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To a world where robots work hard and humans can enjoy their lives.
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gorio i a la Maria, també coneguts com a pare i mare, és evident que
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Abstract
This thesis presents a new paradigm for RFID-based inventory robots.
This map-less operation increases the operative autonomy of the robots
as they no longer require a mapping step. This new paradigm is based on
the stigmergy concept.
Additionally, this new paradigm leads to a simplification of the robot de-
sign and allows the cooperation among multiple robots, increasing the
robustness and scalability of the system while reducing its cost.
The stock-counting problem is defined and an algorithm based on stig-
mergy is proposed as a solution, which is initially tested in simulation, an
later in real scenarios.
This thesis details the design process and development of two robots that
can take advantage of this new paradigm and that are tested in a real en-
vironment, the library of the university.
Finally the thesis also presents a new RFID groups location algorithm
aligned with the main characteristics of the new paradigm: simplification
and efficiency.
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Resum
Aquesta tesi presenta un nou paradigma per als robots d’inventari basats
en RFID. Aquest no requereix un mapa de l’entorn, aixı́ s’augmenta l’au-
tonomia operativa dels robots. El nou paradigma està basat en el concepte
d’estigmergia.
A més, permet la simplificació del disseny dels robots, i de manera in-
herent, la coordinació entre ells. Aixı́, la robustesa i l’adaptabilitat del
sistema augmenta a la vegada que el cost es veu reduı̈t.
La tesi descriu el problema de “stock-counting” i proposa un algorisme
com a solució, inicialment es desenvolupa i prova en una simulació basa-
da en grafs.
També es detalla el procés de disseny de dos robots per aprofitar els avan-
tatges d’aquest nou paradigma. Els robots són provats a la biblioteca de
la universitat, obtenint uns resultats molt satisfactoris.
Finalment, es presenta un algorisme de localització de grups d’etiquetes
RFID que s’alinea amb les caracterı́stiques del nou paradigma: simplicitat
i eficiència.
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Chapter 1

INTRODUCTION

1.1 General context

Traditional retailers are increasingly adopting the RFID technology as
the key technology in order to stay competitive against online retailers,
such as Amazon. As an example, a survey from 2018 said that 24% of
Amazon’s revenue came from customers facing stock-outs at their local
stores1. This decision is mainly taken due to the capacity of RFID tech-
nology for improving stock-counts leading to high-resolution stock man-
agement. Obtaining this level of detail on the stock management is a cru-
cial step for traditional retailers. As an example, out-of-stocks and over-
stocks cost retailers 450$ billion per year (252$ billion in North America
alone)2.
Nevertheless, the situation due to the harsh competition by online retail-
ers is getting worse. For instance, recent news from the United States of
America have coined the term retail apocalypse. This is because during
the first quarter of this 2019 more stores closed than during the whole

1https://www.ihlservices.com/news/analyst-corner/2018/06/24-of-amazons-
revenue-comes-from-customers-who-experienced-out-of-stock-at-local-retailer/

2http://www.crmsearch.com/retail-robots.php
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20183. Obviously, this trend will cross the ocean and it is expected to be
experienced also in Europe4.
Nowadays, the Covid-19 crisis has deteriorate the situation of traditional
retail. With the stores closed by law, only those with online sells can have
a chance to stand against it. On the contrary, online retailers have contin-
ued servicing their customers and, in some cases, selling even more than
before this crisis.
Fortunately for traditional retailers, RFID technology can improve more
aspects than only stock-counts and its derivatives such as reduction of
overstocking or elimination of stock-outs. Among several related fea-
tures, it can enhance customer experience with faster and simpler points
of sale, or it can help fulfilling online orders in stores in a single day. Also,
it can improve security with loss prevention systems based on RFID, it
can help detecting misplaced items or it can help to create statistics of the
store such as a money-mapping to check the profitability of the different
areas of the store.
In any case, the situation is critical and the main question retailers need to
ask is: How can we obtain enough profits from RFID technology in order
to compete effectively against online retailers?
The most common idea among retailers to fight back the online ones is
using RFID technology to obtain high resolution information for stock
management in order to become omni-channel retailers. This would inte-
grate the best of the online world with the best of traditional retail. One
could buy online but pick the product in the store or buy it in the store
with personalized attention and then have it shipped to one’s home, etc.
The key concept behind it, is that one can buy a product or receive it using
any channel available. In contrast to online retailers, traditional ones have
the infrastructure of stores and warehouses to be able to become omni-
channel.
The first step in the way of becoming an omni-channel retailer is reduc-

3https://www.businessinsider.com/retail-apocalypse-start-of-2019-more-store-
closures-all-of-2018-2019-4?IR=T

4https://www.dw.com/en/as-us-uk-retail-apocalypse-deepens-eu-chains-grow-
nervous/a-44271346
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ing the gap between what retailers think they have in their stores and
what actually is there. Common inventory accuracies for retailers that
have not adopted RFID is below 80%. Retailers without RFID compute
their stock-count by adding to their system the products that arrive to the
store and subtracting those that are counted at the points of sale. But this
results in a very inaccurate inventory due to shrinkage (errors and thefts).
Another handicap for traditional retailers without RFID is that they mis-
place products in their own store. Customers usually change the positions
of items or take them to the fitting rooms, and the item ends up left there
or simply not in its original position. This issue, which is rather frequent,
has an effect similar to an out-of-stock.
Leveraging RFID technology retailers will gain the knowledge about their
items in three dimensions. They will know:

• what they have

• when they have it

• where they have it

Thus, the first dimension makes reference to what do they have in the
store, and they can know it at Electronic Product Code (EPC) level, which
uniquely identifies every item. Previously, the encoded information in a
bar-code was at Stock Keeping Unit (SKU) level, which does not iden-
tify items uniquely, but families of items. As an example for an apparel
store it would identify all the T-shirts of an specific model, color and size.
Moreover, as previously stated, the accuracy on the stock-count also in-
creases dramatically.
The second dimension is time. It describes the frequency in which the
information about the store is available and updated. In previous systems
without RFID the information might be always available, but not updated,
a complete inventory of a store was done at most once per trimester. Now,
with RFID, the update frequency of the information is key to reach a high-
resolution stock management, some systems can provide real time inven-
tory status.

3
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Besides having a precise, complete and frequent inventory, another bene-
fit from using RFID is knowing the location of all the items in their store,
which can be understood as the third dimension provided by RFID. With
this information retailers can add more value to their stores by creating
money-mappings or they can optimize the picking of items, and also, by
finding lost items they can improve the stock-counting results.
There are several RFID-based inventory systems which allow getting all
these benefits from the RFID technology. Obviously, depending on the
system the results obtained change.
There are four basic RFID systems available for retailers (Table 1.1 sum-
marizes the systems):

• Hand-held devices. This is the most basic system, it consists of
a hand-held device that contains a small antenna and a reader. It
usually has a screen in order to configure some options and it gives
visual or auditory cues when it is reading tags. They are the cheap-
est and easiest to adopt, however, they need human intervention to
perform the stock counting, so they are not cheap to operate. In
addition, in large spaces the system will be prone to human errors.
Humans are not efficient performing tedious and repetitive tasks,
so, when taking inventory in large spaces it is highly probable that
some aisles will be unintentionally skipped. Depending on the store
size and organization they allow at most one stock-count per day,
but in medium or large stores, the full stock-count is obtained at
the end of the week. In other words, the employees stock-count a
few areas of the store each day, aiming at having counted the whole
store by the end of the week. Last but not least, they do not provide
location data.

• Smart shelves. This system consists on adding readers and anten-
nas in all the shelves of the store. It provides precise, automatic
and practically real-time stock counts. Also, it can provide location
of the items with the only uncertainty of its position inside its own
shelf, so it is very accurate. The downside of this system is the very
high acquisition and installation cost.
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• Overhead RFID systems. It consists on adding many RFID anten-
nas and some readers hanging from the ceiling. So, taking inven-
tory is automatic and almost real time. It has worse stock-counting
accuracy than the previous system (smart shelves) but it is slightly
cheaper, however, its price is still a big barrier for retailers. Re-
garding location, it can estimate the location of the items with an
uncertainty of a few meters.

• Inventory robot. This solution mixes two different technologies:
RFID and robotics. It allows almost automatic inventory with very
high accuracy on stock-counting. However, it is not real time inven-
tory, nevertheless, it can offer a daily inventory. In terms of location
it has an accuracy of less than 1m. The system is not as expensive
as the previous two, but it has not yet penetrated the market because
it is not as affordable as a hand-held device, in terms of an initial
investment.

Table 1.1 summarizes the RFID inventory systems. It can be observed
that the system providing the best trade-off between cost and the three
axis of the RFID knowledge is the inventory robot. It has the best inven-
tory and location accuracy, together with smart shelves. Its acquisition
cost is lower than the latter and the installation cost almost negligible,
nevertheless, the operation cost is slightly higher, although, it is low com-
pared to the hand-held devices. Also, it can have a daily update on the
stock count, which is less frequent than smart shelves or overhead sys-
tems, but it is enough for a high-resolution stock management.

1.2 Motivation
Inventory robots are seen by most retailers as the best alternative to take
inventories using RFID technology. However, they have a huge drawback,
they are not as autonomous as one could expect. Inventory robots require
a set up process that depends on the store, so it has to be done at each
store and it requires an amount of time proportional to its size. Moreover,
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Hand-held
devices

Smart
shelves

Overhead
systems

Inventory
robot

Inventory
Accuracy [%] 85 99 85 99

Location
Accuracy [m] None 0.5 3 0.5

Time
resolution Weekly Real time Real time Daily

Acquisition
cost [ke/m2] Low High High Medium

Installation
cost [ke/m2] Low High High Low

Operation
cost [ke/m2] Medium Low Low Low

Table 1.1: RFID inventory systems comparison

this set up process has to be repeated if the store changes its layout.
This process is usually called mapping. It consists on moving the robot
through the store while its sensors capture the characteristics of the store’s
layout, creating a map. Afterwards, the robot will be able to recognize its
location in this map, and therefore, in the store. In addition, linked to
this process, there is another one that adds a set of navigation goals to this
map, commonly known as waypoints, which are locations on the map that
the robot will have to reach in order to complete the inventory or location
mission.
This mapping process allows the robot to navigate through the store, and
therefore, to perform any mission. However, having a map updated to
the latest store layout ensures that the robot will be able to cover the en-
tire area of interest, without forgetting any part. In addition, having an
updated map significantly reduces the risk of a robot getting lost in the
store. A robot is lost when its estimation of its location in the store is dif-
ferent from its real location. These kind of situations can lead, in the best
scenario to an aborted mission, but, in the worst scenario, into physical
damages due to a robot crash if it tries to enter into forbidden areas such

6
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as stairs, doors, elevators, etc.
The main concern for retailers, is that performing this process requires
training employees of the store, who periodically will have to devote part
of their time to this process instead of performing their usual store opera-
tions or simply helping customers.
To sum up, the mapping process is making the adoption of inventory
robots by retailers more difficult, a solution that could help them stay
competitive with respect to online retailers.

1.3 Contribution

The main contribution of this thesis focuses on the development of a map-
less method allowing RFID-based inventory robots to take inventory of
any space without the need of any prior knowledge or any mapping set
up process. The method requires only that the items to be inventoried are
tagged with RFID labels.
During this thesis, an RFID-based inventory robot that is able to take
advantage of the map-less algorithm has also been developed. Due to
the characteristics of the map-less method, the overall cost of the devel-
oped RFID-based inventory robot has been reduced by roughly an order
of magnitude with respect to the current RFID-based inventory robots in
the market.
Moreover, it has been shown that the map-less algorithm can be applica-
ble to multi-robot decentralized systems, which greatly improves system
characteristics such as scalability or robustness.
Simulations and real scenario experiments show the validity and feasibil-
ity of the map-less method using the robot developed during this thesis.
Finally, an RFID-based location algorithm for groups of RFID labels has
been developed. This algorithm takes some hypothesis, such that the need
of changing the RFID parameters with respect to an inventory mission,
and it adds simplifications in line with the designed robot that allow im-
provement of the location results while making them more sensitive to the
user needs.
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1.4 Organisation
The thesis is divided into 6 chapters. The second chapter is the back-
ground which covers the main topics of the thesis. The third chapter de-
scribes the new map-less paradigm for taking inventory. The fourth chap-
ter follows the design of a robot in order to test the map-less inventory
paradigm. Chapter five validates the algorithm and the robot developed in
a real environment. The sixth chapter presents a new method for locating
groups of RFID tagged items. Finally, the seventh chapter is devoted to
the overall conclusions and future work.
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Chapter 2

BACKGROUND

2.1 RFID Technology

RFID stands for Radio Frequency IDentification. This technology is able
to identify an electronic label by illuminating it with radio frequency
waves. A key advantage of this technology is that one does not need
direct visual contact between the antenna that emits and the electronic la-
bel (or tag) that stores the information. In addition, these electronic labels
are usually passive, so they use the energy from the requesting wave in or-
der to respond with its encoded information. This technology allows the
unique identification of several tagged items simultaneously. These key
assets of RFID technology enable the evolution from bar-codes to RFID
tags.
An RFID system has three main elements: the reader that emits the re-
questing wave, receives the responding wave and decodes the informa-
tion; the antennas that radiate the emitted signal and capture the response;
the electronic labels that store the information to be retrieved and com-
municate with the reader via the antennas.
All electronic labels or tags used in the context of this thesis are passive,
and all of them contain the Electronic Product Code (EPC) of the prod-
uct. The total number of codes possible with the 96 bits that form this
EPC code makes it possible to identify every physical item in the world
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uniquely. Again, this is a huge benefit with respect to bar-codes, where
the storage of data is limited and it usually only encodes the SKU (Stock
Keeping Unit) that represents a group or family of unique items. For in-
stance, in retail usually encoded as 13 digits and in a bar code, all T-shirts
for a given model, color and size would share the same SKU code.
The Over The Air (OTA) RFID protocol standard used in this research
is GEN2 defined by GS11 which uses UHF (Ultra High Frequency) at
around 900 MHz. This standard defines three sessions (S0, S1 and S2)
in which the reader and the electronic labels can communicate. This ses-
sions define the protocol of communication between these two agents. In
session S0 the tags will always keep responding to the reader request as
long as they receive the RF wave. Session S1 sleeps the electronic la-
bels after their response for a few seconds, up to 1 minute, depending
on the label. Finally, session S2 sleeps the tag after its response while it
is illuminated, so to get a second response from that tag one must stop
illuminating it with RF waves and then illuminate it again to have it re-
sponding again. These sessions are designed to enhance different uses of
RFID technology. For instance, S2 usually allows the best results in stock
counting in very dense environments, this is achieved because those tags
with less capacity to answer the call have an easier opportunity when all
the surrounding tags are sleeping due to a minimization of interactions
between RF waves. On the contrary, if the objective is to get as many
readings as possible of the surrounding tags, then S0 fits this need, as all
the tags that can answer will do so continuously.
All the RFID systems used during this thesis are Commercial Off-The-
Shelf (COTS) systems that are commercialized by Keonn2. The RFID
readers used are of the model AdvanReader-150.033 and the antennas are
Advantenna-SP11 4. This research aims to enable a real application with
RFID components, therefore, it is relevant that the hardware used is not
modified.

1https://www.gs1.org/epc-rfid
2https://www.keonn.com/
3https://www.keonn.com/rfid-components/readers/advanreader-150.html
4https://www.keonn.com/rfid-components/antennas/advantenna-sp11.html
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At the frequency in which the RFID standard works, the radio waves suf-
fer many interactions with the environment. The waves bounce against
many different materials, also they are absorbed by other materials, like
water. Thus, creating a physical model is not feasible without taking into
account the environment, which means that creating a physical model that
works in any condition is not possible. Actually, the defined sessions (S0,
S1 and S2) help different applications to succeed, despite this interaction
with the environment. In any case, for location purposes it would be very
helpful being able to model an RFID system, but as it is complex and very
dependent on the environment. The model that could be obtained might
not work properly in any condition.
Nevertheless, several studies have created models in which a distance to
a tag is modelled with the Received Signal Strength Indication (RSSI) of
the returning signal such as in [1]. Also in some occasions, but less fre-
quently the phase of the returning signal is used also for computing the
distance as in [2], in these cases it is usually more complex due to the size
of the wave length, which is around 30cm. Due to this short wave length
and the possible bounces, it is very unlikely to infer the distance to a tag
by comparing the initial phase with the final one. Other techniques use
both the RSSI and the phase of the signal trying to take advantage of all
the available data, such as in [3]. Finally, there are some works in which
there is also a model not only for the location but also for the occurrence
of detection. This is relevant because not receiving the signal of an RFID
tag does not mean that the tag is not there, and these kind of events are
important if a probabilistic approach for the location estimation is taken.

2.2 RFID-based inventory and location

As it has been introduced in section 1.1 RFID has become the de facto
standard to identify products in retail. It enables a faster and more ac-
curate stock-count of the products in a store, but it also enhances the
traceability of the products during their whole life-cycle. With RFID it
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is possible to know the exact origin of any given product. This leads to
a better understanding of all the processes in the business and helps opti-
mizing them.
This work focuses on inventorying and locating all products in a store
or a library, but it does not assess other benefits beyond improving the
knowledge of what, when and where are the items inside this space, such
as how the customer experience can be enhanced or the benefits that can
be obtained in the supply chain management.
In this regard, the figure that will be used to assess the performance of
stock-counting is the accuracy. Accuracy represents the amount of RFID
tags that have been detected over the total amount of tags present in the
store. However there are two characteristics that are worth mentioning.
First, RFID tags are universally unique, therefore it is enough with de-
tecting them once, in contrast with bar-codes, because in that case it is
not only required to obtain the SKU but also to keep a count of each SKU
in order to know the stock-count of the store. Second, there may be many
RFID tags in the environment, not only those that are labeling products,
therefore, only tags that belong to the store should be counted. This list
of tags that belong to the store is usually referred to as the base-ground,
base-line or ground-truth of tags.
This leads to a problem: how can one be sure of the accuracy obtained
if there is an uncertainty over the amount of tags that are of the store.
In some occasions, by decoding the tags that are not on the base-line it
would be possible to know if they belong to the stock of the store or if it is
just a random tag detected. However, this option will not always be avail-
able, in this sense a method to assess the whole base-line is detailed in [4]
in which after getting the detections repeatedly from several devices and
integrating them with the perpetual inventory record a better and more
reliable base-ground can be obtained.
Regarding the location of RFID-tagged items, the figure used to assess
the results obtained will also be an accuracy. But, in this case, it will be
computed as the amount of items that are located correctly over the total
amount of items assessed.

12
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2.3 Mobile autonomous robots

In the last years, autonomous robots have been changed from a science
fiction promise to an everyday technology, but still, there are several is-
sues that need to be solved in order to get all the benefits from this tech-
nology.
Our image of robots is shifting from those humanoid robots that appear in
science fiction to autonomous robots that have a precise task to perform
and that are specially designed for it, such as all the vacuum cleaners that
now live in many homes. One of the robots that will soon have a huge
impact in everyday life will be autonomous vehicles, again far from those
humanoids and without the need to be different than any current car. In
this sense, the design of autonomous robots can take advantage of focus-
ing on the task to be solved without having to care about the humanoid
aspect.
When the task that an autonomous robot has to perform is collaborative,
specifically with humans, the robot is called cobot, from collaborative
robots. In this sense robots for retail will be cobots. There are many
different tasks to perform in a store, from stock-counting to helping cus-
tomers or moving goods from the warehouse to the shop window. Some
of these tasks will be more suitable for a robot and others for a human, but
some collaboration will be needed among both agents in order to maxi-
mize efficiency. Our robot is collaborative, but not with humans yet, how-
ever, we have the vision of the stores as spaces where different types of
robots perform tasks with the collaboration of the store’s staff in order to
provide the best possible service to customers.

2.3.1 Mobile robots

This thesis focuses on autonomous mobile robots that operate in indoor
environments. There are several categories of this type of robots depend-
ing on their purpose. In this case, the work is based on the so called
service robots that will perform tasks for humans.
Regarding indoor environments, there are two main issues that impact the
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technology. On one side, there is no GPS signal available, so there are no
means to obtain a global localization. In this context, localization makes
reference to the position and orientation of the robot, also known as robot
pose. On the other side, there is usually no direct sunlight allowing the
use of sensors that would otherwise be blinded by it.
Mobile autonomous service robots for indoor spaces require very specific
robotic technologies in order to navigate these environments. In the first
place, the technology that enabled these systems is called Simultaneous
Localization and Mapping (SLAM), see [5] and [6] for a complete expla-
nation on its history, developments and the math behind it. Briefly, by
using SLAM, robots are able to create a map of the environment while
simultaneously estimating their own localization in this map. There are
several SLAM algorithms. However, a Bayesian approach was first pre-
sented in [7] which led to the solutions that are currently used more fre-
quently such as the one presented in [8] and [9].
In order to create a map, any robot requires a sensor able to detect land-
marks on the environment. The most common sensor to generate maps
is a LIDAR that stands for Light Imaging, Detecting, and RAnging. This
sensor emits light and by sensing the reflected light it measures the dis-
tance to an obstacle. The advantages of this sensor at mapping are that
the range of the sensor is of several meters with high precision, typically
lower than 1cm. In addition, due to its fine controlled rotation, they can
achieve an angular precision much better than 1o. A LIDAR can pro-
vide a reading of the distances to obstacles in 360o with high accuracy, in
less than a second. The drawback of this type of sensors is that there are
surfaces that can not be detected. For instance, they can not detect glass,
transparent surfaces nor very dark colors that absorb light. Depth or RGB-
D cameras and Sound NAvigation Ranging (SONAR) sensors can also be
used for mapping. The first are more suited for 3D mapping and require
higher processing resources, while SONARs have a low angular accuracy
to obtain good maps.
Maps created using SLAM are images in which each pixel represents a
scaled space in reality. Maps can have resolutions such as 1cm per pixel
or 5cm per pixel. Depending on the application, having a finer resolution
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may be required. Obviously, fine resolutions consume many more re-
sources. Each pixel of the map can have three values, which can vary de-
pending on the implementation, but always represent one of these states:
the space is free, so the robot can navigate through it; the space is oc-
cupied, so the robot can not go through it; the space is unknown, so the
sensors of the robot have not yet reached that position on the map. Fig-
ure 2.1 shows an example of a map taken in a real store, in this case,
the resolution is 1cm per pixel, the white color represent free space, gray
color the unknown space, and black color the obstacles. Notice that the
interior of obstacles is gray, because it is an area that the sensor can not
reach.

Figure 2.1: Example of a robot map for navigation using SLAM. White
pixels are the space where the robot can navigate, black pixels are obsta-
cles and gray pixels represent spaces that are unknown to the robot.

Once the map is created, the robot can navigate through the environment.
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Usually, a robot will navigate by following navigation goals, which are
poses on the map that the robot needs to visit, commonly known as way-
points. To do so, a planner computes the path, pixel by pixel, from the
robot position to the position of the navigation goal. The planner runs an
algorithm that usually tries to minimize the cost of the computed path. So,
if moving from any pixel to an adjacent one has the same cost, the short-
est path will have the minimum cost. Usually these planners implement
the A* or the Dijkstra’s algorithm to do the computation. The planning
process iterates from the new position of the robot to the next navigation
goal. Figure 2.2 show an example of a map with navigation goals that the
robot must reach to complete the area.

Figure 2.2: A visualization of a robot map with all the navigation goals, in
green, that the robot needs to reach before completing its journey. Notice
that the navigation goals can also have a target orientation, not only a
target position, they are poses in the map.

However, this navigation approach will only work in a very static envi-
ronment, in which the layout does not change with respect to the moment
when the map was created, and where there are no people nor objects
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around that can move. Therefore, on top of the map there are other type
of maps called costmaps that can be used by the robot’s navigation to add
live information. For instance, these costmaps can collapse 3D obstacles
sensed by a depth camera on the map, so the map includes obstacles that
cannot be seen with a LIDAR, which is limited to a fixed height. An
example of this are tables. From a LIDAR perspective tables are just 4
points because a LIDAR can only detect the legs, and the robot could try
to pass through these points. But from a depth camera perspective, the
table is a 3D obstacle and can not be traversed. Thus, all the sensors of
the robot will contribute the detected obstacles to a costmap and therefore
the planner will adapt the path to the newly sensed obstacles. As a con-
sequence, the path created by the planner will not be the shortest, but the
one with the lowest cost according to the costmaps. The obstacles on the
costmap will add a cost value to each pixel, the closer to an obstacle the
higher the cost up to a maximum cost that it is called lethal, and that the
robot can not visit.
The planner that creates the path from the robot position to the next nav-
igation goal using a stored map and a global costmap is called the global
planner, but the one that controls the navigation in order to avoid unex-
pected obstacles or that are moving is the local planner. This planner
computes very short trajectories from the position of the robot to some
centimeters ahead, a few meters at most using the current observations by
the sensor to compute a local costmap. This trajectory is recomputed very
frequently and is the one that controls the actual movement of the robot.
There are two main approaches for the local planner. On one side there is
the Trajectory Rollout, see [10], in which all the possible trajectories from
the current pose of the robot until the next pose are computed and eval-
uated in a forward simulation, and then, the best is chosen. On the other
side there is the Dynamic Window Approach (DWA), see [11], in which
all the possible speeds are computed and evaluated in a forward simula-
tion, and again, the best one is chosen. In general, the second approach
is more efficient, as the search space for velocities is lower than for tra-
jectories, nevertheless, if the acceleration limits of the robot are low, the
Trajectory Rollout can perform better than the DWA.
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Finally, in order to briefly review all indoor navigation technologies it is
important to mention localization. Actually this is a simpler problem than
SLAM, since it just requires the robot to localize itself in a map, instead of
localizing the robot in the map while generating the same map as SLAM
does.
Localization algorithms first require a prior knowledge of the initial posi-
tion of the robot. Then, they work in two steps, called prediction and cor-
rection. The first step uses data from internal sensors such as accelerom-
eters, gyroscopes or wheel encoders, and based on the data received from
them and a kinematic model of the robot, they estimate the following po-
sition of the robot in the map. Then, the second step uses a sensor that can
detect the landmarks of the map, usually a LIDAR. In this step the pose of
the robot is corrected by adjusting it according to the landmarks detected.
These type of algorithms are solved in the context of an Extended Kalman
Filter (EKF), in which the uncertainties of the sensors can be taken into
account. However, to increase efficiency and to allow multiple simultane-
ous hypothesis on the robot pose an Adaptive Monte Carlo Localization
(AMCL) algorithm is usually used.

