


Abstract

There has been an increased focus on personalized medicine in recent times. Signif-

icant technological improvements in the last few decades generating an explosion

in the data available has been one the drivers of the expansion of this field. For

instance, the amount of DNA methylation data as well as SNPs data available

has increased very substantially. This dissertation focuses on the developments of

techniques for analyzing that data applied to the field of aging as well of illness

detection, more specifically for cancer and diabetes identification. It will be shown

that using a two-step approach consisting of a first stage in which the dimension-

ality of the data is reduced using algorithms such as Elastic Net, followed with a

robust forecasting techniques such as Bayesian Neural Networks is a viable option

generating accurate forecast. Other algorithm were also used for illness detection

such as Support Vector Machines as well as K-Nearest Neighbors.

This dissertation can be divided into three main sections with the first section

covering the topic of biological clocks using DNA methylation data and the previ-

ously mentioned reduction of dimensionality combined with Bayesian Neural Net-

works. The biological clock presented in this dissertation generates age forecasts

that are more accurate than some well-known existing clocks. This improvement

is accomplished by using a non-linear algorithm. The second section covers the

issue of cancer identification using, as in the previous case, DNA methylation data

and Support Vector Machines as well as K-nearest Neighbor algorithm. It will be

shown that for a large amount of different types of cancer, such as lung, colon,

cervical or bladder the usage of DNA methylation data in conjunction with SVM

generate accurate forecasts. Other algorithms, such as for instance K-Nearest

Neighbors, were also used for cancer detection purposes. The last section cover

the study of diabetes using in this case SNPs data and Bayesian Neural Networks

that also generates accurate diabetes detection.



Given the ever increasing amount of DNA methylation data as well as SNPs

data available as well as advances in data storage there is an increasing need to

have more suitable and sophisticated methods for analyzing such data. One of

the base assumptions in this dissertation is that the relationship between DNA

methylation and aging and cancer as well as between SNPs and diabetes do not

necessarily need to follow a linear model and hence non-linear models, such as

Bayesian Neural Networks, can generate more accurate results. It will be shown

that this is the case with models generating fairly accurate outcomes.
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Chapter 1

Introduction

1.1 Personalized medicine

The field of personalized medicine has experienced a significant expansion in recent

times driven, among other factors by an explosion in the amount of genomic

data available and the ever increasing need to have more effective and targeted

treatments and diagnosis for patients. The National Health Service in the United

Kingdom for instance is starting to include genome sequencing in routine care

for patients in a new initiative. Some of the early results of that initiative have

been on the treatment of diabetes with medication in form of tablets, rather than

injections, being offered to some of the patients depending on the results from

the genomic results [Pinello, 2018]. According to the NHS this diabetes initiative

is not only reducing cost but also providing better care, more personalized for

individual patients avoiding in many cases the need for injections.

Most common human diseases, such as coronary heart disease, diabetes, can-

cers, asthma and Alzheimer’s disease have a complex genetic architecture. The

decreasing cost of sequencing has facilitated to investigate the predictive relation-

ships between individual’s genotypes and complex diseases by analyzing thou-

sands of individual’s genomes. Such studies, known as Genome Wide Association

Studies (GWAS), have allow identifying hundreds of genomic positions (known as
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single nucleotide polymorphisms – SNPs) associated with risk of a large number

of complex diseases [MacArthur, 2017]. For instance, in the case of type 2 dia-

betes (T2D), one of the most studied complex diseases, over 80 genomic loci have

been identified in association with T2D susceptibility and related traits [Boehnke,

2017].

Unfortunately, barring a few exceptions like the variants in the BRCA1/2 genes

in the case of breast cancer [Narod, 2004], the impact on the disease risk of the

SNPs identified in GWAS is generally small, and not clinically actionable due to

their limited predictive power [McCarthy, 2008]. Even the cumulative signal of

all identified loci fails to explain most of the known heritable complex diseases

[Manolio, 2009]. This has recently led to a proposal of an “omnigenic model” for

complex diseases, where every single gene expressed in the cell types relevant for

the disease would have a small but overall impactful contribution to the risk, due

to the interconnectivity of cell regulatory networks [Boyle, 2017].

It is thus becoming increasingly clear that the study of SNPs in isolation might

only be able to provide limited insight on disease susceptibility, and that a better

understanding might be achieved by considering those genomic variants collec-

tively. The current trend is therefore towards a more direct and operational

approach to disease prediction problems: learn a predictive function that, from

the input of an individual’s genotypes (e.g millions of SNPs), predicts the risk of

developing a given disease. Predictive disease problems are clearly well suited for

standard machine learning methods which are able to decipher the overall genetic

architecture of complex diseases.

Offit [2011] mentioned that genomics will play a central role in the develop-

ment of personalized medicine. Personalized medicine uses traditional medical

techniques combined with advanced genetic of the patient providing more indi-

vidualized care. There are many current examples of the application of genomics

in the field of personalized medicine such as for instance in the reduction of ad-
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verse reaction on drugs [Odekunle, 2017]. An interesting article in this regard is

[Archer, 2013] in which the author discussed the application of genomic in Parkin-

son’s medication. The authors also studied genomics applications of drug induced

Parkinson’s as a promising field of research. Another interesting application of

omics techniques in personalized medicine is on cardiovascular diseases [Chatter-

jee, 2013]. Among other applications [Chatterjee, 2013] used a genomics technique

to assess effectiveness of cardiovascular drugs as well as dosage implications. This

article is based on the observation that for some patients some cardiovascular

drugs are not efficient even at high dosages.

Jinek [2015] followed perhaps more systematic analysis of personalized medicine

and identifies three broad areas of personalized medicine: 1) improved target dis-

covery and confirmation, 2) somatic gene therapy and, 3) tissue engineering. To be

fair doctors have been using genetic analysis for decades but the omics revolution

is shifting those techniques from single gene to a more systematic genome wide

approach. This is possible, as previously mentioned by the improvements in se-

quencing, which can be done now in a fast and relatively inexpensive way. These

technical improvements have in turn generated large amount of data and have

come simultaneously with an explosion in the field of big data analysis, It should

be mentioned however that there are some ethical considerations particularly us

some the omics techniques could accurately forecast increased likelihoods of get-

ting some illnesses for a certain gender or racial ethnicity. There are also some

privacy considerations to take into account. Nevertheless, the potential advan-

tages of personalized medicine through the use of omics techniques is undeniable

with potential applications in fields such as aging, cancer and diabetes research

as we outline in the next subsections.
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1.1.1 Aging

Aging is the natural process of decay or more precisely described a “process of

steady physiological deterioration” [Linford, 2013] and it is related to the concept

of lifespan. Different species have very different lifespans and they can vary dras-

tically. For instance, the Drosophila melanogaster has an average life expectancy

of approximately 50 days [Paaby, 2009, Linford, 2013, Khazaeli, 2005] while blue

whales have a life expectancy approaching 90 years. The process of aging is clearly

not yet well understood with [Karin, 2018] mentioning that it reasons behind the

different aging rates in organism that are otherwise genetically identical are un-

clear.

There are many ways of assessing the aging process in for example humans and

other organisms with indicators such white hairs, hair loss or wrinkles typically

associated with the aging process. In this context biological clocks can be a useful

tool. A biological clock is a toll that aims to estimate the biological age of an

individual using empirically measurable biological data such as DNA methylation.

There are two seminal articles in this areas [Horvath, 2013, Hannum, 2013]. These

two authors created two of the most popular biological clocks based on DNA

methylation. These clocks have been used to associate biological age with different

diseases and mortality [Fransquet, 2019].
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1.1.2 Cancer

Cancer is one of the major causes of death across the world. According to figures

from the U.S. National Cancer Institute, cancer is as of 2016 the second cause of

death in the U.S. accounting for 21.8% of all death, see figure 1.1. Heart disease

was the only other factor causing more deaths than cancer with a total of 23.1%

of the death. It should be noted that the proportion of deaths attributable to

heart diseases has come down significantly over the last few decades with 37.8%

of all death in the U.S. in 1975 attributable this causes. At the same time the

proportion of death attributable to cancer has actually increased in the same

period from an initial 19.2% in 1975 to the previously mentioned 21.8% in 2016.

There is a large number of different types of cancers with very different incidence

(1.2) and survival rates. Given the mortality rate of some of these cancers it is of

clear importance to develop tool for cancer detection. One option is to use DNA

methylation data for tissues or blood from a suspected patient in combination

with techniques such as support vector machines, neural networks a K-nearest

neighbors which are illustrated in the next sections.
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Figure 1.1: Causes of death (%) in the U.S. in 2016. Source:U.S. National Cancer Institute

There is an increased focus on applying statistical techniques in cancer re-

search. This is partly due to the large amount of information made public by

institutions such as the National Center for Biotechnology Information (NCBI).

There is currently a significant amount of human DNA methylation data publi-

cally available from such source. DNA methylation is natural process in which a

methyl group links with a cytosine in a specified location (carbon 5). This is a

process that occurs naturally in humans and other species and has been linked to

many biological processes and diseases such as cancer. Changes in methylation

levels in tumors have been analyzed in many articles such as [Das-Partha, 2004,

Phillips, 2008]. There is an increasing literature linking DNA methylation changes

with several types of cancers [Varela-Rey, 2013, Warton, 2016, Davis, 2004, Oakes,

2013]. Given the efforts that have been made trying to study the relationship with

DNA methylation and cancer it seemed reasonable to try to apply algorithm such

as Neural Networks or K-Nearest Neighbors to DNA methylation data. It will

be shown that using this techniques it is possible to classify, within a reasonable
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Figure 1.2: Cancer incidence and mortality rates (per 100,000 individuals) in the U.S. 2016.
Source:U.S. National Cancer Institute
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Figure 1.3: Cancer survival rate (%) in the U.s. in 2016. Source:U.S. National Cancer Institute
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level of error, patients into two categories. One representing cancer patients and

one representing healthy control patients.
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1.1.3 Diabetes

Type 2 diabetes is a relatively common but serious illness that impacts life ex-

pectancy. According to [Cecil, 2017] type 2 diabetes impacts approximately 8%

of the population in the United States with the percentage as high as 25% in

high risk populations such as individuals above 65 years old. Type 2 diabetes is

the more frequent form of diabetes accounting for 90% to 95% of all the cases

[CDC, 2017]. In 2017 diabetes was the 7th cause of death in the United States

with 83,564 related death, accounting for 25.7 death per 100,000 people [CDC,

2017]. The trend has remained basically constant over that least few years with

the number of days being 20.8, 21.3 and 21.0 per 100,000 individuals in 2010,

2015 and 2016 respectively. Type 2 diabetes has a genetic components and is also

related to several lifestyle factors such as weight and physical exercise. Another

important risk factors are the smoking and alcohol consumption. Nevertheless,

body weight is considered the most important risk factor.

Type 2 diabetes impacts the ability of the patient to produce insulin. This abil-

ity to produce insulin declines as the illness progress. The previously mentioned

factors of body weight and physical exercise are a critical factor in the regula-

tion of insulin [Cecil, 2017]. One of the most common complications of diabetes

are microvascular accidents that can generate lesions that require amputations

such as fore example finger amputations. Patients with Type 2 diabetes have

an anomalous reaction to insulin i.e., their reaction to an injection of insulin is

much smaller than the reaction of an otherwise healthy patient to same dosage of

insulin. According to figure from the International Diabetes Federation by 2050

there will be in excess of 500 million individuals worldwide with diabetes with,

as previously mentioned, obesity playing a significant role in the spread of the

disease. Morbid obesity accounts for approximately 55% of all the cases [CDC,

2017]. Some authors have also related this spread to living and eating habits in

Asia and other developing areas becoming more westernized with an increased

19



in the consumption of fast food with high caloric concentration. Given the sig-

nificant mortality rate in the population and the relatively large percentage of

the population at risk of contracting type 2 diabetes, particularly as individuals

age, having reliable techniques to identify the illness in a quickly, and hopefully

inexpensive way, is of clear importance.

1.2 OMICS

The word omics in general terms refers to the collection of large amount of data,

generally related to molecular biology. In fact, the medical dictionary defines

omics as thee “analysis of large amounts of data representing an entire set of some

kind, especially the entire set of molecules, such as proteins, lipids, or metabolites,

in a cell, organ, or organism” [Medical-dictionary, 2007]. As just mentioned one

of the characteristics of these fields is that they are interrelated to the field of big

data. These research fields generate enormous amounts of data and with them

numerous issues such as data analysis and interpretation. The advances in data

storage with the development of cloud services to store massive amounts of data

at relatively inexpensive rates and high speed connections has also helped the

expansion of the field of omics. Clearly, the development of tools for processing

those large volumes of information is becoming a critical area of research [Horgan,

2011].

