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Abstract
Simulations of incompressible flows are performed on a daily basis to solve problems

of practical and industrial interest in several fields of engineering, including automotive,
aeronautical, mechanical and biomedical applications.

Although finite volume (FV) methods are still the preferred choice by the industry
due to their efficiency and robustness, sensitivity to mesh quality and limited accu-
racy represent two main bottlenecks of these approaches. This is especially critical
in the context of transient phenomena, in which FV methods show excessive numer-
ical diffusion. In this context, there has been a growing interest towards high-order
discretization strategies in last decades.

In this PhD thesis, a high-order adaptive hybidizable discontinuous Galerkin (HDG)
method is proposed for the approximation of steady and unsteady laminar incompress-
ible Navier-Stokes equations. Voigt notation for symmetric second-order tensors is
exploited to devise an HDG method for the Cauchy formulation of the momentum
equation with optimal convergence properties, even when low-order polynomial degrees
of approximation are considered. In addition, a postprocessing strategy accounting for
rigid translational and rotational modes is proposed to construct an element-by-element
superconvergent velocity field.

The discrepancy between the computed and postprocessed velocities is utilized to
define a local error indicator to drive degree adaptivity procedures and accurately
capture localized features of the flow. The resulting HDG solver is thus extended to
the case of transient problems via high-order time integration schemes, namely the
explicit singly diagonal implicit Runge-Kutta (ESDIRK) schemes. In this context, the
embedded explicit step is exploited to define an inexpensive estimate of the temporal
error to devise an efficient timestep control strategy.

Finally, in order to efficiently solve the global problem arising from the HDG dis-
cretization, a preconditioned iterative solver is proposed. This is critical in the context
of high-order approximations in three-dimensional domains leading to large-scale prob-
lems, especially in transient simulations. A block diagonal preconditioner coupled with
an inexpensive approximation of the Schur complement of the matrix is proposed to
reduce the computational cost of the overall HDG solver.

Extensive numerical validation of two and three-dimensional steady and unsteady
benchmark tests of viscous laminar incompressible flows is performed to validate the
proposed methodology.

Keywords: hybridizable discontinuous Galerkin, incompressible Navier-Stokes equa-
tions, transient flows, high-order methods, preconditioning, Cauchy stress formulation,
Voigt notation
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Chapter 1

Introduction

In the last decades, Computational Fluid Dynamics (CFD) has become a necessary
tool not only in the aerospace industry, but in automotive, chemical, civil, mechan-
ical engineering industry, as well as in architecture and electronics. The majority of
the commercial codes are based on Finite Volume (FV) and low-order Finite Element
(FE) methods. Some well-known solvers that are used in commercial packages are
the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE), Pressure-Implicit
with Splitting of Operators (PISO) as well as density-based solvers, usually employed
for the solution of compressible flows. However, when low-order methods are employed,
many levels of mesh refinement are usually required for the solution to converge with
an acceptable accuracy in the engineering context. This is due to the extra numeri-
cal diffusion introduced by low-order schemes with respect to high-order methods. Of
course, this leads to increased computing time and required resources.

In an attempt to deliver more accurate results, the applicability of high-order meth-
ods has been studied during the last decades. High-order methods provide higher or-
der of convergence and, consequently, additional accuracy even in presence of coarse
meshes. More precisely, high-order methods successfully provided accurate solutions
for complex flow problems with complex geometries, transient and vortex-dominated
flows [1, 2, 3, 4]. Moreover, a misconception is that a high-order method is more expen-
sive than a low-order one. When two methods are to be compared, then a comparison
in terms of computational cost or resources should be done under the same level of
accuracy. In that case, a low-order method is likely to be more expensive than a high-
order one. Detailed comparisons between high and low-order methods are provided in
[5, 2, 6].

Examples of successful application of high-order methods in engineering problems
include the simulation of cavitation, fluid-structure interaction (FSI) and the design
process of machine components. Simulating cavitation is necessary during the design
phase of propellers and pumps [7, 8], otherwise, important mechanical wear and vibra-
tions can be caused to the structure. Fluid-structure interaction is observed in blood
flows inside arteries, flows around turbine blades and aircraft wings. The high-fidelity
simulation of fluid-structure interaction is discussed in [9, 10]. High-order methods can
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be a useful tool during the design process of machine components, such as blades, fans,
compressors and turbochargers [11, 12].

(a) Propeller cavitation (b) Aorta artery

Figure 1.1: Examples of simulations where high levels accuracy is significant.
Images downloaded from a) https://gcaptain.com/propeller-cavitation-analysis/, b)
https://www.comsol.com/model/fluid-structure-interaction-in-a-network-of-blood-

vessels-660.

Among finite element methods, Continuous Galerkin (CG) has been widely used
for the solution of partial differential equations that describe fluid flow problems [13,
14, 15]. CG provides a continuous, piecewise polynomial approximation of the solu-
tion and is known for its accuracy and its reliability with smooth solutions and on
conforming meshes. However, degree adaptivity (p-adaptivity), which plays a crucial
role in the approximation of flow problems, is not trivial in the CG context due to
the difficulty to impose C0 continuity. In the last decades, the interest in discontin-
uous Galerkin (DG) method has increased [16, 17]. DG enforces local conservation
by using an element-by-element discontinuous polynomial approximation. Moreover,
DG methods are especially suited to devise high-order approximations and to perform
p-adaptivity. Nevertheless, DG duplicates the nodes on every face of the mesh and,
hence, has increased number of globally coupled unknowns with respect to CG for the
same mesh. This restricts its use in what concerns the solution of large problems,
especially with high-order approximations.

To overcome this issue, two techniques named static condensation [18] and hy-
bridization [19] have been explored in recent years. This lead to the development of
the hybridizable discontinuous Galerkin (HDG) method, by defining the unknowns in
each element as solution of a Dirichlet boundary value problem, while the communica-
tion between elements is performed by satisfying appropriate transmission conditions.
This approach leads to hybrid discretization techniques, where the only coupled un-
knowns of the problem are located on the mesh faces. The number of degrees of
freedom with respect to DG for the same mesh is reduced, see Figure 1.2, and there is
a clear computational advantage with respect to DG [5]. The HDG method proposed
by Cockburn and coworkers relies on a mixed hybrid formulation which is based on
element-by-element discontinuous polynomial approximations [20]. HDG was derived
for the second-order elliptic problem [21, 22] and the convection-diffusion equations
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[23]. Afterwards, it was extended to the Stokes flow [24], the incompressible [25] and
compressible Navier-Stokes equations [26].

Continuous Galerkin Discontinuous Galerkin Hybridizable discontinuous Galerkin
• Global DOFs
• Local DOFs

Figure 1.2: Degrees of freedom in a mesh of four fourth-order triangles for continuous Galerkin,
discontinuous Galerkin and hybridizable discontinuous Gelerkin.

Besides the reduced number of global unknowns, in the case of incompressible flows,
HDG allows equal order of interpolation for velocity, pressure and velocity gradient
due to the definition of the numerical flux on the boundaries of the elements and
the introduction of an appropriate stabilization parameter. In addition, using HDG
in viscous dominated flows, the so-called primal variables, namely the velocity and
pressure, and the mixed variable, that is the velocity gradient, converge optimally with
order k+ 1 in the L2-norm when polynomials of degree k are used for all the variables
[25]. Given the optimal convergence of the velocity gradient, it is possible to obtain
a post-processed velocity field that superconverges with order k + 2. This process is
conducted inside each element and is computationally inexpensive. By exploiting the
information of primal and post-processed variables, an error indicator is devised and
p-adaptivity procedures are defined.

So far HDG has delivered accurate solutions in the academic setting, however, there
is still a long way until the method can be used in an industrial setting. Challenges
arise from the fact that, despite the reduced DOFs of HDG in comparison with DG, the
linear systems that arise from HDG are still large, especially in three-dimensional flows
and for high orders of approximation.This is especially critical in the case of transient
problems. Under these circumstances, the goal of this PhD thesis is to provide a deeper
understanding of the HDGmethod from a numerical point of view, showing its potential
and its limitations in the context of practical engineering applications.

1.1 Objectives and thesis outline

This thesis proposes an adaptive HDG method, from low- to high-order, for the sim-
ulation of steady and unsteady incompressible flows. In order to achieve this aim, the
following contributions have been realized:
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1. A hybridizable discontinuous Galerkin method for linear elasticity with
optimal accuracy properties. Chapter 2 presents an HDG method for the lin-
ear elasticity problem using the same degree of approximation for primal and
mixed variables. Using Voigt notation, the symmetry of the strain gradient
is imposed pointwise, without resorting to more complex mathematical frame-
works [27, 28, 29]. The optimal convergence of the primal and mixed variables
is verified in a variety of two-dimensional and three-dimensional cases even for
low-order polynomials. Later, an original way to construct a super-convergent
post-processed displacement field is proposed. This is found to lead to optimal
convergence properties for a variety of approximation orders, even in low-order
ones. The robustness of the method and its locking-free properties for nearly
incompressible materials are verified.

2. A hybridizable discontinuous Galerkin method for the Cauchy formu-
lation of the Stokes equation with optimal convergence properties. In
Chapter 3 an HDG method for the Cauchy formulation of the Stokes equation
with strong enforcement of the stress tensor is presented. It is worth noticing that
this problem features an incompressibility constraint, thus pressure is also con-
sidered as an independent variable. In a similar fashion as in the linear elasticity
problem, the same degree of polynomials for velocity, pressure and mixed variable
is used. Optimal convergence and superconvergence properties are numerically
verified for low-order and high-order approximations. The method is tested on
various two-dimensional and three-dimensional flows.

3. Solution of the steady laminar incompressible Navier-Stokes equations
using a hybridizable discontinuous Galerkin method. In Chapter 4 the
HDGmethod for the laminar incompressible Navier-Stokes equations is presented,
by introducing a Newton-Raphson iterative method to solve the nonlinear prob-
lem. Various benchmark problems involving steady flows of engineering interest
are presented in Section 4.2. Owing to the excellent convergence rates of the
post-processed velocity field, a spatial error estimator is constructed to perform
p-adaptivity in Section 4.3.

4. Solution of the transient laminar incompressible Navier-Stokes equa-
tions using a hybridizable discontinuous Galerkin method. The method
is extended to include the transient version of the laminar incompressible Navier-
Stokes equations. Special attention is devoted to high-order time integration
schemes. In Section 4.4 the employed temporal schemes are introduced and the
results of HDG method for the simulation of transient flows are presented. In ad-
dition, in Section 4.5, transient simulations with degree adaptivity and timestep
control are reported.
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5. Effective preconditioning for the solution of incompressible flows using
a hybridizable discontinuous Galerkin method. Direct solvers for the so-
lution of the HDG global linear system scale poorly with problem size not only
in three-dimensional flows, but also in two-dimensional flows when high orders
of approximation are considered. The exploitation of HDG methods in practical
settings therefore requires the use of iterative solvers and, consequently, effec-
tive preconditioning strategies. In Chapter 5, a preconditioning technique that
is based on the use of a block-triangular preconditioner and the approximation
of the Schur complement is presented. Owing to the proposed preconditioning
strategy, memory limitations of direct solvers are overcome. The robustness of
this approach is verified in various two- and three-dimensional flows and for dif-
ferent values of the Reynolds number. The resulting preconditioned HDG solver
is applied to a real problem of medical interest.

1.2 State of the art

1.2.1 Accurate approximations of the linear elastic problem

The numerical approximation of the linear elasticity equation presents several difficul-
ties as highlighted by the extensive literature available on the topic (cf. e.g. [30, 31]). In
particular, locking phenomena in nearly incompressible and incompressible materials,
construction of stable pairs of finite elements and strong enforcement of the symme-
try of the stress tensor in mixed formulations, accurate computation of the stresses
(classically recovered from the displacement field via numerical differentiation) and
post-process procedures to improve the quality of the approximate displacement fields
are some of the subjects that have attracted the attention of the scientific community
over the last 40 years.

It is well-known that an accurate approximation of the linear elastic problem for
nearly incompressible materials requires the discrete space in which the solution is
sought to be rich enough to describe nontrivial divergence-free vector fields. Within
this context, the primal formulation where the displacement field is the sole unknown
fails to provide a locking-free approximation using low-order conforming Lagrangian
finite element functions. In fact, Brenner and Sung [32] proposed a possible remedy
by means of the nonconforming Crouzeix-Raviart element [33]. In order to circumvent
this issue, two main approaches have been proposed in the literature. On the one hand,
mixed formulations in which both the displacement field and the stress tensor act as
unknowns of a saddle point problem [34]. On the other hand, discontinuous Galerkin
(DG) discretizations in which the approximate displacement field is sought in a bigger
space and the variational formulation of the problem is modified to account for the
jumps of the discrete displacement field across the element interfaces [35, 36].
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Starting from the seminal paper by Reissner [34], mixed variational formulations of
the linear elasticity equation have known a great success in the scientific community.
The solution of the resulting saddle point problem provides an approximation of both
the displacement field and the stress tensor that is not retrieved as a post-processed
quantity (with a consequent loss of precision) as in the primal formulation [37]. A
major drawback of the mixed formulation lies in the difficulty of constructing a pair of
finite element spaces that fulfil the requirements of Brezzi’s theory [38] to guarantee the
stability of the method. More precisely, concurrently imposing the balance of momen-
tum by seeking a stress tensor in H(div) (i.e. a square-integrable tensor with square-
integrable row-wise divergence) and the balance of angular momentum by enforcing its
symmetry proved to be an extremely difficult task [39]. Stemming from the pioneering
work by Fraejis de Veubeke [40], a first approach discussed in the literature relies on
maintaining the H(div)-conformity of the stress tensor while its symmetry is relaxed
(cf. e.g. [41, 42, 43]). Among the most successful approaches, the so-called PEERS
element by Arnold, Brezzi and Douglas Jr. [44] introduced a Lagrange multiplier as
extra variable to account for the symmetry constraint, see also [45, 46, 47, 48, 49, 50].
In 2002, the first stable pair of finite element spaces for the discretization of the mixed
formulation of the linear elasticity equation with H(div)-conforming strongly enforced
symmetric stress tensor in two dimensions was proposed by Arnold and Winther [51].
The corresponding three dimensional case is discussed in [27, 28]. Nevertheless, the
construction of these finite element pairs is based on nontrivial techniques of exterior
calculus [29] and results in a large number of degrees of freedom per element (the
lowest-order approximation of the stress tensor features 24 degrees of freedom on a tri-
angle and 162 on a tetrahedron) making their application to complex problems unfeasi-
ble. More recently, an alternative mixed formulation featuring a tangential-continuous
displacement field and a normal-normal continuous symmetric stress tensor has been
proposed by Pechstein and Schöberl [52]. For a detailed discussion on mixed methods,
the interested reader is referred to [53].

An alternative approach to the discretization of the linear elastic problem focuses
on relaxing the H(div)-conformity of the stress tensor while strongly enforcing its
pointwise symmetry. This results in nonconforming discretizations (cf. e.g. [54, 55, 56]).
Moreover, owing to the fact that these methods use polynomial basis functions but
no degrees of freedom is located in the vertices of the elements, Gopalakrishnan and
Guzmán [57] show that the resulting nonconforming approximation may be efficiently
implemented via hybridization. Nevertheless, the convergence rate of the stress tensor
is sub-optimal when using this nonconforming discretization. Among nonconforming
discretizations, the DG method has experienced a great success in recent years. The
interest in DG methods for the linear elastic problem is motivated by their high-order
convergence properties and their flexibility in performing local h- and p-adaptivity.
Beside the aforementioned works by Hansbo and Larson [35, 36], see also [58, 59].
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The ability of DG methods to efficiently construct a locking-free approximation in
nearly incompressible materials has been recently analysed in [60] also for the case
of heterogeneous media. In [61], a discontinuous Petrov-Galerkin (DPG) formulation
is proposed to simultaneously approximate the displacement field and the symmetric
stress tensor and is shown to be hp-optimal.

More recently, novel discretization techniques inspired by the previously discussed
ones have been proposed. The local discontinuous Galerkin (LDG) method [62] is based
on a mixed discontinuous Galerkin formulation and provides an exactly incompressible
approximation of the displacement field, that is a displacement field which is normal-
continuous across inter-element boundaries and pointwise incompressible inside each
element. The method converges optimally for the displacement field whereas the strain
tensor and the pressure results are sub-optimal by one order. Moreover, contrary to the
framework discussed by Gopalakrishnan and Guzmán [57], the method cannot be hy-
bridized, thus resulting in a considerable number of degrees of freedom for high-order
approximations. Stemming from the work on LDG, Cockburn and co-workers have
proposed the hybridizable discontinuous Galerkin (HDG) method whose analysis for
the linear elasticity equation is available in [63, 64]. HDG is based on a mixed discon-
tinuous Galerkin formulation with hybridization and provides an optimally convergent
displacement field with order k + 1 whereas the strain and stress tensor converge sub-
optimally with order k + 1/2. The optimal approximation of the stress tensor may be
retrieved by adding matrix bubble functions to the discrete space as discussed in [65].
The alternative HDG formulation by Qiu et al. [66] exploits polynomials of different
degrees for the approximation of the displacement field (order k+1), its trace (order k)
and the strain tensor (order k). By introducing a modified definition of the numerical
trace, optimal convergence of order k + 1 for all the unknowns is retrieved.

In [67], Di Pietro and Ern discuss the hybrid high-order (HHO) method which
features a nonconforming discretization based on a pure displacement formulation of
the linear elastic problem. The method leads to a locking-free displacement field and
a strongly symmetric strain tensor, both converging with optimal order. Similarly
to the hybridization in HDG, the definition of the unknowns on the faces reduces
the computational cost associated with the solution of the problem, making HHO
suitable for high-order approximations. It is worth noting that in [68], Cockburn, Di
Pietro and Ern re-interpreted the HHO method for scalar diffusion problems within
the HDG framework originally discussed in the seminal contribution [21]. In a similar
fashion, HHO for linear elastic problems [67] is a close relative of the HDG method by
Cockburn and co-workers [63, 64] and, consequently, to the HDG formulation based
on Voigt notation discussed in the present work. Nonetheless, as the authors remark,
HHO differs from HDG in the choice of a novel set of local discretization spaces and
in the definition of the numerical trace of the flux. On the contrary, the present work
maintains the classical HDG mixed formulation with the corresponding numerical trace
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of the flux proposed in [63, 64] and reduces the space of the mixed variable to vector-
valued functions accounting solely for the non-redundant terms owing to Voigt notation.

Eventually, other high-order formulations based on a description of the displace-
ment field by means of a hybrid variable and a strong enforcement of the symmetry
of the stress tensor have been discussed in the literature [69, 70, 71]. For a com-
prehensive presentation of the dual hybrid approaches known as equilibrium formula-
tions, the interested reader is referred to the monograph [72]. Inspired by the works
of Arnold and Brezzi [73] and Stenberg [47] on mixed methods, Cockburn and co-
workers have investigated several procedures to construct a super-convergent post-
processed solution by exploiting both the optimally convergent primal and mixed vari-
ables. Nevertheless, as shown in [63], the case of linear elasticity experiences a sub-
optimal convergence of the strain tensor and consequently a loss of super-convergence
for the post-processed displacement field. A great effort within the HDG community
is currently devoted to investigating techniques to remedy this issue and retrieve the
super-convergence of the post-processed variable even for low-order approximations (i.e.
k = 1, 2). More precisely, Cockburn and co-workers have recently introduced the con-
cept of M -decomposition [74, 75] to construct discrete spaces suitable to retrieve the
aforementioned super-convergence property. This elegant theory guarantees that an
HDG approximation for which the local space admits an M -decomposition provides
a locking-free approximate displacement field, an optimally convergent approximate
stress tensor and a super-convergent post-processed displacement field obtained via an
element-by-element procedure. Nevertheless, the construction of such spaces is non-
trivial and their implementation in existing HDG library is not straightforward.

1.2.2 The incompressible limit: approximating the Stokes flow with
HDG

The interest in discontinuous Galerkin (DG) methods [16, 76, 77, 17, 78, 79] has in-
creased in the past years owing to their ability to construct high-order discretizations
on unstructured meshes and to their flexibility in performing p-adaptivity. Among the
different techniques proposed in the literature to approximate incompressible flow prob-
lems, the recent growing interest towards hybridizable discontinuous Galerkin (HDG)
methods [25, 80] is due to multiple advantages these formulations have with respect
to classical DG ones. Concerning Stokes flow, several HDG formulations have been
proposed in the literature [24, 81, 82] and the interested reader is referred to [83] for
an overview on the topic.

The use of hybridization was first introduced with the local discontinuous Galerkin
(LDG) method to circumvent the construction of divergence-free approximations of the
velocity field [84], see also [85, 86, 87, 88]. Moreover, owing to hybridization [89, 90],
the globally coupled unknowns are defined on the boundary of the mesh elements and
are connected solely to neighbouring elements. Thus, the size of the global problem is
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greatly reduced. In addition, it is worth noting that HDG allows equal interpolation for
velocity, pressure and strain rate tensor, owing to an appropriate definition of the nu-
merical flux and to the introduction of a stabilization parameter. Thus, the limitations
of using equal-order approximations for velocity and pressure in the incompressible
limit, through the fulfillment of the Ladyzhenskaya-Babuška-Brezzi (LBB) condition,
are circumvented by HDG. In particular, Cockburn and co-workers [91] proved solvabil-
ity and stability under the aforementioned assumptions, without the need of an enriched
space for the mixed variable, or a reduced space for the hybrid one. In [92, 93], under
suitable assumptions on the regularity of the domain and the solution, optimal con-
vergence rates of order k + 1 are obtained for all the variables using equal degree of
approximation k, whereas classical DG display suboptimal convergence of order k for
the pressure and the gradient of the velocity.

A key aspect of HDG is the ability to construct a postprocessed velocity field
superconverging with order k+2 [94]. This is crucial when the superconvergent solution
is sought to devise automatic procedures to perform p-adaptivity (cf. e.g. [95, 96]).
Nevertheless, the classical HDG equal-order approximation for the Cauchy formulation
is known to experience suboptimal convergence of the mixed variable and a loss of
superconvergence of the postprocessed velocity field using low-order approximations
[81].

Recently, in a series of publications [97, 98, 99, 100], Cockburn and co-workers
devoted a great effort to develop a general framework, namely theM -decomposition, to
devise superconvergent HDG discretizations. This approach relies on enriching the local
spaces for the approximation of the mixed variable by adding extra basis functions. The
number of these additional basis functions is not significantly big and in most cases it
depends on the type of element under analysis and not on the degree of approximation k.
Despite only the size of the local problems increases and the additional computational
effort is limited, it induces a more complex implementation compared to standard
HDG methods. Alternative HDG formulations achieve convergence of order k + 2 for
the velocity field when polynomials of degree k are chosen to approximate the hybrid
variable [101, 102, 103]. These methods rely on utilizing smaller spaces for the mixed
variable and larger ones for the velocity and exploiting a special stabilization function,
the so-called reduced stabilization, to handle them. Closely related approaches, namely
the hybrid high-order (HHO) [67] and the hybridized weak Galerkin (HWG) [104]
methods can also achieve the same orders of convergence.

1.2.3 Adaptivity in transient simulations of the incompressible Navier-
Stokes equations

Adaptive strategies play a crucial role in capturing localized features of complex flow
phenomena. Depending on the characteristics of the flow, appropriate adaptivity pro-
cedures have been proposed in literature, for instance in the case of incompressible
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flows [105], compressible flows [106, 107, 108], turbulent flows [109] and transient flows
[110].

The most common refinement strategies in CFD are h-adaptivity [111, 112, 113],
p-adaptivity [114, 95, 96] and r-adaptivity [115, 116]. Mesh or h-adaptivity consists in
node insertion in specific areas of the mesh. Degree or p-adaptivity relies on changing
the polynomial degree of approximation locally. It requires a flexible scheme that is
able to handle non-uniform degrees in neighbouring elements. DG methods are suitable
for degree adaptivity, since the degree can be non-uniform from element to element
and the continuity is enforced weakly through numerical fluxes [108]. Relocation or
r-adaptivity is based on that the nodes are allowed to move towards areas of the mesh
where increased resolution is required, always maintaining their initial connectivity.
Moreover, hp-adaptivity methods, with a change in order and size of the elements,
have been used in literature [117, 118, 119, 120].

A key aspect to develop adaptive strategies is the definition of an appropriate
error indicator. Exploiting the primal and postprocessed velocities, degree adaptive
procedures have been developed in HDG for wave problems, Stokes equations and
incompressible Navier-Stokes equations [114, 96, 95, 121].

As far as the temporal discretization is concerned, high-order time-marching meth-
ods have been used with HDG without affecting the spatial convergence properties of
the method. In [25] a backward difference formula of order 3 is employed. An appropri-
ate timestep size did not affect the spatial order of convergence of HDG, which was ex-
cellent in the case of gradient-pressure boundary conditions on the Neumann boundary,
whereas in the case of stress boundary conditions, the post-processed velocity is found
to converge with smaller order than expected. Later, a space-time HDG method for in-
compressible Navier-Stokes and Oseen equations on moving and deforming domains was
introduced in [122]. Special space-time elements are employed and high order in time
is achieved by increasing the order of polynomial approximation in these elements. In
[103] the authors employ three different approaches for time integration, namely addi-
tive decomposition using implicit-explicit schemes, operator-integration-factor splitting
and modified fractional-step-θ-scheme, while they used the concept of reduced stabi-
lization for HDG. A projection method, namely the rotational incremental pressure
correction scheme, was introduced in [123] along with implicit-explicit Runge-Kutta
schemes for time integration. Theta-method for temporal discretization was employed
in [124] with pointwise divergence-free andH(div)-conforming velocity field and in [125]
for the implementation of a particle-mesh method with HDG.

As far as degree adaptivity is concerned, a distinction is made between steady and
transient flows. In steady simulations degree adaptivity is performed only once while
in transient simulations it is performed repeatedly, thereby ensuring that the approx-
imation is constantly adapted to the movement of the flow [126, 127]. In transient
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simulations, the timestep size can be also controlled. Adaptivity in time can be per-
formed via Richardson’s extrapolation [128], computing every timestep twice, first with
size ∆t and then with size ∆t/2. Although this approach is extremely simple, it is com-
putationally unaffordable. An alternative approach relies on embedding techniques, in
which an error estimator is devised starting from two solutions that differ by one or-
der. Embedding techniques with Radau methods [129] and fully-implicit Runge-Kutta
methods [130] have been developed. ESDIRK schemes include stages that allow for ef-
ficient embedded error estimation as discussed in [131, 132]. Timestep control has been
also considered as a feedback control problem by various authors who have proposed a
PID-controller type for the adjustment of timestep size [133, 131].

1.2.4 Preconditioning for Navier-Stokes equations

The bottleneck in the application of HDG methods to large-scale problems is the size of
the global system to be solved. Although the use of effectively preconditioned iterative
linear solvers with HDG is necessary, this is still an active field of investigation.

A famous approach on the application of iterative linear solvers to the HDG method
involves the use of multigrid methods, an overview of which can be found in [134]. Ge-
ometric multigrid methods are based on iterative schemes on different mesh levels that
start from a fine grid and construct coarse grids and are famous on structured meshes.
In [135], a variable V -cycle algorithm was introduced for the solution of Laplace equa-
tion using HDG. On the other hand, especially when unstructured grids and high-order
polynomials are considered, p-multigrid methods that iterate on solution approxima-
tions of different polynomial order are used, see [136] for the solution of Euler equations
with DG. In [137] the convergence study of the multigrid method was performed and
in [138] a performance comparison between continuous and discontinuous methods was
conducted. A p–multigrid iterative method was used for transient compressible Navier–
Stokes in [139]. It was shown that it led to fewer GMRES iterations when compared
to other single-grid preconditioners, like ILU or linear Jacobi, though this did not have
an impact on the CPU time when the HDG formulation was considered.

In [140] a diagonal Jacobi precoditioner was used along with the conjugate gradient
method (PCG) for the solution of the elliptic and diffusion problems, demonstrating
that the stabilization parameter τ , that is used to penalize the jump of the flux between
elements, plays a role in the convergence of the PCG method. Block diagonal precon-
ditioners were developed for a HDG method for the Stokes equations [141], where the
iteration count was shown to be independent of the problem size. Other approaches for
the solution of the linear systems that arise from the HDG method include the iterative
solvers presented in [142, 143], Schwarz methods as shown in [144], and the hierarchical
scale separation approach detailed in [145].
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Chapter 2

Superconvergent HDG method for
linear elasticity 1

In this chapter, the hybridizable discontinuous Galerkin (HDG) method, that uses the
same degree approximation for primal and mixed variables, for linear elastic problems is
presented. An important feature is the strong imposition of the symmetry of the stress
tensor, which remedies the loss of optimal convergence properties of the mixed variable
in the HDG formulation. This is particularly important for low-order approximations
(first and second order), since they tend to experience sub-optimal behaviour using the
classical HDG formulation. Given the optimal convergence of the mixed variable for
k ≥ 1, a new approach to construct a superconvergent displacement field is proposed,
even for low-order approximations. Since the displacement field is identified up to rigid
motions (three in 2D and 6 in 3D), some additional constraints for the uniqueness of
the displacement field are necessary.

In Section 2.1, the linear elastic problem is recalled and, using the Voigt notation for
symmetric tensors, it is rewritten strongly enforcing the symmetry of the stress tensor.
In Section 2.2, the HDG framework discussed in [63] is considered and discrete spaces
featuring equal order interpolation for all the variables are employed. In Section 2.3, a
novel way to achieve a superconvergence displacement field is presented.

Extensive numerical tests in both two and three dimensions are presented in Sec-
tion 2.4 to validate the convergence rates of the primal, mixed and post-processed
variables, using different types of elements commonly implemented in commercial fi-
nite element solvers. Special attention is given to the nearly incompressible limit case
in which the novel formulation confirms to be locking-free and the optimal conver-
gence rates are preserved. Section 2.5 summarises the discussed results whereas the
implementation details are provided in Appendix A.

1This chapter is a modified version of the published article: R. Sevilla, M. Giacomini, A. Karkou-
lias, A. Huerta, A super-convergent hybridizable discontinuous Galerkin method for linear elasticity,
International Journal for Numerical Methods in Engineering, 116 (2) (2018) 91-116 [146].
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2.1 Problem statement

In this section, the governing equations that describe the mechanical behaviour of a
deformable solid within the infinitesimal strain theory are introduced and the corre-
sponding formulation using the Voigt notation for symmetric tensors is recalled. For a
complete introduction to this subject, the interested reader is referred to [147, 148, 149].

2.1.1 Strong form of the linear elastic problem

Let Ω ⊂ Rnsd be an open bounded domain in nsd spatial dimensions with boundary
∂Ω = ΓD∪ΓN , ΓD∩ΓN = ∅ and ΓD featuring positive (nsd−1)-dimensional Hausdorff
measure. The mechanical behaviour of a deformable solid Ω within the infinitesimal
strain theory is the described by

−∇ · σ = f in Ω,

σ = σT in Ω,

u = uD on ΓD,

n · σ = t on ΓN ,

(2.1)

where u is the displacement field and σ is the Cauchy stress tensor. The elastic
structure Ω under analysis is thus subject to a volume force f , a tension t on the
surface ΓN and an imposed displacement uD on ΓD.

Equation (2.1) is the strong form of the linear elastic problem and states two conser-
vation laws, namely the balance of momentum and the balance of angular momentum.
Remark that the latter implies the symmetry of the stress tensor, that is σ belongs to
the space Snsd of nsd×nsd symmetric matrices. The full set of equations is closed by a
material law that describes the relationship among the variables at play and depends
on the type of solid under analysis. In particular, a linear elastic material is consid-
ered. Within this context, the so-called Hooke’s law establishes a linear dependency
between the stress tensor σ and the linearised strain tensor ε(u) :=

(
∇u+ ∇uT

)
/2

via the fourth-order tensor A : Ω → Snsd known as the elasticity tensor. In this work,
only homogeneous isotropic materials are considered, whence the elasticity tensor A
depends neither on the spatial coordinate x nor on the direction of the main strains.
The mechanical properties of a linear elastic homogeneous isotropic material are deter-
mined by the pair (E, ν), respectively known as Young’s modulus and Poisson’s ratio
(cf. e.g. [148]). Within the range of physically admissible values of these constants
(i.e. ν ∈ (−1, 0.5)), the relationship between the stress tensor and the linearised strain
tensor reads

σ = Aε(u) =
E

1 + ν
ε(u) +

Eν

(1 + ν)(1− 2ν)
tr(ε(u))Insd , (2.2)
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where Insd is the nsd × nsd identity matrix and tr(·) := · : Insd is the trace operator,
being : the Frobenius product, also known as double contraction. For the purpose of
the current work, only nonauxetic materials are considered, that is the Poisson’s ratio
ν is assumed to be nonnegative.

By plugging (2.2) into (2.1), the stress tensor may be expressed in terms of the
displacement field and the pure displacement formulation of the linear elastic problem
is retrieved: 

−∇ · (Aε(u)) = f in Ω,

u = uD on ΓD,

n · (Aε(u)) = t on ΓN .

(2.3)

Remark 1. The elasticity tensor exists and is invertible as long as ν < 0.5. It is
straightforward to observe that when ν → 0.5, the divergence of the displacement field
in (2.2) has to vanish, that is, the material under analysis is incompressible.