2.3.2 ROS
The Robot Operating System 5 (ROS) is an open-source framework cre-
ated by Open Robotics6. Firstly, it provides communication channels be-
tween all the processes running simultaneously on the robot, therefore
one can have dedicated software packages, called nodes, for every sensor
or process running in the robot, and they can communicate through mes-
sages, services or actions provided by the ROS framework. Therefore,
synchronization of events is very easy to achieve. Secondly, it provides
many libraries and packages, some of them created by the community,
with state of the art methods and algorithms that are open-source and
well documented. This way, it is not required to program all the naviga-
tion algorithms to operate a robot. Instead, just by properly parameteriz-

5https://www.ros.org/
6https://www.openrobotics.org/
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ing and using the Navigation Stack7 from ROS where all the previously
mentioned algorithms and technologies are implemented it is possible to
have almost any robot navigating. The ROS paradigm has always a node,
called master, that registers all other nodes and allows the communica-
tion among them. Therefore, although it looks like a distributed system,
if the master node fails all the other nodes will fail too. In this sense, a
new version of ROS, ROS2, is now being developed and among other im-
provements it will make the system fully distributed eliminating the need
of a master node. By the time that this thesis started ROS2 was not yet
developed, and by the time of it ending ROS2 still does not have all the
features of ROS available, so it has not been considered, nevertheless, at
some point a migration of the packages here developed will be required.

2.4 Retail robots
Currently there are three types of robots intended to be used in retail.
There are the RFID-based, the vision-based and the combination of both,
RFID and vision. In general terms, the RFID-based robots will navi-
gate through the store to read all the RFID labels aiming for a full inven-
tory of the store products. The vision-based robots will move through all
the aisles with shelves containing products looking for missing products
(stock-outs) and checking if the prices are correct. Finally there are some
robots that combine both technologies in order to provide a stock-count
and simultaneously check for missing products or whether the prices are
correct.
In general, RFID-based retail robots will decrease their efficiency if cus-
tomers are in the store while they are operating. However, there are two
good reasons to operate robots while customers are in the store. First,
they can become an attraction to customers and, second, if they are con-
tinuously taking inventory a higher visibility on the store stock can be
achieved. The case of vision-based retail robots is different, they require
to identify out-of-stocks on the shelves and this is required while cus-

7https://wiki.ros.org/navigation
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tomers are in the store, therefore, they require a navigation system better
prepared to deal with people moving in the store.

2.4.1 Available robots for retail

The market for inventory robots in retail is large and there are several
robots trying to get their share. The most promising robots are shown
next, in strict alphabetical order of the company.

Marty from Badger Technology

This robot is a vision-based inventory robot. According to the information
provided by the company it is able to detect holes on shelves, it checks
the price integrity of the products, and planogram compliance. It can also
detect hazards in the store, such as a glass jar fallen in an aisle, and report
it.
Regarding the operation of the robot there is no explicit information on the
procedures, however, it says it can autonomously operate safely alongside
shoppers and employees of the grocery retail environment.
In December 2019 they have announced the largest roll-out of robots for
the grocery industry, they are providing nearly 500 multi-purpose robots
to GIANT/MARTIN’s and Shop&Shop grocery stores.
In terms of the design of the robot, as it can be seen in Figure 2.3, it
has two rotating LIDARs one on top for 360o scanning and another one
in its base pointing in the direction of the movement, this second one is
not 360o, but it might scan more than 180o. It also has depth cameras
on top and bottom of the robot. These two types of sensors are basically
for navigation purposes. In terms of data acquisition it has several high
resolution cameras in one of the sides that are surrounded by several back-
lighting LEDs to improve the camera’s vision. This robot takes advantage
of the ROS framework.
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Figure 2.3: Marty’s robot from Badger Technology.
Source: https://www.badger-technologies.com/media-kit.html

Bossa Nova 2020 from Bossa Nova Robotics

This robot is also a vision-based inventory robot. It is designed to detect
holes in the shelves and out-of-stocks, it can check the price of the prod-
ucts and it has bar-codes readers to better identify them. It can also create
panoramic images of the aisles to better visualize their state. And finally
it can check the planogram compliance of products.
Again, the operation of the robot is not disclosed.
They have been testing their robots in Walmart for several years and they
are now preparing a roll-out of robots in 1,000 stores. This will be the
largest roll-out of inventory robots.
Regarding its design, as it can be seen in Figure 2.4, it has rotating LI-
DAR at the base with a view of more than 180o, for navigation purposes
it also has several depth cameras in the front and rear at the bottom. The
data capture is done with the depth cameras but also with all the cameras
that are placed on the side of the robot. Some of the optics that they are
using are designed for this specific purpose, it also has a custom dedicated
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computer to process all the data gathered 8.

Figure 2.4: Bossa Nova 2020 robot from Bossa Nova Robotics.
Source: https://www.therobotreport.com/bossa-nova-2020-inventory-robot-
includes-sharper-vision-for-brick-and-mortar-retailers/

Tagsurveyor from Fetch Robotics

This is an RFID-based inventory robot. It is focused more for warehouses
than stores. It can count the tagged stock to improve inventory tracking.
It can also be used to verify inbound and outbound activity at the docks.
In terms of operation it can gather data 24/7 with its autonomous charging
capabilities. They offer on-demand deployment in hours without the need
of any extra infrastructure. There is no information available about where
they have tested their robots, but they have partnered with Surgere in order
to offer this solution to a broader market, they have named this robot
ROBi.
Regarding the design of this robot (see Figure 2.5) it has a rotating LIDAR

8from: https://www.therobotreport.com/bossa-nova-2020-inventory-robot-includes-
sharper-vision-for-brick-and-mortar-retailers/
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in its base reaching more than 180o for navigation purposes, no other
sensors are clearly identified or announced for this purpose. Regarding
the RFID system it has three antennas at different heights and inclinations
in only one side covering 82o, reaching even the tall shelves. The system
has a maximum range of 7.6m and they claim that in a single pass they
can detect all the RFID tags.

Figure 2.5: Tagsurveyor from Fetch robotics.
Source: https://fetchrobotics.com/products-technology/datasurvey/tagsurveyor/

AdvanRobot from Keonn Technologies

This is an RFID-based inventory robot for retail stores. It can take daily
scans of the store and provide stock-counts with an accuracy higher than
99.5%. It also provides the location of the detected items.
It has performed several demos and pilots during the last six years but the
retailers are not disclosed. It holds a patent in the US as an automated in-
ventory taking movable platform 9 and two more patents have been filled.
Regarding its operation, first it needs to be manually navigated across

9https://patents.google.com/patent/US9939816B2
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the space in order to create a map of the store. Once the map is created
AdvanRobot autonomously navigates the environment reading all RFID
tags, see [12] for a detailed explanation on this topic. It has more than
10h of operation between charges and it can autonomously charge using
its recharging station. As far as we know, all the other robots operate in a
similar way, however, it is not publicly disclosed.
As it can be seen in Figure 2.6 the robot has a depth camera on the top
and bottom and a rotating LIDAR in the base with more than 180o for
navigation purposes. Inside it has 4 RFID antennas per side and 2 RFID
readers. This robot uses ROS.

Figure 2.6: AdvanRobot from Keonn Technologies.
Source: https://www.keonn.com/systems/view-all-2/inventory-robots.html
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LoweBot from Lowe and Fellow Robots

In 2016 Lowe with Fellow Robots created LoweBot, an RFID-based in-
ventory robot. The robot should be able to help the customers and staff
from the store find products and take inventory in real-time.
There is not much more information on how it operates or where it has
been tested. From the information on Fellow Robots, now called Fel-
lowAI10, it can be seen that they have, at least, 2 platforms, one that it is
not autonomous for 3D mapping spaces, see Figure 2.8. And the other
platform, the LoweBot, Figure 2.7, which would be able to navigate the
3D maps and take real-time inventory.
From Figure 2.7 we can see that it has at least one LIDAR at the base for
navigation purposes, but we can not see if it has depth cameras or other
sensors. Similarly for the RFID subsystem, from Figure 2.7 the compo-
nents or their distribution can not be identified. On the other side, from
Figure 2.8 it can be observed that it has a 3D LIDAR on its top and 4
RFID antennas at each side.

Figure 2.7: LoweBot Figure 2.8: FellowAudit
Source: https://www.fellowai.com/

10https://www.fellowai.com/
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Tory from Metralabs

This RFID-based robot is basically dedicated to taking inventory with an
accuracy above 99%. In addition, they claim that other functionalities
can be added on demand, such as a shopping assistant. MetraLabs offers
also a product called Tory To Go which is a similar robot but it is driven
manually, it is thought for very tight shops
This robot has been operating since 2015 at different shops from German
retailer Adler. They claim to be the first inventory robot in continuous live
operation in retail.
Its operational procedures are not disclosed, however, they say that it has
low operational costs and that it has 18h of autonomy and only 4h for
charging.
From Figure 2.9 it can be observed that the robot has a LIDAR at the base
and one depth camera on top, in the middle there is another sensor but
from the information gathered it can not be determined which one it is.
Regarding the RFID subsystem it has 3 antennas per side with the option
of adding two more antennas on top, as seen in Figure 2.9.

Stockbot from PAL Robotics

This is an RFID-based robot for inventory and location, although the latest
versions also have cameras on a side in order to check the planogram
compliance and the prices.
To operate the robot it is required to first map the store and then through
a web GUI the inventory areas and its scheduling can be defined, then it
will perform inventories as configured.
This robot is now running at Decathlon Singapore Labs Store, also in the
past it was also being tested in MediaMarkt.
From Figure 2.10 it can be observed that it has 2 depth cameras on top
and a LIDAR at the bottom for navigation purposes. In addition it has
4 RFID antennas per side and three cameras on one side to provide the
visual intelligence.
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Figure 2.9: Tory from MetraLabs.
Source: https://www.metralabs.com/en/rfid-robot-tory/

Tally from Simbe Robotics

This is both a vision-based and RFID-based robot for retail. Therefore,
it can take inventory with the RFID system and check prices and the
planogram with its cameras.
In order to set Tally into operation it first requires to map the store, which
is done by Simbe engineers and then it can operate on its own. If the
store layout changes they claim that Tally can adapt, however, they do not
specify how it can be done. It has a charging station and it can dock and
charge by itself, it takes 90 minutes to charge and it does not specify the
battery capacity, but it is said it can scan the entire shop in one shot.
Tally has been tested in Target stores and in Giant Eagle stores, also some
tests have been performed in Decathlon.
As it can be seen from Figure 2.11 it has a LIDAR at the bottom and at
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Figure 2.10: Stockbot from PAL Robotics.
Source: http://pal-robotics.com/robots/stockbot/

least 3 depth cameras in the lower part of the payload for navigation pur-
poses, in their website they say that it has 40 sensors to safely navigate
with people in the store and that it is the service robot that can navigate in
the tightest spaces. In its side it has around 12 cameras without extra light
sources for capturing data from the shelves and a modular RFID antenna
design optimized to read at short range, up to 4m.

2.4.2 AdvanRobot

This inventory robot was originally created with significant contributions
by previous members of our research group. For a detailed description of
the robot see [12], [13] and [4]. The starting point of this thesis is during
its development, therefore, it is taken as the state of the art in RFID-based
inventory robots and one of the objectives of this thesis is to improve the
detected shortcomings.
The key feature of AdvanRobot is its capacity of linking the navigation
with the RFID detections. For this purpose, the navigation algorithm has
two thresholds that can stop the robot or resume its path. The threshold

28



“main” — 2020/7/16 — 10:12 — page 29 — #49

Figure 2.11: Tally from Simbe Robotics.
Source: Press kit from https://www.simberobotics.com/news/

to stop the robot will be triggered when the amount of new tag identi-
fications per second goes above it. Then the robot will be stopped but
twisting (rotating around its central axis) in order to maximize the reads
of the surrounding tags. It will not continue its path until the threshold
to resume is triggered. This will happen when the tag identifications per
second go below this threshold. This simple but very effective feedback
algorithm makes the robot achieve outstanding inventory accuracy levels,
above 99.5% in the shortest possible time.

AdvanRobot operative procedure

The AdvanRobot is designed to inventory large spaces, it has more than
10h of battery autonomy, enough to take inventory of almost any store in a
single night. In any case, due to scalability and operability issues, the first
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thing that the user of the AdvanRobot needs to do is divide the space into
areas. In terms of scalability, working with a smaller map consumes less
resources, also creating larger maps with SLAM can lead to maps with
more errors. Regarding operability, it can be desirable for the user to only
take inventory of an area of the store, in order to have a fast stock-count
of a certain type of product.
Then, the operative procedure of the AdvanRobot is divided in two parts,
there is a recognition (mapping) phase and an inventory phase.
The recognition phase consists of manually navigating the robot in order
to create a map of the area to inventory and to define the path that the
robot should follow during the process. Therefore the first step is to place
the robot in front of an initial Quick Response (QR) code identifying the
area to recognize. Once the robot identifies the QR code, the interface of
the robot allows the user to navigate it through the area. Once the entire
area has been mapped, the robot has to be navigated in front of the QR
code of the following area, at this point the map for the area will be saved
and the process finishes. Then one needs to repeat this process for each
area of the store.
Therefore, the user has to divide the space into different areas and each
area has a starting QR code and a finishing QR code, which will become
the starting QR code for the following area. The positions of the QR codes
can only change if the recognition phase is performed again. Adding one
QR code at the start and one at the end, which is the start of the following
area, allows a continuous path through the whole store between areas and
some overlapping in consecutive areas, which reduces the risk of the robot
getting lost during transitions.
The inventory phase can be done on areas which are already recognized,
it is not possible to perform an inventory of an area that has no map. To
start an inventory phase, the robot has to be placed in front of the QR code
of the first area to inventory and with an interface one can select all the
following areas that require inventory. Then the robot starts the inventory
at that point and finishes at the ending QR code of the last area selected
to inventory. It can also navigate back to the starting point, to make the
pick-up procedure of the robot easier.
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AdvanRobot ongoing operative procedure development

The current version of the AdvanRobot has a docking station, so the first
area of the store is always the one containing the docking station. How-
ever, at this moment this feature is not fully implemented in terms of op-
erability, for instance, the robot will not start an inventory if it is not in the
docking station, therefore, it doesn’t have the option to start the inventory
on a different area. However, these features will soon be integrated in the
new version with the docking station. Additionally, there is an ongoing
development that will allow an automatic set up for the inventory mission,
which will not require the user to move the robot in front of the desired
QR code and it will autonomously move back to the charging station.

Discussion

The operative procedure of AdvanRobot requires manually mapping the
store before the robot can take inventories. Moreover, if the layout of the
store changes significantly the robot might need a new map in order to
be able to operate. Operating with old maps can lead to failed missions.
Therefore, the mapping stage is required regularly as the store’s layout
changes.
Also, AdvanRobot requires an employee of the store to start the inventory
and to take the robot back, once the inventory is done, to charge. During
one of the largest tests performed with the AdvanRobot in US, the robot
was left to be operated by the employees of the store. One of the out-
comes of the experience was that several times the employees forgot to
start the robot or to take it back for charging, leaving the robot without
battery for the day after.
After several tests with AdvanRobot in different stores, we realized that
from all the issues reported the one that worried retailers the most was the
need to periodically create a map of the store.
Therefore, the first and main goal of this thesis will be developing a
method for taking inventory of retail stores in which there is no need for a
map of the store, providing full operative autonomy to the new inventory
robot.
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2.5 Exploration techniques

If the robot has to take inventory of a store it needs to navigate along all
its aisles and zones. So, how can we do that without a map?

2.5.1 Classic exploration techniques

The simplest answer would be to move it randomly. After a very long pe-
riod of time it might have counted all the stock of the store. But, the time
to perform the mission can be very long, very unpredictable, and provid-
ing figures on inventory performance versus time would not be possible.
Another option could be using a similar algorithm than the one used by
cleaning robots, which consists on moving on a fixed direction until it is
not possible to continue and then turn, and start moving straight again.
This method is good for not very big areas and for spaces that are wide.
In a store with several aisles, the robot might take too long turning and
not moving in a relevant direction.
A third option is to use exploration techniques to guide the robot. These
techniques run a SLAM process which allows discovering the environ-
ment while, on top of it, there is the exploration layer that decides the
navigation goals for the robot, therefore, it is able to create the entire map
by itself.
The current exploration paradigm is called frontier based exploration,
[14]. It moves the robot towards the exploration frontiers of the current
map. In a conventional 2D robot map there are 3 types of areas: free of
obstacles, occupied by obstacles and unknown. Therefore, the frontier
based exploration sends the robot towards the zones that directly connect
areas free of obstacles with unknown areas.
Therefore, this technique requires more computational power than the
SLAM, as it solves SLAM while it looks for new frontiers in the cur-
rent map to set the following navigation goals. In addition, exploration is
an open problem basically due to the trade-off exploit-explore that needs
to be solved. It consists on how to balance actions that take the robot
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into new spaces (exploring), so the navigation goals are set in the fron-
tiers, or towards known ones (exploiting). If many exploration actions are
taken consecutively the map that is being generated can be wrong. This is
because the SLAM technique that is running in the background requires
visiting known spaces in order to correct the cumulative errors associated
to dead reckoning. For instance, in [15] they tackle this problem with an
approach based on entropy, but there are several approaches for solving
this problem.
In our case, the exploration would be done in every mission since the
robot can not know if the layout of the store has changed. In this sense
there is work that addresses the problem of a continuous and lifelong ex-
ploration, such as [16] and [17].
However, without information about RFID tags in the control loop, the
robot would be solving a problem of discovering an area and not stock-
counting it. Therefore, in our new paradigm the RFID readings have to
enhance the inventory process, this is already something that is achieved
by the AdvanRobot by using two thresholds to link the RFID and the nav-
igation algorithms. This has been proven to be crucial in order to achieve
outstanding inventory results.
Taking advantage of RFID technology in order to enhance the exploration
problem has also been used. For instance, there are techniques that use
RFID tags in order to keep track of the areas visited [18] and [19]. How-
ever, these techniques have the RFID labels added and customized for this
purpose but in our environment the RFID tags will be as product labels,
so no specific distribution or special functionality can be given to them.

2.5.2 Stigmergy

After analyzing several exploration options, we found that some insects
have exploratory behaviors in which a single insect finds a resource to be
exploited by the whole colony, but it is able to communicate the location
of this resource to the whole colony without the need of a map nor by
directly communicating the location of this resource.
The foraging behavior of ants was first discovered by [20]. It consists in
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the following: first ants start randomly looking for food and while they
move, they leave a trail of pheromones; then, when they find a source of
food, they get some and they go back to the nest following their own trail
of pheromones. This behavior reinforces their trail and more ants from
the nest will follow it to the source of food. Moreover, when another
ant finds the source of food through a less optimal path, as the optimal
or better path is more reinforced due to a higher number of ants passing
through, due to the fact that it takes a shorter time, the ant will use it to
get back to the nest. This will lead all the ants to follow the shortest path
from the food to their nest. See Figure 2.12 for a schematic example.
Thus, stigmergy consists of modifying the environment with the use of
pheromones in order to store information in it that can be used by other
agents. So, we can say that communication or coordination between
agents is done indirectly through the environment.

(a) Initially ants are in their nest. They
do not know where the source of food
is. Therefore, they start to randomly
explore their nest surroundings.

(b) After a while, some ants have
found the source of food while oth-
ers have not. The ones that found
it, return to the nest leaving a trail of
pheromones.
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(c) Other ants from the nest start fol-
lowing those pheromone trails that
lead to food. The shortest path is com-
pleted faster, and therefore, is more re-
inforced by pheromones.

(d) Finally, the shortest path is the only
one used by the ants, the larger amount
of pheromones has discarded all the
other options.

Figure 2.12: Schematic of ants foraging behavior.
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2.5.3 Stigmergy & Robotics

We take the stigmergy definition as the ability to modify the environment
in order to gain indirect communication between agents from [21]. Very
simple agents are able to solve complex problems using stigmergic be-
haviors. As an example, with stigmergic algorithms robots do not need
to obtain global localization [22]. This is a very relevant characteristic.
The information required for the agent to solve the task is embedded in
the environment. Therefore, the agent does not require to know its global
position to decide its next action, but it is enough to sense the surrounding
environment.
Moreover, robots running this type of algorithms are, in general, more ro-
bust due to two factors. On the one hand, the robot requires fewer sensors
and less computational resources, which directly translates into a simpler
system which is inherently less prone to failure. On the other hand, these
algorithms are applicable to multi-robot decentralized systems, and there-
fore, the failure of a single robot does not compromise the final outcome
of the task being performed [23]. In fact, until all the robots have failed
the task is not considered a failure.
Several researchers have been working with stigmergic algorithms in robotic
mobile platforms. For instance, in [22] robots perform exploration of dif-
ferent areas without the need of a global localization, taking advantage
of a stigmergic algorithm. In this case, the robots deploy some mark-
ers to inform about the locations already visited. Another problem that
uses stigmergic algorithms is cooperative cleaning. In [24], the problem
is tackled by detecting the dirt, and then, using its presence or absence as
information to know whether an area has already been cleaned or not.
There exist other studies, besides this work, which use RFID tags to sup-
port simulated pheromones for their stigmergic algorithm. For instance,
[25] claims to be the first research to use the RFID technology to sup-
port pheromones. In their work, they use the read/write characteristic of
an RFID tag to leave pheromones (write), so other robots can track them
(read). However, their experimental results with real robots are not very
promising. In [26] agents can deploy, read and write on RFID tags so they
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claim that a rapid exploration of unknown areas can be achieved. Never-
theless, only simulation results are presented. In [27] they use an exper-
imental floor full of RFID tags and a swarm of robots in order to solve
complex problems such as the formation of gradient maps. They present
successful results in both simulation and experimentation with real robots.

2.5.4 Area coverage

Intuitively the area coverage problem is related to the problem of taking
inventory of a store. In fact, the area coverage problem consists on cover-
ing the entire space with a sensor or actuator, or both. Taking into account
that the RFID antennas are a sensor the objective for the inventory prob-
lem would be covering the whole store with the range of the RFID anten-
nas. However, the real objective is not covering the space but counting
all the RFID labels present in the space. Even with the best RFID system
it is possible to cover the whole store but to miss several tags requiring
more than one pass through certain areas. Therefore, both problems can
be related but they are not exactly the same.
The area coverage for unknown spaces consists on moving an agent through
the entire space, so that it can visit the whole area once or keep on re-
peating the task of covering the space. This problem can be solved by
stigmergic behaviors.
If the space to cover is represented as an unknown graph, for the area
coverage problem the goal is achieved after going through all the nodes
of the graph. In the case of the stock-taking task, the agent does not need
to move through all the nodes of the graph, but identify all the labels of
environment to fulfill the task. In the stock-taking problem, the agent
might need to visit more than once a node, because the action of reading
RFID labels is not deterministic. Therefore, being in a node does not im-
ply reading all the labels.
Therefore, it is relevant to study if solutions for the area coverage in un-
known graphs work on solving the stock-counting problem, this will be
assessed in section 3.4.1.
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The following three methods are interesting as they can be solved using
stigmergic behaviors:

Brownian motion.

The simplest way to solve the area coverage task is to let the agent move
randomly. Obviously, this is not efficient in time. In [28] they present time
bounds for covering the entire space. Therefore, is not efficient time-wise,
but with enough time it is finally achieved. In addition to that, in [29] they
prove that using a type of Brownian motion called Lévy flights, which is
a heavy tailed distribution that allows covering long distances in a single
step, the results are better than with pure Brownian motion.

Node counting

This is a typical method for online graph exploration. It consists on in-
creasing by one a value added to each node that the agent visits and then
moving to the adjacent node with the lower value.

LRTA*

The learning real-time A* algorithm is similar to node counting. How-
ever, in this case, the value of the node that is being visited is increased
by the maximum value of all the neighbors. Then the agent moves to-
wards the node with the lower value.
In [30] and [31] they compare Node counting and LRTA* extensively and
they formally present the similarity between area coverage and online
graph exploration problems.

2.6 RFID tag location with robots
Providing the RFID system with the capability to locate items has been
a topic of research for several years, and yet, there is no general solution
adopted by the community. The complex physics of the RFID technology
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coupled with the environment makes the problem of locating the RFID
labels still open.
For instance in [32] they use the received RSSI from the reference tags to
train a neuronal network to then locate other tags. The training with the
reference tags is crucial, in terms on how to locate these tags with respect
to the reader. They improve a previous method called LANDMARC, but
the results of absolute location capabilities are not clear. Other studies fo-
cus on the RSSI to model the location, for instance, in [1] they locate mov-
ing tags or fixed tags through modelling the RSSI decay, but the method is
used with direct line of sight between the tag and the reader. They claim
a resolution as good as 15cm. However, results in crowded environments,
in terms of many tags responding simultaneously or without direct line of
sight are not presented.
Some studies use the phase of the returning wave in order to estimate the
location of RFID tags. In [2] there is an RFID reader on top of a robot
and mixed with its odometry they can correct the position of the robot by
analyzing the phase received. It requires several tags on the ceiling and
the trajectories of the robot are very controlled in the environment. Addi-
tionally, the precision on locating tags is not really assessed as they focus
on the robot location.
There are other previous works that used RFID tags to improve the robot
position as in [33]. They are one of the first to mix both technologies.
They created an RFID detection model for the robot and by using a tech-
nique similar to the one used for solving the SLAM problem they are able
to locate the RFID tags in the surroundings of the robot. They do not
present quantitative values on the precision of the RFID tag location be-
cause they are centered on using their study to improve the robot localiza-
tion, moreover, only 100 tags are present and located in the environment.
The scalability of their method with several thousand tags is not ensured,
usually SLAM techniques require large computational efforts.
Nevertheless our focus is in locating RFID tags with a reader that it is on
top of a robot, but the location of the robot is obtained by other means.
In [34] they create a fuzzy model in order to locate tags with a mobile
robot. In fact, they create two models one based on the RSSI and the
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other on the occurrence of detection. For both models the distance and
the angle between the robot and the tag are used. Although they use a
complex model, one of their main conclusions is that the locating preci-
sion improves when the robot approaches the tag.
In [35] they use a Bayesian filtering method, similar to the one used
in [33], but, in addition, they change the emission power of a COTS RFID
system achieving this way a 50cm location error. This approach is also
similar to the one taken in [4] where a recursive Bayesian estimation is
performed on the RSSI of the RFID tags detected in order to estimate their
3D location. The training and the tests are performed in the university li-
brary with thousands of tags, in fact, the data-set is open an accessible in
[36]. The method, however, requires training for the model of the RSSI
behavior with respect to the relative position of the robot antennas. Un-
fortunately, the characteristics of the RF waves make the training very
dependent on the environment. The results are shown with respect to the
same environment where the training is performed achieving mean dis-
tance errors of 0.6m.
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Chapter 3

MAPLESS INVENTORY

In order to become omni-channel, traditional retailers can benefit from
an inventory robot. However, they do not want to spend work-hours of
their employees to operate an inventory robot. They require the solution
to be as autonomous as possible. This chapter presents a new paradigm
to take inventory that does not require creating a map, it is map-less. This
solution provides the operational autonomy required by the users of an in-
ventory robot. Additionally, the map-less paradigm improves other char-
acteristics of the inventory robots such as cost, robustness and scalability.

3.1 Solution hypothesis
In order to determine if the new paradigm for inventory robots is feasible,
the first step will be to define the problem of stock-taking. Then, a stig-
mergic solution will be proposed and simulation tests will be run in order
to assess its feasibility at the end of the chapter.
In general, stigmergic behaviors allow very simple agents, such as ants, to
perform complex tasks as a swarm. Given this consideration, the research
hypothesis is: simple robots in terms of hardware and software are able to
perform complex tasks, such as stock-counting all the RFID tagged items
in a confined space, by using a stigmergic behavior.
Accordingly, the solution hypothesis is presented as follows:
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• RFID tags in the environment will provide indirect communication
among robots.