The field of omics is a vast an expanding one with different multiple applications

that encompasses a large set of research fields such as genomics, transcriptomics

and epigenomics. Genomics could be defined as a field of genetics that attempts

to understand the information contained in the genome. The U.S. national library

of medicine define genome as the “organism’s complete set of DNA, including all

of its genes” [Horgan, 2017] and contains all the genetic information necessary

to construct such organism. The World Health Organization defined genomics

as “the study of genes and their functions, and related techniques” [WHO, 2002].
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Transcriptomics in simplified terms is a field of research that focuses on the area

of gene expression [Strachan, 2018]. A perhaps more complete way of describing it

is “the study of the complete set of RNAs (transcriptome) encoded by the genome

of a specific cell or organism at a specific time or under a specific set of conditions”

[Kuchka, 2012]. Epigenomics, which is classified by some authors as a subfield of

genomics, is a discipline that analyses “changes that modify the expression and

function of the genetic material” [Merriam-Webster, 2017].

The fields of omics has benefited substantially from technical developments

[Mullish, 2018] such as improvements in DNA sequencing [Bogyo, 2013, Ulloa,

2013, Gubb, 2009] lowering its cost and producing in turn a proliferation on the

amount of datasets that would have been unthinkable a few decades ago. There is a

very significant body of existing literature in omics with multiple journals focusing

on this field. The study of the different subfields of omics is becoming so prevalent

that some authors, such as [Abuasad, 2011], have described the twenty century as

the era of omics. It will be shown later that one very successful are of application of

omics techniques is in medicine [Mullish, 2018] with some authors, such as [Chris-

Overall, 2011] mentioning that every disease has a genetic component. Other

areas in which omics techniques have been successfully applied include fields as

diverse as agriculture and environmental science [Debmalya-Barh, 2017, Canas,

2014].

1.2.1 Genomics

Genomics was actually the first of the omics disciplines to be developed and as

previously described can be understood as the study of all the genes (genome) and

their function [Genome-Website, 2018] of an organism. In order to understand

the genes of an organism it is necessary to obtain the DNA from its cells and

sequence it. The sequence of the organism analyzed can then be compared to

the sequence from another organism from the same species to look for mutations
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(differences in base pairs) and see the functional impact that those mutations have

on the organism. Mutations can have impact of a wide arrange of factors, from

the color of the eyes of a person to how susceptible that individual is to get an

illness. A human being has approximately 3.2 billion base pairs distributed in 23

chromosomes (humans have actually two sets of 23 chromosomes, one from the

mother and one from the father). There are approximately 500 to 4,000 genes

per chromosome. The vast majority of the genome is not protein coding with

approximately only two percent of the genome being protein coding.

Clearly genomics is a huge field of research with vast number of applications

in the biomedical space. A recent publication from the World Health Organiza-

tion identified the following genomics applications/major projects in the field of

healthcare in the following countries:

• Brazil. National program developing the use of genomics in healthcare

• Cyprus and Sardinia. National genomics program increasing awareness of

thalassemias

• Iceland. National genomics program targeting 30 disease including Alzheimer’s

and emphysema

• Germany. New anti-malaria treatment

• Kenya. HIV treatment research. Collaboration between the University of

Nairobi and the University of Oxford. A Kenyan population group seems to

have relatively high resistance to contract HIV despite frequent exposure

• Mexico. National program. Existing drugs seem to treat some diseases seem

to have reduced effectiveness in the population of indigenous background

compared to the population of Spanish background.

• UK. Malaria research. New vaccine being developed. This new vaccines

contains DNA from P. falciparum
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According to the U.S. National Library of Medicine SNPs are among the most

common genetic variations and account for approximately 90% of sequence differ-

ences [Collins, 1997]. SNPs are differences in DNA at the single nucleotide level

[Horgan, 2017]. It is not well understood the causes of SNPs [Wang and Moult,

2000]. Some authors have mentioned that the majority of SNPs have no func-

tional impact [MIT, 2013] but a subgroup of SNPs, according to [Albert, 2010]

are responsible for a large amount of hereditary human individuality including

how a particular individual reacts to a certain drug treating an illness. It has

been mentioned by many scholars the complexity of finding relevant SNPs among

the many available directly related to illnesses [Florez, 2008]. The field of SNPs

research and their impact on the understanding of some diseases is rapidly ex-

panding but it is not without issues as there is an increasing need to development

better and more efficient techniques to analyze them [Helyar, 2011]. Nevertheless,

the field is in clear expansion with applications not only as biomarkers for diseases

but also in many other fields such as for instance crop genetics [Tabassum-Jehan,

2006]. SNPs can be classified in two major categories according to what nucleotide

substitution occurred [Smith, 2002]:

• Transition

• Transversion

Transition occurs when the substitution is between either two purines (adenine

and guanine) or two pyrimidines (cytosine and thymine). Transversion happens

when the substitution is between nucleotides from the different groups i.e., be-

tween a purine and a pyrimidine. [Smith, 2002] also mentioned that SNPs are not

homogeneously distributed in the genome with more concentration of SNPs in the

coding areas than in the non-coding areas. It is also impotent to mention the dif-

ference between a synonymous substitution and a non-synonimous substitution.

In a synonymous substitution the amino acid encoded does not change while in a

non-synonymous substitution the amino acid encoded does change [Smith, 2002].
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Similarly to the case of DNA methylation, the amount of SNPs data available

has expanded enormously in recent times on the back of technological improve-

ments such as the development of high- throughput SNP Arrays [Shahid-Raza,

2016] and that has created an increasing need to develop techniques that are able

to analyze the very large amount of information generated in experiments.
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1.2.2 Epigenomics

The term “epi” in the word epigenomics is a Greek expression meaning above, so

literally epigenomics means above the genome. The field of epigenetics studies the

external modifications of DNA that while not altering the actual DNA sequence

it impacts gene expressions. While the field has experienced substantial growth

in recent years it origins (in modern form) dates back to the mid twenty century

with the term epigenetics first used by Waddington in 1942 [Waddington, 1942].

The difference in terminology between epigenetics and epigenomics is that in the

first case one gene is analyzed while in the second case all genes are analyzed.

The field is also closely related to the process of the tight folding of the genome.

Tighten folded genes might make the process of gene expression for those genes

mode difficult (inducing gene suppression) while loser folding can potentially have

the opposite effect, potentially making gene expression easier.

There are many studies in this field using identical twins [Craig, 2015] as they

have identical DNA sequence but they present different characteristics through-

out their life as environmental factors impact DNA expression. These epigenetic

changes can produce for instance that a twin develops a cardiovascular disease

while the other twin does not. Authors such as [Craig, 2015] found that epige-

netic variation in early life is directly related with the onset of several diseases

later in life. Epigenomic changes occur when a chemical tag attaches to the DNA

impacting the way that the DNA expressed. There are four major groups of

epigenetic modifications [ProteinTech, 2017]:

• DNA methylation

• Non coding RNA (ncRNAa)

• Covalent histone

• Non-covalent
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One of the best understood epigenetic modifications is DNA methylation that

could be described as the addition of a methyl group to a CpG.

While there is an extensive body of research in epigenomic mechanisms many

of the underlying processes remain not fully understood [Pinello, 2014]. Neverthe-

less, relatively recent developments, such as for instance, alignment-free techniques

seem to be yielding interesting results [Pinello, 2014]. This and other computa-

tional advancements are likely to further expand the field of epigenomics as more

data and better statistical techniques to analyze it become available.

DNA methylation is an epigenetic modification [Caifa, 2004, Ju-Yeon, 2012,

Schuebeler, 2012, Serrano, 2018], based on the addition of a methyl group in

the fifth carbon (C5) in CpG dinucleotides. [Patterson, 2011a] mentioned that

the primary sequence target for mammals related to methylation is the 5-CpG-3

adding that methylation tends to be concentrated in regions that are commonly

described as CpGs islands. A methyl group is just a group formed by a carbon and

three hydrogens (CH3) as it is one of the most frequent organic compounds. The

reaction of DNAmethylation is catalyzed by DNAmethyltransferases Dnmt3a and

Dnmt3b [Paige-Bommarito, 2019, Grant-Challen, 2014] and preserved by Dnmt1.

The chemical expressions for cytosine and methyl cytosine can be seen in figures

1.4 and 1.5 respectively. DNA methylation is a naturally occurring process and

can alter the function of the DNA. DNA methylation is conserved when a cell

divides so it has being described by some scholars as a cell memory mechanism

[Paige-Bommarito, 2019]. DNA methylation is known to have an impact on gene

expression [Razin, 1991, Brandeis, 1993, Jacob, 2000, Paige-Bommarito, 2019].

DNA methylation has been related with several processes such as aging as well

as illnesses including multiple types of cancer, Chron’s disease and diabetes and

has being used as a biomarker. Biomarker are “naturally-occurring character-

istics by which a particular pathological process or disease can be identified or

monitored” [Mikeska, 2014]. Perhaps one of the areas in which there is more ex-
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isting academic literature in the topic of DNA methylation is in the field of cancer

research. For instance [Das-Partha, 2016] highlighted the applicability of DNA

methylation for early detection of tumors and even mentioned the ongoing efforts

to develop drugs that reverse methylation, such as for instance 5-azacytidine and

decitabine.
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Figure 1.4: Cytosine
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N

Figure 1.5: Methyl Cytosine

The causes behind the methylation process are yet not well understood with

several authors, such as for instance [Horvath, 2013, Hannum, 2013] linking it,

at least to some degree to the aging process. There is also extensive litera-

ture relating various types of cancer and DNA methylation levels such as for

instance: breast cancer [Magzoub, 2016, Varela-Rey, 2013], ovarian cancer [Mag-

zoub, 2016, Woloszynska-Read, 2007], colorectal cancer [Magzoub, 2016, Carmona,
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2013], upper aerodigestive track cancer [Varela-Rey, 2013], liver cancer [Varela-

Rey, 2013, Yonghong-Zhang, 2018], lung cancer [Leygo, 2017, Qinghua-Feng, 2008,

Tibor-Rauch, 2012, Nikolaidis, 2012, Chandrika-Piyathilake, 2002, Pfeifer, 2017,

Malcolm-Brock, 2008], bladder [Xylinas, 2016], Kidney cancer [Niraj-Shenoy, 2015].
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1.2.3 Transcriptomics

As previously mentioned transcriptomics is the field of gene expression. This could

also be understood as the analysis of all the RNA existing in a cell (transcriptome),

including coding and non-coding RNA. The amount of non-coding RNA is in fact

larger than the coding RNA. Interestingly, some authors such as [Hrdlickova, 2014]

have found that non-coding RNA play an important role in several diseases and

play a significant regulatory function. [Hrdlickova, 2014] classified codding and

non-coding RNA according to the following classification:

1. Coding genes (20,330)

2. Non-coding genes

(a) Small non-coding RNA

i. MicroRNAs (3,086)

ii. Other small ncRNAs (5,992)

(b) Long non-coding RNA

i. LincRNAs (6,020)

ii. Atisense IncRNAs (4,589)

iii. Sense intronic IncRNA (674)

iv. Other IncRNA transcripys (1,909)

v. Sense overlapping IncRNAs (141)

Gene expression refers to the type and amount of proteins present in the cells

of an organism. Changes in the amount of RNA generated can change the amount

of protein present changing the behavior of cells. Factors such as the type of tissue

or environmental conditions lay also a major role in the amount of protein present.

The process of gene expression is clearly extremely complex. Some authors, such

as [Dong-Zhicheng, 2013] have mentioned that transcriptomics is one of the best

developed fields in the omics space with a large amount of research published in

the topic.
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1.3 Machine learning methods in personalized medicine

In recent years there has been an increased interest in applying machine learning

algorithms to biomedicine ranging from the work of [Horvath, 2013] on biological

clocks using elastic net regression to cancer identification techniques using neural

networks with various degrees of accuracy [Gorynski, 2014]. The expansion of the

sector is likely related to a combination of factor such as substantial increases

in computational power as well as more data available from experiments using

technological developments such as high- throughput arrays.

It will be shown later in this dissertation that combining some techniques such

as for instance elastic net and neural network generate better results than using

directly neural networks on DNA methylation data when trying to estimate the

biological age of an individual. This approach will be shown to be also better

than applying linear regression models.

Neural networks have been used in this field for some time now. For instance,

neural networks have been used for automatic identification of lung cancer using

mammography [Tariq, 2018]. Another interesting article on this regard is [Miles-

Jefferson, 2000]. In this article the authors used neural networks to predict the

outcome of breast cancer surgeries using as input data such as the expected size

of the tumor and location. A similar approached was followed by [Chang, 2018]

but in this case with gliomas.

