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Abstract
The Spatial Reuse (SR) operation is gaining momentum in the latest IEEE 802.11 family of
standards due to the overwhelming requirements posed by next-generation wireless networks.
In particular, the rising traffic requirements and the number of concurrent devices compro-
mise the efficiency of increasingly crowded Wireless Local Area Networks (WLANs) and
throw into question their decentralized nature. The SR operation, initially introduced by the
IEEE 802.11ax-2021 amendment and further studied in IEEE 802.11be-2024, aims to increase
the number of concurrent transmissions in an Overlapping Basic Service Set (OBSS) using sen-
sitivity adjustment and transmit power control, thus improving spectral efficiency. Our analysis
of the SR operation shows outstanding potential in improving the number of concurrent trans-
missions in crowded deployments, which contributed to enabling low-latency next-generation
applications. However, the potential gains of SR are currently limited by the rigidity of the
mechanism introduced for the 11ax, and the lack of coordination among BSSs implementing
it. The SR operation is evolving towards coordinated schemes where different BSSs cooperate.
Nevertheless, coordination entails communication and synchronization overhead, which im-
pact on the performance of WLANs remains unknown. Moreover, the coordinated approach is
incompatible with devices using previous IEEE 802.11 versions, potentially leading to degrad-
ing the performance of legacy networks. For those reasons, in this thesis, we start assessing the
viability of decentralized SR, and thoroughly examine the main impediments and shortcomings
that may result from it. We aim to shed light on the future shape of WLANs concerning SR
optimization and whether their decentralized nature should be kept, or it is preferable to evolve
towards coordinated and centralized deployments. To address the SR problem in a decentral-
ized manner, we focus on Artificial Intelligence (AI) and propose using a class of sequential
learning-based methods, referred to as Multi-Armed Bandits (MABs). The MAB framework
suits the SR problem because it addresses the uncertainty caused by the concurrent operation of
multiple devices (i.e., multi-player setting) and the lack of information in decentralized deploy-
ments. MABs can potentially overcome the complexity of the spatial interactions that result
from devices modifying their sensitivity and transmit power. In this regard, our results indicate
significant performance gains (up to 100% throughput improvement) in highly dense WLAN
deployments. Nevertheless, the multi-agent setting raises several concerns that may compro-
mise network devices’ performance (definition of joint goals, time-horizon convergence, scal-
ability aspects, or non-stationarity). Besides, our analysis of multi-agent SR encompasses an
in-depth study of infrastructure aspects for next-generation AI-enabled networking.
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Resum
L’operació de reutilització espacial (SR) està guanyant impuls per a la darrera famı́lia d’estàndards
IEEE 802.11 a causa dels aclaparadors requisits que presenten les xarxes sense fils de nova
generació. En particular, la creixent necessitat de tràfic i el nombre de dispositius concurrents
comprometen l’eficiència de les xarxes d’àrea local sense fils (WLANs) cada cop més con-
corregudes i posen en dubte la seva naturalesa descentralitzada. L’operació SR, inicialment
introduı̈da per l’estàndard IEEE 802.11ax-2021 i estudiada posteriorment a IEEE 802.11be-
2024, pretén augmentar el nombre de transmissions concurrents en un conjunt bàsic de serveis
superposats (OBSS) mitjançant l’ajustament de la sensibilitat i el control de potència de trans-
missió, millorant aixı́ l’eficiència espectral. El nostre estudi sobre el funcionament de SR
mostra un potencial destacat per millorar el nombre de transmissions simultànies en desplega-
ments multitudinaris, contribuint aixı́ al desenvolupament d’aplicacions de nova generació de
baixa latència. Tot i això, els beneficis potencials de SR són actualment limitats per la rigidesa
del mecanisme introduı̈t per a l’11ax, i la manca de coordinació entre els BSS que ho imple-
menten. L’operació SR evoluciona cap a esquemes coordinats on cooperen diferents BSS. En
canvi, la coordinació comporta una sobrecàrrega de comunicació i sincronització, el qual té un
impacte en el rendiment de les WLAN. D’altra banda, l’esquema coordinat és incompatible
amb els dispositius que utilitzen versions anteriors IEEE 802.11, la qual cosa podria deteri-
orar el rendiment de les xarxes ja existents. Per aquests motius, en aquesta tesi s’avalua la
viabilitat de mecanismes descentralitzats per a SR i s’analitzen minuciosament els principals
impediments i mancances que se’n poden derivar. El nostre objectiu és donar llum a la futura
forma de les WLAN pel que fa a l?optimització de SR i si s’ha de mantenir el seu caràcter
descentralitzat, o bé és preferible evolucionar cap a desplegaments coordinats i centralitzats.
Per abordar SR de forma descentralitzada, ens centrem en la Intel·ligència Artificial (AI) i
ens proposem utilitzar una classe de mètodes seqüencials basats en l’aprenentatge, anomenats
Multi-Armed Bandits (MAB). L’esquema MAB s’adapta al problema descentralitzat de SR
perquè aborda la incertesa causada pel funcionament simultani de diversos dispositius (és a
dir, un entorn multi-jugador) i la falta d’informació que se’n deriva. Els MAB poden fer front
a la complexitat darrera les interaccions espacials entre dispositius que resulten de modificar
la seva sensibilitat i potència de transmissió. En aquest sentit, els nostres resultats indiquen
guanys importants de rendiment (fins al 100 %) en desplegaments altament densos. Tot i això,
l’aplicació d’aprenentatge automàtic amb múltiples agents planteja diversos problemes que po-
den comprometre el rendiment dels dispositius d’una xarxa (definició d’objectius conjunts,
horitzó de convergència, aspectes d’escalabilitat o manca d’estacionarietat). A més, el nostre
estudi d’aprenentatge multi-agent per a SR multi-agent inclou aspectes d’infraestructura per a
xarxes de nova generació que integrin AI de manera intrı́nseca.
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3. Wilhelmi Roca, F., Barrachina Muñoz, S., Bellalta, B., Cano, C., Jonsson, A., & Neu, G.
(2019). Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in
WLANs. Journal of Network and Computer Applications, 2019, 127.
Open-access publication: https://arxiv.org/abs/1805.11083
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Chapter 1

INTRODUCTION

1.1 Motivation
The Institute of Electrical and Electronics Engineers (IEEE) 802.11 family of protocols for
Wireless Local Area Networks (WLANs) was first released in 1997 as a novel solution for
Physical (PHY) and Medium Access Control (MAC) layers. Since that date, the standard has
evolved to sustain the increasing user requirements in terms of capacity, load, and coverage,
as well as serve for different purposes (e.g., mesh networking, security-enhanced communi-
cations, channel measurement). The set of new and improved capabilities have been captured
along the time in the plethora of amendments that followed the initial 802.11-1997 standard
(e.g., 802.11b, 802.11g, 802.11h).

Looking ahead, the next generation of WLAN standards is expected to revolutionize the
telecommunications and converge along with 5G systems and beyond to expand to multiple
domains, such as light communications (IEEE 802.11bb), Internet of Things (IEEE 802.11ah),
vehicle-to-everything (IEEE 802.11bd), or next-generation positioning (IEEE 802.11az). One
of the most influential amendments is the IEEE 802.11ax-2021 (11ax) for High Efficiency (HE)
WLANs [1–3], which primary goal is to enhance network efficiency in ultra-dense deploy-
ments to deliver high capacity (up to 10 Gbps). In particular, the 11ax (commercially known
as Wi-Fi 6) includes a set of unprecedented techniques, such as Orthogonal Frequency Divi-
sion Multiple Access (OFDMA), downlink/uplink Multi-User Multiple-Input-Multiple-Output
(MU-MIMO), and Spatial Reuse (SR), for addressing the broad range of issues arisen from
high-density scenarios [4].

This thesis focuses on the SR operation, which started with IEEE 802.11ax and is now
evolving in the IEEE 802.11be (i.e., Wi-Fi 7). SR aims to enhance spectral efficiency by in-
creasing the number of parallel transmissions in high-dense deployments. To this end, SR
proposes a mechanism to ignore transmissions whose source is a device belonging to a dif-
ferent Basic Service Sets (BSS), referred to as inter-BSS transmissions. Ignoring inter-BSS
transmissions can be achieved by using a less restrictive carrier sense threshold, referred to as
Overlapping BSS Packet Detect (OBSS/PD) threshold. To promote fairness, SR also incor-
porates a mechanism that limits the transmit power of the new transmissions resulting from
applying a less restrictive OBSS/PD threshold. The transmit power limitation ensures that SR-
enabled transmitters do not affect the ongoing ignored transmissions.

Addressing the SR problem through sensitivity adjustment and transmit power control
is particularly challenging because spatial interactions among nodes are hard to character-
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ize. These interactions depend on the devices’ capabilities (e.g., antenna capabilities, transmit
power) and the wireless environment (e.g., the position of nodes, propagation effects, shad-
owing). Modifying the sensitivity affects the listening area, whereby devices contend for the
channel. Furthermore, tuning the transmit power impacts on the quality of the transmissions
and the amount of interference generated. The complexity of the SR problem is exacerbated in
high-dense deployments, at which severe issues such as the hidden terminal problem or flow
starvation are prone to occur as a result of spatial interactions [5]. Table 1.1 summarizes the
potential effects and implications of adjusting the sensitivity threshold and the transmit power
in WLANs.

Table 1.1: Effects and implications of adjusting the sensitivity threshold and the transmit power
in IEEE 802.11 WLANs.

Data rate Channel access
probability

Generate starvation
probability

Hidden-node
probability

Exposed-node
probability

Sensitivity ↑ - ↑ ↑ ↑ ↓
Tx. power ↑ ↑ - ↑ ↓ ↑

To address the underlying complexity of SR, we study the application of Artificial Intelli-
gence (AI) mechanisms for automatically adjusting both the sensitivity and the transmit power
of wireless devices. AI is gaining momentum in telecommunications – it is in fact expected to
be pervasively included as part of the network operation in 6G systems [6–8] – due to its ability
to exploit complex characteristics from data, thus allowing to solve problems that are hard to
solve by hand-programming. In this regard, we aim to address the complexity of SR by learn-
ing from data through AI and, hence, providing a flexible solution able to adapt to different
scenarios.

1.2 Contributions
In light of the importance of SR for future wireless networks and the current evolution of
communications towards AI-enabled systems, in this thesis, we study the potential application
of Machine Learning (ML) for addressing the challenges raised by SR. In particular, we aim to
shed light on the potential gains of SR and devise its intersection with AI. The contributions of
this thesis are summarized next:

1. We study state-of-the-art solutions for improving spectral efficiency in wireless networks.
In particular, we focus on methods based on sensitivity adjustment and power control.
Then, we narrow the scope to IEEE 802.11-based SR solutions, which are mainly ori-
ented to 11ax systems.

2. We provide an in-depth overview of the SR operation included in the IEEE 802.11ax
amendment. Besides, we devise the potential evolution path of the SR technology in
IEEE 802.11be and beyond.

3. We analytically model the SR operation and study the new kind of inter-networks interac-
tions resulting from it. This analysis allows us to understand the implications of applying
SR deeply.

2
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4. We provide an implementation of the SR operation in a network simulator and extract
results of its performance gains in future dense WLANs. The presented simulation tool
allows developing new blocks cost-effectively and serves to devise the potential of new
technologies such as coordinated spatial reuse. Besides, our simulator allows character-
izing high-density deployments in affordable simulation time.

5. We propose several ML-based solutions to address the SR problem in decentralized
WLAN deployments. The implementation of these methods allows us to study the perfor-
mance gains compared to default carrier sensing approaches or other hand-programmed
mechanisms. In particular, we show that the concurrent learning operation can signifi-
cantly improve the performance of dense WLANs, although potentially getting stuck into
suboptimal configurations in aggregate performance. We also show that decentralized
learning can help mitigate unfairness in wireless networks when cooperation is possible.

6. We study implications that decentralized ML solutions have on the operation of WLANs.
In particular, we focus on the game-theoretic setting caused by the concurrent devices at-
tempting to learn the best SR configuration. Besides, we delve into practical implemen-
tation aspects related to the communication limitations for cooperative approaches, the
amount of information available for learning, and the dynamism of wireless networks.

7. We delve into architectural aspects to enable future ML-aware networks. Because of
the promising performance gains that ML can provide to networking systems, its actual
integration is currently a topic that is attracting a lot of attention. Special emphasis is put
on data handling and flexible interfaces, which are meant to address the issues related to
data storage, data exchange, and data processing.

1.3 Open Access and Standardization Activities
In order to make our research results more accessible to the community, all the work made in
this thesis has been disclosed in open access. To that purpose, we have made publicly available
all the resources developed to undertake our research, including results, code, and datasets. The
tools used to enable open access are Github1 and Zenodo.2

Besides the research undertaken in the thesis, we have actively contributed to International
Telecommunications Union Telecommunication Standardization Sector (ITU-T). In particular,
the following activities have been held:

1. As part of the ITU-T’s architectural framework for ML-enabled networks [9], we have
developed a specification on the ML Sandbox [10], an isolated domain for training, test-
ing, and evaluating ML models for communications.

2. We have contributed to the Focus Group on Machine Learning for Future Networks in-
cluding 5G (FG-ML5G) with presentations on the following topics: i) considerations
when applying ML in heterogeneous environments in which both intelligent and non-
intelligent (legacy) devices coexist, ii) practical usage of simulators for generating syn-
thetic data sets that serve for training ML models, and iii) a use-case realization of the
ITU-T’s ML-aware architecture for IEEE 802.11 WLANs.

1https://github.com/wn-upf and https://github.com/fwilhelmi
2https://zenodo.org/communities/mdm-dtic-upf/
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3. We have provided a data set to address the problem of channel bonding in future WLANs
through ML.3 This data set has been developed in the context of the ITU-T AI Challenge,
which aims to boost innovation in the integration of AI/ML into 5G networks and beyond.

1.4 Document Structure
This thesis is a compendium of articles resulting from the research activity on ML’s application
to address SR in IEEE 802.11 WLANs. We refer to the publications on page ix as Paper #1
through Paper #8. Besides the list of publications (attached at the end of this document), a
monograph is provided to introduce the research topic and give some background on the same.
This document is structured as follows. Chapter 2 surveys SR techniques in wireless networks,
overviews the IEEE 802.11ax SR operation, and discusses the evolution of SR in future amend-
ments. Chapter 3 provides insights on the intersection between ML and wireless communica-
tions, including architectural aspects and state-of-the-art applications. Then, the SR problem
is formulated through Multi-Armed Bandits. Chapter 4 introduces the analytical and simula-
tion tools used for performance evaluation. The main finding of this thesis are summarized in
Chapter 5, and concluding remarks are provided in Chapter 6.

3All the details on the problem statement can be found at https://www.upf.edu/web/wnrg/ai_
challenge

4



“thesis˙main˙doc” — 2020/7/6 — 12:39 — page 5 — #17

Chapter 2

SPATIAL REUSE IN IEEE 802.11
WLANS

In this Chapter, we describe the SR operation and survey the related work, ranging from so-
lutions for sensitivity and transmit power adjustment in wireless networks, to specific IEEE
802.11 mechanisms. Then, we overview the IEEE 802.11ax SR operation and discuss the next
steps being taken by the Task Group 802.11be (TGbe) to make this technology evolve.

2.1 Related Work
Improving medium utilization through SR has been extensively studied for sensitivity and trans-
mit power adjustment in different domains such as multi-hop networks [11, 12], cellular net-
works [13], and IEEE 802.11 WLANs [14]. SR can be realized through beamforming and
null-steering [15], OFDMA-based multi-user scheduling [16], MU-MIMO transmissions [17],
sensitivity adjustment [14], and transmission power control [18]. In this thesis, we focus on
sensitivity and transmit power adjustment, which does not require additional infrastructure and
promises substantial performance gains concerning the lack of efficiency of the current IEEE
802.11 channel sharing methods [12].

Sensitivity and transmit power adjustment has been applied in different manners to address
multiple problems (e.g., improve capacity, boost fairness, save energy). Figure 2.1 shows a
categorization of SR techniques regarding the optimization goal and the kind of implementa-
tion. In particular, we find Carrier Sense / Clear Channel Assessment (CS/CCA) adaptation
mechanisms, power control, and the combination of both. While some of the works model
and analyze the effects of tuning sensitivity and transmit power in wireless networks, others
provide different optimization mechanisms. Iterative methods have been typically applied to
decentralized and dynamic deployments (see, for instance, the work in [19]). Apart from that,
pre-defined solutions are obtained based on a preliminary analysis of sensitivity adjustment and
power control in particular network settings (e.g., a testbed). In [20], for instance, the authors
provide a Carrier Sense Threshold (CST) adaptation mechanism based on the location of Ac-
cess Points (APs). In particular, a position-CST table is derived from a preliminary analysis of
packet losses. Finally, global solutions are typically provided for deployments that can be fully
controlled at a single point (availability of complete information or coordinated setting). This
is the case of [21], where Deep Learning (DL) is used to maximize the sum-rate under Quality
of Service (QoS) constraints in multi-user power control.

5
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Spatial Reuse
Techniques

CS/CCA adaptation

Analysis: [22–28]

Iterative methods: [29–41]

Pre-defined solutions: [20, 42]

Global solutions: [43, 44]

Power control

Iterative methods: [19, 45–49]

Pre-defined solutions: [50–55]

Global solutions: [21, 56–59]

Joint CS/CCA adaptation
& Power control

Analysis: [60–62]

Iterative methods: [63–65]

Pre-defined solutions: [66, 67]

Figure 2.1: Spatial reuse techniques in wireless networks.

Concerning IEEE 802.11ax WLANs, the Dynamic Sensitivity Control (DSC) scheme [37]
was the first proposal for adapting the sensitivity of Wi-Fi devices in a distributed manner.
However, it was never incorporated in any amendment. Roughly, through DSC, a Station (STA)
iteratively increases or reduces the sensitivity, based on the average perceived Received Signal
Strength Indicator (RSSI). Intuitively, DSC aims to increase the sensitivity level at STAs close
to the AP to avoid contention. Similarly, the threshold for STAs at the cell edge is sought to be
reduced so that collisions by hidden nodes can be lowered. While DSC was initially proposed
for tuning the Physical Carrier Sense (PCS) threshold, it was later introduced as a method for
optimizing the OBSS/PD [68]. Due to its promising potential, DSC’s performance has been
extensively studied in multiple scenarios and combined with other mechanisms [69–79].

Apart from DSC, the authors of [38–41] proposed other solutions for tuning the sensitivity
threshold in WLANs. First, [38] proposed a transmission power control mechanism based
on the Expected Transmission Count (ETX) metric, which has been widely used in wireless
sensor networks. The work in [39] provided an iterative method whereby the OBSS/PD of a
given node is progressively updated, based on the RSSI at STAs. Similarly, [40] proposed the
RSSI to OBSS threshold (RTOT) method, which determines the OBSS/PD threshold of an STA
from its RSSI (used as an indicator of the distance). Although this method was designed to deal
with network dynamics (the OBSS/PD threshold varies according to the RSSI), a static margin
value is used for selecting the OBSS/PD threshold. As for DSC, the rigidity of the margin may
limit the potential SR gains in different scenarios. Finally, the Interference-based Dynamic
Channel Algorithm (IB-DCA) was proposed in [41] for adjusting the transmit power globally,
which requires STAs to exchange their expected RSSI.

2.2 Spatial Reuse in IEEE 802.11ax
The IEEE 802.11ax SR operation includes two different mechanisms: i) OBSS/PD-based SR,
for decentralized settings, and ii) Parametrized SR (PSR), for scheduled uplink transmissions.
Both mechanisms are based on BSS coloring, whereby HE devices can quickly determine the
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source of the detected transmissions. In Paper #5, we provided an exhaustive overview and
tutorial of the IEEE 802.11ax SR operation, which we briefly describe next.

2.2.1 OBSS/PD-based Spatial Reuse

In OBSS/PD-based SR, an HE STA can use a less restrictive OBSS/PD threshold when detect-
ing inter-BSS transmissions, thus increasing the probability of ignoring them and accessing the
channel. When transmitting after detecting an SR-based transmission opportunity (TXOP), an
HE STA must regulate the transmit power it uses. The maximum allowed transmission power
(TX PWRmax) depends on the selected OBSS/PD threshold:

TX PWRmax = TX PWRref − (OBSS/PD− OBSS/PDmin),

where TX PWRref is the reference transmit power (depends on the transmitter’s antenna capa-
bilities) and OBSS/PDmin is the minimum OBSS/PD threshold (set to -82 dBm).

Figure 2.2 sketches an example of the OBSS/PD-based SR mechanism in a toy scenario.
As illustrated, APA starts detecting a Physical Layer Conformance Procedure (PLCP) Protocol
Data Unit (PPDU), which is sought to be ignored through SR. When inspecting the headers
of the packet (marked as an inter-BSS transmission), APA applies the OBSS/PD threshold and
determines that it can transmit concurrently with limited transmit power.

HE PPDU

RX

TX

APA APB

Preamble HE PPDU (APB)

Detected
transmission

SINR > CCA/CS 

Inter-BSS
interference

Marked as inter-
BSS (ignore it)

SINR < OBSS/PD 

Carrier sensing 
area (OBSS/PD)

HE PPDURX/TX

HE PPDU (APA)

STAB
STAA

HE PPDU

Downlink
transmission

Limited Tx Power

Figure 2.2: Example of OBSS/PD-based SR in a toy scenario.

The performance gains of OBSS/PD-based SR operation have been previously studied in
[80–83]. In Paper #5 and Paper #6 we also provide a performance evaluation of 11ax SR.
Unlike the previous literature, our performance evaluation is focused on the downlink rather
than the uplink and puts particular emphasis on the analysis of the delay. Moreover, our works
target the latest draft version (D4.0) of the IEEE 802.11ax amendment.
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2.2.2 Parametrized Spatial Reuse

Unlike for OBSS/PD-based SR, PSR aims to exploit Triggered-Based (TB) uplink communi-
cations to increase the number of concurrent transmissions. Depending on their role, we find
two types of devices participating in the PSR operation: sharing (the ones initiating TB trans-
missions and indicating support for PSR) and shared (the ones taking advantage of the PSR
opportunities from detected TB transmissions).

For the sake of detecting PSR opportunities, shared devices must check whether their in-
tended transmit power meets the requirements indicated in the Trigger Frame (TF) from sharing
devices. These requirements are based on the maximum level of interference supported by the
sharing device. In particular, the intended transmit power cannot exceed the following value:

TX PWRmax = TX PWRAP + Imax
AP − RPL,

where TX PWRAP is the normalized transmit power in dBm at the output of the AP’s antenna
connector, Imax

AP is a normalized value in dB that captures the maximum allowed interference at
the sharing AP,1 and Received Power Level (RPL) is measured from the legacy portion of the
TF (i.e., from PHY headers).

The PSR operation is sketched in Figure 2.3 for a toy scenario. As shown, APB (the sharing
AP) schedules an uplink TB transmission by sending a TF, which is inspected by APA (the
shared device) to detect a PSR-based TXOP and transmit concurrently.

TB HE PPDU

RX

TX

APA APB

TF
(APB)

HE TB PPDU (STAB)

TXOP
detected

SINR > CCA/CS 

Inter-BSS
interference

Transmit with
limited power

TFRX/TX

HE PPDU (APA)

STAB
STAA

HE PPDU

Uplink
transmission

Limited Tx Power

(shared device) (sharing device)

TF

Figure 2.3: Example of PSR in a toy scenario.

Unlike for OBSS/PD-based SR, the performance of PSR has been barely studied. The
authors in [84] provided some insights on the latency gains of PSR.

1Imax
AP is computed as the target RSSI indicated in the TF minus the minimum Signal-to-Noise Ratio (SNR)

granting a 10% packet error rate (a safety margin is also included not to exceed 5 dB).
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2.3 Spatial Reuse in IEEE 802.11be
The 11ax SR operation has been shown to provide significant gains for cell-center devices
(i.e., devices close to the AP) but lacks applicability in cell-edge users (i.e., devices far from
the AP) [85]. As a result, the 11be is working on Coordinated SR (CSR) [86], a cooperative
scheme whereby BSSs exchange information (e.g., the acceptable level of interference sup-
ported by the different devices) to further enhance the quality of the parallel transmissions
achieved through SR. Apart from that, SR is foreseen to converge with other technologies such
as OFDMA [87] and beamforming/null steering [88]. Notice that multi-AP coordination is one
of the main topics that have been so far discussed by IEEE 802.11 task groups [89]. Besides
CSR, the main applications of multi-AP coordination are coordinated beamforming (CBF) [90]
and coordinated OFDMA [91].

Preparation

Monitoring

Announcement frames 

Setup

Monitoring

Setup frames

Communication

TF

TF

DATA BSSA

DATA BSSB

Communication frames

BA

BA

APA

APB

Figure 2.4: Example of the phases considered for IEEE 802.11be CSR.

Concerning CSR (or Co-SR), it aims to improve the quality of the simultaneous transmis-
sions that can occur due to the SR operation. In particular, the transmit power of secondary
transmissions takes into account the maximum level of interference of the devices involved
in primary transmissions. Co-SR is a natural extension of the SR scheme under the multi-AP
operation framework and can be implemented with relatively low added complexity. At this de-
velopment stage, the CSR operation is built upon the following phases (depicted in Figure 2.4):

1. Preparation: this phase includes capability announcement (via Beacon or management
frames) and monitoring. An AP can compute the Downlink Acceptable Receiver Inter-
ference Level (DLARIL) at STAs based on RSSI measurement reports. The DLARIL
is used to assess the feasibility of coordinated transmissions and to define the required
transmit power limitation.

2. Setup: the AP winning a TXOP selects the candidate shared AP and indicates the max-
imum DLARIL for the following scheduled downlink transmission. The shared AP
should acknowledge the status of the channel (idle/busy).

3. Communication: the sharing AP sends a TF indicating the set of shared APs to transmit
concurrently. The TF includes information such as the transmission duration, the maxi-
mum transmission power allowed, or the resource allocation for acknowledgment (ACK)
frames. Then, data and ACK packets are exchanged between nodes belonging to the au-
thorized BSSs. The exchange of packets allows the shared APs to update measurements
such as the DLARIL. Finally, the ACK transmission from the STAs received CSR data
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frame can be performed by uplink OFDMA. The procedure for transmitting ACKs in the
uplink requires establishing a pre-agreement on the division of the frequency resources,
which can be done during the setup phase.

As it can be noted, the main challenge of CSR lies in data acquisition, which is mainly
achieved during the monitoring phase. This is a critical aspect, especially for highly dynamic
deployments. The trade-off between the necessary overhead and the potential gains of coordi-
nation hinders CSR’s actual performance gains.
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Chapter 3

MACHINE LEARNING IN WLANS

ML is meant to empower a computational system for learning, based on experience, so that
unseen situations can be handled without explicitly being programmed. Concerning wireless
communications, the application of ML reveals a big potential because of the following aspects:

• First, there is a huge amount of unexploited data generated at both infrastructure and user
levels, which could be extremely useful for identifying and exploiting patterns that help
at improving network performance.

• Second, the increasing complexity of wireless communications problems (e.g., a massive
number of concurrent users, ultra low latency applications, very high bandwidth require-
ments) complicates the design of hand-crafted solutions. Moreover, complex non-linear
phenomena of communications systems (e.g., channel effects, varying traffic require-
ments, hardware imperfections) add further complexity. In this regard, ML can learn
sophisticated solution strategies from data (model-based vs. data-driven approach), thus
granting the ability to adapt to wireless communications problems and characteristics.

• Apart from the abovementioned underlying complexity, communications systems are
built based on functional blocks, each executing well defined and isolated functions (e.g.,
rate selection, channel allocation, energy harvesting). While individual functions can be
separately optimized, their joint operation may further increase end-to-end complexity,
thus hindering globally optimized solutions. ML can, therefore, help to achieve optimal
control by addressing the added combinatorial complexity of modularized communica-
tions systems.

Henceforth, ML is expected to overcome the systemic complexity inherited from novel
use cases like Vehicle to Everything (V2X) communications, Machine Type Communications
(mMTC), and Ultra-Reliable Low-Latency Communication (uRLLC). In particular, the inher-
ent flexibility of ML for automatically learning diverse situations can address heterogeneous
scenarios, including mobility, a massive number of devices, and varying throughput and latency
requirements. Because of its high potential for solving complex problems in communications,
ML has been applied to a plethora of fields. We address the interested reader to the surveys
in [92–100] and references therein.
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3.1 Architectural Aspects for ML-Enabled Communications

3.1.1 Computation Paradigms

Most popular ML approaches work with batch data, which allows providing powerful solu-
tions and drawing insightful conclusions from typically large datasets. Batch learning methods
require certain perennity of data, thus lacking responsiveness and not suiting real-time appli-
cations. Notice that large training datasets need significant computational resources to carry
out time-consuming tasks. For this reason, sequential learning (alternatively, online learning)
emerges as a suitable tool to address the non-stationarity of problems whose underlying patterns
cannot be fully learned on time.

In sequential learning, an agent (or learner) aims to learn a task in a sequence, so that it
only has access to a stream of training data. The nature of sequential learning is useful to
address complex stochastic processes that are typically dynamic and non-stationary. In this
regard, sequential learning may be useful for providing fast solutions rather than seeking for
optimality under non-stationarity (fast and moderate improvement vs. slow optimization). The
update rule of online algorithms tends to be relatively fast, compared to batch algorithms that
have to optimize once from the whole dataset.

The adoption of either batch or sequential learning mechanisms in telecommunications re-
quires the network infrastructure to accommodate ML-oriented tasks such as data collection,
data processing, data analysis, and decision-making [101–103]. The procedures mentioned
above can be held at different parts of the network, which depends on the network architec-
ture. Batch learning mostly suits to centralized settings where training tasks are held at a single
point (e.g., a data center). Centralization allows deriving global ML models encompassing data
acquired from multiple sources (e.g., nodes in a network) and even from different domains
(e.g., inter-operator data). Furthermore, online learning matches better with decentralized set-
tings, which typically lack powerful equipment but, in turn, allows reducing the complexity of
centralized problems by casting them into individual learning problems.

Figure 3.1 depicts the centralized and decentralized network architectures for ML. For the
centralized architecture, the most suitable techniques are Supervised Learning (SL), DL, and
Unsupervised Learning (UL), which are typically used for classification, regression, and clus-
tering. For the decentralized setting, the most suitable mechanisms are based on Reinforcement
Learning (RL) and sequential learning, which typically suit to inference and decision-making
problems.

In-between centralized and decentralized settings, we find mixed architectures where other
learning mechanisms can be applied. For instance, transfer learning (storing knowledge gained
while solving one problem and applying it to a different but related problem) [104] and feder-
ated learning (collaborative training starting from a general model to better fit different contexts
and situations) [105,106] can accelerate decentralized approaches by sharing some information
among agents (e.g., common solution strategies that can then be personalized for each agent).
However, the successful application of these kinds of approaches is tightly tied to the commu-
nication capabilities of the implied devices, which defines the degree of cooperation among
nodes in a network.

In communications, batch learning has been shown to suit problems related to the core
network or involving higher layers of the protocols stack. For instance, DL has been broadly
applied for predicting periodical patterns of network traffic [107–109] or user mobility [110–

12



“thesis˙main˙doc” — 2020/7/6 — 12:39 — page 13 — #25

Centralized 
datacenter Backbone

Centralized Architecture Decentralized Architecture

General solution
Complete view on data
Rich computation/storage resources

Specialized solution
Address non-stationarity
Low-latency - Short response

Partial information
Limited computation/storage resources

Data perennity
Time-consuming
Overfitting - lack of generalization

Pr
os

C
on

s

Pr
os

C
on

s
Figure 3.1: High-level representation of centralized and decentralized architectures for the
application of ML mechanisms in networks.

112]. Alternatively, online learning suits better to problems related to the access network and
PHY/MAC layers. In this regard, techniques such as RL or sequential learning are widely
employed for PHY/MAC optimization. Some examples are resource allocation [113], edge
computing [114, 115], or MIMO optimization [116]. Notice that time-consuming mechanisms
requiring a heavy workload such as Neural Networks (NNs) can be barely applicable to non-
stationary problems, which would make trained ML models obsolete very fast.

3.1.2 Machine-Learning-Aware Network Architecture
The first steps towards ML-enabled networking have been recently materialized through the
virtualization of networks, i.e., Network Function Virtualization (NFV) and Software-Defined
Networks (SDN) paradigms. The fact is that network virtualization provides an unprecedented
elasticity for the management and operation of network resources, which were previously lim-
ited by traditional hardware-based components. Besides, inter-operator coordination can be
boosted for bringing the ML operation to a macro-scale level, allowing them to share a vast
amount of information and computation resources. These improvements favor the implemen-
tation of ML approaches such as federated learning, whereby network infrastructure requires
elements to communicate for carrying out a joint distributed training procedure in an efficient
and scalable way.

Currently, the main standardization bodies are putting a lot of effort into defining future
ML-aware network architectures. In particular, the following progress has been made:

• The 3rd Generation Partnership Project (3GPP) is currently working on the integration
of data analytics to network functions [117].

• European Telecommunications Standards Institute (ETSI) groups on Experiential Net-
worked Intelligence (ENI) and Zero-touch network and Service Management (ZSM) are
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actively studying the integration of AI to networks [118].

• ITU-T has released a set of specifications on a Unified architecture for 5G and beyond [9,
119]. Remarkably, ITU-T’s standardized architecture provides a common nomenclature
for ML-related mechanisms so that interoperability with other networking systems is
achieved.

In Paper #7, we proposed a realization of the ITU-T ML-aware architecture for IEEE
802.11 WLANs. Through the definition of ML components and management functions, the
ITU-T architecture provides the necessary flexibility for fulfilling different use case require-
ments, ranging from centralized solutions to decentralized approaches. This is particularly
suitable for Wi-Fi deployments, which may lack powerful centralized equipment for gathering
data and processing it (e.g., residential scenarios). In these cases, it is imperative to flexibly
instantiate ML pipeline nodes, thus adapting to the set of available resources and capabilities
from each use case.

The ITU-T ML-aware architecture defines a set of components and procedures to enable the
usage of ML models in networking operations. In particular, the following main components
are defined:

• ML pipeline: set of logical nodes that are combined to form an ML application in a
network. ML pipeline nodes are responsible for data collection, data processing, ML
model application, and output distribution.

• ML management and orchestration: logical node to manage and orchestrate ML pipelines
according to use case specifications.

• ML sandbox: isolated domain for training, testing, and evaluating ML pipeline nodes
before being deployed in a production environment.

• Data handling blocks: framework to handle ML data collection, ML data processing,
and ML data output.

Figure 3.2 shows the high-level architectural components defined in [9]. As illustrated,
the chaining and deployment of ML pipeline nodes are flexible and depend on the use case,
allowing the modularized ML operation to occur at any point in the network.

Among the architectural components of the ITU-T architecture, we paid special attention to
the ML sandbox. In this regard, Paper #8 delves into the potential usage of network simulators
to enhance the reliability of ML for communications. In particular, we showcased that network
simulators can be used to validate the performance of ML methods before applying them to live
networking systems. To that purpose, we provided a proof-of-concept testbed implementation
of a residential WLAN deployment, which was empowered with an ML model trained in a
network simulator. Based on that, a pre-trained and validated ML model could be applied
to a real networking system, thus saving to experience the poor performance as a result of
exploration (transitory phase). Besides validation purposes, simulators are useful for generating
synthetic data sets that can be used for training. One application is, for instance, predicting
unforeseen situations from which there are no real data.
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Figure 3.2: ITU-T’s high-level architecture for future ML-aware networks.

3.2 Multi-Armed Bandits in Communications

The learning by experience characteristic of sequential learning suits WLANs well because it
allows addressing complex partial information problems. The fact is that WLANs pose a set
of specific challenges resulting from their multiple deployment modes (e.g., campus network,
residential usage) and their typical decentralized nature. Although WLANs can count with
plenty of data to be used by ML methods in large and planned deployments, we find other types
of scenarios (e.g., residential deployments) were data may fail to be integrated at a single point
due to potential computation, storage, or communication limitations. For example, end devices
may have low-throughput connections and be intermittently available. Besides, the varying
nature of WLAN deployments (e.g., due to STAs mobility) leads to a high non-stationarity.

In the MAB problem, [120,121], and as for classical RL formulations, an agent (or learner)
interacts with the environment to accumulate knowledge that allows adapting to underlying
changes in the reward distribution over time. The maximization of a long-term goal [122] re-
quires finding an equilibrium between exploitation (obtain the maximum profit based on current
knowledge) and exploration (improve the knowledge).

Formally, based on the sequential learning setting, a learner sequentially picks actions
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at ∈ K and observes their reward vector rt over a time horizon T . Typically, the reward is
granted by what is known as the environment, which may be of diverse nature (e.g., stochas-
tic distribution, adversarial payoff). In the bandits setting, rewards are generated by hidden
distributions, and their value is only revealed once the corresponding arm is played. Bandits
differ from partial and full information settings that reveal the reward of a set or all the possible
actions, respectively.

The performance of a given action-selection strategy is typically measured by the regretRT ,
which compares the performance achieved by the selected actions with the best fixed action in
hindsight. In general, an algorithm is said to learn if its regret grows sublinearly. Typical good
performance is achieved for RT ∈ O(

√
T ) or even RT ∈ O(log T ).

Despite its simplicity, the bandits framework stands as a compelling solution for decision-
making problems. The main reason is that bandit feedback (i.e., the agent only gets information
of actions as it plays them) is easier to be provided in practice than full or partial feedback
(i.e., information of other actions are provided even if not being played). The most typical
bandits applications are web advertising, sales optimization, online recommendations, resource
allocation, and packet routing, among many others. A plethora of bandits formulations exist
according to multiple assumptions that extend the basic bandits game. The different MAB
formulations are based on multiple aspects: the statistics behind rewards (e.g., stochastic vs.
non-stochastic bandits), the availability of actions (e.g., sleeping bandits, mortal bandits), the
type of Markovian settings (e.g., rested vs. restless bandits), the nature of the environment
(e.g., adversarial bandits), and a very long etcetera of variations. The bandits problem has been
treated in detail by several books and surveys. We encourage the interested reader to delve
into the works in [123–127]. Table 3.1 provides a high-level categorization of the most popular
types of bandits.

Table 3.1: High-level categorizations of most popular bandits types.
Categorization Criteria Bandits models

Reward generation process
Stochastic, adversarial, Markovian
(rested/restless)

Reward function
Discrete, continuum (linear/nonlinear),
Lipschitz, Gaussian

Feedback type
Full information, bandit,
semi-bandit, partial monitoring

State-awareness Contextual bandit

In wireless communications, many phenomena have statistical characteristics that can be
approximated with mathematical models. In this regard, MAB-based applications have shown
great potential for optimizing a plethora of problems. Some examples are channel selection
[128], spectrum access [129], transmission scheduling [130], or AP selection [131]. Table 3.2
provides an overview of some popular MAB-based applications in communications.

Concerning decentralized SR in wireless networks, it can be naturally defined as a multi-
agent (or multi-player) problem. Each agent (e.g., a BSS) has player-specific goals and rewards.
The maximum achievable performance of a node depends on its transmission capabilities, the
interference it senses, the traffic load it needs to serve and/or receive, etc. The multi-agent
approach allows capturing the distributed nature of IEEE 802.11 WLANs and keeping dimen-
sionality low for the SR problem. However, it may lead to a competition among players, thus
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Table 3.2: Overview of bandit-based applications for communications
Problem Modeling Goals Baseline

algorithms References

Opportunistic
spectrum access &
Channel selection

Stochastic, non-stochastic,
restless, contextual, Markovian
bandits

Decentralized optimal allocation,
optimize number of secondary
transmissions, ε-correct ranking

UCB, ε-greedy,
calibrated forecasting [128, 129, 132–135]

Power control Non-stochastic bandits Optimize SINR
Follow the perturbed leader,
exponential weighted average [136]

User association
Sleeping, Bernoulli,
non-stochastic bandits Energy saving, improve the throughput UCB, ε-greedy [137, 138]

Inter-cell coordination
Adversarial, stochastic,
non-stochastic,
contextual bandits

Optimize inter-cell frequency resources,
energy saving, map SON configurations
and operator objectives

EXP3, UCB, ε-greedy [139–142]

Dynamic rate selection Structured, Markovian bandits
Maximize the number of packets
successfully transmitted,
learn changes in the channel

UCB [143, 144]

LTE/Wi-Fi coexistence Convex bandits Fair channel sharing Online gradient descent [145]

revealing a nexus with game theory. In the single-agent formulation, a player attempts to max-
imize a long-term reward by interacting with an environment (which can be stochastic or non-
stochastic) in isolation. Under this setting, performance guarantees can be straightforwardly
provided, even if dealing with adversarial [146] or dynamic environments [147]. In contrast,
weaker performance guarantees can be provided for multi-agent systems. Notice that, in the
multi-player setting, the reward of an agent depends on what all (or some) of the other agents
do, which leads to non-stationarity. As a result, the knowledge acquired by agents becomes
quickly outdated.

Most of the current literature in multi-player MABs for wireless communications is based
on the channel access problem in cognitive radio [93, 128, 132, 133, 148–152]. The cognitive
radio characteristics make it a suitable and attractive problem to be modeled with the bandits
framework. In particular, each node that attempts to access the channel represents a player, and
channels are modeled as arms (or bandits). In general, rewards are granted to players in a binary
fashion, “1” if the channel can successfully be accessed, or “0” otherwise (two or more nodes
select the same channel). Accordingly, each player has the same view on actions (different
players playing the same action obtain the same payoff), which makes the game smooth, i.e.,
the player’s reward function is continuous concerning the entire strategy set. Table 3.3 analyzes
the state-of-the-art approaches taken for modeling channel access in cognitive radio through
multi-player MABs, which make use of popular baseline algorithms such as ε-greedy [122],
Upper Confidence Bound (UCB) [153,154], Exponential weight algorithm for Exploration and
Exploitation (EXP3) [122, 155], and Thompson sampling [120].

As discussed, the multi-agent MAB framework suits well to concurrent channel access in
cognitive radio, thus promising a high potential for SR. In general, MABs provide an optimal
allocation of frequency resources when all the player-specific expectations can be fulfilled. In
cognitive radio, this means that all the players can maximize their performance simultaneously,
and is typically guaranteed when the number of available orthogonal channels is at least the
number of players. However, this is a strong assumption that is unbearable for highly crowded
deployments where devices have high throughput demands. As a result, the analysis of multi-
player MABs for SR becomes of particular interest in highly competitive situations.
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Table 3.3: State-of-the-art multi-player MAB solutions for channel access in cognitive radio.
Work Approach Requirements Results

[133]

Distributed mechanism that
combines sensing with randomized
access to learn channel statistics
and the activity of other users

- The number of users is fixed and known
- Channel sensing is perfect
- All the players use the same strategy
- Binary reward (free/collision)

Order-optimal regret with
logarithmic lower bound

[156]
Decentralized time-division fair
sharing of the best arms

- i.i.d. reward
- Conditions of linearity, continuity,
and density for unknown parameters
- Binary reward (free/collision)
- The number of users is fixed and known

Same logarithmic regret order
as for collaborative approach
where nodes exchange observations
and make decisions jointly

[148]
Collaborative mechanism based on
slotted periods (decision, sensing,
transmission, communication)

- Channel sensing is done
- CSMA/CA is used by secondary users
- Rewards are broadcasted
- Same channel conditions for all users

Linear regret improving random
and greedy channel access schemes

[135]
Distributed no-regret learning with
calibrated forecaster

- The joint action profile is known
- All the players use the same strategy
- Time-invariant average channel gains

Global optimal solution and
convergence to correlated equilibria

[152]
Non-cooperative selfish approach
based on ε-greedy exploration
and CSMA/CA

- K ≥ N (K: channels, N : users)
- The number of users is fixed and known

Sub-linear regret and convergence to
system-optimal solution

[128]
Centralized method for combinatorial
bandits with user-channel pairs

- K ≥ N (K: channels, N : users)
- Throughput as an i.i.d. random variable
- Coordination/synchronization

Upper bound regret that grows
polynomially with the combinatorial
number of users and channels

3.3 Multi-Armed Bandits for Decentralized Spatial Reuse:
Between ML and Game Theory

In Paper #1, Paper #2, and Paper #3, we have addressed decentralized SR through multi-
player MABs, which allowed us to reduce the combinatorial complexity of the problem.1 In
particular, each agent (or player) p ∈ P represents a BSS in an OBSS. The actions a ∈ Ap that
each agent can choose are defined as combinations of sensitivity and transmit power values,
which lead to agent-specific rewards r ∈ Rp. Notice that individual rewards depend on the
joint action profile, i.e., the global configuration in BSSs, due to the spatial interactions between
nodes. Algorithm 1 describes the decentralized SR game in general terms. The procedure
mentioned above is enabled by a monitoring phase (time between iterations), whereby agents
collect information of the performance granted by the actions being selected (see Figure 3.3).

In Paper #1 and Paper #2, we have proposed a selfish method whereby agents learn to-
wards maximizing local reward. Specifically, several concurrent agents attempt to improve their
performance, based on local information. The effectiveness of this method is tightly coupled to
the global reward. In potential games [157], a class of problems for which individual agents are
connected to a global function with a unique maximum, optimizing local rewards also brings
the whole system closer to the unique global optimum. For instance, the work in [151] ad-
dresses transmission power control and channel access in a distributed manner. According to a
simplified model of opportunistic spectrum access, the authors can provide distributed no-regret
strategies that lead to the set of correlated equilibria. However, some assumptions are made to
define a unique maximum in the global performance function so that convergence guarantees
to the optimum can be provided. In particular, the reward function used by the players is con-
tinuous with respect to the strategy set, which is also bounded. Intuitively, this means that the
social cost that any action incurs to the other players can be linearly quantified.

1The number of configurations in an OBSS grows exponentially with the number of BSS to be optimized.

18



“thesis˙main˙doc” — 2020/7/6 — 12:39 — page 19 — #31

Algorithm 1: Decentralized SR game through MABs
1 Function MAB (A);

Input : Ap: set of possible actions in {1, ..., K} to be selected by each player p ∈ P
2 initialize: t = 0, for each arm k ∈ Ap, set rp,k = 0 and np,k = 0
3 while active do
4 for each p ∈ P do
5 Play arm k ∈ Ap = argmax

i=1,...,K

θi

6 Observe the reward obtained rp,k(t)
7 Compute the reward rk,t
8 nk,t ← nk,t + 1

9 end
10 Update the estimation function θ
11 t← t+ 1

12 end

Monitoring

Data transmission links
Status report links
Sensing operations
Data frames
Reports

... Other BSSs
and devices

Monitoring ...

Learning iteration, T

Link with agents

Learning iteration, T

Process data
Decision-making

Agent

AP

STA

Figure 3.3: Sequential learning procedure carried out in IEEE 802.11 WLANs.

Therefore, in multi-player MABs, optimal solutions can typically be provided only to
tractable problems that are generally linear, stationary, and generated by independent stochastic
processes (e.g., with underlying Gaussian statistics). This is not the case of the decentralized
SR problem, in which it is not possible to provide a distributed no-regret strategy that converges
to an optimal equilibrium. The fact is that the joint reward function of multi-agent SR does not
have a unique optimum. The set of correlated equilibria cannot be then characterized. The
main causes are as follows:

1. Spatial interactions inflict abrupt changes to the reward obtained by a BSS, which can
be based, for instance, on the throughput. To put an example, increasing the sensitiv-
ity contributes to reducing contention, but it may lead to noticing a higher amount of
interference during transmissions.
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2. Besides, considering the worst-case interference (devices transmitting continuously) is
an unrealistic assumption. Therefore, the social-cost of actions varies with time and
according to the transmissions done on a per-packet-basis (where certain randomness
is added due to many causes such as channel effects, retransmissions, the randomized
backoff procedure, etc.).

