following condition [64]:
AMA = MA, (1.2)

where A is the complete dephasing map A = %1 |i)i| - |i)(i| in the
chosen basis {|i)}¢=,.

In particular, the Choi-Jamiotkowski matrix, Jy, of a MIO operation
M : A — B is characterized by the following conditions, in addition to
the standard ones:

Tr((|) (il @ 17) (') Im) =0, Vi ¥V j # ', (1.3)

which is equivalent to requiring that M does not generate coherence
from incoherent states.
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e Incoherent operations (I0s) [59]: they are the subset of MIOs that
admit a Kraus representation with operators K, such that

K, IK! cT
for all a. Thus, K, is 10O if and only if
Ko=) _¢ilk()Xil.
J

where k(j) is a function on the index set.

1Os are defined under the assumption that coherence is never generated
in any of the possible outcomes a of a MIO.

e Strictly incoherent operations (SIOs) [65]: they are the subset of 10s
fulfilling
KITK,CT

for all a. Thus, K, is SIO if and only if
Ko =3 ci k()Y
j

where k(j) is a one-to-one function on the index set.

These operations cannot either create coherence or activate the coherence
already present in some input (sometimes we will use the word “detect”
as a synonym of “activate”), i.e. turn it into the populations which can
be measured at a later time [64]:

(i| KapK] |i) = (i KoA[p] K] i)
for all a.

Some examples of experimentally relevant NCG operations include the
ones responsible for decoherence mechanisms of single qubits such as the
phase-damping, the depolarizing and the amplitude-damping channels, as
well as permutations of modes of dual-rail qubits in linear optics experiments.
In particular, all of the previous operations belong to the set of 10s.

1.3 Maximally resourceful states: cosdits

It remains to characterize the d-dimensional states that contain a maximal
amount of resource. In coherence theory these are the d-dimensional max-
imally coherent states which, for short of notation, we will call cosdits (an
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abbreviation of “coherence of superposition dits”), reserving the term cosbit
for the unit of quantum coherence—the maximally coherent qubit. Cosdits
are the states

1 d—1
Uy = —= 1) . 1.4
[Wa) \/E;]H (1.4)
Note that, for convenience, we will define W, := |U;}(W¥,|. A few further

remarks are in order:

e (Cosdits are maximally resourceful independently of the measure chosen
to quantify coherence.

e Any other d-dimensional state may be prepared with certainty by
applying NCG operations to a cosdit (see [59] for a proof).

1.4 Coherence measures

Every resource theory requires a functional F' : S(H) — R which quantifies
the amount of resource present in a state p € S(H). In the coherence
theory specified by a given set of free operations ®xcg (where NCG could be
understood as MIO, 10 or SIO, for instance), such a functional is denoted C'
and must fulfill the following conditions:

1. Faithfulness, meaning that coherence must vanish on the set of incoher-

ent states:
C(I) = 0. (1.5)

2. Monotonicity, which implies that coherence cannot increase under the
action of the considered set of NCG operations:

C(p) = C(Pxca(p)). (1.6)

These first two conditions are definitely required to speak of a coherence
measure. The following ones, which are sometimes demanded axiomatically,
are nice if present but not absolutely necessary:

3. Monotonicity under selective measurements on average (strong mono-
tonicity), meaning that the coherence before measuring should be greater
than the average coherence of the possible results:

C(p) > > pnC(pn); (1.7)
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where p,, = KnpKl /pn, are the possible outcomes of a measurement of
Pnea(p) = 2, KnpKl, for p, = Tr(K,pK}) > 0 with 3, p, = 1.

4. Conwvexity, postulated on the basis that coherence must decrease under
mixing:

;pnc(pn) >C <§n:pnpn> . (1.8)

As a final remark, fulfilment of conditions (3) and (4) implies that condition
(2) is also satisfied [59]:

®3)

C(@nea(p)) = C (zpnpn) e Lo )

Moreover, in [66] it has been proven that properties (1)-(4) can be derived from
the following three properties: (1), (2) and C'(p1p1®pap2) = p1C(p1)+p2C(p2).

Having all the previous physically well-motivated definitions in mind, it is
now possible to build a bona fide coherence quantifier. We are already aware
of the formal structure of the functional we are looking for; it is now time
to ensure that our monotone will measure coherence and not something else.
Let us present some relevant examples of coherence measures.

1.4.1 Distance-based

The coherence of a state is related to its degree of difference with respect to
incoherent states. A natural embodiment of such degree of difference is, for
instance, the minimum distance existing between the considered state and
the set of incoherent states. Thus, distance-based coherence measures are
defined as follows [59]:

Cp(p) = min D(p.9), (1.10)

where D is a contractive metric, i.e. D(E(p),E(0)) < D(p,0), for any CPTP
map & and any two states o, p € S(H).

Throughout this thesis we will employ the following distance-based coher-
ence measures; all of them are, at least, faithful and monotonous under some
class of NCG operations.

e [i-coherence (I0-monotone) [59]:

Ciy(p) = min|lp = dlli, = >_lpisl- (1.11)
i#j
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Figure 1.2: The [y-coherence measure on qubits can be identified with the
distance in the Bloch sphere between the state and the z-axis.

The geometrical interpretation of the [;-coherence measure for qubits is
easy to derive. Knowing that the state of a qubit can be expressed as
p = 3(1 + wa) where o is a real 3-dimensional vector of length || < 1
and & is the vector of Pauli matrices, we immediately have that:

1 . )
Cy,(p) = 5(\w1—zw2]+]w1+zw2\) = \Jw? + w3. (1.12)

As we can see, the [;-coherence of a qubit can be identified with the
distance in the Bloch sphere from it to the z-axis (see Fig. [1.2)).

Operationally, the [;-coherence has been proven to quantify the maxi-
mum entanglement produced by 10s acting on a system and an inco-
herent ancilla, as measured by the negativity N (p) = Tr|pT4| — 1 =
[|pT4]]; — 1, where || -||1 is the trace distance and p™ denotes the partial
transpose of p with respect to subsystem A [67].

As mentioned, the [;-coherence is monotonic under 10, but not under
MIO [68]. We also note that log(1 + Cy, (p)) is additive under tensor
product [69)].

e Relative entropy of coherence (MIO-monotone) [59]: it is given by the
minimum quantum relative entropy between the considered state and
the set of incoherent states:

Cr(p) = min S(p118) = S(pms) — S(0) (1.13)
where pgiag denotes the diagonal part of the density matrix p: pgiag =

> pii|i)i| [B9] and S(p) = — Tr(plog p) is the Von Neumann entropy.

Note that, when computed on pure states |@)¢|, this measure simply
yields
CrlleXel) = S(A(eXel)), (1.14)
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and is called entropy of coherence.

As we will see in section [5.4] the relative entropy of coherence has been
proven to quantify the distillable coherence in the asymptotic limit [65]
(under I0s and MIOs) thus taking a similarly central role in coherence
theory as the relative entropy of entanglement [16] in the theory of
entanglement [70]. In section we will see that the relative entropy
of coherence also quantifies the asymptotic coherence cost under MIOs
[71].

e Trace distance measure of coherence (I0-monotone only for qubits) [72]:
1
Cme(p) = min g f|p — o1 (1.15)

e Modified trace distance measure of coherence (I0-monotone) [66]:

/ 1
Cre(p) :%’161]{.1§||p_A5||1' (1.16)
A>0
1.4.2 Robustness of coherence

One can also characterize coherence as the minimal amount of noise one
would need to add to a state in order to make it incoherent:

e Robustness of coherence (MIO-monotone) [73, [74]:

= s oo 7 er)

Moreover, this measure turns out to be a figure of merit in quantum phase
discrimination tasks [73]: Suppose a particle goes through an interferometer
that applies phases on its state p via U(@). The only thing we know is that
d possible interferometers may have acted on the state, each of them with
probability é. Our mission is to guess which interferometer our particle has
gone through. Formally, our phase estimation game O is defined by the pairs
0 ={id —l—jﬁﬂ}?zl, where h, = 2 (w(1),7(2), ..., m(d)) (for a permutation
) is a vector indicating that each interferometer j applies a different vector of
equidistributed phases. Then, the robustness of coherence of p quantifies the
maximum advantage provided by p in estimating the correct set of applied
phases, with respect to the set of incoherent states Z:

Succ

mgxpgmc((?) =1+ Cr(p), (1.18)
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where Pg"(p) = maxqy;) 5 >, Tr(Uij}Mj), for U; := U(dy + jh,) and a
generalized measurement with elements {A/; } fulfilling M; > 0 and >, M; = 1,
denotes the success probability of winning the phase estimation game © by
using p as the input state.

One important result we will make use of throughout the thesis is that
the ¢1-norm tightly bounds the robustness of coherence [73]

) < Culy) = Culp) (1.19)

where the upper bound becomes an equality for qubits and any pure state (d
is the dimension of the state). More generally, it becomes an equality for any
state whose density matrix can be made to have non-negative entries under
an incoherent unitary [75].

Furthermore, the robustness of coherence is easily computable, since it
can be cast as a semidefinite program in primal standard form [74), [75]

1+ Cgr(p) =min{A: p <o, o €T} (1.20)
Its equivalent dual form is given by
14 Cr(p) = max{TrpS: S >0, S;; = 1Vj}, (1.21)

which holds because strong duality is fulfilled. The robustness is multiplicative
under tensor product of states [69]:

1+ Cr(p1 ® p2) = (1 + Cr(p1))(1 + Cr(p2)).

Finally, it is convenient to define a logged version of the robustness of
coherence as:

Crr = log(1 + Cr(p)), (1.22)

which now becomes an additive quantity under tensor product. In particular,
for a cosdit it holds CLg(Vy) = logk.

1.4.3 Coherence rank

e Coherence rank (I0-monotone) [43]: for pure states the coherence rank
is defined as

o) = min {r: [0} = S el } (123

where |¢;) is an element of the incoherent basis. That is, the coherence
rank of [¢) is the number of non-zero terms that appear when writing
|1)) in the incoherent basis.
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1.4.4 Convex roof quantifiers

A measure C defined for pure states can be extended for mixed states by the
convex hull construction to the following coherence monotone:

Cer(p) = min sz (|hiXws)), (1.24)
p17‘¢1 ¢'z .

where the minimum is taken over all possible pure state decompositions of
p = 2 DiliXvil.

Some examples of convex roof coherence quantifiers are the coherence of
formation and the coherence number:

e Coherence of formation (I0-monotone): it extends the entropy of
coherence for mixed states:

C = AN i il) = i i i
r(p) = min Zp (WiXeil) = min Zp A(lpa)abil)).
(1.25)

As we will explain in section [1.5.2] the coherence of formation has
been shown to quantify the asymptotic coherence cost under 10s [65].
Remarkably, this measure violates monotonicity for the class of MIOs
[76).

e Coherence number (I0-monotone) [77]: the coherence rank can be
extended by a convex roof construction to the coherence number:

Chumber(p) := min  max Cupk (V). 1.26
) = _min | ma Cn) (126

1.5 Some results

Having presented the basic tools of coherence theory, i.e. incoherent states,
non-coherence-generating operations, the maximally coherent state and coher-
ence measures, we are now ready to tackle some of the main questions that
every resource theory has ever posed, namely how a state can be converted
into another one, how much of a resource needs to be consumed in order to
produce a given state or how a resource may be distilled from a supply of
states at hand.
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1.5.1 State interconversion

Alchemists already asked themselves whether base metals could be turned
into noble ones by means of feasible operations such as melting or mixing.
Analogously, the question whether a given state can be converted into a target
one via free operations is investigated by quantum resource theories. In the
particular case of coherence theory one wants to know under which conditions
the following transformation is possible:

p X5 0. (1.27)

This problem has been solved completely in the 1O-theory, only when
pure states are considered:

Theorem 1. [67, [69] For pure states |p) | and |)Xv|, the transformation
@) 0| =2 [¥)w| is feasible if and only if A([Y)v]) = A(|eXo]).

Let us remember that this majorization condition translates as

k
il = D al, (1.28)
; i=1

for each k in 1,2, ...,d and where | implies writing the vector components in
descending order, i.e. spec(|)¢]) = (p1 > ... > pa) and spec(|p)o|) = (¢1 >

Explicit protocols for pure state transformations under IOs are given in

7).

Finally, mixed state transformations have been analyzed in the MIO-theory,
but only results for qubits have been found:

Theorem 2. [79] Given two qubits p = 5(1 +70) and o = 5(1 + 55), where

o . . - ; MIQ _ .
G is the vector of Pauli matrices and 7,5 € R®, the transformation p — o is

2 2
1— 52 1 -7

2 2 = )2 2"
syt sy, rz Aty

T 22 2, .2
possible if and only if s; + s, <1y + 1, and

As a remark, these conditions can also be cast as monotonicity of two
robustness measures, as described by [80]:

Cr(p) = Cr(o) and Car(p) = Car(o), (1.29)
where
. p+sT }
Car(p) i {s >0 ‘ T+ €LAlr—p) =0 (1.30)
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1.5.2 Coherence dilution

One special case of state interconversion is coherence dilution:
v, Y 5, (1.31)

In the single-shot scenario, coherence dilution gives rise to a good coherence
measure. Indeed, the difficulty to produce a given state by applying NCG
operations to a maximally coherent state already gives an intuitive idea of
how coherent the state could be. Formally, such coherence measure—called
coherence cost C.—is defined as follows [71]:

Coxee(p) »== min {log, M | Flp, A(Trr)] =1}, (1.32)

Aednca

where F(p,o0) = (Tr[\/\/po/p])? is the fidelity between two states p and o.

Several functionals quantifying the coherence cost under MIOs, I0s and
SIOs have been provided in [71].

In the asymptotic setting, the coherence cost is also a coherence measure.
It is reformulated as the minimal number of coherence units, i.e. cosbits,
per copy of p required to produce the state p asymptotically under NCG
operations [65]:

CoNeS (p) i= min{ R | 5" NOG IS 0% as m — 00, € — 0} (1.33)

As already pointed out, the asymptotic coherence cost under 1Os is given
by the coherence of formation: CLQ (p) = Cy(p) [65]. In the MIO-theory,
however, the asymptotic coherence cost is proven to be equivalent to the
relative entropy of coherence: CMi(p) = C.(p) [71].

1.5.3 Coherence distillation

Another relevant case of state interconversion is coherence distillation:

o X5 g, (1.34)

In the single-shot setting, coherence distillation also gives rise to a bona
fide coherence measure. Indeed, one could quantify the coherence of a state
by the amount of maximal coherence that can be distilled from it via NCG

operations. Formally, such coherence measure—called distillable coherence
Cyq—is defined as follows [81]:

CiC(p) :=logy max {M | F[A(p), Uu] = 1}. (1.35)
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The formula for the distillable coherence under MIOs—which is also proven
to admit an SDP formulation—has been derived in [81]. The quantifiers of
the distillable coherence under 10s and SIOs have been provided by [82].

In the asymptotic scenario, the distillable coherence is a coherence measure
as well. It is defined as the maximal number of cosbits per copy of p that can
be recovered from the state p asymptotically under NCG operations [65]:

C’;IfgoCG(p) = max{R | p®* ¥ ~ USE asn — 0o,e — 0}, (1.36)

As already mentioned, the asymptotic distillable coherence under 10s
is given by the relative entropy of coherence: C}2 (p) = C,(p) [65]. The
asymptotic distillable coherence for the MIO-theory is given in [81]: C1°(p) =
C.(p). Note that, for other sets of NCG operations, Cyoo(p) < Ceoo(p). This
means that in general coherence theory is irreversible. Furthermore, coherence
theory under 10s cannot exhibit “bound coherence”, since vanishing distillable
coherence C..(p) = 0 implies vanishing coherence cost C¢(p) = 0 [65]. This is
in contrast to the SIO-theory of states, which can exhibit bound coherence

[83], and to the coherence theory of maps, as we will explain in Chapter .






CHAPTER 2

Coherence as interferometric visibility

In the Introduction, we presented the double-slit experiment with quantum
particles like electrons in order to highlight how a basic epistemological
principle of quantum mechanics is fundamentally grounded on it: in quantum
theory, the possibility to know whether an event will occur in one particular
way is key to determine whether a particle will interfere with itself or not in a
suitable interferometric experiment. Remember that, only when the detector
was not placed by the slits with the purpose of finding out which way the
electron had chosen, could we see an interference pattern on the target screen.
Quantum coherence, the basic hallmark of departure from classical physics,
is precisely the property of events leading to such kind of interference.
Furthermore, we compared the behaviour of quantum systems with co-
herence with that of classical waves like water or light. Indeed, the physics
of constructive and destructive interference of waves, along with the concept
of coherence, has been well-understood since the development of classical
optics in the 19th century. Here, coherence is defined as the correlation of
the phases between two or more waves, so that interference may be produced
between them. The more correlations there exist, the more coherent the waves
are said to be. Fig. shows Thomas Young, whose original double-slit
experiment revealed the wave nature of light for the first time, and a schematic
representation of destructive and constructive interference of waves.

In Chapter [1, we presented the basic elements of the resource theory of

coherence. Here, coherence is understood as the degree of difference between
a given state and the set of incoherent states, i.e. those states that are

27
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Figure 2.1: Thomas Young and a representation of destructive (left) and
constructive (right) interference of waves.

diagonal in the considered basis. However, one could ask: is such a definition
of coherence merely axiomatic? What are its operational foundations [84]7
More concretly, how can this concept of coherence be connected to its very
definition, the observability of an interference pattern in a suitable experiment?

In the present chapter we assume that coherence is the potential of a
state to yield visible fringes in a convenient experiment. As we will now
demonstrate, it is indeed possible to link the visibility of those fringes with
a bona fide coherence measure, thus ensuring that the resource theory of
coherence is actually rooted in the original physical meaning of coherence.
But let us first learn some basic things about interferometers and visibility
parameters.

2.1 Interferometers and visibility

Let us consider a multi-path interferometer, in which a single particle can be
in one of d possible paths; we will denote the spatial variable by orthogonal
vectors |7), 7 = 1,...,d, spanning a d-dimensional Hilbert space H. If we
ignore any internal degrees of freedom of the particle, and any other spatial
degrees, we have that the entire Hilbert space describing the system is ‘H, and
that a pure state inside the interferometer can be written as [1)) = 32, ¢; |7),
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Figure 2.2: Multi-path interferometer. The input state p (in green), represents
the state of a particle on d paths. Each path can be subjected to a local
relative phase a; (in magenta), after which the particle is detected by means
of a suitable measurement (in purple), producing an outcome w (in red).
Source: [85].

and a general mixed state as
d
o= puuli)kl (2.1
k=1

An interferometric experiment (Fig. has two main components. First,
local phase shifts «; that can be inserted into the paths, which implement a

diagonal phase unitary .
U(@) = Y e, (22)
J

so that the state becomes

p(d) = U(@)pU (@) = 37 e )k, (2.3)

d
Jyk=1

The second is a detector at the output, that we will characterize as a general
POVM M = (M,,), with outcomes w from a suitable space (2.

If the experimenter has chosen @ = (aq,...,aq), then she will observe
outcomes w € 2 sampled from the Born distribution, i.e. the “interference
pattern”:

Parip(w|@) = Te(U(@)pU (@) M,,). (2.4)

What is then the signature of interference in such an experiment, where p
is given? That the distribution P = Py, can vary as a function of the phases
a;. Such degree of variability can be intuitively thought as the visibility of
the interference pattern, which we will formalize as a visibility functional
V' = V[P] on conditional distributions P(w|@). We will assume that such a
functional has to capture both the global property of P not being constant, i.e.
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it should be 0 for constant P(:|@) and positive otherwise, and its invariance
under permutations and shifts of dﬁ (reflecting the natural symmetries of the
experimental setup in Fig. . A visibility functional V[P] satisfying these
two requirements will be called regular.

In the literature on interferometers, in particular in the rich discussion
on the complementarity between fringe visibility and which-path information
[86-90], the topic of visibility has been addressed repeatedly. From it one
learns that for d > 2 no unique visibility functional seems to exist. Consider,
for instance, the simplest case of the well-known Mach-Zehnder interferometer
(Fig. , i.e. d = 2. In it we observe interference fringes w.r.t. a relative
phase shift, as detailed in the following:

Let us take the density matrix p = p11 |11+ pa2|2)2| 4+ p12| 12| + pa1|2)(1],
the diagonal phase unitary U(d) = €™ |[1)(1| + €*2|2)(2|, and a measurement
with POVM elements |u)(p|, |1) = p1|1) + po|2). Now, with o = ay — aw,
and writing p1o = |p12|€?, Tipe = |pu1p2|e®, the output probability is

Pujp(pl@) = pralpa]? + paz|pel?

(2.5)
+ 2| p1apin pi2| cos(a + B+ ),

whose fluctuation is essentially characterised by the coefficient |piopypal.
Indeed, most analyses conclude this to be the visibility of such an interference
pattern.

(A

9
S

1

BS,

2

8

Po

Figure 2.3: Mach-Zehnder two-path interferometer. The initial state is po,
while the state after the interaction with the first beam splitter (BS1) and the
first mirror (M1) is p (in green), representing the state of a particle on two
paths. Each path can be subjected to a phase a; and as, although only their
relative difference o = a1 — a is physically relevant. After the interaction
with the second beam splitter (BS2), the interference pattern is observed.
Source: [85].

!By a shift of @ we mean applying a common shift to each component «; of &.
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2.2 Optimal visibility as measure of coherence

Consider the qutrit state p = 5 (|1)+]2))((1|+(2]) + 5/3)(3|, under a mea-
surement M () in the basis {|1> : %(|2) + |3>)}, the three outcomes all have

probability é, irrespective of the phases in

p(0) = 5 (10 +e 12)) ({1 +e (2) + 2[3)3)

However, if we choose the projective measurement M) in the basis

{ i},

the detection probabilities are (2 cos? 5

coherence in p. ’

This simple example illustrates that an unsuitable choice of measurement
may render coherent superposition invisible. Therefore, if we aim to treat
the state p as a resource, i.e. as a given, of which we are supposed to make
the best, it makes sense to optimise the visibility V[Py,] over all possible
measurements. This leads to a number that now depends only on the state,

Cyv(p) = W )V[PM\p]~ (2.6)

sin? ¢, 1), thus bringing out the

win

Let us now define weakly affine visibility functionals as those which, for
distributions P;(w|@), w € €; (assuming pairwise disjoint €);), and for a
probability distribution (¢;), yield V' {P} = Y, ¢;V|[P;], with the averaged
distribution P = 3", ¢;P; on Q = |J; €;. The hypothesis that we will explore
in the rest of the paper is that this number, for the large class of regular and

weakly affine visibility functionals, is a good coherence measure of p, at least
in the SIO-theory.

Theorem 3. For any reqular and weakly affine visibility functional V|P], Cy
s a coherence measure that is strongly monotonic under SIOs. If V is convex
in P, then Cy is convez in p.

Proof. Let a SIO with Kraus operators K be given, acting on a state p,
so that g\py = K ApKI\ defines the probability of the event A and the post-
measurement state. Observe that, because K, = my D, can be written as a
diagonal matrix D) followed by a permutation my,

QU(@)paU (@) = U(a@) KypK U (@)
= K\U(B)pU (B)' K],
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with 3; = ag, ;). This shows that the probability of seeing outcome A is g
for all U(d).

Now choose measurements M ™ for each py, taking values w in the disjoint
sets (1), subject to the probability law Py = Py, given by

Pr(w]@) = T U(@)paU (@) M)

:iTrU( T KapKIU (&) MY
ax

1 - -
= F\U(B)pU () K{M

1 o
= ~TUB)pU (B KAM K.

Introducing the POVM M = Y, (K1 MM K)),, with outcomes (\,w), we
can now invoke weak affinity:

Z(AV Py = [Z qAle = V[Pg,] < Cvlp),

because the measurement M is eligible for p but may be suboptimal. Since
the measurements M® can be chosen to maximise the left hand side, we
obtain

> aCv(px) < Cv(p).