Oustimov [2014] highlighted the increasing importance of neural networks in

the field of cancer genomics and biomarkers. Two of the most important biomark-

ers in the detection of illnesses such as cancer and diabetes are DNA methylation

and SNPs. These are obvious fields of research because there is ample existing

literature linking DNA methylation with cancer [Das-Partha, 2004]. There have

been some studies applying neural networks to cancer identification using DNA

methylation such as for instance [Coppede, 2015] on colorectal cancer. Perhaps

one of the commonalities of many of these articles is that they focus on a specific
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subset of cancer, such as for instance in this case colorectal cancer. It should be

noted that in this dissertation the focus was on trying to develop more generic

algorithm that could potentially be used as a wide screening tool. Genetic scores

are another biomarker frequently used as tools to estimate the predisposition to

get certain types of illnesses such as diabetes and cancer [Udler, 2019].

Another interesting application for cancer identification are support vector

machines. For instance, [Kim, 2016] applied them in the field of breast cancer

detection. Perhaps, one of the issue with support vector machines, similar to

some degree of neural networks is the out-of-sample forecasting error, particularly

when applied to different types of cancers. One more algorithm, among the many,

that deserves to be mentioned are k-nearest neighbours. This is a less complex

algorithm than neural networks or support vector machines but it remains nev-

ertheless very useful in many applications in this field. Some interesting articles

describing the application of this technique in the field of cancer identification are

[Bhuvanesuari, 2015, Xianglin-Zhang, 2019].

There field of machine learning applied to genomic data has seen a significant

expansion in recent times as more data became available. [Libbrecht, 2015] for

instance mentioned the current use of machine learning techniques to identify

transcription start sites (TSS). Other applications of machine learning identified

by [Libbrecht, 2015] include splice sites, promoters and enhancers. The author

also compared the typical machine learning approach with the scientific way. In

machine learning, an algorithm is first identified or developed. Then the algorithm

is trained with a training data set and then the data is tested out of sample with

new data. This, in the opinion of [Libbrecht, 2015] is not too dissimilar from the

scientific was of developing and hypothesis and then testing it with experiments.
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Chapter 2

Hypothesis and objectives

2.1 Hypothesis

The general hypothesis of this dissertation is that the of use advanced statistical

methods based on machine learning joint with a dimensional reduction of the large

amount of omic data can improve the predictive capacity of predictive models. In

particular, we propose to:

1. Reduce the dimensionality of the omic data using Elastic Net regression.

2. Use techniques with high predictive level such as Bayesian Neural Networks

techniques

This general hypothesis can be summarized in these specific hypothesis:

1. DNA methylation can be used to generate forecast profiles for individuals

assessing the risk of contracting complex illnesses such as cancer. While

reversible DNA methylation changes are stable and have a significant impact

on gene expression having therefore an impact on cancer.

2. Chronological age can be estimated using DNA methylation data. Some

evidence of anti-aging interventions, such as calorie restriction, having a sig-
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nificant impact on epigenomic clock (and DNA methylation) support this

hypothesis.

3. Genetic factors inherited through genetic polymorphism predispose individ-

uals to contract illnesses such as diabetes.

2.2 Objectives

The overall objective of this dissertation is to show that the proposal of modeling

in two steps, by first reducing the dimensionality of the data followed by the

application of advanced models such as Bayesian techniques, is a viable approach

to generate accurate predictive models. To this end, we propose two address this

issue by covering three main objectives representing three different areas where

personalized medicine have provided some advances. We aim to create:

1. An accurate biological clock using DNA methylation data.

2. Models to classify individuals with cancer using DNA methylation data.

3. Models to predict individuals at high risk to suffer diabetes using genomic

data.
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Chapter 3

Methods

In this chapter it is shown the methods applied for the analysis of aging, cancer

and diabetes.

3.1 Aging

3.1.1 Age estimation using neural networks and DNA methylation

levels

There are several techniques available to determine the biological age of a patient

by analyzing the DNA methylation levels of some of their cells. In this section

the forecasting accuracy of neural networks is compared to the k-nearest neigh-

bors (“KNN”) technique. The accuracy of the forecast is related to the sample

size. For smaller datasets the KNN provide some moderately accurate results,

with an average error of approximately 10 years. When the sample size increase

the KNN does not appear to work properly (for a dataset of 720 samples) and

neural networks start to provide better results. While the amount of samples in

each dataset varied the number of CpGs per case was constant at approximately

27,000. Several simulations were performed randomly reducing the number of

CpGs in the samples. It was found that typically the best results were found not

when using all the CpGs (27,000) but when using a relatively randomly selected
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subset of approximately 300 to 400 CpGs. While the sample size is too small to

be conclusive the results seem to indicate that for an age forecasting point of view

a significant fraction of the CpGs methylation data might add mostly noise. It

is clearly required further work to determine is this intuition is actually correct.

DNA methylation is a normal process that is impacted by environmental factors

[Lucia, 2012] and life style. Indications of the central role that methylation has

in many biological process is known since 1979, after the highly influential paper

[McGhee, 1979]. Since then there has been an increasing amount of literature

involving methylation and many specific processes from diseases [Daniels, 2008]

to aging [Mansego, 2015]. From a biochemical point of view methylation occurs

when a methyl group links to a base (either C or G). The level of methylation

changes from tissue to tissue and it is different if the individual has some disease,

such as cancer. Age is also a factor impacting methylation. There are indications

that newborn methylation levels are impacted by maternal smoking during preg-

nancy [Joubert, 2016] and even might have an impact on memory [Day, 2010].

Currently it is relativity straightforward obtaining methylation data from many

different cells, such as sperm [Cassuto-Nino, 2016] or colon cells [Fernandez, 2012]

with the majority of the sample publically available being of whole blood. One

widely accepted technique to determine DNA methylation levels is bisulphite mod-

ification [Patterson, 2011b]. Thank you to this technique and similar approaches

the accuracy of DNA methylation measurements has increased substantially over

the last decade. While there has been a large amount of research regarding methy-

lation there continuous to be many questions remaining such as the exact role the

methylation has in the aging process or if methylation changes can be induced to

prevent certain illnesses.
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Methylation has been mentioned in a multitude of research reports as an aspect

influencing the aging process in humans [Rowbotham, 2014]. Changes in methy-

lation levels related to aging have been measured not only in humans but also in

some other species such as mice [Sabine, 2017], salmon [Marc, 2015, Berdishev,

1967] or great apes [Hernando-Herraez, 2013]. There seems to be a consensus

in the literature with the existence of some type of relationship between DNA

methylation levels and aging but less of a consensus of how the aging process

actually occurs or if changes in DNA methylation can actually increase life spans

[Marc, 2015]. Abnormal methylation levels do appear to be related with prema-

ture aging and some illnesses. It should be noted that currently it is possible to

induce changes in DNA methylation and that this is an active area of research.

Methylation alteration has been mentioned as an easier way to modify DNA than

through mutations [Daniels, 2008]. There currently exist accurate multi tissue

clocks, such as [Horvath, 2013] , that can predict biological age of a person using

methylation levels from several different types of tissues with an error of only

a few years. All these indications points towards some type or relationship be-

tween methylation levels and aging and warrant doing further research on what

statistical applications to use. In this section neural networks and the k- nearest

neighbor approach were followed to link those DNA methylation levels with the

patient age.
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Neural networks are a statistical application that has proven valuable for signal

fitting. It is biologically inspired and similar to many other machine learning

application does not require theoretical knowledge of the relationship between the

input and the output. The first theoretical steps in the neural network space track

back to the late 50th early 60th but these techniques only became popular several

decades later with the development of computers.

A neural network is composed of artificial neurons, which could be described as

a transfer function that generate an output as a result of a given input. Biological

neurons (3.2) inspired researcher to create the model of an artificial neural network

as a self learning tool. Artificial neurons are typically arranged in layers, a typical

neural network structure with two hidden layers is shown in figure 3.3. There are

many different types of different neurons, some of the most frequently can be seen

in equations 3.1, 3.2, 3.3, 3.4 :

1. Sigmoid:

ζ(x) =
1

1 + e−x
(3.1)

2. Tansig:

ζ(x) =
2

1 + e−2x
− 1 (3.2)

3. Linear:

ζ(x) = x (3.3)

4. Radial:

ζ(x) = e−x
2

(3.4)

The output of these neurons can be seen in figure 3.1.Each neuron in a neural

network has an associated weight. In this section supervised learning is used.

Supervised learning is an algorithms that trains the network using a training data
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set in which the output is known i.e., if the patient has cancer or not. After the

network is trained it can be used to estimate if a new patient has cancer. There are

many types of different training algorithms with different levels of sophistication

and accuracy. In simplifies term what the training algorithm does is changing

the weights on the neurons so the output generated by the model is as close as

possible to reality.

Figure 3.1: Output of frequently used neurons

One of the most successful applications of neural networks was in the field of

supervised learning. For supervised learning applications a neural network com-

posed of a number of neurons is trained to replicate an actual output as closely as

possible by adjusting the relative importance of the value of those neurons. Then

the network is typically tested with new data to try to identify its generalization

power. There is a huge amount of different neural networks. Some of the main

differences are the network structure, the type of neurons used and the training
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algorithm. Neural networks have been applied in some areas of medical research,

such as forecasting of growth of staphylococcus in milk [Orawan, 2016] or medical

diagnosis [Kadhim, 2011]. These techniques are typically used when the underly-

ing relationship between the exogenous and endogenous variables is not known or

when such relationship is too complicated to model explicitly.

Figure 3.2: Biological neuron

The following databases were used: 1) (GSE56606) containing methylation

information of CD14+ monocytes for 100 patients with diabetes as well as con-

trol subjects from [Rakyan, 2011], 2) (GSE34035) containing methylation data

for saliva of 197 patients with different alcohol consumption from [Liu, 2010],

3) (GSE24884) methylation data of subcutaneous adipose tissue of 56 patients

from [Arner, 2015], and 4) (GSE41037) database of 720 patients suffering from

schizophrenia as well control subjects from [Horvath, 2012]. All the datasets are

publically available. In a first instance, a neural network (backpropagation) with

10 neurons was applied to all the three datasets. As expected the results were
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Input layer Output layerHidden layer 1 Hidden layer 2

Figure 3.3: Biologically inspired artificial neural network

considerably more accurate for the large data set than for the smaller ones. No

meaningfully prediction was obtained for the smaller datasets using neural net-

works.
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Figure 3.4: Mean error for out of sample values - KNN (GSE34035)

Then the KNN technique was used. The KNN approach was followed using a

series of values of k, from 1 to 35 as, well as for several distance measures, such

as Euclidean, Cityblock, Correlation and Cosine. The results, for some of the

smaller datasets, can be seen in figures 3.4 and 3.5. The GSE41037 dataset was

then sliced into smaller subsets to see if as the number of samples increased the

accuracy of the KNN improved (figure 3.6) but this was not observed (perhaps

due to the limited sample size). The regressions for two subsets of GSE41037 can

be seen in figures 3.7 (75 cases) and 3.8 (100 cases) and some more details in table

3.1.

N. of samples 75 100 575

P1 [0.0042, 0.1969] [0.0467, 0.1806] [0.0779, 0.2377]

P2 [14.89, 24.33] [16.02, 24.17] [19.11, 28.90]

R-square 0.07279 0.08735 0.1142

Table 3.1: Regression model f(x) = P1 ∗x+P2 for various amount of samples (GSE41037) at

95% confidence

The sensitivity of the results regarding the number of CpGs included in the
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Figure 3.5: Mean error for out of sample values - KNN (GSE4996)

Figure 3.6: Mean error for out of sample values - KNN (GSE41037)
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Figure 3.7: Linear regression with 75 cases (GSE41037 subset)

Figure 3.8: Linear regression with 100 cases (GSE41037 subset)
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analysis was also tested. The dataset GSE24884 was first analyzed with neural

networks including all the CpGs in the dataset. 15 neural networks were per-

formed in order to determine a median value for R and a probability distribution.

As expected, due to the small amount of sample this approach did not produced

an accurate forecast, with the mean value coming at -0.120. Then 50 % of ran-

domly selected CpGs were deleted from the data set and the process repeated

reducing the amount of CpGs by approximately 50% in each step. This was per-

formed iteratively until only approximately 100 CpGs were left. The best forecast

obtained in this way was when using approximately 300 CpGs randomly selected,

with a mean value of 0.292. This process was repeated 20 times generating each

times a different subset of CpGs to be deleted. For all the 20 subsets, except one,

the best combination was when using approximately 300 CpGs.
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3.1.2 Bayesian neural networks for the optimisation of biological clocks

in humans

DNA methylation is related to aging. Some researchers, such as Horvath or Han-

num, have managed to create biological clocks using epigenetic data. Both of

these authors used Elastic Net methodology to build age predictors that had a

high prediction accuracy. In this section, I propose to improve their performance

by incorporating an additional step using neural networks trained with Bayesian

learning. It will be shown that this approach outperforms the results obtained

when using Horvath’s method, neural networks directly,or when using other train-

ing algorithms,such as Levenberg Marquardt’s algorithm. The R-squared value

obtained when using our proposed approach in empirical (out of sample) data

was 0.934, compared to 0.914 when using a different training algorithm (Leven-

berg Marquard), or 0.910 when applying the neural network directly (e.g. without

reducing the dimensionality of the data). The results were also tested in indepen-

dent datasets that were not used during the training phase. Our method obtained

better R-squared values and RMSE than Horvath’s method in the datasets (R-

squared values ranging from 0.40 to 0.70). We demonstrate that building an age

predictor using a Bayesian based algorithm provides accurate age predictions.