This case cannot be properly handled by the pure displacement formulation since
the elasticity tensor deteriorates and A fails to exist in the incompressible limit, thus
preventing the stress tensor to be expressed in terms of the displacement field. A
possible remedy is represented by mixed formulations in which both the displacement
field and the stress tensor act as unknown of the problem. The associated first-order
problem is thus obtained by considering the following system of equations:

−∇ · σ = f in Ω,

σ = σT in Ω,

σ = Aε(u) in Ω,

u = uD on ΓD,

n · σ = t on ΓN .

(2.4)

2.1.2 Strong enforcement of the symmetry of the stress tensor

Consider the classical theory of linear elasticity [150]. Let u :=
[
ui
]T ∈ Rnsd , i =

1, . . . ,nsd be the vector field describing the displacement. The strain tensor may be
divided into its diagonal components (namely, the extensional strains εii) and its off-
diagonal terms γij known as shear strains

εii :=
∂ui
∂xi

, γij :=
∂ui
∂xj

+
∂uj
∂xi

, for i, j = 1, . . . ,nsd. (2.5)

Owing to its symmetry, only three components in 2D (two extensional and one shear
strains) and six components in 3D (three extensional and three shear strains) need to
be stored. More precisely, according to the so-called Voigt notation, the components



16 Chapter 2. Superconvergent HDG method for linear elasticity

of the strain may be arranged as a column vector in Rmsd as follows:

εV :=


[
ε11, ε22, γ12

]T in 2D,[
ε11, ε22, ε33, γ12, γ13, γ23

]T in 3D,
(2.6)

where msd = nsd(nsd + 1)/2. Here the components are ordered following the rationale
proposed by Fish and Belytschko[150].

Remark 2. The linearised strain tensor ε(u) ∈ Snsd differs from its Voigt counterpart
εV ∈ Rmsd by a factor 1/2 in the shear components, that is:

ε(u) :=



 ε11 γ12/2

γ12/2 ε22

 in 2D,
ε11 γ12/2 γ13/2

γ12/2 ε22 γ23/2

γ13/2 γ23/2 ε33

 in 3D.

(2.7)

Following the framework described by Fish and Belytschko in [150], the matrix
∇S ∈ Rmsd×nsd accounting for the symmetric gradient operator is introduced:

∇S :=



∂/∂x1 0 ∂/∂x2

0 ∂/∂x2 ∂/∂x1

T in 2D,
∂/∂x1 0 0 ∂/∂x2 ∂/∂x3 0

0 ∂/∂x2 0 ∂/∂x1 0 ∂/∂x3

0 0 ∂/∂x3 0 ∂/∂x1 ∂/∂x2


T

in 3D.

(2.8)

Thus, the components of εV may be expressed in terms of the displacements u by means
of a single matrix equation εV = ∇Su.

In a similar fashion, within the stress tensor σ two normal components σii and one
shear component τij in 2D (respectively, three and three in 3D) may be identified owing
to the symmetry arising form the balance of angular momentum (cf. equation (2.4)).
Thus, according to Voigt notation, the stress tensor may be written as the following
column vector in Rmsd :

σV :=


[
σ11, σ22, τ12

]T in 2D,[
σ11, σ22, σ33, τ12, τ13, τ23

]T in 3D.
(2.9)

2.1.3 The linear elastic problem using Voigt notation

In this section, the previously introduced Voigt notation is exploited to rewrite the
linear elastic problem (2.4) by strongly enforcing the symmetry of the stress tensor. The
second equation in (2.4) is thus verified in a straightforward manner. The balance of
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momentummay be rewritten as a matrix equation by exploiting the notation introduced
in (2.8) for the symmetric gradient operator:

−∇T
SσV = f . (2.10)

Moreover, the constitutive equation (2.2) may be expressed as σV = DεV, where D is
an msd×msd symmetric positive definite matrix describing the generalised Hooke’s law.

Remark 3. In two dimensions, the structure of the matrix D depends on the assump-
tion made to simplify the three dimensional model. On the one hand, according to the
plane strain model, the body is thick with respect to the plane x1x2 and consequently
the extensional strain along x3 and the shear strains γi3, i = 1, 2 vanish. On the other
hand, the plane stress model is based on the assumption that the body is thin relative
to the dimensions in the x1x2 plane. Thus, no loads are applied along the x3 direction
and the component σ33 of the stress tensor is assumed to vanish.

D :=



E

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 (1− 2ν)/2

 in 2D (plane strain),

E

1− ν2


1 ν 0

ν 1 0

0 0 (1− ν)/2

 in 2D (plane stress),

E

(1 + ν)(1− 2ν)


1− ν ν ν

ν 1− ν ν 0nsd

ν ν 1− ν

0nsd (1− 2ν)/2Insd

 in 3D.

(2.11)
Following the same rationale discussed above, an msd × nsd matrix accounting for the
normal direction to the boundary is introduced:

N :=



n1 0 n2

0 n2 n1

T in 2D,
n1 0 0 n2 n3 0

0 n2 0 n1 0 n3

0 0 n3 0 n1 n2


T

in 3D,

(2.12)

and the matrix counterpart of the traction boundary conditions is imposed on ΓN , that
is NTσV = t.
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Hence, the linear elastic problem (2.4) using Voigt notation reads as follows:

−∇T
SσV = f in Ω,

σV = DεV in Ω,

u = uD on ΓD,

NTσV = t on ΓN .

(2.13)

2.1.4 Generalised Gauss’s and Stokes’ theorems

In order to state the variational formulation of Equation (2.13), a counterpart of the
classical Gauss’s theorem using the Voigt matrices introduced in the previous sections
is required. The following result holds:

Lemma 1 (Generalised Gauss’s theorem). Consider a vector v ∈ Rnsd and a symmetric
tensor ς ∈ Snsd whose counterpart in Voigt notation is ςV. It holds:∫

∂Ω

(
NT ςV

)
· v dΓ =

∫
Ω
ςV · (∇Sv) dΩ +

∫
Ω

(
∇T

S ςV
)
· v dΩ. (2.14)

Proof. Rewrite each term in (2.14) in terms of the operators associated with the ma-
trices introduced by the Voigt notation:∫

∂Ω

(
NT ςV

)
· v dΓ =

∫
∂Ω

(n · ς) · v dΓ, (2.15a)∫
Ω
ςV · (∇Sv) dΩ =

∫
Ω
ς : ε(v) dΩ, (2.15b)∫

Ω

(
∇T

S ςV
)
· v dΩ =

∫
Ω

(∇ · ς) · v dΩ. (2.15c)

By summing the right hand sides of (2.15), the classical statement of Gauss’s theorem
is retrieved and consequently (2.14) holds.

The aforementioned result allows to derive the formulation of the HDG method
which will be discussed in Section 2.2. Moreover, in Section 2.3, a novel post-process
procedure of the HDG solution which relies on a condition on the curl operator will
be introduced. In order to properly state the aforementioned results, first consider the
infinitesimal rotation of a vector field using Voigt notation. Consider R ∈ Rnrr×nsd ,
with nrr the number of rigid body rotations in the space (one in 2D and three in
3D). Within this rationale, curl(u) := ∇ × u may be written as the matrix equation
curlV(u) = Ru, where

R :=



[
−∂/∂x2, ∂/∂x1

]
in 2D,

0 −∂/∂x3 ∂/∂x2

∂/∂x3 0 −∂/∂x1

−∂/∂x2 ∂/∂x1 0

 in 3D.
(2.16)
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Remark 4. Recall that the curl of a vector field v ∈ R2 exists solely as a scalar
quantity, namely

∇× v =
∂v2

∂x1
− ∂v1

∂x2
. (2.17)

Nevertheless, by embedding v in R3 and setting its third component equal to zero, the
curl may be interpreted as a vector pointing entirely in the direction x3 with magnitude
given by Rv, that is, the value on the right hand side of Equation (2.17).

Moreover, consider the following matrix T ∈ Rnrr×nsd describing the tangent direc-
tion to the boundary of Ω ⊂ Rnsd , that is a tangent line in 2D and a tangent surface
in 3D:

T :=



[
−n2, n1

]
in 2D,

0 −n3 n2

n3 0 −n1

−n2 n1 0

 in 3D.
(2.18)

As previously done for the Gauss’s theorem, a generalised Stokes’ theorem using the
Voigt matrices is stated:

Lemma 2 (Generalised Stokes’ theorem). Consider a vector v ∈ Rnsd. It holds:∫
Ω
Rv dΩ =

∫
∂Ω

Tv dΓ. (2.19)

Proof. Following the same rationale used in Lemma 1, each term in (2.19) may be
rewritten as follows: ∫

Ω
Rv dΩ =

∫
Ω
∇× v dΩ, (2.20a)∫

∂Ω
Tv dΓ =

∫
∂Ω
v · t dΓ, (2.20b)

where t is the tangential direction to the boundary ∂Ω. By plugging (2.20) into (2.19),
the classical statement of Stokes’ theorem is retrieved and consequently (2.19) holds.

2.2 Hybridizable discontinuous Galerkin formulation

Consider a partition of the domain Ω in nel disjoint subdomains Ωe with boundaries
∂Ωe. The internal interface Γ is defined as

Γ :=

[
nel⋃
e=1

∂Ωe

]
\ ∂Ω. (2.21)

The second-order elliptic problem of Equation (2.13) can be written in mixed form,
in the so-called broken computational domain, as a system of first-order equations,



20 Chapter 2. Superconvergent HDG method for linear elasticity

namely 

L+ D1/2∇Su = 0 in Ωe, and for e = 1, . . . ,nel,

∇T
SD

1/2L = f in Ωe, and for e = 1, . . . ,nel,

u = uD on ΓD,

NTD1/2L = −t on ΓN ,

Ju⊗ nK = 0 on Γ,

JNTD1/2LK = 0 on Γ,

(2.22)

where J·K denotes the jump operator, defined along each portion of the interface ac-
cording to [87] as the sum of the values from the element on the right and left, say Ωe

and Ωl:

J�K = �e +�l. (2.23)

Therefore, the last two equations in (2.22) enforce the continuity of respectively the
primal variable - i.e. the displacement field - and the normal trace of the stress across
the interface Γ.

2.2.1 Strong form of the local and global problems

The HDG formulation solves the problem of Equation (2.22) in two stages [21, 91,
23, 151, 24, 25]. First a local pure Dirichlet problem is defined to compute (Le,ue)

element-by-element in terms of the unknown hybrid variable û, namely

Le + D1/2∇Sue = 0 in Ωe

∇T
SD

1/2Le = f in Ωe

ue = uD on ∂Ωe ∩ ΓD,

ue = û on ∂Ωe \ ΓD,

(2.24)

for e = 1, . . . ,nel.
Second, the global problem is defined to determine the hybrid variable (i.e. the

trace of the displacement field on the mesh skeleton Γ ∪ ΓN ), namely
Ju⊗ nK = 0 on Γ,

JNTD1/2LK = 0 on Γ,

NTD1/2L = −t on ΓN .

(2.25)

As usual in an HDG context, the first equation in (2.25) is automatically satisfied
due to the unique definition of the hybrid variable û on each face and the Dirichlet
boundary condition ue = û imposed in the local problems.
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2.2.2 Weak form of the local and global problems

Following the notation in [152], the discrete functional spaces

Vh(Ω) :=
{
v ∈ L2(Ω) : v|Ωe ∈ Pk(Ωe) ∀Ωe , e = 1, . . . ,nel

}
, (2.26a)

V̂h(S) :=
{
v̂ ∈ L2(S) : v̂|Γi ∈ Pk(Γi) ∀Γi ⊂ S ⊆ Γ ∪ ∂Ω

}
, (2.26b)

are introduced, where Pk(Ωe) and Pk(Γi) are the spaces of polynomial functions of
complete degree at most k in Ωe and on Γi respectively. In addition, the classical
internal products of vector functions in L2(Ωe) and L2(Γi)

(p, q)Ωe :=

∫
Ωe

p · q dΩ, 〈p̂, q̂〉∂Ωe :=
∑

Γi⊂∂Ωe

∫
Γi

p̂ · q̂ dΓ (2.27)

are considered.
For each element Ωe, e = 1, . . . ,nel, the discrete weak formulation of (2.24) reads

as follows: given uD on ΓD and û on Γ∪ΓN , find (Lhe ,u
h
e ) ∈ [Vh(Ωe)]

msd × [Vh(Ωe)]
nsd

that satisfies

− (v,Lhe )Ωe + (∇T
SD

1/2v,uhe )Ωe = 〈NT
eD

1/2v,uD〉∂Ωe∩ΓD + 〈NT
eD

1/2v, ûh〉∂Ωe\ΓD ,

(2.28a)

− (∇Sw,D
1/2Lhe )Ωe + 〈w,NT

e D̂
1/2Lhe 〉∂Ωe = (w,f)Ωe , (2.28b)

for all (v,w) ∈ [Vh(Ωe)]
msd × [Vh(Ωe)]

nsd .
Integrating by parts Equation (2.28b) and introducing the following definition of

the trace of the numerical stress featuring a stabilisation parameter τ e

NT
e D̂

1/2Lhe :=

NT
eD

1/2Lhe + τ e(u
h
e − uD) on ∂Ωe ∩ ΓD,

NT
eD

1/2Lhe + τ e(u
h
e − û

h) elsewhere,
(2.29)

leads to the symmetric form of the discrete weak local problem: for e = 1, . . . ,nel,
given uD on ΓD and û on Γ ∪ ΓN , find (Lhe ,u

h
e ) ∈ [Vh(Ωe)]

msd × [Vh(Ωe)]
nsd that

satisfies

− (v,Lhe )Ωe + (∇T
SD

1/2v,uhe )Ωe = 〈NT
eD

1/2v,uD〉∂Ωe∩ΓD + 〈NT
eD

1/2v, ûh〉∂Ωe\ΓD ,

(2.30a)

(w,∇T
SD

1/2Lhe )Ωe + 〈w, τ euhe 〉∂Ωe = (w,f)Ωe + 〈w, τ euD〉∂Ωe∩ΓD + 〈w, τ eûh〉∂Ωe\ΓD ,

(2.30b)

for all (v,w) ∈ [Vh(Ωe)]
msd × [Vh(Ωe)]

nsd .
Similarly, the discrete weak form of the global problem that accounts for the trans-

mission conditions and the Neumann boundary condition is: find ûh ∈ [V̂h(Γ∪ΓN )]nsd

such that
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nel∑
e=1

{
〈ŵ,NT

eD
1/2Lhe 〉∂Ωe\ΓD + 〈ŵ, τ e uhe 〉∂Ωe\ΓD − 〈ŵ, τ e û

h〉∂Ωe\ΓD

}
=

−
nel∑
e=1

〈ŵ, t〉∂Ωe∩ΓN ,

(2.31)

for all ŵ ∈ [V̂h(Γ ∪ ΓN )]nsd .

2.2.3 Spatial discretization

The discretization of the weak form of the local problem given by Equation (2.30)
using an isoparametric formulation for the primal and mixed variables leads to a linear
system with the following structure[

ALL ALu

AT
Lu Auu

]
e

{
Le

ue

}
=

{
fL

fu

}
e

+

[
ALû

Auû

]
e

ûe, (2.32)

for e = 1, . . . ,nel.
Similarly, using an isoparametric formulation for the hybrid variable produce the

following system of equations

nel∑
e=1

{[
AT
Lû AT

uû

]
e

{
Le

ue

}
+ [Aûû]e ûe

}
=

nel∑
i=e

[fû]e. (2.33)

The expressions of the matrices and vectors appearing in Equation (2.32)-(2.33) are
detailed in Appendix A.

After replacing the solution of the local problem of Equation (2.32) in Equa-
tion (2.33), the global problem becomes

K̂û = f̂ , (2.34)

with

K̂ = Anel
e=1

[
AT
Lû AT

uû

]
e

[
ALL ALu

AT
Lu Auu

]−1

e

[
ALû

Auû

]
e

+ [Aûû]e (2.35a)

and

f̂ = Anel
e=1[fû]e −

[
AT
Lû AT

uû

]
e

[
ALL ALu

AT
Lu Auu

]−1

e

{
fL

fu

}
e

. (2.35b)

2.2.4 A remark on the L2 convergence rates for the primal and mixed
variables

Differently from the classical results for HDG [21, 91, 23, 151, 24, 25], the best conver-
gence rates proved by Cockburn and co-workers for the linear elasticity equation [64]
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only achieve a convergence of order k for the gradient of the displacement field. The
convergence rate of both the strain and stress tensors achieves order k+1/2 but remains
sub-optimal with respect to the one of the displacement field (order k + 1). This issue
vanishes when moving to high-order approximations in which the optimal convergence
of the gradient of the displacement field is retrieved. Nevertheless, the aforementioned
limitation represents a major drawback for the application of the classical HDG for-
mulation using polynomials of degree less than 3.

The formulation based on Voigt notation discussed in this article outperforms the
convergence rates proved in [64] by always achieving order k+1 for all the variables (cf.
Section 2.4). In next Section, the optimal numerical convergence of the mixed variable
is exploited to construct a post-processed displacement field which superconverges with
order k + 2.

2.3 Superconvergent post-process of the displacement field

As previously mentioned, a known feature of the HDG method is the possibility to
exploit the accuracy granted by the convergence of order k + 1 of the mixed variable
(i.e. the stress tensor) to perform a local post-process of the primal variable and
construct element-by-element a displacement field u? superconverging with order k+2.
Nevertheless, for the linear elastic problem under analysis the classical approach in [63]
shows some issues resulting in a loss of superconvergence of the post-processed solution
for low-order approximations. Following [152], in this section a novel post-process
procedure is discussed and the superconvergence of u? is retrieved.

Introduce the space Vh? (Ω) of the polynomials of complete degree at most k + 1 on
each element Ωe:

Vh? (Ω) :=
{
v ∈ L2(Ω) : v|Ωe ∈ Pk+1(Ωe) ∀Ωe , e = 1, . . . ,nel

}
. (2.36)

For each element Ωe, e = 1, . . . ,nel, consider the definition of the mixed variable
in (2.24):

Le + D1/2∇Sue = 0. (2.37)

The post-processed solution u? is sought in the richer space
[
Vh? (Ω)

]nsd and fulfils the
following element-by-element problem:{

∇T
SD

1/2∇Su
?
e = −∇T

SLe in Ωe, e = 1, . . . ,nel,

NTD1/2∇Su
?
e = −NTLe on ∂Ωe.

(2.38)

Remark 5. The solution of Equation (2.38) is not uniquely identified in
[
Vh? (Ω)

]nsd .
More precisely, it is unique excluding rigid motions, that is up to a family of func-
tions v? such that ∇Sv

? = 0. From a practical point of view, u? is identified up to
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three (respectively, six) constants in two (respectively, three) dimensions. Each con-
stant is associated with one rigid motion, namely two translations and one rotation
(respectively, three and three) in 2D (respectively, 3D).

In order to remove the above mentioned underdetermination, three additional con-
straints in 2D and six in 3D are required. Moreover, these conditions have to converge
with a sufficiently high degree of accuracy as will be detailed below (cf. Remarks 6
and 7). First, consider the classical superconvergent solvability constraint added in the
HDG literature to close Equation (2.38):∫

Ωe

u?e dΩ =

∫
Ωe

uhe dΩ. (2.39)

Remark 6. For the post-processed variable u? to converge with order k+2 in the L2(Ω)

norm, the mean value of u inside the element Ωe in Equation (2.39) has to converge
with order at least k + 2 as discussed by Cockburn and co-workers [91, 22, 153].

It is straightforward to observe that condition (2.39) removes the underdetermi-
nation related to the translational modes. Nonetheless, one additional constraint is
required in 2D and three in 3D to remove the rotational modes. A first strategy pro-
posed by Soon et al. [63] relies on decomposing the post-processed solution in two
components, the first one arising from the projection of the HDG solution onto the
space of rigid motion displacements and the second one from the solution of (2.38)
in the space of polynomials with no rigid motion. This post-process technique is in-
spired by the work of Stenberg [47] on mixed finite elements and allows to retrieve the
uniqueness of the post-processed solution but the superconvergence is lost for low-order
approximations. Alternatively, in recent years [75], the extremely elegant, but rather
complicated, framework of theM -decomposition has been extensively studied to devise
the proper discrete spaces to obtain optimal convergence and superconvergence of the
post-processed solution.

In the following section, three different approaches to account for the rotational
modes will be numerically compared. First, the previously mentioned idea by Soon et
al. [63] is re-interpreted constraining Equations (2.38)-(2.39) by means of the following
condition accounting for the rigid rotation of the displacement field with respect to the
barycentre of the element:∫

Ωe

(x− xb)× u?e dΩ =

∫
Ωe

(x− xb)× uhe dΩ, (2.40)

where x is the position vector and xb is the barycentre of the element Ωe under analysis.
Second, a novel constraint which has not been previously considered in the literature
is proposed to substitute (2.40). More precisely, a constraint on the mean value of the
curl inside the element Ωe is introduced∫

Ωe

∇× u?e dΩ =

∫
Ωe

∇× uhe dΩ. (2.41)
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By applying the Stokes’ theorem to the right-hand side of (2.41), an alternative for-
mulation which exploits the hybrid variable û is obtained∫

Ωe

∇× u?e dΩ =

∫
∂Ωe

ûh · te dΓ, (2.42)

where te is the tangential direction to the boundary ∂Ωe.

Remark 7. Similarly to the observation in Remark 6, for the post-processed variable
u? to converge with order k + 2 in the L2(Ω) norm, the mean value of its curl on
the left hand side of Equations (2.41) and (2.42) has to converge with order at least
k + 1. According to Equation (2.41), it follows that the mean value of the curl of the
solution u inside the element Ωe has to converge with order at least k + 1, whereas
owing to (2.42) the average of the tangential component of ûh along the boundary ∂Ωe

has to converge with order at least k + 3/2.

By exploiting the Voigt notation introduced in Section 2.1.4, (2.41)-(2.42) may be
written as

∫
Ωe

Ru?e dΩ =


∫

Ωe

Ruhe dΩ according to (2.41),∫
∂Ωe

Tûh dΓ according to (2.42).
(2.43)

An alternative physical interpretation of conditions (2.41)-(2.42) is given in [154], ex-
ploiting the definition of the vorticity of a fluid as the curl of its velocity field. For addi-
tional details on the post-process procedures inspired by the velocity-pressure-vorticity
formulation of the Stokes equation, the interested reader is referred to [81, 93].

2.4 Numerical examples

2.4.1 Optimal order of convergence

This section considers two examples, in two and three dimensions, with known analyt-
ical solution to test the optimal convergence properties of the error of the primal and
mixed variables, u and L respectively, measured in the L2(Ω) norm and for different
types of elements.

Two dimensional example

The first example considers a plane stress model for the problem of Equation (2.1) in
the domain Ω = [0, 1]2. The external load is selected so that the analytical solution is

u(x) =


1

100 x2 sin(πx1)

1
100

(
x3

1 + cos(πx2)
)
 . (2.44)
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(a) Quadrilateral mesh
1

(b) Quadrilateral mesh
2

(c) Triangular mesh 1 (d) Triangular mesh 2

Figure 2.1: Two dimensional meshes of Ω = [0, 1]2 for the mesh convergence study.

(a) u1 (b) u2 (c) σVM

Figure 2.2: Two dimensional problem: HDG approximation of the displacement field and the Von
Mises stress using the third triangular mesh and k = 2.

Neumann boundary conditions, corresponding to the analytical normal stress, are im-
posed on ΓN = {(x1, x2) ∈ Ω | x2 = 0} and Dirichlet boundary conditions, correspond-
ing to the analytical solution, are imposed on ΓD = ∂Ω \ ΓN . The Young’s modulus is
taken as E = 1 and the Poisson’s ratio is ν = 0.25.

Uniform meshes of quadrilateral and triangular elements are considered to perform
an h-convergence study. The first two quadrilateral and triangular meshes are shown
in Figure 2.1.

The displacement field and the Von Mises stress computed on the third triangular
mesh and using a quadratic degree of approximation are depicted in Figure 2.2.

The convergence of the error of the primal and mixed variables u and L, measured
in the L2(Ω) norm, as a function of the characteristic element size h is represented
in Figure 2.3 for both quadrilateral and triangular elements and for a degree of ap-
proximation ranging from k = 1 up to k = 3. It can be observed that the optimal
rate of convergence hk+1 is obtained for all the element types and degrees of approx-
imation considered. It is worth noting that for the same characteristic element size,
the triangular meshes have four times more internal faces than the quadrilateral mesh
with the same element size. Therefore, despite the results in Figure 2.3 indicate that
for the same element size triangular elements provide more accurate results, when a
comparison in terms of the number of degrees of freedom is performed both elements
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(b) Triangles

Figure 2.3: Two dimensional problem: h-convergence of the error of the primal and mixed vari-
ables, u and L in the L2(Ω) norm for quadrilateral and triangular meshes with different orders of
approximation.

provide similar accuracy.

Three dimensional example

The next example considers the model problem of Equation (2.1) in the domain Ω =

[0, 1]3. The external load is selected so that the analytical solution is

u(x) =


1

100

(
x1 sin(2πx2) + x2 cos(2πx3)

)
1

100

(
x2 sin(2πx3) + x3 cos(2πx1)

)
1

100

(
x3 sin(2πx1) + x1 cos(2πx2)

)
 . (2.45)

Neumann boundary conditions, corresponding to the analytical normal stress, are im-
posed on ΓN = {(x1, x2, x3) ∈ Ω | x3 = 0} and Dirichlet boundary conditions, cor-
responding to the analytical solution, are imposed on ΓD = ∂Ω \ ΓN . The Young’s
modulus is taken as E = 1 and the Poisson’s ratio is ν = 0.25.

Uniform meshes of hexahedral, tetrahedral, prismatic and pyramidal elements are
considered to perform an h-convergence study. A cut through the meshes of the domain
for the third level of refinement considered is represented in Figure 2.4 for all the element
types.

The displacement field and the Von Mises stress computed on the fourth hexahedral
mesh and using a cubic degree of approximation are depicted in Figure 2.5.

Analogously to the previous example, the convergence of the error of the primal
and mixed variables u and L, measured in the L2(Ω) norm, as a function of the
characteristic element size h is represented in Figure 2.6 for all the element types and
for a degree of approximation ranging from k = 1 up to k = 3. It can be observed
that a near optimal rate of convergence hk+1 is obtained for all the element types and
degrees of approximation considered.
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(a) Hexahedral mesh 3 (b) Tetrahedral mesh 3 (c) Prismatic mesh 3 (d) Pyramidal mesh 3

Figure 2.4: Three dimensional meshes of Ω = [0, 1]3 for the mesh convergence study.

(a) u1 (b) u2 (c) u3 (d) σVM

Figure 2.5: Three dimensional problem: HDG approximation of the displacement field and the
Von Mises stress using the fourth hexahedral mesh and k = 3.

2.4.2 Superconvergence of the displacement field

In this section, the three post-process procedures described in Section 2.3 are tested
using numerical examples. It is worth recalling that the three post-process options
differ in the condition used to remove the indeterminacy related to the rigid rotational
modes.

Two dimensional example

The different post-process techniques are applied to the two dimensional example of
Section 2.4.1.

The first post-process considers the condition of Equation (2.40). The convergence
of the error of the post-processed variable u?, measured in the L2(Ω) norm, as a function
of the characteristic element size h is represented in Figure 2.7 for both quadrilateral
and triangular elements and for a degree of approximation ranging from k = 1 up
to k = 3. The results indicate that, as other HDG methods for linear elasticity [63],
superconvergence of the post-processed solution is obtained for k ≥ 2. When a linear
approximation is used, quadrilateral elements show almost optimal convergence but for
triangular elements a sub-optimal rate of 2.4 is observed.

Comparing the errors of the post-processed solution to the errors of the HDG solu-
tion in Figure 2.3, it is apparent that, despite no superconvergent results are provided
by the first post-process technique, the post-processed solution is substantially more
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(a) Hexahedrons
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(b) Tetrahedrons
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(c) Prisms
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(d) Pyramids

Figure 2.6: Three dimensional problem: h-convergence of the error of the primal and mixed
variables, u and L in the L2(Ω) norm for hexahedral, tetrahedral, prismatic and pyramidal meshes
with different orders of approximation.
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Figure 2.7: Two dimensional problem: h-convergence of the error of the post-processed solution
in the L2(Ω) norm for quadrilateral and triangular meshes with different orders of approximation
using the post-process technique of Equation (2.40).

accurate than the HDG solution for both quadrilateral and triangular elements. It is
worth noting that this post-process was utilised in a different HDG formulation of the
linear elastic problem for linear triangles [63] and sub-optimal convergence was also
observed.

Next, the post-process that considers the condition of Equation (2.41) is tested.
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Figure 2.8: Two dimensional problem: h-convergence of the error of the post-processed solution
in the L2(Ω) norm for quadrilateral and triangular meshes with different orders of approximation
using the post-process technique of Equation (2.41).

log10(h)
-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

lo
g
1
0
(|
|E

||
L
2
(Ω

))

-9

-8

-7

-6

-5

-4

-3

-2

-1

3.0
1

3.9

1 4.9

1

u
⋆, k=1

u
⋆, k=2

u
⋆, k=3

(a) Quadrilaterals

log10(h)
-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

lo
g
1
0
(|
|E

||
L
2
(Ω

))

-9

-8

-7

-6

-5

-4

-3

-2

-1

2.8
1

3.7
1

4.9

1

u
⋆, k=1

u
⋆, k=2

u
⋆, k=3

(b) Triangles

Figure 2.9: Two dimensional problem: h-convergence of the error of the post-processed solution
in the L2(Ω) norm for quadrilateral and triangular meshes with different orders of approximation
using the post-process technique of Equation (2.42).

Figure 2.8 shows the convergence study for the error of the post-processed variable u?

measured in the L2(Ω) norm. The results for quadrilateral elements are almost identical
to the results obtained with the first technique, whereas, for triangles, a sub-optimal
order k + 1 is observed for all degrees of approximation.

Comparing the errors of the post-processed solution with triangles to the errors of
the HDG solution in Figure 2.3, it is apparent that little gain in accuracy is obtained
with the post-processed solution. This is crucial when the superconvergent solution is
sought to devise automatic degree adaptive processes [95, 155] and suggests that the
post-process provided by the second option cannot be used to produce an accurate
error estimator with triangles.

The last post-process technique proposed in this chapter is considered, consisting
of imposing the condition of Equation (2.42). The convergence of the error of the post-
processed variable u?, measured in the L2(Ω) norm, as a function of the characteristic
element size h is represented in Figure 2.9. The results reveal that almost the optimal
rate of convergence is attained for both quadrilateral and triangular elements and for
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Figure 2.10: Three dimensional problem: h-convergence of the error of the post-processed solution
in the L2(Ω) norm for hexahedral, tetrahedral, prismatic and pyramidal meshes with different orders
of approximation using the post-process technique of Equation (2.40).

all degrees of approximation. This indicates that the average of the hybrid variable on
the boundary leads to superconvergent results. It is worth noting that the error of the
post-processed solution obtained with the third post-process technique, proposed here,
is not only showing the optimal rate but it also provides an extra gain in accuracy when
compared to the first post-process technique, previously used in an HDG context.

Three dimensional example

The different post-process techniques are considered in the three dimensional example
of Section 2.4.1.

The convergence of the error of the post-processed variable u?, measured in the
L2(Ω) norm, as a function of the characteristic element size h is represented in Fig-
ure 2.10 when using the post-process technique of Equation (2.40). The results reveal
that superconvergent results are obtained with k ≥ 2 whereas with linear elements
sub-optimal convergence is attained. It is worth noting that in the two dimensional
example almost superconvergent results where obtained with quadrilateral elements
whereas in three dimensions sub-optimal convergence of order k + 1 is observed for all
the different element types considered.
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Figure 2.11: Three dimensional problem: h-convergence of the error of the post-processed solution
in the L2(Ω) norm for hexahedral and tetrahedral meshes with different orders of approximation
using the post-process technique of Equation (2.41).

Next, the post-process that considers the condition of Equation (2.41) is tested.
Figure 2.11 shows the convergence study for the error of the post-processed variable u?

measured in the L2(Ω) norm. Only the results for hexahedral and tetrahedral elements
are reported in Figure 2.11 because, analogously to the two dimensional example, this
post-process leads to a sub-optimal rate k + 1 for all the different elements types and
degrees of approximation.

Finally, the last post-process technique proposed in this section is considered. The
convergence of the error of the post-processed variable u?, measured in the L2(Ω) norm,
as a function of the characteristic element size h is represented in Figure 2.12. The
results show that almost the optimal rate of convergence is attained for all the element
types and for all degrees of approximation considered. The numerical experiments per-
formed in two and three dimensions confirm that the post-process technique proposed
in this chapter for the first time lead to optimal superconvergent results of the primal
variable.

As in the two dimensional example, the error of the post-processed solution obtained
with the third technique, proposed here, is not only showing the optimal rate but it also
provides an extra gain in accuracy when compared to the first post-process technique,
previously used in an HDG context. When compared to the error of the HDG solution,
represented in Figure 2.6, the post-process proposed here provides a solution that is
almost one order of magnitude more accurate than the HDG solution, even for linear
approximation of the solution.

2.4.3 Influence of the stabilisation parameter

The stabilisation tensor τ is known to have an important effect on the stability, accuracy
and convergence properties of the resulting HDG method [21, 91, 63]. This section
presents a numerical study to assess the influence of the stabilisation parameter on the
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Figure 2.12: Three dimensional problem: h-convergence of the error of the post-processed solution
in the L2(Ω) norm for hexahedral, tetrahedral, prismatic and pyramidal meshes meshes with different
orders of approximation using the post-process technique of Equation (2.42).

accuracy of the results. For simplicity, it is assumed that τ = τInsd and the influence
of the scalar stabilisation parameter τ is investigated.