For the convexity statement, let p = ", p;0; and choose any measurement
M on p. Then,

VI[P = lzszMU] < sz [(Puro,] < sz‘cv(az‘),

and because M may be chosen to maximise the left hand side, we find
Cy(Xipioi) < >ipiCyv(0;), as claimed. 0

As a remark, one might wonder in case we only want to detect coherence,
whether there is a universal measurement M such that if p has coherences,
then V[Pyy,] is positive. The answer is yes, namely any tomographically
complete measurement, as long as V[ P] has the property that it is non-zero
on every non-constant P.
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2.3 Examples

In this section we will illustrate how the above theory is not just an abstract
construction. In particular, we will consider several visibility parameters,
optimize them over all possible POVMs and find out which coherence measure
they lead to—or at least considerably simplify the optimization.

2.3.1 Largest difference of intensity

The perhaps simplest and most intuitive parameter of visibility for two-
outcome measurements M = (M, M; = 1 — M) is the difference between the
largest and the smallest value of Py ,(0|@) = Tr U(&)pU (@) My. To make it
suitable for measurements with arbitrary outcome sets, we define
1 . .
Vinax [P := sup |PCla) = P18 - (2.7)
a,p
Note that we do not normalize by the sum of the largest and smallest proba-
bility, as is customary in discussions of visibility in classical interferometry,
where the basic observable quantities are intensities. There, this appears
necessary to obtain a dimensionless visibility; here however, we have the
probabilities that are already dimensionless and have an absolute meaning.
Clearly, Viax is regular and weakly affine, so the corresponding coherence
measure Cp., is a SIO monotone. In fact, it is easy to evaluate it, and the
result is

o) = (U@ ],

1 "
= max iH[p, U(oz)]Hl (2.8)
= max Tr U(Q)pU (&) My — Tr pM,

0
because we can always shift 3 to 0 by applying U (—5) In particular, the
optimal measurement is a two-outcome POVM (M, M; =1 — M), and the
value is the largest difference in response probability over POVM elements.
We can compare the result with the trace distance measure of coherence
Cre(p) = minsez 3/l — 0|1: Cr(p) < Crmax(p) < 2C1:(p).
Namely, on the one hand, for § € Z, we have || p—d||; = HU((EZ)/)U(O?)T -9
so by the triangle inequality

17

|U@pu(@) =, < |[U@pU (@) =], +lp =],
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which implies Cpax(p) < 2CTy(p). On the other hand,
Crlp) < 5l = At
- puriawia]

</dOé*HU pU( —,OH <Cmax( )

21

In the qubit case, as only the relative phase o = oy — ap matters, it holds

p—U(@)pU(a)t = l (- egm)pgl (1- eoia)Pm ] .

Its trace norm clearly is maximized at o = 7, showing Crax(p) = |p12|+|p21| =
Cy, (p), which for qubits is known to equal 2CT(p). In conclusion, for qubits
we have that Chax(p) = 2|po1| = Cr, (p) = 2C1:(p).

2.3.2 Estimating equidistributed phases

Inspired by the previous example, we are motivated to consider guessing
problems of a more general kind, where we are trying to estimate the true
setting of the phases among several alternatives, based on measurement
outcomes. It turns out that a good candidate is the equidistributed set of d
phases %(1, 2,...,d), j=1,...,d, and its shifts and permutations:

1
‘/guess[P] = _8 + &mﬂ_ae)% ZP Q |Oé() +]h ) (29)
QM0 d@ =1
where f; = 27”(#(1), (2),... ,W(d)) is a generating vector of uniformly ac-

celerating phases (w.r.t. the permutation 7 of coordinates). This quantity
is the bias (excess over ) of the optimal strategy to guess the true value of
j€{1,...,d} that deﬁnes the phase settings. As defined, this visibility func-
tional is regular and weakly affine, so the corresponding Cygyess is a coherence
monotone under SIO. As a matter of fact, it holds [73]

1 d

C'guess(p) = —g + (MI)n}E}OVM Zl OZO +]h ) gCR( ) (210)

for any @ and any permutation 7. Remember that Cz denotes the robustness
of coherence measure, whose operational meaning in the context of phase
estimation games was already introduced in Section [I.4.2]
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In the qubit case, it is well known that the robustness of coherence equals
the ¢;-measure: Cr(p) = 2|po1| = Cy, (p) [73], and so Cyuess(p) = |po1| is just
half of that.

2.3.3 Largest sensitivity to phase changes

Looking back at example A, we notice that the points of largest and smallest
value of the response probability (&) = Pa,(0|@) = Tr U(@)pU (&) M, to a
POVM element M, may be quite far apart. In contrast, in many applications
of interferometry it is a relatively small phase difference that we want to pick

up [91], so we are interested in the largest magnitude of the derivative of
I(a):

ol
Vg |P| := max |—(a)|, 2.11
[P = max | (@) 2.1

where @ ranges over all phases, and h over all direction vectors that are
suitably norm bounded. To extend Vg to general measurements, we may
include a maximisation over all two-outcome coarse grainings. We can easily
see that Vg [P] is regular and weakly affine since I(@) is well-defined probability
distribution over a.

Now, as I(@) = Tr(pU(a) MyU()), its derivative at (w.lo.g.) 0 in
direction h is given by

g}fl(ﬁ) = —iTr[p, H{My = —i Tr p[H, My, (2.12)

—

where H is the diagonal Hamiltonian with eigenvalues h;, H = diag(h). Note
that the derivative at any other point @j is the same, up to conjugating the
measurement by U(dy). There are two natural limitations on h: Geometrically,
to obtain the largest gradient of I, we should consider unit vectors 77:, meaning
|H||3 = Tr H? = 1; or taking motivation from the Hamiltonian, we should
bound its energy range, meaning ||H || < 1. We denote these two scenarios
by p = 2 and oo, giving rise to two coherence measures C’g ). From Eq. ,
we directly get

1 .
) (p) = maxiH[p, H)| st. H diag., |[H|), < 1. (2.13)

Inspecting this formula, we see that the optimisation is convex in H, hence
the maximum is attained on an extremal admissible Hamiltonian. For p = 2,
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these have the form H = Y, ¢;1/7;|j)j|, with ¢; = £1 and }>;¢; = 1. For
p = 00, the extremal H have entries +1 along the diagonal, and so

C¢(p) = max 2T pIl |, (2.14)
S+US_=[d]
where the maximisation over partitions S, U S_ = [d], with I, = > ;cs, [7)(j],

e = +. In both cases, we obtain_a strong SIO monotone, due to the evident
weak affinity of V5. From Eq. 1' we see that C(VOO) < Chax, but equality
does not seem to hold in general.

Once again, the qubit case is very simple: For p = oo, the only non-
trivial choice is I1; = |[1)(1| and II_ = |2)(2], directly resulting in C(voo) =
2[|1Xt|pl2)2l |, = 2lpaal-

For p = 2, we have to consider the Hamiltonian H = v/t|1)(1|£+/T — 2)(2],
yielding

B 0 (—VEtE£ VI —t)pro
o Hl = [ (VtF VI —1)pn 0 ’

Its trace norm is maximized for the negative sign choice and at t = %, and so

% = V2|psa|. Therefore, CF (p) = V2Ipral and O (p) = 2paa| = Cis ().

2.3.4 Largest Fisher information

Considering further the previous example, we realize that finding the largest
derivative of the probability P(0|@), while strongly motivated by the intuition
rooted in intensities, does not necessarily identify the point of strongest
statistical sensitivity, which is asking for the largest Fisher information, the
natural measure for probability distributions. Looking again at directional
estimation of a one-dimensional subfamily & = th + do, t € R, the Fisher
information is given by the expected squared logarithmic derivative of the
probability distribution:
2
»

2
’
t=0

Vg[P] := max Fz, (h), (2.16)

&oh

Faoli) = 3 Plofan) (5D

wes

(2.15)

-5

weN (w|&0)

1 [dP(w|@)
(5

so we are considering the visibility functional
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where @y varies over the whole space of phases, and h over a suitably bounded
set of directions. Clearly, Vi is regular and weakly affine.

The formula for the Fisher information, optimized over measurements (and
do, which w.l.o.g. is 0, by the same reasoning as in previous examples), for
estimating ¢t =~ 0 in e~ pei*f for a given diagonal Hamiltonian H = diag(f_i)
and p = >, Ajle;)Xe;| is known [92) 93] and given by

Fanl) =23 S e H ) - 217

ik

Like in the previous example on sensitivity, there are two natural domains
of diagonal Hamiltonians H over which to optimize this: Either |[H|s < 1
or ||H||s < 1, leading to two variants C”(p) and C’éoo) (p) of the coherence
measure.

In either case, the optimal choice of H is extremal subject to the convex
constraint, because F can easily be seen to be convex in H. Namely, each
term | (e;| H |ey) | is convex, hence also its square, and the coefficient in front
of it manifestly nonnegative. Thus, we obtain:

A —Ap)?2
D, _ 5 (A=A
e )= gmax D25

<ejr(zej¢t?u><j|>|ek> (2.18)
)=  mas, ZQA Al @19

where the first maximization is over diagonal Hamiltonians with Hilbert-
Schmidt norm 1; the second over partitions S, U S_ = [d], with II, =
EjES. |j><j|7 e =1, 50 that H = H+ — 1.

For qubits, the formula for the coherence measure reduces to

(A = Ag)?

C(p) — 2
F (p) max )\1_|_)\2

[ {e1| H Je2) [,

where the maximization is over H € span{l, o} such that ||H||, < 1. Note
that Ay + Ao = 1 and | (e1| H |ea) |> = Tr Hley Xe1| H |ea)ea|.

This calculation is conveniently done in the Bloch picture, writing p =
%(1 + 7+ &), with a vector 7" = r7° that we decompose as a product of its
length r = || and a unit vector 7 (with components 72, r) and 7?2). In this
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way the eigenprojectors of p become |e12)(e12| = 3(1£7 - 7). In the above
maximization, this allows us to identify \; — Ay = 7 and 72 = 2Tr p? — 1.
For p = oo, we already know that H = oz is optimal, so

CE(p) = 22 Traz)er e |ozles)es]

1
=21~ Tr(1 —rjox —ryoz +1i0z)

(1 —7%x — TZO‘Z —1%%)

=21+ (02 + () = (0D)°)

= 4(Tr p? — Tr A(p)2)
= 8pia|” = 2Cy (p)*.

For p = 2, the maximization reduces to that of 2r2 Tr H|e; Xe1|H |es)ea],
with H = ol + Boyz and 20 + 2682 < 1. The trace decomposes into
four terms, however the three that contain a al evaluate to 0, leaving
23212 Tr 0 z|e1 Yey|oz|ea)es|, which yields (using the optimal choice 23% = 1)
¥ (p) = 2(Tk p? = Tr A(p)?) = Oy ().

For a qubit state p, then, it holds that C”(p) = 4|p1a|? = C,(p)?,
> (p) = 204, (p)?.

2.3.5 Largest differential Chernoff bound

We observe that the attainability of the Fisher information presupposes
access to many copies of the state and independent measurements, in which
setting the Fisher information gives the optimal scaling of the mean squared
estimation error with the number of copies. If we allow general collective
measurements and at the same time only want to distinguish pairs of nearby
states optimally, we are led to the differential Chernoff bound [94]: While the
Chernoff bound is defined as £(p, o) = supg<,<; — InTr p*c! =%, for states and
probability distributions alike [94] 95], it is known that

1 ., . -
1 CE(P(1d0). P(Jaiy + dth)) = dze”
defines the line element of a Riemannian metric on the parameter space. Thus
we let

Vag[P] = I{l&_}(dﬁ 2. (220)

As Vpe is regular and weakly affine, we will obtain a strong SIO monotone.
Note that this would not work simply fixing a Hamiltonian, as shown in
[96, O7].
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The differential Chernoff bound, optimized over measurements, for dis-
tinguishing e~ pe™ for ¢t ~ 0 from p in the many-copy regime, with a
diagonal Hamiltonian H and p = >=; Aj|e;)e;| is again known [94], and given
by dpy&? = 4d*¢ (p, ZtheitH), which evaluates to

dye? = (f f) (ej] H ex) |

1
T2 Z (N + M =2y AA) el H Jex) I (2.21)
ik

1
= TrpH? — Tr \/pH/pH = —5 Tr[\/p, H)?,

the latter equalling the Wigner-Yanase skew information, Iwy(p, H) [98].

Like in the previous two examples, there are two natural domains of
diagonal Hamiltonians H over which to optimize this: Either ||H|2s <1 or
|H|x~ < 1, leading to two variants C’é? (p) and ngo) (p) of the coherence
measure. Again, dy&? is convex in H, thanks to convexity of each term
| (e;] H |ex) |*, and <\/>\7]— \/A_k)z > 0. Consequently, the optimal H is
extremal under the convex norm constraint. For p = oo, this means that the
maximum is attained on a difference of two diagonal projectors, H = I1, —1I_.
For p = 2, however, we can say something even better, using Lieb’s concavity
theorem [99], which says that for semidefinite H, the Wigner-Yanase skew
information is convex in H2, by writing H = v/H?2. In general, we split H =
H, — H_ into positive and negative parts, and find after some straightforward
algebra that

Iwy(p, H) = Iwy(p, Hy) + Iwy(p, H-) — 2Tr \/pH\/pH_,

which by Lieb’s theorem [99] is jointly convex in H? and H?. Thus we find
that the optimal H, and H_ must be proportional to rank-one projectors,
resulting in the expression claimed for C’(g?(p).

CS¢ (o) = max Ty (p, VIING = VIZURNH),  (2:22)

C’ggo)(p): max Iwy<p,H+ H,)

Sy, Cld]
= max 4Tr/pll;/pll_, (2.23)
S+U57—[d]

where the first maximization is over distinct basis states j, k € [d] and 0 <t <
1; the second over disjoint subsets Sy and S_ of [d], with II, = >~ ,cs, [7)(],
o=+
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Let us analyze the qubit case: For p = oo, the only nontrivial choice is
I, = [1)1| and IT_ = |2)(2|, directly resulting in ngo) = 4Tr [1X1|\/p2X2|\/p =
2
4 ’(ﬁ) 12‘ '
For p = 2, we have to consider the Hamiltonian H = /[1)(1|—+/T — £|2)(2|,
yielding

_ 0 (—Vt = V1T =1) (/P2
Ve ] = [ (VE+VI=B (/P 0 1 |

Thus, Iwy(p, H) = (\/I_f—i- v1-— t>2 ‘(\/ﬁ)m 2, which is maximized at ¢t = %,
hence C’g) =2 ‘ (\/ﬁ>12’2.
That is, for a qubit state p, we find that C’é?(p) =2 ‘(\/5)12’2 and

Cie o) = 4] (Vo).

2.3.6 Largest Shannon information

The previous examples should have prepared us for thinking of visibility as an
expression of how much information about @ the output distribution P(:|&)
reveals. So why not take this to the logical conclusion? Noting that P is a
channel from multi-phases @ to outputs w, in the Shannon theoretic sense,
we are motivated to define visibility as the Shannon capacity of P:

Vi[P]:=C(P) =supl(d:w), (2.24)

w

where g is a probability measure on the @, defining a joint distribution
(@) P(w|d@) of channel inputs and outputs, and I(X : Y) = D(Pxy||Px X Py)
is the mutual information of two random variables [I00]. It can be checked
that V; is regular and weakly affine. Operationally, V;[P] is the largest
communication rate that can be transmitted by a sender, who may encode

information into the phase settings @V, ..., @™ of asymptotically many
interferometers, to a receiver who decodes the correct message with high
probability based on the observations wy, ..., w, [100].

To obtain C;(p), we then only need to perform a maximization of the
Shannon capacity over all measurements:

C1(p) = sup C(Pup) =sup sup I(a : w)
(M) Ko (M)

2.25
= sup Lce ({11(@), p(@)}), .
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where the latter quantity is know as the accessible information. These
optimizations are by no means easy, and are worked out only in some few
cases. In any case, Theorem |3| shows that C} is a SIO monotone. This might
provide some motivation to try to evaluate C7 in certain special cases.

However, due to the Holevo bound [101], and the Holevo-Schumacher-
Westmoreland theorem [102] [103] regarding the capacity of the cq-channel
a +— p(d), we obtain the following:

1
Ci(p) < 5(A(p) = S(p) = Crlp) = sup —Cr(p™").  (2:26)
Namely, the Holevo bound [I0I] upper-bounds the accessible information,

Lo ({1(@), p(@) }) < x({1(@), p(@)})
=5 ([utadp(@)) - [u(d@)s(p(@).

Here, the second term is always S(p) because the p(a) are unitarily rotated
versions of p, and the first term is maximized by the uniform distribution
over all phases:

Ci(p) < S(A(p)) = S(p) = Cilp)- (2.27)

Invoking the Holevo-Schumacher-Westmoreland theorem [102] 103] regard-
ing the capacity of the cq-channel & — p(d), we get furthermore

1
sup —Ci(p™") = Cr(p).

In the qubit case, the optimization ([2.25]) seems to be unknown, but we
believe that the maximum is attained on the binary ensemble

1 1
{(27/00 = IO)J (57/)1 = O-zpo-z)} 5
and the measurement in the eigenbasis of py — p1, which would yield Cy(p) =

1—H (2222 ~ 2] pps[?. On the other hand, Cy(p) = H (25292) — H (157).

In2
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2.4 Chapter summary

e Coherence measures that are SIO-monotones can be derived by
optimizing suitable visibility parameteres over detection schemes,
thus providing a connection between the resource theory of coherence
and the physics of interferometers.

e In this way, one can recover coherence measures that are related
to, or identified with, coherence measures already considered by
coherence theory.

e For qubits, the single off-diagonal element seems to govern almost
all visibility and coherence effects.

2.5 Open questions

e Are visibility based coherence measures monotonic under 10s and
MIOs?

e Do our optimized visibility parameters satisfy duality relations with
suitable path-information measures?

e Can C, and Cy be recovered via visibilities?

e How can our framework be extended to multi-particle interference?
This would bring out unique quantum features of interference.




Part 11

Exploiting quantum coherence
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CHAPTER 3

Quantifying the coherence of maps

“Far-off

at the core of space

at the quick

of time

beats

and goes still

the great swan upon the waters of all endings
the swan within vast chaos, within the electron.”

D. H. Lawrence,
“Swan”, Complete Poems

So far we have focused on studying the coherence properties of quantum
states. However, any state o can also be conceived as a constant-output
channel NV, such that N, (-) = 0. The question that naturally arises then is,
how can the resource theory of coherence be extended to quantum operations,
such that the theory of states can still be recovered from it? What kind of
framework encompasses the resource properties of an electron’s beat, from
which those intrinsic to its stillness can still be retrieved? First steps towards
building quantum resource theories of channels were given by [61], 64, T04-106].

In the particular case of the coherence theory of maps, free operations
are NCG channels, which means that in some sense, any other CPTP map
represents a resource. Here, free operations may act on resources by tensor

45
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product and composition. The question we would like to address in this
chapter is: how to then measure the coherence of a channel? Or better: how
to assess its resource character?

As we will see, at least two ways can be proposed to quantify the coherence
of an operation. On the one hand, the amount of coherence the considered
map is able to generate already gives an intuition on how resourceful the map
is. On the other hand, the amount of coherence required to implement the
given channel can also give an estimate of its resourcefulness. Both ways
suggest how coherence can be exploited in the laboratory: the former, by
evaluating how much coherence a quantum process can store in some given
state, i.e. how dynamic coherence can be converted into static coherence; the
latter, by quantifying the amount of static coherence required to implement
an arbitrary quantum process, which means analyzing how static coherence
can be turned into dynamic coherence.

3.1 Assessing the resourcefulness of a map by the amount
of coherence it can generate

In this section we will present several quantifiers of the coherence-generating
capabilities of quantum channels:

3.1.1 Coherence power

A first approach to quantify channel coherence can be found in [107, 10§],
where they define the coherence power Pe of a channel N : A — B w.r.t. the
coherence measure C' as the maximum amount of coherence the channel is
able to generate on a state:

Po(N) := max C(N(p)) = C(p). (3.1)

pES(H)

The same maximization restricted to incoherent input states was intro-
duced by [108, 109]:

Po(N) = max CW(p) = _max  CN(li)a])), (3.2)

pel i€{0,1,...,d}

where d = |A].

3.1.2 Robustness of coherence

Let us define the robustness of coherence Cr of a quantum channel N as
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14+ Cr(N) :=min{\: N < APycc}, (3.3)

where the inequality N' < A®ycq is understood as completely-positive order-
ing of super operators, i.e., \®xcg — N is a CP map. The smoothed version
of this quantity, called e-robustness of coherence, is given by

C(N) = min {CR(ﬁ) : ;HN _z|, < e} , (3.4)

where || - ||, denotes the diamond norm [110], 111].

Recall that the diamond norm is a well-behaved distance which is further-
more endowed with an operational meaning: it quantifies how well one can
physically discriminate between two quantum channels [I12]. Also note that
this definition reduces to the robustness of coherence of states when applied
to the constant channel N,(p) = o, i.e., Cr(N,) = Cg(0).

If we choose our free operations Pxca to be MIOs, it is straightforward
to see (Appendix [A]) that the robustness of coherence of a channel N i) is
a proper coherence measure for channels under MIO, and ii) quantifies the
minimum amount of noise, in the form of another channel, that we need to add
to N such that the resulting channel is MIO (just as in the case of states). So
one could now ask: why do we then include this measure as a quantifier of the
coherence-generating capabilities of a channel? What does adding noise have
to do with the ability to generate coherence? Well, in Appendix [A] we also
show that C'r(N') can be easily formulated as a semidefinite program—thus
allowing for an efficient numerical computation of this measure—whose dual
form permits to link the robustness with the coherence power:

CLR(N) = log(l + CR(N)> = PCLR(N) = ﬁCLR(N)7 (35)

where Cpr, which is additive under tensor product of channels, is the log-
robustness of coherence of a channel.

The smoothed version of the log-robustness of a channel will also be of
relevance:

) = min {Cun(£) s JIN = £] < e} (5.6)

In fact, it can be shown that the (smooth) log-robustness of a channel N/
equals the (smooth) maximum relative entropy between A and a MIO M,
minimized over all M, that we define in Appendix [A]

3.1.3 Asymptotic coherence generating capacity

Let us now focus on how much pure state coherence can be created asymp-
totically, using a given operation N’ : A — B a large number of times, when
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NCG operations are for free.

The most general protocol to generate coherence must use the resource A/
and NCG operations according to some predetermined algorithm, in some
order. We may assume that the channels A are invoked one at a time; and
we can integrate all NCG operations in between one use of ' and the next
into one NCG operation, since the class of NCG opeartions is closed under
composition. Thus, a mathematical description of the most general protocol is
the following: one starts by preparing an incoherent state py on A ® Ay, then
lets act N, followed by a NCG transformation ®ncg1: B® Ag — A® A,
resulting in the state

p1 = (I)NCG,l((N@ id)Po)-

Iterating, given the state p; on A® A; obtained after the action of ¢ realizations
of N and suitable NCG operations, we let A/ act and the NCG transformation
Pneit1 - B® A — A® Ayyq, resulting in the state

Pry1 = Pnoa,i41 ((N ® id)/)t)~

At the end of n iterations, we have a state p, on A ® A,, and we call the
above procedure a coherence generation protocol of rate R and error e, if
|A,| = 2" and the reduced state pAm = Try p, has high fidelity with the
maximally coherent state,

<\112nR‘ pﬁn |\D2nR> Z 1—ce

The maximum number R such that there exist coherence generating protocols
for all n, with error going to zero and rates converging to R, is called the
asymptotic coherence generating capacity of N, and denoted C2 (N).

gen

3.2 Assessing the resourcefulness of a map by the amount
of coherence required to implement it

As already suggested, another way to assess the resourcefulness of a given
transformation is to quantify the amount of resource required to simulate it
by means of free operations. In this section we propose several approaches to
evaluate the coherence of a channel in this fashion:

3.2.1 Single-shot simulation cost

Our current goal is to quantify the resources required to implement (or
simulate) an arbitrary quantum channel via NCG operations by making use
of coherent input states, as depicted in Fig. [3.1a]
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Figure 3.1: Different protocols for implementing a quantum channel N
using an NCG operation. Here, a MIO M and a coherent resource w are
considered. a) The implementation destroys completely the input resource,
M(w @ p) = N(p). b) After the implementation, a degraded resource o is
recovered and ready to be recycled: M(w ® p) = 0 @ N(p). For example it
can be used to implement another channel N': M'(c ® p') =7 @ N'(p).