This method is implemented in an R function, which is available through a pack-

age created for predicting purposes and is applicable to methylation data.This

will help to elucidate thereof DNA methylation age in complex diseases or traits

related to aging.
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In recent years there has been an increased interest in studying the impact

of methylation levels on aging. Some researchers, such as [Horvath, 2013, Han-

num, 2013], have developed biological clocks that are able to estimate the age

of a patient by analyzing the level of methylation of blood cells and also tissues

such as brain, breast or colon matter. At a chemical level, methylation is the

addition of a group methyl to cytosine base at 5-CPG-3location, see [Caifa, 2004,

Patterson, 2011a, McBryan, 2014, Cerchietti, 2017, Yuval, 2018]. CPG represents

the link between a Cytosine and a Guanine base by a phospodiester bond. It has

been theorised by authors such as [Lim, 2010] that methylation has an important

role in regulating gene expression. However, the role of DNA methylation in the

process of aging in humans remains unclear. Authors such as [Jones, 2013] have

noticed that "certain CPGs sites are highly associated with age, to the extent

that prediction models using a small number of these sites can accurately predict

the chronological age of donors", referring to biological clocks such as those cre-

ated by Horvath or Hannum. The impact of methylation on mortality has also

been analyzed [Marioni, 2016].[Horvath, 2014] found that methylation is impacted

by some environmental and lifestyle factors, such as obesity. In particular, they

found that obesity increases aging in the liver. Aging is clearly a complex process

with many intertwined factors. For instance, the impact of telomere shorten-

ing in aging has been the object of several studies [Takubo, 2014, Tsuji, 2002,

Epel, 2004]. There have also been extensive studies regarding the link between

methylation and cancer. For instance, [Hashimoto, 2016] used methylation as a

biomarker for gastrointestinal tumors and [Pouliot, 2015] used a similar approach

for breast cancer. Although the reported prediction accuracy in both Horvath and

Hannum’s age predictors was high, it can be improved by using better statistical

methods. Both methods used Elastic Net (EN) technique, which aims to reduce

the dimensionality of data. EN is based on a regularised regression that linearly

combines the L1 and L2 penalties of the lasso and ridge methods. We hypothesise
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that using neural networks (NN) after dimensionality reduction seems a logical

step because there is no indication that the level of methylation and the chrono-

logical age of the patient should follow a linear relationship. In addition, reducing

the dimensionality of the data before applying neural networks is beneficial be-

cause it likely decreases the possibility of issues with local minimums, which is a

frequently mentioned drawback of neural networks. It will also decrease the com-

putational costs of the calculations required to train it. Therefore, our proposed

method combines EN and NN to predict chronological age based on methylation

data. In particular, the dimensionality of the data is reduced by doing an EN

regression,as proposed in Horvath’s paper, and then Bayesian learning is applied.

In this section I illustrate that this approach yields results that are on average

superior to directly using NN on the data, as well as using EN combined with NN

using other training algorithms, such as Levenberg-Marquard’s algorithm. The

proposed approach is validated using real datasets that were obtained from GEO

repository (https://www.ncbi.nlm.nih.gov/geo/), see figure 3.9. This method is

implemented in an R function, which available through a package called methyl-

clock. A sample, showing the structure of a methylation file for a patient can be

seen in figure 3.10.
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Herein, we describe the statistical methods that we used in the two steps per-

formed to predict chronological age using methylation data. The method assumes

that input data are CpGs probes containing beta values obtained from methyla-

tion DNA arrays (Illumina 27K or 450K).

Elastic net

The elastic net is a robust algorithm, [Hui-Zhang, 2005], for linear regression

that has the interesting property of making some of the coefficients equal to zero

reducing in practice the amount of independent variables in the model. If we

assume that we have a dependent variable (y) and several independent variables

(X), then an elastic net regression is done by finding the estimator that minimises

this equation [Hui-Zhang, 2005]:

β̂ = argmin {L(a, b, β)} (3.5)

L(a, b, β) = |y −Xβ|2 + b|β|2 + a|β| (3.6)

By doing this, the dimensionality of the problem is reduced. This helps us to

deciding which independent variables to keep in the regression. This is particu-

larly useful when there is a large number of independent variables and it is not

clear which ones are relevant for the regression. However, keeping too many inde-

pendent variables could cause the obtained expression to generalise poorly when

new data is used.

Levenberg Marquardt

Levenberg-Marquardt [1963, 1994], "LM" is a commonly used training algorithm

in neural networks, [Hagan, 1994, Smaoui, 2003, Bahram, 2003, Basterrech, 2011],

that avoids calculating the Hessian matrix and has the goal of minimising a non-

linear function. In mathematical terms, the goodness of the estimated ŷ values
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and the actual y values can be described using a chi distributed error that can be

computed using the formula proposed by [Gavin, 2011]:

χ2 =
∑{

y − ŷ
σy

}
(3.7)

With the LM model commonly used as a training algorithm solving this equa-

tion [Gavin, 2011]:

{
JTMJ + diagonal(JTMJ)

}
= JTM(y − ŷ) (3.8)

Where ŷ are the predicted values, J is the Jacobian and M is a diagonal matrix

with each diagonal component equal to the inverse of the variance. The LM is a

well-tested algorithm with application in fields as diverse as character recognition,

as shown by [Badi, 2013], or to model exponential increases of viruses, as shown

by [Novella, 1995]. For a more in depth description of the algorithm, we point the

reader to the work by [Chen-Yu, 2014].

Bayesian regularisation

Another possible training algorithm for neural networks, which seems to have

obtained better results when applied to the case of DNA methylation, is Bayesian

regularisation. The purpose of Bayesian regularisation is, as described by [Mackay,

1992], to "minimise a linear combination of squared errors and weights." It is also

designed to have good generalisation properties (it should be noted that this is the

reference description given by some commercial software as Matlab). The issue

of over-fitting is important while analyzing methylation in cells because the large

amount of data makes it easy to fall due to the over-fitting issue. Over-fitting is,

in simple words, an issue that arises where a neural network matches very closely

the output of the training data but then produces poor results when applied to

other data, which are not seen by the algorithm. In other words, the network does

not generalise well.
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It is common practice in this type of problem to try to minimise the sum of

the squared errors:

φerror =
∑

(yi − ŷi)2 (3.9)

In Bayesian regularisation an additional term, [Hagan, 1997], the sum of the

squares of the weights (φweights) is added, with the expression becoming:

ψ = aφerror + bφweights (3.10)

With the basic algorithm being [Hagan, 1997]:

1. Initialise parameters a and b

2. Calculate ψ

3. Using the approximation:

H ≈ 2aJTJ + 2bI (3.11)

Estimate:

δ = N − 2bTr(H)−1 (3.12)

4. Estimate the value of the parameters:

a =
n− δ
2φerror

(3.13)

b =
δ

2φweights
(3.14)

5. Repeat iteratively (starting after step 2)

For a more detailed explanation please see the original article [Hagan, 1997].
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Horvath’s age predictor was based on 8,000 samples from different tissues

and cell types. Probes of these samples were generated from the Illumina 27K

DNA methylation arrays. The age prediction was based on 353 CpGs that

were selected using EN. Using these CPGs as the first step, we then trained

a Bayesian Neural Network using data from 720 individuals, who were used to

study the effect of ageing on methylation (GEO accession number GSE41037,

https://www.ncbi.nlm.nih.gov/geo/). Methylation data was obtained from Il-

lumina HumanMethylation27 bead chip that provides methylation levels across

approximately 27,000 CpGs measured in blood. We used 15 percent of the data

for internal testing purposes. Following standard procedures, these data were not

used during the training phase to evaluate how the network generalised to new

data and, more importantly, to assess the issue of over-fitting. We then used 8

different GEO datasets measured in different tissues and platforms to assess the

external validity of the proposed method as well as to compare model’s perfor-

mance with Horvath’s method (table 3.2).

DNA origin Platform n age range samples GEO number

Whole blood 27k 172 (33, 80) Healthy GSE58045

Blood 27k 214 (42, 93) Healthy GSE19711

Blood 450k 16 (21, 32) Healthy GSE65638

Whole blood 450k 43 (47, 59) Healthy GSE53128

Blood PBMC 27k 91 (24, 45) Healthy GSE37008

Blood CD4+C14 27k 50 (16, 69) Healthy GSE20242

Whole blood 450k 231 (34, 72) Cancer/Control GSE49996

Whole blood 450k 214 (51, 82) Alcohol GSE112987

Table 3.2: GEO datasets used for external validating purposes

We computed two statistics in the different GEO validation sets to evaluate the

performance of our age predictors: (1) the correlation between predicted age and

chronological age (R-squared); and (2) the Root Mean Square Error (RMSE). We

then computed the standard error of the R-squared and RMSE using the formulas
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provided in [Hagan, 1997], respectively. We meta-analyzed the difference of the R-

squared and RMSE between our proposed method and Horvath’s approach using

both fixed and random effect models implemented in meta R package.

3.2 Cancer

3.2.1 K-nearest neighbours and neural networks as tool to study DNA

Methylation, cancer and concentration of information on CpGs

There is an increased focus on applying statistical techniques in cancer research.

This is partly due to the large amount of information made public by institutions

such as the National Center for Biotechnology Information (NCBI). There is cur-

rently a significant amount of human DNA methylation data publically available

from such source. DNA methylation is natural process in which a methyl group

links with a cytosine in a specified location (carbon 5). This is a process that

occurs naturally in humans and other species and has been linked to many bio-

logical processes and diseases such as cancer. Changes in methylation levels in

tumors have been analyzed in many articles such as [Das-Partha, 2004, Phillips,

2008]. There is an increasing literature linking DNA methylation changes with

several types of cancers [Varela-Rey, 2013, Warton, 2016, Davis, 2004, Oakes,

2013]. Given the efforts that have been made trying to study the relationship

with DNA methylation and cancer it seemed reasonable to try to apply algorithm

such as Neural Networks or K-Nearest Neighbors to DNA methylation data. It

will be shown that using this techniques it is possible to classify, within a reason-

able level of error, patients into two categories. One representing cancer patients

and one representing healthy control patients.
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A frequently used tool for classification problems is the K-Nearest Neighbors

algorithm. The K-Nearest Neighbors algorithm tries to find similarities between

the case that is currently analyzed, such as a new sample, and a dataset of al-

ready categorized samples. Similarly to neural networks this technique has been

successfully applied in many fields [Khamis-Hassan, 2014, Parvin-Hamid, 2010].

There are also some interesting articles applying this technique to cancer classi-

fication. A good example would be [Chaoli, 2012]. The authors in [Chaoli, 2012]

used this technique to classify metastasis in a gastric cancer analysis. As previ-

ously mentioned the algorithm is relatively simple. The basic idea is comparing

the distance between the data and trying to group the samples accordingly. There

are however several factors to take into account. For instance, there are multiple

distance measures. The practitioner needs also to select the amount of neighbors

to be used for comparing purposes. There is no general rule to select these at-

tributes. The distance metrics used can be found in equations 3.15, 3.16, 3.17 and

3.18. All the calculations were performed in Matlab and the nomenclature used

for defining the distance metrics is also Matlab nomenclature.

