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A BSTR ACT  

The notion of metamaterials as artificially engineered structures designed to obtain spe-

cific material properties, typically unachievable in naturally occurring materials, has cap-

tured the attention of the scientific and industrial communities. Among the broad range 

of applications for such kind of materials, in the field of acoustics, the possibility of creat-

ing materials capable of efficiently attenuating noise in target frequency ranges is of ut-

most importance for a lot of industrial areas.  In this context, the so-called locally resonant 

acoustic metamaterials (LRAMs) can play an important role, as their internal topology 

can be designed to exhibit huge levels of attenuation in specific frequency regions by 

taking advantage of internal resonance modes. With a proper, optimized topological de-

sign, LRAMs can be used, for instance, to build lightweight and thin noise insulation pan-

els that operate in a low-frequency regime, where standard solutions for effectively at-

tenuating the noise sources require dense and thick materials. 

Given the importance of the topological structure in obtaining the desired properties in 

acoustic metamaterials, the use of novel numerical techniques can be exploited to create 

a set of computational tools aimed at the analysis and design of optimized solutions. 

These are based on three fundamental pillars: (1) the multiscale homogenization of com-

plex material structures in the microscale to get a set of effective properties capable of 

describing the material behavior in the macroscale, (2) the model-order reduction tech-

niques, which are used to decrease the computational cost of heavy computations while 

still maintaining a sufficient degree of accuracy, and (3) the topology optimization meth-

ods that can be employed to obtain optimal configurations with a given set of constraints 

and a target material behavior. This set of computational tools can be applied to design 

acoustic metamaterials that are both efficient and practical, i.e. they behave according to 

their design specifications and can be produced easily, for instance, making use of novel 

additive manufacturing techniques.
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R E SU M 

La concepció dels metamaterials com a estructures dissenyades artificialment amb l’ob-

jectiu d’obtenir un conjunt de propietats que no són assolibles en materials de manera 

natural, ha captat l’atenció de les comunitats científiques i industrials. Dins de l’ampli 

ventall d’aplicacions que se’ls pot donar als metamaterials, si ens centrem en el camp 

de l’acústica, la possibilitat de crear un material capaç d’atenuar de manera efectiva so-

rolls en rangs de freqüència concrets és de gran interès en multitud d’indústries. En 

aquest context, els anomenats locally resonant acoustic metamaterials (LRAMs) desta-

quen per la possibilitat de dissenyar la seva topologia interna per tal que produeixin ele-

vats nivells d’atenuació en regions concretes de l’espectre de freqüències. Amb un dis-

seny topològic òptim, els LRAMs poden servir, per exemple, per a la construcció de pa-

nells lleugers aïllants de soroll, que operin en rangs de freqüències baixos, en els quals 

la solució clàssica requereix de materials d’elevada densitat i espessor. 

Donada la importància de l’estructura topològica dels metamaterials acústics en l’obten-

ció de les propietats desitjades, resulta convenient l’ús de mètodes numèrics punters 

per al desenvolupament d’un conjunt d’eines computacionals que tinguin per objectiu 

l’anàlisi i el disseny de solucions òptimes. Tals eines es fonamenten en tres pilars: (1) la 

homogeneïtzació multiescala d’estructures de material complexes a una escala micro 

que derivi en l’obtenció de propietats efectives que permetin descriure el comportament 

del material a una escala macro, (2) tècniques de reducció per minimitzar l’esforç com-

putacional mantenint nivells de precisió suficients i (3) mètodes d’optimització topològica 

emprats per a l’obtenció de configuracions òptimes donat un conjunt de restriccions i 

unes propietats de material objectiu. Aquestes eines computacionals es poden aplicar al 

disseny de metamaterials acústics que resultin eficients i pràctics a la vegada, és a dir, 

que es comportin segons les especificacions de disseny i siguin fàcilment fabricables, 

per exemple, mitjançant tècniques punteres d’impressió 3D. 
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C h a p t e r  1  

M OT I VAT ION  A ND  SCOP E  

I like to define progress as the ability of making possible what once was impossible. Chal-

lenging the limits of nature is a quality of our species that has brought us to an era where 

we can travel thousands of kilometers in a matter of hours, communicate almost instantly 

with other people anywhere in the planet or even explore the universe beyond our solar 

system. The progress of humanity is a proof that we are good at solving problems, but in 

order to do that, what is most important is for the right questions to be raised first. This 

is precisely our task, as scientists, and ultimately the driving force that makes us succeed 

and evolve as a civilization. 