There are many inequivalent ways to quantify the coherence of a given state.
Indeed, a state can be more resourceful than another according to a given
measure, while the opposite can happen according to a different one. This is
due to the existence of incomparable resources, i.e., pairs of states that cannot
be interconverted in either direction via NCG operationsﬂ Nevertheless, in
this section we wish to establish general results which hold irrespectively of
the particular coherence measure of choice: we will do this at the expense
of quantifying the required resource in a somewhat coarse fashion, namely
by the smallest size k of a cosdit |¥y) that allows to implement the channel.
Indeed, cosdits are maximally coherent states irrespectively of how coherence
is quantified, since, as we have seen, any state of the same (or lower) coherence
rank can be obtained from them via NCG operations [59]. Restricting our
input resources to cosdits might seem a limitation. Nevertheless, we will show
that this setting has clear benefits and that it leads to a coherence measure
for channels that does take real values.

We can then define an NCG simulation of a quantum channel N': A — B
up to error € with a cosdit ¥, as an NCG transformation $ncg : R® A — B

1For instance, the cosbit cannot be transformed via MIO into the flagpole state |<p%>
(defined below in Eq. ), since the latter has a greater robustness of coherence
Cr(p) = 2 > 1= Cg(¥,); and at the same time the flagpole |p2) cannot be transformed
via MIO into the cosbit by Lemma
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that satisfies .
5”-/\/— Pnea(Pre @)l <€ (3.7)

The single-shot simulation cost (or simply simulation cost) of N, denoted

“m (N, is the smallest log k satisfying Eq. (3.7)), i.e., the minimal coherence
rank of the resource allowing for an NCG simulation of N'. Henceforth,
Csim(N) implies € = 0, i.e., exact implementation.

3.2.2 Amortized simulation cost

In the previous section, we quantified the coherence of a channel by the
minimum rank of the cosdit that allows for an NCG implementation of
the channel. However, this provides a somewhat coarse measure of the
implementation cost, as cosdits come in discretized units, the smallest being
k = 2. Moreover, one might speculate that the whole cosdit does not always
need to be fully consumed in the implementation, for there exists poorly
coherent channels that would certainly do without so much input fuel. In order
to quantify the actual resource consumed in the process, we now investigate
to which extent some of the coherence of the input resource can be recovered
after the channel implementation. For this purpose let us now focus on the
setting of Fig.|3.1b| where the resource, initially in a state w, is recovered in a
degraded form o after fueling the NCG implementation of the target channel
N(p). We quantify the minimal resource consumed in this process by the
difference between the coherence of w and o, when both the input and output
states come in standard coherence units, i.e., w and o are cosdits. Formally,
we define the e-error amortized cost of a quantum channel N as

Camo W) i=inf (CLr(Vi) — CLr(Vm))
= inf(log E)
m (3.8)
s.t. q)NCG(qjk ® ) - \Ijm ® E()a
IV = £ll < e

where we recall that CLr(Vy) = logk. In other words the optimization is
over all channels £ that are e-close to the target channel A/ that can be
implemented via an NCG operation $ncg : R® A — S ® B with cosdit input
and output resource states, respectively W, and ¥,,, k > m.

Note that tensor-product structure at the output of the simulation allows
complete freedom in reusing o and N (p) afterwards; an entangled output
would unnaturally constrain the recycling operations. For example, it would
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not allow the implementation of a sequence of channels applied on-the-fly to
the same system, i.e., N}, o --- o Ny o N, whereas this is allowed by Eq. (3.8]),
see Corollary [13]in Chapter [0

3.2.3 Asymptotic simulation cost

In the spirit of the previous section, we are interested in the minimum resources
required to implement many independent instances of a channel N.

An n-block NCG simulation of a channel N': A — B with error ¢ and
coherent resource ¥, (on space D) is an NCG operation o : A"®D — B™,
such that N7(p) := Pnoa(p ® U,) satisfies

e > [IN" = N[,
= sup |V @ide)d — V" @ide)o|)s.

|pye AnC

Here, C' is an arbitrary ancilla system.
The rate of the simulation is %log d, and the asymptotic simulation cost
of N, denoted C, (N), is the smallest R such that there exist n-block NCG

Ssium
simulations with error going to 0 and rate going to R as n — oo.






CHAPTER 4

Results in 10-theory

The main purpose of this chapter is to give explicit computations of the
coherence of a channel when restricting to IO-theory. As presented in the
previous chapter, we will assess the resource character of the considered
channel via i) its coherence generating capabilities, and ii) the amount of
coherence required to implement it with 1Os.

4.1 Asymptotic coherence generating capacity and coher-
ence power

We start by proving the following theorem (for simplicity, we define ¢ :=

loXel):

Theorem 4. For a general CPTP map N : A — B,

Co(N) > sup C((V @id)g) — Cr(p), (4.1)

lp)EARC

where the supremum is over all auxiliary systems C and pure states |p) €
A® C. Furthermore,

Coen(N) < sup Cr((/\/'®id)p> — Cr(p), (4.2)

p on ARC

where now the supremum is over mized states p on A® C.

93
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If N is an isometry, i.e. N'(p) = VpVT for an isometry V : A — B, the
lower bound is an equality, and can be simplified:

Coo(V-VH = sup C((Vep(Vel)l) - Clp)

o lp)eARC
= C(VoVT) — Cr(). 4.3
max (Vevt) (%) (4.3)
Furthermore, the above formulas for the asymptotic coherence generating

capacity are related to the coherence power (w.r.t. the relative entropy
measure) Pg, (N):

~

Po,(N) = max G, (N (p)) = C.(p). (4.4)
Let us also introduce the same maximization restricted to pure input
states,

Pe,(N) = max C. (N () = Co(p). (4.5)

lpyeA

Note that the only difference to our formulas is that we allow an ancilla
system C of arbitrary dimension. If we consider, for a general CPTP map N,
the extension N ® id;, and

PON) = Po,(N @idy), BYWN):=Po, (N ®idy),  (4.6)
then we have

gen

Coeu(V-VT) = sup P (V-VT) = P, (V-V), (4.7)
k

and in general

sup ﬁgj) W) < Caan
k

(M) < sup PEIN). (4.8)

Proof. We start with the lower bound, Eq. (4.1): For a given ancilla C' and
lp) € ARC, let R = C’r<(./\/'®id)go) —Cy(y). For any €,6 > 0, we can choose,
by the results of [65], a sufficiently large n such that

\I,?anr(go)JrnéJ O, O
P A0, \P?(HCT-(p)—nﬂ,
with p = (M ® id)¢, and where ~ refers to approximation of the target state
up to € in trace norm. We only have to prove something when R > 0, which
can only arise if A/ is not incoherent, meaning that there exists an initial
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state |0) mapped to a coherent resource o = N (]0)0]), i.e. C.(o) > 0. In the
following, assume R > 2§. Now, we may assume that n is large enough so

that with Ry = &2 45,

o®LnRo) ,&% \I,gz)tncr(@)maj.

The protocol consists of the following steps:

0: Use |nRy| instances of N to create as many copies of o, and convert
them into W5 (4p to trace norm e).

1-k (repeat): Convert first [nC,(¢)+nd] of the already created copies of
Uy into n copies of ¢; then apply N to each of them to obtain p = (N ®id)yp;

Cr(p)—nd] . . .
M (p) " ], lIlCllI'I'lIlg an error Of 26 1n

and convert the n copies of p to Ug
trace norm in each repetition.

At the end, we have (k — 1)n(R — 20) + nC,.(y) copies of ¥y, up to trace
distance O(k?e), using the channel a total of kn + nRy times, i.e. the rate
is > (R— 25),!1—}1(), which can be made arbitrarily close to R by choosing ¢
small enough and k large enough (which in turn can be effected by sufficiently
small €).

For the upper bound, Eq. , consider a generic protocol using the
channel n times, starting from py (incoherent) and generating p1, ..., p, step
by step along the way, such that p, has fidelity > 1 — ¢ with U$". By the
asymptotic continuity of C,. [65, Lemma 12], C,.(p,) > nR — 26n — 2, with

d =4/€(2 — ¢€), so we can bound

nR —26n —2 < C.(pn)
1

3
I

I
g

Cr(pe+1) — Crlpr)

3 o+
|l
)

IN

Cr<(/\/® id)Pt) — Cr(py),

=1

~+

where we have used the fact that pg is incoherent and that py 1 = Z; 11 ((N 029

id) pt), with an incoherent operation Z; 1, which can only decrease the relative
entropy of coherence. However, each term on the right hand sum is of
the form C’T<(J\/’ ® id)p) — C,(p) for a suitable ancilla C' and a state p
on A ® C. Thus, dividing by n and letting n — oo, ¢ — 0 shows that
R <8P, o5 asc Cr (N ®@id)p) — Cr(p).

For an isometric channel A(p) = VpVT, note that the initial state py in a
general protocol is without loss of generality pure, and that A/ maps pure states
to pure states. The incoherent operations Z; map pure states to ensembles of
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pure states, so that following the same converse reasoning as above, we end
up upper bounding R by an average of expressions C’T((N’ ® id) p) —Cr(p),

with pure states p, i.e. Eq. 1) since we also have C% (N) > C’r((./\f ®

gen
id)gp) — C,(¢) from the other direction. The fact that no ancilla system is
needed, is an elementary calculation. Indeed, for a pure state |p) € A® C,

C,(W @id)p) = Cr(e)
=S((AoN®A)p) - S((A®A)p)
= S((AeN @id)p) — S((A®id)p),
[with p = (id ® A)yp
= Zi:pi% @ [i)al],

Sri(S(AW ) - 5(ak))
S(AW () = S(A(2),

IN
=

ax
lpyeA

S

and we are done. O

Remark The same reasoning as in the proof of Theorem [4] replacing C,
with C, shows that

ConN) < sup  Cy((N @id)p) — Cy(p)
p on {@C (49)
- Sl;lp Pcf (N ®idy),

with the coherence of formation power, given by P S(N) == max, Cy (/\/ (p)) —
Cr(p).
Despite the fact that C¢(p) > C,.(p), since the upper bound is given by a

difference of two coherence measures, it might be that for certain channels,
the bound (|4.9)) is better than (4.2)), and vice versa for others.

Ezxample: qubit unitaries

We now want to have a closer look at qubit unitaries, for which we would
like to find the asymptotic coherence generating capacity.

To start our analysis, we note that a general 2 x 2-unitary has four real
parameters, but we can transform unitaries into each other at no cost by
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preceding or following them by incoherent unitaries, i.e. combinations of

1o’ 0
60 em)' This implies an
equivalence relation among qubit unitaries up to incoherent unitaries. A
unique representative of each equivalence class is given by

the bit flip o, and diagonal (phase) unitaries (

U=U(9) = (c _S> , (4.10)

where ¢ = cosf and s = sinf and with 0 < 4 < 7> so that ¢ > s > 0.
One can calculate C2 (U(60)), using the formula from Theorem . Clearly,

gen

1
>
7
7
0.8 9
/7
f=]
g /
<
;300.6 // /
g /
5} /)
=
80.4 7
/ ’
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0.2 }
/7
7
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0/m

Figure 4.1: Plot of Cgo, (U(0)) = P, (U(0)) as a function of 8 € [0, 7] (solid
blue line), and comparison with hy(cos? ) (dashed red line), which is the
coherence generated by an incoherent input state. In particular, for 6 ~ 0,
the ratio between the two functions is unbounded. The angle 6 is plotted as

a fraction of 7.

by choosing the test state ¢ to be pure incoherent,

Cean(U(0)) = Fe, (U(0))

> hy(c?) = —c*logc® — s*log 5%, (4.11)
with ho(z) = —zlogz — (1 — x)log(1l — x) the binary entropy. Perhaps
surprisingly, however, this is in general not the optimal state [I13, Cor. 5]
(see also [I14]), meaning that P, (U(6)) is attained at a coherent test state
v, although no closed form expression seems to be known. In fact, simple
manipulations show that we only need to optimise C, (U (0)pU (H)T) — Cr(y)
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over states |¢) = U(a) |0) = cosa|0) +sina [1), 0 < a < 7 (i.e. no phases are
necessary). The function to optimise becomes hy (cosQ(a + 9)) — hy (COS2 a).
Its critical points satisfy the transcendental equation

sin(2a + 26) Intan?(a + 0) = sin(2a) In tan? o, (4.12)

which can be solved numerically. Fig. shows that C2 (U(6)) = P, (U(0)) >

gen
hsy(cos? §) for across the whole interval, except at the endpoints § = 0, Z; in

VR 1
Fig. 4.2 we plot the optimal « for U(0).

0.1
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Figure 4.2: The optimal value of « attaining Cgg (U(0)) = Po, (U(0)) =
ho (cosQ(oz + 9)) — ho (C082 a), as a function of # € [0, ]. It is nonzero except
at the endpoints ¢ = 0, 7. Both angles, 6 and a*, are plotted as fractions of

.

4.2 Single-shot channel simulation

Rather than calculating the single-shot simulation cost of a channel under
IO0s, in this section we demonstrate that, in fact, any CPTP channel can
be implemented by means of IOs and a cosdit. This extends the result in
[T15, Lemma 2|, where the previous statement was first proved for unitary
operations.

Theorem 5. Any CPTP map N : A — B can be implemented by 10s,
using a maximally coherent resource state V4, where d = |B|.
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Proof. Let N'(p) = 3, KopK] be a Kraus decomposition of A/, with Kraus
operators K, : A — B. The idea of the simulation is to use teleportation of
the output of N, which involves a maximally entangled state ®p on B’ ® B”,
a Bell-measurement on system B ® B’ with outcomes jk € {0,1,...,d — 1}?
and unitaries Uj;, on B”. The unitaries Uj; can be written as Uy, = ZiXk,
with the phase and cyclic shift unitaries

where w = @ is the d-th root of unity. This scheme can be reduced to a
destructive (hence incoherent) POVM on A ® B’ with outcomes jka, followed
by the application of the incoherent Ujj. In detail, the probability of getting
outcome jk is

Pr{jk | o} = Tr&UP (K, @ 1)o(K, @ 1)1,
where o is a state on A ® B’ and the
[0UM) = (1@ Z7X") @)

are the Bell states. We can define the POVM elements M, = (K, ®
1)teUR (K, ® 1), so that

Tr((V ®@id)o) 20R =3 Tr(K, @ 1)o (K, © 1)Ialh

=Y Tro(K! ®1)U"(K, ® 1)

=Tr la (Z(Kl@l)cI)(jk)(Ka@l))]

=Tr (Z O'Mjka> = Tr o My,

with Mj, = >°, Mjio. This leads to a new equivalent scheme in which, given
a state p on A and a maximally entangled state on B’ ® B”, we can apply
the measurement M, on A ® B’ with outcomes jk, and unitaries Uj;, acting
on B”. Formally, let us define the Kraus operators of the protocol by letting

"

Lira = [(@UY| (K, ® 1)]** @ UY'. (4.13)
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It can be checked readily that they satisfy the normalization condition

ZL;[kaijOé = ZMjka ®1=1®1.

jka Jka

Applying the Kraus operators L;i, on all the system we get

Lika |8)* 1a)" " = (@] (Ko |6))(1 © Upe) [Ta)
= (OVM] K, |g) [WUP)
1
gKa |¢> :
Hence, 310 Ljka(p ® ®4) L e = L KapKl = N(p), and the proof is com-
plete. O

Ezxample: qubit unitaries

So far we have proven that having a cosdit is enough to implement a
quantum channel using IO0s. However, it is perhaps natural to expect that one
could get away with a smaller amount of coherence, given that most target
channels are not as coherent as a Hadamard gate. Here we prove that, when
we want to implement a qubit unitary with a two-dimensional resource state,
this is actually impossible.

Proposition 6. The only qubit coherent resource state |ry € C? that permits
the implementation of U(0), 0 < § < 7, is the cosbit.

Proof. We want to know for which state |r) = ¢’ |0) 4+’ |1) the transformation
1) ) L% (U(8) [4)) |0) is possible, for a general state |1h). Without loss of
generality, the incoherent Kraus operators achieving the transformation have
the following general form:

K =XU(6) @ [0)(r] + R [0)(r"]), (4.14)

where |rt) = s'|0) —|1) is the vector orthogonal to |r). We now need to find
the form of R such that K is incoherent. For that, we impose incoherence of K
when tracing out the ancillary part: (0] K [0)* =: T and (1" K [1)* =: T,
where Ty and 77 must be 2-dimensional incoherent operators. We then obtain
that R = s'Ty — Ty and \U = Ty + s'Ty. The latter condition enforces

. 10 0 —1 . 1 -1
that either Tj <O 1) and 17 « (1 0 ) or viceversa; or 1y (0 0 )



Chapter 4: Results in 10-theory 61

and 17 or viceversa. From these possibilities, we get 4 possible R

11
matrices, which define 4 different Kraus operators K; defined, according to

Eq. (4.14), by R; matrices as follows:

and the general incoherent Kraus operator is K = \;K; (i = 1,2, 3,4). Finally,
after imposing 3°; | \;|2K] K; = 1, we obtain the following conditions on R;
and \;:

Z |>\2’2 - 17

Do INPRIR =1,

7

It can be verified that these conditions are only fulfilled when || = |s'| = %,
i.e. |r) is maximally coherent. O

This result might suggest an irreversibility between simulation and co-
herence generation for qubit unitaries under 10s, but we point out that it
does not preclude the possibility of simulations using a higher rank, yet less
coherent, resource state (cf. [I16], where the analogue is demonstrated for
LOCC implementation of bipartite unitaries using entangled resources); or of
a simulation of many instances of U(f) at a cost lower than 1 per unitary.

4.3 Qubit unitaries: no coherence recycling

When implementing a qubit unitary via IOs and the less coherent resource
possible, a cosbit, we find that no coherence is left at the output to be recycled:

Proposition 7. Any two-qubit incoherent operation T such that Z(p®|r)r|) =
U)pU(0) @0c for general p, is such that the state o left behind in the ancilla
s necessarily incoherent.
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Proof. 1f the incoherent implementation of the unitary, instead of mapping
two qubits (input and resource state) to one (output), but to two (output
plus residual resource), i.e. Z(p @ |r)Xr|) = U(0)pU(0)! @ o, then first of all
o has to be the same irrespective of the state p. Otherwise we would be
able, by measuring o, to learn some information about p without disturbing
it. Now consider a pure incoherent input state p = |0)(0|, and note that the
desired output state U(6) 1)) has nontrivial coherence. But now observe that
7 takes in a state of coherence rank 2 [65], and produces a product of a pure
state of coherence rank 2 with another state. Since the coherence rank cannot
increase, even under individual Kraus operators [65], it must be the case that
o is incoherent. O

It is still an open question whether this fact generalizes to arbitrary d-

dimensional channels, or whether the impossibility of coherence recyling is
just intrinsic to qubit unitaries.

4.4 Asymptotic simulation cost

The best general bounds we have on the asymptotic simulation cost under
IOs are contained in the following theorem.

Theorem 8. For any CPTP map N : A — B,

CoenN) < CF(N) <log|B|. (4.15)
Furthermore,
Csim(N) > max {sup Pe, (N ®idy), sup ﬁcf N ® idk)} : (4.16)
k k

Proof. We start with Eq. (£.15): The upper bound is a direct consequence of
Theorem [5] The lower bound follows from the fact that A/ is implemented
using maximally coherent states at rate R = C2 (N) and incoherent op-
erations. Generation of entanglement on the other hand uses A and some
more incoherent operations. Since incoherent operations cannot increase the
amount of entanglement, the overall process of simulation and generation
cannot result in a rate of coherence of more than R.

Regarding Eq. , the idea is that for € > 0 and n large enough, since
the simulation implements a CPTP map N’ that is within diamond norm e

from N'®™, using incoherent operations and \I@@n(R“) as a resource. Applying
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®
the simulation to the state p®", results in (N’ ® idyn)p®" ~ ((,/\f ® idk)p) "
hence we have an overall incoherent operation

\II;@n(R+e) ®Q p@n '& (NI ® ldkn)p®n
By monotonicity of Cx (X € {r, f}) under 10, and Cx(¥3) = 1, this means
n(R+¢) > Cx (V' @idy)p™") = Cx (o),

where we have used additivity of C, and Cf [65]. Since this holds for all p,
we obtain

n(R—i—e) > Px(N/ ®ldkn>
2 PX(N®n & ldkn) —NKx€ — 4
> nPx (N ®idy) — nkxe — 2,

invoking in the second line Lemma [43] in Appendix [B] with «, = 4log|B]|
and ky = log|B| + logk, and in the third a tensor power test state. Since €
can be made arbitrarily small, and n as well as k arbitrarily large, the claim
follows. ad

Regarding the existence of bound coherence, let us remember that states do
not present it, since for them vanishing distillable coherence implies vanishing
coherence cost (see Section . As we will now explain, this is in contrast
to operations, i.e. vanishing asymptotic coherence generating capacity may
still yield non-zero asymptotic simulation cost:

Let us consider channel T to be a MIO. We expect the simulation cost of
any such 7" to be positive, Cgn(T") > 0. At the same time, Cge, (') = 0 by
Theorem [4], because the relative entropy of coherence is a MIO monotone, and
the tensor product of MIO transformations is MIO. To obtain an example,
we can take any MIO channel for which there exists a state p such that
Cy (T(p)) > Cy(p), since by Theorem Csim(T') is lower bounded by the
difference of the two. (As an aside, we note that this cannot be realised in
qubits, because for qubits, any state transformation possible under MIO is
already possible under 10, for which C/ is a monotone [75, [76].) Concretely,
consider the following states on a 2d-dimensional system A, which could be
called coherent flower states, since their corresponding maximally correlated
states (cf. [65] [I17]) are the well-known flower states [I18]. We write them as

2 X 2-block matrices,
1 (1 U
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where U is the d-dimensional discrete Fourier transform matrix. Via the
correspondence between C). and the relative entropy of entanglement, and
between C'y and the entanglement of formation, respectively, of the associated
state, we know that C,(ps) = 1 and Cy(pg) = 1+ 3 logd [118]. By the results
of [58], however, for every € > 0 and sufficiently large n, there exists a MIO
transformation 70 : (2)®"(1+€) 5 A" with

p™ = T (w5 1H9) & pim, (4.18)

By the asymptotic continuity of C} [65], we have C'¢(p™) > n (1 + £ log d) -

nelog(2d) — g(e), while of course the preimage py = ¥5™ "™ has C(py) <
n + ne, so for € small enough and n large enough, we have a gap:

Com(T™) 2 5 log d = ne(2 +logd) — g(e) > 0, (4.19)

invoking Theorem [8| In conclusion, in the IO-theory of maps it is possible
to find operations with zero asymptotic generating capacity and non-zero
asymptotic simulation cost, i.e. there exists bound coherence.

Ezxample: qubit unitaries

Regarding the implementation of qubit unitary channels, all we can say for
the moment is that C$Y (U(#)) < 1, because we can implement each instance
of the qubit unitary using a cosbit Ws, as shown in Proposition [6]
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4.5 Chapter summary

e We have provided bounds for Cg, (N), and a single-letter formula
for the case of unitaries. These bounds are related to the coherence

power of the map resulting from appending the identity to A

e Any channel can be implemented by means of I0s and a cosdit.
A cosbit turns out to be the only qubit resource permitting the
[O-simulation of a qubit unitary.

e The IO-implementation of a qubit unitary using a cosbit does not
allow for coherence recycling.

e Since C2 (N) < CZ,(N), the I0-theory of channels is not

gen sim
asymptotically reversible (for which one would require C° (N) =

gen
C (N)). In addition, for qubit unitaries U, C22 (U) < 1.

e In contrast to states, operations may exhibit bound coherence, i.e.