1. Euclidean:

(ϕi − φj)(ϕi − φj)′ (3.15)

2. Cosine:
(ϕiϕ

′
iφjφ

′
j)

1/2 − ϕiφ′j)
(ϕiϕ′iφjφ

′
j)

1/2
(3.16)

3. Seuclidean:

(ϕi − φj)Φ−1(ϕi − φj)′ (3.17)

4. Hamming

ϕi = φj → 0;ϕi 6= φj → 1 (3.18)

5. Jaccard
max(ϕi, φj)−min(ϕi, φj)

max(ϕi, φj)
(3.19)
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6. Minkowski

(
∑
|ϕil − φjl|q)1/q (3.20)

7. Chebychev

max(|ϕil − φjl|) (3.21)

56



Neural Networks are a set of algorithms frequently used for forecasting, clas-

sification and clustering purposes. Perhaps the most typical approach is using

them for supervised learning. In other words, trying to obtain an output, given

a series of inputs as close as possible to the actual output. This is a tried and

tested technique in many fields. A neural networks is composed by artificial neu-

rons which in this context should be understood just as a mathematical formula

giving an output when it receives an input. The output is typically limited to

values between zero and one but there are other potential options. There are

some weights associated with these neurons. The network learns by modifying

the weights until the obtained output is close enough to the actual target. There

are several articles in the literature analyzing the issue of cancer detection using

neural networks. For instance, [Ganesan, 2010] applied this technique to cancer

diagnosis using demographic data. In an interesting article [Menendez-Alvarez,

2012] neural networks were successfully used for breast cancer screening. There

are also some articles applying this technique to methylation data, such as [Co-

pede, 2015]. The author used this technique in a study of colon cancer. It will be

shown that neural networks can be applied, for cancer detection purposes, to two

different types of cancers. It will be also shown that subdividing the data into

smaller dataset neural networks can be also used as a tool to see how the cancer

information is spread among different CpGs.
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As previously mentioned analyzing DNA methylation data for cancer identifi-

cation purposes is a growing field of research. It is important not only identifying

what algorithms are successful on differentiating between cancer and non-cancer

samples but also to have a better understanding of how the information is spread

among CpGs. In this section two algorithms, Neural Networks and K-Nearest

Neighbors, are applied to two different types of cancer. Both techniques seem to

provide relatively accurate classifications. When using the K-Nearest Neighbors

approach it was found that the distance metric used had a substantial impact

on the error rate with for instance the Minkowski and Chebychev metrics giving

accurate forecast over a relatively large amount of configurations. While more

testing is required the results would seem to support the idea that for the two

types of cancer analyzed the cancer information seemed to be spread among a

large number of CpGs with forecasting remaining accurate even when using a

small randomly selected subsets of CpGs. This result seemed to be consistent

when using any of the two previously mentioned algorithms with any of the two

datasets analyzed.
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Two datasets obtained for the GEO Database were analyzed. The first data set

comes from a prostate cancer article [Kobayashi, 2011] and has the GEO Database

code GSE26126. It contains 193 samples. There are 83 healthy tissue samples in

this data set. There are also 12 cultured cell samples. The methylation data was

obtained using an Illumina Infinium 27K Human Methylation Beadchip. Using

this machine it is possible to obtain methylation information for 27,578 CpGs. The

second dataset analyzed was obtained from a carcinoma article [Warton, 2016].

It is a slightly smaller dataset containing 120 samples. The Geo Database code

is GSE57956. The sample include carcinomas and adjacent non-tumor samples.

All these databases are publically available at GEO Database which is a database

supervised by the National Center for Biotechnology Information in the U.S..

Two techniques were used to analyze the data: 1) Neural Networks and 2)

K-Nearest Neighbors. Both of these techniques are flexible tools frequently used

for classification purposes in many fields. Both techniques are relatively flexible

in the sense that no knowledge of the underlying process is assumed and tend to

provide, depending on the specific application, acceptable results.

A neural network with two layers (one hidden) and 10 neurons was used as

a classification algorithm. The output data using to classify the neural network

was a binary state with the value 1 identifying a cancer patient and the value 0

identifying a healthy individual. 15% of the data were used for testing purposes.

These data were not seen by the neural network during training. The out-of-

sample (testing data) error was calculated for the neural network. This process

was performed 30 times in order to obtain a probability distribution. One of the

objectives is trying to analyze how spread the cancer information is among the

CpGs. In an attempt to do this the data set was sliced into several subsets. One

subset contained the entire amount of CpGs information (27,578) and the follow-

ing subset dropped 10% of the CpGs data at the time. The selection of which

CpGs to drop for every new subset was done randomly. This was done until hav-
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ing only 10% of the data. Smaller subsets containing 5%, 1%, 0.1% and 0.01%

of the original data were also obtained and their out-of-sample classification error

determined (see tables 3.3 and 3.4). The idea behind this approach is trying to

see which amount of CpGs data is enough to have a reasonably good indicator

about the presence of cancer.

Subset containing ( %) Mean Median St. Dev

of original data

100% 0.1000 0.0862 0.0597

90% 0.1000 0.1034 0.0507

80% 0.1345 0.1032 0.1006

70% 0.1000 0.0690 0.0523

60% 0.1092 0.1034 0.0559

50% 0.1333 0.1379 0.0606

40% 0.1057 0.1034 0.0404

30% 0.1322 0.1379 0.0647

20% 0.1264 0.1207 0.0692

10% 0.1103 0.1034 0.0539

5% 0.1126 0.1207 0.0620

1% 0.1287 0.1207 0.0520

0.1% 0.1759 0.1724 0.0709

0.01% 0.4115 0.4138 0.0859

Table 3.3: Out-of-sample error (neural network) - GSE26126

The out-of-sample errors obtained for each data subset were formally compared

to the errors obtained using the entire dataset using a Wilcoxon test (see 3.5 and

3.6). A Kruskal-Wallis test was also used. The Kruskal-Wallis test compares all

the data sets simultaneously and determines if they come from the same distri-

bution. This was done iteratively for each data set. In other words, in the first

step all the subsets were analyzed using the Kruskal-Wallis test. Then the smaller

subset, containing only 0.01% of the initial CpGs information, was excluded and
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Subset containing ( %) Mean Median St. Dev

of original data

100% 0.0954 0.0690 0.0625

90% 0.1172 0.1034 0.0484

80% 0.1093 0.1034 0.0534

70% 0.1057 0.1032 0.0593

60% 0.1366 0.1034 0.0769

50% 0.1172 0.1034 0.0638

40% 0.1080 0.1034 0.0494

30% 0.1391 0.1379 0.0650

20% 0.1183 0.1034 0.0583

10% 0.1437 0.1379 0.1195

5% 0.1149 0.1034 0.0499

1% 0.1828 0.1379 0.1655

0.1% 0.1713 0.1724 0.0776

0.01% 0.4241 0.4483 0.1029

Table 3.4: Out-of-sample error (neural network) - GSE57956
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the test was performed again. Then the 0.1% subset was excluded and so on. This

approach was repeated until the hypothesis that the error distributions obtained

from the neural networks come from the same distribution for all the subsets

cannot be rejected is obtained (table 3.7). As previously mentioned, the lower

limit for the detection of cancer would depend on two factors. The first factor

is the accuracy of the algorithm employed for the detection. The second factor

is the data. Regardless of the accuracy of the algorithm the classification cannot

be better than the information contained on the underlying data. The algorithm

can however fail to produce a good classification of the patients (cancer and non-

cancer) even if there is enough information in the underlying data to successfully

perform such classification.

Subset containing (%) p h

of original CpGs

90% 0.85580 0

80% 0.10500 0

70% 0.98160 0

60% 0.47960 0

50% 0.02600 1

40% 0.39040 0

30% 0.05530 0

20% 0.09530 0

10% 0.29300 0

5% 0.30030 0

1% 0.02370 1

0.1% 0.00016 1

0.01% 2.74E-11 1

Table 3.5: Wilcoxon test comparing the out-of-sample errors (entire data compared to subsets).

GSE26126

The K-Nearest Neighbors technique was used to classify the data according to

the presence of cancer. 15% of the data were excluded for the training process
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Subset containing (%) p h

of original CpGs

90% 0.06110 0

80% 0.27010 0

70% 0.51730 0

60% 0.02060 1

50% 0.27120 0

40% 0.32240 0

30% 0.00650 1

20% 0.11010 0

10% 0.03250 1

5% 0.08620 0

1% 0.00290 1

0.1% 0.00012 1

0.01% 3.31E-11 1

Table 3.6: Wilcoxon test comparing the out-of-sample errors (entire data compared to subsets).

GSE57986

Data GSE26126 GSE57956

All data sets 3.18705e-18 3.268e-17

Excluding 0.01% dataset 0.0005 0.0011

Excluding 0.01% and 0.1% dataset 0.1331 0.0607

Table 3.7: p-values obtained from the Kruskal-Wallis test from the two datasets
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and used only to estimate the out-of-sample error rate. Seven different types of

distance metrics were analyzed. Those seven metrics were: Euclidean, Seuclidean,

Cosine, Hamming, Jaccard, Minkowski and Chebychev. Another factor to take

into consideration when using this technique is the number of neighbours. A range

from 1 to 160 was used. After than level, for both datasets the classifications do

not appear to be accurate. In order to try to understand the distribution of

information among the CpGs several subsets of data were analyzed. The first

subset contains all the CpGs data. The second subset contained only 90% of the

CpGs, selected randomly. This process was repeated until having only 10% of

the original data. Then subsets with 5%, 1%, 0.1% and 0.01% of the data were

also analyzed. The same approach was followed when using neural networks. The

results from all the simulations can be found in figure 4.4 and in the appendix.

As an example please see figure 3.11, a sample result for the GSE26126 dataset

containing all the data. It should be noted that as the number of data decreases

there would be a point in which the amount of information is just not enough for

the algorithm to work properly, regardless if the CpGs contain cancer information

or otherwise.

1.jpg

Figure 3.11: K-Nearest Neighbor. GSE 26126 (entire set)
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3.2.2 Cancer detection using support vector machines trained with

linear kernels

DNA methylation remains a very active area of research due to its suspected

effect in areas as diverse as development [Baxter, 2012], aging [Horvath, 2013] and

cancer [Charles, 2017]. DNA methylation remains an area not well understood,

likely due to its very high level of complexity, and it seems intertwined with many

biological processes. As a biological marker DNA methylation has proven a very

useful technique and it is likely to generate a large amount of research in years

to come. Technological advancements have made available an increasing amount

of methylation data from patients that undergo procedures or that volunteer for

research. This increase in data availability has put pressure to developed better

and more efficient statistical models to try to understand these processes. This

increase in data availability is almost certain to continue in the future. In this

section I attempt to utilize a well know statistical tool called Support Vector

Machines (“SVM”) to the task of differentiating healthy tissue from tissue with

cancer using methylation data. SVMs are a general statistical tool that can,

and has, been applied to a multitude of different problems. It is likely that

in the near future SVMs will continue finding new areas of application as the

amount of data created in many scientific and engineering disciplines increases

and simultaneously computing power, which allows such enormous amount of data

to be processed, also continues to increase. SVM use the concept of separating

data into the different sides of a hyperplane in order to categorize such data. It

is a remarkably flexible technique and of relatively simple use. A SVM needs,

in the context of this section, the methylation levels for each CpGs, which is a

number ranging from 0 to 1 and a binary identification, defining if the sample

comes from a tissue with cancer or from a healthy tissue. Currently is possible to

obtain thousands of CpGs methylation data quickly from a patient sample using

relatively affordable techniques. This creates a mismatch between the number
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of samples in studies, typically from a few dozens to a few hundreds, and the

thousands of data points available for each patient. In this context SVM attempt

to categorize the methylation for each patient into two categories: 1) caner and

2) no cancer. CpGs are just a bond between two bases, a Cytosine and a Guanine

and they have proven rather important in several biological processes receiving a

considerable amount of interest by researchers. Having a quantifiable indicator of

cancer could be useful for the doctors making diagnosis as well as a potential tool

for confirmation of such diagnosis. It will be shown that training the SVM with a

linear kernel for the three tissues analyzed (liver, lung and cervix) produced more

accurate results than using other kernels, such as polynomial or Gaussian. These

results were rather consistent among the three data sets with direct tissue data

(no blood samples). The approach of using an SVM trained with a linear kernel

seems also to produce results more accurate than using a simple backpropagation

neural network trained with 10 neurons. It will also be shown that the results are

less accurate when the analysis is performed on blood samples, rather than using

directly methylation data from lung, liver or cervix. The results regarding what

type of kernel to use in this case are less conclusive. This last point is likely a

good area for further research.

