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Abstract

The image sensor, nowadays, is rolling the smartphone industry. While some phone brands
explore equipping more image sensors, others, like Google, maintain their smartphones with
just one sensor; but this sensor is equipped with Deep Learning to enhance the image quality.
However, what all brands agree on is the need to research new image sensors; for instance,
in 2015 Omnivision and PixelTeq (sensor manufacturers) presented new CMOS based image
sensors, which are capable of capturing multispectral bands, these sensors are defined as
multispectral Single Sensor Camera (SSC).

This dissertation presents the benefits of using a multispectral SSCs that, as aforemen-
tioned, simultaneously acquires images in the visible and near-infrared (NIR) bands. The
principal benefits while addressing problems related to image bands in the spectral range of
400 to 1100 nanometres, there are cost reductions in the hardware setup because only one
SSC is needed instead of two; moreover the cameras’ calibration and images alignment are
not required any more. Concerning to the NIR spectrum, even though this band is close to
the visible band and shares many properties, the sensor sensitivity is material dependent due
to different behaviour of absorption/reflectance capturing a given scene compared to visible
channels. Many works in literature have proven the benefits of working with NIR to enhance
RGB images (e.g., image enhancement, remove shadows in the RGB images, dehazing, etc.). In
spite of the advantage of using SSC (e.g., low latency), there are some drawback to be solved.
One of this drawback corresponds to the nature of the silicon-based sensor, which in addition
to capture the RGB image, when the infrared cut off filter is not installed it also acquires NIR
information into the visible image. This phenomenon is called RGB and NIR crosstalking. This
thesis firstly faces this problem in challenging images and then it shows the benefit of using
multispectral images in the edge detection task.

The RGB color restoration from RGBN image is the topic tackled in RGB and NIR crosstalk-
ing. Even though in the literature a set of processes have been proposed to face this issue,
in this thesis novel approaches, based on DL, are proposed to subtract the additional NIR
included in the RGB channel. More precisely, an Artificial Neural Network (NN) and two
Convolutional Neural Network (CNN) models are proposed; as the DL based models need a
dataset with a large collection of image pairs (RGB infected by NIR and target RGB image),
a large dataset is collected to address the color restoration. The collected images are from
challenging scenes where the sunlight radiation is sufficient to give absorption/reflectance
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properties to the considered scenes. An extensive evaluation has been conducted on the CNN
models, differences from most of the restored images are almost imperceptible to the human
eye.

he next proposal of the thesis is the validation of the usage of SSC images in the edge
detection task. Three methods based on CNN have been proposed. While the first one is based
on the most used model, holistically-nested edge detection (HED) termed as multispectral
HED (MS-HED), the other two have been proposed observing the drawbacks of MS-HED.
These two novel architectures have been designed from scratch (training from scratch); after
the first architecture is validated in the visible domain a slight redesign is proposed to tackle
the multispectral domain. Again, another dataset is collected to face this problem with
SSCs. Even though edge detection is confronted in the multispectral domain, its qualitative
and quantitative evaluation demonstrates the generalisation in other datasets used for edge
detection, improving state-of-the-art results. One of the main properties of this proposal is to
show that the edge detection problem can be tackle by just training the proposed architecture
one-time, while validating it in other datasets.

Key words: Multispectral single sensor camera, RGB-NIR, NIR, image processing, deep
learning, color restoration, edge detection.
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Resumen

Actualmente el sensor de imagen está normando la industria del teléfono inteligente. Mien-
tras algunas marcas de telefonía exploran añadiendo más cámaras, otros como Google, le
mantienen con un solo sensor a sus teléfonos inteligentes; pero este sensor está equipado con
Deep Learning (DL) para mejorar la calidad de imagen. Sin embargo, en lo que todas las mar-
cas estan de acuerdo es en la necesidad de investigar en los nuevos sensores de imagen; por
ejemplo, Omnivisión y PixelTeq (fabricantes de sensores de imagen) presentaron en el 2015
nuevos sensores basados en la tecnología CMOS denominado multispectral sinlge sensors
(SSCs).

Esta disertación presenta los beneficios de usar un SSC multiespectral que como se men-
cionó arriba, simultáneamente adquiere imágenes de las bandas visible e infrarrojo cercano
(NIR). El principal beneficio cuando se trabajó con imágenes del rango espectral desde 400 a
1100 nanómetros, es la reducción de costo en la configuración del hardware. Solo se requiere
una cámara SSC en vez de dos; además, la calibración de cámaras y el registrado de imágenes
ya no son requeridas. Con relación a la banda espectral NIR, aunque esta banda es la más
cercana a la banda visible y comparte algunas propiedades, la sensibilidad del sensor depende
del material de la escena debido a que el comportamiento en la absorción/reflejo capturada
de una escena es distinta al canal visible. Muchos trabajos en la literatura han probado los
beneficios de trabajar con NIR (por ejemplo para mejorar la calidad de imágenes RGB, re-
mover sombras, quitar neblina, etc). A pesar de las ventajas de usar SSC (por ejemplo baja
latencia) existen inconvenientes a ser resueltos. Uno de esos inconvenientes corresponde a
la naturaleza del sensor, que además de capturar imagen RGB, cuando no tiene instalado en
filtro NIR, también captura información del espectro NIR. Este fenómeno es conocido como
RGB y NIR cruzado. Esta tesis primeramente aborda este problema en imágenes comple-
jas y seguidamente muestra las bondades de usar imágenes multiespectrales en la tarea de
detección de bordes.

La restauración de color desde una imagen RGBN es el tema relacionado al fenómeno RGB
y NIR cruzado. Aunque en la literatura se propone un conjunto de procesos para resolver
este problema, en esta tesis se proponen distintos enfoques, basados en DL, para sustraer
la información NIR adicional que está en los canales RGB. Más precisamnte, se propone
una Artificial Neural Network (ANN) y dos Convolutional Neural Networks (CNN); como
los métodos son basados en DL, se genera una base de datos con pares de imágenes (RGB
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infectada con NIR y solo RGB). Las imágenes adquiridas son de escenarios complejos con
suficiente radiación solar para estudiar las propiedades de absorción/reflejo a las escenas
consideradas. Se ha llevado acabo una evaluación profunda del modelo CNN, las diferencias
de muchas de las imágenes restauradas son casi imperceptible al ojo humano.

La siguiente propuesta de esta tesis es la validación del uso de las imágenes obtenidas
en SSC en la tarea de detección de bordes. Tres métodos basados en CCN son propuestos.
Mientras el primero se basa en uno de los modelos más usados en la literatura, Hollistically-
nested edge detection (HED) denominado multispectral HED (MS-HED), los otros dos son
propuestos luego de observar las limitaciones de MS-HED. Estas dos nuevas arquitecturas han
sido diseñadas desde cero para usar solo esa configuración (entrenando desde cero); una vez
que la primera arquitectura es válida en el dominio visible, un pequeño rediseño es propuesto
al modelo original para abordar el problema multiespectral. Al igual que en el caso anterior,
una base de datos es generada para abordar el problema de la detección de bordes. Aunque la
detección de bordes es abordada en el dominio multiespectral, sus resultados cuantitativos y
cualitativos demuestran la generalización en otros conjuntos de datos usados para detección
de bordes, alcanzando resultados del estado del arte. Una de las principales propiedades de
estas propuestas es mostrar que el problema de detección de bordes puede ser abordado
entrenando el modelo propuesto una sola vez, mientra que puede ser validado en otras bases
de datos que no fueron utilizadas para su entrenamiento.

Palabras claves: Camara multiespectral de sensor unico, RGB-NIR, NIR, procesamiento de
imagenes, deep learning, restauracion de color, detection de bordes.

vi



Contents

Acknowledgements i

Abstract (English/Spanish) iii

List of figures xi

List of tables xv

1 Introduction 1

1.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5

2.1 Multispectral Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 RGB Image Restoration from Single Sensor RGBN Image . . . . . . . . . . . . . . 16

2.4 Edge Detection from a Multispectral Framework . . . . . . . . . . . . . . . . . . 19

2.4.1 Low level Feature Based Methods . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Biological Visual Perception Based Methods . . . . . . . . . . . . . . . . . 20

2.4.3 Classical Learning Algorithm Based Methods . . . . . . . . . . . . . . . . 20

2.4.4 Deep Learning Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



Contents

3 Multispectral Imaging 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Datasets Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Single Sensor Multispectral Image Datasets . . . . . . . . . . . . . . . . . 28

3.2.2 Edge Detection Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 RGB Image Restoration from Single Sensor RGBN Image 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Neural Network Based Approach . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 Convolutional Neural Network Based Approaches . . . . . . . . . . . . . 44

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Neural Network Based Approach . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Convolutional Neural Network Based Approach . . . . . . . . . . . . . . . 47

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Edge Detection from a Multispectral Framework 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Proposed Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Multispectral Holistically-Nested Edge Detection . . . . . . . . . . . . . . 61

5.2.2 Dense Extreme Inception Network for Edge Detection . . . . . . . . . . . 63

5.2.3 Multispectral Dense Extreme Inception Network for Edge Detection . . . 66

5.2.4 NIR Estimation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.2 Results from MS-HED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

viii



Contents

5.3.3 Results from DexiNed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.4 Results from MS-DXN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusions and Future Work 95

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 List of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 111

ix





List of Figures

2.1 Bands of the electromagnetic spectrum. . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Images in (a) and (b) are captured in a single shot by the SSC depicted in (d)—
right side. The image in (c) is acquired by the SSC with ICF depicted in (d)–left
side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Color Filter Array patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Sub-sampled RGBN data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 RGBN demosaicked samples from su- sampled images in Fig. 2.4. . . . . . . . . 10

2.6 The signal interaction from n neurons and analogy to signal summing in the
artificial neuron comprising the single layer perceptron, image from [9]. . . . . 12

2.7 Convolutional Neural Network for image processing, e.g., handwriting recogni-
tion [65]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 The VGG16 architecture [77]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9 The EfficientNet-B0 architecture [136]. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10 SSC sensitivity in the RBG and NIR wavelength. . . . . . . . . . . . . . . . . . . . 15

2.11 General scheme of RGBN imaging and color restoration process [97]. . . . . . . 18

2.12 The first CNN architecture proposed for edge detection [34]. Architecture com-
posed by three convolutional and three fully-connected layers. . . . . . . . . . . 21

2.13 RCF architecture [76]. The first column, from the stage 1 to the stage 5, are
convolutional layers of VGG16 architecture. . . . . . . . . . . . . . . . . . . . . . 22

xi



List of Figures

3.1 (a) The modular single sensor camera used throughout the thesis. (b) Pair of
single sensor cameras used for data collection together with the corresponding
ground truth—the left side corresponds to the camera with ICF while the right
side corresponds to the camera without ICF. . . . . . . . . . . . . . . . . . . . . . 26

3.2 Multispectral imaging pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Results from each image processing technique applied to the RAW images pro-
vided by the SSCs. The image correspond to a sample from the OMSIV dataset. 29

3.4 Workflow followed during the generation of single sensor multispectral image
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 (le f t ) single sensor cameras with and without ICF. The other images are samples
from the OMSIV dataset in RGB (top) and RGB+NIR (bot tom). . . . . . . . . . . 31

3.6 Miniaturized RGB+NIR samples from SSOMSI dataset. As appreciate in the
figure, all the images are from the same scene at different day time. . . . . . . . 31

3.7 Pipeline of the ground truth generation for the edge detection datasets. . . . . . 32

3.8 Sample image from the BIPED dataset. . . . . . . . . . . . . . . . . . . . . . . . . 34

3.9 Result from the image fusion methods on a sample fused image from of MBIPED
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 The final fused color image from the RGB+NIR and NIR. . . . . . . . . . . . . . . 37

3.11 Sample image from the MBIPED dataset. . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 (a) RGB+NIR image (infected with near infrared); (b) NIR image acquired with
the SSC of (a); (c) RGB image obtained with a SSC using an infrared cut off filter;
resulting in a RGB image free of NIR infection. . . . . . . . . . . . . . . . . . . . . 39

4.2 Pipeline of multispectral imaging with color correction [139]. . . . . . . . . . . . 40

4.3 RGB+NIR image (infected with near infrared); ∼RGB is the image predicted by
the proposed CCN based model for color correction; RGB is the target image
used for training the DL model and also used for the evaluation. . . . . . . . . . 41

4.4 Pipeline of the color restoration processes proposed in this Chapter. The rect-
angle "Color Restoration based on Deep Learning" stands for the different ap-
proaches proposed for the color restoration from an RGB+NIR image. . . . . . . 42

4.5 Illustration of the NN architecture used to learn the mapping functionΩ. . . . . 43

xii



List of Figures

4.6 Illustration of the proposed deep learning architectures for RGB color restoration
from multispectral SSC images: (a) CDNet and (b) ENDENet. CONV refers to
convolution, DECONV to deconvolution and RELU is the non-linear function
used for the layers in the respective illustration. The term "k3f32s2" refers to:
k = kernel size (3 × 3), f = feature size (32) and s = size of stride (2,2), the same
notation is used through the illustration. . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Illustrations of: (a) Original RGB+NIR images; (b) Results obtained from the MSE
color correction; (c) Results from the proposed approach; (d) RGB ground truth
images obtained by using the ICF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 Snapshot of the Human Eye Perception test (HEP) performed over 15 images to
evaluate the results from CDNet and ENDENet. . . . . . . . . . . . . . . . . . . . 50

4.9 Four samples from the best results (see Table 4.1). Image numbers correspond
to the values presented in Table 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.10 Four samples from the average and worst results (see Table 4.1). Image numbers
correspond to the values presented in Table 4.2 . . . . . . . . . . . . . . . . . . . 55

5.1 BSDS images used for training DL models for boundary detections—the five
provided annotations (All) and different level of consensous (2 and 3) are depicted. 59

5.2 Results from the state-of-the-art algorithms and the proposed methods (Dex-
iNed). Note that HED [150], CED [143], RCF [75], and BDCN [44] have been
trained with the BSDS500 [7] while DexiNed was trained just in our dataset
(BIPED, see Chapter 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 VGG16 [126] based multispectral holistically-nested edge detection CNN archi-
tecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Proposed Dense Extreme Inception Network (DexiNed), consists of an encoder
composed by six main blocks (showed in light blue). The main blocks are con-
nected between them through 1x1 convolutional blocks. Each of the main blocks
is composed by sub-blocks that are densely interconnected by the output of
the previous main block. The output from each of the main blocks is fed to an
upsampling block that produces an intermediate edge-map in order to build a
Scale Space Volume, which is used to compose a final fused edge-map. . . . . . 63

5.5 Detail of the upsampling block that receives as an input the learned features
extracted from each of the main blocks. The features are fed into a stack of
learned convolutional and transposed convolutional filters in order to extract an
intermediate edge-map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6 Proposed multispectral architecture of DexiNed network (MS-DXN). . . . . . . 67

xiii



List of Figures

5.7 Hallu-net architecture, the images used in the figure are from OMSIV dataset
("Conv 5×5" refers to a convolutional layer with a kernel size of 5×5, Deconv
refers to a deconvolutional layer). . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.8 (le f t ) A DCD test image with the provided annotations [71]. (r i g ht ) Contours
after removing wrong annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.9 A sample of NYUD, note there are a large amount of missed edges in the ground
truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.10 RGB and NIR images from MBIPED dataset, GT, and all edge-maps predicted
from both models considered for evaluation in Table 5.1. . . . . . . . . . . . . . 74

5.11 Precision/recall curves on BIPED dataset. (a) DexiNed upsampling versions.
(b) The outputs of Dexined in testing stage, the 8 outputs are considered. (c)
DexiNed comparison with other DL based edge detectors. . . . . . . . . . . . . . 75

5.12 DexiNed predictions from BIPED dataset. . . . . . . . . . . . . . . . . . . . . . . 76

5.13 Three resultant edge-maps from BIPED test dataset from the approaches pre-
sented in Table 5.2b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.14 Four edge-maps predicted by DexiNed for each tested dataset; they correspond
to the best and worst F-measure for the given dataset. The 2nd and 5th columns
correspond to the GT of the respective image. . . . . . . . . . . . . . . . . . . . . 80

5.15 (a) Precision/recall curves on MBIPED dataset, results from all methods consid-
ered for comparison (the multispectral images from MBIPED have been used just
for MS-DXN, while the RGB images to all other approaches). (b) Precision/recall
curves on MDBD dataset, the results is from the 20 test images. Note that the
same images used for the proposed model are also evaluated in the other models. 84

5.16 Four samples from the results obtained with the models depicted in Table 5.5.
The label in the images (1st row) corresponds to the datasets where they come
from. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.17 Four samples from the result obtained with the models depicted in Table 5.6.
The label in the images (1st row) corresponds to the datasets where they are from. 89

5.18 Four samples from the result obtained with the models depicted in Table 5.7.
The label in the images (1st row) corresponds to the datasets where they are from. 92

5.19 Four samples from the results obtained with the models depicted in Table 5.8.
The label in the images (1st row) correspond to the datasets where they are from. 93

xiv



List of Tables

3.1 Evaluation of fused images from on MBIPED using four evaluation metrics: EN
(Entropy measure), MI (Mutual Information), Qab/ f (edge transfer measure),
and VIF (visual information fidelity). Larger values are better in each assessment
metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Average and median values of the methods tested in the current work when the
whole dataset (128 samples) was considered. . . . . . . . . . . . . . . . . . . . . . 51

4.2 Results for a subset of 15 images from [132] (see details in Sec. 4.3.2). Underlined

images are depicted in Fig. 4.9 and Fig. 4.10 for qualitative evaluation. Boldface values

correspond to the best performance; #t corresponds to the number of times a given

algorithm obtain the best performance. The section of HEP contains the qualitative

evaluation (results from the survey), each value corresponds to the number of users that

selects this result as the best one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Quantitative evaluation conducted on BIPED and MBIPED datasets. . . . . . . 73

5.2 (a) Quantitative evaluation of the 8 predictions of DexiNed on BIPED test dataset.
(b) Comparisons between the state-of-the-art methods trained and evaluated
with BIPED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Comparisons between DexiNed trained on BIPED with respect to the state-o-
the-art methods in the literature trained with the corresponding datasets (values
from other approaches come from the corresponding publications). . . . . . . . 79

5.4 Quantitative evaluation of the different version of hallu-net. l r is the learning
rate used on each experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Comparisons between results obtained with DexiNed and MS-DXN with respect
to the state-of-the-art methods in the literature. All methods were trained on
MBIPED—in this case the multispectral images from MBIPED have been used
just for MS-DXN, while the RGB images to all other approaches. . . . . . . . . . 85

xv



List of Tables

5.6 Comparisons of the results obtained with the proposed approaches (DexiNed
and MS-DXN) and the by using RGB component of MBIPED, in the case of MS-
DXN the NIR component has been obtained from hallu-net. In addition, SED (a
non-learning based algorithm based edge detector) is considered for evaluation. 88

5.7 Comparisons of the results obtained in boundary datasets with the proposed ap-
proaches (DexiNed and MS-DXN) and the state-of-the-art methods proposed in
the literature. All methods were trained by using the RGB componet of MBIPED,
in the case of MS-DXN the NIR component has been obtained from hallu-net.
In addition, SED (a non-learning based algorithm based edge detector) is con-
sidered for evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.8 Comparisons of the results obtained in the scene or object segmentation datasets
with the proposed approaches and the state-of-the-art methods proposed in the
literature. All methods were trained with the RGB images from MBIPED. In addi-
tion, SED (a non-learning based algorithm based edge detector) is considered
for evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xvi



1 Introduction

The usage of Artificial Intelligence (AI) has been increasing in recent year becoming almost
ubiquitous in every computer system [2], from small devices like smartphones to factory
automation machines [134]. Precisely, in the smartphones or mobile devices, which are
increasing the usage per year around the world, each new version, releases hardware with
increased computation capabilities enabling to Artificial Intelligence the functionally on
such devices that a few years ago was just able for desktop or high-performance computers.
Currently, those devices in addition to CPU (Central Processing Unit) are equipped with
GPU (Graphics Processing Unit) and NPU (Neural Processing Unit) chips. For instance, as
the consumers smartphones are marked by the quality of images those devices are capably
of capturing, different phone market houses, like Google on its Pixel 3, are equipping their
cameras with Deep Learning (DL) to enhance and capture the best possible scene, without
compromising the time of processing [50].

On the one hand, since a couple of years ago, most of the smartphone manufacturers
increase the number of camera sensors to acquire as much information as possible from a
scene (e.g., Samsung, Huawei, Apple). However, Google on the other hand, using just one
camera sensor, according to DXOMARK [63], still got the state of the art image quality with
its Pixel 2 in 2017. One of the key features to reach such distinction, even with the current
generation (Pixel 3), is the inclusion of diverse learning algorithms [23, 121] together with the
functionality of its camera sensor. For instance, the front camera of Pixel phone is capable of
capturing marvelous selfies thanks to DL model [50] used for recognizing facial expressions
and shot just on the right time.

Following the trends of the technology in developing new and small cameras, recently a new
family of multispectral Single Sensor Cameras (SSC) has been developed. This thesis is focused
on the processing of images from these new sensors under the umbrella of Deep Learning
(DL), which will result in the new generation of the image processing research. The main
characteristic of the SSCs [20, 79] is that the captured image contain registered information
from different spectral bands. In the particular case of the cameras used throughout this
dissertation, the image sensor is able to capture information in the spectral bands ranging
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Chapter 1. Introduction

from of 400 till 1100 nanometers (nm). In other words, images from the visible and near
infrared (NIR) spectral bands are acquired in a single shot.

As the images captured from the visible band (RGB images) have abundant contextual
information from the human visual world, because of this image provides texture details with
high definition perceptible from the human visual system, the RGB images have been enough
to be used in the different fields without the necessity of any additional band. In other words,
the information provided from the visible band was enough to reach the desired work. By
contrast, the multispectral image has been largely used in a narrow domain (mainly for remote
sensing applications) [19]; in recent years its usage has been proliferated in different fields
like medicine or defense applications. Precisely, infrared band images have been frequently
used after the visible images due to their radiation difference that allows the information
acquisition in all weather or day/night conditions [85]. From the infrared band, a sub part,
near infrared, has also been used frequently, which shares many properties visible spectrum
due to its proximity to the visible band [104].

The NIR information acquired by a camera is material dependence. Therefore, fields
like photography [118], agriculture [148], remote sensing [151], medicine [33] and many
others, have been considered the usage of the NIR image sensors to accomplish the desired
objective. Generally, working with the RGB and NIR images have accomplished collecting
images with two cameras, the one for visible band and the other for the NIR band. Later,
those images are aligned or registered before any further task. While using the SSC mentioned
above, these processes are avoided reducing the time of image processing and collection,
and more importantly, reducing the cost of the project and removing errors in the processing
pipeline related with the registration. The proposal of this thesis is to study the benefits of
the combined use of information. In other words how to improve image processing results by
using information from another band. This combined usage of information has been studied
in the literature in problems related with image enhancement, dehazing, or noise removal.
This thesis will take as case study the color restoration and edge detection problems.

