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Nothing ever ends.

--- Watchmen ---
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Abstract
Over the last decades, molecular dynamics simulations have been suc-

cessfully applied to relevant biological problems such as protein-ligand and
protein-protein binding, as well as protein folding. A perfect challenge for
molecular simulations is the study of intrinsically disordered proteins as
they present faster timescales than structured proteins, and, therefore, can
be explored more exhaustively. The main objectives of this work include
the exploration of the conformational space of p53 by revealing the pres-
ence of many partially ordered states, the reconstruction of the coupled
folding and binding of a disordered protein and its folded partner by ap-
plying novel reinforcement learning inspired sampling algorithms, and the
performance of free-ligand binding assays to address the potential drug-
gability of disordered proteins. The compendium of work presented here
contributes to the understanding of such intrinsically disordered proteins
at an atomic level, highlighting key aspects of their behavior in isolation,
binding mechanisms, and external modulation.
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Resumen
A lo largo de las últimas décadas las simulaciones de dinámica mo-

lecular han sido aplicadas con éxito en problemas biológicos como la in-
teración proteı́na-ligando o proteı́na-proteı́na, ası́ como en su plegamiento.
Un desafı́o idóneo para las simulaciones es el estudio de proteı́na desorde-
nadas, ya que presentan escalas de tiempo mas rápidas que la proteı́nas ple-
gadas, lo que permite una exploración mas exhaustiva de las mismas. Entre
los principales objetivos del presente trabajo figuran la exploración del pai-
saje conformacional de p53 revelando la presencia de estados parcialmente
ordenados, la reconstrucción del acoplamiento de unión y plegamiento de
una proteı́na desordenada a su pareja, aplicando novedosos algoritmos de
muestreo inspirados en aprendizaje reforzado, y la realización de ensayos
de unión de ligando libre para abordar la potencial drogabilidad de las pro-
teı́nas desordenadas. El compendio de trabajo presentado aquı́ contribuye
a entender dichas proteı́nas a nivel atómico, destacando aspectos clave de
su comportamiento en aislamiento, de sus mecanismos de unión, y de su
modulación externa.
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Chapter 1

INTRODUCTION

1.1. Intrinsically Disordered Proteins

1.1.1. Breaking the paradigm

Up to the end of the twentieth century, the common understanding of
protein behavior can be summarized with the sequence-structure-function
paradigm, which establishes that sequence, structure, and function of a
protein are intimately related, being the latter the consequences of the for-
mer. The paradigm had to be adapted with the discovery of a group of
proteins able to perform biologically relevant tasks despite lacking a stable
three-dimensional structure, the intrinsically disordered proteins or IDPs
(1; 2).

The analysis of genomic data showed that a significant fraction of pro-
teomes, up to 30% in the case of the human, corresponds to fully disordered
proteins or disordered regions within folded proteins (3; 4). Comparing
predicted levels of proteome disorder across species served to illustrate
the asymmetrical distribution of disorder between eukaryotic and prokary-
otic proteomes, with a remarkable enrichment of IDPs in more evolved
forms of life, especially in cellular signaling and regulatory-related pro-
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cesses (1; 5; 6). Hence, IDPs serve as hubs in complex protein networks
controlling transcription, translation, and cell-cycle routines. At the same
time, IDPs themselves are also subject to several layers of regulation. On
the one hand, their synthesis and degradation levels are finely tuned, af-
fecting the location and time-lapse time-frame they will be found (7). On
the other hand, additional mechanisms such as alternative splicing and
post-translational modifications (PTMs) control the presence or absence of
particular functional sections that, in turn, control their dynamic behavior
(8; 9; 10).

IDPs composition, sequence-wise, is biased towards hydrophilic and
charged residues, and prolines, while depleted of bulkier hydrophobic
amino acids (4). In this manner, this depletion prevents the formation of a
hydrophobic core that could promote folding. Consequently, IDPs exhibit
a relatively flat energy surface composed of many local minima allocating
different fast interchanging conformations, in opposition to the funnel-like
surface of folded proteins, which has a well defined global minima region,
as shown in Figure 1.1.

Figure 1.1: Free energy surface of proteins. The free energy
surface of folded proteins shows a global minima correspond-
ing to folded conformations. IDPs, on the other hands, display
a flat energy surface, including many isoenergetic conforma-
tions. Extracted from (11).

4
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However, some IDPs do not interconvert between random coil-like
structures endlessly, since their flexibility can be modified by interact-
ing with other proteins. There are many examples of IDPs that fold
upon binding to their targets, acquiring secondary structural elements
(12; 13; 14; 15; 16; 17; 18). IDPs interactions are not restricted to one
partner only, and they bind promiscuously. A single IDP can interact with
many targets, exhibiting alternative conformations. For instance, the C-
terminal of p53, as illustrated in Figure 1.2, binds up to four targets. To
the question of how folding couples with binding two extreme solutions
have been proposed: conformational selection, by which pre-folded con-
formations of the IDP bind to is partners, or induced fit, where folding
follows binding. Other IDPs, contrarily, remain disordered upon binding,
especially polyampholytes chains, which mainly interact by electrostatic
complementarity reaching affinities in the order of picomolar (19).

From the kinetic and thermodynamic point of view, binding of dis-
ordered proteins takes place in a high-specificity and low-affinity fashion
(21). In the first place, specificity arises from their amino acid sequence.
IDPs bind their partners through short linear interactive motifs (SLIMs)
(22) of 10 to 20 residues where 3 or 4 positions take a central role in the
interaction. The lack of structure is an advantage from an evolutionary
perspective, as it allows for the quick evolution of SLIMs. On the other
hand, affinity is regulated by binding (kon) and unbinding (koff) rates. kon

of IDPs is as fast, and sometimes even faster than for the folded coun-
terparts. A typical IDP binds with a kon of 106-107 M-1s-1, in line, for
example, with ligand binding to GPCRs. On the other hand, koff ranges
from 1 to 1000 s-1 (23) including both fast and slow unbind. Low affini-
ties are due to the higher entropic penalty of binding for IDPs compared
to folded proteins, as the associated folding will reduce the potential num-
ber of conformations likely to be explored. Thus, the higher the rigidity
of the bound conformation, the higher this penalty would be. However,
the enthalpic term can compensate it (24) thanks to the creation of favor-
able interactions, as revealed by protein-IDP complexes, where the driving

5
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Figure 1.2: Binding promiscuity of p53. By residue disor-
der prediction for p53. A single segment of an IDP is able to
bind multiple partners with unique conformations. p53 high-
light this feature: its C-terminal binds to at least five different
partners, while other regions can also interact with many other
proteins. Extracted from (20).

forces for the interaction are lead by the burial of hydrophobic residues
on the disordered partner and the formation of electrostatic interactions
(25; 15). Altogether, these two features allow IDPs to exert their function
as molecular switches and rheostats, shaping signaling networks through

6



“output” — 2020/4/20 — 11:05 — page 7 — #25

transient albeit specific contacts.
Finally, one field of study of IDP biology that has gathered more at-

tention in recent years is liquid-liquid phase separation (LLPS). LLPS is a
reversible process by which a homogeneous liquid segregates in a diluted
and a condensed phase (26; 27). LLPS has vast implications in the cytoso-
lic organization and results in the formation of dynamic membrane-less
organelles mediated by RNA molecules and proteins, especially IDPs. It
has been suggested that these bodies host machinery to speed up biochemi-
cal reactions (28) and could also promote pathological protein fibrillization
events such as the formation of tau aggregates.

As previously mentioned, IDPs participate in many regulatory pro-
cesses, and their misregulation has implications in neurological disorders
and cancer. However, they are generally not considered as feasible drug tar-
gets, given that traditional approaches focus on the development of small
molecules able to block well defined 3D pockets, which are not found in
IDPs. Other approximations have been studied, including the development
of peptidomimetics resembling bound conformation of IDPs (i.e., a set of
molecules called nutlins which mimic the conformation of p53 bound to
Mdm2 (29)), as well as small molecules directly interacting with disor-
dered targets such as the androgen receptor (by the EPII molecule (30; 31)),
the nuclear protein 1 (32), the cell-cycle regulator p27kip1 (33; 34), and oth-
ers (35; 36).

To sum up, IDPs represent an additional facet of protein functionality,
and while providing a set of advantageous features from the biological
perspective, their study has also proven experimentally complicated.

7
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1.1.2. Experimental methodologies on structural biology

The methodologies employed in structural biology, either experimental
or computational, are limited in both resolution (from atoms to complex
molecular assemblies) and accessible timescales (ranging from picosec-
onds to minutes) as represented in Figure 1.3. Notably, the study of IDPs
presents the additional problem of how to deal with their inherent flexibil-
ity, as most approaches are better suited for the analysis of folded ones.

X-ray crystallography is one of the leading examples. It is the pri-
mary source of protein structures in the PDB (currently around 83%), and
it allows deriving a 3D electron density map of a protein crystal from an
X-ray diffraction pattern, thus providing a static image of the molecule.
Despite not being applicable for the general study of IDPs, it was espe-
cially useful at the initial stages of the field: the problems when crystal-
lizing several proteins and the presence of missing sections hinted about
the notion of disorder within proteins. Additionally, both X-ray crystallog-
raphy and Nuclear Magnetic Resonance spectroscopy (NMR) were able
to resolve the firsts folded protein—IDP complexes, such as p53 bond to
Mdm2 (12), p27kip1 to the cyclin A-Cdk2 complex (25), KIX—KID (13),
and KIX—c-Myb (15), showing how they could fold upon interaction with
their partners.

Small Angle X-ray Scattering (SAXS) (38) is another biophysical
method based on X-rays that provides quantitative information about pro-
tein shape and size feasible to study, which is to study flexible systems such
as IDPs. This technique is based on the scattering profile of an X-ray beam
irradiating a protein sample in solution, rather than a crystal, which offers
low-resolution information on protein conformations. The primary SAXS-
derived parameter is the radius of gyration (Rg), an informative measure-
ment of the average root mean square deviation from the center of mass of
the molecule, that is, its level of compaction.

8
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Figure 1.3: Research tools employed on structural biology.
Each tool is limited by its spatio-temporal resolution. Compu-
tational techniques, such as MD simulations, are able to pro-
vide atomistic resolutions while accessing long times scales.
Similarly, NMR resonance also have access to a wide range of
temporal scales, while others (X-ray and EM) only provides a
static image. mExtracted from (37).

Nevertheless, the most capable experimental methodology for the study
of IDPs is NMR spectroscopy (39; 40), as previously mentioned. It is based
on the NMR phenomenon, by which nuclei under a homogeneous external
magnetic field absorb energy at a given frequency depending on their type
and environment. The main advantage of NMR over X-ray diffraction is

9
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that, by using samples in solution, protein crystals are no longer needed. In
a broad sense, the frequency of absorption is referred as chemical shift (as
summarized in Figure 1.4), and they represent one of the most descriptive
parameters of protein dynamics. Most of the studies focus on the chemical
shifts of 1H and 15N atoms, but for peptides and IDPs 1H dispersion is lim-
ited and in the recent years the detection of 13C has became an alternative
for IDP investigation (39; 41).

The power of NMR resides in its potential to characterize dynamic
behaviors, such as population shifts, exchange rates between conform-
ers, and structural backbone constraints (including secondary structure as-
signment), that altogether shape the ensemble of explored conformations.
NMR is also relevant in the study of how IDPs ensembles are affected by
PTMs (42), by other proteins (15; 43), and even small molecules (33; 34).
In this way, NMR is able to discriminate binding regions, to characterize
intermediate states, and to deepen into the processes of aggregation and
phase separation, amongst others.

Figure 1.4: Chemical shift assignment. Backbone chemical
shift assignments is performed with 1H, 15N, and 13C atoms.
Extracted from (41).

Other computational techniques for the study of IDPs and extensively
employed throughout the thesis are described in more detail in Section 1.2.

10
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1.2. From simulations to sampling: one step at
a time

Since the appearance of the first protein crystal structure in 1958 (44),
one of the main objectives in the structural biology field was to provide
these static structures with dynamic behavior that could advance the knowl-
edge of how protein machinery works. First Molecular Dynamics (MD)
simulations were performed in the 1970s, reaching the modest amount
from today’s perspective of 8.8 ps (45). Since then and after multiple
technological upgrades, MD has consolidated as one of the most relevant
computational tools in the exploration of protein functionality.

Current technology allows generating massive amounts of aggregate
simulation time, reaching up to hundreds of microseconds or even the mil-
lisecond scale. Some reviews (46) have estimated that the frontier of one
second on simulation could be reached by 2022. All this data is used
to build probabilistic models known as Markov States Models (MSMs)
(47; 48).

In order to explore even longer timescales or to perform a better sam-
pling of the configurational space, new algorithms have been developed
under the name of Adaptive Sampling techniques (49). Their primary pur-
pose is to guide sampling, starting new rounds of simulations based on the
most promising conformations previously sampled.

This stack of methodologies defined by MD simulations for data gen-
eration, MSMs for analysis, and Adaptive Sampling for boosting explo-
ration and performance, compose the fundamental tools used throughout
the present thesis for the study of IDPs.

11



“output” — 2020/4/20 — 11:05 — page 12 — #30

1.2.1. Molecular Dynamics Simulations

MD is a computational technique for simulating time evolution of
atomic models in phase space. From an elementary perspective, MD could
also be understood as a time-lapse movie where every frame represents the
current coordinates of all atoms in the system. Additionally, the time sepa-
ration between consecutive frames is in the order of picoseconds. Many el-
ements intervene in the production of a simulation trajectory. Each choice
made in the building and running process implies a trade-off between per-
formance and accuracy. Some of the most relevant ones will be covered
next.

In the first place, a molecular system is built comprising solvent, pro-
tein and other molecules. For the proper representation of the solvent, there
are two main choices, either implicit or explicit. Implicit solvent (50) treats
water as a continuous medium, whereas more costly explicit solvent mod-
els include all atoms for each molecule. Explicit water models diverge in
the number of points used to represent each water molecule (three or four),
in their geometry, (planar or non-planar), and the rigidity of the bonds,
The water model employed throughout the thesis is the widely used rigid
three-points TIP3P (51).

The next step in the process supposes one of the most critical decisions
as it determines the accuracy of the results obtained: the choice of the force
field. Force fields are designed to fit experimental or quantum mechanics
(QM) derived data and include all necessary equations and parameters to
describe the attributes of the atoms, their bonds, and interactions. Most
used families of force fields in academia include CHARMM (52) and AM-
BER (53; 54). Each one encompassed several force fields adapted to dif-
ferent macromolecules such as nucleic acids (55; 56) or proteins.

Simulations propagate the evolution of the system through time by
solving Newton’s equation of motion. At each step, it is necessary to cal-
culate the forces acting over every atom (58). This forces are generally
divided into two groups: bonded terms —including bond, angle, dihedral,

12
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Figure 1.5: Molecular Dynamics simulations summary. top)
MD potential energy function. Classical MD represents atomic
systems as a collection of balls (atoms) and springs (bonds)
that are related by bonded terms (bond, bond angles, torsions),
and non-bonded terms (van de Waals and Coulumbic interac-
tions). Adapted from (57). bottom) Basic steps performed by
the MD engine. Extracted from (58).

and improper terms— and non-bonded terms —with electrostatic and van
der Waals terms—, as depicted in scheme 1.5. In order to maintain the in-
tegrity of the system and speed up calculations, several techniques are used.
Some of them include the introduction of cutoffs for the calculation of non-
bonded terms, the implementation of constraints of certain types of atoms
to increment the time step, and the definition of periodic boundary condi-
tions to deal with the finite size of the system and related surface effects.
The numerical solution for the equation of motion to obtain new atomic po-

13
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sitions and velocities after each step is performed with integration schemes
are such as the Verlet algorithm. The time step separating frames in a tra-
jectory needs to be shorter than the fastest processes observed, to ensure
the stability of the system. Hence, it ranges on the femtoseconds (10−15s
scale, faster than bond vibrations).

Simulations of classical MD represent the system with a ”ball and
springs” model, for atoms and bonds, respectively. However, other types
of simulations choose a different representation. Coarse-grained simula-
tions (59), for instance, define a broader representation of atomic systems
by grouping atoms into single entities. This approach simplifies the repre-
sentation of the system, allowing it to increment the time step and, there-
fore, making it possible to explore longer times scales at the cost of reduced
accuracy. On the other hand, systems can also be represented in greater
detail than classical MD. Quantum mechanics, for instance, also describes
the electronic behavior. Therefore this technique is suitable for the study
of reactivity (bond rupture and formation). However, it is limited to small
systems due to its high computational cost.

GPU-based MD

Biologically relevant timescales are orders of magnitude higher than
the time step used in MD simulations, for instances, side chain rotation
is in the range of nanoseconds (10-9 s), secondary structure element for-
mation can take up to microseconds (10-6 s), and binding/unbinding of
proteins with their ligands or protein folding can extend up to the second.
This means that it is necessary to perform millions or billions of steps to
reach those timescales, thus making of MD simulation a computationally
intensive technique. Therefore, its performance over the years has been
intimately linked to the development of more capable software and hard-
ware.

For a long time, MD was run almost exclusively in CPU and CPU-
based clusters, and the main advances included the development of spe-

14
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cialized hardware, such as ANTON supercomputers (60), which were able
to reach microsecond-length simulations. To mitigate the performance
problems, many biased MD techniques appeared, including metadynam-
ics (61; 62) or umbrella sampling (63), which applied external forces in the
system to bias sampling towards the events of interest. Fortunately, MD is a
highly parallelizable process, and it greatly benefited from the introduction
of novel GPU architectures like CUDA. With the appearance of the firsts
GPU-based engines, such as ACEMD (64), MD performance was greatly
boosted, making it possible to routinely reach microsecond timescales with
more accessible infrastructures, and even higher with distributed systems
such as GPUGRID (65), the one used during this thesis.

Force Fields for IDPs

As stated before, the accuracy of a simulation is determined by the
chosen force field. Using a generic protein force field has revealed to be
imprecise for the simulation of IDPs. This should not be surprising, given
that their parameters are developed to match those observed in folded pro-
teins.

There are two main problems with the application of general force
fields to IDPs (66): 1) the unbalance in the sampling of secondary struc-
tural elements, and 2) the propensity to generate over collapsed confor-
mations, being close to maximally compact globules. Tuning backbone
torsion parameters addressed the first issue. For the second, several solu-
tions have been proposed, including the strengthening of the protein water-
interactions (as done in the Amber ff03ws forcefield (67)), and the develop-
ment of new water models, such as TIP4P-D (68). The implementation of
additional approaches to boost accuracy is still an active area of research,
with periodic releases modified force fields (69; 70; 66; 71).

Over this thesis, a modified version of the CHARMM force field called
CHARMM22* (72) has been used. It was developed by Piana et al. to
solve the overstabilization of helices and salt bridges.