In these situations, defining a shared learning goal in multi-agent systems is not trivial
because rewards are not equally assigned to agents. Each reward depends on the joint action
profile. Nonetheless, the MABs framework remains a powerful solution to address real-world
problems with complex and unpredictable phenomena behind reward distributions. The multi-
player setting (i.e., multiple agents attempt to learn concurrently) allows for tackling smaller
individual problems rather than attempting to solve the full centralized problem. While this
leads to non-stationary, short-time improvements prevail over long-term optimality.

As an alternative to the selfish approach, a collaborative setting was also proposed in Pa-
per #3, whereby agents attempt to maximize a shared reward. In particular, we defined the
max-min throughput to be improved by a set of overlapping BSSs. Note, as well, that the learn-
ing procedure is kept decentralized (each agent is responsible for selecting its actions). The
collaborative approach is meant to boost fairness, but as for the selfish setting, its effectiveness
towards finding a global optimum is limited by the overall utility function. Notice that, even if
sharing a reward, the shape of the global performance function may have multiple maximum
points due to non-stationarity, which stems from the decentralization of action-selection.
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Chapter 4

METHODOLOGY AND ENABLERS

The use of analytical models and simulation tools is crucial for studying and understanding
novel technologies such as SR. In this Chapter, we present the analytical and simulation tools
used to characterize the SR operation. In particular, we developed an analytical model to ad-
dress the complex inter-BSS interactions posed by the SR operation. Besides, given the lack of
simulation tools to characterize such a new technology, we developed an IEEE 802.11ax-based
network simulator. The purpose of this simulator is twofold. First, it has been developed to
include new features cost-effectively, which allows us to develop SR with ML mechanisms.
Notice that current well-known simulation tools like ns-3 can be complex to extend due to the
high level of detail put in both MAC and PHY layers. Second, we need the simulator to evalu-
ate the performance of SR in dense deployments at a macro-scale level, so that we can provide
a first taste of the potential advantages and implications of using SR in next-generation deploy-
ments. Notice that simulating highly dense deployments can be costly or even intractable in
terms of time and computational resources.

4.1 Spatial Reuse in Continuous Time Markov Networks
Without any doubt, the Bianchi model [158] is the most popular analytical model for analyzing
the throughput of IEEE 802.11 WLANs. However, it only focuses on the MAC layer and
requires all the analyzed nodes to be in the same coverage area. This is a key impediment
for modeling SR, which requires capturing the dynamic PHY interactions when tuning the
sensitivity threshold and the transmit power. The analysis of SR has been previously addressed
in multiple ways. Most of the models are based on SINR characterization [159], which include
the concept of physical carrier sensing to capture inter-device interactions.

We find a plethora of works that build upon SINR-based models for meeting several pur-
poses (e.g., model RTS/CTS) in SR-oriented settings [25, 160–162]. Typically, SINR-based
models use the concepts described in Table 4.1. First, the device’s sensitivity allows defin-
ing the transmission range of a given transmitter-receiver pair based on fixed transmit power.
Second, the carrier sensing threshold determines the idle/busy channel condition from a trans-
mitter’s point of view. The carrier sense threshold has been widely used for defining the carrier
sensing range (alternatively, the carrier sense set) or the silence set (i.e., the set of nodes that
detect the channel busy if a given node transmits). Finally, the capture effect characterizes
the impact of interfering nodes, thus allowing to define the interference range (alternatively,
the set of interfering devices). While SINR-based methods are useful to derive interactions
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Table 4.1: Concepts used in spatial reuse models for wireless networks.
Concept Description Function

Sensitivity
A receiver can detect a transmission if the
power received is greater than the sensitivity
threshold

- Determine the transmission range

Carrier sensing
A node cannot initiate a transmission if the
power sensed is above its carrier sense
threshold

- Determine the carrier sense set
- Determine the carrier sense range
- Determine the silence set

Capture effect
A receiver can decode a signal if the SINR
is above a given threshold

- Define the interference range
- Determine the interference set

among devices in the spatial dimension, they consider the worst-case interference (i.e., nodes
are assumed to transmit permanently). This assumption entails neglecting spectrum access
coordination and hence losing insights on the MAC operation.

Another field that attracts much attention in wireless communications is Stochastic Geom-
etry (SG), which allows modeling the random nature of dense scenarios. In particular, SG
derives statistical properties of the underlying interactions among a random set of nodes (typ-
ically, set according to random point processes). In telecommunications, SG has been widely
applied to model the behavior of users and to estimate metrics such as the outage probabil-
ity or the throughput per area [163]. Concerning SR, we highlight the works in [164–167],
which provided models based on SG to capture the effect of tuning the sensitivity threshold
in WLANs. However, SG models mainly focus on PHY layer effects and fail to capture the
asymmetries that may occur when applying the SR operation, which also involves the tuning
of the transmit power.

In Paper #5, we introduced Continuous Time Markov Networks (CTMNs) [168, 169] to
analytically model the SR operation, thus capturing both MAC and PHY layers interactions.
This model allowed us to provide insights into the inter-BSS interactions resulting from SR,
which has been key to develop the mechanisms proposed in this thesis. The CTMN model
captures the CSMA/CA operation used in IEEE 802.11 WLANs through states representing
the set of BSSs that are transmitting at a given moment. Transitions between states occur
when BSSs start a transmission (i.e., they gain access to the medium) or when the transmission
finishes (i.e., they abandon the channel). It is important to highlight that the CTMN model
considers additive interference, which results from the combination of different simultaneous
interfering transmissions. Accordingly, we are able to characterize real deployments where
spatially-distributed interactions occur. Concerning the CTMN model, the following assump-
tions are made:

1. The backoff procedure for accessing the medium is continuous in time, which is use-
ful for modeling the attempt rate of transmitters as a Poisson process. However, this
assumption prevents modeling collisions due to backoff expiring at the same instant.

2. Data transmissions are downlink only, which relaxes the complexity of the problem and
allows us to focus only on inter-AP interactions. Notice that a state in the Markov chain
represents a set of nodes transmitting in an OBSS. As a result, the complexity of the
model grows in a combinatorial manner.

3. To be consistent with the previous assumption, uplink transmissions of control packets
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(e.g., ACKs) are only considered for computing the total transmission time. This leads
not to consider uplink transmissions for modeling inter-BSS interactions.

4. Full-buffer traffic is considered for the sake of analyzing the interactions resulting from
SR more lucidly.

The CTMN model is very useful to understand the new kind of inter-AP interactions result-
ing from the SR operation. Besides, it allows us to validate the implementation of SR done in
the simulator, which is later introduced in Section 4.2. A disadvantage of the CTMN model is
its computational cost when characterizing crowded deployments. Modeling dense scenarios
may become intractable since the number of feasible states increases in a combinatorial manner
with the number of BSSs.

4.1.1 IEEE 802.11ax OBSS/PD-based Spatial Reuse
To model the 11ax SR operation, we consider different types of states for capturing the diverse
transmission modes allowed by SR (higher sensitivity level and transmission power limitation).
First, tuning the OBSS/PD threshold of a BSS allows finding new types of inter-BSS interac-
tions that could not exist without applying SR (i.e., a new set of states modeling concurrent
transmissions enabled by SR). Moreover, the transmit power limitation that results from the
SR operation has implications on the capabilities of BSSs. Notice that a lower transmission
power entails a more robust Modulation and Coding Scheme (MCS) and, as a consequence, a
lower data rate. As a result, we differentiate between legacy states (the default sensitivity and
transmit power are used), and SR states (sensitivity and transmit power are modified according
to SR rules).

APA APB

STAB
STAA

OBSS/PD threshold

Default CCA/CS

MCS index = 7

MCS index = 9

(a) Deployment (b) CTMN

Figure 4.1: Example of the CTMN model for IEEE 802.11ax OBSS/PD-based SR.

Figure 4.1 illustrates the application of the proposed CTMN model for characterizing a
simple deployment. In particular, we consider two BSSs that can transmit concurrently in
case that one of them (namely, BSSA) applies OBSS/PD-based SR. Figure 4.1(a) shows the
considered deployment, where the carrier sense area of APA is illustrated for two different
carrier sensing approaches. First, the default CCA/CS threshold (shown in red) makes APA

sense the channel busy when APB is transmitting, thus preventing parallel transmissions to
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occur (notice that APB is inside APA’s carrier sense area). In contrast, the OBSS/PD threshold
(shown in green) allows APA ignoring APB’s transmissions and therefore access the channel.
Note, as well, that using a lower OBSS/PD threshold requires reducing the transmit power. The
interactions explained above are captured by the CTMN in Figure 4.1(b). As shown, BSSA can
transmit in two different manners (noted by A and ASR, respectively), which extend legacy
interactions with SR channel access rules and corresponding nodes’ capabilities. The transmit
power limitation that results from applying SR makes BSSA to use a more robust MCS, thus
sacrificing capacity. In exchange, it is possible to transmit concurrently with BSSB.

4.1.2 IEEE 802.11be Coordinated Spatial Reuse
To the date of publishing this thesis, the CSR operation is currently being defined, studied, and
characterized. However, we started devising its implications through the CTMN model. In
particular, we have extended the 11ax-based model by making the following assumptions:

1. Coordinated transmissions always have priority when defining transitions between states.
This means that joint transmission will occur over individual ones.

2. The feasibility of a coordinated transmission is only assessed from the perspective of the
sharing AP. Therefore, it is not assessed whether the transmission of shared APs will fail
or succeed in transiting to coordinated states.

3. Sharing and shared transmission duration are assumed to be equal.

The CSR operation through CTMNs is exemplified in Figure 4.2. We propose a 3-BSS
deployment in which flow-in-the-middle starvation is prone to occur for the default channel
sensing mechanism. As shown in Figure 4.2(a), APB marks the channel as busy when detecting
transmissions from either APA or APC . However, APA and APC are not in range of each other
and can, therefore, transmit simultaneously. The CSR operation can solve the flow-in-the-
middle situation. BSSA and BSSB can be coordinated to transmit simultaneously, thus leading
to the new kind of inter-BSS interactions depicted in Figure 4.2(b). As shown, the introduced
coordinated transmissions allow, for instance, the simultaneous transmission of all the BSSs in
the stateABSRC. Similarly to 11ax OBSS/PD-based SR, the coordinated transmission requires
adjusting the transmit power in order not to affect the primary transmissions (i.e., the ones
started by the sharing nodes). In this case, the transmit power of both sharing and shared APs
is negotiated based on the DLARIL of the intended receivers. The fact of keeping track of the
interference supported by each STA allows improving further the quality of the transmissions
resulting from the SR operation.

4.2 Spatial Reuse in the Komondor Simulator
To devise the potential gains that SR can provide to next-generation dense wireless networks,
we introduce the 11ax-oriented Komondor simulator, which is presented in Paper #4. Komon-
dor has been conceived to i) allow the low-cost integration of novel mechanisms included in
new IEEE 802.11 standards, ii) simulate high-dense deployments, and iii) include the operation
of sequential learning algorithms within the simulation of the network.
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APA APB

Coordinated BSSs

STABSTAA

APC
STAC

Non-coordinated BSS

Inter-BSS
interference

DLARIL

(a) Deployment (b) CTMN

Figure 4.2: Example of the CTMN model for IEEE 802.11be C-SR.

4.2.1 Spatial Reuse Implementation
To characterize the behavior of WLANs realistically, Komondor reproduces actual transmis-
sions on a per-packet basis. This is enabled by the COST library [170], which allows building
interactions between components in Komondor (e.g., wireless nodes, buffers, packets) through
synchronous and asynchronous events. The behavior of the Distributed Coordination Func-
tion (DCF) in Komondor has been validated against ns-3, and the CTMN [168] and Bianchi
models [158]. Based on that, we provided the following implementation of the 11ax OBSS/PD-
based SR operation (see Figure 4.3):

• Devices implementing SR must announce that they support the operation so that devices
in an OBSS are setup.

• When initiating a transmission SR-enabling (i.e., other devices can transmit concur-
rently), a device must indicate its BSS Color and SRG.

• Devices implementing SR can take advantage of SR-enabling transmissions and transmit
concurrently. The following conditions must hold for any detected transmission (i.e., the
received power is above the minimum CCA/CS threshold):

– The detected transmission must indicate support for SR.

– The detected transmission must belong to a different BSS Color set or SRG than
the device detecting the SR-based TXOP.

– The power detected from the transmission must not exceed the OBSS/PD threshold.

– The transmit power to be used in the concurrent transmission must be limited ac-
cording to the SR rules (see Chapter 2).

• In case of not meeting the abovementioned requirements, it is not possible to transmit
during the SR-based TXOP, so the device activates a Network Allocation Vector (NAV)
timer (intra and inter-BSS NAVs are differentiated).
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Figure 4.3: Implementation of IEEE 802.11ax OBSS/PD-based SR in Komondor.

The IEEE 802.11ax SR operation has also been developed for ns-3, but it has been published
very recently1. In particular, we provided the implementation in Komondor as a complemen-
tary way to characterize and understand SR. Notice that ns-3 includes an exhaustive model of
the PHY, whereas the primary goal of this thesis lies in the MAC interactions occurring when
using SR. Related to this, the lower complexity of Komondor allows us to simulate high-density
deployments with reasonable simulation times. Apart from that, Komondor continues provid-
ing extended features of 11ax SR. The ns-3 implementation includes baseline OBSS/PD-based
SR with constant thresholds. In contrast, Komondor allows us to easily introduce algorithms to
adjust the OBSS/PD threshold dynamically. Besides, the implementation of SRGs is provided
to explore its potential utilization in future IEEE 802.11 amendments.

4.2.2 Agents-based Implementation

Regarding the integration of ML mechanisms into the simulation of networks, we find the inte-
gration of AI Gym with ns-3 [171], which provides a discrete interaction between the simulated
network components and AI libraries. When it comes to Komondor, a fully integrated imple-
mentation of agents was provided. These agents interact with simulated network nodes for
providing monitoring, processing, and decision-making functionalities. In particular, different
communication-based approaches are considered to enable the application of decentralized,
distributed, centralized, and hybrid ML mechanisms (see Figure 4.4).

On designing sequential learning mechanisms in Komondor, the following considerations
should be taken into account:

• Agents acquire information from BSSs as the simulation progresses (e.g., on a periodical-
basis). The information retrieval interval depends on the established monitoring phase,

1https://gitlab.com/nsnam/ns-3-dev/-/tags/ns-3.30
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Figure 4.4: Agents implementation in Komondor.

which entails a trade-off between the delay in making decisions and the quality of the
sample extracted from monitoring.

• The information acquired by agents can be later shared among other BSSs or with a cen-
tralized entity, thus allowing to build cooperative, distributed, or centralized mechanisms.
Agents with different purposes can coexist.

• The communication among agents and APs can incur certain costs (e.g., delay, overhead).
Besides, packet losses can be included when agents exchange information, which may
impact the learning procedure followed by agents.
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Chapter 5

MAIN FINDINGS

In this Chapter, we present the main findings of this dissertation, which result from the analysis
of the 11ax SR operation and the proposed ML application. Paper #5 and Paper #6 focus on
the model, characterization, and analysis of IEEE 802.11 SR, thus aiming to show the poten-
tial achievable gains of this technology. Then, Paper #1, Paper #2 and Paper #3 study the
applicability of sequential learning for SR through different proposed mechanisms. Specifi-
cally, Paper #1 proposes a multi-agent setting in which players implement a stateless version
of Q-learning [172, 173] to optimize a selfish reward based on the local throughput. Similarly,
Paper #2 and Paper #3 propose the utilization of MABs for addressing the multi-agent SR
problem. While Paper #2 analyzes the impact of different algorithms (ε-greedy, EXP3, UCB,
and Thompson sampling) in selfish settings, Paper #3 extends the analysis to collaborative re-
wards. Finally, Paper #6, Paper #7, and Paper #8 delve into the necessary infrastructure and
tools to carry out the main object of study of this thesis.

Finding #1: SR is a fair mechanism that allows increasing the number of simultane-
ous transmissions in dense OBSSs, thus enhancing the throughput in high-interference
scenarios.

The analysis of 11ax SR has been conducted in Paper #5 and Paper #6 for residential
and enterprise-like Wi-Fi deployments (see Figure 5.1). Our results compare the legacy setting
(CCA/CS is used for all the transmissions) to SR with the best OBSS/PD threshold. In the first
place, Figure 5.2 shows the throughput experienced by the BSSs in an overlapping deployment
for different network densities and traffic load values. Solid bars refer to the performance
achieved by the BSS implementing SR, while dashed bars are for the rest of overlapping BSSs.

The first important conclusion is that SR is a fair mechanism that protects the detected
legacy transmissions to transmit in SR mode. Notice that the performance of BSSs that are
not applying SR (dashed bars) is barely affected when SR is applied by other BSSs (solid
bars). This has been shown to occur independently from the network density and the traffic
load. Besides, we have shown that BSSs applying SR can overcome high-interference settings
that lead to suffering starvation and other performance anomalies (e.g., collisions). This is
also a remarkable result, which indicates the potential of increasing the number of concurrent
transmissions in dense WLAN deployments.
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Figure 5.1: Residential and enterprise-like deployments to evaluate the performance gains of
IEEE 802.11ax Spatial Reuse.

(a) Network density (b) Traffic load

Figure 5.2: Throughput gains obtained by IEEE 802.11ax Spatial Reuse in comparison to de-
fault carrier sensing approaches. Different network densities and traffic load values have been
considered.

Finding #2: SR allows to significantly improve the delay in dense deployments.

This finding is illustrated in Figure 5.3, which shows the Cumulative Distribution Function
(CDF) of the delay for different network densities and traffic load values. As for the through-
put evaluation, solid lines refer to the performance achieved by the BSS implementing SR,
while dashed lines are for the rest of overlapping BSSs. As illustrated, the probability of ex-
periencing a high delay increases rapidly with the traffic load and the deployment’s density.
Nevertheless, the SR operation provides a substantial improvement in the delay, thus outper-
forming the legacy carrier sensing approach. The leading cause of this improvement lies in the
number of simultaneous transmissions that are allowed through SR. Paper #5 and Paper #6
fully describe this finding.
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Figure 5.3: CDF of the delay gains obtained by IEEE 802.11ax Spatial Reuse in comparison
to default carrier sensing approaches. Different network densities and traffic load values have
been considered.

Finding #3: The lack of coordination of the IEEE 802.11ax SR mechanism prevents
providing further performance gains in dense deployments.

Although SR has been shown to enhance current IEEE 802.11ax deployments, its perfor-
mance is bounded by the following characteristics:

• The current transmit power limitation is too conservative, and further gains are expected
if it is properly adjusted by BSSs participating in SR-based transmissions.

• The lack of coordination among BSSs implementing SR prevents to find the optimal
scheduling allocations. Through coordinated transmissions, BSSs can determine the op-
timal set of transmitter-receiver nodes in each SR-based transmission.

• The rigidity of the current approach, which is applied homogeneously in a BSS instead
of considering per-STA behavior.

• SR is not combined with other technologies such as OFDMA or beamforming, which is
expected to provide further performance gains.

Paper #5 and Paper #6 give some insights regarding this finding. Apart from that, in Fig-
ure 5.4, we devise the potential gains provided by CSR in comparison to the default carrier
sensing approach and the 11ax OBSS/PD-based SR operation. Notice that the obtained results
are preliminary since the CSR is currently under study and is part of the future work. In partic-
ular, we study the effect of coordination in a simple deployment with two BSSs, namely BSSA

and BSSB. As illustrated, the fact of coordinating the transmissions held between the devices
in BSSA and BSSB allows improving the transmit power used in each case, thus granting a
higher throughput.
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Figure 5.4: Further SR gains provided by CSR in comparison to default carrier sensing and
OBSS/PD-based SR.

Finding #4: Sequential learning mechanisms for multi-agent SR allow improving the
performance of WLANs but may fail at finding a global optimum due to the competition
among BSSs.

To address the SR problem in decentralized WLANs, we proposed the application of dif-
ferent multi-player sequential learning approaches, which vary according to the available infor-
mation that agents have about the surrounding environment (i.e., other players).

In Papers #1 and Paper #2, we studied the effects of using selfish rewards (local informa-
tion only) in competitive settings where multiple agents coexist. We showed that the concurrent
learning operation may lead to a competitive setting, which affects the learning procedure car-
ried out by each agent. In particular, the joint learning operation was shown to prevent finding
the optimal global configuration and potentially leading to a high variability on the rewards
obtained by each agent (intermittent good/poor performance depending on the neighbor deci-
sions). These effects were shown to be motivated by the throughput demands of individual
agents, making the global function highly non-convex. In turn, the selfish setting was also
shown to boost fairness in some situations. This is the case where the global optimum solution,
which depends on each agent (e.g., location, set of available configurations), favors collabora-
tion among BSSs, even if individual rewards are selfish. Note, as well, that the variability issues
that arise from this kind of multi-agent deployments can be mitigated from an implementation
point of view (e.g., define stop goals, enforce mechanisms for convergence, reduce the learning
rate).

The effects of learning SR selfishly in a multi-player setting are summarized in Figure 5.5,
which shows the throughput evolution of four BSSs that apply sequential learning for tuning
both the sensitivity and the transmit power. As shown, the concurrent learning operation pre-
vents reaching the optimal individual performance (depicted by the red dashed line). Regarding
stability aspects, we noticed that the provided algorithms converged slowly to a stable config-
uration. Nevertheless, the learning procedure is characterized by a high throughput variability.
The leading cause lies in the competitive setting, whereby agents intermittently select good and
bad performing actions. In practice, agents end up picking a protective configuration to tackle
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the operation of the other nodes. This prevents to reach the global optimum.

Figure 5.5: Implications of learning SR selfishly in a multi-player setting.

Finding #5: Collaborative rewards enhance fairness in decentralized settings, but neither
ensure reaching an optimal global solution.

In Paper #2, we also studied the performance of collaborative settings, whereby the reward
of an individual agent takes into consideration the performance of the other players. In this
regard, we observed that collaborative rewards are useful to prevent unfairness, but face the
same challenges as selfish approaches for converging to an optimal global solution. In the first
place, each agent is responsible for its own action set but has no control on the joint action
profile. Therefore, the action-selection procedure is kept decentralized. Otherwise, due to the
combinatorial nature of the problem, the complexity would grow very fast. Apart from that,
the global optimization function has multiple maximums, even if it is based on a collaborative
metric.

To illustrate the effect of using cooperative rewards in a multi-player setting, Figure 5.6
shows the average throughput and the max-min throughput obtained in random enterprise-
like deployments, for different network densities. The default (static) configuration is com-
pared to learning approaches based on non-cooperative (selfish) and cooperative (environment-
aware) rewards. As illustrated, the cooperative reward allows improving fairness (shown in
Figure 5.6(b)), but leads to a lower overall performance if compared to the selfish mechanism
(shown in Figure 5.6(a)).

For completeness, Figure 5.7 shows the probability for the considered sequential learning
approaches (both for selfish and collaborative settings) to improve the performance obtained
by the legacy configuration. In particular, Figure 5.7(a) shows the improvement probability in
terms of average throughput, whereas Figure 5.7(b) focuses on fairness (the max-min through-
put is considered). As illustrated, both selfish and collaborative settings have a high hit rate for
enhancing the default static configuration in the considered random deployments. This result
demonstrates the robustness of sequential learning to the network topology.
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(a) Average throughput (b) Max-min throughput

Figure 5.6: Performance evaluation of cooperative and non-cooperative rewards in a multi-
player setting.

(a) Average throughput (b) Max-min throughput

Figure 5.7: Probability for sequential learning approaches (selfish and collaborative) to improve
the default configuration in random deployments of different sizes.

Finally, to show the superiority of ML over hand-crafted mechanisms for SR, we consider
the RTOT mechanism [40], which implements the 11ax OBSS/PD-based SR operation. Fig-
ure 5.8 compares the average throughput obtained by RTOT (with the margin parameter set to
33 dBm) and selfish Thompson sampling. Besides, the results for the default CCA/CS con-
figuration are included. The performance evaluation has been carried out in an enterprise-like
scenario with 6 BSSs. As shown, the ML approach improves the performance of the introduced
hand-crafted mechanism, thus showing adaptability in complex scenarios.

Finding #6: Bayesian-based exploration methods have the potential to address the non-
stochasticity behind decentralized SR.

Regarding the learning procedure in decentralized SR (both selfish and collaborative set-
tings), in Paper #2, we showed that Bayesian-based exploration methods (e.g., Thompson
sampling) perform well and grant better results than other types of algorithms that are in-
deed oriented to adversarial settings (e.g., EXP3). Notice that, as a result of the competition
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Figure 5.8: Implications of learning SR selfishly in a multi-player setting.

among multi-player SR agents, rewards distributions are highly non-stationary. Nevertheless,
Bayesian exploration allows quick tracking of the best/worst performing actions but fails at
identifying more subtle interactions when learning decentralized SR. This is illustrated in Fig-
ure 5.9, which shows the temporal evolution of throughput obtained in an OBSS, for differ-
ent exploration strategies. We considered the popular algorithms ε-greedy, EXP3, UCB, and
Thompson sampling (TS). In the proposed setting, all the strategies allow finding the optimal
global performance. Nevertheless, Thompson sampling does it more efficiently, thus reducing
the variability on the throughput that results from exploration.

Figure 5.9: Temporal throughput achieved in an OBSS when applying different exploration
methods in a multi-player setting.

Finding #7: Network dynamics and lack of information in local agents can severely
affect the performance of sequential learning algorithms for decentralized SR.

In Paper #3, we delved into practical aspects on the application of sequential learning to
the decentralized SR problem (results are summarized in Figure 5.10):

1. Networks are dynamic in different aspects (on/off devices, mobility, varying traffic re-
quirements, channel fluctuations, etc.). This requires ML mechanisms to adapt to changes
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in the network, which entails the trade-off between old and new knowledge (how to as-
sess data are becoming obsolete?). In this regard, we studied the effect of maintaining
past information in sequential learning when significant changes in the network occur.
In particular, we consider an OBSS whose topology changes radically at a given point
(iteration 500). Figure 5.10(a) shows the temporal evolution of the overall performance
as a result of applying sequential learning. The fact is that multi-player MAB algorithms
are shown to adapt to sudden changes in the network topology, which modify the global
optimum completely. However, finding a joint configuration that improves the new sit-
uation’s performance requires several training iterations, which may degrade network
throughput if changes occur too fast.

2. Sequential learning algorithms typically require rewards to be normalized. This nor-
malization procedure is evident when the maximum achievable performance is known.
However, this bound is unknown to the devices implementing SR and should, therefore,
be approximated (e.g., by the maximum theoretical capacity, by the maximum data rate
given the selected MCS, etc.). The fact of not knowing the upper bound reward of a
given agent has implications on how learning is carried out (e.g., high variability, getting
stuck in suboptimal actions, etc.). To study the effect of approximating the upper bound
reward, we have considered a multi-agent setting composed of two BSSs. The temporal
throughput of each BSS is shown in Figure 5.10(b), which compares the learning pro-
cedure that results from a known (in blue) and an approximated (in red) upper bound
reward. As illustrated, the approximated metric leads to a higher throughput variability
since agents cannot precisely differentiate optimal actions from others leading to lower
performance.

3. Sharing a reward in a collaborative setting can be challenging for the SR problem. The
fact is that inter-agent interactions appear/disappear according to the sensitivity and the
transmit power, which is a key impediment for agents to learn the hidden reward distribu-
tions of each action. Sharing the reward with the appropriate neighbors is therefore criti-
cal. To show the possible effects of not sharing the reward properly, we have considered
a two BSS deployment. We compare long and short-range reward sharing approaches
(i.e., the radius used to determine the set of agents that share a reward). Figure 5.10(c)
shows the temporal throughput evolution of the two BSSs for each of the reward sharing
approach. In this case, the short-range approach is the best since it allows considering
only the agents that are implied in the spatial interactions (in red). In turn, the long-range
sharing approach (in blue) leads to suboptimal performance because the throughput of
independent agents is considered for building a collaborative reward, hence introducing
noise to the learning procedure.
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(a) Network dynamics (b) Approximated upper bound (c) Collaboration considerations

Figure 5.10: Practical considerations for the application of sequential learning to decentralized
Spatial Reuse.
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Chapter 6

CONCLUDING REMARKS

In this thesis, we investigated the viability of addressing SR in future IEEE 802.11 WLANs
from a decentralized perspective. To that purpose, we first provided an in-depth study of the
current 11ax SR operation and analyzed its ways forward through the 11be amendment. Then,
we proposed the use of ML for addressing the uncertainty and non-stochasticity resulting from
the concurrent adaptation of sensitivity and transmit power by devices in an OBSS. This ap-
proach entails a set of challenges related to multi-player agent settings, which are also studied in
this thesis. In particular, the competition among nodes leads to a game-theoretic setting, where
notions on equilibriums gain significance. In this regard, we showed the main challenges that
WLANs may face when applying sequential learning mechanisms for SR, including efficiency
and convergence aspects. In order to conduct our research, we analytically modeled the SR
operation and analyzed the new kind of interactions among BSSs. Besides, we implemented
the 11ax SR operation in an ML-enabling network simulator, which allowed us to study the
performance gains of SR and the proposed solutions based on sequential learning.

Our main findings confirm the potential of SR for improving dense wireless networks’
capacity, especially on enhancing the average delay in an OBSS. Apart from that, we have
shown that the decentralized SR mechanisms proposed in this thesis outperform current carrier
sensing approaches, especially in dense enterprise and residential-like scenarios. Addressing
the SR problem through a multi-agent setting allows reducing the complexity of the global
problem by dividing it into smaller problems, which favors local adaptability and specialization.
However, the application of ML in a multi-player setting may lead to a set of implications
affecting the fairness and the global performance of an OBSS. We based part of our research
on analyzing the effects of selfish and collaborative methods for multi-agent SR.

We left as future work the potential of coordinated and centralized mechanisms to further
enhance SR in next-generation WLANs. In this regard, an interesting topic lies in the trade-
off between the potential achievable improvements and the corresponding overhead, which
may include data acquisition, data exchange, or synchronization. Future research work also
encompasses the convergence of SR with other technologies such as beamforming and null
steering [88], OFDMA [174,175], multiple antenna systems [176], or scheduled transmissions
[177], and whether their joint operation can improve separate optimization. In this regard, AI
may contribute to addressing the inherent complexity of end-to-end communications systems,
thus revealing the potential of moving beyond block-based optimization. Finally, regarding the
multi-agent setting, important research questions remain open concerning convergence aspects
or training under dynamic topologies.
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Implications of Decentralized Q-learning Resource Allocation

in Wireless Networks

Francesc Wilhelmi, Boris Bellalta, Cristina Cano, and Anders Jonsson

Abstract

Reinforcement Learning is gaining attention by the wireless networking community due to
its potential to learn good-performing configurations only from the observed results. In this
work we propose a stateless variation of Q-learning, which we apply to exploit spatial reuse
in a wireless network. In particular, we allow networks to modify both their transmission
power and the channel used solely based on the experienced throughput. We concentrate in a
completely decentralized scenario in which no information about neighbouring nodes is available
to the learners. Our results show that although the algorithm is able to find the best-performing
actions to enhance aggregate throughput, there is high variability in the throughput experienced
by the individual networks. We identify the cause of this variability as the adversarial setting
of our setup, in which the most played actions provide intermittent good/poor performance
depending on the neighbouring decisions. We also evaluate the effect of the intrinsic learning
parameters of the algorithm on this variability.

1 Introduction

Reinforcement Learning (RL) has recently spread use in the wireless communications field to solve
many kinds of problems such as Access Point (AP) association [1], channel selection [2] or transmit
power adjustment [3], as it allows learning good-performing configurations only from the observed
results. Among these, Q-learning has been applied to dynamic channel assignment in mobile net-
works in [4] and to automatic channel selection in Femto Cell networks in [5]. However, to the best
of our knowledge, the case of a fully decentralized scenario where nodes do not have knowledge from
each other, has not yet been considered.

In this work we propose a stateless variation of Q-learning in which nodes select the transmission
power and channel to use solely based on their resulting throughput. We concentrate on a fully
decentralized scenario where no information about the actions and resulting performance of the
other nodes is available to the learners. Note that inferring the throughput of neighbouring nodes
allocated to different channels is costly as periodic sensing in the other channels would then be
needed. We aim to characterize the performance of Q-learning in such scenarios, obtaining insight
on the most played actions (i.e., channel and transmit power selected) and the resulting performance.
We observe that when no information about the neighbours is available to the learners, these will
tend to apply selfish strategies that result in alternating good/poor performance depending on the
actions of the others. In such scenarios, we show that the use of Q-learning allows each network to
find the best-performing actions, though without reaching a steady solution. Note that achieving a
steady solution in a decentralized environment relies in finding a Nash Equilibrium, a concept used
in Game Theory to define a set of individual strategies that maximize the profits of each player in
a non-cooperative game, regardless of the others’ strategy. Formally, a set of best player actions
a∗ = (a∗1, ..., a

∗
n) ∈ A leads to a Nash Equilibrium if a∗i ∈ Bi(a∗−i),∀i ∈ N , where Bi(a−i) is the best

response to the others actions (a−i). Thus, the consequences of not reaching a Nash Equilibrium
can have an impact on performance variability.

In addition, we look at the resulting performance in terms of throughput when varying several
parameters intrinsic to the learning algorithm, which helps in understanding the interactions between
the degree of exploration and learning rate, and the variability of the resulting performance.

The remaining of this document is structured as follows: Section 2 introduces the simulation
scenario and considerations. Then, Section 3 presents our Stateless variation of Q-learning and its
practical implementation for the resource allocation problem in Wireless Networks (WNs). Simu-
lation results are later discussed in Section 4. Finally, some final remarks are provided in Section
5.
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2 System model

For the remainder of this work, we consider a scenario in which several WNs are placed in a 3D-
map (with parameters described later in Section 4.1), each one formed by an Access Point (AP)
transmitting to a single Station (STA) in downlink manner.

2.1 Channel modelling

Path-loss and shadowing effects are modelled using the log-distance model for indoor communica-
tions. The path-loss between WN i and j is given by

PLi,j = Ptx,i − Prx,j =

= PL0 + 10αPL log10(di,j) + Gs +
di,j
dobs

Go,

where Ptx,i is the transmitted power in dBm by WN i, Prx,j is the power in dBm received in WN j,
PL0 is the path-loss at one meter in dB, αPL is the path-loss exponent, di,j is the distance between
the transmitter and the receiver in meters, Gs is the shadowing loss in dB, and Go is the obstacles
loss in dB. Note that we include the factor dobs, which is the distance between two obstacles in
meters.

2.2 Throughput calculation

By using the power received and the interference, we calculate the maximum theoretical throughput
of each WN i at time t ∈ {1, 2...} by using the Shannon Capacity.

Γi,t = B log2(1 + SINRi,t),

where B is the channel bandwidth and the experienced Signal to Interference plus Noise Ratio
(SINR) is given by:

SINRi,t =
Pi,t

Ii,t + N
,

where Pi,t and Ii,t are the received power and the sum of the interference at WN i at time t,
respectively, and N is the floor noise power. For each STA in a WN, the interference is considered to
be the total power received from all the APs of the other coexisting WNs as if they were continuously
transmitting. Adjacent channel interference is also considered in Ii,t, i ∈ {1, ..,W}, where W is the
number of neighbouring WNs. We consider that the transmitted power leaked to adjacent channels
is 20 dBm lower for each channel separation.

3 Decentralized Stateless Q-learning for enhancing Spatial
Reuse in WNs

Q-learning [6] is an RL technique that enables an agent to learn the optimal policy to follow in
a given environment. A set of possible states describing the environment and actions are defined
in this model. In particular, an agent maintains an estimate of the expected long-term discounted
reward for each state-action pair, and selects actions with the aim of maximizing it. The expected
cumulative reward Vπ(s) is given by:

Vπ(s) = lim
N→∞

E
( N∑

t=1

rπt (s)
)
,

where rπt (s) is the reward obtained at iteration t after starting from state s and by following policy
π. Since the reward may easily get unbounded, a discount factor parameter (γ < 1) is used. The
optimal policy π∗ that maximizes the total expected reward is given by the Bellman’s Optimality
Equation [?]:

Q∗(s, a) = E
{
rt+1 + γmaxa′Q

∗(st+1, a
′)|st = s, at = a

}
.

Henceforth, Q-learning receives information about the current state-action tuple (st, at), the gener-
ated reward rt and the next state st+1, in order to update the Q-table:

Q̂(st, at)← (1− αt)Q̂(st, at) + αt

(
rt + γ

(
max
a′
Q̂(st+1, a

′)
))
,
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where αt is the learning rate at time t, and max
a′
Q̂(st+1, a

′) is the best estimated value for the

next state st+1. The optimal solution is theoretically achieved with probability 1 if
∑∞
t=0 αt = ∞,

and
∑∞
t=0 α

2
t < ∞, which satisfies that lim

t→∞
Q̂(s, a) = Q∗(s, a). Since we focus on a completely

decentralized scenario where no information about the other nodes is available, the system can then
be fully described by the set of actions and rewards.1 Thus, we propose using a stateless variation
of the original Q-learning algorithm. To implement decentralized learning to the resource allocation
problem, we consider each WN to be an agent running Stateless Q-learning through an ε-greedy
action-selection strategy, so that actions a ∈ A correspond to all the possible configurations that can
be chosen with respect to the channel and transmit power. During the learning process we assume
that WNs select actions sequentially, so that at each learning iteration, every agent takes an action
in an ordered way. The order at which WNs choose an action at each iteration is randomly selected
at the beginning of it. The reward after choosing an action is set as:

ri,t =
Γi,t
Γ∗i

,

where Γi,t is the experienced throughput at time t by WN i ∈ {1, ..., n}, being n the number of WNs
in the scenario, and Γ∗i = B log2(1 + SNRi) is WN i maximum achievable throughput (i.e., when it
uses the maximum transmission power and there is no interference). Each WN applies the Stateless
Q-learning as follows:

• Initially, it sets the estimates of its actions k ∈ {1, ...,K} to 0: Q̂(ak) = 0.

• At each iteration, it applies an action by following the ε-greedy strategy, i.e., it selects the
best-rewarding action with probability 1 − εt, and a random one (uniformly distributed) the
rest of the times.

• After choosing action ak, it observes the generated reward (the relative experienced through-
put), and updates the estimated value Q̂(ak).

• Finally, εt is updated to follow a decreasing sequence: εt = ε0√
t
.

Note, as well, that the optimal policy cannot be derived for the presented scenario, but it can be
approximated to enhance spatial reuse. This is due to the nature of the presented environment,
as well as WNs decisions affect the others performance. Formally, the implementation details of
Stateless Q-learning are described in Algorithm 1. The presented learning approach is intended to
operate at the PHY level, allowing the operation of the current MAC-layer communication standards
(e.g., in IEEE 802.11 WLANs, the channel access is governed by the CSMA/CA operation, so that
Stateless Q-learning may contribute to improve spatial reuse at the PHY level).

Algorithm 1: Stateless Q-learning

1 Function Stateless Q-learning (SINR,A);
Input : SINR: Signal-to-Interference-plus-Noise Ratio sensed at the STA

A: set of possible actions in {1, ..., K}
Output: Γ: Mean throughput experienced in the WN

2 initialize: t = 0, Q̂(ak) = 0,∀ak ∈ A
3 while active do

4 Select ak





argmax
k=1,...,K

Q̂(ak), with prob 1− ε

i ∼ U(1,K), otherwise

5 Observe reward rak =
Γak,t

Γ∗

6 Q̂(ak)← Q̂(ak) + α ·
(
rak + γ ·max Q̂− Q̂(ak)

)

7 εt ← ε0/
√
t

8 t← t+ 1

9 end

1Local information like the observed instantaneous channel quality could be incorporated in the state definition.
However, such a description of the system entails increased complexity.
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4 Performance Evaluation

In this section we introduce the simulation parameters, describe the experiments.2 and show the
main results.

4.1 Simulation Parameters

According to [7], a typical high-density scenario for residential buildings contains 0.0033APs/m3.
We then consider a map scenario with dimensions 10× 5× 10 m containing 4 WNs that form a grid
topology in which STAs are placed at the maximum possible distance from the other networks. This
toy scenario allows us to study the performance of Stateless Q-learning in a controlled environment
, which is useful to check the applicability of RL in WNs by only using local information 3. We
consider that the number of channels is equal to half the number of coexisting WNs, so that we can
study a challenging situation regarding the spatial reuse. Table 1 details the parameters used.

Parameter Value
Map size (m) 10× 5× 10
Number of coexistent WNs 4
APs/STAs per WN 1 / 1

Distance AP-STA (m)
√

2
Number of Channels 2
Channel Bandwidth (MHz) 20
Initial channel selection model Uniformly distributed
Transmit power values (dBm) {5, 10, 15, 20}
PL0 (dB) 5
αPL 4.4
Gs (dB) Normally distributed with mean 9.5
Go (dB) Uniformly distributed with mean 30
dobs (meters between two obstacles) 5
Noise level (dBm) -100
Traffic model Full buffer (downlink)

Table 1: Simulation parameters

4.2 Optimal solution

We first identify the optimal solutions that maximize: i) the aggregate throughput, and ii) the
proportional fairness, which is computed as the logarithmic sum of the throughput experienced by
each WN, i.e., PF = max

k∈A

∑
i log(Γi,k). The optimal solutions are listed in Table 2. Note that, since

the considered scenario is symmetric, there are two equivalent solutions. Note, as well, that in order
to maximize the aggregate network throughput two of the WNs sacrifice themselves by choosing a
lower transmit power. This result is then not likely to occur in an adversarial selfish setting.

4.3 Input Parameters Analysis

We first analyse the effects of modifying α (learning rate), γ (discount factor) and ε0 (initial explo-
ration coefficient) with respect to the achieved network throughput. We run simulations of 10000
iterations and capture the results of the last 5000 iterations to ensure that the initial transitory
phase has ended. Each simulation is repeated 100 times for averaging purposes.

Figure 1 shows the average aggregate throughput achieved for each of the proposed combinations.
It can be observed that the best results with respect to the aggregate throughput, regarding both

2The code used for simulations can be found at https://github.com/wn-upf/Decentralized_Qlearning_

Resource_Allocation_in_WNs.git (Commit: eb4042a1830c8ea30b7eae3d72a51afe765a8d86).
3The analysis of the presented learning mechanisms in more congested scenarios is left as future work.
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WN id
Action that maximizes the
Aggregate Throughput

Action that maximizes the
Proportional Fairness

1 1 (2) 7 (8)
2 1 (2) 8 (7)
3 7 (8) 7 (8)
4 8 (7) 8 (7)

Table 2: Optimal configurations (action indexes) to achieve the maximum network throughput and
prop. fairness, resulting in 1124 Mbps and 891 Mbps, respectively. In parenthesis the analogous
solution is shown. Actions indexes range from 1 to 8 are mapped to {channel number, transmit
power (dBm)}: {1,5}, {2,5}, {1,10}, {2,10}, {1,15}, {2,15},{1,20} and {2,20}, respectively.
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Figure 1: Effect of α, γ and ε0 in the average aggregate throughput (100 simulation runs per sample).
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Figure 2: Evaluation of α and γ.

average and variance, are achieved when α = 1, γ = 0.95 and ε0 = 1. This means that for achieving
the best results (i.e., high average aggregate throughput and low variance), the immediate reward
of a given action must be considered rather than any previous information (α = 1). We see that
the difference between the pay-off offered by the best action and the current one must also be
high (γ = 0.95). In addition, exploration must be highly boosted at the beginning (ε0 = 1). For
this setting, the resulting throughput (902.739 Mbps) represents 80.29% of the one provided by
the optimal configuration that maximizes the aggregate throughput (shown in Table 2). Regarding
proportional fairness, the algorithm’s resulting throughput is only 1.32% higher than the optimal.

We also evaluate the relationship between different values of α and γ in the average aggregate
throughput and standard deviation (shown in Figure 2). We observe a remarkably higher aggregate
throughput when α > γ. We also see that the variability between different simulation runs is much
lower when the average throughput is higher. Additionally, we note a peak in the standard deviation
when γ ≈ α and γ > α.

To further understand the effects of modifying each of the aforementioned parameters, we show
for different ε0, α and γ: i) the individual throughput experienced by each WN during the total
10000 iterations of a single simulation run (Figure 3), ii) the average throughput experienced by each
WN for the last 5000 iterations, also for a single simulation run (Figure 4), and iii) the probability
of choosing each action at each WN (Figure 5). We observe the following aspects:
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Figure 3: Individual throughput experienced by each WN during a single simulation run for different
ε0, α and γ.
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Figure 4: Average throughput experienced per WN during the last 5000 iterations of a total of 10000
iterations (in a single simulation run) and for different ε0, α and γ.

• In Figure 3 a high variability of the throughput experienced by each WN can be observed,
specially if ε0 is high (as in Figures 3(a), 3(c)). A high degree of exploration allows WNs
to discover changes in the resulting performance of their actions due to the activity of the
other nodes, which at the same time generates more variability (WN adapt to changes in the
environment).

• Despite the variability generated, we obtain fairer results for high ε0 (Figure 4). Henceforth,
there is a relationship between the variability generated and the average throughput fairness.

• Finally, in Figures 5(a) and 5(c) we observe that for the former, there are two favourite actions
that are being played the most, but for the latter there is only one preferred action. The lower
the learning rate (α), and consequently the discount factor (γ), the higher the probability of
choosing a unique action, which results to be the one that provided the best performance in
the past. The opposite occurs for higher α and γ values, since giving more importance to the
immediate reward allows for a reaction only to the recently-played actions of the neighbouring
nodes: the algorithm is short-sighted.

5 Conclusions

Decentralized Q-learning can be used to improve spatial reuse in dense wireless networks, enhancing
performance as a result of exploiting the most rewarding actions. We have shown in this article,
by means of a toy scenario, that Stateless Q-learning in particular allows finding good-performing
configurations that achieve close-to-optimal (in terms of throughput maximization and proportional
fairness) solutions.
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Figure 5: Probability of choosing the different actions at each WN for a single (10000 iterations)
simulation run and different ε0, α and γ values
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However, the competitiveness of the presented fully-decentralized environment involves the non-
existence of a Nash Equilibrium. Thus, we have also identified high variability in the experienced
individual throughput due to the constant changes of the played actions, motivated by the fact that
the reward generated by each action changes according to the opponents’ ones. We have evaluated
the impact of the parameters intrinsic to the learning algorithm on this variability showing that it
can be reduced by decreasing the exploration degree and learning rate. The individual reduction on
the throughput variability occurs at the expense of losing aggregate performance. This variability
can potentially result in negative effects on the overall WN’s performance. Throughput fluctuation
in higher layers of the protocol stack can have severe consequences depending on the time scale
at which they occur (e.g., noticing high fluctuations may trigger congestion recovery procedures in
TCP, which may harm the performance).

We left for future work to further extend the decentralized approach to find collaborative algo-
rithms that allow the neighbouring WNs to reach an equilibrium that grants acceptable individual
performance. Acquiring any kind of knowledge about the neighbouring WNs (by direct exchange or
inferred from observation) is assumed to solve the decentralization variability issues. Furthermore,
other learning approaches are intended to be analysed in the future for performance comparison in
the resource allocation problem.
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Abstract

Next-generation wireless deployments are characterized by being dense and uncoordinated,
which often leads to inefficient use of resources and poor performance. To solve this, we envision
the utilization of completely decentralized mechanisms to enable Spatial Reuse (SR). In particu-
lar, we focus on dynamic channel selection and Transmission Power Control (TPC). We rely on
Reinforcement Learning (RL), and more specifically on Multi-Armed Bandits (MABs), to allow
networks to learn their best configuration. In this work, we study the exploration-exploitation
trade-off by means of the ε-greedy, EXP3, UCB and Thompson sampling action-selection, and
compare their performance. In addition, we study the implications of selecting actions simulta-
neously in an adversarial setting (i.e., concurrently), and compare it with a sequential approach.
Our results show that optimal proportional fairness can be achieved, even when no information
about neighboring networks is available to the learners and Wireless Networks (WNs) operate
selfishly. However, there is high temporal variability in the throughput experienced by the in-
dividual networks, especially for ε-greedy and EXP3. These strategies, contrary to UCB and
Thompson sampling, base their operation on the absolute experienced reward, rather than on its
distribution. We identify the cause of this variability to be the adversarial setting of our setup
in which the set of most played actions provide intermittent good/poor performance depending
on the neighboring decisions. We also show that learning sequentially, even if using a selfish
strategy, contributes to minimize this variability. The sequential approach is therefore shown
to effectively deal with the challenges posed by the adversarial settings that are typically found
in decentralized WNs.