Two dimensional example

Figure 2.13 shows the evolution of the error of the primal, mixed and post-processed
variables, u, L and u? respectively, in the L2(Ω) norm as a function of the stabil-
isation parameter τ for the two dimensional example studied in Section 2.4.1. The
numerical experiment is performed using linear and quadratic approximations and for
quadrilateral and triangular meshes and the value of τ varies from 0.1 to 1,000.

The results reveal that there is a value of τ for which the error of the primal solution
is minimum. For both quadrilateral and triangular meshes with linear and quadratic
approximation, this value is near τ = 10. However, it is worth noting that for τ = 10

the post-process of the displacement field offers little or no extra gain in accuracy.
When the error of the mixed variable is of interest, the minimum error is achieved for
a different value of the stabilisation parameter, near τ = 3. It is worth noting that the
value of τ = 3 also provides the best accurate results for the post-processed variable.
As a result, the value of τ = 3 is considered the optimum value in this experiment as it
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Figure 2.13: Two dimensional problem: error of the primal, mixed and post-processed variables,
u, L and u? respectively, in the L2(Ω) norm as a function of the stabilisation parameter τ .

provides the most accurate solution for both the displacement (i.e. the post-processed
variable) and the stress (i.e. the mixed variable). It is also interesting to observe that
for τ = 3 the accuracy on the primal and mixed variables is almost identical.

Three dimensional example

A similar study is performed next for the three dimensional example of Section 2.4.1.
Figure 2.14 shows the evolution of the error of the primal, mixed and post-processed
variables, u, L and u? respectively, in the L2(Ω) norm as a function of the stabilisation
parameter τ . As in the two dimensional example a value of the stabilisation parameter
near τ = 10 provides the minimum error for the primal variable but with no extra
gain in accuracy when the post-process is performed. Also, as in the two dimensional
case, the value of τ that provides the most accurate results for both the mixed and the
post-processed variables is near τ = 3. It is worth noting that for hexahedral, prismatic
and pyramidal elements, and contrary to the results obtained in the two dimensional
problem, the value that provides the most accurate results for the primal and mixed
variable is almost identical.

The conclusions that are extracted from this study are similar to the ones obtained
in the two dimensional example and show that the optimal value of the stabilisation
parameter is not dependent upon the degree of approximation, the type of element or
the dimensionality of the problem.

2.4.4 Locking-free behaviour in the incompressible limit

The last example considers a problem with a nearly incompressible material (i.e. ν ∼
0.5) that is commonly used in the literature [63]. The problem, defined in Ω = [0, 1]2,
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Figure 2.14: Three dimensional problem: error of the primal, mixed and post-processed variables
in the L2(Ω) norm as a function of the stabilisation parameter.

has analytical solution given by

u(x) =

−x
2
1x2(x1 − 1)2(x2 − 1)(2x2 − 1)

x2
2x1(x2 − 1)2(x1 − 1)(2x1 − 1)

 . (2.46)

The external load and boundary conditions are derived from the exact solution. The
Young’s modulus is taken as E = 3 and the Poisson’s ratio is varied from ν = 0.49 up
to ν = 0.49999.

Only triangular meshes with the arrangement represented in Figure 2.15 are shown
as this particular arrangement is known to exhibit a volumetric locking effect when
considered with a traditional continuous Galerkin finite element formulation. Note
that other the arrangements depicted in Figure 2.1 also produce optimal rates of con-
vergence.

The displacement field and the Von Mises stress computed on the fourth triangular
mesh and using a cubic degree of approximation are depicted in Figure 2.16.

The mesh convergence results for the primal and mixed variables, u and L, are
represented in Figure 2.17 for the triangular meshes shown in Figure 2.15, for different
orders of approximation and for increasing value of the Poisson’s ratio. The results
show that the proposed HDG formulation is volumetric locking-free. In addition, it
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 2.15: Three two dimensional triangular meshes of Ω = [0, 1]2 for the mesh convergence
study with a nearly incompressible material.

(a) u1 (b) u2 (c) σVM

Figure 2.16: HDG approximation of the displacement field and the Von Mises stress using the
fourth triangular mesh and k = 3 for a material with ν = 0.49999.

is worth noting that the accuracy of the displacement and the stress is almost inde-
pendent on the Poisson’s ratio. This behaviour has also been observed when using a
different HDG formulation [63]. However, contrary to the results reported in [63], the
proposed formulation shows the optimal rate of convergence, whereas the formulation
in [63] exhibits a slight degradation of the rate of convergence for nearly incompress-
ible materials. This degradation of the rate of convergence in the HDG formulation
of [63] is sizeable when the error on the mixed variable is considered, even for high-order
approximations.

Next, the mesh convergence study is performed for the post-processed variable
using the technique proposed in this chapter that resulted in optimal convergence in
the numerical example of Section 2.4.2. The mesh convergence results for the post-
processed displacement field u?, are represented in Figure 2.18 for different orders
of approximation and for increasing value of the Poisson’s ratio. The results show
again that the accuracy is independent on the Poisson’s ratio. More important, the
mesh convergence study demonstrates that the proposed formulation together with the
proposed post-process is able to provide superconvergent solutions for all degrees of
approximation, even for linear triangular elements in the particular arrangement that
causes volumetric locking in a continuous Galerkin formulation.



2.5. Conclusion 37

log10(h)
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

lo
g
1
0
(|
|E

||
L
2
(Ω

))

-6

-5

-4

-3

-2

-1

0

2.0
1

2.0
1

3.0
1

3.0
1

4.0

1

4.0

1

u, k=1
L, k=1
u, k=2
L, k=2
u, k=3
L, k=3

(a) ν = 0.49

log10(h)
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

lo
g
1
0
(|
|E

||
L
2
(Ω

))

-6

-5

-4

-3

-2

-1

0

2.0
1

2.0
1

3.0
1

3.0
1

4.0

1

4.0

1

u, k=1
L, k=1
u, k=2
L, k=2
u, k=3
L, k=3

(b) ν = 0.499

log10(h)
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

lo
g
1
0
(|
|E

||
L
2
(Ω

))

-6

-5

-4

-3

-2

-1

0

2.0
1

2.0
1

3.0
1

3.0
1

4.0

1

4.0

1

u, k=1
L, k=1
u, k=2
L, k=2
u, k=3
L, k=3

(c) ν = 0.4999

log10(h)
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

lo
g
1
0
(|
|E

||
L
2
(Ω

))

-6

-5

-4

-3

-2

-1

0

2.0
1

2.0
1

3.0
1

3.0
1

4.0

1

4.0

1

u, k=1
L, k=1
u, k=2
L, k=2
u, k=3
L, k=3

(d) ν = 0.49999

Figure 2.17: h-convergence of the error of the primal and mixed variables, u and L, in the L2(Ω)
norm for different orders of approximation and for an increasing value of the Poisson’s ratio.

2.5 Conclusion

In this chapter, a novel HDG formulation for the linear elastic problem strongly enforc-
ing the symmetry of the stress tensor is proposed. Owing to the Voigt notation, the
second-order tensors appearing in the linear elasticity equation are expressed as vectors
featuring the diagonal and half of the off-diagonal terms. Thus, the resulting method
does not introduce any extra cost to guarantee the symmetry of the stress tensor and,
in fact, it is more computationally efficient than other HDG formulations due to the
reduced number of degrees of freedom of the mixed variable.

For k ≥ 1, as all existing HDG formulations for linear elasticity, the resulting
method provides optimal convergence rate of order k + 1 for the displacement field.
The optimal order k+ 1 is also obtained for the stress tensor which usually experiences
sub-optimal behaviour using low-order approximations in the original HDG formulation
by Cockburn and co-workers. Furthermore, contrary to other proposed variants of HDG
for linear elasticity, the optimality is achieved using equal-order approximation spaces
for the primal and mixed variables and no special enrichment is required.

The optimally convergent stress tensor is thus utilized to locally construct a post-
processed displacement field. The element-by-element procedure uses the equilibrated
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Figure 2.18: h-convergence of the error of the post-processed variable, u?, in the L2(Ω) norm for
different orders of approximation and for an increasing value of the Poisson’s ratio.

stresses as boundary conditions of the local problems and exploits the optimal conver-
gence of the trace of the displacements to remove the underdetermination associated
with the rigid rotational modes. The post-processed displacement field belongs to the
richer space of polynomials of degree at most k+ 1 in each element and superconverges
with order k+2. Therefore, the current formulation provides a workaround to avoid the
construction of discrete spaces fulfilling the M -decomposition property to guarantee
the superconvergence of the post-processed solution.

An extensive set of numerical simulations has been presented to verify the opti-
mal approximation properties of the method in 2D and 3D, to study the influence of
the HDG stabilisation parameter and to show the robustness of the formulation us-
ing meshes featuring different element shapes, commonly implemented in commercial
softwares. Special attention has been dedicated to the analysis of the limit case of
nearly incompressible materials: numerical evidence shows that the method is locking-
free and the optimal convergence and superconvergence rates of the primal, mixed and
post-processed variables are preserved.

Given the demonstrated optimal convergence and superconvergence rates near the
incompressibility limit, as a next step the approach, which was introduced in this chap-
ter for the linear elasticity problem, will be applied to the Stokes flow. The Stokes flow
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describes the motion of incompressible, highly viscous fluids and the Stokes problem
has a similar structure to the almost incompressible linear elasticity problem. There-
fore, in Chapter 3 the hybridizable discontinuous Galerkin method with the strong
enforcement of the stress tensor for the Stokes flow will be presented.
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Chapter 3

Superconvergent HDG method for
Stokes flow 1

The Stokes flow describes the movement of an incompressible fluid with extremely high
viscosity, a flow with a very small velocity, usually referred to as creeping flow, as well
as a flow at small length scales, for example some µm. Under these circumstances, iner-
tial forces are extremely smaller than viscous forces inside the fluid, therefore, viscosity
has a predominant role and the convection term can be neglected. Studying the Stokes
flow is broadly used as a preliminary step before studying the Navier-Stokes equations,
that do account for convection. In addition, as far as the proposed formulation of the
HDG method in this thesis is concerned, applying it to the Stokes flow is reasonable,
especially after demonstrating the excellent convergence properties in nearly incom-
pressible elastic materials. In this chapter, a superconvergent HDG method for the
solution of the Stokes problem is presented. A similar approach to the aforementioned
linear elasticity problem will be followed.

This approach considers the same degree of polynomials for all variables, either
primal or mixed. The symmetry of the stress tensor is enforced explicitly. Then, with
the use of the Voigt notation, the governing equations of the problem are rewritten
considering a symmetric stress tensor. As previously mentioned for the linear elasticity
problem, this approach remedies the suboptimal convergence behaviour of the mixed
variable for low-order approximations. The optimal convergence rates of the mixed
variable are obtained, thereby enabling the construction of an element-by-element post-
process procedure that leads to a superconvergent velocity field, even for low-order
approximations. Moreover, no additional enrichment of the discrete spaces is required
and a gain in computational efficiency follows from reducing the quantity of stored
information and the size of the local problems. Finally, using this formulation it is
possible to impose directly physical tractions on the boundaries, without necessitating
the imposition of pseudo-tractions. This is the case for formulations that are based on
a different set of variables and do not consider the symmetry of the stress tensor.

1This section is a modified version of the published article: M. Giacomini, A. Karkoulias, R.
Sevilla, A. Huerta, A superconvergent HDG for Stokes flow with strongly enforced symmetry of the
stress tensor, Journal of Scientific Computing 77 (3) (2018) 1679-1702 [154].
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This chapter is organized as follows. In Section 3.1, first, the equations governing
the Stokes flow are recalled. Then, according to the rationale introduced in Chap-
ter 2 for the linear elasticity equation, the symmetry of the stress tensor is strongly
enforced by means of a well-known technique in the computational mechanics com-
munity, namely the Voigt notation for symmetric tensors. The corresponding Cauchy
formulation of the Stokes equation with strongly enforced symmetry of the stress ten-
sor is derived. In Section 3.2, the HDG discretization for the Stokes flow is introduced
and a local post-process procedure providing a superconvergent velocity field is dis-
cussed. The proposed HDG formulation is validated in Section 3.3. Extensive analysis
of the optimal convergence and superconvergence rates of the primal, mixed and post-
processed variables, for two and three dimensional problems is provided by means of
numerical simulations. Special emphasis is placed on the influence of the stabilization
parameter and on the robustness of the method using meshes of different element types.
Eventually, the capability of the method to accurately compute quantities of interest
depending on the solution of the Stokes equation (e.g. the drag force) is discussed and
Section 3.4 summarizes the results of this chapter.

3.1 Stokes flow with strongly enforced symmetry of the
stress tensor

In this section, the framework to handle symmetric tensors by means of Voigt nota-
tion and the governing equations of a Stokes flow are introduced. First, the Cauchy
formulation of the Stokes equation is recalled.

3.1.1 Cauchy formulation of the Stokes flow

Consider an open bounded domain Ω ⊂ Rnsd with boundary ∂Ω = ΓD∪ΓN , ΓD∩ΓN = ∅
and nsd being the number of spatial dimensions. The strong form of the problem under
analysis reads as follows:

−∇ · σ = s in Ω,

∇ · u = 0 in Ω,

σ = −pInsd + 2νε(u) in Ω,

u = uD on ΓD,

n · σ = t on ΓN ,

(3.1)

where the pair (u, p) represents the velocity and pressure fields and σ is the Cauchy
stress tensor. The terms s, uD and t respectively are the volumetric source term,
the Dirichlet boundary datum to impose the value of the velocity on ΓD and the
traction applied on the Neumann boundary ΓN . The third equation, known as Stokes
law, provides the relationship between the stress tensor and the velocity and pressure
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variables, through the viscosity coefficient ν > 0, the nsd × nsd identity matrix Insd

and the strain rate tensor ε(u), ε() := 1
2

(
∇ + ∇T

)
being the symmetric part of the

gradient.
It is well-known that the Cauchy and the velocity-pressure formulations of the

Stokes equation are equivalent from the variational point of view. Nevertheless, a major
difference arises when considering the imposition of Neumann boundary conditions.
On the one hand, natural boundary conditions for the Cauchy formulation enforce the
value of the normal stress which represents a physical traction. On the other hand, the
velocity-pressure formulation only accounts for the gradient of the velocity field instead
of its symmetric part, leading to the imposition of the so-called pseudo-tractions. Hence,
the physical interpretation is lost [156]. Within this context, an artificial handling of
Neumann boundary conditions is required to impose physically meaningful tractions.
This represents a drawback when dealing with real-life and industrial applications in
which the enforcement of physically relevant quantities is a major constraint to perform
reliable numerical simulations and compare them with experimental data.

3.1.2 Voigt notation for symmetric tensors

From the Stokes law in Equation (3.1), it is straightforward to observe that the Cauchy
stress tensor is symmetric. It is worth noting that this property expresses a conserva-
tion law, namely the balance of angular momentum. As remarked in [39], the strong
enforcement of this conservation law is not trivial and has lead to the development of
the elegant, but rather complicated, framework of finite element exterior calculus to
construct strongly symmetric approximations of second-order tensors [29]. In this sec-
tion, the Voigt notation, that is widely used in the solid mechanics community and was
previously presented for the linear elasticity problem, is exploited to simply enforce the
symmetry of the stress tensor and, consequently, to fulfill the conservation of angular
momentum pointwise. The Voigt notation relies on the idea of storing a second-order
tensor in a vectorial format by appropriately rearranging its diagonal and off-diagonal
components. Consequently, the application of differential operators (e.g. symmetric
gradient, divergence and curl) and the geometrical projections (e.g. in the normal
and tangential directions to a surface) may be expressed as matrix equations. For
this purpose, the rationale for the construction of differential operator and geometrical
quantities using Voigt notation is recalled.

Consider the previously defined strain rate tensor ε(u). Owing to its symmetry,
only msd = nsd(nsd + 1)/2 components (i.e. three in 2D and six in 3D) have to be
stored. According to the arrangement presented in Chapter 2, the following column
vector in Rmsd is obtained:

εV :=


[
e11, e22, e12

]T in 2D,[
e11, e22, e33, e12, e13, e23

]T in 3D.
(3.2)
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The components of the strain rate in Equation (3.2) read as

eij :=
∂ui
∂xj

+ (1− δij)
∂uj
∂xi

, for i, j = 1, . . . ,nsd, (3.3)

where δij is the classical Kronecker delta. In order to retrieve the aforementioned strain
rate tensor ε(u), the off-diagonal terms eij , i 6= j have to be multiplied by a factor
1/2, namely

ε(u) :=



 e11 e12/2

e12/2 e22

 in 2D,
e11 e12/2 e13/2

e12/2 e22 e23/2

e13/2 e23/2 e33

 in 3D.

(3.4)

Similarly, the symmetry of the stress tensor σ is exploited to store only msd com-
ponents in the column vector

σV :=


[
σ11, σ22, σ12

]T in 2D,[
σ11, σ22, σ33, σ12, σ13, σ23

]T in 3D.
(3.5)

Differential operators using Voigt notation

Following [150], the strain rate tensor can be written as εV = ∇Su by introducing the
msd × nsd matrix ∇S of Equation (2.8). In a similar fashion, the vorticity ω := ∇×u
may be expressed in terms of Voigt notation as ω = Ru through the nrr×nsd matrix
R of Equation (2.16).

3.1.3 Cauchy formulation of the Stokes flow using Voigt notation

Owing to the notation introduced in this section, the Stokes constitutive law may
be expressed as σV = −Ep + D∇Su, where the vector E ∈ Rmsd and the matrix
D ∈ Rmsd×msd read as

E :=


[
1, 1, 0

]T in 2D,[
1, 1, 1, 0, 0, 0

]T in 3D.
D :=



2νInsd 0nsd×1

0Tnsd×1 ν

 in 2D,2νInsd 0nsd

0nsd νInsd

 in 3D.

(3.6)

Moreover, the Neumann boundary condition applied on ΓN can be written as
NTσV = t by introducing the msd × nsd matrix N of Equation (2.12), accounting
for the normal direction to the boundary.
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Similarly, the projection of a vector along the tangential direction τ , namely a
tangent line in 2D and a tangent surface in 3D, reads as u ·τ = Tu, where T is defined
in Equation (2.18).

In order to rewrite Equation (3.1) using Voigt notation, the divergence of a sym-
metric tensor is expressed in terms of the transpose of the matrix ∇S accounting for the
symmetric part of the gradient [150]. In a similar fashion, recall that ∇ · u = tr(∇u)

and observe that the trace operator may be expressed via the vector E introduced in
Equation (3.6). Combining the matrix forms of the symmetric gradient, the Stokes
law and the normal direction presented above, the following formulation of the Stokes
equation using Voigt notation is obtained:

−∇T
SσV = s in Ω,

ET∇Su = 0 in Ω,

σV = −Ep+ D∇Su in Ω,

u = uD on ΓD,

NTσV = t on ΓN .

(3.7)

3.2 A hybridizable discontinuous Galerkin method

As presented in Section 2.2, a similar approach is followed and the second-order problem
in Equation (3.7) may be written as a system of first-order equations as follows:

L+ D1/2∇Su = 0 in Ωe, and for e = 1, . . . ,nel,

∇T
S

(
D1/2L+ E p

)
= s in Ωe, and for e = 1, . . . ,nel,

ET∇Su = 0 in Ωe, and for e = 1, . . . ,nel,

u = uD on ΓD,

NT (D1/2L+ E p) = −t on ΓN ,

Ju⊗ nK = 0 on Γ,

JNT (D1/2L+ E p)K = 0 on Γ,

(3.8)

where the last two equations are the transmission conditions enforcing the continuity
of respectively the velocity and the flux across the interface Γ.

Remark 8. In the case of purely Dirichlet boundary conditions (i.e. ΓN = ∅), an
additional constraint is required to avoid the indeterminacy of the pressure. A common
choice relies on imposing zero mean value of the pressure on the boundary (cf. e.g.
[92, 157, 24]):

1

|∂Ω|
〈p, 1〉∂Ω = 0. (3.9)
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3.2.1 Strong form of the local and global problems

In a series of papers by Cockburn and co-workers [92, 24, 81, 93], the hybridizable dis-
continuous Galerkin formulation for Stokes flow has been theoretically and numerically
analyzed. Starting from the mixed formulation on the broken computational domain
in Equation (3.8), HDG features two stages.

First, a set of nel local problems are defined element-by-element to compute (Le,ue, pe)

for e = 1, . . . ,nel: 

Le + D1/2∇Sue = 0 in Ωe

∇T
SD

1/2Le + ∇T
SE pe = s in Ωe

ET∇Sue = 0 in Ωe

ue = uD on ∂Ωe ∩ ΓD,

ue = û on ∂Ωe \ ΓD,

(3.10)

where û is an independent variable representing the trace of the velocity on the mesh
skeleton Γ ∪ ΓN . Remark that Equation (3.10) is a purely Dirichlet boundary value
problem. As previously observed, an additional constraint has to be added to remove
the indeterminacy of the pressure, namely

1

|∂Ωe|
〈pe, 1〉∂Ωe = ρe, (3.11)

where ρe denotes the mean pressure on the boundary of the element Ωe. Hence, for
e = 1, . . . ,nel the local problem in Equation (3.10) provides (Le,ue, pe) in terms of
the global unknowns û and ρ.

The trace of the velocity û and the mean pressure ρ on the element boundaries are
determined by solving the global problem accounting for the transmission conditions
and the Neumann boundary condition:

Ju⊗ nK = 0 on Γ,

JNT (D1/2L+ E p)K = 0 on Γ,

NT (D1/2L+ E p) = −t on ΓN .

(3.12)

The first equation is automatically satisfied due to the Dirichlet boundary condition
ue = û imposed in the local problems and the unique definition of the hybrid variable
û on each face of the mesh skeleton. Moreover, the divergence-free condition in the
local problem induces the following compatibility condition for each element Ωe, e =

1, . . . ,nel

〈û · ne, 1〉∂Ωe\ΓD + 〈uD · ne, 1〉∂Ωe∩ΓD = 0. (3.13)
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Consider the Voigt counterpart ET∇Sue = 0 of the aforementioned constraint (cf.
Equation (3.10)). The resulting compatibility condition reads as

〈ETNeû, 1〉∂Ωe\ΓD + 〈ETNeuD, 1〉∂Ωe∩ΓD = 0 for e = 1, . . . ,nel (3.14)

and it is utilized to close the global problem.

3.2.2 Weak form of the local and global problems

Consider the discrete functional spaces in Equation (2.26). The discrete weak formu-
lation of the local problems in Equation (3.10) is as follows: for e = 1, . . . ,nel, given
uD on ΓD and ûh on Γ ∪ ΓN , find (Lhe ,u

h
e , p

h
e ) ∈ [Vh(Ωe)]

msd × [Vh(Ωe)]
nsd × Vh(Ωe)

such that

−(v,Lhe )Ωe + (∇T
SD

1/2v,uhe )Ωe

= 〈NT
eD

1/2v,uD〉∂Ωe∩ΓD + 〈NT
eD

1/2v, ûh〉∂Ωe\ΓD ,
(3.15a)

−(∇Sw,D
1/2Lhe )Ωe − (ET∇Sw, p

h
e )Ωe

+ 〈w,NT
e

(
D1/2Lhe+E phe

∧)
〉∂Ωe = (w, s)Ωe ,

(3.15b)

(∇T
SE q,u

h
e )Ωe = 〈q,ETNeuD〉∂Ωe∩ΓD + 〈q,ETNeû

h〉∂Ωe\ΓD , (3.15c)
1

|∂Ωe|
〈phe , 1〉∂Ωe = ρhe , (3.15d)

for all (v,w, q) ∈ [Vh(Ωe)]
msd × [Vh(Ωe)]

nsd × Vh(Ωe). Following the denifition of the
trace of numerical stress in Equation (2.29) for the linear elasticity, the trace of the
numerical normal flux in Equation (3.15b) is defined as follows

NT
e

(
D1/2Lhe+E phe

∧)
:=

NT
e

(
D1/2Lhe + E phe

)
+ τ (uhe − uD) on ∂Ωe ∩ ΓD,

NT
e

(
D1/2Lhe + E phe

)
+ τ (uhe − û

h) elsewhere,
(3.16)

where the stabilization parameter τ plays a crucial role in the stability, accuracy and
convergence properties of the resulting HDG method [21, 23, 151]. By plugging Equa-
tion (3.16) into Equation (3.15b) and integrating by parts, the symmetric form of the
discrete weak local problem is obtained: for e = 1, . . . ,nel, given uD on ΓD and ûh on
Γ ∪ ΓN , find (Lhe ,u

h
e , p

h
e ) ∈ [Vh(Ωe)]

msd × [Vh(Ωe)]
nsd × Vh(Ωe) that satisfy

−(v,Lhe )Ωe + (∇T
SD

1/2v,uhe )Ωe

= 〈NT
eD

1/2v,uD〉∂Ωe∩ΓD + 〈NT
eD

1/2v, ûh〉∂Ωe\ΓD ,
(3.17a)

(w,∇T
SD

1/2Lhe )Ωe+〈w, τuhe 〉∂Ωe + (w,∇T
SE p

h
e )Ωe

= (w, s)Ωe + 〈w, τuD〉∂Ωe∩ΓD + 〈w, τ ûh〉∂Ωe\ΓD ,
(3.17b)

(∇T
SE q,u

h
e )Ωe = 〈q,ETNeuD〉∂Ωe∩ΓD + 〈q,ETNeû

h〉∂Ωe\ΓD , (3.17c)
1

|∂Ωe|
〈phe , 1〉∂Ωe = ρhe , (3.17d)
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for all (v,w, q) ∈ [Vh(Ωe)]
msd × [Vh(Ωe)]

nsd × Vh(Ωe).

Remark 9. From a practical point of view, the constraint on the mean value of the
pressure on the boundary of the element introduced in Equation (3.17d) is handled by
means of a Lagrange multiplier. Thus, the matrix associated with the resulting local
problem has a saddle point structure [155].

Remark 10. Following the notation used in [152, 155, 146], an isoparametric dis-
cretization using equal interpolation for the primal and mixed variables is considered.
The linear system associated with the discretization of the HDG local problem of Equa-
tion (3.17) has the following structure:

ALL ALu 0 0

AT
Lu Auu Aup 0

0 AT
up 0 aTρp

0 0 aρp 0


e


Le

ue

pe

ζ

 =


fL

fu

fp

0


e

+


ALû

Auû

Apû

0


e

ûe +


0

0

0

1

 ρe, (3.18)

for e = 1, . . . ,nel and ζ being the Lagrange multiplier associated with the constraint
on the mean value of the pressure on the boundary of the element introduced in Equa-
tion (3.17d).

It is straightforward to observe that the formulation of Equation (3.18) is gen-
eral and also holds for the classical hybridizable discontinuous Galerkin formulation
presented in [81]. Nonetheless, owing to Voigt notation, solely the non-redundant com-
ponents of the second-order strain rate tensor are stored in Le, that is msd components
instead of n2

sd. Thus, the size of the block matrices ALL, ALu and ALû, of the block
vector fL and of the first zero block vector of the last term of the right-hand side of
Equation (3.18) changes when considering the classical HDG formulation or the one
based on Voigt notation. In particular, being nen the number of nodes per element, in
the former case, the block ALL is a n2

sdnen×n2
sdnen matrix, whereas in the latter it re-

duces to a msdnen×msdnen one. Thus, the nen(n2
sd+nsd+1)+1×nen(n2

sd+nsd+1)+1

linear system of Equation (3.18) arising from the classical HDG local problem reduces
to a nen(msd+nsd+1)+1×nen(msd+nsd+1)+1 using Voigt notation. In two dimen-
sions using triangular mesh elements and polynomials of degree 3, each elemental local
problem features 71 degrees of freedom using the classical formulation versus 61 when
exploiting Voigt notation. The computational saving greatly increases with high-order
approximations, e.g. for k = 6 the size of each local problem is reduced from 197 to 169

equations. In a similar fashion, in a three-dimensional domain discretized using tetra-
hedral mesh elements, each elemental local problem reduces from 261 to 201 degrees of
freedom for k = 3 and from 1093 to 841 using polynomials of degree 6 depending on
the selected HDG formulation. Despite these numbers clearly highlight an important
reduction of the dimension of the system in Equation (3.18), it is worth reminding that
these problems are solved element-by-element and may be easily tackled in parallel,
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whereas the most expensive step is represented by the solution of the global problem
discussed below.

For the global problem, the discrete weak formulation equivalent to (3.12) is: find
ûh ∈ [V̂h(Γ ∪ ΓN )]nsd and ρh ∈ Rnel such that

nel∑
e=1

{
〈ŵ,NT

eD
1/2Lhe 〉∂Ωe\ΓD + 〈ŵ,ETNep

h
e 〉∂Ωe\ΓD + 〈ŵ, τ uhe 〉∂Ωe\ΓD

−〈ŵ, τ ûh〉∂Ωe\ΓD

}
= −

nel∑
e=1

〈ŵ, t〉∂Ωe∩ΓN ,

(3.19a)

〈ETNeû, 1〉∂Ωe\ΓD = −〈ETNeuD, 1〉∂Ωe∩ΓD = 0 for e = 1, . . . ,nel, (3.19b)

for all ŵ ∈ [V̂h(Γ ∪ ΓN )]nsd .
Using the discretization described in Remark 10, the linear system associated with

the discretization of the HDG global problem of Equation (3.19) has the following
structure:

nel∑
e=1

{[
AT
Lû AT

uû AT
pû

]
e


Le

ue

pe

+ [Aûû]e ûe

}
=

nel∑
i=e

[fû]e. (3.20a)

[Aρû]eûe = [fρ]e. (3.20b)

The expressions of the matrices and vectors in Equations (3.18) and (3.20) are given
in Appendix A.

3.2.3 Local post-process of the velocity field

As usual in HDG, an element-by-element post-process procedure is considered to con-
struct an improved approximation of the velocity field. Modifying the Brezzi-Douglas-
Marini (BDM) projection operator, see [53], in [93, 81] a technique to retrieve an
H(div)-conforming and exactly divergence-free velocity field was discussed. In this sec-
tion, the requirement of H(div)-conformity is relaxed and a simpler approach inspired
by the work of Stenberg [158] and exploited in [24, 152, 155] is considered. Neverthe-
less, it is known [81] that using the Cauchy formulation of the Stokes equation, a loss of
superconvergence is experienced by low-order approximations. It is worth recalling that
in order to construct a superconvergent post-processed velocity field, two ingredients
are required:

(i) a mixed variable L optimally convergent with order k + 1;

(ii) a post-processing procedure able to resolve the underdetermination of the rigid
body motions.

The adoption of Voigt notation allows the strong imposition of the symmetry of the
stress tensor and, consequently, the pointwise fulfilment of the conservation of angular
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momentum which is only weakly satisfied by classical HDG formulations as the one
discussed in [81]. This allows to retrieve the optimal convergence of the strain gradient,
even for low-order approximations, and requirement (i) is thus fulfilled.

In this section, a novel strategy to handle rigid body motions and fulfill requirement
(ii) is presented. Basic idea relies on introducing a constraint in the post-processing
equation without modifying the discrete spaces in which the variables are sought.
Thus, Voigt notation allows to circumvent the complex mathematical framework of
M -decomposition discussed in [97, 98, 99, 100] to devise superconvergent HDG ap-
proximations with strongly and weakly symmetric stress tensors. The resulting local
post-process problem exploits the optimal convergence rate of order k+ 1 of the mixed
variable and additional conditions to take care of translational and rotational rigid
body motions to construct a velocity field u? superconverging with order k + 2.

For each element Ωe, e = 1, . . . ,nel, the post-processed velocity u? is the solution
of the problem {

∇T
SD

1/2∇Su
?
e = −∇T

SL
h
e in Ωe,

NT
eD

1/2∇Su
?
e = −NT

e L
h
e on ∂Ωe,

(3.21)

in the space
[
Vh? (Ω)

]nsd , as it is described in (2.36). The element-by-element problem in
Equation (3.21) is obtained by the definition of the mixed variable in Equation (3.10)
and exploits the naturally equilibrated fluxes as condition on the boundary of the
element.

The solution of Equation (3.21) is determined up to rigid motions, namely nsd

translations and nrr rotations, being nsd = 2 and nrr = 1 in 2D and nsd = nrr = 3 in
3D. As discussed in Section 2.3, a set of nsd +nrr constraints is introduced to retrieve
the uniqueness of the solution. On the one hand, the indeterminacy due to the nsd
rigid translational modes is resolved introducing the following constraint on the mean
value of the velocity:

(u?e, 1)Ωe = (uhe , 1)Ωe . (3.22)

Remark 11. According to Equation (3.22), the mean value of the velocity in each
element has to converge with order at least k + 2 to guarantee that u? converges with
order k + 2 [91, 22, 153].

On the other hand, the nrr rigid rotational modes are taken care of by means of a
condition on the curl of the velocity, namely

(∇× u?e, 1)Ωe = 〈ûh · τe, 1〉∂Ωe , (3.23)

where the right-hand side of Equation (3.23) follows from the application of Stokes’
theorem, being uhe = ûh on ∂Ωe and τe the tangential direction to the boundary ∂Ωe.
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Remark 12. For the post-processed velocity u? to superconverge with order k+2, the
mean value of its curl inside each element (i.e., the left-hand side of Equation (3.23))
has to converge with order at least k+1. Consequently, the mean value of the tangential
component of the hybrid variable û along the boundary of each element has to converge
with order at least k + 3/2.