The usage of SSC, although presents many advantages, also introduces some problems
that need to be tackled. One of this problem is related with the fact of the single shot capturing
of two spectral bands. It makes that the CMOS sensor’s cells of R, G, B, also be perceptible of
the NIR light. Hence, the RGB image also capture an unknown percentage of NIR information,
this phenomenon is termed in the literature as NIR crosstalking in RGB image or NIR infection
on RGB channels [19, 51, 96, 104, 139]. The process to solve this infections, is generally
referred to as RGB image restoration. Although, several methods have been proposed in
the literature, Chapter 4 presents three new approaches based on Artificial Neural Network
(NN) and Convolutional Neural Network (CNN). The proposal for RGB image restoration is
addressed by using images from outdoor scenarios, where the sunlight is sufficient to make the
NIR sensors capture different information than the visible one. One of the key components in
the training of DL based approaches are the target value (in this case a target image); therefore,
two datasets have been collected, which are presented in Chapter 3. For the target image
purpose (with is free of NIR infection), another SSC has been considered, but this time, the
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camera is set with an Infrared Cut off Filter (ICF termed in the literature also as IRCF) in front
of the single sensor, this setting is detailed in Chapters 2 and 3. The ICF is a NIR filter that
enable the pass only to the visible light.

The edge detection task, as mentioned above is the second case study that is going to be
tackled in this thesis with images from SSC, to shows the advantages and benefits of these
camera sensors. The edge detection has a long history and a large number of proposed models
[10, 35]; it is still being used in applications such as image to image translation [53], photo
sketching [71], optical flow estimation [144] and so on. The proposed approaches are based on
the usage of Convolutional Neural Networks [67, 68] and the multiscale learning with a deep
supervision proposed by HED [150]. As the images captured by SSC comes from two spectral
bands, the Ground Truth (GT)—edge map annotated by human subjects—is obtained in a
fused representation of images from that spectral bands. Even though, the images are from a
SSC, the Chapter 5 quantitatively and qualitatively demonstrate that the proposed methods
are able to generalize the edge detection in the state-of-the-art datasets used for this task. To
tackle this problem, another dataset has been collected and presented in Chapter 3, which has
target edge-maps annotated in the edge level.

1.1 Research Objectives

To achieve the goals of this thesis, the research objectives have been formulated as follow:

• Multispectral image collection by using multispectral single sensor cameras. in order
to fulfill the next objectives a large dataset of multispectral images need to be acquired;
furthermore, in order to count with ground truth information two SSCs have been
used to acquire clean RGB images (SSC with NIR filter) together with RGB+NIR. Several
outdoor scenarios have been considered in order to have a large variability of scenes.

• RGB image restoration from a RGB+NIR images. As the image acquisition with the
SSC derive in RGB crosstalking with NIR information, with the purpose to give the same
human visual world to the image from such a camera, the RGB color correction problem
is tackled.

• Edge detection from a multispetral domain. With the purpose of validating the usage
of SSC in the computer vision tasks, the edge detection problem is considered. In
this case the objective is to show that information from one spectral band can help to
improve results when image from another spectral band are processed.

1.2 Contributions and Outline

The outline and contributions of this dissertation are:

• Multispectral Imaging (Chapter 3). The multispectral single sensor cameras have been
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used since the last decade, different demosaicking techniques have been proposed
to get a high resolution RGB and NIR images captured in a single shot. This chapter,
with the purpose to go further and by using two Single Sensor Cameras (SSC), collect
different datasets in visible, and visible and near infrared spectral bands. That is, one
camera is used to capture just the visible domain and the other is used to capture in
the multispectral domain; this setting will provide deep learning based models with
sufficient data to fed and then study their results.

• RGB Image Restoration from Single Sensor RGBN Image (Chapter 4). Once the single
sensor camera is used without ICF, the RGB channels acquire a percentage of NIR
component on their respective channels. Lastly, this problem is tackled from different
approaches, which have many processes to correct such RGB and NIR crosstalking.
The majority of the approaches proposed in the literature have been evaluated on
images captured by SSCs in controlled indoor scenes. This chapter 4 tackles the problem
with outdoor images acquired with sufficient sunlight to evaluate the RGB and NIR
crosstalking in different conditions and correct the NIR infected RGB images by deep
learning based models. The proposed models make the color restoration without any
further processes, unlike to the state-of-the-art techniques do.

• Edge Detection from a Multispectral Framework (Chapter 5). In this chapter one of
the recurrent task in the computer vision community is considered to validate the usage
of this image sensor. This chapter presents DL based models carefully designed to detect
edges in the multispectral domain by using images acquired from this type of camera.
Although the images used by the model are from multispectral domain (visible and near
infrared spectral bands), the proposed multispectral model can generalize its prediction
task in the most used datasets for edge detection. Even though the model is trained
one time just with the dataset for edge detection presented in Chapter 3, whenever the
evaluation is performed in other most used datasets for the same task, it reaches the
state-of-the-art results.

The aforementioned contributions have been presented at conferences and published in a
scientific Journal. More details of such publications are included in the Chapter 6.

The thesis is organized as follows. In chapter 2 relevant works related to the proposed
approaches are summarized into four sub-fields: i multispectral imaging, i i deep learning,
i i i RGB image restoration from single sensor RGBN image, and i v edge detection from a
multispectral framework. Chapter 3 presents the multispectral single sensor image processing
and the different datasets collected for the following chapters. Chapter 4 tackles the RGB
image restoration with the proposal of three deep learning based models—the one based on
NN and the other based on CNN. Chapter 5 focuses on the edge detection problem training
by using images collected with the SSCs but also evaluating its performance in the most used
datasets for edge, contour and boundary detection; in addition, two object/scene segmenta-
tion datasets have been considered. Finally, in Chapter 6 the thesis is concluded and presented
the future works.
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2 Related Work

The algorithms developed in this thesis are mainly focused in color image restoration and edge
detection in the multispectral domain. However, a key parts to accomplish the development of
these methods is image acquisition and processing to train Deep Learning models. Therefore,
before reviewing of the state-of-the-art methods in color restoration and image edge detection,
an introduction to multispectral image acquisition and processing, together with a summary
of deep learning based approaches, are considered.

2.1 Multispectral Imaging

The human eyes, on the one hand, are capable of perceiving in its youth and special scene
conditions, from 310 nm (ultraviolet) till 1100 nm (near infrared) wavelength band [127] but
normally the range of the vision is from 400 nm to 700 nm. On the other hand, bees perceive
from 300 to 600 nm (ultraviolet till most parts of visible spectrum), and the mantis shrimp
photoreceptor can detect waves from deep ultraviolet till far-red (300-720 nm) bands. As in the
nature, the image sensor technology can acquire most of the bands illustrated in Fig. 2.1 [30].
The most used camera sensors are in visible spectrum, but the technology of their sensors is

Near Infrared Mid Infrared Far Infrared

Gamma rays X-rays Ultraviolet Infrared Microwaves Radio, TV waves

1e-5 nm

5 μm 30 μm 1 mm

1 m30 cm

700 nm400 nm

1e-2 nm 10 nm

Visible

1.1 μm

Figure 2.1: Bands of the electromagnetic spectrum.
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capable of capturing lights from ultraviolet till near infrared (NIR) (380 nm - 1100 nm) [19].
The current silicon CMOS sensors are not sensitive to the ultraviolet band but they are still
capable of detecting spectral bands from 400 nm till 1100 nm. Normally, whenever the NIR
band is captured together with visible bands there are desaturations in the visible channels
(RGB). Generally, to avoid this problem, an Infrared Cut off Filter (ICF) is used to block the
wavelengths greater than 700 nm and perceives just the visible lights like the human eyes see
in its daily life.

During the last decades camera sensor technology has drop his price allowing new and
breakthrough developments; for instance in recent years a new type of multispectral Single
Sensor Camera (SSC) for simultaneous acquisitions of color and near-infrared images in the
CMOS system has been proposed. The usage of a camera from this technology is one of the
main motivations on this thesis. Although it is an appealing technology, new problems have
to be tackled in order to solve the band overlap problems discussed below. These SSCs do
not use ICF (see, Fig. 2.2d—right side), thus its sensor is capable of capturing all the visible
bands and a part of the NIR (till 1100 nm). The images in (a) and (b) of Fig. 2.2 are samples
of the images acquired in one shot by such a camera, which are the visible and near infrared
images. Note how the RGB representation (Fig. 2.2a) is affected by the NIR content on the
scene—image desaturation problem—, this affection is more appreciated in vegetation areas.

The image desaturation problem, which appears when using a SSC without ICF, is tackled
in the literature by means of the usage of color restoration approaches. Generally, to make
a color correction, a target image is needed, hence in this thesis two single sensor cameras,
rigidly attached in a rig with a small baseline, are considered. One of these cameras has an ICF
(see the image depicted in Fig. 2.2d—left side), which allows to acquire RGB images without
the desaturation problem. A sample image acquired with this camera is depicted in Fig. 2.2c.
Through the work of this thesis, since two single sensor cameras with and without ICF filters
are used, in addition to the multispectral imaging, in some sections the corresponding RGB
image processing is going to be tackled.

In the SSCs the time exposure and focus are manually set. Generally, in the digital cameras
these operations are on-camera tasks, which permits a sufficient light absorption to capture
natural scenes. Once such processes are set, a SSC will save a mosaic image array to later
imaging with the image processor tool. This tool has a set of image processing techniques to
apply to a raw image data before its representation in a display. These operations are termed
as image processing or imaging, which in the multispectral domain is termed multispectral
imaging. Basically, the processes involve image normalization, white balance, contrast equal-
ization, chromatic adaptation, gamma correction, and demosaicking [39, 109]. The sequence
of operations vary according to camera.

In general, images obtained by cameras with SSC technology are an array of RAW data,
which corresponds to an image processed with the minimum number of operations. These
operations are performed by the sensor to the information perceived from a given scene. To
acquire as much information as possible from different spectral bands by using just a single
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(a)

(b)

(c)

(d)

Figure 2.2: Images in (a) and (b) are captured in a single shot by the SSC depicted in (d)—right
side. The image in (c) is acquired by the SSC with ICF depicted in (d)–left side .
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Figure 2.3: Color Filter Array patterns.

image sensor, three important factors need to be considered [8, 56]: the light source e(λ),
surface reflectance r (λ) and camera sensitivity c(λ), which in turn c(λ) = {R(λ),G(λ),B(λ)}, λ
refers to spectral band delivered from different factors. As the image is required in color (RGB1)
and the sensor just gives mosaic data, a demosaicking process is needed. The Demosaicking
process is an interpolation process to estimate missing color values at each pixels [39]. The
previous step to demosaick the raw data, for instance the data represented in the illustration
of Fig. 2.3a, is the design of a Color Filter Array (CFA) pattern, which in the multispectral
domain is referred to as Multispectral Color Filter Array (MFA) pattern. Basically, CFA patterns
are designed by the camera sensor makers; for example, the CFA pattern mostly used in the
commercial cameras is GRBG termed as Bayer filter array [13], which is illustrated in Fig.
2.3a. The multispectral sensor used in this work has a BGNR MFA pattern (N stands for NIR
component) and a BGGR when an ICF is used, see Fig. 2.3b,c. In other words, when the ICF is
considered, the sample ratio for R, G, B bands corresponds to 1/4, 1/2 and 1/4, respectively;
when the SSC does not use ICF the ratio corresponding to the green band (G) is shared with
the NIR channel, therefore, the four bands are divided into equal proportions.

The CFA or MFA [115] pattern selection influences the accuracy of the image processing
pipeline; the selected pattern define the usage of the demosaicking technique. That is, depend-
ing on the CFA pattern a specific demosaicking process will be performed. As aforementioned,
the design of CFA depends on sensors makers; however, many CFAs have been proposed [81]
with the aim of enhancing the image quality. Furthermore, when the sensors are capable of
capturing multispectral data (more than three bands) the design of MFA also vary resulting in
different representations. For example, in Fig. 2.3c there is a pattern formed by 4 channels
in the following order BGNR, 2× 2 (N stands for NIR channel). Other MFA patterns have
been proposed in the literature [59], which are an hybrid implementation from classical CFA
(Bayer CFA), but in this case the dimension of the pattern is 10×10, the additional band (N)
is extracted from the R and B cells. In [139] two MFA have been proposed with the patterns
size of 8×8. These patterns are sampled from Bayer filter array. The sample density of the

1Through this thesis the terms RGB, color image and visible spectrum images will be indistinctly used.
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 Sub sampled R  Sub sampled G  Sub sampled B  Sub sampled NIR

Figure 2.4: Sub-sampled RGBN data.

first MFA for RGBN is 1/5, 1/2, 1/5, and 1/10, respectively; the sample density for the second
MFA proposal is 1/8, 1/2, 1/8, and 1/4. The corresponding near infrared cell is extracted from
the R and B cells in the first proposal, in the second one, the N is extracted just from the R
cells. Lastly, in [98] two variants of RGBN MFA are proposed, 4×4 and 10×10 sizes. While the
sampling density of the first one is 1/8, 1/2, 1/8 and 1/4 for the R, G, B, N, respectively; the
second one is 1/5, 1/2, 1/5 and 1/10 in the same order as the first one. In [98] the authors also
demonstrate that it is not necessary to design high sized MFAs because the best results are
obtained from MFA of 4×4 followed by the 2×2, and finally the MFA sized by 10×10.

Once the mosaic raw image is sub-sampled by the CFA, the result is the input for the
demosaicking algorithm; Fig. 2.4 shows input sub-sampled images for the pixel estimation
(i.e., blank neighbors). In recent years an extensive set of demosaicking algorithms have
been proposed in the literature, this chapter describes just a few of them; for an extensive
review on demosaicking techniques see overviews in [74, 93]. The most basic demosaicking
algorithms are linear and bicubic interpolations [105, 158] of the nearest neighbor. While the
linear interpolation takes four closest neighbors, the bicubic interpolation uses 16 closest
neighbors and the convolution is accomplished by cubic convolution—it is derived from a set
of conditions imposed on the interpolation kernel, this kernel is composed by piecewise cubic
polynomials [55].

When the computational cost is not a problem for the demosaicking task, different meth-
ods can be considered [93]. For instance, [4] and [3] present methods based on the Laplacian
operator. The main characteristics of these methods lie on the reconstruction of green pixels as
the luminance information, these algorithms star from the Bayer CFA; then, the interpolation
is applied in the horizontal and vertical directions with the Fourier spectrum analysis. Another
elaborated demosaicking technique is proposed in [160]; it is termed adaptive intraband
interpolation, which is composed by the conjunction of two demosaicking approaches based
on support vector regression and linear minimum mean square estimation. While the first
one achieves the interpolation by intraband operation, the second one uses the interband op-
eration, which make a more robust results. Iterative residual interpolation is proposed in [156]
that is the iterative refinement process for the missing pixels in green channel, once the green
channel is reconstructed, the other channels (blue and red) are interpolated with the residual
interpolation [57]. This method is mainly based in the green channel reconstruction, which
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R channel G channel B channel NIR channel

Figure 2.5: RGBN demosaicked samples from su- sampled images in Fig. 2.4.

is processed two times (horizontal and vertical), the obtained results are merged by a soft
decision scheme; adaptive residual interpolation [95], adaptively selects a suitable iteration
number and combine two different types of residual interpolation at each pixel. That is, the
green interpolation at the red lines is performed (horizontal and vertically) by residual interpo-
lation [57] and minimized Laplacian residual interpolation [58] with the iterative framework.
Lastly, convolutional neural network based demosaicking approaches have been proposed in
[137] and [135]. These DL based models, before fed the CNN architecture, interpolate from
the 2D mosaic image a 3D input image. While in [137] a bilinear interpolation is used, in [135]
a gradient-corrected bilinear interpolation [87] is considered to reach the 3D input image.
The peculiarity in [135] is that the input image fed three models (with the same architecture)
and the outputs are fused forming the color image. An illustration of the output from any
demosaicking algorithm is depicted in Fig. 2.5, in this particular case there are four channels
representing the channels of the sensor used for this thesis.

As mentioned above, the key steps in the image processing are sub-sampling based in
a given CFA and demosaicking. However, there are other processes that imply the image
enhancement, mainly if the image provided by the camera is in RAW data. The most important
methods in this field are image intensity adjustment, gamma correction, and white balance.
The intensity adjustment or contrast equalization maps from the image intensity values in
gray-scale to a new one saturating the pixel values. The resultant image increases the contrast,
therefore, it is more suitable for the white balance and the gamma correction. The white
balance (WB) is the method used to remove unnatural color captured from a scene and as
each pixel depends on the illumination, the image acquired in an illumination under a low
color temperature will appear reddish in the captured image. Therefore, by using WB, the
image will be corrected till it becomes to an image captured as in a sufficient natural light
[146]. The gamma correction is a point wise non-linearity [32], this can be summarized as
g (I ) = Iγ, the value of γ can be determined by passing a calibration target (e.g., a Macbeth
chart). Based on experiments performed in [32], γ can also be estimated by the higher order
correlation in the frequency domain.

The results of the aforementioned image processing techniques are the images a and c in
Fig. 2.2. The image in Fig. 2.2a is captured from the SSC without ICF, as can be appreciated,
such an image looks more reddish than the one in Fig 2.2c since the image in Fig. 2.2a has
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spectral crosstalking. The spectral crosstalking (or the NIR infection in the RGB channels)
is visible because of the desaturation of the visible band; generally this issue is originated
by the lack of a multispectral filter, hence the spectral sensitivity propagate to the neighbor
spectral bands as will be presented next in this Chapter (see Fig. 2.10 for this issue). To solve
the problem mentioned above, a color correction or restoration is need to obtain RGB images
from a SSC.

2.2 Deep Learning

Deep Learning (DL) is a sub class of machine learning that is based on the usage of Artifi-
cial Neural Network (ANN) for learning multiple levels of representations in order to model
complex relationships among data from experience with respect to some class of task [24, 36].
That is, the nature of DL comes from ANN that can extract features from a different types of
data, supervised and unsupervised. The main objective of ANN based algorithms is to develop
mathematical models that will enable ANNs to learn by mimicking information processing
and knowledge acquisition in the human brain, specially in the human nervous system [9].
The learning process on an ANN, specially in the common form of DL (supervised learning), is
the iterative process that by computing the loss (objective) function that measure the distance
between the predicted value and the target value, trains to map a non-linear function of a
specific task. In the iterative process, the model modifies its internal adjustable parameters to
reduce the distance [66].

The active research on ANN started back in 1940s with the computer model based on the
neural networks of the human brain [101]. In the end of 1950s, a single artificial neuron with
the introduction of perceptron is proposed in [9] (see illustration of perceptron in the right
side of Fig. 2.6); later in 1990 the necessity of additional neural layer between the input and
the output layers was highlighted in [46], which carry out multilayer perceptron (MLP) term.
The MLP incursion in the ANN architecture improved the performance on the non-linear
classification problems. However, by increasing the hidden layers in the network, the training
process becomes unstable, which derived the investigation in new training strategies like by
back propagating (BackPro) errors [114].

One of the key concepts of the modern deep network learning procedure was proposed in
the mid of 1980s, the proposal is the backpropagation method applied to the network after
the fordward process (the non-linear connection from the input layer to the output layer,
through the whole of hidden layers) [114]. The backpropagation, contrary to its predecessors,
where the feature analyzers in the hidden layers were fixed by hand, repeatedly adjusts the
weights of the connections in the network´s layers from the output layer till the input one
[9]. This procedure, later, was applied in a real world problem recognizing handwritten zip
codes from U.S. mail [67]. This model used the BackPro in the network architecture of input,
output and three hidden layers size. Since then, the BackPro has been successfully applied in
Convolutional Neural Network (CNN) architectures [65].
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Figure 2.6: The signal interaction from n neurons and analogy to signal summing in the
artificial neuron comprising the single layer perceptron, image from [9].

The modern DL models are generally based in Convolutional Neural Networks. The CNN
means that the neural network employs a mathematical operation termed convolution [36],
which is a specialized kind of linear operation for an image I , Iconv = I ∗k, where k is a kernel,
generally, is sized in 2D by odd numbers (e.g., 3×3) containing values generated by hands
or by a Gaussian function, ∗ is the symbol of convolutional operation. The first CNN based
architecture deeply defined was proposed in 1995 by [65]. Figure 2.7 shows the convolution
neural network architecture from [65], where the input of the architecture is a 28×28 gray-scale
image, then, such data is forward propagated through the 5 convolutional neural layers till
get the size of 26×1×1. The data in each CNN layer is termed feature map and its size, for
example, in the first CNN hidden layer, "4@12×12" is interpreted such as 4 filters with the
feature map size of 24×24, actually, this notation is ordered such as "24×24×4". Even though,
the CCN architectures were proposed in the last century, the success of this approach was
noticed, principally, with the AlexNet [62] proposal. This CNN architecture is composed by five
convolutional and three fully-connected layers, such a design was sufficient to win the 2012
ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2012) competition achieving the
test error rate of 15.3%, the second best competitor scored 26.2%.

Since AlexNet many CNN variants have been proposed for different computer vision
applications, for instance, edge detection [150], super resolution [26], segmentation [161],
color restoration [131], image recognition [126], and many others. However, just a few of them
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Figure 2.7: Convolutional Neural Network for image processing, e.g., handwriting recognition
[65].

have been efficiently designed to be replicated in other computer vision tasks. They are, VGG
[126], U-Net [112], ResNet [45], Inception v3 [133], Xception [21], efficientNet [136], among
others.

The CNN architectures, proposed from the Visual Geometry Group (VGG) at the University
of Oxford, were six versions, from them, the VGG16 and VGG19 are the most used in different
computer vision and image processing tasks. For instance, the VGG16 version can be appreci-
ated in Fig 2.8. This architecture is designed by blocks of convolutional and fully-connected
layers, specifically, composed by 13 convolutional and 3 fully-connected (MLP) layers. VGG
architecture scored the second best mark in the classification task of ILSVRC-2014 competition.
One year later, a Deep Residual Learning for Image Recognition (ResNet) has been proposed.
Like VGG, ResNet approach also has different version according to the depth of its layers
(ResNet50, ResNet100, ResNet152, and so on), the ResNet50 has been frequently used in the
literature. Although the deeper neural network is more difficult to train, the most insignia
part of such a network is the skip connection (termed in the paper as "shortcut connections"),
which make to the deep layers of ResNet do not loss features extracted in the different levels
of the ResNet blocks (each block has two convolutional layers). The skip connection is the
process that sums the feature map outputs from the previous blocks with the output of the
active block, so the input of the next block is the result from the skip connection, this process
is repeated until the last block of ResNet. As aforementioned, this process makes that deeper
CNN architectures turn straightforward to train but also improve the state-of-the-art results.
Actually, ResNet won the 1st place in the ILSVRC-2015 classification competition.

U-Net [112] is another widely used CNN architecture that was proposed in the same year
as ResNet [45]. This time, U-net (23 convolutional layers) is designed with an encoder-decoder
approach intended for image segmentation with a small dataset for the training process. The
encoding part is accomplished by the CNN model while the decoding part consists of an
upsampling process followed by a convolutional layer with a kernel of 2×2. U-Net won the
International Symposium of Biomedical Imaging (ISBI) cell tracking challenge with a large
margin. Since the 2016, most of researchers started designing optimal CNN architectures,
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Figure 2.8: The VGG16 architecture [77].

which have fewer number of parameters but still overcome the results from VGG and ResNet.
The example of such methods are Inception v3 [133] and Xception [21], both CNN architectures
proposed by Google researchers. While Inception v3 has around 23M (millions) parameters,
Xception has around 22M (the parameter count reported on ImageNet 1000 classes without
counting fully-connected layers [21]). The similarity of those architectures resembles in the
usage of depthwise separable convolution (DWSC) instead of the traditional convolutional
layers. The special characteristic of DWSC lies on that it uses spatial and depth dimensions of
the input image. With those neural network tuning, such methods can train faster than their
predecessors but also improving the scores of the ILSVRC validation set.