15
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1.2.2. Markov State Models
Initial conditions of an MD run, velocities —set at random— and co-

ordinates might have a great impact on the output trajectory. Thus, conclu-
sions drew from a single trajectory, despite its length, will likely be biased.
Multiple trajectories can be run simultaneously to improve sampling and
reduce this bias, and with the help of high-performance infrastructures such
as GPU-based clusters, thousands of trajectories can be generated within
weeks or months.

Markov states models (MSMs) were introduced to address the chal-
lenge of how to condense vast amounts of high dimensional data (N atoms
× 3 spatial coordinates), split across many short trajectories, into a sin-
gle model that discriminates between fast and slow processes on long
timescales (47). MSMs describe time series data as stochastic processes
defined by a set of discrete N states and an N-N transition matrix with the
probabilities of jumping between them. Building an MSM with a discrete
number of kinetically relevant states starting from continuous MD trajecto-
ries involves a complex pipeline summarized in Figure 1.6 and composed
by the following steps:

1. Data projection is generally the first step. It reduces dimensionality
by computing a set of features from the trajectories. In particular, the
most effective metrics that are generally employed include distances
or contacts between a set of atoms (i.e., Cα distances to track fold-
ing or protein-protein binding), and dihedrals angles (i.e., to monitor
IDP rigidity).

2. Time independent component analysis (TICA) (73) is then used to
reduce the number of dimensions. In principle, it is similar to other
techniques, such as PCA (74), but instead of capturing the variance
of the data, TICA finds the slowest processes.

16
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Figure 1.6: Markov state model building. Schematic and
graphical diagram representing the mains steps in the construc-
tion of a MSM. Original MD data is featurized by computing
distances, contacts, or angles. TICA is used to fatherly re-
duce the number of dimensions. Clustering provides the space
discretization needed to finally create a MSM. Adapted from
(75; 48).

3. Clustering can be applied now in the reduced number of dimensions
obtained in the previous step. It provides a basic discretization of the
continuous space of atomic coordinates found in a trajectory into a
succession of transitions from one state to another. One of the most
widespread algorithms to perform this task is KMeans (76), which
can handle thousands or millions of data points. Determining the
optimal number of clusters is complicated, and testing is generally
required.

4. MSM building constitutes the last step in the pipeline. It is achieved
by generating the transition matrix with the jumps between every
cluster at a given lag time. Finally, to get a reduced number of
macrostates (generally less than 10 is enough), the fast interconvert-
ing microstates are merged with the Perron-cluster cluster analysis

17
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(PCCA) algorithm (77).

MSMs can be used to estimate diverse parameters of the system and
have been successfully applied in protein folding (78; 79) and protein-
ligand (80; 81) binding studies. The transition matrix allows estimating
the equilibrium probabilities of the states, which are, in turn, intimately
related to the free energy associated with the transition from one state to
another. Kinetic and energetic parameters of interest such as the associa-
tion (kon) and dissociation (koff ) rates, mean first passages times (mpfton
and mpftoff ), and free energies can also be derived from the MSM. Sim-
ilarly, transition path theory (82) can be used to understand how the flux
evolves from one source state A to a sink state B, what intermediates states
are visited, and quantitatively assess their participation in the transition.

18
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1.2.3. Adaptive Sampling

High throughput MD simulations are performed with a goal in mind: to
create a kinetic model as complete as possible of a particular phenomenon,
generally binding or folding. As stated before, the space explored by a
single trajectory will correspond to a limited region of the configurational
landscape. Ensuring the exhaustive exploration of such a surface is not triv-
ial, as challenging tasks such as traversing high energy barriers in funneled
landscapes are not likely to happen at the first try. This ”luck” factor can
be outperformed by launching many simulations in parallel from the same
point and trusting that rare events will be sampled sooner or later. Taking
advantage of MSMs analysis at this point pushes the approach to a new
stage. After a set of simulations is finished, an MSM is constructed with
the available data to select the most promising conformations for spawn-
ing a new run of simulations (49). This iterative scheme, where rounds of
simulations are run cyclically, and a policy is applied to select a set of new
generators, is known as adaptive sampling (Figure 1.7).

Adaptive sampling methodologies represent a natural evolution of the
increased power of the analytical tools and the capabilities of running mul-
tiple parallel simulations. They can be designed to provide a more efficient
exploration of the configurational space, finding new states, or reaching the
desired one faster. They have proved their usefulness in many problems
such as protein-ligand binding, with a speedup of one order of magnitude
(49; 83), as well as in protein-protein binding (84).

The deciding point in the pipeline is the policy implemented for se-
lecting starting conformations for the new set of simulations. Initial ap-
proaches can be defined as heuristic. They rank conformations based on
various criteria such as the equilibrium probability or numbers of counts
(49), which will consequently prioritize sampling from less explored states.
Other approaches focus on spawning new simulations from states which
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contribute the most to errors in the mean first passage time (85) or eigenval-
ues and eigenvectors (86). Finally, there are also explicit rankings, defined
by the so-called goal functions, which assigns a score to every structure
based on external knowledge (83), i.e., the similarity with an experimental
structure.

However, when performing adaptive sampling, fully exploratory ap-
proaches are also disadvantageous, as they can explore high energy re-
gions or rare conformations of low interest without performing sufficient
sampling of biologically relevant events. Then, one of the fundamental de-
cisions that an adaptive sampling policy has to encode is how to face the
exploration vs. exploitation dilemma: the decision of how to trade between
exploring new states and sampling from already known ones, or in other
words, how to choose between the actions with the maximum estimated
value or non-optimal actions to update their value-estimates.

The exploration vs. exploitation dilemma has been extensively studied
in other research areas, such as reinforcement learning (RL) (87). RL is
a subarea of machine learning concerned with the development of optimal
behaviors given an environment, a set of actions that can be performed,
and a notion of performance or fitness that wants to be maximized based
on the actions taken. Framing adaptive sampling in an RL context is the
latest step towards the development of a more evolved sampling policy.

In particular, MD sampling can be described as a multi-armed bandit
problem, a subproblem of RL where an agent has to choose actions from
a limited action set, identified here with the states of an MSM, each one
with an associated numerical reward coming from an unknown stationary
probability distribution (87). The objective is to maximize the cumulative
reward over a finite number of choices. The main challenge to optimally
solve the problem is learning which actions are the most valuable and ex-
ploit them.

In this context, the novel AdaptiveBandit was recently developed (88).
AdaptiveBandit defines adaptive sampling under a multi-armed bandit
framework precisely to tackle the exploration-exploitation dilemma, faced
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Figure 1.7: Adaptive Sampling is an iterative process where
every epoch a new set of simulations is run, and the accumu-
lated data is evaluated by a policy that chooses starting confor-
mations for another round.

at each new round of simulations, to handle the exploration of new con-
formations while sampling from the most rewarding known states. Adap-
tiveBandit makes use of the MSM’s discretized conformational space to
define the action set. As for the reward definition, different choices de-
pending on the objective, i.e. if the interest is sampling a bound metastable
state, actions should be rewarded based on the stability of conforma-
tions using MSM estimations of equilibrium probabilities for each state.
Lastly, at each round, a random conformation is picked from the selected
states/actions to respawn new simulations.

To handle the exploration-exploitation dilemma, AdaptiveBandit relies
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on the UCB1 algorithm (89), defining an upper confidence bound for each
action-value estimate based on the number of times an action has been
picked and the total amount of actions taken:

at = argmax
a∈A

[
Qt(a) + c

√
ln t

Nt(a)

]
(1.1)

where t denotes the total number of actions taken, Qt(a) is the action-
value estimation, Nt(a) is the number of times action a has been selected
(prior to time t) and c is a constant controlling the degree of exploration.
UCB1 follows the principle of ”optimism in the face of uncertainty”, pri-
oritizing actions with uncertain value-estimations, even if those are not the
greatest.

In summary, Adaptive Sampling methodologies appeared to tackle the
sampling problem faced by MD simulations at a time where high through-
put simulations were possible. Since its origins in multiple parallel simu-
lations, sampling techniques have greatly evolved, moving from heuristic
methods to novel RL-based approaches, which represent the most viable
solution towards optimal policies.

1.2.4. HTMD
In contrast to the theoretical complexity of all the processes and

methodologies previously exposed, their practice is outstandingly simple
from a technical point of view thanks to the accessibility provided by sev-
eral software packages, such as HTMD (90). HTMD provide capabilities
to build, run and analyze molecules simulations, including MSM (derived
from PyEMMA (75)) and visualization (VMD (91)), allowing to write
complex building or analysis pipelines that integrate with the rest of data-
science related tools available in Python.

These features dramatically contribute to smooth the way of newcom-
ers as well as for ensuring standardization of protocols, result reproducibil-
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ity and, in general, good practices.
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1.3. Systems Overview

Amongst the many topics related to IDPs and briefly discussed along
Section 1.1, the thesis will focus on three of them: the behavior of IDPs in
isolation, binding mechanism of IDPs to folded proteins, and druggability
of IDPs. Each study revolves around a particular system: the N-terminal
region of p53, the interaction between KIX and c-Myb, and the modulation
of p27kip1 with the small molecule SJ403.

1.3.1. p53

p53 is a protein of great biological relevance, and its fundamental
role as a signaling hub in cell replication has granted it the nickname of
”genome keeper”. Hence, its malfunction is a shared feature amongst
many cancer types.

From a structural point of view, p53 includes a folded domain respon-
sible for its tetramerization and located in the center of the protein. Disor-
dered regions flank it at both ends. These disordered regions can interact
with many other proteins, as shown in Figure 1.2. In particular, its dis-
ordered N-terminal region is arguably the most widely investigated IDP.
Several studies have focused in both describing the structure of the com-
plex formed with Mdm2 (Figure 1.8) and exploring their binding mecha-
nism, either experimentally (NMR studies of the complex and the behav-
ior in isolation of the disordered region, (92)) or computationally (gener-
ally using it as a benchmark for testing novel MD related technologies,
(93; 94; 95; 96)), and even for the development of drugs (29). Finally,
similar studies based on NMR and SAXS focusing on the N-terminal be-
havior have shown a similar helicity profile between the isolated state and
the bound conformation (97; 92).
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p53: 10-VEPPLSQETFSDLWKLLPENNVLSPLPSQA-39

Figure 1.8: p53 bound to Mdm2. MDM2 protein is shown
as a white surface. p53 is depicted as cyan sticks and the he-
lical region between residues 18 and 26 as red cartoon, (PDB
code: 1YCR (12)). Above, the sequence of p53 used for the
simulation is displayed: in red the helical section, in cyan the
rest of the peptide found in the PDB structure, and in black the
extended sequence.

1.3.2. KIX — c-Myb

Similarly to p53, the system constituted by KIX — c-Myb was also one
of the pioneer structures including both a folded and a disordered protein
(15). Since then, it has constituted a widely studied system in the context
of protein-IDP interaction, especially in the determination of their binding
mechanisms (98; 99; 100).

The folded component, the KIX domain of the CBP protein, consists
of 87 amino acids arranged in a three α-helical bundle that, in the same
line as p53, participates as a signaling hub in transcriptional regulation.
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Figure 1.9: Overview of KIX bound to several IDPs includ-
ing MLL in orange, c-Myb in red, and pKID in blue. Image is
as result of the superimposition of PDB structures 2AGH (16)
and 1KDX (13).

This hub-like behavior is due to the capabilities of KIX to accommodate
a high number of ligands, in various conformations and interfaces, even
several of them at the same time (Figure 1.9). With such a complex net-
work of interaction, KIX is a fantastic system to study the main features of
protein-protein interaction, such as allosterism or discrimination of bind-
ing mechanisms. For example, extensive work has been done towards de-
scribing the binding mechanism underlying the pKID—KIX interaction
(43; 101; 102). PTMs modulate binding of KID, in particular, the phos-
phorylation in position Ser133 increases the binding affinity (102). The
binding mechanism for this pair of proteins follows the induced-fit scheme
where initial encounter complexes, mediated mostly by hydrophobic con-
tacts, become increasingly rigid upon the formation of additional contacts
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(43). Additionally, allosteric effects have also been shown in the system.
In particular, the binding of mixed-lineage leukemia (MLL) transcription
factor to a secondary interface on KIX (16) has a positive cooperative effect
on the binding to other ligands to its primary binding site.

c-Myb is a proto-oncogene that works as a transcriptional activator
playing an essential role in the control of proliferation and differentiation
of hematopoietic progenitor cells. It includes three DNA binding domains
in its N-terminal region, followed by a transactivation domain (TAD), and
a regulatory C-terminal region. Upon binding to KIX, c-Myb’s TAD folds
in an extended α-helical conformation laying in a hydrophobic groove de-
fined by the interface of two α-helices of KIX (Figure 1.9, (15)). Addition-
ally, despite binding to the same interface, there are not apparent sequence
similarities between pKID and c-Myb, highlighting underlying differences
in how binding takes place.

Kinetics analysis of the KIX — c-Myb interaction revealed fast asso-
ciation kinetics (99) with a kon = (3.48 ± 0.43) · 107M−1s−1. Finally,
there is some controversy in the literature on whether binding between this
pair of proteins occurs via induced-fit, as supported by some experimental
reports (103; 98; 104), or if, on the other hand, c-Myb’s helicity influence
the process towards conformational selection, as supported by the mixed-
mechanism proposed by Arai et al. (100).

1.3.3. p27 — SJ403
Rational drug design is one of the greatest challenges faced in struc-

tural biology in general, and in the IDP field in particular. As previ-
ously stated, up to 30% of eukaryotic proteomes are disordered, and they
play critical roles in disease-related processes. Hence, adapting traditional
pipelines for folded proteins to IDPs should be a desirable objective, pro-
vided the amount of potential disordered drug targets. However, given the
inherited difficulty of dealing with flexible proteins, not many examples
of small molecule — IDP interaction has been reported in the literature
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(35; 36; 31; 32). In those studies, several experimental approaches, includ-
ing SAXS or circular dichroism (35), have been assessed to screen protein-
ligand interactions. Finally, NMR has also been successfully employed
with this purpose, as shown by the discovery of several molecules able to
modulate the disordered p27kip1 (33). On the other hand, computational
studies on the topic have been used to perform virtual screenings based on
ensemble conformations and simple MD studies that lead to the hypothe-
sis of ”ligand clouds around protein clouds”, which describes IDP-ligand
binding through the formation of fuzzy complexes (105).

Figure 1.10: p27 structure and ligands. a) p27 bound to
the Cdk2—Cyclin A complex (PDB ID 1JSU (25)). b) and
c) Chemical structures of two small molecules, SJ572710
(SJ710) (b) and SJ572403 (SJ403) (c), that bound to p27-KID.
Modified from (33).

p27 is a cell cycle regulator, whose interaction with the cyclin A —
Cdk2 complex induces cell cycle arrest. Several NMR-based studies per-
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formed with the IDP and its ligands reported both the molecular determi-
nants (33) for the interaction and a glimpse of the underlying mechanism
of binding with one of the ligands (SJ403, (34)). In this binding scheme,
there are some clusters of hydrophobic residues of p27 in contact with each
other in the isolated state, but the addition of the ligand displaces one of
them and occupies its position.

Some of the features exhibited by the system composed by the disor-
dered p27kip1 and the molecule SJ403 make it feasible to be studied by
high-throughput MD. The main two are the relatively short length of the
protein, with ∼50 residues, and the simplicity of SJ403, with only one di-
hedral angle and a planar chemical structure. Of all the approaches found
within the MD toolkit, free ligand biding studies (80; 49; 106) represent
a widely used and useful one that could be easily tested in this scenario.
In these experiments, extensive MD simulations are run starting from the
unbound state, with protein and ligand placed apart, and are let to freely
diffuse, sampling various binding poses. Such approaches have never been
tested in the context of IDPs.
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Chapter 2

OBJECTIVES

The main objective of the present thesis is to explore new prospects in
the application of high-throughput unbiased MD simulations in the study
of several key aspects of the biology of IDPs. In particular, the research fo-
cus on IDP behavior in isolation through the formation of partially ordered
states, how folding couples with binding in IDP—folded partner interac-
tion, and the potential of the druggability of IDPs and the impact on the
energy surface of small molecules.

2.1. Behavior of IDPs in isolation

The first objective is exemplified in the study of the N-terminal domain
of p53. This short peptide folds in an α-helix upon binding to Mdm2.
It was submitted to extensive MD simulations and analyzed using MSMs
to study its behavior in isolation. The main goal was to create a detailed
map of the partially ordered states populating the phase space as well as to
understand the relationship amongst them.
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2.2. IDP — protein interaction
The main focus on this problem is to reconstruct the coupled folding

and binding mechanism of the protoncogene c-Myb upon interacting with
the KIX domain of the CREB protein. Experimental information regard-
ing kinetic parameters and secondary binding modes were used to validate
the resulting MSMs. Over the last years, the task proved to be especially
challenging and many unsuccessful attempts with a variety of methodolo-
gies we carried out. Finally, the development of the latest MD sampling
algorithms helped to overcome part of the problems.

2.3. IDP — small molecule interaction
The purpose of the last project is to perform the first free ligand MD

binding study between an IDP (p27kip1) and a small molecule (SJ403).
The main objective addressed with these experiments was to determine the
nature of the interaction. Primarily, whether the IDP remained or not dis-
ordered upon binding. Secondly, whether the addition of small molecules
either expanded or reduced the conformational space explored by the IDP.

32



“output” — 2020/4/20 — 11:05 — page 33 — #51



“output” — 2020/4/20 — 11:05 — page 34 — #52



“output” — 2020/4/20 — 11:05 — page 35 — #53

Chapter 3

RESULTS

3.1. Characterization of partially ordered
states in the p53 intrinsically disordered
N-terminal domain using millisecond
molecular dynamics simulations

Pablo Herrera-Nieto, Adrià Pérez, Gianni De Fabritiis. Submitted to
Scientific Reports

Summary

The present study tackles the emergence of partially ordered states
within the conformational landscape of an exemplar IDP, p53. IDPs define
relatively flat energy surfaces compared to the funneled profiles observed
in folded proteins. However, they are not entirely composed by random
coiled conformations. Experimental research of these events is limited, as
the information they provide represents population averages, and are not
capable of isolating such potential ordered states. Despite the existence of
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many computational tools devoted to the characterization of IDP ensem-
bles, high throughput MD and MSMs have not been applied yet in this
task. Here, we make use of these powerful tools in the context of iso-
lated IDPs and show various partially ordered states within the N-terminal
region of p53.
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Characterization of partially ordered states in the
intrinsically disordered N-terminal domain of p53
using millisecond molecular dynamics simulations
Pablo Herrera-Nietoa, Adrià Péreza, and Gianni De Fabritiisa,b,*

aComputational Science Laboratory,Barcelona biomedical research park (PRBB), Universitat Pompeu Fabra, C Dr
Aiguader 88, Barcelona 08003, Spain
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ABSTRACT

The exploration of intrinsically disordered proteins in isolation is a crucial step to understand their complex dynamical behavior.
In particular, the emergence of partially ordered states has not been explored in depth. The experimental characterization of
such partially ordered states remains elusive due to their transient nature. Molecular dynamics mitigates this limitation thanks
to its capability to explore biologically relevant timescales while retaining atomistic resolution. Here, millisecond unbiased
molecular dynamics simulations were performed in the exemplar N-terminal region of p53. In combination with state-of-the-art
Markov state models, simulations revealed the existence of several partially ordered states accounting for ∼40% of the
equilibrium population. Some of the most relevant states feature helical conformations similar to the bound structure of p53 to
Mdm2, as well as novel β -sheet elements. This highlights the potential complexity underlying the energy surface of intrinsically
disordered proteins.