It is worth noting that other conditions may be considered to resolve the indetermi-
nacy of the problem in Equation (3.21). Nevertheless, in order for the post-processed
velocity to be superconvergent, the quantities appearing on the left-hand sides of these
constraints have to converge with order m ≥ k + 2. If this is not the case, despite
the resulting system admits a unique solution, the superconvergence property is lost,
as it is demonstrated in Section 2.4.2. For the strategy discussed in the present work,
extensive numerical experiments have shown that the right-hand sides of both (3.22)
and (3.23) converge with order m > k + 2. A rigorous proof of this result is currently
under investigation.

Remark 13. Recall that the curl of the velocity represents the vorticity of the fluid.
Within this context, the left hand side of Equation (3.23) may be physically interpreted
as the mean value of the vorticity inside the element Ωe. Similarly, the right-hand side
represents the circulation of the flow around the boundary ∂Ωe.

Eventually, by exploiting the Voigt notation, Equation (3.23) is equivalent to

(∇Wu
?
e, 1)Ωe = 〈Tû, 1〉∂Ωe . (3.24)

3.3 Numerical studies

In this section, several examples with known analytical solution are considered, in two
and three dimensions, to verify the optimal convergence and superconvergence prop-
erties of the error of the primal, mixed and post-processed variables, measured in the
L2(Ω) norm and for different element types. As for all finite element methods (cf. e.g.
[159]), the accuracy and convergence properties of the discussed HDG strategy depend
both on the degree of the chosen polynomial approximations and on the regularity
of the analytical solution of the problem. In the following numerical studies, classical
assumptions on the regularity of the domain and the solution of the problem are consid-
ered [159] in order to highlight that the method is able to provide optimally-convergent
high-order approximations without any restrictions, as shown in the analysis by Cock-
burn and co-workers [93]. If the regularity assumptions in [93] are not fulfilled, the
experimental convergence rates will be bounded by the limited regularity of the ana-
lytical problem as observed in classical finite element as well [160]. First, a numerical
study of the influence of the stabilization parameter τ on the accuracy of the proposed
HDG method is performed.
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(a) Quadrilateral mesh (b) Triangular mesh #1 (c) Triangular mesh #2

Figure 3.1: Second level of refinement for three types of two dimensional meshes of Ω = [0, 1]2

utilized for the mesh convergence study.

3.3.1 Influence of the stabilization parameter

As previously stated and extensively studied in a series of publications by Cockburn
and co-workers (cf. e.g. [21, 23, 151]), the HDG stabilization parameter has an impor-
tant effect on the convergence properties of the method. For the sake of simplicity, a
stabilization tensor of the form τ = τInsd , equal on all the faces of the internal skele-
ton Γ ∪ ΓN is considered. In what follows, a numerical study of the role of the scalar
parameter τ is presented.

Two dimensional example

The first example considers the well-known problem of the Wang flow in the domain
Ω = [0, 1]2. The source term s is selected so that the analytical velocity field has the
following expression

u(x) =

2ax2 − bλ cos(λx1) exp(−λx2)

bλ sin(λx1) exp(−λx2)

 , (3.25)

whereas the pressure is uniformly zero in the domain. The values a = b = λ = 1

are set for the constants and the kinematic viscosity ν is taken equal to 1. Neumann
boundary conditions, corresponding to the analytical normal flux, are imposed on ΓN =

{(x1, x2) ∈ Ω | x2 = 0} and the analytical velocity field is enforced on ΓD = ∂Ω \ ΓN

via Dirichlet boundary conditions.
Uniform meshes of quadrilateral and triangular elements are considered. The second

level of refinement of the meshes is shown in Figure 3.1. It is worth noting that the
triangular mesh #1 has considerably more degrees of freedom than the triangular mesh
#2 for a similar characteristic size.

The components of the velocity field computed on the fourth level of refinement of
the triangular mesh #2 and using a quadratic degree of approximation are depicted in
Figure 3.2.
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(a) u1 (b) u2

Figure 3.2: Two dimensional problem: HDG approximation of the velocity field using the fourth
refinement of the triangular mesh #2 and k = 2.

Figure 3.3 shows the evolution of the error of the primal, mixed and post-processed
variables, u, p, L and u?, in the L2(Ω) norm as a function of the stabilization parameter
τ . The numerical study is performed on the fourth level of mesh refinement, using
polynomial approximations of complete degree 1 and 2 and values of τ spanning from 0.1
to 10,000. It is straightforward to observe that for all the meshes under analysis, there
exists a value of τ minimizing the L2(Ω) norm of the error of the velocity. Nevertheless,
to guarantee the accuracy of the approximation, the H1(Ω) norm of the error should
be accounted for and consequently both u and L are considered in the choice of the
optimal value of τ . Within this context and in order for the post-processed velocity
field u? to provide a gain in accuracy with respect to u, the value τ = 4 is chosen for
quadrilateral meshes and triangular meshes of the first type. For triangular meshes of
the second type, the minimum of the error in the primal variable is achieved for values
of τ substantially larger than 10. Despite the approximation of the mixed variable
deteriorates when the stabilization parameter increases, this effect is limited for values
of τ < 50. The value of τ = 40 is thus considered as it provides a good compromise for
the quality of the approximation of the primal, mixed and post-processed variables.

Remark 14. Consider the family of meshes in Figure 3.1. The triangular mesh #1
features one node located in the barycenter of each underlying quadrilateral. The re-
sulting mesh provides significantly more information than the triangular mesh #2 of
the corresponding refinement level. Thus, owing to the aforementioned extra node and
to the tensorial nature of the basis functions defined on the quadrilateral meshes, the
behavior of the triangular meshes #1 is expected to be more similar to the quadri-
lateral ones than to the triangular meshes #2, as observed in the previous numerical
simulations in Figure 3.3.

Three dimensional example

The second example, inspired by [161], is an analytical solution of the problem in
Equation (3.1) set in the domain Ω = [0, 1]3. The source term is selected so that the
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(a) Quadrilateral mesh (b) Triangular mesh #1

(c) Triangular mesh #2

Figure 3.3: Two dimensional problem: error of the primal, mixed and post-processed variables, u,
p, L and u?, in the L2(Ω) norm as a function of the stabilization parameter and for the fourth
level of mesh refinement.

analytical velocity is

u(x) =


b exp{a(x1−x3) + b(x2−x3)} − a exp{a(x3−x2) + b(x1−x2)}

b exp{a(x2−x1) + b(x3−x1)} − a exp{a(x1−x3) + b(x2−x3)}

b exp{a(x3−x2) + b(x1−x2)} − a exp{a(x2−x1) + b(x3−x1)}

 (3.26)

and the corresponding pressure field is

p(x) = x1(1− x1). (3.27)

The values a = 1 and b = 0.5 are considered and the kinematic viscosity ν is taken equal
to 1. Neumann boundary conditions, corresponding to the analytical flux, are imposed
on ΓN = {(x1, x2, x3) ∈ Ω | x3 = 0} and the analytical velocity field is enforced on
ΓD = ∂Ω \ ΓN via Dirichlet boundary conditions.

Figure 3.4 shows a cut through the third level of refinement of the uniform meshes
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(a) Hexahedral mesh (b) Tetrahedral mesh (c) Prismatic mesh (d) Pyramidal mesh

Figure 3.4: Third level of refinement for four types of three dimensional meshes of Ω = [0, 1]3

utilized for the mesh convergence study.

(a) u1 (b) u2 (c) u3 (d) p

Figure 3.5: Three dimensional problem: HDG approximation of the velocity and pressure fields
using the third refinement of the hexahedral mesh and k = 3.

of hexahedral, tetrahedral, prismatic and pyramidal elements considered in this study.

The velocity and pressure fields computed on the third level of refinement of the
hexahedral mesh and using a cubic degree of approximation are depicted in Figure 3.5.

The evolution of the error of the primal, mixed and post-processed variables, u, p, L
and u?, in the L2(Ω) norm as a function of the stabilization parameter τ is presented in
Figure 3.6. As highlighted by the theory [93] and confirmed by the analysis of the two
dimensional case, a value of the stabilization parameter of order one (i.e. τ ∈ [1, 10))
guarantees stability and convergence of the HDG method. More precisely, a value near
τ = 10 provides the minimum error for the primal variable but limited or no extra gain
in accuracy is obtained through the post-process of the velocity field. Thus, a value of
τ = 4 is selected for the following simulations.

The discussed numerical results show that the HDG discretization is robust to the
choice of the stabilization parameter. Moreover, the optimal value of τ is not dependent
upon the degree of approximation or the dimensionality of the problem. Considering the
different types of elements under analysis, the triangular meshes #2 require a slightly
larger value of the stabilization parameter to enter the asymptotic regime and show
the optimal convergence and superconvergence properties expected from the theory.
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(a) Hexahedral mesh (b) Tetrahedral mesh

(c) Prismatic mesh (d) Pyramidal mesh

Figure 3.6: Three dimensional problem: error of the primal, mixed and post-processed variables,
u, p, L and u?, in the L2(Ω) norm as a function of the stabilization parameter and for the third
level of mesh refinement.

3.3.2 Optimal convergence and superconvergence of the primal, mixed
and postprocessed variables

Consider the optimal values of τ identified in the previous section. The optimal con-
vergence properties of the velocity u, the pressure p and the mixed variable L repre-
senting the strain rate tensor, are tested for different element types using the L2(Ω)

norm. Moreover, the superconvergence of the post-processed velocity field u? is also
analyzed.

Two dimensional example

In Figure 3.7, the first column presents the convergence of the error of the primal and
mixed variables p and L, measured in the L2(Ω) norm, as a function of the character-
istic element size h for both quadrilateral and triangular elements and for a degree of
approximation ranging from k = 1 up to k = 3. In a similar fashion, the second column
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(a) Quadrilateral meshes: p,L (b) Quadrilateral meshes: u,u?

(c) Triangular meshes #1: p,L (d) Triangular meshes #1: u,u?

(e) Triangular meshes #2: p,L (f) Triangular meshes #2: u,u?

Figure 3.7: Two dimensional problem: h-convergence of the error of the primal, mixed and
post-processed variables, p and L (on the left), u and u? (on the right), in the L2(Ω) norm for
quadrilateral and triangular meshes with different degrees of approximation.

provides the corresponding convergence history for the primal and the post-processed
velocities u and u?.

It can be observed that almost the optimal or the optimal rate of convergence hk+1
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is obtained for u, p and L, for all the element types and degrees of approximation
considered. As previously mentioned, the triangular mesh #1 has considerably more
degrees of freedom than the other meshes: in particular, for the same characteristic
element size, the triangular meshes #1 have approximately 2.5 times (respectively, 5
times) more internal faces than the triangular mesh #2 (respectively, the quadrilateral
mesh). Thus, despite the results in Figure 3.7 indicate that the triangular mesh #1
provides more accuracy than the other meshes, a comparison in terms of the global
number of degrees of freedom confirms that similar results are obtained using meshes
of different element types. Concerning the post-processed variable, the rate of conver-
gence hk+2 is achieved and the superconvergence property is verified. This confirms
that the average of the hybrid variable û on the boundary leads to a superconvergent
approximation, as observed in Chapter 2 for the linear elastic problem. Beside the
improved convergence rate, the discussed post-process procedure is responsible for a
gain in accuracy of u? with respect to the original approximation u of the velocity field.
Hence, the information encapsulated in the primal and post-processed variables may
be exploited to construct an error indicator and devise an automatic degree adaptivity
strategy as discussed in [95, 155].

Three dimensional example

Similarly to the previous example, the convergence of the error of p and L (Fig. 3.8)
and u and u? (Fig. 3.9), measured in the L2(Ω) norm, as a function of the character-
istic element size h is presented for hexahedral, tetrahedral, prismatic and pyramidal
elements and for a degree of approximation ranging from k = 1 up to k = 3.

As for the two dimensional case, almost the optimal or the optimal rate of conver-
gence hk+1 is obtained for u, p and L in 3D, for all the element types and degrees of
approximation considered (cf. Fig. 3.8-3.9). In Figure 3.9, the post-processed variable
is shown to superconverge with a rate of convergence hk+2. Beside the improved con-
vergence rate, the discussed post-process procedure is responsible of a gain in accuracy
of u? with respect to the original approximation u of the velocity field.

The presented numerical experiments in two and three dimensions confirm that
exploiting Voigt notation the HDG approximation of the Stokes equation achieves op-
timal convergence rate hk+1 for both the primal variables u and p and the mixed one
L. In particular, contrary to what observed in [81], the convergence of the mixed vari-
able does not deteriorate when considering the Cauchy formulation of the Stokes flow.
As discussed in Chapter 2 for the linear elastic problem, the post-process technique
exploiting the curl of u allows to construct an approximation of the primal vector field
superconverging with order k + 2. Moreover, the post-process strategy provides an
extra gain in accuracy with respect to the original approximation of the velocity field.
As highlighted in Figure 3.9, a solution that is almost one order of magnitude more
precise than the HDG solution is obtained, even for linear approximations.
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(a) Hexahedral meshes: p,L (b) Tetrahedral meshes: p,L

(c) Prismatic meshes: p,L (d) Pyramidal meshes: p,L

Figure 3.8: Three dimensional problem: h-convergence of the error of the primal and mixed
variables, p and L, in the L2(Ω) norm for hexahedral, tetrahedral, prismatic and pyramidal meshes
with different degrees of approximation.

3.3.3 Numerical evaluation of quantities of interest: drag force on a
sphere

The last example considers the classical test case of the viscous flow around a sphere.
The objective of this test is to show the capability of the described HDG method to
provide an approximation of the pressure and the viscous forces sufficiently accurate
to evaluate a quantity of interest with the precision required by industrial standards.
Consider the domain Ω = ([−7, 15]× [−5, 5]× [−5, 5]) \ B1,0, B1,0 being a ball of unit
radius centered at the origin. To reduce the computational effort, the symmetry of
Ω is exploited and solely one fourth of the domain is taken into account to perform
the numerical experiments. Different tetrahedral meshes of the domain are considered,
ranging from 3,107 to 204,099 elements. High-order computations employ isoparametric
curved meshes. The extension to high-order is performed using the solid mechanics
analogy described in [162, 163]. Figure 3.10 (a)-(b) shows the magnitude of the velocity
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(a) Hexahedral meshes: u,u? (b) Tetrahedral meshes: u,u?

(c) Prismatic meshes: u,u? (d) Pyramidal meshes: u,u?

Figure 3.9: Three dimensional problem: h-convergence of the error of the primal and post-
processed variables, u and u?, in the L2(Ω) norm for hexahedral, tetrahedral, prismatic and pyra-
midal meshes with different degrees of approximation.

with streamlines of the flow and the pressure field computed on the third level of
refinement of the mesh, featuring 43,682 tetrahedrons, and using a quadratic degree of
approximation.

The results in Figure 3.10 (c) show the convergence of the drag force as the number
of degrees of freedom is increased, i.e. for different levels of mesh refinement and for a
degree of approximation ranging from k = 1 up to k = 3. The numerically computed
drag is compared with the analytical value from the literature [164]. In Table 3.1, a
quantitative analysis of the relative error in the computation of the drag force is re-
ported for all the mesh refinements and degrees of approximation considered. Using
linear elements, almost 4 millions degrees of freedom are required by the method to
compute the drag coefficient with a relative error of 2%. The same level of accuracy is
achieved by quadratic and cubic elements using the coarsest mesh under analysis and
less than 200,000 degrees of freedom. More precisely, moving to high-order approxi-
mations, errors lower than 0.5% are obtained using few hundreds thousands degrees of
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(a) Magnitude of the velocity with streamlines (b) Pressure field

(c) Drag force

Figure 3.10: Flow past a sphere: HDG approximation of (a) the velocity field with streamlines of
the flow and (b) the pressure field using the third level of refinement of a tetrahedral mesh and
k = 2. (c) Convergence of the drag as a function of the number of degrees of freedom.

freedom. The observed additional accuracy results from the concurrent use of high-
order polynomial functions for the discretization of the unknown variables and high-
order approximations of the geometry via meshes featuring curved elements. Thus,
the superiority of high-order methods with respect to low-order ones discussed in the
literature (cf. e.g. [165]) is confirmed.

3.4 Conclusion

In this chapter, a hybridizable discontinuous Galerkin method using Voigt notation,
first introduced in [146] and presented in Chapter 2 of this thesis, for the Cauchy
formulation of the Stokes equation is presented. Owing to Voigt notation, the symmetry
of the stress tensor is strongly enforced by storing in a vector format only half of
the off-diagonal terms. This allows to fulfill pointwise the conservation of angular
momentum which is satisfied only in a weak sense by classical HDG formulations.
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k Mesh Elements ndof Drag error

1

1 3,107 62,147 1.95 · 10−1

2 10,680 210,453 1.03 · 10−1

3 43,682 849,452 4.32 · 10−2

4 204,099 3,934,212 1.88 · 10−2

2
1 3,107 121,187 6.52 · 10−3

2 10,680 410,226 5.18 · 10−3

3 43,682 1,655,222 1.96 · 10−3

3
1 3,107 199,907 6.88 · 10−3

2 10,680 676,590 4.25 · 10−4

3 43,682 2,729,582 1.02 · 10−3

Table 3.1: Flow past a sphere: relative error in the computation of the drag force for different
levels of mesh refinement and with different degrees of approximation.

Moreover, physically meaningful tractions may be naturally imposed on the Neumann
boundary. Contrary to the existing superconvergent HDG formulations involving the
symmetric part of the gradient, the proposed method does not enrich the discrete spaces
of approximation and it reduces the number of degrees of freedom of the mixed variable.
Hence, the resulting local problems are smaller and computationally more efficient.

The optimal convergence order k + 1 is achieved for all the unknowns, as proved
for the classical HDG equal-order approximation of the velocity-pressure formulation
and for the more involved discretization of the Cauchy formulation based on the M -
decomposition. The novelty and main advantage of the present approach relies on
being able to exploit the same degree of approximation for both primal and mixed
variables, in presence of the symmetric part of the gradient. In addition, a velocity
field superconverging with order k + 2 is obtained via a local post-process procedure,
without modifying the discrete spaces in which the variable are sought. In particu-
lar, the optimal convergence of the mixed and hybrid variables is exploited to devise
the superconvergent velocity and additional constraints are added to the post-process
problem to resolve the underdetermination associated with rigid body motions.

Numerical studies show the optimal convergence and superconvergence properties of
the method in 2D and 3D using meshes of different element types and the robustness of
the approach with respect to the choice of the HDG stabilization parameter. Eventually,
the drag force on a sphere is evaluated using different degrees of approximations to show
the capability of the method to compute industrially relevant quantities of interest with
an acceptable precision.

Given the demonstrated superconvergent properties of the proposed HDG method
in the Stokes problem, the method will be extended to the case of Navier-Stokes equa-
tions. In this way, a wider spectrum of incompressible flows in terms of Reynolds
number can be studied.
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Chapter 4

HDG method for incompressible
Navier-Stokes equations

When inertial forces grow and become comparable with viscous forces, they may not
be neglected and the Navier-Stokes equations are used for describing the motion of a
viscous fluid. The difference with the previously presented Stokes flow is the presence
of a nonlinear convective term. The formulation of the HDG method that was proposed
in the previous chapter for the Stokes flow is extended to the laminar Navier-Stokes
equations. The approach will be based on the same key elements, namely the same
degree of approximation polynomials for all primal, mixed and hybrid variables, and the
strong enforcement of the symmetry of the stress tensor via the use of Voigt notation.

After demonstrating the excellent convergence properties of all variables and the
superconvergence of the velocity field, the improved velocity field is used in order to
construct an element-by-element estimator of the spatial error and, thus, perform degree
adaptivity. In addition, many practical applications are time-dependent, therefore
the transient version of Navier-Stokes equations is also studied. The high-order in
space HDG method can be combined with classical time-integration schemes for the
simulation of transient flows in a fairly straightforward manner. These schemes have
to be high-order accurate in time, in order for the overall accuracy to be maintained,
hence special attention to the choice of the time-integration scheme must be paid.
Certain temporal schemes include inexpensive error indicators, which enable the design
of an adaptive stepsize procedure, thereby controlling the temporal error during the
simulation. In this chapter, this possibility is investigated in the context of HDG.

This chapter has the following structure. In Section 4.1, the proposed formulation
of the HDG method is presented for the steady incompressible laminar Navier-Stokes
equations. Extensive numerical experiments are conducted and the results are shown
in Section 4.2. Later, the superconvergence of the velocity field is utilized to perform
degree-adaptive simulations, see Section 4.3. Time-integration schemes are presented
in Section 4.4 using the proposed formulation of the HDG method. Numerical tests
are conducted in Section 4.4.2 whereby the high temporal accuracy of the proposed
method for transient simulations is demonstrated. The timestep control and the degree
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adaptivity in transient simulations are introduced in Section 4.5. The results of this
chapter are summarized in Section 4.6.

4.1 The HDG method for steady incompressible Navier-
Stokes equations

In this section, the HDG framework and the symmetric tensors using Voigt notation
for the Navier-Stokes equations is presented. Based on the framework presented in
Chapter 3 for the Stokes flow, the same approach is followed here. First, the Cauchy
formulation of the Navier-Stokes equations is recalled and the equations are rewritten
using the Voigt notation. Afterwards, the strong and weak form of both local and local
problems is briefly presented.

4.1.1 Cauchy formulation of the Navier-Stokes equations using Voigt
notation

We consider a domain Ω ⊂ Rnsd with boundary ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅ and nsd

the number of spatial dimensions. The strong form of the incompressible Navier–Stokes
equations reads as follows:

∇ · (u⊗ u)−∇ · σ = s in Ω,

∇ · u = 0 in Ω,

σ = −pInsd + 2νε(u) in Ω,

u = uD on ΓD,

n · σ = t on ΓN ,

(4.1)

where (u, p,σ) are, respectively, the velocity vector, pressure scalar and Cauchy second-
order stress tensor. The kinematic viscosity is described by the coefficient ν. The terms
s,uD and t are the volumetric source term, the Dirichlet and the traction boundary
conditions, defined respectively in the domain Ω, on the boundary ΓD and boundary
ΓN . The normal vector to the surface is n. The strain rate tensor ε(u) is the symmetric
part of the gradient of velocity, as it is defined in Equation (3.4) and its components
in Equation (3.3).

Using the Voigt notation for symmetric tensors, as it was introduced in the previous
chapters for linear elastic materials and the Stokes flow, the system of equations (4.1)
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is written 

∇T
S (u⊗ u)V −∇T

SσV = s in Ω,

ET∇Su = 0 in Ω,

σV = −Ep+ D∇Su in Ω,

u = uD on ΓD,

NTσV = t on ΓN ,

(4.2)

where the matrix ∇S, accounting for the symmetric gradient operator, is defined in
Equation (2.8). The matrices E, D and N, that represent the trace operator, the
diffusion part of the Stokes law and the normal vector respectively, are given by Equa-
tions (3.6) and (2.12). The stress tensor written in vector form σV has the same
structure as in Equation (3.5). The outer product (u⊗ u) is also symmetric and, using
the Voigt notation, can be written in the following form

(u⊗ u)V :=


[
u1u1 u2u2 u1u2

]T
in 2D,[

u1u1 u2u2 u3u3 u1u2 u1u3 u2u3

]T
in 3D.

(4.3)

4.1.2 Hybridizable discontinuous Galerkin method

The system of Equations (4.2) may be written as a system of first-order equations by
introducing the so-called mixed variable L as follows

L+ D1/2∇Su = 0 in Ωe, for e = 1, . . . ,nel,

∇T
S (u⊗ u)V + ∇T

S (D1/2L+ Ep) = s in Ωe, for e = 1, . . . ,nel,

ET∇Su = 0 in Ωe, for e = 1, . . . ,nel,

u = uD on ΓD,

NT (D1/2L+ Ep) = −t on ΓN ,

Ju⊗ nK = 0 on Γ,

JNT (D1/2L+ Ep+ (u⊗ u)V )K = 0 on Γ.

(4.4)

The variable L represents the symmetric part of the scaled strain-rate tensor and the
last two equations are the transmission conditions that enforce the continuity of the
normal component of velocity and flux across the interface between the elements Γ (see
also Equation (2.21) for the definition of Γ).

Strong form of the local and global problems

The HDG formulation leads to the solution of the problem in two stages. In the
first stage, a local problem is defined inside each element, giving a total number of
nel problems. The local variables (Le,ue, pe) are computed by solving the following
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system of equations

Le + D1/2∇Sue = 0 in Ωe,

∇T
S (ue ⊗ ue)V + ∇T

S (D1/2Le + Epe) = se in Ωe,

ET∇Sue = 0 in Ωe,

ue = uD on ∂Ωe ∩ ΓD,

ue = û on ∂Ωe \ ΓD,

(4.5)

where û is a variable representing the trace of the velocity on the mesh skeleton and
allows the local problems to be solved independently. Note that the problem of Equa-
tion (4.5) is a Dirichlet problem, hence an additional constraint is necessary to make
the system solvable. The mean pressure constraint on the element’s boundary ρe is
used for this reason, as described in Equation (3.11). By solving the local problem it
is possible to express the variables (Le,ue, pe) in terms of the variables û, ρ.

In the second stage, û and ρ are computed by solving a global problem on the ele-
ments’ interface and the Neumann boundary, by satisfying the transmission conditions
and the Neumann boundary condition as follows

Ju⊗ nK = 0 on Γ,

JNT (D1/2L+ Ep+ (u⊗ u)V ))K = 0 on Γ,

NT (D1/2L+ Ep) = −t on ΓN .

(4.6)

The first equation is automatically satisfied due to the Dirichlet boundary condition
ue = û imposed in (4.5) and the uniqueness of the hybrid variable û on the faces
of Γ. The term JNT (u⊗ u)V K is equal to 0 because the involved flux NT (û⊗ û)V
is 0 on Γ, due to the uniqueness of û on Γ. Therefore, the second equation reduces
to JNT (D1/2L + Ep)K = 0. Finally, due to the introduction of the variable ρ for
the imposition of the compatibility constraint (3.11), the size of the global problem is
increased and, therefore, an extra equation has to be employed for the solution of the
global problem. The divergence-free condition in each element is typically employed,
refer to Equation (3.14).

Weak form of the local and global problems

Consider the discrete functional spaces in Equation (2.26). The discrete weak formula-
tion of the local problems in Equation (4.5) reads: for e = 1, . . . ,nel, given uD on ΓD

and ûh on Γ ∪ ΓN , find (Lhe ,u
h
e , p

h
e ) ∈ [Vh(Ωe)]

msd × [Vh(Ωe)]
nsd × Vh(Ωe) such that
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−(υ,Lhe )Ωe + (∇T
SD

1/2υ,uhe )Ωe = 〈NT
eD

1/2υ,uD〉∂Ωe∩ΓD

+〈NT
eD

1/2υ, ûh〉∂Ωe\ΓD ,
(4.7a)

−(∇Sw,D
1/2Lhe )Ωe − (ET∇Sw, p

h
e )Ωe −

(
∇Sw, (u

h
e ⊗ uhe )V

)
Ωe

+〈w,NT
e

(
D1/2Lhe + Ephe

)∧
〉∂Ωe + 〈w,NT

e (uhe ⊗ uhe )V

∧

〉∂Ωe = (w, b)Ωe ,
(4.7b)

(∇T
SEq,u

h
e )Ωe = 〈q,ETNeuD〉∂Ωe∩ΓD + 〈q,ETNeû

h〉∂Ωe\ΓD , (4.7c)
1

|∂Ωe|
〈phe , 1〉∂Ωe = ρhe , (4.7d)

for all (υ,w, q) ∈ [Vh(Ωe)]
msd×[Vh(Ωe)]

nsd×Vh(Ωe). The trace of the numerical normal
flux in Equation (4.7b) is split into two terms; one due to diffusion and the other due
to convection. The diffusive part is already defined in Equation (3.16) for the Stokes
problem and the convective part is defined as follows

NT
e (uhe ⊗ uhe )V

∧

:=

NT
e (uhD ⊗ uhD)V + τα(uhe − uD) on ∂Ωe ∩ ΓD,

NT
e (ûhe ⊗ û

h
e )V + τα(uhe − û

h) elsewhere.
(4.8)

where the stabilization parameters due to convection τα as well as due to diffusion τd

are crucial for the stability, accuracy and convergence of the HDG method. In literature
a variety of expressions of the parameter have been proposed, that may depend on the
local velocity magnitude and be different for each face of the mesh [24, 25]. In this
study for simplicity the parameters τd and τα will be considered constant in space,
that is τd and τα. In the case of Navier-Stokes equations we use a similar definition to
the one presented in [25]:

τd = τ̂
ν

L̄
, τα = τ̂ Ū , τ = τd + τα (4.9)

where L̄, Ū are the characteristic length and velocity of the problem. If we plug Equa-
tion (4.8) into Equation (4.7) and integrate the diffusion term by parts, we obtain the
final form of the weak problem: for e = 1, . . . ,nel, given uD on ΓD and ûh on Γ∪ΓN ,
find (Lhe ,u

h
e , p

h
e ) ∈ [Vh(Ωe)]

msd × [Vh(Ωe)]
nsd × Vh(Ωe) that satisfy

−(υ,Lhe )Ωe + (∇T
SD

1/2υ,uhe )Ωe = 〈NT
eD

1/2υ,uD〉∂Ωe∩ΓD

+〈NT
eD

1/2υ, ûh〉∂Ωe\ΓD ,
(4.10a)

(w,∇T
SD

1/2Lhe )Ωe + (w,∇T
SEp

h
e )Ωe −

(
∇Sw, (u

h
e ⊗ uhe )V

)
Ωe

+〈w, τuhe 〉∂Ωe = (w, b)Ωe + 〈w, (τ ûh −NT
e (û⊗ û)V )〉∂Ωe\ΓD

+〈w, (τuD −NT
e (uD ⊗ uD)V )〉∂Ωe∩ΓD ,

(4.10b)

(∇T
SEq,u

h
e )Ωe = 〈q,ETNeuD〉∂Ωe∩ΓD + 〈q,ETNeû

h〉∂Ωe\ΓD , (4.10c)
1

|∂Ωe|
〈phe , 1〉∂Ωe = ρhe , (4.10d)
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for all (υ,w, q) ∈ [Vh(Ωe)]
msd × [Vh(Ωe)]

nsd × Vh(Ωe).

Remark 15. The set of local problems described in Equation(4.27) are non-linear due
to the non-linear terms (uhe ⊗ uhe )V and (û ⊗ û)V . The Newton-Raphson method is
used to linearize the system. The system after the linearization has the following form

ALL ALu 0 0

AT
Lu Ar

uu Aup 0

0 AT
up 0 aTρp

0 0 aρp 0


e


Lr+1

ur+1

pr+1

ζr+1


e

=


fL

f ru

fp

0


e

+


ALû

Ar
uû

Apû

0


e

ûr+1
e +


0

0

0

1


e

ρr+1
e , (4.11)

where r, r + 1 denote the non-linear iteration count. The linearization consists in
evaluating the non-linear submatrices, e.g. Auu, using the velocity of iteration r,
therefore the superscript r is used, e.g. Ar

uu. Further details on the linearization
procedure can be found in Appendix A.3.

The matrix form of the local problem in Equation (4.11) may be also written as

[
Ar
e

]

Lr+1

ur+1

pr+1

ζr+1


e

=
[
f re
]

+
[
Â
r
e

]
ûr+1
e +

[
re
]
ρr+1
e . (4.12)

The above system is solvable, since the matrix
[
Ar
e

]
is invertible, therefore the local

variables
[
L u p ζ

]T
can be expressed as a function of the global variables

[
û ρ

]T
,

as follows 
Lr+1

ur+1

pr+1

ζr+1


e

=
[
zf,re

]
+
[
Z û,r
e

]
ûr+1
e +

[
Zρ,r
e

]
ρr+1
e (4.13)

where

zf,re =
[
Ar
e

]−1
f re, Z û,r

e =
[
Ar
e

]−1
Â
r
e, Zρ,r

e =
[
Ar
e

]−1
re (4.14)

The final form of the discrete weak global problem in Equation (4.6) is: for e =

1, . . . ,nel, given t on ΓN and Le,ue, pe on Γ∪ΓN , find (ûh, ρh) ∈ [V̂h(Γ∪ΓN )]nsd×Rnel

such that
nel∑
e=1

{
〈ŵ,NT

eD
1/2Lhe 〉∂Ωe\ΓD + 〈ŵ,NT

e Ep
h
e 〉∂Ωe\ΓD + 〈ŵ, τuhe 〉∂Ωe\ΓD

− 〈ŵ, τ ûh〉∂Ωe\ΓD

}
= −

nel∑
e=1

〈ŵ, t〉∂Ωe∩ΓN ,

(4.15a)

〈ETNeû, 1〉∂Ωe\ΓD = −〈ETNeuD, 1〉∂Ωe∩ΓD for e = 1, . . . ,nel, (4.15b)

for all ŵ ∈ [V̂h(Γ ∪ ΓN )]nsd .
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The linear system associated with the discretization of the HDG global problem of
Equation (4.15) has the following structure:

nel∑
e=1

{[
AT
Lû AT

uû AT
pû

]
e


Lr+1

ur+1

pr+1


e

+ [Aûû]e û
r+1
e

}
=

nel∑
i=e

[fû]e. (4.16a)

[Aρû]eû
r+1
e = [fρ]e. (4.16b)

Algorithm 1 Solution process of the non-linear problem for the steady incompressible
Navier-Stokes equations using the proposed HDG method

1: Assume an initial guess of the local elemental variables
[
L u p

]0
e
and the global

variables
[
û ρ

]0
e

2: Non-linear iteration counter r=0
3: while Non-linear solver not converged do
4: r=r+1
5: For each element e:

Express the local variables
[
L u p

]r+1

e
in Ωe as a function of the global

variables
[
û ρ

]r+1

e
, by inverting the left-hand side matrix in (4.11)

6: Assembly the global problem:
Substitute the

[
L u p

]r+1

e
in (4.16)

7: Solve the global problem:
Compute

[
û ρ

]
, by solving the linear system in (4.16)

8: Retrieve the local variables from (4.13)
9: Check if the convergence criterion is met
10: end while

Local post-process of the velocity field

The local post-process of the velocity field is a well-known feature of the HDG method,
that gives the opportunity to construct a more accurate velocity field. In order for this
to happen, the mixed variable L should converge optimally, with order k+1, when k is
the order of the approximating polynomials, as well as the rigid body motions should
be determined.