• RFID tag readings will drive the current state of the mission.

• RFID tag detections will attract the robots:

– Attraction will take place towards areas with new detections.

– Attraction will be lower to areas with already identified tags.

– Attraction will not happen towards areas without tags.

In consequence, it seems possible to perform an exploration of the area of
interest while taking inventory of it. In addition, as the RFID labels will
guide the navigation of the robot, the process of taking inventory will be
enhanced.

3.2 Stock-taking task

Briefly, the task of stock-taking consists of identifying all the labels that
are inside a confined space. The task assumes that during its process la-
bels will not move, be added nor removed from the space.
In this new paradigm, the RFID labels take the role of pheromones and
they change the environment that the robot senses. Therefore, every time
that a robot reads a label it will increase and check the counter associated
to this label. The list of counters linked to RFID labels will be shared
and updated among the robots, depending on the implementation it can
be accessed from a centralized server or shared p2p.
This way, robots will move towards the direction where there are more
new labels to discover, by following RFID tags that have been read only
once. With this simple behavior the robot will be able to inventory an area.
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3.2.1 Formal description

The stock-counting problem can be formally described through a graph-
based approximation by defining an environment, a state of the problem
and two actions that agents can take.
The environment of the task is represented by an undirected, unweighted
and connected graph G(V,E) where V = {vi} are the nodes and E =
{ejk} the edges. Nodes represent subareas, small enough, so that they
can be considered visited by an agent placed in it. So, if we put a circle of
radius R, which is the maximum reading distance of the RFID system, on
every node of the graph, the circles will cover the entire area that contains
RFID labels. The latter, implies that the amount of nodes required to have
a good approximation of the environment has to be large.
There is an edge eij ∈ E between two nodes vi, vj ∈ V if there is an
accessible path (without obstacles) between vi and vj . The environment
contains a set of labels L distributed in the space, representing stock items
and defined as L = {l1, l2, l3, . . . , lN}. Each node vi ∈ V contains an
unknown number of labels Li = {ln} | ln ∈ L, therefore, Li ⊆ L. Each
label only belongs to one node.
The state shows how the task develops at each time step m, where m ≥ 0.
It is represented by a set Sm = {sk}, in which each element sk =<
ln, cn > is a tuple containing a known label, ln, and a value associated to
the number of times this label has been identified, cn, where cn > 0.
The initial state is S0 = ∅ at time m = 0, and the final state after M steps
is SM = {sk} where |SM | ≤ N . Notice that the operation |A| over the
set A represents its cardinality. Therefore, if all the labels from all nodes
are read, then |SM | = N . It is worth mentioning that the environment is
unknown as is the total amount of labels in it. Therefore, it is not possible
to undoubtedly know if the task is completed.
Initially, as G(V,E) is unknown only the initial node vstart is given. The
set of adjacent edges from a node vi ∈ V is denoted as A(vi) and, as G is
connected, A(vi) 6= ∅. Also, succ(vi, eij) represents the adjacent node of
vj reached by traversing the edge eij ∈ A(vi). The visited node at time m
can be denoted as the agent pose, Pm

agent = vi, which can be understood
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as a part of the problem’s state. However, it does not have any correlation
with the completion of the task.
The agent solving the task has two possible actions. These are similar
to functions, but they change the state of the problem or the pose of the
agent. So the agent can read labels in its current node or through an edge,
this action will modify the current state Sm of the task. The second action
that the agent can perform is traversing an edge to change its current pose.

• R(vi, eij,m) is the action of reading the surrounding labels at the
time m, from the node vi, in the direction of eij or in the same node
vi. We define the resulting set of labels as Lm

vieij
= {ln} | |Lm

vieij
| ≤

|Li|. Notice that when the action is on the same node is expressed
as R(vi, ∅,m), and returns Lm

vi∅. This action is probabilistic and
atomic, meaning that the same action will produce different out-
comes each time and that it is indivisible, primitive and cannot be
interrupted.

• T (vi, eij) is the action of traveling from node vi through the edge
eij . It returns succ(vi, eij) and modifies Pm

agent = vi to Pm+1
agent = vj .

Note that this action requires an amount of time so the time step m
is increased.

We define Lm
vi

as the union set of all the labels read from node vi. So, the
labels read in the node are denoted as Lm

vi∅ and for each adjacent node the
labels read are denoted as Lm

vieij
. Therefore, Lm

vi
= Lm

vi∅
⋃
Lm
vieij
∀eij ∈

A(vi). And Sm+1 as the state at time m + 1 being the update of the
state Sm with Lm

vi
according to the definition below. At this point, four

operators or functions need to be defined:

• Labels(Sm) which returns the set of labels Lm from the state Sm.

• counters(Sm, Lm) which extracts the list of counters cm associated
to the set of labels Lm from the state, Sm.

• Update(Sm, Lm
vi

). This operation, called updated method, returns
the state Sm+1 after updating the current state Sm with the readings
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obtained from the node vi ∈ V at time m. To do so, the first el-
ements of the tuple sk =< ln, cn >, ∀sk ∈ Sm+1, are created by
the union of the two sets Labels(Sm) ∪ Lm

vi
. Then, the counters cn

from the labels that were already in the state, such that ln ∈ Lm
vi

and ln ∈ Labels(Sm) are increased by a value which depends on a
selected approach to solve the problem. And the counters from new
labels obtained at the last reading action, cn such that ln ∈ Lm

vi
but

ln 6∈ Labels(Sm), are initialized with a value that also depends on a
selected approach to solve the problem.

• end condition(Sm+1, m). This function evaluates to True if the state
of the task, Sm+1, reaches a predetermined condition, for instance,
if |Sm+1| ≥ 99%|L|. It also evaluates to True if the amount of
time steps, m, reaches its predetermined maximum. Otherwise, it
evaluates to False.

3.2.2 Attraction u

We define the attraction as a measure obtained from the environment.
This measurement is given by the RFID tags and provides the agent with
the required information to choose the next movement. The notation of
the previous section is kept. Formally, let um

vieij
be the attraction sensed

by the agent at node vi from the direction of the edge eij at time m, with
Lm
vieij

being the identified RFID tags in that direction.
Hence, we define the attraction as a positive real number such that:

um+1
vieij

= |Lm
vieij
− Labels(Sm)|+

|Lm
vieij
|∑

counters(Sm+1, Lm
vieij

)
(3.1)

Where the difference between two sets, A − B, is the set containing the
elements of the first set A but not elements that are common between sets
A and B.
As it can be seen in equation 3.1, the attraction is composed of two terms.
The first term is always≥ 0, and, it greedily attracts the agent towards ar-
eas with new labels. The second term is positive and always ≤ 1. There-
fore, this second term guides the agent when the first term is zero or there
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is a draw between directions, favoring those that have been visited less
times.
The first term just adds one per each new tag identified in the specified di-
rection. The second term evaluates how many times a direction has been
visited. It is represented by the number of identified tags in that direction
divided by the sum of their associated counters ci. It behaves similarly as
1/x would do with the increase of reads of a single tag, so an area that
has been visited several times, becomes being less attractive.
In other words, if there are new tags, the first term will dominate over the
second one and it will drive the agent towards the areas not yet visited.
The second term of the equation will be used to break ties in favor of the
areas that have been visited less times, the behavior will be similar when
there are no new tags detected.
If we return to the stigmergic analogy, agents will move leaving a trail of
pheromones (RFID tags identified) that will make their path less attrac-
tive to other agents by decreasing both terms of the attraction of the nodes
visited. So, all agents will feel attracted towards the areas not yet visited,
where the amount of pheromones is lower.

3.2.3 Algorithm

In order to solve the stock counting problem a stigmergic inspired algo-
rithm for multi-agent systems is developed. It is stigmergic because it
uses the RFID tags in the environment to guide the actions of the agents
and as a communication channel between them, which means that the
state, Sm, is shared across the agents and can be read and updated by any
of them.
The notation follows the one described in subsection 3.2.1. Before diving
into the algorithm, two operators have to be defined. First, one-of(X) re-
turns one random value of the set X . Second, arg-maxx∈X f(x) returns
the set of values of x that maximizes f(x). It is a set of values because
several elements of X could maximize f(x).
Algorithm 1 is used to solve the stock counting problem. Firstly, the time
is initialized m = 0, the initial state is assigned so S0 = ∅ and the agent
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starts in a random initial node vstart.
At this point, the main loop starts until the end condition(Sm+1,m) is
met. So, the node vi is given by the agent pose, Pm

agent, and its set of
identified labels is initialized, L0

vi
= ∅. Then, the agent reads the labels

on the current node and adds them into Lm
vi

. Secondly, for each possible
direction eij ∈ A(vi) the agent read tags R(vi, eij,m), adding each of the
obtained sets into Lm

vi
.

Thirdly, Sm+1 is created using the Update function. Note that ci may
depend on the choice of the update method, even if the straightforward
decision is ci = 1 for a label not in Sm and ci := ci + 1 for a label already
in Sm.
Fourth, um+1

vieij
is calculated using Equation 3.1 for every eij ∈ A(vi).

Finally, the best next direction, eik, is the one with the maximum value
um+1
vieij

. If there is a draw in two or more different directions or there are
no tags read, the next direction is chosen at random. Then, the robot trav-
els and the agent pose, Pm+1

agent, is changed. Consequently, the step time
increases m := m + 1. At this point if no final condition is met, the algo-
rithm repeats the process for the new node.
As previously stated, it is not possible to know if the task is complete
since the total number of tags N is unknown. However, there are at least
four conditions that can be considered as finishing conditions for the al-
gorithm.

• A determined amount of time has passed, so m ≥ fixed threshold.

• The agent has identified a predefined amount of tags, so |Sm+1| ≥
99%|L|.

• The attraction sensed in all directions is below a certain threshold
for several iterations.

• There are several algorithm steps without new tags read.

The two first finishing conditions reach a positive milestone in the task
completion. On the contrary, the last two conditions force the algorithm to
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stop due to not progressing on the task completion. In any case, these con-
ditions require a previous knowledge of the environment and the multi-
agent system, however, their values can be optimized with repetitions of
the same task.

Algorithm 1 RFID-based stock counting algorithm
1: m := 0
2: Sm := ∅
3: vstart := one-of (V ) . vstart is selected randomly
4: Pm

agent := vstart
5: while not end condition(Sm+1,m) do
6: vi := Pm

agent

7: Lm
vi

:= ∅
8: Lm

vi
:= Lm

vi
∪R(vi, ∅,m) . The agent reads in current node

9: for all eij ∈ A(vi) do
10: Lm

vi
:= Lm

vi
∪R(vi, eij,m) . Reading through every edge

11: end for
12: Sm+1 :=Update(Sm, Lm

vi
) . Update of the state

13: for all eij ∈ A(vi) do
14: calculate um

vieij
. Use equation 3.1

15: end for
16: eik :=one-of(arg-maxeij∈A(vi) (um

vieij
)) . Edge of max attraction

17: if eik := ∅ then
18: eik :=one-of (eij ∈ A(vi)) . The edge is chosen randomly
19: end if
20: Pm+1

agent := T (vi, eik) . The agents travels from node vi to vk
21: m := m + 1 . Traveling requires time, m is increased
22: end while

Algorithm example

An example of the process is shown here in order to clarify the concepts
defined. However, in the interest of reproducibility, the following charac-
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teristics have been simplified. The probability of detecting an RFID label
will be 1 and the range for detecting labels will be also 1, so the agent
will be able to detect labels from its node and from the neighbors. This
is motivated to create an example that can be easily followed and with
final results that do not change due to the stochastic behavior of the RFID
detections.
Consider the graph of Figure 3.1 representing an environment in which
the distribution of RFID labels is as seen in Table 3.1. The task will be
finished if any of the following two end conditions is met:

• The mission reaches its 10th time step (m = 10)

• The agent identifies more than 99% of the labels (|Sm+1| ≥ 99%|L|)

The agent starts at node vstart = v8, as seen in Figure 3.2, it has been
randomly selected among all possible nodes. From that position it first
reads the RFID labels of its current position and then for every adjacent
node. This way the state of the problem can be updated and the attrac-
tion computed. In this first step of the algorithm the largest attraction is
towards node v7.
Therefore, in this example, the agent travels to v7, as seen in Figure 3.3.
In this scenario there is only one available direction, so after reading the
labels, it senses an attraction towards node v8 of 0.5. In any case, the
agent only option is moving back to node v8.
Now the agent is again in node v8, see Figure 3.4. But, it senses the en-
vironment differently than before. Therefore, after reading all available
labels, nodes v3 and v9 pull it with the same attraction, 0.5. At this point,
the agent has to randomly select one of the two options. In this example,
the agent moves towards v9.
From this point the same process will be repeated. The agent will read
the surrounding labels and then it will travel towards the node with the
maximum attraction, see from Figure 3.5 to Figure 3.8.
The task ends at node v2, see Figure 3.8, when the agent has detected
all labels present in the environment, triggering the second end condition
presented, |Sm+1| ≥ 99%|L|.
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Figure 3.1: Graph representing
the environment to stock-count.

Node RFID labels
v1 {l1}
v2 {l2, l3, l4}
v3 {l5}
v4 {l6, l7}
v5 {l8, l9}
v6 {l10}
v7 {l11, l12}
v8 {l13, l14}
v9 {l15}
v10 {l16, l17, l18}

Table 3.1: RFID labels
distribution

Figure 3.2: Starting
node set randomly to
v8. The agent at node
v8 reaches nodes v3,
v7 and v9. The max-
imum attraction push
the agent to v7.

1. m = 0

2. v8 = P 0
agent = one-of(V )

3. R(v8, ∅, 0) = {l13, l14}
4. R(v8, e8 7, 0) = {l11, l12}
5. R(v8, e8 3, 0) = {l5}
6. R(v8, e8 9, 0) = {l15}
7. S1 = {(l5, 1), (l11, 1), (l12, 1),

(l13, 1), (l14, 1), (l15, 1)}
8. u0

ve7
= 3

9. u0
ve3

= 2

10. u0
ve9

= 2

11. P 1
agent := T (v8, e8 7)
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Figure 3.3: Agent at
node v7. It only
reaches node v8 and
it only has one acces-
sible path. So, for
any attraction sensed
it will travel back to
v8.

1. m = 1

2. v7 = P 1
agent

3. R(v7, ∅, 1) = {l11, l12}
4. R(v7, e7 8, 1) = {l13, l14}
5. S2 = {(l5, 1), (l11, 2), (l12, 2),

(l13, 2), (l14, 2), (l15, 1)}
6. u1

ve8
= 2/4

7. P 2
agent := T (v7, e7 8)

Figure 3.4: The agent
is again at node v8.
But, its perception of
the environment has
changed with respect
to the initial step. The
highest attraction is
sensed towards v3 and
v9. So, the next direc-
tion is picked at ran-
dom, being e8 9.

1. m = 2

2. v8 = P 2
agent

3. R(v8, ∅, 2) = {l13, l14}
4. R(v8, e8 7, 2) = {l11, l12}
5. R(v8, e8 3, 2) = {l5}
6. R(v8, e8 9, 2) = {l15}
7. S3 = {(l5, 2), (l11, 3), (l12, 3),

(l13, 3), (l14, 3), (l15, 2)}
8. u2

ve7
= 2/6

9. u2
ve3

= 1/2

10. u2
ve9

= 1/2

11. P 3
agent := T (v8, e8 9) Random choice be-

tween e8 9 and e8 3
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Figure 3.5: The agent
is at node v9. It
reaches nodes v8, v4
and v10. The highest
attraction is towards
node v10 with three
new labels.

1. m = 3

2. v9 = P 3
agent

3. R(v9, ∅, 3) = {l15}
4. R(v9, e9 8, 3) = {l13, l14}
5. R(v9, e9 4, 3) = {l6, l7}
6. R(v9, e9 10, 3) = {l16, l17, l18}
7. S4 = {(l5, 2), (l6, 1), (l7, 1), (l11, 3), (l12, 3), (l13, 4),

(l14, 4), (l15, 3), (l16, 1), (l17, 1), (l18, 1)}
8. u3

ve8
= 2/8

9. u3
ve4

= 3

10. u3
ve10

= 4

11. P 4
agent := T (v9, e9 10)

Figure 3.6: The agent
is at node v10, besides
labels in v10, it reads
from nodes v9 and
v5. The highest at-
traction is sensed to-
wards node v5 with 2
new labels.

1. m = 4

2. v10 = P 4
agent

3. R(v10, ∅, 4) = {l16, l17, l18}
4. R(v10, e10 9, 4) = {l15}
5. R(v10, e10 5, 4) = {l8, l9}
6. S5 = {(l5, 2), (l6, 1), (l7, 1), (l8, 1), (l9, 1), (l11, 3),

(l12, 3), (l13, 4), (l14, 4), (l15, 4), (l16, 2),

(l17, 2), (l18, 2)}
7. u4

ve9
= 1/4

8. u4
ve5

= 3

9. P 5
agent := T (v10, e10 5)
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Figure 3.7: The agent
is at node v5, from
there it can also reach
nodes v2, v4, v6 and
v10. Two of these
nodes have new tags,
but node v2 has more
than v6. Therefore,
the agent will travel to
v2.

1. m = 5

2. v5 = P 1
agent

3. R(v5, ∅, 5) = {l8, l9}
4. R(v5, e5 4, 5) = {l6, l7}
5. R(v5, e5 10, 5) = {l16, l17, l18}
6. R(v5, e5 6, 5) = {l10}
7. R(v5, e5 2, 5) = {l2, l3, l4}
8. S6 = {(l2, 1), (l3, 1), (l4, 1), (l5, 2), (l6, 2), (l7, 2),

(l8, 2), (l9, 2), (l10, 1), (l11, 3), (l12, 3), (l13, 4),

(l14, 4), (l15, 4), (l16, 3), (l17, 3), (l18, 3)}
9. u5

ve4
= 2/4

10. u5
ve6

= 2

11. u5
ve10

= 3/9

12. u5
ve2

= 4

13. P 6
agent := T (v5, e52)

Figure 3.8: This is
the final step of the
task. From node v2 it
can read the missing
label l1 that is in node
v1. Therefore, the
end condition(Sm+1, L)
is met, |S7| ≥
99%|L|, then the task
is over.

1. m = 6

2. v2 = P 6
agent

3. R(v2, ∅, 6) = {l2, l3, l4}
4. R(v2, e2 1, 6) = {l1}
5. R(v2, e2 5, 6) = {l8, l9}
6. S7 = {(l1, 1), (l2, 2), (l3, 2), (l4, 2), (l5, 2), (l6, 2),

(l7, 2), (l8, 3), (l9, 3), (l10, 1), (l11, 3), (l12, 3),

(l13, 4), (l14, 4), (l15, 4), (l16, 3), (l17, 3), (l18, 3)}
7. u6

ve1
= 2

8. u6
ve5

= 2/6

9. P 7
agent := T (v2, e21)

53



“main” — 2020/7/16 — 10:12 — page 54 — #74

3.3 Simulation methodology
This section presents simulation tests performed with Matlab1. These
tests will determine the exact behavior of the map-less algorithm and as-
sess its feasibility.

3.3.1 Simulation considerations
Before presenting the simulation tests, it is required to clarify some im-
plementation issues that arise. Some of these issues will require to take
assumptions and make hypothesis to get the simulation running.

Environment

The environment is modelled as a connected and undirected graph. The
connectivity of each node is at most 4 and traversing any edge has the
same cost. It is assumed that each node covers a circle with a radius of
1m. Therefore, the distance to the center of a neighbor node is at 2m.
It is assumed that items in a store do not occupy the whole floor, there are
areas of the store which are accessible, from a navigation point of view,
but that does not contain tagged items. In order to take this into account,
the graph representing the environment has nodes with RFID labels and
nodes without them. However, from a node with labels there is always a
path to any other node with labels that does not require traversing a node
without labels. So, it can be understood as an inner connected subgraph
with RFID labels.
At this point, a helper function has to be defined. It will be necessary
to evaluate the results of the tests. This function is called empty(vi), and
given a node of the graph it returns True if the node has no labels, other-
wise, False.
Also, stores do not have an evenly distribution of labels, there will be
areas with a higher density than others. To accommodate this idea, the
nodes with labels will have a randomly selected number, ranging from 1

1https://www.mathworks.com/products/matlab.html
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to 50 labels.
Figure 3.9 represents one of the environments used in simulation. The
nodes in red contain tags and form a connected subgraph. It can be ob-
served that there are some blue nodes within the red ones, however, there
are no isolated nodes with tags.

Figure 3.9: Example of graph used for simulation. Only the red nodes
contain RFID tags. Note that both the entire graph and the red subgraph
are connected.

RFID detection model

Due to the complexity of physically modelling the RFID interaction with
the environment we choose a probabilistic approach for the action of read-
ing tags, called R. In this sense, we introduce a probability of detecting
an RFID tag, pdetect, which depends on two other probabilities, the reach-
ing probability, preach(d), and the reading probability, pread(d).
The reaching probability is applied to the adjacent nodes. It models the
capacity for the RFID waves to reach a certain area. RFID waves are very
sensitive to the environment, for instance, a metallic shelf can block and
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Figure 3.10: Scheme of the RFID range in a simulation environment, the
shape of the graph is totally randomized. The central node, in green, is
the position of the robot.

make them bounce, while a shelf full of books could absorb them prevent-
ing them to go forward or bouncing. Therefore, this probability models
the response of the RFID waves to the environment. At this point it is re-
quired to make an assumption based on the experience obtained working
several years with the RFID technology:
The RFID waves can reach at most a node that is at distance 3 of the
agent’s node, where distance is the number of edges between two nodes,
see Figure 3.10. This would give a reading range of 7 meters for the
RFID system, which is a commonly used value. The probability of reach-
ing, preach(d), a node decreases with the distance, so to reach a neighbor
node, at distance 1, the probability is higher than to reach a neighbor at
distance 2. The labels in the current node are always reached, so the
reaching probability is 1.
The reading probability, pread(d), is applied to each RFID label reached
by an RF wave. It models the capacity of the label to respond to the
reader’s wave. There are several causes that make a label not respond.
For instance, if tags are very close to each other, or if a tag polarity is
orthogonal to the antenna’s or if a tag is touching a metallic shelf.
The main difference between the reaching and the reading probability is
that the reaching probability is conditional. In this sense, when the agent
reads towards an edge, once the RF wave does not reach a certain node,
the following nodes in range will not be reached. On the contrary, the
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reading probability is applied to an entire node, so all the labels in it can
be detected.
Therefore, the RFID detection probability is obtained as in Table 3.2, no-
tice that Pdetect = Preach ∗ Pread.

RFID range 0 1 2 3 ≥ 4
Preach 1 0.8 0.4 0.2 0.0
Pread 0.98 0.8 0.5 0.2 0.0
Pdetect 0.98 0.64 0.2 0.04 0.0

Table 3.2: RFID model of detection probabilities as a function of the
RFID range.

It is important to highlight that the detection probability is not applied di-
rectly to the labels, but first the reaching probability is applied to an entire
node, and then, the reading probability to each of the labels. Also, if a
neighbor node is not reached, the following nodes will not be reached.
The values of Table 3.2 are chosen carefully to provide high detection
rates in the proximity of the system, while decreasing the detection rate
quadratically with the distance. This probabilities not only include the
behavior of the RFID system but also the environment. Therefore, their
values are given based on an average evidence of the RFID system behav-
ior.

Agent

The stigmergic nature of the map-less algorithm makes it suitable for
multi-agent systems, therefore, in simulation several agents will be per-
forming the task simultaneously. Their position will be identified by the
agent’s pose, Posemagent, and they all will be able to check and modify the
state of the system, Sm, with their RFID detections.
Interactions between agents will not be simulated, not in terms of RFID
detections nor in navigation. So, two agents sharing the same pose will
not see affected their RFID detections or navigation.
We understand a robot as a physical implementation of an agent that is
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able to interact with a physical environment. We take the definition of
agent from [37].

3.3.2 Figures of merit
The evaluation of the algorithm and comparison of methods is based on
the time to complete the task, each unit of time is a complete iteration of
the developed algorithm. As opposed to the real world, the actual stock
is known, therefore, the task is considered completed when the agent has
identified at least a 99% of the RFID labels, this value is chosen because
is close to an upper bound of the expected accuracy on stock-counting
given the technology [12]. This value is the stock-counting accuracy and
it is computed as seen in Equation 3.2, take into account that the notation
used is the same used in section 3.2.1.

accuracy(m) =
|Labels(Sm)|

|L|
∈ [0, 1] (3.2)

The figure to evaluate the efficiency is the average visiting time, V̂ , which
is defined as the amount of time steps to reach the target accuracy, in our
case 99%, divided by the amount of nodes with RFID labels in the graph,
see Equation 3.3.

V̂ =
m | accuracy(m) ≥ 99%

|{vi | empty(vi) = False}|
(3.3)

The average visiting time, V̂ , models the time required by the system of
agents to achieve an inventory accuracy of at least 99%. The number of
nodes with RFID labels will change at each simulation test, therefore, to
have a fair comparison between tests, it is required to normalize the figure
of merit by the amount of nodes with RFID labels. That is the reason why
we are not comparing the number of steps to reach a certain accuracy but,
this divided by the amount of nodes with RFID tags. To clarify the figure,
an average visiting time of 1 means that the agents require as time steps
to perform the inventory mission as nodes with RFID labels in the graph.
Therefore, the lower the value the more efficient the system is.
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3.4 Tests
Three sets of tests are performed to assess the feasibility of the developed
stigmergic inspired algorithm.
The first set of test aims to analyze three area coverage algorithms at
stock-counting. These methods will be adapted to stock counting, and
also, some characteristics of the problem will be simplified to take into
account that these methods were not created to solve this problem.
The second set of test will check the behavior of the attraction proposed,
see Equation 3.1, with two different update methods.
The third set of test is to assess the performance of the algorithm with the
increase of the amount of agents participating in the task.
In brief, the first 2 set of test will help define the final characteristics of the
algorithm. The third set of test will assess the feasibility and scalability
of the map-less method with respect to the number of agents.
At all the tests, there are 4 parameters that are randomized in every repe-
tition, these are:

• Graph size and shape

• Number of tags per node

• Total amount of tags

• Initial position

Notice that the initial position of the agent is always at a node with RFID
labels. It is not considered the possibility of an initial position where the
agent can not read any RFID label. This situation would only force the
agent to move randomly until an RFID label is read, and then, start using
the method proposed.