C2 (N) = 0 does not imply C%_ (N) = 0.

gen

sim




4.6 Open questions

e Is there any way to compute P4 (A) and P& (N), ie. the bounds
to C2° and C , efficiently?

gen sim?

e Can any arbitrary channel be implemented via 10s and a resource
state less coherent than a cosdit? For qubit unitaries, at least, this
cannot happen. What if we consider higher rank, yet less coherent,
resource states?

e [s coherence recycling allowed by IO-implementation of arbitrary
channels that are not qubit unitaries?

e What is the single-shot simulation cost of a channel under 10s?




CHAPTER b

Results in MIO-theory

Analogously to what we presented in the previous chapter, we here provide
different computations of the coherence content of a quantum channel, this
time considering MIOs as free operations. This way we also benchmark the
ultimate performance of coherence generation and channel implementation,
since we use the largest set of free operations.

5.1 Single-shot simulation cost

We start by giving an exact expression for the simulation cost of a channel in
terms of its smoothed robustness of coherence:

Theorem 9. For any quantum channel N it holds
Coim W) = log[1 + CRN)], (5.1)

where [-] is the ceiling function.

Proof. Let L := M(V;, ®-) : A — B be the MIO simulation of the induced
channel £ : A — B such that ||V —L||, < e. Noting that ¥+ (k — 1) o =1,

67
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with o = k;_— 1k, define
, 1 1
M :_M(k®~>—k/\/l((\llk+(k—1)a)®~)
1 1
:k./\/l(\lfk®-)+(1—k)/\/l(a®-)
1 1N
:kc+(1—k>c, (5.2)

with £/ = M(oc ® ). As M is MIO, so is M': A — B, and the right-hand-
side of Eq. (5.2 corresponds to a convex decomposition of M’ in terms of
L, L € CPTP. Hence, from the definition of the maximum-relative entropy,

Eq. (A.10) it follows
logk > D (L|IM') > CfRr(N). (5.3)

max

For the converse, let &k > 1+ C&(N) be an integer. By Eq. (A.12), it
1
follows that there exists some CPTP map £ with 5 |V = L]|» < € and another

CPTP map L', such that (£ + (k—1)L")/k is MIO. Make the following
ansatz for a channel M that is feasible for the simulation cost:

M(7 @ p) :=Te(Wyr)L(p) + Tr((1 — W) 7) L (p).
The map M is MIO if and only if M(|i) (i| ® -) is MIO for all incoherent
1 1
basis states |i). This is the case, since M (i) (i|®-) = E£+ (1 — %>[/, which
is MIO by construction. Hence log k > C5 (N) and the former can be taken

as small as [1+ C&(N)]. As the implementation cost is necessarily an integer
Eq. (5.1]) follows. This completes the proof. O

Theorem [9 can be seen as one-shot coherence dilution in the resource
theory of channels: a maximally coherent resource is completely consumed to
generate a target one with smaller coherence-generating capability. Indeed,
this includes as a special case the one-shot coherence dilution of states studied
in [71] and presented in Section [I.5.2] and generalizes the criterion found in
[63] for transformations of cosdits Wy to pure states |¢) = >, \/p; |7):

PIRV/ZES VEk. (5.4)

Thanks to Theorem [9] we can now determine the minimal coherence rank
of a cosdit necessary for a MIO implementation of a channell]

'We also note that, since the the cosdit is the maximally coherent state with a given
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Ezample: qubit unitaries

Let us now focus on implementing the simplest kind of channels, qubit unitary
gates. In this case we can compute the quantity defined above:

0 0=0,

o (5.5)
1 otherwise.

Cisim (Up) = {

as can be readily checked by noticing that the robustness of a qubit state
is equal to its ¢;-norm of coherence (see Eq. (1.19)): CR(Ug |7) (i Ug) =

Cy, (Ug |7) (i Ug) = 2c¢s = sin 26.

5.2 Amortized simulation cost

Interestingly, the amortized cost defined in Eq. can be related to the
log-robustness of a channel. In order to show it, let us first discuss the
exact implementation of a channel via MIOs with coherence recycling, which
amounts to taking e = 0 above and £ = N. In this case, thanks to Theorem [9]
it is possible to estimate the robustness of coherence left in the resource after
the implementation:

Theorem 10. For a quantum channel N : A — B, there exists a MIO
M:R®A— S®B such that M(V), ® -) = 0 @ N (-) if and only if

CLR(N) S CLR(\I]k> - CLR(O'). (56)

Proof. Let T: C® A — S ® B such that T(1 ® p) = 0 @ N(p). Here, we
have made use of the fact that any state can be identified with a preparation
channel from C to S mapping the unique state 1 — . Now let M be a MIO
such that

MW ® ) =T().

From Theorem [J] such a simulation is possible if and only if

k> (14 Cgr(T))
= (14 Cgr(0))(1 + Cr(N))

coherence rank, Theorem [J] implies that a generic input resource state w will not be
able to e-simulate a channel if its coherence, as measured by the coherence rank (or by
coherence number if the resource is a mixed state), is smaller than the simulation cost:
Crank(w) < [1+ C{(N)]. Indeed, the latter inequality implies that a cosdit ¢, of the
same rank k' = Crank(w) cannot simulate the channel; moreover, by construction w is less
coherent that v, since it can be obtained from the cosdit via IO € MIO [59]; hence w
cannot simulate a channel already not simulable with ;..
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where we have used the multiplicativity of the robustness of coherence in the
last line. Taking the logarithm on both sides and re-arranging terms gives

Eq. (5.6). This completes the proof. g

Note that the bound in Eq. (5.6)) can always be attained by some resource
state oo that, however, will not be a maximally coherent. If we do impose
that the output resource is a cosdit ¥,,, we obtain the following result:

Corollary 11. Given a quantum channel N and an integer k > 1+ Cr(N),
there always exists a MIO implementation of N that takes a cosdit resource
of coherence rank k and returns a degraded resource in the form of a cosdit

_ k ;
of rank m = {TR(MJ’ i.e.

L+ ColN) < & < (14 CoV)) (1 4+ 1), (5.7)
m m

That is, demanding a cosdit at the output requires an overhead of at
most O(1/m) with respect to the optimal ratio that can be attained with
a non-maximally coherent output resource; moreover, this overhead can be
made arbitrarily small by simply providing a higher-rank cosdit resource at
the input. This implies that the amortized cost of a channel is equal to its
log-robustness and the same straightforwardly extends to the approximate
case, as proved by the following theorem:

Theorem 12. For any quantum channel N it holds

Cimo ) = CLp(N). (5.8)
Proof. From Definition and Corollary [11] it follows immediately that
the zero-error amortized cost is equal to the log-robustness. Indeed, if we
take the log on each side of Eq. and then let k,m — oo we obtain
Camo (N) = Cpg(N). this in turn implies that the e-error amortized cost,
Eq. , can be rewritten in terms of the log-robustness of the channel £ as

amo

CC (N) = min Cup(L) st ;HN Ll <e=CiaN).  (5.9)
O

This second key result, together with Theorem 9] establishes the robustness
of coherence of a channel as the correct measure to quantify the cosdit
resources necessary to implement the channel using a single MIO. Eq.
determines the minimum coherence rank required at the input, while Eq.
determines the minimum fraction of input coherence that is actually used
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in the process. Note however that the latter is a lower bound on the actual
coherence consumed when a limited amount of resource can be employed at
the input.

Finally, restricting again to the zero-error case, Corollary (11| paves the
way for the exact MIO implementation of arbitrary sequences of channels, as
depicted in Fig. |3.1b]

Corollary 13. Any succession of channels Ni,Na,--- N, can be imple-
mented on-the-fly by concatenation of MIO implementations at an asymptoti-
cally optimal amortized cost

k " n
anmo (M E S Z amo i k,a (510)

where k and k' < k are the coherence ranks of the input and output cosdits of
the entire protocol.

Note that the additivity of the zero-error log—robustness under tensor
product already implies Cyumo (N1 @ -+ QN,,) = 371 Camo (N;). However,
Corollary [13|is more general and includes this result as a special case. Indeed,
it allows the exact implementation of arbitrary sequences of channels, and
not just their tensor product, at an amortized cost equal to the sum of
the single amortized costs of each channel. In particular, this allows the
implementation of a concatenation of channels on-the-fly and it justifies the
choice of a tensor-product structure at the output of the recycling process.
Finally, from Eq. we know that the log-robustness of coherence also
quantifies the cohering power of a quantum channel. Hence we conclude that
the exact amortized cost of a channel coincides with its cohering power.

Ezample: qubit unitaries
For qubit unitaries it holds:
CLR(U(;) = lOg(l + sin 2(9) = Camo(Ug). (5.11)

In contrast with the case of IOs (see Section7 where the implementation
of qubit unitaries consumes the entire cosbit resource, Theorem [10| ensures
that MIOs do allow for coherence recycling. More precisely, there exists a
MIO M such that M(¥V, ® p) =0 ® ngUg for any qubit state p if and only
if the output resource state o has coherence

1 s
Crlo) < sin 260

B — 12
~ 1+ sin260 (5.12)
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5.3 Arbitrary resources for MIO implementation of chan-
nels

Let us now go beyond the assumptions of the previous sections by considering
a scenario where non-maximally coherent states are employed as resources
(see [I19] for an analogous result in entanglement theory). In particular, we
want to study under which conditions the MIO implementation of a quantum
channel in the settings of Fig. and Fig. is still possible.

We begin by introducing a semidefinite program to assess the performance
of an arbitrary resource at implementing any target channel; this program
yields the best approximate MIO implementation of the target channel with
a given resource state (Fig. , as measured by the diamond norm.

Proposition 14. The smallest diamond norm error for the implementation
of a quantum channel N : A — B via a MIO M : R® A — B with a coherent
resource w € R is given by the following semidefinite program:

min A
s.t. Jyp is the Choi matriz of M € MIO
Jg = TI‘R((wt X ]lA X ]IB)JM)

5.13
Z>0 (5.13)
Z > Iy — Je
)\]IAZTI'BZ,

where Jy is the Choi matriz of N, w' denotes the transpose of w, and Jg that
of its implementation, &€ = Trg M(w ® -). Recall that the Choi matriz Ja of
a MIO M as in Eq. (5.13)), is fully characterized by Jyp > 0, Trg Jyg = Lga
and Te(([i){il s & 1) (k1) Tag) = 0 Vi and ¥j # k.

Proof. The SDP can now be formulated as follows:
1
min 1€ - Nl
s.t. X is the Choi matrix of a MIO M, (5.14)
E=TrpMw®-).

Using the result of [I11], the dual form of the diamond norm distance can be
written as

min A
s.t. Z Z Jg - JN
Tl"BZ S )\]lA

Z > 0. (5.15)
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Using Eq. (C.3)) to relate the Choi matrix of £ to that of M is MIO it is then

straightforward to obtain the final formulation. O

In Appendix we provide a simpler semidefinite program for the case of
unitary channels, where the precision of the simulation is assessed in terms of
the average gate fidelity f(U, ) [120], rather than by the diamond distance.
Specifically, we compute the entanglement fidelity F'(U, N') = Tr JyJy (where
Jy and Jyr are the Choi matrices of U and N, respectively), which fulfills

FUN) = (d+ 1)f(CIlJ,N)—1

on which the channels act [120]. From now on we will refer to it as “gate
fidelity™.

Regarding instead the recycling setting of Fig. [3.1b], thanks to Theorem
it is straightforward to write a semidefinite program for the e-error amortized
cost of a channel with cosdit input resource, as shown in Fig. 5.4 If, in
addition, we ask for the maximum robustness of coherence left in the output
resource when a non-maximally coherent input resource is employed, we end
up with the following optimization problem:

, where d is the dimension of the Hilbert space

Proposition 15. The maximum coherence left in the resource o € S after the
implementation of a quantum channel N : A — B via a MIOM : R® A —
S ® B and a coherent resource w € R up to error € in diamond norm is:

max Cg(o)
st. Mw®:) =0 L() (5.16)
N =Ll < e

This problem captures exactly the setting of Fig. with arbitrary
input resource. Note, however, that it cannot be formulated as a semidefinite
program, since the tensor-product constraint is non-linear in the optimization
variables ¢ and £. One can devise alternative semidefinite programs by
relaxing the constraints in Eq. , as we discuss in Appendix .

The semidefinite program in Proposition |14 and that for the amortized
cost allow for a thorough numerical analysis of our problem, see Figs. [5.21{5.4]
Nevertheless, before analysing the numerical results for qubits, let us present
some general, analytical results on MIO implementation of channels with
non-maximally coherent resources. As a start, according to Theorem [9] any
resource state that is MIO-convertible into a cosdit of coherence rank d can
be trivially used to implement any quantum channel of log-robustness smaller
than log d. The following lemma provides us with a simple necessary condition
for the existence of pure state transformation via MIO.
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Lemma 16. Assume that a pure state 1 is transformed to a pure state ¢ via

MIO, then
A1) < Mi(9), (5.17)

where A\i(p) = max; (i| pli) is the largest diagonal entry of an operator p,
which coincides with its fidelity of coherence [121, [122] on pure states.

Proof. The geometric measure of coherence, introduced in [121], is defined as

Cy(p) =1 - Fe(p) (5.18)
where
Fo(p) = max F(p,9)*, (5.19)

is the familiar Uhlmann fidelity between two mixed states, F'(p,d) = || \/ﬁ\/g I|1-
In particular for a pure state p = [)Xv|, F(1,0)* = Trd, and Fo(y) =
A1(10) = max; (1] ¢ |i). As the geometric measure of coherence is monotonically
decreasing under MIO, it follows that Fo(M(p)) > Fc(p), for all M MIO.
Setting ¢ = M (1)) leads to the desired result. O

Condition is also sufficient if the target state is maximally coherent,
since if Aj(¢) < é then there exists a IOCMIO that transforms v into ¥,
due to the majorization criterion (see Theorem [1).

Hence, for any channel N with Cpr(N) < logd there exists a continuous
family of resource states of dimension d that allow for the exact MIO simulation
of it via conversion to cosdits. We now ask whether there exist any channels
that can be implemented using pure resource states |w) that are not convertible
into cosdits, i.e., A\j(w) > 1/d. To this end let us define a special class of
states that will be useful in this context.

Definition 17. A d-dimensional flagpole state is a pure state of the form

1 —p d—1 . ' 1
lep) = /P 10) + 1-1 d_13) s with P <p<lL (5.20)
=1

The structure of flagpole states, shown in Fig. [5.1, endows them with
several useful properties. Thanks to the majorization criterion, it is easy to
show that: i) for all pure states ¢ we can transform ¢ — ¢, with a specific
value of p > Fo(¢) (see Eq. (5.19)); ii) conversely, we can transform ¢, — ¢
for all ¢ such that p < Fio(¢). In other words, ¢, is the most coherent state
of fixed coherence rank with fidelity of coherence larger than or equal to p.
Moreover, as explained above, a d-dimensional flagpole state with p < ﬁ can
be converted into a (d — 1)-dimensional cosdit and thus trivially implements
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\/f".

ap a; az as a4 <o Ag—1

Figure 5.1: Schematic depiction of the coefficients {aj}?;é of a flagpole state
|¢p) in the incoherent basis.

any channel of log-robustness smaller or equal than log(d — 1). For all other

flagpoles with p > ﬁ, which cannot be converted to a cosdit of rank d — 1,

the following theorem holds.

Theorem 18. For any quantum channel N : A — B, if

p= m, (5.21)

then there exists a MIO M : R® A — B such that M(p, ® p) = N (p) for
all states p, where @, is a d-dimensional flagpole state, d > |B].

Proof. Let us decompose the state space R into the following orthogonal
subspaces

Pps ¢7 m=1- ¥p — Qb (522)

where ¢, = |, )Xpp|, With |p,) given by Eq. (5.20)), ¢; is the rank-one projector
onto the state

6) = VI=p10) =[5 £ 1) (523)

and II is a rank-(d — 2) orthogonal complement to ¢, and ¢.
We now make the following ansatz for the MIO channel simulating N
with a flagpole resource ¢,:

M(p® o) =N(p) Tr(op,) + Li(p) Tr(o¢r)
+ Lo(p) Tr(oTl), (5.24)

where £, 5 are CPTP maps. In order for M to be MIO we require that
M(-® |7){j]) is MIO, Vj € (0,...,d — 1). This leads to the following two
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conditions

pN + (1 —p)Ly is MIO forj =0

1—p P 1 . .

d_l./\f+d_1£1+<1—d_1)[,215MIO forj >0 (5.25)
From Proposition we know that there exists a CPTP map £; such that
the first condition in Eq. (5.25) is fulfilled if and only if p < (1 + Cr(N))~%.

To prove that the second condition in Eq. (5.25)) is satisfied note that it may
be written as

1 1
d_1N+(1 d—1>£2 (5.26)
where we defined the CPTP map N’ = (1 — p)N + pL; whose robustness of
coherence is at most d — 1. By Definition |41 this implies that there exists a
CPTP map L, such that (N’ + (d —2)L3)/(d — 1) is MIO. This completes
the proof. O

This proves that any pure resource state in dimension larger than 2 is
useful for the exact implementation of some coherent unitary channel via
MIO. Indeed, any such state can be converted to a flagpole, which in turn
can be used for the implementation of a coherent channel, in particular a
unitary. Note also that in general the bound on p in Theorem (18| does not
single out all flagpoles that can implement a given channel, since it relies on
a specific ansatz.

Ezxample: qubit unitaries

Analogously to the previous section, we now address the implementation
of qubit unitaries when non-maximally coherent resources are available.

The first question we want to raise is whether it is possible to use a
non-maximally coherent pure qubit resource in order to implement a qubit
unitary, even one that generates little coherence. We already know that, if
the free operations are 1Os, this is only possible with a cosbit, no matter
how coherent the unitary is. This is still the case under MIOs, even for
higher-dimensional unitaries, when restricting to qubit resource states:

Proposition 19. The only pure qubit resource state |w) € C? that permits
the MIO implementation of some unitary gate of arbitrary dimension is the
cosbit.

Proof. Let {|w), |w!)} be an orthonormal basis for C?, where

w) = al0) + 8]1)
wh) = B10) — 1) (5.27)
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Diamond norm error

0 0.2 0.4 0.6 0.8 1

Figure 5.2: Minimum diamond norm distance between the qubit unitary
Up and a MIO implementation of it with pure qubit resource state |w) vs.
robustness of coherence of the latter. For § = 7/30 (dotted orange line),
0 = 7 /7 (dashed red line) and 6 = 7/4 (solid blue line). Note that an exact
implementation is possible only with a cosbit resource state.

with o, 8 € C, |a|* + |3|> = 1. The Kraus decomposition of the most general
M is MIO implementing any unitary operator U : Hqy — Hg4, is given by

K; = MU ®10) (w| + R* @ |0) {wH], (5.28)

where {)\; € C}, and {R' : Hy — Hao,1 < d < d}. As M is CPTP,
Y, KJK; = 1 which yields the following conditions on {);, R}

YINP =1
> |l)\i|2Ri = 0
> |>Z\i|2R”R" = 1. (5.29)
Applying them together with the MIO condition
(ml (X2 K |jk) Gkl K] ) [n) = 0. Vom £

gives rise to the following two equations

oPUg Uy + 18P S NP Ry (R0 = 0 (5.30)

|BPUmsUS, + Lo 3o INP Ry (R = 0, (5.31)
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Fidelity

-1 0.995

1 0.99

0.985

VP:

. 0.98

0.975

0.97

VPy

Figure 5.3: Gate fidelity for the MIO implementation of a qubit uni-
tary Up with § = 7/14 using a generic qutrit (d = 3) resource

V) = /P |0) + /Py [1) + /D= |2). The central cross (x) represents the max-

imally coherent state. The dashed red line around it encloses states that can
be transformed with MIO to cosbits, the blue-solid line encloses the states
that allow for an exact implementation (£ = 1), while the dashed-dotted
green line encloses all states that cannot be obtained via MIO by diluting a
cosbit. The dotted yellow lines represent the family of flagpole states.

corresponding to k = 0 and k£ = 1 respectively. Summing both equations
above we obtain the additional condition Y, ])\ ?Ri (R);, = Uijan
which, upon substituting into any one of Eqs. (5.30 ‘ results in

(laf* = |8 UnUL, =0, ¥j,n,m. (5.32)

Now, unless U is the identity, there is at least one pair of values (j,n) such
that 0 < |U,;| < 1. Moreover, as 3_,,, [Upn;|* = 1 there also exists at least one
m # n such that |Upmj| > 0. Thus for Eq. to hold true for all j,n,m,
la|? = [8]* = 5 which implies that |w) = |¥,). This completes the proof. O

As an illustration of this fact, Fig. shows that only a cosbit resource
allows for an exact implementation of the qubit unitary Uy, for several values
of . Input coherence can be saved only at the expense of allowing for an
approximate implementation of the gate. Moreover, in Fig. we give a
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full characterization of the optimal performance of a MIO simulation, as
measured by the gate fidelity, for general qutrit resource states. Without loss
of generality we can focus on the upper region of the plot, p,,p, < p, = A1 (¢).
Qubit resources are found in the planes defined by p, = p, = 0, where perfect
simulation (F' = 1) is only reached for cosbits, p, = 1/2. The red dashed line
delimits the qutrit states that can be distilled into a cosbit, p, < 1/2, and
hence also attain F' = 1. However, perfect simulation can also be attained
with other qutrit states: those that fall below the solid blue line in Fig. [5.3]
In particular, the qutrit state with the highest value of p., i.e. the least
coherent qutrit as measured by the fidelity of coherence, that allows for
perfect simulation is a flagpole. Indeed, this agrees with the predictions of
Theorem [18

Proposition 20. A d-dimensional flagpole resource state |p,) allows for the

MIO implementation of a qubit unitary Uy if
1

< T, - an?

~ 1+sin26

where d > 3 and 0 < § < 7. Furthermore, for a qutrit flagpole state |p,) € c3

this is also the highest allowed value of p.

p (5.33)

Proof. We shall first prove the statement of the Proposition for the case of
qutrit flagpoles. To that end consider the following orthonormal basis for C?,

[20) = lbo) = VBI0) + 1520 + [2)),
1
o) = (1) = 12).
60 = VI=510) = /2(1) + 12))

As in the previous case, the Kraus decomposition of the most general MIO
M implementing U, : C2 — C? is given by

K; = XUy ®10) (o] + R @ |0) {¢1] + P @ |0) (¢ha] - (5.34)

As M is CPTP, >, K,;T K; = 1, which imposes the following conditions on

{)\iv Ria Pl}

SN =1 (5.35)

STINPRY = Y Pa=0 (5.36)

STINPRIRY = SINPPIP =1 (5.37)

SINPRTPT = YT INPPTR =0, (5.38)

K3 3
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Applying the above conditions together with the MIO condition

) (2 ) G KL 1) =0
form#n=0,1,7=0,1and k =0,1,2 we obtain
UniUbl6§]* + A;1611° + B;|651° + Creieh =0, (5.39)
where we have defined
A; _Z|>\| R, (R)j,
Bj = Z il P (P
O Z |/\ | PZT)Jn + P&j(R“)jn),

and ¢F = (¢;) k. Fixing m =0, n = 1, Eq. (5.39) gives rise to six equations
which we can solve for A;, B; and C; to obtain

Ay = —A = —M cosfsinf
D —
By = —B; = f 1 cos fsin 6
Co = Ci=0. (5.40)

Now by definition A; and B; correspond to the off-diagonal elements of
CPTP maps acting on the state |7Xj]- As the resulting operator must be
positive it follows that |A;| < 1, |B;] < 3. Moreover, the conditions on the
Aj in Eq. (| are satisfied if BO, By are given as in Eq. | - Hence

1
cosfsinf < 3

p
B;i| =
| J’ 1 o
which implies
< — .
P= T  sin20
Therefore, there can be no MIO that implements the qubit unitary, Uy, with
a qutrit flagpole state |p,) such that p > (1 + sin26)~*

The proof can be extended to arbitrary d-dimensional flagpole and (d —1)-
dimensional unitary. We note, however that in this case we obtain the

following upper bound p < (1 + CR(U)) , which coincides with Eq. (5.33
only for d = 3. This completes the proof.