With the help of strongly-enforced symmetric tensors, it is demonstrated in Chap-
ters 2 and 3 that the mixed variable L converges optimally for k ≥ 1. Moreover,
making use of appropriate conditions it is shown that it is possible to resolve the un-
derdeterminacy of the translational and rotacional body motions of the velocity field
and, thus, construct a superconvergent velocity field for both low-order and high-order
approximations.

In the case of Navier-Stokes equations, the same approach is followed and the opti-
mal convergent behaviour of the proposed formulation of the HDG method is demon-
strated through numerical studies.
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4.2 Numerical studies for steady incompressible Navier-
Stokes

Numerical studies are conducted in order to test the HDG method on steady Navier-
Stokes equations. These studies include an analytical two-dimensional flow field, through
which it is possible to evaluate the discretization error and assess the order of conver-
gence, a steady laminar two-dimensional flow around a circle, which is a common
benchmark problem for incompressible Navier-Stokes equations and where quantities
of interest of the flow are calculated, as well as the steady incompressible flow inside a
microvalve with no moving parts.

4.2.1 Kovasznay flow

The objective of the first test is to evaluate the convergence rates of all the variables
using the approach of the HDG method that is discussed in this thesis. For this reason,
an analytical flow field is considered, in this case the Kovasznay flow [166], which
approximates the flow behind equally-spaced parallel rods. The analytical expression
of the velocity and pressure is

u(x) =

{
1− exp(λx1) cos(2πx2)
λ
2π exp(λx1) sin(2πx2)

}
, (4.17)

p(x) = −exp(2λx1)

2
+

1 + exp(2λ)− 1
λ

(
1− exp(2λ)

)
8

(4.18)

where λ = Re
2 −

√
Re2

4 + 4π2.
A square unit Ω = [0, 1]2 is typically chosen to be the flow domain for this prob-

lem. Both Dirichlet and Neumann boundary conditions are prescribed on the domain
boundaries. In fact, the analytical traction t, which is evaluated based on the an-
alytical expression of the velocity and pressure field, is set to the bottom boundary
ΓN = {(x1, x2) ∈ Ω | x2 = 0} and the analytical velocity field uD is set to the rest
of the boundaries. The source term s is also chosen according to the analytical ve-
locity and pressure. The Reynolds number is set to Re = 20 and the dimensionless
stabilization parameter is chosen τ̂ = 2. In this experiment, uniform triangular meshes
are considered, as the ones shown in Figure 3.1(b). The velocity components’ fields as
well as the pressure field, as they are computed using the HDG method, are shown in
Figure 4.1.

Furthermore, the relative error and the rate of convergence of the all the variables
in the L2-norm are presented in Table 4.1. The degree of approximation varies from
k = 1 up to k = 4 and the element size from h = 1/2 up to h = 1/64 for k = 1, 2 and
h = 1/32 for k = 3, 4. It is observed that the velocity, pressure and the scaled strain
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(a) u1 (b) u2 (c) p

Figure 4.1: Kovasznay flow: HDG approximation of the velocity and pressure field using the fourth
refinement of the triangular mesh #1 and k = 3.

rate tensor (mixed variable L) converge optimally with rate k+1 for k = 1, 2, 3, 4. The
post-processed velocity shows a convergence rate of k+ 2 and lower levels of numerical
error in comparison with the original velocity field.

k h
‖u−uh‖L2(Ω)

‖u‖L2(Ω)
Rate

‖p−ph‖L2(Ω)

‖p‖L2(Ω)
Rate

‖L−Lh‖L2(Ω)

‖L‖L2(Ω)
Rate

‖u?−u?h‖L2(Ω)

‖u?‖L2(Ω)
Rate

1

1/2 3.32e-1 - 6.84e-1 - 6.22e-1 - 3.09e-1 -
1/4 6.47e-2 2.36 1.51e-1 2.18 2.61e-1 1.25 6.29e-2 2.30
1/8 1.38e-2 2.23 3.79e-2 2.00 8.46e-2 1.63 1.00e-2 2.65
1/16 3.02e-3 2.19 9.93e-3 1.93 2.56e-2 1.72 1.45e-3 2.79
1/32 7.14e-4 2.08 2.60e-3 1.93 7.26e-3 1.82 1.99e-4 2.86
1/64 1.75e-4 2.03 6.74e-4 1.95 1.95e-3 1.90 2.66e-5 2.90

2

1/2 5.49e-2 - 1.49e-1 - 2.64e-1 - 8.94e-2 -
1/4 3.76e-3 3.87 1.86e-2 3.00 3.87e-2 2.77 6.41e-3 3.80
1/8 3.18e-4 3.56 2.45e-3 2.93 6.17e-3 2.65 5.05e-4 3.67
1/16 2.99e-5 3.41 3.25e-4 2.92 9.09e-4 2.76 3.70e-5 3.77
1/32 3.12e-6 3.26 4.25e-5 2.94 1.25e-4 2.86 2.53e-6 3.87
1/64 3.64e-7 3.10 5.45e-6 2.96 1.66e-5 2.92 1.64e-7 3.95

3

1/2 1.14e-2 - 1.89e-2 - 3.47e-2 - 8.45e-3 -
1/4 5.24e-4 4.44 1.55e-3 3.60 3.99e-3 3.12 4.63e-4 4.19
1/8 2.93e-5 4.16 9.97e-5 3.96 2.98e-4 3.74 1.74e-5 4.73
1/16 1.74e-6 4.08 6.56e-6 3.93 2.09e-5 3.83 6.16e-7 4.82
1/32 1.07e-7 4.03 4.24e-7 3.95 1.40e-6 3.90 2.07e-8 4.90

4

1/2 1.26e-3 - 5.0e-3 - 1.03e-2 - 1.74e-3 -
1/4 2.40e-5 5.71 1.22e-4 5.36 2.92e-4 5.13 2.52e-5 6.11
1/8 4.55e-7 5.72 3.91e-6 4.96 1.09e-5 4.75 4.67e-7 5.75
1/16 1.07e-8 5.41 1.24e-7 4.98 3.78e-7 4.84 8.11e-9 5.85
1/32 2.93e-10 5.19 3.93e-9 4.98 1.26e-8 4.91 1.34e-10 5.92

Table 4.1: Kovasznay flow: history of convergence of the HDG method for Re = 20 and τ̂ = 2.

4.2.2 Two-dimensional steady laminar flow around circle

The steady flow around a circle in two dimensions is widely used as a benchmark
problem for the incompressible Navier-Stokes equations. The problem has a simple
geometry, as depicted in Figure 4.2; a rectangular duct [0, 2.2]× [0, 0.41] minus a circle
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of diameter D = 0.1, whose center is placed at (0.2, 0.2). All dimensions are expressed
in meters. The geometry and the flow parameters were given in [167], where an overview
of various approaches and techniques for the simulation of the laminar incompressible
flow around a cylinder in 2D and 3D is presented.

This benchmark test corresponds the case problem named "2D-1" in the afore-
mentioned reference. The same flow parameters are prescribed: kinematic viscosity
ν = 0.001 m2/s, fluid density ρ̄ = 1.0 kg/m3, mean velocity at inlet Ū = 0.2 m/s,
which is also the problem’s characteristic velocity, therefore the Reynolds number is
Re = ŪD/ν = 20. The inflow velocity field is parabolic and has the following analytical
expression

u(x) =

4Um
x2(H−x2)

H2

0

 , (4.19)

where H is the duct width H = 0.41 m and Um is the maximum velocity at inlet, at
the center of the duct inlet (x1 = 0, x2 = H/2). Due to the parabolic velocity profile,
the maximum velocity at inlet is related to the mean velocity as Um = 3 Ū/2. No-slip
boundary condition is set on the surface of the circle as well as the upper and lower
boundary (x2 = 0 and x2 = H). At the outlet, a homogeneous Neumann boundary
condition is prescribed.

Figure 4.2: Two-dimensional steady laminar flow around circle: problem geometry and boundary
conditions.

The performance of the numerical methods in this test is evaluated through the
calculation of some quantities of interest related to the flow around circle in 2D. These
are the lift coefficient Cl and the drag coefficient Cd on the surface of the circle, the
pressure drop ∆P between the leading and the trailing point of the circle and, lastly,
the length of recirculation La.

Following, the definition of these quantities will be given. The lift and drag coeffi-
cients are

Cl =
2Fα
ρ̄Ū2D

, Cd =
2Fw
ρ̄Ū2D

, (4.20)
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(a) k = 1 (b) k = 4

Figure 4.3: Two-dimensional steady laminar flow around circle: mesh detail near the upper part
of the circle, linear mesh versus quartic mesh.

where Fα and Fw are respectively the lift and drag force that act on the surface S of
the circle and ρ̄ the density of the fluid. These forces are calculated with the use of the
symmetric stress tensor σV in the following way

Fα = −
∫
S
ρ̄NTσV · [0, 1]T dS, Fw = −

∫
S
ρ̄NTσV · [1, 0]T dS. (4.21)

The minus sign is added in order to account for the force on the surface of the
circle, as a reaction to the force on the fluid, while the vectors [0, 1]T and [1, 0]T are
used with a view to obtaining the x1 and x2 components of the force, respectively.
It is reminded that the momentum equation was initially divided by the constant
density ρ̄, therefore at this point the density has to multiply the symmetric stress
tensor in order to obtain force units. As far as the use of symmetric stress tensors is
concerned, another advantage is apparent in this test. It is a fact that the lift and drag
forces can be evaluated in a straightforward manner, based on the symmetric stress
tensor. No complex calculations are needed in order to derive the symmetric part of
the gradient of velocity and the symmetric stress tensor σV already contains all the
necessary information for the calculation of the forces on the circle. It is reminded that
σV is defined based on the mixed variable L and the pressure p. Furthermore, the
pressure drop and the length of recirculation are

∆P = ρ̄
(
p(x1,a, x2,a)− p(x1,e, x2,e)

)
Lα = x1,r − x1,e, (4.22)

where (x1,a, x2,a) = (0.15, 0.2) and (x1,e, x2,e) = (0.25, 0.2) are the leading edge and
the trailing edge, respectively. Once again it should be noted that the pressure variable
p, which is calculated from the momentum equation, is already divided by density,
hence it must be multiplied by the density in order to obtain pressure units. The
x1-coordinate of the end of the recirculation zone is x1,r and all the coordinates are
expressed in meters.

For this experiment, triangular meshes consisting of isoparametric elements of uni-
form degrees k = 1 up to k = 4 are considered. If k ≥ 2, the elements have curved
edges wherever it is necessary, for example the elements on the surface of the circle,
see also Figure 4.3. Different refinement levels are tested, from coarse meshes, with as
few as 607 triangles, to fine ones, with 45,066 triangles.

The velocity and pressure contours are depicted in Figure 4.4 using the fourth
refinement level and fourth degree of approximation. Moreover, in Figure 4.5 the
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(a) Velocity magnitude contour (b) Pressure contour

Figure 4.4: Two-dimensional steady laminar flow around circle: velocity magnitude and pressure
contours using the fourth refinement level and fourth degree of approximation, Re = 20, τ̂ = 1,
velocity is expressed in m/s and pressure in Pa.

(a) k = 1 (b) k = 4

Figure 4.5: Two-dimensional steady laminar flow around circle: pressure contour in the vicinity of
the circle, solution using linear and quartic approximation on the same triangular grid, Re = 20,
τ̂ = 1 and pressure is expressed in Pa.

pressure contour in a zone near the circle for degree k = 1 and k = 4 is shown.
Although the same number of triangular elements for both approximations is used, the
superiority of the quartic approximation in the solution accuracy is obvious.

Table 4.2 summarizes the calculated quantities of interest for the flow around circle
in 2D for various degrees of approximation and mesh refinement levels. No exact values
for these quantities exist, so the two bounds that were reported in [167] and are based
on the results of the research groups that participated in that experiment are given as
a reference. One can observe the superiority of high degrees of approximation when it
comes to calculating important flow quantities. Cubic and quartic approximations are
more accurate with the same and often fewer degrees of freedom than quadratic and,
especially, linear approximations.

4.2.3 Flow inside a passive check valve with no moving parts

Passive check valves allow the flow in one direction (forward flow) and prevent the
flow in the opposite direction (reverse flow). They are part of many hydro-mechanical
systems used in industrial applications, such as pumps and compressors. They have a
moving part, usually a door or disc, that opens when the fluid flows in one direction and
closes when the flow decreases or is reversed. The most common types of check valves
are the ball check valve, the swing check valve and the dual plate check valve. Depend-
ing on the application and its technical requirements (e.g. required pressure drop, flow
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k ndof Cl Cd Lα(m) ∆P (Pa)

1

4,119 0.03215 5.4122 0.0822 0.10938
6,550 0.00368 5.5450 0.0747 0.11795
20,338 0.00953 5.5583 0.0738 0.11873
42,499 0.00717 5.5634 0.0855 0.11860
72,644 0.00823 5.5668 0.0827 0.11835
152,846 0.01024 5.5655 0.0835 0.11816
314,982 0.01066 5.5688 0.0850 0.11814
598,920 0.01061 5.5769 0.0845 0.11761

2

5,875 0.00589 5.5470 0.0817 0.11494
9,346 0.01027 5.5820 0.0830 0.11744
29,040 0.01058 5.5797 0.0835 0.11742
60,695 0.01060 5.5796 0.0842 0.11743
103,756 0.01060 5.5795 0.0840 0.11745
218,324 0.01062 5.5795 0.0846 0.11747
449,940 0.01061 5.5795 0.0847 0.11749

3

7,631 0.01034 5.5764 0.0817 0.11604
12,142 0.01040 5.5790 0.0830 0.11744
37,742 0.01063 5.5794 0.0845 0.11746
78,891 0.01062 5.5795 0.0842 0.11749
134,868 0.01062 5.5795 0.0840 0.11751
283,802 0.01062 5.5795 0.0844 0.11751

4

9,387 0.01035 5.5781 0.0824 0.11743
14,938 0.01060 5.5795 0.0832 0.11752
48,268 0.01062 5.5795 0.0849 0.11754
97,087 0.01062 5.5795 0.0842 0.11753
165,980 0.01062 5.5795 0.0843 0.11752

lower bound [167] 0.0104 5.5700 0.0842 0.1172
upper bound [167] 0.0110 5.5900 0.0852 0.1176

Table 4.2: Two-dimensional steady laminar flow around circle: quantities of interest for various
degrees of approximation and degrees of freedom, Re = 20 and τ̂ = 1.

rate, operating pressure, temperature, vertical or horizontal direction, transportation
length), a different type of valve is used, each one offering certain benefits.

Those valves have also other mechanical components, such as pins, disc arms,
springs and balls. All of them suffer from mechanical wear that will eventually lead to
failure. Alternatively, a type of check valves with no-moving parts mainly for microflu-
idic applications has been developed. Micro-electro-mechanical systems (MEMS) often
contain microvalves and micropumps which drive small quantities of fluid. Various mi-
crofluidics applications are listed by Gravesen and co-workers [168], as well as Shoji and
Esashi [169], including flow sensors, separation capillaries and microflow control sys-
tems among others. A comprehensive overview on the use of microvalves is presented
in [170].

For the purpose of this numerical study, a passive microvalve introduced by N.
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(a) Valve geometry (b) Forward and reverse flow and points
A, B where the pressure is measured

Figure 4.6: Tesla valve T45-R configuration, dimensions in millimeters.

Tesla [171] is studied. More precisely, for this numerical experiment the configuration
employed in [172] and further studied in [173, 174] will be used. The geometry of the
microvalve is shown in Figure 4.6. Based on the geometry, it is intuitively understood
that the forward flow is facilitated while the reverse flow is obstructed. From a scientific
point of view, when the fluid is flowing in the reverse direction inside this microvalve,
then there is high pressure drop due to the flow splitting in the 135°angle (bifurcation),
sudden expansion at the end of the upper arc where the upper branch of the flow joins
the lower branch, as well as jetting effects appearing in recirculation areas.

The efficiency of this type of microvalves is measured with diodicity, which is the
ratio of the pressure drop between inlet and outlet in the reverse direction over the
corresponding pressure drop in the forward direction

Di =
∆Pr
∆Pf

, (4.23)

where the subscripts r and f denote respectively the reverse and the forward flow.
The pressure difference is measured between two points, one close to the inlet and

one close to the outlet of the valve. These points are A and B, as shown in Figure 4.6(b).
Depending on the flow direction, points A and B can be either close to the inlet or close
the outlet. The inlet and outlet are extended by 0.6 mm each, so that the inlet flow is
fully developed in both forward and reverse directions.

In the current experiment, the working fluid is chosen as in [173], that is, water with
dynamic viscosity µ = 0.46 mPa · s and density ρ̄ = 1 g/cm3. The Reynolds number
varies from 50 to 300, which is the same interval used in [174]. In the same reference
it is highlighted that, for these numbers of Reynolds number the flow throughout the
valve is steady and laminar, and may be simulated as such. The Reynolds number
is controlled through the mean inlet velocity. More specifically, a parabolic velocity
profile is prescribed at the inlet, similar to the one described by Equation (4.19). On
the walls, the chosen condition involves zero velocity, while at the outlet a zero-traction
condition is set.

Velocity magnitude contours for both forward and reverse flow are shown in Fig-
ure 4.7. The contours for two Reynolds numbers are depicted, namely 50 and 300. The
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(a) Re = 50, forward flow (b) Re = 50, reverse flow

(c) Re = 300, forward flow (d) Re = 300, reverse flow

Figure 4.7: Flow inside a passive check valve: velocity magnitude contours for various Reynolds
numbers, forward flow (left) and reverse flow (right), arrows indicate the flow direction, velocity is
expressed in mm/s.

employed mesh contains 5,141 isoparametric triangular elements and the polynomial
degree of approximation is three. These elements are capable of approximating pre-
cisely the curved branch of the valve. In the forward flow, the velocity is almost zero in
the arc of the valve, especially for high Reynolds numbers. The flow bypasses that arc,
while in the reverse flow the bifurcation of the flow is visible. Moreover, it is primarily
high Reynolds numbers that cause large recirculation zones, especially in reverse flow,
see Figure 4.7(d). Higher velocity levels are observed in the reverse flow and are found
around the recirculation zones.

Pressure contours are plotted for the same cases in Figure 4.8. The major pressure
losses during the reverse flow are due to recirculation effects at the end of the upper arc.
As for the forward flow, the highest pressure drop is observed around the 135°corner,
which disrupts the flow. Based on the contour plots, it can be deduced that for both
flow directions the higher the Reynolds number, the higher the pressure drop.

The streamlines of the flow in the forward direction and Reynolds number 100 and
300 are depicted in the top row of Figure 4.9. In both cases, the recirculation area
at the beginning of the the arc, where there is flow separation, is shown. For higher
Reynolds number the recirculation region is bigger and, therefore, the flow in the upper
branch is obstructed. In the bottom row of the same figure, the vector fields near these
regions are plotted.

In the reverse flow, the streamlines for the same Reynolds numbers are shown in
Figure 4.10. It is noted that higher Reynolds number lead to bigger recirculation
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(a) Re = 50, forward flow (b) Re = 50, reverse flow

(c) Re = 300, forward flow (d) Re = 300, reverse flow

Figure 4.8: Flow inside a passive check valve: pressure contours for various Reynolds numbers,
forward flow (left) and reverse flow (right), arrows indicate the flow direction, pressure is expressed
in Pa.

(a) Re = 100, streamlines (b) Re = 300, streamlines
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(d) Re = 300, detail B

Figure 4.9: Flow inside a passive check valve: streamlines (up) and vector fields (down) for various
Reynolds number, fluid flows in the forward direction.

area in the 135°angle where the bifurcation takes place. Moreover, for Reynolds 300 a
second recirculation area is observed at the end of the arc where the two flows reunite,
which leads to jetting effects, increased velocity and, consequently, bigger pressure drop
around that region. However, this area disappears for Reynolds 100.



4.2. Numerical studies for steady incompressible Navier-Stokes 79

(a) Re = 100, streamlines (b) Re = 300, streamlines

0.85 0.9 0.95 1 1.05 1.1

0.84

0.86

0.88

0.9

0.92

0.94

0.96

(c) Re = 100, detail A
0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

(d) Re = 300, detail B
1.5 1.55 1.6 1.65 1.7 1.75 1.8

0.85

0.9

0.95

1

(e) Re = 300, detail C

Figure 4.10: Flow inside a passive check valve: streamlines (up) and vector fields (down) for
various Reynolds number, fluid flows in the reverse direction.

Figure 4.11: Flow inside a passive check valve: computed diodicity of the Tesla T45-R valve and
comparison with other studies.

As stated before, the effectiveness of this kind of valves is measured though Diod-
icity. The resulting diodicity is reported in Figure 4.11. The employed mesh consists
of 37,865 isoparametric triangular elements of second order and the approximation
polynomials are of second order, giving a total 375,762 degrees of freedom to solve.
The solution that is obtained using the HDG method is compared with the solutions
reported in [173, 174] for the two-dimensional simulation of the flow. The computed
diodicity is found to be in agreement with the two solutions reported in literature.
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4.3 Degree adaptivity using HDGmethod for steady Navier-
Stokes equations

Making use of the previous superconvergent solution u? it is possible to construct an a
posteriori and inexpensive spatial error indicator. The main idea lies in the fact that
the post-processed velocity field is of improved accuracy with respect to the original
velocity field. For instance, using a polynomial approximation of order k, the obtained
velocity and post-processed velocity converge with order k+1 and k+2 in the L2 error
norm respectively. In this regard, a comparison between these two fields may serve as
a local spatial error indicator. In this section, an indicator of the local error in the L2

norm inside each element Ωe may be defined as

Ee =

(
1

Ae

∫
Ωe

(u− u?)2 dΩ

)1/2

, (4.24)

where Ae is the elemental area. Dividing with the elemental area creates an error
indicator that is independent of the varying size of the elements throughout the mesh.
This is particularly useful in non-uniform meshes [112]. Similar estimators are defined
in [95, 155].

Given a desired accuracy ε, for instance 1%, the degree adaptivity process intends
to reduce the local spatial error in each element below the desired accuracy, so that

Ee < εŪ,∀Ωe ⊂ Ω. (4.25)

The characteristic velocity of the problem Ū appears in the above equation to ensure
consistency of units. It should be noted that the error indicator Ee of Equation (4.24)
is expressed in units of velocity. Therefore, Ū is multiplied with the desired accuracy,
so that both sides of the inequality (4.25) are expressed in velocity units. The mean
velocity at inlet might be chosen as characteristic velocity. For instance, for the flow
around a circle in 2D, which was presented in Section 4.2.2, the characteristic velocity
was the mean velocity at inlet Ū .

The inequality in (4.25) is satisfied by increasing the degree of each element ac-
cording to the level of the estimated error. In the elements where the error is already
below the desired one, the order of approximation might be decreased. This could be
particularly useful, especially in regions where a high order of accuracy is not necessary,
e.g. farfield flow. In addition, it is guaranteed that the elements that either describe
the curved parts of the geometry or have curved faces will not reduce to first-order
straight elements.

According to [108] and [95] the increment, also decrement, of the order of an element
is described by the following expression

∆ke =

⌈
log
(
(ε Ū)/Ee

)
log (he)

⌉
, for e = 1, ..., nel, (4.26)
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where d·e represents the ceiling function. From a practical point of view, the use of
this function guarantees, for instance, that the order will be increased by 1 in those
elements where ε Ū < Ee < 10ε Ū and will be decreased by 1 in the elements where
0.01ε Ū < Ee < 0.1ε Ū . The elements that show an error 0.1ε Ū < Ee < ε Ū will not see
their degree decreasing. In this way, the error is safely maintained below the desired
accuracy.

A different logarithmic base can be used in Equation (4.26), in order to make the
change in degree stiffer or easier. For instance, if the value of 100 is chosen as base of
the logarithm, instead of 10, then the criterion becomes stiffer. This yields a smoother
solution but might also slow down the convergence to the final solution. In this study,
the logarithmic base is set to 10.

This process is iterative and stops when all elements satisfy the inequality of Equa-
tion (4.25) or when a maximum number of iterations is reached. At each iteration, after
the new degree map has been computed, the already computed solution in the mesh
of order kolde is projected to the new mesh of order knewe . The purpose of this is to use
a good approximation as initial guess for the solution of the Navier-Stokes equations
and decrease the number of required non-linear (Newton-Raphson) iterations to reach
convergence. Algorithm 2 describes the steps of the p-adaptivity process for the steady
incompressible Navier-Stokes equations.

Algorithm 2 Degree-adaptivity process for the steady incompressible Navier-Stokes
equations using the proposed HDG method
1: Load mesh
2: Read initial degree map ke
3: Read desired accuracy ε
4: Read curved elements
5: while Maximum number of adaptivity iterations imax is not reached AND conver-

gence is not achieved do
6: i = i+ 1
7: Solve the problem and calculate L,u,p, ρ, û
8: Calculate the post-processed velocity field u?

9: Estimate the local error Ee using Equation (4.24)
10: if max(Ee) < εŪ AND i > 1 then
11: Convergence achieved
12: else
13: Calculate the new degree map knewe using Equation (4.26)
14: if curved elements then
15: minimum degree in curved elements k = 2
16: end if
17: Build new mesh based on knewe

18: Project solution L,u,p, ρ, û on the new mesh
19: end if
20: end while
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4.3.1 Numerical studies

Numerical tests are conducted in order to assess the effectiveness of the proposed p-
adaptivity method. The test cases presented in Section 4.2 are considered at this point.
First, the Kovasznay flow, being an analytical flow problem, serves as a means to test
the ability of the error indicator to identify the regions with high spatial error as well
as quantify the error accurately. Next, the method is tested on the steady laminar
flow around a circle. This problem involves curved geometry and the calculation of
some quantities of interest. Last, the method is applied on a more complicated steady
flow, the flow inside a T45-R Tesla valve. The p-adaptivity method is tested whether
it can refine appropriately and deliver a reliable approximation, capable of assessing
important flow quantities.

Kovasznay flow

The velocity and the pressure field of the Kovasznay flow have an analytical expression,
given in Equations (4.17) and (4.18). In this experiment, quadrilateral elements are
used, the Reynolds number is Re = 20 and the non-dimensional stabilization parameter
is chosen τ̂ = 0.2, which is a value for which the method converges optimally. Starting
from a second-order mesh and quadratic approximation for all the primal and mixed
variables and following the procedure described in Algorithm 2, the objective is to find
the ke, so that the estimated error in each element is below the prescribed accuracy.

In Figure 4.12 the degree map, as well as the map of the exact and the estimated
error are shown. The process is concluded in two iterations. In the first iteration,
the initial mesh is used and the maximum estimated error is approximately 3× 10−4,
which is bigger than the desired accuracy ε = 5× 10−8. Then, the degree is refined
locally according to the level of the error. The degree is increased to 6 in the elements
where the error is very high and 5 in the rest of the elements, as seen in Figure 4.12(d).
Next, the estimated error in each element is found to be less than the desired accuracy
and thus the process stops. In both iterations, the estimated error is in accordance
with the exact error. Both error maps have the same trend and the same levels, even
though the proposed indicator slightly overestimates the error.

Two-dimensional laminar flow around circle

The p-adaptivity process will be applied to the steady laminar flow around a circle
that is presented in Section 4.2.2. The same geometry, flow properties and boundary
conditions are used. The effectiveness of the proposed process for degree adaptation
will be evaluated by calculating the quantities of interest of the flow. These are the lift
coefficient and the drag coefficient on the surface of the circle, as well as the pressure
drop between the leading and the trailing point of the circle.
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(a) Iteration 1: degree map (b) Exact error (c) Estimated error

(d) Iteration 2: degree map (e) Exact error (f) Estimated error

Figure 4.12: Kovasznay flow: degree adaptivity process using a uniform mesh of 256 quadrilateral
elements and initial degree 2, desired accuracy ε = 5× 10−8, the process stops after 2 iterations.

Figure 4.13: Two-dimensional steady laminar flow around circle: curved elements (red) and straight
elements (blue) in a mesh consisting of 2,934 triangular elements.

Starting from a mesh of a uniform degree k = 2 and 2,934 triangular elements, the
first step is to label the curved elements. It is reminded that the purpose of this is to
ensure that during the adaptivity process these elements will not downgrade to first-
order straight elements. In Figure 4.13 the curved elements are plotted in red color,
while the straight in blue color. The elements that lie directly on the circle surface and
the elements in their vicinity are curved and the rest are straight.

As it was done previously for the Kovasznay flow, the p-adaptivity process receives
a desired accuracy ε and tries to refine the degree of each element as a means to
reach this accuracy. Unlike the mesh used for Kovasznay problem, the computational
mesh used to simulate the laminar flow around circle is not uniform. Therefore, the
normalization with the elemental area in Equation (4.24) has an effect in this problem.
Three different levels of ε are used in order to obtain three distinct solutions, each one
being of a specific accuracy. In Figure 4.14, each one of the three plots corresponds to
a value of ε. It is clear that a stricter criterion in general leads to higher polynomial
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(a) ε = 5 × 10−3 (b) ε = 5 × 10−4

(c) ε = 5 × 10−5

Figure 4.14: Two-dimensional steady laminar flow around circle: degree map at the end of the
p-adaptivity process and for various values of desired accuracy ε, Re = 20.

degrees, especially in the region close to the circle and the flow outlet.
Afterwards, the quantities of interest using the mesh of Figure 4.13 and various

values of uniform degree of approximation throughout the mesh (k = 1, ..., 4) as well
as the degree maps of Figure 4.14 are shown in Figure 4.15. They are compared to the
value of an overkilled solution, which is the solution on a fine mesh of 45,066 elements
and degree k = 3, being equivalent to 584,898 degrees of freedom. The effectiveness
of the adaptivity process to deliver meshes that can calculate accurately the quantities
of interest for fewer degrees of freedom than uniform-degree meshes is apparent. The
relative drag coefficient error using the mesh delivered by ε = 5× 10−4 is 1.44× 10−5,
lower than the corresponding error of the k = 3 uniform mesh, the error of which is
3.34× 10−5. It has to be noted that the first mesh uses 24.5% fewer degrees of freedom
than the second one. As long as the lift coefficient is concerned, the adapted mesh
delivered by ε = 5× 10−5 calculates the coefficient with 9.64× 10−5 relative error, less
than finest uniform-degree mesh with k = 4, whose relative error is 3.94× 10−4. It
should also be mentioned that the adapted mesh uses 25.2% fewer degrees of freedom
than the mesh of uniform k = 4. The pressure drop is calculated with a relative error of
1.91× 10−4 when the resulting adapted mesh of ε = 5× 10−5 is employed. The k = 4

uniform mesh shows approximately the same error 1.51× 10−4, yet a bit better than
the adapted mesh.

Flow inside a passive check valve with no moving parts

The simulation of the flow inside the Tesla T45-R valve is used to assess the degree-
adaptive method. The flow was presented in detail in Section 4.2.3. For the p-adaptivity
study, the initial mesh is a relatively coarse mesh of 2,777 triangular elements, evenly
distributed throughtout the mesh, as seen in Figure 4.16 and a uniform degree k = 2

across all its elements. The reason behind choosing a coarse mesh is to test if by
refining only the degree of the elements, the method is capable of capturing important
flow details, such as boundary layers, vortices, recirculation zones.
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(a) Drag coefficient (b) Lift coefficient

(c) Pressure drop

Figure 4.15: Two-dimensional steady laminar flow around circle: quantities of interest calculated
with uniform degree approximations and the degree distributions that arise from the proposed
p-adaptivity process, Re = 20.

Figure 4.16: Steady laminar flow inside a T45-R Tesla valve: grid used for the p-adaptivity
procedure, consisting of 2,777 triangular elements.

Starting with this mesh, the adaptive process is performed for two different levels
of desired accuracy, the results of which are shown in Table 4.3 for Re = 300. Initially,
the curved regions of the mesh are identified and then the iterative adaptive process
starts. The process is concluded after 3 iterations when the desired accuracy is set to
ε = 5× 10−2. For a stricter criterion ε = 5× 10−3 and ε = 5× 10−4 the intermediate
solution oscillates around the final solution, therefore the procedure is stopped after 6
iterations.