3.4.1 Area coverage algorithms
The differences between the area coverage problem and the stock-counting
are significant. The main difference is with respect to the goal of the prob-
lem, at area coverage the agents will try to go through every node of the
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environment, whereas the stock-counting problem only aims at identify-
ing the RFID labels of the environment. In addition to that, the RFID
technology allows identifications from a certain distance and, therefore,
visiting all the nodes is not required to take a full inventory of the envi-
ronment. However, the RFID detections are not deterministic, depending
on several factors a tag inside the range of detection may not be detected.
Therefore, it might require the agent to visit a node several times to com-
plete the count. Nevertheless, both problems require algorithms that are
able to move through an unknown environment.
To obtain a better understanding on the behavior of these methods two
characteristics of the RFID system are simplified. The maximum dis-
tance to detect tags is set to 1 instead of 3 and the probability of detecting
tags, pdetect, is also set to 1. So, the action of reading tags for this test is
deterministic. These two modifications reduce the gap between the area
coverage problem and the stock-counting. In the first place, the require-
ment of not having to visit every node is reduced by shortening the range.
In the second place, a deterministic detection model gives a higher level
of relevance to the visits of the node and less to the RFID detections.
At this set of test three algorithms that solve the area coverage problem
will be compared, they are the node counting, the LRTA* and the random
motion, see section 2.5.4 for more detailed information on them.
The node counting algorithm is modified, so that the attraction only uses
the counters associated to each label, as seen in Equation 3.4. Also, the
update of the state, Update(Sm, Lm

vi
), initializes the counters, ck with the

value of 1, and each time a label is seen again, it increases its counter, ck,
by 1.

um+1
vieij

=
∑

counters(Sm+1, Lm
vieij

) (3.4)

In addition, to behave as similar as possible to the real node counting al-
gorithm. The agent will not be attracted towards the largest attraction, but
towards the lowest. So, the operator that takes the argument that mini-
mizes a function must be defined, arg-minx∈Xf(x). Therefore, the agent
will take the edge given by this operator. However, the minimum value
will always be 0, which is the value for an edge without labels, therefore,
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the edges without RFID detections will not be an option, unless it is the
only option. All the other characteristics will be similar as in the Algo-
rithm 1.
The LRTA* algorithm will work similarly than the node counting algo-
rithm, so it will use the attraction defined in Equation 3.4, and it will
also use the previously defined operator to choose the next direction for
the agent. Therefore, its difference will only affect the update function,
Update(Sm, Lm

vi
). In this case, each time a label, lk, is identified, the

value of its counter, ck, is set to the highest value of a counter plus one of
a detected label in the same direction, as seen in Equation 3.5.

ck = max(counters(Sm+1, Lm
vieij

)) + 1 (3.5)

Lastly, the random motion will always choose the next direction for the
agent randomly, without taking into account the detected RFID labels.
Table 3.3 shows more details on the simulation parameters. Notice that
the number of nodes in the environment was chosen randomly with a
minimum of 10 nodes and a maximum of 1400. Then, the number of
nodes with labels is also randomly selected, but it is at least a 50% of the
total. Next, for each node with labels the number of labels is randomly
selected between 1 and 50.

Values
Repetitions 240
Graph size rand(10,1400)
Total labels from 40 to 19000
Pdetect 1
RFID Range 1

Table 3.3: Characteristics for the simulation of the area coverage tests.
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Figure 3.11: Box-plot comparison of area coverage methods at stock-
count. The horizontal axis presents the three methods and the vertical
axis the average visiting time.

Results

After running the set of tests, the results obtained can be observed in Fig-
ure 3.11. It shows a box-plot of the resulting average visiting time, V̂ ,
for each algorithm. Notice that in the horizontal axis there are the area
coverage methods, in the vertical axis we can observe the average visiting
time, V̂ .
It is important to highlight that in the results presented the methods al-
ways reach the 99% on the accuracy, as it is defined in Equation 3.3.
From Figure 3.11 it can be seen that the random motion is the worse
method at stock-counting. Its median V̂ is above 15, which means that
for each node with RFID labels the algorithm has to perform 15 steps. It
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is also the one with the larger deviation on the results obtained and it had
few outliers that took higher average visiting times, but for visualization
reasons they have been removed from the graph.
The differences between the node counting method and the LRTA* are
relevant, but both methods clearly outperform the random walk. The
node counting algorithm has performed better at stock counting than the
LRTA*. The median of the LRTA* is slightly above 5, and, for the node
counting is around 2.5. If we look at the average values of V̂ the node
counting is at 3.2 while the LRTA* is at 6.7, in addition to that, the dis-
persion on the results is higher for the LRTA*, showing that it is also a
less reliable method than the node counting.
Such a significant difference between LRTA* and node counting was not
expected, actually from [30] it is said that the LRTA* is more efficient
than the node counting at area coverage, so, a similar behavior was ex-
pected here. Figure 3.12 shows a comparative between the two methods
in which the horizontal axis shows the number of nodes with labels and
the vertical axis the number of algorithm steps to reach the 99% of accu-
racy. In Figure 3.12 all the performed tests can be observed, for graphs
with a small number of nodes with labels both methods perform similarly.
However, at the larger graphs, which are more significant, the node count-
ing performs clearly better than the LRTA*.
Our hypothesis is that with the LRTA* algorithm there might be nodes on
the graph with the labels not yet identified that are surrounded by nodes
that have been visited many times, so the agent has trouble reaching these
type of nodes. Mainly because the update value for the LRTA* increases
drastically the value of the counters, faster reducing the attraction sensed.
In any case, the exact reasons of why this is happening are not in the scope
of this work and it is left as an open topic to study further.
Nevertheless, the results clearly show that updating the state by increasing
the counters, ck, by one improves the efficiency on the task completion.
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Figure 3.12: Comparison between the node counting and the LRTA* al-
gorithms. The x axis shows the number of nodes with RFID tags of the
graph and the y axis the amount of algorithm steps to reach an accuracy
value of 99%. The lines are linear regressions just to show the trends.

3.4.2 Update method

The previous test shows the best update method for an attraction, which is
only based on visiting the less recurring nodes. However, it is required to
analyze how these update methods perform with our proposed attraction,
see Equation 3.1. Therefore, this second set of test aims at deciding which
is the best update method for the proposed attraction.
Two update methods are compared: the one used by the node counting
algorithm and the one used at the LRTA* algorithm. Briefly, the first
method initializes any ci at 1. After, each time the label is read the ci is
increased by 1. The second approach sets the ci as the maximum value of
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the read labels in that same direction plus 1.
Taking into account that for any of the two methods initially the agent will
be driven by the amount of new RFID labels discovered, the change of the
update method should only affect the end of task, during the asymptotic
part.
Figure 3.13 shows the percentage of new tags discovered by a single robot
as a function of the average visiting time. This way it is possible to com-
pare the performance in different scenarios. In this intermediate result,
it can be observed how the behavior is always similar, there is an initial
phase in which the robot discovers many new tags, but then the discovery
becomes nearly asymptotic. Our assumption is that the update method
will guide this asymptotic phase of discovering RFID labels.
This set of tests will be also used to observe the behavior of the proba-
bilistic approach on the RFID detections. So, the tests will be performed
changing the range of the RFID system, see Table 3.2. Test will have an
RFID range of 1, 2 or 3, named short, mid and long respectively. We
do not expect relevant differences on the performance, however, a slight
improvement is expected as the range increases. See Table 3.4 for more
details on the simulation parameters.

(a) Graph with 9750 RFID labels. (b) Graph with 2460 RFID labels.

(c) Graph with 300 RFID labels.

Figure 3.13: Example of the accumulated amount of RFID labels discov-
ered per algorithm iteration.
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Values
Repetitions 1380
Graph size rand(10,1300)
Total labels rand(60,25000)
Pdetect As in Table 3.2
RFID Range All

Table 3.4: Characteristics of the simulation of the update method tests.

Results

Figure 3.14 shows the results obtained as a box-plot with the average vis-
iting time, V̂ , for each update method and for each range.
Observing the results, firstly it is worth mentioning that for any range or
update method, the map-less algorithm together with the attraction pre-
sented in Equation 3.1 performs better than a deterministic node counting
method at stock-counting, as seen in Figure 3.11. Specifically, the V̂ me-
dian obtained with the node counting algorithm is at 2.5 and with the
proposed attraction is around 1.5.
Regarding the update method, there is no clear evidence over which of
them works better with the attraction presented. For short and long range
the node counting update method performs slightly better, but this is not
happening for the mid range. In this sense, the decision on which update
method to use will not depend on the results obtained here, but on the re-
sults obtained at the previous set of tests, see subsection 3.4.1. Therefore,
the selected update method is the one that is initially determined and the
one that works as the node counting algorithm, in this sense the counters
will always be increased by 1.
Last but not least, the results do not show a real difference between the
three ranges. The best results are obtained at long range, it is also the
range with less variation. But, the difference with mid or short range are
low. Observing the results, it is unexpected that the mid range results are
worse than the short range. In general terms, as the probability of detec-
tion decreases with the range, see Table 3.2, it is expected not to greatly
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Figure 3.14: Box-plot comparison of the stock-counting algorithm for 2
update methods and 3 ranges.

improve the performance when increasing the range. But, it is not ex-
pected that the mid range performs worse than the short range. At least,
it should perform equally. In any case, the differences are small and they
could be a consequence of the randomly selected characteristics for every
test.

3.4.3 Multi-agent system
This last set of tests is developed in order to assess the results obtained for
the stock-counting task if the number of agents is increased. As a stigmer-
gic inspired algorithm, it is specially useful for a large number of agents,
the communication through the environment is expected to coordinate the
agents performing the mission. They will be sharing an updated list with
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their RFID readings, so they should be able to avoid areas that others have
already visited.
The simulations have been done increasing the number of agents, from 2
to 10 first, and then for 20 and 50 agents. Although the graph sizes are set
randomly, if the number of agents increases the minimum and maximum
possible graph sizes also increase. The initial pose of each agent is deter-
mined randomly but at a node with RFID labels, and more than one agent
can start in the same node.
See Table 3.5 for more details on the simulation parameters.

Values
Repetitions 1700
Graph size rand(10,2900)
Total labels rand(150,65000)
Pdetect As in Table 3.2
RFID Range 3

Table 3.5: Characteristics of the simulation of the multi-agent system
tests.

Results

From Figure 3.15 it can be observed how the average visiting time, V̂ ,
decreases with the increase of the number of agents performing the task.
In addition, as it is a logarithmic scale, also the variance on the results is
decreased with the amount of robots.
Therefore, the performance of the system increases, but to assess the scal-
ability of the solution, it is required to penalize the fact that the solution
requires more agents. To do so, in Figure 3.16 it can be observed, in
logarithmic scale, the average visiting time multiplied by the number of
agents that are composing the system. In this case, the shape of the results
is almost flat, showing that no matter the size of the team or the space that
the system will be able to scale without any additional cost, but also with-
out an additional gain in time. It can be observed that the value obtained
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Figure 3.15: Box-plot comparison of the stock-counting algorithm for an
increase number of agents.

is almost always 1.5, showing that the performance of the algorithm is
maintained with the increase of agents.
Regarding the parallelization of the task, Table 3.6 shows the average of
the number of nodes visited per agent. Obviously, with the increase of the
number of agents the quantity of nodes visited per agent decreases, also
the standard deviation of this average decreases. Nevertheless, it never
reaches 1%, meaning that in all cases the behavior is very similar. It is
also worth mentioning that the total percentage of nodes visited increases
also with the number of agents. In this sense, the increase of number of
agents does not keep the efficiency at the same level. If the task is finished
with 2 agents visiting less than the 75% of the nodes, it could be thought
that the same could happen with 10 robots. Nevertheless, as the size of
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Figure 3.16: Box-plot comparing the average visiting time, V̂ , multiplied
by the number of robots of the system.

the graphs and the initial position of the agents are randomized, if graphs
where the 2 agents work are not perfectly scaled with the ones with 10
agents it is understandable that some overlapping occurs. This fact could
explain the reason why in Figure 3.16 the result with 50 agents is slightly
higher than the others. Nevertheless, it is important to understand that in
simulation the interactions between RFID systems and robots are not con-
sidered. Therefore, the performance of a real RFID system can change in
presence of multiple robots reading simultaneously. Also, the navigation
could get worse if, for instance, several robots are simultaneously trying
to enter a narrow aisle.
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Average
of nodes visited

Std. deviation
of nodes visited

Total of
nodes visited

2 agents 36.1 % 0.78 % 72.3 %
3 agents 25.6 % 0.32 % 76.8 %
4 agents 21.2 % 0.43 % 84.7 %
5 agents 18.3 % 0.21 % 91.3 %
6 agents 14.7 % 0.35 % 87.9 %
7 agents 12.7 % 0.27 % 89.2 %
8 agents 11.3 % 0.39 % 90.8 %
9 agents 10.8 % 0.15 % 96.8 %

10 agents 10.7 % 0.19 % 107.4 %

Table 3.6: Percentages of nodes visited by each robot as a function of the
number of robots of the system.

3.5 Conclusions

By approaching the stock-counting problem with a graph, and then, sim-
ulating it, it has been proved that this new stigmergic-based paradigm can
be used by RFID-based inventory robots in order to stock count any envi-
ronment with RFID-tagged items.
This new paradigm will work without a map, providing a higher level of
autonomy to robots. In this sense, the algorithm has been compared to
other algorithms that solve a similar problem, such as the area coverage,
and has performed better at stock-counting by using the attraction defined
in Equation 3.1.
Also, as it is a stigmergic inspired algorithm it is ready to be used by sev-
eral agents simultaneously, achieving a high level parallelization, hence
scalability. For instance, taking the percentage of nodes with tags visited
per each robot and calculating an average for each repetition, it can be
observed that the difference between agents is around 1%, meaning that
all of them visit a similar amount of nodes, and therefore, the task is ex-
tremely well distributed among them.
At this point, the next logical step is to test the presented solution in a real
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environment with a real robot. The next chapter describes the process for
designing an RFID-based inventory robot capable of taking advantage of
the developed map-less algorithm.
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Chapter 4

ROBOT DESIGN

The main outcome of the work described in this chapter is the design of
a robot capable of taking inventory following the map-less algorithm de-
veloped in Chapter 3. Currently there is not an available robot designed
to perform stock-count with the map-less algorithm. In addition, there
are some assumptions in the algorithm that may not be easily satisfied.
Therefore, the design itself is considered a scientific outcome. Thus, this
chapter pretends to create new knowledge through the design following
the techniques and perspectives of the design science [38].

4.1 Design science
The design science is a set of rules and techniques that allow performing
research through the design.
There are no rigid constraints to perform this type of research, however,
some guidelines can be found in [39]. These guidelines cover from the
design, which, for instance, requires producing a viable artifact, to the
evaluation, where a minimum level of rigorousness is required.
In this chapter the design has to solve two nested problems. The outer
most is to have a robot that can take advantage of the stigmergy-based
algorithm in order to take inventory of an unknown environment. The
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inner problem is to create an RFID system able to determine the relative
orientation between the RFID label and the platform. Both problems will
be faced simultaneously by means of a design that deals with them.
This chapter presents two iterations on the design of the robot as it can be
seen in Figure 4.1.

Figure 4.1: Design process in the context of the map-less inventory
paradigm development.

This chapter will present the requirements specification to fulfill the needs
of the design of a robot. According to them, a preliminary design will
be developed an a set of tests will be done in a real environment, these
tests are detailed in Chapter 5. The final part of this chapter details the
lessons learnt from the preliminary design and the set of tests, resulting
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in the development of a final design of the robot for the map-less inven-
tory paradigm. This final design focuses on increasing modularity, cost
efficiency, compactness and increasing the functionalities of the develop-
ment.

4.2 Design requirements
The main requirement of the design is proving the validity and feasibility
of the algorithm by taking it to a real context. Nevertheless, the following
requirements set a starting point to design a prototype robot that imple-
ments the map-less algorithm. At the end of this section a table of the
requirements is presented as a summary, see Table 4.1.
From an overall point of view, the main requirements for the design are
the following:

• The designed robot has to be cost-effective. This way, it will be
disrupting with respect to the other inventory robots, which are ex-
pensive.

• All components used for the design have to be commercial off-the-
shelf (COTS). The designed robot has to develop a feasible appli-
cation and using experimental components would compromise its
development as a real application.

• It has to be ROS compatible to take advantage of the open-source
resources available from the community and to leverage the experi-
ence obtained from working with the current AdvanRobot.

These initial and general requirements will affect all the systems of the
robot. Now, the following requirements will be specific of each system.
Regarding the RFID system:

• The RFID payload has to detect the relative orientation between
the robotic platform and the identified RFID tag. This will allow
the algorithm to decide in which direction to plan the following
movements. This requirement is of the utmost importance.
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• The system requires inventory accuracies as good as the current
state of the art for RFID-based inventory robots.

In terms of the robotic base, the map-less algorithm requires the follow-
ing:

• A mobile robotic base to move through the different corridors of
the store.

• Sensors for detecting and avoiding obstacles in the surroundings.

• An holonomic drive with a circular footstep to ease its navigation
in narrow and intricate aisles.

• It has to be capable of carrying an RFID payload of at least 2kg.

• It requires having a battery life of at least 2h.

The holonomic drive with a circular footstep makes the robot able to turn
around in its same position avoiding any possible collision. In the first
estimation in terms of RFID system needs, it has been calculated that the
weight of the required payload shall not exceed the 2kg. Also, it has been
considered that within 2 hours the system has to show enough progress in
an inventory mission to evaluate its performance.
Finally, the system requires a brain, or computer, with the following re-
quirements:

• Enough computational power to:

– Navigate detecting and avoiding unexpected or sudden obsta-
cles

– Execute the map-less algorithm

• Means of wireless communication to gather data and communicate
with other systems.

Table 4.1 summarizes the requirements.
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Global HW & SW
Cost-effective
COTS components
ROS compatible

RFID payload RFID tag direction detection
Inventory accuracy as high as
any RFID-based inventory robot

Robotic mobile base

Holonomic drive
Obstacle detection
Circular footstep
Payload weight > 2kg
Battery life > 2h

Brain
Navigation with obstacle avoidance
Executing the map-less algorithm
Wireless communication

Table 4.1: Summary of requirements specification

4.3 Preliminary design

The preliminary design shows how the previous stated requirements are
met and results in a preliminary version of the robot, which will be tested
in a real environment, see Chapter 5.

4.3.1 RFID payload

The requirements specify that the RFID system has to be able to deter-
mine the direction in which the tags are detected. This requirement is not
achievable given a reader and a single and fixed antenna. The characteris-
tics of the RF waves do not allow knowing the relative direction between
the RFID tag and the antenna at the moment of the detection. Therefore,
given the RSSI and/or any characteristics of the received wave, creating
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a model from which the system can extract the relative direction of the
wave is not feasible. This means that the solution for this requirement has
to be in the design.
Thus, if the RFID system is not composed by a single and fixed antenna
there might be chances to detect the relative direction between the tag and
the antenna. For instance, if the single antenna is moving and its move-
ment is finely controlled, it is possible to determine a relative orientation
between the RFID tag and the antenna. For instance, if the detection of
the tag is done while the antenna is on the right side of the robot, then it
could be assumed the RFID tag is in the right side of the robot. As ex-
plained before, in the same way a model can not be created, in this case
occlusions and multi-path could mislead some readings, however, once
several detections are performed, most of them should lead towards the
correct side.
However, having an antenna turning around the robot adds a complexity
layer to the system that will drastically increase its cost and decrease its
reliability.
Instead of having a single antenna moving, an equivalent can be a sys-
tem with several fixed antennas, each of them with a different orientation.
Therefore, the RFID tag direction will be given by the orientation of the
antenna that performs the detection. RFID tags are unique, but due to
multi-path effects is possible that the same tag is detected by more than
one antenna. There are techniques to avoid these conflicts such as only
taking into account the detection with the highest RSSI or the one with
the highest read-rate, which is a parameter given by the reader that inform
on the number of detections performed by the antenna. Another option is
simply use the first or the last detections.
In any case, the more antennas with different orientations the better pre-
cision on the relative orientation, however, there are two clear limitations
regarding the number of antennas. On one side, the RFID reader has only
4 channels for antennas, adding more antennas requires multiplexing the
signal and this leads to a decreased performance. Also, adding a second
reader to avoid the losses of the multiplexer increases substantially the
cost of the overall system. On the other side, the robot is conceptually
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small and compact, therefore, there is not much space to add a large num-
ber of antennas.
Thus, the proposal for the design is four antennas placed creating a square:
it will have one antenna towards the front; one towards the back; one on
the left and the last one on the right side.
Our main design hypothesis is that an RFID tag read from the frontal an-
tenna will be, in most cases, in front of the robot. Therefore, all tags read
from the frontal antenna are treated as if they were ahead of the robot.
The same behavior is expected for each antenna. Using only four an-
tennas that are perpendicular between them reduces the chance to suffer
interactions or to have an RFID tag that can be read from more than one
antenna at the same time. Although the RF waves will bounce causing
detections on antennas that do not have the RFID tag in front of them, it
is expected that this will not be the general case. Nevertheless, in the case
of receiving detections of the same tag by several antennas, only the first
detection will be considered. This keeps the system as simple as possible
for a situation that it is not expected to happen often.
The second requirement for the payload should be satisfied by adding to
the configuration of 4 antennas an RFID reader with enough capacity. In
this sense, the one selected is the same one that it is set in the Advan-
Robot, it can read between 350-400 labels per second and it has a Single
Board Computer (SBC) on board that can communicate with the system
through an Ethernet wire.
Regarding the RFID payload, the last design consideration is the height
at which the antennas will be located. At this point of the development
the largest set of tests is planned to be performed at the university li-
brary. Therefore, the center of the antennas will be placed at 1m from
the ground, this way, the antennas are almost in the middle of the book-
shelves. Figure 4.2 shows the initial design of the RFID system for the
robot. This is the one used for the experimental tests in Chapter 5.
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Figure 4.2: Initial RFID payload configuration, 2 of the four antennas are
visible. The RFID reader is inside the cube that holds the four anten-
nas. Also, the structure that will elevate the antennas at 1m height can be
observed.

4.3.2 Robotic platform
Robotic mobile base

After performing a survey among different robotic mobile bases, the se-
lected base is the Turtlebot-21, see Figure 4.3.
The Turtlebot-2 satisfies several requirements, it is a circular base with
holonomic drive, which provides the capacity of rotating around its cen-
tral vertical axis. According to the specifications given by the manufac-
turer, it can carry a payload of at most 5kg and it has two different battery
configurations, at this point the smallest one is picked (2200 mAh Li-Ion),
but having the option of doubling the battery capacity secures that the bat-
tery life requirement will be satisfied.
Moreover, the Turtlebot-2 has some useful sensors in its default config-
uration. It has encoders at the wheels and a gyroscope to get odometry
measurements. It has a bumper, which is a contact sensor that can detect
collisions at 3 points of its circular footprint. It also has infra-red sensors
that can recognize reflectors and light detectors that can notice changes
on the floor, such as when getting close to descending stairs.

1https://clearpathrobotics.com/turtlebot-2-open-source-robot/
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Finally, all its hardware configuration options are ROS compatible.

Figure 4.3: Turtlebot 2

Obstacle detection

A key asset of this new version of inventory robot is its capacity to operate
without the need of a map, therefore, a LIDAR is no longer a requirement.
Instead, the only sensor that is required is one to detect obstacles. Taking
into account that the robotic mobile base has already obstacle detection
sensors such as the bumpers, only one among a LIDAR, a SONAR or an
RGB-D camera is considered for the task.
In any case, the LIDAR option is not considered for this preliminary de-
sign as the available sensors in the market are too expensive.
The SONAR option is discarded as the main obstacle detection sensor
due to its low angular precision which can affect the ability of the robot
to navigate in narrow aisles. There exist belts of sonars that by compar-
ing obstacle detections between sonar neighbors can improve the angular
precision, however, adding so many sensors decreases the overall system
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Figure 4.4: Orbbec Astra. Source:
https://orbbec3d.com/product-astra-pro/

reliability and does not significantly reduce the cost.
Regarding an RGB-D camera, it has the advantage with respect to the
other sensors that can sense obstacles in 3 dimensions and that has a res-
olution of around one centimeter. However, it requires higher computa-
tional power to have a good update rate compared to other sensors.
After analyzing pros and cons of each type of sensor, the selected one
is the RGB-D camera, precisely the Orbbec Astra2 due to the experience
obtained of working with it on other robots and that it can be purchased
together with the Turtlebot-2 as a complement, see Figure 4.4.

Brain

The first candidate for the brain is a Single Board Computer (SBC), this
decision is based on several aspects. They are very economic, the algo-
rithm computational requirements are not high, so, it should be suitable
for a simple SBC. Also, some of them are ROS compatible and most of
them have a wireless communication module, as specified in the require-
ments. However, after deciding that the main sensor for obstacle avoid-
ance is an RGB-D camera, the sensor is tested in two possible SBCs but
the results obtained are not satisfying. Therefore, the SBC as a brain is
discarded.
Then, the only option available for the brain is a NUC3. The main draw-

2https://orbbec3d.com/product-astra-pro/
3https://www.intel.es/content/www/es/es/products/boards-kits/nuc.html
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Figure 4.5: Nuc i3 and power bank. Sources:
http://images.bit-tech.net/content images/2015/02/intel-nuc-kit-nuc5i3ryk-
review/nuc5i3ryk-1-1280x1024.jpg
https://www.litionite.com/product/tanker-mini/

back of using a NUC is that it has no internal battery and it consumes too
much power to drain it from the Turtlebot, therefore, it requires an exter-
nal battery. So, after a short survey on available power banks, it is decided
to use the Litonite Tanker Mini4. Figure 4.5 shows both components.

4.3.3 Software

In terms of software design, the requirements specification of the hard-
ware and its preliminary design bounded the possible options. From sec-
tion 4.2 there are some requirements that directly affect the software de-
sign. For instance, it has to be ROS compatible and it requires navigation
capabilities with obstacle avoidance. Actually, using ROS complements
the second requirement, because there are open-source packages that with
some tunning can be used for navigation with obstacle avoidance. Also,
the drivers for the sensors and the Turtlebot platform are also ROS com-
patible. Therefore the packages designed to implement the algorithm have
to also be part of the ROS ecosystem.
In addition, as the RFID payload is using an off-the-shelf reader, called

4https://www.litionite.com/product/tanker/
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Advanreader-150.035, it has already its own software which can be inter-
acted with a REpresentational State Transfer (REST) interface.
Therefore, from one side a software package is required that can interact
with the reader, and then, transmit the information obtained by the reader
to the main algorithm. On the other side the main algorithm requires to
interact with ROS nodes, and therefore it has to be inside the ROS ecosys-
tem.
Given all that the final software running in the robot is composed of four
main pieces, see Figure 4.6.

Figure 4.6: Software architecture scheme

The main piece of software is the implementation of the map-less algo-
rithm for real robots, more information will be given later in this section.
In any case, this implementation is much more complex than in the simu-
lated graph due to the need to control a real environment. For the reasons
previously explained, this piece of software is developed under the ROS
framework and in Figure 4.6 called Stock-counting Algorithm.
The other package developed, is the interface between the stock-counting
algorithm and AdvanNet, called RFID Interaction. It uses the REST in-
terface to communicate with the RFID reader, it decodes the received
information and it reports the relevant information to the main algorithm
using messages inside the ROS framework.

5https://www.keonn.com/rfid-components/readers/advanreader-150.html
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The third piece of software running in the robots is Keonn’s AdvanNet6, it
runs on-board the RFID reader and it reads the information from the de-
tected tags. Other software packages can interact with AdvanNet through
a REST interface which allows commanding the reader as well as retriev-
ing information obtained from the tags.
The last piece is the navigation software, which is used almost out of the
box from the Navigation Stack7 of ROS, and it is commanded and con-
trolled by the stock counting algorithm using ROS interfaces.
Although one of the main benefits of using a stigmergic algorithm is its
decentralization, due to implementation restrictions the system is central-
ized, as the ROS framework is, and all the communication depends on a
single node. Nevertheless, the stigmergy-based algorithm for stock count-
ing implementation is transparent to this centralization.