We note that it is an interesting open question whether less coherent
flagpole states allow for the implementation of qubit unitaries via MIO for
the case d > 3. O
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0 0.05 0.1 0.15 0.2 0.25
0/m

Figure 5.4: Plot of the e-error amortized cost of the qubit unitary Uy as
vs. 0/, for several error thresholds € € {0,0.1,0.2,0.3,0.4,0.5} (from top
to bottom). The amortized cost is higher for more coherent unitaries but
it decreases if larger errors are allowed. In particular, when the amortized
cost becomes zero it means that the given unitary can be simulated up to the
given error with a MIO, which is not necessarily the identity channel, without
using any coherence of the input resource state.

In Fig. 5.3 all flagpole states are identified by a yellow dotted line that
interpolates between the incoherent state |0) and the cosbit. Finally, the set
of states that cannot be obtained via MIO from a cosbit, are enclosed by the
dashed-dotted green line which is determined by the intersection of the sphere
of qutrit states (in the positive octant) and the plane (¥3) 1 = 1, as shown
in Eq. . Extensive numerical evidence shows that the blue solid line
that delimites the region of states that enable an exact MIO implementation
is also given by the intersection of the qutrit sphere with a plane of the
form (®y) 1) < f(0), where the constant f(6) and normal vector |®4) can be
analytically found by imposing that the plane includes the cosbit and the

flagpole saturating Eq. (5.33)).

Regarding the case of coherence recycling after the approximate implemen-
tation of a qubit unitary, Fig. |5.4| shows the amortized cost of qubit unitaries
for several error thresholds. As expected, the amortized cost increases with
the coherence of the target unitary, since less coherence can be recycled when
implementing more coherent unitaries. Moreover, if we allow a larger error
threshold to implement the same unitary, it is possible to obtain more coher-
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ence back for the same input resource at the cost of a worse approximation.
When the amortized cost becomes zero, Theorem (12| implies that there exists
a MIO that implements the target unitary without consuming any coherence.
This happens if and only if the simulation cost of the unitary for the same
error threshold is zero.

5.4 Asymptotic coherence generating capacity and asymp-
totic simulation cost

The following theorem can be proven regarding the asymptotic coherence
generating capacity of a quantum channel:

Theorem 21. The asymptotic coherence-generating capacity of a channel
N : A — B is given by

Coen(N) = sup C,. (N @ ide)(pac))

PAC
— Ci(pac) (5.41)
= sup PN, (5.42)

where the suprema are over all auxiliary systems C' and the first additionally
over states pac on A® C.

Proof. The proof is a straightforward extension of Theorem [4] where IOs
where considered instead. The key difference here is that the coherence cost of
arbitrary states under MIOs is given by the relative entropy of coherence [71],
whereas under 1Os this is true only for pure states.

We first prove the upper bound: for any coherence-generating protocol,
the trace-distance between the final state p,, and the cosdit can be upper
bounded as ||p, — U5"||; < 2y/e. Then the asymptotic continuity of the
relative-entropy of coherence [65, Lemma 12] implies that:

(CL (5™ — Cr(pa)| < 2v/E R+ 20(Ve), (5.43)

where h(x) = —zlogz — (1 — z)log(1 — z) is the binary-entropy function.
Hence we obtain the following chain of inequalities:

nR(L—2\/6) —2h(V/e) < Cy(pn)

i
L

(Cr(pjs1) — Crlpy)) (5.44)

7=0

<n sup (C.(N ®id)(p)) — Cr(p)),

peAC



Chapter 5: Results in MIO-theory 83

where the first inequality follows from Eq. and C.(U§") = nR, while
the equality by adding and subtracting the relative-entropy of coherence of
each intermediate state of the protocol. The last inequality instead follows
from substituting each term of the sum with its sup over all states and the
monotonicity of C, under MIOs. After dividing both sides by n and taking
the n — oo limit we obtain that the rate of any coherence-generating protocol
is upper-bounded by sup. ﬁ’é?) (N) up to an error vanishing with e.

For the lower bound instead we need to exhibit a protocol that asymptot-
ically attains supq ﬁé?) (NV). The protocol works as follows: i) we first apply
the channel to an incoherent state |0)0| in order to produce some coherence,
i.e., o = N(]0)X0]); ii) we produce a sufficient number of copies of o to distill
a certain amount of cosbits, which are then used to produce a target state
p via coherence dilution; iii) we apply the channel to p in order to obtain a
more coherent state p’ = (N ®@id)(p); iv) we distill cosbits from p; v) we
use the increased amount of cosbits obtained to iterate the processes (iii-iv)
k times. The asymptotic coherence-generating capacity and cost of states
under MIOs are both equal to the relative-entropy of coherence [71], so that
the conversion rates of processes (ii-iv) described above can be written as

By g9

Y

PECr @+, jon (5.45)
P \I,gétn(cr(p’)fé)J’

where m 2 n(C.(p) + 9)/(C.(0) — J). Note that the coherence production
of processes (iii-iv) is not larger than n(R — 2J), where R = C,.(p") — C,(p),
and each transformation is accurate up to an error e. Hence, the overall
coherence-production rate is bounded by

kn(R — 26) + n(C,(¢) + 9)
kn+m k—oo

> R — 20, (5.46)

which can be made arbitrarily close to R by taking ¢ sufficiently small. We have
therefore described a protocol that generates coherence at an asymptotical
rate C,.((N ®id)(¢)) — C.(¢) for any ¢ac using MIOs. By taking the sup of
this quantity, we obtain the desired lower bound. O

The coherence-generating capacity, despite its nice information theoretic
formula, is by no means an easy quantity to compute. Notwithstanding the
explicit expression for the relative entropy of coherence, the maximization
over the state pac is not necessarily well-behaved. Also, we do not know how
large an auxiliary system C'is required, or indeed if any at all.
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On the other hand, the asymptotic cost of implementing the channel can
be expressed using our above results, in particular Theorem [9} Namely, it
comes down to

> (N) = suplimsup 711 log(1 + CH(N®™)). (5.47)

sim
e>0 n—oo

Since both quantities—the asymptotic simulation cost and the asymptotic
generation capacity—are not easily computable (and since the results of [5§]
cannot be directly applied to general channel resource theories), it remains to
be known whether they coincide, i.e. whether the theory is asymptotically
reversible. In general it holds Cgy, < Cg,. There is one special case in
which we know what this limit is, namely when for all p, N'(p) = o, i.e. N
is a constant channel. Then, Cr(N) = Cg(c), and the right hand side of
Eq. converges [58] to the relative entropy of coherence, C, (o). More
generally, for a cg-channel N(|é)(j|) = d;;04, written in the incoherent basis
of the input state, the same reasoning yields

CanWN) = Cn(V)

gen

i.e., the theory is asymptotically reversible when restricted to cq-channels.

Regarding the existence of bound coherence, we cannot ensure whether
operations exhibit it in MIO-theory. It is clear that cq-channels N do not have
bound coherence, since for them Cg, (N) = 0 implies Cg, (V). Moreover, for
a MIO T there is no bound coherence either, unlike what happened when
we considered 10s as free operations (see Section . It remains an open
question whether, in general, the MIO-theory of operations is endowed with

bound coherence.
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5.5 Chapter summary

e The robustness of coherence of channels determines the single-shot
simulation cost of a channel.

e Among qubit resource states, a cosbit is necessary and sufficient to
implement any coherent qubit unitary.

e The log-robustness equals the cohering power of the channel and it
characterizes the amortized implementation cost with recycling of
coherence at the output, as well as the asymptotic cost of realizing
exactly many independent instances of the channel.

e MIOs, unlike 10s, allow for coherence recycling.

e A semidefinite program can be used to find the best approximation
to any given channel using MIOs and an arbitrary resource.

e Any coherent state in dimension larger than 2, however weakly so,
is useful for the exact implementation of some coherent unitary
channel.

5.6 Open questions

e Can a closed expression for the asymptotic implementation cost of
channels be obtained from the smoothed robustness of coherence?

e Can the coherence left after the approximate implementation of
a channel with an arbitrary input resource be formulated as an
efficient optimization problem?

e Is the theory reversible, i.e. C22 (N) = CF

gen sim

N7 We know it is, at least, for cg-channels.

(N), for every channel

e [s there bound coherence in the MIO-theory of channels? We know
that, at least, for cq-channels and MIOs there is no bound coherence.
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5.7 Comparison between 10-theory and MIO-theory

10 MIO
states CP(p) = Cr(p) idem
p C=(p) = Cilp) C(p) = Crlp)
7 reversibility 3 reversibility
# bound coherence idem
operations m N) =7 C (W) =log[1 4+ CH(N)]
N : A — B | implementation of 2d-unitary only w. cosbit idem

recycling not always allowed

supy, WQMVQ/D < C2 (N) < sup,, WQHVQ/D

gen
C (N) < C2 (N) <log|B|

gen sim

3 bound coherence

7 reversibility

o0
S1m

QMBO A.\/\\v - QMNA.\/\\V
25, (N) = sup, P ()
(N) = sup,.¢ limsup,,_, wﬁomﬁ + CHN®)

d bound coherence ?

3 reversibility?
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CHAPTER 6

Some preliminary notions

“It troubled me as once I was —
For I was once a Child —
Concluding how an Atom — fell —
And yet the Heavens — held —”

E. Dickinson,
“Poem 6007, Complete Poems

So far we have understood that a system is quantum or non-classical when
it presents coherence, i.e. it leads to interference phenomena when subjected
to an interference experiment in the spirit of Fig. [2.2] where there exists an
impossibility to know the path that the system will take. In this respect,
it must be pointed out that the system’s size should not condition us to
think how it will behave: indeed, not only was quantumness demonstrated
for electrons [7], but also for composites of up to 430 atoms [I123]. Here
non-classicality is only associated with superposition or the ability to produce
interference, so we should not be misled by the size of the system at hand.
Indeed, physicists are still in the quest for the frontier between the classical
and quantum realms in terms of a system’s proportions.

However, there exist alternative ways in which non-classicality can manifest
itself. For instance, in the context of quantum optics, where states of light can
be written as p = [ d*>aP(a)|a)a| (where |a) are coherent states and P(a) is
the Glauber-Sudarshan P distribution), a system is considered non-classical
if its corresponding P distribution displays negativities [124]. Yet another
kind of non-classicality is present in the statistics obtained when devising

89
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proper measurement procedures on entangled systems, typically involving
the measurement of non-local or non-commuting observables [125]. Moreover,
sequencial measurements of one and the same local observable at different
times yield stochastic processes whose potential non-classicality can also be
singled out [I26HI38]. In a few words, although every shade of non-classicality
eventually characterizes how our daily world cannot behave, it is important
to clarify what we mean by non-classicality before assigning this property to
a given phenomenon.

In Chapter 2| we showed how coherence was linked to non-classicality in
the sense of interference phenomena. The question we would now like to
ask is, how is coherence related to other notions of non-classicality? For
example, in [I39] they investigated the connection between coherence and
non-classicality in the realm of quantum optics, where non-classicality arises
from a P distribution presenting negativities.

The aim of the present chapter is to study how coherence is related to the
non-classicality of stochastic processes. For that purpose, we will first need
to know a bit about open quantum systems, non-coherence-generating-and-
detecting (NCGD) dynamics, classical stochastic processes and the Leggett-
Garg inequalities.

6.1 Open quantum systems

A realistic description of a quantum system must take into account that every
system is open, i.e., it interacts with the surrounding environment [140]. In
many circumstances, it is possible to provide such a description by a time-local
quantum master equation (QME):

& put) = LOIpu(1)], (6.1)

where L(t) is the dynamical generator of the evolution and ps the reduced
state of the system. Any L(t) that is both trace- and hermiticity-preserving
can be uniquely decomposed as [141]

L{@)[ps] = —i[H(t), p4]

-1 A R (6.2)
i=1

where d < oo is the dimension of the Hilbert space of the system, H(t) a
Hermitian operator, D(t) a Hermitian matrix, and {F,}%, is an orthonormal
operator basis with Fz = 1/+v/d and Tr(FZ-TFj) = 0;;.
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Upon integration, the QME leads to a family of trace-preserving (TP)
propagators &, 4, satisfying ps(ta) = &,y [ps(t1)] VE2 > 1 > 0. If the generator
L(t) is of Gorini-Kossakowski-Sudarshan—Lindblad (GKSL) form [141], 142]
for all t > 0, i.e., D(t) > 0, all propagators are completely positive (CP).
In particular, we will first address dynamics for which H and D are time-
independent, with D > 0. This class—which we refer to as Lindblad dynamics
henceforth-—gives rise to CP quantum dynamical semigroups of the form
& = e'*, where L(t) = L is time-independent. Finally we shall refer to rank-k
noise as those dynamical generators £(t) in Eq. for which D has at most
k non-zero eigenvalues.

6.2 Non-coherence-generating-and-detecting (NCGD) dy

namics

In Part [T we characterized and quantified the coherence generating capabilities
of quantum operations. However, the mere ability of a quantum dynamics
to generate or detect coherence is of no practical advantage unless this
coherence can be harnessed in a beneficial way for some task [104]. In
this sense, a prerequisite for a quantum dynamical evolution to generate
resourceful coherence for a given task is that the coherence it generates can
be detected in terms of discriminable statistics of subsequent measurement
outcomes associated with this task. Therefore, what we are interested in
are the coherence-generating-and-detecting properties of the propagators
{&,1, 1 ta >t > 0} associated with the dynamics. From this perspective, we
define non-coherence-generating-and-detecting dynamics (NCGD) dynamics
as follows:

Definition 22. A dynamics with propagator & s, t > s > 0, is NCGD
whenever the condition

Aol ,0A0&, o A=Ao&, 4,0 A (6.3)

holds for all times t3 > ty > t; > 0, where o denotes composition of maps
and A = S50 i)i| - [iXi| is the complete-dephasing map in the incoherent
basis {|i) 14

Otherwise the dynamics is denoted as CGD.

NCGD dynamics are unable to exploit coherence for delivering a practical
advantage and hence can be regarded as free operations. We stress, however,
that the class of NCGD dynamical maps is not closed under composition:
indeed, it is very easy to obtain CGD dynamics by composing two NCGD
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dynamical maps; the first coherence-generating but not detecting whilst the
second coherence-detecting but not generating.

To compare the notion of NCGD with the literature, we take for a moment
Etg ity = Etyyty = E(t), for a fixed ¢ = 7, so that the definition in Eq.(6.3)) refers
to one map, & = £(7), which we call NCGD map. There are two interesting
subsets of NCGD maps. One is the subset that does not create coherence
from incoherent states, which is described by Ao & o A = £ o A; this is
just the set of MIOs. The other noteworthy subset of NCGD maps is the
coherence non-activating set fixed by Ao & o A = A o &; here, since the
populations are independent of the initial coherence, the coherence is not
a useable resource [64]. Finally, operations that are neither incoherent nor
coherence nonactivating may still be NCGD, if the subspaces where coherence
is generated are different from the ones detecting it. For instance, consider
the completely positive and trace preserving map A acting on a basis of linear
operators on C? as

10 01 0.996 —0.003¢ 0.003  0.99
A 0 0 00 0.003:  0.004 0 —0.003
' 0 0 00 ~ 0.003 0 0.004 0.003¢ \ -
10 01 0.99 -0.003 —0.003z 0.996

(6.4)

The map is NCGD, while it both creates coherence and also is able to detect
it. Explicitly:

[AocAoAoA—-AocAoAoAoA| =0, (6.5)
[AoA—AoAoA|_ =0.003, (6.6)
|[AoA—AoAoA|_ =0.003, (6.7)

where ||A]|« denotes the infinity norm of the 4 x 4 matrix given by the action
of A on the basis of operators on C?; recall that the infinity norm is the
maximum among the absolute sums of the columns. Indeed, the same is true
for applying the map multiple times: the NCGD condition remains fulfilled,
while the above norm increases to over 0.12, as shown in Fig. [6.1]

6.3 Multi-time probabilities and classicality

Suppose that we perform projective measurements of a system’s observable
Xs = X, x| ), | at times ¢, > t,-1 > ... > t; (n € N), with discrete
outcomes x. Denote the joint probability of obtaining the sequence of outcomes
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Figure 6.1: Norm of the difference between the coherent map in Eq. and
the incoherent one (see Eq. ) as a function of the number of applications.
In this example this is the same as the norm of the difference between the
coherence non-activating and the actual evolution (see Eq. (6.7))).

xry at time ¢y, xo at time o, ..., and x,, at time ¢,, as

QX {@n tus ... a1, 11}, (6.8)

Keeping in mind that the whole hierarchy of probabilities cannot be
reconstructed practically, as one always deals with a certain finite number of
outcomes, we propose the following definition:

Definition 23. A multi-time statistics is j-Markovian if the corresponding
joint probability distribution fulfills the quantum regression theorem (QRT) for
anyn < J, X1,...Ty, tp > ... t1. The QRT, when associated with projective
measurements, reads [1435, [114)]

QnXs{xna tn; ey 2, tl}

= Trs{Pmngtn,tn,l cee 'lec‘:tlps(())}, <69)

where Py = [ Uz ] - [ )X¥z| and & 5 are the propagators of the open-system
dynamics.

A multi-time statistics, as the one in Eq. , can be traced back to a
proper definition of quantum stochastic processes, as introduced in [145] [146]
and most recently investigated by means of the so-called comb formalism
[147] in [148]. In particular, by the Kolmogorov-Daniell extension theorem,
any multi-time statistics can be reproduced by a classical stochastic process
if and only if the Kolmogorov consistency conditions are fulfilled [140, [149]:

ZQ?L(Q{‘/ETUtTLJ LR ;I17t1}

= Q> {wn, toy sty Lt )
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VE<n,n>1Vt,>--->---t; >0; Voy,...,2,.
Again, since practically one can only work with a finite number of outcomes,
we propose the following definition:

Definition 24. A j-classical (jJCL) multi-time statistics is a collection of
joint probability distributions QnXS{xn, Lo ... ;xy, b} fulfilling the Kolmogorov
conditions in Eq. for any n < j. We say that it is non-classical if it is
not even 2CL.

6.4 Leggett-Garg (type) inequalitites

Two distinct features of macroscopic reality are remarkable: on the one hand,
the properties of the systems have preexisting values, no matter whether they
are being measured or not. On the other hand, non-invasive measurability
is possible at the macroscopic realm, meaning that measurements are per-
formed on systems without disturbing them. Leggett-Garg inequalities (LGISs)
[126], derived from these macroscopic principles, are violated by quantum
mechanics and thus reveal the presence of quantum features in a system’s
evolution. Leggett and Garg initially proposed an rf-SQUID flux (a type
of superconducting qubit) as a system on which their inequalities could be
tested [126]. Through an experiment that differed from the Leggett-Garg
proposal in a number of respects, Palacios-Laloy et al announced the first
measured violation of LGI twenty-five years later [130]. Let us now explain
how the LGIs look like.

Consider an experimental setup similar to the one proposed so far. Here,
a dichotomic observable X with values in {—1,1} is measured at n different
times. The experimental correlations between the obtained outcomes are then
computed: )
Cx(tj,t:) = Y @ {mj ty; xi,ti} ;.
Tj,T;

The nth-order Leggett-Garg function K, is built in the following manner:
K, = Cx(ts, t1) + Cx(ts,t2) + ... + Cx (tn, th—1) — Cx(tn, t1)

It can be then shown that, under the assumptions of MR, the following
inequality is fulfilled:
K,<n-2

Violation of these Leggett-Garg inequalities, also referred to as temporal Bell
inequalities due to the fact that measurements are separated in time but not
in space, implies that MR must be abandoned. LGI are therefore useful as
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an indicator of quantumness.

Taking into account that performing perfectly non-invasive measurements
in the lab is a hard job, in [128, I35] they formulated the Leggett-Garg
type inequalities (LGtIs), in which the Leggett-Garg non-invasiveness re-
quirement is replaced by an assumption which turns out to be related to
Markovianity [I35]. Given a dichotomic observable X with values in {0,1}
and the related correlation function, the LGtl we will consider here reads
120 (t,0) — Cx (2t,0)] < (X(0)), with (X(0)) the expectation value of X at
the initial time.






CHAPTER [/

The Lindblad case

As in the previous chapter, here we consider a system that evolves according
to a certain evolution, on which we measure an observable projectively at
different times. Our purpose is to analyze how the non-classicality of the
arising stochastic process can be connected to the coherence of the underlying
dynamics, specifically when such a dynamics is of Lindblad type.

Let us start by studying how NCGD Lindblad evolutions look like, as far
as their structure is concerned.

7.1 Characterizing NCGD dynamics

In order to check whether or not a given dynamics is NCGD we would, in
principle, need to verify Eq. for all times t3 > t5 > t;. In this section
we provide a finite set of necessary and sufficient conditions certifying the
coherence generating and detecting properties of Lindblad dynamical evolu-
tions. More importantly, these conditions pertain directly to the generator of
the dynamics in Eq. which allows for direct evaluation of the coherence
properties of such dynamical evolutions.

Recall that L(t): B(H) — B(H) for all times ¢. Having fixed the complete
dephasing superoperator A, we can decompose B(H) into two orthogonal
subspaces

B(H) = B,(H) & B(H), (7.1a)
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where

B,(H) = Image(A), (7.1b)
B.(H) = Kernel(A), (7.1c)

are the subspaces associated with the population and coherence basis elements
respectively. In this basis, the matrix representation of the generator L£(t) is
given by

(t

L) L)
“”(ccp(t) cm(t))’ (7:14)

where, for example, L,.: B.(H) — By(H).
We are now ready to formulate our main result, which is a complete char-
acterization of NCGD based solely on the generator of a Lindblad dynamics.

Theorem 25. For any Lindblad-dynamics generator L it holds that
NCGD & (L, L2 Loy =0Vj €{0,...,d> —d —1}),
where d = dim H.

Proof. Let us begin by pointing out some general remarks: In the time-
independent case, & = e'*, we can write NCGD as

AEANLEN =0 Vi, 7>0, (7.2)

where we defined At := 1 — A. Expanding the exponential, this is equivalent
to
o0 [ngn N 00 En’Tn’

Aty S A=0VET >0

n'=0

& ALYAYLYA =0 Vn,n' € Ng. (7.3)

A

|
n—0 n.

Note that for finite-dimensional H the following equivalence holds:

(Lpeldily =095 €{0,... . 0= 1}) & (LpLlLy, =0Vj € Ng), (74)

pc~ccep pc~cctep

where ¢ = dim B.(H) = dim®>H — dimH = d*> — d. While “<” is trivial, by
Cayley—Hamilton [I50], there are coefficients {c;}‘_, C C, such that

-1
> oLl = 0. (7.5)
i=0

Hence any power of L., greater or equal to ¢ can be expressed as a linear
combination of powers from 0 to ¢ — 1. All conditions formulated in the
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following that rely on infinite matrix powers are therefore already fulfilled if
they hold up to the (¢ — 1)*™ power.

The following structure lemma will be needed henceforth (see proof in
Appendix [D.1):
Lemma 26. If £pC£gC£Cp =0 forall j <n,

Lo Lo c”—J) < Ln 0)

ALY = pp j=1"~pp ~pcce and LA = . ~pP o )
(0 0 n LI L0

(7.6)

We are now fully equipped to prove Theorem We will first prove
(LpeLiLy, =0 V) € Ng) = NCGD. (7.7)

pc’~cc™~cp

We directly apply the structure lemma, eq. (7.6)), to eq. (7.3). The
intermediate A+ removes the population-to-population entry. Hence, we
obtain

A nAJ_ A = j=1"~pp ~pc™cc , . I
L L <0 0 1 Eic_lﬁcpﬁgp_j 0
(S S L Lo Lo LT L Ly 0 (7.8)
0 0/

and we clearly see another L£,.L; L., combination, which is zero by the
assumption, eq. ([7.7)).