This constant questioning is carried out in every existing field of science. However, this 

work will be focused on what can be considered a very clear example of what it means 

to surpass the limits of what is possible: metamaterials. The notion behind this concept 

lies on its own etymological meaning, combining the word material with the prefix meta, 

which denotes “beyond”, to refer to “materials with properties beyond those found nat-

urally”. The prospect applications of such kind of materials have attracted the attention 

of the scientific and industrial communities for the past decades. Technically speaking, 

metamaterials consist of artificially engineered materials with the ability to manipulate 

waves for different outcomes. The nature of these waves is what determines the kind of 

application, offering a wide range of possibilities.  

To narrow down the research, this study will focus on acoustic problems. The so-called 

acoustic metamaterials are capable of producing frequency bandgaps, i.e. selected re-

gions in the frequency spectrum where waves’ propagation is effectively stopped, due to 

local resonance phenomena. For practical purposes, this translates in the ability to 
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attenuate sound pressure waves at targeted frequency ranges, typically in the lower end 

of the spectrum, where a classical approach would require huge amounts of mass. This 

is a very interesting property, for instance, for cheap and lightweight sound insulation in 

many industrial sectors including construction or transport.   

With the current and potential growth of manufacturing technologies, including novel 

techniques such as 3D-printing, practical realizations of metamaterials are getting closer. 

Furthermore, given the importance of the role their design plays in obtaining the desired 

properties, there is a need for fast and efficient resources capable of performing this task. 

In this context, the aim of this work is to develop a set of computational tools for the 

analysis and design of acoustic metamaterials. These tools are grounded on three fun-

damental pillars in the field of computational design of materials: (a) multiscale modelling, 

(b) model-order reduction techniques, and (c) topology optimization. 

Additionally, as part of this work, the application of the aforementioned tools for the study, 

design and characterization of different kinds of acoustic metamaterials is performed. 

The obtained results and the concept of local resonance as the mechanism responsible 

for the attenuating capabilities of acoustic metamaterials is assessed through a set of 

experiments in an impedance tube with 3D-printed prototypes. 

 

FIG. 1 Computational design of materials paradigm. The multiscale modelling, model-order reduction 
and topology optimization are the three pillars upon which it is built. 
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C h a p t e r  2  

ST ATE  O F  TH E  A RT  

2.1  Metamaterials technology 

In the previous chapter, the concept of metamaterials has been introduced to describe 

artificially engineered structures capable of manipulating waves and exhibiting non-con-

ventional behavior as a result. A more general definition is provided by Cui et al. (2010) 

where a metamaterial is considered “a macroscopic composite of periodic or non-peri-

odic structure, whose function is due to both the cellular architecture and the chemical 

composition” [1]. According to this description, metamaterials gain their properties by 

combining materials with different chemical compositions and/or by rearranging their in-

ternal topology. 

2.1.1  Early days of metamaterials 

Even though the term metamaterial has been used since the late 1990’s, the notion of 

“artificial” materials had already been explored in the past. For instance, in 1948, Kock 

managed to manipulate the refractive index of an artificial media created by periodically 

arranging conducting spheres, disks and strips [2]. However, it was not until 1967, when 

Veselago conducted the first theoretical study on plane-wave propagation in materials 

with simultaneously negative permittivity and permeability [3]. With his work, Veselago 

established the physics behind the metamaterial’s ability to manipulate waves, in the con-

text of electromagnetism. Those theoretical findings would not be validated until some 

decades later, with the first experimental realizations of the so-called double-negative 

metamaterials. Smith et al. (2000) introduced a composite structure based on split rings 

resonators (SRRs) that exhibited a frequency band over which both the effective permit-

tivity and permeability were negative [4]. The SRRs is a common metamaterial design 
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that consists of a set of concentric conducting rings with a gap on each. It is used to 

achieve magnetic resonance in a selected frequency band, which is responsible for the 

negative refractive index of the metamaterial [5]. 