1 Introduction

Due to the growing popularity of wireless deployments, especially the ones based on the IEEE 802.11
standard (i.e., Wi-Fi), it is very common to find independent overlapping Wireless Networks (WNs)
sharing the same channel resources. The decentralized nature of such kind of deployments leads to
a significant lack of organization and/or agreement on sharing policies. As a result, resources are
typically used inefficiently. An illustrative example of this can be found in [1], where the authors
show that the power level used by wireless devices is typically set, by default, to the maximum,
regardless of the distance between communicating nodes, and the channel occupancy. Consequently,
increasing the capacity of such networks has become very challenging.

Wireless networks operate in three main domains: time, frequency and space. While the first
two have been largely exploited, the spatial domain still shows plenty of room for improvement.
According to [2], Spatial Reuse (SR) can be addressed by means of Transmission Power Control
(TPC), Carrier Sense Threshold (CST) adjustment, rate adaptation (related to power control), and
directional transmissions. In addition, interference cancellation can play a key role on spectral
efficiency optimization [3]. On one side, TPC and CST adjustment aim at increasing spectral
efficiency omnidirectionally. On the other hand, beamforming is meant for directional transmissions.
Both beamforming and interference cancellation can be categorized as multiple antenna strategies.
While the former allows to reduce the interference levels, the second one is useful to perform multiple
simultaneous transmissions.

In this work, we focus on Dynamic Channel Allocation (DCA) and TPC to address the de-
centralized SR problem. A proper frequency planning allows to reduce the interference between
wireless devices, and tuning the transmit power adds an extra level of SR that can result in im-
proved throughput and fairness. The application of TPC and DCA is particularly challenging by
itself. The interactions among devices depend on many features (such as position, environment
or transmit power) and are hard to derive. Including beamforming and/or interference cancellation
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techniques [4], on the other hand, requires first a clear understanding of TCP and DCA performance
alone, and is therefore left as future work.

Motivated by these challenges, we focus attention on Reinforcement Learning (RL), which has
recently emerged as a very popular method to solve many well-known problems in wireless com-
munications. RL allows to reduce the complexity generated in wireless environments by finding
practical solutions. By applying RL, optimal (or near-to-optimal) solutions can be obtained without
having a full understanding on the problem in advance. So, one of the main goals of this paper is to
show its feasibility for the decentralized SR problem. Some RL-based applications can be found for
packet routing [5], Access Point (AP) selection [6, 7], optimal rate sampling [8], or energy harvesting
in heterogeneous networks [9]. All these applications make use of online learning, where a learner
(or agent) obtains data periodically and uses it to predict future good-performing actions. Online
learning is particularly useful to cope with complex and dynamic environments. This background
encourages us to approach a solution for the decentralized SR problem in WNs through online
learning techniques.

From the family of online algorithms, we are interested on analyzing the performance of Multi-
Armed Bandits (MABs) [10] when applied to WNs. The MAB model is well-known in the online
learning literature for solving resource allocation problems. In MABs, a given agent seeks to learn a
hidden reward distribution while maximizing the gains. This is known as the exploration-exploitation
trade-off. Exploitation is meant to maximize the long-term reward given the current estimate, and
exploration aims to improve the estimate. Unlike classical RL, MABs do not consider states1 in
general, which can be hard to define for the decentralized SR problem presented in this work. On
the one hand, spatial interference cannot be binary treated, thus leading to complex interactions
among nodes. On the other hand, the adversarial setting unleashed by decentralized deployments
increases the system complexity. Therefore, the obtained reward does not only depends on the
actions taken by a given node, but also on the adversaries behavior.

This article extends our previous results presented in [11]. Here we generalize the contributions
done by implementing several action-selection strategies to find the best combination of frequency
channel and transmit power in WNs. These strategies are applied to the decentralized SR problem,
where independent WNs learn selfishly, based on their own experienced performance. On the one
hand, we evaluate the impact of varying parameters intrinsic to the proposed algorithms on the
resulting throughput and fairness. In addition, we analyze the effects of learning selfishly, and shed
light on the future of decentralized approaches. Notably, we observe that even though players act
selfishly, some of the algorithms learn to play actions that enhance the overall performance, some
times at the cost of high temporal variability. Considering selfish WNs and still obtaining collabo-
rative behaviors is appealing to typical chaotic and dynamic deployments. Finally, the adversarial
setting in WNs is studied under two learning implementations: namely concurrent and sequential.
Both procedures rule the operation followed by learners (based on the proposed action-selection
strategies). In particular, WNs select an action at the same time for the concurrent approach. In
contrast, an ordered action-selection procedure is followed for the sequential case. We study the
performance of the aforementioned techniques in terms of convergence speed, average throughput
and variability. The main contributions of this work are summarized below:

• We devise the feasibility of applying MAB algorithms as defined in the online learning literature
to solve the resource allocation problem in WNs.

• We study the impact of different parameters intrinsic to the action-selection strategies consid-
ered (e.g., exploration coefficients, learning rates) on network performance. In addition, we
analyze the implications derived from the application of different learning procedures, referred
to as concurrent and sequential, which rule the moment at which WNs act.

• We show the impact of learning concurrently and sequentially. In particular, the former leads
to a high throughput variability experienced by WNs, which is significantly reduced by the se-
quential approach. Accordingly, we envision the utilization of sequential approaches to achieve
decentralized learning in adversarial wireless networks.

• Finally, we show that there are algorithms that learn to play collaborative actions even though
the WNs act selfishly, which is appealing to practical application in chaotic and dynamic
environments. In addition, we shed light on the root causes of this phenomena.

1A state refers to a particular situation experienced by a given agent, which is defined by a set of conditions. By
having an accurate knowledge of its current situation, an agent can define state-specific strategies that maximize its
profits.
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The remaining of this document is structured as follows: Section 2 outlines relevant related work.
Section 3 introduces the proposed learning algorithms and their practical implementation for the
resource allocation problem in WNs. Then, Section 4 presents the simulation scenarios and the
considerations taken into account. The simulation results are later presented in Section 5. Finally,
Section 6 provides the final remarks.

2 Related Work

Decentralized SR has been considerably studied by the wireless research community. The authors
in [12] propose using relay nodes to re-transmit packets lost as a result of a collision. The relay node
is able to decode different signals from the environment and to detect if a collision took place. Then,
with the aim of improving the re-transmissions operation, it benefits from the current transmission to
forward the decoded packets to their original destinations. Although this method shows performance
improvements in dense scenarios where collisions are very likely to occur, its effectiveness is subject
to the network topology. Regarding directional transmissions, the authors in [13] propose two
novel access schemes to allow multiple simultaneous transmissions. In particular, nodes’ activity
information is sensed, which, together with antenna’s directionality information, allows to build a
new set of channel access rules.

Despite approaches based on directional transmissions and interference cancellation are very
powerful and allow to significantly increase SR, they strongly rely on having multiple antennas.
Such a requirement is not mandatory for the SR operation based on TPC and CST adjustment.
In this work, we focus on the former because tuning the transmit power has a direct impact on
the generated interference. This allows to purely study the interactions that occur among nodes
implementing decentralized SR. Moreover, we consider DCA to be combined with TPC, so that
further potential gains can be achieved.

DCA has been extensively studied from the centralized perspective, especially through techniques
based on graph coloring [14, 15]. Despite these kind of approaches allow to effectively reduce the
interference between WNs, a certain degree of communication is required. Regarding decentral-
ized methods, the authors in [16] propose a very simple approach in which each AP maintains an
interference map of their neighbors, so that channel assignment is done through interference mini-
mization. Unfortunately, the interactions among APs in the decentralized setting are not studied.
Separately, [17] proposes two decentralized approaches that rely on the interference measured at
both APs and stations (STAs) to calculate the best frequency channels for dynamic channel allo-
cation. To do so, a WN, in addition to the interference sensed by its associated devices, considers
other metrics such as the amount of traffic, so that some coordination is required at the neighbor
level (e.g., periodic reporting). The authors in [18] show that the decentralized DCA problem is
NP-hard. In addition, they propose a distributed algorithm whereby APs select the best channel
according to the observed traffic information (i.e., channel sensing is considered).

In this work we aim to extend the approach in [18] in two ways. First, we aim to provide
a flexible solution based on the performance achieved by a given WN. Second, we aim to tackle
the spatial domain through TPC, which has been shown to provide large improvements in wireless
networks [19]. However, dealing with the spatial dimension leads to unpredictable interactions in
terms of interference. Such a complexity is illustrated in [20], which performs power control and
rate adaptation in subgroups of Wireless Local Area Networks (WLANs). The creation of clusters
allows defining independent power levels between devices in the same group, which are useful to
avoid asymmetric links. However, to represent all the possible combinations, graphs can become
very large, especially in high-density deployments. When it comes to decentralized mechanisms,
we find the work in [21], which applies TPC based on real-time channel measurements [21]. The
proposed mechanism (so called Dynamic Transmission Power Control) is based on a set of triggered
thresholds that increase/decrease the transmit power according to the state of the system. The main
problem is that thresholds are set empirically (based on simulations), which limits the potential of
the mechanisms in front of multiple scenarios.

As shown by previous research, the optimal decentralized SR in WNs through TPC and DCA
is very hard to be derived analytically, mostly because of the adversarial setting and the lack of
information at nodes. The existing decentralized solutions barely provide flexibility with respect to
the scenario, so that potential use cases are disregarded. For that, we focus on online learning, and
more precisely Multi-Armed Bandits (MABs). The MAB framework allows to reduce the complexity
of the SR problem, since detailed information about the scenario is not considered. In contrast,
learners gain knowledge on all the adversaries as a whole, thus facing a single environment. To the
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best of our knowledge, there is very little related work on applying MAB techniques to the problem
of resource allocation in WNs. In [22], the authors propose modeling a resource allocation problem
in Long Term Evolution (LTE) networks through MABs. In particular, a set of Base Stations (BS)
learn the best configuration of Resource Blocks (RBs) in a decentralized way. For that purpose,
a variation of EXP3 (so-called Q-EXP3) is proposed, which is shown to reduce the strategy set.
Despite a regret bound is provided, it is subject to the fact that an optimal resource allocation
exists, i.e., every BS obtains the necessary resources. In addition, a large number of iterations is
required to find the optimal solution in a relatively small scenario, thus revealing the difficulties
shown by decentralized settings.

More related to the problem proposed here, the authors in [23] show a channel selection and power
control approach in infrastructureless networks, which is modeled through bandits. In particular,
two different strategies are provided to improve the performance of two Device to Device (D2D)
users (each one composed by a transmitter and a receiver), which must learn the best channel and
transmit power to be selected. Similarly to our problem, users do not have any knowledge on the
channel or the other’s configuration, so they rely on the experienced performance in order to find
the best configuration. An extension of [23] is provided by the same authors in [24], which includes a
calibrated predictor (referred in the work as forecaster) to infer the behavior of the other devices in
order to counter act their actions. In each agent, the information of the forecaster is used to choose
the highest-rewarding action with a certain probability, while the rest of actions are randomly
selected. Henceforth, assuming that all the networks use a given strategy X , fast convergence
is ensured. Results show that channel resources are optimally distributed in a very short time
frame through a fully decentralized algorithm that does not require any kind of coordination. Both
aforementioned works rely on the existence of a unique Nash Equilibrium, which favors convergence.
In contrast, in this article we aim to extend Bandits utilization to denser deployments, and, what
is more important, to scenarios with limited available resources in which there is not a unique Nash
Equilibrium (NE) that allows fast-convergence. Thus, we aim to capture the effects of applying
selfish strategies in a decentralized way (i.e., agent i follows a strategy Xi that does not consider the
strategies of the others) and we also provide insight about the importance of past information for
learning in dense WNs, which has not been studied before.

3 Multi-Armed Bandits for Improving Spatial Reuse in WNs

In this work, we address the decentralized SR problem through online learning because of the
uncertainty generated in an adversarial setting. The practical application of MABs in WNs is
detailed next:

3.1 The Multi-Armed Bandits Framework

In the online learning literature, several MAB settings have been considered such as stochastic
bandits [25–27], adversarial bandits [28, 29], restless bandits [30], contextual bandits [31] and linear
bandits [32, 33], and numerous exploration-exploitation strategies have been proposed such as ε-
greedy [27, 34], upper confidence bound (UCB) [26, 27, 35, 36], exponential weight algorithm for
exploration and exploitation (EXP3) [27, 28] and Thompson sampling [25]. The classical multi-
armed bandit problem models a sequential interaction scheme between a learner and an environment.
The learner sequentially selects one out of K actions (often called arms in this context) and earns
some rewards determined by the chosen action and also influenced by the environment. Formally,
the problem is defined as a repeated game where the following steps are repeated in each round
t = 1, 2, . . . , T :

1. The environment fixes an assignment of rewards ra,t for each action a ∈ [K]
def
= {1, 2, . . . ,K},

2. the learner chooses action at ∈ [K],

3. the learner obtains and observes reward rat,t.

The bandit literature largely focuses on the perspective of the learner with the objective of coming
up with learning algorithms that attempt to maximize the sum of the rewards gathered during the
whole procedure (either with finite or infinite horizon). As noted above, this problem has been
studied under various assumptions made on the environment and the structure of the arms. The
most important basic cases are the stochastic bandit problem where, for each particular arm a, the
rewards are i.i.d. realizations of random variables from a fixed (but unknown) distribution νa, and
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the non-stochastic (or adversarial) bandit problem where the rewards are chosen arbitrarily by the
environment. In both cases, the main challenge for the learner is the partial observability of the
rewards: the learner only gets to observe the reward associated with the chosen action at, but never
observes the rewards realized for the other actions.

Let ra∗,t and ra,t be the rewards obtained at time t from choosing actions a∗ (optimal) and
a, respectively. Then, the performance of learning algorithms is typically measured by the total
expected regret defined as

RT =
T∑

t=0

E [(ra∗,t − ra,t)] .

An algorithm is said to learn if it guarantees that the regret grows sublinearly in T , that is, if
RT = o(T ) is guaranteed as T grows large, or, equivalently, that the average regret RT /T converges
to zero. Intuitively, sublinear regret means that the learner eventually identifies the action with the
highest long-term payoff. Note, as well, that the optimal action a∗ is the same across all the rounds.
Most bandit algorithms come with some sort of a guaranteed upper bound on RT which allows for
a principled comparison between various methods.

3.2 Multi-Armed Bandits Formulation for Decentralized Spatial Reuse

We model the decentralized SR problem through adversarial bandits. In such a model, the reward
experienced by a given agent (WN) is influenced by the whole action profile, i.e., the configura-
tions used by other competing WNs. From a decentralized perspective, the adversarial setting poses
several challenges with respect to the existence of a NE. Ideally, the problem is solved if all the com-
petitors implement a pure strategy2 that allows maximizing a certain performance metric. However,
finding such a strategy may not be possible in unplanned deployments, due to the competition
among nodes and the scarcity of the available resources. Understanding the implications derived
from such an adversarial setting in the absence of a NE is one the main goals of this paper, which,
to the best of our knowledge, has been barely considered in the previous literature.

In particular, we model this adversarial problem as follows. Let arm a ∈ A (we denote the size
of A with K) be a configuration in terms of channel and transmit power (e.g., a1 = {Channel: 1,
TPC: -15 dBm}). Let Γi,t be the throughput experienced by WNi at time t, and Γ∗i the optimal
throughput.3 We then define the reward ri,t experienced by WNi at time t as:

ri,t =
Γi,t
Γ∗i
≤ 1,

In order to attempt to maximize the reward, we have considered the ε-greedy, EXP3, UCB and
Thompson sampling action-selection strategies, which are described next in this section. While
ε-greedy and EXP3 explicitly include the concepts of exploration coefficient and learning rate, re-
spectively, UCB and Thompson sampling are parameter-free policies that extend the concept of
exploration (actions are explored according to their estimated value and not by commitment). The
aforementioned policies are widely spread and considered of remarkable importance in the MAB
literature.

3.2.1 ε-greedy

The ε-greedy policy [27, 34] is arguably the simplest learning algorithm attempting to deal with
exploration-exploitation trade-offs. In each round t, the ε-greedy algorithm explicitly decides whether
to explore or exploit: with probability ε, the algorithm picks an arm uniformly at random (explo-
ration), and otherwise it plays the arm with the highest empirical return r̂k,t (exploitation).

In case ε is fixed for the entire process, the expected regret is obviously going to grow linearly as
Ω (εT ) in general. Therefore, in order to obtain a sublinear regret guarantee (and thus an asymp-
totically optimal growth rate for the total rewards), it is critical to properly adjust the exploration
coefficient. Thus, in our ε-greedy implementation, we use a time-dependent exploration rate of
εt = ε0/

√
t, as suggested in the literature [27]. The adaptation of this policy to our setting is shown

as Algorithm 1.

2A pure strategy NE is conformed by a set of strategies and payoffs, so that no player can obtain further benefits
by deviating from its strategy.

3The optimal throughput is achieved in case of isolation (i.e., when no interference is experienced in the selected
channel).
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Algorithm 1: Implementation of Multi-Armed Bandits (ε-greedy) in a WN. U(1,K) is a
uniform distribution that randomly chooses from 1 to K.

Input: SNR: information about the Signal-to-Noise Ratio received at the STA, A: set of
possible actions in {a1, ..., aK}

1 Initialize: t = 0, εt = ε0, rk = 0,∀ak ∈ A
2 while active do

3 Select ak





argmax
k=1,...,K

rk,t, with prob. 1− ε

k ∼ U(1,K), otherwise

4 Observe the throughput experienced Γt
5 Compute the reward rk,t = Γt

Γ∗ , where Γ∗ = B log2(1 + SNR)

6 εt ← ε0/
√
t

7 t← t+ 1

8 end

3.2.2 EXP3

The EXP3 algorithm [28, 29] is an adaptation of the weighted majority algorithm of [37, 38] to the
non-stochastic bandit problem. EXP3 maintains a set of non-negative weights assigned to each arm
and picks the actions randomly with a probability proportional to their respective weights (initialized
to 1 for all arms). The aim of EXP3 is to provide higher weights to the best actions as the learning
procedure proceeds.

More formally, letting wk,t be the weight of arm k at time t ∈ {1, 2...}, EXP3 computes the
probability pk,t of choosing arm k in round t as

pk,t = (1− γ)
wk,t∑K
i=1 wi,t

+
γ

K
,

where γ ∈ [0, 1] is a parameter controlling the rate of exploration. Having selected arm at, the
learner observes the generated pay-off rat,t and computes the importance-weighted reward estimates
for all k ∈ [K]

r̂k,t =
I{It=k}rk,t

pk,t
,

where I{A} denoting the indicator function of the event A taking a value of 1 if A is true and 0
otherwise. Finally, the weight of arm k is updated as a function of the estimated reward:

wk,t+1 = wk,te
η·r̂k,t
K ,

where η > 0 is a parameter of the algorithm often called the learning rate. Intuitively, η regulates
the rate in which the algorithm incorporates new observations. Large values of η correspond to
more confident updates and small values lead to more conservative behaviors. As we did for the
exploration coefficient in ε-greedy, we use a time-dependent learning rate of ηt = η0/

√
t [27]. Our

implementation of EXP3 is detailed in Algorithm 2.

Algorithm 2: Implementation of Multi-Armed Bandits (EXP3) in a WN

Input: SNR: information about the Signal-to-Noise Ratio received at the STA, A: set of
possible actions in {a1, ..., aK}

1 Initialize: t = 0, ηt = η0, wk,t = 1,∀ak ∈ A
2 while active do
3 pk,t ← (1− γ)

wk,t∑K
i=1 wi,t

+ γ
K

4 Draw ak ∼ pk,t = (p1,t, p2,t, ..., pK,t)
5 Observe the throughput experienced Γt
6 Compute the reward rk,t = Γt

Γ∗ , where Γ∗ = B log2(1 + SNR)
7 r̂k,t ← rk,t

pk,t

8 wk,t ← w
ηt
ηt−1

k,t−1 · eηt·r̂k,t
9 wk′,t ← w

ηt/ηt−1

k′,t−1 ,∀k′ 6= k

10 ηt ← η0√
t

11 t← t+ 1

12 end

68



“thesis˙main˙doc” — 2020/7/6 — 12:39 — page 69 — #81

3.2.3 UCB

The upper confidence bound (UCB) action-selection strategy [27, 35, 36] is based on the principle of
optimism in face of uncertainty : in each round, UCB selects the arm with the highest statistically
feasible mean reward given the past observations. Statistical feasibility here is represented by an
upper confidence bound on the mean rewards which shrinks around the empirical rewards as the
number of observations increases. Intuitively, UCB trades off exploration and exploitation very
effectively, as upon every time a suboptimal arm is chosen, the corresponding confidence bound will
shrink significantly, thus quickly decreasing the probability of drawing this arm in the future. The
width of the confidence intervals is chosen carefully so that the true best arm never gets discarded
accidentally by the algorithm, yet suboptimal arms are drawn as few times as possible. To obtain
the first estimates, each arm is played once at the initialization.

Formally, let nk be the number of times that arm k has been played, and Γk,t the throughput
obtained by playing arm k at time t. The average reward rk,t of arm k at time t is therefore given
by:

rk,t =
1

nk

nk∑

s=1

rk,s

Based on these average rewards, UCB selects the action that maximizes rk,t +
√

2 ln(t)
nk

. By doing

so, UCB implicitly balances exploration and exploitation, as it focuses efforts on the arms that are
i) the most promising (with large estimated rewards) or ii) not explored enough (with small nk).
Our implementation of UCB is detailed in Algorithm 3.

Algorithm 3: Implementation of Multi-Armed Bandits (UCB) in a WN

Input: SNR: information about the Signal-to-Noise Ratio received at the STA, A: set of
possible actions in {a1, ..., aK}

1 Initialize: t = 0, play each arm ak ∈ A once
2 while active do

3 Draw ak = argmax
k=1,...,K

rk +
√

2ln(t)
nk

4 Observe the throughput experienced Γt
5 Compute the reward rk,t = Γt

Γ∗ , where Γ∗ = B log2(1 + SNR)
6 nk ← nk + 1

7 rk ← 1
nk

∑nk
s=1 rk,s

8 t← t+ 1

9 end

3.2.4 Thompson sampling

Thompson sampling [25] is a well-studied action-selection technique that had been known for its ex-
cellent empirical performance [39] and was recently proven to achieve strong performance guarantees,
often better than those warranted by UCB [40–42]. Thompson sampling is a Bayesian algorithm: it
constructs a probabilistic model of the rewards and assumes a prior distribution of the parameters
of said model. Given the data collected during the learning procedure, this policy keeps track of
the posterior distribution of the rewards, and pulls arms randomly in a way that the drawing prob-
ability of each arm matches the probability of the particular arm being optimal. In practice, this is
implemented by sampling the parameter corresponding to each arm from the posterior distribution,
and pulling the arm yielding the maximal expected reward under the sampled parameter value.

For the sake of practicality, we assume that rewards follow a Gaussian distribution with a stan-
dard Gaussian prior, as suggested in [43]. By standard calculations, it can be verified that the
posterior distribution of the rewards under this model is Gaussian with mean and variance

r̂k(t) =

∑t−1
w=1:k rk(t)

nk(t) + 1

/
σ2
k(t) =

1

nk + 1
,

where nk is the number of times that arm k was drawn until the beginning of round t. Thus,
implementing Thompson sampling in this model amounts to sampling a parameter θk from the
Gaussian distribution N

(
r̂k(t), σ2

k(t)
)

and choosing the action with the maximal parameter. Our
implementation of Thompson sampling to the WN problem is detailed in Algorithm 4.
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Algorithm 4: Implementation of Multi-Armed Bandits (Thompson s.) in a WN

Input: SNR: information about the Signal-to-Noise Ratio received at the STA, A: set of
possible actions in {a1, ..., aK}

1 Initialize: t = 0, for each arm ak ∈ A, set r̂k = 0 and nk = 0
2 while active do
3 For each arm ak ∈ A, sample θk(t) from normal distribution N (r̂k,

1
nk+1 )

4 Play arm ak = argmax
k=1,...,K

θk(t)

5 Observe the throughput experienced Γt
6 Compute the reward rk,t = Γt

Γ∗ , where Γ∗ = B log2(1 + SNR)

7 r̂k,t ← r̂k,tnk,t+rk,t
nk,t+2

8 nk,t ← nk,t + 1
9 t← t+ 1

10 end

4 System model

For the remainder of this work, we study the interactions among several WNs placed in a 3-D
scenario that occur when applying MABs in a decentralized manner (with parameters described later
in Section 4.4). For simplicity, we consider WNs to be composed by an AP transmitting to a single
Station (STA) in a downlink manner. Note that in typical uncoordinated wireless deployments (e.g.,
residential buildings), STAs are typically close to the AP to which they are associated. Thus, having
several STAs associated to the same AP does not significantly impact the inter-WNs interference
studied in this work.

4.1 Channel modeling

Path-loss and shadowing effects are modeled using the log-distance model for indoor communications.
The path-loss between WN i and WN j is given by:

PLi,j = Ptx,i − Prx,j = PL0 + 10α log10(di,j) + Gs +
di,j
dobs

Go,

where Ptx,i is the transmitted power in dBm by the AP in WNi, α is the path-loss exponent, Prx,j is
the power in dBm received at the STA in WNj , PL0 is the path-loss at one meter in dB, di,j is the
distance between the transmitter and the receiver in meters, Gs is the log-normal shadowing loss in
dB, and Go is the obstacles loss in dB. Note that we include the factor dobs, which is the average
distance between two obstacles in meters.

4.2 Throughput calculation

The throughput experienced by WN i at time t is given by Γi,t = B log2(1 + SINRi,t), where B
is the channel width and SINR is the experienced Signal to Interference plus Noise Ratio. The
latter is computed as SINRi,t =

Pi,t
Ii,t+N , where Pi,t and Ii,t are the received power and the sum of

the interference at WN i at time t, respectively, and N is the floor noise power. Adjacent channel
interference is also considered in Ii,t, so that the transmitted power leaked to adjacent channels is
20 dBm lower for each extra channel separation. Similarly, the optimal throughput is computed as
Γ∗i = B log2(1 + SNRi), which frames the operation of a given WN in isolation.

4.3 Learning procedure

We frame the decentralized learning procedure in two different ways, namely concurrent and sequen-
tial. Figure 1 illustrates the procedure followed by agents to carry out decentralized SR learning.
As shown, in each iteration4 there is a monitoring phase (shown in grey), where the current selected
action is analyzed by each agent to quantify the hidden reward (which depends on the adversarial
setting). Such a reward is the same for all the policies presented in this work, so that a fair compari-
son can be provided. After the monitoring phase is completed, agents update their knowledge (shown

4The time between iterations (T ) must be large enough to provide an accurate estimation of the throughput
experienced for a given action profile.
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in purple) and choose a new action (shown in yellow). Note, as well, that both approaches rely on
a synchronization phase (shown in green), which can be achieved through message passing [44, 45]
and/or environment sensing.5

Figure 1: Concurrent and sequential procedures.

In the concurrent approach, agents (or WNs) make decisions simultaneously, thus leading to a
more variable (and chaotic) environment. In practice the fully decentralized learning process will
most probably not be synchronized but we leave the study of any possible effects of that desynchro-
nization to future work. In contrast, for the sequential approach, WNs need to wait for their turn
in order to pick a new action. As a result, the performance of their last selected action (arm) is
measured for several iterations (equal to the number of overlapping networks). In particular, during
the update phase, a WN computes the reward of its last selected arm according to the throughput
experienced in average. Accordingly, the performance of a given action is measured against different
adversarial settings, since the environment changes gradually. Despite agents still learn selfishly,
they can better assess how robust an action is against the joint actions profile, in comparison to the
concurrent approach.

4.4 Simulation Parameters

According to [46], which provides an overview of the IEEE 802.11ax-2019 standard, a typical high-
density scenario for residential buildings contains 0.0033APs/m3 (i.e., 100 APs in a 100× 20× 15 m
area). Accordingly, for simulation purposes, we define a map scenario with dimensions 10×5×10 m,
containing from 2 to 8 APs. In addition, for the first part of the simulations, we consider a setting
containing 4 WNs that form a grid topology. In it, STAs are placed at the maximum possible
distance from the other networks. Table 1 details the parameters used.

Parameter Value
Map size (m) 10× 5× 10
Number of coexistent WNs {2, 4, 6, 8}
APs/STAs per WN 1 / 1

Distance AP-STA (m)
√

2
Number of orthogonal channels 3
Channel bandwidth (MHz) 20
Initial channel selection model Uniformly distributed
Transmit power values (dBm) {-15, 0, 15, 30}
PL0 (dB) 5
Gs (dB) Normally distributed with mean 9.5
Go (dB) Uniformly distributed with mean 30
dobs (meters between two obstacles) 5
Noise level (dBm) -100
Traffic model Full buffer (downlink)
Number of learning iterations 10,000

Table 1: Simulation parameters

5The IEEE 802.11k amendment, which is devoted to measurement reporting, may enable the environment sensing
operation.
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5 Performance Evaluation

In this Section, we evaluate the performance of each action-selection strategy presented in Section 3
when applied to the decentralized SR problem in WNs.6 For that purpose, we first evaluate in Section
5.1 the ε-greedy, EXP3, UCB and Thompson sampling policies in a fixed adversarial environment.
This allows us to provide insights on the decentralized learning problem in a competitive scenario.
Accordingly, we are able to analyze in detail the effect of applying each learning policy on the
network’s performance. Without loss of generality, we consider a symmetric configuration and
analyze the competition effects when WNs have the same opportunities for accessing the channel.
Finally, Section 5.2 provides a performance comparison of the aforementioned scenarios with different
densities and with randomly located WNs.

5.1 Toy Grid Scenario

The toy grid scenario contains 4 WNs and is illustrated in Figure 2. This scenario has the particu-
larity of being symmetric, so that adversarial WNs have the same opportunities to compete for the
channel resources. The optimal solution in terms of proportional fairness7 is achieved when channel
reuse is maximized and WNs sharing the channel moderate their transmit power. The PF solution
provides an aggregate performance of 440.83 Mbps (i.e., 106.212 Mbps per WN on average). The
optimal solution is computed by brute force (i.e., trying all the combinations), and it is used as a
baseline.
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Figure 2: Grid scenario containing 4 WNs, each one composed by an AP and a STA.

5.1.1 Configuration of the Learning Parameters

Before comparing the performance of each algorithm, we first analyze the effect of modifying
each one’s internal parameters. Since the versions of UCB and Thompson sampling analyzed in this
work are parameter-less, in this section we focus only on ε-greedy and EXP3 methods.

Firstly, ε-greedy allows to regulate the explicit exploration rate at which the agent operates,
which is referred to as ε. In this paper, ε is dynamically adjusted as εt = ε0√

t
, with the aim of

exploring more efficiently. Accordingly, we study the impact of modifying the initial exploration
coefficient in the experienced performance by a WN. Secondly, when it comes to EXP3, we find two
parameters, namely η and γ. While η controls how fast old beliefs are replaced by newer ones, γ
regulates explicit exploration by tuning the importance of weights in the action-selection procedure.
Setting γ = 1 results in completely neglecting weights (actions have the same probability to be
chosen). On the other side, by setting γ = 0, the effect of weights are at its highest importance.
Thus, in order to clearly analyze the effects of the EXP3 weights, which directly depend on η, we
fix γ to 0. As we did for ε-greedy, we analyze the impact of modifying the parameter η0 in EXP3
on the WN’s performance.

Figure 3 shows the aggregate throughput obtained in the grid scenario when applying both ε-
greedy and EXP3 during 10,000 iterations, and for each ε0 and η0 values, respectively. The results
are presented for values ε0 and η0 between 0 and 1 in 0.1 steps. The average and standard deviation

6The source code used in this work is open [47], encouraging sharing of knowledge with potential contributors
under the GNU General Public License v3.0.

7The proportional fairness (PF) result accomplishes that the logarithmic sum of each individual throughput is
maximized: max

∑
i∈WN log(Γi).
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of the throughput from 100 simulation runs are also shown, and compared with the proportional
fair solution.

Figure 3: Average network throughput and standard deviation obtained for each ε0 and η0 value in
ε-greedy and EXP3, respectively. Results are from 100 simulations lasting 10,000 iterations each.
The proportional fair solution is also shown (red dashed line).

As shown, the aggregate throughput obtained on average is quite similar for all ε0 and η0 values,
except for the complete random case where no exploration is done (i.e., when ε0 and η0 are equal
to 0). For ε-greedy, the lower the ε0 parameter, the less exploration is performed. Consequently,
for low ε0, the average throughput is highly dependent on how good/bad were the actions taken at
the beginning of the learning process, which results in a higher standard deviation as ε0 goes to 0.
As for EXP3, the lower η0, the more slowly weights are updated. For η0 = 0, weights are never
updated, so that arms have always the same probability to be chosen. To conclude, we choose ε0 = 1
and η0 = 0.1, respectively, for the rest of simulations, which provide the highest ratio between the
aggregate throughput and the variability among different runs.

5.1.2 Performance of the MAB-based Policies

Once we established the initial parameters to be used by both ε-greedy and EXP3, we now
compare the performance of all the studied action-selection strategies when applied to decentralized
WNs. First, we focus on the average throughput achieved by each WN in the toy grid scenario,
for each of the methods (Figure 4(a)). As shown, the proportional fair solution is almost achieved
by all the learning methods. However, Thompson sampling is shown to be much more stable than
the other mechanisms, since its variability in the aggregate throughput is much lower (depicted in
Figure 4(b)).

(a) Mean throughput (b) Temporal network throughput

Figure 4: Mean throughput achieved per WN, for each action-selection strategy (the standard
deviation is shown in red). The black dashed line indicates the PF result.

In order to dig deeper into the behavior of agents for each policy, Figure 5 shows the probability of
each WN to choose each action. Regarding ε-greedy, EXP3 and UCB, a large set of actions is chosen
with similar probabilities. Note that there are only three frequency channels, so that two WNs need
to share one of them, thus leading to a lower performance with respect to the other two. Therefore,
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(a) ε-greedy (ε0 = 0.1) (b) EXP3 (η0 = 0.1)

(c) UCB (d) TS

Figure 5: Probability of selecting each given action for a simulation of 10,000 iterations.

WNs are constantly changing their channel and experiencing intermittent good/poor performance.
Thus, the degree of exploration is kept very high, resulting in high temporal variability. In contrast,
Thompson sampling shows a clearer preference for selecting a single action, which allows reducing
the aforementioned variability.

5.1.3 Learning Sequentially

In order to alleviate the strong throughput variability experienced when applying decentralized
learning, we now focus on the sequential approach introduced in Section 4.3. Now, only one WN is
able to select an action at a time. With that, we aim to reduce the adversarial effect on the estimated
rewards. Therefore, by having a more stable environment (not all the WNs learn simultaneously),
the actual reward of a given selected action can be estimated more accurately. Figure 6 shows the
differences between learning through concurrent and sequential mechanisms. Firstly, the throughput
experienced on average along the entire simulation is depicted in Figure 6(a). Secondly, without
loss of generality, Figure 6(b) shows the temporal variability experienced by WN4 when applying
Thompson sampling. Note that showing the performance of a single WN is representative enough
for the entire set of WNs (the scenario is symmetric), and allows us to analyze in detail the behavior
of the algorithms.

On the one hand, a lower throughput is experienced on average when learning in a sequential way,
but the differences are very small. In such a situation, WNs spend more time observing sub-optimal
actions, since they need to wait for their turn. Note, as well, that the time between iterations (T )
depends on the implementation. In this particular case, we assume that T is the same for both
sequential and concurrent approaches.

On the other hand, the temporal variability shown by the sequential approach is much lower than
for the concurrent one (Figure 6(b)). The high temporal variability may negatively impact on the
user’s experience and the operation of upper layer protocols (e.g., TCP) may be severely affected.
Notice that a similar effect is achieved for the rest of algorithms.
5.1.4 Learning in a Dynamic Environment

Finally, we show the performance of the proposed learning mechanisms in a dynamic scenario. For
that, we propose the following situation. Firstly, WN1 and WN2 are active for the whole simulation.
Secondly, WN3 turns on at iteration 2,500, when WN1 and WN2 are supposed to have acquired

74



“thesis˙main˙doc” — 2020/7/6 — 12:39 — page 75 — #87

(a) Average throughput (b) Temporal variability in WN4

Figure 6: Concurrent vs sequential approaches performance. (a) Mean average throughput achieved
for each learning procedure. (b) Temporal variability experienced by WN4 for the Thompson sam-
pling action-selection strategy and for each learning procedure.

enough knowledge to maximize SR. Finally, WN4 turns on at iteration 5,000, similarly than for
WN3.

Through this simulation, we aim to show how each learning algorithm adapts to changes in
the environment, which highly impact on the rewards distributions. Figure 7 shows the temporal
aggregate throughput achieved by each action-selection strategy. As done in Subsection 5.1, we only
plot the results of the best-performing algorithm, i.e., Thompson sampling, both for the concurrent
and the sequential procedures.

(a) Concurrent approach (b) Sequential approach

Figure 7: Temporal aggregate throughput experienced for a 10,000-iteration Thompson sampling
simulation.

As shown, WNs are able to adapt to the changes in the environment. In particular, for the
concurrent case (see Figure 7(a)), changes are harder to be captured as the network size increases.
In contrast, learning in an ordered way (see Figure 7(b)) allows reducing the temporal variability,
even if new WNs turn on. However, there is a little loss in the aggregate performance with respect
to the concurrent approach. The difference between the maximum network performance is mostly
provoked by the reduced exploration shown by the sequential approach.

5.2 Random Scenarios

We now evaluate whether the previous conclusions generalize to random scenarios with an arbitrary
number of WNs. To this aim, we use the same 10 × 5× 10 m scenario and randomly allocate N =
{2, 4, 6, 8} WNs. Figures 8 and 9 show the mean throughput and variability experienced for each
learning strategy, and for each number of coexistent WNs, respectively. The variability is measured
as the standard deviation that a given WN experiences along an entire simulation. We consider
the average results of 100 different random scenarios for each number of networks. In particular,
we are interested on analyzing the gains achieved by each algorithm, even if convergence cannot be
provided due to the competition between networks. For that, we display the average performance for
the following learning intervals: [1-100, 101-500, 501-1000, 1001-2500, 2501-10000]. Note that the
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first intervals represent few iterations. This allows us to observe the performance achieved during
the transitory phase in more detail. In addition, the performance achieved in a static situation (i.e.,
when no learning is performed) is shown in Figure 8. With that, we aim to compare the gains
obtained by each learning strategy with respect to the current IEEE 802.11 operation in unplanned
and chaotic deployments.

Figure 8: Average throughput experienced in each learning interval for each action-selection strategy.
Results from 100 repetitions are considered for each different number of overlapping WNs (N = {2,
4, 6, 8}). The black dashed line indicates the default IEEE 802.11 performance (static situation).

Figure 9: Average variability experienced in each learning interval for each action-selection strategy.
Results from 100 repetitions are considered for each different number of overlapping WNs (N = {2,
4, 6, 8}).

First of all, let us focus on the throughput improvements achieved with respect to the static
situation. As shown in Figure 8, each learning strategy easily outperforms the static scenario for
low densities (i.e., 2 and 4 overlapping WNs). However, as density increases, improving the average
throughput becomes more challenging. This is clearly evidenced for N = {6, 8} WNs, where EXP3
performs worse than the static situation.

Secondly, we concentrate on the concurrent learning procedure. As shown in Figure 8, Thompson
sampling outperforms the other action-selection strategies for all the scenarios, provided that enough
exploration is done (up to 500 iterations). On the other hand, ε-greedy allows to increase the average
performance very quickly, but its growth stalls from iteration 200. Note that ε-greedy is based
on the absolute throughput value, thus preventing to find a collaborative behavior in which the
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scarce resources are optimally shared. Finally, EXP3 and UCB are shown to improve the average
throughput linearly, but offering poor performance.

When it comes to the sequential approach, we find the following:

• On the one hand, the average throughput is reduced in almost all the cases in comparison with
the concurrent approach (see Figure 8). We find that this is due to the larger phases in which
agents exploit sub-optimal actions. As previously pointed out, the time between iterations is
considered to be the same for both sequential and concurrent learning approaches.

• On the other hand, the sequential procedure is shown to substantially improve the variability
experienced by ε-greedy, EXP3 and UCB (see Figure 9). The performance of the latter is
particularly shown to be improved when the learning procedure is ordered. The sequential
approach, therefore, allows UCB to produce more accurate estimates on the actions rewards.
In contrast, learning sequentially does not improve the concurrent version of Thompson sam-
pling in any performance metric. We attribute this suboptimal behavior to the way in which
Thompson sampling performs estimates of the played actions, which depends on the number
of times each one is selected. In particular, suboptimal actions can eventually provide good
enough performance according to the adversarial setting. The same issue can lead to underesti-
mate optimal actions, so that their actual potential is not observed. Since Thompson sampling
bases its estimates on the number of times each action is selected, the aforementioned effect
may lead to increase the exploitation on suboptimal actions.

6 Conclusions

In this paper, we provided an implementation of MABs to address the decentralized SR problem in
dense WNs. Unlike previous literature, we have focused on a situation in which few resources are
available, thus bringing out the competition issues raised from the adversarial setting. Our results
show that decentralized learning allows improving SR in dense WN, so that collaborative results in
symmetric scenarios, sometimes close to optimal proportional fairness, can be achieved. This result is
achieved even though WNs act selfishly, aiming to maximize their own throughput. In addition, this
behavior is observed for random scenarios, where the effects of asymmetries cannot be controlled.
These collaborative actions are, at times, accompanied by high temporal throughput variability,
which can be understood as a consequence of the rate at which networks change their configuration
in response of the opponents behavior. A high temporal variability may provoke negative issues
in a node’s performance, as its effects may be propagated to higher layers of the protocol stack.
For instance, a high throughput fluctuation may entail behavioral anomalies in protocols such as
Transmission Control Protocol (TCP).

We have studied this trade-off between fair resource allocation and high temporal throughput
variability in ε-greedy, EXP3, UCB and Thompson sampling action-selection strategies. Our results
show that while this trade-off is hard to regulate via the learning parameters in ε-greedy and EXP3,
UCB and, especially, Thompson sampling are able to achieve fairness at a reduced temporal vari-
ability. We identify the root cause of this phenomena to the fact that both UCB and Thompson
sampling consider the probability distribution of the rewards, and not only their magnitude.

Furthermore, for the sake of alleviating the temporal variability, we studied the effects of learning
concurrent and sequentially. We have shown that learning in an ordered way is very effective
to reduce the throughput variability for almost all the proposed learning strategies, even if WNs
maintain a selfish behavior. By learning sequentially, more knowledge is attained on a given action,
thus allowing to differentiate quickly between good and bad performing actions. Apart from that, we
found that Thompson sampling grants significantly better results than the other examined algorithms
since it is able to capture meaningful information from chaotic environments.

We left as future work to further study the MABs application to WNs through distributed (with
message passing) and centralized (with complete information) approaches with shared reward. In
particular, we would like to extend this work to enhance both throughput and stability by inferring
the actions of the opponents and acting in consequence, as well as further investigating dynamic
scenarios. Defining the resource allocation problem as an adversarial game is one possibility to do
so. In addition to this, the utilization of multiple antenna strategies (i.e., single and multi-user
beamforming and interference cancellation) is expected to further improve the spectral efficiency in
future WNs. Through these techniques, the SR problem can be relaxed in a similar way than using
several non-overlapping frequency channels. However, its application would significantly increase
the problem’s complexity, and its analysis is also left as future work.
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Abstract

Spatial Reuse (SR) has recently gained attention to maximize the performance of IEEE
802.11 Wireless Local Area Networks (WLANs). Decentralized mechanisms are expected to be
key in the development of SR solutions for next-generation WLANs, since many deployments
are characterized by being uncoordinated by nature. However, the potential of decentralized
mechanisms is limited by the significant lack of knowledge with respect to the overall wireless
environment. To shed some light on this subject, we show the main considerations and pos-
sibilities of applying online learning to address the SR problem in uncoordinated WLANs. In
particular, we provide a solution based on Multi-Armed Bandits (MABs) whereby independent
WLANs dynamically adjust their frequency channel, transmit power and sensitivity threshold.
To that purpose, we provide two different strategies, which refer to selfish and environment-
aware learning. While the former stands for pure individual behavior, the second one considers
the performance experienced by surrounding networks, thus taking into account the impact of
individual actions on the environment. Through these two strategies we delve into practical
issues of applying MABs in wireless networks, such as convergence guarantees or adversarial
effects. Our simulation results illustrate the potential of the proposed solutions for enabling
SR in future WLANs. We show that substantial improvements on network performance can be
achieved regarding throughput and fairness.

1 Introduction

Wireless communications are rapidly evolving to satisfy the increasingly tighter requirements coming
from the explosive growth of wireless devices. To solve that, future Wireless Networks (WNs) are
foreseen to cover small areas in high-density scenarios, which evidences the need for novel mechanisms
to maximize spectral efficiency. In particular, Spatial Reuse (SR) has gained attention in recent
years as a potential solution to improve the use of the spectrum. One of the most prominent
examples can be found in the IEEE 802.11ax-2019 (11ax) amendment [1], which defines High-
Efficiency (HE) Wireless Local Area Networks (WLANs). The 11ax amendment aims to maximize
spectral efficiency through the SR operation and other spectrum-efficient techniques like Orthogonal
Frequency-Division Multiple Access (OFDMA), and Uplink/Downlink Multi-User Multiple-Input-
Multiple-Output (MU-MIMO).

In this paper, we focus on IEEE 802.11 WLANs, which mostly represent uncoordinated de-
ployments (e.g., residential buildings). These networks are limited in performance because of the
scalability issues arising from the current decentralized channel access mechanisms, i.e., Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA) [2]. To enable SR in WLANs, we
consider the use of Transmit Power Control (TPC) and Carrier Sense Threshold (CST) adjustment.
These mechanisms are of particular concern to the 11ax amendment. They facilitate and regulate
the SR operation by providing a set of procedures and constraints for dynamically setting the trans-
mit power and the sensitivity. Roughly, the idea of TPC lies in adjusting the transmit power for
reducing the interference and/or saving energy. Similarly, CST adjustment seeks to increase the
number of parallel transmissions by modifying the sensitivity on a per-device basis. In the context
of IEEE 802.11ax, the Dynamic Sensitivity Control (DSC) has been proposed as a potential solution
for enabling SR through sensitivity adjustment [3].

However, addressing the SR problem in WLANs through TPC and CST adjustment is not triv-
ial for decentralized deployments. This is mostly motivated by i) the spatial interactions between
nodes, and ii) the adversarial setting unleashed in decentralized wireless networks. For the former,
tuning either the transmit power or the sensitivity entails dealing with the spatial dimension. Unlike
for frequency and temporal approaches, spatial interference cannot be treated as a binary model.
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In the latter case, one can observe when devices transmit or not, thus obtaining full or null perfor-
mance respectively. As shown later in Section 3, more complex interactions occur between WLANs
tuning their transmit power and CST. As a result, modeling inter-WLANs interactions in next-
generation deployments turns out to be extremely complex. Moreover, regarding the adversarial
setting unleashed by decentralized deployments, strong competition between independent networks
may occur.