We will now prove
NCGD = (L LlLe, =0 V) € No). (7.9)

By assumption,
ALAYLA =0 Vn € N, (7.10)

where we fixed n’ = 1.

Using induction we will show that if £pcﬁgcﬁcp = 0 holds for all j < n,
then it holds for j < n. Since this can be done for any n € Ny and the case
for j =0, L,cLep = 0, is implied by eq. for n = 1, the thesis follows.

By hypothesis, Epcﬁgcﬁcp = 0Vj < n. The structure lemma, eq. ,
therefore applies and henceﬂ

ALHAL = (0 Sl cpc,cgjlj> |

0 0

IThe first identity directly uses the proof of the structure lemma; since we only regard the
right column, the lemma also holds for n + 1.
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so that
n+l pj—1 n+l—j
AL HALLA — (0 X5 L LpcLee ) (00
0 0 L, 0
n+l pj—1 n+l—j
_ ijl Lo L Lo Ly, 0
0 0/)’
and we can again insert the hypothesis to eliminate all terms except j = 1.
ALIALLA = (FrebecLe O,
0 0/)’
but this, by the assumption of NCGD must be zero, verifying the hypothesis.

O

As stated by this theorem, only d? — d conditions need to be verified on
the generator of a Lindblad dynamics in order to check whether such an
evolution is NCGD. We do not know at this point whether this number of
conditions could be reduced even more, but we do know that it must be larger
than 2, as shown by the following example:

Consider a 5-level system where coherence is generated, but not detected,
between levels 1 and 2 (£, = 0, L, # 0), and where the opposite occurs
between levels 4 and 5 (L, = 0, L, # 0). At a first instant, coherence
is transferred to levels 1 and 3, and, at the next step, to levels 4 and 5,
where it is eventually detected. Such a system is described by a rank-3 noise
Lindbladian with Hamiltonian

1 -1 00 0
-t 00 0
H=210 0 00 0 (7.11)
0 0 01 1
0 0 01 —1
and jump operators
1 =i 00 0 10000
L1000 00000
Ji=—1]0 0 00 0|, L=|0100 0], (7.12)
V210 0 01 —i 00000
0 0 0 i —1 00000
00000
00000
and J3;=1]0 0 0 0 0f. (7.13)
10000
00100
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As expected, such a dynamics is NCGD only up to third order in time, since
it can be checked that L,.Le, = 0 and LycLecLep = 0, but L, L2.Le, # 0.
This shows that the fact that the NCGD conditions are fulfilled for 5 = 0,1 is
not enough to ensure that an evolution will be NCGD. One more condition,
at least (j = 2), has to be verified in order to certify the CGD character of
the evolution.

7.1.1 (N)CGD dynamics for qubits

In this section, we will apply Theorem [25]to the special case of qubit dynamics.
This will allow us to explicitly give the structure of NCGD dynamics for the
case of time-independent qubit generators. Eq. (6.2)) in the normalized Pauli

operator basis {o; 14 =0,...,3} can be easily rewritten as
1 3
ﬁ[ﬂs] = 2 Z Lij([OiPS7Uj] + [Uiapsaj]>7 (7~14)
i,j=0

where L € C** is a Hermitian matrix. We will choose (1,0) as our inco-
herent basis and (o, 0,) as the coherent one. With this choice, the matrix

representation of Eq. (7.14]) in the basis of Eq. (7.1d) is explicitly given by

- (0 0
pp 2III1|_12 L11+L22

o 0 0
pe Reng—ImLog ReL23+ImL01

(7.15)
L — —2Im |_23 Re L13 + Im L02
o 2Im |_13 Re |_23 —Im L01
Lo - Loo + L3 Im Los — Re L2
- —Reli; —ImLgs L1 + Lss '
Theorem [25| states that NCGD is equivalent to
Lo Loy =Ly Lol =0. (7.16)

In particular, the dynamics is coherence non-activating, i.e., £, = 0, when
Re I_13 =Im L02 A\ Re L23 = —Im I—017 (717)
while it is coherence non-generating, i.e., L., = 0, when

Re L13 = —Im L02 VAN Re L23 =1Im L01

7.18
A Im |_13 = Im |_23 = 0. ( )
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Observe that both coherence non-activating and coherence non-generating
dynamics can arise from the simplest open-systems dynamics, namely rank-one
Pauli noise. For example, assuming that all contributions Ly; arise solely from
the Hamiltonian of the system, the following rank-one dissipators L € C3*3,

— T
I—non-act. = ,',,,’,,T’ r= (Im L02 —Im LOl 1) )
(7.19)

i

non-gen. — SSTy s = (_ Im |—02 Im I—Ol ]-)Ta

give rise to coherence non-activating and coherence non-generating dynamics
respectively.

Note, however, that one can have dynamical evolutions that are capable
of both generating and detecting coherence, and yet are still NCGD. This
occurs whenever coherence is generated in an orthogonal subspace to the
one where it is detected. In the case of qubits this happens precisely when
(assuming for simplicity that the denominators involved are different from 0)

Im |_13 . Re L13 —Im L02 o Im I_()1 — Re |_23

= = 7.20
Im L23 Re L23 + Im L01 Re L13 + Im L02 ( )
and
(Im L02 — Re L13)(Im L03 — Re L12)
Lip — Lo = +
Im L01 + Re |_23 (721>

(Im L01 + Re L23)(Im L03 + Re ng)
Im LOQ — Re |_13

Eq. is equivalent to the first condition in Eq. (7.16), LycLep = 0;
the precise relationship among several coefficients of the dynamical map
ensures that coherence is generated in a subspace orthogonal to that of
coherence detection. Likewise, Eq. rules out the second-order coupling,
LocLecLep = 0.

Let us illustrate our findings with a concrete, and practically relevant
physical example; the Ramsey scheme deployed in interferometry, spectroscopy
and atomic clocks. The simplest, non-trivial case of such a scheme is that
of rank-one Pauli noise in the same direction as the Hamiltonian evolution—
assumed without loss of generality to be H = o,—whose dynamics is given

by

Llps] = —iwloz, ps] + v(02p50. — ps/2), (7.22)

where w is the detuning from the reference field. Note that due to the
normalization of the Pauli matrices, 02 = %. In the Ramsey scheme, the

atoms—approximated as qubits—are first prepared in eigenstates of o,, then
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subjected to the evolution generated by Eq. , and subsequently measured
in the eigenbasis of ¢,. Choosing B,(H) = (1, 0,) as our incoherent basis,
B.(H") = (0,,0.), and using the matrix representation introduced in Eq. (7.1d),
the generator of Eq. can be written as

0 0 0 0
{0 = —V2w 0

L= 0 5 0 (7.23)
0 O 0 0

We can assess the CGD properties of such a setup by looking at the distance
between the left- and right-hand sides of Eq. (6.3]), as measured via the trace
distance. Defining

p(ts) = T (|0 £y 0 Al

(7.24)
g (ts, ta) = Tr(|£NE| £y, 0 A0 Eyy 0 Alpd]),
Figure|7.1|shows the trace distance max, cz||p(t3) — q(ts, t2)|| as a function of
the intermediate time ¢y for various values of the ratio «y/w. The presence of
coherence in the dynamics is most prominent half-way through the evolution
and, indeed, it is suppressed by a stronger rate ~.

Let us now investigate a complementary scenario in which we also include
components orthogonal to the Hamiltonian in the noise. Specifically, consider
the open-system dynamics

1

5 Z fyij([aips, o;] + [ai,psaj]), (7.25)

1,j=1

E[ps] = —iw[az, ,Os] +

where ;; = 7;; are the damping rates; still, our incoherent basis is (1,0,).
Coherence non-generating dynamics corresponds to 12 = —v/2w and
y13 = 0, whereas coherence non-activating dynamics is given by Re vio = 2w
and Rey;3 = 0.
To investigate the more general notion of NCGD dynamics, we look at
the matrix representation for the corresponding generator; assuming for the
sake of simplicity that all ;; be real, it reduces to

0 0 0 0

r— 0 —7Y22— 33 —V2W+ Y12 Y13 ‘ (7.26)
0 V2w+ 2 —vyi1 — V33 Y23
0 713 V23 —711 — V22
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Figure 7.1: Coherence generated and detected, as measured via the trace
distance between the probability distributions of Eq. ([7.24]), maximized over
ps, for the open-system evolution described by Eq. . The total evolution
time is fixed to wt3 = 3 and the trace distance is plotted as a function of the
intermediate time 0 < t9 < {3.

It can be verified that
L L =L L L =0

pc~cp pc~cc™~cp T

& 2w% =7 + 715 (7.27)
AYis(Y22 — V33) = 2Y19713723

so that indeed, the CGD capabilities of the dynamical evolution depend on
the damping rates y;2 and 7,3 that mix coherent with incoherent components.

Different behaviors of the CGD capability for various parameter choices
are illustrated in Figure[7.2] On the one hand, changing the weights of the
noise components can result in even qualitatively different features of the
coherences generated and detected along the evolution, characterized, for
example, by different locations and number of maxima as a function of the
intermediate time t,.

On the other hand, rather different kinds of noise might exhibit a similar
behavior. In fact, compare the case of pure dephasing, see Figure [7.1], and the
purely orthogonal noise represented by the solid blue curve in Figure The
qualitative and even quantitative evolution of the coherences generated and
detected is very similar in the two cases. This is particularly relevant since it
is well known that, if we want to estimate the value of the frequency w via the
Ramsey scheme, pure dephasing and orthogonal noise will limit the optimal
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!
0 0.5 1 1.5 2 2.5 3
th

— (1,0;0,0,0) --- (1,0;1,0,0)
(2,0;2,0,0) - (0.65,0.65;1,2.1, —1)

Figure 7.2: Coherence generated and detected, as measured via the trace
distance between the two probability distributions of Eq. , maximized
over pg, for an open-system evolution described by Eq. ((7.25)).

The legend gives, in units of w, (711 = Y22, V33; Y12, V13, Y23); in particular, all
but the gray dash-dotted line represent cases of purely orthogonal noise [I51],
since the non-zero rates are associated in Eq. only to Pauli operators
in a direction orthogonal to the Hamiltonian wos. The total evolution time
is fixed to wtz3 = 3 and the trace distance is plotted as a function of the
intermediate time 0 < ty < {3.

achievable precision in a radically different way. Pure dephasing enforces
the shot-noise limit [I52HI55], which is typical of the classical estimation
strategies [I56]. Note that this is the case even if error-correction techniques
are applied [I57HI5Y]. Orthogonal noise, instead, allows for super-classical
precision [I51], which can be even raised to the ultimate Heisenberg limit by
means of error correction [I57HI59]. This provides us with an example of how
the capability to generate coherences (in the relevant basis) and later convert
them to populations has to be understood as a prerequisite to perform tasks
which rely on the advantage given by the use of quantum features. However,
CGD in itself does not guarantee that such an advantage over any possible
classical counterpart is actually achieved.
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7.2 Non-classicality and coherence: main result

We now present the main result of this chapter, where we provide the con-
nection between the classicality of a certain statistics and the coherence
generating and detecting properties of the underlying dynamics. Note that,
since some results that will be presented later are required to prove this
theorem, we will postpone its proof to the end of the chapter.

Theorem 27. Given a non-degenerate reduced observable Xy = Y, |, )by
and a jM hierarchy of probabilities Qf;(s {xp,tn;... 21,11}, the latter is jCL
for any initial diagonal state p(0) = Y. Pao | )Wao| if and only if the
dynamics—uwhich must be of Lindblad type—is NCGD.

Theorem [27] means that if the multi-time statistics is Markovian, the
capability of a Lindblad dynamics to generate coherences and turn them into
populations is in one-to-one correspondence with non-classicality. In other
words, Markovianity guarantees the wanted connection between a property
of the coherences, which is fixed by the dynamics, and the classicality of
the multi-time probability distributions. This is a direct consequence of the
peculiarity of Markovian processes, classical as well as quantum, which allows
one to reconstruct the higher order probability distributions from the lowest
order one.

7.3 LGtls and coherence

So far we have focused on investigating the non-classicality of a stochastic
process, crystallizing in the violation of the Kolmogorov consistency conditions,
in relation to the coherence of the environment. In this section we will analyze
the connection of the LGtls to the coherence properties of the underlying
dynamics, which we already expect to be weaker than the one involving the
Kolmogorov conditions.

Before relating coherence and the LGtls we will need to present the
following result, which provides yet another operational meaning to (N)CGD.

Proposition 28. Given a non-degenerate reduced observable Xy = 3, @|the {tby|
and some Lindblad dynamics, the latter is NCGD if and only if the conditional

probabilities Qfﬁ {z,t|zo,0} satisfy Vt > s € RT

Yy
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Proof. We first need to introduce the following lemma (see proof in Appendix
D

Lemma 29. The evolution fized by the Lindblad dynamics {A(t) = eﬁt}tem
is NCGD if and only if

; (Wal AWy NW:] [1hz) (g A7) [[aXtal] [¢2) = 0 Vo, &£, 7 € RT(7.29)

We can now prove the Proposition: Using Eq.(3) of the main text and
Qi (. tly. s} = Tro{Poe e[l Yo, 1} = Qi fa, t — sy, 0} we have that

Qi {, t|0, 0} — z@m t — sly, 0)Q5: (v, 5|0, 0)
= (o ACE) [[no Xt ] [100) — S (Wb ACE— ) [0, Yaby ] [102)
s (y | A(8) [0 Nbao ] [80)

so that using the semigroup composition law A(t) = A(t — s)A(s) and the
resolution of the identity, the first term in the previous expression can be
written as

<¢m’ A(t - S) [A(S) “wxoxz/}wou } |¢z>
= Z (o | A(t [I%X%IA( ) [1hao Xtbao |] 1oy Xty || [1h2)

= Z (V| At = ) [[00y) (y (] [902) (Dyl M) [[9hg Xtho[] [

v,y

so that the ‘diagonal terms’ (with y = y') cancel out with the second contri-
bution and the violation of the homogeneous Chapman-Kolmogorov condition
is given by

Q1 {x,t|20,0} — z@m t — sly, 0)Q1: (y, 5|0, 0)

= ; (Va] At = 5) Wy) (g []|1a) (yl As) [[Ywo XWas [] [hy) ,(7.30)

which implies that such difference is equal to 0 for any xg, z,t > s if and only
if the Lindblad dynamics is NCGD, see Eq.(7.29)). O

The condition in Eq.(7.28]) is simply the (homogeneous) Chapman - Kol-
mogorov equation [140} [144], 160], which is always satisfied by a classical
Markov (homogeneous) process, but, indeed, not necessarily by a quantum
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one. Let us also stress that Eq.(7.28]) can be in principle easily checked in prac-

tice, since the conditional probabilities Qfﬁ {z,t|xo,0} can be reconstructed

by preparing the system in one eigenstate of X, and measuring X, itself at a
final time ¢, without the need to access intermediate steps of the evolution.

Now, since the validity of Eq. is a sufficient condition for the LGtI
to be satisfied, as we will later prove, Proposition [28| directly leads us to the
following.

Theorem 30. Given a Lindblad dynamics, the LGtI is violated only if the
dynamics is CGD.

Proof. The Theorem easily follows from the following Lemma (see proof in

Appendix |D.3]).

Lemma 31. Consider a dichotomic observable X with values in {0,1} and
such that the conditional probabilities Qﬁl {z,t; 20,0} satisfy Fq.(6) of the
main text, then the correlation function Cx(t,0) satisfies the LGtI

120 (£,0) — Cx(2¢,0)] < (X(0)). (7.31)

Note that this Lemma holds independently of whether the conditional
probabilities are referring to the quantum setting (and hence are defined as
in Eq.(1) of the main text) or are directly referring to a classical theory: our
proof goes along the same line as that in [129], simply adapting it to (possibly)
quantum conditional probabilities. O

This theorem thus clarifies how the LGtI can be used to witness that
coherences are generated by the dynamics and subsequently turned into
populations.

Finally, Theorem [27] also allows us to clarify to what extent the LGtI is
actually related with non-classicality, since it directly implies the following
(see proof at the end of the chapter).

Theorem 32. Given a 2M hierarchy of probabilities, the LGtI is violated
only if the hierarchy is non-classical.

For the sake of clarity, in Fig[7.3] we report a summary of the theorems
presented in this chapter, which establish definite connections among the no-
tions of classicality, quantum coherence (in particular NCGD of the dynamics)
and LGtI.
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Figure 7.3: Implication structure of the main results of the paper. The notion
of j-classicality is given in Definition [24] j-Markovianity in Definition 23] and
the property of the evolution of coherence named NCGD, which stands for
non-coherence-generating-and-detecting, in Definition 22} finally LGtI denotes
the Leggett-Garg type inequality [128] considered here. A Lindblad dynamics
is always assumed.

7.4 Proof of Theorem [27| and Theorem

Before presenting the proof to Theorem [27], let us give the basic idea behind it.
The time-homogeneous Chapman-Kolmogorov equation holds for any classical
time-homogeneous Markov process, that is, Markovianity and classicality
imply Chapman-Kolmogorov; note that the time-homogeneity of the statistics
holds, as a consequence of (2)M and the Lindblad dynamics. For the converse,
we can exploit the definition of jM, which provides us with a notion of Marko-
vianity beyond classical processes, i.e., for any quantum statistics. As said,
the Markov property (both for classical and nonclassical statistics) connects
the multi-time probability distributions to the initial one-time distribution
and the conditional probability Qﬁj; as a direct consequence of this, it is
then easy to see that, if the Chapman-Komogorov equation holds, jM directly
turns into jCL. Theorem [27] thus follows from the equivalence established in
Proposition [28|

Explicitly, both Theorems [27] and [32] directly follow from the following
Lemma (see proof in Appendix .

Lemma 33. Given a non-degenerate observable X, = 3, |1, Xtbs| and a
JM hierarchy of probabilities, the latter defines a jCL statistics for any initial
diagonal state p(0) = Y-, Pao|Vzo Vao| if and only if Eq.(6) of the main text

holds for the quantum conditional probability Qﬁ{ {z,t|xo,0}.

Theorem [27] hence directly follows from Lemma [33] and Proposition [28§]
while Theorem [32] follows, e.g., from Lemmas [31] and [33]
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7.5 Chapter summary

e A Lindblad dynamics is non-coherence-generating-and-detecting
(NCGD) if and only if its generator £ fulfills the following finite
number of conditions: chﬁﬁcﬁcp =0Vj e {0,....,d> —d— 1},
where d = dim H.

e A j-Markovian multi-time probability distribution is j-classical if
and only if the underlying Lindblad dynamics is NCGD.

e The Leggett-Garg type inequalities are fulfilled only if the Lindblad
dynamics is NCGD.

7.6 Open questions

e Is it necessary and sufficient to check d?> — d conditions to verify
whether a Lindblad dynamics is NCGD? Can this number be reduced
even more? So far we only know that more than 2 conditions are
required.




CHAPTER 8

The most general case

Analogously to the previous chapter, here we also want to investigate the
role of coherence in finding an answer to the question whether the outcomes
of a projectively measured quantum stochastic process are compatible with
a classical stochastic process; yet this time we will allow for any kind of
underlying dynamics. For this purpose we first need to put forward a more
general definition of incoherent dynamics, from which the NCGD definition
can be recovered under some particular conditions.

8.1 A problem with the NCGD formulation

When moving away from Markovianity, the coherence generating and detecting
properties of the dynamics are not anymore in correspondence with the non-
classicality of the statistics. That is, it is in principle possible to encounter a
dynamics that is CGD and gives rise to classical statistics, or that is NCGD
and yields non-classical statistics. Under the most general kind of dynamics
the connection between quantum coherence and the non-classicality of the
multi-time statistics is no longer guaranteed. A non-Markovian example of
such kind is introduced in the following;:

Consider a two-level system, Hg = C2, interacting with a continuous degree
of freedom, Hr = L(R), via the unitary operators defined by U(t) |¢, p) =
Pt |0, p) , where {|() }o—_1, is the eigenbasis of the system operator 6, and
{| p)}peR is an improper basis of Hg. Assuming an initial product state and a
pure environmental state, pp(0) = |prp)Xvr| with |pg) = [ dpf(p) |p), the

111
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open-system dynamics is pure dephasing, fixed by p_11(t) = p_11(0)k(t) with
k(t) = [°. dp|f(p)|*e*', where p_1; = (—1|p|l). We consider projective
measurements of 6, whose eigenbasis is denoted as {|+),|—)}, and then
we assume initial states as p(0) = pi|+)X+| + p—|—)—|. For the sake of
simplicity, we focus on the two-time statistics and we take as initial condition
p(0) = |+) (+]| ® |¢E) {(pr|. Now, let us also fix that both the first and the
second outcomes of the measurement of &, yield the same result, +, so that
we have

{4 sy = twp{(+HUE—s)[+) (+U()[+) (+]
® |og) (el [+) (+][+)}
_ iRe Bk(t 99+ ;k:(t) k(=) + k(s) + 1),

where Re denotes the real part. Moreover, since the map and the propagator
of the above dynamics are given by

sl = (gt M)

t)p1-1 P11
and
P k(t) on
At )l = Mt o A ()] = [ i BT
k*(s)Pl—l P11
we get

Qi+ ti+,5h = (HA®S)| 1) A I )

{
_ iR Bk(t) (’Z((;) + 1) + Z((g + k(s) + 11 -

This means that the Markovian description implies

Se{+,t;+, 8} = Qi {+.t; +, s},

i.e.,

Lk (s) k()] 1 _
Re ikr(t) i(s) + k(s)] = Re {Qk(t —2s)+k(t—s)|; (8.1)

indeed, a violation of this condition will be enough to prove that the statistics
is NM.
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In order to check whether the Kolmogorov condition holds for the two-
time probabilities, we need also to evaluate the other two-time probability
distribution

So{+.t— s} = trE{<+|U(lf—S)[|—> (—1U(S)[[+) (+]
& los) (osl]|-) 1| 14)}
_ iRe[;k(t — 99+ ;k(t) k(= 5) — k(s) + 1],
as well as the one-time probability

QU {+.t} = tre{(+|UD)[+) (+| ® |¢r) (pull [4+)}
= Re[;—l—;k(t)].

Hence, setting K+ (t,s) = Q5 {%,t; 4,5} + Q57 {£,t; —, s} — Q" {=£,t}, the
statistics is 2-CL if and only if

K. (t,s) = iRe[k(t —2s) — k(t)] =0; (8.2)

note that, since Q5°{—,t;%,s} = Q7" {%, s} — Q5°{+,t;%,s}, one has
K_(t,s) = —K,(t,s).

Finally, since we are interested in the connection between classicality and
coherences, we want to check whether the dynamics is (N)CGD. With A
defined with respect to the eigenbasis of 5,, we have

[(A 0 A(ts) — Ao Alt,5) 0 AYA(s)A]lao = 212 [’f<8i£2)[ﬁ*<s>k<t>]\

(8.3)

where Im denotes the imaginary part. For the sake of simplicity, we set the
initial time to 0.