Stock counting algorithm

Algorithms 2 and 3 show the pseudo-code of the map-less algorithm’s
implementation for real robots, in Figure 4.6 called Stock-counting Algo-
rithm. It is composed of four main procedures that run simultaneously.
In this section the notation developed in Section 3.2.1 is kept, however,
some modifications and new definitions are required to adapt to the real
environment.
First, we define tag data, Tdata, as the data associated to an RFID label
detection. Tdata = {lk, c∗k, ak, tk, rk, pk} is a tuple of six elements: the
label id, lk; the label counter, c∗k; the antenna port, ak; the timestamp of
the detection, tk; the Received Signal Strength Indication (RSSI), rk and
the label estimated position, pk.
Note that the counter, c∗k, is a local counter of the state, Sm, which will
be used to update the counter, ck. To differentiate between both, the local
counter has an asterisk. The antenna port, ak, is the port of the reader
through which the label is detected. The RSSI is the power in the re-
turned signal. Usually, high values of RSSI mean that the label is close

6https://www.keonn.com/software/advannet-software-drivers.html
7http://wiki.ros.org/navigation
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to the antenna and that the returning wave comes from a direct path. On
the contrary, when the RSSI is low the tag is usually far from the antenna
or does not come from a direct path. In any case, high values of RSSI are
more determining, as there are too many reasons why values can be low.
Take into account that the data received from the reader does not have the
counter or the estimated pose, however, they are computed and added in
the algorithm.
Along with this, W = {Tdatai} is defined as the list of all the detection
data tuples obtained during an algorithm step, this list is restarted at the
start of each step. It behaves as a time window, so it is used to take into
account only the detections performed during a single algorithm step. If
the same tag is detected more than once, only the first detection is kept in
the list, W . Given that the value rk is known, another option would be to
keep the detection with the highest RSSI. In this implementation the first
is kept because the reader operates with S2, therefore, a tag will only an-
swer once while it is being interrogated, therefore, the amount of answers
from the same tag is limited, as it requires to be interrogated twice in the
same algorithm step. Additionally, the fastest answer the antenna would
get is through the most direct path, which should have the highest RSSI.
Second, the Update function has to be redefined. Now the state of the
task, Sm = {sk}, where sk =< lk, ck >, is updated with an element,
s∗k =< lk, c

∗
k > extracted from Tdata. So the function Update(Sm, s∗k)

returns the state, Sm, with sk =< lk, c
∗
k >, where the previous counter, ck

has been substituted by the counter, c∗k, from Tdata. However, if c∗k ≤ ck
the state does not change. Notice that the state Sm+1 is not obtained di-
rectly from the update function, now the updates are done for each label
individually.
Third, the function locate(ak, tk, rk) has to be defined. This function es-
timates the position of the tag read as a function of the antenna, ak, that
performed the detection, the timestamp of the detection, tk, and the re-
ceived signal strength, rk. This function has two steps. It first estimates
the pose of the tag with respect to the antenna that performed the loca-
tion. It places the tag in the direction of the antenna at a distance that
it is a function of rk. The implementation uses a simplified function to
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obtain the distance in meters, see Equation 4.1. Notice that -40dbm is
near the maximum value that can be obtained from any label and -80dbm
is approximately the minimum. For values in between these two limits a
linear interpolation is used.

d = dmin if rk ≥ rmax

d = dmax if rk ≤ rmin

d = dmin +
(rk − rmax)(dmax − dmin)

rmin − rmax

if rmin < rk < rmax

(4.1)

Where dmin = 0.2m, dmax = 2m, rmin = −80dbm and rmax = −40dbm.
The second step transforms the tag location from the antennas coordinate
frame to the odometry coordinate frame, which is an external frame with
respect to the robot. Any location requires a reference frame to be de-
fined, the antennas coordinate frame is linked to the robot, therefore, if
the robot moves, this movement has to be applied to the tag location to
keep this location fixed in the environment. Another option to solve this
is using a reference frame, such as the odometry coordinate frame which
is external to the robot, so when it moves, the location does not need to
change, it is always fixed. To do so, the timestamp of the detection, ts,
allows retrieving the transform between both frames from ROS.
Fourth, the available directions for the next move, A = {ei}, are defined
by the antennas of the robot. Candidate directions are: front, right, left
and back. Therefore, the function Check(costmap) returns A = {ei}
with those that do not find an obstacle through a straight line of 1.3m,
which is the maximum distance that the robot will travel in an algorithm
iteration. Notice that the function Check does not require to know the
position of the robot, for definition it will be in the center of the costmap.
Fifth, Gm

ei
has to be defined as a tuple with as many lists as available di-

rections, for example, if only two directions are available, Gm
ei

is a tuple
with two lists. These lists contain the labels of the tags detected in the
correspondent direction. Therefore the function Group(lk, pk, A) has to
be defined. This function assigns lk into a list of Gm

ei
and each list is asso-

ciated to an ei. To do so, it is required to transform again the location of
each detected tag, however, now it is done from the odometry reference
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frame to the antennas reference frame.
One could think that this step is unnecessary as the antenna that detected
the tag is already known. But, detections are done while the robot is mov-
ing and, as it has been explained, the location of the tag is defined with
respect to an external coordinate frame. Therefore, when the robot stops
and the possible directions need to be evaluated, it is required to relate
the orientations of the antennas with respect to the location of the tags
detected. To do so, the locations are transformed back to the antennas co-
ordinate frame. At this step, no overlap is considered between the regions
defined by the orientations of the antennas.
Sixth, the attraction, um

ei
, is computed as shown in Equation 3.1 but in-

stead of using Lm
vieij

it uses the lists in Gm
ei

.
Finally, function, Move(ei), has to be defined. Move(ei) sends a navi-
gation goal, which is a new pose with respect to the current pose of the
robot, in the direction of ei and a distance that it is randomly selected be-
tween 0.7m and 1.3m from a uniform distribution. The Navigation Stack
of ROS receives this goal and moves the robot accordingly, which results
in an update of the agent pose, Pm+1

agent = Move(ei). In some occasions the
robot will perform an extended move, where the distance to travel will be
increased by a factor of 1.5, in this cases the function used will be called
ExtendedMove(ei).
Now it is possible to follow Algorithms 2 and 3. The implementation as-
sumes that each robot of the system has its own copy of the state, Sm, so
they communicate peer-to-peer to share the detections obtained and up-
date the state.
It starts by executing four procedures: RFID interface, Update environ-
ment, Navigation control and Stigmergic stock-counting. All procedures
are active until the end condition is met.
The RFID interface procedure receives the information from the RFID
interaction package. This package is connected to the reader through
a REST interface. Each time that the reader detects an RFID label, it
transfers the associated data, Tdata, by means of the REST interface to
the RFID interaction package and this package converts it into a ROS
message that it is sent to the RFID interface procedure. Then, the RFID
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interface checks that the label, lk, is in the ground-truth, if it is not, is
discarded. Although, all labels in the environment are being detected, be-
cause it is known that the ground-truth 100% accurate, it might be not
convenient to led the robots follow labels which origin is not known. Or,
for instance, if the robot has to stock-count only a determined area of the
environment, the ground-truth filtering allows keeping the robot in the
right area.
Then, it checks if it is a new label, according to that, it creates or updates
the associated counter, c∗k, and it adds the counter to Tdata. Finally it sends
Tdata to the Stigmergic stock-counting procedure and s∗k =< lk, c

∗
k > to

the other robots.
The Update environment procedure is completely asynchronous from the
other procedures and it just updates the state, Sm, for the robot that re-
ceives data from other robots of the system.
The Navigation control procedure waits until the next direction for the
robot, ei, has been received. If ei is not empty it will execute the func-
tion Move(ei) in order to send a navigation goal to the Navigation Stack
of ROS. However, if the direction is back and the last direction was also
back, then it increases the movement distance by a factor of 1.5 in order to
avoid navigation oscillations. The robot’s moving direction is towards the
front, it does not move laterally or backwards, therefore, choosing back
twice in a row indicates an oscillation. In case that ei = ∅, then it moves
the robot towards any available direction, this choice is random. This
procedure also interacts with the Navigation Stack of ROS to cancel any
current goal if required and with the Stigmergic stock-counting procedure
to notify if the robot is pursuing a goal or is stopped, and, to transfer the
current costmap. For simplicity this lines are omitted in the Algorithm 2
The procedure Stigmergic stock-counting is composed by three internal
procedures that execute sequentially: Get candidate directions, Compute
attraction and Best direction.
It starts with the procedure Get candidate directions. It is just receiv-
ing Tdata from the RFID interface procedure until the robot stops mov-
ing. So, if Tdata is received and the robot is moving, it updates its cur-
rent state, Update(Sm, s∗k), then it computes the estimated tag position
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pk := locate(ak, tk, rk) and, finally, adds the value Tdata to the window
list W . Once the robot stops moving, it receives the current costmap of
the robot and it extracts the available directions, A := Check(costmap).
If data is sent while the execution is taking place and the robot is not mov-
ing, this data waits in a queue until this procedure is again available.
Once A is obtained, the next procedure, Compute attraction, starts. Each
detection, Tdata, in the windows list, W , is grouped according to its rel-
ative orientation with the robot, Gm

ei
← Group(lk, pk, A). These relative

orientations are limited to the ones in A. Then, it computes the attraction
for each ei ∈ A. If A = ∅, then it sets the attraction as ∅.
Once the attraction is computed, the last procedure, Best direction, starts.
This procedure simply decides the direction of maximum attraction, ei :=
one-of(arg-maxei∈A(um

e )), so the direction that maximizes the value of at-
traction, in case of having more than one direction with a maximum value
of attraction, the best direction is selected randomly between them. In
case that there is not attraction, it sets ei as ∅. Finally, it sends ei to the
Navigation control procedure.
So the robot starts moving and, again, the procedure Get candidate direc-
tions erases the window list, W , and starts receiving and processing data
from the procedure RFID interaction.

Stock counting algorithm example

In order to clarify the procedure of the map-less stock-counting algo-
rithm, the following figures, from Figure 4.7a to Figure 4.7e presents a
schematic of the process.
Consider the red dots as EPCs already read in a previous iteration and the
green dots as EPCs read for the first time in this iteration. Obviously, there
might be more EPCs but if the robot has not read them, it does know they
exist. So, Figure 4.7a presents the robot in the middle of an environment
with tags that has been detected for the first time and others that have been
already detected before.
In Figure 4.7b the robot has obtained the costmap of its surroundings and
it has found an obstacle, the gray rectangle, in its back. Therefore, in Fig-
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Algorithm 2 Stigmergic stock-counting pseudo-code
1: Start procedure: RFID Interface, Update environment, Navigation

Control, Stigmergic stock-counting
2: procedure RFID INTERFACE(Tdata)
3: while not end condtion do
4: if Tdata received from RFID interaction then
5: if lk in ground-truth then . Filtering step
6: if lk ∈ Sm then
7: c∗k := ck + 1
8: else
9: c∗k = 1

10: end if
11: Tdata ← c∗k . Adds c∗k into Tdata

12: Send Tdata to Stock-counting procedure
13: Send s∗k =< lk, c

∗
k > to others Upload environment

14: end if
15: end if
16: end while
17: end procedure
18: procedure UPDATE ENVIRONMENT(s∗k)
19: while not end condtion do
20: if s∗k received from others then
21: Update(Sm, s∗k) . Update own state from others
22: end if
23: end while
24: end procedure
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25: procedure NAVIGATION CONTROL(ei)
26: while not end condtion do
27: if ei received then
28: if ei not ∅ then
29: if em−1 = ei = back then
30: Pm+1

robot := ExtendedMove(ei) . Larger move
31: else
32: Pm+1

robot := Move(ei)
33: end if
34: else
35: Pm+1

robot := Move(One-of(A)) . Random move
36: end if
37: em = ei . Store last direction
38: end if
39: end while
40: end procedure
41: procedure STIGMERGIC STOCK-COUNTING

42: while not end condtion do
43: Get candidate directions(Tdata)
44: Compute attraction(A)
45: Best direction(um

e )
46: end while
47: end procedure
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Algorithm 3 Stigmergic stock-counting internal procedures
1: procedure GET CANDIDATE DIRECTIONS(Tdata)
2: Restart W . Restart of the time window list
3: while Robot is moving do
4: if Tdata is received then
5: Update(Sm, s∗k) . Update own state
6: Tdata ← pk := locate(ak, tk, rk) . Estimate tag location
7: W ← Tdata

8: end if
9: end while

10: A := Check(costmap) . Determine candidate directions
11: end procedure
12: procedure COMPUTE ATTRACTION(A)
13: for all Tdata ∈W do
14: Gm

ei ← Group(lk, pk, A) . Group tag labels wrt. directions
15: end for
16: if A 6= ∅ then
17: for all ei ∈ A do
18: umei := f(Sm, Gm

ei ) . Compute the attraction
19: end for
20: else
21: umei := ∅
22: end if
23: end procedure
24: procedure BEST DIRECTION(ume )
25: if ume 6= ∅ then
26: ei := one-of(arg-maxei∈A(ume ) . Choose direction of max.

attraction
27: else
28: ei := ∅
29: end if
30: Send ei to Navigation Control
31: end procedure
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ure 4.7c the robot checks its costmap and realizes that it has three out of
the four possible directions: front, right and left.
Then, in Figure 4.7d, it calculates the attraction felt through each of its
three possible directions. The division of the surrounding environment is
done without overlap, therefore, each RFID tag counts towards one direc-
tion. Finally, in Figure 4.7e the robot decides that the next best direction,
given by the maximum attraction, is towards the front. Clearly is the di-
rection that presents more new detections.
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(a) The robot detects the RFID la-
bels in its environment. The red dots
represent the tags that had already
been detected. Green dots represent
those tags that have been detected
for the first time.

(b) At this step, the robot is aware
of the position of the obstacles in
its surroundings. The gray rectangle
represents an obstacle, such a shelf.

(c) The robot has only 4 relative ori-
entations to move: front, back, left
and right. It matches these direc-
tions with the obstacles of the sur-
roundings and decides that only 3
out of the four directions are avail-
able.

(d) At this step, the robot assign the
detected labels at each of the three
possible directions. Obviously, the
tags that are towards the not avail-
able direction are not considered.

Figure 4.7: Schematic representation of the robot performing a step of the
algorithm. 95
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(e) Finally the direction with the largest
attraction is selected to set the next nav-
igation goal, which is a position around
a meter further in the selected direction.

Figure 4.7: Schematic representation of the robot performing a step of the
algorithm.
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4.3.4 Designed robot
Once the design has been specified in terms of software and hardware, the
prototype obtained can be seen in Figure 4.8. Two units of this prototype
have been built during the thesis.

Figure 4.8: Prototype of the inventory robot

Figure 4.8 shows the cubic shape on top of it that contains the RFID an-
tennas as well as the reader. The metallic structure below the cube, places
the center of the antennas 1m from the ground ensuring that the antennas
will easily read the tags placed at a similar height. Then, the structure
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is linked to the own structure of the Turtlebot-2 with its characteristic
hexagonal shape and the 4 metallic pillars, this structure holds the NUC,
the RGB-D camera and the battery for the NUC, although this last com-
ponent can not bee seen from this perspective. Finally at the bottom there
is the Turtlebot-2 base.
Table 4.2 summarizes the cost of the main components of the selected
design. As explained at the beginning of the chapter, the intention was to
create a cost-effective prototype. In order to obtain all the components,
some of them are leased and the others have been acquired with the money
of a prize won at the university and thanks to funds from the university
program Maria de Maeztu.

System Element Cost (e)

Payload 1 x Reader 1300
4 x Antenna 400

Platform

Turtlebot-2 650
External battery 150
RGB-D camera 150
Intel NUC i3 350

Table 4.2: Prototype components cost details.

This prototype is the one used for the experiments in a real environment
detailed in Chapter 5. The following sections of this current chapter ex-
plain the next design iteration for this robot taking into account the results
and the learnings from the experiments.
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4.4 Lessons learnt
Chapter 5 will prove that both the algorithm and the robot can take inven-
tory of an unknown environment thanks to the new map-less paradigm for
stock-counting. This section gathers the lessons learnt during the initial
design and at the experimental tests that will be shown in chapter 5. Ta-
ble 4.3 summarizes the issues found.

Stability
The prototype has stability issues
and it wobbles.

Obstacle detection
The prototype has difficulties to
detect obstacles at its sides.

Autonomous charging
The external battery of the design
prevents the robot to autonomously charge.

Handle The prototype does not have
any handle for transportation.

Table 4.3: Summary of issues encountered

During the tests it has been detected that the initial design of the robot is
not very stable, mainly due to the height of the RFID payload. The robot
wobbled significantly at every start and stop of its movements, and also,
if its speed was not properly adjusted it could have fallen after a sudden
brake. Therefore, the final design will require to reduce its height.
The use of only a RGB-D camera for obstacle detection has complicated
some aspects of the navigation given the algorithm developed. The cam-
era has a 60o field of view and its range was reduced to two of meters
for computational and precision issues. This two factors prevented the
robot to properly detect obstacles at its sides. Therefore, when the robot
selected a direction towards one of its sides, it did not know that there
was an obstacle. This resulted in the robot performing long and weird
trajectories trying to avoid an obstacle that unexpectedly appeared.
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Additionally, while the initial design was created and the tests were per-
formed new low cost LIDARs appeared in the market. Using this type of
sensor will solve the problem of detecting obstacles at the sides as they
have a field of view of 360o. Moreover, this type of sensors opens the
door to new features such as creating maps to add a finishing condition
to the system by analyzing the coverage performed by each robot, or to
provide RFID tag location capabilities to the system.
The initial design also lacked of an autonomous way of charging the
battery, this was forced due to the external battery, which could not be
charged together with the Turtlebot. Therefore, a charging station was
not really useful as the external battery will required a user to plug it for
charging. Therefore, the final design will remove the external battery in
order to provide the robot with autonomous charging.
A minor issue was transportation, the initial design did not have any han-
dle to lift the robot for transportation.
Finally, the Turtlebot-2 has been proven as a very suitable robotic base. It
is in the market since October 2012, which means that it has a huge com-
munity with lots of experience that can help whenever an issue is faced.
In addition, it is developed as open hardware8, which if at any point its
production stops, there will be manuals to continue.

4.5 Final design

This section covers all the changes in order to end up not only with a
robot that can take advantage of the map-less algorithm developed, but,
a robot that has all the capabilities than any other RFID-based inventory
robot with an increased autonomy, robustness, scalability and with a cost
an order of magnitude lower than any other inventory robot. Additionally
the design will enhance the modularity and compactness of the robot’s
concept.

8http://freedomdefined.org/OSHW
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4.5.1 RFID payload
The RFID payload will be re-designed for 2 reasons:
The first is to change the height of the RFID system to provide better sta-
bility to the robot.
The second reason comes due to the analysis of the radiation pattern of
the antennas, as it can be seen in Figure 4.9. Both diagrams are not com-

Figure 4.9: Radiation diagram of four antennas represented as a point in
the center of the diagram. On the right side the configuration of the current
robot, on the left side the diagram of a robot having the four antennas
rotated 45o.

pletely realistic, as the antennas are represented as a central point on each
of them. Nevertheless, it can be observed in Figure 4.9 that the current
configuration has the central part of the radiation lobes of the frontal and
back antennas aligned with the movement of the robot, and therefore,
most of the RFID labels will not be aligned, as they are usually in the
shelves on each side. On the contrary, the configuration proposed on the
right side, has the 4 lobes with a contribution towards the sides, which
could potentially improve the RFID detection capabilities.
Three RFID system configurations have been proposed in order to reduce
the height of the RFID system while trying to keep a similar accuracy of
RFID detections. Figure 4.10 shows the tested configurations. Notice that
all the options have the center of the antennas at around 30cm from the
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ground.

(a) Same antenna configuration as
the initial design but placed at
around 30cm from the ground,
named Square.

(b) Antenna configuration rotated
45o with respect the initial design,
placed at around 30cm from the
ground, named Diamond.

(c) Antenna configuration with the frontal and rear
antennas as in the current configuration but the lat-
eral antennas tilted up to better capture the highest
RFID labels. Also the whole system at around 30cm
from the ground, named Tilted.

Figure 4.10: Proposed antennas configurations for the new design of the
robot.

In Figure 4.10a, it is shown the same configuration as the current robot
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but with the antennas placed at around 30cm from the ground. From now
on known as Square configuration.
Figure 4.10b presents a configuration where the antennas have rotated
45o, and therefore, the maximum of the radiation pattern is towards the
sides of the robot, as seen in Figure 4.9. From now on known as Diamond
configuration.
The last proposed configuration, see Figure 4.10c, has the frontal and rear
antennas as in the initial configuration, but the antennas on each side are
tilted up in order to improve the detection capacity in height despite re-
duction of the robot’s height. From now on known as Tilted configuration.
Two tests have been planned in order to assess the best configuration for
the antennas. The first test is to determine the RFID reading accuracy of
the proposed antenna configurations with respect to the height of RFID
labels. The second test is to assess the overall performance of the RFID
system in an environment with many RFID tags at different heights and
orientations. Both tests are compared against the previous RFID system
version, this will be used as a control test to assess the newly proposed
configurations.

Height test

This test aims at detecting the maximum height and the change of perfor-
mance in reading RFID tags as their height increases.
Given the radiation pattern of the antenna, we could have an intuition on
the maximum height at which the readings could happen, however, the
tests will be done in an environment with multi-path effects, as in the real
operation, therefore, the readings can be different than those that are de-
ducted from the radiation pattern.
Besides the environment, there are 2 parameters that can influence the
results:

• The configuration of the antennas

• The height of the antennas
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Therefore, the tests will be performed with an RFID system put directly
on the robotic base. Also, the previous version of the robot will be used
to evaluate the influence of height, it will also be used to assess if there is
an improvement or a diminish on the reading capabilities of the system.
In any case, the reduction of the height is not optional.

Test characteristics
The systems that will be tested are the following:

1. Previous design, see Figure 4.8

2. Square configuration, see Figure 4.10a

3. Diamond configuration, see Figure 4.10b

4. Tilted configuration, see Figure 4.10c

The target RFID labels are inside in a cardboard box with 100 labels as it
is shown in Figure 4.11 it has 20 rows of 5 RFID labels each, the rows are
400mm wide and the total height of the box is 1185mm.
The box will be placed at three different heights: ground height, at 740mm
from the ground and at 1320mm (740mm + 580mm), so the highest row
of tags will be above 2.5m. In addition, for each height three passes at
different distances from the box to the center of the robot are performed.
Distances are: 400mm, 700mm and 1000mm. Figure 4.11 presents a
scheme of the tests.

Results
Table 4.4 summarizes the results obtained. As expected, with the increase
of the height the amount of missing labels increases for all the configura-
tions. It is also worth mentioning that the amount of missing labels for the
previous configuration is minimal, although a test was removed because
the results were too different from the overall behavior, and considered an
outlier.
Regarding the three proposals, the Square and the Diamond configura-
tions performed better than the Tilted configuration, that had more prob-
lems to detect tags at the third height, so tags from 1.3m to 2.5m.
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Figure 4.11: Scheme of the test for assessing the performance of the RFID
system with respect to the height of RFID tags.

Environment test

This experiment aims to compare an overall reading performance. The
proposed configurations will move through an environment with more
than a thousand of RFID tags at different heights and orientations.
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Configuration
Tests Previous Tilted Square Diamond Total

Height 1
D1 0 0 0 0 0
D2 1 1 2 0 4
D3 NA 2 0 1 3

Height 2
D1 0 2 3 1 6
D2 0 0 1 1 2
D3 0 4 0 3 7

Height 3
D1 0 4 2 1 7
D2 0 3 3 2 8
D3 0 6 1 3 10

Total 1 22 12 12

Table 4.4: Summary of results. Each value of the matrix is the number
of unread out of 100 total tags for the configuration in a determined test.
D1 makes reference to the test performed at 400mm from the box, D2 at
700mm and D3 at 1000mm.

Test characteristics
Figure 4.12 shows two perspectives of the space that the system has to
cover. In Figures 4.12a and 4.12b can be observed that the RFID tags can
be found inside cardboard boxes, hanging from shelves at two different
heights and in two large strips following a column. For the sake of clarity,
this test is performed at Keonn’s warehouse, but to better show the envi-
ronment a 3D representation has been created.
Each configuration will be moved twice through the environment as shown
in Figure 4.13. It is important to take into account that the movement is
controlled by us at a fixed speed, so it does not adapt to the detections
obtained by the system.
Our ground-truth contains more than 1,300 RFID tags. However, it is
filtered and only those tags that have been read at least once by any con-
figuration, will be counted. As the purpose of the test is to compare the
different antenna configurations, this should not affect the final conclu-
sions. Finally the filtered ground-truth contains 1,265 RFID tags.
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(a)

(b)

Figure 4.12: Environment for the test. The yellow blocks represent RFID
tags, the total amount of tags is 1,265.
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Figure 4.13: Path to cover for each of the configurations to test.
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Results
Table 4.5 summarizes the results obtained. Each value represented is the
average of both passes performed by each configuration.

Previous [%] Tilted [%] Square [%] Diamond [%]
Boxes 81.35 82.38 71.57 75.52

Shelves 99.36 87.99 88.84 83.64
Column 100 93.33 96.67 86.67
Overall 92.61 88.31 82.41 82.41

Table 4.5: Summary of results

The best configuration is the Previous design, however, if we observe
the results regarding the RFID tags inside boxes the Tilted configuration
performs better. Nevertheless, when reading the tags at the shelves the
Square configuration performed better than the Tilted. From an overall
perspective the Diamond and the Square configuration have the same re-
sults, however, the Square performs clearly better at reading the tags on
shelves.
It is worth mentioning that the tags on the shelves are more representative
than the ones inside the boxes. Inside the boxes RFID tags are packed
and close to the floor, these conditions are not very common in the store.
On the contrary, the tags hanging from the shelves are more similar than
those in a store in terms of density and distribution.

Chosen configuration

The clearest conclusion obtained from the tests performed is that the pre-
vious configuration is the one that performs the best.
Regarding the height test, the new configurations that worked the best
were the Square and the Diamond. In contrast with the environment test
where the Tilted configuration outperformed the other two. Nevertheless,
at the environment test we can see that the Square configuration performs
better at reading the tags in the shelves, which is more relevant.
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In conclusion, the chosen configuration will be the Square. There are two
main reasons, first the results obtained by this configuration are the more
regular as it performed well in both tests. Second, the only difference with
the previous configuration is its height and it will be proved, in Chapter 5,
that it works fine in terms of RFID readings.
Nevertheless, as it has been observed that the height plays an important
role in terms of RFID detections, it has been decided to increase the height
as much as possible but without incurring in stability issues. For this rea-
son the final position of the RFID payload will have its top at 60cm, ensur-
ing a high stability and being able to move under tables, that are usually
at 70cm.