The quantity of interest for this problem, the diodicity Di, is evaluated in every case
and it is compared to a reference solution. The reference solutions is computed using
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Mesh degree k Number of DOFs Diodicity Relative error
1 18,545 1.32366 2.77× 10−2

2 26,429 1.36924 5.81× 10−3

3 34,313 1.36534 2.95× 10−3

adaptive, ε = 5× 10−2 19,665 1.34012 1.56× 10−2

adaptive, ε = 5× 10−3 21,785 1.35074 7.78× 10−3

adaptive, ε = 5× 10−4 27,253 1.36044 6.54× 10−4

reference solution 375,762 1.36133 —

Table 4.3: Steady laminar flow inside a T45-R Tesla valve: calculated diodicity of the valve in
meshes with uniform degree k = 1, 2, 3 and adaptive degree according to various accuracy criteria
ε, Re = 300.

a fine mesh and a uniform degree k = 2, equal to a total number of 375,762 degrees of
freedom. According to Table 4.3, the adaptive procedure with a suitable criterion can
generate a mesh and deliver a solution which is more accurate than the solution of a
uniform-degree mesh of k = 3 and, on top of that, has 20.5% fewer degrees of freedom
compared to the latter.

In Figure 4.17 the final distribution of the elemental degree for Re = 300 is plotted.
Both forward and reverse flows for two levels of desired accuracy are shown. When
ε = 5× 10−4, high-order elements (k > 2) are placed at the corners where the flow
experiences sudden expansion or bifurcation, as well as in the recirculation zones. On
the contrary, when a looser accuracy is chosen, for instance ε = 5× 10−2, then only
first and second-order elements are placed at these points of interest, leading to less
precise solutions. In both cases it is clear that order k = 2 has been preserved in the
curved elements of the mesh.

In Figure 4.18 the degree maps after the end of the adaptivity process for Re 50
and 300 are depicted. The Reynolds number has an effect on the resulting degree map
in that it affects not only the overall velocity inside the valve, but also the recircula-
tion zones around the corners and the bifurcation of the flow. Therefore, around the
corners, where the sudden expansion of the flow takes place and recirculation zones are
formed, higher-order elements are placed when the Reynolds number is increased. In
this manner, larger velocity and pressure gradients can be accurately approximated.

4.4 The HDG method for transient incompressible Navier-
Stokes equations

In this section, time-dependent flows using the HDG method with strongly enforced
symmetry of the stress tensor are studied. As in previous sections of this chapter, the
governing equations are the Navier-Stokes equations, however, in this case accounting
for time-dependent terms. First, the weak forms of the local and global problems,
that arise using the proposed formulation of the method, are presented. A list of
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(a) Forward flow, ε = 5 × 10−2 (b) Reverse flow, ε = 5 × 10−2

(c) Forward flow, ε = 5 × 10−4 (d) Reverse flow, ε = 5 × 10−4

Figure 4.17: Steady laminar flow inside a T45-R Tesla valve: effect of desired accuracy ε on the
degree map for Re = 150, forward flow (left) and reverse flow (right), arrows indicate the flow
direction.

(a) Forward flow, Re = 50 (b) Reverse flow, Re = 50

(c) Forward flow, Re = 300 (d) Reverse flow, Re = 300

Figure 4.18: Steady laminar flow inside a T45-R Tesla valve: effect of Reynolds number on the
degree map for ε = 5× 10−4, forward flow (left) and reverse flow (right), arrows indicate the flow
direction.

well-known time-integration schemes and how these are applied in the context of HDG
follows. Last, numerical studies are conducted in order to assess the performance of the
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various schemes and the ability of the proposed HDG formulation to simulate transient
flows.

Weak form of local and global problems

Similar to Section 4.1.2 and after the addition of the temporal term, the discrete weak
form of the transient local problems is:

For e = 1, . . . ,nel, given uD on ΓD and ûh on Γ ∪ ΓN , find (Lhe ,u
h
e , p

h
e ) ∈

[Vh(Ωe)]
msd × [Vh(Ωe)]

nsd × Vh(Ωe) that satisfy

−(υ,Lhe )Ωe + (∇T
SD

1/2υ,uhe )Ωe = 〈NT
eD

1/2υ,uD〉∂Ωe∩ΓD

+〈NT
eD

1/2υ, ûh〉∂Ωe\ΓD ,
(4.27a)

(
w,

∂uhe
∂t

)
Ωe

+ (w,∇T
SD

1/2Lhe )Ωe + (w,∇T
SEp

h
e )Ωe −

(
∇Sw, (u

h
e ⊗ uhe )V

)
Ωe

+〈w, τuhe 〉∂Ωe = (w, b)Ωe + 〈w, (τ ûh −NT
e (û⊗ û)V )〉∂Ωe\ΓD

+〈w, (τuD −NT
e (uD ⊗ uD)V )〉∂Ωe∩ΓD ,

(4.27b)

(∇T
SEq,u

h
e )Ωe = 〈q,ETNeuD〉∂Ωe∩ΓD + 〈q,ETNeû

h〉∂Ωe\ΓD , (4.27c)
1

|∂Ωe|
〈phe , 1〉∂Ωe = ρhe , (4.27d)

for all (υ,w, q) ∈ [Vh(Ωe)]
msd × [Vh(Ωe)]

nsd × Vh(Ωe).
The temporal variable t (not to be confused with the traction vector t) counts from

0 till a final time tend. The final form of the discrete weak global problem coincides
with that of the steady incompressible Navier-Stokes, refer to Equation (4.15).

4.4.1 Time integration schemes

Given the weak forms of the local and global problems previously described, the
"Method of Lines" is used for the temporal discretization of the system. The following
system of differential algebraic equations (DAE) is obtained, namely

MU̇ + K(U)U = f(t,U) (4.28)

where U =
[
L u p ζ û ρ

]T
and

M =



0 0 0 0 0 0

0 Muu 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, K =



ALL ALu 0 0 ALû 0

AuL Auu Aup 0 Aûû 0

0 Apu 0 AT
ρp Apû 0

0 0 Aρp 0 0 I

AûL Aûu Aûp 0 Aûû 0

0 0 0 0 Aρû 0


.

(4.29)
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The aforementioned components of the matrices arise from the discretization of the
weak form of the Equations (4.27) and (4.15). More details on their definition are given
in Appendix A.3. Following, a number of time integration schemes for the temporal
discretization of Equation (4.28) will be presented. These include single-step methods,
multiple-step methods and multi-stage methods of Runge-Kutta type. It should be
mentioned that in this thesis only implicit schemes are studied.

Single-step methods

A popular family of methods for parabolic problems are the θ-methods. Applying to
Equation (4.28) the following is obtained

M
(
tn+θ,Un+θ

)
U̇ + K

(
tn+θ,Un+θ

)
Utn+θ

= f
(
tn+θ,Un+θ

)
, (4.30)

where θ is a number in the interval (0, 1) and

tn+θ = (1− θ) tn + θ tn+1

Un+θ = (1− θ)Un + θUn+1
. (4.31)

Therefore, the system of equation discretized with θ-method is written as:

M
Un+1

∆t
+ θK

(
(1− θ)Un + θUn+1

)
Un+1 = M

Un

∆t

− (1− θ)K
(
(1− θ)Un + θUn+1

)
Un + (1− θ)f

(
tn,Un

)
+ θ f

(
tn+1,Un+1

)
.

(4.32)

When θ = 1, then θ-method describes the backward Euler method (BE), while
θ = 0.5, then it describes the Crank-Nicolson method (CN). The backward Euler is
first-order accurate in time and the Crank-Nicolson is second-order accurate. The order
of temporal convergence is an important property of time integration schemes.

Another important property is A-stability. It is reminded a scheme is A-stable when
its region of stability lies entirely on the left half of the complex plane. Explicit meth-
ods cannot be A-stable, unless the employed timestep complies with a stability condi-
tion, the Courant–Friedrichs–Lewy (CFL) condition. On the other hand, most implicit
methods are unconditionally A-stable, meaning that they have A-stability regardless
the chosen timestep. Both backward Euler and Crank-Nicolson are unconditionally
A-stable.

Nevertheless, A-stability alone is not sufficient, yet time-integration schemes should
also have stiff decay. To define the concept of stiff decay we consider the generalized
test problem, see also [175]

y′ = λ
(
y − g(t)

)
, 0 < t < b, (4.33)

where g(t) is a bounded but arbitrary function. As the real part of λ, Re(λ)→ −∞,
the exact solution of Equation (4.33) satisfies
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y(t)→ g(t), 0 < t < b. (4.34)

A scheme has then stiff decay when for a fixed 0 < tn < b

|yn − g(tn)| → 0 as ∆tnRe(λ)→ −∞. (4.35)

The backward Euler method has stiff decay, whereas the Crank-Nicolson method
does not. This makes the latter exhibit an oscillatory behaviour when large timesteps
are employed.

Second-order backward differentiation formula

By using the already computed velocity field of the two previous time levels, it is
possible to obtain a second-order time integration scheme, namely the second-order
backward differentiation formula (BDF2). Applying this method to Equation (4.28)
yields

M
(
tn+1,Un+1

)3Un+1 − 4Un + Un−1

2∆t
+ K

(
tn+1,Un+1

)
Utn+1

= f
(
tn+1,Un+1

)
⇔

M
3Un+1

2∆t
+ K

(
tn+1,Un+1

)
Utn+1

= M
4Un −Un−1

2∆t
+ f

(
tn+1,Un+1

) .

(4.36)
This method is not self-starting, so the first time level t1 is calculated with another

method, for example the backward Euler method. Following, the second time level t2

can be calculated using the solution at t1 and the initial solution at t0.
The second-order backward differentiation formula is unconditionally A-stable and

has stiff decay. It should be also mentioned that higher-order backward differentiation
formulas exist, however unlike BDF2, they are not unconditionally stable and therefore
will not be studied.

Runge-Kutta methods

The Runge–Kutta (RK) methods are a family of multi-stage methods that can be
explicit, implicit or semi–implicit. The Runge-Kutta methods are described by a table
of coefficients, usually referred to as Butcher-tableau, which has the following structure
for a method of q stages

c1 α11 α12 ... α1q

c2 α21 α22 ... α2q

... .... ... ... ...
cq αq1 αq2 ... αqq

b1 b2 ... bq

Table 4.4: Butcher tableau of a Runge-Kutta method.
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The method is explicit when the coefficient matrix αij is a lower-triangular matrix.
On the other hand, it is fully implicit when the same matrix is full. As far as A-
stability is concerned, explicit Runge-Kutta are not unconditionally A-stable, while
implicit Runge-Kutta are. More specifically, the stability function of a Runge-Kutta
method is

R(z) =
det(I− zA + z1qb

T )

det(I− zA)
, (4.37)

where A is a matrix that contains the elements αij , 1q a vector of ones of size q and b
a vector that contains the elements bi.

Furthermore, an A-stable Runge-Kutta method is also L-stable when

lim
Re(z)→−∞

R(z) = 0. (4.38)

L-stability is a desirable property of Runge-Kutta methods.
Applying a Runge-Kutta method to Equation (4.28), the following multi-stage

method is obtained. For i = 1, ..., q the solution in the intermediate stage i is cal-
culated by solving

M
Un+bi −Un

∆t
+

q∑
j=1

αij

(
K
(
tn + cj∆t,U

n+bj
)
Un+bj − f

(
tn + cj∆t,U

n+bj
))

= 0,

(4.39)
while the advance to the next time level n+ 1 is performed by solving

M
Un+1 −Un

∆t
+

q∑
i=1

bi

(
K
(
tn+ci∆t,U

n+bi
)
Un+bi−f

(
tn+ci∆t,U

n+bi
))

= 0. (4.40)

It should be noted that the implicit method is computationally expensive, since at
every stage i the solutions of all the stages i = 1, ..., q are involved.

Singly-diagonally implicit Runge-Kutta methods
In order to circumvent the increased complexity of fully implicit Runge-Kutta meth-

ods, diagonally-implicit Runge-Kutta (DIRK) methods are usually used in practice.
Referring to Table 4.4, it is possible to obtain a diagonally-implicit method when the
elements aij are zero for i > j. Moreover, if the same diagonal element α11 is used,
then the method is called singly-diagonally-implicit Runge-Kutta (SDIRK) method.
The Butcher tableau of an SDIRK method has the form given in Table 4.5.

c1 α11

c2 α21 α11

... .... ... ...
cq αq1 αq2 ... α11

b1 b2 ... bq

Table 4.5: Butcher tableau of a singly-diagonally-implicit Runge-Kutta method of q stages.
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The Equation (4.39), for the solution at each stage i, can be rewritten as

M
Un+bi −Un

α11∆t
+ K

(
tn + ci∆t,U

n+bi
)
Un+bi = f

(
tn + ci∆t,U

n+bi
)
− gi, (4.41)

where

gi =
1

α11

i−1∑
j=1

αij

(
K
(
tn + cj∆t,U

n+bj
)
Un+bj − f

(
tn + cj∆t,U

n+bj
))
. (4.42)

It is therefore clear that every stage of SDIRK is equivalent to backward Euler
and their computational cost is similar. Typically, however, the computational cost
of solving the non-linear problem with SDIRK is lower than solving it with backward
Euler due to the better initial approximation that leads to fewer non-linear iterations.

The stability function of an SDIRK method has the expression

R(z) =
I− zA + z1qb

T

(1− zα11)q
, (4.43)

Moreover, if the last row of A coincides with b, the SDIRK method is L-stable.
In [176] a second-order SDIRK method of two stages (SDIRK2) is presented, the

Butcher tableau of which is

γ γ
1 1− γ γ

1− γ γ

Table 4.6: Butcher tableau of a second-order singly-diagonally-implicit Runge-Kutta method of
two stages (SDIRK2).

The method is L-stable, stiffly-accurate and the second-order conditions yield values
of γ = (2±

√
2)/2. However, the value γ = (2−

√
2)/2 is better because it is less than

1.
In addition, an L-stable, stiffly-accurate SDIRK method of third-order with three

stages (SDIRK3) has the following table of coefficients

γ γ
c2 c2 − γ γ
1 b1 b2 γ

b1 b2 γ

Table 4.7: Butcher tableau of a third-order singly-diagonally-implicit Runge-Kutta method of three
stages (SDIRK3).

In order for the method to be L-stable, the value of γ has to be the solution
of the root of the polynomial γ3 − 3γ2 + 3

2γ −
1
6 = 0 in the domain

[
1
6 ,

1
2

]
, that is

γ = 0.4358665215084590. The other coefficients are defined after γ as
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c2 =
2− 9γ + 6γ2

3α
, b1 =

4γ − 1

4β
, b2 =

−3γ2

4β
, (4.44)

where α = 1− 4γ + 2γ2 and β = −1 + 6γ − 9γ2 + 3γ3.
Singly-diagonally implicit Runge-Kutta methods with an explicit first stage
It is possible for an SDIRK method to have an explicit first stage, thus increas-

ing the stage order from 1, that holds for SDIRK methods, to 2. These methods are
called singly-diagonally implicit Runge-Kutta methods with an explicit first stage (ES-
DIRK). Such time-marching methods are presented in [177]. One of them is an L-stable
third-order ESDIRK method of four stages (referred to ESDIRK3/2 by Kværnø), the
coefficients of which are given in Table 4.8.

0 0 0 0 0
2γ γ γ 0 0
1 α31 α32 γ 0
1 α41 α42 α43 γ

Table 4.8: Butcher tableau of a third-order singly-diagonally-implicit Runge-Kutta method of four
stages with explicit first stage (ESDIRK3/2).

The parameter γ is chosen based on stability properties and its value is γ =

0.435866521508, whereas the rest of coefficients are equal to

α31 =
−4γ2 + 6γ − 1

4γ
, α32 =

−2γ + 1

4γ
,

α41 =
6γ − 1

12γ
, α42 =

−1

(24γ − 12)γ
, α43 =

−6γ2 + 6γ − 1

6γ − 3
.

(4.45)

It should be mentioned that although the method has initially four stages, in reality
only three of them are computationally expensive due to the fact that the first stage is
explicit and, therefore, is computationally inexpensive.

Observing the third and the fourth rows of Table 4.8, it is seen that the solution
for both stages is calculated at time n+ 1. The last two stages can be used in order to
construct a temporal error estimator, based on which it is possible to control the size of
the timestep during the simulation. Such methods are also called embedded methods.
This idea will be discussed in detail in Section 4.5.2.

An L-stable fourth-order ESDIRK method of six stages (referred to as ESDIRK46)
is presented in [176], the Butcher tableau of which is Table 4.9, and where the last row
refers to the optional stage that is used in timestep size adaptivity. The parameter γ
is chosen based on stability properties and its value is γ = 0.25, whereas the rest of
coefficients are equal to
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c2 =
1

2
, c3 =

2−
√

2

4
, c4 =

5

8
, c5 =

26

25
,

α21 = 0.25, α31 =
1−
√

2

8
, α32 =

1−
√

2

8
, α41 =

5− 7
√

2

64
, α42 =

5− 7
√

2

64
,

α43 =
7 + 7

√
2

32
, α51 =

−13796− 54539
√

2

125000
, α52 =

−13796− 54539
√

2

125000
,

α53 =
506605 + 132109

√
2

437500
, α54 =

166(−97 + 376
√

2)

109375
, b1 =

1181− 987
√

2

13782
,

b2 =
1181− 987

√
2

13782
, b3 =

47(−267 + 1783
√

2)

273343
, b4 =

−16(−22922 + 3525
√

(2))

571953
,

b5 =
−15625(97 + 376

√
2)

90749876
, b̂1 =

−480923228411

4982971448372
, b̂2 =

−480923228411

4982971448372
,

b̂3 =
6709447293961

12833189095359
, b̂4 =

3513175791894

6748737351361
, b̂5 =

−498863281070

6042575550617
,

b̂6 =
2077005547802

8945017530137
.

(4.46)

0 0 0 0 0 0 0
c2 α21 γ 0 0 0 0
c3 α31 α32 γ 0 0 0
c4 α41 α42 α43 γ 0 0
c5 α51 α52 α53 α54 γ 0
1 b1 b2 b3 b4 b5 γ

b̂i b̂1 b̂2 b̂3 b̂4 b̂5 b̂6

Table 4.9: Butcher tableau of a fourth-order singly-diagonally-implicit Runge-Kutta method of six
stages with explicit first stage (ESDIRK46).

4.4.2 Numerical studies

At this point, various tests using the aforementioned time-integration methods in the
HDG context will be conducted. First, the performance of the methods will be assessed
by evaluating their order of convergence and by comparing the level of temporal error
for the same amount of computational resources. Both tests are performed considering
an analytical flow field, therefore it is possible to estimate the temporal error. Later,
the various temporal methods will be used for the simulation of the transient two-
dimensional flow around a circle, a well-known benchmark problem for transient laminar
incompressible Navier-Stokes equations.

Performance of time-integration schemes

At this point, the performance of the time-integration schemes presented in Section 4.4.1
will be assessed by studying the following:
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(a) u1 (b) u2 (c) p

Figure 4.19: Transient analytical flow: HDG approximation of the velocity and pressure field using
the fourth refinement of the quadrilateral mesh at time t = 1, BDF2 is used for time integration,
domain Ω = [0, 1]2 and τ̂ = 0.3.

1. the order of temporal convergence of the various schemes;

2. the level of temporal error of the various schemes for the same computational
effort.

For both studies, an analytical flow is used with the following transient velocity and
pressure profiles:

u(x) =

 x2
1(1− x1)2(2x2 − 6x2

2 + 4x3
2) sin2(t)

−x2
2(1− x2)2(2x1 − 6x2

1 + 4x3
1) sin2(t)

 , (4.47)

p(x) = x1(1− x1)x2(1− x2) sin2(t). (4.48)

In Figure 4.19 the velocity components and the pressure are plotted at time t = 1.
The chosen spatial domain is Ω = [0, 1]2 and the time marching is performed using the
BDF2 method and timestep size ∆t = 0.03125.

Order of temporal convergence
A convergence study is performed in order to assess the accuracy and convergence

rate of the time-integration schemes when these are used with the proposed HDG
method. For this study, the source term and the boundary conditions will be chosen in
such way so that the flow is described by the aforementioned analytical solution, while
the chosen time interval is [0, 3]. The simulation is performed with different timestep
sizes and the L2-norm of the error of the variables u, p,L is calculated at the final time
tend = 3.

At this point it has to be highlighted that the computed error contains two com-
ponents; a spatial and a temporal one, and in order to ensure that the measured error
represents the temporal part, the spatial part should be tiny. This is achieved by using
a fine computational mesh, both in mesh size h and mesh degree p. In this study so far,
it has been demonstrated that, using the proposed formulation of the HDG method, the
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L2-norm of the spatial error of velocity, pressure and mixed variable have the following
general expression

||EL2(Ω)|| = chk+1, k ≥ 1

where c is a constant, h is the mesh size and k the degree of approximation. For
example, the spatial error arising form a fourth-order mesh of uniform size 1/32 would
be approximately 2.9e−8, without accounting for the constant c. Such levels of spatial
error are found to be low and do not affect the temporal convergence study.

In Figure 4.20, the order of convergence of the various temporal methods for the
analytical problem described in Equations (4.47) and (4.48) is displayed. The L2-
norm of the error of velocity, pressure and mixed variable (scaled strain rate tensor)
versus the timestep size is plotted. Each method shows a constant behaviour for all
variables. The backward Euler method is the only first-order method and shows the
slowest convergence among all the considered methods. Following, the second-order
methods, Crank-Nicolson, second-order backward differentiation method (BDF2) and
second-order singly-diagonally RK method (SDIRK2), display a second-order accuracy
experimentally. A better accuracy is achieved using the singly-diagonally RK method
of order three (SDIRK3) as well as the third-order singly-diagonally RK method with
explicit first step (ESDIRK3/2). The highest order is the four and is attained when
the fourth-order singly-diagonally RK method with explicit first step (ESDIRK46) is
used.

Level of temporal error for a given computational effort
The second experiment involves the calculation of the temporal error and the com-

parison between the various schemes. A simple comparison using the same timestep
size for all methods would be unfair, since some of them are multi-stage and, thus, ad-
vancing one timestep takes significantly more time than with single-step methods. In
this regard, the number of evaluations of the Jacobian matrix in each timestep should
be taken into account. For example, the SDIRK2 method requires the evaluation and
solution of the non-linear problem twice in every timestep, while the BDF2 method
requires the same only once. Therefore and in order for the comparison to be fair, the
chosen timestep size with SDIRK2 should be twice as large as the one of BDF2.

In Table 4.10 the calculated error level of the primal and mixed variables for the
simulation of the flow described by Equations (4.47) and (4.48) at the final time tend = 3

is shown. In the third column, the equivalent chosen timestep size for each method is
shown. The timestep size varies from 0.05 for single-step methods and BDF2 to 0.25

for the ESDIRK46 of six stages (five actual stages, the first stage is explicit).
Despite the large timestep, the ESDIRK methods appear to be the most accurate,

in particular ESDIRK46 shows the lowest error, followed by ESDIRK3/2. Crank-
Nicolson also seems competitive, however, as mentioned in Section 4.4.1, it can deliver
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Figure 4.20: Transient analytical flow: study of temporal convergence for various time-marching
methods, initial time t0 = 0 and final time tend = 1, fourth-order quadrilateral mesh is used and
τ̂ = 0.3.

an oscillatory solution when a large timestep is used, thus it is usually not preferred in
practice.

Two-dimensional transient flow around circle

The two-dimensional transient flow around a circle is a well-known benchmark test that
is widely used for testing a transient incompressible Navier-Stokes code. It is known
that for Reynolds number higher than approximately 40, the flow stops being steady
and symmetric and time-dependent phenomena appear. The flow is separated and
swirling vortices are formed downstream of the circle, which is known as Von Kármán
street vortex, named after the physicist Theodor von Kármán.

In this section, the test case "2D-2" presented in [167] will be studied. The geometry
of the problem is the same as the one used for the steady flow around circle, refer to
Figure 4.2. The inflow condition is also the same, refer to Equation (4.19). The
difference lies in the mean velocity at inlet Ū , which in the transient case is Ū = 1.0 m/s,
yielding a Reynolds number 100. It is reminded that the maximum velocity at inlet,
at the center of the duct inlet, is related to the mean velocity according to the formula
Um = 3 Ū/2.
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Method Number of Jaco-
bian evaluations ∆t

‖u−uh‖L2(Ω)

‖u‖L2(Ω)

‖p−ph‖L2(Ω)

‖p‖L2(Ω)

‖L−Lh‖L2(Ω)

‖L‖L2(Ω)

Backward Euler 1 0.05 5.16e-1 2.93e-2 5.98e-1
Crank-Nicolson 1 0.05 7.87e-3 4.63e-4 8.80e-3

BDF2 1 0.05 3.40e-2 2.00e-3 3.81e-2
SDIRK2 2 0.1 2.41e-2 8.90e-4 3.07e-2
SDIRK3 3 0.15 1.20e-2 5.71e-4 1.77e-2

ESDIRK3/2 3 0.15 8.40e-3 4.80e-4 9.68e-3
ESDIRK46 5 0.25 2.34e-3 8.67e-5 3.29e-3

Table 4.10: Transient analytical flow: level of temporal error of various time-marching methods for
a given computational effort, initial time t0 = 0 and final time tend = 3, fourth-order quadrilateral
mesh is used and τ̂ = 0.3.

(a) Velocity magnitude contour (b) Pressure contour

Figure 4.21: Two-dimensional transient laminar flow around circle: velocity magnitude and pressure
contours at t = 6 s when vortex shedding is fully developed, mesh consists of 2,435 triangular
elements of degree k = 2, employed time-marching scheme ESDIRK3/2, Re = 100, τ̂ = 1, velocity
is expressed in m/s and pressure in Pa.

The unsteady nature of the problem leads to an oscillating lift, drag coefficient on
the circle as well as oscillating pressure drop between the leading and the trailing edge
of the circle. This oscillation is of periodic nature and the reported results include
quantities of interest, such as the maximum lift coefficient, maximum drag coefficient,
pressure drop when lift is minimum and Strouhal number. This last number is a
dimensionless number that describes the vortex shedding and is given as St = f D/Ū ,
where D is the circle diameter and f the vortex shedding frequency.

Similar to the steady flow around circle, there is no exact solution for the quan-
tities of interest, but a set of solutions given by different research groups. These are
summarized in [167] and the bounds of them are used for comparison with the present
study.

The simulation is initiated using the solution of the steady case for Re = 20 as
initial condition. Then, the flow past the circle separates and vortices are formed.
These vortices have a periodic pattern and eventually exit the domain, as seen in
Figure 4.21. The lift and drag coefficients on the circle surface oscillate until they
reach their maximum amplitude, as seen in Figure 4.22. Finally, the simulation is
stopped after 8.1 seconds, after the vortex shedding is fully developed.

For the calculation of the flow quantities, in [167] it is stated that the flow has to
be initiated using as initial condition any solution where Cl is maximum. Then, the
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(a) Lift coefficient (b) Drag coefficient

(c) Pressure drop

Figure 4.22: Two-dimensional transient laminar flow around circle: evolution of lift, drag and
pressure drop versus time, time-marching scheme is ESDIRK3/2, degree k = 3, timestep size
∆t = 0.005 s, Re = 100 and τ̂ = 1.

simulation is run for one period and the maximum lift and drag coefficients are obtained,
as well as the pressure drop at half of the period (when Cl is minimum). In Table 4.11
the resulting quantities of interest are summarized for degrees of approximation k =

1, 2, 3, 6. The employed time integration method is ESDIRK46 and the timestep size
is chosen to be ∆t = 0.01 s for all degrees k. Moreover, for k = 3 two more timestep
sizes are considered, a coarser one and a finer one, with the aim of demonstrating
the importance of the chosen ∆t. As already mentioned, the initial condition must
be a solution when Cl is maximum, therefore, the first solution after 6 s whose Cl is
maximum is used as initial condition. The limit of 6 s is chosen bearing in mind that
the flow at this time is fully developed.

It is clear that both the polynomial degree k and the timestep size ∆t have a positive
effect on the calculation of the flow quantities. The influence of k can be also seen in
Figure 4.23 where the different evolutions of lift and drag coefficients versus time are
plotted for k = 1, 2, 3. The impact of ∆t on lift and drag is also clear in Figure 4.24.
Not only the values of the coefficients change, but also the frequency of the vortex
shedding, which is better approximated with a smaller timestep.
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k ndof ∆t(s) Cl,max Cd,max St ∆P (Pa)

1 17,459 0.01 0.9247 3.1925 0.2941 2.4782
2 24,971 0.01 0.9934 3.2350 0.2941 2.4871

3
32,483 0.02 0.9634 3.2230 0.2941 2.4688
32,483 0.01 0.9986 3.2245 0.3030 2.4796
32,483 0.005 1.0060 3.2250 0.2985 2.4821

6 55,019 0.01 1.0080 3.2260 0.3030 2.4820
lower bound [167] 0.9900 3.2200 0.2950 2.4600
upper bound [167] 1.0100 3.2400 0.3050 2.5000

Table 4.11: Two-dimensional transient laminar flow around circle: quantities of interest for various
degrees of approximation k, degrees of freedom and timestep size, employed time-marching scheme
is ESDIRK46, mesh consists of 2,435 triangular elements, Re = 100, τ̂ = 1, simulation is initiated
with initial condition being the first instant where Cl is maximum for t > 6 s.

(a) Lift coefficient (b) Drag coefficient

Figure 4.23: Two-dimensional transient laminar flow around circle: comparison of solution using
various degrees of approximation k = 1, 2, 3, employed time-marching scheme is BDF2, ∆t = 0.01 s,
mesh consists of 856 triangular elements, Re = 100 and τ̂ = 1.

4.5 Adaptive transient simulations

In this section adaptive techniques will be presented for transient flows. Two different
techniques will be discussed. The first one is related to the degree of approximation of
the elements and the second one to the timestep size.

Regarding the degree of approximation, so far in transient simulations a uniform
degree has been used throughout the whole mesh. Nevertheless, since time-dependent
phenomena occur, for instance the creation of vortices and their movement through the
domain, it is reasonable that higher accuracy is desired in the vicinity of these phenom-
ena in order to capture them precisely. In this regard, a high degree of approximation
on a global level might be redundant and only necessary in certain zones of the mesh.

Similarly, in transient simulations presented so far, the timestep size has been con-
stant. It is possible to change the size of the timestep during a transient simulation in
order to adjust to a certain level of temporal accuracy. This can be achieved by using
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(a) Lift coefficient (b) Drag coefficient

Figure 4.24: Two-dimensional transient laminar flow around circle: comparison of solution using
various timestep sizes ∆t, employed time-marching scheme is BDF2, mesh consists of 856 triangular
elements of k = 3, Re = 100 and τ̂ = 1.

appropriate error estimators that can estimate the level of temporal error. Afterwards,
the timestep size may be increased or decreased automatically so that the solution
meets the temporal accuracy requirements.

4.5.1 Degree adaptivity in transient simulations

Based on the degree adaptivity procedure described in Section 4.3 for steady incom-
pressible laminar flows, a similar procedure for transient flows can be constructed.
This procedure is described in Algorithm 3. Since it’s a transient simulation, the de-
gree distribution should be adapted with a certain frequency, for example every Nadapt

timesteps. The expected frequency of the transient phenomenon should be taken into
consideration when choosing the frequency in which p-adaptivity is done. For instance,
in the case of a wave, given its oscillating nature, the p-adaptivity should be performed
10 times or more per cycle. In this way, the movement of the wave can be captured
and the elements’ degree can be adapted accordingly.

In Figure 4.25 the estimated local error of the unsteady flow around a circle in 2D
at two instants is shown. These results are taken for a simulation with uniform degree
k = 2 throughout the whole mesh and a relatively coarse mesh of 856 triangles. The
estimator appears to be coherent with the movement of the vortices and the interaction
with the boundary layer.

Next, the simulation of the transient flow in which the degree of the elements is
adapted every Nadapt timesteps is presented. The mesh has 856 triangular elements,
which is a rather coarse mesh and is, in fact, chosen on purpose, so that the effectiveness
of p-adaptivity is demonstrated. Initially, the mesh has a uniform degree k = 2, ensur-
ing this way the correct approximation of the curved boundaries. For time marching the
third-order ESDIRK3/2 method is used, with a timestep size ∆t = 0.01 s. Given the
fact that the period of shedding is approximately T = 0.33 s and the chosen timestep
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Algorithm 3 Degree-adaptivity process for the transient incompressible Navier-Stokes
equations using the proposed HDG method
1: Load mesh
2: Read initial degree map ke
3: Read desired accuracy ε
4: Read curved elements
5: Read the frequency of degree adaptivity, in number of timesteps Nadapt

6: i = 1
7: while Final time is not reached do
8: Solve the problem and calculate L,u,p, ρ, û
9: if i == Nadapt then

10: Calculate the post-processed velocity field u?

11: Estimate the local error Ee using Equation (4.24)
12: Calculate the new degree map knewe using Equation (4.26)
13: if curved elements then
14: minimum degree in curved elements k = 2
15: end if
16: Build new mesh based on knewe

17: Project solution L,u,p, ρ, û on the new mesh
18: if max(Ee)� εŪ then
19: Repeat last timestep
20: end if
21: i = 1
22: else
23: i = i+ 1
24: end if
25: end while
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(a) Velocity magnitude in m/s, t = 6 s (b) Estimated spatial error in m/s, t = 6 s

(c) Velocity magnitude in m/s, t = 6.2 s (d) Estimated spatial error in m/s, t = 6.2 s

Figure 4.25: Two-dimensional transient laminar flow around circle: velocity magnitude and es-
timated local error at two instants when uniform degree k = 2 is used, employed time-marching
scheme is ESDIRK3/2, ∆t = 0.01 s, mesh consists of 856 triangular elements, Re = 100 and τ̂ = 1.