NCGD and non-classicality

Let us first consider an initial Lorentzian distribution, | f(p)|? = T'r—!/(I'?+
(p — po)?), so that the decoherence function is given exactly by an exponen-
tial, k(t) = e?Pote=2" and the open-system dynamics is fixed by the pure
dephasing Lindblad equation [161]:

(1) = ~ipo 62, (1)) + T (5-0(1)5 — (). (8.4)
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from which we can read the physical meaning of the two parameters, py
and I' defining the Lorentzian distribution in this context.
In particular, for py = 0, we get

R 1 1
p{ttitsh = (1 +e 2 4 el 4 26—2“>
1
+3 (cosh (2I'(t — 2s)) — sinh (2Tt — 2s])), (8.5)
while the QRT gives us

Qs {+ ti+,sy = {(H e [l4X e (1) X+ 1+)}

- i (14+e72) (14 72009, (8.6)

As shown in Fig. [8.1] these two functions are clearly different, implying that
the present statistics is NM, since the QRT is not satisfied. In addition, the
statistics is not even classical, as follows from

> Q7 {Ltiy, s} # Q7 {L,t}, (8.7)

Y

which can be easily shown since one has

0,3 QF {+.t;y, s} = Isgn {t — 25} ¢ 21072,
Y

which is of course different from 0, thus guarantying the inequality in Eq..
For py = 0 the model is furthermore NCGD: as we have here pure dephasing
in the z-direction, coherences in the x-direction cannot be even generated.
This example clearly shows how the non-classicality of a NM statistics might
be fully unrelated even from the presence itself of quantum coherence in the
dynamics.

CGD and classicality

In a complementary way, we exemplify how the instants where the multi-
time statistics satisfies the Kolmogorov conditions may coincide with instants
where coherences are generated and converted into populations. However, we
have to leave open the question of whether there is a fully classical statistics
(for any sequence of times), while the dynamics of the coherences is non-trivial.
Take an initial distribution given by the sum of two Gaussians, |f(p)]* =
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Figure 8.1: Exact two-time probability Q5 {+,t;+, 5} [see Eq.(8.5)] (solid
black line) and 2M probability Q93, {-+,t;+, s} [see Eq.(8.6))] (dashed red

line) as functions of s, for a Lorentzian |f(p)|?>. The parameters are t =

1.5t py = 0.
Yic12 A exp (—(p — pi)*/(207)), where A; = m, Ay = AgA; and
01 = 09 = 0. The decoherence function reduces to
6—202752
k(t) = T (€21t 4 Age?™t] (8.8)

For the specific choice of parameters Ag = o = p; =t = 1, ps = 2pq, the
functions Q5 {+,t; +, s} and Q33 {+,t; +, s} are, in general, different. The
present statistics is thus NM, as shown in Fig a).

In order for the statistics to be 2-CL, the following condition must hold

K.o(ts) — iRe[k(t—%)—k(t)]

—202(t—25)?
_ 64(/19+1> [cos(2py (t — 25)) + Ag cos(2pa(t — 25))]
6—202t2
+m [cos(2pit) + Ag cos(2pat)] = 0. (8.9)

Furthermore, the model is CGD if [see Eq.(8.3)] the quantity

2 [Tm [k(s)] Tm [k~ (s)k(1)]

Nts) = RGP

= Be 27" [sin(2spy) + Agsin(2sps)]
[sin(2(s — t)p1) + Ag(Agsin(2(s — t)p2) — sin(2tp1 — 2sps) + sin(2sp1 — 2ips))]
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Figure 8.2: a) Comparison of the two-time probability distribution as a
function of the first time s, for the exact formula (solid, black line) and the
2M statistics (dashed, red line). b) Violation of 2CL (K, (t,s)) (dashed,
blue line) and violation of NCGD (N (¢, s)) (solid, red line). For both plots
the environmental distribution is given by a sum of two Gaussians, with (in
arbitrary units) Ag = o =p; =t =1, p, = 2py, s € [0,].

1
627lsp1 +A062isp2 |

where 3 = >, is different from 0.

2(1+Ag)

As can be seen in Fig a), for the considered choice of parameters
the dynamics is NM at instants different from s = 0.29. This allows for
the existence of scenarios where the possible classicality of the statistics is
unrelated to the absence of coherences. As a matter of fact, at the specific
instants s = 0.21 and s = 0.79, where QRT is not satisfied, one finds that
K, (t,s) =0 and N(t,s) # 0, implying that 2-CL holds together with CGD
(FiglR.2|b)).

The previous examples illustrate the essential role of Markovianity to
establish a precise link between quantum coherence, as formalized by the
CGD condition, and non-classicality. In particular, they imply that the
CGD property cannot be used as a witness of non-classicality, without any
a-priori information about higher order probabilities. How to then investigate
the relation between coherence and non-classicality in a general scenario
where Markovianity may not be present? The answer lies in generalizing the
definition of NCGD dynamics to that of incoherent dynamics.
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8.2 Incoherent dynamics (and a revisitation of classical
stochastic processes)

We start by reviewing the basic notions of a classical stochastic process which,
despite having been presented already in Chapter [6], we will now need to
reformulate in a more convenient way. We label the classical distinguishable
states of the system of interest by r and we assume that the system gets
measured at an arbitrary set of discrete times {t1,...,t,}. We denote the
result at time ¢; by r;. Furthermore, for reasons which will become clearer
later on, we explicitly denote the initial preparation of the experiment by
Ay. We then denote the joint probability distribution to get the sequence
of measurement results r,, = ry,...,r, at times t;,...,t, given the initial
preparation Ag by

p<rnatn;'~-;rlat1’A0) Ep(l‘n\Ao) (810)
The following definition is standard:

Definition 34. The probabilities p(r,|Ao) are said to be classical with repect
to a given preparation procedure Ay if they fulfill the consistency condition

S op(re, .o Tyl Ao) = plres . ey ] Ag) (8.11)
Tk
for all ¢ > k > j > 1. Here, the probability on the right hand side is
constructed by measuring the states r; of the system only at the set of times

{te,....t;} \ {ts}-

Albeit condition is in general not fulfilled for quantum dynamics,
the joint probability distribution is nevertheless a well-defined object
in quantum mechanics. For this purpose we assume that the experimentalist
measures at time ¢, an arbitrary system observable Ry = >, r: P, with
projectors P, = P,?k and eigenvalues r, € R. If all projectors are rank-1, i.e.,
P, = |rg)(rk|, we talk about a non-degenerate system observable, otherwise
we call it degenerate. Furthermore, following the conventional picture of open
quantum systems [140], we allow the system S to be coupled to an arbitrary
environment E. The initial system-environment state at time t, < t; is

denoted by psg(to). Then, by using superoperator notation, we can express

Eq. (8.10)) as

p(rn]Ao)
= trSE {Prnun,nfl .- -Prgu&lprlul,OAOpSE(tO)} (812)
= trS {W[PTTH s 7737‘27731”17“40]} .
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Here, the preparation procedure A, is an arbitrary completely positive (CP)
and trace-preserving map acting on the system only (we suppress identity
operations in the tensor product notation). Notice that the preparation
procedure could itself be the identity operation (i.e., ‘do nothing’) denoted
by Ay = Zy. Furthermore, U, 1 denotes the unitary time-evolution prop-
agating the system-environment state from time t;_; to ¢; (we make no
assumption about the underlying Hamiltonian here) and P,, is the projection
superoperator corresponding to result r; at time t;. Finally, in the last line
of Eq. we have introduced the ‘process tensor’ T [162] (also called
‘quantum comb’ [147, 163] or ‘process matrix’ [164] [165]). It is a formal but
operationally well-defined object: it yields the (subnormalized) state of the
system ps(Pr.,- -y Prys Pryy Ao) = C[Pr, .o, Pryy Pry, Ao] conditioned on a
certain sequence of interventions P, , ..., P, Pr, Ag. Its norm, as given by
the trace over S, equals the probability to obtain the measurement results r,,.
Recently, it was shown that the process tensor allows for a rigorous definition
of quantum stochastic processes (or quantum causal models) fulfilling a gen-
eralized version of the Kolmogorov-Daniell extension theorem [148].

We can now define what we mean by an ‘incoherent’ quantum stochastic
process:

Definition 35. For a given set of observables {Ry}, k € {1,...,(}, we call
the dynamics of an open quantum system {-incoherent with respect to the
preparation Aq if all process tensors

AVES] Ay
T A, e VA 8.13
are equal. Here, the angular bracket notation means that at each time step
we can freely choose to perform either a dephasing operation (A) or nothing

(Z). If the dynamics are {-incoherent for all £ € {1,... ,n}, we simply call
the dynamics incoherent with respect to the preparation procedure Aj.

This definition is supposed to capture the situation where the experimen-
talist has no ability to detect the presence of coherence during the course
of the evolution. For this purpose we imagine that the experimentalist can
manipulate the system in three ways: first, she can prepare the initial system
state in some way via Ay (which could be only the identity operation), she can
projectively measure the system observables Ry at times t; € {t1,...,t,}, and
she can detect the final output state by doing state tomography. The question
is then: if the final state got dephased with respect to the observable Ry
(e.g., by performing a final measurement of Ry), is the experimentalist able to



Chapter 8: The most general case 119

infer whether the system was subjected to additional dephasing operations at
earlier times, i.e., can possible coherences at earlier times become manifest in
different populations at the final time ¢,? If that is not the case, the dynamics
are called f-incoherent. We remark that a process that is f-incoherent is not
necessarily k-incoherent for k£ # (. It is therefore important to specify at
which (sub)set of times the process is incoherent. In the following we will
be only interested in processes which are ¢-incoherent for all £ € {1,... ,n},
henceforth dubbed simply ‘incoherent’ (with respect to the preparation Ay).

8.2.1 Recovering NCGD from incoherence

Let us now show how the NCGD condition can be recovered from this new
definition of incoherence:

Theorem 36. If the dynamics are Markovian, invertible and incoherent for
all possible preparations, then they are also NCGD.

Proof. Recall that the dynamics of an open quantum system is called NCGD
with respect to the set of observables { Ry} if

AV VAV VYAV IEWAVIIVEVAY (8.14)

for all t, > t,, > t; > t1, where Ayy denotes the ‘dynamical map’ of the
quantum system from time t; to time %,.

By assumption of incoherence we have for an arbitrary preparation Ay
and an arbitrary set of times {t,,t;,¢;} with ¢ > k> j > 1

TG Dp DA

8.15
=T T A A (8.15)

where the dots denote identity operations. By Markovianity, this means that
ANk Apy ;A A0 Aopo = ApAe ;A A 0 Aopo. (8.16)
Since Ay is arbitrary and the dynamics are assumed to be invertible, this

implies

AV VYAV VYAV IEAVY\ VR VAR (8.17)
Hence, the dynamics are NCGD. ad

The ‘converse’ of Theorem [36] reads as follows
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Theorem 37. If the dynamics is Markovian and NCGD, the dynamics is
incoherent with respect to all preparations that result in a diagonal state (with
respect to the observable Ry) at time ty.

Proof. Since the dynamics is Markovian and the state at time ¢; is diagonal,

we always have
Anfl A1
T [A{Z}{I}A]
(8.18)

A,
=T lAn,{In_ll},...,Al,AO] .

Hence, the dynamics are ‘sandwiched’ by two dephasing operations at the
beginning at time t; and at the end at time ¢,,. By the property of NCGD,
we are allowed to introduce arbitrary dephasing/identity operations at any
time step tx, n > k > 1. Hence, the dynamics are incoherent. a

8.3 Results for non-degenerate observables

We now have the main tools at hand to rigorously state the question we are
posing in this paper: Which conditions does a quantum stochastic process
need to fulfill in order to guarantee that the resulting measurement statistics
can (or cannot) be explained by a classical stochastic process? That is, when
is Eq. fulfilled or, in terms of the process tensor, when is

trg{@:[lpw,...,Ak,...,Prj,...,Ao]}
— tr{T[Pryy . Thy o, Pryy e Ao }?

Here, we have introduced the dephasing operation at time t;, Ay = >, P,
which plays an essential role in the following. Furthermore, the dots in
Eq. denote either projective measurements (if the system gets measured
at that time) or identity operations (if the system does not get measured at
that time).

Our first main result is the following:

(8.19)

Theorem 38. If the measurement statistics are classical with respect to Ay,
then the dynamics is incoherent with respect to Aj.

Before we prove it, we remark that this theorem holds for any quantum
stochastic process (especially without imposing Markovianity). Furthermore,
a classical process for the times {t,,...,t;} is also classical for all subsets of
times and hence, the theorem implies incoherence, i.e., f-incoherence for all
¢ e {1,...,n}. In the following proof we will only display the case ¢ = n, as
the rest follows immediately.
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Proof. We start by noting that
@:[Prna o 7737"17-’40] = p<7,m s 7T1‘A0)’TH><T7L|7 (820)

which is a general identity as we have not made any assumption about the
joint probability p(r,,...,r1]|Ag). Obviously, if we choose to perform nothing
at any time t, < t,,, we have

TP Taye . Pryy A

=p(Tns- s 7oy 71| Ao)|Tn) (70l (8:21)
But by assumption of classicality, this is equal to
TP, .., Ly .., P, Aol
= Zp(rn, ces Ty ey 1 Ao) |Tn) (T
" (8.22)

=> TP,.,...,Pry s Pry, Ao
=TP,,....0,..., P, Aol
Hence, by summing Eq. over the remaining rj # r,, we confirm
TA,, Loy AL A =TAL, Ay A A (8.23)

for arbitrary t, < t,, and where the dots denote dephasing operations at the
remaining times. We can now pick another arbitrary time t; # ¢, and repeat
essentially the same steps as above to arrive at the conclusion

@:[An,...,Ig,...,zk,...,Al,Ao]

8.24
=T[Ans o A Ay AL A (8.24)

for any two times t, # t,. By repeating this argument further, we finally
confirm that the dynamics are incoherent. O

The converse of Theorem [38 holds only in a stricter sense. For this purpose
we need the notion of Markovianity as defined in Ref. [162]. In there, it was
shown that any Markovian process is operationally CP divisible, i.e., for an
arbitrary set of interventions (CP maps) A,, ,..., A,

@[Arn, N 7-'47‘0] = ArnAn,n—l Ce Al,OAropS(tO) (825)

with a family of CP and trace-preserving maps {Ay} fulfilling the composition
law Ap; = AgpAg,; for any ¢ > k > j. We remark that a CP divisible
process (which is commonly refered to as being ‘Markovian’) is in general not
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operationally CP divisible (also see the recent discussion in Ref. [166]). In a
nutshell, an operationally CP divisible process always fulfills the quantum
regression theorem, but a CP divisible process does not.

Furthermore, to establish the converse of Theorem |38 we also need the
following definition:

Definition 39. A Markov process is said to be invertible, if the inverse of
any Ay exists for all k, i.e., the expression Ay = A&()A];é s well-defined
and coincides with the CPTP maps appearing in Fq. .

We are now ready to prove the next main theorem:

Theorem 40. If the dynamics are Markovian, invertible and incoherent for
all preparations Ay, then the statistics are classical for any preparation.

Proof. By using Eq. (8.25)) and the property of incoherence, we can conclude
that for any two times tyq1,t € {t1,...,t,} (with tpq > ty)

Ap1N10AA 0 Aops(to) = App1Aer1 iAo Aops(to). (8.26)

Since the dynamics are invertible and incoherent for all preparations Ay, this
implies the superoperator identity Ay 1 A1 D¢ = App1Ary1. By multiplying

this equation with P,, ,, we arrive at

Z PTZ+1AE+17£PT[ = 7)7'[+1Af+1,£' (827)
Te

From this general identity we immediately obtain that

Zp(rn)

Te

=1tr {P'rnAn,n—l e Z ’PTLIHAZ-FL@PT@ - PrlAl,OAOP} (828)
T

= tr{PrnAn,n—l Ce 737”@+1Af+1,é Ce PﬁAl,OAUp}

=p(Fny ey Toy ey 1)

This concludes the proof as the above argument also holds for all possible
subsets of times. O

One remaining open question concerns the assumption of Markovianity.
At the moment it is not clear whether relaxing this condition is meaningful
as it requires to define the notion of invertibility for a non-Markovian process,
which is not unambiguous.
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Furthermore, the superoperator identity (8.27) implies that, if we write
Ay as a matrix in an ordered basis where populations precede coherences
with respect to the measured observable Ry (input) and R, (output), it has

the form
Mgy = 26 , 8.29
ok <C€,k Dw) (8.29)

where Ay, is a stochastic matrix and Cyj, and Dy, are arbitrary matrices,
which are only constrained by the requirement of complete positivity.

In addition, the following counterexamples demonstrate that Theorem
is also tight in the sense that a process, which is incoherent only for a sub-
set of preparations or which is not invertible, does not imply classical statistics.

A process which is incoherent for one preparation Ay but not classical for
that preparation

Consider an isolated two-level system undergoing purely unitary dynamics.
Then, the dynamics are incoherent with respect to any preparation Ay which
maps the system state to a completely mixed state: independent of any
dephasing or identity operation, the state will stay at the origin of the Bloch
ball for all times.

However, such a dynamics does not necessarily imply classical statistics.
Consider, e.g., the measurement basis to be o, (with outcomes {14, x} at
times t;) and the unitary rotations to be around the y-axis. Furthermore, the
time-steps are chosen equidistant in such a way that the rotation is exactly
7/2. It is then easy to confirm that

(s, 1) = p(1s, by 1) = ; (8.30)

hence, >2,,cq1.13 (13,02, T1) = 1/4. But if we do not perform any measure-
ment at time fy, we obtain p(13, o2,T1) = 0. The statistics are therefore
non-classical.

A process which is Markovian and incoherent for all preparations but not
classical

Consider a Markov process for a two-level system where the map in the
first time-step is defined by

1(10
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for any input state p. The rest of the dynamics is again unitary as in
the previous counterexample. Thus, the dynamics are incoherent for any
preparation, but not classical.

8.4 Results for degenerate observables

If the measured observable contains degeneracies, the picture above somewhat
reverses. First, Theorem[3§|ceases to hold even in the Markovian and invertible
regime because it now becomes possible to hide coherences in degenerate
subspaces and this can have a detectable effect on the output state .
This is demonstrated with the help of the following example:

Consider two qubits A and B and projective measurements in some fixed
basis of qubit A only such that the dephasing operation acts only locally
on qubit A: A = Aj ® Zg. Thus, the measured observable is degenerate
and projects onto two possible subspaces of dimension two. Furthermore,
we only consider measurements at two times t, and t; and assume the
dynamics in between these two times to be described by a unitary swap gate,
Uswapliajs) = |jpia). We also assume that the dynamics in between the
preparation and the first measurement is trivial, i.e., described by an identity
operation.

Now, consider an arbitrary initial state resulting from an arbitrary prepa-
ration Ay, denoted as

Aopo = D Pinipigajsliais)(jajsl. (8.32)

1A,iB,JAJB
Then, straightforward calculation reveals that

p(r27 7“1) = trAB{PrguswapPhAOpO} = Priro,rires (833>
p(r% Tl) = trAB{P?"QZ/{swapAOPO} = Z Pjra,jro - (8'34>

J

Hence, the process is classical: Y, p(re,71) = p(ra, 71).
However, the process is not incoherent. Consider, for instance, the initial

state

Ao = ool o) =2 M o). (s

Then,

0g) + |15)

A, Ty, Aol = [91)(Wnl, 1) = 104) © NI

(8.36)



Chapter 8: The most general case 125

but
,m:[ A ) 21, 10] ‘ A B>< A B| | A B>< A B|‘ (837)

In contrast, Theorem [40] still holds true for degenerate observables. In
fact, in the proof of Theorem 40| we never used that the measured observable
is non-degenerate.
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8.5 Chapter summary

e The definition of NCGD dynamics is problematic insofar as it does
not allow to establish a correspondence between coherence and
classicality of non-Markovian processes. Incoherent dynamics is put
forward to remedy this situation. From it, the NCGD property can
be easily recovered.

e When measuring non-degenerate observables, obtaining classical
statistics implies that the underlying dynamics is incoherent, no
matter of what kind this dynamics is. Conversely, Markovian
invertible incoherent dynamics yield classical stochastic processes.

e When measuring degenerate observables, classicality does not imply
incoherence anymore, since coherence can be hidden in degenerate
subspaces. Yet Markovian invertible incoherent dynamics still give
rise to classical processes.

8.6 Open questions

e In which conditions does incoherence imply classicality when consid-
ering non-Markovian statistics? For that we would need to propose
a definition of invertibility for non-Markovian processes, which is
not unambiguous.




Final thoughts

“Those were the days, when we were all at sea. It seems like yesterday to
me.

Species, sex, race, class: in those days none of this meant anything at all.
No parents, no children, just ourselves, strings of inseparable sisters, warm
and wet, indistinguishable one from the other, gloriously indiscriminate,
promiscuous and fused. No generations. No future, no past. An endless
geographic plane of micromeshing pulsing quanta, limitless webs of
interacting blendings, leakings, mergings, weaving through ourselves,
running rings round each other, heedless, needless, aimless, careless,
thoughtless, amok.”

Sadie Plant,
Zeros + Ones

Fog has permeated this thesis. Throughout it we have dealt with the
undefined, with the raw potentialities quantum systems have to become
something nobody can predict with certainty—a sort of primordial sea where
identities have not been written yet. This property of existing blurrily, of
being in a flou, brouillé state—as Schrodinger put it [I67]—, which is in turn
a superposition of different states, is called quantum coherence.

As explained, coherence is not such an outsider though: indeed, it does
manifest itself through intereference phenomena (remember that events which
can occur in several alternative ways lead to interference patterns [1]). This
means that, at the quantum level, there exists an intertwining between
knowledge and physical reality, between subjects and their objects of study.
Such an epistemological framework defines what one could call the paradigm of
immersion. Unlike classical scenarios, where sovereign subjects are understood
as distinct and separate from the systems under investigation, whose properties

127
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they can read in all their truth (“As the eye, such the object”, in words of
William Blake [168]), quantum contexts imply participation, immersion of the
subject into the physical problem that is to be solved. The classical dualism
subject /object is then replaced by the quantum paradigm, as well as the
dualism of Descartes or Plato was confronted by the monism of Spinoza or
Aristotle, respectively.

As we have already mentioned, besides its fascinating epistemological
implications, quantum coherence turns out to be resourceful in a number
of fields ranging from quantum technologies to biology, which calls for the
creation of a theoretical framework that rigourosly describes its essence and
properties. That is why the resource theory of coherence has been developed,
to which this thesis intends to make a contribution.

In the first part of this work we learnt what the basic ingredients of
coherence theory are. In particular, after fixing a basis, the free states
are those diagonal in that basis and the free operations are non-coherence-
generating maps, i.e. maps that leave incoherent states incoherent. Among
the great number of non-coherence-generating maps that can be found in the
literature, we focused on the largest class, MIOs, as well as in the subclasses
of I0s and SIOs. Moreover, we defined the maximally resourceful state
of the theory, which we denoted as cosdit, and we explained how a good
coherence measure should look like. We also presented some examples of
relevant coherence monotones in the MIO-theory, such as the relative entropy
of coherence and the robustness of coherence, and in the IO-theory, such
as the [;-norm of coherence, and we remarked that most of such measures
are not just axiomatic constructions fulfilling a list of desiderata, but also
quantities with an operational meaning.

In particular, we raised the fundamental question of how coherence, as
originally conceived by the physics of interferometers, appears in the resource-
theoretic framework. The answer we found demonstrates that, at least under
SIOs, coherence theory is grounded in the physical and even explains how
to measure coherence in the laboratory. Indeed, when fixing SIOs as free
operations, coherence measures can be derived by optimizing suitable visibility
parameteres over detection schemes. In this way, one can obtain coherence
measures that are related to, or even identified with, some of the already
known ones.

In the second part we noted that any state can also be thought of as a
constant-output channel, meaning that the resource theory of states, which
we had been using up to then, could potentially be generalized to that of
channels. With that purpose in mind, we proposed several quantifiers of the
coherence of a quantum channel, which we assessed in terms of i) how much
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coherence the channel can produce (some examples of such quantifiers are the
coherence power, the robustness of coherence and the asymptotic coherence
generating capacity), and ii) how much coherence is required to implement
the channel by means of non-coherence-generating operations (some examples
of such measures include the simulation cost, both single-shot and asymptotic,
and the amortized simulation cost). This broader framework then allows us
to exploit coherence in two different ways: i) by turning dynamic coherence
into static one, as occurs if we are to store the coherence generated by a
certain map in a given system, and ii) by converting static coherence into
dynamic coherence, as happens if we have to simulate a given channel using
only free operations and a supply of coherent states.