2.1.2  Phononic crystals and acoustic metamaterials 

While the idea of waves’ manipulation to obtain unusual properties was born in the con-

text of electromagnetism, it rapidly extended to other fields where the material response 

is also governed by waves’ propagation mechanisms. In particular, by applying the con-

cept to sound waves manipulation, the notion of acoustic metamaterials was introduced. 

Analogously to how electromagnetic metamaterials exhibit exotic behavior by showing 

negative effective permittivity and permeability, in the context of acoustic metamaterials, 

this translates in negative effective mass density and bulk modulus. In this case, these 

are the source of certain regions in the frequency spectrum, called frequency bandgaps, 

where sound waves effectively stop propagating. There are two known mechanisms by 

which this can be achieved: Bragg scattering and local resonance effects [6]. 

Bragg scattering occurs in periodic media, typically consisting of a lattice with repeating 

unit cells, which are known as phononic crystals (PCs). The physics behind Bragg scat-

tering effects is discussed in [7]. An important aspect to notice is that in order for Bragg 

scattering to manifest, the crystal's dimensions (i.e. the periodicity size) must be larger 

than the incident wave’s wavelength. This means that bandgaps produced by PCs usually 

appear at frequency ranges higher than those interesting for acoustic applications based 

on sound insulation. However, PCs are still a topic of active research due to their appli-

cations in several areas including: superlensing, for which PCs can be used for medical 

and non-destructive sensing [8], energy harvesting through the interaction between PCs 

bandgaps and piezoelectric microstructures [9], thermal control using PCs with nano-

scale dimensions [10] and opto-mechanics, where PCs are used in combination with their 

electromagnetic analogous, photonic crystals, for communication and sensing applica-

tions [11], among others. Also in this context, the notion of acoustic black holes (ABHs) 

[12], which typically operate in the same frequency range as PCs, has recently been 

proposed for isolating vibrations in plates [13]. 

The other phenomenon capable of producing frequency bandgaps is local resonance. 

Metamaterials that employ this mechanism to get their unusual properties are known as 

locally resonant acoustic metamaterials (LRAMs). As with PCs, the structure of LRAMs 
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contains a lower scale with a certain topology that triggers the effects causing the ap-

pearance of frequency bandgaps. While periodicity is not a requirement in this case, it is 

still preferable for most cases, as it enables a unit cell-based description of its dynamical 

properties as well as ease in the process of introducing resonating elements (for manu-

facturing purposes, for instance). A main difference of LRAMs in contrast to PCs is that 

the characteristic size of the lower scale needs to be smaller than the incident wave’s 

wavelength [14]. This requirement is important for two reasons: (1) it allows using LRAMs 

for low-frequency applications (which are interesting especially in sound insulation prob-

lems) and, (2) in cases where periodicity is present, it gives the metamaterial the ability 

to be regarded as an effective medium.  

 

FIG. 2 Concept of phononic crystals (PCs) and acoustic metamaterials (AMs). (a) Rheological models 
of mass-and-mass (PCs) and mass-in-mass (AMs) unit cells. (b) Characteristic dispersion curves show-
ing the bandgap formation nature of each case. The frequency 𝜔𝜔 is normalized with a reference fre-
quency 𝜔𝜔􏷟􏷟 = 2𝜋𝜋 𝑐𝑐􏷟􏷟 𝑎𝑎⁄ , with 𝑐𝑐􏷟􏷟 being the static wave propagation speed. For comparison, the parame-
ters in both systems are chosen so that they have the same static wave propagation speed, 𝑐𝑐􏷟􏷟. Notice 
how the frequency bandgaps are more narrowband in the AM case than in the PC case, but with the 
latter occurring at higher frequency ranges. These differences are more apparent the higher the contrast 
between 𝑘𝑘􏷠􏷠/𝑘𝑘􏷡􏷡 and 𝑚𝑚􏷡􏷡/𝑚𝑚􏷠􏷠 becomes. 