In order to address the SR problem in high-density decentralized networks, we focus on the Multi-
Armed Bandit (MAB) framework. The MAB approach frames the learning-by-interaction problem,
and allows to properly approach the exploration-exploitation trade-off in face of uncertainty. In
MABs, a learner (or agent) obtains information from the environment, which reacts according to
the actions performed - in the SR problem, an action may refer to a certain configuration of transmit
power and CST. By interacting with the environment, a given learner aims to maximize a numerical
cumulative reward over time. Unlike classical Reinforcement Learning (RL), the MAB setting does
not consider states in general.1 A state may refer to a concrete temporal situation in which the
learner is involved. Therefore, it allows the latter to construct a policy that determines the behavior
to be followed in future situations. Accordingly, learning through states adds an extra layer of
complexity and requires that a given agent learns additional contextual information.

The application of MABs into wireless communications problems has recently become very pop-
ular [4–6]. To model the SR problem through MABs, we consider that WLANs are empowered with
an agent that attempts to learn the best-performing action (i.e., a combination of the frequency
channel, the transmit power and the sensitivity level). Its learning operation is based on the perfor-
mance achieved in an unknown environment. In this way, MABs operate on the top of CSMA/CA,
which operation is influenced by the spatial interactions generated by the taken actions. As a result,
we expect WLANs to autonomously find their best configuration in an adversarial setting, given a
performance maximization strategy.

The main goal of this paper, then, is to determine the feasibility of applying decentralized learning
to improve spectral efficiency in next-generation wireless deployments. In particular, we apply online
learning mechanisms to enable SR in dense and uncoordinated WLANs, and show the main derived
implications and considerations. We highlight the impact on the aggregate performance and fairness
experienced by WLANs, as well as on the guarantees for converging to the optimal solution. The
implications of applying online learning to WLANs are studied through the utilization of selfish
and environment-aware learning-based strategies. While a selfish strategy is based on the individual
performance of a given learner, environment-aware considers a set of neighboring WLANs that share
a reward. The SR problem presented in this work is non-convex, therefore prevents to provide any
kind of convergence bound. However, our results suggest that the performance of WLANs can be
maximized by using learning strategies that are based on probabilistic models of the reward. To
summarize, the main contributions of this work are described next:

• We showcase the major inter-WLAN dependencies when modifying both the transmit power
and the CST, and how they affect the network performance.

• In order to capture the CSMA/CA operation of IEEE 802.11 WLANs, we use Continuous
Time Markov Networks (CTMNs) in spatially-distributed scenarios [7]. We show that CTMNs
models are able to capture the existing dependencies between overlapping WLANs.

• We model the SR problem in WLANs through MABs, where agents implementing Thompson
sampling decide the configuration of a given network in terms of frequency channel, transmit
power and CST. To the best of our knowledge, this is the first work applying MABs on a
CSMA-based network.

• We provide insights on the main considerations of using learning in decentralized and adver-
sarial wireless networks. In particular, we showcase the implications of applying selfish and
environment-aware learning in dense WLANs, thus emphasizing on the main potentials and
pitfalls.

• We evaluate the performance of using self-configuring agents in dense WLANs, both in specific
and random scenarios. The two learning approaches presented in this paper are shown to
significantly improve the performance achieved by WLANs in terms of throughput and fairness,
with respect to a default - and static - configuration.

1There is a class of bandits problems that consider states (stateful bandits), which is not considered due to the
characteristics of the problem addressed in this work. Essentially, in this class of bandits, states are usually represented
by taking strong assumptions that hinder the accuracy of the analysis.
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The remaining of this document is structured as follows: Section 2 refers to the previous related
work. In Section 3 we first provide details on the throughput model considered in this paper to fit
the SR problem. Then, we characterize inter-WLAN interactions when tuning both the transmit
power and the sensitivity threshold. A set of illustrative scenarios is used for that purpose. Section
4 formulates the SR problem through MABs and shows the main implications to be considered when
applying learning to decentralized wireless networks. Then, Section 5 shows the main results of this
paper with regard to selfish and environment-aware learning in WLANs. Finally, some remarks are
given in Section 6.

2 Related Work

Machine Learning (ML), and more precisely RL, has received increasing interest from the wireless
communications research community over the last years. One of the main reasons resides in the
increased complexity of problems related to next-generation wireless systems. Such kind of environ-
ments are characterized by being particularly dense, so that the best configuration strategy may be
difficult to foresee. Since the current preprogrammed approaches are likely to be suboptimal, RL
is expected to improve the action selection from experience. In particular, RL-based methods are
expected to provide close-to-optimal solutions to complex problems within an acceptable timescale,
which is an indispensable requirement in wireless networks.

To the best of our knowledge, one of the first works to apply RL into a SR-related problem in
wireless networks is [8], in which the authors show a centralized Q-learning mechanism to dynamically
select the channel in mobile networks. Other RL-based approaches for channel access can be found in
[9–13], covering cognitive radio, self-organizing cellular networks and coexistence problems. Despite
Q-learning (or other Markovian-based methods) has been shown to properly fit to channel allocation
problems, few applications have been provided to the SR problem. Note, as well, that dealing
with the frequency domain allows to naturally define states,2 which can be done according to the
availability of channels (typically modeled through Bernoulli distributions). Therefore, an agent
may observe the environment and define an accurate model where the state is defined by the set of
channels that are available/occupied. Note that the contextual information provided to the learner
is important for learning efficiently, since the agent is able to react to different situations. With a
proper definition of states, a higher degree of control is conferred to the agent. Therefore, provided
that the model of the states is accurate enough, the learning procedure carried out by a given learner
can result into better performance than that of a stateless setting.

However, modeling states for the decentralized SR problem entails added complexity, thus hin-
dering the learning procedure followed by a given agent. In the particular case of IEEE 802.11
WLANs, spatial interactions among nodes lead to complex scenarios. The performance achieved
by a given WLAN depends on the additive interference coming from an unknown environment.
Therefore, learning accurate enough states for the SR problem turns out to be challenging. Note
that, if states do not reflect the actual situation of a given agent at a given moment, the learnings
that can be generated become strongly limited, and can even be meaningless. To cope with the
difficulties on modeling states for the decentralized SR problem, we focus on multi-player MABs
(MP-MABs), which frame resource allocation problems where several agents compete against each
other. MP-MABs have been recently broadly applied for opportunistic spectrum access in cognitive
radio [5, 6, 14–16].

Firstly, in [14], the authors provide a decentralized policy with logarithmic regret order, which
is based on a time-division fair sharing of the best arms. However, such a policy requires coordina-
tion among agents and to know the exact number of adversarial nodes, which in addition must be
constant and known in advance. Both requirements entail dedicated communication between nodes,
which turns out to be unfeasible for decentralized problems such as the one presented in this paper.
Another important contribution regarding multi-player learning for the opportunistic spectrum ac-
cess problem is provided in [15], where the authors provide a distributed learning algorithm that
showcases order-optimal regret. However, the total number of secondary users is known by the sys-
tem, which may not be feasible in real scenarios where no communication between nodes exists. In
contrast, in this work we consider selfish and environment-aware learning approaches, none of which
require explicit communication between independent learners. Furthermore, a less strict method is
also provided in [15], in which the number of secondary users (which is fixed) is estimated, so that
nearly order-optimal regret is achieved. In both algorithms, it is assumed that all the users use the
same policy. Regarding the work in [16], sublinear regret is achieved if all players implement the

2An state describes a particular situation of a given agent at a specific time.
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proposed algorithm. Some interesting thoughts are provided regarding varying environments, which,
to the best of our knowledge, have been barely considered in the previous literature. For instance,
the authors emphasize that, in the dynamic setting, the frequency at which players enter and leave
the scenario must be limited in order to provide a sublinear regret. Unlike the SR presented in this
paper, the work in [16] assumes that there exists an optimal solution whereby no collisions occur
for any player. The concept of collision is inspired in the ALOHA channel access mechanism, and
occurs if two or more players choose the same arm (or channel).

When it comes to the SR problem by means of TPC and/or sensitivity adjustment, we find MP-
MABs application for joint channel selection and power control in [5,6]. The work in [6] proposes a
strategy based on the Signal-to-Interference-plus-Noise Ratio (SINR) to determine the channel and
the transmit power to be used in cognitive radio networks. The authors prove that the MP-MAB
game converges to a correlated equilibrium, which in addition maximizes the aggregate utility, if the
two following assumptions hold: i) the problem is relaxed, so that the reward granted to a given
agent depends only on the Signal-to-Noise Ratio (SNR), regardless of the overlapping interference,
ii) user-specific penalties are provided to each agent. In contrast with the work in [6], here we aim to
understand the potentials and limitations of applying MABs in a CSMA/CA-based setting, in which
the previous assumptions do not hold. First of all, instead of relaxing the problem to only consider
the SNR, we model the interactions at the MAC level. Secondly, defining user-specific penalties
would require the use of either a centralized system or message exchanging.

Finally, in [5], the authors introduce the concept of calibrated forecaster, i.e., a predictor of the
actions of the adversaries that improves with collected knowledge. By using such a predictor, if
every learner is able to predict and respond to the others’ actions, then the game converges to a
correlated equilibrium. In other words, if a node can predict which channel will the adversary pick
(and vice-versa), then it can select the other channel and experience the maximum performance. In
contrast, in the SR problem we tackle here, developing an accurate forecaster in a decentralized way
may be an extremely complex task. Refer to the non-linear relationships that occur in the spatial
domain, which are hard to model, and thus to predict. Moreover, density and messy deployments
may remove the existence of an equilibrium, hence invalidating the assumptions.

In summary, a lot of effort has been recently made to enable the evolution of wireless networks
towards self-adjusting systems. In particular, the application of RL has been extensively studied
for channel access problems. However, these type of methods do not properly suit to spatially-
distributed problems such as the SR one. As a result, other stateless techniques, such as MABs,
have been targeted, and have shown to effectively improve wireless networks performance, even in
adversarial environments. Nevertheless, these mechanisms require that strong assumptions about the
system model hold. Moreover, spatial interactions between WLANs have not yet been considered.

3 Interactions between WLANs when Spatial Reuse is En-
abled

In this Section, for completeness, we first briefly introduce the CSMA/CA operation carried out by
Wi-Fi networks for accessing the channel, as well as the CSMA/CA throughput model considered
along this paper. Therewith, we aim to identify the main inter-WLAN interactions when modifying
both the transmit power and the CST. Understanding these interactions is key to motivate the
usage of MABs to the decentralized SR problem. As shown in Section 2, some of the previous work
addressed similar problems and provided mechanisms that were proven to converge to an equilibrium.
However, the novelty of this paper lies in the analysis of learning techniques in CSMA/CA-based
networks. Unlike previous work, where the reward (i.e., the throughput) is mostly given by a linear
function that only depends on the signal strength and the interference, here we deal with more
complex interaction between networks. In Wi-Fi, due to the decentralized nature of CSMA/CA, an
optimal solution in terms of SR is harder to derive than in cellular-based networks. In addition,
there is a trade-off between performance maximization and fairness, which is not trivial to compute
in a decentralized setting.

3.1 CSMA/CA

Channel access is performed in IEEE 802.11 WLANs by means of the Distributed Coordination
Function (DCF), which is based on CSMA/CA. In DCF, before being able to transmit a packet,
a transmitter must listen to the channel for a period of time called Distributed Inter Frame Space
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(DIFS). The channel is sensed to be free according to the Clear Channel Assessment (CCA) mecha-
nism, i.e., if the power perceived is lower than a given threshold.3 The power received at a given node
is the sum of all the interference generated by the other devices under the environment-constrained
propagation effects. Furthermore, the access to the medium is randomized in order to reduce the
number of potential collisions between other contenders. Specifically, each transmitter selects a ran-
dom backoff value to start a countdown that is active as long as the channel remains free. In case the
channel is sensed busy, the countdown is paused. It is resumed as soon as the ongoing transmission
finishes and the channel is sensed free again. An example of the CSMA/CA operation is shown
in Figure 1, where we show two overlapping WLANs, namely WLANA and WLANB, respectively.
Station A (STAA) is the first to gain access to the channel, so it starts a transmission to the Access
Point A (APA). Meanwhile, APB senses the channel busy and freezes its backoff. After this first
transmission, both APA and APB access to the channel simultaneously because they both randomly
chose the same backoff counter. As a result, a collision is produced.

(a) Scenario (b) CSMA/CA operation

Figure 1: CSMA/CA operation in WLANA and WLANB. STAA starts a transmission to APA, since
its backoff counter reaches zero first. After that, a collision occurs due to simultaneous transmissions
held by APA and APB.

3.2 CSMA/CA Throughput Model

For the rest of this paper we consider that WLANs are independent entities composed by an AP
and a STA, in which saturation downlink traffic (i.e., from the AP to the STA) is assumed. Such an
assumption is reasonable as long as we target home deployments, where STAs are often very close
to the AP. Moreover, the main goal of this paper is to capture inter-WLAN interactions.

Regarding the throughput model, we rely on the CTMN-based analytical tool for spatially dis-
tributed WLANs presented in [17], referred to as SFCTMN. This tool captures the interrelations
given in scenarios where nodes operating in the same channel are not required to be within the carrier
sense range of each other. Essentially, given a scenario (i.e., nodes’ location, channels, transmission
powers, CCA levels, path loss model, etc.), states and transitions are generated in accordance with
the CSMA/CA mechanism. That is, WLANs are only allowed to decrement their backoff and start
transmissions when the CCA condition is accomplished. In [18], authors use SFCTMN to assess the
performance of high density WLANs under different traffic loads.

A state in the CTMN is defined by the set of WLANs active and the channel in which they
are transmitting.4 Accordingly, transitions between states occur if WLANs become active/disabled.
For example in state A1B2C1 there are three active WLANs: A, B and C transmit in channels 1, 2
and 1, respectively. Since states and transitions are generated according to the regular CSMA/CA
mechanism, a CTMN may have both bidirectional and unidirectional transitions between states.
It is the case of the toy scenario shown in Figure 2, where A uses a higher transmission power
than B and C. While A is able to access channel 1 when C is transmitting, C is not able to do
so when A is transmitting because of the high interference sensed in channel 1. Accordingly, only
backward transitions are permitted from state s6 = A1C1 to s2 = A1, and from state s8 = A1B2C1

to s6 = A1B2. Essentially, given the channel and power configurations of this particular scenario,
while A operates like in isolation, C’s operation is subject to A’s behavior. Note that B also operates
like in isolation since it uses a different channel.

3Throughout this paper, we refer to CCA and CST indistinctly.
4Note that in this work we assume only 20 MHz single-channel transmissions.

86



“thesis˙main˙doc” — 2020/7/6 — 12:39 — page 87 — #99

(a) Scenario with overlapping WLANs (b) Markov chain

Figure 2: Toy scenario. WLANs A and C operate in channel 1 while B operates in channel 2. Note
that C is in the carrier-sense range of A. Only the transition rate pairs (λ, µ) between states s1, s2,
s3 and s4 are displayed for the sake of visualization. The states where C may lose packets because
of the interference from A are displayed in yellow. Unidirectional backward transitions are show in
red.

Transitions between any two states s and s′ in the CTMN have a corresponding transition rate
Rs,s′ . For forward transitions (i.e., when a WLAN starts a new transmission), the average packet
transmission attempt rate is λ = 1/E[B], being E[B] the expected backoff duration. For backward
transitions (i.e., when a WLAN finishes its transmission), the departure rate (µ) depends on the
duration of a transmission. The latter is given by both the data rate (subject to the selected
Modulation and Coding Scheme (MCS) and transmission channel width) and the average data
packet length (E[L]). Thus, we simply say that the data rate of a WLAN w depends on the state s
of the system, µw(s), in other words, on the set of overlapping WLANs that transmit simultaneously.
The information contained in a given state, therefore, refers to the inter-WLAN interactions in that
situation.

In order to estimate the average throughput experienced by each WLAN in a given scenario, we
must first estimate the fraction of time the system spends in each state (~π). We define πs as the
probability of finding the system at state s. In continuous-time Markov processes with stationary
distribution, ~π is given by solving the system of equations Q~π = 0, where the matrix item Q is the
infinitesimal generator of the CTMN. Given ~π, the average downlink throughput of WLAN w in a
given state s can be defined as

Γw(s) :=

{
E[L]µw(s)πs, SINRw(s) > CE

0, otherwise

where SINRw(s) is the SINR perceived by the receiving STA in WLAN w in state s, and CE is the
capture effect threshold. Therefore, the resulting average downlink throughput that a given WLAN
w experiences can be computed as Γw =

∑
s∈S Γw(s).

3.3 Analysis

To underline the potential of adjusting both the transmit power and the CST to enable SR in
overlapping WLANs, we next introduce the main performance issues and anomalies that characterize
IEEE 802.11 networks. Before, and in order to further analyze these issues, we introduce the set of
scenarios shown in Figure 3. This set of scenarios is evaluated under different static configurations
(shown in Table 3(d)), each one referring to a specific combination of channel, transmit power
and CCA. Such combinations (from C1 to C5 ) refer to specific configurations of the set of allowed
values that a given WLAN can choose, which are detailed in A, together with simulation parameters.
Results shown in Table 1 were obtained by applying the analytical model presented in Section 3.25

and the 11axHDWLANSim simulator.6

• Exposed-terminal problem: two or more WLANs are not able to transmit simultaneously
due to the inter-WLAN interference, which is higher than the CCA threshold at the trans-
mitter. However, the receiver would be able to properly decode the data of interest, even

5All of the source code used in this work is open [19] under the GNU General Public License v3.0, encouraging
sharing of knowledge between potential contributors.

6The source code of 11axHDWLANSim is open under the GNU General Public License v3.0 and can be found at
https://github.com/wn-upf/Komondor
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(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Possible
Configuration

CCA (dBm) Tx power (dBm) Channel

C1 -90 20 1
C2 -68 20 1
C3 -90 5 1
C4 -68 5 1
C5 -90 20 2

(d) Table with possible configurations to be chosen by WLANs

Figure 3: Scenarios for characterizing inter-WLAN interactions.

Scenario Conf. Γ (SFCTMN) Γ (11axHDWLANSim)

1
C1 56.90 Mbps 56.94 Mbps
C2 113.23 Mbps 113.23 Mbps
C3 62.43 Mbps 62.43 Mbps

2
C2 0.73 Mbps 0.00 Mbps
C4 62.43 Mbps 62.43 Mbps

3
C1 56.62 Mbps 56.62 Mbps

C1 & C5 113.23 Mbps 113.23 Mbps

Table 1: Performance in each scenario achieved through different configurations. Each cell contains
the performance computed by using CTMNs and Komondor, respectively. Komondor results are
extracted from 1,000 s simulations.

in presence of other transmissions. In Scenario 1 (Figure 3(a)), the exposed-terminal prob-
lem occurs if all the WLANs use configuration C1. Such a situation is solved if WLANs
apply configuration C2, which consists in increasing the CCA in a way that both APA and
APB can transmit simultaneously while using the same transmit power. In this case, both
WLANs receive the same interference, but, by using a higher CCA, it is dismissed and does
not force contention. Similarly, if WLANs reduce both the transmit power and the sensitivity
(configuration C3 ), the number of parallel transmissions can be increased. However, a lower
performance compared to C2 is achieved due to the use of a lower MCS.

• Hidden-terminal problem: occurs when two nodes that are not visible each other transmit
simultaneously (not necessarily to the same destination), thus producing collisions. In particu-
lar, packet losses occur when the sensed interference at a given receiver results in a SINR lower
than its capture effect. The hidden-terminal problem is framed in Scenario 2 (Figure 3(b))
when both WLANs use configuration C1. As a result, APA and APB can transmit simultane-
ously due to the CCA condition. However, if they do so, the SINR experienced at both STAA

and STAB falls below their capture effect, thus leading to a wrong packet decoding. Such a
situation is improved when APA and APB apply configuration C4, which allows reducing the
sensitivity area (higher CCA) and the generated interference (lower transmit power).
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• Contending nodes: similarly to the exposed-terminal problem, the channel is underutilized
if one or more WLANs must defer their transmissions when another one is transmitting.
In this case, increasing the CST and/or decreasing the transmit power in an appropriate
manner may help at reducing the number of contending nodes. As a result, the number of
parallel transmissions is maximized. This phenomena, in addition to be closely related to
the exposed-terminal problem shown in Scenario 1, can be further observed in Scenario 3
(Figure 3(c)). In this case, in addition of using TPC and/or CST adjustment, we maximize
SR by providing a proper channel allocation, which is done by combining configurations C1
and C5. Hence, configurations are assigned so that frequency reuse is maximized. Moreover,
there are situations that may require the opposite. That is to say, to force contention between
nodes in order to prevent collisions. Such a situation occurs in Scenario 2 when configuration
C2 is employed,7 thus leading to zero throughput in both WLANs due to the collisions by
hidden node. However, if a contending situation is forced by either increasing the transmit
power or decreasing the CST (which occurs when setting configuration C4 ), then the network
performance is increased.

• Flow starvation: a given WLAN may be deprived of accessing the channel in case of noticing
an excessive interference from other WLANs that do not sense each another. Such a phenomena
can be solved by tuning both the transmit power and the CST. However, due to the nature of
the problem, it may require some level of collaboration, since interfering nodes are completely
unaware on the damage caused to the most vulnerable WLANs in terms of sensed interference.
Flow starvation is studied in detail in Section 4.

• Asymmetries: finally, it is important to remark the consequences of existing asymmetries
in a wireless network, which are mostly generated by the different situations of coexisting
WLANs. The performance of a given WLAN is basically limited by its geographical location
and possible configurations. Accordingly, there can be WLANs more privileged than others,
so that the interference they sense is generally lower, thus experiencing a higher performance.
Therefore, due to the spatial interactions generated by certain transmit power and CST levels,
asymmetries may lead to a monopolization of the channel by dominant WLANs (i.e., enjoying
better conditions than others). The effect of asymmetries is studied in detail in Section 5.

As shown in the previous simulations, modifying either the transmit power or the CST in a
WLAN may have severe implications on different communication aspects due to the utilization of
CSMA/CA. While TPC allows to adjust the generated interference, CST adjustment aims to modify
the sensitivity area. It is worth to mention that SR can be enhanced if short-range communications
are held, which can be achieved if using the minimum necessary transmit power and the maximum
possible CST. Conversely, longer-range communications can be achieved when using a high transmit
power and a low CST. Increasing the area of operation is useful to minimize performance issues such
as flow starvation and collisions by hidden nodes. Table 2 summarizes the intuitive effects of TPC
and CST adaptation in WLANs.

Action
Effect

Exposed nodes Hidden nodes Data Rate
↑ Power ↑ ↓ ↑
↓ Power ↓ ↑ ↓
↑ CST ↓ ↑ ↓
↓ CST ↑ ↓ ↑

Table 2: Effects of TPC and CST adjustment.

4 Multi-Armed Bandits for Decentralized Spatial Reuse

Due to the nature of the CSMA/CA protocol - especially hampered in high-density scenarios - and
the rigidity of the current configurations used by wireless devices [20], network overlapping drives

7There is a significant difference in the throughput when applying C2 to Scenario 2 between the CTMNs model
and 11axHDWLANSim simulator. The fact is that CTMNs consider the time spent in each state. In this case, the
dominant state is the one in which both WLANs transmit and experience collisions. However, the time spent in states
where individual transmissions are held is considered, even if it is very small. In practice, transmissions affected by
overlapping interference would result into null throughput, which is shown via the 11axHDWLANSim simulator.
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into many problems and situations that result into poor throughput performance. Our goal is to
provide a solution that enhances SR in an online fashion. To this end, we model the problem in
which multiple WLANs contend for a common set of resources through adversarial MABs. The
adversarial MAB problem [21] frames the scenario in which different learners compete for the same
resources simultaneously. In particular, after taking an action, a given learner is granted with a
reward that depends on the others’ actions, i.e., the joint action profile.

MABs have been shown to properly deal with the exploration-exploitation trade-off when the
uncertainty level is very high [22–24], which properly addresses the decentralized SR problem studied
in this work. Note that learning WLANs do not have information about the environment, which
in addition is adversarial because of the competition for the channel resources. Moreover, the
interactions shown by CSMA/CA-based devices lead to a very complex problem in terms of finding
the optimal solution. Moreover, the lack of data and delay-sensitive constraints prevent using more
powerful techniques such as convex optimization or even Deep Learning (DL). These techniques
are computationally expensive and require from a lot of training data. In the decentralized SR
problem presented here, none of the requirements can be satisfied. To alleviate this, MABs attempt
to maximize the achieved performance while the learning procedure is being carried out.

For the remainder of this work, we consider that the concepts of WLAN and agent can be in-
distinctly exchanged, since WLANs act as learners by collecting knowledge regarding their possible
configurations and the experienced throughput. In practice, WLANs accumulate knowledge of a
given selected action by observing its performance during a certain amount of time, i.e., a learning
iteration. Consequently, the accuracy of long-term estimations depends on for how long the output
of a given action is observed. The analysis of the necessary time to successfully monitor the chan-
nel is out of the scope of this paper. Thus, we assume perfect long-term estimations regarding the
actions’ performance. Furthermore, due to the lack of coordination between WLANs, the abovemen-
tioned learning procedure would be done in a disorganized way. Accordingly, from a global network
perspective, agents would pick actions at any time within a learning iteration, since they are not
synchronized in practice. However, and for the sake of simplicity, we consider that WLANs select an
action at the beginning of each iteration, so that we can properly capture the performance associated
with the different actions (recall that long-term estimates of actions are considered). Therefore, the
moment at which adversarial agents select an action is irrelevant to our analysis.

Figure 4 illustrates the inclusion of agents into WLANs, which operate on top of CSMA/CA,
as well as the aforementioned learning procedure (Figure 4(b)). As shown, both agents act within
each learning iteration. Initially, an agent observes the performance of the WLAN, which depends
on overall network configuration. With such an information, the agent updates the estimate of
each action and selects a new one accordingly. This procedure is repeated at the beginning of a
new iteration. For the scenario shown in Figure 4(a), there is an overlapping between the two
WLANs during the initial iteration, and simultaneous transmissions cannot be held. According to
this information, a new action is chosen by both Agents A and B, which turns out to enable SR,
thus allowing a higher number of successful data transmissions.

(a) WLANs with agents (b) Learning procedure

Figure 4: Agents integration in WLANs. (a) Scenario with two potentially overlapping WLANs, (b)
Learning procedure followed by agents according to the performance observed in their associated
WLAN.

Roughly, the SR problem in IEEE 802.11 WLANs can be modeled through adversarial MABs as
follows:

• Let N = {1, ..., N} be the set of potentially overlapping WLANs.
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• Each WLAN can choose from a range of actions A = {1, ...,K}, which refer to combinations
of C non-overlapping frequency channels, P transmit power levels, and S sensitivity levels.

• Initially, the estimate reward of each action available in any WLAN, k ∈ {1, ...,K}, is set to 0.

• At every iteration, each WLAN selects an arm randomly, according to its action selection-
strategy, which in this work is considered to be Thompson sampling.

• After choosing an action k at iteration t, each WLAN observes the reward generated by the
environment, rk,t, which is based on the experienced throughput that depends on i) its own
action and ii) the actions made by the overlapping WLANs.

• The new information is used for updating the knowledge on the available arms.

The goal of an agent, then, is to maximize the reward function, which is equivalent to minimize the
accumulated regret. In particular, the accumulated regret Rw,T that a given WLAN w experiences
until time T can be characterized as follows:

Rw,T =
T∑

t=1

(r∗w,t − rw,t),

where r∗w,t is the optimal reward granted by the best possible action in iteration t, and rw,t is
the reward granted by the actual action chosen by WLAN w at that iteration. Since we face an
adversarial setting, the process of minimizing the regret is highly influenced by the others’ behavior.
This raises concerns about the existence of an equilibrium in which the area throughput is fairly
maximized.

For practical application of MABs in WLANs, the reward experienced by a given learner must
be normalized, ideally, by the optimal reward r∗w,t. This procedure is key to assess the potential
of the played actions. But faced by the impossibility of providing such a value for every spatial
distribution, which would require an exhaustive search, we define an upper bound consisting in the
throughput that a given WLAN obtains in isolation (this concept is further described in Sections
4.1.1 and 4.1.2). Finally, it is important to remark that we consider time-invariant rewards, i.e., a
given action always leads to the same reward.

4.1 Thompson Sampling

Thompson sampling has been employed in this work as the action-selection strategy used by WLANs.
The motivation behind this choice is that Thompson sampling has been shown to grant excellent
performance in front of other well-known policies such as UCB or EXP3, when applied into wireless
networks. In [25], it was shown to converge fast to the optimal solution in terms of proportional
fairness for adversarial environments, thus reducing the temporal variability observed for other
exploration-exploitation mechanisms. Essentially, Thompson sampling [26] is a Bayesian algorithm
that constructs a probabilistic model of the rewards and assumes a prior distribution of the param-
eters of said model. Given the data collected during the learning procedure, Thompson sampling
keeps track of the posterior distribution of the rewards and pulls arms randomly in a way that the
drawing probability of each arm matches the probability of the particular arm being optimal. In
practice, this is implemented by sampling the parameter corresponding to each arm from the pos-
terior distribution, and pulling the arm yielding the maximal expected reward under the sampled
parameter value.

For the sake of practicality, we apply Thompson Sampling using a Gaussian model for the
rewards with a standard Gaussian prior as suggested in [27]. By standard calculations, it can be
verified that the posterior distribution of the rewards under this model is also Gaussian with mean

r̂k(t) =
∑t−1

w=1:k rk(t)

nk(t)+1 and variance σ2
k(t) = 1

nk(t)+1 , where nk(t) is the number of times that arm k

was drawn until the beginning of round t. Henceforth, implementing Thompson sampling in MABs
amounts to sampling a parameter θk from the Gaussian distribution N

(
r̂k(t), σ2

k(t)
)

and choosing
the action k with the highest value. Our implementation of Thompson sampling to the WLAN
problem is detailed in Algorithm 1.

In this paper, the reward is defined in two different ways, which are described in the following
subsections.
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Algorithm 1: Implementation of MABs (Thompson sampling) in a WLAN

1 Function Thompson Sampling (A);
Input : A: set of possible actions in {1, ...,K}

2 initialize: t = 0, for each arm k ∈ A, set r̂k = 0 and nk = 0
3 while active do
4 For each arm k ∈ A, sample θk(t) from normal distribution N (r̂k,

1
nk+1 )

5 Play arm k = argmax
1,...,K

θk(t)

6 Observe the throughput experienced Γt

7 Compute the reward rk,t

8 r̂k,t ← r̂k,tnk,t+rk,t

nk,t+2

9 nk,t ← nk,t + 1
10 t← t+ 1

11 end

4.1.1 Selfish Reward

The first considered reward aims to characterize a selfish behavior, which allows to purely represent
the decentralized and adversarial SR problem. Through selfish learning, several WLANs attempt
to learn the best configuration for their own gain, regardless of the performance experienced by
neighboring networks. In fact, WLANs ignore the existence of other learners, which may have
different goals. Henceforth, the reward rw,t that a given learner w experiences at iteration t is
computed according to the throughput Γw,t it experiences:

rw,t =
Γw,t

Γ∗w
,

where Γ∗w is a normalization value that refers to a certain upper bound reward that WLAN w can
experience. In the selfish case, the optimal upper bound is given for any configuration that maximizes
the individual performance of a given WLAN, regardless of the performance of other WLANs. It
is important to remark that it may not be possible for the learner to know such an upper bound
(further discussed in Section 4.2.1). In consequence, and for the rest of this paper, we define the
upper bound reward to be the throughput that a given WLAN would obtain in isolation.

Selfish learning in WLANs has been shown to potentially increase SR while leading to collabo-
rative results, provided that competitors enjoy equal opportunities [25]. However, unfairness issues
may be unleashed when dealing with significant asymmetries in terms of nodes location. As a result,
WLANs in a dominant position may learn a performance maximization strategy at the expense of
harming the weaker ones. By extension, competition among nodes is prone to lead to suboptimal
configurations, so that the optimal action ends up being hidden to learners. In this sense, from
the learner’s point of view, the right action may not be robust enough against the environment,
as a result of being susceptible to outer aggressive actions. Furthermore, learning selfishly in an
adversarial environment may be detrimental in terms of temporal throughput variability.

4.1.2 Environment-Aware Reward

To overcome the unfairness situations that may be generated by selfish learning, we propose the
environment-aware reward, which takes into consideration the effects that the actions of a given
learner have on the environment (i.e., on the overlapping WLANs). To this end, we assume that
WLANs are able to estimate the others’ performance by listening to their activity on the channel. In
practice, estimating the throughput experienced by overlapping WLANs may have limitations and
lead to inaccurate values. Nevertheless, we assume perfect estimation to purely study the benefits
and drawbacks of environment-aware learning. The analysis of dealing with inaccurate estimations
is left as future work.

By assuming the availability of environmental information, we define an environment-aware re-
ward that aims to fairly enhance the area throughput. Henceforth, rather than letting WLANs use
their own performance, we propose that the reward experienced by each WLAN includes some notion
of fairness. Three well-known fairness metrics are: i) Jain’s Fairness Index (JFI) of the throughput,
ii) Proportional Fairness (PF) of the throughput, and iii) max-min throughput. Throughout this
paper, we are considering only the latter, since the JFI does not necessarily maximize aggregate
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performance, and the PF is very varying.8 As a result, the reward rO,t that a set of O overlapping
networks experience in iteration t is given by:

rO,t =
minw∈O Γw,t

Γ∗O,t

,

where minw∈O Γw,t is the minimum throughput experienced in the set of overlapping WLANs O.
The upper bound reward Γ∗O,t is shared, and refers to the configuration that grants the maximum
max-min throughput. Again, since this knowledge may not be known at the learner side, we consider
the set of throughputs in isolation for each WLAN in O. Then, the max-min throughput value is
taken as the shared optimal reward.

4.2 Considerations of Decentralized Learning in WLANs

The classical MAB problem frames the scenario whereby an agent interacts with the environment.
The agent’s goal is to maximize the long-term reward according to the actions it plays, regardless
of any external factor. However, the presence of other agents in the adversarial learning problem
adds an extra layer of complexity. That is the case of decentralized SR, where different potentially
overlapping WLANs aim to find the best configuration by their own.

The competition unleashed by the adversarial setting can be formulated from a game theoretical
perspective. It is important to concentrate on the possible equilibriums that can be achieved for
a given game, which can be defined by the set of competitors and their strategies. Of course,
reaching an equilibrium whereby performance is maximized is limited to the conflicts that may crop
up as a result of the clashing strategies followed by different players. For instance, the performance
of a set of overlapping WLANs can be significantly limited if they use aggressive strategies in
terms of interference generation, since a suboptimal equilibrium may be reached. In case of using
the selfish reward presented in this paper, aggressive strategies in terms of interference would be
preferred by learners, specially in dense environments. Note that WLANs seek to maximize their
individual throughput, regardless the performance of the other networks. This particular scenario is
further analyzed in Section 5.1.3. Moreover, it is possible that an equilibrium cannot be found in a
decentralized manner. The main reason lies in the scarcity of the resources being shared, and in the
individual requirements of each WLAN. In that case, if greedy strategies were employed, WLANs
would alternate good and bad performing actions.

As a consequence to the adversarial setting unleashed in the decentralized SR problem, some
important implications must be considered with regards to practical application of MABs to WLANs.
Note, as well, that even if using an environment-aware reward that promotes collaboration (WLANs
share a common goal), learning in a decentralized way may result into some other performance
limitations. Such an issue is studied in Section 4.2.2. In essence, implications are noticed on the
action-selection procedure, i.e., the set of rules and constraints according to which a given agent
learns from the environment. Such a followed procedure is key to determine the potential of a given
algorithm in terms of achievable performance and convergence guarantees. In the decentralized SR
problem, the action selection procedure is held in a disorganized way, since every agent attempts
to learn by its own. Such a situation leads to highly-varying environments in which an intensive
action-selection procedure is held. This may severely impact on the learning process followed by any
learner, and is worsened as the number of overlapping learners increases.

Regarding the learning process, on the one hand, a sublinear regret cannot always be guaranteed
because of the intensive competition among networks. The speed at which regret is minimized
strongly depends on the scenario. Because of the adversarial setting, a zero-regret configuration may
be not be found, even if it exists. As a direct consequence, learners may suffer an increased variability
on the experienced reward. Such a statement differs from the current work in multi-player MABs
for opportunistic spectrum access, where strategies can be defined for sublinear regret minimization.
First of all, unlike the SR problem, actions’ performance can be binary modeled when attempting
to access the channel, thus allowing to extract much more meaningful information regarding the
environment: if selecting a given channel leads to a high number of collisions, the learner can easily
infer that it is saturated. In the SR case, however, much more complex interactions may occur and
have implications on a per-WLAN basis. Then, it is the aim of this work to provide insights on the
application of decentralized learning to maximize the performance of a wireless network.

8Very different results may lead to the same (or very similar) PF value, which may have consequences on the
learning procedure followed by WLANs. For instance, regarding the performance of two WLANs, a completely fair
distribution of [50, 50] Mbps leads to a similar PF than a much more unfair distribution of [120, 20] Mbps.
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Finally, and related to regret minimization, assessing convergence in a WLAN (i.e., stop acting)
may not be possible for the SR problem, thus impacting on the performance of higher communication
layers. In particular, we can determine that a WLAN has learned which is the optimal action if
it experiences a regret below a given threshold. However, due to the adversarial setting, such a
condition may not hold, or may not be accomplished before the environment changes.

4.2.1 Reward Definition

A reward function describes how an agent should ideally behave, which allows conducting its activity
towards maximizing (or minimizing) a given performance metric, i.e., the learner shapes a policy
according to the obtained rewards. By extension, a precise definition of the reward allows to improve
the learning procedure, since the reward perfectly matches with the desired goal. In that case,
convergence can be improved, and the probability of falling into a local minimum is lower.

Unfortunately, defining a reward function in practice may become a very complex task. On
the one hand, the optimal performance that can be achieved by a given individual or set of agents
may not be known, thus hindering the learning procedure. On the other hand, the reward-based
policies constructed by agents may be limited because of the competition among nodes (either for the
selfish or the environment-aware approaches). Such dependencies can result in dominance positions
of certain policies above others, which may obfuscate the optimal solution (obtained by the non-
dominant policies). Moreover, reaching the optimal behavior is subject to the convexity of the joint
reward function, which is not the case for the presented SR problem.

Now, in order to illustrate the impact of approximating the reward in the SR problem, let
us consider a simple scenario (depicted in Figure 5(a)) and focus only on the selfish reward type
(previously defined in Section 4.1.1). In particular, we place two WLANs that apply Thompson
sampling selfishly. The range of possible actions in terms of CCA and transmit power levels are
defined in Table 3 (included in A). We compare the usage of a reasonable upper bound reward (given
a decentralized environment) in front of the optimal performance that can be actually achieved
(computed by brute force). For the former, based on IEEE 802.11ax PHY capabilities (refer to
simulation parameters in A), we use the theoretical data rate that can be achieved in case of using
the maximum MCS.9 Note, as well, that this data rate may not correspond to the actual optimal
performance due to several factors such as nodes position and inter-WLAN interactions. However,
we refer to the utilization of a fixed MCS as an illustrative example of a practical upper bound that
could be used in real networks. In contrast, we will use the throughput in isolation as an upper
bound later in Section 5.

Figures 5(b) and 5(c) show the experienced regret and throughput, respectively, experienced
by two overlapping WLANs when applying Thompson sampling selfishly during 100 iterations. In
order to emphasize on the effects of using an inaccurate upper bound, one of the WLANs (namely,
WLANB) has stronger limitations than the other one (namely, WLANA), whose AP-STA distance
is shorter. Such a situation makes WLANB more vulnerable in front of interference and prevents it
to achieve the highest achievable throughput due to the SINR sensed at the receiver. As shown in
Figure 5(c), WLANB experiences a higher throughput variability in case of using an approximated
upper bound reward, rather than using the actual information for this concrete scenario. This can
be also noticed in Figure 5(b), where the regret experienced by WLANB grows linearly if the actual
optimal performance is unknown. In contrast, WLANA is able to use the maximum MCS due to
its privileged situation, thus showing similar performance both for known and approximated upper
bounds.

When defining an upper bound reward, we have seen that false expectations may lead to non-
convergence, which may have severe implications in the temporal variability of the experienced
performance.

4.2.2 Neighbors Identification when Applying an Environment-Aware Reward

In environment-aware learning, WLANs take the others’ performance into account during the reward
generation process. However, estimating the throughput of neighboring WLANs raises the following
question: which are the potentially overlapping WLANs that each learner should consider? The fact
of dealing with complex spatially-distributed environments hinders answering to that question, since
interactions in overlapping WLANs are not trivial to be derived for the SR problem, and change
with time. As a result, for a given learner, it is hard to identify the set of potentially overlapping

9We assume that the maximum data rate is achieved in case of using a single user (SU) transmission through a
1024-QAM MCS and a coding rate of 5/6. According to the IEEE 802.11ax standard parameters, this leads to a data
rate of 114.37 Mbps.
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Figure 5: Upper bound reward considerations when applying selfish Thompson sampling (100 itera-
tions are considered). (a) Scenario with two asymmetric WLANs in terms of maximum capacity, (b)
Temporal regret experienced by each WLAN when the actual upper bound reward (UBR) is known
(blue) or not (red), (c) Temporal throughput experienced by each WLAN when the actual UBR is
known (blue) or not (red).

WLANs whose performance must be taken into account. For convenience, let us refer to a particular
set of overlapping networks as a cluster. In accordance to that, a WLAN applying clustering refers
to the procedure whereby it considers the performance of other overlapping networks during the
reward generation process. Note, as well, that an overlap between two networks may occur by
different reasons. For instance, one may consider that two WLANs overlap if the mutual generated
interference exceeds a given threshold, which may not necessarily be the capture threshold. For
the rest of this paper, we assume that WLANs sharing a reward only take consideration of those
generating a level of interference greater than the CCA threshold on their own. Furthermore, we
assume bidirectional interactions, even in presence of asymmetries.

To showcase the importance of properly defining a list of neighbors (i.e., clusters), let us define a
simple scenario in which two WLANs are independent to one another in terms of interference. Such a
scenario has the particularity that one WLAN has limited performance due to the AP-STA distance.
Therefore, we aim to study the effects of learning by either considering all the environment (long-
range cluster) or just the interfering devices (short-range cluster). On the one hand, we establish a
soft establishment rule, where a neighbor is considered if the received power is higher than a very
low decision threshold. In practice, this is equivalent to not considering any neighbors establishment
rule, so that the max-min fairness involves all the WLANs in the presented scenario. On the other
hand, short-range clustering by SINR is done (previously introduced in Section 4.1.2), which means
that the performance of a given WLAN is considered by another one if the power received from the
former is greater than the latter’s CCA threshold.
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Figure 6: Neighbors establishment considerations when applying environment-aware Thompson sam-
pling (100 iterations are considered). (a) Scenario with two independent WLANs in terms of in-
terference, (b) Temporal throughput experienced by each WLAN when using long-range (blue) and
short-range clustering (red).

As shown in Figure 6(b), short-range clustering grants better results in terms of temporal vari-
ability, since WLANA does not consider WLANB during the learning procedure (the CCA condition
does not hold). Otherwise, in case that long-range clustering is applied, WLANA cannot determine
that WLANB is not a potential overlapping network, i.e., the actions of the latter do not impact to
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performance of the former. If long-range clustering is applied, WLANA considers the throughput
of WLANB to learn the performance of each action. This prevents the former to distinguish which
are the best actions for itself. Therefore, good and bad performing actions are alternated because
of the capacity limitation of WLANB (it never becomes satisfied).

Despite of the remarkable benefits of short-range clustering-based methods, determining neigh-
bors lists is not trivial in dense WLAN scenarios. In particular, the proposed approach in which the
SINR is used to determine interfering nodes fails in capturing additive interference situations. Such
kind of interference appears when a given network is only affected when two or more WLANs trans-
mit simultaneously. To illustrate this concept, we focus on the scenario shown in Figure 7(a), where
additive interference generates flow-in-the-middle starvation to a WLAN located in the middle of the
other two. In Figure 7(b) we show the results of applying environment-aware Thompson sampling
for both short-range and long-range clustering. This time we have considered the results after 1,000
learning iterations, since we are interested in showing the long-term performance achieved in both
situations.
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Figure 7: Issues on neighbors establishment when applying environment-aware Thompson sampling
(1,000 iterations are considered). (a) Scenario in which WLANB is prone to suffer from flow starva-
tion, (b) Average throughput per WLAN when using long-range (yellow) and short-range clustering
(purple). The standard deviation of the average throughput between iterations is shown in red, and
the black dashed line indicates the shared goal.

As shown in Figure 7, the short-range clustering approach fails because additive interference af-
fecting WLANB cannot be captured by the set of overlapping WLANs. Note, as well, that WLANA

and WLANC always sense the channel free, regardless of the networks that are currently trans-
mitting. This allows them to experience the highest possible throughput. In contrast, when agents
consider all the WLANs in the environment (long-range clustering), the starvation at WLANB is no-
ticed by the others. As a result, collaboration is enabled and the max-min throughput is maximized
at the expense of the aggregate performance.

4.2.3 Learning in Dynamic WLANs

In addition to the abovementioned learning implications, it is interesting to study the effects of
applying MABs in dynamic wireless environments. To that purpose, we frame a scenario in which
a new WLAN appears after some other WLANs have already learned the optimal configuration. In
particular, we use the scenario shown in Figure 7(a), and consider that WLANB is activated half-way
through the simulation. Figure 8 shows the max-min throughput achieved when all the WLANs
apply Thompson sampling (the environment-aware method is considered). WLANB is activated
at iteration 500, point at which it is expected that WLANA and WLANC have gathered enough
information for maximizing their performance during the initial phase.

As shown in Figure 8, when WLANB is activated, Thompson sampling adapts to the new situa-
tion. It reaches the new optimal goal after a reasonable number of iterations (similar to the initial
learning phase). In particular, Thompson sampling needs some time to reshape the already defined
probability distributions. The time the algorithm takes to adapt itself can be enhanced if changes
in the environment are tracked (e.g., by sensing beacons from new WLANs). Hence, additional in-
formation provided to the learning algorithm may boost the exploration of the new optimal actions.
In contrast, the implications in terms of performance provoked by changes in the environment are
hard to track in practice. Moreover, the procedure to be followed when a change is detected at
the algorithm level is not easy to derive. There exists a trade-off between the past and the present
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Figure 8: Thompson sampling application in a dynamic scenario where WLANB appears in iteration
500 (1,000 iterations are considered). The black dashed line indicates the shared goal.

information, which must be carefully balanced to achieve optimal performance.
In summary, learning in dynamic environments raises several questions about the validity and

expiration of the learned data. This analysis is out of the scope of this paper, so we leave it as
future work. In anticipation of this research topic, we highlight that dynamic MABs have been
previously studied in [28]. Also, with a higher degree of relation to the algorithms shown in this
work, we find Dynamic Thompson Sampling (DTS) [29], which is shown to adapt faster to changes
in the environment than the traditional Thompson sampling. Roughly, DTS promotes adaptive
exploration by tracking the reward probabilities of each arm, which is useful to give emphasis to
recent observations.

5 Performance Evaluation

In this Section we evaluate both selfish and environment-aware decentralized learning strategies.
To that purpose, we first study the behavior shown by WLANs in representative scenarios when
applying both kinds of learning. Then, we generalize those results through simulations in random
high-density scenarios.

5.1 Selfish vs Environment-Aware Learning

Selfish and environment-aware strategies are now evaluated in scenarios describing different casuistic.
In order to assess the performance achieved in WLANs by applying each strategy, we define the
optimal result as: i) the maximum individual throughput that a given WLAN can achieve (regardless
of the others’ performance), ii) the maximum throughput that each WLAN can achieve by ensuring
the max-min principle. Note, as well, that such values are computed by brute force in the following
illustrative scenarios. It is also worth noting that such an optimal performance may not be achieved
due to the interactions between WLANs, but special attention will be given to the behavior of each
learning approach in relation to that.