Introduction
Over the last decades, the understanding of protein function was summarized by the sequence-structure-function triumvirate:

protein sequences encode folds able to perform specific tasks. Intrinsically disordered proteins (IDPs) defy this principle
by mediating their biological functions despite lacking a stable three-dimensional structure1–3. Such behavior configures a
relatively flat energy surface where many isoenergetic conformations coexist4. This surface can be modified to a certain
extent, as revealed by the shift towards certain subpopulations observed in the formation of protein-IDP5–8 or molecule-IDP
complexes9, 10. Similarly, kinetic parameters governing the conversions amongst subpopulations can also be modified by
post-translational modifications11, 12. Thus, the energy surface of IDPs if far from being constituted exclusively by random
coiled conformations, and pieces of evidence support the existence of partially ordered states11. The characterization of such
partially ordered states is crucial to understand IDPs’ function, their mechanisms of action, and their potential modulation.

The structural description of IDPs summarizes their structural heterogeneity as a collection or ensemble of conformations.
They can be resolved experimentally by using nuclear magnetic resonance (NMR) or small-angle X-ray scattering data. The
main limitation of IDP ensembles resolved in that way is that they focus on global averages rather than diving in particular
atomic coordinates13. There are also many computational approximations to address this task14. They generally involve an
initial step of conformer generation followed by a refinement step that minimizes differences between the generated library and
experimental data. However, many computationally resolved ensembles can match the same experimental observations.

Molecular dynamics simulations (MD) have been extensively used over the years to navigate complex energy surfaces
in other biological problems, i.e. in folding15, protein-protein binding16, 17 and, modulation of IDPs by post-translational
modifications11 or by interacting with their folded partners8. In the context of IDP ensembles, MD simulations have been
primarily applied as a tool for conformational generation. Nevertheless, the main goal of MD in this area would be to define
reliable ensembles without the need for biasing or reweighting procedures. In this line, recent studies have employed enhanced
sampling methods such as Hamiltonian replica exchange MD to define IDP ensembles matching the available experimental
information18. In terms of aggregated time, the study run for ∼10 µs, while others have performed more extensive simulations,
∼200 µs but in a single trajectory19.

Current technologies allow MD simulations to reach aggregated times in the order of milliseconds20, thus making this tool
a valuable one for the exploration of biological systems at increasingly longer time scales16. The potential offered by high
throughput MD simulations coupled with Markov State Models (MSMs)21 analysis for the exploration of conformational land-

37



“output” — 2020/4/20 — 11:05 — page 38 — #56

scapes of IDP remains mostly untested. The main advantage offered by this tandem is the possibility to address subpopulations
directly within ensembles and to study the kinetics controlling them, rather than working with population averages. By focusing
on the most relevant subpopulations and their kinetic properties, it is possible to gain insight into the emergence of partially
ordered states in atomistic detail.

Here we make use of extensive, unbiased full-atom MD simulations and state-of-the-art MSMs to explore the structural
variability of the N-terminal region of p53 in isolation. p53 is a widely studied protein, given its relation to oncogenic processes.
This protein includes disordered sections at both N and C terminals that are known to interact with various partners22. In
particular, the interaction between the N-terminal region and the Mdm2 has gathered substantial interest over the years,
as it pioneered the coupled binding-and-folding phenomena5, The p53-Mdm2 complex has served as a template for the
development of peptidomimetics drugs23 and as the preferred benchmark for several MD studies aiming to reconstruct the
binding process16, 24–26. Finally, NMR studies of the N-terminal region in isolation revealed a helicity profile similar to the one
observed in the p53-Mdm2 complex, implying that bound conformations might also be sampled prior to binding27.

The main results show the existence of many kinetically relevant states, accounting for ∼40% of the equilibrium population,
including high levels of secondary structural elements. In particular, simulations show the presence of an α-helix enriched
states similar to the folded pose found in complex with Mdm2, as well as, a tangled interplay between β -strands formation
leading to novel β -sheet enriched structures. Altogether, this illustrates the complexity of partially ordered states within the
conformational space of an exemplar IDP, such as the N-terminal region of p53.

Results and discussion

Identification of secondary structure enriched states
The simulation time of the MD run totaled ∼1.4 ms. Initially, the secondary structure of the aggregated MD was analyzed.

Data showed the coexistence of both α-helix and β -strand, each one peaking at ∼ 20 % in the central region of the protein (Fig.
1.b). The helicity profile follows a bell-shaped distribution, while β -strand is more sparsely scattered in three groups in the
proximity of residues S15, K24, and V31.

MD data was used to create an MSM based on backboneCα + sidechainO,N self distance matrix that splits the space into
12 different sets of kinetically related conformations referred to as macrostates (labeled as M1-12). MSM subpopulations
successfully separate metastable sets of conformations enriched in each secondary structure type (Fig. 1.c,d), implying that these
structural elements do appear in a concerted way, rather than being the average of residue independent structural propensities.

The helicity profile displayed by the helix-enriched state matches the bound conformation of p53 when interacting with
Mdm2 (Fig. 1.a). It spams from residue T18 to L26, and maximum levels of helicity being found in W23 —an essential amino
acid for that interaction. Similar profiles arise from NMR studies27. Besides this state, many others also display various degrees
of helicity (Supplementary Fig. 1). The tendency of IDPs to acquire secondary structure profiles resembling their folded
conformation has also been observed in other IDPs, and it has also been related to the binding mechanism to their partner28 and
their signaling properties29.

For β -strand, segregation of secondary structural elements into their own states becomes especially evident in M4,
where three β -strands —namely β1, β2, and β3 from N to C terminal— are organized in an anti-parallel double-sheet
(Fig. 1.c), defining the partially ordered state with the most significant level of structure. Besides the secondary structure
enriched macrostates aforementioned, many other states also exhibit different profiles and combinations of β -strand or α-helix
(Supplementary Figs. 1 and 2). This includes a number of states displaying different β -sheet arrangements, featuring only
one strand, either β1-β2 (M7) or β2-β3 (M3). In those states, the potential location of the third strand is occupied by helical
conformations (Supplementary Fig. 1). Altogether, this highlights the variety of possible configurations found across the
conformational landscape of p53.

Kinetic characterization of the conformational landscape of p53
Population wise, partially ordered states account for a significant proportion of the equilibrium population (∼40%, Fig. 2.a).

The triple-stranded macrostates, the most folded ones, have low populations (<1%), in contrast to double-stranded states like
M6,11, which reach ∼20% at equilibrium. However, the most populated state —M12; with ∼60% of the population— is
structurally heterogeneous, and lacks any secondary structural element or long-range contacts. Hence, partially ordered states
are not energetically favored compared to the most extended configurations, and their free energies range from 0.5 to -2.5
kcalM−1 (from less to more equilibrium probability, Fig. 2.d). This can be visualized in more detail in the entire energy surface
of p53 (Supplementary Fig. 3.a). There are two well-defined minima separated by a small energy barrier. One of them is
covered with the extended and the helical states (M8,10,12), and the other by β2-β3 conformations (M11). High energetic areas
are occupied by the most structured states, like M4. Such profile, with many energetically similar states, fits the description
generally provided to explain the behavior of IDPs in isolation.
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Figure 1. p53 secondary structure propensities a) p53-MDM2 complex: MDM2 protein is shown as a white surface. p53
is depicted as cyan sticks and the helical region between residues 18 and 26 as red cartoon, (PDB code: 1YCR). Above, the
sequence of p53 used for the simulation is displayed: in red the helical section, in cyan the rest of the peptide found in the PDB
structure, and in black the extended sequence. Secondary structure profiles derived from MD data: β -strand and α-helix
profiles for the b) aggregated data and for those macrostates of the MSM enriched in either c) β -sheet and d) α-helix.

The distinctive population profiles previously observed have an impact on the kinetic behavior of the macrostates. There is
an approximately two orders of magnitude difference between maximum and minimum kon/m f pton estimations, which separate
faster/more populated (M7-11) macrostates from slower/less populated (M1-6) macrostates (Fig. 2.b,e). Faster macrostates
comprise the helical conformation and several double-stranded states. They feature kon values between 5−10 ·106M−1s−1,
which, for reference, are as fast as binding between p53 and Mdm2 (9.2 ·106M−1s−130). Slower states, on the other hand, have
kon values around 1−5 ·105M−1s−1 and include triple stranded states and other low populated states.

We employed transition path theory31, 32 to study the most relevant pathways and fluxes for macrostate interconversion. In
particular, the focus was to elucidate the folding process leading from the less structured state to the triple-stranded conformation.
There are three main paths (Fig. 3 — central panel) involved in this process. The least transited one accounts for ∼15% of the
total flow, and directly reaches the folded conformation from the extended one. On the other hand, the most transited paths
involve the participation of double-stranded intermediates, with the β1-β2 structure taking ∼45% and the β2-β3 conformation
being responsible for the remaining ∼30% of the flux. Additionally, other β -enriched states, such as the extended β2-β3 sheet
found in M11, are disconnected from this network and can be directly reached from M12 without the need of intermediates. It
is interesting to point out that some conformations (such as M6,11), despite their structural similarity, show a ∼30 slowdown
that explains the differences in stability aforementioned.

In summary, partially ordered states populating the conformational landscape are structural and kinetically diverse. States
coexist at different timescales, even if they are structurally similar, such as the case of M6,11. These two states feature a short
and an extended β2-β3 sheet but have kon values of 5 ·105M−1s−1 and 1 ·107M−1s−1 respectively.

Comparison with NMR data
In order to ensure and validate MD observations, simulation data was compared against experimentally determined backbone

chemical shifts (CS) for the N-terminal region of p5333. CS allows inferring by-residue secondary structure tendencies on
folded and disordered proteins. Calculations were performed using two softwares, SPARTA+34 and SHIFTX235, on a set of
2 000 structures selected at random accordingly to the macrostate equilibrium probabilities. Calculated CS with both programs
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Figure 2. Estimation of a) equilibrium population, b) kon, c) ko f f , d) ∆G, e) m f pton, f) m f pto f f , for each macrostate after
10 rounds of bootstrap. Kinetics parameters for Macro12 (structurally heterogeneous) are not shown as it was used as the
source state for calculations.

yielded similar results. Overall, there is a high correlation between experimental and MD calculated CS values for Cα , Cβ , and
N with R2 values of 0.98, 0.99, and 0.88 (Supplementary Fig. 4). Differences between experimental and calculated CS remains
within the intrinsic estimations error of each software (∼ 1 p.p.m for SPARTA+ and 0.4 and 0.5 for Cα and Cβ , respectively,
for SHIFTX2) thus, indicating that structural rearrangements observed in MD data are in line with those determined by NMR
experiments.

Conclusion
The characterization of the p53 conformational landscape using unbiased MD simulations revealed a high number of

transient partially ordered states accounting for ∼40% of the equilibrium populations. Partial order arises from the formation of
both α-helix and β -strand structural elements. The helical state resembles the structure acquired by p53 upon interaction with
Mdm2. The MSM also revealed the presence of several β -enriched states, not described before, that established long-range
contacts through the arrangement of either one or two β -sheets. These processes are kinetically different, and some of the faster
states are quickly accessible from the random-coiled macrostate and highly populated at equilibrium. Thus, it would be possible
for some of them to play biologically relevant roles and could even provide novel strategies for the modulation of IDPs.

The current study provides a structural and kinetically detailed description of the conformational landscape of an IDP using
MD simulations in combination with MSMs. Given the high number of short linear motifs within the human proteome, a
similar pipeline could, in principle, be more extensively applied in order to investigate whether other IDPs may also share such
complex behaviors. However, reaching millisecond simulation time may not prove scalable in more extensive studies with
multiple targets. Novel adaptive sampling techniques36, 37, which perform a more intelligent exploration of surfaces, might
mitigate this problem by reducing the computational time needed to achieve similar results. One final consideration of the
challenge of the task is the computational effort to simulate longer peptides. Here we use a relatively short 30 amino acids
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Figure 3. p53 conformational landscape. Central panel illustrates the first two dimensions of the TICA space. In grey, a
2D histogram 200x200 bins represents the frame count of the aggregated MD data. MSM microstates are distributed
accordingly to their centers and colored with respect to their corresponding macrostate. Arrows represent the main pathways
leading from the most extended macrostate (Macro-12) to the most β -sheet enriched one (Macro-4). Correspondence between
macrostate location in the central panel and side panels is color mapped. Side panels describe macrostates in terms of
residue-residue contacts maps. Protein visualization is performed by superimposing 20 structures using residues highlighted in
orange for structural alignment.

section of p53, while completely disordered domains may spam hundreds of residues.
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Methods

Molecular dynamics simulation set up
In order to perform the exploration of the conformational space of p53, extensive parallel simulations were run. The selected

region of p53 spammed from residue 10 to 39.
A set of 110 structures was used as initial conformations for the MD run (Supplementary Fig. 5.c). All systems were built

with VMD38, solvated with TIP3P39 (each system included ∼8 200 water molecules, resulting in a final protein concentration
of ∼6.8 mM), with a final NaCl concentration of 0.05 M. A Langevin integrator with a damping constant of 0.1 ps−1 was used.
The integration step was set to 4 fs, with heavy hydrogen atoms scaled up to four times their natural mass. Electrostatic were
computed using PME with a cutoff distance of 9 Å and grid spacing of 1 Å. Equilibration was performed at 300 K, firstly
undergoing 250 steps of energy minimization followed by 0.1 ns simulations in an NVE ensemble (pressure was kept at 1 atm
by using the berendesen barostat) and 2 ns in an NPT ensemble.

After equilibration, no proline cis isomers were detected. Production run was executed in the distributed computing platform
GPUGrid.net40 using the ACEMD engine41 and the CHARMM22* forcefield42.

Markov State Model analysis
Production runs generated a total of 1.337 trajectories (each equilibrated system was used at least 10 times) of 1 µs each,

similarly to16. Thus, the production runs accounted for an aggregated simulation time of ∼1.4 ms in order to maximize the
exploration of the conformational space. All MD data analyses presented here were performed using HTMD43.

MD data analysis was performed by featurizing atomic coordinates as the self-distance matrix between Cα and side chains
nitrogen and oxygen atoms (54 out of 237 a total of heavy atoms), thus creating a sparse representation of the protein. Next,
time independent component analysis method (TICA,44) furtherly reduced data dimensionality, projecting the first 5 TICA
dimensions at a lag time of 20 frames. Then, TICA projected data was clustered into 1.500 states using the MiniBatchKMeans
algorithm45. Microstates were fused at a lag time of 120 ns, following the implied time scales plot (Supplementary Fig. 5.a)
into 12 macrostates (using the PCCA+ algorithm46 and based on the discretization of the TICA space shown in Supplementary
Fig. 5.e). Finally, transition path theory31, 32 was used to calculate fluxes between states.

For every measure, the error was estimated by creating 10 independent MSMs using a random set containing 80% of the
simulated trajectories.

Chemical shift calculations
Calculations of MD derived chemical shifts were performed using 2.000 frames distributed amongst macrostates based on

their equilibrium probability. The biological magnetic resonance data bank entry 1776033 was used to obtain experimental
chemical shift data for the N-terminal region of p53. Two different softwares were used: SPARTA+34 and SHIFTX235.
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Figure 1: Secondary structure profile for all MSM macrostates.
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Figure 2: Residue-residue contacts for all MSM macrostates.
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Figure 3: Free Energy surface of p53 in a) p53, and microstates centers in b). Microstates are
color mapped according to their macrostates.