Although, several CNN architectures have been proposed in the literature, which are not
tackled in this review, the last CNN architecture considered is termed EfficientNets [136], pro-
posed in 2019. Actually, EfficientNets is a family of architectures proposed on the manuscript
[136]. Comparing to the previous CNN models tackled above, these methods goes much
further in the architectural design optimization. Precisely, the variant of EfficientNets, B7,
achieves state-of-the-art score on ImageNet, while being 8.4x smaller and 6.1x faster on in-
ference than the best existing CNNs [136] at this time. Figure 2.9 presents the B0 variant of
EfficienNets family; The architectures are highlighted as efficient, since they consider in the
given network layer the length (Li ), width (Ci ) and resolution (Hi ,Wi ) without changing the
particular network layer defined in the baseline network. This architecture has been devel-
oped based on an extensive set of experiments performed before reaching the final setup
on the three network’s scaling dimensions (width, depth and resolution), which makes an
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Figure 2.9: The EfficientNet-B0 architecture [136].

Figure 2.10: SSC sensitivity in the RBG and NIR wavelength.

straightforward derivations or re-use in other tasks.

CNN based approaches have beat classical methods in much of the computer vision tasks,
in some cases even better than the human visual perception. However, CNN architectures
alone (even with backpropagation) cannot converge to achieve competitive results. Therefore,
different training optimizers and non-linear functions have been proposed to produce a fast
convergence. The training optimizes, like Stochastic Gradient Descent (SGD), helps to stabilize
the training; while non-linear functions, like RELU, help to correct the predictions in the layer
level of CNN architectures. In addition to the previous elements, batch normalization, instance
normalization, pooling and dropout are usually considered to regularize the training of CNN
architectures.
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2.3 RGB Image Restoration from Single Sensor RGBN Image

As briefly mentioned in section 2.1, a RGBN single sensor camera is able to capture information
in RGB channels (visible bands) till 1100 nm wavelength (near infrared) [19, 104]. Whenever the
sensor acquires images from NIR band, the information provided from the scene is different
to the visible spectrum due to the surface reflection in the NIR band is material dependent,
see the spectral sensitivity graph of Red, Green, Blue, and NIR from a SSC in Fig. 2.10. For
instance, most dyes and pigments used for material colorization are somewhat transparent
to NIR. This means that the difference in the NIR intensities is not only due to the particular
color of the material, but also due to the absorption and reflectance of dyes [116].

The absorption/reflectance properties mentioned above are used for instance in remote
sensing applications for crop stress (water and nutrient stress being the most common) and
weed/pest infestations. These applications are based on the fact that NIR is not absorbed by
any pigments within a plant, it travels through most of the leaf and interacts with the spongy
mesophyll cells. This interaction causes about half of the energy to be reflected and the other
half to be transmitted through the leaf. In plants with turged and healthy mesophyll cell
walls and in dense canopies, more NIR energy will be reflected and less transmitted. This cell
wall/air space interaction within these cells causes healthy vegetation to look very bright in the
NIR spectral band. In fact, much more NIR is reflected than visible. By monitoring the amount
of NIR and visible energy reflected from the plant, it is possible to determine the health of
the plant. This absorption or reflectance properties make that the RGB+NIR images appear
desaturared, specially, in the areas with much reflectance. This type of desaturation is formally
termed as NIR overlaying/crosstalking in RGB image.

The NIR crosstalking in RGB is tackled as a color correction or restoration process to sub-
tract the percentage of NIR information infected in each visible channel (R,G,B). Most of the
approaches for multispectral color restoration in the literature are focused on interpolation
and spectral decomposition (signal processing level) to perform the color restoration process.
In [19], the authors propose an approach based on color correction method using a color-
checker chart as calibration target. Initially, a white balance process is applied, then chromatic
adaptation is considered to finally make color correction with a linear transformation ma-
trix (Color Correction Matrix, CCM). Although interesting results are presented it should be
mentioned that this approach has been tested in a particular set of RGBN images obtained
in laboratory conditions with fluorescent lamp. The obtained color corrected images were
evaluated using a X-rite color checker chart. It should be noted that in the evaluation scenario,
the visible spectrum was not affected by sunlight. Furthermore, the tested scenario does not
contains vegetation where the NIR influence plays a considerable role. This color correction
in constrained scenario has been also considered in [104], although the authors mention the
sunlight presence in the indoor tested scenes. In these works the authors tackle the complex
problem of restoring the three channels (Rvi s , Gvi s and Bvi s), which are contaminated with
an unknown quantity of NIR information. The authors propose a method that is based on a
spectral decomposition. It implies that the spectral response of each channel will correspond
to the RGBN values. Each one of the channels contains a NIR and a VIS spectrum part, which
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results in the following formulation: N = N I Rvi s +N I Rni r , R = Rvi s +Rni r and so on; hence,
the corrected colors are obtained as follows:

(R̂vi s ,Ĝvi s , B̂vi s)T = M (R,G ,B , N )T , (2.1)

where M is the decomposition matrix obtained by modeling the sensor sensitivity and spectral
band correlation; it is a scaling factor coefficient that relates the visible and NIR spectral bands.
Authors describe that the additional NIR information infected in the RGB channels maybe an
unknown value. In other words, the spectral sensitivity curves presented in Fig. 2.10 depends
on the sensor and are needed to solve eq. (2.1). Note that the amount of NIR information
will depend on both, the light in the scene and the type of material present on it. In other
words, just by using a demosaicing technique, with different color filter array patterns, do not
generate images like those obtained with an infrared-cutoff filter lens. The NIR information
needs to be removed from the RGB channel [51, 104].

Another color image restoration technique has been proposed in [91]. In this case the
visible image is obtained by subtracting at each visible channel a different amount of NIR
information, according to coefficients previously computed. These coefficients are obtained
from the sensor sensitivity curves (an example of such curves is presented in Fig. 2.10). This
particular formulation is only valid for a NIR wavelength range of [650−819nm], since the
camera used in that work is only sensible to the aforementioned range values. Although the
results are quite good and the algorithm is efficient and fast to compute, its main drawback lies
in the short wavelength validity as well as in the coefficient estimation, which once estimated
are used as constant values for the whole set of images; then, [96] using different Multispectral
Filter Arrays (MFA), linear mappings and demosaicing techniques like [91] improved results
for the crosstalked problem for images acquired by a SSC. In [139], the authors propose a
demosaicking and color correction matrix for improving the quality of acquired RGB and NIR
images. The performance of this approach has been only evaluated using indoor images;
when it is used in outdoor scenarios, the color correction does not work properly so that the
obtained results do not look like natural colors provided by a RGB sensor camera. Usually, the
pipeline followed to the color restoration process is tackled as shown in Fig. 2.11.

Nowadays, a large number of classical computer vision problems are being solved under
the Deep Learning (DL) framework [36, 66]. In the image enhancement field several DL based
approaches have been proposed [28, 43], in particular focused on the super-resolution (SR)
[43] and image denoising (ID) [140] problems. Although not focused in color correction, in
image enhancement domain, high quality images are intended to be obtained from the given
low-resolution or corrupted ones. Somehow the current work is related with those approaches
in the sense that a better color image representation is sought from the given NIR infected
images. Hence, in the rest of this section ID and SR representative techniques, based on the
DL framework, are briefly described.

A few years before the proliferation of CNN based approaches, authors of [54] developed
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Figure 2.11: General scheme of RGBN imaging and color restoration process [97].

an architecture based on ANN for natural image denoising. The proposed model has 4 hidden
layers with 24 units each one; to optimize the training process they used online (Stochastic)
gradient descent and its results overcame the state of the art at that time, with just a few
processes. In [16] instead, authors propose a multi layer perceptron to map the input vector
via two hidden layers (2000 and 1000 units each one) with the corresponding output layer with
10 units, and similarly to [54], stochastic gradient descent was used for the loss optimization.

On the other hand, in the SR field there is a large number of recent contributions also based
on the DL framework [43]. In this section, just the most representative models, based on CNN
[67] are summarized. In [27], which is an extended version of conference paper, the authors
propose to use Deep CNNs to restore high-resolution images; this approach is referred to as
Super-Resolution Convolutional Neural Network (SRCNN). This method, made a nonlinear
mapping function by using effective feature maps. The approach has three stages: patch
extraction (convolution by a set of filters), non-linear mapping (high resolution patches using
a 3×3 filter) and reconstruction (averaging to produce final high resolution). The SRCNN
architecture has two hidden layers with 64 and 32 units respectively, the used non-linear
operator was RELU [100] and mean square error (MSE) as the loss function for the training
stage. Recently, [69] presents a Generative Adversarial Network (GAN) with the aim to get
finer texture details in the restored images; the authors propose a DL based model termed
Super-Resolution GAN (SRGAN). The main contribution was its discriminative architecture (a
Residual Network: ResNet) and the loss functions. The perceptual loss function (called content
loss) was the key for the generator architecture. Another deep learning based model has been
presented in [22], it is obtained as the combination of ResNet and pixel recursive network
(PixelRec). The ResNet is designed similar to SRGAN discriminative part and the PixelRec is
a feed fordward convolutional network that takes a low resolution image through a series of
18−30 ResNet blocks. In these works, in addition to PSNR and SSIM [49], human evaluations
are considered, since the quality evaluation of enhanced images highly depends on human
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perception.

In the last years new color restoration techniques have been proposed based on new
CFA patters [97]. In addition to CFA (three types), a new demosaicking technique has been
proposed to interpolate blanks let by the CFAs. This study also demonstrates that is not
necessary to develop large size of CFA because the 2×2 and 4×4 overcame the 10×10 pattern
size. In addition, learning algorithm based techniques also have been proposed to correct
the NIR crosstalking, which on the one hand, convolutional sparse coding model corrected
RGB+NIR outdoor images without sufficient sunlight radiation [51]. On the other hand, a deep
CCN is used to make a demosaicking and parallelly correct images desaturated by SSC [123].
The backbone of this deep learning model is U-Net architecture [112].

2.4 Edge Detection from a Multispectral Framework

One of the application that will be tackled in this thesis with the Multipectral Single Sensor
Camera is the edge detection. The goal behind this approach is to improve the edge detection
process by using information from one spectral band into the other band. In other words, the
objective is to enrich visible spectrum edge detection with features extracted from the NIR
band. The edge, contour and boundary detection, some times, are assumed as a synonym
task. However theses tasks are different since in contour/boundary detection just objects’
contour/boundary need to be detected, but in edge detection all edges present in the given
image need to detected [35].

Due to the fact of the novelty of this framework (multispectral edge detection) there are
not that much approaches available in the literature. However, there is a large collection of
techniques proposed for RGB or Gray-scale image edge, contour and boundary detection,
which are deeply reviewed in [10, 35, 165]. The review in this section has been organized as
follow: Low level feature based method, biological visual perception based methods, classical
learning algorithm based methods and deep learning based methods.

2.4.1 Low level Feature Based Methods

The early edge detection algorithms such as Sobel [128], Robert and Prewitt [113] are based
on first order derivative, where the input images are smoothed by the linear local filters
termed also linear operators, normally set for two orientations, horizontal and vertical, then
edges are detected by thresholding. The usage of more sophisticated operators has been
later on proposed; for instance, some of these approaches are based on the usage of second
order derivative where edges are detected by the extraction of zero crossing points. In these
approaches Gaussian filters and Laplacian of Gaussian [88] are used to smooth the image to
later localize edges. In the mid-80s Canny [18] proposes an edge detector by grouping three
key processes: i ) filter out the noise from the given image by performing an approximation
to the first derivative of Gaussian filter; i i ) find out edge directions by using image gradients;
and finally i i i ) apply a non-maximum suppression and then hysteresis thresholding for the
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final edge map. In spite this approach has been proposed long time ago, it is still nowadays
used in some applications [102]. Different variants of the aforementioned methods have
been proposed in the literature [119, 120]; for instance, in [106] a combination of multiple
steps, together with non-linear filters, has been proposed to detect discontinuities even in
challenging scenarios. Other approaches have been proposed for edge detection based on the
usage of 2-D Hilbert Transform [61] and Wavelet transform [122]. In [141] a Laplacian based
approach has been proposed in the attempt to avoid false zero-crossing detections originated
by Gaussian and Laplacian filters. In most of the aforementioned approaches Gaussian kernels
are used, which is also widely used in brain-inspired models as will be presented in next
section.

2.4.2 Biological Visual Perception Based Methods

With the aim to understand the human visual system, since the 60s of the last century, experi-
ments on monkeys and cats started given important advances on the understanding of Primary
Visual Cortex (PVC). For instance, it was discovery the edge formation in the simple cells (V1)
[157]. The authors in [157] develop a mathematical model to simulate the human retinal vision
by Gaussian derivatives; and inspired on such a model in [11] a special line weight function
is introduced for edge enhancement, which consists of a combination of zero and second
order Hermite function. Later on, in [38] Gabor energy maps have been proposed to recreate
non-classical receptive field of PVC for contour detection. This proposal has been evaluated
with a 40 image dataset, which contains for each of the given image its corresponding contour
annotation—this dataset could be considered as the first annotated ground truth proposed in
the literature to validate edge detection algorithms. This approach has been later on improved
by [138] by modeling spatial facilitation and surround inhibition with local grouping functions
and Gabor filters respectively. More recently, in [154] a modulation of double opponent cells
is performed to extract more complex edge properties from color and texture. This work has
been then extended in [6] by modeling a secondary visual cortex, in addition to the model of:
the retina, lateral geniculate nucleus and PVC. Another study of psychophysical research, this
time focusing on boundary detection, is proposed in [92]. The authors propose to use 3 Gabor
filter with different scales, in addition to the usage of principal component analysis and a final
classifier. In other words, although it is a brain-inspired model based approach, it could be
considered as a machine learning based approach like those presented in next sub-section.

2.4.3 Classical Learning Algorithm Based Methods

The challenge of edge detection in natural scenes has motivated the development of learning
based algorithm. One of the first supervised learning (SL) approaches for boundary detection
has been presented in [89], which uses different filters to extract gradients from brightness,
color and texture. The authors then train a logistic regression classifier to generate a Probabilis-
tic boundary (Pb) edge map. Later on, different variants of Pb detectors have been proposed
(e.g., [7, 86]). These new proposals focus on global information besides using local informa-
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Figure 2.12: The first CNN architecture proposed for edge detection [34]. Architecture com-
posed by three convolutional and three fully-connected layers.

tion like the original approach. They are referred to as globalized Probability of boundary
(gPb). In these approaches the gradients are computed by three scales for each image channel
individually. In [110], a conditional random field based approach has been proposed. Its
maximum likelihood parameters are trained given the image edge annotations. This model
captures continuity and frequency of different junction by a continuity structure. On the
contrary, the usage of a sparse code gradient has been proposed in [149]. In this case, the
patches are classified by a support vector machine. Lastly, the usage of a Bayesian model
has been considered in [147]. Edge maps have been predicted by a Sequential Monte Carlo
based approach using different gradient distributions. The random forest framework is also
considered for edge detection in SL, where each tree is trained independently to capture
complex local edge structures [25].

2.4.4 Deep Learning Based Methods

In recent years the usage of CNN has been converted almost ubiquitous in the computer
vision fields. Precisely, the first edge detection based on CNN has been proposed in [34].
In this approach, like in aforementioned machine learning models, given an ground truth
(GT) edge-map, the neural network with the nearest neighbor (NetNN) classifier gives an
output with edge predictions from the input image patch. This model is composed by two
stages; firstly, an input image path is propagated through the neural network, see the proposed
architecture in Fig 2.12, secondly, by using nearest neighbor search, the output of the CNN
(low-dimensional vector) is transformed in the edge-map that correspond to the GT.

Since NetNN many methods have been proposed [35]; most of such approaches use as their
backbone architecture the VGG16 [126], before the edge detection procedure. The Holistically
Nested Edge Detection (HED) [44] approach was the first one in using this architecture, see
Fig. 2.8 for a general overview of that network. From this architecture just the convolutional
layers are used (13 convolutional layers). The parameters of this architecture are obtained
by training the network in the ImageNet dataset [62] as a classification problem. Then, the
network is fine tuned by training it on the datasets conceived for edge detection. Another key
contribution of HED was the loss function derived from cross-entropy, which is used in the
edge-map predictions from each convolutional block.

Following the proposal of HED, RCF [76], CED [142] and BDCN [44] used VGG16 with some
modifications. RCF [76] uses the same configuration as HED, but instead of getting edge
predictions from each VGG block, it extracts edges from each layer on the blocks. Figure 2.13
shows the RCF design, the first column of that image contains the VGG16 convolutional layers
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Figure 2.13: RCF architecture [76]. The first column, from the stage 1 to the stage 5, are
convolutional layers of VGG16 architecture.
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split up in five stages (or blocks). This proposal outperform HED since better defined edges
are estimated. On the contrary to previous approaches, in CED refinement blocks (RB) are
used to merge outputs from every single block. Even thought the quantitative performance of
the aforementioned methods overcomes the state-of-the-art of classical learning algorithms,
the predicted edge maps are not as sharp as expected, somehow detected edges are coarse.
Hence, Generative Adversarial Networks (GAN) [37] have been considered to sharp those thick
edges (e.g., [153] and [159]). Lastly, another more elaborated CNN based edge detector, BDCN,
is proposed in [44]. Although the backbone of BCDN is VGG16, the proposal combines BDCN
with scale enhancement module, which utilizes dilated convolution to generate multi scale
features instead of using deeper CNNs. Actually, the edge-map prediction from BDCN are
the state-of-the-art, with only one drawback, which is the time consumption in the training
process.

Even though the VGG16 architecture is the most widely used as base model, other archi-
tectures have been also considered; for instance, ResNet50 [45] has been used on the variant
versions of [76] and [142]. With these variants tinny improvements, of about 1%, have been
obtained. In spite of that, VGG16 is going to be assumed as the standard architecture used on
the edge detection approaches.
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3 Multispectral Imaging

This chapter tackles the visible and near infrared single sensor camera setup and the image
acquisition tasks for collecting different datasets that will be used throughout the thesis. The
problem is addressed by using a specific single sensor technology to acquire images in outdoor
scenarios. This chapter provides benchmarks to be used in the evaluations of the different
contributions of this dissertation.

3.1 Introduction

Nowadays, while the digital camera industry sales are dropping [47], the world smartphone
markets sales are increasing. One of the key features for the success of mobile phone markets
is its camera’s capabilities. For instance, according to DXOMARK [64], two brands with the
best smartphone cameras are Samsung and Huawei and these brands are at the top of the
list in the phone market. While Huawei P30 pro has 5 camera sensors (one in the front and
4 in the back), Samsung Galaxy S10 plus also has 5 but 2 in the front and 3 in the back. Each
camera sensor from these brands has its own features, which helps to enhance or capture
some particular information from the scenes that could not be acquired if just a single sensor
is installed.

This chapter, following the active research on new image sensors, exploits the additional
features provided by multispectral Single Sensor Cameras (SSC) [19]. The SSC is the silicon
based Complementary Metal-Oxide Semiconductor (CMOS) sensor [29], which is capable of
capturing multi-spectral bands in a single shot. Precisely, the perception of the wavelength
bands by this sensor are from 400 till 1100 nanometers (nm); that is, Visible (Red, Green, Blue
—RGB) and Near Infrared (NIR —N) spectral bands, termed herein as RGBN. The proximity
of the NIR band to the visible one shares many properties; for instance, an image captured
from a NIR sensor can be perceptible for human eyes. However, as the surface reflectance
in the NIR band is material dependent (if there is enough sunlight infrared radiation), the
captured image by such a camera will deliver two type of information from the same scene.
Such information, in the domain of scene understanding is very welcomed.
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(a) Multispectral single sensor camera (b) Two SSCs used in the thesis.

Figure 3.1: (a) The modular single sensor camera used throughout the thesis. (b) Pair of single
sensor cameras used for data collection together with the corresponding ground truth—the
left side corresponds to the camera with ICF while the right side corresponds to the camera
without ICF.

The RGBN single sensor setup can be done, for example, in the customer digital camera by
removing the infrared cut off filter (ICF or IRCF) as in [78, 90]. In the current work, for a more
suitable manipulation of the information, the sensor developed by the OmniVision (OV4682
CMOS image sensor) is considered, which is assembled in a modular camera by [29], see the
camera in Fig. 3.1a. This camera has 4 megapixels with a maximum of 2k resolution. Due
to the camera is manufactured in a modular way, the time exposure and the lens focus are
manually set, and the mosaic data is organized with four color filter arrays [19]. Although there
are a lot of opportunities by capturing the visible and near infrared spectral bands in a single
shot from a SSC, for instance in the scene understanding applications, image enhancement,
object recogntion, etc. (there are much information than just using a single band), there are
also new problems that needs to be tackled; for instance when the images are acquired without
ICF an important color desaturation effect is appreciated, as highlighted in sections 2.1 and
2.3.

The color desaturation produced by the visible and near infrared spectral bands, captured
in a single shot, is termed as overlap or crosstalking between the NIR and RGB bands [29].
Which means, the visible channels also have NIR additional data, termed here in as RGB+NIR.
Therefore, a color correction or restoration is needed. To tackle the color correction, a target
image captured only on the visible range is needed. In order to obtain such a RGB image
without NIR infection, another SSC is used. This second camera is used with an infrared
cut off filter (ICF) (see Fig. 3.1b) to only record information from the visible spectrum. As
the problem of color correction is tackled with deep learning, a large dataset with sufficient
sunlight infrared radiation is generated. It should be noted that most of related works present
indoor image datasets. On the contrary, all the datasets acquired in the context of this thesis
corresponds to outdoor scenarios and contains two pairs of images acquired with the pair of
SSCs shown in Fig. 3.1b; one of these cameras provides visible spectrum images (RGB) while
the other multispectral images (RGB and NIR bands). In other words, from a given scene,
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there will be three images RGB, RGB+NIR and NIR. These images have been collected as RAW
data—a file that contains a minimal processed data, to later make the multispectral and visible
spectral image processing.

Once the hardware and the software for the RAW image data acquisition are set, the
multispectral image processing or imaging is the next step. The multispectral imaging is a
set of processing techniques [80] used to enhance a RAW image data. The resultant image,
usually, should be similar to that perceived by the human eye from a given scene. This task
is accomplished separately to each image delivered by these two cameras. When the image
processing is done, as the issues tackled in this thesis are based on deep learning, pixel wise
registered images are needed. Hence, the target image (visible band) need to be aligned to
the RGB+NIR and NIR images. This alignment or registration process is performed by Matlab
Image Alignment Toolbox [31]. Note that since a SSC is used, the RGB+NIR and NIR are already
registered in the same reference system.

The contributions of this chapter are as follow:

• Different single sensor multispectral image datasets are collected as RAW data and
shared with the community [132]. Precisely, two datasets have been collected: i ) 150
images, from just a single scenario, acquired at different time of the day; and i i ) 500
images from different urban areas containng buildings and vegetation. The datasets are
basically oriented for color correction when the RGB image is cross-talking with NIR.

• A dataset termed Multispectral Barcelona Image for Perceptual Edge Detection (MBIPED)
is also collected and shared with the community. The MBIPED dataset is intended for
edge detection purposes; hence it contains 250 high resolution images together with the
corresponding edge annotations.

3.2 Datasets Generation

This section presents details on the datasets generated with the single sensor cameras. Firstly, a
brief description of the multispectral imaging pipeline is described. From now on, the notation
of the RGB images delivered from the SSC with ICF will be Ir g b , the RGB+NIR and NIR images
acquired with the SSC without ICF will be referred to as Ir g b+ni r and Ini r , respectively. Where
I means a variable with image intensity data, and the sub indexes, for example r g b, refers to
the spectral band where it came from.