For the sake of highlighting Thompson sampling performance in front of other online learning
techniques, in this subsection we also provide the results of applying the ε-greedy action-selection
strategy. In contrast to Thompson sampling, ε-greedy selects the action with highest absolute
performance with probability 1− ε (exploitation), where ε is within 0 and 1. Otherwise, a random
action is selected with probability ε (exploration). Note, as well, that the parameter ε is initialized
to 1 and dynamically adjusted as a function of the number of iterations, as done in [22].

5.1.1 Learning in Presence of Asymmetries

Wireless networks are not always symmetric in terms of nodes location, so that different WLANs may
not enjoy the same opportunities when tackling the environment. Such an issue is more common to
occur in dense environments where the diversity of deployments is high. In these situations, attempt-
ing to maximize spectral efficiency in a selfish way can be detrimental in terms of fairness, especially
if there are WLANs in worse conditions than others. Conversely, the environment-aware approach
is expected to solve the imbalance between WLANs by maximizing the max-min throughput.

To illustrate the effect of applying both selfish and environment-aware rewards in an asymmetric
network, let us retrieve the simple 2-WLANs asymmetric scenario used in Section 4.2.1 (now shown
in Figure 9(a)). In this scenario, each AP is separated dAPA,APB

meters from the other one. The
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distance between an AP and its associated STA is dAPA,STAA and dAPB,STAB , respectively, so that
dAPA,APB

> dAPB ,STAB
> dAPA,STAA

.
The results of applying both Thompson sampling and ε-greedy methods for 10,000 iterations are

shown in Figures 9(b) and 9(c). While the former indicates the average throughput experienced by
each WLAN, the latter illustrates the temporal variability at WLANA.10

(a) Scenario (b) Mean throughput (c) Throughput WLANA

Figure 9: Fairness issues in both selfish and environment-aware Thompson sampling (10,000 it-
erations are considered). (a) Scenario in which WLANB is prone to suffer from starvation, (b)
Average throughput per WLAN for selfish and environment-aware learning, both for Thompson
sampling (TS) and ε-greedy. The standard deviation of the average throughput between iterations
is shown in red. The pink and green dashed lines indicate the maximum performance achieved per
WLAN regarding both selfish and environment-aware optimal solutions, respectively. (c) Temporal
throughput achieved by WLANA when learning selfishly through Thompson sampling and ε-greedy,
respectively.

As Figure 9(b) reveals, learning selfishly allows WLANA to experience the highest possible
throughput, both using Thompson sampling and ε-greedy. However, WLANB suffers from star-
vation because none of its possible actions allows to palliate the effects of WLANA’s aggressive
configuration. In contrast, when both WLANs use the environment-aware strategy, the optimal
max-min throughput is achieved, so that the starvation problem in WLANB is solved. In exchange,
WLANA sacrifices a portion of its maximum achievable throughput, since it uses a less aggressive
configuration. The difference between Thompson sampling and ε-greedy lies in the experienced
temporal throughput variability, which is significantly higher for the latter method (refer to Figure
9(c)). Such a variability entails that WLANs experience a slightly lower mean throughput.

As shown in this subsection, selfish learning is prone to generate flow starvation. However, it is
worth noting that it is a very common situation in real dense deployments, even if configurations
remain static.

5.1.2 Learning on Equal Terms

We previously analyzed the effect of applying selfish and environment-aware learning in an asymmet-
ric deployment. However, that might not represent other topologies where competing WLANs are
in similar conditions. Therefore, we now showcase the potential of applying RL in dense scenarios
where WLANs can access to the channel on equal terms.

For that, we consider a symmetric grid formed by 4 WLANs (Figure 10(a)), which can choose
from the same range of CST and transmit power levels. In this scenario, there exists an optimal
configuration that can be reached by each WLAN, regardless of the others’ actions. Therefore,
in case all the WLANs discover the optimal action, a Nash Equilibrium is conformed, so that no
individual can obtain further benefits by deviating from its strategy. As previously done, we focus
on the average throughput achieved by each WLAN (Figure 10(b)), and the temporal throughput
in WLANA (Figure 10(c)).

Our results show that all the WLANs are able to rapidly find the configuration that grants the
maximum possible throughput, for each of the proposed learning methods. A collaborative behavior
between WLANs occur despite learning selfishly. The primary reason of such a collaboration lies in
the symmetries found in the scenario, and on the ability of each WLAN to compete for resources
in a fair manner. Finally, and similarly to what is shown in Subsection 5.1.1, ε-greedy is shown to
lead to a significantly higher variability than Thompson sampling.

10We show the performance of only one WLAN as it is representative of the effects we illustrate here.
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(a) Scenario (b) Mean individual throughput (c) Throughput WLANA

Figure 10: Potential of both selfish and environment-aware Thompson sampling (10,000 iterations
are considered). (a) Scenario in which STAs are placed conservatively regarding inter-WLAN inter-
ference, (b) Average throughput per WLAN for Selfish and Environment-aware learning, both for
Thompson sampling (TS) and ε-greedy. The standard deviation of the average throughput between
iterations is shown in red. The pink and green dashed lines indicate the maximum performance
achieved per WLAN regarding both selfish and environment-aware optimal solutions, respectively.
(c) Temporal throughput achieved by WLANA when learning selfishly through Thompson sampling
and ε-greedy, respectively.

5.1.3 Competition Effects

The scenario shown in Section 5.1.2 frames a conservative environment in which the inter-WLAN
interference is low, i.e., APs belonging to different WLANs are distant enough, and STAs are rea-
sonably close to their AP. However, if we refer to a less idyllic situation, applying RL may not be as
effective as before. In particular, we are interested in showing the effects of using both selfish and
environment-aware strategies in highly competitive environments. In those cases, it may happen
that the optimal global solution becomes obfuscated because the action-selection procedure is held
individually.

To show the implications of intensive competition between WLANs, let us propose the nodes
distribution shown in Figure 11(a). In this scenario, interactions between WLANs are more prone
to generate performance issues, since all the STAs are more exposed to inter-WLAN interference.
In particular, the optimal solution for both individual performance and max-min throughput is
obtained only if all the WLANs use the minimum transmit power and the maximum sensitivity.
The results of applying both selfish and environment-aware strategies are shown in Figures 11(b)
and 11(c).

As it can be observed from Figure 11(b), none of the WLANs is able to reach the optimum
performance, neither for the selfish nor the environment-aware reward. We identify the fact that
actions are selected individually as the main cause of such a performance inefficiency.

Regarding selfish learning, WLANs choosing the optimal configuration are more susceptible to
be affected by inter-WLAN interference (asymmetries between WLANs are generated). First of all,
since the optimal configuration entails using the minimum transmit power, the generated interference
is minimized. As a result, the rest of WLANs can properly operate on the channel (they sense it
free). However, these same WLANs cannot distinguish between the right and the harmful action
from the global perspective, since both options lead to the optimal individual throughput (at the
expense of harming the WLAN that is behaving properly). Henceforth, selfish WLANs are prone to
act aggressively (i.e., use a high transmit power and limit the sensitivity area) in high-interference
situations, which leads to obfuscate the optimal solution (even in terms of selfishness). In short,
acting selfishly in this kind of scenario is not as effective as providing a certain level of collaboration
that allows to identify the optimal global configuration.

Moreover, and similarly to the selfish approach, using an environment-aware metric is not enough
to properly maximize the spectral efficiency. Despite WLANs act according to a joint reward, the
same limitations occur due to the weakness of optimal actions in front of the environment. When a
given WLAN selects the optimal action, probably it would not obtain the highest possible reward,
since it is subject to the others’ configuration. Since WLANs learn independently (even if the
others’ throughput is considered), the probabilities for all to choose the optimal action are very low.
In consequence, the learning capacity is limited as for the selfish approach. To conclude, Figure
11(c) shows that Thompson sampling is more stable than ε-greedy, in terms of temporal throughput
variability.
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(a) Scenario

(b) Mean individual throughput (c) Throughput WLANA

Figure 11: Competition issues in both selfish and environment-aware Thompson sampling (10,000
iterations are considered). (a) Scenario in which STAs are placed in a greedy way regarding inter-
WLAN interference, (b) Average throughput per WLAN for Selfish and Environment-aware learning,
both for Thompson sampling (TS) and ε-greedy. The standard deviation of the average through-
put between iterations is shown in red. The pink and green dashed lines indicate the maximum
performance achieved per WLAN regarding both selfish and environment-aware optimal solutions,
respectively. (c) Temporal throughput achieved by WLANA when learning selfishly through Thomp-
son sampling and ε-greedy, respectively.

5.2 Random Scenarios

In order to further analyze the effects of applying both selfish and environment-aware strategies,
we propose using 50 random scenarios, containing N = {2, 4, 6, 8} WLANs in a 10× 10× 5 m area
(i.e., an AP every 250, 125, 83.33 and 62.5 m3, respectively). WLANs are uniformly randomly
distributed in the scenario, as well as STAs are randomly located between 1 and 3 meters away
from their AP. Configurations are assigned so that WLANs use the same channel by default, and
maximum sensitivity and transmit power. Such a configuration has been previously shown to be
common in real deployments [20]. Further details regarding the generation of random scenarios can
be found in A.

Unlike in previous results, we now consider applying MABs for only 500 iterations. The main
reason lies in showing the gains that can be achieved by applying MABs for short periods, i.e.,
before the environment significantly changes. Note that requiring large periods of time for reaching
an equilibrium may not be feasible in real wireless deployments, because of the channel and users
variability.

We first show the average results obtained by each approach in Figure 12, which are compared
to the static situation. The latter considers that WLANs use the initial assigned configuration.
In addition, all the WLANs use the same channel (namely, channel 1). For performance evalua-
tion, we focus on the average throughput, the max-min throughput and the JFI. Moreover, due
to the impossibility of using the actual upper bound reward for each configuration, we use i) the
throughput in isolation as a maximum performance reference for the selfish strategy, and ii) for the
environment-aware strategy, the minimum throughput noticed among the individual performances
of the potentially overlapping WLANs, so that their throughput in isolation is considered.

As shown, the average throughput obtained per scenario through selfish Thompson sampling
outperforms the static configuration (refer to Figure 12(a)), which is evidence of the poor spectral
efficiency achieved in current deployments. In all the cases, using MABs allows to maximize the
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Figure 12: Average results of applying 500-iteration Thompson sampling in 50 random scenarios
for {2, 4, 6, 8} potentially overlapping WLANs. (a) Mean average throughput with standard de-
viation (in red) per WLAN in each scenario when using static (purple), selfish learning (yellow) or
environment-aware learning (green), (b) Mean average max-min throughput with standard devia-
tion (in red) per WLAN in each scenario when using static (purple), selfish learning (yellow) or
environment-aware learning (green), (c) Mean JFI with standard deviation (in red) in each scenario
when using static (purple), selfish learning (yellow) or environment-aware learning (green)

static performance. In addition, we can observe that selfish learning grants higher throughput
than the environment-aware as density increases. Regarding fairness, the selfish approach is shown
to work better in average (refer to Figure 12(c)), because WLANs in a bad situation are able to
self-adjust themselves in a competitive environment. However, this is not directly related to the
max-min throughput, which is the goal of the environment-aware approach (refer to Figure 12(b)).
Unfortunately, guaranteeing a certain minimum throughput to the less privileged WLANs in terms
of interference becomes more challenging as the number of overlapping nodes increases. Such an
issue is highly conditioned by the distance between the AP and the STA of a given WLAN.

Finally, to further illustrate the enhancements achieved by applying learning, we plot the average
throughput obtained for different learning phases in Figure 13. By showing the performance expe-
rienced for each interval of 100 iterations, we aim to emphasize on the progressive gains achieved
along the learning operation. As previously mentioned, wireless environments are highly varying,
thus a fast convergence is essential for any learning algorithm.
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Figure 13: Mean average throughput with standard deviation achieved during specific intervals. 500
iterations are considered for both selfish and environment-aware Thompson sampling in 50 random
scenarios for {2, 4, 6, 8} overlapping WLANs. (a) Results for the selfish strategy, (b) Results for
the environment-aware strategy.

For both strategies, we observe a big gain experienced during the first two intervals, which
becomes stable from that point onwards. Thus, even if an equilibrium is not reached, a significant
increase of the average performance is rapidly experienced. Regarding environment-aware learning,
a greater enhancement is provided when density is low (two and four WLANs). However, when
density increases, selfish learning achieves a higher average performance earlier. The key reason lies
in the fact that max-min throughput is more likely to be low as the number of overlapping devices
increases. Therefore, the learning procedure is slowed down due to the impossibility of finding an
appropriate solution that alleviates the poor performance achieved by the most vulnerable WLANs.
In opposite, learning selfishly speeds up performance trading fairness off.
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6 Conclusions

In this work, we addressed the potential and feasibility of applying decentralized online learning
to wireless networks, as a contribution to the debate about whether future WLANs should remain
decentralized or evolve towards centralized mechanisms (such as in cellular networks). To that
purpose, we delved into the SR problem in IEEE 802.11 WLANs and presented a practical learning-
based application to overcome it. In particular, we modeled the problem through MABs and showed
two strategies based on the Thompson sampling action-selection method. The first one is based on
learning selfishly, where the reward that an agent obtains after playing an action is granted according
to its own throughput, regardless of the performance achieved by the overlapping WLANs. The
second one, referred to as environment-aware learning, quantifies how good actions are based on
the max-min throughput achieved in the network. This can be done by inferring the performance
obtained by the surrounding WLANs.

By using the SR problem as a guiding thread, we analyzed the main considerations that must be
done when applying decentralized learning methods to wireless communications problems. Among
them, we highlighted practical issues such as convergence assessment or the difficulties on developing
an appropriate reward generation system. Finally, we evaluated two learning policies in terms of
fairness and throughput, so as to show their potential and major implications. Despite learning
selfishly has been shown to generate unfair situations, its potential at maximizing the aggregate
performance is very promising in certain scenarios. Moreover, even if environment-aware methods
allow to solve fairness-related issues, the fact of learning in a decentralized way is not a guarantee
for finding the best-performing configuration. In addition, environment-aware learning may severely
limit the aggregate performance in benefit of few WLANs.

As a final conclusion, we remark the potential of applying uncoordinated MABs in dense WLANs,
thus bringing hope for decentralized deployments in front of centralized systems. However, for prac-
tical application, such a kind of mechanisms are required to take the environment into considera-
tion, since selfish approaches are prone to generate unfair situations. Therefore, other important
challenges such as inter-WLANs communication must be overcome. Moreover, the utilization of
collaborative approaches raises several questions regarding fairness ascertainment. For instance, is
it worth to significantly reduce the performance of many WLANs in benefit to less privileged ones
in terms of location?

Future work will also consider the use of beamforming to improve spatial reuse. By defining
multiple beamforming sectors (i.e., 4 or 8), multiple simultaneous transmissions can be performed
from different APs if they select non-interfering sectors for transmitting. Thus, it adds another degree
of freedom which combined with transmission power, CCA, and channel allocation adaptation, which
may be done per sector, could further contribute to improve the overall system performance.
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A Wireless Environment

Here we provide details on the wireless environment used to simulate IEEE 802.11 WLANs behavior.
First, physical medium effects are modeled by following the specification provided in the IEEE
802.11ax standard for residential scenarios [30], which includes specific path-loss and shadowing
models. We have chosen this scenario because it is very representative for next-generation dense
and chaotic deployments. In particular, since we refer to random scenarios, we capture the essence
of the 11ax residential scenario by proposing a model that takes into account the walls and floor
frequencies, rather than the actual location of walls and floors. Accordingly, the power loss PLd in
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such an environment is given by:

PLd = 40.05 + 20 log10

( fc
2.4

)
+ 20 log10(min(d, 5))+ (1)

Id>5 · 35 log10

(d
5

)
+ 18.3F

F+2
F+1−0.46 + 5W

where fc is the frequency in GHz, d is the distance between the transmitter and the receiver in
meters, and F and W are the average number of floors and walls traversed per meter, respectively.
The original scenario considers a 5-floor building, with twenty apartments of 10 × 10 × 3 meters
size per floor. Regarding adjacent channel interference, we consider that consecutive channels are
non-overlapping.

Note, as well, that the data rate at which a transmitter sends data is subject to the signal
strength in the receiver, which in this work is assumed to be known. IEEE 802.11ax parameters
are used, so that modulations range from BPSK to 1024-QAM [31]. Table 3 details the parameters
used, which include PHY and MAC specifications [32].

Parameter Description Value
C Set of channels 1 / 2
S Set of sensitivity thresholds -68 dBm / -90 dBm
T Set of transmit power values 5 dBm / 20 dBm
dmin

AP,STA / dmax
AP,STA Min/max distance AP - STA 1 m / 3 m

(x, y, z) 3D map dimensions in each axis (10, 10, 5) m
W Channel bandwidth 20 MHz
F Central frequency 5 GHz
SUSS Spatial streams per user 1
Gtx Transmitting gain 0 dBi
Grx Reception gain 0 dBi
N Floor noise level -95 dBm
CE Capture Effect threshold 10 dBm
Ts Symbol duration 9 µs
DIFS/SIFS DIFS and SIFS duration 34 µs / 16 µs
CWmin/CWmax Min/max contention window 16 / 16
Nagg Number of packets aggregated 64
LDATA Length of a data packet 12000 bits
LRTS / LCTS Length RTS and CTS packets 160 bits / 112 bits
LMAC Length MAC header 272 bits
LSF Length Service Field (SF) 16 bits
LMPDU MPDU delimiter 32 bits
LTail Length tail 6 bits
LBACK Length block ACK 240 bits

TRTS RTS packet duration 20 · 10−6 + LSF+LRTS+LTail

R Ts s

TCTS CTS packet duration 20 · 10−6 + LSF+LCTS+LTail

R Ts s

TDATA Data packet duration 36 · 10−6 + SUSS · 16 · 10−6 +
(LSF+Nagg·(304+LDATA)+LTail)

R Ts s

TBACK Block ACK duration 20 · 10−6 + LSF+LBACK+LTail

R Ts s
T Traffic model Full buffer (downlink)

Table 3: Simulation parameters
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Komondor: a Wireless Network Simulator for

Next-Generation High-Density WLANs

Sergio Barrachina-Muñoz, Francesc Wilhelmi∗,
Ioannis Selinis, and Boris Bellalta

Abstract

Komondor is a wireless network simulator for next-generation wireless local area networks
(WLANs). The simulator has been conceived as an accessible (ready-to-use) open source tool
for research on wireless networks and academia. An important advantage of Komondor over
other well-known wireless simulators lies in its high event processing rate, which is furnished
by the simplification of the core operation. This allows outperforming the execution time of
other simulators like ns-3, thus supporting large-scale scenarios with a huge number of nodes.
In this paper, we provide insights into the Komondor simulator and overview its main features,
development stages and use cases. The operation of Komondor is validated in a variety of
scenarios against different tools: the ns-3 simulator and two analytical tools based on Continuous
Time Markov Networks (CTMNs) and the Bianchi’s DCF model. Results show that Komondor
captures the IEEE 802.11 operation very similarly to ns-3. Finally, we discuss the potential
of Komondor for simulating complex environments – even with machine learning support – in
next-generation WLANs by easily developing new user-defined modules of code.

1 Introduction

The Institute of Electrical and Electronics Engineers (IEEE) 802.11 Wireless Local Area Networks
(WLANs) are evolving fast to satisfy the new strict requirements in terms of data rate and user
density. In particular, various IEEE 802.11 amendments have been introduced in the past few years
or are under active development to accommodate the need for higher capacity, exponential growth in
number of devices, and novel use-cases. [1]. An example of next-generation high-density deployment
is depicted in Fig. 1 where multiple WLANs are allocated with different channels and dynamic
channel bonding (DCB) policies.

Of particular interest is the IEEE 802.11ax (11ax) amendment [2], that is under active devel-
opment and which was introduced to address the demands and challenges that WLANs will face
in the congested 2.4/5 GHz bands [3]. Other important amendments for next-generation wireless
networks are the IEEE 802.11ay [4] and EXtreme Throughput (XT) 802.11 [5], which aim to exploit
the 60 GHz and ≤ 6 GHz frequency bands, respectively. Amendments like the aforementioned ones
lay the foundation of next-generation WLANs by including new features such as multiple-antenna
techniques like Downlink/Uplink Multi-User Multiple-Input-Multiple-Output (DL/UL MU-MIMO),
spatial reuse techniques like BSS coloring, and efficient use of channel resources like DL/UL Orthog-
onal Frequency Division Multiple Access (OFDMA). Therefore, it becomes necessary to provide
reliable simulation tools able to assess the performance and behavior of next-generation WLANs in
multiple scenarios/cases, especially in high-density deployments.

In this paper, we present Komondor,1 an open source, event-driven simulator based on the
CompC++ COST library [6]. Komondor is focused on fulfilling the need for assessing the novel
features introduced in recent and future amendments, which may be endowed with applications
driven by machine learning (ML). The motivation for developing and building the presented wireless
network simulator is motivated by:

i) The lack of analytical models for capturing next-generation techniques in spatially distributed
and/or high-density deployments.

ii) The lack of next-generation WLAN-oriented simulators.

∗The contribution of the first two authors is the same.
1All of the source code of Komondor, under the GNU General Public License v3.0., is open, and potential contrib-

utors are encouraged to participate. The repository can be found at https://github.com/wn-upf/Komondor
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Figure 1: Dense scenario composed of 25 WLANs. Note that each WLAN has its own channel
allocation and DCB policy.

iii) The complexity of extending simulators comprising an exhaustive implementation of the phys-
ical (PHY) layer.

iv) The large (or intractable) execution time required by other simulators to simulate high-density
deployments.

v) The need for conveniently incorporating ML-based agents in the simulation tool.

In short, Komondor is designed to efficiently implement new functionalities by relying on flexible and
simplified PHY layer dependencies, to be faster than most off-the-shelf simulators, and to provide
reliable simulations and a gentle learning curve to new users.

2 Wireless network simulators

Wireless network simulators can be categorized into continuous-time and discrete-event. On the one
hand, continuous-time simulators continuously keep track of the system dynamics by dividing the
simulation time into very small periods of time. On the other hand, in discrete-event simulators,
events are used to characterize changes in the system. Accordingly, for the latter, events are ordered
in time and normally allow running faster simulations than continuous-time simulators. In addition,
discrete-event simulators allow tracing events with higher precision.

From the family of discrete-event driven network simulators, only a few ones are publicly avail-
able. OMNET++ [7] is a component-based C++ simulation library that is not open-source and
is used for modeling communication networks and distributed multiprocessor systems. OPNET is
another commercial simulator that allows the integration of external components. NetSim [8] was
conceived to provide an accurate simulation model oriented to the world wide web. To that purpose,
the simulator was written in Java, which compromises simulation time with programming flexibil-
ity. When it comes to open source network simulators, a MATLAB-based link-level simulator was
presented in [9] for supporting the IEEE 802.11g/n/ac/ah/af technologies. The ns-2 simulator [10]
is another network simulator known for its accuracy and the integration with the network animator.
Finally, the ns-3, which was introduced in 2006 to replace the ns-2, presents significant advantages
over the ns-2 due to its detailed simulation features, becoming very popular among the research com-
munity [11]. Table 1 highlights in a nutshell the most important characteristics of the overviewed
network simulators and Komondor.

Among the family of overviewed discrete-event simulators, we highlight the ns-3 open-source
simulator due to its popularity and use it as a baseline for comparing against Komondor. Despite

2Although ns-2 and ns-3 do not provide a default graphical animation tool, there are tools supporting live animation,
e.g., PyViz or NetAnim for ns-3 and NAM for ns-2.

3blueAn integration with OpenAI Gym has been recently provided to ns-3 [12], but the ML-based operation is not
part of the simulator.
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Table 1: Comparison of wireless network simulators.

Simulator
Open-
source

Source
lang.

Complexity GUI
11ax

features
ML/based
module

ns-3 Yes C++ High No1 Partial No2

ns-2 Yes C++/OTcl Low No1 No No
OMNET++ No C/C++ Medium Yes No No

OPNET No C++ Medium Yes No No
NetSim No Java Low Yes No No

Komondor Yes C/C++ Low No Partial Yes

the plethora of features that are supported in ns-3, it has some inherent limitations, such as the high
complexity for developing new features/models as an extension of the simulator core. In particular,
compatibility with the already existing/supported models is required and must be carefully ensured.
For example, beamforming for previous mature amendments (i.e. IEEE 802.11n/ac) is not available
yet, owing to the effort required to integrate it. Moreover, the integration of new features strongly
depends on the willingness of the community to contribute to the development.

With respect to the IEEE 802.11ax operation – rates and support for information elements are
being developed – the implementation is mostly based on the Draft 1.0 [13]. Such a draft dates
from 2016 and does not include most of the core IEEE 802.11ax functionalities. At the time of
submitting this paper, only the Single-User Protocol Data Unit (SU PPDU) and MIMO with up
to four antennas are supported in ns-3, whereas OFDMA and MU-MIMO are not supported in the
official distribution [14].

Apart from the official resources, we find few ns-3 works publicly available that support IEEE
802.11ax features, which may (or may not) be integrated into future releases. For example, we
highlight the works with regard to the OFDMA that have been carried out by Getachew Redieteab
et al. (based on the IEEE 802.11ax specification framework document [15]) and Cisco [16]. However,
none of these works completely follow the latest developments in the IEEE 802.11ax standard and
have not been validated through extensive simulations and testbed results, as had previously occurred
with the OFDM [17]. In addition to OFDMA, the spatial reuse operation (i.e., BSS Color [18]) is
under active development, whereas extensions of the capture effect have been applied to ns-3 to
follow the IEEE 802.11ax guidelines and studied in [19] and in a testbed [20].

3 Komondor Design Principles

3.1 Architecture

Komondor aims to realistically capture the operation of WLANs. Henceforth, it reproduces actual
transmissions on a per-packet basis. To that purpose, Komondor is based on the COST library, which
allows building interactions between components (e.g., wireless nodes, buffers, packets) through
synchronous and asynchronous events. While the former are messages explicitly exchanged between
components through input/output ports, the latter are based on timers. In practice, components
perform a set of operations until a significant event occurs. For instance, a node that is decreasing
its backoff may freeze it when an overlapping node occupies the channel. The beginning and end
of such a transmission are examples of significant events, whereas decreasing the backoff counter is
not. Nevertheless, events may be triggered by different timers. In the previous example, a node’s
transmission begins once the backoff timer terminates (i.e., the backoff timer triggers the beginning
of the transmission), while the end of the transmission is triggered by the packet transmission timer.
Fig. 2 shows the schematic of a COST component, which is composed of inports, outports, and a
set of timers.

3.2 IEEE 802.11 Features

Komondor entails a long-term project in which several contributors are involved. That is, the
simulator is continuously evolving to include novel techniques and generally improve performance.
The current version of Komondor (v2.0) includes the following fully tested IEEE 802.11ax features:

• Distributed coordination function (DCF): the Carrier Sense Multiple Access with Col-
lision Avoidance (CSMA/CA) captures the basic Wi-Fi operation for accessing the channel.
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Figure 2: COST component. While inports and outports allow to directly communicate with other
components, timers trigger events specific to the component.

Figure 3: Komondor execution flowchart.

Moreover, Contention Window (CW) adaptation is considered.

• Buffering and packet aggregation: several traffic generator models are implemented in
Komondor such as deterministic, Poisson or full-buffer. Besides, multiple media access control
protocol data unit (MPDU) can be aggregated into the same PLCP protocol data unit (PPDU)
in order to reduce the generated communication overheads.

• Dynamic channel bonding (DCB): multiple channel widths can be selected during trans-
missions by implementing DCB policies in order to maximize the spectrum efficiency. Some of
these policies were already evaluated in [21], [22].

• Modulation coding scheme (MCS) selection: the MCS is negotiated between any transmitter-
receiver pair according to the Signal-to-Interference-and-Noise Ratio (SINR), thus supporting
multiple transmission rates.

• Ready-to-send/Clear-to-send (RTS/CTS) and Network Allocation Vector (NAV):
virtual carrier sensing is implemented in order to minimize the number of collisions by hidden-
nodes.

Future development stages are under progress including other features such as OFDMA, MU-
MIMO transmissions, beamforming, spatial reuse, and ML-based configuration.

3.3 Execution Flowchart

Komondor is composed of several modules that allow performing simulations with a high degree
of freedom. Fig. 3 summarizes the operational mode of Komondor from a user’s point of view. A
more detailed user’s guide providing a quick-start and guided execution examples is available in the
Komondor’s Github repository.
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Figure 4: Komondor’s state diagram and events. a) States are reachable by different transitions. b)
Simultaneous events are properly processed through delay offset correction.

3.3.1 Input and Setup/Start

as for the execution console command for starting Komondor simulations, arguments are designed
in a simple and efficient way. Examples of console arguments are the file names of the inputs, the
activation flags of the logs, the simulation time and the random seed. In addition, input files (in
CSV format) are used to define the environment and have been conceived in a way that the user can
easily modify important simulation parameters such as the traffic load, the path-loss model, or the
data packet size. Once the environment is generated and nodes are initialized, traffic is exchanged
between nodes until the simulation time runs out.

3.3.2 Stop and Output

when the simulation finishes, the closing is handled and statistics are gathered. Then, extensive
and detailed performance statistics are per default provided by Komondor (e.g., throughput, delay,
spectrum utilization, or collisions). Moreover, the user can efficiently include as much as metrics as
desired.

3.4 States and events

The Komondor’s core operation is based on states, which represent the status (or situation) in which
a node can be involved. A state diagram summarizing both states and transitions is shown in Fig. 4.
Roughly, a given node starts in the SENSING state, where multiple events can occur (e.g., a new
packet is buffered or a new transmission is detected). Then, according to the noticed event, the
node transits to the corresponding state.

3.4.1 States

we depict below each state and how a node must behave in front of new events.

• SENSING: a node senses the channel with two main purposes. First, to follow the CSMA/CA
operation to gain access to the channel (in case there is backlogged data in the buffer/s). Sec-
ond, to wait for incoming transmissions, so that either carrier sensing or receiving procedures
are held. In case of being immersed in a backoff procedure, a node detecting a “new trans-
mission” event would sense the power received in its primary channel, and assess whether to
freeze the backoff countdown. Similarly, whenever an “end transmission” event occurs, the
channel is sensed in order to determine whether the backoff counter can be resumed or remain
paused.

• TRANSMIT: a transmitter node is currently transmitting a packet. No matter what events
may occur, during the packet transmission, the node blocks its receiver capabilities and remains
in the same state until the transmission is finished.

• RECEIVE: when a node is receiving and decoding an incoming packet, it will behave in front
of a new event according to its implication in the channel of interest. Of especial importance are
those new transmission events triggered by other nodes that have gained access to the medium.
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Specifically, if a new transmission generates enough interference, the ongoing reception will be
discarded, thus leading to a packet loss.

• WAIT states: these states allow modeling the situations where a node that transmitted a
packet is expecting for the corresponding response. Namely, after transmitting RTS, CTS or
DATA packets, the transmitter will wait for the corresponding CTS, DATA or ACK/BACK
packets, respectively. If the response packet is not received before the corresponding timeout
is triggered, the transmitter assumes that either the transmitted packet or the response packet
is lost and resets to SENSING state. Wait states are particularly useful to detect packet losses
when anomalies in the network (e.g., hidden terminal problem) occur.

• NAV: when a node enters in NAV state due to the successful reception of a frame addressed
to a different destination, it sets a NAV timer and keeps listening to its primary channel. If
a new frame is successfully received during the NAV, the timer is updated, provided that the
new NAV time is larger than the current remaining time.

3.4.2 Events

each time a node performs an action that can affect the system (e.g., it starts transmitting a
frame), an event is announced. Events in Komondor are lined up on the time axis and handled by
the core entity. Events management is similar in ns-3. However, the latter exhibits a significant
limitation, since events that are scheduled at the exact same time can be executed in any order.
Such a development feature may lead to unpredictable results and is incompatible with real-world
situations in which events can occur simultaneously. Some inconsistencies may occur in case that
the execution order affects multiple simultaneous events (e.g., two packets arriving at the exact
same time). To solve this, Komondor, which is also a discrete-event simulator, employs temporal
variables to compare the exact timestamps at which two or more events were generated. As a result,
Komondor is able to successfully simulate the behavior of simultaneous events while keeping the
logic of the states.

3.5 Developing new modules

Komondor has been conceived to be easily modified and extended. In particular, several modules
have been provided to represent different simulation capabilities (e.g., propagation, channel access
or traffic generation). Accordingly, Komondor can be potentially extended to support the operation
of other IEEE 802.11 amendments such as 11n, 11ac, 11ad or 11ay. In addition, ML-based modules
can also be introduced. A complete manual can be found at the Komondor’s repository.

4 Validation

In this Section, we validate the operation of Komondor and show its potential for dealing with
high-density scenarios. In particular, we show the reliability of the simulator, despite its reduced
complexity of the PHY.4 The validation of the Komondor’s operation is done through a set of illustra-
tive scenarios, and our results are compared with the ones obtained with ns-3.5 In addition to ns-3,
a mutual validation is performed with the Continuous Time Markov Networks (CTMNs) modeling
introduced in [24], and which is extended for spatially distributed networks in the Spatial-Flexible
Continuous Time Markov Network (SFCTMN) framework [21]. As for high-density scenarios, we
make use of the Bianchi’s DCF analytical model [25] to validate the results in fully-overlapping
deployments, where all the nodes are within the carrier sense of the others. The results shown in the
following subsections were obtained according to the parameters defined in Table 2. The duration
of the RTS, CTS and data frame is computed as follows:

4For instance, channel effects are assumed to remain static during the whole transmission of a given frame, and
the propagation delay is considered to be negligible.

5Details on the ns-3 implementation used in the simulations presented throughout this paper can be found at https:
//github.com/wn-upf/Komondor/tree/master/Documentation/Validation/ns-3. For instance, this implementation
includes the 11ax residential scenario propagation loss [23] and has a PLCP training duration updated according to
the 11ax amendment [2].
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⌉
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Note that full-buffer traffic is assumed in all the scenarios throughout this work for comparative
purposes. Moreover, we have considered the residential path-loss model recommended in the IEEE
802.11ax [23], which inflicts high losses due to its large number of obstacles (e.g., walls).

Table 2: Parameters considered in the presented scenarios.

Parameter Description Value

fc Central frequency 5 GHz
|c| Basic channel bandwidth 20 MHz
MCS 11ax MCS index 0-11
Gtx Transmitting gain 0 dB
Grx Reception gain 0 dB
PL(d) Path loss (Residential scenario) see [23]
N Background noise level -95 dBm
σleg Legacy OFDM symbol duration 4 µs
σ OFDM symbol duration (GI-32) 16 µs
Nsc Number of subcarriers (20 MHz) 234
Nss Number of spatial streams 1

Te Empty slot duration 9 µs
TSIFS SIFS duration 16 µs
TDIFS DIFS duration 34 µs
TPIFS PIFS duration 25 µs
TPHY-leg Legacy preamble duration 20 µs
THE-SU HE single-user field duration 100 µs
TACK ACK duration 28 µs
TBACK Block ACK duration 32 µs
Tmax
PPDU Max. PPDU duration 5484 µs
Ls,l Size OFDM symbol (legacy) 24 bits
LD Data packet size 11728 bits
Nagg No. of frames in an A-MPDU 1, 64
LRTS Length of an RTS packet 160 bits
LCTS Length of a CTS packet 112 bits
LSF Length of service field 16 bits
LMH Length of MAC header 320 bits
CW Contention window (fixed) 15

4.1 Analyzing toy Scenarios

Komondor has been conceived as a friendly and ready-to-use wireless network simulator that can
be used by researches and teachers to study fundamental networking issues. In particular, scenarios
and environment configurations can be conveniently modified through structured input files. The
scenarios proposed in this Section are a clear example of toy scenarios where different networking
concepts such as flow starvation or additive interference take place. Furthermore, a given user
can easily analyze WLAN scenarios through the implemented logs generation system and statistics
reporting. Accordingly, particular phenomena in the PHY and medium access control (MAC) layers
can be tracked (e.g., channel contention, packet collisions, physical carrier sensing, energy detection,
or buffer dynamics).
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Figure 5: Average throughput experienced by the WLAN of Scenario 1, for Nagg = 1 and Nagg = 64.
Results obtained from each simulation tool are shown.

4.2 Basic Operation

We first aim to validate the basic IEEE 802.11 operation of the DCF implemented in Komondor when
RTS/CTS is applied. For that, we consider a single Access Point (AP) scenario (we name it Scenario
1 ) with one and two stations (STAs), where full-buffer downlink traffic is held. The two-STAs case
allows us to assess the proper behavior of Komondor in presence of multiple STAs. To validate
this scenario, we compare the Komondor results with the ones provided by ns-3 and the SFCTMN
framework. Fig. 5 shows the simulation results obtained from each tool, for packet aggregation
(Nagg = 64) and no-aggregation (Nagg = 1). We note that the average throughput obtained by each
simulation tool is almost identical, either for packet aggregation or not. In addition, having multiple
STAs leads to the same result as for a single one since the destination STA is picked at random in
every transmission.

4.3 Complex inter-WLAN interactions

In order to validate the behavior of Komondor in front of more complex inter-WLAN interactions,
we now focus on the three-WLANs scenarios shown in Fig. 6. We name them Scenario 2a-2d. The
interactions occurring in such scenarios are illustrated through CTMNs, where states6 represent
the WLANs that are currently transmitting. Note that each of these scenarios reflects different
situations that are of particular interest since they generalize different well-known phenomena in
wireless networks:

• Fully overlapping (Fig. 6a): all the nodes cause contention to all the others when transmit-
ting. For that, the distance between consecutive APs and between AP and STA of the same
WLAN is set to dAP,AP = dAP,STA = 2 m, respectively.

• Flow starvation (Fig. 6c): contention is triggered in a pair-wise manner, so that WLANA

and WLANC do not interfere each other. For that, the distance is set to dAP,AP = 4 m and
dAP,STA = 2 m. Note that this case could be also extended to show a hidden node effect if
APA or APC were intended to transmit to a STA located at the location of APB.

• Potential overlap (Fig. 6e): contention only occurs at WLANB when both WLANA and
WLANC transmit concurrently. Otherwise, the channel is sensed as free. Note that, in this
case, packets are successfully transmitted in WLANB whenever it access the channel. The
distances are dAP,AP = 5 m and dAP,STA = 2 m for WLANA and WLANC, and dAP,STA = 3
m for WLANB.

• No overlapping (Fig. 6g): none of the nodes causes contention to any other when trans-
mitting. That is, every WLAN operates like in isolation. The distances in this case are
dAP,AP = 10 m and dAP,STA = 2 m.

The average throughput experienced by each WLAN in each scenario is shown in Fig. 7. As
previously done, we compare the performance of Komondor with ns-3 and SFCTMN. Note that
results gathered by both Komondor and ns-3 are very similar in all the cases. Concerning the
differences in the average throughput values estimated by both simulators and SFCTMN, we observe
two phenomena with respect to backoff collisions in topologies of Scenario 2a and 2c. First, in 2a,

6Note that CTMN states are not related by any means to Komondor states.
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Figure 6: Topologies and corresponding CTMNs of scenarios 2a-2d. The yellow and blue arrows
represent the area of interference from transmitters in WLANs A and C, respectively, whereby
medium contention is forced.

the throughput is slightly higher when the capture effect condition is ensured. This is due to the fact
that concurrent transmissions (or backoff collisions) are permitted and captured in the simulators.
Second, the most notable difference is given in 2c, which is caused by the assumption of continuous
time backoffs in the CTMN. These are clear examples of the limitations of the analytical tool.

4.4 High-density and simulator performance

Finally, we assess the performance of Komondor when dealing with high-density scenarios. Notice
that being able to simulate scenarios with a large number of nodes is a key feature due to the ever-
increasing trend towards short-range and dense deployments. In this situation, we show the results
of different fully-overlapping scenarios, ranging from 1 to 50 WLANs, each consisting in of one AP
and one STA. The validation is performed against the Bianchi’s analytical model and ns-3. The MCS
for all the WLANs is set to 256-QAM. Fig. 8 shows the results in terms of throughput (average and
aggregate) and collision probability obtained for fully overlapping networks of different sizes. For
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Figure 7: Average throughput experienced by each WLAN in scenarios 2a-2d. Nagg = 1 and
Nagg = 64 are represented through solid bars and dashed lines, respectively.

Figure 8: Throughput (average and aggregate) and collision probability vs. number of overlapping
WLANs. Only some ns-3 points are plotted for the sake of visualization.

comparison purposes, the simulation time used in each scenario has been set to 100 seconds, for
both Komondor and ns-3. Notice that such a fully overlapping setting frames a worst-case situation
regarding packet collisions. This impacts on the number of events and the simulation time as the
network density increases. Nevertheless, much more positive results are expected to be achieved in
more realistic non-fully overlapping dense scenarios.

As shown, Komondor maintains its accuracy with respect to Bianchi’s model, even when dealing
with a lot of nodes. Regarding ns-3, slight differences are noticed in the collisions probability due
to the error rate model, where collisions are based on the dropped RTS frames and the use of
the Extended Interframe Space (EIFS). Moreover, differences in the throughput increase with the
number of nodes, as previously addressed in [26].

To conclude this section, we provide insights into the execution complexity of Komondor. Fig. 9
shows the execution time and the number of generated events in Komondor and ns-3 for each number
of WLANs.7 As shown, the execution complexity of ns-3 is significantly higher than in Komondor.
We identify the cause of this difference to be the complex PHY implementation in ns-3, which leads
to a larger number of generated events.

7Note that the execution time is strongly dependent of the computer used and its status at the moment of
performing the simulation. In our case, we used an Intel Core i5-4300U CPU @ 1.9 GHz x 4 and 7.7 GiB memory.
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Figure 9: Execution time and number of generated events vs. number of overlapping WLANs.

5 Komondor and potential use cases

Apart from small deployments consisting of few WLANs under single-channel operation [27], more
complex scenarios capturing DCB or high-density scenarios have been already validated and an-
alyzed by using Komondor. In this section, we briefly discuss further potential uses such as the
implementation of next-generation WLAN techniques or the inclusion of learning agents to perform
efficient spectrum access and spatial reuse.

5.1 Potential usage

Complex wireless environments can be already extensively simulated by Komondor as a result of
its reduced computational complexity in comparison to other well-known simulators such as ns-
3. A prominent example of a complex scenario mixing both high-density deployments and DCB
is discussed in [21], where authors assessed the performance of different DCB policies versus node
density (see Fig. 1). In [22], a similar deployment is analyzed while considering different traffic loads.
A set of scenarios including DCB is shown in Fig. 10, which were validated in Komondor’s validation
report v0.1.8 New features like spatial reuse, MIMO, beamforming and MU communications through
OFDMA and/or MU-MIMO are currently under development.

Figure 10: Scenarios with different DCB capabilities.

5.2 Machine learning agents

In addition to simulating advanced techniques proposed by the latest IEEE 802.11 amendments,
Komondor permits including intelligent agents. In particular, agents are embedded to APs (see Fig.
11a) to perform the following operations (see Fig. 11b): i) monitor WLAN’s performance, ii) run

8Komondor’s validation report v0.1: https://github.com/wn-upf/Komondor/blob/master/Documentation/Other/

validation\_report\_v01.pdf.
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(a) Agents embedded to APs (b) Learning operation followed by agents

Figure 11: ML-based operation implemented in Komondor.

an implemented learning method, and iii) suggest new configurations to be applied by the WLAN,
according to generated knowledge.

The application of intelligent agents has been previously studied in [27,28], where decentralized
learning is employed to both Transmit Power Control (TPC) and Carrier Sense Threshold (CST)
adjustment.

6 Conclusions

In this work, we presented Komondor, a wireless network simulator that stems from the need of
providing a reliable and low-complexity simulation tool able to capture the operation of novel WLAN
mechanisms like DCB or spatial reuse. The operation of Komondor has been validated against the
ns-3 simulator and analytical tools such as CTMNs and Bianchi’s DCF model. In this regard,
we have shown its effectiveness when dealing with high-density scenarios, thereby outperforming
ns-3 with respect to the simulation time. The provided validation is fundamental for the next
development stages, which contemplate the inclusion of novel techniques in WLANs that have not
been fully implemented in other well-known simulators. Some future implementations contemplate
OFDMA, MU-MIMO, and the spatial reuse operation, naming a few among others. Finally, we
have discussed the potential of Komondor regarding complex scenarios and ML integration. In
particular, a preliminary ML-based architecture is already implemented, so that intelligent agents
can rule self-configuring operations at different communication levels.

Acknowledgments

This work has been partially supported by a Gift from CISCO University Research Program (CG#890107)
& Silicon Valley Community Foundation, by the Spanish Ministry of Economy and Competitiveness
under the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502), and by the Catalan
Government under grant SGR-2017-1188. The work by S. Barrachina-Muñoz is supported by an FI
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[22] S. Barrachina-Muñoz, F. Wilhelmi, and B. Bellalta, “To Overlap or not to Overlap: Enabling
Channel Bonding in High-Density WLANs,” Computer Networks, vol. 152, pp. 40 – 53, 2019.

[23] S. Merlin, et al., “TGax Simulation Scenarios,” doc. IEEE 802.11-14/0980r16, 2016.

[24] B. Bellalta, A. Zocca, C. Cano, A. Checco, J. Barcelo, and A. Vinel, “Throughput analysis in
csma/ca networks using continuous time markov networks: a tutorial,” in Wireless Networking
for Moving Objects. Springer, 2014, pp. 115–133.

[25] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE
Journal on selected areas in communications, vol. 18, no. 3, pp. 535–547, 2000.

118



“thesis˙main˙doc” — 2020/7/6 — 12:39 — page 119 — #131

[26] R. Patidar, S. Roy, T. R. Henderson, and M. Mehrnoush, “Validation of wi-fi network simulation
on ns-3,” 2017.
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Spatial Reuse in IEEE 802.11ax WLANs
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Abstract

Dealing with massively crowded scenarios is one of the most ambitious goals of next-generation
wireless networks. With this goal in mind, the IEEE 802.11ax amendment includes, among
other techniques, the Spatial Reuse (SR) operation. This operation encompasses a set of un-
precedented techniques that are expected to significantly boost the performance of Wireless
Local Area Networks (WLANs) in dense environments. In particular, the main objective of the
SR operation is to maximize the utilization of the medium by increasing the number of parallel
transmissions. Nevertheless, due to the novelty of the operation, its performance gains remain
largely unknown. In this paper, we first provide a gentle tutorial of the SR operation included in
the IEEE 802.11ax. Then, we analytically model SR and delve into the new kind of MAC-level
interactions that occur among network devices. Finally, we provide a simulation-driven analysis
to showcase the potential of SR in a variety of deployments, comprising different network den-
sities and traffic loads. Our results show that the SR operation can significantly improve the
medium utilization, especially in scenarios under high interference conditions. Moreover, our
results demonstrate the non-intrusive design characteristic of SR, which allows enhancing the
number of simultaneous transmissions with a low impact on the environment. We conclude the
paper by giving some thoughts on the main challenges and limitations of the IEEE 802.11ax SR
operation, as well as on the most prominent research gaps and future directions.

1 Introduction

Due to the popularity and ease of deployment of IEEE Wireless Local Area Networks (WLANs),
it is becoming increasingly common to find multiple Basic Service Sets (BSSs) within the same
overlapping areas. Unfortunately, the most typical channel access mechanism based on Carrier
Sense Multiple Access (CSMA) was not designed to support a huge number of contending devices,
thus resulting in low performance.

In order to improve the performance of WLANs, several amendments have been conceived along
the past few years. Earlier IEEE 802.11 standards, e.g., 11n (2009) and 11ac (2013), defined the con-
cepts of High Throughput (HT) and Very High Throughput (VHT) devices, respectively. These stan-
dards defined new functionalities to be included at that time, such as Channel Bonding (CB). More
recently, the Task Group ax (TGax) was created to develop the IEEE 802.11ax-2021 (11ax) stan-
dard [1], which belongs to the group of standards for next-generation WLANs (e.g., IEEE 802.11aq,
IEEE 802.11ad, IEEE 802.11ay). Through the definition of High Efficiency (HE) WLANs, the 11ax
aims to improve network efficiency in dense deployments. To that purpose, it includes several novel
techniques, such as Orthogonal Frequency Division Multiple Access (OFDMA), Downlink/Uplink
Multi-User Multiple-Input-Multiple-Output (DL/UL MU-MIMO), and the Spatial Reuse (SR) op-
eration. We refer the reader to the works in [2–5] for an overview of the major novelties proposed
in the IEEE 802.11ax standard.