Figure 4: Comparison against NMR data. Chemical shift (CS) difference between MD-derived
calculations for a) Cα, b) Cβ , and c) NH atoms performed with SPARTA+ and the experimentally
measured for the N-terminal of p53 (Biological Magnetic Resonance Data Bank entry number 17760).
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Figure 5: Markov State Model parametrization. a) Implied times scales. A final lag time of 120
ns was used to create the MSM. b) TICA space for the first and the second TICA dimensions. c)
Starting conformations location on the TICA space. d) Macrostate distribution on the TICA
space. Microstates are located based on their centers and color mapped following their macrostates
assignment. e) Discretization of the TICA space by incrementing the number of macrostates.
A final number of 12 macrostates was chosen.
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3.2. Binding-and-folding recognition of an in-
trinsically disordered protein using adap-
tive molecular dynamics

Pablo Herrera-Nieto, Adrià Pérez, Gianni De Fabritiis. Manuscript in
preparation

Summary

In this paper, we study the topic of coupled folding and binding be-
tween a disordered protein and its folded partner. Since the discovery of
the potential of IDPs to undergo disorder-to-order transitions, the molec-
ular details explaining these processes have been widely studied both ex-
perimentally and computationally. Here we summarize the main findings
on such events in the system composed by the folded KIX and the dis-
ordered cMyb system. The interaction between this pair of proteins has
proved challenging for us over the years. However, novel sampling tech-
niques allowed us to partially reconstruct the NMR structure, to describe
secondary binding modes, and to provide an atomically detailed overview
of the binding mechanism.
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Intrinsically disordered proteins participate in many biological pro-
cesses by folding upon binding with other proteins. However, cou-
pled folding and binding processes are not well understood from a
microscopic point of view. One of the main questions is whether
folding occurs prior or after binding. Here we use a novel unbi-
ased high-throughput adaptive sampling approach to reconstruct
the binding and folding between the disordered transactivation do-
main of c-Myb and the KIX domain of the CREB-binding protein. The
reconstructed long term dynamical process highlights the binding
of a short stretch of amino acids on c-Myb as a pre-folded α-helix.
Leucine residues, specially Leu298 to Leu302, establish initial native
contacts that prime the binding and folding of the rest of the peptide,
thus mixing conformational selection on the N-terminal region with
the induced fit of the C-terminal.
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conformational selection | coupled folding binding | intrinsically dis-
ordered proteins | molecular dynamics simulations | protein-protein
interactions

Intrinsically disordered proteins (IDPs) participate in many1

biological functions despite lacking a stable tertiary struc-2

ture (1). Initial clues for the function of IDPs were revealed3

by structural studies (2, 3), showing that proteins that were4

disordered in isolation became folded upon interacting with5

their partners, opening to question how folding couples with6

binding.7

Recently, molecular dynamics (MD) simulations have been8

successfully applied to reconstruct biological dynamic events in9

problems such as protein-ligand (4) and protein-protein (5, 6)10

binding, as well as protein folding (7, 8). MD has also been11

applied in the field of IDPs (9–12). In particular, the Mdm212

protein and the disordered 12-residue N-terminal region of13

p53 were studied using implicit solvent simulations(9), parallel14

full-atom simulations totalling 831 µs (11), biased free-energy-15

based sampling (10), and both biased and unbiased simulations16

in order to estimate kinetics on the second timescale (12). For17

another system, KIX-pKID, a single event of binding (13) has18

been sampled at all-atom resolution.19

The KIX—c-Myb folding-and-binding mechanism has been20

extensively studied experimentally as an exemplar case of21

protein-IDP interaction (14–20). The KIX domain of CBP22

is a short 87-aa region composed of three α-helices (desig-23

nated as α-1, α-2 and α-3, from N-terminal to C-terminal)24

forming a compact bundle (3). KIX represents a paradigm25

of binding promiscuity: it binds many IDPs, including the26

proto-oncogene c-Myb (3) (Figure 1.a), with multiple bind-27

ing conformations (14). However, the system composed by28

KIX—c-Myb remained outside of the scope of all-atom molec-29

ular simulations due to the extension of the IDP (it doubles30

the lengths of p53) and the existence of multiple binding 31

modes between them (14). In particular, it is unclear whether 32

the interaction takes place by conformational selection, i.e. 33

c-Myb needs to be folded before binding to its partner or by 34

induced-fit, where binding not only happens independently 35

of c-Myb’s secondary structure but also triggers its folding 36

as shown for other IDPs (KIX-pKID) (13, 21). Another im- 37

portant factor is c-Myb’s high helicity in isolation and the 38

consequences it might exert on the final complex structure, 39

which features an extended α-helical c-Myb bound to KIX. 40

Some reports support the induced-fit approach based on kinet- 41

ics and mutagenesis studies (15, 16, 20), while others advocate 42

for a mixed mechanism (14); yet not a detailed model for the 43

binding process is available. 44

In this paper, we study the binding mechanism between 45

KIX and c-Myb. We take advantage of a novel algorithm 46

which frames the MD sampling problem from a reinforcement 47

learning perspective to reconstruct multiple binding modes 48

between c-Myb and KIX. This new sampling algorithm was key 49

for us to reconstruct the binding process, as previous attempts 50

over the years using other state-of-the-art adaptive sampling 51

methods (22, 23) were not successful, always failing to recover 52

the NMR bound structure. Results provide insights in the 53

binding mechanism between these two proteins, supporting 54

Significance Statement

Many intrinsically disordered proteins fold upon interacting with
their protein partners. This process, known as coupled fold-
ing and binding, has been extensively studied to discriminate
whether pre-folded conformations are selected or if binding
takes place through induced fit. Molecular dynamic simula-
tions have been extensively applied in the challenging task of
recreating experimentally determined structures. Here, we take
advantage of a novel reinforcement-learning-based molecular
dynamics sampling algorithms to reconstruct the binding and
folding between the disordered transactivation domain of c-Myb
and the KIX domain of the CREB-binding protein. We report
the reconstruction of binding of c-Myb in several interfaces of
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a mixed model that combines both conformational selection55

and induced-fit.56

KIX

c-Myba

b                                                 c 

Fig. 1. Exploration performance a) KIX—cMyb NMR structure. KIX domain is
shown as grey surface and bound c-Myb as a red helix (PDB code 1SB0). Explo-
ration performance by b) counts Adaptive (∼ 480 µs) , and c) AdaptiveBandit
(∼ 225 µs) is shown by plotting mean RMSD (on the x axis) and standard deviation
(on the y-axis) for each microstates of the MSM. Microstates are color mapped ac-
cordingly to their macrostate assignment. Dashed square indicates the bound zone,
placed in the region corresponding to low RMSD mean and deviation. Red arrows
are placed for reference, to highlight differences in the exploration performed by the
algorithms.

Results57

Adaptive sampling the conformational landscape of58

KIX—c-Myb binding. Simulations to reconstruct the59

KIX—c-Myb binding mode were performed following60

an adaptive sampling strategy. In adaptive sampling,61

successive rounds of simulations are performed in an iterative62

step-wise manner, where an acquisition function over the63

currently sampled conformation is defined. Initially, we64

compare two acquisition functions: a count-based one and65

another inspired by reinforcement learning. Standard low66

counts adaptive sampling (22) (called Counts Adaptive) can67

be shown to be optimal in pure exploration conditions (23).68

Counts are computed over clusters of conformations; this69

method is, however, noisy as clusters can be poorly populated.70

Therefore, in the implementation available in (23), counts71

are computed over a smaller subset by grouping clusters72

(microstates) into macrostates, constructing a Markov State73

Model (MSM) (24) with the available data at each round.74

The acquisition function is given by proportionally choosing75

macrostates as 1/c, where c represents macrostate counts,76

and by randomly selecting conformations within them.77

The new AdaptiveBandit method (25) is framed into a 78

simplified reinforcement learning problem, i.e a multi-armed 79

bandit problem (see Materials & Methods). We use the upper 80

confidence bound (UCB) algorithm (26) to optimize an action 81

picking policy in order to maximize future rewards, optimally 82

balancing the exploration of new higher rewarding actions 83

with the exploitation of the most known rewarding ones. The 84

reward function, which associates the action to the reward 85

given by the system, defines what we want to optimize. In 86

this work, we choose the reward to be minus the free energy 87

of each configuration visited in the trajectory spawn from a 88

given action (see Eq.2 in Materials & Methods), where the free 89

energy of a conformation is given by the corresponding MSM 90

microstate computed with the data available at the current 91

sampling epoch. 92

A comparison using Adaptive and AdaptiveBandit is pro- 93

vided in Figure 1.b,c. The batch based on Adaptive (48 epochs) 94

failed to connect microstates similar to the NMR structure in 95

over ∼ 480 µs, reaching at best an RMSD around 7 Å, indicat- 96

ing excessive exploration. For us, it was impossible to build an 97

MSM with the bound state with previous methods, and novel 98

approaches were needed to reconstruct the binding process 99

between KIX and c-Myb successfully. In average, ∼ 14 µs are 100

needed to sample the bound state, as measured by taking the 101

concentration of the simulation and the experimental kon rate. 102

The mean first passage time for unbinding is instead 41 ms. 103

AdaptiveBandit finds bound like microstates already in the 104

first epochs, while it provides converged estimates of kinetics 105

and thermodynamics after just 150 µs of sampling (see Figure 106

3) 107

Identification of an bound state & kinetics estimation. The full 108

data set of the AdaptiveBandit run accounted for a total simu- 109

lation time of ∼450 µs, split across 40 epochs, and was the one 110

used to study the molecular features of KIX—c-Myb binding. 111

An MSM was built based on all-pair Cα + Cβ distances be- 112

tween KIX and c-Myb and self distances between Cα of c-Myb, 113

tracking both protein-protein contacts and IDP folding. The 114

MSM included three kinetically similar sets of conformations, 115

referred as macrostates (Figure 2.a and Supplementary Figure 116

1.b): a highly populated state including an heterogeneous 117

mixture of conformations (unbound), a well defined bound 118

state located on a secondary pocket (misbound), and, finally, 119

c-Myb bound to the primary interface (bound). Representative 120

structures of all states can be found in Figure 2.b. 121

The bound state shares up to 40% of the fraction of native 122

inter-molecular contacts (Qint) between c-Myb and KIX with 123

the original NMR structure (PDB ID: 1SB0 ), as shown in 124

Figure 2.c. These contacts mainly involve the interaction of 125

c-Myb residues Leu298 and Leu302 with residues across the 126

primary binding interface: Leu302 contacts Leu603, Leu653, 127

and specially Leu607 of KIX, which is buried down in the 128

pocket, whereas Leu298 establishes additional native contacts 129

with Ala610, Ile657, and Tyr658. Qint reaches up to 75% in 130

those microstates exhibiting the tightest bound conformations, 131

and, in addition to the leucine binding, they feature most of 132

the contacts between the C-terminal half of c-Myb and KIX, 133

which are not that prevalent across the bound macrostate 134

(Supplementary Figure 2). The main contacts missing account 135

for the electrostatic interactions established between Arg294 136

and the C-terminal region on α-3. 137

Secondary structure profile for MD derived states matches 138
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a                                              c

b

Fig. 2. KIX—c-Myb binding model. a) States distri-
bution across the TICA space: microstates are repre-
sented as dots and are colored following their macrostate
assignment. b) Representative structures: PDB struc-
ture 2AGH is depicted with KIX as gray surface, c-Myb
bound to the primary interface as a purple ribbon, and
MLL bound to the secondary interface as an orange ribbon.
c-Myb backbones for 50 representatives MD structures of
bound and misbound states are displayed with purple and
yellow lines, respectively. c) Macrostate contact finger-
print: profile of contacts established between c-Myb and
KIX in each macrostate in at least 50% of the structures.
Blue color represents contacts present in the state but not
in the original NMR structure; green indicates original NMR
contacts not found in the MSM state; and yellow squares
represent contact matches, found in both NMR and MD
structures.

the experimental description of c-Myb (14, 19), as shown in139

Supplementary Figure 3: the 25 residues are separated in two140

halves by residues Met303 and Ser304. The N-terminal half141

shows a high helical tendency, around 20-30% for residues in142

positions 297 to 302 with c-Myb in isolation, being maximal in143

bound states. Experimentally, this N-terminal half in isolation144

reaches even higher helicity levels (∼70%) when using an145

extended construct of c-Myb (14). On the other hand, the146

C-terminal section exhibits lower helical propensity, regardless147

of the presence or absence of KIX, and its folded conformation148

is mainly appreciated in those microstates with the tightest149

bound conformation.150

a  b

c  d

Fig. 3. Evolution through the MD run of a) kon, b) koff, c) free energy and d)
microstate minimum RMSD. Each data point was calculated with 10 MSMs built by
bootstraping 80% of the simulations.

The kinetic parameters derived from the model were com-151

pared with available information (17). Experimental values152

from Shammas et al. were calculated at temperatures ranging 153

from 278 to 298 K, while simulations were executed at physio- 154

logical temperature (310 K). kon values display a temperature 155

independent tendency, whereas temperature dependent koff 156

and kd values at 310 K were, therefore, extrapolated (Supple- 157

mentary Figure 4). Hence, reference values for koff resulted 158

in 866 s−1 and -6.81 kcal mol−1 for the free energy (obtained 159

from kd). 160

MSM estimation of kon is (3.2 ± 0.3) · 107M−1s−1, in agree- 161

ment with the experimental value (2.2 ± 0.2) · 107M−1s−1
162

(17). However, off rates are overestimated by ∼500 fold 163

(Figure 3.b), with calculated values of (3.3 ± 0.2) · 105 s−1. 164

Similarly, calculations for the free energy of binding were 165

−4.41 ± 0.39 kcal mol−1, with the experimental being 166

−6.81 kcal mol−1. These parameters were estimated by build- 167

ing and bootstrapping MSMs using incrementally more trajec- 168

tories in order to ensure convergence of the model (Figure 3 169

and Supplementary Figure 5). Convergence is reached at ∼750 170

trajectories, equivalent to half of the aggregated data (Figure 171

3). Initially, estimations for kon values are in the range of the 172

diffusion limit, up to 1010M−1s−1, as a well defined bound 173

macrostate is not found until half of the adaptive sampling run. 174

These estimations agree with the exploration profile followed 175

for the AdaptiveBandit algorithm (Supplementary Figure 1.c), 176

which shows how the exploration of TICA space related to the 177

bound state took place during the first part of the run. 178

The discrepancy between reference and computed koff 179

points out structural differences between the MD-bound state 180

and the NMR, as highlighted by the remarkably high koff 181

values (∼ 106 s−1 compared with the reference ∼ 866 s−1). 182

In order to explore potential divergences responsible for these 183

kinetic deviations, additional long trajectories (8 replicas of 184

2 µs each) were run starting from bound NMR and MD de- 185

rived conformations (summarized in Supplementary Figure 6). 186

The comparison between the long runs indicates an evident 187

separation between most sampled areas between both groups, 188

with the NMR one occupying closer areas to the experimental 189

structure. The comparison between structural averages re- 190

vealed that the most diverging regions map to the C-terminal 191

of c-Myb, which retains its helical conformation in the NMR 192
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DRAFTFig. 4. Complete binding process of c-Myb to KIX. a) Main pathways leading from "bulk" macrostate to "NMR-like". Nodes are placed according to the structural
similarity respect to the NMR model —calculated as the euclidean distance between the Cα + Cβ pair distances of KIX to c-Myb of MD macrostates respect the NMR structure—
on the x axis, and mean helicity on the y axis. Node size is proportional to their equilibrium distribution. Edges represent the connection between macrostates, and their color
and thickness, the percentage of the total flux traversing them. Nodes are colored blue, red, or green depending on whether all their microstates originally belonged to the
unbound or bound state, or if they have a mixed composition. Representative structures: KIX is represented with a gray surface. c-Myb backbone for 10 MD superposed
structures is shown in orange, with side chains of residues Leu298 and Leu302 highlighted in red and blue, respectively. Evolution of the most relevant states involved at
different stages of the binding process. For most relevant macrostates the b) KIX—c-Myb contacts profile and c) mean helicity are shown.

data set while being mostly disordered in the MD derived runs.193

Therefore, the instability of the C-terminal portion of cMyb194

might be key to the overall volatility of the complex.195

Binding follows both induced-fit and conformational selec-196

tion. The MSM used so far has an inherent structural diversity197

on each macrostate that complicates the monitoring of confor-198

mational changes along the binding process just by tracking199

macro-to-macro transitions. At the same time, the number200

of microstates conforming the MSM is too high to obtain a201

simplified binding pathway. In order to gain structural insight202

of the binding process, it is necessary to create a new set203

of macrostates as structurally homogeneous as possible. To204

achieve this goal we followed the process described in the Ki-205

netic pathway identification section of Materials & Methods to206

recluster microstates based on their structural similarity, which207

yield a final MSM of 123 macrostates (labelled as M1-M123).208

Once the new model was generated, we applied transi-209

tion path theory (27, 28) to calculate fluxes leading from the210

purely bulk state to the bound conformations. Out of the211

123 macrostates of the MSM, only a reduced set of 25 is suffi-212

cient to explain binding to the primary interface, as the rest213

participate in secondary binding modes. The network gener-214

ated by the flux interchanges between macrostates (Figure 4.a215

and Supplementary Figure 7) can be separated into two main216

events: the establishment of the initial contacts and reaching 217

the bound conformation. 218

Initial binding encompasses a high number of macrostates, 219

formerly belonging to the unbound state, presenting low Qint 220

values and various degrees of helicity that conform a tangled 221

network of fast inter-converting states but low transited paths. 222

However, helicity remains stable amongst those macrostates 223

carrying most of the flux in these initial steps (macrostates 224

M29, M53, and M71; Figure 4.b). They all are in the range 225

of 30% and include conformations with a helical N-terminal 226

of c-Myb, especially on residues 297-302 (Figure 4.c). The 227

most important state at this stage is M7, which centralizes 228

most of the incoming flux (Figure 4.a), serving as the main 229

intermediate to reach the bound state. M127 features the 230

first native contacts found across the KIX—c-Myb binding 231

pathway, which involves residues Leu302 of c-Myb. The role 232

of Leu302 as the main driving force for the interaction has 233

already been described (3), and is due in part to the kink in 234

the helix created by neighbours residues Met303 and Ser304, 235

which exposes Leu302 allowing for a deep penetration inside 236

the binding pocket. Besides, on the KIX residues contacted at 237

this statge is Leu603, which is one the most exposed residues 238

in the hydrophobic pocket later occupied by Leu302. 239

It is interesting to note the presence of a set of macrostates 240
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(M72, M93, M114, and others) including similar contacts241