In this section a brief description of support vector machines is presented, for

readers interested in a more mathematically detailed explanation of SVM please

see [Zhouyan, 2012, Shawe, 2000, Ashfaq, 2013]. These are all very good articles

and they go into details into formal mathematical issues. The mathematical for-

malism for support vector machines is not particularly simple and getting into its

details is outside of the scope of this dissertation, which focuses on applying such

techniques to the specific case of detecting cancer though SVM using methylation

data as an input. Plainly speaking a SVM tries to create a boundary (hyperplane)

between the two sets of data which is trying to classify. This boundary should be

as far away from the data as possible while containing all of them. This clearly
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leads to a Lagrange multiplier type of situation in which a function needs to be

maximized while certain constraints must be kept [Baxter, 2012]. There has been

a lot of interest both theoretically [Sung-Hoon, 2007] as well as regarding practical

applications of SVM [Dushicang, 2015]. There are some articles in the literature

applying this technique for imaging processing (radiology). For instance, [Edriss,

2012] applied this technique to breast cancer data and [Kohad-Rashmee, 2014]

applied it to lung cancer data. Imaging processing is clearly a natural candidate

for application of SVM as it removes, at least to some degree, the subjectivity

of the radiologist when examining MRI images to determine the presence of can-

cer. This process clearly depends heavily on the experience of the radiologist

with some degree of subjectivity when analyzing unclear images or cancer in early

stages. This is an area in which a great deal of automation could be applied

and in fact it is currently a vibrant area of research. Perhaps less attention has

received the application of support vector machines using methylation data as

inputs. One interesting article in this regard is [List, 2014], which successfully

applied the technique to breast cancer. In this article the input data used were

not only methylation levels but also gene expression data. In another interesting

article [Hosseinzadeh, 2014] used neural networks as a classification for differen-

tiation between healthy tissue and lung cancer. The literature in this regard is

expanding rapidly due to the clear practical applications of these techniques and

the ever increasing amount of data available.
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Support vector machines are used for determining is cancer is present in lung,

liver and cervix tissue using multiple kernels. The results indicate that linear

kernel in this regard seems to be a better approach than using polynomial or

Gaussian kernels. It was also found that using support vector machines trained

with a linear kernel seems to also produce more accurate results than using a

backpropagation neural network with 10 neurons. The accuracy of classification

decreases when methylation in blood samples is analyzed, rather than direct tissue

samples, to determining the presence of cancer.
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In this section I utilize a well know statistical tool called Support Vector Ma-

chines (“SVM”) to the task of differentiating healthy tissue from tissue with cancer

using methylation data. SVMs are a general statistical tool that can, and has,

been applied to a multitude of different problems. It is likely that in the near

future SVMs will continue finding new areas of application as the amount of data

created in many scientific and engineering disciplines increases and simultaneously

computing power, which allows such enormous amount of data to be processed,

also continues to increase. SVM use the concept of separating data into the dif-

ferent sides of a hyperplane in order to categorize such data. It is a remarkably

flexible technique and of relatively simple use. A SVM needs, in the context of

this paper, the methylation levels for each CpGs, which is a number ranging from

0 to 1 and a binary identification, defining if the sample comes from a tissue

with cancer or from a healthy tissue. Currently is possible to obtain thousands of

CpGs methylation data quickly from a patient sample using relatively affordable

techniques. This creates a mismatch between the number of samples in studies,

typically from a few dozens to a few hundreds, and the thousands of data points

available for each patient. In this context SVM attempt to categorize the methy-

lation for each patient into two categories: 1) caner and 2) no cancer. CpGs are

just a bond between two bases, a Cytosine and a Guanine and they have proven

rather important in several biological processes receiving a considerable amount of

interest by researchers. Having a quantifiable indicator of cancer could be useful

for the doctors making diagnosis as well as a potential tool for confirmation of

such diagnosis. It will be shown that training the SVM with a linear kernel for the

three tissues analyzed (liver, lung and cervix) produced more accurate results than

using other kernels, such as polynomial or Gaussian. These results were rather

consistent among the three data sets with direct tissue data (no blood samples).

The approach of using an SVM trained with a linear kernel seems also to produce

results more accurate than using a simple backpropagation neural network trained

69



with 10 neurons. It will also be shown that the results are less accurate when the

analysis is performed on blood samples, rather than using directly methylation

data from lung, liver or cervix. The results regarding what type of kernel to use

in this case are less conclusive. This last point is likely a good area for further

research.

All the data used are publically available in the GEO database and come

from other research reports. There are the dataset containing methylation sample

from cancer and control cases. The first data set contains cases with liver cancer

(GSE57956) and comes from [Mah, 2014] article. There are 120 samples. The

second dataset is from a lung cancer study [Lenka, 2017] contains 88 cases and

has the GEO data base code (GSE49996). Half of the samples (44) are from lung

tissue with cancer and the other half from healthy lung tissue. This dataset is from

a cervical cancer article [Zhuang, 2012] and has the accession code (GSE30759)

in the Geo Database. These are the three datasets containing methylation infor-

mation from organs. A fourth dataset was used, in this case, rather than having

sample from organs the methylation data was extracted from blood samples. This

information was obtained from bladder cancer research published by [Scott, 2015]

with the GEO database code (GSE50409), 120 samples. All the dataset contain

DNA methylation information of patients obtained with the Illumina 27K. There

are in excess of 27,000 CpGs methylation data points for each patient present in

the dataset as well as an indicator representing if the data comes from a can-

cer sample or otherwise. All the data used is publically available and obtained

from the Geo Database (www.ncbi.nim.nih.gov). The algorithm used to detect

cancer was a support vector machine, trained with three different kernels: liner,

polynomial or Gaussian. The objective is to obtain the smallest, out of sample,

classification error possible. The three previously mentioned kernels can be de-

fines as follows (equations 3.22, 3.23 and 3.24):
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1. Linear:

kernel = ζ1 ∗ ζ2 (3.22)

2. polynomial:

kernel = (ζ1 ∗ ζ2 + 1)α (3.23)

where a is the degree of the expression

3. Gaussian

kernel = e−|ζ1−ζ2|
2

(3.24)

Deciding which kernel to use is of clear importance and can potentially have

a substantial impact on the accuracy of the data classification. This decision, of

what type of kernel to use, depends on the specific application. It is not easy, in

principle, to decide a priori without actually comparing the results of different ker-

nels which one to use. As an additional step and comparison purposes the results

from the SVM were also compared with the results from a simple neural network

with one hidden layer, 10 neurons and trained using backpropagation. The same

process was applied for all the four data sets, regardless if the methylation data

came from organs of from blood samples. 100 simulations were performed on each

case to obtain a probability distribution. Then a Wilcoxon test was performed

comparing the results obtained using SVM, with linear, polynomial and Gaussian

kernels, as well as with neural networks. All the calculations were performed using

the commercially available software package Matlab.

3.3 Diabetes

3.3.1 Diabetes detection using Bayesian neural networks and SNPs

It is possible to follow an approach similar to the one deployed for the analysis of

cancer detection using DNA methylation data but applied instead to the detection

of type two diabetes using SNPs. Neural networks seem to be an ideal candidate
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for this classification problem as there would not appears to be any reason sus-

taining the hypothesis that the relationships between using SNPs as biomarkers

and a patient having type 2 diabetes being a linear one. Furthermore, there could

be a very complex underlying process linking SNPs with diabetes that could be

rather complex to model with traditional linear models.

The diabetes training set was obtained from Genetic Epidemiology Research on

Aging (GERA) containing a large initial amount of SNPs. In this case every SNPs

was analyzed doing a single association study. GWAS was run filtering out all

the SNPs that did not meet a predefined threshold [Juan-Gonzalez, 2019]. Only

those SNPs with p-values smaller r equal to 0.01 were included in the analysis.

The final amount of SNPs was 8,574 which is very significant reduction from the

original dataset. This analysis was performed using the function snp.rhs.tests in

the GWAS package in R.

As there is no widely accepted model that describes in simple but accurate

terms the relationship between SNPs and diabetes it seems reason to follow a

highly non-linear approach to model this potentially complex process as for in-

stance neural networks. When applying neural networks to a complex classifica-

tion problem such as this one there are many parameters to take into account,

such as for instance but structure of neural network to use, what type of neuron,

how many neurons, what type of learning algorithm to use and how to divide the

data between the training and testing phases.

A neural network with 150 neurons with Bayesian learning was used as a su-

pervised learning algorithm to distinguish between patients suffering from type 2

diabetes and healthy individuals. The data consisted of three different datasets

D1, D2 and D3 with 8,574 SNPs per individual All the training data came from

D1. 20 times cross validation was performed in an attempt to achieve the best

generalization power possible and avoid the overfitting issue. Out of sample val-

idation was performed for D1, D2 and D3. The methodological steps were as
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follows:

1. Define the structure of the neural network (NN)

2. Define the learning algorithm (Bayesian) (BNNLearning)

3. Define the maximum classification acceptable error of the neural network

4. Define the size of neural network (NN).

5. Train the Bayesian neural network (BNN) with the training algorithm (BNNLearning)

and cross validation

6. Repeat step 6 until the out of sample error using the testing data D1−testing

is smaller or equal than the error defined on step 3. If there is no further

improvement change the size of the neural network (back to step 5)

7. If out-of-sample error using testing subset D1−testing is equal or smaller than

the maximum acceptable error then chose that Bayesian neural network

(BNN) as a valid one and store it in memory.

8. Estimate the out-of-sample error using external datasets (D2 and D3) as

validation sets.

All the analysis was performed using Matlab on a small computer luster com-

posed of five CORE i5 8th generation computers. The external validation datasets

D2 and D3 were obtained from public available sources. D2 was obtained from

Gene Environment-Association Studies “GENEVA” while D3 was obtained from

Finland-United States Investigation of NIDDM Genetics “FUSION”.
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Chapter 4

Results

The results obtained in this dissertation are based on the results in two published

articles in journal plus an additional article that it is undergoing its second review

by a journal. The articles are as follows:

• Gerardo Alfonso, Juan R Gonzalez. Bayesian neural networks for the opti-

misation of biological clocks in humans. Royal Society Open Science. Under-

going second review by journal

• Gerardo Alfonso. Age estimation using neural networks and DNA methyla-

tion levels. International Journal of Genetic engineering and biotechnology.

Volume 6. Number 1. 2017. 1-12.

• Gerardo Alfonso. Cancer detection using vector machines trained with linear

kernels. International Journal of Science and Research. 2017. Volume 6.

Issue 7.

The method proposed in the first paper is implemented in an R/Bioconductor

package (under evaluation) whose developmental version is available at: https:

//github.com/isglobal-brge/methylclock/.

Another paper is being written which cover the use of our proposed approach

on genomic data and diabetes:
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• Gerardo Alfonso, Jonatan Gonzalez-Rodriguez, Juan R Gonzalez. Bayesian

neural networks accurate predict diabetes risk based on genomic data. In

preparation.

4.1 Aging

4.1.1 Bayesian neural networks for the optimisation of biological clocks

in humans

We first applied NN to the data without reducing the dimensionality using EN

(e.g. direct neural network approach). The network was trained 100 times using

LM and another 100 times using Bayesian regularisation in both cases the results

were less than optimal with substantial dispersion in out-of-sample values obtained

for the R-squared of the regression comparing the predicted age estimates with the

chronological age of the patients with the network in several cases, stopping after

1,000 iterations without reaching the target error. The input for the network

in both cases was the methylation levels of the 27,000 CpGs, with no further

transformation. The target output was the age of the patients. The network

had two layers (only one hidden) and had 10 neurons in the hidden layer. The

low R-squared values obtained from the simulations indicate that the model is

not capturing too much variability (median: 0.34, range: 0.22, 0.83). These

results suggests that applying a neural network directly to the data is not the

best approach because the variance that is explained by this approach is too

modest. This is likely to happen because of the issue of local minima in neural

networks, which are of particular importance when, as in this the case, there are

a large number of input data (CPGs) and a smaller number of samples, see [Bo-

Liu, 2017]. Reducing the dimensionality of the data can substantially increase the

accuracy of the forecasts.

Our two steps approach aims to overcome this difficulty. We first reduce the di-
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mensionality of the data by using EN and then apply a better predictor methodol-

ogy (e.g. NN). The EN step is performed by using the CpGs obtained in [Horvath,

2013] that were obtained after regressing chronological and age on about 27,000

CpGs from 8,000 individuals. The CPGs selected in that paper have proven to

be useful for age predicting purposes. Consequently, the dimensionality of the

problem is reduced from 27,000 variables per individual to 353 variables. The

methylation data for these CpGs were used as the input for NN. The NN cho-

sen has two layers with 10 neurons in the hidden layer. The neural networks

were then trained using both the Levenberg-Marquardt algorithm and Bayesian

regularisation. The results of a neural network will change every time that it is

trained because we used different initialisation parameters to avoid sub-optimal

local convergence. We run 100 simulations for LM algorithm and another 100 for

Bayesian regularisation. Figure 4.1 shows the distribution of R-squared values of

each simulation for the two different training methods.

Figure 4.1: R-squared histograms for LM and Bayesian learning methods of simulated datasets.

We observed that Bayesian training clearly outperforms the LM method since

the median R-squared for LM is 0.85 (range: 0.63 to 0.92) while for Bayesian
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training is 0.90 (range: 0.71 to 0.93) (table 4.1). These observed differences are

statistically significant after applying Wilcoxon test (p = 6.4× 10−53). The same

conclusion is obtained when comparing our two stage proposed method (EN +

NN with Bayesian training) with one based on a Bayesian NN applied to the en-

tire dataset (Wilcoxon test, p = 6.3 × 10−28). This indicates that reducing the

dimensionality actually (statistically significantly) improved the forecasts.

R-squared

Algorithm Median Range

LM 0.8492 [0.6274, 0.9137]

Bayesian 0.900 [0.7152, 0.9340]

Table 4.1: Median and range of R-squared values obtained from two Neural Networks trained

using two methods different methods (Levenberg-Marquardt and Bayesian) after dimension re-

duction of the dataset GSE58045 in 100 simulated datasets.