We further computed most of the previously mentioned measures in the
[O0-theory and in the MIO-theory, and obtained, among others, the following
results: first, the IO asymptotic generating capacity of a channel N is i)
bounded by the coherence power of the map resulting from appending the
identity to N, and ii) smaller or equal to the asymptotic simulation cost,
which makes the theory asymptotically irreversible; second, any channel can
be implemented via IO0s and a cosdit; third, in the IO-theory operations
may exhibit bound coherence, in constrast to states; fourth, the MIO single-
shot simulation cost of a channel is given by its robustness of coherence;
fifth, under MIOs, the log-robustness of coherence equals the coherence
power of the channel and it characterizes the amortized implementation cost
with recycling of coherence at the output, as well as the asymptotic cost
of realizing exactly many independent instances of the channel; sixth, any
coherent state in dimension larger than 2, however weakly so, is useful for the
exact implementation of some coherent unitary channel via MIOs; seventh,
a semidefinite program can be employed to find the best approximation
to any given channel using MIOs and an arbitrary resource. We finished
the section by making a comparison between 10-theory and MIO-theory,
where we remarked that both the I0/MIO implementation of a qubit unitary
are possible if an only if a cosbit is used as fuel, and that, in general, 10-
theory does not allow for coherence recycling, in contrast to MIO-theory. We
also noted that, whereas the MIO-theory of states is reversible, unlike the
[O-theory, we do not know yet whether the same holds for channels.

In the third and last part, we investigated how coherence is related to
non-classicality, when the latter is embodied by features beyond the ability to
yield interference effects. In particular, our purpose was to determine whether
the non-classicality of a quantum stochastic process is connected in some
way with the coherence properties of the underlying dynamics. At first we
learnt that the coherence-generating capabilities alone of a quantum evolution
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are not the right property to consider, but rather its coherence-generating-
and-detecting (CDG) capabilities. Morever, we found that, when further
considering Markovian Lindblad dynamics, a one-to-one correspondence can
be established between CGD and non-classicality (*). When moving away
from Markovianity, though, this is not true anymore. In fact, to study non-
Markovian settings, one has to generalize the definition of NCGD, i.e. not
CGD, to that of incoherence. This way one can see that incoherence is a
necessary condition for classicality, no matter the kind of dynamics one has
chosen. Moreover, the converse is only true when restricting to Markovian
scenarios with invertible dynamics—which generalizes the result in (*) from
time-homogeneous to invertible dynamics—. As desired, the results of the
NCGD framework can be easily recovered from those of the more general one.

All in all, this thesis has tried to capture, in a mathematical way, the
philosophically beautiful notion of quantum coherence, with the hope of
providing a better understanding of how superposition can help us map the
fuzzy frontier between the classical and the quantum realms, while also being
leverageable as a physical resource.

Theoria and poiesis blended in some ineffable tissue.

Finally, we would like to point the reader to some lines of research on
which our results may also spur investigation, which go beyond the more
specific open questions that were presented at the end of the chapters:

e Connection with other resource theories. In [65] it was pointed
out that, at least under IOs, coherence theory resembles so closely the
theory of maximally correlated entangled states, in the sense that the
coherence cost and the distillable coherence of a given p = 3 p;;|i){(j|
are equal to the entanglement cost and the distillable entanglement,
respectively, of p =" p;;|ii)(jj|. How could the results of this thesis be
related to those in entanglement theory? What is more, could there be
connections between our results and other resource theories like those
of asymmetry and thermodynamics?

e Experimental applicability of coherence theory. We have shown
that, under SIOs, coherence can be measured in the laboratory using
interferometric-based coherence measures. Can this result be extended
to the most general setting, the MIO-theory? Moreover, how can MIOs
be implemented experimentally? This would allow, for instance, for the
design of explicit protocols to simulate quantum channels via MIOs and
coherent states.
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e Resource theories of channels. The resource theory of coherence
for channels is still under construction. What one would like to have
there is a proper resource theory, where free objects are incoherent
maps and free operations are superoperations (or quantum combs [147])
that leave incoherent maps incoherent. First steps towards building a
coherence theory of maps have been given by [61) [74], 104, [105]. More
interestingly, it would be desirable to extend all these results further to
general resource theories of channels, where resources are left completely
general [64], [106]. What is more, how do general resource theories look
like beyond quantum mechanics, i.e. in the framework of General
Probability Theories [169]?






Appendix

133






APPENDIX A

The robustness of coherence of a channel

Here we prove several properties of the robustness of coherence for quantum
channels, introduced in [3.3] We assume ®xcg = M € MIOs. Let us start
by showing that it is a coherence measure for a coherence theory whose free
resources are indeed MIOs.

1. Faithfulness: Cr(N') = 0 if and only if N is MIO. This follows straight-
forwardly from the definition, since one can take A = 1 if and only if

M=N.

2. Monotonicity: The robustness of coherence of the channel A/ mono-
tonically decreases if we pre- and post-process the input and output
using MIO channels £’ and £ respectively, i.e., Cr(L o N o L") <
Cr(N), VL, £ is MIO. Indeed, take A > 0, M MIO such that AM —
N > 0 and concatenate it with the channels £, £’. Defining M’ =
Lo Mo L' MIO it follows that £Lo N o L' < AM’ as well, so that any
A feasible for A is also feasible for £Lo N o L’

3. Convexity: >; piCr(N;) > Cr(3,; piN;) for any probability distribution
{p:i} and {N;} a collection of quantum channels. Indeed for each i
take the minimum \; such that NV; < \M;, M; MIO. Then define
A =Y, piA; and note that {p; = p;A\i/A} is still a probability distribution.
By averaging the inequalities over {p;} and rescaling by \ we get
SipiN; < A >_; DiM;, where the latter is still a MIO. We conclude that
1+ Cr(XipiNi) < X=X Aipi, and thus Yo, p;Cr(N;) > Cr(3; piVi).
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Properties 1-3 above straightforwardly extend to the smooth-robustness
of Eq. (3.4)) (the faithfulness condition holds up to error ¢).

Let us now focus on the SDP formulation of the robustness. We want to
calculate the dual of the SDP

1+ Cr(N) = min{\ : M is MIO and N' < IM' =: M},
which is equivalent to

min A (A1)
s.t. JN < JM
Trg Jy = Ay
Tr Jm([8) (il @ |7)(kl) = 0, Vi, Vj # k,
where Jy, Ju are the Choi matrices of AV and M, respectively. This means
that we need to minimize the following Lagrangian:
L = M+TrX(TrgJy —Ala) = Tr Y (I — Jy)
+ > 25 Tr Ju(li) (i @ |5) (k[)

i ik
= A TH(X @ 1) — ATE X — TrY (Jug — Jy)
T JM< S i) (i @ Zz-> (A.2)
i Ak
= AT XL)Jy —ATr X —Tr Y (Jp — Jy)
T Z)

= A1-TrX)+ TrJu(X @1 -Y + Z) + Te(JyY),

where Z = Y, |i)(i| ® Z; and Z; is a zero-diagonal matrix, while Y > 0. In
order to avoid that miny ;,, L = —oo, we need to impose that Tr X =1 (so
X isastate) and Y = X @1+ Z.

To calculate the dual, we maximize the terms of the Lagrangian which do
not contain the variables of the primal form, A\ and Ju:

max{Tr JyY : Tr X =1Y =X®1+ Z > 0}. (A.3)
The objective function is equivalent to

TrJyY =Tr (X @ 1)+ Tre(JyZ)
=1+ Tr(Jy2)
:1+ZTrZiN(|z'><i]), (A.4)
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where we have made use of the identity Trp((X @ 1)Jy) = N(XT), and the
fact that A is CPTP in the second line of Eq. . As X no longer appears
in the objective function, and dephasing it does not affect the constraints,
we may assume X = >, p; |#)(i|, where p; are probabilities, without loss of
generality. Therefore, we can write

max{zpi + T ZN (i) pil + 2 2 ow}
e S T S i)
e Y1+ CalN i)
—ma{1 + CaN (1 ). (A5)

where S; = 1 4+ p; 'Z; > 0 and (j| S; |j) = 1 for all j, and we have used the
dual form of robustness for states, Eq. . Moreover, since the latter is
multiplicative under tensor product, also the robustness of channels is.

The logged version of the robustness of coherence follows directly from
Eq. , and the equality of the log-robustness of coherence to the cohering
power, Pr(N), of Eq. is also evident from the definition of the latter. To
see that the log-robustness of coherence for a channel is also equal to ﬁ’(./\f ),
observe that for any p ® w

Crr(p@w) > CLrM(p@w)) = CLr(N(p) ® 0)
Crr(p) + Crr(w) > CLr(N(p)) + Crr(o)
Crr(w) — Crr(o) > CLr(N(p)) — CrLr(p). (A.6)

Thanks to Corollary , the minimization of the right-hand side of Eq.
over w and o yields the amortized cost (Eq. (3.8))), which is equal to the
log-robustness of coherence of N via Theorem [I2] Moreover, the inequality
in Eq. holds for all p € H. Thus

Crr(N) > max (Crr(N(p)) — Crr(p)) > Pr(N), (A7)

where the last inequality holds because the maximization in ]33(/\/ ) is over a
larger convex set than that of Pr(N). As the upper and lower bounds on the
coherence power are equal it follows that Cpgr(N) = Pr(N).

Similarly, one can write the smoothed robustness of coherence (Defini-
tion as an SDP in primal and dual form. Using the dual-SDP formulation
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of the diamond norm [111], the primal SDP of Eq. reads
1+ Cx(N) =min A
s.t. Sy > Jg,
Trg Jy = Mg,
Tr Jul|ig)ik]) = 0, Vi) # k,
V> Jec—Ju,
TrpV < ely,
Trp Jp = 14,
J, >0,V >0 (A.8)
The first three constraints correspond to the simulation of channel £ by MIO

and the fourth and fifth constraints capture the diamond norm constraints
that £ should be € close to M. The dual form of Eq. (A.8) is given by

max Tr(Jy(S —A—-eQ®1))
st. S=Y @1 |iNi|®Z >0

S—A<S<WRI<S-A+0x1

TrZ; =0, Vi
TrTW=0TrY =1
A>0,2>0,Y >0. (A.9)

Finally let us state the connection between the log-robusteness of coherence
of a channel (correspondingly its smoothed version) to the maximum relative
entropy (correspondingly e-maximum relative entropy) of the latter with
respect to a MIO:

Definition 41. The mazimum relative entropy of two channels N and M is:
Dpax(N||M) := —log max p
5.t M= pN + (1= pN'
pel0,1], N' € CPTP,

= logmin {\ : N < AM}. (A.10)
The smoothed version of this quantity is:
1
Do NI M) = min { D (M) £ SIN = Ll < ef . (A1)

Proposition 42. The e-log-robustness of a channel is given by

O o(N) = min {D5,_(N|M) : M MIO} . (A.12)

max
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Proof of Theorem

Here we state the technical lemma required in the proof of Theorem [§|

Lemma 43. The relative entropy coherence power and the coherence of
formation power are asymptotically continuous with respect to the diamond
norm metric on channels. To be precise, for Ni,No : A — B with $||N7 —

N2H<> S €,

\13@(/\/1 ®idy) — P, (Ns ® idy) ] delog | B| + 2g(e), (B.1)
|Po, (N7 @ idy) — Po, (N> ®@idy)| < e(log|B|+logk) +g(e),  (B.2)

where g(x) = (14 x)hy (Hix) =(1+x)log(l+x) —xlogz.

139



Appendix B: Proof of Theorem @ 140

Proof. For the first bound, observe

’ﬁcr(/\/l ®idy) — P, (N2 ® idk)‘
S max CT((Nl X ldk)p) - Cr((./\/-g X ldk>p)’

pAC
= I?Aag( S(BC)anen), — S(BCO)(nviwidy)p

—S(BC)anzen), + S(BC)(\a@idy)p
=max |S(B|C)amen)y — S(B|C)nsidyp
—S(B|C)(anzea), + S(B|C)(N2®idk)/0‘
< max |S(B|C)anenr), — S(B’C)(AM@A)/J‘

+ ‘S(B|O)(N1®idk)p - S(B|C)(Nz®idk)ﬂ‘
< 2(2¢log| B| + g(e)),

where in the first line we insert the same variable pA“ to maximise ]5& (N;®idg)
and notice that in that case, the term C,(p) cancels; then in the second line,
we use the definition of the relative entropy of coherence and in the third we
use chain rule S(BC) = S(B|C) + S(C) for the entropy, allowing us to cancel
matching S(C) terms; in the fourth line we invoke the triangle inequality,
and finally the Alicki-Fannes bound for the conditional entropy [170] in the
form given in [I71, Lemma 2].
For the second bound, we start very similarly:

|Pey (M ®de) — Py (N, @ idy)|
< max ’Cf((/\ﬂ ® idkz)ﬂ) - Cf<(N2 ® idk)p)’
o
< e(log |B| + log k) + g(e),

where the last line comes directly from the asymptotic continuity of the
coherence of formation [65, Lemma 15]. O



APPENDIX C

MIO-simulation with arbitrary resources

C.1 Implementation of unitary gates: an SDP

Here we provide an SDP for the optimal implementation of unitary gates
without recycling using the gate fidelity as a figure of merit. We then proceed
to prove Proposition For ease of notation, we swap the output subspaces of
the MIO implementation map throughout this section, i.e., M : RRA — B®S.
We also consider unnormalized Choi matrices.

Proposition 44. The optimal gate fidelity of implementation of a unitary
U:A— B by means of a MIOM : R® A — B® S and a pure coherent
state w € R is given by the following SDP:

1
F=max — Tr((wf @ Jy @ 1¢)X
2 T ®Jy ©16)%) 1)

s.t. X is the Choi matriz of a MIO,

where Jy is the Choi matriz of the channel U - U', dy = dim(A), and w’
denotes the transpose of w.

Proof. Consider a maximally incoherent operation M : R® A - B® S. Its
Choi matrix is defined as

VS (idRA ® M)((I)RR’ X (I)AA’)
- Z |ik) g (Gl @ M (Jik) g ar (G11) - (C.2)

i7k/‘7j7l
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Suppose that &€ = Trg(M(w ® -)), where £ : A — B. Then the Choi matrix
of €, Jg, is explicitly given by

Jg = TI‘RS((CUT ® ]lA (%9 ]lB (%9 ]IS)JM)
= %“l (Glw" [i) [) 4 (1] @ Trs (M(|ik) g4 (G11))

= ; k) 4 (1] @ Trg (M(w @ [k) 4 (1))
= (ida ® &)(Pan) (C.3)

On the other hand, the Choi matrix of the unitary channel is given by
Jo =120 U0)0s0 (14U,

Our aim is to compute how well the map £ implements the unitary channel
N(p) = UpUT. To that end, we use the gate fidelity, i.e., the fidelity between
the Choi matrices of the corresponding channels:

1
F = TTI'(JUJ(‘:)
d3

1
— d—QTr((]lR RI L)W 1, @1 1g)Ju)
A

1
= = Tr(w! @ Jy @ 1g)Jpm). (C.4)

A
In particular, we want to obtain the optimal gate fidelity of implementation
of the given channel. This is an SDP in primal standard form, where Jy; > 0

is the semidefinite variable subject to the constraints Trpg Jy = 1g ® 14 and
Tr((|ik) g4 (k| ® 1) g5 (J'U])Ira) = 0 for all i,k and all j # 5,1 #I'. O

C.2 Alternative definitions of coherence left

In this appendix we discuss possible bounds on and alternative definitions
of coherence left, when an arbitrary resource is used to simulate a channel
with recycling. Let us start by relaxing the tensor-product constraint at the
output of the implementation: a simpler problem is that of finding a MIO
that simulates the whole tensor-product output up to a given error. This also
constitutes an upper bound on the robustness of coherence left.

Proposition 45. The mazimum robustness of coherence left in the resource
o € S after the implementation of a quantum channel N : A — B via MIO
M:R®A— S®B and a coherent resource w € R up to error € in diamond
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norm, i.e., Eq. , is bounded from above by the following optimization
problem:

max Cg(o)

1 (C.5)
s.t. 5Ha QN — M(w® )|l <,

which can be expressed as the following semidefinite program:

max Z 045

s.t. Jaq is the Choi matriz of M MIO
Z > 0@ Jy = Trp((w" ® Lsap)Im)
Trep Z < ely
Z > 0.

where Jy is the Choi matriz of N.

Proof. 1t is straightforward to show that Eq. is an upper bound on
Eq. (5.16]). Indeed, we can make the separable-output ansatz M(w ® ) =
o ® L(+) for the MIO M simulating the channel in Eq. and obtain the
problem of Eq. .

As for the SDP formulation of this problem, the last three conditions in
Eq. are a simple translation of the diamond norm error one in Eq. ,
following [ITT]. It then remains to show that the robustness of coherence can

be re-cast as the sum of off-diagonal elements of o € S. To that end recall
the dual formulation, Eq. (1.21)), of the robustness of coherence which reads

1+ Cgr(0) = maxTroS = max Tr(c 0 ST)G, (C.7)

where S is a non-negative-definite matrix with ones on the diagonal and we
have introduced the all-one matrix G;; = 1 for all 7, j and the Hadamard
component-wise product o o S = 32, 0;;5; i) (j|. That this is equal to the
sum of all off-diagonal elements of o follows from

CR(O') = Z(Tij Sji —1
4,J
= ZO'“' —+ ZO’Z‘]'S]'Z' —1
i i#£]j
= Z Uiiji> (08)
i#j
where we have made use of the fact that .S;; = 1V in the second line above.
As the transformation ¢ — o o ST can be implemented by a MIO CPTP
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map, given that (o o ST);; < 0y; Vi # j (no coherence is created in the
transformation), the two objective functions are equivalent under the given
constraints, since the diamond norm is contractive under CPTP maps. O

The SDP of Proposition 45| amounts to requiring that the MIO M imple-
ments a good simulation of the overall output ¢ ® N when provided with the
input resource w. Note that this implies that the local reduced output systems
of the implementation M are close to o and A/, but also that their corre-
lations are small, so that the implementation is e-close to a tensor-product
one. However, if we increase the allowed dimension of ¢ it is possible to find
states that are e-close to it but have an increasing amount of coherence, e.g.,
(1 —€)o + eV, Hence Eq. can give an unbounded amount of coherence
left if the output dimension of the resource is allowed to increase.

Two possible ways to remedy this involve changing the objective function
such that it either maximizes the e-robustness of coherence of the output
resource state, or to find the most coherent state among all output resource
states that are e-close to the desired target. Both of these solutions provide
an alternative definition of coherence left, physically motivated by the fact
that the true output resource is not o but only a state e-close to it, either in
robustness or in trace norm. Unfortunately, the former is not an SDP while
the latter is not easily computable. Which of these, or other, definitions of
coherence left is better may depend on the recycler’s objective and we leave
it as an open question for the interested reader.

In Fig. we plot the robustness of coherence left after the approximate
implementation of a qubit unitary Uy vs. 0/m, for several values of the
input coherence and of the error threshold. As expected, for a fixed input
coherence, more coherence can be recovered at the output if we accept a
worse implementation. Moreover, for sufficiently small error thresholds, there
are unitaries that cannot be implemented at all.
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Figure C.1: Maximum robustness of coherence left in the resource after the
approximate MIO implementation of the qubit unitary Uy vs. 8/ for four
values of input coherence (a-d). Each plot shows four curves corresponding
to different error thresholds e € {0.15,0.25,0.45,0.75} (from lower to higher
curves).






APPENDIX D

Proving some useful lemmas

D.1 Proof of Lemma |26

We will prove the first statement, the second one follows analogously.

For n = 0, this is trivially true. Now let n — n + 1.

n n j—1 n—j
ALV = (ﬁgp 2j=1 Loy Lo L ]> (‘Cpp £p6>

0 ECP ‘Ccc
= (ESJ EEED Dy Ay S S Y A ST DU e E?C_jﬂ)
0 0

By assumption, the highlighted sum is zero. Note that in the second column,
the separate term is precisely the one arising for j = n + 1.

n+1 n+l pj—1 n+l—j
= A£n+1 — (‘C;());_ Zjil Ei)p O‘Cpcﬁcc ]>
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D.2 Proof of Lemma |29

First note that {A(t)}, g+ satisfies Eq. if and only if Vz,7;t,s € Rt
(z] A(t) o A(T) [[a)¥sl] [¥z)
= 3 (sl AW [We] A el 021 1)

= 3 sl Al AT [0K0el) )0 | )
= (sl Al)o &0 AT (el 10s). (D.1)

since the first and the last equalities are always valid, while the second is
Eq., adding the diagonal terms on both sides. We first prove that if
{A(t)},cr+ is NCGD then the above equality holds. We can in fact rewrite
the first line as

> (sl 1)t AE) 0 A7) [[won Xthw | [l [ ebwe | (80008 ] [802)

— (s] Ao A(t)o A(r) o Al[ga)ul] [6) (D.2)
— (] AoA(t)oAoA(r)o A[da)ul] [is)
— (] A() 0 Ao AC) ()bl [2)

where in the first line we used that only the terms & = k,x = k’ are non-zero,
and in the third line we used that {A(t)},.g+ is NCGD.

For the converse, we start with the assumption that the equality
holds for any z, Z,t, 7 € RT. The statement then simply follows by the linearity
of the propagators since A is a projection onto the span of {|1, )X, }..

D.3 Proof of Lemma |31

First note that
Cx.(t,0) = S QX {,t;20,0} % 20 = QF° {1,£;1,0} ;

z,x0=0,1

since the dichotomic observable has values in {0, 1}; thus
|2CXs(t O) - OXs(Qt 0 ’ = ‘2Q2As {Lta L, 0} - QZAS {1) 2t; 1, 0}‘
\2@1‘1{1 ¢1,0} — Q1|1{1,2t|1,0}‘Q15 {1,0}

= 1208 {1, 11,0} — 3 Qi {1, e, 0} QF; {ax. t]1,0}

zrk=0,1

Q" {1,0}, (D.3)
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which provides us with Eq. 1 , since (X(0)) = QIAS {1,0}, while

zrk=0,1

is maximized by 1 for Qfi; {1,#/1,0} = 1 or Q7 {1,#[1,0} = 0 and
Q7 {0,¢1,0} =1

(as seen using Q17 {1,4/0,0} =1 — Q3 {1,¢/1,0).

D.4 Proof of Lemma |33

“Only if”: the statistics is, in particular, 2CL, so that we have, for any
x,t>seRT,

S QX {a,ty, s} = QF {a,t}.
Yy

But then, using the definition of conditional probability QQAS {z,t;y,s} =
1\1 {z,tly, s} *Q1 *{y, s} and, crucially, the time-homogeneity guaranteed by

the 2M and the Lindblad equation (Qm{x, tly, s} = Tr{Poe )|, N1, []} =

1\1{95 t — sly,0}), we can write
ZQm {z,t = sly, 0} * Q7 {y, s} = Q7" {x, t}.

Using the Kolmogorov condition, this time w.r.t. the initial value, and the
definition of conditional probability, the previous relation gives

ZQXS {20, 0} (Z Ql\l {z,t — s|y, 0} * Q{(lf {y, s|xo,0} — Qﬁj {z, t|xo, 0}) =0

which directly provides us with the Chapman-Kolmogorov composition law
in Eq.(6) of the main text, since, by assumption, we can choose any ini-
tial diagonal state p(0) = o Puo|tuo ¥, |, and then any distribution of

QAIXS {x07 O} = paﬁo'

“If”: Eq.(6) of the main text for the quantum conditional probability
Q)i {x. t|x, 0} means that

tr { e [[thay Nths, ||} = ztr{Pe O (14 Ny ]} 00 { P [0 Xt ] |

Vo, z;t > s € R,
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which, replaced in Eq.(7.8)), implies Eq.(2) of the main text [s — ty—t4_1, T —
Tp_1,t > tgr1 — tg_1, T — Tgi1], so that if the hierarchy is jM it will also be
jCL; note that this is the case also for k = 1 since we assume the initial state
to be diagonal in the selected basis.
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