involving Leu302 and KIX, but featuring remarkably low242

levels of helicity (Supplementary Figure 7). The contribution243

of these pathways to the overall flux is lower, and they are244

channelled through M114 and M122, with higher levels of245

helicity, to the main path. Therefore, binding before folding is246

also observed, but it is not the main pathway followed along247

the process, and helical conformations are preferred for the248

formation of initial contacts.249

Once M7 has been reached, the flux converges to a reduced250

number of highly transited paths, with M5, M6, and especially251

M40 collecting most of the flux leading to M5, the closest252

to the NMR structure. From M7, Qint increases due to the253

establishment of the contacts involving Leu298 and Leu302.254

The last step, jumping to M42, involves the folding of the255

C-terminal region of c-Myb and the formation of its contacts256

with KIX. A full reconstruction of the progressive acquisition257

of contacts between KIX and c-Myb is shown in Figure 4.c.258

In summary, initial steps are greatly benefited from pre-259

folded helical structures of c-Myb (Figure 4.d). The binding260

before folding pathway is also observed, but it accounts for261

a relatively smaller fraction of the total flux. Binding of262

helical conformations dominates the initial steps of the inter-263

action, but for the interaction of the C-terminal tail, folding264

follows binding. According to our model, transitioning be-265

tween states takes place by fast interchanges ranging from 106
266

to 108 M−1s−1. No limiting steps in the binding process are267

observed; hence no possible transition states can be defined,268

as pointed by experimental reports (17).269

Secondary binding Modes. The existence of alternative bind-270

ing poses between c-Myb and KIX has also been reported (14).271

The MSM shows the presence of a secondary binding mode272

(referred as misbound) apart from the interaction with the pri-273

mary binding interface. It occupies a novel interface, located274

between α-1 and α-2 (Figure 1.b and Supplementary Figure275

9). The interaction of the misbound state resembles the bound276

binding mode: the N-terminal half is folded in the typical277

α-helix, while the C-terminal section remains mostly unstruc-278

tured. Kinetically, there is a 4-fold difference in the mean first279

passage time for binding between both sites —(9.28±1.11)·103
280

ns for binding to bound site and (4.06 ± 1.81) · 104 ns for the281

misbound site— that may account for the preferential binding282

of c-Myb to the primary interface. Finally, exploration of283

other slow processes on the MSM also shows the binding of284

c-Myb to the mixed-lineage leukemia (MLL) (29) site (located285

between helices α-2 and α-3).286

Conclusion. The analysis presented here provides a detailed287

molecular description of binding of c-Myb to the primary288

interface of KIX, summarized as a two-step process, where289

initially the N-terminal region of c-Myb binds with a preferred290

helical conformation, allowing the formation of native contacts291

and, in the last step, folding and binding of the C-terminal.292

Study of the fluxes derived from the MSM shows the relevance293

of residue Leu302 not only in the final bound structure but294

also as the responsible of establishing the first contacts and295

serving as an anchoring point between c-Myb and KIX.296

The model also indicates how conformational selection297

would only affect residues 298 to 302 and not the whole length298

of the peptide. Additionally, binding before folding is also299

observed, but it accounts for a relatively smaller fraction of300

the total flux, thus establishing a induced-fit only pathway 301

that coexists with conformational selection. 302

Finally, the novel MD sampling approach used in this work, 303

AdaptiveBandit, had a crucial role in resolving this type of 304

folding and binding process. The method is implemented and 305

available in the HTMD python package (23). However, more 306

algorithms can be derived within the same adaptive bandit 307

framework. While here we choose the reward to be minus the 308

free energy, other choices could optimize different costs, for 309

example, improving the precision of the off-rate or optimizing 310

sampling in the context of structure prediction. These aspects 311

are left for future work. 312

Materials & Methods 313

Molecular dynamics simulations. In order to generate initial confor- 314

mations for c-Myb (residues 291 to 315), we ran multiple parallel 315

simulations. The peptide was solvated in a cubic water box of 64 Å 316

side with a NaCl concentration of 0.05 M . First, the peptide was 317

simulated at 500 K for 120 ns to unfold the initial structure. 318

Then, 200 systems were built by placing one random unstruc- 319

tured c-Myb conformation in conjunction with KIX in opposite 320

corners of a 64 Å side cubic water box with a NaCl concentration 321

of 0.05 M , resulting in final protein concentration of ∼3.2 mM. 322

All systems were built using VMD (30) and simulated with 323

ACEMD (31), the CHARMM22* force field (32) and TIP3P water 324

model (33). A Langevin integrator was used with a damping con- 325

stant of 0.1 ps-1. The integration time step was set to 4 fs, with 326

heavy hydrogen atoms (scaled up to four times the hydrogen mass) 327

and holonomic constraints on all hydrogen-heavy atom bond terms. 328

Electrostatics were computed using PME with a cutoff distance of 9 329

Å and grid spacing of 1 Å. After energy minimization, equilibration 330

for all systems was done in the NPT ensemble at 303 K, 1 atm, with 331

heavy atoms constrained at 1 kcal mol−1 Å2. Energy minimization 332

was run for 500 steps and equilibrated for 2 ns. 333

Production runs of 250 ns were performed at 310 K using the 334

distributed computing project GPUGrid (34), following an adaptive 335

sampling strategy. 336

AdaptiveBandit sampling. The multi-armed bandit problem is de- 337

fined by 〈A,R, γ〉, where an action at ∈ A and Ra is a (stochastic) 338

reward function. We choose γ = 0 for totally discounted rewards. 339

The optimal policy πa ∼ P[a] selects actions at in order to maxi- 340

mize the cumulative future rewards. The construction of an optimal 341

selection strategy requires handling the exploration-exploitation 342

problem. AdaptiveBandit relies on the UCB1 algorithm (26), defin- 343

ing an upper confidence bound for each action-value estimate based 344

on the number of times an action has been picked and the total 345

amount of actions taken 346

at = argmax
a∈A

[
Qt(a) + c

√
ln t
Nt(a)

]
, [1] 347

where t denotes the total number of actions taken, Qt(a) = Eπ [r|a] 348

is the action-value estimation, Nt(a) is the number of times action 349

a has been selected (prior to time t) and c is a constant controlling 350

the degree of exploration. As for the reward definition, there are 351

different choices depending on the objective, e.g. here, the interest 352

is sampling the bound metastable state, hence, we rewarded actions 353

based on the stability of conformations using MSM estimations of 354

the free energy for each state 355

Ra =< kBT log(µ(x)) >(a,x1,...,xτ ), [2] 356

where µ(x) is the equilibrium distribution estimated by the MSM 357

with the current available data and the average is performed over 358

the frames in the trajectory starting from a. AdaptiveBandit uses 359

the MSM discretized conformational space to define the action set 360

and at each round acquires a random conformation from the selected 361

states to respawn new simulations. A more formal description of the 362

bandit framework and AdaptiveBandit in the context of adaptive 363

sampling as well as analysis in simpler, analytical potentials are 364

available at (25). The AdaptiveBandit sampling algorithm is made 365

available in the HTMD (23) Python package. 366
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Adaptive Sampling parameters. For both the AdaptiveBandit and367

the count Adaptive runs, the construction of MSMs at each epoch368

was done using the residue-residue contacts between KIX and c-Myb369

measured as the minimum contacts between residues at a threshold370

of 5 Å, and the backbone dihedral angles of c-Myb. Time indepen-371

dent component analysis (TICA) (35) was used for dimensionality372

reduction using a lag time of τ = 20 frames and keeping the 3 first373

dimensions, which were later clustered with a k-centers algorithm.374

AdaptiveBandit was performed during 40 epochs with a c value of375

0.01.376

Long trajectories. Additionally, a set of long MD runs were per-377

formed starting from bound structures. Four models of the NMR378

determined structure and four random bound conformations were379

selected and equilibrated as previously described. A total of 8380

long trajectories of ∼ 2 µs each were generated. The analysis was381

performed by comparing the aggregated data from NMR and MD382

runs.383

Markov state model analysis. The projected space used for building384

the MSM included all pair Cα + Cβ atoms distances between385

KIX and c-Myb (to account for the interaction between the two386

proteins), and self-distances between every Cα of c-Myb (to monitor387

its conformation). TICA was used at a lag time τ = 25 ns (implied388

timescales are shown in Supplementary Figure 1.a), taking the389

4 most relevant components. An extra dimension including the390

minimum distances between KIX and c-Myb was also added at391

this step to enhance a clearer separation of the bulk conformations.392

and discretizing them into 2,000 clusters using the mini batch393

k-means algorithm (36). The microstates defined in the MSM394

were coarse-grained into three larger meta-stable macrostates by395

using PCCA++ (37). For the estimation of kinetic values, the396

original MSM was modified by creating an additional macrostate397

with those microstates exhibiting the minimum amount of contacts398

between KIX and c-Myb. This process raised a 4th metastable399

state considered as the bulk state for all subsequent calculations to400

obtain the kinetics of binding. For every measure, the error was401

estimated by creating 10 independent MSMs using a random set402

containing 80% of the simulation data. All analysis were performed403

with HTMD (23).404

Kinetic pathway identification. In order to create a new set of405

macrostates as structurally homogeneous as possible, microstates406

belonging to unbound and bound macrostates (see Results) were re-407

clustered. Data used for clustering included the mean KIX—c-Myb408

by-residue contacts (at a threshold of 5 Å) and c-Myb dihedrals for409

each microstate. The AffinityPropagation algorithm (38) within410

scikit-learn (36) was chosen for this task since it is not necessary to411

provide an initial number of clusters. As a result of this process,412

the unbound macrostate was split into 114 new macrostates, bound413

states into 5, and 4 macrostates included microstates originally414

belonging to both unbound and bound, raising a final MSM of 123415

macrostates. The transition matrix between macrostates involved in416

binding to the primary interface is shown in Supplementary Figure417

10. Finally, fluxes between macros were estimated using transition418

path theory (27, 28).419
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Fig. S8. Secondary binding path of KIX and c-Myb. Study of the states involved in the secondary binding pathway. For selected macrostates the a) KIX—c-Myb contacts
profile and b) mean helicity is shown. Percentages on a) indicate the Qint.
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a      b

     c

Fig. S9. MLL-like binding conformation of c-Myb to KIX. a) KIX—c-Myb contact profile for MLL-like macro and MLL-like microstate 1745 are shown. KIX—MLL contact
profile taken form PDB 2AGH in bottom panel. b) Mean by-residue helicity of c-Myb for MLL-like macrostates and for microstate 1745, which maximizes c-Myb’s helicity. c)
Representative structures: PDB structure 2AGH is depicted with KIX as gray surface. Cartoon representations show α-1 in cyan, α-2 in purple, α-3 in green, and G2
(residues 617-621) in ochre. MLL is displayed as an orange ribbon. cMyb backbone for 50 MD superposed structures taken from the MLL-like 1745 microstates is shown in red,
and from Misbound state (microstate 466) in blue.
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Fig. S10. Transition matrix for all macrostates involved in the binding process. Y-axis and x-axis indicate the starting and destination macrostates, respectively. Macrostates
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3.3. Small molecule modulation of intrinsically
disordered proteins using molecular dy-
namics simulations

Pablo Herrera-Nieto, Adrià Pérez, Gianni De Fabritiis. Submitted to
Journal of Chemical Information and Modeling

Summary

Technological leaps in the field of MD in the last years allowed to re-
construct protein-ligand and protein-protein binding processes by letting
them freely diffuse in multiple parallel simulations. However, given the
limited amount of examples, similar studies have not been performed be-
fore in the context of IDPs. Here, we present the first free IDP-ligand
binding study, using the system composed by the disordered protein p27
and the small molecule SJ403.
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Small molecule modulation of intrinsically

disordered proteins using molecular dynamics

simulations

Pablo Herrera-Nieto,† Adrià Pérez ,† and Gianni De Fabritiis∗,†,‡,¶

†Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona, Spain

‡Acellera Ltd., Barcelona, Spain

¶Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain

E-mail: gianni.defabritiis@upf.edu

Abstract

The extreme dynamic behavior of intrinsically disordered proteins hinders the de-

velopment of drug-like compounds capable of modulating them. There are several ex-

amples of small molecules that specifically interact with disordered peptides. However,

their mechanisms of action are still not well understood. Here, we use extensive molec-

ular dynamics simulations combined with adaptive sampling algorithms to perform free

ligand binding studies in the context of intrinsically disordered proteins. We tested this

approach in the system composed by the disordered protein p27 and the small molecule

SJ403. The results show several protein-ligand bound states characterized by the es-

tablishment of a loosely oriented interaction mediated by a limited number of contacts

between the ligand and critical residues of p27. Finally, protein conformations in the

bound state are likely to be explored by the isolated protein too, therefore supporting

a model where the addition of the small molecule restricts the available conformational

space.
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Introduction

The modulation of protein function via small molecules constitutes the main strategy

for the development of novel pharmacological therapies. Amongst the many computational

tools devoted to the subject, molecular dynamics simulations (MD) is one of the most pow-

erful. In the last decade, MD boosted its performance thanks to dedicated supercomputers

(ANTON1), and GPU-based technologies.2 Together with more efficient sampling method-

ologies,3–5 the exploration of increasingly longer timescales has become more accessible.6,7

Such upgrades have progressively translated into more computationally demanding experi-

ments like free ligand binding studies. In free ligand binding, protein and ligand are placed

apart and, by launching multiple parallel simulations, spontaneous binding events are stud-

ied. This approximation allows investigating protein-ligand binding determinants and their

mechanisms of action, as well as their kinetic parameters. Since the appearance of pioneer

studies,8,9 the approach has been employed in other challenges, such as protein-ligand bind-

ing,10 protein-protein binding11 and even in fragment screening.12 Nowadays, it is routinely

used for the exploration of complex energy landscapes needless of a priori biasing knowledge.

Similar studies have not been applied to the same extent with intrinsically disordered

proteins (IDPs). IDPs are widely present in eukaryotic proteomes, where up to 30% of the

proteins contain at least one disordered region.13 They performed their biological functions

despite lacking an stable three dimensional conformation14,15 and they participate as crucial

intermediates in complex signaling networks. Therefore, their malfunction may result in

oncogenic and neurodegenerative pathologies.16 Nevertheless, they are not generally consid-

ered as feasible drugs targets, as the most widely used methodologies are better suited for

working with folded proteins.

Thus, the number of examples regarding IDP-small molecule modulation is limited, de-

spite raising over the last few years. Several experimental approximations have been success-

fully used to identify small molecules interacting with disordered regions of proteins such as

cMyc,17 RNA helicase A,18 NUPR1,19 androgen receptor20 and PTP1B.21 Some computa-
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tional studies in the field have proposed the so-called “ligand clouds around protein clouds”

model,22 which states that interaction takes place by fuzzy complexes rather than by rigid

conformations.

Concerning this matter, on the most recent examples is the discovery, using NMR screen-

ing, of several small molecules (specially one referred as SJ403 ) that are able to interact with

the p27Kip1 protein23 (Figure 1.a,b). p27 is an eukaryotic cell-cycle controller which blocks

the function of the cycling-dependent kinase Cdk2—Cyclin A complex.24 The binding model

derived from experimental data proposed that the addition of a small molecule induces a

population shift, instead of expanding the conformational space.25 In particular, SJ403 is

shown to disrupt the interaction between sets of hydrophobic residues, with some of them

also being critical participants in binding.25

The amount of NMR data derived from this system, as well as the short length of the

IDP (∼50 amino acids) and the chemical features of SJ403 (planarity and rigidity,), pro-

vide an ideal system for testing successful MD-based protein-ligand binding studies in the

context of IDPs (Figure 1.a, b). In more detail, we study the binding between p27kip1

and the small molecule SJ403 using full-atom unbiased MD simulations in combination with

Markov state models (MSM) and novel adaptive sampling algorithms.26 The identified bound

conformations exhibit a mixture of binding-induced rigid regions with others retaining their

fuzziness. Additionally, the comparison between protein-ligand bound conformations against

isolated p27 reveals a reduction of the conformational space exploration and the disruption

of intra-protein contacts, in line with experimental observations. Altogether, this exemplifies

the unexplored potential of MD to understand the impact of small molecules in the energy

landscape of IDPs.

3
71



“output” — 2020/4/20 — 11:05 — page 72 — #90

Methodology

Molecular dynamics simulation set up

Initially, the N-terminal domain of p27 (residues 54 to 101) was built with PyRosetta

in an extended conformation (release 19727). Next, a short implicit solvent simulation with

Amber99sb28 using OpenMM29 was performed (100 000 steps at 550 K followed by 800 000

steps at 350 K, with the OBC water model) in order to compact the structure. Then, the

peptide was simulated in explicit solvent simulations with the TIP3P water model30 using

CHARMM22*31 for 60 ns at 500 K setting the dielectric to 80 to generate an initial pool of

unfolded conformations of p27.

In parallel, the small molecule SJ403 was built with Maestro —version 10.7.201532— and

parameterized with Parameterize33 (Supplementary Figure 3).

We performed two different types of experiments: one with the protein in solution (p27

data set) and a second one with the protein and the ligand (p27-SJ403 data set). For

each of those, ten systems were constructed by placing one random, unstructured protein

conformation —in conjunction with one ligand molecule, if needed— at a salt concentration

of 5 mM. All systems were built using HTMD.34 A Langevin integrator was used with a

damping constant of 0.1 ps-1. The integration time step was set to 4 fs, with heavy hydrogen

atoms and holonomic constraints on all hydrogen-heavy atom bond terms. Electrostatics

were computed using PME with a cutoff distance of 9 Å and grid spacing of 1 Å. Energy

minimization was run for 500 steps. After energy minimization, equilibration for all systems

was done in an NPT ensemble at 310 K, 1 atm, with heavy atoms constrained at 1 kcal mol−1

Å2 during 30 ns.

After equilibration, no proline cis isomers were detected. Production runs of 80 ns

were performed at 310 K using the distributed computing project GPUGrid35 running the

ACEMD2 simulation engine, following an adaptive sampling strategy.
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AdaptiveBandit sampling

Adaptive sampling is designed to efficiently explore the conformational space by spawning

new rounds of simulations based on the already generated data. After one epoch, MD data

is analyzed, and a policy selects those structures of greater interest as initial conformations

for a new set of simulations. The strategy employed here is called AdaptiveBandit (included

in HTMD34), which frames MD sampling as a multi-armed bandit problem.26 In the protein-

ligand binding case studied here, we rewarded actions based on the stability of conformations

using MSM estimations of the free energy for each state

Ra =< kBT log(µ(x)) >(a,x1,...,xτ ), (1)

where µ(x) is the equilibrium distribution estimated by the MSM with the current available

data and the average is performed over the frames in the trajectory starting from a.

For both the p27-SJ403 and p27 experiments, AdaptiveBandit was initiated with 100

systems (every system was used ten times).

An MSM is constructed at each epoch using the available data. In the p27-SJ403 run, the

MSM was built on top of contacts between protein heavy atom vs. ligand heavy atoms at a

threshold of 4 Å, in order to enhance the exploration of the conformations established between

the two molecules. For the p27 run, backbone atoms (Cα+Cβ) self distance contacts were

employed instead, to optimize the conformational sampling of the IDP. For both runs, time-

independent component analysis (TICA)36 was used to reduce the number of dimensions to 5.

Once the computation finished, the p27-SJ403 data set included 6688 simulations, resulting

in an aggregated simulation time of 535 µs. Finally, the p27 data set was composed of 8900

simulations, corresponding to 712 µs.
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Markov State Model analysis

MD data analysis was performed using HTMD.34 Data featurization for the p27-SJ403

data set was carried out using the distance between protein heavy atoms and SJ403 heavy

atoms. For the p27 data set, distances between Cα and side chain nitrogen and oxygen atoms

were used. After that, a similar process was followed for building an MSM with each set.

The featurized data was projected into a lower space of 3 dimensions by using TICA at a lag

time of 20 frames. Afterwards, TICA derived data was clustered into 1.500 and 800 states

using MiniBatchKMeans algorithm,37 for the p27-SJ403 and the p27 data sets, respectively.

Finally, microstates were fused into 3 macrostates (using the PCCA+ algorithm38) at a lag

time of 20 ns for both sets, following the implied timescales plot (Supplementary Figure 4.a,

c).

For every measure, errors were estimated by creating 10 independent MSMs using a

random set containing 80% of the simulated trajectories.

Comparing MD runs

Once all simulations finished, we compared the distinctive exploration of the conforma-

tional landscape observed in the presence or absence of the small molecule. The approach

followed to achieve it consisted on featurizing the MD trajectories from both data sets to-

gether, and then reducing the number of dimensions. The output combines all the data into

a single space. In this space, it is possible to identify which regions belong to each data set,

and allow to measure the overlap between them.

In particular, the scheme was applied several times, using two different metrics (dihedrals

and protein contacts), and two different dimensionality reduction methods (TICA36 and

PCA39). The purpose of having all these combinations (4 in total) is to avoid possible biases

induced either by a metric of by the dimensionality reduction method.
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Results and Discussion

Identification and structural analysis of bound states

In an IDP-ligand binding scenario, both protein and protein-ligand conformations are

highly variable. In essence, protein-ligand interactions are unlikely to be very stable, nor

IDPs would become totally rigid upon binding. Therefore, both protein rigidity and protein-

ligand orientation have to be assessed. In order to tackle this question, MD data derived

from a protein-ligand adaptive run (p27-SJ403 data set) were used to build an MSM based

on distances between protein and ligand heavy atoms. The resulting MSM includes three

long-lived (metastable) states: two of them (M1 and M2 ) feature stable contacts, as shown

in Figure 1.c. At the same time, the third one remains largely unfolded, without forming

any stable protein-ligand contact.