Figure 3.2 shows the multispectral and visible spectral pipeline to get the human perceptual
level image from a RAW image data. Once a scene is captured by the SSC, the spectral data
is sub sampled by using Color or Multispectral Filter Array (CFA/MFA) patterns, which are
BGGR for color and BGNR for the RGBN bands, such representation is illustrated in Fig. 3.2
(sub-sampled MFA image), in the case of image captured with the camera setup with ICF, the
color filter array pattern is BGGR. A representative illustration of the image data before the
subsampling process (mosaic RGBN data in Fig. 3.2) can be appreciate in Fig. 3.3a. This data
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Figure 3.2: Multispectral imaging pipeline.

is normalized in the range of [0,1]; then, the normalized data Inor m is saturated by about 2%
in the bottom and the top of all pixels, this process is termed contrast equalization. As a result,
a more contrasted image is generated, see Fig. 3.3c. When the raw image data is acquired
from the camera another image processing technique is required to adjust the color, white
balance, in this case a simple white balance (SWB) is applied. The SWB starts with the mean

computation to each image channel µr g b ∈R3×1; then, the Ir g b = Ir g b × (
max(µr g b )

µr g b
), the results

is illustrated in Fig. 3.3d. Finally, the gamma correction is applied setting the γ with 0.4545; in
other words the gamma correction is applied such as Ir g b = Iγr g b .

As illustrate in Fig. 3.2, the last process before the output image is demosaicking. However,
as demosaicking implies the pixels interpolation, which means that after this process both
RGB+NIR (Ir g b+ni r ) and NIR (Ini r ) images will loss information, the resultant data does not
have demosaicking in order to have as much information as the sensor provides from each
spectral band. However, whenever the demosaicking is needed, the bicubic interpolation is
applied. Figure 3.3 shows the results from all the processes followed in the multispectral image
processing pipeline.

3.2.1 Single Sensor Multispectral Image Datasets

In recent years the number of datasets containing RGB and NIR images has increased (e.g.,
[15, 83]. Nevertheless, usually their images are acquired at least by two cameras and not by
a single sensor. Hence, the camera calibration and image registration is needed before the
corresponding image manipulation. To the best of our knowledge, there are only a few outdoor
single sensor multispectral datasets publicly available and there is a lack of a benchmark
dataset to evaluate color correction or other classic computer vision tasks. Gathering a large
set of images not only is necessary to quantitatively evaluate different algorithms, but also it
allows approaches based on learning algorithms to have sufficient data for their training pro-
cedures. The datasets collected for color correction are described below, which are: i ) Outdoor
MultiSpectral Images with Vegetation (OMSIV); and i i ) Single Scene Outdoor MultiSpectral
Images (SSOMSI).
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RGB RGBN
(a) Mosaic RAW images

RGB RGBN RGB RGBN

(b) Subsampled normalized images (c) Contrast equalized images

RGB RGBN RGB RGBN

(d) White balanced images (e) Gamma corrected images

Figure 3.3: Results from each image processing technique applied to the RAW images provided
by the SSCs. The image correspond to a sample from the OMSIV dataset.
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Figure 3.4: Workflow followed during the generation of single sensor multispectral image
datasets.

Outdoor MultiSpectral Images with Vegetation (OMSIV)

Most of the color correction methods are evaluated with images captured in fully controlled
indoor scenarios, without the presence of any vegetation or specular materials. As mentioned
in Sec. 2.1, datasets containing images from different conditions and materials are needed
to solve the crosstalking issues in the SSCs, mainly when learning based approaches are
considered. Figure. 3.5 illustrate the image desaturation problem (see bottom images in the
second and third column). Therefore, a set of Outdoor MultiSpectral Images with Vegetation
(OMSIV) is collected. The dataset contains images from outdoor scenarios and most of them
contain vegetation.

The entire OMSIV database was captured with the camera introduced in Sec. 3.1. Each
multispectral image is supplemented with its corresponding “visible” image captured with the
same camera but with an ICF, which blocks the IR light radiation. The original images are in a
RAW format and they have to be converted into RGBN images. The size of each RAW image is
1280x720 pixels, and after its channels are separated, the size becomes 640x360x4 for the Ir g bn

and 640x360x3 for the Ir g b (visible channels). In order to guarantee overlap between Ir g bn

images and their corresponding Ir g b (obtained with ICF), the images have been cropped to
the size of 580x320x4. These cropped regions have been registered using [31], in order to have
a target of the MSI that is overlapped by NIR on its visible band.

The OMSIV dataset contains 500 pairs of multispectral (MS) images (including both the
Ir g bn+ni r and their corresponding Ir g b for ground truth). All images were acquired in urban
outdoor scenarios with sun light. The OMSIV images were captured from January to April. As
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Figure 3.5: (le f t ) single sensor cameras with and without ICF. The other images are samples
from the OMSIV dataset in RGB (top) and RGB+NIR (bot tom).

Figure 3.6: Miniaturized RGB+NIR samples from SSOMSI dataset. As appreciate in the figure,
all the images are from the same scene at different day time.

mentioned above, the dataset is fully available for downloading to develop and evaluate RGB
color restoration approaches, as well as other MS image processing algorithms (e.g., image
enhancement, colorization, etc.).

Single Scene Outdoor MultiSpectral Images (SSOMSI)

The dataset Single Scene Outdoor MultiSpectral Images has been collected with the same
cameras than the previous one and its RAW images have been also similarly set. The difference
appears in the final cropped size, which is 256x256x4 instead of 580x320x4 of OMSIV. As shown
in Fig. 3.6, this dataset contains images of the same scenario obtained throughout the whole
day.

The SSOMSI dataset contains 150 pairs of images. All images were acquired from a scene
with sufficient sun infrared radiation. The images are collected in the university campus area
in March, from 10:00 till 18:00. About 18 images per hour have been acquired. The images
from the last hours, with little sunlight during the sunset, are not that much affected by the
desaturation problem but are affected by the lack of NIR illumination. As OMSIV, this dataset
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Figure 3.7: Pipeline of the ground truth generation for the edge detection datasets.

is fully available for downloading.

3.2.2 Edge Detection Datasets

This section presents the datasets generated for edge detection purposes. Figure 3.7 presents
the workflow followed to collect both Barcelona Images for Perceptual Edge Detection (BIPED)
and Multispectral Barcelona Images for Perceptual Edge Detection (MBIPED) datasets. Once a
scene is captured by the single sensor cameras, these images are processed in Multispectral
Imaging (Sec. 3.2), the ground truths generation for the datasets are independent generated
from the images delivered by each camera. The dataset with images and their corresponding
GT from the SSC with ICF is termed BIPED; while the dataset with images and GTs from
RGB+NIR and NIR images, from the SSC without ICF, is termed MBIPED. Note that before
the MBIPED image annotation an image fusion process is performed to RGB+NIR and NIR
images.

Similarly to OMSIV dataset, 250 images have been collected by the SSCs in high definition.
As illustrated in Fig. 3.7, each scene on the dataset has (Ir g b , Ir g b+ni r , Ini r ). Once the images
are captured from the respective spectral band, the RAW images are processed in the multi-
spectral imaging stage, the resultant images, Ir g b from the camera with ICF, and Ir g b+ni r and
Ini r images from the SSC without ICF, are annotated in the edge level. Later, these annotations
are recorded as edge-map GTs for the DL based edge detectors.

As mentioned above, the GT annotation was accomplished slightly different for each
spectral band image. For a preliminary evaluation on edge detection models, the BIPED
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dataset was firstly annotated since it just contains RGB images due to a ICF has been used
during the image acquisition.

Barcelona Images for Perceptual Edge Detection (BIPED)

As mentioned above, high resolution images were selected to have accurate edge anno-
tation, BIPED has been acquired with the same camera used for OMSIV, but this time, the
final image size after registration is 1280×720. This dataset contains 250 urban and university
campus scenes. The GT (annotated edge-maps) has been generated by using a crowdsourcing
based tool1. Figure 3.8 shows the GT generation process; the image in Fig. 3.8a is annotated in
the edge level (see Fig. 3.8b), then, such annotations are organized to make the edge-map GT,
see Fig. 3.8c. This ground truth generation process is applied over the whole dataset.

Concerning the annotation strategy, the acquired images have been carefully annotated by
experts in the computer vision, hence no redundancy has been considered. In spite of that,
all results have been cross-checked in order to correct possible mistakes or wrong edges. The
annotation process was divided into four steps. i ) Initially, all RGB images were annotated
by expert collaborators, just one annotation per image; i i ) At the end of the first annotation
process, the results were checked by the administrator; i i i ) Then, the HED model [150] was
trained and validated with the first version of the obtained GT; i v) With the results of HED,
the whole dataset was double checked and carefully re-annotated by correcting few mistakes,
again, just by the administrator. The second and fourth steps have been performed by just one
subject in order to follow the same criteria in all annotated images. This dataset is publicly
available as benchmark for evaluating edge detection algorithms. The generation of a new
dataset is motivated by the lack of image’s edge datasets; actually, the most popular datasets
for edge detection are the ones intended for boundary detection and segmentation.

The level of detail of the annotations generated in the current BIPED can be appreciated
in Fig. 3.8c, see cars and street signals. As BIPED is collected to train deep learning based
edge detectors, 50 images have been randomly selected for testing and the remaining 200
for the training and validation. In order to increase the number of training images, a data
augmentation process has been performed as follow: i ) since the BIPED images are in high
resolution they are split up into half of image width size; i i ) similarly to the augmentation
process in HED, each of the resulting images is rotated by 15 different angles and cropped
by the inner axis oriented rectangle; i i i ) images are horizontally flipped; and finally i v) two
gamma corrections have been applied (0.3030, 0.6060). This augmentation process resulted in
288 images per each of the given image. 10% of this augmented data has been taken for the
validation process.

1https://labelbox.com/
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(a) BIED sample image.

(b) Screenshot of the annotation process.

(c) Annotated edge map (i.e., ground truth).

Figure 3.8: Sample image from the BIPED dataset.
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Multispectral Barcelona Images for Perceptual Edge Detection (MBIPED)

The MBIPED dataset is acquired at the same time as BIPED, but by the SSC without ICF;
hence, each scene has Ir g b+ni r and Ini r images. The main difference with BIPED is that before
the image annotation process, the Ir g b+ni r and Ini r are fused to later annotate edges in the
resultant image. The MBIPED shares the same characteristic than BIPED such as, image size,
number of scenes, training and evaluation samples, and the data augmentation for the DL
training stage.

The edge level annotation in MBIPED, as highlighted above, is accomplished in the fused
images. The image fusion process aims to combine Ir g b+ni r and Ini r images obtained to
generate a much informative representation [85]. In other words, the fusion is carried out
with Ir g b+ni r and Ini r , each channel of Ir g b+ni r was fused with the NIR component, therefore,
the I f ∈ Rw×h×3, w and h are image width and height size, respectively. Since there is a large
collection of image fusion methods [85, 117], the techniques presented in [85] are considered
to choice the most robust fusion approach for visible and near infrared image fusion. Seven
representative methods have been selected and evaluated in MBIPED test dataset from the
19 deeply studied in the survey [85]. The selected methods are Laplacian Pyramid (LP) [17],
Hybrid Multi Scale Decomposition (HMSD) [163], Guided Filtering based Fusion (GFF) [72],
Gradient Transfer Fusion (GTF) [84], Two Scale Image Fusion based on Visual Saliency (TSIFVS)
[12], Infrared Feature Extraction and Visual Information Preserving (IFEVIP) [162], and the
fusion method by Averaging (AV) Ir g b+ni r and Ini r .

The assessment metrics used for evaluating the quality of the fused images are the ones
generally used in the literature. They are: Entropy (EN) that measures the amount of infor-
mation contained in a fused image [111]; Mutual Information (MI) that is the quality index
that measures the amount of information transferred from Ir g b+ni r and Ini r to the I f (fused
image) [108]; Qab/ f that measures the amount of edge information that is transferred to the
fused image [152]; and finally, the metric based on Visual Information Fidelity (VIF) [41]. The
VIF metric is developed to assess fusion performance objectively, it exhibits good prediction
performance in natural images. Table 3.1 presents the evaluation of the seven methods men-
tioned above in these four fusion performance evaluation metrics. These methods have been
evaluated in the test dataset of MBIPED (50 images). Concerning to the subjective evaluation,
five users have evaluated the results of fused images from the seven methods. The images
have been presented as shown in Fig. 3.9.

According to the results from the evaluations (Table 3.1), GFF obtains the best result when
MI and Qab/ f evaluation metrics are considered; in the contrary, if the MI metrics is considered
the best result is reached by AV; finally, if the Qab/ f metrics is considered the best result is
obtained by the fusion perormed by the LP algorithm. However, when E N and V I F are
considered GTF and IFEVIP, respectively, reach the best result. As a conclusion from the results
depicted in Table 3.1 we could say that a similar performance is obtained by the different
approaches (highlighted values correspond to the best performance for a given metric); hence,
a subjective evaluation is considered to select the best one for the proposed dataset. The
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Methods EN MI Qab/ f VIF

AV 7.411 6.787 0.639 0.801
LP 7.289 5.503 0.668 0.811

GFF 6.165 7.273 0.711 0.847
GTF 7.434 5.789 0.619 0.749

HMSD 7.320 5.413 0.642 1.025
IFEVIP 7.041 4.175 0.554 1.097
TSIFVS 7.412 5.744 0.635 0.856

Table 3.1: Evaluation of fused images from on MBIPED using four evaluation metrics: EN
(Entropy measure), MI (Mutual Information), Qab/ f (edge transfer measure), and VIF (visual
information fidelity). Larger values are better in each assessment metric.

Grayscale NIR

RGB+NIR (in Grayscale) NIR

AV LP GFF HMSD TSIFVS IFEVIP GTF

Figure 3.9: Result from the image fusion methods on a sample fused image from of MBIPED
dataset.

images fused (I f ) from the seven methods have been evaluated by five researchers to later on
judge the best approach. Figure 3.9 presents just a sample of the fused images by the seven
fusion techniques. The five evaluators selected GTF as the best one, see Fig. 3.9 (bottom right).
As it can be appreciated, the fusion resulting from the Gradient Transfer Fusion (GTF) method
depicts more details and texture of the image than other methods considered during the
evaluation. For example, image fused with GFF presents perceptual noise in several regions of
the image. The key of GTF to deliver good perceptual fused images, is that this method takes
into account the details from the two source images and selects as a guided image the source
image that has more details; in this case, the visible band image (Ir g b+ni r ) is selected as guide.
As mentioned above, the image fusion is conducted to each channel of Ir g b+ni r independently
with Ini r . Figure 3.10 shows an illustration of the resulting fused image, this type of image is
used to generate the GT for MBIPED.
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Figure 3.10: The final fused color image from the RGB+NIR and NIR.

Figure 3.11a shows a sample of MBIED fused image, which is used to annotate edges from
the scene. As appreciated in Fig. 3.11b, the edges are carefully annotated. The edge-map
resulting from the annotation is depicted in Fig. 3.11c.

3.3 Conclusion

Multispectral images from Single Sensor Cameras offer a large number of opportunities for
improving image processing algorithm (e.g., enhancement, dehazing, edge detection, etc.)
as well as applications based on information from that spectral bands (e.g., image vegetation
index estimation). The main attractiveness of the information provided by these cameras lies
on the fact that the provided images are registered in the same reference system, avoiding
the classical registration problem and focusing the research just on the combined use of the
provided information. In such an interesting context, and following the trends in the computer
vision community of developing learning based approaches, the generation of large dataset
is a requirement to develop robust solutions. In this chapter two datasets (i.e., OMSIV and
SSOMSI datasets) have been collected to tackle the desaturation problem that appears in the
multispectral SSCs. All images from these dataset are from outdoor scenes with sufficient
sunlight condition. In addition, much of such images have vegetation; therefore, the color
correction or restoration can be deeply studied. The images from both datasets are saved in
RAW format and each scene has RGB, RGB+NIR and NIR images registered.

In addition to the datasets acquired for the color correction problem, two datasets (i.e.,
BIPED and MBIPED), containing images with the corresponding annotations, have been
collected for tackling the edge detection problem. In these datasets each scene contains
RGB, RGB+NIR and NIR images registered in the same reference system. As these images
were collected from two SSCs, the ground truth generation (annotated edges) was separately
performed, one for the visible spectrum and one for the fused images resulting from (Ir g b+ni r

and Ini r ).
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(a) MBIPED sample image

(b) Screenshot of the annotation process

(c) Annotated edge-map (i.e., ground truth)

Figure 3.11: Sample image from the MBIPED dataset.
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4 RGB Image Restoration from Single
Sensor RGBN Image

This chapter presents two approaches for color image restoration of single sensor RGBN
images. The first one consists of a multilayer perceptron based approach, which was intended
to evaluate the challenge and drawback of this problem. On the contrary, the second proposed
method is a more elaborated one based on the usage of convolutional neural networks. Both
approaches are detailed below.

4.1 Introduction

(a) (b) (c)

Figure 4.1: (a) RGB+NIR image (infected with near infrared); (b) NIR image acquired with the
SSC of (a); (c) RGB image obtained with a SSC using an infrared cut off filter; resulting in a RGB
image free of NIR infection.

Through this chapter the same notation used throughout the thesis will be adopted; RGB
refers to a three channels RGB image; RGBN refers to a four channel image where the RGB
channels are free of NIR infection and N stands for the NIR component; RGB+NIR refers to
a three channel RGB image where each channel is infected by the NIR component; finally,
RGBN+NIR refers to a four channel image where each RGB channel is infected by the NIR com-
ponent. The RGB or color image restoration is also referred to as color correction. This process
or set of processes allow to obtain color images near to the target or the human perception
level from a scene acquired by the image sensor. The most common color correction method
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Figure 4.2: Pipeline of multispectral imaging with color correction [139].

is by using a color correction matrix (CCM) obtained with the Macbeth color checker chart.
However, in the case of images from a multispectral (MS) Single Sensor Camera, which can
capture just the visible information from a scene if the Infrared Cut Off Filter (ICF) is installed
in front of the sensor, the macbeth chart based color correction approach cannot be used.
The color correction process cannot be performed with the Macbeth chart because of the
absorption/reflectance of the surface captured from a scene are different in the visible and
near infrared wavelength bands (see details in Sec. 2.3).

Figure 4.1a shows an illustration of an image where the desaturation problem can be easily
appreciated when compared to the image presented in (c); this effect is perceptible for human
eyes. These details are more perceptible in the vegetation area, and the difference can be
much notorious if there is enough sunlight radiation in the scene. The claim of the difference
can be more perceptible focusing in the Fig. 4.1b, which is the NIR part of the image in (a),
captured in a single shot. Therefore, in images with different reflectance to visible band, the
color restoration from the RGB+NIR (RGB image infected by the NIR component) cannot be
accomplished by using a single operation like CCM. Most of the state-of-the-art methods
follow the workflow of the illustration in Fig. 4.2 [139].

As mentioned in Chapter 2, several sets of processes are required to accomplish the RGB
restoration. Figure 4.2 shows the standard workflow to correct the RGB images corrupted
by NIR component in images from a SSC. Firstly, new Color or Multispectral Filter Array
CFA/MFA patterns are set to sub sample the multispectral image, the sub sampled image
is demosaicked to the whole multispectral data. After the MS interpolation, the images in
RGB channels still have NIR information, then, color correction process needs to be applied.
There are different color correction approaches according to the literature, for instance, CCM,
spectral decomposition, percentage of NIR estimation and substation, among others. After
such processes the resultant images are free of the NIR component. Generally, this set of
processes have been evaluated by using images from controlled scenarios and some times
with the NIR percentage of crosstalking provided by the sensor manufacturers. Contrary to the
state-of-the-art methods proposed in the literature for color restoration, this Chapter tackles
the color restoration by using outdoor images with sufficient sunlight radiation (like images
presented in Fig. 4.1), without any information provided about the NIR percentage in the RGB
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Figure 4.3: RGB+NIR image (infected with near infrared); ∼RGB is the image predicted by the
proposed CCN based model for color correction; RGB is the target image used for training the
DL model and also used for the evaluation.

channels, but more importantly, by only using Neural Network (NN) or Convolutional Neural
Network (CNN) approaches to subtract the additional NIR information in the visible image. In
other words, the task is accomplished by using just deep learning (DL) techniques, avoiding
the set of processes proposed in most of the state-of-the-art techniques.

For the purpose of color correction based on DL techniques, a large dataset of RGB+NIR
with its corresponding target RGB image is needed. To the best of our knowledge, OMSIV
dataset (see Section 3.2.1) is the only one with the characteristic detailed above ( i.e., out-
door images, sufficient sunlight radiation, multispectral paired image data). Therefore, the
evaluation results from the CNN based approach is deeply study in OMSIV test dataset by
using quantitative and qualitative image similarity metrics. A sample of the result obtained
from the proposed CNN method is presented in Fig. 4.3, ∼ RGB is the RGB image free of
NIR component predicted by the CNN model. As appreciated in the zoom-in images, the
difference between these images (∼RGB and RGB) is almost imperceptible.

In summary, the main contribution in this chapter is two-fold:

• A multilayer perceptron model is proposed to evaluate the posibility of removing NIR
information from RGB+NIR images.

• Two custom CNN architectures are proposed to generate a RAW RGB image from its
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Figure 4.4: Pipeline of the color restoration processes proposed in this Chapter. The rectangle
"Color Restoration based on Deep Learning" stands for the different approaches proposed for
the color restoration from an RGB+NIR image.

corresponding RAW RGB+NIR. The code of these fully trained networks is available
through https://github.com/xavysp/color_restorer.

4.2 Methods

The methods proposed to reach a Îr g b from an Ir g b+ni r are described in this section. Firstly,
a multilayer perceptron based approach is introduced and then two Covolutional Neural
Network based approaches are described. Figure 4.4 shows the pipeline followed to perform
the color restoration processes. It consists of the following stages. Firstly, the mosaic RAW
data is sub sampled into the respective channels Ir g bn = [Rvi s+ni r ,Gvi s+ni r ,Bvi s+ni r , Nni r ]
(vis: visible band), Ir g bn ∈Rw×h×4, where w and h are image width and height size, and 4 the
number of image’s channels. Then, the RGB channels, affected by NIR spectral information
(Ir g b+ni r ), are selected as input data (Ir g b+ni r = [Rvi s+ni r ,Gvi s+ni r ,Bvi s+ni r ]) for the proposed
models. The NIR channel, Ini r is not considered in the CCN model but it is used in the NN
method; that is, the inputs of the NN based method are four pixels, three from the RGB+NIR
and one pixel from the corresponding NIR component. Next, the color restoration process is
applied. Finally, the output (Îr g b) from the proposed approaches is post-processed with the
image processing techniques tackled in Sec. 3.2. Note that after the raw mosaic data separation
the image becomes half size; this image is kept like this by two things: i) just the information
provided by the camera sensors is considered (without any interpolation estimation); ii) when
information from the NIR channel is obtained, it corresponds to the half image size, hence
to make a study of the NIR behavior in the RGB channel we do not want pixel estimations,
therefore we keep the RGB image size as the NIR image size.