𝑎

𝑘2

𝑚2𝑚1

𝑘1 𝑘1 𝑘2

𝑚2

𝑚1

𝑎

(a)(I) Phononic crystal (II) Acoustic metamaterial

(b)

0 0.25 0.5 0.75 1

𝜔𝑎/2𝜋𝑐0

0

0.1

0.2

0.3

0.4

0.5

𝜅𝑎
/2
𝜋

𝑐0

0 0.25 0.5 0.75 1

𝜔𝑎/2𝜋𝑐0

0

0.1

0.2

0.3

0.4

0.5

𝜅𝑎
/2
𝜋

𝑐0

ba
nd

ga
p

ba
nd

ga
p

𝑘1 = 2𝑘2      𝑚2 = 2𝑚1 𝑘1 = 2𝑘2      𝑚2 = 2𝑚1



6  Chapter 2 State of the art 

As the name suggests, local resonance takes advantage of resonating effects in the in-

ternal structure of the metamaterial to effectively stop the propagation of waves at a mac-

roscopic scale. In order for it to occur, the lower scale must be composed of certain 

resonating elements. These resonating elements typically contain a compliant compo-

nent, the purpose of which is to play the role of a spring, and a dense component acting 

as mass, the combination of which resonates at the desired frequencies in order to pro-

duce bandgaps. It is important for local resonance effects to manifest that each unit cell 

vibrates independently of the others. For this reason, these effective spring-mass sys-

tems are typically embedded in a stiff matrix or frame.  

While LRAMs are especially interesting for sound insulation, shielding and noise blocking 

purposes [15, 16], there are other kind of application for which they can also be consid-

ered. These include subwavelength focusing, where LRAMs allow to break the diffraction 

limit and can be used as an alternative to conventional imaging technologies [17–19], or 

cloaking applications, where an object becomes “invisible” to acoustic waves by guiding 

them around it instead of being scattered [20–23]. 

2.2  Computational design of materials 

Computational modelling is a field that has experienced a significant growth in the last 

decades and has been infiltrating in a broad range of application areas. In several con-

texts, experimental validation of a phenomenon or the evaluation of a certain behavior is 

difficult to reproduce, either because of its complexity or simply due to the lack of re-

sources. In such situations, computational modelling offers the ability to perform a pre-

liminary (and sometimes sufficient) characterization allowing great savings of time and 

resources. Additionally, it can be used for design purposes, allowing the obtention of 

desired features and optimal results. In this regard, the field of computational design of 

materials, which is growing alongside new developments in computer technologies, is 

progressively getting more attention in several disciplines. The foundation upon which it 

is based can be synthesized with three main branches: the multiscale modelling, model-

order reduction techniques and topology optimization. 

2.2.1  Multiscale modelling 

Homogenization-based or multiscale techniques offer the possibility of accounting for 

microstructural physical phenomena and their impact in a macroscopic level at a 
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relatively inexpensive computational cost compared to direct numerical simulations or 

concurrent multiscale techniques. In the context of solid mechanics, the first theoretical 

developments based on the obtention of macroscopic properties from heterogeneous 

materials were carried out by Hill (1965) [24] and Mandel (1971) [25], among others. 

Since then, these theories have derived to more sophisticated models, mostly based on 

finite element methods, allowing their use in a computational context and giving them 

several practical applications.  

For instance, homogenization models in which the constitutive information driving the 

macroscopic analysis is computed from consecutive interaction between the macro and 

microscales can be found in Feyel and Chaboche (2000) [26] or Kouznetsova et al. (2001) 

[27]. This approach has been successfully applied to a wide range of quasi-static con-

texts, including complex material behavior such as softening and localization phenomena 

[28–30], multi-physics [31] or large deformations [32], among others. However, develop-

ments in the context of dynamic problems, where inertial effects are relevant, started to 

emerge only in more recent years with the works of Karamnejad et al. (2013) [33], Pham 

et al. (2013) [34] or De Souza Neto et al. (2015) [35, 36], who count among the first to 

propose a formulation in rigorous variational form based on a generalized Hill-Mandel 

principle along with kinematic admissibility between scales. 

2.2.2  Model-order reduction techniques 

Model-order reduction techniques are an effective tool to reduce the computational cost 

associated to large-scale problems. They are based on retaining the relevant information 

of the problem by using physical insight and intuition or through statistical correlation 

between input data and output results. In either case, the so-called projection-based 

methods have gained prominence in recent years. In projection-based methods a set of 

solutions is computed in an offline stage and a subspace of a reduced basis is built with 

the most dominant ones. Then, in the online stage, the governing equations are projected 

onto this reduced-order subspace, allowing faster computational evaluation while pre-

serving the required accuracy for the problem.  