In more detail, main residues involved in the interactions are located in the N-terminal

half of p27 and include hydrophobic residuesW60, L70, andW76 (Figure 1.c), pointed as the

main driving force in the interaction by experimental data.23 They create an hydrophobic

environment where the small molecule stacks between the aromatic rings or hydrophobic

side chains of those residues (Figure 1.g). While residue-ligand contact provides a broad

description of the interaction, it is not informative about their relative orientation. We

computed protein-ligand spatial orientation as the contact probability between each residue

and every heavy atom in the ligand (Figure 1.d). Results show a distinctive pattern between

the two binding profiles. In M1, there are many highly probable atom-residue contacts,

while in M2, protein residues interact more sparsely with ligand heavy atoms. Thus, in M2,

residue-ligand atom contacts are not preserved and a looser p27-SJ403 conformation prevails.

On the other hand, we tracked macrostate flexibility as the deviation of backbone dihedral

angles (Figure 1.f). All states share a reduced group of low-variation dihedral angles corre-

sponding to section 90-RPPRPP-95 of p27, given its inherently rigid nature. Interactions

with the small molecule increase protein rigidity, and the most rigid microstates integrate

7
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Figure 1: System overview. a) Kinase Cdk2, Cyclin A2, and p27 in complex. (PDB code:
1JSU 24). p27 is displayed as a blue ribbon. b) Chemical structure of SJ572403 (SJ403), a
molecule able to bind to p27. c) Residue-molecule contact map. On the y-axis label the
equilibrium population (%) for each state is also shown. d) Residue-heavy atom contact
map. e) Microstate distribution according to the number of contacts between heavy atoms
of the two molecules (x-axis), and their flexibility in the y-axis, measured as the sum of
the deviation of backbone angles, and colored by macrostates assignment. f) Backbone
dihedral angle standard deviation by state. Red and black dashed lines are placed at
0.5 and 0.1 respectively, for reference. g) Representative structures for macrostates 1
and 2. 20 random structures are displayed. Most rigid residues are colored in orange and
their Cα were used for structural alignment.
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the protein-ligand interacting states (Figure1.e). Additionally, the distinctive interaction

profiles between M1 and M2 are also reflected in the induced backbone stability exerted by

the ligand. Residues involved in the interaction become more rigid upon interaction in M1

compared to M2, where most rigid residues do not participate in the interaction. Overall,

contact probability and dihedral deviation reveal a more rigid bound conformation in M1,

while M2 features a more relaxed binding mode.

The measurement of equilibrium populations show that bound M1 state is only

marginally populated (0.06± 0.03 %), corresponding with an estimation for the keq of

11.93± 15.32 M . Such a low population and high affinity keq value are expected, given

the high entropic penalty incurred by the extensive rigidity observed in this bound con-

formation. On the other hand, M2 encompasses a significant portion of the population

24.23± 2.79 %, which corresponds with a 8.3± 1.3 mM in line with the experimental value

(2.2± 0.3 mM).23

p27 in solution

An additional MD run was performed with the disordered p27 protein in solution (p27

data set). The derived MSM included two macrostates featuring clusters of contacts between

hydrophobic residues (W60-Y88 and W76-Y88 ). They configure partially ordered states

within the conformational surface of p27, and account for ∼2% of the equilibrium population

(Figure 2). Interactions between these residues were also reported experimentally,25 as part

of a more intricate network of contacts between the triplet of hydrophobic residues W60,

W76, and Y88 that defines the ground state of p27 according to NMR data.25 These two

macrostates also encompass the most rigid structures (Supplementary Figure 1). However,

in this case, there is not such pronounced segregation with respect to the most populated

state as in the p27-SJ403 data set (Figure 1.e). Furthermore, residues 69 and 90-95 keep

a rigid conformation across all macrostates (Figure 2.b), similarly to p27-SJ403 data set.

Finally, a third highly populated and structurally heterogeneous state is also found.

9
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Figure 2: Isolated system description. a) Residue-residue contact map. b) Back-
bone dihedral angle standard deviation by macrostate. Red and black dashed lines
are placed at 0.5 and 0.1 respectively, for reference. c) Representative structures for
macrostates 1 and 2. 20 random structures are shown. Most rigid residues are colored in
orange and their Cα were used for structural alignment.

Influence of small molecule addition in the conformational landscape

One of the main questions regarding IDP-ligand binding is how the addition of a molecule

would impact the conformational landscape of p27. Two opposed scenarios are possible.

In the first one, the molecule expands the pool of available structures, by promoting the

exploration of unknown regions.40 In the second one, the molecule restricts the populated

areas of the conformational space, leading to a population shift between states.25 For the

10
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p27-SJ403 system, the experimental data support the latter;25 it was observed that the

addition of SJ403 disrupted the formation of intra-protein contacts, especially between the

central and the C-terminal sections.

This question was also addressed using the available MD data. More specifically, the

impact of SJ043 on the landscape was measured as the difference between the conformational

exploration observed in the p27-SJ403 data set and the p27 one, as summarized in the

Comparison of MD run section of the Methodology (Figure 3 and Supplementary Figure

2). We compared the exploration profiles between each data set. Firstly, we detect a high

overlap between the space explored by each data set, indicating that they explore the same

region. This overlap is expected, as only a small fraction of the data participates in either

protein-protein or protein-ligand contacts. Secondly, p27-SJ403 data points are contained

within the p27 space. The differences in the setup of each adaptive run can explain it. The

p27 run was designed to make a thorough exploration of the conformational space whereas

the p27-SJ403 run was done to incentivize protein-ligand conformations (a more detailed

explanation can be found in the AdaptiveBandit sampling section on Methodology).

Moreover, data points of bound conformations are contained within the explored space by

p27 in solution. Altogether, these observations align with the space exploration restriction

scheme aforementioned: bound conformations are confined within regions also explored by

the protein in isolation. The extension of theses areas is generally small compared to the

entire space, consistent with their overall structural rigidity (Figure 1.e).

Finally, the comparison between regions corresponding to p27-SJ403 bound macrostates

and partially ordered states of p27 in solution yields an almost complete separation profile.

This implies that indeed they are structurally different and that the addition of the small

molecule disrupts the formation of intra-protein contacts between those specific residues, as

pointed by NMR data.25

11
79



“output” — 2020/4/20 — 11:05 — page 80 — #98

Figure 3: Count overlap between subsets. Overlap measures the percentage of counts
of a subset (A) sharing common space with another subset (B). Spaces are calculated as
described in Comparing MD runs section in Methodology. An horizontal dashed line at
50% represents an arbitrary boundary between sets occupying similar regions of the space
(overlapping) or disconnected (separated).

Conclusion

The analysis of MD data in the context of IDP ligand modulation was able to provide

p27-SJ403 bound conformations in line with experimental information. These protein-ligand

complexes retain part of their intrinsic flexibility, while short linear stretches of amino acids

become stiffer after binding. On the other hand, rigid protein conformations also appear.

However, they do not raise a stable state as they incur in a high entropic cost that is not

enthalpically compensated.

In the most populated bound state, residues W60 and W76 are crucial for the complex

formation, but, in contrast to folded proteins, the pose is stabilized by multiple varying

contacts. This is due to the hydrophobic nature of the interaction. For the most part, the

stacking of the small molecule between tryptophan rings maintains the interaction. Typically,

IDPs become fully rigid upon interacting with their folded partners by folding after binding.

The main interactions driving such processes rely on the burial of hydrophobic residues

12
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in predefined binding interfaces, as demonstrated by protein-IDP complexes included p53-

Mdm241 or KIX-cMyb.42 In other cases, such as polyelectrolyte chains, protein complexes

are mediated by polar interactions and charge complementarity, and they do not require

specific residue-residue contacts or binding sites,43 thus remaining largely disordered upon

interaction. Therefore, p27-SJ403 binding observed here represents an intermediate point

between these two behaviors. It configures a scenario where the coupling of both molecules

precise residue specific hydrophobic interactions while remaining structurally flexible.
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Companys 23, 08010 Barcelona, Spain

April 14, 2020

1
88



“output” — 2020/4/20 — 11:05 — page 89 — #107

150 160 170 180 190 200
Number of contacts

Ri
gi

d 
   

   
   

   
   

   
   

   
  F

le
xi

bl
e

Macro-1
Macro-2
Macro-3

Figure 1: p27 MSM microstate distribution according to the number of contacts x-axis, flexi-
bility y-axis measured as the sum of the deviation of backbone angles, and colored by macrostates
assignment.
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Figure 2: Overlap calculation. a) - e) Counts representation on the first two TICA dimensions
of the dihedral data of the combined data set. They exemplified the overlap or separation between
both data sets or part of them. They represent: a) all counts, b) counts colored by macrostates,
c) counts of p27SJ403 and p27 dataset, d) p27 data set and protein-ligand bound states, and e)
partially folded states and protein-ligand bound states. f) Overlap measurements were performed
with 4 different metric of three dimensions each (for reference purposes, a-e plots only show the first
two dimensions of one of them) and measure the percentage of counts of a given subset found within
the boundaries of another one. Arrows relate the overlap percentage to the count plot it represents.
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Figure 3: Molecule parametrization. a) Conformer energies. b) Fit of dihedral angles
energy profile. Comparison of the quantum mechanics (in red) energy profile and the molecular
mechanics before (in green) and after (in blue) being fitted.

Figure 4: Models summary a) and c) Implied times scales for the p27SJ403 and the p27 data
set, respectively. b) and d) Microstates distribution over the first two TICA dimensions.

4
91



“output” — 2020/4/20 — 11:05 — page 92 — #110



“output” — 2020/4/20 — 11:05 — page 93 — #111

Chapter 4

DISCUSSION

4.1. Partially ordered states within IDPs

The first study presented in the Results section focuses on the explo-
ration of the conformational landscape of an IDP in solution. The presence
of partially ordered states has been proposed by other studies. However, it
has never been exhaustively explored employing MD simulations. Here, by
using high throughput MD simulations, it was possible to propose several
of such partially ordered states that accounted for a significant proportion
of the population once at equilibrium.

Scaling up a similar experiment in a more general project would be
needed whether such behavior is other IDPs. One step in that direction is
to use more advanced sampling techniques, such as the ones covered in
Section 1.2.3. The extended study included ∼20 IDPs. They were selected
based mainly on two criteria. Firstly, their prediction of disorder and, sec-
ondly, the existence of a similar sequence (in complex with other proteins)
in the PDB.

This approach was also able to identify similar secondary structure
enriched segments within several IDPs, as illustrated in Figure 4.1. The
N-terminal region of p53 was also included in the selection in order to
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Figure 4.1: Secondary structure profiles illustrating the
emergence of potential partially ordered states within IDPs us-
ing high throughput MD in combination with MSMs. Each
plot represents the by-residue secondary structure probability
(type in the title).

reproduce previous results. For this particular system, similar β-stranded
states were also found (Figure 4.1 top left). Finally, in general, all par-
tially states discovered so far are mediated by short-range contacts (mainly
sheets or helices). In contrast, other scenarios, such as the formation of
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rigid conformations exclusively by long-range contacts, are not observed.
There are two significant points to be considered when expanding this

principle to a bigger scale. The first one is how to ensure the biological
relevance of newly discovered partially ordered states rather than artifacts
derived from the force fields. Exhaustive validation with experimental in-
formation could be a way to address this issue. The second most limit-
ing factor is the computational resources needed to simulate systems with
increasingly longer IDPs. Both the original and the expanded study are
restricted to work with a maximum protein length of 50 amino acids, but
experimental methods can extend to the hundred residues range.
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4.2. KIX—c-Myb sampling problem
Reconstruction of binding events is one of the most significant chal-

lenges faced by MD in recent years. There have been many success stud-
ies focus on protein-ligand (80; 106), protein-protein (84), and protein-
IDP binding (93; 95; 107). For the latter, most of the attention has been
gathered by the p53-Mdm2 system, which includes a relatively short IDP
of 12 amino acids, and a single well-characterized bound conformation.
In that context, MD studies have especially focused on the reconstruction
of the p53-Mdm2 bound conformation, using that system as a benchmark
for novel simulation methodologies (93; 95; 94; 107). Here, by choosing
KIX—c-Myb, the focus was to discriminate binding mechanisms, as well
as to reconstruct several binding poses using full atom unbiased MD. This
has represented a significant challenge throughout the thesis. In essence,
out of a total simulation time of ∼ 4ms invested in several experiments,
only one data set of ∼ 500 µs was able to reconstruct the binding process
partially.

As a summary, the results of three different sampling algorithms
(AdaptiveBandit, ε-greedy (49), and FAST (83; 108)) are shown in Figure
4.2. AdaptiveBandit is inspired by RL and the multi-armed bandit problem
and was covered in Section 1.1.4. ε-greedy is a heuristic method based on
spawning new simulations from less explored states. Finally, FAST make
use of prior knowledge in the form of a goal function that ranks all struc-
tures.

Data derived from each run were used to build its MSM. The three
of them were compared in terms of exploration of the bound region of
the conformational space (defined as that with lowest Cα RMSD mean
and deviation). After 225.0 µs, only the AdaptiveBandit run was able to
explore the region of NMR-like bound conformations. ε-greedy performs
a reduced exploration of the space, getting stuck on an RMSD around 7 Å.
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Figure 4.2: KIX—c-Myb binding models. Performance on
the exploration of the conformational space of KIX—c-Myb
biding of a) ε-greedy, b) AdaptiveBandit, and c) FAST. Both
AdaptiveBandit and ε-greedy were run without any prior
knowledge, and the goal function used to guide FAST mini-
mize the euclidean distance between the Cα-Cβ distance vec-
tor between MD and NMR structures. All MSMs were built
using the pairwise distances between Cα + Cβ between KIX
and c-Myb and self distances of Cα of c-Myb, 2 000 clusters at
30 ns lag time and 6 macrostates.

In FAST, the exploration of the bound-like region is limited and includes
many structurally diverging microstates.

This exemplifies how it is possible to overcome the restrictions on the
sampling of complex energy surfaces with the right tools. In particular,
the study of the KIX—c-Myb system illustrates how the evolution of sam-
pling approaches affects performance, where more advanced approxima-
tions succeed in tasks where the old ones could not.

However, although better than the previous ones, the MSM presented
in Section 3.2 does not yield kinetic parameters in agreement with experi-
mental data. In particular, the most diverging value is found in koff , with
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a difference of several orders of magnitude. Such discrepancy points to
the lack of stability of the bound conformation obtained, which might be
closer to a pre bound conformation rather than the NMR fully bound struc-
ture. Whether these deviations are due to MSM building issues, sampling
problems, force field inaccuracies, or even if they represent more precisely
the binding at physiological temperature is still a matter of discussion.
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4.3. KIX—c-Myb: MD vs. experimental data
The analysis presented in Section 3.2 provides a detailed molecular de-

scription of binding of c-Myb to the primary interface of KIX. The process
is summarized as a two-step process. Initially, the N-terminal region of
c-Myb binds with a preferred helical conformation, allowing the formation
of native contacts and, in the last step, the C-terminal folds and binds. The
study of the fluxes derived from the MSM showed the relevance of residue
Leu302 not only in the final bound structure but also as the responsible
of establishing the first contacts and serving as an anchor point between
c-Myb and KIX. The first identified contact features Leu302 of c-Myb and
KIX’s residue Leu603 and the next steps comprise the formation of addi-
tional native contacts involving Leu298 and Leu302. The role of Leu298
and Leu302 as the driving force for the interaction was originally described
in the report on the NMR structure (15). Additionally, mutagenesis studies
showed the abolition of binding upon their mutation to alanine (98).

One of the main questions is whether coupled folding and binding takes
place via conformational selection or induced-fit. For KIX—c-Myb, there
is experimental evidence supporting the latter: the use of α-helix stabilizers
did not affect binding rates (103) as well as helicity stabilizers mutations
(98; 109). According to our model, conformational selection would only
affect residues 298 - 302. Therefore, mutations outside this region would
not have a high impact on binding kinetics despite affecting global helicity.
This is the case of the flanking proline residues Pro289 and Pro316, which
upon mutation to alanine, show a significant increase in helicity, but do
not impact affinity (98; 109). On the other hand, disruption of the helicity
of residues 298-302 should negatively affect binding. On the available
experimental information (98; 109), we can find that L300P and L300G,
have a decrease in helicity and 10 times slower kon indeed, but L300A has
little impact on these parameters.
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A similar model to the one described above was first proposed by Arai
et al. (100). It also pointed out the influence of c-Myb’s helicity and the
combination of both binding mechanisms. Finally, binding before folding
is also observed in our MSM. It accounts for a smaller fraction of the to-
tal flux, thus establishing an induced-fit only pathway that coexists with
conformational selection.

In this way, the MSM allows us to reinterpret experimental data in the
light of a atomically detailed model.
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4.4. Druggability of IDPs
Modulation of protein by small molecules is ongoing problem faced

in structural biology and by pharmaceutical companies. This task is even
more problematic when the target does not have a well-defined pocket, as
in the case of IDPs. A proof of this is the limited number of examples found
in the literature covering this topic (and recently reviewed in (110)). They
add up to a few tens compared to the hundreds devoted to rational drug
design every year. Thus, spotting a feasible system for free ligand binding
MD studies like the one shown in Publication 3.3 is complicated. In the
first place and as discussed above, one of the most significant limitations is
protein length. To simulate a system big enough to fit an IDP longer than
50 amino acids would be too computationally expensive to be performed
in the micro to millisecond time scale. At the same time, some of the IDPs
discussed in the literature have hundreds of residues. Secondly, experi-
mental information, such as the molecular determinants of the interaction
(i.e., primary residues involved) or kinetic parameters, is also needed to
understand and validate our data. So far, the only system to fulfill such
features is p27—SJ403.

On the other hand, performing MD free ligand binding assays with
IDPs can also be seen as a natural next step in the application of this tech-
nique in unexplored contexts. It initially raised many questions that are not
found when working with folded proteins. In particular, how to simultane-
ously assess and characterize both IDP-ligand interaction and IDP struc-
ture. This was done at several levels: residue-molecule and residue-heavy
atom contacts, dihedral variation, and intra-protein contacts. Additionally,
the other principal question was how to relate simulations of the isolated
protein with those performed in the presence of the ligand, a pivotal point
to evaluate the impact of small molecule binding. By combining MD data
from various data sets, it was possible to approximate this problem and
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to draw observations in line with NMR data regarding differences in the
behavior of the IDP in the presence/absence of the ligand.