4.2.1 Neural Network Based Approach

The removal of the NIR information from the RGB channels of a multispectral single sensor
camera is formulated as a regression problem. This regression problem is solved by using a
neural network (NN) defined by two hidden layers with ten neurons each. The network is
trained to learn a mapping functionΩ :R4 →R3 that maps a pixel color from an Ir g bn+ni r to
an Yr g b (Yr g b = Ir g b) pixel value of the same scene, but obtained without NIR information.
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RGT

GGT

BGT

IRRGBN

BRGBN

GRGBN

RRGBN

Figure 4.5: Illustration of the NN architecture used to learn the mapping functionΩ.

The network model’s input consists of a tuple Ir g bn = {Rvi s+ni r ,Gvi s+ni r ,Bvi s+ni r , Nni r } that
represent 4 pixel values. The model has two hidden layers of ten neurons each and produces
an output tuple Îr g b = {R̂vi s ,Ĝvi s , B̂vi s} that estimates the R,G,B values of the RGBN SSC where
the NIR information has been filtered.

To train the architecture the smooth L1 loss function is considered, which is defined as:

loss(x, y) = 1

P

∑{
0.5∗ (xi − yi )2 if |xi − yi | < 1

|xi − yi |−0.5 otherwise
(4.1)

where, x correspond to the set of all Ir g bn+ni r pixel values in the training set, and y represents
the set of the corresponding pixels from the ground truth (Ir g b).

The network has been trained using Stochastic Gradient Descent with the following param-
eters: learning rate 1, momentum 0.17, weight decay 1e-5, and batch size of 128. Figure 4.5
presents just an illustration of the proposed architecture.
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(a)

(b)

Figure 4.6: Illustration of the proposed deep learning architectures for RGB color restoration
from multispectral SSC images: (a) CDNet and (b) ENDENet. CONV refers to convolution,
DECONV to deconvolution and RELU is the non-linear function used for the layers in the
respective illustration. The term "k3f32s2" refers to: k = kernel size (3 × 3), f = feature size (32)
and s = size of stride (2,2), the same notation is used through the illustration.

4.2.2 Convolutional Neural Network Based Approaches

The previous NN based approach, although was able to remove NIR component given Ir g b+ni r

images, it has some limitations due to the reduced size of layers and neurons. Whenever the
layers and neurons are augmented in this NN approach the hardware consumption increase.
To overcome this limitation, two more evolved CNN based approaches are presented below.

The first one consists of a Convolutional and Deconvolutional Neural Network (CDNet) that
is formed by two and four layers respectively, see Fig 4.6a. As in the Sec. 4.2.1, CDNet attempts
to clean the NIR infection in the RGB channels (Ir g b+ni r ), therefore, in the first two convolu-
tional layers, the input Ir g b+ni r is filtered with the aim to clean NIR information, then, in the
Deconvolution part, it reconstructs the whole characteristics of the input data but without
NIR spectral information. Therefore, the output layer gives predicted image (Îr g b) super-
vised with the ground truth image (Yr g b), summarizing, Îr g b =C DNet (Ir g b+ni r ,Yr g b). Where
Ir g b+ni r = [Rvi s+ni r ,Gvi s+ni r ,Bvi s+ni r ], Yr g b = [Rvi s ,Gvi s ,Bvi s] and Îr g b = [R̂vi s ,Ĝvi s , B̂vi s]. In
the proposed CDNet architecture, five layers have RELU activation functions and the last one is
just a fully deconvolutional layer. The architecture remains the same hei g ht × wi d th size but
not in its numbers of feature maps which are as follow [32,64,32,64,32,3], 64 and 32 units are
used as recommended in [26] for efficiency with hardware limitation. To estimate the network
parameters and minimize the loss in Îr g b , the Mean Square Error (MSE) was considered as
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in the state-of-the-art techniques for restoration. Moreover, to optimize the CDNet training,
AdamOptimazer with learning rate 0.0003 was considered. In terms of the number of layers,
two convolutions followed by four deconvolutions have been used; these values have been
obtained after evaluating different configurations trying to avoid image deterioration during
the convolution stages and trying to get the best result after deconvolution stages.

In addition to the CDNet presented above, a second architecture has been proposed to
evaluate the capability of NIR removal from the given color infected images. This second
architecture is similar to the CDNet but with encoder and decoder in the convolution and
deconvolution layers, respectively. This new architecture is referred to as Encoder-Decoder
Neural Network (ENDENet). Figure 4.6b presents an illustration of this network architecture
and gives details of the set up of the layers. As depicted in Fig. 4.6b, the first, second, fourth
and fifth layers have a (2,2) stride, hence image size is encoded from 192×192 to 48×48 and
decoded to the same size as in the Ir g b+ni r size. The proposal of ENDENet lies on the usage of
fewer parameters than CDNet but still score competitive results in the quantitative evaluation.
This comparison is presented in Sec. 4.3.2.

Loss Function

Like in other kinds of models based on DL [36], either for CNN or NN, it is necessary to prepare
the data for the training, and regularize and optimize the architecture. In addition to the
architecture, the loss function or cost function (L ) is an essential part of supervised learning.
It measures the errors between the prediction made by the model with respect to the given
ground truth. In other words, after every iteration, the computation of the loss function is
performed to evaluate how well is going through the training process. Within the context of
our application (color restoration), for the minimization of L the Mean Square Error (MSE) is
considered, which is computed as follow:

L = MSE(Yr g b , Îr g b) = 1

P

w,h∑
i , j

(Yi , j − Îi , j )2, (4.2)

where (w,h) are the image width and image height respectively, P is the total number of image
pixels, (i , j ) are the pixel indices, Îr g b is the image predicted by the network and Yr g b is the
ground truth corresponding to the given Ir g b+ni r . Finally, the MSE value, which is used in the
loss function, is considered to minimize or optimize with an objective function [60].

4.3 Experimental Results

This section presents results obtained with the two approaches described above. Firstly,
qualitative results from the NN based approach are summarized. Secondly, results from the
CNN based methods are presented.
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Chapter 4. RGB Image Restoration from Single Sensor RGBN Image

4.3.1 Neural Network Based Approach

The NN presented in Sec. 4.2.1 has been trained and evaluated with the OMSIV dataset
acquired with the pair of cameras presented in Fig. 3.1 (see dataset details in Sec. 3.2.1). Note
that although the cameras have been rigidly attached, trying to place their optical axis as
parallel as possible, the obtained images need to be registered. The registration process is
needed in order to guarantee a pixel-to-pixel correspondence. Differences due to camera
disparity are neglected since cameras’ optical axis are quite near in comparison to the depth of
the objects in the scene (actually, the dataset has been created having in mind this assumption,
so that scenes containing objects far away from the camera have been considered). The Yr g b

and Ir g b+ni r images have been registered using the Matlab Image Alignment Toolbox (IAT)1.
From the 89 pairs dataset, 71 pairs have been used for both the network training and for
computing color correction matrix (MCC ); the remainder 18 pairs were used for validating the
results. A qualitative validation (just 18 pairs) has been performed comparing the results from
the neural network with those obtained by using a naïve color correction based approach.

In order to qualitatively evaluate the obtained result, a naïve approach, based on the usage
of color correction matrix is performed. The MCC is obtained by minimizing the square error
between the RGB and the corresponding RGBN+NIR images;MCC is obtained by minimizing
the following error function:

E =
i=P∑
i=1

(Yr g b −MCC × Ir g b+ni r )2, (4.3)

where Yr g b corresponds to the ground truth values (elements from the camera with infrared
cut off filter); Ir g b+ni r corresponds to the pixel values obtained with the SSC; MCC is the color
correction matrix (a square matrix of 3×3 elements); and P represents all the pixels from all the
images used to estimate (E). In order to do a fair comparison the same set of images (71 pairs
of images of 256×256 pixels) used to train the network has been considered; in other words
(E) is computed by considering P = 71×256×256 = 5,439,488 elements. Actually, the images
used in the NN training and evaluation processes were a subset from the OMSIV dataset (see
Sec. 3.2.1).

Figure 4.7c presents just three illustrations of the results obtained with the proposed neural
network, which can be compared with the corresponding ground truth presented in Fig. 4.7d.
As it can be appreciated, although the network architecture is a perceptron with 2 hidden
layers and each one with 10 neurons, the results obtained with the proposed approach look
quite similar to those form the ground truth. On the contrary, the result obtained from the
color correction matrix (see Fig. 4.7b) are not so similar to those from the ground truth. As
a conclusion from these results we have identified two ways to improve them. The first one
is related with the dataset. A larger dataset, with more color variability, obtained at different
daylight time is required to learn a more accurate mapping function by the network. The

1http://iatool.net/
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(a) (b) (c) (d)

Figure 4.7: Illustrations of: (a) Original RGB+NIR images; (b) Results obtained from the
MSE color correction; (c) Results from the proposed approach; (d) RGB ground truth images
obtained by using the ICF.

second improvement is related with the used architecture, other configurations should be
evaluated (more hidden layers and more neurons per layer). In Fig. 4.7 just three results from
the 18 pairs used for validation are presented, the whole set of images used for validation can
be downloaded from: http://www.cvc.uab.es/∼asappa/Results_for_Validation.rar.

4.3.2 Convolutional Neural Network Based Approach

System Setup

The effectiveness of the different approaches is assessed using the whole OMSIV dataset.
OMSIV dataset has been obtained with a SSC that captures at the same time visible and near
infrared bands, just outdoor scenes with vegetation have been acquired in different sunlight
conditions as well as challenging environments in urban scenarios; for the purpose of the
ground truth, another SSC with ICF is used, then pairs of acquired images are registered [31],
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Chapter 4. RGB Image Restoration from Single Sensor RGBN Image

for a more detailed description of OMSIV see Chapter 3. Since there is a high bands crosstalk
in images, a big volume of training data is required to train the proposed models. From the
OMSIV dataset 500 images have been used for training and validation, and 32 for testing; the
given images are of 256×256 pixels. A data augmentation process has been used to increase
the number of patches to train both networks. From this data augmentation process 12599
patches have been obtained, 12371 were taken for training and 128 for validating; for the
model evaluation purpose the remainder 32 images were augmented to 128. A subset of 15
images is presented and analyzed in Sec. 4.3.2. During the data augmentation process, patches
of (192×192) were obtained from the original images.

In order to obtain the best performance of the architectures presented in Fig. 4.6, different
configurations were tested by adding and removing layers of the encoding and decoding stages
[140]. Additionally, filters with sizes (3×3, 5×5 and 7×7) were evaluated in both architectures
in order to find the best one. The filter with size (3×3) was selected since when large filter
sizes were considered the texture of Ŷ is smoothed. A 1×1 filter was added to the last layer
in ENDENet as well as CDNet. Tensorflow library on a TITAN X GPU was considered to
the training stage. Note the MSE values are normalized in a [0-255] scale; the loss function
converged to a MSE value of 50 in both models. On average, the training stage took about 6
days. The ENDENet, due to its different layer sizes, took about 1.45 minutes for each epoch,
while the CDNet took 2 minutes.

Evaluation Metrics

The general metrics used for the images similarly evaluation are Peak Signal to Noise Ratio
(PSNR) and Structural Similarity (SSIM) [145]. However, for further comparison, Angular Error
(AE) and the Color Difference of the version of 2000 (∆E00) [82] have been also considered. On
the one hand, PSNR is defined as follow:

MSE = 1

P

P∑
i=1

(Yr g b(i )− Îr g b(i ))2, PSN R = 10× log10(
max2

MSE
), (4.4)

where P is the number of pixels in Yr g b and Îr g b , i is the index of pixel location, MSE is the
mean square error. On the other hand, SSIM considering Îu and Îσ, which are the average
and standard deviation of Îr g b , respectively, compute the luminance lumi (Yr g b , Îr g b), con-
trast cont (Yr g b , Îr g b), and structural str u(Yr g b , Îr g b) measurements, where the final SSI M =
[lumi ]α× [cont ]β× [str u]γ is computed as:

l umi = 2× Îu ×Yu + c1

Î 2
u +Y 2

u + c1
, cont = 2× Îσ×Yσ+ c2

Î 2
σ+Y 2

σ + c2
, str u = σÎ Y + c3

Îσ+Yσ+ c3
, where

σÎ Y = 1

P −1

P∑
i=1

[Î (i )− Îu(i )][Y (i )−Yu(i )].

(4.5)
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α=β= γ= 1, while c1, c2, c3 are constants to avoid instability.

The Angular Error is defined as follow:

AE = cos−1

(
dot(Îr g b ,Yr g b)

norm(Îr g b)∗norm(Yr g b)

)
, (4.6)

as other similarity measures [145], AE is computed over every single pixel of a pair of images
improving MSE values; even thought PSNR, SSIM and AE give results for the pixel level, the
definition above assume to be for the image, this value is the average of the results from all the
pixels.

∆E00 is computed by transforming Îr g b and Yr g b to the CIELAB color space (ÎL AB , YL AB );
this color similarity measure is commonly used in the color research field and it is a key
evaluator to see the results of restoration in outdoor RGB+NIR images with vegetation, because
as mentioned in Sec. 4.1 the presence of NIR in vegetation desaturate the normal human color
vision. For each pair of image pixels ∆E(i , j ) is obtained as follows.

∆E(i , j ) =
[(

∆L′

kLSL

)2

+
(
∆C ′

kC SC

)2

+
(
∆H ′

kH SH

)2

+RT

(
∆C ′

kC SC

)(
∆H ′

kH SH

)] 1
2

, (4.7)

where ∆L′, ∆C ′ and ∆H ′ are the CIELAB lightness, chroma and hue differences, respectively;
SL , SC , and SH are weighting functions for the lightness, chroma, and hue components. kL , kC

and kH are factors to be adjusted according to different viewing parameters; the RT function
is intended to improve color-difference equation for fitting chromatic differences in the blue
region (for a detailed description see [82]). Once computed ∆E(i , j ) for the whole set of pairs
of pixels, the ∆E00 represents the percentage of pixels with a ∆E value in between two given
thresholds [a,b]. More specifically, in the current work ∆E00 represents the percentage of
pixels in the range between [0,10]. ∆E values higher than 10 correspond to pixels with a color
difference easily detected by human eyes (see [82] for more details). The ∆E00 is obtained as
follow:

∆E00 =
sp[a,b] ×100

W ×H
, (4.8)

where (W, H) values correspond to the image width and image height; sp[a,b] is the total
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Chapter 4. RGB Image Restoration from Single Sensor RGBN Image

Figure 4.8: Snapshot of the Human Eye Perception test (HEP) performed over 15 images to
evaluate the results from CDNet and ENDENet.

number of pairs of pixels whose ∆E(i , j ) values are in the range of [a,b]; it is obtained as:

sp[a,b] = 0, sp[a,b] =
W,H∑

i , j

{
sp[a,b] +1 if a ≤∆E(i , j ) ≤ b

sp[a,b] otherwise
(4.9)

as mentioned above, in the current work [a,b] have been set to [0,10].

For further evaluation purposes in [69] and [22], in addition to the quantitative metrics,
the authors consider evaluations from human perception to quantify the ability of different
approaches to perceptually reconstruct an image. In the current work, qualitative evaluations
have been also considered over a subset of images. This subset of images was selected for
human perceptual judgment, referred to as Human Eye Perception (HEP). Basically, HEP is a
survey made by different users to know which of the images, obtained by CDNet and ENDENet,
are more similar to the ground truth. For this HEP test, 15 images have been selected from
the best (5 images), the average (5 images) and the worst (5 images) cases, according to ∆E00

in CDNet results; ∆E00 was selected since it is generally used in the color related literature to
evaluate results by human perception. It should be mentioned that the same set of images
would result if the ENDENet were considered. These 15 images were evaluated by 50 subjects.
They were asked "which of the images ((a) or (b)) is more similar to the reference?"; in case the
images were perceptually the same the subjects could give this answer, "It is the same". Figure
4.8 shows the snapshot of the GUI used to evaluate the performance of CDNet and ENDENet.
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PSNR SSIM AE ∆E00
Methods average median average median average median average median
Ir g b+ni r 13.530 13.613 0.563 0.566 32.069 32.024 24.13 16.395

[96] 20.284 20.508 0.621 0.661 8.691 8.737 76.726 85.227
[139] 18.007 17.674 0.547 0.553 8.048 8.281 64.558 73.717

SRCNN [26] 20.928 21.324 0.684 0.708 8.271 7.723 75.182 82.122
ENDENet 24.069 25.409 0.777 0.809 5.561 5.303 86.563 95.893

CDNet 23.544 24.447 0.767 0.792 5.171 5.098 86.008 93.313

Table 4.1: Average and median values of the methods tested in the current work when the
whole dataset (128 samples) was considered.

Quantitative and Qualitative Results

This section firstly details the state-of-the-art approaches (i.e., [96], [139] and [26]) used for
comparing results with the proposed approaches. Then, quantitative and qualitative results
from the proposed approaches together with the corresponding comparisons are presented.

In [96] the authors presents three methods, which where evaluated with different demo-
saicing algorithms and linear mappings. In the current work, following the suggestion from
[96] and according to the type of sensor used in our experiments [132], a uniform RGB-NIR pat-
tern [19] is used, then demosaicing is performed using [91] and finally the color correction is
obtained through a polynomial linear mapping [48], since this combination produces the best
performance. The second algorithm used to compare the proposed approach has been pre-
sented in [139]. This algorithm has been described in section 2.3; from the two MFA patterns
presented in [139] the one with best result has been selected. Finally, the third comparison
has been performed with respect to a super-resolution CNN based approach [26], termed as
SRCNN. This super-resolution approach has been selected for comparisons since it shares
similar purposes when trying to preserve features and edges in the reconstructed images. This
SRCNN approach has been detailed in section 2.3 and the pipeline followed the same process
as the proposed approaches (see Fig. 4.4). It should be mentioned that just for comparison
purposes all resulting images are resized to the same size; it mean that images resulting from
[96] and [139], which are full size images, are down-sampled with bicubic interpolation up
to half their size in both height and width. Regarding images resulting from SRCNN and
our approaches (CDNet and ENDENet), they are already half size in both height and width.
The down-sampling process was performed to the final resulting image. It should be also
mentioned that similar comparative results are obtained in the other way around; it means, if
the comparisons were performed at full resolution by up-sampling results from SRCNN and
our approaches (CDNet and ENDENet).
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4.3. Experimental Results

The OMSIV dataset presented in Chapter 3 has been used to evaluate the performance of
the two proposed architectures, as well as to compare the results with the aforementioned
state-of-the-art approaches. As can be appreciated in Table 4.1, both network architectures
have similar results. However, when PSNR, SSIM, and ∆E00 metrics are considered, ENDENet
gets the best results. CDNet outperforms ENDENet just when AE is considered. In all the cases
the proposed architectures outperform the three algorithms from the state of the art evaluated
in the current work.

In order to analyze more in detail results from the two proposed architectures, a subset of
15 representative images, has been picked up as mentioned above. Table 4.2 presents results
from the quantitative and qualitative metrics SSIM, PSNR, AE, ∆E00 and HEP. The values of
AE are like MSE, the smallest the better; while with the other metrics, the largest the better.
Additionally, in the first row of each section in the table, similarity values computed between
the original image (Ir g b+ni r ) and the Yr g b are provided to be used just as a reference. Figures
4.9 and 4.10 present qualitative results for the images underlined in the table.

Since the images in the subset correspond to the best, worst and average cases, they cannot
be used to identify which network has the best performance. These quantitative results are
presented just to appreciate the improvement with respect to the state of the art. Actually,
as can be appreciated in Table 4.2, ENDENet and CDNet have similar results. Taking into
account the number of times a given network architecture obtains the best result, out of the
15 images, CDNet outperforms ENDENet if AE or ∆E00 evaluation metrics are considered. On
the contrary, if PSNR and SSIM are consider the ENDENet network obtains the best results.

As mentioned above, in addition to the quantitative evaluation, a test using 50 subjects
has been performed over these 15 images. From the 15 evaluations, CDNet generates the
best results in 8 cases, while ENDENet in just 4 cases, in the reminder 3 cases both networks
produce a similar result.

Figure 4.9 and 4.10, for illustration purposes, present color correction results from the
methods evaluated in Table 4.1. Figure 4.9 shows four best results from CDNet according to
∆E00; while Fig. 4.10 shows a pair of images with an average value and a pair of images where
CDNet gets the worst results. The last three rows in Figs. 4.9 and 4.10 correspond to the results
obtained with [96], [139] and [26] respectively. The four first rows correspond to original given
image (Ir g b+ni r ), ground truth, results from CDNet architecture and results from ENDENet
architecture.

As can be appreciated in Fig. 4.9 and Fig. 4.10, most of the images in the dataset contain
vegetation. According to Table 4.1 and Table 4.2 results from the proposed network archi-
tectures achieve highest score in most of the evaluation metrics. For instance, according to
the median values (Table 4.1), more than half of Îr g b samples get a ∆E00 value above 90%. In
other words, more than 90% of pixels have been restored closely to the corresponding ground
truth values, their difference is almost imperceptible by human eyes. In Fig. 4.10, Image
#12 corresponds to a challenging scenario where none of the proposed approaches get good
results. This bad results are mainly due to the materials present in the scene. More samples

53
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Figure 4.9: Four samples from the best results (see Table 4.1). Image numbers correspond to
the values presented in Table 4.2
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Figure 4.10: Four samples from the average and worst results (see Table 4.1). Image numbers
correspond to the values presented in Table 4.2
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Chapter 4. RGB Image Restoration from Single Sensor RGBN Image

containing these features and materials will be required to improve the performance.

4.4 Conclusion

This chapter proposes three variants of learning algorithms for RGB color restoration from
RGB+NIR multispectral images, specifically using images from the domain of visible and
near-infrared wavelength. The first proposal is based on neural networks, although being a
small size architecture, it outperforms method based on CCM. The second proposal is based
in CNNs. This proposal has two variants of CNNs, although both have the same number of
layers, the major difference is on the encoder-decoder layers. The ENDENet is based on the
encoder-decoder approach, which even though has a fewer number of parameters outperform
the state-of-the-art methods used for comparison. The CDNet, although scored as the second-
best one, its results preserve edges better than ENDENet in the RGB predicted images, which
are free on NIR component; such edge preservation is noted when a subjective evaluation is
conducted because of that CDNet scored the best result.

The results, furthermore, suggest that a multispectral image with sufficient sunlight will
be restored to the visible band keeping its main features and it will be almost imperceptible
for human eyes. The proposed approaches, either ENDENet and CDNet, learn a mapping
function between RGN+NIR to RGB without any pre-processing; these images were collected
in RAW format with all of information captured by the single sensor cameras. The proposed
architectures might be used to solve similar problems such as deblurring and super-resolution.
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5 Edge Detection from a Multispectral
Framework

This chapter focuses on the edge detection problem by proposing a novel RGBN multispectral
framework that take advantage of the information provided by the NIR channel to improve
results. Although the proposed framework is intended to be used with RGBN images, it can
be also considered when just RGB images are provided. In the proposed framework two
different deep learning based architectures have been developed and evaluated. Although the
approach is proposed to tackle the edge detection problem, it can be useful in other related
problems such as contour or object’s boundary detection. Datasets focused on contour or
object’s boundary detection, which were not considered during the training process, have
been evaluated showing the generalization of proposed approach.

5.1 Introduction

Edge detection is a recurrent task in several image processing and computer vision applications
(e.g., segmentation [161], image recognition [124, 155], and in the last boom of Generative
Adversarial Network (GAN) in the image-to-image translation [164]). Fields such as: medical
image analysis [107], remote sensing [52], oceanography [102], just to mention a few, in most
of their heart activities require the usage of edge detection. In spite of the large amount of
work on the edge detection problem, it still remains as an open problem with space for new
contributions.