We applied our proposed method to the internal test dataset (15% out-of-

sample of GEO number GSE41027 not using when creating the predictive model,

n=108). The regression of the predicted values against the chronological age can

be seen in figure 4.2. We observe a good performance with an R-squared equal to

0.94, being 0.97 in the training data (85% of GSE41027 dataset, n=612), which

obviously over-estimates the model’s predictive value.

Bayesian neural network implementation

The Bayesian neural network was trained using Matlab. The first step was to

create a neural network structure of two layers, one of which is hidden. The

hidden layer has 10 neurons. This structure generated better results than more

complex neural networks with larger amount of neurons or of hidden layers. Some

of the more complex networks analyzed generated good results for the databases

analyzed but generalised poorly when handling new databases. The database
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Figure 4.2: Regression of the predicted age against the chronological age using the internal test
dataset (15% out-of-sample of GSE41037).

GSE41037 was used for training purposes with 15 percent of the data kept aside

for testing purposes. The training algorithm used was Bayesian regularisation, us-

ing the package trainbr in Matlab. A ten times cross validation approach was fol-

lowed for training purposes. Consequently, a net structure was generated in Mat-

lab. For convenience that net structure was transformed into a function using the

Matlab function genFunction. This function takes as an input a matrix of values

in which each column represents one patient and each row represents the methyla-

tion value for each CPG, as previously mentioned we used the CPGs obtained by

[Horvath, 2013]. The function then generates a vector output that is the obtained

value for the age of each patient is then compared to the chronological age of the

patient using simple linear regression. The function was then transformed into

C++ code using the Matlab application "Matlab Coder". An R function that calls
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this C++ code was created to allow users predicting age using DNA methylation

data that is available at https://github.com/isglobal-brge/methylclock.

Validation

Our proposed method was tested using 8 independent GEO datasets. The re-

sults obtained from our two stage approach (Elastic Net + Bayesian Neural Net-

work) were compared with those obtained using Horvath’s method. We selected

some GEO datasets that have been published after Horvath’s paper was pub-

lished to avoid including individuals that were used to build Horvath’s predictive

model and, hence, avoid overfitting (table 3.2). Figure 3 shows the meta-analysis

of Rsquared and RMSE obtained from our proposed method and Horvath’s ap-

proach. We observe that, as expected, there is a large heterogeity in the results

(p of heterogeneity <0.01). There are some GEO datasets were both methods

are providing similar R-squared (GSE20067, GSE51032 and GSE101764) but, in

general, a better performance when using our proposed method is achieved (figure

4.3).In summary,we observe that our method explained a 4% more variability of

the chronological age than Horvath’s method (CI95%: 2%-5%). Similar conclusion

was achieved when comparing RMSE (figure 4.3B). This is not surprising consid-

ering that there could be some degree of non-linearity in the relationship between

methylation levels and aging. For processes that are, at least to some degree,

non-linear, neural networks should provide better results than linear regression.

4.1.2 Age estimation using neural networks and DNA methylation

levels

The techniques showed in this section, both neural networks and KNN, need a

certain minimum amount of data to function properly but the sensitivity to the

actual number of sample appear to be rather different. If the data set is relatively

small the results seem to show that KNN works moderately well, regardless of the
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Figure 4.3: Validation results using different GEO datasets corresponding to our proposed
method (Elastic Net + Bayesian Neural Networks - EN + BNN) and Horvath’s method. The
panel A shows the difference of the R-squared obtained after regressing chronological age with
the age predicted using our proposed method and Horvath’s approach. Panel B shows the same
comparison for the RMSE (x1000).

distance metric used with mean errors of approximately 10 year, while for larger

datasets the neural network approached seemed to work better for the analyzed

cases. The mean error found using the KNN approach is not smaller than the

one found by some other researchers but given the rather small sample size it

is a reasonable result. The KNN approach seemed to produce values that were

moderately sensitive to k within the specified range with a maximum difference

in the error of approximately four years. For some datasets, such as GSE3403,

increasing the value of k seemed to decrease the error but this was not a constant

trend for all the datasets analyzed. In fact for some datasets, such as (GSE4996),

the error seemed to increase after a certain value of k . The average errors (over

all the k values) were 9.67, 10.01 and 9.87 years for the datasets (GSE34035),
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(GSE49996) and (GSE 24884). The error for the larger dataset (GSE41037) was

actually large than for the smaller ones, coming at 33.61, 33.03,33.93 and 33.49

year using the Euclidean, Cityblock, Correlation and Cosine distance metrics re-

spectively. For small data samples the neural network approach did not seem to

produce accurate forecasts. Forecasting accuracy did increase as the number of

samples increased with the R2 value for the larger database using just 10 neurons

coming at a reasonable average of 0.63 for the GSE41037 dataset. The accuracy

of the neural network forecast, while changing the amount of CpGs included in

the simulations, were analyzed. For the dataset analyzed the best results were

obtained not when using all the CpGs but when using a relatively small amount

of approximately 300 CpGs selected randomly. For instance, for the small dataset

(GSE 24884) the best results obtained was for a subset of 354 CpGs with the 95 %

confidence interval for R2 being [0.0514, 0.5330], which was the only entirely pos-

itive interval for the combinations analyzed. It is important to keep in mind that

a poor result for small datasets was expected. For the large dataset (GSE41037)

the best result, such as the previously mentioned average 0.63 was obtained also

with a subset of approximately 300 CpGs. More research is needed to explore this

issue but the results seem to support the idea that a large amount of the CpGs

might add mostly noise for age calculation purposes. It is also interesting that

the results seem to be relatively consistent even when taking several randomly

selected sets of 300 CpGs.

4.2 Cancer

4.2.1 K-nearest neighbours and neural networks as tool to study DNA

Methylation, cancer and concentration of information on CpGs

The results obtained using neural networks seem to indicate that even when a

substantial part of the CpGs are excluded from the analysis the network can still
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detect the presence of cancer. This seems to be the case until approximately

only 1% of the original data is included. The data is this regard seems more

conclusive for the GSE26126 case than for the GSE57956 case. The Wilcoxon test

finds no statistically meaningful difference, at a 5% significance level, between

the out-of-sample errors until only one percent of the original CpGs are actually

used. There is one exception to this trend with the Wilcoxon test rejecting the

hypothesis that the subset containing 50% of the data has a median error equal to

the median error for the entire dataset. This rejection cannot be sustained at a 1%

significance level. Besides this case, the majority of the subsets seem to generate

out-of-sample error with medians in line with the mean error obtained for the

entire dataset. While the data for GSE57956 is less conclusive, with some large

dataset having means, according to the Wilcoxon test, different from the mean

obtained with the entire dataset the trend seems to be similar with the errors

becoming different for all the subsets using 1% or less or the original data. It is

important to remember that these subsets were created randomly. These results

seem to support the idea that cancer information is spread among a large number

of CpGs. The results obtained using the Kruskal-Wallis approach also seem to

support that idea that cancer information is spread among a large number of

CpGs. From the Kruskal-Wallis results it can be inferred that when the subset

representing 0.01% of the original data is excluded all the other subsets seem to

come from the same distribution. This results seems consistent among the two

data sets analyzed.

The K-Nearest Neighbors algorithm approached yielded accurate results, par-

ticularly for the GSE57956 dataset. The results differed according to the type of

distance metric used, number of neighbors selected and number of CpGs used for

training purposes but for a large range of these factors the K-Nearest Neighbors

algorithm was able to provide very accurate out-of-sample forecast, in many cases

with an error of zero. It is important to notice that given the limited number of

82



testing data, 18 in the case of the GSE57956 dataset, the error rate should be

taken with caution but nevertheless the approach seems promising. Four different

distance metrics (Euclidean, Correlation, Cosine and Minkowski) obtained a zero

out-of-sample classification rate (18 test samples) using only one neighbor. This

zero error rate remained constant for these distance metrics using a wide range

of data sets, form 100% to 10% of the original data. Below this level the error

rate remained low but higher. Forecasting ability seems to remain relatively high

for some distance metrics, such as Minkowski or Chebychev, even for small data

subsets, such as the 0.1% of the original data subset. Forecasting accuracy is

lost in the GSE57956 when using 0.01% of the data. There are noticeable differ-

ences between the distance metrics used and the accuracy of the classifications

obtained with the Hamming and Jaccard metrics having worse that the other

metrics. Merely increasing the number of neighbors does not necessarily increase

forecasting accuracy. Forecasting accuracy seems to be very poor for all the dis-

tance metrics when more than 160 neighbors are used in the case of the GSE26126

dataset. In the case of GSE57956 forecasting accuracy for all distance metrics is

severely impaired when 100 neighbors or more are used. The results were less

accurate for the GSE26126 dataset. A sample figure can be seen in figure 4.4. All

the other graphs are shown in the appendix.

Figure 4.4: K-Nearest Neighbor. 100% of data. GSE26126
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4.2.2 Cancer detection using support vector machines trained with

linear kernels

Liver cancer

The lowest median error obtained using support vector machines for detection of

cancer in liver tissue (out of sample data) in the 120 sample studied was obtained

with a linear kernel (table 4.2). According to a Wilcoxon test the result was sta-

tistically significant at a 5 % significance level (table 4.3). The approach of using

support vector machines with a linear kernel appeared to produce better results

than using polynomial or Gaussian kernels. The linear SVM approach also pro-

duced a more accurate result than using a neural network with backpropagation

and 10 neurons in the hidden layer. This NN approach generated a median error

of 0.0556 with a standard deviation of 0.0329. All the simulations (for both SVM

and NN) were repeated 100 times each. The error using SVM was statistically

significantly smaller (table 4.4) for linear and polynomial kernels when compared

to the NN approach but that was not the case when using a Gaussian kernel.

Statistic Linear Polynomial Gaussian

Median 0.0250 0.0333 0.0833

Mean 0.0233 0.0347 0.0851

Standard deviation 0.0033 0.0032 0.0051

Table 4.2: Error rates for SVM using three different kernels

Model pl h

Linear - Polynomial 1.7e-39 1

Linear - Gaussian 3.6e-38 1

Polynomial - Gaussian 1.8e-38 1

Table 4.3: Results of Wilcoxon test for SVM using different kernels
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Statistic Linear Polynomial Gaussian

P 1.29e-5 1.19e-5 1.99e-26

H 1 1 1

Table 4.4: Comparison of NN results with NN (Wilcoxon)

Lung cancer

Similarly to the case of liver, the median error obtained using an SVM with a

linear kernel is smaller (table 4.5) that the one obtained using either a polynomial

or a Gaussian kernel. This hypothesis was tested with a Wilcoxon test (table

4.6). The median error obtained using backpropagation in a NN with 10 neurons

was 0.1538 with and standard deviation of 0.0971. In this case, the error was

statistically smaller using any of the three kernels and SVM when compared to

neural networks (table 4.7). The confusion matrix and NN accuracy information

can be seen in (figure 4.5) and (figure 4.6). All the compared errors were obtained

using untrained data. In other words, data not used for training purpose by the

algorithm.

Statistic Linear Polynomial Gaussian

Median 0.1023 0.1364 0.1136

Mean 0.0972 0.1356 0.1198

Std. dev. 0.0067 0.0122 0.0085

Table 4.5: Error rates for SVM using three different kernels

Statistic Linear Polynomial

Median 4.2e-35 1

Mean 2.0e-33 1

Std. dev. 9.1e-19 1

Table 4.6: Results of Wilcoxon test for SVM using different kernels
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Statistic Linear Polynomial Gaussian

P 1.20e-3 7.80e-3 1.30e-3

H 1 1 1

Table 4.7: Comparison of NN results with NN (Wilcoxon)

Figure 4.5: Confusion matrix sample obtained for a single lung cancer NN simulation
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Figure 4.6: Lung cancer NN simulation

87



Cervical cancer

The results using tissue samples from the cervix (63 patients in total) are consis-

tent with the ones obtained from lung and liver samples (table 4.8). The approach

of using SVM with linear kernel seems to produce the smallest error and to be sta-

tistically significantly smaller than the median errors obtained using either poly-

nomial of Gaussian kernels (table 4.9). The median result, after 100 simulations,

obtained using backpropagation and a NN was 0.1111 with a 0.1008 standard de-

viation. Using, once more (table 4.10) a Wilcoxon test the values obtained using

SVMs and NNs were compared. SVMs using linear and polynomial kernels had

statistically significantly smaller errors than the NNs. The major difference with

the previous cases is that for the cervical cancer data set the hypothesis that the

medians for the error obtained using SMVs with Gaussian kernel and the NN

being equal cannot be rejected.