4.5.2 Robotic platform

Obstacle detection

The LIDAR technology is relatively new and, therefore, expensive. How-
ever, the increased interest on autonomous vehicles is driving many com-
panies to make an effort and develop better and cheaper LIDARs, so that,
they can have its component in an autonomous vehicle.
These efforts lead us to find two 360o LIDARs available at a price around
100USD by the end of the validation tests explained in Chapter 5. These
LIDARs are the RPLidar A19 and YDLidar X410, see Figure 4.14. Both
work in a similar way, they have a light emitter that sends a modulated
laser signal, and, a light detector that receives the signal after its reflec-
tion against a surface. By having the time difference between the emis-
sion and the reception, it is able to compute the distance. Then due to the
movement of its sensors it achieves a 360o field of view.
After a brief assessment of both sensors, we decided to stay with the
YDLidar due to its more efficient power management. Briefly, this sensor
is able to control the power received and, therefore, to stay off if it is not
being started through its driver, while the RPLidar starts its rotation as

9https://www.slamtec.com/en/Lidar/A1
10http://www.ydlidar.com/products/view/5.html
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(a) RPLidar A1. Source:
https://www.slamtec.com/en/Lidar/A1

(b) YDLidar X4. Source:
http://www.ydlidar.com/products/view/5.html

Figure 4.14: New 360o LIDARs available in the commercial market.

soon as one plugs it.
Adding a LIDAR to the system affects it in three ways. First, the internal
data flow and its processing is lighter than with an RGB-D camera, there-
fore, using an SBC as a robot brain becomes an option.
Second, the navigation strategy changes as the robot goes from a sensor
that has a narrow field of view but in 3D, to a flat field of view, but at 360o

and with a faster update rate.
Finally, having a LIDAR sensor will add SLAM capabilities to the robot.
Although it has been proved that the map is not required for inventorying
an entire space, it can add relevant features. Briefly, it allows the system
to locate items in the space. It facilitates the returning of the robot to
its charging station, which leads to a more efficient balance between the
power to inventory and the power to come back to the charging station.
Finally, a finishing condition can be added by analyzing the map, such as
there are no new places to move. More details will be given around these
features in section 4.5.3.
The main downside of using a LIDAR sensor instead of an RGB-D cam-
era is that the detection of obstacles remains in a single plane. This en-
dangers the navigation as some obstacles can not be detected. To solve
this issue, a SONAR sensor can be added in the sense of the moving di-
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rection. This way, the robot is able to detect obstacles out of the LIDAR’s
plane, in addition, it can detect obstacles that the LIDAR can not, such as
mirrors, glasses or light absorbing surfaces.
The only added difficulty is that the SONAR has a very low angular pre-
cision, usually several tens of degrees. So, if the sonar detects an obstacle
in an extreme of its field of view, it will mark the whole field as occupied,
which can prevent the robot from moving through narrow aisles. To deal
with this, the maximum range of the SONAR has been limited in such a
way that the maximum size of an obstacle detected by the sonar will have
the robot’s diameter.

Brain and robotic mobile base

Removing the RGB-D camera from the system allows using less powerful
SBCs like a Raspberry Pi11 (RPi). This has two benefits for the system.
First the price of the brain is reduced almost an order of magnitude. Sec-
ond, the battery consumption for an RPi is lower than for a NUC. This
allows removing the external battery for the brain.
The Turtlebot 2 has several power outputs, by means of DC/DC converters
it is possible to provide the required power to each component. Therefore,
with the Turtlebot’s large battery (4400mAh) it is possible to feed all the
robot’s components during almost three hours while the robot is on op-
eration. Therefore, the initial requirement of having at least 2 hours of
battery is maintained.

4.5.3 Software

This subsection briefly describes improvements that are currently under
research. So they have been started during this thesis but they have not
been fully tested or implemented. Nevertheless, this final iteration of the
robot design is ready to implement them.

11https://www.raspberrypi.org/
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Docking station

Once the mission is over or the battery is almost finishing the robot re-
quires the ability to return to its charging station. In this sense, the Turtle-
bot 2 has a charging station, see Figure 4.15, that can be purchased and it
has also a software package12 that can drive the Turtlebot into the charg-
ing station if it is in sight and at less than five meters.

Figure 4.15: Turtlebot docking station. Source:
https://www.roscomponents.com/358-thickbox default/docking-station-tb2.jpg

Therefore, our concern is reaching the area from which the Turtlebot can
autonomously dock. To do so, two alternatives are under study.
The first is placing a battery assisted passive tag (BAP tag) on the dock-
ing station. This type of tags allows detection up to 30 meters. This way,
if the robot is far from the docking station, it could detect the tag and
by following a similar navigation method than the one used for taking
inventory it could be able to come back to the docking station, until the
infra-red sensor of the Turtlebot detects it.
The second alternative is running a SLAM process on the background
while the robot is taking inventory. This would allow locating the robot
as well as the docking station, so at the end of the mission a navigation
goal from one pose to the other could be given. In this case, the SLAM
process would not influence the inventory mission, but while it is being

12https://wiki.ros.org/kobuki auto docking
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performed a map would be generated. Additionally, the Turtlebot requires
reaching a position around 5 meters from the docking station with line of
sight. This is not a hard requirement and the resolution of a map to achieve
this does not need to be high, therefore, the computational requirements
of the SLAM process should not be high.

Collaborative mapping

The map-less stock-counting algorithm is stigmergic, therefore, it is spe-
cially well suited for multi-robot systems or, even, swarm systems. The
LIDAR included in the new design allows each robot to create a map of
its environment. However, the SLAM process creates maps that are local,
they are centered in the initial position of the robot and with its orienta-
tion and they suffer the local perturbations of the precise robot. So, if the
robot slips or if there are misleading LIDAR readings the changes in the
map are local. Additionally, the robots are performing a task that it is well
distributed among them, as the results show, so, the local maps can have
very little overlapping, meaning that they are not complete maps of the
environment.
Therefore, creating maps and retrieving the maximum benefit from them
is only useful if maps are shared, common and complete. Solving the
problem of collaborative mapping is easier if the initial poses of the robots
are known with respect a given reference. In our case, there is no prior
knowledge of the environment, therefore, an initial given reference is not
available. In this cases, where the initial positions are not known the prob-
lem becomes more complex [40].
One of the simplest solutions to this problem is using image processing
algorithms that can rotate and translate images to stitch them. Therefore,
by taking the individual maps, a common one can be created by stitching
the individual maps, and, in addition, a transform can be established be-
tween each individual map and the common one. More interestingly, if
the overlapping of the maps is low this method still works.
During this thesis a contribution has been made to the ROS package mul-
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tirobot map merge13 providing this transform relation between the maps
and not only the image of the general map, as initially did the package.
An example has been developed to illustrate the process. Three maps
of the same space are created by a robot following each time a different
path on that space. Therefore, the maps are different until the end of the
process. The three processes are recorded using internal ROS methods.
Later, offline, the recorded processes are played and the map merging pro-
gram executed to test it. This way it is not required to create maps every
time an adjustment or a test has to be performed.
Figure 4.16 shows the starting maps of the robots, so what they capture
from the surroundings at the start of the process, it is clear that they start
from different locations, and therefore, there is no initial overlap. Then
Figure 4.17a shows the three maps overlapped without any logic, at this
stage the stitching process has not yet start.
In Figure 4.17b the stitching process has started. It is relevant noticing
that there is not much overlapping between the maps, but the result is
promising. The three maps can be observed by following the internal
lines and the different gray shades. Finally, from Figure 4.18a to Fig-
ure 4.18d it can be observed how the stitching continues while the robots
cover the whole space.
In the last map, Figure 4.18d, there are almost no internal lines and the
gray shade is the darkest meaning that the three robots have covered the
whole space, and the three maps completely overlap.

(a) Map 1 (b) Map 2 (c) Map 3

Figure 4.16: Initial maps

13http://wiki.ros.org/multirobot map merge
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(a) The three maps without a logic
transform

(b) The first transform for the three
maps.

Figure 4.17: Initial maps

(a) Map merging intermediate state
- 1

(b) Map merging intermediate state
- 2

(c) Map merging intermediate state
- 3 (d) Map merging final state

Figure 4.18: Process maps

If a SLAM process is running in the background while the map-less inven-
tory is taking place. A collaborative mapping between the agents can be
created and it could enhance the entire system performance. For instance,
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it could send the most appropriate robots to areas that are not fully inven-
toried. It could allow using the finishing condition of having explored all
the space. Or it could give item location capabilities to the entire system.
Related to this, an interesting issue not tackled in this thesis is to check
if these benefits can still be available in a decentralized system, or that,
adding this type of features leads the system to a centralized one. In this
sense, a further study is required.

Continuous inventory

In general, the RFID-based inventory robots are thought to perform an in-
ventory or location mission, and then, go back to the docking station until
the next mission starts.
However, if a fleet of RFID-based inventory robots is available, it could be
possible to have a continuous inventory by having always several robots
taking inventory of the space, while the rest are charging.
In this situation, the algorithm as is presented in this thesis would not
work. Once all tags have been detected the attraction values would de-
crease fast and the robots would start moving randomly as the obtained
values of attraction would be too small to be informative.
However, it could be possible to have a continuous inventory if a timeout
or a weight that decreases with time is added to each EPC detection. This
way, once an EPC has not been detected for a certain amount of time, it
would be removed from the shared list or its weight would decrease to
become irrelevant. Therefore, once it is again detected it counts as a new
EPC allowing the system to continuously take inventory of the space.

Indoor location

One of the main reasons for having RFID robots is their capacity to locate
the tagged items. In this sense, not having a map of the environment in-
troduces a handicap to the system, as there is no fixed reference in which
to place the located items. To overcome this issue two alternatives have
been studied.
The first is to run a SLAM process in the background, so that, when the
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robot locates an item with respect to itself, then it can place that item in
the map, as it knows its reference in it. This possibility has already been
discussed in the previous subsections.
The second alternative is to use Visual Light Communication (VLC) as an
indoor Real Time Location System (RTLS). This technology modulates
the LED lights that are illuminating a space, so, by means of a camera,
such as the one in a smartphone, that captures this modulated light it is
possible to determine the exact position of this camera with respect to the
lights. This solution would require the integration of a camera on top of
each robot, nevertheless, it has been observed that it is very precise and
can be easily integrated with the system.
During this thesis, a testing package has been developed in order to trans-
form the coordinates provided by the VLC system into a ROS message,
so that it can be used by any robot.

4.5.4 Designed robot

The lessons learned from the initial design iteration, from the experimen-
tal tests of Chapter 5 and the support from Keonn staff’s in the mechanical
design led to the following design. Figure 4.19 shows the CAD design of
the robot. From there, it can be observed that the height of the antennas
has been considerably decreased and that the RFID reader, which in the
previous design was inside the square created by the antennas, now is be-
tween the antennas and the Turtlebot base, further lowering the robot’s
center of gravity. In this design most of the robot components are in the
same plane as all of them can feed directly from the Turtlebot’s battery. It
is relevant to observe the 360o degree view that the LIDAR has, and the
location of the SONAR, which is in the frontal side and at a higher height
than the LIDAR, in order to detect obstacles out of its plane. The bumper
on the Turtlebot’s base will be in charge of the obstacles with the lowest
height.
Besides the Raspberry Pi 4 placed in one side, two DC/DC converters can
be observed at each side of the Turtlebot’s base, they are required to prop-
erly feed all the components from the Turtlebot’s battery.

118



“main” — 2020/7/16 — 10:12 — page 119 — #139

Figure 4.19: CAD of the final design of the robot.

In Figure 4.20 the most relevant parts of the robot are indicated, see Ta-
ble 4.6 for reference.
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Figure 4.20: Final design parts.

1 Handle
2 SONAR - Parallax Ping)))
3 DC/DC converter 12V to 24V
4 YDLIDAR X4
5 Advantenna SP-11
6 AdvanReader-160
7 Raspberry Pi 4 b
8 DC/DC converter 12V to 5V
9 Turtlebot-2

Table 4.6: List of the main
components of the final de-
sign

In terms of modularity this design can easily separate the RFID payload
from the rest of the components, this, apart from the clear advantages
for maintenance, will also allow the use of different RFID payloads that
could enhance the operation for specific cases.
This design has also pushed forward the cost-effectiveness of the robot,
as it can be observed, the total cost is approximately 2650 e, 350 e less
than the previous design and over 10 times cheaper than any RFID-based
inventory robot on the market.
Figure 4.21 shows the robot built following the final design. It is now
ready to be tested in a real environment to assess the new performance on
RFID reading and to test the new functionalities extended with the new
hardware and software available. However, due to the exceptional nature
of the current situation with the Covid-19, the tests have been postponed
and are not part of this thesis.
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System Element Cost (e)

Payload 1 x Reader 1300
4 x Antennas 400

Platform

Turtlebot-2
(large battery) 720

YDLidar X4 100
Parallax Ping))) 30
Raspberry Pi 4 50
Converters &
wiring 50

Table 4.7: Designed robot components cost detail.

Figure 4.21: Final design of the robot.
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Chapter 5

ALGORITHM & DESIGN
VALIDATION

This chapter introduces the experimental validation of the map-less algo-
rithm, presented in Chapter 3, and the validation of the prototype, pre-
sented in the first part of Chapter 4, in a real environment. In order to do
so, the robot is taken to the library of the Campus Poblenou1 (UPF).

5.1 Testing environment

The library is selected as the experimental environment for three reasons.
The main one is that the library staff can provide us with their list of
available books on the shelves. Therefore, an updated base-line of the
expected books will be available. Second, they are flexible on the possible
schedules to perform the tests. Finally, it is near the office where the
robots are stored, which avoids transportation issues.
Additionally, the library is an interesting environment:

• The density of labels is higher than in an average store. This will
stress and test the reading capabilities of the system.

1https://www.upf.edu/web/biblioteca-informatica/poblenou
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• The aisles are wide and regular, therefore navigation issues should
not arise. On the contrary, for RFID-based inventory robots that
are based on map navigation, very regular environment can affect
the robot navigation, as the robot might find itself lost due to the
repetition of the same patterns in every aisle.

Nevertheless, the library presents the following challenges:

1. Only two aisles had books with tags, a total of 2,200 books are
distributed among their shelves.

2. Reading tags inside books is difficult:

• The books in the shelf are very packed and the density of
RFID tags is high.

• The bookshelves are metallic which create many interactions
with the RF waves.

• The paper contains water which absorb part of the RF power.

3. The environment is not totally controlled.

For each challenge an action will take place in order to perform the test
with the best possible conditions, Table 5.1 shows a summary of the chal-
lenges and actions to mitigate them.

Challenge: Only 2 aisles with tagged books

This first issue is the most critical, a larger space is required in order to do
the tests, a couple of aisles are not enough to test the algorithm. Therefore,
the plan is to add more tags.
The first floor of the library contains a total of 35,000 books, which makes
it not feasible to tag all of them. We cannot obtain enough RFID tags,
they are cheap but the amount of tags is too large. Also, the procedure of
tagging books requires a lot of time. It consists of the following steps:

1. Take all the books from a shelf without losing their order.
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Challenge Mitigation
Only 2 aisles have tagged books Add tags to every bookshelf

Reading RFID labels inside books Methodology evaluation and
design ad hoc

Environment not totally controlled Perform tests at the moments
with less attendance

Table 5.1: Summary of challenges and mitigation actions for the tests in
the library.

2. Read the first book bar code and codify it into an EPC

3. Stick the tag with the EPC codified inside the book, as seen in Fig-
ure 5.1

4. Repeat steps 2 and 3 for each book of the shelf.

5. Return the books to their shelf in their exact same order and take
the next one.

Figure 5.1: Example of a tag added to a library book

Therefore, we decided to tag the whole floor but only those books that are
at 1m from the ground, which means only the third shelf of each book-
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shelf. We managed to tag more than 4,100 books having tags on all books
of the third shelf of the first floor of the library, which was only possible
thanks to the collaboration of the library staff.
After adding these tags, we had an environment of 6,300 tags, 4,100 were
distributed through all the aisles but at the same height and 2,200 tags
were gathered in only 3 aisles but placed at all heights.

Challenge: Reading RFID tags inside books

Regarding the second issue, two actions are planned. The first consists
on conducting a methodology analysis in order to better understand the
RFID reading capacity of the developed robots in a difficult environment
such as is the library. It will help understanding which are the books that
can not be detected and it will let us adapt the methodology accordingly,
see section 5.2.
The second action is in the design. The RFID payload is ad hoc placed at
1m height in order to be in the middle of a shelf, coinciding with the third
shelf that has the majority of the RFID labels.

Challenge: Not fully controlled environment

The third issue can affect the tests in two ways. On one side, the library
users can take books to their tables without notifying or they can misplace
the books after checking them. This can affect the final inventory accu-
racy of the test. In fact, this is also considered in the following sections
when the inventory accuracy computation has to be done. On the other
side, people can block an aisle for many reasons, this can affect the navi-
gation of the robot forcing it to take a direction that was not the selected
by the algorithm. To deal with it, most of our tests are performed as early
in the morning as possible, when the library is almost empty. Although,
by the end of any test there were already many students around moving
and taking books. Nevertheless, no tests had to be cancelled due to this,
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at most, a few were stopped and resumed later.

Final considerations

Figure 5.2 shows the layout of the first floor of the library. Only the
central part, of around 280m2, is available for the robot to move freely.
At each side of this central part tables are located for studying and on top
or bottom of the floor there are closed rooms or offices. The aisles are
4.5m long and 1m wide, each aisle has 5 bookshelves on each side. In
Figure 5.3, it can be seen the robot next to a bookshelf. The first shelf is
situated at few centimeters from the ground, and then they are vertically
separated 32cm.

Figure 5.2: Layout of the first floor of the library. Values in meters.

Also, in Figure 5.2, it can be observed which are the bookshelves that
contain tagged books in only the third row, and which ones have books
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at all heights. In addition, the central area of the library has been divided
in two sub-areas in order to constrict the space for some tests. Thus, the
left column of aisles is block 1 and the one of the right is block 2, see
Figure 5.5.

Figure 5.3: A prototype next to a library shelf.

5.2 Methodology

This section will define the methodology used to evaluate the perfor-
mance, in terms of RFID detections, of the map-less algorithm for stock-
counting.
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5.2.1 Missing books test
Before defining a ground-truth of the books in the library to compute the
accuracy, it is required to analyze the environment and its relation with
the robot in terms of RFID readings. The test consists of performing in-
ventory on the third shelf of some aisles, and then, investigate the reasons
for not reaching a 100% of accuracy.
At this test, the accuracy is computed as follows: the RFID labels discov-
ered by the robot are divided with the ones that are supposed to be there
given the baseline provided by the librarians.
This test has been performed in two different scenarios, Figure 5.4 shows
both of them. The first scenario, test A, is composed of three aisles and
5 bookshelves. The second scenario, test B, is composed of 4 aisles and
7 bookshelves. For both tests all labels that are not in the third shelf are
filtered out of the test.

Figure 5.4: Aisles for preliminary test of missing books.

The main characteristics of these tests are shown in Table 5.2, in both
cases the amount of available books is similar, but in the second test there
have been 17 different repetitions, obtaining in some of them significantly
better results, in terms of accuracy, than in the first test. However in any
case never exceeding an accuracy of 97.92%.
The objective of this test is finding out why a 100% accuracy is never
achieved. To do so, for each of the two tests, the books that are never
detected in any repetitions are searched. Table 5.3 shows that 29 and 16
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Test A Test B
Library aisles 3 4
Available books 665 770
Robots 2 2
Repetitions 4 17

Table 5.2: Characteristics of the preliminary test to determine the causes
of the missing books

books are never detected for test A and B respectively, these books are
then searched in their respective shelves.
The never detected books can be separated in three categories:
The first is composed by those books that are at the beginning or at the
end of a shelf. This particular position means the book is in contact with
a metallic plate. We know from other experiments that when these labels
are very close to this metallic plate they are very difficult to read. How-
ever, the results obtained show that in some occasions it is possible to read
them.
The second group are those books that are found on the shelf, but not in
any particular position. In this category we have some books with labels
that do not respond to the reader, because they are damaged. And some
other labels that do work properly but for some reason the reader was not
able to detect them.
The third category, and the largest for both tests with more than half of
the books, is composed by those books that are not found in their shelves.
They can be misplaced or lost, in any case, books that are unavailable,
which the library ignores.

5.2.2 Accuracy specification

In general terms the inventory accuracy is the fraction of RFID labels dis-
covered by the system divided by the total of RFID labels in the environ-
ment. Therefore, if a label is discovered by the robot but is not present in
the count of the total labels of the environment, this label does not count
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Books Test A Test B
Mean time [min] 11.7 14.5
Average accuracy [%] 92.8 96.2
Accuracy std. deviation [%] 2.9 1.9
Never detected 29 [4.4%] 16 [2.1%]
Touching metal 5 [0.7%] 2 [0.3%]
Not found 15 [2.3%] 10 [1.3%]
Found 9 [1.4%] 4 [0.5%]

Table 5.3: Results obtained in the preliminary test devoted to understand
the causes of the missing books.

for the accuracy. Only labels that are expected to be found are used to
compute the accuracy on inventory. This means that the robot can detect
books that are in the library, but they are not expected to be there, in these
cases they can not be counted.
The number of RFID labels in the environment is obtained with a list
provided by the librarians, called Bavailable. However, due to the character-
istics of the environment, there is a difference between the Bavailable and
the books that really are in the library. As it has been shown in the pre-
vious subsection, there is a significant amount of books that will not be
detected due to 3 reasons: they are not actually there, they are blocked by
metal or their RFID label does not work as expected.
There is no feasible way to determine which are going to be these books
before doing the tests in order to remove them from Bavailable. From the
preliminary tests we understand the reasons for some labels not to be de-
tected, but we can not anticipate which are going to be missing.
Therefore, we will define four types of accuracy, based on the baseline
used in order to provide the accuracy results:

• Raw accuracy
It will be the accuracy computed directly according to the list pro-
vided by the librarians. The intuition behind this accuracy is that it
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will under-estimate the performance of the robot.

Accraw =
Identified RFID tags

Bavailable
(5.1)

• No metal accuracy
This accuracy is computed by removing all the books that are in
contact with metal from Bavailable, called Bno metal. It is possible to
know which are these books because they are the first and last of
every bookshelf, therefore, they can be removed from the list. This
accuracy will be higher than the raw accuracy, however, as the per-
centage of books touching the metal not detected by the robot is
low, the change on the performance should not be very relevant.

Accno metal =
Identified RFID tags

Bno metal
(5.2)

• Found accuracy
This accuracy is computed by removing from Bavailable the books
that are in the shelves but cannot be detected by the RFID reader,
obtaining Bfound. This accuracy would be higher than the raw accu-
racy, as books that for sure will not be detected are being removed
from the ground-truth. However, it is not feasible to look for all
these books in the library, it would require checking the books in-
dividually.

Accfound =
Identified RFID tags

Bfound
(5.3)

• Trusted accuracy
This accuracy is computed at the end of all repetitions of an exper-
iment. In this case, the list of books that have been never detected
is removed from Bno metal obtaining Btrusted. It is worth mention-
ing that this accuracy requires several repetitions of an experiment.
It makes no sense removing the books never detected if the repe-
titions are few as the bias on the ground-truth could be too high.
This accuracy is an estimation of a not-found accuracy, however,
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if the amount of repetitions is low the accuracy obtained will over-
estimate the performance of the algorithm.

Acctrusted =
Identified RFID tags

Btrusted
(5.4)

The results shown in section 5.3 will use the trusted baseline, Btrusted, in
the case that the accuracy provided is not Acctrusted it will be notified.

5.2.3 End condition

The other figure that will be analyzed is the time the system takes to fin-
ish the inventory mission. As it has been previously explained, there is
no way to assess whether the mission is completed. Therefore, two con-
ditions have been established to finish the mission. The first is that the
system has gone through all the aisles of the area to inventory, the second
is that no new tags have been read in the last five minutes.
Both conditions are required because they are complementary. It may
happen that the system revisits some aisles and therefore, there are no
new tags read for the last five minutes, but there are several aisles the sys-
tem has not yet visited. Additionally, the system could visit all the areas,
but not thoroughly enough so that it is still detecting new labels.
Notice that the condition is based on the system, so the aisles require the
visit of at least one robot, but all robots in the system have to be at least
5 minutes without new labels found. Meeting these two conditions can
imply an overestimation of the time required by the system to finish the
inventory, nevertheless, it is the approach that provides higher relevance
to the accuracy obtained.
It is important to clarify that these conditions have been accomplished in
the most accurate way possible. Nevertheless, the tests were performed
in a non-controlled environment, and in some occasions it has been not
possible to keep track of the robot’s position while checking the amount
of new detections or while making sure that no interference was produced
with the regular users of the library.
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5.2.4 Cooperation
Some tests are performed with a system formed by two robots. The coop-
eration between robots will be evaluated by analyzing the amount of new
detections performed by each robot at every algorithm step. Ideally, it is
expected that both detection rates follow a similar shape, in such a case a
perfect coordination will have been achieved. On the contrary, if rates di-
verge with time it will indicate that one of the robots has performed most
of the new identifications resulting in an unfair cooperation.
The plots that show this aspect have a third line that are the results ob-
tained by the whole system, so the sum of each robot.

5.2.5 Starting point
At each repetition of each test, the initial pose of the robots will be changed
to avoid similar patterns due to always detecting the same labels at the
initial steps. Also, if the system is formed by more than one robot, the
distance between them will be of at least one aisle. This way, interference
issues in navigation and reading will be avoided at the very beginning of
the test.

5.3 Tests
Three tests have been done at the library to assess the feasibility of the
map-less algorithm. The first test takes only one robot and consists of
stock-counting block 1 of the library floor. The second test takes two
robots working together and consist of stock counting block 1. The third
test uses two robots and consists of stock-counting the entire library floor.
All these tests have only used the labels from the books that are in the
third row.
Additionally, a fourth test has been done in order to assess the perfor-
mance of the algorithm in an environment with an important amount of
RFID labels that are not part of the ground-truth but that can not be fil-
tered, therefore they can mislead the robots decisions. This test is done
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Figure 5.5: Library layout with the 2 separated blocks.

with 2 robots in block 2, where the labels on the third row are valid, but
all other labels in different rows are not filtered.
In Figure 5.5 both blocks are drawn over the library layout for clarifica-
tion.

5.3.1 One robot at block 1

For this first test the baseline given by the librarians consisted in 2,744
books. There are 14 repetitions, after them there were 15 books never
detected. The books in contact with metal for this test are 75. Table 5.4
summarizes the characteristics of the test.
Figure 5.6 shows the results obtained on the first test. The results pre-
sented are based on the trusted baseline, which removes the books in
contact with metal and the books never detected from the ground-truth
provided by the librarians. In Figure 5.6 every dot is a repetition of the
test. We can observe there is not a clear rule on how much time is required
to inventory half the library. For instance, there are 5 repetitions above the
99%, but in terms of time they go from less than 65 minutes to more than
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Test characteristics
Repetitions 14
Raw baseline size 2,744
No metal baseline size 2,669
Trusted baseline size 2,654

Table 5.4: Characteristics of the test of a single robot taking inventory on
block 1.

2 hours. Also, more time does not always imply better accuracy, one rep-
etition lasted for almost two hours and it had the lowest accuracy of all.