It has been almost half a century since Sobel operator [128] has been proposed. Since then,
a large number of edge detectors [103] has been presented in the literature and most of the
techniques like Canny [18] are still being used in nowadays applications [102]. Recently, in the
era of Deep Learning (DL), Convolutional Neural Netwoks (CNN) models like, DeepEdge [14],
HED [150], RCF [76], BDCN [44] among others, have been proposed. These kind of models,
which have been reviewed in Section 2.4.4, are capable of producing edge-maps like the ones
obtained by Canny [18] or other low level processing edge detectors (e.g., [5]), reaching the
state-of-the-art results according to a given edge ground truth. The success of these methods
is mainly by the application of numerous CNN filters at different scale levels to a large set
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Chapter 5. Edge Detection from a Multispectral Framework

of images, together with regularization techniques and hyperparameters tuning. The main
drawback of these techniques lies on the fact that they work just on specific datasets and
secondly they are not focused on edge detection as it will be explained below.

Before starting with the proposed approaches, and to avoid misunderstandings, lets review
the differences between edge, contour and boundary detection tasks. Edge detection, back
in 1980s, was defined as the intensity changes on neighbour pixels of the given image, which
is produced by surface discontinuities, reflectance, or illumination boundaries [18, 88]; later
in [165], defined in the ambit of computer vision as the process that attempts to detect the
significant properties of objects in the scene captured by an image sensor; those properties
include discontinuities in the photometrical, geometrical and physical characteristics of
objects. Regarding contour and object’s boundary detection, they are related tasks, which some
times are treated as synonymous of edge detection, but being precise they are representative
features of the objects in the image [35] but not necessarily include all the edges from the
given image. These features are outlines representing or bounding the shape or form of the
objects in the image [94]. On the one hand, boundary refers to the border of an object in the
image plane that represents a change in the pixel ownership from one object or surface to
another [89]. On the other hand contour refer to the borders of a region of a given object.
To summarize, while edge detection is the whole change in the intensity function without
taking care of the ownership of the edge and without taking care of defining an open or closed
shape, contour and boundary detection tackle the task filtering the edges that not represent a
salient feature of the object or shapes from the objects. A detailed description of contour and
boundary detection can be found in [38] and [92].

As mentioned above, in this chapter deep learning based approaches are proposed, hence,
the dataset used for training become a critical feature for the algorithm success; in spite of
the importance of this fact most of the widely used datasets to train and evaluate DL based
edge detection algorithms are BSDS300 [89] and BSDS500 [7] (BSDS: Berkeley Segmentation
DataSet), which are dataset intended for segmentation—boundary detections. Generally,
BSDS300 is used to train and validate during the training stage, while the BSDS500 is just
used to test the resulting model. The images from these datasets have at least 5 boundary
annotations, in some cases the GT images also contains edges and contours annotations,
but these annotations are provided as a plus without additional information. As there are at
least five ground truths (GTs), DL based approaches (e.g., [44, 75, 150]) make a GT consensus
before the training process. In the consensus stage, a new GT is generated with the provided
annotations. A pixel is considered a true annotation in case that three or more annotators
have indicated that; otherwise the annotation is discarded. This process helps to filter edges
that affect the convergence of the training process [150]. In other words, with this filtering
processes, most of the annotations at the edge level are filtered since just few annotators
marked them; hence the trained neural network results in a boundary detector. Figure 5.1
shows a couple of illustrations from the BSDS300 and BSDS500 datasets. In these figures, it
can be appreciated the different representations obtained if all the annotations are considered
or different level of consensus (consensus of two and three are depicted). In general, the
consensus of three annotations is considered in most of the approaches (see right column in
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BSDS300 All annotations 2 consensus 3 consensus

(a) Image and GTs from BSDS300 [89]
BSDS500 All annotations 2 consensus 3 consensus

(b) Image and GTs from BSDS500 [7]

Figure 5.1: BSDS images used for training DL models for boundary detections—the five
provided annotations (All) and different level of consensous (2 and 3) are depicted.

Fig. 5.1), which in most of the cases correspond to boundary of the image’s content. Hence,
DL models trained with such a GT, learn to detect such a boundary as well as to remove other
edges from the given image. In other words, CNN based models are very dependent to the
type of dataset used during the training process, which do not allow generalization.

Having in mind the aforementioned drawbacks of CNN models, with respect to the non-
learning based algorithms, this chapter proposes DL based approaches to the edge detection.
As it will be shown, the proposed approaches can be used in any arbitrary image, just like
the non-learning based methods do in the edge detection tasks, but by improving their per-
formance. In other words, the proposed networks are trained using just one dataset and
then evaluated using all datasets available in the literature of edge detection. In addition,
the training of the proposed networks stars from the scratch, without major training settings
as usually done in the current DL models for edge, contour and boundary detection tasks.
Figure 5.2 shows four end to end predicted edge-maps (actually, CED has been designed for
boundary detection) from BSDS500 [7] by the state-of-the-art deep learning models. While
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Image (BSDS500) GT RCFHED CED BDCN DexiNed (Ours)

Figure 5.2: Results from the state-of-the-art algorithms and the proposed methods (DexiNed).
Note that HED [150], CED [143], RCF [75], and BDCN [44] have been trained with the BSDS500
[7] while DexiNed was trained just in our dataset (BIPED, see Chapter 3).

these models have been trained on the BSDS500 dataset, the proposed method did not use
this dataset during the training stage, however, it is able to predicte most of the edges with
better quality than state-of-the-art approaches (see the last column in Fig. 5.2).

The main contributions of this chapter are the following:

• It presents a multispetral version of HED [150] to detect edges from RGB and NIR images.

• It proposes a robust CNN architecture for edge detection, referred to as DexiNed: Dense
Extreme Inception Network. Up to our knowledge this is the first time that a CNN based
approach results in such a sharp edge representation, furthermore, outperforming the
state-of-the-art results in most of the considered datasets.

• It proposes a RGB-NIR edge detection approach, based on the DexiNed architecture,
which can be also used in RGB dataset.

• It presents exhaustive quantitative evaluations on the most used datasets for edge,
contour, and boundary detection by using state-of-the-art methods and the proposed
approach. These evaluations can be used as a benchmark for further research.

5.2 Proposed Approaches

This section presents visible spectrum and multispectral models developed for the edge
detection purpose. Firstly, the multispectral model based on HED [150] is detailed in Sec.
5.2.1; secondly, a new network for visible spectrum images (RGB) is presented in Sec. 5.2.2;
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finally, an extension of the model presented in Sec. 5.2.2, to tackle the multispectral case, is
detailed in Sec. 5.2.3.

The notation in the different DL based models will be as follow: given a CNN model, ð(:),
the input image for the architecture will be a Ir g b (RGB), or a Ir g bn (RGBN), image; Yr g b is
the corresponding annotated edge-maps (GT) of the given input image; Ŷ is the edge-maps
predicted from the used DL model ð(:). Depending on the DL approach, Ŷ will contain single
or multiple predictions, which will be highlighted in the respective section.

5.2.1 Multispectral Holistically-Nested Edge Detection

Focusing in the multispectral edge detection, the architecture proposed by [150] is redesigned
to train images from visible and near infrared spectral bands Ir g bn . Figure 5.3 presents an
illustration of the modified VGG16 architecture, termed herein as MS-HED, which is described
next. Given an Ir g bn input image, similar to HED, forward propagates such data throughout
five VGG16 [126] convolutional blocks. As illustrated in Fig. 5.3, the first two blocks have two
convolutional (conv) layers each, since then, each block has three conv layers. As in HED,
also in MS-HED, the feature maps resulting from each block are fed to the layer in the second
column (see Fig. 5.3 "Side-output_" into the rectangle). The edge-map prediction in the given
image is summarized in the following equation:

Ŷ = ð(Ir g bn ,Yr g b). (5.1)

The MS-HED input layer mentioned above is an Ir g bn ∈ Rw×h×4, where w and h are image
spatial dimensions and 4 corresponds to R, G, B, and NIR channels. The kernel size for each
VGG conv layer is 3×3. At the end of the last conv layer in each block there is a maxpooling
operator that downsamples the feature maps (the last block, block 5, does not have the
maxpooling operator), this operator makes the edge detection process a multi scale task.
Therefore, the output from every block is at a different scale, hence a re-sizing of predicted
edge-maps is performed in the "Side-output_" rectangle shown in Fig. 5.3. The processes of
edge-map prediction re-dimensioning into such rectangle is accomplished by convolutional
and transpose convolutional layer. The transpose convolution or deconvolution is added at
the end of such "Side-output" to, according to [150], lead the best performance restoring the
size by the up-sampling process. This process is like a bilinear interpolation but in a single
layer. In addition, another edge-maps prediction is generated in "Fuse-output" rectangle
(see Fig. 5.3); this prediction is accomplished by fusing the concatenated outputs from the
"Side-outputs" in a convolutional layer. The outputs from "Side-outputs" and "Fuse-output"
are deeply supervised by a modified cross-entropy loss function, which is described below.
Note that the predictions of all "Side-outputs" and "Fuse-output" has the same size as the GT.
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~VGG16 for MS-HED
RGBN

Block 1

3x3-64 conv1_1

3x3-64 conv1_2

Block 2

3x3-128 conv2_1

3x3-128 conv2_2

Block 3
3x3-256 conv3_1

3x3-256 conv3_2

3x3-256 conv3_3

Block 4
3x3-512 conv4_1

3x3-512 conv4_2

3x3-512 conv4_3

Block 5
3x3-512 conv5_1

3x3-512 conv5_2

3x3-512 conv5_3

Side-output_1

Side-output-2

Side-output-3

Side-output-4

Side-output-5

Fuse-output

Loss-sigmoid

Loss-sigmoid

Loss-sigmoid

Loss-sigmoid

Loss-sigmoid

Loss-sigmoid

Figure 5.3: VGG16 [126] based multispectral holistically-nested edge detection CNN architec-
ture.
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Loss Function

As described in Eq. 5.1 the model can be summarized as a regression function ð. That is, Ŷ
= ð(Ir g bn ,Yr g b), Ŷ is a set of predicted edge-maps, Ŷ = [ŷ1, ŷ2, ..., ŷP ], where ŷi has the same
size as Y , and P is the number of edge-maps predicted by the MS-HED; ŷP is the result from
the last fusion layer f (ŷP = ŷ f ). Then, as the model is deep supervised, it uses the same loss
as [150] (weighted cross-entropy), which is tackled as follow:

op (W, w p ) =−β ∑
j∈Y +

logσ(y j = 1|X ;W, w p )

− (1−β)
∑

j∈Y −
logσ(y j = 0|X ;W, w p ),

(5.2)

then,

L (W, w) =
P∑

n=1
δn ×on(W, wn), (5.3)

where W is the collection of all network parameters and w is the p corresponding parameter, δ
is a weight for each scale level (its setting will be described in the Sec. 5.3.1). β = |Y −|/|Y ++Y −|
and (1−β)=|Y +|/|Y ++Y −| (|Y −|, |Y +| denote the edge and non-edge in the ground truth).

5.2.2 Dense Extreme Inception Network for Edge Detection

Fused 
edge-map

Image

MaxPool
Convolution 3x3
Convolution 1x1

USNet
Concat

x2 x4 x8 x16

x16

Figure 5.4: Proposed Dense Extreme Inception Network (DexiNed), consists of an encoder
composed by six main blocks (showed in light blue). The main blocks are connected between
them through 1x1 convolutional blocks. Each of the main blocks is composed by sub-blocks
that are densely interconnected by the output of the previous main block. The output from
each of the main blocks is fed to an upsampling block that produces an intermediate edge-map
in order to build a Scale Space Volume, which is used to compose a final fused edge-map.

After evaluating the performance of an extension to the multispectral domain of the most
widely used CNN architecture for edge detection, training from scratch and without pre-
trained weights, the main conclusion that has been obtained is that from block 4 the MS-HED
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Edge-mapUSNet

Features at 
scale S

Sub-block1

Sub-block2

Figure 5.5: Detail of the upsampling block that receives as an input the learned features ex-
tracted from each of the main blocks. The features are fed into a stack of learned convolutional
and transposed convolutional filters in order to extract an intermediate edge-map.

architecture losses most of the edges detected in the previous blocks, even by using NIR
channel. The previous conclusion motivate the design of a new architecture that tackle the
drawbacks of MS-HED. Although this thesis is developed in a multispectral framework, where
information from one spectral band is used to improve results from another spectral band,
the architecture proposed in this section is just intended to work in the visible spectrum
domain (RGB). The idea behind this strategy is to develop a new architecture and compare
its performance with respect to state-of-the-art approaches. Once the best edge detection
architecture is developed, an extension of it is considered to tackle the multispectral case. The
proposed new architecture is termed DexiNed, which consists of a stack of learned filters that
receive as input an image (Ir g b) and predict edge-maps (Ŷ ) with the same resolution as Y .
DexiNed can be seen as two sub networks (see Fig. 5.4 and Fig. 5.5): Dense extreme inception
network (Dexi) and the upsampling network (USNet). While Dexi is fed with the RGB image,
USNet is fed with feature maps from each block of Dexi. The resulting network (DexiNed)
generates thin edge-maps, avoiding missed edges in the deep layers. Note that even though
without pre-trained data, the edges predicted from DexiNed are in most of the cases better
than state-of-the-art results, see illustration in Fig. 5.2.

DexiNed Architecture

The proposed architecture is depicted in Fig. 5.4; it consists of an encoder with 6 main blocks
inspired in the xception network [21]. The feature maps resulting as output at each of the main
blocks are resized by the Upsampling network (USNet) presented in the next section. All the
edge-maps resulting from the USNet are concatenated to feed the stack of learned filters at
the very end of the network and produce a fused edge-map. All the six upsampling blocks do
not share weights.

The blocks in blue (sub-block) consists of a stack of two convolutional layers with kernel
size 3×3, followed by batch normalization and ReLU as the activation function (just the last
convs in the last sub-blocks does not have such activation). The max-pool is set by 3× 3
kernel and stride 2. As the architecture follows the multi-scale learning, like in MS-HED, an
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upsampling process (horizontal blocks in gray, Fig. 5.5) is followed.

Even though DexiNed is inspired in xception, the similarity is just in the structure of the
main blocks and connections. Major differences are detailed below:

• While in xception separable convolutions are used, DexiNed uses standard convolutions.

• As the output is a 2D edge-map, there is "not exit flow", instead, another block at the
end of block five has been added. This block has 256 filters and as in block 5 there is not
maxpooling operator.

• In block 4 and block 5, instead of 728 filters, 512 filters have been set. The separations of
the main blocks are done with the blocks connections (rectangles in green) drawn on
the top side of Fig. 5.4.

• Concerning to skip connections, in xception there is one kind of connection, while
in DexiNed there are two type of connections, see rectangles in green on the top and
bottom of Fig. 5.4.

Whenever the network is enlarged by conv layers (or blocks of conv layers), every deep block
losses important edge features and just one main-connection is not sufficient, as highlighted
in DeepEdge [14], from the forth convolutional layer the edge feature loss is more chaotic.
Therefore, since block 3, the output of each sub-block is averaged with edge-connection (orange
squares in Fig. 5.4). These processes are inspired in ResNet [45] with the following notes: i )
as shown in Fig. 5.4, after the max-pooling operation and before summation with the main-
connection, the edge-connection is set to average each sub-blocks output (see rectangles in
green, bottom side); i i ) from the max-pool, block 2, edge-connections feed sub-blocks in
block 3, 4 and 5, however, the sub-blocks in 6 are feed just from block 5 output.

Upsampling Network (USNet)

DexiNed has been designed to produce thin edges in order to enhance the visualization of
predicted edge-maps. One of the key component of DexiNed for the edge thinning is the
upsampling network, as appreciated in Fig. 5.4, each output from the Dexi blocks feeds the
USNet. The USNet consists of the conditional stacked sub-blocks. Each sub-block has 2 layers,
one convolutional and the other deconvolutional; there are two types of sub-blocks. The
first sub-block (sub-block1) is feed from Dexi or sub-block2; it is only used when the scale
difference between the feature map and the ground truth is equal to 2. The other sub-block
(sub-block2), is considered when the difference is greater than 2. This sub-blocks is iterated till
the feature map scale reaches 2 with respect to the GT. The sub-block1 is set as follow: kernel
size of the conv layer 1×1; followed by a ReLU activation function; kernel size of the deconv
layer or transpose convolution s × s, where s is the input feature map scale level; both layers
return one filter and the last one gives a feature map with the same size as the GT. The last
conv layer does not have activation function.
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The sub-block2 is set similar to sub-block1 with just one difference in the number of filters,
which is 16 instead of 1 in sub-block1. For example, the output feature maps from block 6 in
Dexi has the scale of 16, there will be three iterations in the sub-block2 before fed the sub-
block1. The upsampling process of the second layer from the sub-blocks can be performed by
bi-linear interpolation, sub-pixel convolution and transpose convolution, this study will be
tackled in Sec. 5.3.3.

The definition of the loss function for DexiNed is the same as in MS-HED. That is, the
Eq. 5.2 is applied to the predicted edge-maps: Ŷ = [ŷ1, ŷ2, ..., ŷ6, ŷ f ], where ŷi is the edge map
obtained by USNet from the feature map predicted at Block i of DexiNed; and ŷ f is the edge
map obtained by fusing all USNet results, last conv layer—see rectangle in green of Fig. 5.4
(bottom right side).

5.2.3 Multispectral Dense Extreme Inception Network for Edge Detection

Once an architecture that overcome the drawbacks of MS-HED has been designed, and after
deep evaluations that have shown the proposed architecture (DexiNed) reaches the best
performance of state of the art, its extension to the multispectral framework is considered. It
should be mentioned that the proposed architecture is trained from the scratch and without
pre-trained weights. The proposed extension results in an architecture fed by multispectral
images; in other words more information will be processed, hence in order to avoid heavy
computation, the proposed DexiNed architecture is slightly optimized, by reducing the number
of parameters of DexiNed; from the 6 blocks of DexiNed architecture, just the 5 first blocks
are considered (see illustration of the reduced architecture in Fig. 5.6). Furthermore, the
max-pooling operator from the block 4 is eliminated with the purpose of reducing artifacts
in the final predicted edge-maps. The information from the new spectral band is expected
to compensate this reduction. The new MultiSpectral Dense eXtreme inception Network for
edge detection is termed as MS-DXN.

The input images for the MS-DXN are a RGB image together with its corresponding NIR
image (Ir g bn). In other words, the dataset used for training the proposed architecture should
contain registered visible and near infrared images. However, as most of the edge detection
datasets are only in the visible band, a NIR estimator network is developed in order to tackle
the edge detection of those datasets—see illustration in the bottom left of Fig. 5.6(into a
broken lines rectangle). This NIR estimation network obtains NIR component from the given
RGB input; it is referred to as NIR hallucination network (hallu-net). This hallu-net allows
MS-DXN to be used in both multispectral datasets (e.g., MBIPED) or classical visible spectrum
datasets (e.g., BSDS500, NYUD).

The MS-DXN architecture mainly consists of two parts, like DexiNed: i ) Dexi network,
which is the composition of main blocks and skip connections, light blue rectangles, containing
blue and red rectangles, and rectangles in green, respectively (see Fig. 5.6 to appreciate Dexi
network’s components). i i ) the second part is USNet (rectangles in gray in the bottom of the
Fig. 5.6), which is the conditional iterative network used to generate edge-maps predictions
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Figure 5.6: Proposed multispectral architecture of DexiNed network (MS-DXN).

from each main block of Dexi network (five predictions). A representative design of USNet
is illustrated in Fig. 5.5, its detailed description can be found in Sec. 5.2.2. MS-DXN, as
mentioned above, can be fed by a Ir g bn or Ir g bn̂ . That is, if the dataset for training or testing
the MS-DXN, contains the NIR component of the RGB image, it does not use hallu-net and MS-
DXN is trained by Ir g bn . The dataset used in this thesis for the MS-DXN training and testing
is MBIPED, see dataset descriptions in Chapter 3; for the purposes of evaluation in other
datasets, just the RGB images from those datasets are considered and the NIR components are
estimated by the hallucination network proposed in the next section. As mentioned above,
all the datasets used by the state-of-the-art edge detection models are in the visible domain
(Ir g b). In these cases the NIR hallucination network is used; hence, before fed Dexi network
with input image Ir g b the Îni r is estimated by the hallu-net, turning the input of MS-DXN in
Ir g bn̂ .

The settings in the Dexi network and USNet are the same as in DexiNed (i.e., filter size of
the conv layers, connection operators, the fusion layer and so on). The feature maps at the end
of every block (as in DexiNed), follow two directions, one add with skip connection to fed the
next high level block and the other to fed USNet (rectangle in gray in the bottom side of Fig. 5.6)
to generate intermediate edge maps from every block. The whole set of predicted edge-maps
Ŷ are as follow: Ŷ = [ŷ1, ŷ2, ..., ŷ5, ŷ f ]; where ŷi and ŷ f are predictions from the block i and
fusion layer, respectively. The loss function to train these networks is the same as the one
used in DexiNed, see details of such a loss function in the section above. Before training the
MS-DXN, in the case that the NIR images are not provided from the dataset, the hallu-net is
prepared to predict such NIR absence. In the next section the hallu-net is described.

5.2.4 NIR Estimation Model

In the last few years, with the purpose to reach better accuracy in the face recognition problem
(e.g., [70, 129]), CNN models considering images from different spectral bands have been
proposed. These models extract features from each spectral band and thus reduce the error
rate the bio-metrical identification. For example, [70] developed a face recognition model for
NIR images; it has been trained by using NIR face dataset of CASIA v2 [73]. However, before fed
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Figure 5.7: Hallu-net architecture, the images used in the figure are from OMSIV dataset
("Conv 5× 5" refers to a convolutional layer with a kernel size of 5×5, Deconv refers to a
deconvolutional layer).

the NIR image to the principal CNN architecture, authors propose another CNN model to map
from the NIR image to the RGB domain, then fed the principal network. This cross-spectral
proposal improved the accuracy from 75%, when just NIR images were considered, to 80% in
the case the hallucinated RGB images were also considered. Similarly to this approach, but on
the other direction (from RGB to NIR) MS-DXN proposes to make a NIR hallucination from
RGB images of the state-of-the-art datasets for edge detection (which are just in the visible
domain). The proposed network architecture is referred to as hallu-net—CNN model for NIR
estimation.

The NIR estimation model, hallu-net, is the CNN model that estimate a NIR image from
a given RGB image. That is, Îni r = H(Ir g b , Ini r ). A modification of the proposed CDNet
architecture [131], presented in Section 4.2.2 for color restoration, is considered for NIR
estimation (see the architecture in Fig 5.7). The CDNet is a set of two convolutional (conv)
and 4 deconvolutional (deconv) layers. The hallu-net modification lies just in the number of
filters, the first and the last hidden layers remains as in CDNet, while the rest of layers are set
with 64 filters. The kernel sizes are maintained similar to in CDNet; 5×5 and 1×1 for the first
and the last layers; in the rest of layers are set by 3×3 kernel size. The loss function used to
train hallu-net is L1 defined as l1 =∑P

i=1 |Ini r (i )− Îni r (i )|, P is the total number of pixels in an
image and the sub-index i is the pixel index. The Îni r is the predicted NIR image for the given
Ir g b ∈Rw×h×3; the Ini r is the target NIR image with the same dimension as Ir g b ; w and h are
image’s width and height respectively. Another loss function, Mean Square Error (MSE), has
been considered to train hallu-net, this study is presented in Sec. 5.3.4.