In this paper, we focus on the 11ax SR operation [6], which seeks to increase the number of
parallel transmissions and therefore improve spectral efficiency. In order to do so, the amendment
introduces Carrier Sense Threshold (CST) adjustment for the detected inter-BSS transmissions1),
which is performed through two different mechanisms: i) OBSS Packet Detect (PD)-based SR, and
ii) Parametrized Spatial Reuse (PSR). The main difference between the two mechanisms lies in
the degree of collaboration among BSSs for identifying SR-based opportunities (further details are
provided in Sections 3 and 4). Both mechanisms include Transmission Power Control (TPC) to limit
the additional interference produced by simultaneous transmissions.

Figure 1 summarizes the components that constitute the 11ax SR operation, which are described
in detail throughout this paper.

1In the following, we will use intra-BSS or inter-BSS to refer to the transmissions detected from the same or from
a different BSS, respectively.
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Figure 1: Summary of the 11ax SR operation.

To illustrate the potential SR enhancement in an OBSS, let us focus on Fig. 2. Unlike typical
coverage representations in wireless networks, throughout this paper, we consider the carrier sense
area of each device (instead of the generated interference). For that, our representation assumes that
the transmission power used by any device is fixed and that all the BSSs use the same frequency
channel, which allows focusing on the spatial interactions only. Accordingly, the dashed circles in
Fig. 2 indicate the transmitters that can be detected by the node of interest. In our example, both
Access Points (APs) can simultaneously transmit to their corresponding stations (STAs), provided
that they use the enhanced combination of CST and transmission power (bold line). In contrast,
parallel transmissions are not possible when using the default configuration.

BSSA BSSB

Default CST and Tx power
↑ CST and ↓ TxPower

APA APB STABSTAA

Figure 2: SR enhancement through CST adjustment and TPC. The carrier sensing area of each
transmitter is graphically represented by the dashed lines.

In spite of the apparent benefits of the SR operation, its actual potential is still unknown. The
fact is that SR depends on multiple factors, such as the network topology, the type of propagation
effects, or the type of radio used by devices [7]. Moreover, sensitivity adjustment and power control
may result in asymmetric links that can potentially lead to unfairness situations [8]. In some cases,
dynamic sensitivity and transmission power adjustment have been shown to significantly increase the
network performance and to contribute to reducing the effects of the well-known hidden and exposed
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terminal problems [9]. However, in some other cases, these problems may be exacerbated [10].
Indeed, modifying either the CST or the transmit power can worsen the hidden/exposed terminal
problems by generating flow starvation and asymmetries.

Figure 3 shows in an intuitive manner the effect of increasing and decreasing both the transmission
power and the sensitivity in WLANs. For instance, increasing the sensitivity of a device may
contribute to accessing the channel more often since the listening area is reduced. However, this can
lead to observing a higher number of collisions by hidden-node. Moreover, using a more aggressive
channel access policy may expose the receivers to a higher level of interference, thus requiring the
utilization of more robust Modulation and Coding Scheme (MCS).
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Figure 3: Effects of different policies with regards to sensitivity adjustment and transmission power
control.

As discussed, dealing with the spatial dimension has different kinds of implications and leads to
complex inter-BSS interactions that are hard to predict beforehand. Indeed, the 11ax SR operation
is one of the least studied features in next-generation WLANs and only a few works have devised its
potential. Firstly, the authors in [11] evaluated the benefits of using dynamic sensitivity thresholds
for inter-BSS transmissions, given a fixed transmit power. Secondly, the work in [4] exhaustively sur-
veyed the 11ax amendment, thus providing an overview of the first drafted SR operation. Moreover,
it provided some results on applying SR in both indoor and outdoor scenarios, showing a higher
potential for indoor deployments. Similarly, the authors in [12] introduced the contents of the 11ax
SR as they are described in the amendment. In addition, they provided a performance evaluation
based on the adjustment of the inter-BSS sensitivity threshold. Their results showed significant
gains when applying SR, especially for dense scenarios.

Unlike in [4, 11, 12], in this paper we delve into the 11ax SR operation in more detail since we
consider the two different SR operations included in the 11ax amendment. In addition, our analysis
of the 11ax SR is not limited to the technical information included in the amendment. Instead, we
accompany our descriptions with illustrative use cases, thus bringing a new perspective that allows
devising the real utility behind the operation. We thus go beyond the definition of the specification,
shedding light on its purpose, benefits, and challenges.

Our aim in this paper is to provide a comprehensive tool for researchers interested in the topic and
to analyze the potential of the SR operation in future WLANs. Besides, we focus on the potential
gaps in the standard to be filled by the research community. The main contributions of this paper
lie in the description, analysis, and evaluation of the 11ax SR operation. In particular:

1. We provide a gentle, exhaustive, and comprehensive overview of the SR operation included in
the 11ax amendment.

2. We analytically model the 11ax SR operation for the sake of capturing the new kinds of inter-
BSS interactions and understanding their implications. The results of this model are verified
with the Komondor 11ax-based simulator [13].

3. We study the potential performance gains of the 11ax SR operation through simulations.

4. We delve into the gaps and gray areas existing in the current 11ax SR operation and provide
forecasts of future research directions in the field.
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The remainder of this document is structured as follows. Section 2 surveys the related work on
SR in WLANs. Section 3 describes the specifications and procedures to enable 11ax SR, whereas
Section 4 details the operation itself. Section 5 presents an analysis-based study of 11ax SR in simple
scenarios, which is extended in Section 6 by simulating dense deployments. Section 7 identifies the
gaps and research opportunities found within the 11ax SR operation and explores potential ways
forward. Finally, Section 8 provides some concluding remarks.

2 Spatial Reuse techniques in IEEE 802.11 WLANs

The problem of dynamic sensitivity and transmission power adjustment has been previously ad-
dressed in multiple ways. On the one hand, we find centralized solutions such as the ones proposed
in [14–16], where the SR operation is controlled and mandated from the APs. Among these, we
highlight [15], which uses a method based on Neural Networks (NN) to compute the best combina-
tion of sensitivity and transmit power to be used by all the BSSs in a given scenario. Nonetheless,
centralized approaches require coordination and extra overhead, which is usually impractical.

On the other hand, SR has been addressed through a decentralized perspective in [10, 17–20].
Most of the decentralized strategies rely on collecting feedback on several performance metrics (e.g.,
sensed interference, packets lost, etc.). While works such as [17–19] propose adaptive mechanisms
to adjust the CST and/or the transmission power, some others like [10, 20] provide probabilistic
approaches based on Reinforcement Learning (RL) for finding the best possible configuration.

Concerning IEEE 802.11ax WLANs, the Dynamic Sensitivity Control (DSC) scheme was pro-
posed to be included in the standard, but it was never incorporated. The performance of DSC was
evaluated in [21–23]. Furthermore, the authors in [24,25] combined DSC with BSS color schemes to
devise further improvements in WLANs.

The current 11ax SR operation has nonetheless been studied to a lower extent. Based on the
OBSS/PD-based SR operation, the work in [26] proposed a new mechanism to adjust the OBSS/PD
threshold.2 This mechanism, so-called Control OBSS/PD Sensitivity Threshold (COST), differs
from DSC in terms of the information available in 11ax nodes. In this case, nodes need to be aware
of changes in the neighboring BSSs.

Unlike previous works, we focus on the IEEE 802.11ax SR operation defined in Draft v4.0 and
delve into its potential through analytical modeling and a simulation tool. Moreover, we identify
potential gaps and research opportunities with regard to the amendment.

3 IEEE 802.11ax Spatial Reuse Operation: Building Blocks

Before delving into the 11ax SR mechanisms, we first describe the enabling concepts and features.
In particular, the 11ax SR operation can be understood through BSS coloring and Spatial Reuse
Groups (SRG). In addition, we introduce the Triggered-based (TB) transmissions upon which
the PSR operation is based.

3.1 BSS coloring

BSS coloring is a key enabler of the 11ax SR operation, whereby HE nodes can rapidly identify the
source of a given transmission. In case that BSS coloring is adopted in an OBSS, a given device
can effectively determine whether the channel is occupied by another device belonging to the same
BSS (intra-BSS transmission, same color) or from a different one (inter-BSS transmission, different
color). The BSS color, which is determined by the AP and is included in the preambles of Wi-Fi
frames,3 is a value in the range of 1 to 63. It remains static until the AP considers to change it.
When noticing a BSS color overlap (i.e., two different BSSs use the same color), a new color may be
chosen by the affected APs.

The method for selecting a new color is out of the scope of the 11ax amendment, but the adver-
tising operation is actually defined. An HE AP may announce a new BSS color via the BSS Color

Change Announcement element, which is carried in Beacon, Probe Response, and (Re)Association
Response frames.

2The OBSS/PD threshold refers to the sensitivity to be used for detected inter-BSS transmissions.
3The BSS color field is included in the Physical Layer Convergence Procedure (PLCP) header. See Appendix A

for further details.
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3.1.1 BSS color-based channel access rules

When detecting a transmission, an HE node can distinguish between intra and inter-BSS frames
by rapidly inspecting the BSS color field that is carried in every HE PLCP Protocol Data Unit
(PPDU).4 In particular, the default PD threshold (i.e., -82 dBm) is used for intra-BSS frames. So,
from now onwards, we will refer to the default PD threshold simply as Clear Channel Assessment /
Carrier Sense (CCA/CS). On the contrary, when inter-BSS frames are detected, more aggressive PD
thresholds can be applied to increase the number of parallel transmissions. Those PD thresholds are
termed non-SRG OBSS/PD and SRG OBSS/PD. The SRG OBSS/PD is used when spatial
reuse groups are allowed, which is discussed in detail in Section 3.2.

To illustrate how BSS coloring can help at enhancing SR, let us consider the scenario shown
in Fig. 4(a). We consider that APA is prone to suffer from flow starvation if it uses the default
CCA/CS value, which entails being in the range of both APB and APC . Note that simultaneous
downlink transmissions can be held in both BSSB and BSSC because the transmitters are not in the
range of each other. This may lead to flow-in-the-middle starvation in BSSA.

The flow-in-the-middle situation can be overtaken by APA if using an OBSS/PD value higher
than the CCA/CS for inter-BSS frames, which would allow ignoring the transmissions sensed from
APB and APC . This procedure is illustrated in Fig. 4(b), where APA first identifies the source of
a detected transmission by inspecting its headers. Then, after detecting the source of the ongoing
transmissions (indicated by the color), the non-SRG OBSS/PD threshold is applied. If the OBSS/PD
threshold is high enough to ignore inter-BSS transmissions, APA can reset the PHY and continue
the backoff procedure.

STAB

BSSB

STAA

APC

STAC

BSSA BSSC

Legacy CCA/CS
Inter-BSS OBSS/PD

APAAPB

(a) Scenario

RX DATA (BSS Color 1)
APA

APB

APC

t

t

t

RX

AIFS/BOInspect 
headers

DATA (BSS Color 3)

DATA (BSS Color 2)

(b) Packets exchange

Figure 4: Channel access rules based on BSS coloring. In (b), the propagation delay is considered
to be negligible.

3.1.2 Two NAVs

The SR operation provides significant changes in the virtual carrier sensing procedure since two
different Network Allocation Vectors (NAVs), i.e., intra-BSS NAV and inter-BSS NAV, have to
be maintained for intra and inter-BSS frames, respectively. Accordingly, a given transmitter can
decrease its backoff counter only if both NAV timers are set to zero. Otherwise, it must remain idle
for at least the duration of the ongoing transmission(s),5 which had previously activated the virtual
carrier sensing.

To showcase the utilization of two NAVs within the SR operation, we consider the scenario shown
in Fig. 5(a), where packets are exchanged as illustrated in Fig. 5(b). In this scenario, BSSA and
BSSB are within the same carrier sense area, provided that they both use the same CCA/CS value.
In opposite, both BSSs can ignore each others’ transmissions in case of using a higher OBSS/PD
threshold.

Following the Distributed Coordination Function (DCF) operation, APA initiates a downlink
transmission to STAA1 by first sending a Request-to-Send (RTS) frame. Then, STAA2 decodes the

4If the BSS color is not announced, frames can be classified according to the GROUP ID and PARTIAL AID in VHT
PPDUs, or the MAC address in the MAC header of legacy frames (i.e., predecessor amendments of the IEEE 802.11ac).

5The duration used for setting the NAV is indicated in the Duration field of RTS/CTS frames or Physical layer
Service Data Units (PSDU).

124



“thesis˙main˙doc” — 2020/7/6 — 12:39 — page 125 — #137

APB STAB

BSSA

BSSB

APA

Legacy 
CCA/CS
Inter-BSS 
OBSS/PD

STAA1

STAA2

Inter-BSS 
interference

(a) Scenario

AC
K

STAA1

APB

STAB

STAA2

(color 1)

APA
(color 1)

(color 2)

(color 2)

RX
DATA(color 1)

t

t

t

t

t

TX
RTS

RX
CTS

RX
RTS

RX
RTS

SIFS

SIFS

SIFS

TX
CTS

RX
CTS

Update 
NAV

SIFS
TX

DATA

SIFS
RX

ACK

RX
DATA

SIFS SIFS
TX

ACK

RX
RTS

Intra-BSS 
frame detected

TX
RTS

Intra-BSS NAV (RTS)

Inter-BSS frame 
detected

RX
RTS

SIFS

SIFS

RX
CTS

TX
CTS

Update 
NAV

AIFS

AIFS

AIFS SIFS

TX
DATA

SIFS
RX

ACK

RX
DATA

SIFS

TX
ACK

AIFS

AIFS

SIFS

SIFS

IDLE

SIFS

SIFS

Extra 
slot

Tx from APA to STAA1

TX
RTS

Tx from STAA2 
to APA

Tx from APB to STAB

Inter-BSS NAV (RTS)

RX
RTS

Extra 
slot

RX
RTS

RX
RTS

Inter-BSS frame 
detected

RX
DATA

Update
inter-BSS 

NAV

Update 
intra-BSS

NAV

Intra-BSS frame 
detected

(b) Packets exchange

Figure 5: Two NAVs operation in an OBSS.

RTS frame and realizes that it was sent by an intra-BSS device (the BSS color field matches with
its own color). As a result, STAA2 applies the default CCA/CS threshold to determine whether the
channel remains idle or not. In this case, the sensed power is above the threshold, which makes
STAA2 to apply virtual carrier sensing. It is also worth mentioning that the NAV timer is confirmed
in STAA2 when STAA1 sends the Clear-to-Send (CTS) frame to APA, because they are in the sensing
range.

In parallel to the abovementioned intra-BSS interactions, APB starts its own downlink trans-
mission to STAB . The initiating RTS frame sent by APB is also listened by STAA2, which sets the
inter-BSS NAV accordingly. On this occasion, the acknowledgments sent by STAB are ignored by
STAA2 due to the OBSS/PD threshold employed for inter-BSS transmissions. However, it has no
impact on the modification of the inter-BSS NAV, which is properly set by the frames transmitted
by APB .6 After both intra and inter-BSS NAV timers are over, STAA2 can perform an uplink
transmission.

The utility behind maintaining two NAVs becomes evident for dense deployments. On the one
hand, the intra-BSS NAV allows protecting STAs from intra-BSS transmissions, thus reducing the
effect of certain anomalies such as the hidden-terminal problem. On the other hand, as a novelty,
the inter-BSS NAV allows mitigating OBSS interference, which contributes to increasing the number
of parallel transmissions.

3.2 Spatial Reuse Groups

To further enhance network efficiency, the 11ax amendment provides a mechanism for differentiating
between two types of inter-BSS frames; that is to say, belonging or not to the same SRG. These
groups can be formed by BSSs to achieve a more sophisticated SR operation. For instance, more
aggressive channel access policies can be used for transmissions within the same SRG, in case that
higher levels of interference could be supported by the nodes of the same SRG. Or it could be the
other way around. A conservative policy can be employed for the sake of minimizing collisions by
hidden nodes.

Despite the formation of SRGs is out of the scope of the amendment, differentiating between two
OBSS/PD thresholds can be useful for capturing more subtle inter-BSS interactions. Note, as well,
that SRGs could be formed online to address some issues detected by an entity controlling a set of
APs (e.g., belonging to the same operator).

Figure 6 shows a deployment in which the formation of SRGs makes sense. In this case, the
channel utilization can be enhanced by using the non-SRG OBSS/PD threshold to ignore inter-
BSS transmissions (light dashed lines). However, using this threshold homogeneously leads STAC

to suffer from packet losses. In particular, STAC cannot properly decode the information sent by
APC when APA also occupies the channel. To solve this, BSSA and BSSC can form a group and
employ a more conservative SRG OBSS/PD threshold to avoid simultaneous transmissions between
the two BSSs. Notice that the non-SRG OBSS/PD threshold (which is more aggressive) can be

6Note, as well, that the amendment also allows resetting the NAV if no CTS frame is received (i.e., a timeout
occurs).
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still employed for transmissions held by any pair of BSSs involving BSSB , thus increasing network
efficiency. As shown, not only the formation of SRGs is a complex task, but also the definition of
both non-SRG and SRG OBSS/PD thresholds.

BSSA

STAA APC

APA

BSSC

APB
STAB

BSSB

non-SRG OBSS PD
SRG OBSS PD

STAC

(Color 1, SRG 1) (Color 2, SRG 1)

(Color 3, SRG 2)

Figure 6: Spatial Reuse Groups in an OBSS.

To apply the SR operation based on SRGs, the involved HE nodes must have indicated support
for this feature. With regards to HE STAs, they enable the SRG operation upon the reception of an
activating Spatial Reuse Parameter Set element (further described in Appendix A.2.1) from their
AP. Then, for the following detected PPDUs, both HE APs and STAs may differentiate between SRG
and non-SRG PPDUs. Note that 11ax devices can also identify the source of non-HE transmissions.
Therefore, not only HE devices are supported but also legacy devices. The way of classifying frames
according to the SRG is backward compatible with previous IEEE 802.11 amendments. Technically
speaking, SRG identification is done as follows:

• For HE PPDUs, an HE STA inspects the BSS color and checks if it belongs to the same SRG.
This information is kept on the SRG BSS Color Bitmap of the Spatial Reuse Parameter

Set, which stores the different BSS colors that belong to the same SRG. The AP of a given
BSS is responsible for maintaining the SRG BSS Color Bitmap up to date, and to inform STAs
in case of noticing any change.

• When it comes to VHT PPDUs, inter-BSS transmissions are considered to belong to the same
SRG if the GROUP ID parameter (included in the RXVECTOR7) has a value of 0, and the bit in
the SRG Partial BSSID Bitmap field corresponding to the numerical value of PARTIAL AID8

(also included in the RXVECTOR) is set to 1.

• Finally, regarding other types of PPDUs, they are classified as SRG PPDUs if the BSSID
information from a MAC Protocol Data Unit (MPDU) of the PPDU is correctly received and
the bit in the SRG Partial BSSID Bitmap field corresponding to the numerical value of BSSID
is 1.

3.2.1 SRG-based Channel Access Rules

Differentiating between SRGs may provide further SR enhancements than considering only one type
of inter-BSS frame. Despite the specific utilization of SRGs is also out of the scope of the 11ax
amendment, we devise several situations where its application can be useful. As previously pointed
out, one possibility is to establish groups for BSSs whose transmissions need to be protected. In
other words, an HE STA detecting an SRG frame can implement a more conservative channel access

7The RXVECTOR constitutes a set of parameters that the PHY layer delivers to the MAC on receiving a PPDU.
8The PARTIAL AID is an identifier which, similarly to the BSS color, is used by IEEE 802.11ac WLANs to quickly

identify the source of a given transmission.
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policy. Conversely, a more aggressive policy can be applied for non-SRG PPDUs, thus increasing
the number of parallel transmissions.

To illustrate the SRG-based channel access rules, let us retake the scenario shown in Fig. 6,
where three overlapping BSSs potentially share the medium. While BSSA and BSSB belong to SRG
1, BSSC belongs to SRG 2. Accordingly, different OBSS/PD thresholds are applied by BSSA when
detecting inter-BSS frames belonging to groups 1 or 2 (note that all the BSSs use different BSS
colors).
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Figure 7: Packets exchange based on SRG channel access rules.

As shown in Fig. 7, transmissions from BSSC (in blue) provoke that APA senses the channel busy.
In contrast, packets detected from BSSB (in red) are ignored by APA after PHY headers are properly
inspected. In this example, a less restrictive OBSS/PD threshold is applied for SRG transmissions
than for non-SRG ones. The fact is that STAB is sufficiently far away from APA. Therefore,
simultaneous transmissions between BSSA and BSSB are completely feasible. The opposite occurs
for BSSA-BSSC interactions. Note that collisions may occur at STAC if simultaneous transmissions
among the abovementioned BSSs are held, thus requiring additional protection.

3.3 Triggered-based communications

As previously pointed out, one of the 11ax SR mechanisms relies on TB transmissions [27]. Roughly,
in a TB communication, an AP schedules UL transmissions from one or more STAs. To that purpose,
a Trigger Frame (TF) is sent by a given AP to indicate the group of users that are allowed to transmit
during the current Transmission Opportunity (TXOP), along with other relevant information.

Fig. 8 illustrates an example of a TB transmission. After gaining access to the channel, the
AP first sends a TF packet, which is received by HE STAs. Upon successful reception of the TF,
STAs start simultaneous TB UL transmissions, which can be enabled by using multiple antenna
technologies (i.e., MU-MIMO) or different OFDMA subcarriers. Once all the UL transmissions
finish, the AP acknowledges all the packets with a multi-station block ACK (MACK).

SR in 11ax takes advantage of TB communications for detecting the so-called PSR opportunities.
By inspecting an inter-BSS TF packet, an HE STA implementing PSR can determine the maximum
allowed interference supported by the inter-BSS AP scheduling the transmission. As a result, it can
transmit during the TXOP at a regulated transmission power. Further details on PSR are provided
in Section 4.2.

Finally, it is worth mentioning that, before scheduling a UL transmission, APs can cancel the
virtual carrier sensing of their STAs by sending a Contention Free End (CF-End) control frame.
This is done to reduce the idle periods provoked by inter-BSS transmissions, thus enhancing network
efficiency.
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4 IEEE 802.11ax Spatial Reuse Operation

The IEEE 802.11ax SR operation is divided into two different mechanisms: i) OBSS/PD-based SR
and ii) PSR. So far, we have described the elements that enable both operations, thus providing
insights on the potential of applying SR. In this Section, we show the technical details of IEEE
802.11ax SR, thus embodying the concepts that have been previously introduced in Section 3.

4.1 OBSS/PD-based Spatial Reuse

The OBSS/PD-based SR operation is based on CST and transmit power adjustment for detected
inter-BSS frames. By knowing the source of an ongoing transmission, an HE STA may employ higher
CST values for the sake of improving the probability of accessing the channel. In particular, upon
PPDU reception, the MAC layer of a given device receives a notification from the PHY. At that
moment, the node inspects the packet and, among several operations, it determines whether the
PPDU is an intra-BSS or an inter-BSS frame. The latter may be subdivided into SRG or non-SRG
frames, provided that SRGs are enabled.

4.1.1 General constraints

As a general rule, the OBSS/PD threshold that is used for detected inter-BSS frames cannot exceed
a certain value. This upper bound is illustrated in Fig. 9, and is defined as follows:

OBSS/PD ≤max
(

OBSS/PDmin,min
(
OBSS/PDmax,

OBSS/PDmin + (TX PWRref − TX PWR)
))
,

where OBSS/PDmin and OBSS/PDmax are set to −82 dBm and −62 dBm, respectively, the reference
power TX PWRref is set to 21 or 25 dBm, based on the capabilities of the device,9 and TX PWR is
the transmission power at the antenna connector in dBm of the HE node that identifies the SR-based
opportunity.

Note that the OBSS/PD is defined for 20 MHz PPDUs received on the primary channel, but,
in general, this value depends on the bandwidth used. In particular, the OBSS/PD increases 3 dB
each time the channel width is doubled, as shown in Table 1.

4.1.2 SRG-based constraints

In addition to the general rules for the OBSS/PD, further constraints apply when using SRGs. In
particular, an AP can define certain tolerance margins for setting both the SRG and the non-SRG
OBSS/PD (see Tables 2 and 3). Those margins are referred to as minimum and maximum OBSS/PD
offsets, respectively, and must verify:

9The TX PWRref is set to 21 dBm at HE nodes which Highest NSS Supported M1 field is equal or less than 1.
Otherwise, the TX PWRref is set to 25 dBm. The Highest NSS Supported M1 subfield is part of the Tx Rx HE MCS

Support field of the HE Capabilities element.
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Figure 9: Graphical representation of the adjustment rules for OBSS/PD and transmission power [1].

Channel width OBSS/PD
40 MHz OBSS/PD20MHz + 3 dB
80 MHz OBSS/PD20MHz + 6 dB

160 MHz or 80+80 MHz OBSS/PD20MHz + 9 dB

Table 1: Effect of the channel width on the OBSS/PD threshold.

• -82 dBm ≤ -82 dBm + SRG OBSS/PD Min Offset dBm ≤ -62 dBm

• SRG OBSS/PD Min Offset ≤ SRG OBSS/PD Max Offset

• SRG OBSS/PD Max Offset + -82 dBm ≤ -62 dBm

• Non-SRG OBSS/PD Max Offset + -82 dBm ≤ -62 dBm

OBSS/PD SR
disallowed

Non-SRG Offset
Non-SRG

OBSS/PD Min
Non-SRG

OBSS/PD Max
Unspecified Unspecified -82 -62

0 0 -82 -62

0 1 -82
-82 + Non-SRG

OBSS/PD Max off.
1 Don’t care -82 -82

Table 2: Minimum and maximum non-SRG OBSS/PD threshold (in dBm) to be used by a given
HE STA, according to the information provided by the AP in parameters OBSS/PD SR Disallowed

and Non-SRG Offset Present.

SRG field SRG OBSS/PD Min SRG OBSS/PD Max
Unspecified N/A N/A

0 N/A N/A

1
-82 + SRG OBSS/PD

Min Offset
-82 + SRG OBSS/PD

Max Offset

Table 3: Minimum and maximum SRG OBSS/PD values (in dBm) to be used by a given HE STA,
according to the information provided by the SRG field. If SRG is not activated (or its value is
unspecified), PPDU frames cannot be classified as SRG frames.

Note, as well, that the way of computing the exact SRG and non-SRG OBSS/PD values is not
defined in the standard, thus opening the door to new contributions. In relation to this, the authors
of [28] proposed using the Received Signal Strength Indicator (RSSI) of received beacons to compute
it, so that OBSS/PD = RSSI − OBSS/PDmargin. This approach is similar to the DSC procedure
described in Section 2.
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4.1.3 Transmit power restriction

So far, we have referred to CST adjustment, but transmit power limitation is also an important part
of the SR operation. In particular, a power restriction is imposed for any transmission occurring
as a result of a detected SR opportunity (i.e., after ignoring a given inter-BSS frame through the
OBSS/PD-based SR operation). By applying a power restriction, the standard aims to reduce
the impact of these transmissions on other ongoing ones. The allowed transmit power is related
to the OBSS/PD employed for detecting the SR opportunity. Simply put, the more inter-BSS
transmissions can be ignored (by increasing the OBSS/PD), the less interference should be generated.
The transmission power restriction lasts until the end of the SR opportunity identified by an HE node,
which starts when its backoff reaches zero. Notice that this period depends on the duration of the
active transmission(s) used for detecting the SR opportunities. The maximum allowed transmission
power (TX PWRmax) is given by:

TX PWRmax = TX PWRref − (OBSS/PD−OBSS/PDmin) (1)

The previous equation holds for OBSS/PDmax ≥ OBSS/PD > OBSS/PDmin. Otherwise, the
maximum transmission power is unconstrained.

4.1.4 Example of OBSS/PD Spatial Reuse

To illustrate the OBSS/PD-based SR operation in detail, we propose the scenario shown in Fig. 10,
from which we focus on STAC2. In this scenario, several potential interfering devices (belonging
to BSSA and BSSB) surround STAC2. In particular, when using the default CCA/CS, all the APs
are able to transmit simultaneously. However, STAC2 may suffer flow starvation because of its
unprivileged location.

BSSC
(Color 3)

APB

STAC2

APC

BSSB
(Color 2)

APA BSSA
(Color 1)

STAB

Default 
CCA/CS
OBSS/PD STAA

STAC1

Figure 10: Scenario for showcasing the OBSS/PD SR operation.

To overcome the flow starvation issue, STAC2 can ignore inter-BSS transmissions, provided that
the appropriate OBSS/PD value is used. Through OBSS/PD-based SR, STAC2 can detect SR
opportunities when nodes from BSSA and BSSB transmit. Notice that any detected SR opportunity
is subject to a power restriction. Since different OBSS/PD thresholds can be maintained for different
inter-BSS transmissions (of SRG and non-SRG type), different power restrictions can be used. This
has to be considered before transmitting, i.e., the most restrictive power limitation should be applied
when accessing the channel.

Fig. 11 illustrates an example of packets exchange when OBSS/PD-based SR is enabled. The
following particular interactions (displayed in yellow) are given:

1. STAC2 analyzes the RTS frame sent by APA and classifies it as an inter-BSS frame. As a
result, it applies a given OBSS/PD value that allows sensing the channel idle (RSSIA→C2 <
OBSS/PD). However, STAC2 must take into account a first power restriction, which is given
by Equation (1).
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2. The same procedure is followed at STAC2 when detecting the RTS frame transmitted by APC .
However, the transmission cannot be ignored this time because the source is an intra-BSS
device (the default CCA/CS threshold is applied).

3. As for points 1) and 2), APB ’s transmission is ignored by STAC2 because RSSIB→C2 <
OBSS/PD. Again, a new power restriction is considered.

4. Finally, STAC2 transmits by taking advantage of the detected SR opportunities. The trans-
mission is nonetheless subject to a transmit power limitation, which is the more restric-
tive one among all the collected power restrictions (PRs). In particular, TX PWRmax =
min(PR1,PR2).10
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Figure 11: Example of the OBSS/PD-based SR operation. STAC2 applies different OBSS/PD values
according to the source of detected transmissions.

4.2 Parametrized Spatial Reuse

The PSR operation is based on TB transmissions and requires cooperation among the participating
BSSs. On the one hand, we find nodes taking advantage of PSR opportunities (i.e., the opportunists).
These nodes identify PSR opportunities from detected TB transmissions. On the other hand, we
find the transmission holders, which perform TB transmissions and indicate support for the PSR
operation. Notice that PSR opportunities can only be detected from the transmission holders that
explicitly indicate support for the operation (e.g., in the headers of a TF).

When it comes to identifying PSR opportunities, an opportunist must check whether the TB
PPDUs that follow a given TF packet can be ignored or not. To do so, the intended transmission
power at the opportunist must not exceed the requirements imposed by the transmission holder.
Those requirements are encapsulated by the latter through the PSR INPUT parameter. This param-
eter is indicated in the TF and can take any of the discrete values shown in Table 4. The PSR

10Notice that, once STAC2 transmits under the power restriction, the ACK sent by STAB can be ignored, so that
a new power restriction is not defined.
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INPUT is computed as follows:

PSR INPUT = TX PWRAP + Imax
AP ,

where TX PWRAP is the normalized transmit power in dBm at the output of the antenna connec-
tor, and Imax

AP is a normalized value in dB that captures the maximum allowed interference at the
transmission holder.11

Value Meaning Value Meaning
0 PSR DISALLOW 8 PSR = -44 dBm
1 PSR = -80 dBm 9 PSR = -41 dBm
2 PSR = -74 dBm 10 PSR = -38 dBm
3 PSR = -68 dBm 11 PSR = -35 dBm
4 PSR = -62 dBm 12 PSR = -32 dBm
5 PSR = -56 dBm 13 PSR = -29 dBm
6 PSR = -50 dBm 14 PSR ≥ -26 dBm

7 PSR = -47 dBm 15
PSR AND NON-
SRG OBSS-PD
PROHIBITED

Table 4: PSR subfield encoding for Trigger and HE TB PPDU frames [1].

Once an opportunist inspects the PSR value of the detected TF12 and confirms that the intended
transmission power is acceptable, it transmits during the duration of the TB PPDU(s) (indicated in
the Common Info field). In particular, the intended transmission power must be below the value of
PSR minus the Received Power Level (RPL), which is measured from the legacy portion of the TF
(i.e., from PHY headers).

APB

STAC
APC

APASTAA

STAB

-80 dBm
-75 dBm

Figure 12: Scenario for showcasing the PSR operation.

In order to illustrate the PSR operation, refer to the scenario that is shown in Fig. 12, where
we focus on APA. The interference sensed in that AP from the overlapping transmitters, i.e. APB

and APC , is -80 dBm and -75 dBm, respectively. According to that, Fig. 13 shows an example of
packets exchange when applying PSR in APA. The key actions (displayed in yellow) are as follows:

1. APA detects a PSR opportunity from APB ’s TF packet. Notice that the intended transmit
power for the next queued packet of APA must be lower than the indicated PSR by APB

minus the RPL. If so, APA’s backoff keeps counting down.

11In particular, Imax
AP is computed as the target RSSI indicated in the TF minus the minimum SNR granting a 10%

PER (based on the highest MCS to be used for transmitting the UL HE TB PPDU). A safety margin (set by the AP)
is also included not to exceed 5 dB.

12The PSR can be extracted either from the SPATIAL REUSE field, which is included in the Common Info field of the
Trigger frame, or the SIG-A PSR field of the HE TB PPDU.
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Figure 13: Packets exchange according to the PSR operation.

2. As soon as APC transmits a TF, the PSR opportunity previously detected by APA is canceled
because the transmit power condition no longer holds. As a result, the channel is marked as
busy and the backoff countdown is frozen.

3. For a new transmission held by APB , a PSR opportunity is detected again, even if BSSC is
still transmitting. That opportunity may be used by APA as soon as BSSC ’s transmission
finishes.

4. Once BSSC ’s transmission is over, APA keeps the backoff countdown and transmits according
to the last detected PSR opportunity.

5 Model and Simulation of the 11ax Spatial Reuse Operation

Characterizing the IEEE 802.11ax SR operation is crucial to fully understand its implications and
potential gains. However, it turns out to be a challenging task due to the complex (and still
unknown) inter-BSS interactions generated by adjusting the sensitivity and the transmission power.
To the best of our knowledge, none of the previous works have attempted to model the 11ax SR
operation. Nevertheless, we find other works that analyze the impact of sensitivity adjustment and
transmit power control in wireless networks. In this regard, we find SINR-based methods [7, 29],
which allow characterizing radio links. However, these methods typically consider the worst-case
interference (i.e., nodes are assumed to transmit permanently). This entails neglecting spectrum
access coordination and hence losing insights on the MAC operation.

Another field that is attracting a lot of attention is Stochastic Geometry (SG), which models
the random nature of dense wireless networks. In particular, SG allows defining a random set of
nodes (typically, based on random point processes) and deriving statistical properties on them. In
telecommunications, stochastic geometry has been widely applied to model the behavior of users
and to estimate metrics such as the outage probability or the throughput per area [30]. Concerning
SR, the works in [31–33] apply SG to model the effect of tuning the sensitivity threshold in WLANs.
However, SG models are mainly focused on PHY layer effects and fail to capture the asymmetries
that may take place on applying the SR operation.

To address the limitations posed by the abovementioned models, we propose characterizing SR
through Continuous Time Markov Networks (CTMNs) [34, 35], which allow capturing both the
PHY and MAC layers on estimating the throughput of a CSMA/CA network. The analytical
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model presented in this work aims to provide further insight into the effects of applying SR in
next-generation BSSs.

Apart from the analytical model, we introduce the 11ax SR operation in the Komondor simu-
lator [13].13 The Komondor simulator was conceived, among other purposes, to allow the low-cost
integration of novel mechanisms included in new IEEE 802.11 standards. This is the case of 11ax
SR, which has not been yet fully implemented in any other well-known simulator. At the time of
publishing this article, SR is still being developed for ns-3.14 By comparing our simulation results
with the analytical model, we expect to shed some light on the effects of using 11ax SR, particularly
with regard to inter-BSS interactions. The simulation of SR allows addressing the assumptions done
by the CTMNs model and extend the provided results in more realistic dense environments.

Before getting into the analysis of 11ax SR through CTMNs, it is important to mention that
we have focused on the OBSS/PD-based operation described in Section 4.1, which has drawn much
more attention than PSR. Therefore, from now onwards, we may refer to the OBSS/PD-based SR
operation simply as SR. The implementation and modeling of PSR is left as future work.

5.1 Introduction to Continuous Time Markov Networks

The CTMN model captures the CSMA/CA operation used in IEEE 802.11 WLANs through states,
which represent the set of potentially overlapping BSSs that are active at a given moment. Tran-
sitions between states occur when BSSs become active (i.e., they gain access to the medium) or
when they abandon the channel (i.e., their transmission is finished). It is worth pointing out some
assumptions made by the CTMN model. First, downlink traffic is considered and the interference
produced in uplink transmissions (e.g., ACKs) is not considered. Second, the backoff procedure for
accessing the medium is continuous in time. Thus, collisions due to backoff expiring at the same
instant are not captured by the model. Despite those are unrealistic assumptions, the model is
particularly useful to depict inter-AP interactions.

Figure 14: CTMN of BSSA.

For the sake of illustration, let us consider Fig. 14, which represents the CTMN of a single BSS,
namely BSSA. In the CTMN, s0 is the empty state (the channel is idle) and s1 indicates that BSSA is
transmitting in a given channel. Regarding the transition rates between states, we find two different
types: i) AP activates, and ii) AP finishes a transmission. While i) is related to the necessary time
for a given node to access the channel (characterized by the arrival rate λ), ii) depends on the time
spent by a given node for transmitting data (characterized by the service rate µ). Based on the
transition probabilities, one can obtain the probability of every state, which allows computing the
long-term throughput experienced by the different BSSs.

In this work, the 11ax SR operation has been implemented as part of the Spatial Flexible Contin-
uous Time Markov Network (SFCTMN) framework [10,36,37].15 This framework allows generating
the CTMN of a given WLAN deployment, based on the spatial distribution of nodes and their
configuration (e.g., range of channels used, transmission power, sensitivity, etc.). It is important
to remark that additive interference is considered, which results from the combination of different
simultaneous interfering transmissions. Accordingly, we are able to characterize real deployments
where spatially-distributed interactions occur. Moreover, traffic is considered to be saturated in all
the nodes, so that pure SR-based interactions become more apparent.

Concerning the 11ax SR operation, we have considered new states to represent the different
sensitivity levels that each BSS can use based on the type of ongoing transmissions. Furthermore,
the maximum allowed transmission power depends on the selected OBSS/PD threshold, which is
also captured in the new SR states. Accordingly, the varying transmission capabilities of a given
node (which depend on the MCS used) are represented.

13The implementation of SR can be found in Komondor v3.0, available in https://github.com/wn-upf/Komondor/

releases/tag/v3.0.
14It is planned to be included in the following repository: https://gitlab.com/nsnam/ns-3-dev.
15A dedicated Github branch of SFCTMN has been provided for single-channel spatial reuse [38].
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Figure 15: Representation of Toy scenario 1 for different settings. (a) and (c) illustrate the inter-
BSS sensing area of each transmitter for OBSS/PD equal to -82 dBm and -78 dBm, respectively,
whereas (b) and (d) illustrate the corresponding inter-BSS interactions through CTMNs (unidirec-
tional transitions are shown in red).

5.2 Simple inter-BSS interactions

Through our proposed SR model, we start depicting the inter-BSS interactions that occur between
two BSSs. With this aim, we introduce Toy scenario 1, in which only BSSA implements SR. Fig.
15(a) and Fig. 15(c) illustrate the carrier sense areas that result from the default and the SR
settings, respectively. The CTMNs capturing the inter-BSS interactions taking place in each setting
are shown in Fig. 15(b) and Fig. 15(d), respectively. Notice that the long-term probability of each
state is shown in parentheses.

As shown in Fig. 15(a) (CCA/CS is applied by both BSSs), APA and APB are in the carrier
sense range of each other, so that parallel transmissions are not possible. This can also be noticed in
the CTMN representation (see Fig. 15(b)), where state s3 (AB) cannot be reached from any other
state. Nevertheless, both APs can transmit at a high rate because the maximum transmission power
is used when accessing the medium. In particular, the STA in BSSA observes an RSSI of -64 dBm,
which allows APA using the MCS 7 for 20 MHz transmissions.

When it comes to the SR setting, it is possible to have simultaneous transmissions, provided that
BSSA uses an OBSS/PD value greater or equal than -79 dBm. As shown in Fig. 15(c), APA reduces
its sensitivity area in case of detecting any transmission from BSSB . However, ignoring inter-BSS
transmissions entails a transmit power limitation. This results in poorer signal strength at the STA
(RSSI = -67 dBm when the transmit power used by APA is 17 dBm), thus forcing to use a lower
data rate. The SR operation is represented through the CTMN’s model in Fig. 15(d), where new
states appear (i.e. s2 and s4). These new states capture the situations in which the transmitter of
BSSA uses a higher OBSS/PD to ignore BSSB ’s transmissions (mode ASR is used, instead of A). In
particular, state s2 (ASR) can never be reached from the empty state since BSSA is always expected
to transmit under its default operation when the channel is idle.

The throughput achieved by BSSA and BSSB is shown Fig. 16 (left side), for each possible
OBSS/PD value. The transmit power limitation that is imposed on each BSS is also illustrated
(right side).

As shown, both BSSs obtain the same performance for OBSS/PD < -79 dBm (they share the
channel). To that point onwards, BSSA is able to ignore BSSB ’s transmissions due to the SR
operation. However, what might seem a worthy strategy for BSSA turns out to be more beneficial to
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Figure 16: Effects of applying OBSS/PD-based SR in BSSA of Toy scenario 1, for each possible
OBSS/PD value. The transmission power is shown in red. Results are shown for both SFCTMN
and Komondor.

BSSB . The latter, except for OBSS/PD = -79 dBm,16 enjoys the highest possible throughput when
BSSA applies the SR operation. The fact is that BSSA is forced to use a lower transmission power
in case of transmitting when BSSB is occupying the channel. Therefore, BSSB will keep sensing the
channel idle once its transmission finishes, provided that BSSA is still subject to the transmission
power restriction.

It is important to note that, in Fig. 16, there is a region (from OBSS/PD = -68 dBm to OBSS/PD
= -64 dBm, both included) in which the SFCTMN is less accurate at capturing the actual OBSS
behavior on using SR. For these OBSS/PD values, STAA cannot decode any transmission from
APA in state ASRB. In turn, it can do that for the ASR state. In particular, the transmit power
limitation used by APA in the SR mode makes that STAA perceives an insufficient signal-to-noise-
plus-interference ratio (SINR) when BSSB is also occupying the channel. The main reason is that
the SFCTMN model considers that the throughput obtained in every state is independent of the
others, and this condition does not hold for states ASRB and ASR. In reality, APA is expected to
abandon its transmission in state ASRB as soon as a timeout is noticed, thus spending a few time in
the SR mode (transition ASRB to ASR is unlikely). In contrast, the SFCTMN considers that much
more time is spent in state ASR since transmissions at that point are successful (but slow due to the
low MCS used).

Now, let us consider the case where both BSSs apply the SR operation simultaneously. The
CTMN for OBSS/PD ≥ -79 dBm is shown in Fig. 17. For the sake of illustration, only transitions
between states s0 and s1 are provided. As shown, both BSSs can act by using the default or the SR
modes, thus generating a symmetric CTMN. In particular, we find two dominant states: s5 and s6.
These states are visited with the same probability (0.4482), which indicates that both BSSs alternate
the default and the SR modes, thus obtaining the same throughput. However, in reality, one of the
BSSs may monopolize the channel through under the default mode, while the other operates under
the transmit power-constrained SR mode.

This phenomenon is properly captured in the Komondor simulator, where SR opportunities are
identified on a per-packet basis. In this case, the BSS that accesses to the channel for the first time
(e.g., BSSA) is most likely to enjoy the maximum throughput. In contrast, the other BSS (e.g.,
BSSB) transmits under the SR mode almost all the time (as a result of BSSA’s activity), until they
alternate roles. Notice that a single state between s5 and s6 is more likely to be monopolized as the
transmission time becomes longer than the idle periods. In our case, we have very long transmission
times in comparison to the idle time since we assume full-buffer traffic, packet aggregation, and short
contention window (CW) values.

Fig. 18 shows the throughput achieved by each BSS when both apply SR, and for each OBSS/PD
threshold. Again, the results have been extracted from both SFCTMN and Komondor. In order

16At that point, the transmission power limitation for OBSS/PD = -79 dBm is insufficient, so BSSB senses the
channel busy when BSSA transmits under the SR mode.
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Figure 17: CTMN of Toy scenario 1 when both BSSs apply OBSS/PD-based SR with OBSS/PD ≥ -
79 dBm (unidirectional transitions are marked in red).

to show the long-term performance of each BSS in the Komondor simulator, we have displayed the
average values obtained from 100 simulations. As shown, the performance achieved by both BSSs
is totally fair, due to the symmetry of the scenario. In particular, states in which SR is used are
alternated, thus allowing each BSS to access the channel while the other is transmitting. As a result,
the throughput of both BSSs can be further increased with respect to the case in which only one
BSS applies SR. However, unlike the previous case, the long-term throughput never reaches the
maximum possible throughput in isolation (the transmission power limitation prevents to do so).

Figure 18: Effects of applying OBSS/PD-based SR in both BSSs of Toy scenario 1, for each possible
OBSS/PD value. The transmission power is shown in red. Results are shown for both SFCTMN
and Komondor.

5.3 Interactions among Spatial Reuse groups

Differentiating between SRGs may potentially enhance spectral efficiency due to the further inter-
AP interactions that can be generated with an additional OBSS/PD threshold. In practice, devices
belonging to the same SRG use a dedicated OBSS/PD threshold, namely SRG OBSS/PD. For the
rest of inter-BSS transmissions, the non-SRG OBSS/PD threshold is used instead. One possible use
case may lie in residential building apartments, where BSSs belonging to the same building form an
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SRG. For the rest of networks (e.g., public Wi-Fi in the street), other SRGs can be considered.
To illustrate the implications of using SR based on SRGs, let us focus on Toy scenario 2, which

is depicted in Fig. 19(a). In this deployment, all the BSSs apply the SR operation and two different
SRGs are created. In particular, BSSs belonging to the same SRG (i.e., BSSA and BSSB) are close
to each other, such as in a residential building. Apart from that, BSSC , belongs to another SRG.

APBAPASTAA STAB

BSSB

BSSA

(Color 2, SRG 1)

(Color 1, SRG 1)

BSSC
(Color 3, SRG 2)

APC

4 m 4 m 4 m

5.4 m

STAC
4 m

(a) Scenario (b) Results

Figure 19: Results of applying the OBSS/PD-based SR operation in Toy scenario 2. In (b), the
individual and max-min throughput are shown for each SRG and non-SRG OBSS/PD threshold.
The red mesh indicates the performance achieved by using the default CCA/CS.

The result of jointly applying OBSS/PD-based SR in Toy scenario 2 is illustrated in Fig. 19(b),
which plots the throughput achieved by each of the three BSSs, for each combination of SRG and
non-SRG OBSS/PD thresholds. Notice that we have considered that all the BSSs use the same
OBSS/PD values since the number of total combinations grows exponentially and is unfeasible to
be plotted.