(a) Velocity magnitude, t = 3.5 s (b) Degree map, ε = 5 × 10−3, t = 3.5 s

(c) Velocity magnitude, t = 6.3 s (d) Degree map, ε = 5 × 10−4, t = 6.3 s

Figure 4.26: Adaptive-degree two-dimensional transient laminar flow around circle: velocity mag-
nitude and degree map for two levels of accuracy ε, employed time-marching scheme is ESDIRK3/2,
∆t = 0.01 s, mesh consists of 856 triangular elements, Re = 100 and τ̂ = 1.

size ∆t = 0.01 s, then if the the degree is adapted every Nadapt = 2 timesteps, this is
roughly equivalent to adapting the mesh 16 times per cycle.

Two values of desired accuracy are studied, namely ε = 5× 10−3 and ε = 5× 10−4.
In Figure 4.26 the degree maps that arise after using each value of accuracy for two
instants are shown. In both cases it is observed that the degree of the elements is
increased downstream of the circle and especially in the elements where the separation
of the flow takes place as well as the in boundary layer. Moreover, it is reasonable that
a stricter value of accuracy leads to higher element degrees.

The maximum lift coefficient, maxmimum drag coefficient and pressure drop when
lift is minimum are reported in Figure 4.27. The adaptive-degree results with the two
levels of accuracy and the uniform-degree results are compared with one another. The
superiority of the adapted meshes is clear, especially the adapted mesh of accuracy
ε = 5× 10−3 appears to capture the quantities of interest more accurately than the
uniform-degree meshes of the same number of degrees of freedom.
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(a) Lift coefficient (b) Drag coefficient

(c) Pressure drop

Figure 4.27: Adaptive-degree two-dimensional transient laminar flow around circle: calculation
of maximum lift, maximum drag and pressure drop when lift is minimum for adaptive-degree and
uniform-degree simulations, time-marching scheme is ESDIRK3/2, timestep size ∆t = 0.005 s,
Re = 100 and τ̂ = 1.

4.5.2 Timestep size control

While using single-step temporal schemes, a temporal error estimator can be obtained
in each time step through the following steps (a scalar variable y is considered for
simplicity):

1. advance from tn to tn+1 with timestep ∆t1 and compute the numerical approxi-
mation of y, ỹn+1

∆t1
;

2. repeat, using a smaller timestep, e.g. ∆t2 = ∆t1/2, and compute ỹn+1
∆t2

;

3. evaluate the difference between the two solutions
∣∣∣ỹn+1

∆t1
− ỹn+1

∆t2

∣∣∣;
4. calculate the optimal timestep size ∆t∗ that would satisfy the tolerance criterion;

5. if ∆t∗ < ∆t1, then repeat the timestep using ∆t∗.

Nevertheless, the aforementioned procedure increases dramatically the cost of single-
step schemes because whenever the timestep size is to be adapted, additional calcula-
tions have to be performed, therefore single-step schemes are inefficient for problems
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with adaptive timestep size. Furthermore, as far as the backward differentiation for-
mula of order two (BDF2) is concerned, it becomes complicated to use a non-constant
step size, since the solution of the two previous time levels is used.

The singly-diagonally implicit Runge-Kutta methods usually include an embedded
stage of lower (or sometimes higher) order, which can serve as an error estimator. The
singly-diagonally implicit Runge-Kutta methods with an explicit first stage (ESDIRK)
that were presented in Section 4.4.1 include an embedded stage that will be used for
this purpose. In order to explain the timestep adaptivity using a method of order k
with embedded stage of order k− 1, first, the local truncation error of a scalar variable
y is written:

yn+1 − ỹn+1
k = Ck ∆tk+1 +O(∆tk+2)

yn+1 − ỹn+1
k−1 = Ck−1 ∆tk +O(∆tk+1),

(4.49)

where ỹn+1
k is the solution obtained at the stage of kth-order and ỹn+1

k−1 at the stage
of (k−1)th-order, both at time n+1. Next, the first expression of the truncation error
is subtracted from the second and is divided by the computed solution ỹn+1

k , yielding
the normalized estimated local error:

Ey =
ỹn+1
k − ỹn+1

k−1

ỹn+1
k

≈ C ∆tk (4.50)

The optimal timestep size ∆t∗ is the one that, using the method of order k, produces
a local error equal to the prescribed normalized tolerance TOL

TOL ≈ Ck−1 ∆tk∗
ỹn+1
k

(4.51)

Combining Equations (4.50) and (4.51) it is possible to express the optimal timestep
size as

∆t∗ =


S∆t k

√∣∣∣TOLEy

∣∣∣, TOL ≥ Ey

S∆t k−1

√∣∣∣TOLEy

∣∣∣, TOL < Ey

(4.52)

where S, according to [178], is a parameter with a value lower than 1, usually
S = [0.90, 0.98]. In [179] more sophisticated timestep size controllers are used for
ESDIRK methods. The aforementioned procedure holds also for a vector variable,
the only difference being that in the local error estimator of Equation (4.50), both
nominator and denominator have to be expressed in a norm, usually the L2-norm
is preferred. Moreover, since in our study there are more than one variables, it is
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reasonable to evaluate the local error estimator for each variable and, afterwards, adapt
the timestep based on the largest error.

Following, the timestep adaptivity procedure will be applied to a transient flow
with analytical expression of the velocity and pressure field as well as the transient flow
around a circle.

Adaptive timestep size in transient analytical flow

Timestep control will be performed in the analytical flow whose velocity and pressure
fields are expressed in Equations (4.47) and (4.48). The simulation will be carried
out from t0 = 0 s until tend = 1.5 s with initial timestep ∆t = 0.2 s and using the
ESDIRK3/2 method. In each timestep, the temporal error is estimated based on the
solution at n + 1 and the solution of the embedded stage. Next, if this error is larger
than the prescribed tolerance, the timestep is adapted according to Equation (4.52)
and the timestep is repeated. It has to be highlighted that the computational mesh
should be fine, both in mesh size and degree, minimizing in this way the spatial error.
In this study, the mesh is uniform and consists of fourth-order quadrilaterals with size
h = 1/16.

The estimator appears to predict sufficiently the L2-norm of the temporal error,
as seen in Figure 4.28 for velocity, pressure and mixed variable. Even though, the
error is overestimated, the actual error manages to stay below the specified normalized
tolerance. It can be also observed that for this simulation the pressure and the mixed
variable show the largest errors and the timestep size is adapted based on the error
levels of these variables. In Figure 4.28 (d) the evolution of ∆t is plotted, where it
can be seen that the initial ∆t = 0.2 was too large and after 2 iterations it was finally
reduced to approximately ∆t = 0.12. Later, it is increases gradually and in the last
timestep it is decreased once again.

Adaptive timestep size in transient flow around circle

The transient flow around a circle with Reynolds number Re = 100 will be studied using
an adaptive timestep. The same case was previously presented in Section 4.4.2, but
with a fixed timestep size. In order to minimize the error due to spatial discretization,
a relatively fine mesh with 2,345 second-order triangular elements is employed. At this
point, the ESDIRK3/2 method, thanks to its embedded stage, will be used for the
estimation of the temporal error and the adaptation of the timestep size during the
simulation. Three different value of tolerance TOL will be considered and the effect on
the resulting timestep evolution as well as lift will be studied.

The different levels of tolerance yield a different evolution of timestep size, especially
when a loose tolerance, such as 5× 10−2, is used. In this case, according to Figure 4.29,
∆t is so large that the shedding phenomenon cannot be captured. This is no longer
the case when a stricter tolerance is used, for example 5× 10−3 or 5× 10−4. In both
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(a) u (b) p

(c) L (d) timestep size evolution

Figure 4.28: Transient analytical flow: estimated and exact temporal error for transient analytical
flow, desired normalized tolerance TOL = 5E − 2, time-marching scheme is ESDIRK3/2, initial
time t0 = 0 and final time tend = 1.5, fourth-order quadrilateral mesh is used, ν = 0.33 and
τ̂ = 0.5.

cases, the timestep size initially increases until the shedding starts, then decreases and
eventually converges around 0.015 s for tolerance 5× 10−3 and 0.006 s for tolerance
5× 10−4. Last, the shedding pattern and lift are captured correctly. Recall that the
overkilled Strouhal number was 0.3030, which leads to a period T ≈ 0.33 s, while the
overkilled maximum lift was 1.008.

4.6 Conclusion

In this chapter a hybridizable discontinuous Galerkin method using the Voigt notation
for the Cauchy formulation of the steady and transient incompressible Navier-Stokes
is presented. The symmetry of the stress tensors is strongly enforced and the point-
wise conservation of angular momentum is satisfied. The tractions that have physical
meaning are imposed directly on Neumann boundaries.

Initially, steady-state flows were studied. The optimal convergence properties of the
HDG were demonstrated through numerical tests. In particular, the convergence order
k+ 1 of all primal and mixed variables as well as the order k+ 2 of the post-processed
variable was shown. The proposed HDG method was found to accurately estimate
flow quantities, such as drag and lift caused by the two-dimensional flow around a
circle. Moreover, the method performed well in a realistic case of a microvalve with
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(a) ∆t, TOL = 5 × 10−2 (b) Cl, TOL = 5 × 10−2

(c) ∆t, TOL = 5 × 10−3 (d) Cl, TOL = 5 × 10−3

(e) ∆t, TOL = 5 × 10−4 (f) Cl, TOL = 5 × 10−4

Figure 4.29: Adaptive-timestep two-dimensional transient laminar flow around circle: lift coeffi-
cient and timestep size evolution for different tolerance levels, time-marching scheme is ESDIRK3/2,
second-order triangular mesh with 2,345 elements is used, Re = 100 and τ̂ = 0.5.

a more complex geometry and for Reynolds number in the steady and incompressible
flow limits. The superconvergent property of the proposed method gives the ability
to construct spatial estimators and perform degree-adaptivity locally. Degree-adapted
meshes were shown to perform better than uniform-degree meshes, in terms of spatial
error versus degrees of freedom.

Transient flows were studied by adding high-order time-marching schemes to HDG.
High-order temporal schemes are necessary if the high-order spatial accuracy offered
by HDG is to be preserved. Several transient flows were studied, through which a
comparison between the various temporal schemes was made and their suitability for
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a high-order spatial method, such as HDG, was demonstrated. Furthermore, the pos-
sibility of adaptive simulations was explored. On one hand, meshes whose degree may
be adapted locally in the course of the transient flow were shown to accurately ap-
proximate important flow features, such as boundary layers and vortices. On the other
hand, certain time integration methods give the possibility to construct temporal error
estimators and, consequently, enable the timestep size control, which takes place dur-
ing the simulation. Tests showed the ability of the method to adapt to the transient
phenomena.
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Chapter 5

Preconditioning for incompressible
flows using the HDG method 1

An integral part of every simulation is the solution of a linear system that arises from
the discretization of PDEs. The various numerical methods differ in the way this system
is formed and the final structure of the left and right-hand side matrices. Nevertheless,
the solution of a system is a common step among all solvers. When small problems
of some thousands degrees of freedom (DOF) are studied, given today’s computational
resources, the solution of the final system can be usually done using direct solvers.
Such solvers might be based on the LU decomposition, QR factorization and Cholesky
factorization. Some examples of well-known direct solvers include the MUltifrontal
Massively Parallel sparse direct Solver (MUMPS) [180, 181], the PARDISO package
[182] and UMFPACK package [183].

In practical settings, a common obstacle to overcome is the size of the linear system.
This becomes more pronounced in three-dimensional simulations, as the number of
DOF increases dramatically with the number of elements. Direct solvers require large
amounts of memory and, on top of that, the required memory scales poorly with DOFs,
especially in three dimensions. Under these circumstances, it is almost impossible
to proceed to the solution of the linear system using a direct solver and, therefore,
iterative solvers need to be employed. Iterative solvers use an initial guess and, making
approximations based on previous iterations, they gradually converge to the solution.
The initial guess and the desired accuracy of the solution, in the form of stopping
criterion of the iterative solver, affect the number of iterations in which the solver
convergences.

In spite of that, what largely affects the number of iterations and speed of iterative
solvers is the distribution of eigenvalues of the final linear system. In particular, systems
that have their eigenvalues clustered near 0 converge more slowly. It is very common
to transform the linear system that is to be solved with the aim of solving a system
with a better distributed eigenvalues. This process is called preconditioning and the

1This chapter is a modified version of the in-preparation article: A. Karkoulias, A. Viguerie, F.
Auricchio, M. Giacomini, A. Huerta, Effective preconditioning for the solution of incompressible flows
using the HDG method
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preconditioned system is more suitable than the original system, when iterative solvers
are employed.

This chapter focuses on the preconditioning of the final system of equations that
arises from the HDG method. In Section 5.1, the preconditioned strategy for incom-
pressible flows using HDG is presented. The proposed preconditioning technique used
with an iterative solver is compared with the direct solver for the solution of Stokes
flow and Navier-Stokes equations in Section 5.2. In Section 5.3, the performance of
the preconditioner over a range of Reynolds numbers is studied. In Section 5.4, three-
dimensional cases that can be solved thanks to the preconditioned system and the use
of iterative solvers are presented. A comparison of the iterative HDG solver with a
velocity-pressure formulation of the Navier-Stokes employed in an open-source solver
using the same iterative solver and preconditioner is performed in Section 5.5. Finally,
Section 5.6 summarises the main points of this chapter.

5.1 Preconditioning strategy

5.1.1 General considerations

The discretization of the weak form of the incompressible Navier-Stokes equations using
the HDG method gives the following saddle point problem

[
K̂ûû K̂ûρ

K̂T
ûρ 0

]{
û

ρ

}
=

{
f û

fρ

}
. (5.1)

Performing left preconditioning, we introduce the matrix P and solve the following
system

P−1

[
K̂ûû K̂ûρ

K̂T
ûρ 0

]{
û

ρ

}
= P−1

{
f û

fρ

}
. (5.2)

We desire P−1 to be an approximation of

[
K̂ûû K̂ûρ

K̂T
ûρ 0

]−1

. A common class of

preconditioners for the solution of the saddle-point problem given by the incompressible
Navier–Stokes equations has been previously presented in [184, 185, 186] and has the
form

P−1 =

[
K̂ûû K̂ûρ

0 −
∼
S

]−1

=

K̂−1
ûû K̂−1

ûû K̂ûρ

∼
S
−1

0 −
∼
S
−1

 , (5.3)

where
∼
S is the approximation of the Schur complement S = K̂T

ûρ K̂
−1
ûû K̂ûρ. The inverse

matrix of K̂ûû makes the computation of the Schur complement difficult and costly.
Therefore, an approximation of the Schur complement is commonly used.
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Within the finite element framework, a good approximation of the Schur comple-
ment for the Stokes problem is a mass matrix on the pressure space, as already proposed
in [187, 185]. In HDG a suitable mass matrix in the pressure space of the global prob-
lem has to be found. We recall that the pressure variable of the final system in HDG is
ρ, which is defined element-wise, while the corresponding pressure space is Rnel , so the
approximation of the Schur complement has to be a square matrix of dimension nel.

A diagonal matrix may be chosen as the approximation of the Schur complement,
based on the fact that the pressure variable ρ of the global problem has one single
value for each element. Moreover, the elements’ characteristic length may appear in
the diagonal of the matrix, offering, in this way, a scaling to the mass matrix in the
pressure space. So far, the proposed Schur complement approximation for the Navier–
Stokes problem has the following form

∼
S = C diag(he), (5.4)

where he denotes the local element size and C is a scaling constant. This constant has
to be selected in such a way that it approximates the scaling of the Schur complement.
In various studies [187, 188] it was shown that the Schur complement approximation
could be scaled with the viscosity ν. In HDG the parameter τ plays an important
role in the stabilization of the method while it multiplies many terms in the weak
form of the equations, thus it may be also included in the scaling factor of the Schur
complement. The following scaling factor is proposed, where the viscosity ν is divided
by the reference length L̄ of the problem in order to match the units of τ . Recall that
τ has a part due to viscosity and other due to velocity, as shown in Equation (4.9). In
this sense, a change in Reynolds number will also cause a change in the scaling factor.

∼
S = L̄

( ν
L̄

+ τ
)−1

diag(he). (5.5)

The inverse and the multiplication by the characteristic length L̄ is used so that the
scaling factor is consistent with the approximation of the Schur complement agrees in
units with the definition of Schur complement, refer also to Appendix A.3.3. The ν
term is divided by the problem’s characteristic length in order to be consistent in units
with τ . It is important to underline that the aforementioned approximation of the
Schur complement is only a suggestion and that countless approximations might arise
likewise. Nonetheless, this approximation was found to give satisfying results, some of
which are reported in the following sections of this chapter.

5.1.2 Implementation details

In order for the solver to be effective, the preconditioner must be implemented effi-
ciently. At each GMRES iteration the following preconditioned system is solved:
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Px = r ⇔

[
K̂ûû K̂ûρ

0 −
∼
S

]{
x̃

ỹ

}
=

{
r1

r2

}
, (5.6)

where x is the vector that contains the two variables and r is the right-hand side
vector. Initially, at the first GMRES iteration, the vector r is equal to r = f −
Kx0, where f and K are the right-hand side vector and left-hand side matrix of
Equation (5.1), whereas x0 is the initial guess provided to the GMRES method. The
solution from the previous nonlinear iteration is taken as x0, hence speeding up the
convergence of GMRES. Afterwards, the right-hand side vector r is updated inside
GMRES. The advantage of a block-triangular preconditioner is that the above system
can be solved fast in the following way

ỹ = −
∼
S
−1

r2,

x̃ = K̂−1
ûû

(
r1 − K̂ûρỹ

)
,

(5.7)

without forming matrix P explicitly. Recall that the approximation of the Schur
complement, as calculated in Equation (5.5), is a diagonal matrix, hence solution of the
first subequation of (5.7) is straightforward. In the second subequation, it is impractical
to calculate the matrix K̂−1

ûû , especially for large problems. In such instances, it may be
convenient to use an approximation of K̂ûû, such as an incomplete LU decomposition.
Moreover, we observe that this matrix does not change during the iterative solver,
hence the decomposed parts remain constant till the iterative solver converges.

Using the UMFPACK package [189], the matrix K̂ûû can be decompossed into
parts, namely L,U,Q1,Q2,R which correspond to lower triangular, upper triangular,
two permutation matrices and a diagonal matrix of row scaling factors, such that
Q1 ∗ (R−1K̂ûû) ∗ Q2 = L ∗ U. This package is optimised for the decomposition of
unsymmetric sparse matrices, such the ones that arise from the discretisation of the
HDG method. Then, the above system is solved according to the following steps, see
also [183].

ỹ = −
∼
S
−1

r2,

b =
(
r1 − K̂ûρỹ

)
,

c = Q1 ∗ (R−1b),

x̃ = Q2 ∗
(
U−1(L−1c)

)
.

(5.8)

The iterative solver that is employed in the following experiments is the GMRES
method [190]. We continue the iterations until the relative residual is less than 1× 10−8.
The computational grids are generated with GiD software [191], unless otherwise spec-
ified. The HDG solver is developed with MATLAB software [192]. All the experiments
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are performed on a Dell PowerEdge R630 Octa-Core Xeon E5-2667 v4 @ 3.2 GHz.

5.2 Comparison between direct solver and iterative solver
with preconditioning

In this subsection, two tests are performed; a three-dimensional steady flow around a
sphere in the Stokes limit and a two-dimensional steady flow around a circle. Both flows
are solved with a direct solver and a preconditioned iterative solver, using the HDG
method described in Chapter 3 and 4 respectively. The direct solver solves the system
in (4.16) by performing a LU decomposition of the matrix in the left-hand side. On the
other hand, the GMRES iterative solver is implemented as suggested in Section 5.1.

5.2.1 Three-dimensional flow around a sphere in the Stokes limit

The three-dimensional flow around a sphere in the Stokes limit is a common benchmark
problem for the Stokes flow. Due to the high number of degrees of freedom, such com-
putations are usually memory-demanding for a direct solver. This flow was previously
studied in Section 3.3.3, where the drag on the surface of the sphere was calculated
numerically and was compared to the exact value.

First and second-order isoparametric curved meshes and their respective polynomial
orders of approximation are considered. Moreover, three levels of h–refinement are used,
namely 3,107, 10,680 and 43,682 tetrahedral elements. The corresponding number of
degrees of freedom (DOFs) can be seen in Table 5.1 for degrees k = 1 and k = 2 and
all three levels of refinement.

No-slip boundary condition is set on the surface of the sphere, homogeneous Neu-
mann boundary on the outlet and on the rest of the domain walls the following Dirichlet
boundary condition, which describes the analytical flow around a sphere, is prescribed:

u(x) =


U∞

(
1− 3R3x2

1
2r5 + R3

2r3

)
−U∞ 3R3x1x2

2r5

−U∞ 3R3x1x3
2r5

 (5.9)

where R is the sphere radius, r the distance from the center of the sphere, U∞ the
uniform velocity. In this problem, R = 1 m, U∞ = 1 m/s, the dynamic viscosity
µ = 1 kg/m− s, density ρ̄ = 1 kg/m3 and the dimensionless parameter τ̂ is set to 2.

The simulation is run twice for every mesh, the first time using a direct solver during
the solution of the final system and the second time using a preconditioned iterative
GMRES method with the proposed precondition method and stopping criterion of
relative residual 1× 10−8. In Table 5.1, the timings for the direct and the iterative
solver are reported, as well as the reduction percentage of the iterative compared to
the direct solver and, finally, the drag error.
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k DOFs Direct solver (s)

Iterative solver
with

preconditioning
(s)

Time reduction %
Relative drag

error with direct
solver

Relative drag
error with

iterative solver

1 58,925 80.6 19.0 76.4 % 1.95 · 10−1 1.95 · 10−1

1 202,083 1,160 71.6 93.8 % 1.03 · 10−1 1.03 · 10−1

1 828,158 — 669 — — 4.32 · 10−2

2 114,743 495 37.6 92 % 6.52 · 10−3 6.52 · 10−3

2 393,486 12,872 192 98.5 % 5.18 · 10−3 5.18 · 10−3

2 1,612,634 — 3,616 — — 1.96 · 10−3

Table 5.1: Three-dimensional steady potential flow around a sphere: wall–clock times of the direct
and iterative solver, percentage of time decrease for the iterative solver and relative drag error, the
dash indicates that the simulation failed to finish due to insufficient memory.

Figure 5.1: Three-dimensional steady potential flow around a sphere: convergence history of the
GMRES iterative solver with and without the use of preconditioner, degree k = 1, DOF = 202, 083.

The first and most important observation is that the direct solver fails to solve
the final system when the finest of the grids are employed due to insufficient memory
(the limit is set to 200 GB). However, this does not occur when the preconditioned
iterative solver is used. The second observation has to do with the timing, where the
preconditioned GMRES solver reduces the required time to by up to 93.8% for the
first-order approximation and up to 98.5% for the second-order one.

The relative drag error for both direct and iterative calculations is computed by
comparing the computed drag on the surface of the sphere with the analytical value
FD = 6πµU∞R. It is worth noting that no difference is observed between the error in
the drag computed using the direct and the iterative solver. This is due to the fact
that the solution of the iterative solver matches the one provided by the direct solver
in its first seven digits.

Next, it should be noted that second-order approximations perform better in terms
of error versus time. A second-order approximation on a coarse grid outperforms a first-
order approximation on a fine grid. The second-order curvilinear elements approximate
the surface of the sphere more accurately than the linear first-order elements, therefore
they lead to a reduction of the geometric error and improve the overall accuracy of the
calculation of the drag.

While memory limitations can be overcome by solving the system with an iterative
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(a) k = 1, 2 (b) k = 3, 4

Figure 5.2: Two-dimensional steady laminar flow around circle: wall-clock times versus degrees of
freedom, Re=20.

solver, the speed in which this solver converges is crucial. For this reason, the con-
vergence history of the iterative solver with and without the use of the precoditioner
expressed in terms of iterative solver’s residual norm versus number of GMRES itera-
tions is studied. Both residual histories can be seen in Figure 5.1 and the effectiveness
of the preconditioner is apparent. While the iterative solver without any precoditioner
would require around 2,500 iterations to converge, the preconditioning speeds up the
convergence so that the solver converges in this case in less than 20 iterations.

5.2.2 Two-dimensional steady flow around a circle

Next, the low-Reynolds, steady flow around a circle in 2D is studied. This flow was pre-
viously presented in detail in Section 4.2.2. In the current study, the scaling behaviour
of the wall–clock time for the direct solver and the GMRES iterative solver using the
proposed preconditioner is investigated. The comparison is performed for various levels
of mesh and degree refinement. The domain, boundary conditions and flow properties
are the ones mentioned in Section 4.2.2, giving a Reynolds number Re = 20. The
stabilization parameter is set τ̂ = 2.

It is shown in Figure 5.2 that the observed scaling behaviour is different depending
on the approximation degree. For instance, for relatively low orders, k = 1, 2, the direct
solver appears to be faster than the iterative one, even for a bigger problem size. When
linear polynomials are employed the direct solver can be up to 48% faster than the
iterative one. This decreases to 27% for the quadratic approximation. However, the
iterative solver has a clear advantage in higher orders. The iterative method can save
up to 82% wall-clock time with respect to the direct method for a degree order equal
to three and 85% if we choose fourth order.

It is also of great interest to observe the accuracy of the solution using low and high-
order approximations and the timings of the direct and the iterative solver. The wall-
clock time (in seconds) that is required in order to achieve a desired accuracy (relative
error) in the quantities of interest for the different degrees is reported in Table 5.2.
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k=1 k=2 k=3 k=4 Desired accuracyDir. It. Dir. It. Dir. It. Dir. It.
Cd 20.6 34.6 8.9 11.8 16.5 14.8 9.4 9.0 1× 10−3

Cl — — 1213 1853 84.4 46.2 24.7 18.4 1× 10−2

∆p 795 1671 1213 1853 16.5 14.8 24.7 18.4 1× 10−3

Table 5.2: Two-dimensional steady laminar flow around circle: required wall-clock time (s) to
achieve a desired accuracy in the different quantities of interest, both direct (Dir.) and iterative
(It.) solvers considered, degree varying from k = 1 to k = 4, Re = 20, dash indicates that the
accuracy could not be attained with the available meshes.

The quantities of interest are the drag coefficient Cd, lift coefficient Cl and the pressure
difference between the leading and trailing point of the circle ∆p. As a reference
solution, an overkilled solution with degree k = 5 and 1,625,480 degrees of freedom is
used. The different timings arise from the fact that each degree of approximation k

requires a different level of mesh refinement in order to achieve the desired accuracy,
thereby leading to different wall-clock times.

The superiority of the high degrees (k = 3, 4) of approximation is demonstrated. As
in the previous simulation, the error introduced by the approximation of the geometry
plays an important role in the correct calculation of the quantities of interest. High
degrees of approximation lead to more precise results, which are also obtained faster,
than low degrees.

5.3 Scaling with Reynolds number

In this subsection the behaviour of the preconditioner for different values of Reynolds
numbers is studied. A common drawback of some preconditioners is that they start
behaving poorly as the Reynolds number increases. The required number of GMRES
iterations to reach convergence increases dramatically, leading to an increase in compu-
tational time. An effecient preconditioner should ensure its performance over a range
of Reynolds numbers.

For this purpose, the flow inside a microvalve will be studied for different Reynolds
numbers. This incompressible flow was presented thoroughly in Section 4.2.3 and it is
known that for Reynolds number up to 300 the flow inside the valve remains steady
and laminar. The geometry, boundary conditions and flow properties are the same as
the ones presented in Section 4.2.3. The Reynolds number lies in the interval [50,300]
and is controlled through the velocity at inlet. It is reminded that a parabolic velocity
field is specified at inlet and that the mean velocity is used for the calculation of
the Reynolds number of the flow. The quantity of interest of this simulation is the
diodicity, which measures the effectiveness of this type of valve, refer to Equation (4.23)
for its definition. The numerical meshes that are used for this study consist of 5,141
triangular elements of degree two and the polynomial approximation is also of second
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(a) Error (b) Time

Figure 5.3: Flow inside a Tesla valve T45-R: error and wall-clock time for the calculation of
diodicity using the GMRES solver with the proposed precoditioning and for various values of the
stabilization parameter τ̂ , Re ranges from 50 to 300.

order and the reference value was taken from an overkilled solution on a mesh with
37,865 isoparametric second-order triangular elements.

Among the objectives of this simulation is to examine how the preconditioner per-
forms as the Reynolds number increases, namely it can vary from 50 to 300. In Fig-
ure 5.3, the percentage error of the diodicity and the measured wall–clock time with
respect to Re and for various values of the HDG stabilization parameter τ̂ are reported.
The influence of τ̂ on the required average time per non-linear iteration is clear. A small
τ̂ appears to scale badly with Reynolds number, while a bigger τ̂ scales significantly
better. Observing the percent error on the left part of the same figure, it is evident
that a small τ̂ leads to smaller numerical error. Comparing the two plots, the reader
can understand that there is a trade-off between accuracy and speed of the iterative
solver. Nonetheless, an intermediate value can show an acceptable behaviour in terms
of accuracy and speed.

The required iterations for the convergence of the GMRES method in every non-
linear iteration depend on the Reynolds number and the parameter τ̂ , as shown in
Figure 5.4. The initial guess is zero field for velocity and pressure, hence the first
non-linear iteration is essentially a Stokes problem, and the iterative solver converges
in a small number of iterations. In the remaining non-linear iterations, the number of
GMRES iterations generally increases as Reynolds number rises, while the value of τ̂
does play an important role in the overall convergence behaviour. For instance, a value
of τ̂ = 1 leads to a relatively slow convergence, which is also deteriorated as we move
to higher Reynolds, while a value of τ̂ = 5 appears to be more robust.

The effect of the scaling term of the Schur complement approximation is also stud-
ied for this case. In Table 5.3 the average number of GMRES iterations of all non-linear
iterations is reported, along with the required wall–clock time and the error, for var-
ious Reynolds numbers and values of the scaling term. Three different scaling terms
are used; first, an identity matrix, second a diagonal matrix whose elements are the
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Figure 5.4: Flow inside a Tesla valve T45-R in forward direction: evolution of number of GMRES
iteration for each non-linear Newton–Raphson iteration for various values of Reynolds number and
stabilization parameter τ̂ .

Re=50 Re=150 Re=250

Preconditioner scaling
Avg

GMRES
iters

Solve time
/ non-linear
iters (s)

Avg
GMRES
iters

Solve time
/ non-linear
iters (s)

Avg
GMRES
iters

Solve time
/ non-linear
iters (s)

∼
S = Inel 146 15.8 195 17.2 222 18.4

∼
S = diag(he) 108 13.2 145 14.5 166 15.2

∼
S = L̄

(
ν
L̄

+ τ
)−1

diag(he) 102 12.9 128 12.8 140 13.0

Table 5.3: Flow inside a Tesla valve T45-R in forward direction: effect of preconditioner scaling
on the number of GMRES iterations for various values of Reynolds number, τ̂ = 5.

elements’ size and third a diagonal matrix that is used so far and that is presented
in Section 5.1. In general, an increase of the GMRES iterations count and the solver
time is observed as the Reynolds number increases. However, according to the table,
this increase is bigger when the identity matrix is chosen as the scaling of the Schur
complement approximation. As for the average solve time per non-linear iteration, the
third scaling exhibits robustness as the Reynolds number varies, whereas the other two
options see their corresponding solve time increasing.

5.4 Three-dimensional Navier-Stokes simulations

In this subsection, the steady laminar incompressible Navier-Stokes equations in three
dimensions using the HDG method will be solved. Solving three-dimensional flows
has been so far non-feasible due to the memory requirements, which the solution of the
system with a direct solver implies. Therefore, at this point the GMRES iterative solver
with the proposed preconditioning of the linear system will be employed. Two cases are
studied: the steady laminar flow around a cylinder in three-dimensions, which is a well-
known benchmark problem for incompressible Navier-Stokes, as well as the flow inside
a brain vessel of a patient with aneurysm, which is a practical case of hemodynamics
interest.
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Figure 5.5: Three-dimensional flow around cylinder: computational domain, dimensions in m.

5.4.1 Three-dimensional steady laminar flow around cylinder

The steady incompressible flow around a cylinder in three dimensions is a well-known
benchmark problem for Navier-Stokes equations. The use of an iterative solver for
the solution of the final linear system enables the simulation of the three-dimensional
problem, which would be impossible with a direct solver. In this thesis, the case "3D-
1Z" presented in [167] will be studied. The computational domain consists of a square
duct of Ω = ([0, L]×[0, H]×[0, H]) in m, where L andH are respectively the duct length
L = 2.5 m and the duct size H = 0.41 m. A cylinder of diameter D = 0.1 m, whose
axis is located at (0.5, 0.2) and is parallel to the z-axis, removed, refer to Figure 5.5.

The boundary conditions are chosen in the following way; on the cylinder surface
and on the lateral planes (x2 = 0, x2 = H, x3 = 0, x3 = H) zero velocity is set, on the
outlet plane (x1 = L) a homogeneous Neumann boundary condition is selected and on
the inlet plane (x1 = 0) the following parabolic velocity field is prescribed:

u(x) =


16Um

x2x3(H−x2)(H−x3)
H4

0

0

 . (5.10)

For the characteristic velocity the value Ū = 0.2 m/s is chosen, which is related to the
maximum velocity at the center of the inlet plane (0, H/2, H/2) as Um = 9Ū/4. The
kinematic viscosity is ν = 1× 10−3 m2/s, the density ρ̄ = 1.0 kg/m3, thus the Reynolds
number is Re = 20, while the dimensionless stabilization parameter is chosen τ̂ = 2.
The computed velocity magnitude and the pressure field are shown in Figure 5.6. A
horizontal slice at the center of the duct cuts the domain except for the cylinder, hence
the flow inside the duct is visible.