5.3 Experimental Results

Section 5.2 presents three approaches MS-HED, DexiNed and MS-DXN. In this section, firstly
results from MS-HED are presented; then, the proposed DexiNed is deeply evaluated, both
quantitative and qualitatively, with the BIPED dataset. Finally, MS-DXN, trained in the mul-
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tispectral edge detection datasets collected and presented in Chapter 3 is evaluated. Before
presenting experimental results, the setup used for training and testing with some implemen-
tation notes, are detailed; additionally, assessment metrics used for the quantitative evaluation
are described.

5.3.1 Experiment Setup

Dataset used for Training

The models proposed in Sec. 5.2 have been trained only one time by using edge detection
based dataset, MBIPED (Multispectral Barcelona Images for Perceptual Edge Detection) and/or
BIPED, introduced in Sec. 3.2.2. As highlighted in Chapter 3, under the umbrella of edge
detection, most of the DL based models have been trained on dataset for boundary detection
or segmentation. Therefore, in this thesis these datasets have been also considered for the
evaluations as detailed below.

Dataset used for Testing

The performance of MS-HED is evaluated in MBIPED test dataset (50 images), see Sec. 3.2.2
for more details. The datasets used to evaluate the performance of DexiNed are BIPED, MDBD
[92], CID [38], BSDS300 [89], BSDS500 [7], NYUD [125] and PASCAL [99]. Finally, the dataset
considered to evaluate MS-DXN are: MBIPED, MDBD [92], CID [38],DCD [71], BSDS300 [89]
BSDS500 [7], NYUD [125] and PASCAL [99]. Descriptions of such datasets are presented below.

MDBD: The Multicue Dataset for Boundary Detection has been collected for the purpose of
psychophysical studies on object boundary detection in natural complex scenes, considering
multiple cues such as luminance, color, motion and binocular disparity [92]. The MDBD
dataset consist of short binocular video sequences of natural images (containing 10 frames
per scene), there are 100 scenes in high definition (1280×720). Each image in this dataset has
been annotated by more than one subjects. Although this dataset is intended for boundary
detection, each image has been annotated six times for edge detection and five times for
boundary detection. In the current work just the annotations corresponding to edge detection
have been considered. Usually, in this dataset 80% of the images are used for training, while the
remaining are used for evaluating the learning algorithm. In the current work 20% randomly
selected images have been considered for evaluating the performance of DexiNed and MS-
DXN.

CID: The Contour Image Dataset is a set of 40 gray-scale images with their respective
ground truth, edges manually annotated [38]. The images in this dataset are 512×512. The
main limitation of this dataset is related with the small number of annotated images, as
mentioned above just 40 annotated images are provided. Hence, in this case DexiNed and
MS-DXN have been evaluated with the whole dataset, as in previous works (e.g., [5, 138]). This
dataset, as well as NYUD, are difficult datasets for DL based approaches due to their grayscale
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(given 5 annotations) (resulting 3 annotations)

Figure 5.8: (l e f t) A DCD test image with the provided annotations [71]. (r i g ht) Contours
after removing wrong annotations.

nature and missed annotations in some of the provided images.

DCD: Dataset of Contour Drawings is collected with the aim to generate contour drawings
(boundary-like drawings that capture the outline of the visual scenes) [71]. The DCD contains
1000 images, from that set 100 images are selected for testing. Ground truth annotations
were collected by using a game application termed sketch drawing. For each image several
annotations were collected; then, after an exhaustive evaluation just five contours per each
image were kept as ground truths. However, in the current work, after checking the provided
ground truth several wrong annotations have been found; Figure 5.8(le f t ) shows an illustra-
tion were it can be easily appreciated the wrong contours provided by [71]. Hence, in order to
perform a fair evaluation of trained architecture the annotations of the 100 testing images have
been carefully checked, one by one, to remove wrong GTs. From this filtering process, several
annotations have been removed. Hence, in the resulting set, which still have 100 images, each
image contains between two and five annotations. Figure 5.8 (right side) presents results after
removing wrong annotations. This dataset is considered for evaluating the MS-DXN model.

BSDS500: Berkeley Segmentation Dataset (BSDS), the first version has been published in
2001 [89], which consists of 300 images split up into 200 for training and 100 for validation,
termed BSDS300; the last version [7], adds 200 new images for the testing. Every image in
BSDS is annotated at least by 6 subjects, the dateset contains images of 481×321. This dataset
is mainly intended for image segmentation and boundary detection, therefore, as it will be
illustrated in next sections, for the edge detection purpose some images are not well annotated.
Generally, to evaluate the performance of a DL model in BSDS500, the new 200 images are
used for testing while the BSDS300 are used for the network training purpose. As DexiNed
and MS-DXN did not use BSDS300 for the training (just BIPED or MBIPED are considered) in
Sec 5.3.3 and 5.3.4 results from the two datasets (i.e., BSDS300 and BSDS500) are presented.
Concerning to BSDS300, for a fair comparison, the quantitative evaluation refers to the test
part of that dataset (100 samples).
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NYUD GT for segmentation
Figure 5.9: A sample of NYUD, note there are a large amount of missed edges in the ground
truth.

NYUD: New York University Dataset is a set of 1449 RGBD images that contains 464 indoor
scenarios, intended for segmentation purposes. This dataset is split up by [40] into three
subsets—i.e., training, validation and testing sets. The testing set contains 654 images, while
the remaining images are used for training and validation purposes. In the current work just
the testing set has been selected for evaluating the performance of the proposed models.
Although most of the images in NYUD are fully annotated for segmentation tasks, there are
a few of them with poor annotations. The NYUD has been considered for evaluating edge
detection tasks just because most of the last state of the art consider it for edge detection.
However, for the edge detection purpose, the NYUD should be considered just for qualitative
evaluation. Figure 5.9 shows a RGB image together with its corresponding GT—annotated
edges. As it can be appreciated in the GT, there are a lot of missed edges in the provided
annotations, such a lack of edges penalize the training and evaluation of a DL based edge
detector.

PASCAL: The PASCAL-Context [99], termed in this paper as PASCAL, is a popular dataset
used for segmentation with a wide variety of object categories. Currently, most of the major
DL methods for edge detection use PASCAL-Context for training and testing edges (e.g., [150],
[76]), due to its ground-truths correspond to scenes different to the ones depicted in BSDS
dataset. This dataset contains 11530 annotated images, about 5% of randomly selected images
(500) have been considered for testing DexiNed and MS-DXN. Although the images in PASCAL
have more diverse labeled data, most of the images are annotated only for a couple of objects
even though the scene has a vast number of features, in this case vast number of edges (even
contours).
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Evaluation Metrics

All the edge detector models proposed in this Chapter use the same quantitative evaluation
metrics. The assessment metrics used by such approaches are detailed below.

The validation of the proposed algorithms is performed by widely used metrics in the state-
of-the-art models for edge, contour and boundary detection [35]. They are the F-measure
(Fm) [42, 89] of Optimal Dataset Scale (ODS), Optimal Image Scale (OIS), and the Average
Precision (AP) from the Precision (P) over Recall (R) curves: Fm = 2×P×R

P+R ; P is the fraction of
edges detected with respect to the GT rather than false positives and R is the fraction of GTs
detected by the proposed model rather than missed [89].

Implementation Notes

MS-HED: Since MS-HED implementation does not use VGG16 pre-trained data, the train-
ing iterations are 90k with a 0.003 learning rate, 10 mini-batch size and 0.2 fusion weights
initialization. With a difference on the number of training iteration, all the settings have the
same parameters as in [150] (δ is set by 1.1), which has the best performance in F-Score on
the BSDS500 validation set. They experimented using different hyper-parameters, non-linear
functions and conclude that the parameters exposed above are the best. Therefore, this work
used such values. The training process took about 5 days for both, the HED and MSI-HED
models, with the input image size [480,480,3] for Ir g b and [480,480,4] for Ir g bn . The training
and testing of MS-HED model is done with images from MBIPED dataset. Therefore, the data
augmentation process is performed with a small difference with respect to the one presented
in Chapter 3. Firstly the given images are split up into two parts; secondly, each of the obtained
sub-images is rotated in 15 different angles (cropping the maximum square of a rotated image);
and finally, they are horizontally flipped, which augmented the dataset by a factor of 64.

DexiNed: The training of the network is performed from scratch and without pre-trained
weights. On average, the model converges after 120k iterations (the quantitative and qualitative
results are performed in 150k iterations) with a batch size of 8 using Adam optimizer and
learning rate of 10−4. The training process takes about 2 days. After the data augmentation,
the images have different size, therefore, in the training process, the images were cropped
or resized to 480×480. 10% of the augmented data were used for the validation during the
training process. The weights for fusion layer are initialized as: 1

P−1 (see Section 5.2.1 for details
on P ). After a hyperparameter search to reduce the number of parameters, best performance
was obtained using kernel sizes of 3×3, 1×1 and s× s on its in-block convolutions, connection
layers (main and edge) and transpose convolution, respectively.

MS-DXN: The implementation settings were performed similarly to DexiNed, with a little
difference highlighted as follow: the quantitative and qualitative results are performed in 23
epochs (around 149k iterations). The training process takes about 2 days with images of size
440x440 as input. The weights for fusion layer are initialized as: 1

P (see Section 5.2.1 for details
on P ). The kernel size of the different convolutional and transpose convolutional layers are set
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Predicted HED [150] (Ir g b) MS-HED (Ir g bn)
Edge-maps ODS OIS AP ODS OIS AP

Fused 0.79 0.80 0.80 0.78 0.80 0.81
Averaged 0.78 0.80 0.82 0.78 0.80 0.83

Table 5.1: Quantitative evaluation conducted on BIPED and MBIPED datasets.

similarly to in DexiNed.

The whole proposed models have been implemented in TensorFlow [1], the training and
testing of such models are conducted on a GPU TITAN X.

5.3.2 Results from MS-HED

Quantitative results with the dataset collected for edge detection are depicted in Table 5.1. The
evaluations have been performed over two models, HED [150] and MS-HED (introduced in
Sec. 5.2.1). Both models have been trained from the scratch, without pre-trained weights and
evaluated after 90k iterations. While the "Fused" is the edge prediction from the fusion layer
(ŷ f ), "Averaged" is the average performed from the whole set of predictions. Whenever OIS is
considered, both models reach the same values; according to ODS, ŷ f from HED overcome to
the ŷ f from MS-HED; however, in the Average both models reach the same results. The major
difference of the models considered for comparison is appreciated whenever the AP values are
compared. Both predictions from MS-HED, Fused and Averaged, overcome the results from
HED.

The quantitative difference depicted in Table 5.1 shows a slight difference between the two
models considered for comparison. Figure 5.10 presents the whole edge-maps predicted from
HED and MS-HED for two different samples. Both, RGB and RGBN based predictions, present
similar amount of edges like those presented in the GT whenever the rows for FUSED and
AVERAGED are considered. Furthermore, both fused and averaged results present plausible
edges even in challenging scenes, note that the illustration in the second column of MS-HED
in Fig. 5.10 shows how small details like windows in the buildings are detected. However,
in the first column, the first light post (left to right) is not properly formed when the edge is
predicted from the Ir g b images (see in the top, the post through the window in "FUSED" row).
Both fused and averaged predictions from the MS images, when the light post is considered,
has a presence of edges in the whole of its contour. Output i corresponds to the Side-output-i
block in Fig. 5.10.

With the quantitative and qualitative results, many conclusions can highlighted. However,
the most important thing is that, the training of a DL model from the scratch without pre-
trained weights makes that the predicted edge-maps be generated with less artifacts but also
deeper layers will loss high level features (see OUTPUT 5 row in HED, OUTPUT 4 and OUTPUT
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Figure 5.10: RGB and NIR images from MBIPED dataset, GT, and all edge-maps predicted from
both models considered for evaluation in Table 5.1.
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Figure 5.11: Precision/recall curves on BIPED dataset. (a) DexiNed upsampling versions. (b)
The outputs of Dexined in testing stage, the 8 outputs are considered. (c) DexiNed comparison
with other DL based edge detectors.

5 rows in MS-HED of Fig.5.10). They loss important edges from the previous blocks. More
importantly, the edges predicted from block 4 are more coarser in HED, and in MS-HED there
are not predicted edges; in the block 5 of both models there are not predicted edge. For the
edge detection generalization from a DL model, another CNN architecture is needed, and the
dataset used for the training needs more supervision or much edge annotations.

5.3.3 Results from DexiNed

Before tackle the edge detection task from the multispectral domain, the visible band is
considered. Therefore the training of DexiNed is preformed in BIPED dataset and evaluated in
the datasets presented in Sec. 5.3.1.

Firstly, in order to select the upsampling process that achieves the best result, an empiric
evaluation has been performed, see Fig. 5.11a. The evaluation consists in conducting the
same experiments by using the three upsampling methods; DexiNed-bdc refers to upsampling
performed by a transpose convolution initialized with a bi-linear kernel; DexiNed-dc uses
transpose convolution with trainable kernels; and DexiNed-sp uses subpixel convolution.
According to F-measure, the three versions of DexiNed get the similar results, however, when
analyzing the curves in Fig. 5.11a, it can be appreciated that although all of them have the
same behaviour (shape), a small difference in the performance of DexiNed-dc appears. As a
conclusion, the DexiNed-dc upsampling strategy is selected; from now on, all the evaluations
performed on this section are obtained using a DexiNed-dc upsampling; for simplicity of
notation just the term DexiNed is used instead of DexiNed-dc.

Figure 5.11b and Table 5.2a present the quantitative results reached from each DexiNed
edge-map prediction. The results from the eight predicted edge-maps are depicted, the best
quantitative results, corresponding to the fused (DexiNed-f) and averaged (DexiNed-a) edge-
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Figure 5.12: DexiNed predictions from BIPED dataset.

Outputs ODS OIS AP

Output 1 (ŷ1) .741 .760 .162
Output 2 (ŷ2) .766 .803 .817
Output 3 (ŷ3) .828 .846 .838
Output 4 (ŷ4) .844 .858 .843
Output 5 (ŷ5) .841 .8530 .776
Output 6 (ŷ6) .842 .852 .805

Fused (ŷ f ) .857 .861 .805
Averaged .859 .865 .905

Methods ODS OIS AP

SED[5] .717 .731 .756
HED[150] .829 .847 .869
CED[142] .795 .815 .830
RCF[75] .843 .859 .882

BDCN[44] .839 .854 .887
DexiNed-f .857 .861 .805
DexiNed-a .859 .867 .905

(a) (b)

Table 5.2: (a) Quantitative evaluation of the 8 predictions of DexiNed on BIPED test dataset.
(b) Comparisons between the state-of-the-art methods trained and evaluated with BIPED.

maps are selected for the comparisons. Similarly to [150] the averaged of all predictions
(DexiNed-a) gets the best results in the three evaluation metrics, followed by the prediction
generated in the fusion layer. Note that the edge-maps predicted from the block 2 till the
6 get similar results to DexiNed-f, this is due to the fact of the proposed skip-connections.
For a qualitative illustration, Fig. 5.12 presents all edge-maps predicted from the proposed
architecture. Qualitatively, the result from DexiNed-f is considerably better than the one from
DexiNed-a (see illustration in Fig. 5.12). However, according to Table 5.2a, DexiNed-a produces
slightly better quantitative results than DexiNed-f. As a conclusion both approaches (fused
and averaged) reach similar results; through this manuscript whenever the term DexiNed is
used it corresponds to DexiNed-f.

Table 5.2b presents a comparison between the DexiNed and the state-of-the-art techniques
on edge and boundary detection. In all the cases BIPED dataset has been considered, both for
training and evaluating the DL based models (i.e., HED [150], RCF [76], CED [142]) and BDCN
[44], the training process for each model took about two days. As can be appreciated from Table
5.2b, DexiNed-a reaches the best results in all evaluation metrics. Actually both, DexiNed-a
and DexiNed-f obtain the best results in almost all evaluation metrics. The F-measure obtained
by comparing these approaches is presented in Fig. 5.11c; it can be appreciated how for Recall
above 75% DexiNed gets the best results. Illustrations of the edges obtained with DexiNed
and the state-of-the-art techniques are depicted in Figure 5.13, just for four images from the
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BIPED dataset. As it can be appreciated, although RCF and BDCN obtain similar quantitative
results than DexiNed, which were the second best ranked algorithms in Table 5.2b, DexiNed
predicts qualitative better results. Note that the proposed approach was trained from scratch
without pre-trained weights.

The main objective of DexiNed is to get a representation that contains all edges from
the given image (RGB or Grayscale) being trained only on BIPED. Therefore, in order to
evaluate this capability, all the datasets presented in Sec. 5.3.1 have been considered, split
up into two categories for a fair analysis; the first category contains a dataset intended for
edge detection while the second category contains datasets intended for contour/boundary
detection/segmentation. Results of edge-maps obtained with state-of-the-art methods are
presented in Table 5.3. It should be noted that for each dataset the methods compared
with DexiNed have been trained using images from that dataset, while DexiNed is trained
just once with BIPED. Values presented in Table 5.3 are provided for comparisons and they
come from the corresponding publication. It can be appreciated that DexiNed obtains the
best performance in the MDBD dataset (up to our knowledge, the unique dataset for edge
detection). It should be noted that DexiNed is evaluated in CID and BSDS300, even though
these datasets contain a few images, which are not enough for training other approaches (e.g.,
HED, RCF, CED). Regarding BSDS500, NYUD and PASCAL, DexiNed does not reach the best
results since these datasets have not been intended for edge detection, hence the evaluation
metrics penalize edges detected by DexiNed. To highlight this situation, Fig. 5.14 depicts
results from Table 5.3. Four samples from each dataset are considered. They are selected
according to the best and worst F measure. Therefore, as shown in Fig. 5.14, when the image is
fully annotated the score reaches around 100%, otherwise it reaches less than 50%.

As highlighted in previous section, when the deep learning based edge detection ap-
proaches are evaluated in datasets intended for objects’ boundary detection or objects seg-
mentation, the results will be penalized. To support this claim, we present in Fig. 5.14 four
predictions (two best and two worst results according to F-measure) from all datasets used
for evaluating the proposed approach (except BIPED that has been used for training). The
F-measure obtained in the three most used datasets (i.e., BSDS500, BSDS300 and NYUD)
reaches over 80% in those cases where images are fully annotated; otherwise, the F-measure
reaches about 30%. However, when the edge dataset (MDBD [92]) is considered the worst
F-measure reaches over 75%.

Concerning to qualitative evaluation, results obtained with the proposed approach, just
trained in the BIPED dataset, when it is evaluated in other publicly available databases. The
provided illustrations correspond the to two best and the two worst results in each dataset.
In Fig. 5.14, the first row corresponds to the two best F-measure scores for the BSDS500
dataset, while the second row shows the two results with the worst scores. These results are
provided just for qualitative evaluations of the performance of the proposed approach. It can
be appreciated how details, which are missed in the ground truths, are correctly detected by
DexiNed; more details on each dataset are provided follow:
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Figure 5.13: Three resultant edge-maps from BIPED test dataset from the approaches pre-
sented in Table 5.2b.

78



5.3. Experimental Results

Dataset Methods ODS OIS AP

Edge detection dataset
MDBD[92] HED[150] .851 .864 .890

RCF[76] .857 .862 -
DexiNed-f .837 .837 .751
DexiNed-a .859 .864 .917

Contour/boundary detection/segmentation datasets

CID[38] SCO[154] .58 .64 .61
SED[5] .65 .69 .68

DexiNed-f .65 .67 .59
DexiNed-a .65 .69 .71

BSDS300[89] gPb[7] .700 .720 .660
SED[5] .69 .71 .71

DexiNed-f .707 .723 .52
DexiNed-a .709 .726 .738

BSDS500[7] HED[150] .790 .808 .811
RCF[76] .806 .823 -

CED[142] .803 .820 .871
SED[5] .710 .740 .740

DexiNed-f .729 .745 .583
DexiNed-a .728 .745 .689

NYUD[125] gPb[7] .632 .661 .562
HED[150] .720 .761 .786
RCF[76] .743 .757 -

DexiNed-f .658 .674 .556
DexiNed-a .602 .615 .490

PASCAL[99] CED[142] .726 .750 .778
HED[150] .584 .592 .443
DexiNed-f .431 .458 .274
DexiNed-a .475 .497 .329

Table 5.3: Comparisons between DexiNed trained on BIPED with respect to the state-o-the-
art methods in the literature trained with the corresponding datasets (values from other
approaches come from the corresponding publications).
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Figure 5.14: Four edge-maps predicted by DexiNed for each tested dataset; they correspond to
the best and worst F-measure for the given dataset. The 2nd and 5th columns correspond to
the GT of the respective image.
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• BSDS500: The two highest score on this dataset are near to the 90% F-measure score but
the worst scores are under the 50%. As depicted in Fig. 5.14 (first two rows), while there
is a well annotated GT, the scores are high, otherwise, the scores turn bad. Furthermore,
some of the edges in the ground truth do not exist in the given image (for instance, the
vertical line on the facade of the building in the right side does not exist in the RGB
image). Therefore, even the predicted edges are well localized, the score is still 41.4%.

• BSDS300: Results are similarly to the ones obtained with BSDS500. However, in this case
a considerably higher performance is reached in the best case. Note that almost a 98%
score is obtained, even though these kind of images have not been used for the training
stage. The BIPED data set contains scenarios considerable different, see illustrations in
Fig. 5.14; in none of them there is a single object.

• NYUD: In this dataset the two highest scores overcome the 80% in the F-measure. It
should be mentioned that all images in NYUD correspond to indoor scenarios, while
in BIPED all the scenes correspond to outdoor scenarios. With these results we could
conclude that DexiNed is able to handle different scenarios, even though just outdoor
has been used for its training. Finally, the two worst results correspond to scene with
poor ground truth annotations. It can be appreciated that DexiNed is able to extract
edges in scenes with poor lighting conditions (see illustration with F=0.233).

• PASCAL: This dataset is challenging due to the purpose of its nature. PASCAL has been
conceive for semantic image segmentation. In this case the worst results has a score
below 10%, but as mentioned in the previous section, this bad result corresponds to
a scene where just a few objects have been annotated, while most of the edges in the
scene are neglected. In case images are well annotated, the score overcome 75%.

• MDBD: As shown in Fig 5.14, in the GT most of the edges plausible for human eyes are
annotated, hence, the worst result gets over 65%, while the best one gets over 90%. As
highlighted in the paper, DexiNed overcome state-of-the-art results when GTs are well
annotated. It could be also concluded that BIPED dataset helps to generalize the edge
detection work.

• CID: Since this dataset is complex, due to the nature of its composition (i.e., grayscale
domain), the range of results goes from 36.4% till 80.9%. Even though DexiNed did not
learn edge detection in grayscale domain, its scores still overcome the state-of-the-art
performance.

As a conclusion, it should be stated that edge detection and contour/boundary detection
are different problems that need to be tackled separately when a DL based model is considered.
For instance, in datasets such as BSDS500, NYUD, and PASCAL, the performance of the
proposed models are lower than the results from the state-of-the-art DL models (which are
trained in these datasets). These lower quantitative performance can be easily understood by
the fact that in these datasets not all the edges are annotated.
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5.3.4 Results from MS-DXN

Once the quantitative and qualitative evaluations are performed, DexiNed architecture demon-
strated its capabilities in the edge detection problem by training the model from the scratch,
even though, without pre-trained weights. Motivated by the obtained results, the DexiNed
architecture has been considered to elaborate the MS-DXN architecture as mentioned above.
In this new architecture, if the provided dataset contains RGB and NIR images, like MBIPED,
during the training process the hallu-net module is not considered. Otherwise, the hallu-net
model is used to estimate the NIR component of the provided RGB images. Before presenting
the quantitative and qualitative results of MS-DXN in edge detection, the hallu-net experi-
ments are depicted.