As shown, the throughput achieved by each BSS follows an irregular pattern due to the complex
inter-BSS interactions that take place in this scenario. Moreover, it can be appreciated the clashing
interests of each BSS, where the individual performance is sometimes maximized at the expense of
reducing the throughput of the others. For instance, if we focus on BSSC , it obtains the maximum
throughput when flow starvation is generated to BSSA (the same occurs for BSSB). However, this is
not optimal in terms of fairness. The CTMN resulting from the flow starvation situation is shown in
Fig. 20, which is given when all the BSSs use non-SRG OBSS/PD = -82 dBm and SRG OBSS/PD
= -73 dBm.17

In case of considering the optimal max-min performance18, a completely different situation is
observed. In this case, the max-min throughput is increased when every BSS can overtake a single
detected inter-BSS transmission (regardless of its source) and access to the channel. This situation
is fair and at the same time increases the overall performance. However, it occurs when all the
inter-BSS transmissions are equally treated. Using SRGs can therefore improve the performance of
certain nodes (belonging to the same group), but potentially leads to unfairness.

Table 5 provides a verification, for both SFCTMN and Komondor, of the results obtained in Toy
scenario 2. For the sake of representation, we show the Root Mean Square Error (RMSE) for all
the considered SRG and non-SRG OBSS/PD threshold values. As shown, the error for BSSA and
BSSB is relatively small. In contrast, a higher error is obtained for BSSC . This is strongly related
to the fact that BSSC belongs to a different SRG than BSSA and BSSB , which leads to different
inter-BSS interactions. Moreover, dominant states may lead to situations that cannot be captured
by the SFCTMN, as previously shown for Toy scenario 1. In particular, BSSC in Toy scenario 2
is prone to participate in these states because of its asymmetric location with respect to BSSA and
BSSB .

17The CTMN model captures the utilization of different OBSS/PD thresholds by considering that each BSS acts in
three different ways (states), as a result of the employed OBSS/PD threshold: i) default CCA/CS, ii) SRG OBSS/PD,
and iii) non-SRG OBSS/PD.

18The max-min throughput corresponds to the solution that maximizes the minimum throughput achieved by a set
of BSSs.
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Figure 20: CTMN of Toy scenario 2, for non-SRG OBSS/PD = -73 dBm and SRG OBSS/PD =
-82 dBm. The unidirectional transitions are marked in red, and subindex SR indicates the use of
the non-SRG OBSS/PD threshold.

BSSA BSSB BSSC

RMSE
(Mbps)

6.02 6.03 18.42

Table 5: Verification of the results obtained in Toy scenario 2 from the SFCTMN and Komondor.

6 Performance Evaluation

In this Section, we study the potential gains of SR in large-scale WLAN scenarios. With this aim,
we leave the CTMNs-based analysis out and concentrate on simulation results. For the rest of this
Section, each BSS is considered to be composed by an AP and a single STA, which are placed
uniformly at random, as shown in Fig. 21.

X [m]

Y [m]
APA

STAA

AP
STA

BSSA

Figure 21: Random grid scenario containing 9 BSSs. The location of BSSA is fixed at the center for
the sake of analysis.

The simulation parameters are provided in Table 6. The scenario is divided into 9 cells, but the
location of BSSA is always fixed at the center of the scenario. For the rest of the APs and STAs,
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their position is randomly selected within their corresponding cell. The configuration of each BSS
is set homogeneously, i.e., they all use the same channel, the default sensitivity is set to -82 dBm,
and the default transmission power is set to 20 dBm. Notice that, for dense deployments, BSSA

is expected to suffer a higher level of interference than the others, which allows us to assess the
effectiveness of the SR operation in crowded environments.

Parameter Value
P

H
Y

Central frequency, fc 5 GHz
Transmission gain, Gtx 0 dB
Reception gain, Grx 0 dB
Path-loss (residential scenario), PL(d) See ( [39])
Background noise level, N -95 dBm
Legacy OFDM symbol duration, σleg 4 µs
OFDM symbol duration (GI-32), σ 16 µs
Number of subcarriers (20 MHz), Nsc 234
Number of spatial streams, Nss 1
Transmit power levels, T 1 to 20 dBm (1 dBm steps)

M
A

C

Empty slot duration, Te 9 µs
SIFS duration, TSIFS 16 µs
DIFS/AIFS duration, TDIFS/AIFS 34 µs
PIFS duration, TPIFS 25 µs
Legacy preamble duration, TPHY-leg 20 µs
HE single-user field duration, THE-SU 100 µs
ACK duration, TACK 28 µs
Block ACK duration, TBACK 32 µs
Size OFDM symbol (legacy), Ls,l 24 bits
Length of data packets, Ld 12,000 bits
No. of frames in an A-MPDU, Nagg 64
Length of an RTS packet, LRTS 160 bits
Length of a CTS packet, LCTS 112 bits
Length of service field, LSF 16 bits
Length of MAC header, LMH 320 bits
Contention window (fixed), CW 15
Allowed sensitivity levels, S -82 to -62 (1 dBm steps)

M
is

c. Traffic model, Λ Downlink (UDP)
Traffic generation ratio, l 1,000, 2,000, 10,000 pkts/s
Map area (random scenario), A 625, 400, 225, 100 m2

Table 6: Simulation parameters.

6.1 Network Density

To analyze SR based on the network density, we consider four different map sizes: sparse (25 × 25
m), semi-dense (20×20 m), dense (15×15 m) and ultra-dense (10×10 m). For each type of scenario,
we provide 50 different deployments, in which APs and STAs are placed uniformly at random within
their corresponding cell. BSSA is the only one applying the SR operation. Since we compute all
the possible OBSS/PD values to be used by BSSA, each random deployment leads to 21× 4× 50 =
4,200 different scenarios.

Figure 22 shows the average throughput achieved under the default and SR settings. In particu-
lar, we differentiate between the individual throughput of BSSA and the average throughput of the
other BSSs. For each network density, we have tried all the possible OBSS/PD values and compared
the best one to the default CCA/CS.

First of all, if we focus on the throughput that BSSA experiences by default (amber solid bars),
we notice a dramatic decrease as network density increases. Nevertheless, the SR operation allows
BSSA to significantly improve the throughput (displayed by the green solid bars). Note, as well,
that the maximum improvement is experienced at the dense scenario (15×15 m). While the default
performance is quite high for sparser scenarios, channel reutilization cannot be further improved at
the ultra-dense scenario due to the high level of inter-BSS interference.
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Figure 22: Mean throughput achieved with and without applying the SR operation in BSSA, for
each network density. Results show the mean throughput achieved by BSSA and the rest of BSSs.

Apart from that, we observe that the average performance of the other BSSs (dashed bars)
does not suffer radical changes for any of the network densities when BSSA applies SR. This is a
really positive result, which indicates that SR allows improving the individual performance without
affecting the rest of devices that do not apply the operation.

6.2 Traffic load

Besides network density, traffic load is another interesting factor to be studied with regards to the
SR operation. To that purpose, we focus on the second densest scenario, which has been previously
shown to achieve the maximum gains of the SR operation. In particular, we provide three different
traffic loads (l), which are the same for all the BSSs: i) low (1,000 packets/s, i.e., 12 Mbps), ii)
medium (2,000 packets/s, i.e., 24 Mbps), and iii) high (10,000 packets/s, i.e., 120 Mbps). The traffic
type considered is UDP in the downlink, which follows a Poisson distribution with λ equal to the
traffic load considered in each case.

Fig. 23 compares the performance achieved by default and SR configurations, for the different
considered traffic load values. As done before, the results show the individual performance of BSSA

and the average performance of the rest of BSSs. In particular, Fig. 23(a) shows the maximum
improvements achieved by BSSA in terms of throughput. Notice that the SR configuration considers
the OBSS/PD values that maximize BSSA’s throughput. Based on that configuration, Fig. 23(b)
shows the average channel occupancy (in %).

As shown in Fig. 23(a), BSSA obtains higher throughput gains as the traffic load increases. In
particular, the highest gain is noticed for the largest traffic load (10,000 packets/s), which entails
a saturation regime. This is a quite remarkable result since the interference noticed by BSSA is
much higher when all the surrounding devices are constantly transmitting due to their high traffic
load. Regarding channel occupation (shown in Fig. 23(b)), an interesting phenomenon is observed
for the lowest traffic load. The fact is that the legacy CCA/CS configuration provides a higher
channel occupancy than the SR one. However, this is not translated into a higher throughput,
due to the high number of experienced collisions. Notice that collisions entail a high number of
re-transmissions, which cause the observed increase in the occupancy. Finally, it is worth pointing
out that the performance of the other BSSs is not affected in case BSSA applies SR.

6.3 Joint Spatial Reuse Operation

So far, we have studied the effects of applying SR at a single BSS (i.e., BSSA). Now, we assess the
potential of the joint operation by defining different situations based on the number of BSSs that
apply SR. Provided that BSSA always applies the SR operation, we propose three study cases:

• Legacy: all the other BSSs employ the default CCA/CS.

• Mixed SR: at the beginning of the simulation, each BSS randomly decides (with same prob-
ability) whether to apply the SR operation or to remain using the default configuration.

• All SR: all the BSSs apply the SR operation.
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(a) Throughput (b) Channel occupancy

Figure 23: Mean throughput and channel occupancy achieved with and without applying the SR
operation in BSSA, for each traffic load. Results are shown for BSSA and for the rest of BSSs
(others).

In order to compare the effects of applying SR in parallel with other BSSs, we define the following
metrics: i) throughput (Γ), ii) percentage of time occupying the channel (ρ), and iii) average
delay for transmitting a packet once it arrives at the queue (d). For each metric, we consider the
performance improvements achieved by BSSA (indicated with subindex A), and the average across
the rest of BSSs (indicated with subindex O).

Fig. 24 shows the potential improvements achieved when applying SR in each of the proposed
scenarios. While Fig. 24(a) shows the performance of BSSA, Fig. 24(b) focuses on the performance
of the others. For that purpose, the empirical cumulative distribution function (CDF) is used for
each of the performance metrics. Notice that we have considered the densest scenario (25 × 25m)
and the highest traffic load (10,000 packets/s), thus representing the worst-case situation. As done
before, we have generated 50 random scenarios for averaging purposes, and, for each of them, we
have tried all the possible OBSS/PD values to be used homogeneously by the BSSs applying the SR
operation. Accordingly, we have used the best value to extract the maximum average improvement of
SR with respect to the legacy configuration. In every situation (legacy, mixed and all SR), we select
the best OBSS/PD threshold from BSSA’s point of view, which is also used to assess its impact on
the others. Again, the SR configuration used for the channel occupancy is the one whereby BSSA’s
throughput is maximized.

(a) BSSA (b) Others

Figure 24: Mean performance improvements achieved for each SR setting by BSSA (A) and the
others (O). The results are shown for the OBSS/PD values that maximize the performance of
BSSA.

As shown in Fig. 24(a), BSSA achieves similar performance improvements, regardless of whether
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the environment applies SR or not. In particular, a high gain is noticed on the average delay.
Moreover, regarding the others’ performance (Fig. 24(b)), a null improvement is observed on the
throughput, even for the all SR context. In contrast, the delay is notably reduced as the number of
BSSs using SR increases.

7 Ways Forward and Research Opportunities

The IEEE 802.11ax SR operation can potentially increase spectral efficiency in dense deployments.
However, it is already in a premature stage and further developments are expected to sustain progress
towards next-generation wireless deployments.

7.1 Unexplored Areas within the Spatial Reuse Operation

In the context of the SR operation, the following areas have not been fully exploited yet:

• Assignment of BSS colors: as discussed in Sections 3.1 and 4.1, BSS coloring is key for
the OBSS/PD-based SR operation since it allows differentiating between intra and inter-BSS
frames. However, the way BSS colors are assigned to BSSs is not specified, thus leading to
potential collisions and miss-behaviors regarding the SR operation.

• Election of SRGs: similarly to the BSS color, the SRG is used to sub-classify inter-BSS
frames, so that different PD policies can be applied to increase spectral efficiency. However,
forming SRGs is not trivial since inter-BSS interactions must be carefully captured to properly
taking advantage of the SR operation. The set of policies regarding SRGs may be decided by
the APs, as a result of monitoring phases.

• Establishment of OBSS/PD thresholds: the election of OBSS/PD thresholds for each
type of frame (SRG, and non-SRG) entails a set of trade-offs. On the one hand, too low
values may lead to null improvement, thus framing the legacy operation whereby the channel
is shared. On the other hand, too high values may generate performance anomalies such as the
hidden-terminal problem or flow starvation. A potential solution to properly establish each
OBSS/PD threshold is to capture all the inter-BSS interactions on a per-STA basis.

• Optimal transmit power: the current transmit power restriction is useful to prevent the
accentuation of unfair situations. However, the performance of the SR operation may be
further increased in case of properly leveraging the transmit power according to the noticed
interactions among nodes.

• Disabling the SR operation: there are situations in which the SR operation may be harm-
ful to certain devices (e.g., in terms of fairness). Therefore, a given BSS must be able to
identify whether the SR operation must be disabled or not. This can be achieved by setting
the OBSS/PD threshold to the default CCA/CS value. Alternatively, the SR operation can
be disabled at STAs only, thus leading to an AP-only SR setting. In this regard, AP-AP
interactions would be mostly targeted.

Solving most of the aforementioned problems is not straightforward and requires an in-depth
analysis to offer optimal or close-to-optimal solutions. While BSS color assignment may appear to
be straightforward (e.g., through graph coloring techniques), defining OBSS/PD thresholds is a very
complex task that embraces many variables. In particular, inter-BSS interactions have been shown in
this paper to significantly vary depending on the selected OBSS/PD values. Since the performance
of IEEE 802.11 BSSs is not linear with the sensitivity and the transmission power (due to the nature
of CSMA/CA), the optimal OBSS/PD threshold cannot be computed explicitly. Notice that the
number of total combinations in an N-BSS scenario is C = 21N, for 21 different non-SRG OBSS/PD
thresholds. Therefore, the problem is intractable. If considering SRGs, the problem becomes even
more complex since the number of combinations is C = (21× 21)N (provided that we have 21 values
to be used for SRG and non-SRG OBSS/PD thresholds).

7.2 Integration of the Spatial Reuse Operation with other Techniques

In addition to problems specific to the SR operation, the integration with many other novel mech-
anisms remains unexplored. Among them, we highlight OFDMA [40, 41], multiple antenna sys-
tems [42], and scheduled transmissions [43]. The potential of SR goes further when combined with
other techniques.
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For instance, the combination of SR with directional transmissions may lead to efficient and
performance maximizing communications, where SR is applied on a per-beam basis. Fig. 25 devises
the potential of combining SR with directional transmissions. As illustrated, BSSA applies the
SR operation on a per-beam basis, while BSSB remains using the default CCA/CS. In particular,
collisions by hidden-node may be experienced for STAA3, in case of using the inter-BSS OBSS/PD.
However, channel reuse can be enhanced for transmissions to STAA1 and STAA2, which are out of
range of APB . Therefore, the inter-BSS OBSS/PD can be used only for transmissions involving
those two STAs, while a more conservative threshold can be employed for STAA3.

APB STAB

BSSA

BSSB

Legacy 
CCA/CS
Inter-BSS 
OBSS/PD

APA

STAA3

STAA1

STAA2

Figure 25: Potential application of SR combined with directional transmissions.
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Figure 26: Potential application of SR combined with TB communications.

Similarly to the integration with directional antennas, the potential of SR can be further exploited
through TB communications. In this case, users of a given BSS can be categorized into different
types, so that different inter-BSS OBSS/PD values are assigned to them. Figure 26(a) shows how
users can be grouped based on different OBSS/PD thresholds. As a result, transmissions within
the same BSS can be scheduled in a differently, thus improving spectral efficiency. In the proposed
example, STAA1 and STAA2 belong to the first group because of their privileged position with respect
to APA. Therefore, a more aggressive OBSS/PD threshold is employed at the time of scheduling
transmissions to these stations. The same reasoning can be applied to STAA3, which, in this case,
requires the usage of a more conservative OBSS/PD threshold for being scheduled in combination
with SR. Finally, the legacy CCA/CS is used for STAA4, in order to prevent negative interactions
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with respect to BSSB . It is worth pointing out that users belonging to different groups can be
scheduled together, provided that the most restrictive OBSS/PD threshold is used.

In Fig. 26(b), we show a data transmission resulting from the combination of TB communications
and SR. In the yellow point #1, APA detects an inter-BSS transmission from APB , which can
be ignored by using the most aggressive OBSS/PD, i.e., the one devoted for STAs in group 1.
Accordingly, it schedules an uplink transmission from STAA1 and STAA2 (yellow point #2). Finally,
APA receives the scheduled transmissions from group 1 (yellow point #3).

7.3 Artificial Intelligence to Address Spatial Reuse Optimization

In light of the challenges posed by the 11ax SR operation, Artificial Intelligence (AI) emerges as
a potential solution. In particular, WLANs are characterized by being highly varying in terms of
users and channel dynamics. Moreover, we typically find decentralized deployments, at which none
or little coordination is allowed. Hence, online learning stands as a suitable technique to address the
optimization of SR in WLANs. In fact, many works on OBSS/PD adjustment, such as DSC [44]
and COST [26], are based on iterative methods.

Machine Learning (ML), and more precisely Reinforcement Learning (RL), can contribute to
improving the performance of the already existing methods. RL has been shown to properly fit
with the decentralized nature of IEEE 802.11 WLANs [10,20,45–48]. In particular, the usage of RL
allows capturing subtle information that cannot be predicted before-hand (for instance, regarding
inter-BSS interactions). Such information enables conducting a learning-based procedure, which
is aimed at increasing performance while reducing the number of undesired situations (e.g., poor
fairness).

8 Conclusions

In this paper, we have provided an extensive tutorial of the IEEE 802.11ax SR operation, which
aims to maximize the performance of next-generation WLANs by increasing the number of parallel
transmissions. Our purpose has been to do so in a clear and easy-to-understand manner. Thus,
significant efforts have been made in providing meaningful examples of the different specifications
related to SR.

Apart from the tutorial, we have modeled the SR operation analytically using CTMNs. Through
this model, we have analyzed the new kind of inter-BSS interactions that may result from applying SR
in an OBSS. In particular, we have considered BSSs with a single STA, but more complex interactions
are expected to happen when applying the SR operation in BSSs with multiple STAs. Apart from
the analytical analysis, we have implemented the 11ax SR operation in the Komondor simulator.
The potential of SR in large-scale scenarios has been evaluated through extensive simulations.

Besides significant improvements are achieved by the SR operation, other important aspects have
been identified. First of all, it is important to highlight the non-intrusive characteristic of the SR
operation. In particular, devices using SR can increase their performance without affecting other
overlapping networks or preventing them to transmit. This is a key feature to sustain performance
growth. Moreover, the SR operation has been shown to perform better in scenarios with a high level
of interference, i.e., high-density scenarios with a high traffic load. This confirms the utility of the
SR for dense next-generation wireless networks.

However, finding the best SR configuration is far from trivial (it is a combinatorial problem), and
remains an open problem to date. Indeed, the 11ax amendment does not provide any specification
and/or guidelines on this matter. We left as future work the design of mechanisms able to find the
optimal parameters within the IEEE 802.11ax SR operation. For that purpose, the usage of RL can
be particularly targeted. In addition, SR can evolve and be combined with other novel techniques
such as directional transmissions or distributed OFDMA, so that further performance gains can be
achieved.

Appendices

A IEEE 802.11ax Frames

In this Section, we introduce the type of frames that are considered in the 11ax amendment. Such
information is key to properly understand the SR operation.
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A.1 HE PPDU formats

Below, we briefly describe the Physical Protocol Data Unit (PPDU) formats available in the 11ax:

• SU (Single User) HE PPDU: are meant for single user communications.

• HE Extended Range HE PPDU: are meant for single user long-range transmissions, hence only
contemplate 20 MHz bandwidths in a single spatial stream.

• MU (Multi-User) HE PPDU: due to the OFDMA operation, such kind of PPDUs are meant
for multiple transmissions to one or more users.

• Trigger-Based (TB) HE PPDU: in this case, MU UL transmissions are scheduled by the AP,
which decides which STAs are expected to transmit during a specific elapse of time. The TB
HE PPDUs can make use of OFDMA and/or MU-MIMO.

The new fields included in the abovementioned HE PPDU formats are HE Signal A Field (HE-
SIG-A), HE Signal B Field (HE-SIG-B), HE Short Training Field (HE-STF), and HE Long Training
Field (HE-LTF), which are shown in Fig. 27.
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Figure 27: HE PPDU formats. New IEEE 802.11ax fields are highlighted in green.

Among the new fields, we highlight HE-SIG-A, which includes the following elements related to
the SR operation:

• BSS color: it is used as an identifier of the BSS (refer to Section 3.1).

• Spatial Reuse: this field indicates whether the HE node supports the SR operation. If this
is the case, the field also indicates the limit on the transmission power to be used during the
SR opportunities that can potentially be detected. Notice that a single Spatial Reuse field (of
length of 4 bits) is carried in HE SU/MU/ER PPDUs, while HE TB PPDUs may include up
to four Spatial Reuse fields. In particular, each field is meant for the SR operation in each
allowed channel width (i.e., 20 MHz, 40 MHz, 80 MHz, and 160 MHz).

Besides supporting HE PPDU formats, HE STAs are required to be compatible with legacy
formats. More information regarding HE PPDU formats can be found in [49].

A.2 Management Fields for Spatial Reuse

Some operations auxiliary to SR are enabled by control frames, which are Beacon, Probe Response,
and (Re)Association Response frames. Beacons are used by APs to announce the presence of a BSS
and to provide details of it. In particular, an AP, by means of Beacons, may request a STA to
gather information regarding the environment: information of BSSs matching a particular BSSID
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and/or SSID, channel-specific report, or HE Operation element of neighboring HE APs. With this
information, the AP can make decisions related to the SR operation. Regarding Probe Responses,
they are meant to carry the information requested by devices scanning the area through Probe
Requests. Finally, (Re)Association Response frames are sent by APs to which a STA attempts to
associate.

The abovementioned kind of frames are important to the SR operation because they carry, among
other fields, the following information:

• HE Capabilities: it is used by HE STAs to announce support for certain HE capabilities.

• HE Operation: it defines the operation of HE STAs. For instance, it indicates whether BSS
coloring is enabled or not.

• BSS Color Change Announcement: it is used by HE APs to indicate the utilization of a
new BSS color so that the associated STAs and the surrounding devices can be aware of the
change.

• Spatial Reuse Parameter Set (SRPS) element: this element provides the necessary
information to carry out the OBSS/PD-based SR operation, which is defined in Section 4.1.
The SRPS element is further defined in Appendix A.2.1.

A.2.1 Spatial Reuse Parameter Set element

The format of the SRPS element is optionally present in Beacons, Probe Responses and (Re)Association
responses. Figure 28 shows the SRPS element in detail.
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Figure 28: Spatial Reuse Parameter Set element.

Each item in the SRPS element is next described:

• Element ID: set to 255.

• Length: not defined.

• Element ID extension: set to 39.

• SR Control field: contains the following parameters:

– PSR Disallowed: indicates whether PSR transmissions are allowed or not at non-AP STAs
that are associated with the AP that transmitted this element.

– Non-SRG OBSS/PD SR Disallowed: indicates whether non-SRG OBSS/PD SR transmis-
sions are allowed or not at non-AP STAs that are associated with the AP that transmitted
this element.

– Non-SRG Offset Present: indicates whether the Non-SRG OBSS/PD Max Offset subfield
is present in the element.

– SRG Information Present: indicates whether the SRG OBSS/PD Min Offset, SRG OBSS/PD
Max Offset, SRG BSS Color Bitmap, and SRG Partial BSSID Bitmap subfields are present
in the element.
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– HE-SIG-A Spatial Reuse Value 15 disallow: indicates whether non-AP STAs that are
associated with the AP that transmitted this element may set the TXVECTOR parame-
ter SPATIAL REUSE to PSR AND NON-SRG-OBSS-PD PROHIBITED to avoid PSR
transmissions.

• Non-SRG OBSS/PD Max Offset: integer to generate the maximum Non-SRG OBSS/PD
threshold.

• Non-SRG OBSS/PD Min Offset: integer to generate the minimum Non-SRG OBSS/PD thresh-
old.

• SRG OBSS/PD Max Offset: integer to generate the maximum SRG OBSS/PD threshold.

• SRG BSS Color Bitmap: indicates which BSS Color values are used by the members of the
SRG.

• SRG Partial BSSID Bitmap: indicates which partial BSSID values are used by members of
the SRG.

Acknowledgment

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness
under the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502), by PGC2018-099959-
B-100 (MCIU/AEI/FEDER,UE), by the Catalan Government under SGR grant for research support
(2017-SGR-11888), by SPOTS project (RTI2018-095438-A-I00) funded by the Spanish Ministry of
Science, Innovation and Universities, and by a Gift from the Cisco University Research Program
(CG#890107, Towards Deterministic Channel Access in High-Density WLANs) Fund, a corporate
advised fund of Silicon Valley Community Foundation.

The authors would like to thank Dr. Malcolm Smith and Dr. Adrian Garcia for their thorough
reviews and insightful comments.

References

[1] TGax. IEEE P802.11ax/D4.0, 2019.

[2] Boris Bellalta. IEEE 802.11 ax: High-efficiency WLANs. IEEE Wireless Communications,
23(1):38–46, 2016.

[3] M Shahwaiz Afaqui, EG Villegas, and EL Aguilera. IEEE 802.11 ax: Challenges and require-
ments for future high efficiency WiFi. IEEE Wireless Communications, 99:2–9, 2016.

[4] Qiao Qu, Bo Li, Mao Yang, Zhongjiang Yan, Annan Yang, Jian Yu, Ming Gan, Yunbo Li, Xun
Yang, Osama Aboul-Magd, et al. Survey and Performance Evaluation of the Upcoming Next
Generation WLAN Standard-IEEE 802.11 ax. arXiv preprint arXiv:1806.05908, 2018.

[5] Evgeny Khorov, Anton Kiryanov, Andrey Lyakhov, and Giuseppe Bianchi. A Tutorial on IEEE
802.11 ax High Efficiency WLANs. IEEE Communications Surveys & Tutorials, 2018.

[6] Simone Merlin and Santosh Abraham. Methods for improving medium reuse in IEEE 802.11
networks. In Consumer Communications and Networking Conference, 2009. CCNC 2009. 6th
IEEE, pages 1–5. IEEE, 2009.

[7] Xingang Guo, Sumit Roy, and W Steven Conner. Spatial reuse in wireless ad-hoc net-
works. In 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.
03CH37484), volume 3, pages 1437–1442. IEEE, 2003.

[8] Vivek P Mhatre, Konstantina Papagiannaki, and Francois Baccelli. Interference mitigation
through power control in high density 802.11 wlans. In IEEE INFOCOM 2007-26th IEEE
International Conference on Computer Communications, pages 535–543. IEEE, 2007.

[9] Yihong Zhou and Scott M Nettles. Balancing the hidden and exposed node problems with power
control in CSMA/CA-based wireless networks. In Wireless Communications and Networking
Conference, 2005 IEEE, volume 2, pages 683–688. IEEE, 2005.

148



“thesis˙main˙doc” — 2020/7/6 — 12:39 — page 149 — #161
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On the Performance of the Spatial Reuse Operation in IEEE

802.11ax WLANs

Francesc Wilhelmi, Sergio Barrachina-Muñoz, and Boris Bellalta

Abstract

The Spatial Reuse (SR) operation included in the IEEE 802.11ax-2020 (11ax) amendment
aims at increasing the number of parallel transmissions in an Overlapping Basic Service Set
(OBSS). However, many unknowns exist about the performance gains that can be achieved
through SR. In this paper, we provide a brief introduction to the SR operation described in
the IEEE 802.11ax (draft D4.0). Then, a simulation-based implementation is provided in order
to explore the performance gains of the SR operation. Our results show the potential of using
SR in different scenarios covering multiple network densities and traffic loads. In particular,
we observe significant improvements on the channel utilization when applying SR with respect
to the default configuration, thus allowing to increase the throughput and reduce the delay.
Interestingly, the highest improvements provided by the SR operation are observed in the most
pessimistic situations in terms of network density and traffic load.

1 Introduction

The IEEE 802.11ax (11ax) amendment, which official publication is due to be released in June
2020, is expected to lay the groundwork of Next-Generation (NG) Wireless Local Area Networks
(WLANs). One of the main goals of this amendment is to improve network efficiency by increasing
the number of parallel transmissions in an Overlapping Basic Service Set (OBSS). To that purpose,
the Spatial Reuse (SR) operation is introduced along with other techniques to boost the performance
of NG WLANs, from which we highlight Orthogonal Frequency-Division Multiple Access (OFDMA)
or Downlink/Uplink Multi-User Multiple-Input-Multiple-Output (DL/UL MU-MIMO) [1].

The SR operation is based on sensitivity adjustment together with Transmission Power Control
(TPC). In particular, a specific OBSS Packet Detect (OBSS/PD) threshold is employed for the
detected OBSS transmissions (also referred to as inter-BSS transmissions), so that channel utilization
can be enhanced. Moreover, in order not to affect any ongoing transmission, a node applying SR
must limit its transmit power as a function of the OBSS/PD threshold.

Fig. 1 depicts a use case where the SR operation could potentially improve the network efficiency
of an OBSS. Notice that the dashed lines in the figure indicate the carrier sense area of each device,
provided that the transmit power of the others is fixed and that the same channel is used. As
illustrated, the default Clear Channel Assessment Carrier Sense (CCA/CS) threshold would not
allow simultaneous transmissions to be held between Access Points A and B (APA and APB). In
that case, each device should defer its transmission when the other occupies the channel, due to the
application of the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol.
Nevertheless, by properly increasing the OBSS/PD threshold of any AP (e.g., as illustrated for
APA), both devices would be able to transmit at the same time, thus improving the utilization of
the channel.

Despite SR is expected to bring significant performance gains to WLANs, its actual benefits
are still unknown. First, the new kind of inter-WLAN interactions that the operation generates is
unexplored, as well as their impact on the network. Moreover, the improvement achieved by applying
SR on the performance (e.g., throughput, delay) is hindered by the trade-off between the number
of parallel transmissions and their duration. Note that increasing the OBSS/PD threshold (i.e.,
using a more aggressive configuration) entails decreasing the transmission power, which may result
in using a lower Modulation and Coding Scheme (MCS), or even experiencing an increased packet
error rate. The effects of increasing the OBSS/PD threshold, and hence decreasing the transmission
power, are summarized in Table 1. As shown, an increase in the OBSS/PD threshold entails a higher
probability of accessing to the channel since the number of sensed inter-BSS transmissions can be
potentially reduced (this is equivalent to reducing the exposed-node probability). In contrast, the
number of hidden nodes can potentially increase as the carrier sense area is being reduced.
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Figure 1: Example of the potential of the 11ax SR operation.

Table 1: Effect of increasing the OBSS/PD threshold and the transmission power.

Data
rate

Channel access
probability

Hidden-node
probability

Exposed-node
probability

OBSS/PD ↑
(Tx Power ↓) ↓ ↑ ↑ ↓

In this work, we shed light on the performance of the 11ax SR operation and highlight the
situations in which it is worth using it. The main contributions of this paper are as follows:

• We provide a summary of the OBSS PD-based SR operation included in draft version D4.0
of the IEEE 802.11ax amendment, which is, to the date of publishing this article, under the
initial sponsor ballot phase.

• We present an implementation of the aforementioned operation in the 11ax-based Komondor
simulator [2].1

• We evaluate the performance of the SR operation through simulations, and assess its poten-
tial for next-generation wireless networks. Different network densities and traffic loads are
considered for covering the analysis of multiple use cases.

2 Related Work

The SR operation has been previously surveyed and evaluated in [1,3,4,6,7]. However, these works
refer to previous draft versions of the amendment (D1.0 o D2.0), which has undergone significant
modifications in its current version (D4.0).

First, the Task Group ax (TGax) presented some preliminary results for cellular-type scenarios
in [4]. In particular, significant gains were shown when combining BSS Coloring and Dynamic
Sensitivity Control (DSC) [5]. A further analysis was then provided in [6] for office scenarios,
which also showed that gains were only achieved in dense deployments. Nonetheless, the simulations
conducted in that work were obtained from a customized system and link level integrated simulation
platform, from which no validation was provided.

The authors in [7] provided a thorough performance evaluation of the SR operation, in addition
to several other features included in the 11ax amendment. To that purpose, they proposed their
own simulation platform for IEEE 802.11ax called SLISP, which mostly focuses on the MAC of the
11ax. Based on that, the SR operation was evaluated in indoor and outdoor scenarios containing
multiple BSS. While important gains were shown in indoor deployments (especially for downlink
traffic), a moderate gain was observed in outdoor situations.

As shown, few works attempt to provide a performance evaluation of the SR operation through
simulations. The main cause lies in the novelty of the mechanism. Accordingly, there is a lack
of reliable simulation platforms that include 11ax features. To the date of publishing this article,

1All the source code of Komondor is open and free to use (Github repository: https://github.com/wn-upf/

Komondor), with the aim of encouraging potential collaborations with any interested researcher.

153



“thesis˙main˙doc” — 2020/7/6 — 12:39 — page 154 — #166

SR is still under development for ns-3.2 Due to the lack of simulation tools including the 11ax
SR operation, in this work we provide an implementation of the SR operation in the Komondor
simulator.3 Moreover, our results are gathered based on the newest draft version (D4.0).

3 Spatial Reuse Operation
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Figure 2: Example of applying the OBSS PD-based SR operation.

The 11ax SR operation is divided into two different and independent mechanisms. On the one
hand, we find the OBSS PD-based SR operation, whereby 11ax devices - a.k.a High Efficiency
(HE) nodes4 - can detect SR opportunities from inter-BSS transmissions by using a more aggressive
CCA policy. On the other hand, the Spatial Reuse Parameter (SRP)-based SR operation performs
similarly but only taking advantage of trigger-based communications [8]. Throughout this document,
we will exclusively refer to the first mechanism (i.e., OBSS PD-based SR) because of the development
cost of building trigger-based transmissions required for the SRP-based SR operation. In addition,
the slow adoption of 11ax in WLANs would prevent using full scheduling transmissions schemes, in
favor of CSMA/CA ones. Notwithstanding, both mechanisms are expected to lead to similar results
since the procedure of adjusting the OBSS/PD is similar.

3.1 BSS Coloring and Spatial Reuse Groups

The whole SR operation is based on identifying the source of a given transmission, i.e., inter-
BSS frame detection. The idea is that HE nodes can rapidly decode the MAC headers of a certain
transmission and determine its origin. Then, a more aggressive OBSS/PD threshold can be employed
to increase the probability of accessing to the channel.

For the fast packet source identification, two concepts are introduced, which stand for BSS
Coloring and Spatial Reuse Groups (SRG). On the one hand, the BSS Color field is included in the
MAC headers5 to uniquely identify different WLANs belonging to an OBSS. In case of detecting a
color collision, the affected WLANs must change their BSS Color. On the other hand, SRGs can be
formed by a set of overlapping WLANs. The SRG field is present in control frames such as Beacons,
Probe responses, or (Re)Association responses.6 In this case, a specific OBSS/PD threshold can be
used for transmissions within the same SRG.

2All the new developments in ns-3 are published in the following repository: https://gitlab.com/nsnam/ns-3-dev
3The validation of the Komondor simulator against ns-3 can be found in [2].
4By 11ax node, we may refer indistinctly to an HE STA or an HE AP.
5The BSS Color is carried in the HE-SIG-A field, which is present in every Physical Layer Convergence Procedure

(PLCP) Protocol Data Unit (PPDU).
6Unlike the BSS Color, the SRG is included in the Spatial Reuse Parameter Set (SRPS) element. A bitmap is

stored by each 11ax node applying SR, which maps the set of BSS Colors that belong to a certain SRG.
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3.2 General Constraints

The 11ax amendment includes a set of constraints on defining the OBSS/PD threshold to be used for
detecting SR opportunities. In particular, the OBSS/PD value cannot exceed the following upper
bound:

OBSS/PD ≤max
(

OBSS/PDmin,min
(
OBSS/PDmax,

OBSS/PDmin + (TX PWRref − TX PWR)
))
,

where OBSS/PDmin and OBSS/PDmax are set to −82 dBm and −62 dBm, respectively, the reference
power TX PWRref is set to 21 or 25 dBm, according to the capabilities of the device,7 and TX PWR
is the transmission power in dBm.

In order to regulate the transmissions held during SR-based opportunities, the transmission
power is limited according to the OBSS/PD threshold used for detecting those opportunities. In
case that OBSS/PD ≤ OBSS/PDmin, the transmission power is unconstrained. Otherwise, the
maximum allowed transmission power TX PWRmax is given by:

TX PWRmax = TX PWRref − (OBSS/PD−OBSS/PDmin) (1)

3.3 Example of the OBSS PD-based Spatial Reuse Operation

In order to illustrate the concepts described above, let us consider the scenario depicted in Fig. 2(a).
As shown, there is a device, namely STAB2, which, by using the default configuration, is prone
to suffer from flow starvation as a result of the OBSS interference. Nevertheless, the OBSS PD-
based SR operation allows STA to overcome the aforementioned interference, thus gaining access to
the channel. This is illustrated in Fig. 2(b), where inter-BSS transmissions are ignored by STAB2

when using the SR operation. In marker 1 (shown in yellow), STAB2 inspects the Request to Send
(RTS) frame sent by APA, which is identified as an inter-BSS transmission. Accordingly, it uses a
more aggressive OBSS/PD threshold, which allows the backoff procedure to be resumed (marker 2).
Finally, STAB2 starts its own transmission by taking advantage of the detected SR-based opportunity
(marker 3). However, a power restriction is applied, thus decreasing the MCS and increasing the
data transmission time, as a consequence.

4 Implementation of OBSS PD-based SR in Komondor

The Komondor simulator was conceived, among other purposes, to allow the low-complexity inte-
gration of novel mechanisms included in new IEEE 802.11 standards, which are not yet available
or validated in other well-known simulators such as ns-3. Therefore, Komondor can serve as a first
step towards analyzing novel features that will potentially shape future wireless networks. In this
Section, we briefly introduce the implementation conceived for the SR operation.8

Fig. 3 shows a flowchart that summarizes the SR implementation for a given HE node in case of
detecting a single inter-BSS transmission. The most important groups of functionalities (highlighted
with numbers in the figure) are described in detail in the following subsections.

4.1 Initialization

First of all, any node that applies SR must indicate support for it. In addition, the parameters
related to the SR operation should be set:

• BSS Color: identifier of the BSS to which the node belongs to. The BSS Color identifies
WLANs uniquely.

• Spatial Reuse Group (SRG): identifier of the group to which the node belongs.

• Non-SRG OBSS/PD: the sensitivity threshold to be used for generic inter-BSS transmis-
sions.

7The TX PWRref can be set to either 21 or 25 dBm, depending on the transmission capabilities of the HE node
with regards to the highest supported number of spatial streams (NSS).

8The code used for the simulations of this paper can be found in pre-release v3.0 (https://github.com/wn-upf/
Komondor/releases/tag/3.0).
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Figure 3: Flowchart of the SR implementation for a given HE node when detecting a single inter-BSS
transmission.

• SRG OBSS/PD threshold: the sensitivity threshold to be used for inter-BSS transmissions
that are originated by nodes belonging to the same SRG.

The Komondor simulator simplifies the PHY layer for the sake of efficiency, so that particular
focus is put on the MAC. Moreover, operations related to management and control are simplified too.
According to that, the initialization of nodes is logically performed at the beginning of the simulation,
instead of simulating the actual exchange of control frames between nodes. In particular, the AP of
a given WLAN is responsible for notifying the initial SR configuration and any potential change to
its associated STAs.

4.2 Detection of SR-based Opportunities

Once the simulation starts and nodes begin to exchange packets, it is possible to detect SR-based
opportunities from inter-BSS frames. For that, a certain HE node must first analyze the headers
of any detected frame and rapidly identify its source. During this stage, the HE node will assess
whether the transmitter belongs to the same WLAN (intra-BSS) or not (inter-BSS). Moreover, in
case of being of kind inter-BSS, the frame is sub-categorized into SRG or non-SRG, according to
the groups established during initialization.

In case of detecting an intra-BSS transmission, the default CCA/CS threshold is used. Oth-
erwise, the corresponding OBSS/PD threshold (non-SRG or SRG) is applied. In accordance with
that, the power received Prx from the incoming transmission is used to identify potential SR-based
opportunities. In particular, the following two conditions must hold to identify an opportunity:
1) Prx ≥ CCA/CS, to guarantee the correct decoding of the MAC header, and 2) Prx < OBSS/PD,
to trigger the opportunity.

4.3 Transmit under the SR mode

When detecting an SR-based opportunity, an HE node detects the channel as idle, which allows
decreasing the backoff. Once the backoff counter is over and the node is about to transmit, a transmit
power limitation is applied (1). Finally, once the HE node finishes its SR-based transmission, it
returns to the default sensing state, where channel access is scheduled according to the legacy
CCA/CS threshold.

It is important to notice that several SR-based opportunities can be detected before transmitting,
due to the multiple receptions of different inter-BSS frames. In that case, the most restrictive power
limitation must be applied.
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5 Simulation Setup

In this Section, we depict the simulation setup that has been considered for evaluating the perfor-
mance of the SR operation.

5.1 Channel Model

Path-loss effects are characterized according to the TMB 5GHz indoor model for IEEE 802.11ac/11ax
WLANs [9]. In particular, the path-loss PLTMB between a transmitter i and a receiver j that are
separated by di,j meters is given by:

PLTMB(di,j) = L0 + 10 · γ · log10(di,j) + k ·W · di,j ,

where L0 is the path-loss intercept, γ is the path-loss exponent, k is the attenuation factor that
characterizes obstacles, and W is the average number of wall obstacles per meter.

5.2 Traffic Generation and Data Rate

Only downlink transmissions are considered for the sake of capturing inter-AP interactions. Hence,
a UDP traffic generator is attached to every AP. All traffic generators randomly produce packets at
the same average traffic load `, which varies depending on the scenario. The packets arrival process
to the APs is modeled through the well-known Poisson distribution.

The rate at which data is transmitted is based on the MCS modes defined in the 11ax amendment,
which are selected according to the link quality between the transmitter (the AP) and the receiver
(the STA). The highest achievable data rate (135 Mbps) is achieved when using modulation 1024-
QAM at a coding rate of 5/6.

5.3 Throughput Calculation and Reception Model

Nodes operate under the CSMA/CA protocol, and use the SR operation on top of that. Since
Komondor simulates the actual exchange of frames between nodes in a WLAN, the throughput S
experienced by it is directly obtained from:

S =
[Data bits transmitted successfully]

[Total simulation time]

The number of data bits (or data packets) transmitted successfully depends on the varying
channel conditions and sensed interference. In particular, a given transmission is considered to be
successful only if the following conditions hold at the receiver:

1. The power sensed at the receiver from the frame being decoded remains above the CCA/CS.

2. The Signal-to-Interference-plus-Noise Ratio (SINR) stays above the capture effect (CE) thresh-
old, set to 10 dB. Notice that this is an abstraction of the CE model, which is due to the
simplification of the PHY in Komondor.

5.4 Scenarios for Evaluation

The 11ax SR operation is evaluated in random scenarios like the one depicted in Fig. 4. Notice that,
for the sake of illustrating the potential of SR, only the WLAN in the middle (namely, WLANA)
applies the SR operation, while the others remain using the default CCA/CS. WLANA is placed
at the center of the scenario, so that it is normally exposed to a higher level of interference than
the others. We consider that all the WLANs are operating in the same channel, as otherwise, they
would not interact.

Different network densities are considered, which are useful to evaluate the gains achieved by the
11ax SR operation in different use cases. In particular, we consider low-density (LD), medium-density
(MD), and high-density (HD) scenarios. In summary, we simulate multiple scenarios accounting for
Nm = 3 maps of sizes 25× 25 , 50× 50, and 100× 100 m2, Nd = 50 different random deployments
(i.e., node allocation), Ncca = 21 OBSS/PD values ranging from -62 to -82 dBm for WLANA, and
N` = 16 traffic loads ranging from ` = 1 to 100 Mbps. In total, Ns = Nm×Nd×Ncca×N` = 50, 400
scenarios (or Komondor inputs) are simulated. The observation time for each simulation is T = 10
seconds.

The 11ax PHY and MAC parameters used in the simulations are listed in Table 2.
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Figure 6: Empirical cumulative distribution function of the average packet delay experienced by
WLANA. Different network densities and traffic loads are considered. Solid and dashed lines indicate
whether WLANA uses spatial reuse (SR) or not (Leg), respectively.

Based on the simulation setup described in Section 5, we evaluate the potential of the 11ax SR
operation in various situations. In particular, for each network density and traffic load, we measure
the maximum performance gain that can be achieved by WLANA when applying SR. This upper
bound is provided by the OBSS/PD value that maximizes the average throughput in each of the
50 random deployments. We also assess the impact of such an optimal SR configuration (from
WLANA’s perspective) on the environment (i.e., the other WLANs). Specifically, we compare the
throughput, channel occupancy, and delay obtained by all the other WLANs in two situations: i) the
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legacy CCA/CS is used by the entire network (including WLANA), and ii) Only WLANA applies
the SR using the optimal OBSS/PD.

Fig. 5 shows the highest gains that can be achieved both in throughput and channel occupancy
when WLANA implements the SR operation. As shown in the first row, significant improvements
are achieved on WLANA’s individual throughput, especially for the highest network density (up
to 450% for medium load). Moreover, importantly, the mean throughput achieved by the rest of
WLANs (on average) is barely affected by the SR operation applied by WLANA.

Regarding channel occupancy (second row), improvements are also noticed as traffic load in-
creases, for every network density. Essentially, more transmission opportunities are achieved due to
the lower OBSS/PD threshold used by WLANA. Nonetheless, an interesting phenomenon occurs
for the MD and HD scenarios at low-moderate traffic loads. In these cases, the legacy approach
leads to a clear increase on channel occupancy. This increase is caused by the elevated number of
re-transmissions performed, which are propitiated by the higher collision probability between over-
lapping WLANs. We conclude that SR allows using channel resources more efficiently by reducing
the contention among neighboring WLANs, and thus boosting parallel transmissions.

Finally, Fig. 6 illustrates the potential reduction on the delay experienced by WLANA when
implementing SR. In particular, we select the empirical cumulative distribution function (CDF)
to highlight the probability of experiencing small and high delays resulting from all the simulated
scenarios. Similarly than before, for each scenario, we pick the average delay obtained by the best
possible OBSS/PD threshold used by WLANA in each of the deployments (in terms of throughput)
and compare it with the legacy situation. Three representative traffic load values are included for
each network density. As illustrated, the probability of experiencing a high delay rapidly increases
with network density and traffic load when the legacy operation is considered. Nevertheless, SR
substantially improves delay performance by keeping it at moderate values in most of the simulated
scenarios.

7 Conclusions

In this paper, we introduced the 11ax SR operation and evaluated its potential in a variety of
scenarios covering different node densities and traffic loads. To that purpose, we provided an imple-
mentation of the SR operation in the 11ax-oriented Komondor simulator. Our results showed that
significant gains can be achieved by using the SR operation, especially in high interference situations
where both network density and traffic load are high. Therefore, there is a huge potential in SR
when it comes to maximizing channel utilization.

As future work, the potential of SR will be studied, especially regarding the interactions that
occur when more than one WLAN applies the operation. Moreover, the problem of finding the
best OBSS/PD threshold will be studied. In this regard, online learning stands as a powerful and
suitable solution, due to the complex inter-WLAN interactions that can be generated by using SR.
Promising results have been already shown by applying Machine Learning (ML) to address the SR
problem [10, 11]. Finally, the interaction of SR with other techniques included in the 11ax (e.g.,
directional transmissions, target wake time, OFDMA, etc.) is also worth to be studied.
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Table 2: Simulation parameters.