Studies of this kind also arise similar concerns to the ones exposed
in Section 4.1 regarding force field capabilities to accurately capture the
behavior of IDPs. For the particular case of the interaction between
p27-SJ403, bound conformations also correspond with the most rigid ones.
In contrast, NMR data (34) suggests that binding increases protein flex-
ibility, as residues near Y88 free upon protein-ligand interaction. Spe-
cially adapted force fields for IDP simulations, such as the one employed
throughout all studies, may also over compact proteins. This issue, how-
ever, does not rule out our results as there are many points in common with
experimental data, too, mainly the identification of residues involved in the
interaction. Testing different force fields for IDP simulations is out of the
scope of the present thesis. However, advances in this area are also funda-
mental. In essence, it would be pointless to have state-of-the-art sampling
and analysis capabilities paired with suboptimal parameters.

Once again, IDP modulation is still a field to be defined. Here, the main
objective was to explore the performance of an existing successful compu-
tational methodology and to put it into practice. Overall, results provide a
promising starting point. They agree with the experimental data available
and can capture the main features retained by an IDP when interacting
with a small molecule. However, adapting other pipelines for drug design
steps, especially hit discovery and optimization, both computational and
experimental, remains as the needed foundations to settle the field of IDP
modulation.
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Chapter 5

CONCLUSIONS

1. High-throughput MD simulations, in combination with Markov state
models, revealed partially ordered states within the conformational
landscape of the disordered N-terminal region of p53.

2. Novel adaptive sampling algorithms can reconstruct the coupled
folding and binding between the folded protein KIX and its disor-
dered partner c-Myb.

3. c-Myb binds KIX in a two-steps mechanism. In the first place, the
N-terminal of c-Myb binds either as a pre-folded helix via confor-
mational selection or by induced fit. In either case, the central region
is the first to established key native contacts. Lastly, binding of the
C-terminal tail occurs via induced fit.

4. Free ligand binding studies can be successfully applied in IDP-ligand
scenarios. Protein-ligand bound states feature residues specific inter-
actions while retaining part of their intrinsic flexibility. Binding of
the small molecule is restricted to a portion of the total protein con-
formational pool.
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Chapter 6

APPENDIX: OTHER
PUBLICATIONS

6.1. AdaptiveBandit: A multi-armed ban-
dit framework for adaptive sampling in
molecular simulations

Adrià Pérez, Pablo Herrera-Nieto, Stefan Doerr, Gianni De Fabritiis.
Submitted to Journal of Chemical Theory and Computation.

Summary

AdaptiveBandit is a novel algorithm devoted to boosting the perfor-
mance of MD in adaptive sampling scenarios. This new strategy takes its
name from the multi armed bandits problem, a simplified version of a typ-
ical reinforcement learning scenario. In the multi armed bandits problem,
the objective is to maximize a final reward by choosing from a pool of
known states, each of them associated with their reward. Adapting MD
sampling to this framework allows introducing already explored solutions
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in other contexts (i.e., computer science) to the explorations vs. exploita-
tion dilemma. In particular, the solution inspiring AdaptiveBandit is known
as upper confidence bound (UCB). Here, the theoretical foundations for a
solid adaptation of RL principles in MD sampling are introduced and tested
in several case scenarios. In the first place, simple 2D potentials are used
to show the improved capabilities of AdaptiveBandit to reach and converge
in the minima of each potential, regardless of wrong external biases. Fi-
nally, AdaptiveBandit is also shown to outperform other methods in a more
complex and realistic problem, such as the folding of villin.
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AdaptiveBandit: A multi-armed bandit

framework for adaptive sampling in molecular

simulations

Adrià Pérez ,† Pablo Herrera-Nieto,† Stefan Doerr,‡ and Gianni De Fabritiis∗,†,‡,¶

†Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona, Spain

‡Acellera Ltd., Barcelona, Spain

¶Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain

E-mail: gianni.defabritiis@upf.edu

Abstract

Sampling from the equilibrium distribution has always been a major problem in

molecular simulations due to the very high dimensionality of conformational space. Over

several decades, many approaches have been used to overcome the problem. In particular,

we focus on unbiased simulation methods such as parallel and adaptive sampling. Here,

we recast adaptive sampling schemes on the basis of multi-armed bandits and develop a

novel adaptive sampling algorithm under this framework, AdaptiveBandit. We test it

on multiple simplified potentials and in a protein folding scenario. We find that this

framework performs similarly or better in every type of test potentials compared to

previous methods. Furthermore, it provides a novel framework to develop new sampling

algorithms with better asymptotic characteristics.
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Introduction

In computational biology, macroscopic measurements by computer simulations are obtained

by simulating microscopic molecular systems made of the order of a hundred thousand degrees

of freedom. Statistical mechanics tells us what is the analytical form of the equilibrium

distribution given the macroscopic constraint of the environment, e.g. constant temperature,

pressure, and number of atoms. Therefore the problem consists in generating samples from

such distribution.

Molecular simulation methods have always been hampered by sampling limitations over

the equilibrium distribution due to their computational cost.1,2 The two main forms to obtain

samples are molecular dynamics (MD), a numerical scheme where the propagator of the

dynamical system is discretized in time and iterated for billions of steps, and Monte Carlo

sampling (MC), where the Monte Carlo rule is used to draw samples from the distribution.

These sampling methods are also commonly used in other fields to sample for arbitrary

probability distributions, and many of the methods developed for molecular simulations have

been exploited in such contexts later, for instance, umbrella sampling,3 biased Montecarlo

methods4 or biased molecular dynamics like replica-exchange,5,6 steered MD,7,8 metadynam-

ics,9 etc. Progress in molecular simulation sampling has therefore shown its relevance to a

broader field of problems. Recently, a new generative method based on normalizing flows10

has been proposed to sample from the Boltzmann distribution.11

Due to the difficulties in determining the bias a priori, practically equivalent to having a

good prior, unbiased methods such as adaptive sampling12–15 have been recently developed

and used successfully.16,17 Equally, due to the difficulty in generating good Montecarlo moves,

molecular dynamics is almost always preferred to Montecarlo methods, largely due to the

current efficiency of generating trajectories rooted in the capability of modern hardware.

Specialized computer chips like Anton18 made possible to run long simulations of the order of

hundreds of microseconds, sampling reversibly fast processes and exploring longer timescales.19

The advent of GPUs and GPU molecular dynamics software20–23 was a notable improvement,

2
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greatly increasing the computational efficiency of simulations. This, combined with Markov

state models (MSMs)24,25 allowed to reconstruct a complete statistical description of the full

dynamical system from many shorter trajectories, obtaining a description that is equivalent

to reversible sampling, once at convergence.

Running not one, but hundreds or thousands of simulation trajectories26,27 created a

new opportunity to decide the starting conditions of these simulations to obtain the best

equilibrium characterization at the minimal computational cost, i.e. adaptive sampling.

Initially, adaptive sampling algorithms12,15 were used to reduce statistical uncertainty by

choosing conformations that contributed the most to the error in mean first passage time of an

MSM,12 eigenvalues, and eigenvectors,13 or choosing low state populations.14,15 Furthermore,

similar algorithms appeared recently which introduced prior knowledge to the selection

criteria,28–30 seeking to further speed up sampling towards equilibrium. One notable example

is where contact information is used for protein folding31 or bound state contacts in protein-

ligand or protein-protein binding.17 Other applications have used alternative geometric

features, such as RMSD or pocket volume, to improve conformational exploration32 and to

find cryptic pockets.33 In general, the adaptive sampling policy was always empirical, not

based on any mathematical decision process, even though similarities have been recognized

with the multi-armed bandit problem30,34 and reinforcement learning35 before.

Here we frame adaptive sampling in terms of a multi-armed bandit problem and propose

AdaptiveBandit, an algorithm that uses an action-value function and an upper confidence

bound36,37 selection algorithm, improving adaptive sampling’s performance and increasing its

versatility when faced against different free energy landscapes. Our main goal is to provide

strong fundamentals when facing the exploration-exploitation dilemma by redefining it in

terms of reinforcement learning, creating a solid framework from where to easily develop

novel algorithms. AdaptiveBandit is available in HTMD (https://github.com/Acellera/

htmd).38
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Methods

MD Simulations

The configurational space of a molecular system for MD simulations is given by χ = {x =

(r1, . . . , rN ) ∈ R3N}, where N is the number of atoms of the system. Experimental observables

O are measured as equilibrium expectations < O >=
∫
O(x)µ(x) dx, where µ(x) is the

equilibrium distribution. The form of this distribution is known, for instance, the Boltzmann

distribution in the canonical ensemble at temperature T is

µ(x) = e
−U(x)
kBT , (1)

where U(x) is the molecular potential energy and kBT is the Boltzmann constant multiplied

by the temperature. MD numerically solves Newton’s equation over the potential U(x) for

the variable x, plus a Langevin stochastic term accounting for thermal fluctuations.39 Now

consider the state x(t) ∈ χ as a specific conformation inside the configurational space χ

at time t, the probability of finding the molecule in configuration xt+τ at a later time can

be expressed by the conditional transition density function pτ , xt+τ ∼ pτ (xt+τ |xt) which

describes the probability of finding state xt+τ given state xt at time t after a time increment

τ . When performing an MD simulation, the dynamics of the molecular system propagates

the state xt across time. Therefore, MD samples from the transition density pτ given discrete

time-steps τ to obtain the next state xt+τ . The process is repeated for many steps, generating

a trajectory of conformations.

The main goal when performing MD simulations is to obtain a good representation

of the system’s equilibrium distribution µ(x) i.e. the probability to find conformation x

under equilibrium conditions, in order to measure the average of observable < O >. If

an MD trajectory τ is long enough, sampling from pτ is equivalent to sampling from µ(x)

4
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(Equation (1))

lim
τ→∞

pτ (xt+τ |xt) = µ(x). (2)

Generating long enough trajectories is computationally expensive, and often practically

impossible when trying to sample slow events. However, long trajectories can be substituted

by short parallelized trajectories. While in principle one could model directly the conditional

probability in Equation (2), in practice this is not possible given the very high dimensional

space. Fortunately, it can be shown that the dynamics can be separated into a slow and

fast set of variables,24 and because contributions of fast variables decay exponentially in τ , a

reliable MSM can be constructed in terms of the slow variables to compute thermodynamic

averages. Usually, time-independent component analysis (tICA)40 and clustering methods

are used to learn this set of variables during sampling, necessary to build the MSM. Once we

obtain the MSM, computed by estimating transition probabilities from discrete conformational

states, one can derive thermodynamic and kinetic properties, just assuming local, not global,

equilibrium (i.e. τ is much shorter than what is necessary to satisfy Equation (2)).

The multi-armed bandit problem

The multi-armed bandit problem is a simplified reinforcement learning setting where one faces

the exploration versus exploitation dilemma. The problem is defined as a tuple 〈A,R, γ〉,

whereA is a set of k actionsA = {a1, a2, . . . , ak} andR is an unknown probability distribution

Ra = P[r|a] of rewards given the chosen action. We choose γ = 0 for totally discounted

rewards. At each time-step t, the agent applies a policy πa = P[a] to select an action at ∈ A,

based on previous actions taken and the respectively obtained rewards. Subsequently, the

environment returns a reward rt ∼ Rat . Given that we set γ = 0, we define the value of an

action Qπ(a) as its instantaneous mean reward

Qπ(a) = Eπ[r|a]. (3)

5
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The goal is to find the optimal policy π∗ that maximizes the cumulative reward
∑T

t=1 rt.

Policies must take into account the exploration versus exploitation dilemma and combine

both explorative actions, to sample their associated unknown reward function to update their

value-estimates, and greedy actions, to increase the total cumulative reward by choosing the

action with the highest value-estimate. The main advantage of describing adaptive sampling

in terms of a multi-armed bandit is that we can benefit from the extensive literature on

bandits to find solutions and replace heuristic policies with more mathematically sound ones.

AdaptiveBandit

Standard adaptive sampling algorithms work by performing several rounds or epochs of

short parallel simulations. At each round, the algorithm is faced with the decision to select

any of the sampled conformations from where to respawn a new round of simulations. The

objective of these decisions is to avoid any redundant sampling and optimize our simulations

to obtain the desired goal (which can be anything, from a full equilibrium characterization of

a molecular system to sampling a specific conformation or dynamic event) at the minimum

computational cost.

Here, we recast adaptive sampling in bandit terms, defining its tuple 〈A,R, γ〉. We define

the action space A in terms of all possible conformations that are respawnable, i.e. they have

been visited at least once,

A = Hm = {xk ∈ R3N , k = 1, . . . , Km} , (4)

where Km is the number of sampled configurations at epoch m.

There are different possible choices for the a priori unknown reward function R that the

policy will try to maximize, and it will mostly depend on your objective with the simulation

experiment.

Because most of our MD experiments are usually aimed at sampling metastable states of

6
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interest, e.g. folded states of proteins or bound states between proteins and ligands, we have

defined the reward R to be proportional to minus equilibrium distribution so that that the

optimal policy always picks conformations from the most stable state. Therefore, we define

the reward Ra of action a as the mean of the minus free energies of each configuration x

visited in the trajectory started with action a, i.e.

Ra =< kBT log(µ(x)) >(a,x1,...,xτ ) , (5)

where µ(x) is the equilibrium distribution and the average is computed over the succeeding

frames in the trajectory starting from a.

The action space would be too large to compute meaningful value-estimations for each

conformation, and there is no way to know the exact equilibrium distribution. To address

this issue, we take advantage of MSM analysis to redefine the tuple 〈A,R, γ〉 in a more

practical form. We define a reduced and tractable action space by using the MSM’s discretized

conformational space and use the stationary distribution of each state to obtain an estimate

of their free energy to compute the rewards. We count each trajectory frame as an action

taken, and use the succeeding frames to assign the reward. Because rewards strongly depend

on how accurate the MSM estimation is, we use the latest MSM to recompute all past rewards

from all trajectories at each epoch, differently from common Q-learning approaches.41 Not

only it ensures the best free energy estimation possible, but it also addresses the increasing

action space problem, due to new conformations being sampled. Every epoch, the discretized

conformational space is redefined, all frames are reassigned and rewards are recomputed on

the newly defined states.

Solving the multi-armed bandit problem

With the bandit tuple defined, we now need to deal with the exploration-exploitation trade-off

and optimally solve it. To do so, AdaptiveBandit relies on the UCB1 algorithm37 to optimize

7
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the action-picking policy, which defines the upper confidence bound for action values based

on the number of times the agent has picked that action and the total number of actions

taken. Therefore, actions are selected based on

at = argmax
a∈A

[
Qt(a) + c

√
ln t

Nt(a)

]
, (6)

where t denotes the total number of actions taken, Qt(a) is the estimated action-value for

action a, Nt(a) is the number of times action a has been selected (prior to time t) and c is a

parameter controlling the degree of exploration. UCB1 follows the principle of "optimism

in face of uncertainty", prioritizing actions with uncertain value-estimations, even if those

values are not the greatest. To select an action, UCB1 not only takes into account the

estimated value of that action, but also the amount of uncertainty on such value. By doing

so, the algorithm not only promotes action exploration but also prioritizes the exploration

of the most promising ones. In the long term, as our knowledge of action-values increases,

the exploration term will decrease, and more greedy actions will be selected. UCB1 has a

theoretical bound of O(
√
kT log(Lt)) on its total regret Lt.37

AdaptiveBandit with knowledge-based initialization

AdaptiveBandit also has the option to initialize action-value estimates with external knowledge

from the system, providing an initial value estimation to new actions, aiding to prioritize the

most valuable actions. While in previous methods17,30 this is done by forcing the algorithm

to sample from conformations based on a fixed empirical ranking, here we use the bandit

formalism to initialize Q in Equation (6) with an empirical action-value function. This notably

allows for the MSM to correct the initial prior suggestion for Q given enough sampling. This

is not true in previous schemes, where a partially wrong prior can affect sampling to the

point of non-convergence to the intended results due to its degeneracy, i.e. even just some

wrong contact information could kinetically bias the simulations far from the folding funnel.
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We demonstrate this aspect in the result section. The initial prior Qprior(a) is computed as

the average goal score from all frames in a state, and it is recalculated at each epoch, after

re-clustering. The states are assigned with an initial pseudo-count N0(a), representing the

statistical certainty of Qprior(a).

Other adaptive sampling algorithms

To evaluate AdaptiveBandit’s performance, we have tested it against several different adap-

tive sampling strategies, mainly the standard low-counts adaptive sampling, FAST30 and

Exploration-Exploitation.

The low-counts adaptive sampling is a simple and intuitive strategy that is optimal in

pure exploration scenarios.38 The method works by selecting conformations from the least

populated clusters at each adaptive epoch. The other two methods, FAST and Exploration-

Exploitation, are goal-oriented, were external knowledge on the system is used to guide

sampling.

FAST is also inspired by the multi-armed bandit problem, but the implementation differs

as it uses an acquisition function to rank discrete conformational states rather than a reward

function by definition, and actions (and their outcomes) do not influence their value-estimates.

The acquisition function contains an exploitation term, defined by the goal scoring function

that assigns a fixed value to each state, and an exploration term, based on state counts. The

FAST implementation we used works as

ρi = αφi + (1− α)ψi , (7)

where ρi is the score for state i, φ is the exploitative value obtained from the goal function

for state i, ψ is the exploration value defined by state i counts (as in low-counts adaptive

sampling) and α is a parameter regulating the weight of both terms. Both φ and ψ terms are

scaled to values that range from 0 to 1. The states are defined as the microstates obtained

9
117



“output” — 2020/4/20 — 11:05 — page 118 — #136

by the constructed Markov model at each epoch.

Lastly, we have Exploration-Exploitation, a strategy inspired by the popular method for

multi-armed bandits ε-greedy, implemented in HTMD’s AdaptiveGoalEG.38 Simulations are

restarted ε times from the top goal ranking states, and 1− ε times from the least sampled

states (i.e the low-counts strategy).

Langevin dynamics on 2D Potentials

We designed a set of experiments in a simple simulation set-up, performing Langevin dynamics

on a single point mass of 1000 amu and a diffusion coefficient of 10Å2/ns at 300 K on two

different potentials: a 2-wells potential (Figure 1a) inspired from Ref. 42, given by

U(x, y) =− 3e−(x−1)
2−y2 − 3e−(x+1)2−y2 + 15e−0.32(x

2+y2+20(x+y)2) (8)

+ 0.0512(x4 + y4) + 0.4e−2−4y

and a funnel potential (Figure 1c) given by

U(x, y) = 2 cos(2
√
x2 + y2)− 8e−(x

2+y2) + 0.2((x/8)2 + (y/8)2)3 (9)

A reference baseline for each 2D potential was calculated using an MSM built with 10µs and

500µs of aggregate simulation time for the 2-wells and funnel potential respectively, spawning

trajectories from conformations covering the whole surface. Equilibrium probability was

determined to be 50% and 85% respectively on each global minima.