The hallu-net presented in Sec. 5.2.4 has been evaluated by training it with L1, MSE and
L1+MSE loss functions. Additionally, two learning rates (l r ) have been considered in each
training. Each setting has been trained during 3000 epochs; PSNR and SSIM are considered for
the quantitative evaluations of the estimated NIR images when the OMSIV dataset has been
considered. Results from these evaluations are presented in Table 5.4. Even though, the best
score is for L1 with l r = 1e −2 considering PSNR; while considering SSIM the best scores are
in the first and the last rows. In summary, there is not a clear configuration that gets the best
results in both evaluation metrics. Looking at the results in Table 5.4, the second best score in
PSNR and SSIM corresponds to the same setup, which has been finally selected. The training
and evaluations have been conducted in OMSIV dataset by using 400 images for training and
validation and 100 for the testing. The input color image size to train hallu-net was 164×164.

For the quantitative and qualitative evaluations of MS-DXN, the HED [150], CED [142], RCF
[75] and BDCN [44] datasets have been considered. Currently, SED [5] is the state-of-the-art
method for edge detection, which is based on low level features (non-learning algorithm),
this method will be considered as the baseline, see details of such models in Sec. 2.4. For a
fair comparison, all the DL based models have been trained using the same dataset, which
is RGB images from MBIPED . The training of HED and CED took about 3 days (20 epochs),
RCF has been trained on about 5 days (till 20 epochs), BDCN has been trained till 6k iterations
(about four days), and DexiNed has been trained till 150K iterations for about 2 days. The
proposed MS-DXN model has been trained about 2.5 days, 23 epochs (around 149K iterations)
twice, firstly with MBIPED to evaluate the performance when real NIR images are considered,
and then with RGB from MBIPED and NIR images estimated by hallu-net; in the last case
the hallu-net has been previously trained with OMSIV. The setting of the DL based models
maintains the same configuration as described in their own manuscript.

The comparisons are performed according to the type of dataset used for the evaluation; the
dataset classification as edge, contour, boundary, and segmentation is performed according to
the statement given in each manuscript where the approaches have been proposed. A deep
study is conducted to the dataset intended for edge detection tasks (MBIPED and MDBD);
more precisely, MBIPED is also evaluated in the multispectral domain by MS-DXN, since the
corresponding multispectral images (RGB and NIR) are provided (Ir g bn). Table 5.5 and Fig.
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Loss functions l r Epochs PSNR SSIM

L1 1e −1 3000 20.148 0.751
L1 1e −2 3000 20.258 0.748

MSE 1e −1 3000 20.182 0.745
MSE 1e −2 3000 20.214 0.750

L1 + MSE 1e −1 3000 20.164 0.745
L1 + MSE 1e −2 3000 20.153 0.751

Table 5.4: Quantitative evaluation of the different version of hallu-net. l r is the learning rate
used on each experiment.

5.15 present comparisons from edge detection based datasets, and Tables 5.6, 5.7 and 5.8
present results from datasets intended for contour, boundary, detection/object segmentation,
respectively. With respect to the qualitative results, whenever the proposed models do not use
sub-index at the end like MS-DXN-a or MS-DXN-f, the edge-maps prediction corresponds to
MS-DXN-f, even though if in the figure is termed just as MS-DXN without "-f". The choice is
based on the suggestion of DexiNed, after quantitatively evaluating each output, the fused
(DexiNed-f) and the averaged (DexiNed-a) predicted edge-maps scored the second and the
first best marks, respectively. While the second one shows the best edge-map contrast, the
first one reaches the best quantitative result. Therefore, for the qualitative comparisons
DexiNed-f and MS-DXN-f are considered, termed in the illustrations as DexiNed and MS-DXN,
respectively.

Figure 5.15a shows precision/recall curve for all the approaches when MBIPED is used.
The graph shows an improvement of MS-DXN-a over DexiNed-a; although MS-DXN has fewer
parameters, it still reaches the state-of-the-art results, which means that considering ODS
the two best marks are for the two proposed models, MS-DXN and DexiNed. A more detailed
quantitative results, considering ODS, OIS, and AP, is presented in Table 5.5. Considering
two assessment metrics, ODS and AP, the MS-DXN-a (a model trained with visible and NIR
bands images Ir g bn reaches the best result, whenever OIS is considered the best results is from
BDCN; actually, the difference with the second best result (from MS-DXN-a) is just 0.1%.

As previously highlighted, all learning algorithms for edge detection are trained using the
RGB images from MBIPED. So now, other datasets, which have not been previously used in
the training process, are considered to validate the edge detection generalization. Figure 5.15b
presents results from MDBD dataset, note that the same 20 images are considered to compare
the performance of all models; according to Fm in Fig. 5.15b, the best result correspond
to DexiNed-a followed by BDCN; SED reaches the third position, which even though is not
a learning based algorithm its results are in the state of the art. As a conclusion from the
MDBD evaluation we could state that the sought generalization of a DL based model for edge
detection has been reached, the proposed DL model can be used as a low level based edge
detector or biological visual perception based method (see Sec. 2.4 for details); it should
be mentioned that although the proposed approach has not been trained on such a dataset
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(a) (b)

Figure 5.15: (a) Precision/recall curves on MBIPED dataset, results from all methods consid-
ered for comparison (the multispectral images from MBIPED have been used just for MS-DXN,
while the RGB images to all other approaches). (b) Precision/recall curves on MDBD dataset,
the results is from the 20 test images. Note that the same images used for the proposed model
are also evaluated in the other models.
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Dataset Methods ODS OIS AP

Edge detection dataset
MBIPED[130] SED[5] .732 .745 .786

HED[150] .853 .863 .911
CED[142] .816 .830 .871
RCF[75] .850 .863 .910

BDCN[44] .869 .878 .918
DexiNed-f[130] .859 .860 .782
DexiNed-a[130] .870 .870 .913

MS-DXN-f .869 .874 .873
MS-DXN-a .871 .877 .921

MDBD[92] SED[5] .859 .867 .913
HED[150] .842 .856 .866
CED[142] .837 .849 .8370
RCF[75] .854 .865 .877

BDCN[44] .868 .883 .898
DexiNed-f[130] .830 .830 .731
DexiNed-a[130] .871 .877 .919

MS-DXN-f .847 .850 .795
MS-DXN-a .856 .870 .918

Table 5.5: Comparisons between results obtained with DexiNed and MS-DXN with respect to
the state-of-the-art methods in the literature. All methods were trained on MBIPED—in this
case the multispectral images from MBIPED have been used just for MS-DXN, while the RGB
images to all other approaches.

(MDBD), its results score over the 80%, which is more that human level (the human level is
75%). Table 5.5 (section MDBD) shows results from three metrics considered to compare the
performance of the proposed approaches with the state of the art. According to ODS and AP,
DexiNed-a gets the best results, nevertheless, whenever OIS is considered BDCN reaches the
best results followed by DexiNed-a, and MS-DXN-a.

For a qualitative comparison, Fig. 5.16 presents edge-maps predictions from the whole
DL based models presented in Table 5.5. There are two samples for each edge based dataset.
Although most of the models considered for evaluation predicted most of the edges present
in the GT, from the seventh row (DexiNed), the predicted edge-maps are cleaner in both
dataset MBIPED and MDBD. In the last column of MBIPED, there are edges predicted from
the multispectral edge detector (MS-DXN) that are not present in DexiNed results, neither
in HED, RCF and BDCN (see details on the bricks on the image in the second column of Fig.
5.16); MS-DXN detects more edges than the other approaches (AP=0.921).

Since most of state-of-the-art learning based algorithms for edge detection use datasets
like BSDS500, NYUD, and even PASCAL context [99], which are not specifically intended for
edge detection, this Chapter also includes quantitative and qualitative results in these datasets.
Furthermore, CID, BSDS300, and DCD datasets, which have been recently presented in the
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Figure 5.16: Four samples from the results obtained with the models depicted in Table 5.5. The
label in the images (1st row) corresponds to the datasets where they come from.

86



5.3. Experimental Results

literature (2019), are also considered to evaluate the performance of the proposed models.

Table 5.6 presents quantitative results from Contour Image Data base (CID) and Dataset of
Contour Drawing (DCD); it should be noted these datasets have been proposed for contour
detection. In the CID dataset, the baseline is SED [5] and since the 2003 (year of the dataset
publication) none of the models proposed in the literature have reached the 70% in ODS,
OIS or AP. After the DL based models (depicted in Table 5.6) are trained on RGB images of
MBIPED, the RCF and BDCN overcome the 70% on each evaluations metrics. Concerning to
the proposed approaches, DexiNed-a and MS-DXN-a still reach the best score ever published.
As highlighted above, in the visual appreciation of predicted edge-maps from the proposed
models (DexiNed-f, and MS-DXN-f), they are thin and clearer edge-maps than those from
the best scored in the Table 5.6. Figure 5.17 presents four challenging scenarios where it can
be appreciated the quality of edge-maps obtained whit the proposed approaches. According
to the values presented in Table 5.6 in the case of DCD dataset, the CED (in OIS), BDCN (in
ODS), and DexiNed-a (in AP) are the best ranked models to detect edges in such dataset. Note
that the DCD was proposed for photo-sketching [71], and this is the first time that DCD is
evaluated on the metrics proposed in Sec. 5.3.1. Although most of the results scored over the
80% (even 90% in CED), this dataset cannot be used for training due to some inconsistency
in the contour-maps GT (see details in DCD presentation of Sec. 5.3.1). In the case of CID,
since it is a gray-scale image dataset, the MS-DXN estimates the NIR component by using the
provided graysacle image as RGB components, in other words the provided gray-sacle image
is used three times.

Figure 5.17 presents two images from each dataset (CID and DCD) for qualitative evalu-
ations. Although quantitatively, RCF and BDCN scored with the best performance, visually,
results from the models proposed in this Chapter (DexiNed and MS-DXN) show more contrast
edge-map predictions. See from the seventh row (DexiNed) how all four images are clearer
and the edge-maps are more sharp. As mentioned above the images from CID are in grayscale,
and none of the DL based models were trained on images in such a domain, even though, the
edge-map predictions are slightly similar to the ground truth edge-maps (second row).

Table 5.7 presents quantitative results on the datasets intended for boundary detection.
The baseline (BDCN) on ODS, OIS and AP are 0.828, 0.844 and 0.890, respectively [44] (2019);
however, as highlighted in Sec. 5.1, even though with such quantitative results, the edge-maps
predicted from such model, trained in BSDS300+PASCAL datasets, does not detect perceptual
edges from the test dataset of BSDS500 (see this comparison in the Fig. 5.2). The results
from the proposed models presented in Table 5.7, although does not overcome the baseline,
(due to that not all GT are annotated in the edge level), most of the proposed approaches still
overcome the state-of-the-art non-learning algorithm for edge detection, SED.

Figure 5.18 shows two images from BSDS300 and two from BSDS500. The annotation-maps
in the second row of the respective datasets are from GTs. Two challenging and textured images
are presented in the second columns of each dataset; the GTs for these two images, are badly
annotated. As it can be appreciated, the edge maps presented in last two rows are clearer and
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Dataset Methods ODS OIS AP

Contour detection datasets

CID[38] SED[5] .650 .690 .680
HED[150] .698 .731 .741
CED[142] .662 .698 .700
RCF[75] .721 .743 .738

BDCN[44] .720 .742 .741
DexiNed-f[130] .609 .610 .442
DexiNed-a[130] .675 .719 .730

MS-DXN-f .660 .667 .541
MS-DXN-a .680 .716 .724

DCD [71] SED[5] .801 .842 .856
HED[150] .803 .866 .823
CED[142] .853 .915 .632
RCF[75] .809 .857 .760

BDCN[44] .869 .899 .849
DexiNed-f[130] .784 .815 .660
DexiNed-a[130] .807 .842 .860

MS-DXN-f .805 .826 .791
MS-DXN-a .815 .844 .850

Table 5.6: Comparisons of the results obtained with the proposed approaches (DexiNed
and MS-DXN) and the by using RGB component of MBIPED, in the case of MS-DXN the
NIR component has been obtained from hallu-net. In addition, SED (a non-learning based
algorithm based edge detector) is considered for evaluation.
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Figure 5.17: Four samples from the result obtained with the models depicted in Table 5.6. The
label in the images (1st row) corresponds to the datasets where they are from.
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Dataset Methods ODS OIS AP

Boundary detection dataset
BSDS300 [89] SED[5] .700 .720 .660

HED[150] .624 .671 .585
CED[142] .618 .648 .506
RCF[75] .639 .680 .595

BDCN[44] .712 .740 .698
DexiNed-f[130] .707 .723 .520
DexiNed-a[130] .709 .726 .738

MS-DXN-f .651 .667 .554
MS-DXN-a .654 .678 .625

BSDS500 [7] SED[5] .710 .740 .740
HED[150] .646 .688 .594
CED[142] .635 .658 .496
RCF[75] .663 .701 .634

BDCN[44] .690 .714 .686
DexiNed-f[130] .729 .745 .583
DexiNed-a[130] .728 .745 .689

MS-DXN-f .677 .698 .597
MS-DXN-a .680 .703 .655

Table 5.7: Comparisons of the results obtained in boundary datasets with the proposed ap-
proaches (DexiNed and MS-DXN) and the state-of-the-art methods proposed in the literature.
All methods were trained by using the RGB componet of MBIPED, in the case of MS-DXN the
NIR component has been obtained from hallu-net. In addition, SED (a non-learning based
algorithm based edge detector) is considered for evaluation.
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Dataset Methods ODS OIS AP

Segmentation datasets

NYUD [125] SED[5] .548 .565 .502
HED[150] .575 .590 .446
CED[142] .547 .562 .398
RCF[75] .587 .605 .463

BDCN[44] .594 .609 .481
DexiNed-f[130] .658 .674 .556
DexiNed-a[130] .602 .615 .490

MS-DXN-f .571 .587 .411
MS-DXN-a .573 .590 .482

PASCAL [99] SED[5] .436 .466 .321
HED[150] .428 .452 .265
CED[142] .420 .443 .259
RCF[75] .440 .465 .275

BDCN[44] .450 .476 .294
DexiNed-f[130] .475 .497 .329
DexiNed-a[130] .423 .443 .274

MS-DXN-f .419 .435 .228
MS-DXN-a .420 .441 .272

Table 5.8: Comparisons of the results obtained in the scene or object segmentation datasets
with the proposed approaches and the state-of-the-art methods proposed in the literature. All
methods were trained with the RGB images from MBIPED. In addition, SED (a non-learning
based algorithm based edge detector) is considered for evaluation.

sharp. The deep learning models generalization are more visible in the edge prediction from
the BSDS500 image (third column), almost all models are able to detect edges, even in the
complex zones like in the center of the image (shadows).

Finally, the last datasets considered to evaluate the performance of the deep learning edge
detector are datasets from scene or object segmentation, NYUD [125] and PASCAL [99]. Table
5.8 presents a comparative results on those datasets and Fig 5.19 shows edge-maps predicted
from each dataset, two illustrations per dataset are depicted. Quantitatively, Dexined-f reaches
the best score in three evaluation metrics (ODS, OIS and AP) on NYUD and also in PASCAL
dataset. Qualitatively, all models considered for qualitative comparisons present thin edge-
maps; however, edges presented in the last two rows are clearer. Regarding NYUD dataset,
MS-DXN reaches the best perceptual edge-map predictions (clean and sharp); furthermore, in
PASCAL, those models give edge-maps with the same quality as in NYUD—note that MS-DXN
is able to capture more edges from the given image, see dog’s eyes in third column from
PASCAL dataset.
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Figure 5.18: Four samples from the result obtained with the models depicted in Table 5.7. The
label in the images (1st row) corresponds to the datasets where they are from.
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Figure 5.19: Four samples from the results obtained with the models depicted in Table 5.8. The
label in the images (1st row) correspond to the datasets where they are from.

93



Chapter 5. Edge Detection from a Multispectral Framework

After the quantitative and qualitative evaluations on these datasets, the main observation is
that, although the images from NYUD and PASCAL datasets have complex and diverse scenes
(better that BSDS500) to evaluate the performance of the models for edge, contour or boundary
detection, the ground truths (GT) are also diverse because of such images were generated for
segmentation tasks. Therefore, most of the GTs are not annotated to edge, nor contour, nor
boundary. The training of DL based approaches on such datasets do not guarantee the edge,
contour or boundary detection.

5.4 Conclusion

This Chapter presents two approaches (DexiNed and MS-DXN), which are based on deep
learning for edge detection task; these approaches are developed from scratch. The MS-HED,
which is also proposed, losses most of the edges predicted by intermediate blocks; hence, it
loses important high level edge features while it is used to train from the scratch and without
pretrained weights. With a carefully designed CNN architecture and a dataset annotated for
a respective task (i.e., BIPED for perceptual edge detection), the DL model can generalize
the edge detection in any arbitrary image (grayscale or color) considered to evaluate the
performance. The skip connections from DexiNed make that in the deeper layer, it does not
loss edge features like MS-HED.

The adaptation of DexiNed to the multispectral domain (MS-DXN) has shown appealing
results; furthermore it has been shown that this architecture is able to be used in case that
just one spectral band is provided. The proposed multispectral model is trained by using
images from two spectral bands, visible and near infrared; with this setting MS-DXN reaches
0.921 in average precision (see Table 5.5, this is the highest score reached in MBIPED dataset.
Definitively, the usage of the NIR information helps to detect more edges than those predicted
by using just RGB images; furthermore, by using two bands the edge predictions are similar
to BDCN but it should be mentioned that MS-DXN has been trained without previous pre-
training. The MS-DXN gives the best qualitatively and quantitatively results.
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6.1 Conclusions

This dissertation presents works focused on the processing of images acquired by single sensor
cameras. These cameras are capable of capturing visible and a part of near infrared bands in a
single shot. Whenever the image is acquired by such cameras in sufficient sunlight conditions,
the visible bands (RGB channels) also have near infrared information, hence, the color of
captured images looks desaturared. This phenomenon is termed in the literature as crosstalk
between RGB and NIR channels. To face this problem, two approaches have been proposed in
this thesis; the first one is based on multilayer perceptron (artificial neural network), while
the second approach presents variants of convolutional neural network (CNN). Although in
the state-of-the-art methods for color correction, the usage of a set of processes are proposed
to face the RGB crosstalking with NIR, the proposals in this manuscript restore the RGB
images in a single process. The result from these approaches, is an image with a quality where
the desaturation problem is almost imperceptible for human eyes. Two datasets have been
collected and shared to the community, SSOMSI and OMSIV, for the color restoration. Up to
our knowledge, just these two datasets have images from outdoor with sufficient sunlight and
with different material where the NIR absortion/reflectance is different than visible band.

Chapter 5 tackle the edge detection task for images captured by the single sensor camera,
but generalizing the contribution so that the state-of-the-art dataset used for edge detection
can be also processed. Before face the edge detection, two dataset have been collected and
carefully annotated; these dataset are referred to as BIPED and MBIPED. Even though the
images are in different dataset, those images have been collected at the same time and later
on correctly aligned (registered) BIPED to MBIPED. The edge level annotation have been
accomplished in two stages; firstly, the BIPED dataset has been annotated, later, MBIPED
dataset. The annotation process in the MBIPED images is performed through image fused
from RGB+NIR and NIR, with the aim to label as much information as possible from the two
bands. The edge detection problem has been firstly tackled in the visible domain (BIPED) by a
Dense Extreme Inception Network; secondly, with the images from MBIPED the multispectral
edge detection has been considered. With the different methods proposed in this thesis,
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edge detection task has been generalized from a Deep Learning model. In other words, the
proposed models have been trained in a single dataset but in spite of that they reach the
state-of-the-art results in the edge detection dataset MDBD (the sub set of edge detection from
the Multicue Dataset for Boundary Detection). Concerning the qualitative results from the
proposed approaches, the predicted edge-maps are thin and clearer than the prediction from
the state-of-the-art approaches. Actually, the predicted edge-maps from BSDS300, BSDS500,
NYUD (the most-used datasets for edge detection) are thin and clearer than never before.

6.1.1 List of Contributions

This thesis covers the following publications, in chronological order:

• Aguilera, C., Soria, X., Sappa, A.D. and Toledo, R., 2017, June. RGBN multispectral
Images: A Novel Color Restoration Approach. In International Conference on Practical
Applications of Agents and Multi-Agent Systems (pp. 155-163). Springer, Cham.

• Soria, X., Sappa, A.D. and Akbarinia, A., 2017, November. Multispectral Single-Sensor
RGB-NIR imaging: New Challenges and Opportunities. In 2017 Seventh International
Conference on Image Processing Theory, Tools and Applications (IPTA) (pp. 1-6). IEEE.

• Soria, X., Sappa, A. and Hammoud, R., 2018. Wide-Band Color Imagery Restoration for
RGB-NIR Single Sensor Images. Sensors, 18(7), p.2059. Journal.

• Soria, X. and Sappa, A.D., 2018, November. Improving Edge Detection in RGB Images by
Adding NIR Channel. In 2018 14th International Conference on Signal-Image Technology
and Internet-Based Systems (SITIS) (pp. 266-273). IEEE.

• Soria, X. and Riba, E., and Sappa, A.D., 2019. Dense Extreme Inception Network: To-
wards a Robust CNN Model for Edge Detection. In 2020 Winter Conference on Applica-
tions of Computer Vision (WACV’20). IEEE. (under review)

6.2 Future Work

Behind the methods proposed in this thesis there is a formal invitation to the usage of single
sensor cameras in image processing and computer vision fields. In addition to the image
sensors, we encourage the usage of deep learning in-single sensors camera operations just like
major smartphones nowadays. In the dissertation, the RGB+NIR images have not been deeply
studied, hence, the incursion of such type of images in the scene understanding is needed.

Although a large collection of models for RGB+NIR image restoration are proposed in
the literature, it still remains as a open problem. As demonstrated in Chapter 4, with the
CCN models the color correction of the RGB+NIR images, even in the challenging scenes, are
accomplished till reach almost imperceptible difference in the human eyes; therefore, new
color restoration techniques should consider the usage of DL. The CCN based approaches
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6.2. Future Work

proposed in this dissertation did not use NIR channel to subtract the percentage of NIR
infected in the RGB images, hence, the NIR subtraction by using the NIR component of the
RGB image should be a major analysis. Even though, OMSIV dataset has different materials
to generalize the training of DL models, more images with several material and different
environmental condition will be desirable. For example, there are hundred of colors of plants
and the color restoration on these images will be a challenging task.

Edge detection, since the 1960s, is an active task that has been tackled from different mod-
els, which are based in low level features and learning algorithms. Concerning to the learning
based algorithms, new optimized convolutional neural network have been designed, which
overcome the result of ResNet or Inception v3 in the classification tasks; this new architectures
(i.e., efficientNets) should be considered for edge detection. In Chapter 5 avoiding contour
and boundary detection, edge detection is tackled, and as highlighted, the edge detection task
should be separately study to the contour or boundary detection; if the contour/boundary
detection problems were tackled, new datasets with the corresponding annotations will be
generated. Furthermore, as demonstrated with multispectral dense extreme inception network
(MS-DXN), adding NIR channel to the RGB image for edge detection, improve qualitatively
and quantitatively the final performance; therefore, new multispectral CNN architectures
should be considered also with the special attention in the NIR channel.
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