Parameter Value

PHY

Central frequency fc 5 GHz
Transmission gain Gtx 0 dB
Reception gain Grx 0 dB
Capture Effect threshold CE 10 dB
Path-loss (TMB) PLTMB(d) See (2)
Path-loss intercept L0 54.120
Path-loss exponent γ 2.06067
Attenuation factor k 5.25
Average num. of walls per m W 0.1467
Background noise level N -95 dBm
Legacy OFDM symbol duration σleg 4 µs
OFDM symbol duration (GI-32) σ32 16 µs
Number of subcarriers (20 MHz) Nsc 234
Number of spatial streams Nss 1
Transmit power levels T 1 to 20 dBm (1 dBm steps)

MAC

Empty slot duration Te 9 µs
SIFS duration TSIFS 16 µs
DIFS/AIFS duration TDIFS/AIFS 34 µs
PIFS duration TPIFS 25 µs
Legacy preamble duration TPHY-leg 20 µs
HE single-user field duration THE-SU 100 µs
ACK duration TACK 28 µs
Block ACK duration TBACK 32 µs
Size OFDM symbol (legacy) Ls,l 24 bits
Length of data packets Ld 12,000 bits
Max. No. of frames in an A-MPDU Nagg 64
Length of an RTS packet LRTS 160 bits
Length of a CTS packet LCTS 112 bits
Length of service field LSF 16 bits
Length of MAC header LMH 320 bits
Max. contention window (fixed) CW 15
Allowed sensitivity levels S -82 to -62 (1 dBm steps)

Other
Traffic model Λ Downlink
Traffic load ` 1 to 100 Mbps
Map area A 25x25, 50x50 and 100x100 m2
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Abstract
Lots of hopes have been placed on Machine Learning (ML) as a key enabler of future wire-

less networks. By taking advantage of large volumes of data, ML is expected to deal with
the ever-increasing complexity of networking problems. Unfortunately, current networks are
not yet prepared to support the ensuing requirements of ML-based applications in terms of
data collection, processing, and output distribution. This article points out the architectural
requirements that are needed to pervasively include ML as part of future wireless networks
operation. Specifically, we look into Wireless Local Area Networks (WLANs), which, due to
their nature can be found in multiple forms, ranging from cloud-based to edge-computing-like
deployments. In particular, we propose to adopt the International Telecommunications Union
(ITU) unified architecture for 5G and beyond. Based on ITU’s architecture, we provide insights
on the main requirements and the major challenges of introducing ML to the multiple modalities
of WLANs. Finally, we showcase the superiority of the architecture through an ML-enabled use
case for future networks.

1 Introduction

Wireless communications have reached a point where a paradigm shift is required to satisfy the in-
creasing needs of next-generation applications [1]. Based on the current trend, Artificial Intelligence
(AI), and more precisely Machine Learning (ML), is expected to conduct a revolution, especially re-
garding the network planning, operation, and management of the 5th and 6th generations (5G/6G)
of mobile communications.

ML is meant to empower a computational system for learning automatically, based on experience,
so that future situations can be properly managed without having been programmed explicitly.
Concerning wireless communications, there is a huge amount of unexploited data generated at both
infrastructure and user levels, which could be extremely useful for learning complex patterns, thus
improving network performance. For instance, the behavior of users in a network-oriented service can
be predicted through ML given the information from previous sessions. Based on these predictions,
network resources can be appropriately accommodated in future sessions.

Unfortunately, the potential benefits of ML for real networks are currently limited by the existing
infrastructure, which is not yet prepared to accommodate ML-oriented tasks such as data collection,
processing, and output distribution. Instead, current networking systems are typically meant for
delivering content, without taking into account the underlying characteristics of the processes that
generate it.

The first steps towards AI-enabled networking are currently being made in 5G through Network
Function Virtualization (NFV). Unlike traditional hardware-based networks, NFV allows rapid elas-
ticity and fast reconfiguration on assigning network resources. This is particularly useful to enable
verticals such as autonomous driving in the automotive sector or smart manufacturing in Industry
4.0. Besides, network virtualization is useful to boost inter-operator coordination and bringing the
ML operation to a macro-scale level, counting with vast information and computation resources.

To conduct the evolution towards ML-aware networks, standardization is key to reach consensus
between operators and manufacturers. In this regard, we find many initiatives held by standard-
ization organizations, from which we highlight the Focus Group on Machine Learning for Future
Networks including 5G (FG-ML5G), which belongs to the International Telecommunication Union
Telecommunication Standardization Sector (ITU-T). The FG-ML5G aims to enable the convergence
of future communications with ML technologies. To that end, the focus group has released a speci-
fication on a Unified architecture for 5G and beyond, recently turned into an ITU Recommendation
[2]. Remarkably, ITU’s standardized architecture provides a common nomenclature for ML-related
mechanisms so that interoperability with other networking systems is achieved.
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Apart from the ITU-T initiatives, other important standardization bodies such as the 3rd Gener-
ation Partnership Project (3GPP) or the European Telecommunications Standards Institute (ETSI)
are currently working on the integration of data analytics to network functions. The 3GPP contem-
plates AI as one of the priority topics for shaping its upcoming release (Release 17) and architectural
requirements are currently under study [3]. Furthermore, we highlight the ETSI groups on Experi-
ential Networked Intelligence (ENI) and Zero-touch network and Service Management (ZSM), which
actively study the integration of AI to networks [4]. Unlike the ITU’s unified architecture, most of
the work held by the 3GPP and the ETSI focuses on centralized data collection and data analytics
solutions. Nevertheless, we understand that the works in [2–4] are complementary to each other.

To contribute to the evolution of wireless communications towards AI-based systems, we provide
a realization of the ITU’s architecture for IEEE 802.11 Wireless Local Area Networks (WLANs),
which will be an essential part of the 5G/6G ecosystem in the unlicensed bands. Unlike for cellular
networks, WLANs have received much less attention when designing AI-aware architectural solu-
tions. The fact is that cellular-based deployments fit in perfectly with big data analytics, due to
the vast amount of data and high computation resources available for mobile network operators. In
contrast, WLANs pose a set of specific challenges resulting from their multiple deployment modes
(e.g., campus network, residential usage) and their typical decentralized nature. Despite WLANs
can count with plenty of data to be used by ML methods in large and planned deployments, we find
other residential-type scenarios that lack of powerful centralized equipment. In these cases, huge
computing and processing resources cannot be endowed to the ML operation.

To enable the integration of ML-based approaches into the different modalities of WLANs, the
module-based ITU’s architecture allows adapting to the problem instance and the set of available
resources, thus providing flexibility in terms of deployment heterogeneity. For instance, despite deep
learning is a powerful solution that may improve the performance in multiple scenarios, it entails
a set of computation, storage and communication requirements that may not be fulfilled in other
deployments, or parts of the network.

The main contributions of this paper are as follows:

• We devise and discuss the potential of ML-enabled future communications. Then, we focus on
IEEE 802.11 WLANs and provide a set of use cases.

• We provide an overview of the ITU’s ML-aware architecture for 5G networks and beyond.

• We adopt the module-based ITU’s architecture and provide a realization for IEEE 802.11
WLANs, thus pointing out the major technical challenges and opportunities.

• We depict the potential advantages of ML-based approaches enabled by the architecture
through numerical results in a particular use case.

2 Machine Learning as Enabler of Future Wireless Networks

In this section, we discuss the role of ML for sustaining the progress of future wireless networks.
Then, we motivate the application of ML to IEEE 802.11 WLANs through a set of illustrative
ML-driven use cases.

2.1 Machine Learning in Communications

The proliferation of new communication-based applications is defining the shape of future networks
through a set of strict requirements [5]. Some examples are Vehicle to Everything (V2X), Industry
4.0, and Virtual Reality / Augmented Reality (VR/AR). These applications are really challenging
in terms of bandwidth (10-20 Gbps), latency (<5 ms), reliability (1 packet lost for every 105 packets
sent), and scalability (1,000,000 devices/km2), as well as require a flexible network response to cope
with the high heterogeneity of devices and contents.

In 5G, the previous concepts are referred to as Enhanced Mobile Broadband (eMBB), Massive
Machine to Machine and Internet of Things (IoT) Communication (mMTC), and Ultra-Reliable
and Low Latency Communication (uRLLC), respectively. Similarly, IEEE 802.11 groups are also
considering these aspects in the design of next-generation amendments, such as High Efficiency (HE)
IEEE 802.11ax and Extreme High Throughput (EHT) IEEE 802.11be.

To meet the abovementioned strict requirements, not only a technological innovation is required
(e.g., use of more spectrum or improve multiple-antennas technologies), but a paradigm shift is
necessary when designing novel solutions for network planning, operation, and management. In
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particular, intelligent wireless networks need to be empowered with cognitive and context-aware
capabilities, which may require additional infrastructure such as environmental sensors and cameras.
To that end, ML is expected to be important during the lifetime of 5G and will become pervasive -
as included from the beginning in their conception - in 6G networks.

The actual utility of ML lies in those problems that are hard to solve by hand-programming due
to their underlying complex patterns (e.g., network traffic prediction). Formally, a machine is said
to learn if it improves the performance P obtained from undertaking task T, based on the gathered
experience E [6]. Different ML techniques have been categorized in multiple ways, but the most
common taxonomy differentiates between supervised learning (labeled data is used for training),
unsupervised learning (no labels are used on input data), and reinforcement learning (exploration-
exploitation trade-off with label/unlabeled data). Table 1 provides a list of algorithms and potential
networking applications for each type of ML techniques, as well as some examples of input data
to be used by these methods. For further details, we address the interested reader to [7–9], which
survey a plethora of ML-based applications for networking.

Table 1: Machine learning methods, algorithms, potential networking applications, and examples of
input data.

ML
method

Algorithms Potential applications Examples of input data

SL Linear classifiers, regression meth-
ods such as Autoregressive Inte-
grated Moving Average (ARIMA),
neural networks, hidden Markov
models, random forest, support
vector machines, k-nearest neigh-
bors, principal component analysis

Traffic forecasting, mobility
pattern prediction, flow clas-
sification, routing, anomaly
detection, spectrum manage-
ment, failure detection, QoE
prediction

IP traffic matrices, tempo-
ral user location, availability
of routing paths, application
data, channel measurements,
performance metrics

UL Clustering, mixture models, gen-
erative models, non-negative ma-
trix factorization, evolutionary al-
gorithms

Traffic classification, virtual
topology design, path compu-
tation, intruder detection, sig-
nal separation

IP traffic matrices, historical
end-to-end bit-rate, received
symbols

RL Monte Carlo, Q-learning, State-
Action-Reward-State-Action
(SARSA), deep Q network,
actor-critic, multi-armed ban-
dits, learning automaton, Markov
decision processes

Power control, rate adaptation,
routing, channel selection, spa-
tial reuse, smart caching, traf-
fic offloading, cognitive channel
access, energy harvesting, en-
ergy efficiency

Channel measurements, link
status, performance metrics
(e.g., throughput, delay),
server occupation, power
consumption

Apart from the specific ML solutions to problems in communications, some efforts have been
made towards enabling AI-aware networking in more general terms. In particular, several archi-
tectural proposals have been provided so far [10–12]. Most of the referenced works agree in the
necessary steps for enabling big data analytics in cellular deployments: (1) data collection, (2) data
preparation, (3) data analysis, and (4) decision making. Nevertheless, none of these works provide
architectural guidelines to introduce ML to wireless networks. In this regard, the ITU’s architecture
looks deeper into the ML operation and targets the actual procedures involving information gath-
ering, processing, and communication. Besides, the ITU-T provides a data handling framework for
ML-aware networks [13], which defines processes concerning data collection, processing, and output
distribution.

2.2 Machine Learning-Enabled Use Cases in WLANs

To showcase the potential of applying AI in IEEE 802.11 WLANs, we next describe a set of use
cases where ML allows improving the network operation.

2.2.1 OFDMA-Based Smart Network Slicing

Network slicing is one of the hottest topics in 5G because it allows virtually separating network
resources to meet diverse application requirements. In next-generation WLANs, network slicing can
be realized through the allocation of radio resources via Orthogonal Frequency-Division Multiple
Access (OFDMA). However, the heterogeneity of applications and devices, and their subsequent
elasticity prevent allocating frequency resources easily. To solve this, ML can be used to make
predictions on the user requirements so that the access network can be optimized.

As an example, Fig. 1 shows a scenario where multiple users operate under different require-
ments, based on the applications they use. While the central controller can make predictions on user
behavior, the local schedulers may consider information such as the user profile, the current perfor-
mance, and the environmental circumstances. Accordingly, the Access Point (AP) can allocate the
most suitable OFDMA resources to each device, based on the predicted needs and network status.
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Figure 1: OFDMA-based smart network slicing.

2.2.2 Cloud-Based User Association and Handover

Most of the current user association and handover procedures held in WLANs typically rely on the
Strongest Signal First (SSF) mechanism. This might be problematic in terms of load balancing
and can potentially lead to severe performance degradation in dense Basic Service Sets (BSSs).
By introducing ML, it is possible to handle contextual information such as the traffic load, which
can be useful for decision-making. Furthermore, mobility pattern prediction and user requirements
forecasts can be included in the system, thus empowering the association and handover mechanisms
with insightful information.

2.2.3 Inference-Based Coordinated Scheduling

Contrary to traditional cellular-type networks, WLAN deployments can be chaotic, especially in
residential scenarios where anyone can set-up an AP and create a wireless network. This typically
leads to complex scenarios where inter-BSS interactions prevent the existing scheduling approaches
to ensuring a minimum quality of service. Fortunately, ML can be used to infer these interactions
and provide a solution accordingly. In particular, through coordinated ML-assisted scheduling,
different APs can trigger uplink/downlink transmissions from/to the appropriate stations (STAs),
thus increasing the network throughput whilst reducing the number of packet collisions.

2.2.4 Reinforcement Learning-Based Spatial Reuse

Spatial reuse aims to improve channel utilization through sensitivity adjustment mechanisms. However,
selecting the best sensitivity threshold is not trivial given the complex spatial interactions that occur
among devices. As a potential solution, reinforcement learning can be applied locally to improve
spectral efficiency in a decentralized manner.

3 ITU Unified Architecture for Future Networks

The FG-ML5G was created in November 2017 by its parent group, the ITU-T Study Group 13,
to study the integration of ML mechanisms into future networks. This includes the definition
of interfaces, protocols, data formats, and architectures. During its lifetime, the FG-ML5G has
released several reports and contributions. Among them, we highlight the ITU’s logical interoperable
architecture for future networks [2], which defines an ML overlay that operates on the top of any
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Figure 2: ITU’s logical architecture for future networks [2]. Entities contain input/output interfaces
for communication, while the ML intent is a declarative file with information related to the use case.

unspecified underlay network technology (e.g., 3GPP, EdgeX, IEEE 802.11). The ITU’s architecture
aims to fulfill a set of technology-agnostic high-level requirements to support ML. For instance, the
architecture must be able to support multiple types of data, thus taking advantage of heterogeneous
data sources.

Figure 2 shows the elements that compose the ML overlay (management subsystem, multi-level
ML pipeline, and closed-loop subsystem). These elements are further described in the following
subsections. Based on this standard overlay, ML applications can be instantiated in the logical
entities (represented by white boxes).

3.1 Management Subsystem

The management subsystem is in charge of the deployment and the orchestration of the ML ser-
vices that operate in the underlying network. To that purpose, the Machine Learning Function
Orchestrator (MLFO) entity is defined. The MLFO is first instantiated by a declarative intent that
uses a meta language. It specifies the ML use case to be applied, including initialization, policies,
and constraints. Then, the MLFO initializes the elements of the ML pipeline and monitors their
operation during execution.

3.2 Multi-Level Machine Learning Pipeline

The multi-level ML pipeline performs the actual ML operation in a given network underlay and it
is in charge of the data collection, model application, and output distribution. The following logical
entities compose the ML pipeline:

• Source (src): generates data to be used by the ML mechanism.

• Collector (C): collects the data generated by sources.

• Pre-processor (PP): prepares the data collected for its utilization by the ML mechanism.

• Model (M): applies the ML model specified by the intent.

• Policy (P): provides a set of constraints and/or guidelines that delimit the behavior of the
model.

• Distributor (D): spreads the ML output across all the corresponding targets (or sinks).

• Sink (sink): applies the ML output that is received from the distributor.
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3.3 Closed-loop Subsystem

In order to address network dynamics, the ML operation is assisted by a closed-loop subsystem,
which can provide information to the system beforehand. As for the ML pipeline, the closed-loop
subsystem is orchestrated by the management subsystem. In particular, a sandbox can be formed
of real devices (pre-production internal network) or even be virtual (simulator/emulator). Network
simulators such as ns-3 and Komondor [14] are examples of closed-loop subsystems and can serve
two purposes: i) generate synthetic data for training, and ii) run simulations to validate potential
solutions before being applied in production.

4 Machine Learning-Aware Architecture for IEEE 802.11 WLANs

Based on their independence degree in terms of management and operation, WLAN deployments
can be divided into two main families:

• Enterprise: a set of BSSs can be jointly operated from the edge and/or the cloud, thus
providing management and orchestration functionalities such as centralized authentication, or
channel allocation. Enterprise-like deployments are realized through Extended Service Sets
(ESS) and can be typically found in environments controlled by a single network operator, like
university campuses, offices, stadiums, etc.

• Residential: each BSS is responsible for its own management and operation. In the context
of residential scenarios (but not limited to), peer-to-peer deployments are gaining popularity
for infrastructureless communications (e.g., Wi-Fi direct).

IEEE 802.11 Mechanisms
Report to the edge/cloud (802.11u)
Report to the AP (802.11v)
Inter-AP communication (802.11f/r/u)

Return configuration (802.11k/u/v)
Sense the environment (802.11k)
P2P communication (Wi-Fi direct)

Cloud
 server

ESS

BSS

AP

APSTA

STA

Enterprise

Residential

P2P

Edge
 server

Figure 3: Enterprise and residential-like deployments and complementary IEEE 802.11 mechanisms
to enable the utilization of ML.

Figure 3 illustrates the enterprise and residential-like deployments as well as a set of mechanisms
that can facilitate the adoption of the ML-based architecture in WLANs. The following functional-
ities are provided:

• Information gathering (802.11k/r/v): ML mechanisms can use information about the
network topology and RF measurements to infer the behavior of other devices, or to extract
important environmental characteristics.
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• Interoperability (802.11f/u): Interoperability enables coordinated operations (e.g., schedul-
ing, resource allocation), thus allowing to apply centralized/coordinated mechanisms such as
in federated learning.

• Security (802.11w): ML mechanisms can use management frames that are protected so that
a higher level of security is granted.

• Validation (802.11t): Performance evaluation in WLANs through test metrics can be useful
to define optimization goals within the ML operation.

4.1 Challenges in IEEE 802.11 WLANs

The application of ML methods in WLANs is tightly tied to the technological challenges posed by
these types of networks. The major challenges encountered in wireless communications stand for
fast data expiry and lack of resources for data handling (e.g., storage, computation, and information
exchange). Regarding Wi-Fi networks, we find the following challenges:

1. Non-stationarity: channel fluctuations due to multipath fading, mobility of users and varying
traffic needs entail a big challenge to ML applications. As a result of network dynamics,
adaptability should be granted by continuously retraining ML models.

2. Limited communication resources: since Wi-Fi operates under unlicensed bands, re-
sources are scarce and shared. Hence, any potential communication required by a certain
ML mechanism (as for distributed learning) may fail or be delayed if the medium is congested.
As a result, the ML operation must be robust and resilient enough to react to potential com-
munication issues.

3. Limited computation and storage resources: computation and storage resources may also
be scarce in WLANs, especially in residential-like deployments. Therefore, the ML operation
should include computation-efficient procedures. Another implication of limited resources lies
in the availability of information to be used by ML algorithms, especially for online learning
methods.

4. Adversarial environment: in many cases, Wi-Fi deployments are chaotic in the sense that
many overlapping BSSs coexist without cooperation. This is a particularly interesting chal-
lenge for ML methods, where competition among agents may lead to an adversarial setting.
Moreover, multi-vendor devices may implement different ML mechanisms, leading to clashing
interests.

5. Legacy devices: BSSs may coexist with other legacy devices that do not perform any in-
telligent operation. It is then required for ML methods to be aware of those devices, so that
unfair situations are avoided.

Apart from the previous WLAN-specific challenges, other inter-domain issues should be con-
sidered. For instance, end-to-end security is required since ML mechanisms store and/or exchange
sensitive data that may be exposed. Besides, interoperability should be tackled when deploying ML
solutions to different underlay networks. In this regard, the standardized ITU ML pipeline stands
up as a promising solution.

4.2 Computation Paradigms in IEEE 802.11 WLANs

The various types of WLAN deployments and their computation and communication capabilities
are closely linked to the type of ML solutions that can be applied to them: cloud or edge-oriented.

Cloud-oriented ML applications are characterized by bearing high computational and storage
resources, thus allowing them to collect various types of data from multiple sources, and to pro-
vide global and long-term solutions. The major challenge for cloud-oriented methods lies in the
management of data and the corresponding synchronization, availability, and heterogeneity issues.

In edge-oriented mechanisms, the ML operation is mainly ruled by edge devices (e.g., APs and/or
STAs), which, contrary to the cloud approach, typically lack powerful computation and storage
resources. In consequence, edge-oriented mechanisms may only allow using simple and lightweight
computing ML algorithms. Nevertheless, edge servers can be added to deploy more powerful solutions
promptly. The edge-oriented approach is useful for real-time ML applications that manage local (and
even highly-varying) information.
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Apart from cloud and edge-oriented settings, we may distinguish between methods based on their
cooperation degree. In cooperative approaches, nodes interact among them for the sake of jointly
conducting the learning operation (e.g., sharing a reward). However, reliable and timely connections
among learners are often required. In this regard, [15] showed the role of communications on speeding
up a distributed training procedure over a set of nodes in a network. Alternatively, for the non-
cooperative case, the learning operation may lead to adversarial settings, especially since BSSs share
resources such as the spectrum.

4.3 Realization of the ML-Aware Architecture for WLANs

To showcase the adoption of the architecture, let us retake the AP (re)association and handover
example (see Fig. 4). We now consider a hybrid solution where two main ML-based processes are
held: training (learn from data) and placement (apply the learned knowledge).

While the training procedure is carried out at the cloud (collect data from multiple sources), the
placement operation is done at the edge (provide timely responses to new cases). Notice that the
system can also be re-trained during the placement phase, based on newly acquired local data.

Training
Placement
Sandbox

src DC sinkPP M P

src DC sinkPP M P

src DC sinkPP M P

1

2 3

3

src DC sinkPP M P

1

4

1

2 3 4

1 2
Cloud 
Server

Edge
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Point

Station

Sandbox src DC sinkPP P
Simulated environment

M

Figure 4: Realization of the ITU’s ML architecture for IEEE 802.11 WLANs through a hybrid
ML-based solution for AP (re)association and handover.

Specifically, the training procedure consists of the following steps (shown in red):

1. Data collection: the cloud server collects information of different kinds from APs and STAs,
such as user information (e.g., location), performance (e.g., delay), application data (e.g., traffic
load), or channel status reports (e.g., sensed interference). This information can be used either
for training or feeding auxiliary algorithms that help the main AP association procedure (e.g.,
predict user behavior).

2. Pre-processing: the data collected at the cloud is pre-processed so that the ML method can
properly manage it. For instance, in case of applying a multiple linear regression, the input
information needs to be converted into normalized features (i.e., convert the rate given in Mbps
into a scalar between 0 and 1).

3. Model generation: when generating the ML model, certain policies need to be considered.
For instance, an AP may set a maximum number of associated STAs. The policies are strongly
tied to the capabilities of the devices or the existing regulations (e.g., maximum regulated
transmission power).

4. Output distribution: once the ML method in the cloud generates the output (i.e., the
predicted function for new (re)associations), it is distributed throughout the sink edge servers,
which are then ready to give quick response to new cases.
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In the placement phase (shown in green), we find:

1. Handle new requests: new (re)association requests or potential handovers are detected
based on newly acquired information from STAs. This information is collected by the edge
server.

2. Pre-processing: the acquired information is then processed by the edge server, just like for
the training phase.

3. Run the ML solution: the ML method provided by the cloud is applied locally at the edge
server, which provides an output for the new request.

4. Apply the ML solution: the (re)association decision is distributed to the corresponding
AP.

Finally, it is worth pointing out the role of the sandbox, which can be mainly twofold (shown in
orange):

1. Generate data for training: the sandbox can act as a source in the ML pipeline by gen-
erating synthetic data for training purposes. Nevertheless, the data provided by the sandbox
is limited to several factors such as the accuracy of the simulation model or the degree of
similarity between the sandbox and the real network.

2. Preliminary model testing: alternatively, the sandbox can be used to validate the output
of the ML method before being applied to the real network.

To showcase the potential of the ML-based architecture through numerical results,1 we compare
the performance of classical AP association procedure (SSF) against a novel ML-based approach
(based on vanilla neural networks). In particular, the neural network predicts the throughput that
an STA will obtain after associating to a given AP based on a set of features or characteristics (e.g.,
current load, received signal strength). Figure 5 shows the throughput received by each STA versus
the load it generates, for different deployment densities. We observe that the ML approach improves
the average performance and balances the results obtained by all the STAs. This is because the
ML function can capture complex patterns from dense deployments, thus guaranteeing minimum
throughput requirements to STAs (at the expense of missing the maximum performance peaks).

Figure 5: Performance evaluation of the AP association problem in WLANs: SSF versus Neural
Network (NN). The mean performance of each mechanism is represented by a green dot.

5 Concluding Remarks

Current networks are not yet prepared for the pervasive adoption of ML-based operation. Hence,
disruptive architectural changes are required. For the sake of moving forward in this field, this article

1Given the novelty of the technologies studied in this paper, our results have been obtained from well-
know standard-compliant models, hence their accuracy is tied to them. Nevertheless, this is a first step
to understand the potential benefits of using an ML-based architecture in next-generation wireless net-
works. For the sake of reproducibility and disclosure, all the source code is open and publicly available at
https://github.com/fwilhelmi/machine learning aware architecture wlans, accessed on Jan. 31, 2020.
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introduced the ITU’s unified architecture for future networks and provided a realization for IEEE
802.11 WLANs. The different forms of Wi-Fi networks allow uplifting the flexibility characteristic
of the ITU’s architecture, thus enabling from edge to cloud-oriented solutions, including hybrid
approaches.

To conclude, future wireless networks are envisioned to share a common flexible architecture
that allows a fast adaptation of resources to accommodate a plethora of ML-enabled verticals.
Nevertheless, a lot of effort is still required before reaching fully intelligent wireless networks. Among
several open issues, we highlight the ones related to data handling (how/where to store data? how
to assess the expiry of data? ), orchestration (how to distribute the ML operation? how to deal with
heterogeneity? ), and robustness of the ML methods (how to deal with uncertainty? how to prevent
unprecedented events?).
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Abstract

Without any doubt, Machine Learning (ML) will be an important driver of future communi-
cations due to its foreseen performance in front of complex problems. However, the application
of ML to networking systems raises concerns among network operators and other stakehold-
ers, especially regarding trustworthiness and reliability. In this paper, we devise the role of
network simulators for bridging the gap between ML and communications systems. Network
simulators can facilitate the adoption of ML-based solutions by means of training, testing, and
validating ML models before being applied to an operative network. Finally, we showcase the
potential benefits of integrating network simulators into ML-assisted communications through
a proof-of-concept testbed implementation of a residential Wi-Fi network.

1 Introduction

Beyond the fifth-generation (5G) of mobile communications systems, namely the sixth generation
(6G), Artificial Intelligence (AI), and more precisely Machine Learning (ML), are expected to be
pervasively included as part of the network operation, which would entail a huge leap towards
optimization, automation, and self-healing. This is possible thanks to the paradigm shift driven by
the softwarization of networks – achieved through Software Defined Networks (SDN) and Network
Function Virtualization (NFV) – which provides the necessary flexibility to empower data-driven
approaches.

The integration of ML to communications has started to be considered for the upcoming versions
of 5G. This fact is supported by the content already approved by the 3rd Generation Partnership
Project (3GPP) for Release 16 (2020) and Release 17 (2021) [1], which aim to continue improving the
efficiency of 5G systems in many domains such as interference mitigation, Self-Organizing Networks
(SON) and Big Data, power consumption, and user mobility, to name a few. Besides, we find of
high relevance the contributions made by the International Telecommunication Union (ITU) Focus
Group on Machine Learning for 5G and Beyond (FG-ML5G) and the Study Group 13 (SG13), which
have published specifications on an ML-aware architecture [2, 3].

Through the exploitation of the rich amount of available data, ML can overcome the systemic
complexity inherited from novel use cases like Vehicle to Everything (V2X) communications, Machine
Type Communications (mMTC), and extended reality and high-quality video content delivery. These
use cases comprise heterogeneous scenarios with mobility, a huge number of devices, and high-
bandwidth and low-latency requirements. In particular, ML may offer substantial performance
gains due to the inherent flexibility of automatically learning diverse situations, thus allowing to
solve problems related to interference management, improving spatial reuse, or efficient resource
allocation.

While ML promises significant productivity gains, it also raises serious challenges and concerns.
First of all, the successful application of ML depends on the quality of the training data provided.
These data, by nature, can often be limited or noisy, and draw insightful conclusions might be
challenging for many problems. Apart from that, dealing with non-stationary data is still an open
challenge, which casts doubts on the validity of potentially learned models. A prominent example is
that of IEEE 802.11 Wireless Local Area Networks (WLANs). The typical decentralized nature of
WLANs (e.g., residential deployments) affects data collection and also leads to complex and highly
non-stationary environments.

These challenges put into question the worthiness of introducing ML to networking systems.
In particular, network operators and other stakeholders may have concerns regarding architectural
(e.g., how to train and transfer ML models across a network) and operational aspects (e.g., how to
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provide trustworthy ML optimizations). While significant efforts have been put towards designing
ML-based network architectures [1–4], only a small number of works have been devoted to study
and address the side effects that ML can produce when applied to networks.

In this paper, we devise the usage of network simulators to enable the paradigm shift towards
ML-assisted communications. Network simulators play a crucial role both in academia and indus-
try. By prototyping complex problems and systems, simulators are key to provide insights on the
potential gains of new features and technologies, thus boosting innovation. In this regard, we be-
lieve that network simulators can contribute to providing reliable and robust ML mechanisms for
communications. To the best of our knowledge, this is the first work on addressing this emerging
issue. The main contributions of this paper are as follows:

• We discuss the main aspects related to the reliability of ML for future communications.

• We devise the usage of simulators for training, testing, and evaluating the performance of ML
models for communications.

• We showcase the potential integration of network simulators within the ITU ML-aware archi-
tecture, which is an adaptable and interoperable framework for realizing specific ML-based
network functionalities.

• We provide a insights on practical aspects for their integration to ML-assisted communication
systems.

• We illustrate the potential advantages of using simulators into ML-assisted networks by ap-
plying the outcome of an ML-driven simulation to a residential WLAN testbed.

2 Reliability of Artificial Intelligence for Communications

ML has shown great potential for improving a plethora of applications in communications (see,
for instance, the surveys in [5–9] and the references therein). Much of the credit resides in the
extraction of useful information from large amounts of data. For instance, the authors in [7] show
that autonomous Unmanned Aerial Vehicles (UAV) can be empowered by Artificial Neural Networks
(ANN). In particular, on-time decisions such as the flying direction can be optimized based on the
collected data (e.g., users’ location, available resources, or wireless environment). These data, which
may come from multiple sources, can be exploited and comprehended by the ANN for the sake of
optimization.

Despite the abovementioned efforts towards designing ML-based solutions, less attention has been
paid to overcome the potential negative impact of ML in communications. The fact is that many
ML approaches are seen as black boxes due to the non-linearity of their output (e.g., a prediction),
especially when dealing with high dimensional spaces. This is accentuated in Deep Learning (DL),
where neurons at multiple hidden layers may have different behaviors. Despite it is possible to obtain
a certain intuition on the way a neural network operates (e.g., through visualization tools), the logic
behind some processes remains unknown.

The uncertainty associated with ML methods can lead to performance degradation when applied
to networks. For instance, an online learning mechanism that is driven by exploration-exploitation
may fail to comply with Service Level Agreements (SLAs). The fact is that exploration triggers
configuration settings which may lead to undesired performance. This is a critical aspect to take
into consideration since many applications rely on certain minimum requirements to operate, and
not meeting them could be even dangerous (for instance, consider networking applications for au-
tonomous driving). As a result, the application of ML can raise concerns and lead to mistrust when
applied to networks.

To address the lack of confidence that ML may generate, network simulators can be used for
training, testing, and evaluating the effect of ML models before being applied to operative networks.
In particular, simulators can provide diverse functionalities to enhance the confidence level of future
ML-assisted networks:

1. Validate the output of ML models: a simulator can be used to test and evaluate the
output of a certain ML optimization before being applied to a production environment.

2. Assess the impact of ML models on networks: apart from evaluating the performance
of a given ML model on specific networking functionalities, it is important to study the effect
that ML has on the rest of the network. The whole procedure can be simulated together if the
simulator includes ML functionalities, which is the case, for instance, of ns-3 and Komondor.
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3. Generate training data: sometimes, training data extracted from network devices can be
sparse, limited, incomplete, or incoherent. To address this, simulators can generate synthetic
data, which would broaden the available training data sets. However, assessing the quality of
synthetic data sets can be challenging for operators, especially concerning complex problems
that cannot be modeled accurately. For that reason, it is important to monitor the effects of
applying ML models trained with synthetic data on operative networks.

4. Train ML models: with a strong connection to the two previous points, ML models can be
trained in a simulation environment. As an example, consider the case where online learning
is performed during the simulation.

5. Complement ML models: simulators can also contribute to filling the intersection between
model-based and data-driven approaches. The fact is that simulators can act as experts to
assist the operation of ML algorithms. As an example, random initialization is typically
employed for ML methods, which sometimes leads to converging to suboptimal saddle points.
By adding additional knowledge from simulations, the learning procedure can be improved.

Apart from the utilization of network simulators, we find other ways to enhance the reliability of
AI mechanisms such as explainable AI [10] and safe Reinforcement Learning (sRL) [11]. Explainable
AI is based on the interpretation of AI-based decisions, which is useful to devise the impact of
potential optimizations and predict misbehavior. However, explainable AI is not mature enough,
and the existing techniques are mainly based on visualization, so they are subjective and may lead
to misinterpretation. For that reason, explainable AI currently lacks applicability for enhancing the
reliability of ML-assisted communications.

Regarding sRL, it aims to minimize the negative effects that unconstrained exploration methods
can incur during a learning procedure. This can be achieved either by adding extra information
to the exploration procedure (e.g., external advice), or by applying certain risk-aware criteria (e.g.,
exploration based on water-filling methods). While sRL is useful to mitigate the randomness of
exploration, its application may provide moderate improvements and lead to slow optimization when
applied to networks, which can be worsened in non-stationary systems. Besides, sRL is restricted
only to RL mechanisms, thus leaving open the challenges posed by other kinds of mechanisms such
as DL.
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Figure 1: Architectural elements and procedures for evaluating the output of ML models.

3 Network Simulators to Enable Artificial Intelligence in Com-
munications

In this Section, we describe the architectural aspects of integrating network simulators to ML-
assisted communications. Besides, we analyze the key features and requirements for simulators to
be included in an ML-based networking architecture.
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3.1 Architectural Integration

Most of the existing simulation platforms have no relation with AI/ML techniques, nor have any
integrated module for evaluating and training ML models. Moreover, current simulated network
functionalities are typically too specific (e.g., simulate the effect of multiple antennas on the PHY
layer performance), and seldom support open interfaces, as a result of being developed by focused
academic or industrial organizations. To enable the next generation of ML-based communication
systems, it is imperative to design interoperable mechanisms for simulated networks and ML mech-
anisms. For that purpose, we find of high relevance the ITU ML architecture defined in [2].

The ITU ML architecture defines a set of logical components, interfaces, and procedures to realize
ML-assisted communications. For a complete overview of ITU architecture, we refer the interested
reader to the work in [12], which proposes a realization for future IEEE 802.11 WLANs, an important
part of the 5G/6G ecosystem in unlicensed bands. In particular, the ML-aware architecture is
composed of the following elements:

• Management subsystem: this element is responsible for the management and orchestration
of the ML operation in a network. The responsibilities of this module range from data collection
to model deployment and monitoring.

• ML underlay network: network at which the ML optimization is applied.

• Sandbox: evaluation domain that includes the usage of network simulators.

• ML marketplace: container of ML models that are applied to the ML underlay networks.

• ML pipeline: set of elements that interact with underlay networks to perform the ML opti-
mization.

To integrate simulators in the loop of ML-assisted networks, standardization of elements, in-
terfaces, and data handling procedures is key. This is captured by ITU architecture through the
sandbox subsystem. The sandbox is an isolated domain for reproducing the behavior and operation
of live networking systems, which is useful to evaluate the performance of ML models before being
deployed in production environments. Network simulators can be included in the sandbox and used
to evaluate and train ML models. To that end, interoperability allows building end-to-end ML
pipelines in simulated network underlays.

To illustrate the integration of network simulators within the high-level ITU architecture, Fig.
1 depicts an example where the output of an ML model is evaluated at the sandbox before being
applied to the operative network. The involved procedures are as follows:

1. The management subsystem extracts features from the ML underlay network.

2. Based on the characteristics of the ML underlay network, the simulation environment is pre-
pared.

3. The management subsystem selects the ML model from the marketplace, according to the
meta-data describing the use case, the optimization goals, and the available ML models.

4. The ML model is pushed to the sandbox to be applied to the simulated network.

5. The ML model is evaluated in the simulator. Evaluation of other ML models may be considered
upon unsuccessful results.

6. Once the evaluation is successfully done, the ML model is pushed to the operative network,
where the ML optimization takes place.

7. The network performance is monitored, as well as new data is gathered.

8. The information obtained from monitoring is used to update the ML models and/or metadata
in the marketplace.

The ML output evaluation procedure allows devising the potential benefits and drawbacks of
using a certain ML-based optimization in a network. The fact is that ML outputs can sometimes
look surprising from the perspective of a network operator, and their effect on the network may be
unknown a priori. This is accentuated in complex problems for which ML is entailed to outperform
legacy solutions because the knowledge on the problem is limited.
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3.2 Practical Integration Aspects

To simulate multiple types of scenarios, technologies, and network functionalities, we find a plethora
of proprietary and open-source network simulators (e.g., ns-3, OMNET++, OPNET, NetSim,
Komondor). Apart from network technologies, we must take into account the capability of the
different simulators to capture other specific phenomena in detail when required. This is the case,
for instance, of Simulation of Urban MObility (SUMO) and UnderWater simulator (UWsim), which
simulate vehicular urban mobility and underwater physical effects, respectively, and can be used
along with OPNET and ns-3 simulators.

When it comes to integrating simulators into ML-assisted networks, a set of challenges arise with
respect to execution, interoperability, and portability aspects:

1. Execution: to test, train, and evaluate the performance of ML methods in simulators, it is im-
portant to reproduce the behavior of the target operative network. For the proper integration
of simulators into the ML-aware architecture, it is required to transfer simulation-related meta-
data to the elements of the ML pipeline. This includes supported technologies and network
functionalities, maturity of simulation blocks (e.g., beta release), and the potential number of
domains the simulators can span (e.g., from core to access network).

Concerning pluggable ML functionalities, built-in ML modules can boost the procedures for
simulating the behavior of ML mechanisms or training ML models in the sandbox. A few
existing simulators support ML functionalities, but we find the framework connecting ns-3
with OpenAI Gym [13], and the agent-based implementation in Komondor.

Apart from supported capabilities, short execution and configuration times can serve to em-
power ML-driven real-time applications. First, we consider the time it takes for the simulator
to generate a given output, which may indicate the tractability of simulating large-scale sce-
narios. Second, fast reconfiguration of network simulators would allow following potential
changes on the operative network (e.g., user demands, available resources, policies, etc.). For
instance, an update of policies should be reflected in the simulation domain, so that operators’
requirements can be fulfilled.

2. Interoperability: an important requirement lies in the degree of flexibility of simulators for
interacting with the components of the ML-aware architecture. Interoperability is therefore
meant to enable a seamless integration of intelligent network functionalities in the communica-
tion network. For that, it is imperative that the simulated network functionalities are managed
using the same operation and maintenance mechanisms as for the network functionalities in
the ML underlay. This can be achieved through standard Application Programming Interfaces
(APIs). Features that may facilitate the interoperability of out-of-the-box simulators are the
support for Command-Line Interface (CLI) execution mode, the level of monitoring supported
(real-time, batch, model-based, etc.), and automation of data collection and in applying the
ML output in the simulator (e.g., reading from log files vs. API-based interface with ML
functions).

3. Portability: network simulators are written in multiple programming languages (e.g., C/C++,
Java) and supported by different specific platforms. Thus, portability is another important
requirement for simulators. In this regard, containerization (e.g., via Docker) can be of great
utility and allow network operators to deploy simulators in a flexible manner. Apart from
that, parallelization is important to determine, for instance, the number of ML pipeline nodes
and simulated network functionalities that the simulator can support at any instant.

3.3 Accuracy of Network Simulators

The degree of reliability of a network simulator depends on its accuracy on reproducing the actual
real phenomena. In other words, simulations must be as close as possible to reality. This topic was
previously addressed in [14], where the authors defended that simulators do not really fit the actual
behavior of networks, based on experimental results in a MANETs testbed. Nevertheless, it was
also shown that simulation results can serve as a good upper-bound for testbed setups.

In general, network simulators accurately reproduce the behavior of protocols in higher levels
of the TCP/IP stack. However, they can fail at characterizing complex physical phenomena such
as radio propagation, antenna radiation, or energy consumption. As a result, network simulators
typically provide accurate qualitative performance results and help to predict the behavior of real
networks under certain circumstances. In contrast, results may lack quantitative precision, thus
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deviating from the exact performance that will be then experienced in real networking systems.
Alternatively, hybrid approaches can be employed for simulating certain layers (e.g., MAC) while
taking advantage of the actual interactions that occur in real implementations. Unfortunately, and
to the best of our knowledge, there is little literature on this topic.

4 Use-case: Power Control in Residential WLANs

To illustrate the potential of integrating simulators to ML-assisted networks, we provide a testbed
implementation of an IEEE 802.11 WLAN that suffers from starvation due to the high sensed
interference of a residential environment. To address this problem, a joint ML-based solution is
simulated and then provided to the testbed devices.

4.1 From Testbed to Simulation Domain

The considered testbed implementation comprises two overlapping Basic Service Sets (BSSs) in a
residential environment, which are characterized by being highly dense and uncoordinated. The
decentralized nature of WLAN deployments in a neighborhood may lead to high interference, which
can be extremely variable due to the heterogeneous usage of the network and the complex physical
phenomena that can occur. The non-stationarity of residential environments is, therefore, one
of the critical aspects to be considered when designing dynamic solutions for improving network
performance. Hence, the usage of network simulators can contribute to reducing the performance
losses originated by transitory phases (e.g., exploration in online learning).

Our proposed testbed-simulator integration is illustrated in Fig. 2, where the ML solution is
provided by a simulated version of the testbed. Two identical BSSs are deployed in a high-density
residential scenario. However, since they are positioned at different locations, they are subject to
different interference conditions, and so offer different performance. The characterization of the
WLAN testbed is done with the IEEE 802.11ax-oriented Komondor simulator, which includes the
operation of agents for simulating the behavior of ML mechanisms when plugged into wireless nodes.1

MAC

PHY

Traffic generator

AI Module

Core simulationObstacles
(path-loss)

UDP traffic
Full buffer

Interference

Testbed

UDP traffic
Full buffer

BSS2
(Channel 1)

BSS1
(Channel 1)

Scenario

AI/ML solution

Figure 2: Use case application of the Komondor simulator to apply ML in a testbed WLAN.

Through the procedures that have been previously illustrated in Fig. 1, the testbed scenario is
first characterized in the simulator by gathering parameters such as the location of nodes, path-loss
effects, or the traffic load. As an example of the characterization of the testbed in the simulator,
consider the path-loss model selected, which is chosen based on the degree of similarity with respect
to testbed measurements. After preparing the simulation environment, the ML model is applied
in the simulator for the sake of improving a certain performance metric. Finally, the optimized
ML-based configuration is passed and applied to the real devices, in which performance is expected
to be enhanced.

4.2 Machine-Learning-based Transmit Power Control

To improve the performance of the target WLAN, we simulate a Multi-Armed Bandits (MABs)
application for Transmit Power Control (TPC), as previously done in [15]. We take an online
learning approach to address the complexity of spatial interactions in WLANs, where the effect of
tuning the transmit power can be hindered. Accordingly, the MABs framework is useful to reduce

1All the details of the experimental part and source code are open and available at the following repository:
https://github.com/fwilhelmi/usage_of_simulators_in_future_networks, accessed on May 15, 2020.

178



“thesis˙main˙doc” — 2020/7/6 — 12:39 — page 179 — #191

the complexity of the problem and effectively improving the performance at a low computational
cost.

This use case is particularly revealing since the transmit power is a critical parameter to be
freely adjusted, and trying several configurations before finding the best performance may lead to
unpredictable effects during the transitory regime. Moreover, commercial equipment typically offers
a high delay when changing the transmit power or other parameters such as the primary channel. As
a result, network simulators can play a crucial role in palliating the negative impact that exploration
can have in communications.

Figure 3 illustrates the temporal throughput obtained by each BSS when simulating the MABs
approach for tuning the transmit power. Also, the performance that would be obtained by both BSS
when using the default configuration is illustrated. As shown, both BSSs experience an unstable
transitory regime before reaching a stable state whereby performance is improved. Among a set of
input transmit power levels, the most popular one to be used by both BSSs is 7 dBm, which, based
on simulation results, is expected to improve the average throughput by 88.48%.

Figure 3: Simulated throughput evolution after applying MABs for tuning the transmit power in an
OBSS. Each learning iteration corresponds to 5 seconds in the simulation.

Finally, we give some insights on the time it takes the simulator to bring up results for the testbed.
To include the operation of simulators in future networks (especially for real-time applications), it
is very important to find an equilibrium between the stability of the output and the time it takes to
generate it. Figure 4 shows the variability obtained on the simulation results, for different simulation
time values. The execution time is also displayed. As observed, the higher the simulation time, the
higher the stability is. However, this is paid with execution time, which varies for different network
simulators.

Figure 4: Execution time versus variability of the results in Komondor simulator.

4.3 Testbed results

Now, we show the results of applying the configuration suggested by the simulator on the testbed.
Figure 5 compares the performance of applying the ML-based configuration (both BSSs use a trans-
mit power equal to 7 dBm) with that used by default (i.e., 23 dBm).
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As shown, both BSSs improve their throughput significantly by using the configuration suggested
by the simulator. While BSS1 improves its throughput by 76.16 %, BSS2 experiences a 93.98 %
improvement. Besides, based on the lower number of observed outliers, we notice higher stability
in terms of throughput variability (especially for BSS1). Note, as well, that BSS2 suffers drops for
some throughput values, which are originated by the high channel variability found at the residential
environment the tests were performed.

Figure 5: Performance comparison of default (23 dBm) and ML-based (7 dBm) configurations at
the testbed WLAN.

5 Concluding Remarks

Future communications are expected to evolve towards automated systems enabled by ML. However,
the application of ML to networking systems can generate instability and degrade KPIs. To address
that, we envision the integration of sandbox environments for ML-assisted networks. In particular,
we find network simulators of great utility for training, testing, and evaluating the performance
of ML models before being deployed to production environments. In this article, we devised the
potential usage of network simulators for future ML-based communications and provided insights on
integration aspects. Our testbed results in a residential IEEE 802.11 WLAN showed how network
simulators allow mitigating the negative effects of directly applying ML in the operative network.

Network simulators are expected to contribute to filling the gap between AI and communications.
Nevertheless, a lot of effort is still needed with regards to the architectural integration of simulators
into ML-assisted networks. The most important challenges lie in the definition and implementation
of standardized interfaces.
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