Figure 5.6: Results of the test with a single robot in the block 1 of the
library. The accuracy showed in the figure is the trusted accuracy.
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5.3.2 Two robots at block 1

The second test consisted of 2 robots taking inventory of block 1. The test
is repeated 11 times, and there are also 11 books that are never detected.
In total, the are 2,745 books with labels in this zone of the library, and
75 can be counted as touching the metal. Table 5.5 summarizes the test
characteristics.

Test characteristics
Repetitions 11
Raw baseline size 2,745
No metal baseline size 2,670
Trusted baseline size 2,659

Table 5.5: Characteristics of the test of two robots taking inventory on
block 1.

Figure 5.7 shows the results obtained. It can be observed that all the rep-
etitions lasted between 30 and 60 minutes, but most of them around 45
minutes. The variability on accuracy is similar than in the previous test,
staying in a narrow 3% interval. As previously, the accuracy observed in
Figure 5.7 is the trusted accuracy, so never detected books and books in
contact with metal are removed from the baseline. Observing the results
seems possible to affirm that 2 robots can finish the inventory mission
with an accuracy of at least 97% in around 45 minutes.
The individual behavior of each robot of the system can be observed in
Figure 5.8. In the first case of the two presented both robots behave in
a very similar way, discovering almost the same amount of new tags per
algorithm step. On the contrary, the second case shows that the 2 robots
initially discover the same amount of labels, but then, robot 2 stays many
algorithm steps without finding new labels until the last part of the repeti-
tion, when robot 1 stops finding new labels but robot 2 is able to complete
the inventory mission.
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Figure 5.7: Results of the test with two robots in the block 1 of the library.
The accuracy showed in the figure is the trusted accuracy.

5.3.3 Two robots at the entire library floor

The third test uses 2 robots and targets the entire floor of the library for
stock-counting. In this case, the books out of row 3 that are present in
block 2 are filtered out, so they will not influence the behavior of the
robots.
There are 10 repetitions of this test. The baseline of labeled books is of
4,130 and 127 of them are considered to be touching the metal. After all
the repetitions there are 30 books that have never been read. See Table 5.6
for a summary of the characteristics of the test.
The results obtained can be found at Figure 5.9, it can be observed that 9
out of 10 repetitions have a trusted accuracy between 98.5% and 99.5%.
Regarding the time to complete the task, all repetitions take between 60
and 110 minutes. It is worth mentioning that if we consider only the rep-
etitions that last between 75 and 110 minutes, and excluding the outlier,
the accuracy is still more stable between 99% and 99.3%.
Figure 5.10 shows the individual behavior of the two robots for one of
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Test characteristics
Repetitions 10
Raw baseline size 4,130
No metal baseline size 4,003
Trusted baseline size 3,973

Table 5.6: Characteristics of the test of two robots taking inventory on
entire floor of the library.

the repetitions. It can be observed that in this case both robots work in
parallel detecting half of the new labels, they also show a very similar rate
of discovery.
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Figure 5.8: Two examples of the individual behavior of each robot during
tests in the block 1 of the library. The ratio of RFID labels detected is ob-
tained over the total of labels detected, so it does not measure an accuracy.
The highest line is the sum of both lines.
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Figure 5.9: Results of the test with two robots on the whole floor of the
library. The accuracy showed in the figure is the trusted accuracy.
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Figure 5.10: Example of the behavior of both robots during one of the
repetition of the test on the whole floor of the library. The ratio of RFID
labels detected is obtained over the total of labels detected, so it does not
measure an accuracy. The System line is the sum of both robots.
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Summary

In order to have a broader idea of the performance of the system, Fig-
ure 5.11 shows the three tests in a same graph. For each test, it plots the
average value of time, and the average value of accuracy for all the rep-
etitions of the tests. It also plots their respective standard deviations as
error bars on top of the average values, even if it is not clear that the rep-
etitions behave as normal distributions, the standard deviation provides a
good intuition on the values obtained.
Figure 5.11 also shows the accuracies obtained taking into account three
baselines defined in section 5.2. It can be seen that the difference between
them is of around 0.5%, so the “no metal accuracy” is, in general, 0.5%
higher than the “raw accuracy” and the “trusted accuracy” is 1% higher
than the “raw accuracy”.
The results show two different groups, on one side there is the test with
two robots and half the library (“block 1” at the legend of Figure 5.11).
For this test the time spent is between 40 and 50 minutes and the accura-
cies are between 96% and 99%. On the other side, there are the tests with
one robot at half library and with two robots at the whole library (“block
1” 1 robot and “Entire library” at the legend of Figure 5.11). In this case
the time is doubled with respect to the previous group but the accuracies
are slightly better from 97% and 99.5%.

143



“main” — 2020/7/16 — 10:12 — page 144 — #164

Figure 5.11: Average accuracy of the tests with respect to the time taken.
The time required for each test is also averaged. Vertical lines show the
standard deviation on the accuracy and horizontal lines the standard devi-
ation on time.
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5.3.4 Two robots at block 2 with misleading tags

This last test is with 2 robots and takes inventory of block 2. This area
contains bookshelves that have books at all possible heights. During the
tests there are no labels filtered inside the same block 2, therefore, labels
from all heights can guide the robot. However, the accuracy is given only
with respect to row 3. This test aims to assess the behavior of the algo-
rithm in the presence of RFID tags that are not relevant to the inventory
mission but cannot be filtered.
There are only 2 repetitions of this test, so it does not make much sense
computing a trusted accuracy. With only two repetitions is not consistent
enough to create a list of never detected books, in addition, they present
very different results in time, but not in accuracy, see Figure 5.12. There-
fore, the results are presented using the “no metal baseline”
This test has a baseline with 3,604 books, but only 1,396 are in row 3.
Also there are 50 books in contact with metal. See Table 5.7 for a sum-
mary of the characteristics

Test characteristics
Repetitions 2
Raw baseline size 3,604
Row 3 - Raw baseline size 1,396
Row 3 - No metal baseline size 1,346

Table 5.7: Characteristics of the test of two robots taking inventory on the
block 2 with misleading tags.

Figure 5.12 shows the results obtained, it can be seen that the two rep-
etitions have two different behaviors. In fact, the one that requires half
the time has better accuracy values than the other. Nevertheless, take into
account the differences in accuracy are small, less than 0.2%. The large
time difference is given because in one of the tests the books from rows
other than row 3 affected the decisions of the algorithm making the robots
wander for too long on a few aisles.
In order to understand the individual behavior of the 2 robots of the sys-
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Figure 5.12: Results of the test with two robots in the block 2 of the
library. The accuracy showed in the figure is the no metal accuracy.

tem it is relevant to look at Figure 5.13. First, notice that the ratio of RFID
labels detected is computed over all the labels detected with both robots,
so it includes books from all rows. Also, the figure only includes the la-
bels detected for the first time, so if a robot is detecting the same labels
many times, it just counts as one and only the first time. It can be seen that
there is one robot, robot 1, that detects more than 60% of all the labels,
which ends up being more than the double of labels than robot 2. This fig-
ure also explains the large time required to finish the inventory mission,
as one of the robots clearly performs worse than the other lowering the
performance of the whole system. This test shows that taking inventory
of areas where tags can not be filtered can double the time required for
inventorying the zone.

5.4 Conclusions
In general terms the results obtained are promising, the system is achiev-
ing inventory accuracy values as high as the ones expected for any cur-
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Figure 5.13: Example of the behavior of both robots during one of the
tests in block 2 of the library. The ratio of RFID labels detected is ob-
tained over the total of labels detected, so it does not measure an accuracy.
The highest area is the sum of both areas.

rent RFID robot solution, between 97% and 99%. In addition, the time
required for reaching these accuracy values is low enough to consider the
proposed solution suitable for real life applications.

The library has been proven to be a challenging testing environment in
terms of RFID readings, however, the results obtained prove that the pro-
totype that has been developed for testing the algorithm has good initial
conditions in order to be developed as a product.
The exact computation of inventory accuracies on large and not controlled
environments is always a challenge. In this case, three different accura-
cies have been computed in order to provide the results. In this sense, it
is possible to have a better understanding of how the system will behave
in these types of environments.
Also, regarding the library environment, it is worth mentioning that the
finishing conditions set for these tests were not always strictly followed.
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Having track simultaneously of the number of new tags detected per robot
and their amount of aisles visited while, for instance, trying to ask stu-
dents to keep a proper distance to the robot was not always possible.
Therefore, although the results are promising it is important to keep in
mind that overall times and accuracies could be slightly different. In fact,
the selected finishing condition have ensured high accuracy values, but it
has increased the variability on the total amount of time required for the
mission.

In terms of performance it is interesting to compare the results obtained
at block 1, where the system has worked with 1 and 2 robots. In the case
of using only one robot, it can be observed, see Figure 5.11, that the accu-
racy obtained is slightly higher, around 0.5% depending on the baseline
used. However, in terms of time, having a system with 2 robots reduces in
half the time required, it is also worth noticing that the variance on time
is also reduced.

Another interesting comparison can be done if we contrast the system
with two robots, but taking inventory of half library or the whole floor.
In this case, it can be observed that the time is doubled if the space is
doubled, but this also brings a small improvement in terms of inventory
accuracy, 0.5% at the raw accuracy but almost 1% for the trusted accuracy.

The proposed algorithm makes the robots cooperate or, at least, paral-
lelize the task they are performing. It has been seen during the tests that
the level of parallelization is high when the robots perform as expected.
So in these cases both robots discover around half of the tags. Also, it has
been observed that in some cases if one of the robots got lost or could not
find new RFID labels the other robot can finish the task, possibly spending
more time but not risking the final value of accuracy. This is very remark-
able because it greatly improves the robustness of the proposed solution
in contrast to the solutions with a single robot.

The tests in the library have shown the suitability of the presented solu-
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tion for inventory taking. In addition, it has been shown the improvement
in the current state of the art of inventory robots, not only by being a fully
autonomous solution, but also, by autonomously parallelizing the task,
and by showing its robustness against failures. The system will finish the
task while there is at least one operative robot.

The results have also provided some insight on the scalability of the so-
lution, showing that it seems to be linear with the surface to inventory.
Which means that if the space is doubled, by only doubling the number
of robots, the time required to finish the task will be roughly the same.
In addition, the system is prepared to handle as many agents as available.
It is known that some interactions between the robots in terms of navi-
gation and RFID readings happen, so if there are too many robots in a
small place the performance of the system can get worse. However, this
also means that can be an optimum of performance given by a determined
number of robots in a fixed space. This makes the solution adaptable to
any environment. Last but not least, the cost of the robots, as previously
explained, has been reduced drastically with respect to the other inven-
tory robots on the market. This fact allows the scalability feature of the
solution to become a real asset to the system.
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Chapter 6

RFID GROUPS LOCATION

Besides developing a map-less algorithm to enhance autonomy, robust-
ness and scalability while reducing the cost of inventory robots, there are
other ways to make inventory robots more useful to retailers. Location
capabilities is a key enhancement as it is one of the features most wanted
by retailers.
Knowing the location of tagged items can improve several aspects of a re-
tailer’s business. For instance, it improves the availability of products by
finding those that are misplaced, it can help planning and picking orders,
or it can provide insight about the places of the store where products are
better sold.
This chapter presents a solution to locate groups of RFID labels in a real
retail store by means of an inventory robot, which represents an improve-
ment with respect to the current state of the art for two reasons: its effi-
ciency and its convenience for the final user. The method developed also
matches with the characteristics of the robot designed, which means that
is kept as simple as the robot concept. Additionally, the method has low
computational requirements to be compatible with the designed robot.
Although the method has been developed for the designed robot, specif-
ically for the final design, which can have a map to reference items in it,
due to organizational issues, the tests performed in this chapter are done
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with an AdvanRobot1 (see section 2.4.2 for more details on this robot.)

6.1 Problem description
Typically, this location problem is defined as the problem of locating an
RFID tag in the environment through specifying its coordinates with re-
spect to a map or a fixed coordinate system.
However, the problem tackled in this chapter is defined in a new way.
On one side, the problem consists on locating a group of RFID tags, in-
stead of a single one. Usually this group of RFID tags will be a family of
products, such as products that share the same SKU. In fact, when retail-
ers need to know the location of a top-selling product, they do not care
about the specific item sold, but the family of products that it belongs to.
In this regard, it is more useful to group and locate the whole family of
products.
On the other side, the reference used to locate the group of RFID tags
will not be a set of coordinates but a zone of the environment such as a
section in a store, or a landmark, such as a fixture. This change is also
motivated by retailers, as they do not need the specific coordinates of a
SKU in a map with an origin arbitrarily set by the initial pose of a robot.
Instead, they need to know if the product is next to the main door, close to
the fitting rooms or near the selling points. Additionally, they also want
to know in which fixture the SKU is placed to obtain more precise knowl-
edge about its layout performance, or to fulfill orders more efficiently.

6.1.1 Solution constraints and hypothesis
Before presenting the solution hypothesis for the location problem that it
is being tackled, three constraints have to be taken into account in order
to be as generic as possible:

1https://www.keonn.com/systems/view-all-2/inventory-robots.html
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• There is no intervention on the store, no rearrangement of zones or
fixtures is performed and no reference tags or other external devices
are installed.

• The RFID technology used is COTS (Commercial Off-The-Shelf).
In particular the RFID elements used are two AdvanReader-150.042

and 8 Advantenna-SP113, both found in the design developed in
Chapter 4 and also in the AdvanRobot.

• Third, the amount of data to perform the computations can be large
and the designed robot is not computationally powerful, therefore,
the location method cannot be demanding on computational means.

To develop the simplified group location method two hypothesis are made:

• The best combination of RFID parameters, such as the RF power
or the RF session, are not the same to take inventory than to locate
items. The intuition behind this hypothesis is as follows: for the
first case the objective is reading all the RFID tags at least once; for
the second case is preferred to read the same tag several times and
to avoid multi-path readings. Therefore, the RFID parameters (the
RF power and the RF session) require different settings in order to
optimize the location of RFID groups.

• A simple model for the RFID sensor may, on average, yield results
as good, or better, as a very complex model. This hypothesis is
taken because of the strong interaction of the RF waves with the
environment. So, if the very complex model can properly work in
a determined environment this will mean that the model has learnt
not only about the RFID detection characteristics but also about the
interaction with the environment, making this model not suitable
for a different environment. On the contrary, a very simple model
may not excel in any environment but can provide reasonably good
results in all of them.

2https://www.keonn.com/rfid-components/readers/advanreader-150.html
3https://www.keonn.com/rfid-components/antennas/advantenna-sp11.html
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6.1.2 Formal description
Notice that in this and the following sections, capital letters denote sets,
capital letters with subindex denote subsets and lowercase letters are for
elements of these sets.
The goal of the location problem is to classify each of the |S| groups
of RFID labels, Gp, into an area, an, from the set of areas of the en-
vironment, A = {an}, or into a fixture, fm, from the set of fixtures in
the layout, F = {fm}, or both. The coordinates with respect to the
robot’s map defining each area are approximated by a polygon and de-
noted CAn = {(x1, y1), (x2, y2), . . . }, and similarly, for each fixture are
CFm = {(x1, y1), (x2, y2), . . . }.
Each group of labels, Gp, is composed by several RFID detections, dj .
These will be initially stored in a database denoted D = {dj}. The detec-
tions are the available information given by the RFID system to compute
the position of each group of tags. Notice that dj is a single tag detection,
therefore, every time a tag is detected the detection, dj , is stored in D.
A detection, dj is mainly composed by the data retrieved from the robot
at the moment of the detection. Specifically, dj = {lj, gj, tj, aj, pj, ĉj} is
composed by:

• lj: The code identifying the RFID tag.

• gj: The code identifying the group of products.

• tj: The timestamp of the detection.

• aj: The antenna port that produced the detection.

• pj: The pose of the robot: its coordinates and orientation with re-
spect to a map.

• ĉj: The estimation of the true RFID label coordinates, cj .

The code identifying the group of products, gj , is not directly obtained
from the detection, but through a relation with lj . This relation usually
requires decoding the lj to extract gj or, in simpler cases, querying a table
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that relates both identifiers. Therefore, once gj is obtained from lj , it is
added to dj .
The estimation of the RFID label coordinates, ĉj , is also computed after
the detection and added to the data, dj .
Notice that two different detections, dj and dk, of the same RFID label
will only have lj = lk and gj = gk in common, but may have ĉj 6= ĉk,
tj 6= tk, aj 6= ak and pj 6= pk.
A group of labels, Gp, is composed by all the detections of the same
group, so they share the same gj . Therefore, Gp = {dj | ∀j gj =
gp}.
If the group Gp is composed by detections of a single RFID label, lj , it can
only have one position in the environment. But if a group is composed of
several RFID labels, it can be located in several places in the environment.
For clarification, one could have white T-shirts in a shop, each T-shirt has
a different, lj , but they all are part of the same group, Gp, as they share the
same group code, gp. It could be possible that half of the white T-shirts
are at the entrance of the store, while the other half are next to the points
of sale. In this case the group, Gp, would be in two different locations.
Our experience shows that between 1 to 4 locations for a single group,
Gp, in a shop is common.
Therefore, each of these locations, ckp, where the super-index k represents
the cluster of detections that define this location, has to be related to an
area or fixture of the store. In the case of the area it is simpler, as areas do
not overlap and occupy the entire space. Therefore, the area that contains
the coordinates ckp is the one that has to be selected.
On the contrary, fixtures do not occupy the entire space, therefore, the
coordinates, ckp, of the cluster have to be the closest to the fixture to be
assigned.
Thus, each result of the problem has to be composed by three elements:
the group of tags, Gp; its assigned area, an and its assigned fixture, fm.
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6.1.3 Proposed solution

Before detailing the proposed algorithm, Algorithm 4, some definitions
are required:
When a detection, dj , is obtained, the function estimate location com-
putes the estimated coordinates of the RFID label detected. The model is
as simple as possible, it estimates the location of the detection at a fixed
distance with respect to the antenna that got the detection.
To do so, it uses the antenna port, aj , and its location on the robot to de-
termine a unit vector in the direction of the antenna with respect to the
robot. Then it multiplies this vector by a constant factor, named read-
ing distance. This is a similar step that the one presented with the Equa-
tion 4.1, but in this case, to stay as simple as possible, instead of using
the RSSI to determine the distance, a constant value is used. Finally, the
coordinates are transformed from the robot frame to the map frame by
means of the pose of the robot in the map, pj , at the timestamp of the de-
tection, tj . It is worth mentioning that this computation may not be done
at the moment of the detection, therefore, the pose of the robot needs to
be queried by using the timestamp of the detection, tj , which implies that
time synchronization is required between the RFID system and the robot.
To define each cluster from the estimated coordinates of the detections a
method called Density-based spatial clustering of applications with noise,
DBSCAN [41], is used. This is a density based method that does not re-
quire assigning an initial number of clusters, and, given that the amount
of locations that a group can have is unknown, this is a relevant feature.
In addition, the DBSCAN is able to detect outliers, and therefore, an EPC
detection that is far from any other reading can be discarded as an out-
lier. Two parameters drive the performance of DBSCAN in the imple-
mentation used, see [42]: eps which is the maximum distance to consider
two samples of the same cluster and min samples which is the minimum
number of samples in a group to be considered a cluster. Therefore, if the
number of RFID readings of a group is lower than min samples or they
are too scattered, the group will not be located
The DBSCAN implementation used returns all the coordinates given in
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Gp but with a label k according to the cluster that they belong to, the list
of the coordinates is named Cp. To further simplify the implementation,
each cluster will be finally defined by the average value of the coordinates
of all its samples.
Finally, two functions assign area and assign fixture are used to deter-
mine to which area or fixture each cluster belongs. In order to determine
the relation between the area or the fixture and the cluster coordinates the
Python library called Shapely 4 is used.
The assign area simply iterates over all the existent areas until it finds the
area that contains the coordinates of the cluster, then it just returns the id
of the area, an. To do so, a function called is inside is used, this function
uses the Shapely library and returns true if the coordinates are inside the
polygon.
The assign fixture is similar, but if the coordinates are not inside a fixture,
the distance between them is computed and stored in a list of distances,
DGp . If at some point a fixture is found with the coordinates of the clus-
ter inside, by means of is inside, then it is returned. But, if all fixtures
have been checked, then the selected fixture is the one with the short-
est distance between the coordinates of the cluster and coordinates of the
fixture.

Algorithm explanation

Algorithm 4 uses one procedure called “Compute group location” and
three functions: estimate location, assign area and assign fixture.
The procedure, “Compute group location”, is applied at each group of
labels, Gp. Initially the estimated coordinates for each detection are un-
known, and are computed using the function estimate location as previ-
ously explained. Once all the coordinates of a group are estimated, they
are processed by DBSCAN, which provides the coordinates of each detec-
tion labeled with its corresponding cluster.
Therefore, the coordinates of each detection of the same cluster, Ck

p , are
averaged to obtain the cluster coordinates, c̄kp.

4https://pypi.org/project/Shapely/
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Algorithm 4 RFID labels group location algorithm
1: procedure COMPUTE GROUP LOCATION(D)
2: for Gp in D do
3: for dj in Gp do
4: ĉj :=estimate location(dj)
5: dj ← ĉj . ĉj is initially blank in dj
6: end for
7: Cp, clusters := DBSCAN(Gp, eps, min samples)
8: for k in clusters do
9: c̄kp = average(Ck

p )
10: Gp ← assign area(c̄kp, A)
11: Gp ← assign fixture(c̄kp, F )
12: end for
13: end for
14: end procedure

Then, it is possible to assign an area, an, and a fixture, fm, for every
cluster, k, of the group Gp, by means of the functions assign area and
assign fixture.

Algorithm example

Figure 6.1 represents the algorithm steps to determine the position of a
group. Initially, the red dots represent the robot poses where it has de-
tected an RFID tag, see Figure 6.1a. Then, the location of each tag detec-
tion is estimated by transforming the pose of the robot with respect to the
antenna that got the reading, see Figure 6.1b. Next, only the detections
that belong to the same group are kept, see Figure 6.1c. Notice than steps
two and three can change their order, depending on the way of storing
the data, so the data can be separated by groups first, and then, estimate
the EPC locations. The DBSCAN algorithm is then used to eliminate all
the outliers and, in this case it also creates two clusters, see Figure 6.1d.
Finally for each group the final location of the cluster is computed by
averaging the positions of the members of the cluster, see Figure 6.1e.
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Algorithm 5 RFID labels group location functions
15: function estimate location(dj)
16: ~ap = antenna vector(robot description, aj)
17: ĉj =transform( ~ap ∗ reading distance, pj , tj)
18: return ĉj
19: end function
20: function assign area(c̄j , A)
21: for an in A do
22: if is inside(c̄j , CAn) then
23: return an
24: end if
25: end for
26: end function
27: function assign fixture(c̄j , F)
28: for fm in F do
29: if is inside(c̄j , CFm) then
30: return fm
31: else
32: DGp ← distance(c̄j , CFm)
33: end if
34: end for
35: return fm | arg-minfm∈F (DGg)
36: end function
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(a) Red dots are the location of the
robot at every EPC detection.

(b) Green dots represent the estimated
location of each EPC detection.

(c) Only the EPCs belonging to the
same group are processed.

(d) The DBSCAN algorithm clean out-
liers and separate 2 clusters.

(e) The position of each cluster is esti-
mated as the average of all the detec-
tions location.

Figure 6.1: Description of the steps to estimate the location of a SKU.
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6.2 Methodology

This section describes the methodology used in order to perform the tests
explained in the following two sections. There are three aspects that re-
quire special attention: experimental procedures, parameter adjustment
and evaluation.

6.2.1 Experimental procedures

In general, the location of items in a store is not known, or at least, there
is no useful record on their location that can be used as a ground-truth.
Therefore, it is required to manually record the coordinates of each group
of products, its group code, gk, their EPCs, the fixture they belong to and
the area of the store they are placed. Also, the coordinates of each fixture
and area of the store need to be recorded. All this data constitutes the
ground-truth used to analyze the results of the algorithm developed.
Moreover, this recording has to be close in time with the data capturing
of the robot. Ideally, the store should be closed and the operations of the
staff stopped, if not, it is likely that the location of the recorded items
changes with respect to the data captured by the robot.
Recording the location of each RFID label would provide more insight
for the analysis, however, the amount of EPCs and the small difference in
their location if they are part of the same group results into a prohibitive
effort for the improvement that it can provide. Therefore in both exper-
iments only the location of the group has been recorded, but not each
individual RFID label.
Initially it is required to have a map of the store where the robot can lo-
cate itself. Therefore, previous to the ground-truth recording a map of the
environment has to be created with the robot. Once the map is finished
the location of the recorded groups, as well as the fixture or area coordi-
nates can be referenced to it. It is important to remark that the map is for
location purposes, but it might not be required for navigation.
When the map and the ground-truth are obtained, the next step is to move
the robot around the environment to capture as many data points as possi-
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ble from the RFID labels, therefore a complete dataset is obtained at each
run of the robot.
Due to organizational issues, these experiments are performed with the
AdvanRobot instead of the newly designed robot of section 4.5.4. There-
fore, the robot is moved around the environment not following the RFID
tags, but following navigation waypoints previously recorded to cover the
whole area of interest. It is out of the scope of this thesis but kept as fu-
ture work the analysis of the performance on the location given a robot
that follows tags instead of the pre-recorded waypoints and that have an-
tennas oriented towards four different directions, instead of two. In any
case, the algorithm is expected to work for any robot and, as long as the
robot detects enough RFID labels, the results should be similar.
Finally, when the dataset is completed the last step is analyzing the results
obtained by the location algorithm.

6.2.2 Parameter adjustment
There are three sets of parameters to adjust for the developed algorithm:

• RFID system characteristics

• RFID detection model

• Clustering parameters

The first set is the RFID system characteristics, this includes the RFID
session and the RFID transmitted power. The second set is the RFID de-
tection model. As it has already been explained, it has been simplified as
much as possible, therefore this set only includes the reading distance as
a parameter. It is reasonable to include this parameter in the first set, or
to claim that it is directly given by the RFID power. However, due to the
coupling with the environment this parameter is kept separated. The third
set is related to the clustering method. The DBSCAN does not require
the initial number of clusters but it requires the eps and the min samples
parameters.
One of the solution hypothesis states that the RF system parameters for an
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inventory mission should be different than the ones for a location mission.
In this regard, the main outcome of the experiments in the laboratory en-
vironment, see section 6.3, is adjusting the RFID system parameters to
optimize a location mission as opposed to an inventory mission.
The reading distance parameter is adjusted at each environment to cap-
ture some characteristics of the layout. The parameter for the laboratory
environment, see section 6.3, will be fixed given the layout of the envi-
ronment. For the real store environment, see section 6.4, the parameter
will be adjusted given a captured dataset, the precise process is explained
in section 6.4.
Finally, the DBSCAN parameters are only adjusted for real store experi-
ments using one of the two datasets recorded.