The most popular model-order reduction technique is the proper orthogonal decompo-

sition (POD). In Chatterjee’s work, a review on the fundamental idea behind the POD can 

be found [37]. Furthermore, Krysl et al. (2001) provided a rigorous discussion on this 

method [38]. Other projection-based methods used, more specifically, in the context of 
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wave propagation in periodic media were firstly proposed by McDevitt et al. (2001) [39]. 

Research in this line was followed by Hussein and Hulbert (2006), who presented a 

method for fast dispersion curves calculation based on a mode-enriched model, in a 

multiscale context, by selecting a set of Bloch eigenvectors to build a projection sub-

space [40].   

2.2.3  Topology optimization 

Topology optimization techniques have been spreading progressively to a wide range of 

fields for the past decades. Typically, they are based on computing the gradient of a 

functional in order to steer the algorithm into gradually improving a certain objective 

function. The first notions were introduced in the work of Bendsøe et al. (1988), which 

proposed a method that relied on homogenization theory to define a set of macroscopic 

properties and perform the topology optimization through the parametrization of the mi-

crostructure [41]. The solid isotropic material with penalization (SIMP) method was pro-

posed in 1989 also by Bendsøe [42] and has been improved by several works later [43], 

[44]. Since then, it has become one of the most used techniques and applications can be 

found in several disciplines, including compliant mechanisms [45], geometrical non-linear 

structures [46], multi-physics actuators [47], photonic crystal structures [48] or phononic 

bandgap materials [49], among others.  

 

FIG. 3 Graphical idea of the level-set based methods for topology optimization. The level-set function 𝜑𝜑 
sign determines material regions 𝛺𝛺+ (𝜑𝜑 > 0) and void regions 𝛺𝛺− (𝜑𝜑 < 0) in the design domain. 
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Theories based on topological derivative were first suggested by Eschenauer et al. 

(1994) [50]  and Sokolowki and Zochowki (1999) [51]. They resort to computing a func-

tion evaluating the sensitivity of the specific problem to the appearance of an infinitesimal 

void in the material domain. In contrast, shape derivative methods are based on compu-

ting the sensitivity of the problem when a unit normal deformation is applied on the 

boundaries of the domain. In this context, level-set methods used in image processing 

were adapted to work together with the shape derivative [52, 53] and later also with the 

topological derivative [54, 55] as a tool to update the topology at each optimization step. 

Alternatively, recent methods combining a 0-level set function and an estimated topolog-

ical derivative are being developed by Oliver, et al. (2019) [56] and Yago, et al. (2020) 

[57] to overcome the high computational cost of the aforementioned techniques. 

2.2.4  Computational modelling of acoustic metamaterials 

Research on acoustic metamaterials has derived in several approaches that go from sim-

ple analytical studies to sophisticated computational models capable of accounting for 

their intrinsic exotic behavior. For instance, in the work of Xiao et al. (2011), an analytical 

model of a 1D string with spring-mass resonators is developed to study the bandgap 

formation mechanisms showed by acoustic metamaterials [58]. In the context of numer-

ical modelling, most of the early works focused on periodically repeated microstructures 

where Bloch-Floquet boundary conditions can be applied to study the dispersion prop-

erties of 2D and 3D unit cells [59, 60]. In this line, Hussein (2009) proposed a Bloch-

based model to characterize the local resonance effects in periodic structures [61].  

Other approaches have focused on retrieving effective properties from acoustic met-

amaterials by means of homogenization theory. In this regard, Fokin et al. (2007) devel-

oped a method to obtain properties from experimental measurements of the reflection 

and transmission coefficients of LRAMs [62]. Nemat-Nasser et al. (2011) presented a 

homogenization method based on Floquet theory applied to periodically arranged elastic 

composites [63]. In more recent developments, the use of computational homogenization 

frameworks based on variational formulations have been successfully applied to acoustic 

problems and, in particular, for the study and characterization of local resonance effects 

in LRAMs. For instance, Sridhar et al. (2016) proposed a Craig-Bampton mode synthesis 

substructuring method to reduce the set of degrees of freedom in the microscale ac-

counting only for the relevant resonance modes, leading towards an emergent enriched 
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continuum [64, 65]. A similar approach is proposed in the present work [66, 67], but by 

performing a unit cell’s system split into a quasi-static and inertial components based on 

a set of simple hypotheses that do not require to resort to substructuring techniques to 

identify the relevant resonance modes.  