A total of 1 µs were simulated for each combination of method and potential, spawning

25 trajectories of 0.1 ns at each epoch for a total of 400 epochs. Performance at each epoch

was measured as the mean of the equilibrium probabilities for the macrostate containing the

targeted minimum for 10 independent MSMs built with 80% of bootstrapped data. All the

MSMs calculations were performed using HTMD.38
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For the goal methods, we simulated a total of 2 µs for each method, spawning 10

trajectories per epoch with trajectories of 0.05 ns. Values of α = 0.1 for FAST and ε = 0.1

for Exploration-Exploitation were selected. In AdaptiveBandit the exploration rate was set

to c = 0.01 and the initial pseudo-counts to N0(a) = 50.

MD simulation set-up

Simulation system for the chicken villin headpiece (PDB:2F4K) was built with HTMD.38 We

solvated villin in a 64Å cubic box with a NaCl concentration of 0.05 M . Starting unfolded

conformations for the runs were selected from a villin unfolding trajectory at high temperature

(500 K).

In this context, we tested AdaptiveBandit with c = 0.01 and N0(a) = 100, against two

different FAST setups, α = 0.5 and α = 0.1. A goal scoring function was used to guide

the algorithms, based on the number of native Cα contacts formed. For each setup, we ran

parallel simulations of 10 ns, with 5 to 10 simulations per epoch, until we reached a total

aggregate time of 4 µs. All simulations were run with ACEMD,22 using the CHARMM22*

force-field43 on a local GPU cluster. A short HTMD code listing is provided as an example

to run AdaptiveBanditfor villin simulations (Listing 1).

Results

Performance testing on 2D Potentials

The initial objective is to compare the performance of a set of adaptive sampling algorithms

in a simple environment defined by 2D potentials. For this purpose, we performed Langevin

dynamics on two different potentials: the 2-wells potential, composed of two minima separated

by a high energetic barrier (Figure 1a), and a funnel potential, comprised of concentric

isoenergetic regions with the global minimum located at its center (Figure 1c). The funnel

potential is a useful benchmark to test the exploration-exploitation balance, as a purely

11
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from htmd . u i import ∗
from s k l e a rn . c l u s t e r import MiniBatchKMeans
from jobqueues . l o ca lqueue import LocalGPUQueue
from goa l s import goalFunct ion

re fmol = Molecule (’villin_2f4k.pdb’ )
md = AdaptiveBandit ( )
md. app = LocalGPUQueue ( )
md. generator spath = ’./generators’

md. clustmethod = MiniBatchKMeans
md. p r o j e c t i o n = Met r i cSe l fD i s t ance (’protein␣and␣name␣CA’ )
md. goa l f unc t i on = delayed ( goalFunct ion ) ( re fmol )
md. t icadim = 3
md. nmin=5
md. nmax=10
md. nframes = 1000000

md. exp l o r a t i on = 0.01 ## "c" value
md. goa l_ in i t = 100 ## prior initialization value

md. run ( )

Listing 1: Example AdaptiveBandit code

12
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exploratory strategy would tend to guide towards the outer circular wells, while the minimum

is in the center. The objective of these experiments is to predict the equilibrium population

of the targeted minima. The equilibrium populations are computed with MSM analysis to

assess how different sampling strategies affect the MSM estimation.

First, AdaptiveBandit was compared with two other common sampling policies, based on

simple heuristics: random selection and the low-counts policy. Results for the 2-wells potential

(Figure 1b) show a similar performance for the low-counts policy and AdaptiveBandit. Both

converge at the baseline population (50%) while random sampling underestimates it. Because

the potential just contains two large minima, comprising almost the entire conformational

space, a fully explorative heuristic algorithm like the low-counts is optimal, as there is no

need to prioritize anything besides exploring the two minima. AdaptiveBandit is able to

reach the same optimal performance.
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Figure 1: Performance comparison between random, low-counts and Adaptive-
Bandit in the experiments with 2D potentials. a), c) 3D view and top view of the
2-wells and funnel potentials. Global minima are located at (-1, 0) and (0, 0) coordinates,
respectively. Blue dot indicates starting points for simulations and red dot indicates the
target global minima where population is measured at every epoch. b), d) Performance
comparison of total aggregate simulation time needed for random, low-counts and Adaptive-
Bandit sampling methods in 2-wells and funnel potential, respectively, to achieve correct
population estimates at their global minimum.

13
121



“output” — 2020/4/20 — 11:05 — page 122 — #140

3 2 1 0 1 2 3
X coords.

1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Y 
co

or
ds

.

a) Experiment A

0.2

0.4

0.6

0.8

1.0

Go
al

 sc
or

e

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

Aggregate Time (ns)

0.00

0.25

0.50

0.75

1.00

Po
pu

la
tio

n 
in

 R
ed

 M
in

im
a

b) Performance - Correct goal

AdaptiveBandit
FAST
Exploration-Exploitation
Reference

3 2 1 0 1 2 3
X coords.

1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Y 
co

or
ds

.

c) Experiment B

Start
Target

0.2

0.4

0.6

0.8

1.0

Go
al

 sc
or

e

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

Aggregate Time (ns)

0.00

0.25

0.50

0.75

1.00

Po
pu

la
tio

n 
in

 R
ed

 M
in

im
a

d) Performance - Wrong goal
AdaptiveBandit
FAST
Exploration-Exploitation
Reference

Figure 2: Performance comparison between goal-oriented algorithms FAST,
epsilon-greedy and AdaptiveBandit in the experiments with 2D potentials. a),
c) Top view of 2-wells potential. Goal distribution across the potential is shown. Blue
dots indicate the starting conformations for the runs. Red dots indicate the minima where
population is measured. b), d) Performance comparison of total aggregate simulation
time needed for FAST, Exploration-Exploitation and AdaptiveBandit methods to correctly
estimate populations at their target minimum.

For the funnel potential (Figure 1d), the relative size of the minima is much smaller

compared to the conformational space, hence its detection by random sampling is more

inefficient than for the other two algorithms. The low-counts method is able to reach the

minima faster, as it is to cover the space quickly. Both these algorithms obtain a slight

underestimation of the equilibrium population. On the other hand, AdaptiveBandit achieves

a more accurate estimation and reaches convergence with 4 times less aggregate time than

the other algorithms, highly reducing the computational resources needed to obtain accurate

estimations of the equilibrium distribution.

This first test here showcases how introducing an exploitation term to quantify an action’s

value, besides the exploration term, either increases or equals the performance of fully

exploratory algorithms on obtaining correct equilibrium estimations in the tested systems.
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Figure 3: Simulation re-spawning distribution by algorithm across the 2-wells
potential. Each plot depicts the probability distribution of selected conformations throughout
the runs, obtained by kernel density estimate.44 Starting points for each run are represented
with a blue dot and target minimum with a red one. Goal distribution (not shown) is the
same as in Figure 2. Subplots a), b), c) represent the spawning probability distribution
across the potential surface on experiment A, target minima at coordinates (1, 0), for FAST,
AdaptiveBandit and Exploration-Exploitation algorithms, and d), e), f) for experiment B,
target minima at coordinates (0, -0.5).

Value-estimations of each action help on prioritizing sampling on the most relevant areas

of the conformational space, rather than just exploring everything and sampling irrelevant

conformations. While in the 2-wells potential this does not make a big difference, it does in

the funnel potential, where AdaptiveBandit focuses sampling on the minima by identifying

its relevance with action value-estimates and does not waste resources on exploring irrelevant

conformations.
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Using system external knowledge

Next, we want to test how AdaptiveBandit performs in the 2-wells potential against two

existing methods that incorporate an exploitative term by employing external knowledge on

the system. The pair of tested algorithms, also known as goal-oriented methods, are FAST30

and Exploration-Exploitation. To make sure AdaptiveBandit is at the same level of system

knowledge as the other methods, the information provided by the goal-function was used in

AdaptiveBandit through knowledge-based initialization (as explained in Methods).

The goal function employed in the experiments with the 2-wells potential increases the

score linearly with the x axis (Figure 2a,c), thus creating a gradient of reward pushing to

the right boundary of the potential. Two tests were performed in different scenarios. In the

first test, the target minimum has a greater score than the starting coordinate (Experiment

A, Figure 2a). In the second one, the target minimum has a lower goal than the starting

conformations, and therefore requires opposition to the goal’s influence to obtain accurate

estimations on the target minimum (Experiment B, Figure 2c).

For experiment A, all methods reached the reference population, with AdaptiveBandit

needing slightly less simulation time to reach the correct population estimation in the target

(2b). Differences in the algorithms can be visualized by a distribution plot of the spawning

conformations in Figure 3. During the initial epochs, both FAST and Exploration-Exploitation

follow the goal, spawning new simulations pushing against the energy barrier. AdaptiveBandit,

on the other hand, quickly discovers the target minima and starts exploring other areas

and not only directs sampling on the high score region but also in its surroundings. Even

though the performance of all three algorithms is similar, differences in the spawning patterns

between the three algorithms can be appreciated throughout the experiment. FAST presents

a more explorative behavior and respawns simulations from all along the conformational

space (Figure 3a). On the other hand, Exploration-Exploitation presents a highly exploitative

behavior, strongly focusing on the highest goal-scoring region once it is discovered (Figure

3c). In between, AdaptiveBandit presents an overall greedy behavior, but with higher
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levels of exploration than the Exploration-Exploitation method which translates into a

small boost in its performance. It is interesting to point out the few resources invested by

AdaptiveBanditin the origin minima, which demonstrates that the algorithm quickly identifies

it as a non-interesting area (Figure 3b).

For experiment B, AdaptiveBandit reaches the target minimum faster and equilibrium

populations are estimated more accurately (Figure 2d). Both Exploration-Exploitation and

FAST require more simulation time to reach the target minima and fail to converge on

the correct equilibrium populations. In this scenario, Exploration-Exploitation is greatly

focused in the high scoring region (Figure 3f) resulting in a marginal exploration of the target

minimum, while FAST and specially AdaptiveBandit do perform a more significant search

on it (Figure 3d,e). Comparison between AdaptiveBandit and FAST spawning patterns

(Figure 3d,e) reveals the differences in the exploration profile, where again FAST thoroughly

spawns conformations from every explored point in the surface, while AdaptiveBandit,

following the goal, explores the boundaries of the conformational space. Even if differences in

performance are not substantially large, the experiment shows us the inability of FAST and

Exploration-Exploitation to update the initial action-value estimates, translating into a lack

of adaptation to the system being sampled. In opposition, AdaptiveBandit is able to correct

the prior action-value estimates and readjust the sampling policy to a more optimal one, as it

uses exploitation intrinsically based on MSM estimations from the available simulation data

and external knowledge is introduced as prior information, rather than as the function to

optimize. The ability to update the system knowledge at each epoch is crucial in experiments

where the goal scoring function used has high levels of degeneracy or is directly wrong.

Asymptotically, AdaptiveBandit should always be better as it is logarithmically bound on the

number of trials to the total regret37 (the difference between the maximum possible reward

and the current reward), whereas Exploration-Exploitation and FAST are linearly bound.
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Testing on protein folding simulations

Besides testing in simple 2D potentials, we explored AdaptiveBandit’s performance on a more

realistic and challenging scenario. AdaptiveBandit was tested on protein folding simulations,

using villin as a benchmark. The chicken villin headpiece consists of a chain of 35 residues

that folds into a three α-helical bundle, sharing a common hydrophobic core.45 It is known

to have a fast folding rate of (0.7 µs)-1.45 Our target for this test is to reach the folded state

with the minimum amount of aggregate time and compare how AdaptiveBandit and FAST

distribute sampling across the conformational space of villin. Because we are testing the

algorithm’s effect rather than the technical capabilities of reaching villin’s folding state with

MD, we set up very short simulation times to increase the number of epochs and ensure we are

evaluating the algorithm’s performance. The goal function used for the algorithms maximizes

the number of native Cα contacts formed to guide sampling on to the folded state. 30 µs

of villin folding simulations were used to build some reference tICA dimensions to evaluate

the sampled conformational space from each method. The first two TICA dimensions reveal

three main states (Figure 4a): the unfolded state (random coil), the folded structure, and a

misfolded state.

Figure 4b shows the distinctive behavior of AdaptiveBandit and FAST while sampling

the folding path. AdaptiveBandit clearly reaches the crystal structure. FAST struggles to do

so due to the very short trajectories used, which produces a sampling bias, as indicated in.46

The results showcase how AdaptiveBandit is able to select the most relevant conformations to

reach the folded state, prioritizing the most promising actions from the subset of undersampled

actions. On the contrary, FAST, even in its most greedy setting (α = 0.1), is not able to

correctly prioritize the most relevant states and keeps exploring over random coil states, even

in the latest epochs (Figure 4c). The greedy setting also presents a slight misdirection towards

the misfolded state, which suggests that the used goal scoring function has degeneracy and it

does not differentiate enough between native-like structures and misfolded structures that are

very far dynamically. As commented in the previous experiment using external knowledge
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Figure 4: Villin folding simulations. a) Conformational space for folding of villin on the
baseline data set. The tICA space includes large regions of random coil (initial conformation
are located within the red circle), misfolded conformations (green circle), and crystal-like
structures (blue circle). b) Exploration of the conformational space by sampling algorithms.
Each plot includes the baseline exploration depicted on gray and the explored space with
a colored heatmap. c) Spamming coordinates for new epochs. Scattered points indicate
starting conformations for new epochs, colored from first (purple) to last (yellow).

on the 2-wells potential, methods like FAST or Exploration-Exploitation that rely only on

external information can be severely hampered when the provided information does not

represent the true energetic gradient. AdaptiveBandit prevents that by updating the prior

information with rewards coming from interacting with the system and observing its response

to our actions.

Conclusion

AdaptiveBandit formally introduces adaptive sampling into reinforcement learning by describ-

ing it in terms of multi-armed bandits and builds upon it to deliver a novel algorithm with

increased performance and flexibility across different energy landscapes. AdaptiveBandit is

able to perform equally or better than previous adaptive sampling algorithms in a diverse set

of systems, and it has demonstrated the ability to learn from simulation results. Adaptive-
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Bandit works both with and without external knowledge of the system, and it can update

prior beliefs in the system based on the results obtained during the experiment.

Goal-oriented adaptive sampling methods as in Ref. 30 also get inspiration from exploration-

exploitation strategies, like epsilon-greedy. The context, however, is quite different as there

is not a definition of a multi-armed bandit framework and a reward per action, rather it is

more akin to directly define an acquisition function. Furthermore, the greediness is towards

predetermined states given from external knowledge on the system. AdaptiveBandit, as used

here, uses exploitation intrinsically without requiring external information. It is, however, a

possibility to do so and use experimental data to provide a prior for the sampling.

We have exemplified here cases were AdaptiveBandit works better due to its adaptability

and flexibility, but that does not mean that it could underperform in other scenarios. Our

implementation of AdaptiveBandit relies on good MSM estimates, and therefore the action-

value estimates carry on with errors caused not only by discretization and dimensionality

reduction but also by the sampling bias, especially on estimations of equilibrium populations.46

Additionally, AdaptiveBandit’s performance also depends on the c hyperparameter to regulate

exploration and it is not very intuitive, as it must be tuned according to the scale of both

terms in Equation (6).

The version of AdaptiveBandit presented here defines a reward proportional to the free

energy of each state and utilizes the UCB1 algorithm to optimize the action-picking policy.

However, this is not the only possible way to apply AdaptiveBandit and the algorithm can

be changed to better adapt the experiment and systems. We hope that our work inspires

the development of new adaptive sampling algorithms built under theoretical fundamentals

instead of using simple heuristic policies.
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Hoffmann M, Plattner N, et al. PyEMMA 2: A software package
for estimation, validation, and analysis of Markov models. Journal
of chemical theory and computation. 2015;11(11):5525–5542.

[76] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel
O, et al. Scikit-learn: Machine learning in Python. Journal of ma-
chine learning research. 2011;12(Oct):2825–2830.

[77] Deuflhard P, Weber M. Robust Perron cluster analysis in conforma-
tion dynamics. Linear algebra and its applications. 2005;398:161–
184.
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[96] Paul F, Noé F, Weikl TR. Identifying conformational-selection
and induced-fit aspects in the binding-induced folding of PMI from
Markov state modeling of atomistic simulations. The Journal of
Physical Chemistry B. 2018;122(21):5649–5656.

[97] Wells M, Tidow H, Rutherford TJ, Markwick P, Jensen MR, My-
lonas E, et al. Structure of tumor suppressor p53 and its intrinsically
disordered N-terminal transactivation domain. Proceedings of the
National academy of Sciences. 2008;105(15):5762–5767.

[98] Giri R, Morrone A, Toto A, Brunori M, Gianni S. Structure of the
transition state for the binding of c-Myb and KIX highlights an un-
expected order for a disordered system. Proceedings of the National
Academy of Sciences. 2013;110(37):14942–14947.

[99] Shammas SL, Travis AJ, Clarke J. Remarkably fast coupled fold-
ing and binding of the intrinsically disordered transactivation do-
main of cMyb to CBP KIX. The journal of physical chemistry B.
2013;117(42):13346–13356.

[100] Arai M, Sugase K, Dyson HJ, Wright PE. Conformational propen-
sities of intrinsically disordered proteins influence the mechanism
of binding and folding. Proceedings of the National Academy of
Sciences. 2015;112(31):9614–9619.

[101] Dahal L, Kwan TO, Shammas SL, Clarke J. pKID binds to KIX
via an unstructured transition state with nonnative interactions. Bio-
physical journal. 2017;113(12):2713–2722.

[102] Dahal L, Shammas SL, Clarke J. Phosphorylation of the IDP KID
modulates affinity for KIX by increasing the lifetime of the complex.
Biophysical journal. 2017;113(12):2706–2712.

[103] Gianni S, Morrone A, Giri R, Brunori M. A folding-after-binding
mechanism describes the recognition between the transactivation

147



“output” — 2020/4/20 — 11:05 — page 148 — #166

domain of c-Myb and the KIX domain of the CREB-binding
protein. Biochemical and biophysical research communications.
2012;428(2):205–209.

[104] Shammas SL, Travis AJ, Clarke J. Allostery within a transcrip-
tion coactivator is predominantly mediated through dissociation
rate constants. Proceedings of the National Academy of Sciences.
2014;111(33):12055–12060.

[105] Jin F, Yu C, Lai L, Liu Z. Ligand clouds around protein clouds:
a scenario of ligand binding with intrinsically disordered proteins.
PLoS computational biology. 2013;9(10):e1003249.

[106] Ferruz N, Doerr S, Vanase-Frawley MA, Zou Y, Chen X, Marr ES,
et al. Dopamine D3 receptor antagonist reveals a cryptic pocket in
aminergic GPCRs. Scientific reports. 2018;8(1):897.

[107] Paul F, Wehmeyer C, Abualrous ET, Wu H, Crabtree MD,
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