6.2.3 Evaluation
The analysis of the results is based on two location accuracies, one with
respect to the areas and the other with respect to the fixtures. So, if one
creates a list GA = {Gp | ancomputed = anground-truth} where its elements have
the same area computed than recorded in the ground truth, then the accu-
racy at area level is obtained with Equation 6.1.
The same procedure is done at fixture level, the list GF = {Ggj | fmcomputed =
fmground-truth} is created and then the accuracy at fixture level is computed
following Equation 6.2.

accuracyarea =
|GA|
|G|

(6.1)

accuracyfixture =
|GF |
|G|

(6.2)

Where G is the set of recorded groups in the ground-truth that have enough
RFID detections to be processed by the clustering process. Therefore, if
the RFID tags from a group have not enough readings to compute a loca-
tion from them, the group is not identified. Similarly, it is done at fixture
level.
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Again, the main challenge is that the ground-truth is not usually complete,
therefore, these accuracies can only be computed over the recorded data.
This adds another difficulty, if the ground-truth presents a single location
for a group, but the clustering process decides that given the RFID de-
tections there has to be two clusters and one of them coincides, then, the
result taken is that the group is well located.
Additionally, to support the results the mean distance error, d̄, is also com-
puted. This is the average of the distances between the recorded location
of a group and the computed location of the same group, see Equation 6.3.

d̄ =

∑
G

√
(ck − c̄k)2

|G|
(6.3)

The main objective of the development here presented is to locate the
groups of products with respect to areas or fixtures, not to compare them
at a coordinates level. However, this figure can provide precise insight
about the method if the recorded coordinates of the groups are available.

6.3 Test in a laboratory environment

This experiment is performed to obtain the best RFID parameters to locate
items in the environment with the algorithm defined.

6.3.1 Environment & Characteristics

The environment is similar to the one presented in Figure 4.12, but the
RFID labels are on top of the boxes and there are four lines of boxes with
a total of 49 boxes. Each line of boxes creates an aisle of around 1 meter
wide, each box contains between 10 and 50 RFID tags, and the center of
the box is considered the location of the group. Figure 6.2 shows the map
recorded by the robot of the environment, the four lines of boxes can be
seen in the middle of the map.
The following characteristics are precise of this experiment:
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Figure 6.2: Map of the laboratory environment

• Each box is considered a fixture and due to the reduced dimensions
of the environment there are not areas defined.

• The ground-truth is recorded just once at the beginning of the tests.

• The captured ground-truth is complete.

• The robot is commanded to perform 20 location missions to gather
the data varying the RFID system characteristics: the power and the
session.

• The parameter reading distance for the RFID system is set to 0.5
meters with respect to the antenna, given that the aisles are 1 meter
wide.

• The clustering process is skipped as each group of tags has only one
possible location.
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6.3.2 Results
The results obtained after the experiment are shown in Table 6.1. The
Location accuracy column is the percentage of groups that are properly
assigned to its box, accuracyfixture, the distance mean error, d̄, is computed
as the average of the distances between the group computed location, c̄k,
and its recorded location, ck. The inventory accuracy is the number of
labels discovered over the total of labels of the environment. The first
two columns are the values given for the RFID parameters, notice that the
initial values are those that excel at inventorying.

Test
RFID
power

RFID
session

Location
accuracy [%]

Distance
mean error [m]

Inventory
accuracy [%]

1 30 S2 2.04 2.54 99.62
2 30 S2 2.04 2.48 99.62
3 25 S2 28.57 0.92 97.56
4 25 S2 16.32 0.90 97.56
5 25 S2 28.57 0.90 97.43
6 25 S2 18.36 0.91 97.43
7 25 S0 71.43 0.44 97.18
8 25 S0 71.43 0.46 97.18
9 20 S2 63.25 0.51 81.97
10 20 S2 55.10 0.51 79.86
11 20 S2 63.26 0.44 86.90
12 20 S2 55.10 0.47 86.90
13 20 S0 81.63 0.36 84.96
14 20 S0 79.59 0.37 84.96
15 15 S2 71.43 0.43 39.72
16 15 S2 67.35 0.44 39.89
17 15 S2 67.35 0.47 40.73
18 15 S2 71.43 0.45 41.70
19 15 S0 75.51 0.42 40.10
20 15 S0 77.55 0.43 40.10

Table 6.1: Results for the first set of tests

From the results it is clear that the best parameters for inventorying are
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not those for location. The maximum location accuracy is obtained with
an RFID power of 20dbm and the RFID session S0, see section 2.1 for a
detailed explanation of the RFID sessions. It is worth mentioning that the
decrease of the power helps the location accuracy, as most detections are
done from the surroundings. However, if the power is too low, the number
of labels detected decreases drastically affecting not only the inventory
accuracy, but also to the location accuracy. Regarding the session, S0
allows maximizing the amount of detections, this clearly improves the
location accuracy. As it can be observed in Table 6.1 for the same value
of RFID power the location accuracy clearly improves with S0.
The distance mean errors behaves similarly than the location accuracy, it
has the minimum with the same parameters than the location accuracy has
its maximum. It is remarkable that this error is of only 0.36 meters.
Figure 6.3 shows a particular example of the results obtained. It can be
observed on top of the recorded map of the robot all the RFID labels
detections, which are the red dots, the estimated position in blue and the
recorded position, which is the large green dot.
To sum up, the selected parameters for any location mission are the ones
bolded in Table 6.1: RFID power of 20 dbm and RFID session S0.

6.4 Test in a real store

This experiment consisted on recording a sample of the ground-truth of
a real store twice and for each of them perform a location mission. The
two datasets are taken with only a week difference but they are totally
independent. Additionally, the ground-truth is taken simultaneously to the
robot operation, ensuring that the difference between the recorded and the
captured data is minimal. However, the store has some minimal operation
at the moment of the recording which results in some movements of the
products.
The first dataset captured is mainly used to adjust the RFID detection
model and the clustering parameters, the second to check the feasibility
and accuracy of the method.
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Figure 6.3: Example of the results obtained in the laboratory environment
test. The red dots are each of the readings of the EPCs belonging to the
same group. The blue dot is the estimated position of the group and the
green dot is its recorded position. The results correspond to the 46th group
of the 13th test on the first experiment.

6.4.1 Environment & Characteristics

The test store has a ground floor with 1,000 m2 and around 10,000 dif-
ferent EPCs. The store associates have divided the ground floor in 11
different areas as a function of the type of products and the characteristics

168



“main” — 2020/7/16 — 10:12 — page 169 — #189

of the area. Also they have identified 88 fixtures in which the products
were placed.
In the store floor the products, identified with EPCs, are grouped in a
range from 2 to 25 EPCs each group. Most of the EPCs belonging to the
same group should be together. However, as previously stated, a group
can be placed in several places of the store at the same time.
Figure 6.4 shows the 11 areas on top of the map of the store captured by
the robot during the first day of experiments. The diversity of areas is clear
from Table 6.2, the largest area has almost 200 m2 and the smaller less
than 20 m2. Also it can be observed that the largest perimeter is not linked
with the largest area, which means that the areas in general have irregular
shapes. This diversity of shapes and sizes makes inefficient the use of ge-
ometrical characteristics of the areas in order to enhance the performance
of locating items, such as by assigning a suitable reading distance.
Figure 6.5 shows all the fixtures included in this experiment. The fixtures
do not include all the space of the store, therefore, a group is assigned to
a fixture if it inside or if it is closest.

Areas Perimeter [m] Surface [m2]
a1 26.4 45.3
a2 20.5 17.2
a3 45.3 105.3
a4 35.9 74.5
a5 53.9 195.5
a6 55.3 158.7
a7 62.5 109.9
a8 46.5 115.6
a9 35.3 45.5

a10 42.6 94.1
a11 33.2 47.9

Table 6.2: Areas description

For both datasets the map recorded by the robot as well as the coordinates
of all areas and fixtures are the same. Notice that the coordinates of the
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Figure 6.4: Store layout divided by areas.

areas and fixtures are recorded manually.
The two datasets obtained are named, in Table 6.3, A and B respectively.
Recording dataset A lasted for 1 hour and 40 minutes, which was the time
that the robot needed to perform the location mission, dataset B lasted 40
minutes more. Both missions were very similar, but by the end the sec-
ond one, the store opened and due to the increase of people in the store
the robot required more time to finish. This provided more time to record
the ground-truth, while the movement of products was not yet too high,
which means that the dataset is considered valid.
Dataset B is more complete than dataset A as it has 115 more groups,
and the robot captured around 250 more unique EPCs. In any case, both
datasets are considered representative sample of the store. It is also worth
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Figure 6.5: Store layout divided by fixtures.

noticing that there is no ground-truth on the total amount of EPCs present
at the store, therefore, it will not be possible to assess an inventory accu-
racy.
Dataset A will be mostly used to adjust the parameters, while dataset B
will assess the results without any modification in the parameters with re-
spect dataset A. Figure 6.6 shows the locations of the recorded groups on
top of the map captured by the robot.

6.4.2 Parameter adjustment

Three parameters need adjustment before computing the final results, these
parameters are: the maximum distance between RFID detections to be
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Dataset Duration Groups recorded Unique EPCs read
A 1h 40min 264 8546
B 2h 20min 379 8807

Table 6.3: Summary of the two tests performed

(a) Location of recorded groups
from dataset A

(b) Location of recorded groups
from dataset B

Figure 6.6: Recorded group locations

considered part of the same cluster, named eps; the number of RFID de-
tections to consider a group, named min samples; and the distance where
the RFID detections are placed with respect to the robot when they are
detected, named reading distance. The eps and the min samples are part
of the DBSCAN clustering method, while the reading distance is part of
the RFID detection model.
As already has been explained, only the dataset A will be used to adjust
these parameters, therefore, dataset B is kept untouched for the analysis
of the results.
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DBSCAN parameters adjustment

This adjustment is required because the parameters to drive the clustering
of samples is linked with the store layout and the sparsity of the products
on the store. This adjustment could be understood as the price to pay to
avoid selecting a number of clusters beforehand. To perform this adjust-
ment, the parameter reading distance has been fixed to 1m.
In order to decide the best pair of values for the parameters, three figures
of merit are analyzed, these are: the area location accuracy, the average
distance error and the groups lost.
The area location accuracy is the percentage of groups that are correctly
located in the expected area. In this case the increase of the clustering pa-
rameters decreases the accuracy because it can only be computed with the
data retrieved, which means that the more clusters the higher probability
of at least matching one of them properly. Take into account that increas-
ing the clustering parameters reduces the number of clusters generated.
The average distance error is the distance between the recorded position
of the group of EPCs and the computed location of the same group. This
figure has a minimum because if there are too many estimated groups the
average over all the samples increases this figure. On the contrary, if there
are not enough groups the location of the group will be deviated from the
true position and the figure will also increase.
Finally, the groups lost is the number of groups that have not enough sam-
ples to be a cluster and therefore, are not taken into account. This value
is relative to the maximum number of groups considered.
Figure 6.7 shows the evolution of the previously stated figures of merit
with the variation of the optimization parameters. The shared x axis
is composed by two numbers, the first is the eps and the second the
min samples.
There are only two possible combination of parameters, 3,2 and 3,3, that
have the average distance error is in its minimum while the number of
groups of EPCs lost is zero. With both combinations the area location
accuracy is the same, however, a min samples = 3 seems a better approx-
imation as having only 2 readings of a group is low and it could easily
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Figure 6.7: Analysis on the performance as a function of the parameters
eps and min samples. Notice that the parameters are on the x axis showing
the eps next to the min samples value.

create more groups out of a single EPC, which should be less common.
Therefore, the parameters used are eps = 3m and min samples = 3.

Reading distance adjustment

The second parameter adjustment process, again with only data from
dataset A, is in regards of the RFID reading distance. It depends on the RF
power and the environment, however, due to the physics of the RFID tech-
nology a fixed value is used. In [4] a study on the behavior of the RSSI
shows that it can not be assumed that it is Gaussian, and actually, there
is no single probability distribution that can describe the performance of
the RSSI. Therefore, for this case, an approximation as the one used in
Equation 4.1 is not used, only a fixed value to keep the model simple and
the computational resources required as low as possible.
Therefore, once the clustering parameters have been fixed, the adjusting
of the reading distance is performed by analyzing the area accuracy re-
sults with respect to 5 different reading distances. Figure 6.8 shows the
accuracy values obtained with reading distance of: 1.2, 1.3, 1.4, 1.5 and
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1.6 meters. Notice that the area location accuracy is computed over 1, not
as a percentage.

Figure 6.8: Location accuracy obtained from the dataset A as a function
of the RFID reading distance. The location accuracy is computed over 1,
not as a percentage.

In Figure 6.8 it can be observed that there is a maximum of accuracy,
therefore, the best performance is at a fixed reading distance of 1.4 m.

6.4.3 Results
The results obtained for the datasets A and B are presented. For both
datasets the accuracy with respect to the areas and with respect to the fix-
tures has been computed. As it has been already been discussed results
with respect to dataset B have more credit, as the dataset A has been used
to adjust the algorithm parameters. Table 6.4 summarizes the results for
both datasets.
Where total groups are the amount of groups recorded at each dataset and
identified groups is the amount of groups with enough data to be located
inside an area or fixture. The area accuracy is the percentage of the iden-
tified groups that match the estimated area with its real area. Similarly,
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Dataset
Total

groups
Identified

groups
Area

accuracy [%]
Fixture

accuracy [%]
Mean distance

error [m]
A 264 257 96.9 94.6 0.67
B 379 366 95.9 92.1 0.73

Table 6.4: Summary of results on group location in a real environment.

the fixture accuracy is the percentage of identified groups that match their
captured fixture with the estimated one. Finally, the mean distance error
is the average through all the identified groups of the distance between
the recorded coordinates of the group and their estimated coordinates. In
the case that the group is found in more than one place, the distance used
is the shortest.
It can be observed in Table 6.4 that less than 3.5% of the groups recorded
in test B have not been identified due to not having enough samples or
having them too scattered. Decreasing the RFID power to obtain better
location accuracy could lead to low accuracy on RFID detections and,
therefore, low accuracy on location. However, it has been observed that
the loss is minimal given the results obtained in location accuracy. Addi-
tionally, some of the differences between the total groups and the identi-
fied groups are also due to mistakes on the data recording, such as a group
recorded with coordinates that are out of the map.
The results on location accuracy are computed based on the identified
groups, not the total of groups as the main objective of the study is to
assess the performance on locating groups of RFID labels, not detecting
them is a consequence that it is not directly related to the algorithm but
the parameters used.
At area level the accuracy has reached a 95.9%, the results at fixture
level are lower, a 92.1%. However, in both cases the accuracy is above
90%, which is considered remarkable given the customer expectations. In
terms of the mean distance error, it is around 70 cm, given that the read-
ing distance is fixed the results are also remarkable taking into account
that it is only 20 cm higher than in [35], but it is a test in a real environ-
ment and with a simpler and more efficient algorithm. Obviously, dataset
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A presents better results, but adjusting the parameters with its data can
have this type of influence. In any case, the results obtained with dataset
B are considered valid and outstanding for the reasons explained.
The accuracy with respect to the areas is higher than with respect to the
fixtures. This happens because the number of areas is much lower than the
number of fixtures, and therefore, the complexity of the second is higher.
However, it is worth mentioning that there are some cases in which the
area is not properly located but the fixture it is. Usually, this is found
when the group is situated at the edges of several areas but with only one
fixture close to the group, Figure 6.9f is an example.
The next set of figures, from Figure 6.9a to Figure 6.9f, show some exam-
ples of the results in which on top of the layout captured by the robot the
areas and the fixtures are drawn, as well as, the estimation of the position
of every RFID detection, red dots, the estimation of the position of the
group, blue dots, and the recorded position of the group, green dot. They
are just illustrative to show the results obtained.
The results showed several examples, such as the ones in Figures 6.9e
and 6.9f, where the group is placed in the wrong area, but it is next to its
real one. Due to this, some experiments in a similar context have been
conducted in which the areas have a small overlap. For example two con-
tiguous areas have a shared zone of 1 meter. Assuming this overlap has
increased considerably the accuracy, reaching in some cases a 100%.
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(a) Properly located group (b) Properly located group

Figure 6.9: Sample of results of datasets A and B (left and right column
respectively). The red dots are the EPC readings, the blue dots are the
estimated position of the group and the green dot is the recorded location
of the group.
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(c) Two locations for a single group (d) Two locations for a single group

(e) Wrongly located group (f) Wrongly located group

Figure 6.9: Sample of results of datasets A and B (left and right column
respectively). The red dots are the EPC readings, the blue dots are the
estimated position of the group and the green dot is the recorded location
of the group.
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Due to the clustering process, some groups are located in different places
of the store. However, the fact that the group is in more than one place
cannot be verified if it is not recorded in the ground-truth. Nevertheless,
looking at the next two histograms, see Figure 6.10a and Figure 6.10b
it can be seen that most of the groups of items are placed together and,
therefore, the results obtained are not considered biased due to the cre-
ation of extra locations for the group, which could be a consequence of
the clustering parameters. Nevertheless, it has been observed that dataset
B presents more groups with 2 locations than dataset A but there are also
more groups in general, therefore it is not considered an issue, notice that
the vertical axis has a different scale for each figure.

(a) Test A (b) Test B

Figure 6.10: Quantity of identified groups with respect to the quantity of
locations found per group

Finally, out of curiosity, the test B lasted longer which means that the
robot had more time to get more samples of EPCs but at the same time
more operations done by the store associate took place, and also the store
opened to customers. Due to this, some minor issues arose, for instance,
in Figure 6.11 there are some EPCs found outside any area of the store,
so in the backstore. This happened because the robot captured the mo-
ment in which the associates of the store were moving products from the
backstore to the store floor. This is not critical for this study, but if the op-
eration of the robot needs to be considered in a regular basis, it is required
to properly organize the store operations accordingly.
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Figure 6.11: Group placed at backstore due to associates operations. The
dots that are in an area without color are caused due to movement of
products. The red dots represent the EPC readings of the same SKU, the
blue dot is the estimated location of the group and the green dot represents
the captured location of the SKU.
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6.5 Conclusions

The main contribution of this chapter is showing that complexity does not
always help in order to achieve significant results when you are trying
to model a system that is dependent of an environment that can change.
For this work, several simplifications have been adopted with respect to
the location of RFID tags and the results obtained are valid and similar to
those of the state of the art such as in [35].

The simplifications adopted in this section are the following. First, this
work assumes that for most applications the location of a single tag will
not be as relevant as the location of a group of tags, so that, the infor-
mation obtained can be deliberately mixed. Second, providing data on
location based on the Cartesian coordinates in a map is not practical in-
formation, but a relative position can be much more informative, such as
”next to the door” or ”in the closet next to the elevators”.
Another simplification adopted is not using the value of the RSSI or the
phase for the location model. Previous works show that this values can-
not be used properly in general cases. Instead, the RF power has been
decreased to penalize the readings from longer distances or with many
bounces. As anticipated in [34] the closer the robot to the tag the better
the precision. Therefore, with a fixed reading distance and many repeated
readings from different positions of the robot, the obtained results are
promising.

The parameters adjustment of the clustering process is not part of the in-
tended simplification of the methodology, however, it is required once the
groups of EPCs can be simultaneously in more than one location. The
chosen method performs well and does not require the previous knowl-
edge of the number of clusters required, which is an advantage for the
application given that this information is not available. Nevertheless, if
the separation between the two groups is lower than the reading distance
of the robot it can be impossible to separate them.
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Testing the solution in a real environment is also very significant because
it shows that the solution presented in this chapter is relevant and that can
be used in any scenario.
Regarding the results, the obtained accuracies in placing the groups in
their correct zone or fixtures are satisfying. Over 95% of the identified
groups are located in their right area and over the 92% of them also are
located in their right fixture.

Finally, adding reference tags, for instance in every fixture, is seen as a
simple modification of the environment but that could improve the results
by adding a layer where similarity measures between the reference tags
and the tags of the products can help to determine if a tag is in a fixture or
not. Additionally it would avoid the tedious task of manually capturing
the coordinates of all fixtures.
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Chapter 7

CONCLUSIONS & FUTURE
WORK

7.1 Conclusions

This research aimed to determine if simple robots, in terms of hardware
and software are able to perform a complex tasks such as stock-counting
RFID tagged items in a cooperative way and with no human intervention.
In the course of this thesis this has been effectively proved, first through
simulation and then by designing, developing and testing real robots in a
library.
In fact, the investigation shows that by means of a stigmergic behavior
these simple robots can operate with complete autonomy. This is achieved
by the development of a map-less algorithm for stock-counting that does
not require a map of the environment for navigation, and hence, no human
intervention whatsoever.
Additionally, the development of the map-less algorithm has proved that
the RFID labels placed on items in a given space can be used, without any
prior knowledge of the environment, to guide robots and fulfill an inven-
tory mission.

Specifically in simulation, the map-less algorithm has been compared
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against area coverage algorithms. These methods have been adapted to
solve the stock-counting problem, nevertheless, it has been observed that
the developed algorithm has outperformed them. Additionally in simula-
tion, the performance of the system with up to 50 robots has been studied
showing that the scalability of the algorithm is very high. Due to a high
level of parallelization of the task between robots.

In general terms, the design of the robots presented in this thesis shows
that inventory robots can be simplified, and therefore, costs can be drasti-
cally reduced and reliability significantly increased. One of the objectives
of this thesis is showing that features like efficiency or reliability do not
need to be linked with complexity and therefore, by shifting to more suit-
able approaches, it is possible to obtain valuable performance enhance-
ments without an increase of cost or complexity.
The design of a specific robot to leverage the map-less algorithm was re-
quired. There is not an RFID-based inventory robot in the market with
the required specifications. By applying a design research methodology it
has been possible to develop a payload for a robot base able to determine
the relative orientation between the robot and the detected RFID labels.
Only off the shelf hardware has been used facilitating the future commer-
cialization of the designed robot.
Finally, the use of ROS, an open robotics platform, has allowed easier in-
tercommunication between different hardware pieces and open software
developed by the community has helped the development from scratch of
a fully functional robot.

Once the robot has been developed in terms of hardware and software, the
complete solution has been tested in a real environment. The experiments
in a library have proved that the developed robots are able to coopera-
tively stock-count an environment without the need of a map. In fact, the
accuracy figures obtained with this algorithm are as good as the state of
the art RFID inventory accuracy figures, exceeding 99%. Additionally,
this value has been achieved in a library, which is a challenging environ-
ment for RFID detection. However, due to the specific actions taken to
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understand and help the process of taking inventory, the experiments have
been very successfull.
In particular, it has been observed that two robots can take inventory of
a library floor of around 280 m2 with more than 4,000 books in less than
two hours, which is very fast value for an inventory mission of this level
of accuracy. Also, it is worth mentioning that if the space is reduced by
half, but the number of robots of the system is the same, the time required
for inventorying is also reduced by half. In other words, if the size of an
environment is doubled, the time and performance for an inventory mis-
sion can be maintained by simply doubling the number of robots in the
system.
The developed map-less algorithm, based on a stigmergic behavior, al-
lows a system of multiple robots to coordinate their actions during an
inventory task. This feature was already observed in simulation, however,
this has been verified during the tests in a real environment.
Robustness is achieved at a system scale: the mission will no longer fail
if one robot does fail, but only if all robots fail. During this thesis it has
been observed that if a robot is not able to identify more RFID labels for
whatever reason, the other robot of the system can continue identifying
them until the mission goal is achieved. Therefore, the reliability of the
system is increased proportionally to the number of robots in it.
Regarding the scalability of the system, both, simulation and experiments
have shown that the system scales approximately linearly with the area
of the environment. If a robot performs an inventory mission in a given
area, when this area is doubled, time and accuracy can be maintained by
doubling the number of robots.

The scalability of the system linked with the cost-efficiency design pro-
vides an inventory solution that adapts to any particular environment with
great flexibility. This solution is particularly useful for retailers to allow
them to take frequent and accurate inventories.

Aligned with the latter, this thesis also presents an algorithm for locat-
ing groups of RFID labels. It is mainly focused on simplicity, aiming to
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obtain the maximum benefit from the system while optimizing its util-
ity for retailers. The main hypothesis for the presented methodology is
that the RFID parameters to achieve good results for inventory are not the
same than for location. Therefore the results obtained are significantly
improved only by adapting the RFID parameters to the goal of location.
The main variation of this method with respect to current methods is that
it aims on determining the location of a group of RFID labels with respect
to a landmark of the environment, like a piece of furniture or a precise area
of the store, providing useful information for its user. Additionally, the
system is developed with COTS hardware and requires no store interven-
tion, which increases its convenience.
Testing the method in a real, non controlled environment, has yielded an
outstanding location accuracy: above 92%.

7.2 Future work

This thesis also opened new research lines left for future investigation.

Regarding the map-less algorithm developed, this research presents an al-
gorithm with an attraction function that is developed based on the knowl-
edge on how RFID-based inventory robots perform their missions. How-
ever, it is possible than a better or, even an optimal attraction can be de-
fined. For instance, this attraction could also depend on the local knowl-
edge of the obstacles present in the surroundings of the robot and not
only the RFID tags. Also, it would be interesting to test machine learning
methods, such as those based on deep learning and reinforced learning,
and develop a simulation environment, as realistic as possible, to train at-
traction functions and compare them against the ones that are knowledge
based.

Regarding the designed robot, there are three possible new lines of work.
Firstly, the robot has been developed under the ROS framework, but cur-
rently the ROS framework is being replaced by the newer version, ROS
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2, which among other things, is completely distributed and does not have
any central control. Therefore, it would be interesting to move all the
developed software to ROS 2 as it fits much better with the stigmergic
approach.
Secondly, it has been observed that by changing small policies on the al-
gorithm, it could be possible to use it for continuous inventory missions.
This along with a better navigation around people would also change how
inventory robots are used in the future. So, given that they could be per-
manently navigating around the store, stopping only to recharge and pro-
viding a continuous inventory, many other features could be added, help-
ing customers, measuring dirty or disinfecting surfaces with UV-light.
Thirdly, the developed package for collaborative mapping can also en-
hance features and functionalities for the inventory robots that have not
been tested in this thesis. It could be possible to determine an automatic
final condition for the method, such as all the aisles have been visited.
Or, it could be possible to send a robot to a specific location if after a
determined amount of time the stream of new tag identifications is very
low. However, it will be required to assess if these benefits can still be
available in a decentralized system.
Related to this, it would be very interesting to test location capabilities in
a system with multiple robots that can share a map. This would dramat-
ically increase the amount of detections per tag leading to larger sets of
samples that would significantly increase the accuracy.

Regarding the developed location method there are, at least, three new
research lines. First, studying the performance of the new location algo-
rithm with the latest robot design. This design has four antennas pointing
in orthogonal directions, while the previous design used in testing has
only two different directions, therefore, the developed robot could better
identify the relative orientation of the items detected.
Second, the retailers have expressed their willingness to add reference
tags to the fixtures in their stores to enhance location missions. In this
sense, it would be very interesting to modify this method accordingly.
For instance, similarity measurements between tag detections could be
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used in order to determine with respect to which reference tag the group
of tags is placed.
Third, it would be interesting to tackle the location of RFID labels with
deep learning algorithms. These type of algorithms require large amounts
of data and this has usually stopped them for being used in this field.
However, systems with multiple robots provide much larger datasets from
more simultaneous detections and, by understanding the robots as data
streamers, deep learning algorithms could use them to produce faster real-
time location results.
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