The calculated quantities of this flow are the lift coefficient in the y-axis, drag
coefficient and the pressure drop between the leading edge and the trailing edge of
the cylinder. These have a similar definition as in the two-dimensional case, refer to
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(a) Velocity magnitude contour (b) Pressure contour

Figure 5.6: Three-dimensional steady laminar flow around cylinder: velocity magnitude and pres-
sure contours using the third refinement level and second order of approximation, Re = 20, τ̂ = 2,
velocity is expressed in m/s and pressure in Pa.

Section 4.2.2, but adapted to the geometry of the three-dimensional cylinder. The lift
and drag coefficients are then

CL =
2FA

ρ̄Ū2DH
, CD =

2FW
ρ̄Ū2DH

, (5.11)

where the lift force in y-axis FA and drag force FW on the cylinder surface S are

FA = −
∫
S
ρ̄NTσV · [0, 1, 0]T dS, FW = −

∫
S
ρ̄NTσV · [1, 0, 0]T dS. (5.12)

It should be reminded that thanks to the symmetric stress tensor σV , the calculation
of the forces on the cylinder is straightforward. Next, the pressure drop is measured
between two points

∆P = ρ̄
(
p(x1,a, x2,a, x3,a)− p(x1,e, x2,e, x3,e)

)
, (5.13)

where (x1,a, x2,a, x3,a) = (0.15, 0.2, 0.205) and (x1,e, x2,e, x3,e) = (0.25, 0.2, 0.205) are
points on the leading edge and the trailing edge, respectively.

For the solution of the flow with approximation degree k = 1, meshes with 9,264,
16,146, 32,184, 51,492 and 98,496 elements and a maximum number of 1,834,596 degrees
of freedom are considered. For degree k = 2 meshes with 9,264, 16,146 and 32,184
isoparametric curved elements and a maximum number of 1,156,140 degrees of freedom
are studied. The computational grids, both of first and second order, are generated with
the Gmsh software [193]. Table 5.4 summarizes the flow quantities for different levels
of mesh refinement and degrees of approximation. There are no exact, analytical values
and consequently the results of this study are compared with the bounds reported in
[167], which in turn are based on the results of the research groups that participated in
this experiment. Out of all measured quantities, lift coefficient takes more degrees of
freedom to converge to the interval defined by the benchmark solutions. The superiority
of the second-order curvilinear mesh and degree of approximation is clear.
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k nel ndof CL CD ∆P (Pa)
Wall-clock
time (s)

Avg
GMRES
iters

1

9,264 169,086 0.00094 6.2120 0.1635 660 184
16,146 295,884 0.03311 6.2102 0.1681 1,647 249
32,184 594,162 0.00617 6.2280 0.1718 5,792 285
51,492 954,210 0.00584 6.2072 0.1713 15,906 353
98,496 1,834,596 0.01030 6.1972 0.1709 52,155 450

2
9,264 328,908 -0.00017 6.1842 0.1712 2,130 160
16,146 576,622 0.00896 6.1936 0.1709 5,493 195
32,184 1,156,140 0.00918 6.1939 0.1709 20,810 245
lower bound [167] 0.0080 6.0500 0.1650
upper bound [167] 0.0100 6.2500 0.1750

Table 5.4: Three-dimensional steady laminar flow around cylinder: quantities of interest and
timings for first and second order of approximation as well as different refinement levels, Re = 20
and τ̂ = 2.

5.4.2 Three-dimensional brain aneurysm

At this point, the blood flow inside a brain vessel with aneurysm will be simulated.
The data are obtained from the open database ANEURISK [194] and correspond to
case 32. In this experiment the computed wall shear stress (WSS) is compared to the
time-averaged benchmark wall shear stress. The scope is to assess the effectiveness
of the preconditioner and the HDG method when applied to a real case of medical
interest.

A parabolic Poiseuille velocity profile is prescribed at inflow with a flow rate of
Q = 0.4005 ml/s. No-slip boundary conditions are prescribed on the vessel walls and
homogeneous Neumann boundary conditions at the four outflows. The dynamic vis-
cosity is set to µ = 0.04 g/cm− s, yielding a Reynolds number Re ≈ 40. For the
imposition of the inlet boundary condition we rely on [195]. As for the numerical pa-
rameter τ , it is chosen τ̂ = 3. Various refinement levels are considered. The finest
computational mesh consists of 175,652 first-order tetrahedral elements and 3,197,618
total degrees of freedom. The input geometry, being of STL file format, consists only
of straight faces, hence, only first-order meshes are considered for this study.

In this problem, what is of interest is the WSS on the wall of the blood vessel.
WSS is one of the factors for the development of cerebral aneurysms, especially in the
aneurysm region where it is significantly lower [196]. Using the proposed formulation of
the HDG method, the calculation of WSS is facilitated by the fact that the symmetric
stress tensor L is one of the variables. Its evaluation is performed following a quite
straightforward procedure. First, the traction on the wall nodes i is obtained

ti = NTσiV. (5.14)
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Figure 5.7: Flow inside a brain vessel with aneurysm: computed wall shear stress versus benchmark
values using the highest level of refinement, units in dyn/cm2

This vector has a normal and a tangent component to the wall, therefore, the next step
is to identify the normal component by calculating the following

tni = tini, (5.15)

where ni is the normal vector to the wall at node i. Last, the WSS is obtained

T S,i = ρ̄
√

(ti)2 − (tni )2, (5.16)

subtracting the contribution of the normal component guarantees that T S,i accounts
only for the tangent part of the wall stress. It is reminded the stress tensor σV was
initially divided by the constant density ρ̄. As a result and in order to obtain the
correct units for WSS, density ρ̄ has to multiply the above product.

The computed wall shear stress is compared to the benchmark results [194]. It is
important to mention that the benchmark results are time-averaged and, due to the
low Reynolds number, the flow is considered to be steady and therefore a steady-state
computation is performed. In Figure 5.7 it is observed that the computed wall shear
stress contour is in good agreement with the time-averaged benchmark shear stress
contour. The wall shear stress can be approximated accurately in the main vessel, in
the area of the aneurysm as well as in the outflow branches, especially in the narrow
part in the upper right branch.

The wall shear stress in the center of the blood vessel along the curve shown in
Figure 5.8 of the current computation is compared with the benchmark computation.
This curve is formed by the intersection of the vessel wall with the a plane originating
from point (3.74, 3.29, 1.39) and being normal to yz plane. Meanwhile, the starting
and ending points of the curve are (3.74, 3.29, 1.30) and (3.74, 3.29, 1.04) respectively.
The resulting wall shear stress curves are reported in Figure 5.9 for the current solution
and the benchmark solution. An agreement between the two solutions is seen, as the
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Figure 5.8: Flow inside a brain vessel with aneurysm: curve upon which the computed shear stress
is compared to the benchmark solution

Figure 5.9: Flow inside a brain vessel with aneurysm: comparison of the computed wall shear
stress with the benchmark values along a prescribed curve using the highest level of refinement

HDG method is able to properly capture the peaks, the troughs of the wall-shear stress
and, finally, the aneurysm zone.

Conclusions about the performance of the preconditioner can be deducted by look-
ing in Table 5.5. The finest mesh has 48.4 times more degrees of freedom than the
coarsest mesh, while the average number of GMRES iterations increases only by 25%.
This suggests that the preconditioner exhibits robust performance as the size of the
problem increases.

5.5 Comparison with Finite Element solver

In this subsection we compare our preconditioned iterative HDGmethod with a classical
velocity-pressure formulation (two-variable formulation) of the Navier-Stokes equations.
In the latter formulation, the same GMRES iterative method with the preconditioner
found in [187], which is structurally similar to the one used so far for the HDG solver,
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nel ndof
Wall-clock
time (s)

Avg
GMRES
iters

4,034 66,071 195 202
16,901 290,240 823 208
50,036 883,571 5,870 215
72,804 1,296,705 8,724 224
175,652 3,197,618 36,975 253

Table 5.5: Flow inside a brain vessel with aneurysm: degrees of freedom and timings for the
different refinement levels that are studied, τ̂ = 3.

is used. For the implementation of the two-variable formulation, the open-source solver
FreeFem++ is used [197]. The purpose of this experiment is to compare the first-order
HDG Stress-Velocity-Pressure formulation with the classical Velocity-Pressure formu-
lation of the incompressible Navier-Stokes. It is unquestionable that the solvers cannot
be compared against one another, since they are developed in different programming
languages, not both are parallelized or support the same order, especially high order,
approximations. Nonetheless, the formulations can still be compared and in addition,
their scaling (Time vs Dofs) can be studied. Two steady incompressible flows are
considered: the two-dimensional flow around a circle and the three-dimensional flow
around a cylinder.

5.5.1 Two-dimensional steady flow around a circle

The steady flow around a circle in 2D that is solved with an iterative solver after the
preconditioning of the system was presented in Section 5.2.2. The same domain and
flow settings are used. The evolution of the relative error of the characteristic flow
quantities versus the degrees of freedom is reported. There is no analytic value to these
quantities, therefore the reference values are obtained through a reference solution.
This reference solution is computed using the HDG solver and a fine mesh, consisting
of 85,640 isoparametric triangular elements of degree k = 5, giving a total number of
1,625,480 degrees of freedom.

In this experiment, the employed meshes vary in degree of approximation (k = 1

to 4) and number of degrees of freedom (up to 855,560). In FreeFem++ second-order
polynomial space is used for velocity and first-order for pressure.

According to Figure 5.10, high-order approximations (second order or more) ap-
pear to estimate lift, drag and pressure drop more accurately than low-order ones. In
addition, for a given number of degrees of freedom, the HDG method is more accu-
rate (up to 4 orders of magnitude) than the velocity-pressure formulation employed in
FreeFem++. It is also necessary to study how the required time of computation scales
with the number of degrees of freedom. In Figure 5.11(a), the respective timings for
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(a) Drag coefficient (b) Lift coefficient

(c) Pressure drop

Figure 5.10: Two-dimensional steady laminar flow around circle: relative error of quantities of
interest versus degrees of freedom, Re = 20, τ̂ = 2

(a) Two-dimensional flow around
circle

(b) Three-dimensional flow around
cylinder

Figure 5.11: Wall–clock time scaling behaviour versus the number of degrees of freedom for the
steady Navier–Stokes equations

the four approximation degrees using HDG and the velocity-pressure formulation are
reported. It is shown that high degrees scale better than low degrees for HDG and
that the two-variable formulation using FreeFem++ scales a bit better than the HDG
formulation.
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(a) Drag coefficient (b) Lift coefficient

(c) Pressure drop

Figure 5.12: Computed quantities of interest versus degrees of freedom for the calculation of the
quantities of interest of the 3D incompressible flow around a cylinder, Re = 20

5.5.2 Three-dimensional flow around a cylinder

The second case is the steady incompressible flow around a cylinder in three dimensions.
This flow was presented in Section 5.4.1 and for the current study the same geometry,
boundary conditions and flow properties will be used. The computational grids that
are employed consist only of tetrahedral elements. For the solution of the flow with
the two-variable (Velocity-Pressure) formulation and FreeFem++ the following levels
of mesh refinement are considered: 9,264, 16,146, 32,184, 46,536, 98,496, 158,268 and
210,300 elements with a maximum number of 930,332 degrees of freedom. Second-
order polynomial space is used for velocity and first-order for pressure. As for the
HDG formulation, for degree k = 1, meshes with 9,264, 16,146, 32,184 and 46,536
elements and a maximum number of 1,834,596 degrees of freedom are considered. For
degree k = 2 meshes with 9,264, 16,146 and 32,184 isoparametric curved elements
and a maximum number of 1,156,140 degrees of freedom are studied. The polynomial
spaces for all variables coincide with the mesh degree, that is first-order polynomials
for first-order meshes and second-order for second-order meshes.

The lift and drag coefficients, as well as the pressure drop are evaluated and com-
pared to the benchmark values given by [167], the results of which are shown in Fig-
ure 5.12. It is observed that the HDG formulation with k = 2 gives satisfying results
already with a mesh of 32,184 elements. The two-variable formulation solved with
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FreeFem++ solver will eventually converge to the solution of the HDG solver, but only
with a very fine mesh. As far as the required wall–clock time with respect to the de-
grees of freedom is concerned, it is seen in Figure 5.11(b) that the HDG solver scales
better for both degrees k = 1, 2 when compared to the (Velocity-Pressure) formulation
of Navier-Stokes solved with FreeFem++.

5.6 Conclusion

A preconditioning method for the solution of the steady incompressible Navier–Stokes
equations with the use of the hybridizable discontinuous Galerkin method has been
presented in this section. The preconditioner was built by adapting the block triangular
preconditioning approach, common in the standard velocity-pressure formulation of the
problem, to the HDG setting.

This preconditioner allows one to employ iterative solvers effectively, making the
HDG method and the arising linear systems tractable. This is particularly important
for three-dimensional problems. Its effectiveness is demonstrated in a variety of exper-
iments. The preconditioner was found to scale well with respect to problem size and
investigated on the way the HDG parameter τ̂ affects the convergence speed of the iter-
ative solver for a range of Reynolds number. This approach was also demonstrated to
be competitive with standard methods in terms of computational time and accuracy.
Given the advantages that HDG methods offer in accuracy, this is significant. The
preconditioned HDG method was also shown to be appropriate for three-dimensional
simulations of medical interest.
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Chapter 6

Conclusions and Future research

In this PhD thesis, an adaptive high-order solver for the solution of steady and tran-
sient engineering incompressible viscous flows was developed. The solver was based
on the hybridizabe discontinuous Galerkin (HDG) method, where the symmetry of the
strain tensor was enforced strongly. This allowed to impose boundary tractions and
calculate wall stresses in a straightforward manner. Moreover, due to the pointwise
balance of angular momentum of the velocity, it was possible to construct a supercon-
vergent velocity field and, subsequently, perform a p-adaptivity procedure for steady
and unsteady incompressible flows. Large systems that derive from practical problems
were also handled with effective preconditioning, which, given the accuracy properties
of HDG, makes it a valuable alternative approach for the solution of CFD problems in
practical contexts.

6.1 Contributions

Following, the main contributions of this thesis are summarized:

1. A hybridizable discontinuous Galerkin method for linear elasticity with
optimal accuracy properties. A new HDG formulation for the linear elastic
problem with symmetric stress tensor has been proposed. Utilizing the Voigt
notation, the symmetric second-order tensors were expressed as vectors with the
diagonal and half of the off-diagonal terms. The number of degrees of freedom
was therefore reduced, while the symmetry of the stress tensor was enforced.

Through 2D and 3D simulations, the optimal convergence properties of the dis-
placement field and the stress tensor were demonstrated. In particular, both
fields converged optimally with order k + 1 in the L2-norm for approximation
polynomials of degree k ≥ 1. This improved the sub-optimal behaviour of the
stress tensor for low-order approximations using equal-order approximations in
tradicional HDG methods, without necessitating special enrichment techniques.

Given the optimal convergence properties of the strain tensor, a post-processed
displacement field of degree k+1 was constructed through an element-by-element
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procedure. After an appropriate treatment of the boundary conditions, the under-
determination of the problem was resolved and the post-processed displacement
field converged optimally with order k + 2.

In addition, attention was given to the study of nearly incompressible materials
and the employed method was found to be locking-free while maintaining the
convergence rates for all variables.

2. A hybridizable discontinuous Galerkin method for the Cauchy formu-
lation of the Stokes equation with optimal convergence properties. The
aforementioned HDG formulation was extended to the Stokes problem, that is
to the incompressible limit. Voigt notation for symmetric tensors and equal-
order approximation for all primal, mixed and hybrid variables were used for the
solution of the Cauchy formulation of the Stokes equation.

Regarding the convergence properties, it was verified through various numerical
simulations in two and three dimensions that all primal and mixed variables
converged with order k + 1 in the L2-norm for approximations polynomials of
degree k ≥ 1. Numerical studies, in two and three dimensions, showed the optimal
convergence characteristics of the method for different element types. Moreover,
a post-processed velocity field that superconverges with order k+ 2 was obtained
without modifying the discrete spaces in which the variable was sought.

Finally, the drag force on a sphere was calculated and it was shown that using
the symmetric stress tensor leads to a straightforward calculation of important
qualities of the flow.

3. Solution of the transient laminar incompressible Navier-Stokes equa-
tions using a hybridizable discontinuous Galerkin method. The afore-
mentioned formulation was extended to Navier-Stokes case by introducing a non-
linear convective term. First, optimal convergence and superconvergence proper-
ties were verified on steady test cases. The method was also able to accurately
estimate the quantities of interest for the benchmark flow around a circle in 2D.
The use of high-order geometrical and functional approximations clearly outper-
formed low-order approaches. The HDG solver was then utilized to simulate the
flow inside a microvalve, namely a Tesla valve, at different Reynolds numbers.

Exploiting the primal and postprocessed velocity fields, an inexpensive local error
indicator was obtained to drive p-adaptivity. Its effectiveness was tested on a
variety of cases and it was shown that degree-adapted approximations perform
better than uniform-degree ones in terms of accuracy for a given number of degrees
of freedom.

Then, the HDG spatial solver was coupled with high-order time integration
schemes to achieve high accuracy in space and time. Among the considered
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schemes, the family of high-order explicit first stage singly-diagonal implicit
Runge-Kutta (ESDIRK) methods could deliver the fastest and most reliable re-
sults. The accuracy of the resulting method was verified using classic benchmark
tests in 2D.

Eventually, adaptive transient simulations were studied. Two different concepts of
adaptivity were explored. The first one was p-adaptivity for transient flows which
allowed to adapt the mesh locally in the course of the transient flow, increasing
and decreasing the polynomial degree locally, depending on the instant of the
calculation and the movement of the flow. The second idea of adaptivity in
transient flows dealt with timestep size control, using appropriate estimates of
the temporal error. Numerical tests showed the ability of the method to adapt
to transient phenomena that take place in the computational domain.

4. Effective preconditioning for the solution of incompressible flows using
a hybridizable discontinuous Galerkin method. A preconditioning method
for the HDG formulation for solution of incompressible Navier-Stokes was pre-
sented. The preconditioner was based on the adaptation of a block triangular
preconditioner, which is common in standard two-variable formulations, to the
HDG global problem. The key element is the use of a scaled diagonal mass matrix
in the pressure sparce as approximation of the Schur complement of the global
matrix. In this context, the element size is used to locally scale this diagonal
matrix.

The preconditioner gave the opportunity to employ iterative solvers effectively
and permitted the solution of large-scale problems using the HDGmethod. Through
various experiments it was demonstrated that the preconditioner scaled well with
the problem size as well as with the Reynolds number.

The proposed approach was compared with standard methods in terms of compu-
tational time and accuracy highlighting its competitiveness. It was also used for
the calculation of the blood flow inside a vessel with aneurysm where the ability
to calculate quantities of medical interest on the wall of the vessel was exploited.

6.2 On-going research and future developments

Reducing the computational cost of solving the global system remains critical, especially
for transient simulations. In this regard, a first topic of investigation is the extension
of the preconditioning strategy to the case of transient simulations with the aim of
efficiently solving large-scale flow problems using HDG. Some preliminary research has
been conducted and possible expressions of the approximation of the Schur complement,
taking into consideration the different structure of the final matrix due to the transient
term, have been investigated. In order to be able to tackle larger 3D problems, a
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framework that is suitable for large-scale parallel computations, such as PETSc or
Trilinos, can be used for the implementation of the preconditioner and the method as
a whole.

Fast iterative solvers will also allow to perform simulations using higher-order poly-
nomials. In this respect, generation of high-order curved meshes of complex 3D geome-
tries and the effective integration of the NURBS-enhanced finite element framework
represent open topics of investigation.

In addition, alternative degree-adaptive strategies remain to be explored, e.g. driven
by indicators accounting for the error in quantities of engineering interest. Of course, in
order for the presented methodology to be applied to realistic flow problems, turbulence
modelling needs to be taken into account. In this framework, HDG of classical closure
models, for instance Spalart-Allmaras and k − ω sst, provide interesting extensions to
the presented approach.
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Implementation details1

A standard isoparametric formulation is considered, where the approximation of the
primal and mixed variables, uh, ph and Lh, is defined in a reference element Ω̃, with
local coordinates ξ = (ξ1, . . . , ξnsd), and the approximation of the hybrid variable, ûh,
is defined in a reference face Γ̃, with local coordinates η = (η1, . . . , ηnsd−1), as

uh(ξ) =

nen∑
j=1

ujNj(ξ), ph(ξ) =

nen∑
j=1

pjNj(ξ), Lh(ξ) =

nen∑
j=1

LjNj(ξ),

ûh(η) =

nfn∑
j=1

ûjN̂j(η),

where nen and nfn denote the number of element and face nodes respectively and Nj

and N̂j are the shape functions used to define the approximation within the reference
element and face respectively.

The isoparametric transformation is used to relate local and Cartesian coordinates,
namely

x(ξ) =

nen∑
k=1

xkNk(ξ),

where {xk}k=1,...,nen denote the elemental nodal coordinates.
The following matrices are introduced in two dimensions

E1 =

[
1 0 0

0 0 1

]T
E2 =

[
0 0 1

0 1 0

]T
.

Similarly, in three dimensions, the following matrices are defined

E1 =

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


T

E2 =

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1


T

E3 =

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0


T

.

1This appendix is an extended version of the appendix presented in the published article: R. Sevilla,
M. Giacomini, A. Karkoulias, A. Huerta, A super-convergent hybridisable discontinuous Galerkin
method for linear elasticity, International Journal for Numerical Methods in Engineering, 116 (2)
(2018) 91-116 [146].
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These matrices are used to express, in compact form, the matrices ∇S and N, defined
in Equations (2.8) and (2.12) respectively, as

∇S =

nsd∑
k=1

Ek
∂

∂xk
, N =

nsd∑
k=1

Eknk

In addition, the following compact form of the shape functions is introduced

K =
[
N1 N2 . . . Nnen

]T
, K̂ =

[
N̂1 N̂2 . . . N̂nen

]T
,

N =
[
N1Insd N2Insd . . . NnenInsd

]T
, M =

[
N1Imsd N2Imsd . . . NnenImsd

]T
,

Kk =
[
∂N1
∂xk
ET
kE

∂N2
∂xk
ET
kE . . .

∂Nnen
∂xk

ET
kE
]T
, for k = 1, . . . ,nsd,

K̂
n

k =
[
N̂1nkE

T
kE N̂2nkE

T
kE . . . N̂nennkE

T
kE
]T
, for k = 1, . . . ,nsd,

N k =
[
∂N1
∂xk
ET
kD

1/2 ∂N2
∂xk
ET
kD

1/2 . . .
∂Nnen
∂xk

ET
kD

1/2
]T
, for k = 1, . . . ,nsd,

N n
k =

[
N1nkE

T
kD

1/2 N2nkE
T
kD

1/2 . . . NnfnnkE
T
kD

1/2
]T
, for k = 1, . . . ,nsd.

N̂ =
[
N̂1Insd N̂2Insd . . . N̂nfnInsd

]T
, N̂ τ =

[
N̂1τ N̂2τ . . . N̂nfnτ

]T
,

N̂
n

k =
[
N̂1nkE

T
kD

1/2 N̂2nkE
T
kD

1/2 . . . N̂nfnnkE
T
kD

1/2
]T
, for k = 1, . . . ,nsd.

A.1 Linear Elasticity

The matrices and vectors resulting from the discretization using the HDG method
of Equation (2.30a) of the local problem of linear elasticity are (refer also to Equa-
tion (2.32) for the employed notation)

[ALL]e = −
neip∑
g=1

M(ξeg)MT (ξeg)|J(ξeg)|we
g,

[ALu]e =

nsd∑
k=1

neip∑
g=1

N k(ξ
e
g)N T (ξeg)|J(ξeg)|we

g,
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[ALû]e =

nefa∑
f=1

 nsd∑
k=1

nfip∑
g=1

N n
k(ξfg)N̂

T
(ξfg)|J(ξfg)|wf

g

 (1− χΓD(f)) ,

[fL]e =

nefa∑
f=1

 nsd∑
k=1

nfip∑
g=1

N n
k(ξfg)uD

(
x(ξfg)

)
|J(ξfg)|wf

g

χΓD(f),

where nefa is the number of faces, Γe,j for j = 1, . . . ,nefa of the element Ωe and χΓD is
the indicator function of ΓD, i.e.

χΓD(f) =

{
1 if Γe,j ∩ ΓD 6= ∅
0 otherwise

.

In the above expressions, ξeg and we
g are the neip integration points and weights

defined on the reference element and ξfg and wf
g are the nfip integration points and

weights defined on the reference face.
Similarly, the matrices and vectors resulting from the discretization of Equation (2.30b)

of the local problem of linear elasticity are

[Auu]e =

nefa∑
f=1

nfip∑
g=1

N (ξfg)N̂
T

τ (ξfg)|J(ξfg)|wf
g,

[Auû]e =

nefa∑
f=1

 nfip∑
g=1

N (ξfg)N̂
T

τ (ξfg)|J(ξfg)|wf
g

 (1− χΓD(f)) ,

[fu]e =

neip∑
g=1

N (ξeg)f
(
x(ξeg)

)
|J(ξeg)|we

g+

nefa∑
f=1

 nfip∑
g=1

N (ξfg)τuD
(
x(ξfg)

)
|J(ξfg)|wf

g

χΓD(f).

Finally, the matrices and vectors resulting from the discretization of Equation (2.31)
of the global problem of linear elasticity are (refer also to Equation (2.33) for the
employed notation)

[Aûû]e = −
nefa∑
f=1

 nfip∑
g=1

N̂ (ξfg)N̂
T

τ (ξfg)|J(ξfg)|wf
g

 (1− χΓD(f)) ,

[fû]e = −
nefa∑
f=1

 nfip∑
g=1

N̂ (ξfg)t
(
x(ξfg)

)
|J(ξfg)|wf

g

χΓN (f),

where χΓN is the indicator function of ΓN .
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A.2 Stokes flow

The matrices and vectors resulting from the discretization of Equation (3.17a) of the
local problem of Stokes flow have the same definition as in the case of linear elasticity.
Therefore, for the definition of [ALL]e, [ALu]e, [ALû]e and [fL]e the reader is referred
to Appendix A.1. The reader is also referred to Equation (3.18) for information on the
employed notation.

Next, as far as the discretization of Equation (3.17b) of the local problem of Stokes
flow is concerned, matrices [Auu]e and [Auû]e are defined in the same way as in Ap-
pendix A.1. The rest of the matrices and vectors are

[Aup]e =

nsd∑
k=1

neip∑
g=1

N (ξeg)KT
k (ξeg)|J(ξeg)|we

g,

[fu]e =

neip∑
g=1

N (ξeg)s
(
x(ξeg)

)
|J(ξeg)|we

g+

nefa∑
f=1

 nfip∑
g=1

N (ξfg)τuD
(
x(ξfg)

)
|J(ξfg)|wf

g

χΓD(f).

The discretization of Equation (3.17c) leads to the formation of the following matrix
and vector

[Apû]e =

nefa∑
f=1

 nsd∑
k=1

nfip∑
g=1

K(ξfg)K̂
n

k(ξfg)|J(ξfg)|wf
g

 (1− χΓD(f)) ,

[fp]e =

nefa∑
f=1

 nsd∑
k=1

nfip∑
g=1

K̂
n

k(ξfg)uD
(
x(ξfg)

)
|J(ξfg)|wf

g

χΓD(f).

In the last equation of the local problem Equation (3.17d) the following matrix is
used

[aρp]e =
1

|∂Ωe|

nefa∑
f=1

nfip∑
g=1

K̂(ξfg)|J(ξfg)|wf
g.

The matrices and vectors resulting from the discretization of Equation (3.19a) of the
global problem of Stokes flow are [AT

Lû]e, [AT
uû]e and [AT

pû]e, whose transpose matrices
have been previously defined, as well as the matrix [Aûû]e and the vector [fû]e, which
have the same definition as in the linear elasticity problem (refer to Appendix A.1).
The reader is also referred to Equation (3.20) for more information on the employed
notation.
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The last equation of the global problem, Equation (3.19b), involves the following
matrix and vector

[Aρû]e =

nefa∑
f=1

 nsd∑
k=1

nfip∑
g=1

K̂
n

k(ξfg)|J(ξfg)|wf
g

 (1− χΓD(f)) ,

[fρ]e = −
nefa∑
f=1

 nsd∑
k=1

nfip∑
g=1

K̂
n

k(ξfg)uD
(
x(ξfg)

)
|J(ξfg)|wf

g

χΓD(f).

A.3 Navier-Stokes equations

The main difficulty concerning the Navier-Stokes equations concerns the non-linearity
of the momentum equation. In this section, the linearization procedure of the Navier-
Stokes equations is presented. The procedure for both steady and transient case of the
Navier-Stokes equations is presented.

A.3.1 Linearization of steady Navier-Stokes equations

Let us first recall the weak from of the momentum equation of the steady Navier-Stokes,
Equation (4.27b). The equations has two non-linear terms, namely (uhe ⊗ uhe )V and

(û ⊗ û)V ). Considering the vector x =
[
L u p û ρ

]T
, the equation might be

rewritten as

F2(x) = 0 (A.1)

Following, the linearization according to Newton-Raphson method consists in solv-
ing the following linearized equation

F2(xr) +
∂F2(x)

∂x

∣∣∣∣∣∣∣r ∆xr = 0⇔

[
∂F2
∂L

∂F2
∂u

∂F2
∂p

]
∆Lr

∆ur

∆pr

 = −
[
∂F2
∂û

∂F2
∂ρ

]{∆ûr

∆ρr

}
− F2(xr)

(A.2)

where ∆xr = xr+1 − xr, the difference of vector x between two successive non-linear
iterations r, r + 1.

After substituting ∆x into Equation (A.2) and adding the rest of the equations of
the local problem, Equations (4.27a), (4.27c) and (4.27d), the discretized local problem
has the matrix form of Equation (4.11). The submatrices with superscript r need to
be evaluated in every non-linear iteration and their value will depend on xr. The exact
definitions are
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[Auu]re = −
nefa∑
f=1

nfip∑
g=1

τN (ξfg)N̂
T

τ (ξfg)|J(ξfg)|wf
g +

nsd∑
k=1

neip∑
g=1

∇SK(ξeg)ur(x(ξeg))K(ξeg)|J(ξeg)|we
g

+

nsd∑
k=1

neip∑
g=1

Kk(ξ
e
g)ur(x(ξeg))InsdN (ξeg)|J(ξeg)|we

g,

[Auû]re =

nefa∑
f=1

− nfip∑
g=1

N (ξfg)N̂
T

τ (ξfg)|J(ξfg)|wf
g +

nsd∑
k=1

nfip∑
g=1

ûr(x(ξfg))n(ξfg)∇SK(ξfg)K̂(ξfg)|J(ξfg)|wf
g

+

nsd∑
k=1

nfip∑
g=1

K(ξfg)ûr(x(ξfg))n(ξfg)K̂(ξfg)|J(ξfg)|wf
g

 (1− χΓD(f)) ,

[fu]re = −
neip∑
g=1

N (ξeg)s
(
x(ξeg)

)
|J(ξeg)|we

g +

neip∑
g=1

∇SK(ξeg)ur(x(ξeg))ur,T (x(ξeg))|J(ξeg)|we
g

+

nefa∑
f=1

 nfip∑
g=1

uTD(x(ξfg))n(x(ξfg))N (ξfg)uD(x(ξfg))|J(ξfg)|wf
g −

nfip∑
g=1

N (ξfg)τuD
(
x(ξfg)

)
|J(ξfg)|wf

g

χΓD(f)

−
nefa∑
f=1

ûr,T (x(ξfg))n(x(ξfg))N (ξfg)ûr(x(ξfg))|J(ξfg)|wf
g (1− χΓD(f)) .

A.3.2 Time-dependent Navier-Stokes equations

When the time derivative is added to Navier-Stokes equation, the mass matrix Muu

appears, as shown in Equation (4.28). Independently of the employed time-marching
scheme, this mass matrix has the following definition

[Muu]e =

neip∑
g=1

K(ξeg)KT (ξeg)|J(ξeg)|we
g.

A.3.3 Scaling of the approximation of the Schur complement

The Schur complement is defined as S = K̂
T

ûρ K̂ ûû
−1
K̂ ûρ, with the submatrices of

the global problem in Equation (4.16). The goal is to find the scaling of the Schur
complement. In Equation (4.15), we see that the right-hand side of Equation (4.15a)
has units m5/s3. In fact, velocity ŵ has units m/s, traction t has units m2/s2 in three
dimensions (is divided by density) and the surface is expressed in units m2.

Therefore, the left-hand side should have the same units as the right-hand side,
that is m5/s3. The submatrix K̂ ûû is thus expressed in m4/s2 while the submatrix
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K̂
T

ûρ in m3/s. From Equation (4.15b) the submatrix K̂ ûρ has units m2. Finally, the
Schur complement has units:

S = K̂
T

ûρ K̂ ûû
−1
K̂ ûρ → m2 s2

m4

m3

s
= m · s. (A.3)
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