Statistic Linear Polynomial Gaussian

Median 0.0010 0.0159 0.0317

Mean 0.0006 0.0092 0.0263

Std. dev. 0.0005 0.0079 0.0120

Table 4.8: Error rates for SVM using three different kernels

Statistic p h

Linear – polynomial 3.2e-35 1

Linear – Gaussian 3.5e-33 1

Polynomial – Gaussian 1.5e-19 1

Table 4.9: Results of Wilcoxon test for SVM using different kernels

Statistic Linear Polynomial Gaussian

P 0.0019 0.0008 0.0691

H 1 1 0

Table 4.10: Results of Wilcoxon test for SVM using different kernels
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Bladder cancer

The approach used in the bladder cancer section was different from the previous

three cases as the methylation data come from blood samples from the patients

rather than from tissue samples from the area potentially affected by cancer. The

idea was to see if the results can be extrapolated to analyzing the methylation

of blood, which can be obtained with much less invasive techniques than organ

tissue samples. The obtained median errors are substantially higher than in the

previous cases (when using sample directly from the organs). In this case, the

SVM with the smallest error (120 patients) is the one using a polynomial kernel

(table 4.12). There appears also not to be a statistically significant difference

when using neural networks compared to both a linear and a Gaussian kernel in a

SVM. In table 4.13) the obtained values of a Wilcoxon test using SVMs and NNs

are shown.

Statistic Linear Polynomial Gaussian

Median 0.4167 0.3667 0.4166

Mean 0.4166 0.3682 0.4140

Std. dev. 0.0229 0.0217 0.0204

Table 4.11: Error rates for SVM using three different kernels

Statistic p h

Median 2.9e-26 1

Mean 3.2e-1 0

Std. dev. 2.1e-26 1

Table 4.12: Results of Wilcoxon test for SVM using different kernels

Statistic Linear Polynomial Gaussian

P 0.0732 0.0214 0.0617

H 0 1 0

Table 4.13: Comparison of NN results with NN (Wilcoxon)
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4.3 Diabetes

4.3.1 Diabetes detection using Bayesian neural networks and SNPs

A neural network (NN) with 150 neurons generated an out of same error of ap-

proximately 17.7% on the validation data GERAtesting, see table 4.14. This was

done without using any additional SNPs filtering i.e., using all the 8,574 SNPs

available. The model generated using GERAtraining and tested using D1−testing

was then further tested using two external datasets GENEV A and FUSION

with diverse accuracy of results. In the case of the data set GENEV A the results

were particularly accurate with the classification error rate being only 10.7%. The

error histogram for the data set GENEV A can be seen in figure 4.7. It should be

mentioned that neither the GENEV A data set or the FUSION data set were

used during the training phase. In other words, GENEV A and FUSION can

be considered as pure external validation datasets. The results for the GENEV A

are less accurate with an error rate of approximately 46.8%. This discrepancy

could be due to subtle experimental differences between the two experiments that

generated the data sets GENEV A and FUSION . Nevertheless, the approach

of using neural networks with Bayesian learning for classification purposes seems

to generate relatively accurate results for some of the analyzed data sets such as

GERA and GENEV A. Particular care was done on trying to avoid the issue of

overfitting with the training phase employing 20 time cross validation. This was

possible due to the relatively large amount of cases available for analysis.

Data set n Error (%)

GERA 28,426 17.72

GENEV A 1,673 10.7

FUSION 2,614 46.8

Table 4.14: Error rate for the validation data set
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Figure 4.7: Error histogram for D2
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Chapter 5

Discussion

Technological advances have drastically increased the amount of data generated in

experiments analyzing both DNA methylation as well as SNPs facilitating in turn

the expansion of the OMICS field as well as several subfields. In this dissertation

aging as well as two major diseases, namely cancer and diabetes, were analyzed

using advanced statistical tools such as Bayesian Neural Networks (BNN), Support

Vector Machines (SVM) and K-nearest Neighbours.

One of the main achievements of this dissertation was building a biological

clock using Bayesian Neural Networks that generates accurate estimate of the age

of an individual. It was also shown that reducing the dimensionality of the data

through a technique such as elastic net before applying a neural network generates

results that are more accurate. This is likely related to the issue of local minima

in which the neural network gets stack in such local minima when facing a very

large amount of inputs and stops finding a global minimum. This is practical term

then translates to the issue of overfitting in which the biological clock generates

very accurate forecast for the training data but produces poor results when facing

new data. In addition to reducing the dimensionality of the data a technique that

is frequently used to try to minimize the issue of overfitting is cross validation,

which was used in the process of building the biological clock. The biological

clock was built using as an input DNA methylation data. There are increasingly

92



large amount of accessible DNA methylation data. Given this large amount of

data available and the observation that there is no indication that the relationship

between DNA methylation and age needs to be a linear one it seemed reasonable

to use non-linear big data techniques, such as Bayesian Neural Networks, for the

analysis.

Biological clocks built using EN regression followed by NN trained with Bayesian

regularization applied to blood methylation data seem to produce better results

than using a single step method (either using EN or NN to the entire methylation

data). Our conclusion is based, first, on the results obtained when comparing

the estimated age with the chronological age of the patients using only EN or

neural networks with other training algorithm, such as Levenberg- Marquardt’s

algorithm. The second piece of evidence in favor of our proposed method relies

on the comparisons performed with Horvath’s method in different real datasets.

One of the base assumptions is that there is some non-linearity in the relationship

between methylation levels and aging that cannot be captured when using linear

models, as in the case of Horvath’s method that uses elastic net regression models.

Meanwhile, it is likely that the reason why reducing the dimensionality of the data

before applying neural networks produces good results is related to the issue of

local minima.

In conclusion, the results support the hypothesis that there is some degree

on nonlinearity in the relationship of methylation levels and age. Some existing

linear models predict age with a reasonable level of accuracy but neural networks,

particularly after reducing the dimensionality of the data, generate better results.

This suggests that there is some level on non-linearity in the process. Having

an R implementation of our predictive model will help biomedical researchers to

incorporate an epigenetic biomarker to assess its impact in age-related complex

diseases, such as cancer or Alzheimer’s, among others.

Another of the results obtained was that application of K-Nearest Neighbors
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and Neural Networks to DNA methylation for age forecasting purposes seems to

produce relatively accurate values. When there is only a limited sample space, i.e.,

small number of patients with DNA methylation available, the KNN technique

seems to generate better results. For the larger dataset analyzed the neural net-

works approaches generated more accurate results. Reducing the dimensionality

of the data (using a subset of all the CpGs rather than all the CpGs available)

increased the forecasting accuracy. This is likely related to the problem of overfit-

ting in which the neural network generates very accurate values for the training

set but has poorer out of sample results. It is interesting that the results seem

to be relatively consistent even when taking several randomly selected sets of 300

CpGs

In the second part of the dissertation I focused on the detection of patients

with severe illness such as cancer and diabetes using DNA methylation data and

SPNs data. Neural Networks and the K-Nearest Neighbors algorithms seem to

be generate accurate classification results when applied to some cancer and con-

trol samples databases identifying between healthy and sick patients using DNA

methylation data as input. Even when a substantial part of the CpGs are excluded

from the analysis a neural network can still detect the presence of cancer. This

seems to be the case until approximately only 1% of the original data is included

Another important conclusion is that the distance metric used in the K-Nearest

Neighbor algorithm is a very important parameter to ensure accurate results with

the Minkowski and Chebychev metrics generating some of the best results. While

clearly more research is necessary the analysis also seems to suggest that can-

cer information seems to be spread among a large number of CpGs with small

randomly selected subsets of CpGs providing accurate classifications.

For the data sets analyzed, the results indicate that when using DNA methy-

lation data from the liver, lung or cervix, to determine the presence of cancer

using a support vector machine a linear kernel training generates results that are
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more accurate, than using other training kernels such as polynomial or a Gaus-

sian kernels. The difference was statistically significant (tested with a Wilcoxon

test). The results were also more accurate than the ones obtained using a simple

backpropagation NN with 10 neurons. These results were also statistically signif-

icant. The dynamics seems to be rather different when the methylation analysis

is performed on blood samples, rather than tissue from the previously mentioned

organs. In this case the accuracy of the method seems to be substantially smaller

and there appears to be less statistically significance differences between using

SVM and NN.

Diabetes was the topic of the last section of the dissertation. In this case

the input data were SNPs rather than DNA methylation data. Neural networks

with Bayesian learning seem to produce relatively accurately results for type 2

diabetes detection in the majority of cases analyzed using SNPs. The results were

less accurate for one of the external databases used for validation. This might

be related to slight different experimental differences between the experiments.

As previously mentioned the SNPs filtering was done in this case using single

association studies rather than Elastic Net regression. Future work could include

filtering the SNPs using Elastic Net and compare the results with those obtained

when using single association analysis.
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Chapter 6

Conclusions

Given the large amount of genomic and epigenomic data currently available it is

increasingly important to find better approaches to analyze such data in applica-

tions in fields such as aging, cancer and diabetes. Based on the results obtained

in this dissertation the main conclusions are as follows:

• DNA methylation can be used as the base data for biological clocks as well

as for cancer detection.

• SNPs data can be used for diabetes detection

• Using a two-step approached composed of a data dimensionality reduction

step followed by a Bayesian Neural Networks is possible to improve the ac-

curacy of existing DNA methylation based biological clocks.

• Support Vector Machines can be successfully applied for cancer detection

for a variety of different cancers including liver, lung, cervical and bladder

cancer.

• Cancer can be detected using a small amount of CpGs DNA methylation and

Support Vector Machines.

• For large datasets, containing many CpGs DNA methylation data, Support

Vector Machines generate better results than K-nearest neighbors identifying
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cancer. For very small datasets K-nearest Neighbors generated more accurate

results.

• Bayesian Neural Networks produce accurate results when applied to SNPs

data to detect patients suffering from type 2 diabetes.
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Chapter 7

Future Work

Currently there is a new version of the Illumina machine, the Illumina 855k which

greatly increases the amount of CpGs analyzed. While at the moment there

are very few available datasets using this new powerful machine that will no

doubt change in the future, allowing for further refining of the models. Another

area of possible expansion is the usage of deep neural networks that use many

hidden layers. The computational challenges of using deep neural networks in

combination for instance with methylation data from an Illumina 855k machine

(850,000 CpG data per patient) should not be underestimated but it is an area

of clear potential interest. As the data available continuously increases another

important are of future work are improvements in data dimensionality reduction

techniques such as for instance the previously mentioned Elastic Net approach.
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Appendix A

Additional cancer statistics

3.jpg

Figure A.1: K-Nearest Neighbor. 90% of data. GSE26126
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4.jpg

Figure A.2: K-Nearest Neighbor. 80% of data. GSE26126

5.jpg

Figure A.3: K-Nearest Neighbor. 70% of data. GSE26126

6.jpg

Figure A.4: K-Nearest Neighbor. 60% of data. GSE26126

100



7.jpg

Figure A.5: K-Nearest Neighbor. 50% of data. GSE26126

8.jpg

Figure A.6: K-Nearest Neighbor. 40% of data. GSE26126

9.jpg

Figure A.7: K-Nearest Neighbor. 30% of data. GSE26126
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10.jpg

Figure A.8: K-Nearest Neighbor. 20% of data. GSE26126

11.jpg

Figure A.9: K-Nearest Neighbor. 10% of data. GSE26126

12.jpg

Figure A.10: K-Nearest Neighbor. 5% of data. GSE26126
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13.jpg

Figure A.11: K-Nearest Neighbor. 1% of data. GSE26126

14.jpg

Figure A.12: K-Nearest Neighbor. 0.1% of data. GSE26126

15.jpg

Figure A.13: K-Nearest Neighbor. 0.01% of data. GSE26126
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16.jpg

Figure A.14: K-Nearest Neighbor. 100% of data. GSE57956

17.jpg

Figure A.15: K-Nearest Neighbor. 90% of data. GSE57956

18.jpg

Figure A.16: K-Nearest Neighbor. 80% of data. GSE57956
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19.jpg

Figure A.17: K-Nearest Neighbor. 70% of data. GSE57956

20.jpg

Figure A.18: K-Nearest Neighbor. 60% of data. GSE57956
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21.jpg

Figure A.19: K-Nearest Neighbor. 50% of data. GSE57956

22.jpg

Figure A.20: K-Nearest Neighbor. 40% of data. GSE57956
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23.jpg

Figure A.21: K-Nearest Neighbor. 30% of data. GSE57956

24.jpg

Figure A.22: K-Nearest Neighbor. 20% of data. GSE57956

25.jpg

Figure A.23: K-Nearest Neighbor. 10% of data. GSE57956
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26.jpg

Figure A.24: K-Nearest Neighbor. 5% of data. GSE57956

27.jpg

Figure A.25: K-Nearest Neighbor. 1% of data. GSE57956

28.jpg

Figure A.26: K-Nearest Neighbor. 0.1% of data. GSE57956
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29.jpg

Figure A.27: K-Nearest Neighbor. 0.01% of data. GSE57956
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