Given the intrinsic narrowband nature of frequency bandgaps caused by local resonance 

effects, research can be found in the literature aiming at enlarging the attenuating prop-

erties of acoustic metamaterials. In this regard, Krushynska et al. (2014) presented the 

first attempts towards the design of acoustic metamaterials by studying the effects of 

certain parameters in their topology [68]. Additionally, Matsuki et al. (2014) proposed a 

topology optimization-based method to find optimal LRAM configurations with multiple 

attenuation peaks [69].  

Another approach that has been studied consists of exploiting the viscoelastic behavior 

of certain materials used in typical acoustic metamaterial configurations. In this context, 

Hussein and Frazier (2013) [70] introduced the concept of metadamping referring to the 

damping emergence phenomenon produced when viscous dissipation is used in combi-

nation with local resonance effects [71, 72]. The effects of dissipative behavior in acoustic 

metamaterials has also been studied analytically by Manimala and Sun (2014) [73]. Fur-

thermore, numerical generalized viscoelastic models have been developed by Krushyn-

ska et al. (2016) [74] and Lewinska et al. (2017) [75] to characterize the attenuation per-

formance of LRAMs.  

Other attempts in this endeavor include, for instance, the addition of holes on a plate with 

resonating pillars. The idea was proposed by Bilal and Hussein (2013), who called this 

phenomenon the trampoline effect, given the analogy between springboards and recre-

ational trampolines with the holed plate, the increased compliance of which enhances 

the motion of the pillars at the resonance frequencies [76].  

2.3  Acoustic metamaterial designs 

The first actual realizations of an acoustic metamaterial came from the work of Liu (2000), 

who built a composite structure that possessed negative elastic constants and exhibited 

frequency bandgaps around 400 and 1100 Hz [14]. The material consisted of a 2.1 cm 

slab with a structure made of an epoxy matrix with randomly dispersed rubber-coated 

lead spheres. In this case, the elastic properties of the silicone rubber coating made it 
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act as a spring, which combined with the high density of the lead spheres gave rise to 

local resonances at lower frequency ranges. The concept of building acoustic metamate-

rials based on the combination of different material properties was implemented in sev-

eral other experimental demonstrations [77–81], where typically a polymer-based struc-

ture was used to host rubber-coated metal inclusions.  

There are several other experimental realizations of acoustic metamaterials exploiting 

the local resonance phenomenon which are based on different configurations. For in-

stance, the idea of introducing hollow topologies or cavities in the material, acting as 

Helmholtz resonators capable of producing bandgaps, has been explored [82, 83]. De-

signs with different kinds of resonators can also be found, including beam resonators 

[84], pillared plates [85–90] or membranes [91–93], among others. Recent works have 

also studied the effects of irregularities and random structures in acoustic metamaterials 

without periodic arrangements [94–97].  

 

FIG. 4 Examples of different acoustic metamaterial designs. (a) Composite-based concept based on 
combining materials with different properties [14]. (b) Hollow cavities acting as Helmholtz resonators 
[83]. (c) Resonating pillars on a plate acting as an acoustic metamaterial [98]. (d) 3D-printed acoustic 
metamaterial panel [99]. 

(a) Composite-based (b) Hollow cavities

(c) Resonating pillars on a plate (d) 3D-printed panels

Epoxy

Lead

Silicone rubber Porous medium

Helmholtz 
resonators
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While the idea and properties of acoustic metamaterials have been demonstrated, both 

theoretically and experimentally, their intrinsic complex nature still make them far from 

practical realizations. In this regard, new kinds of acoustic metamaterials meant to be 

built monolithically through an additive manufacturing process have been devised. Since 

only one material is considered, one cannot resort to the combination of material prop-

erties in order to achieve the resonances in the desired frequency range. This highlights 

the importance of the topology and geometrical features in the design for these kinds of 

acoustic metamaterials. Experimental implementations of such metamaterials can be 

found in the work of Claeys et al. (2016), in which they demonstrate the attenuating ca-

pabilities of acoustic enclosures composed of unit cells with internal resonators that were 

fully 3D-printed [98]. More recently, Leblanc and Lavie (2017) came up with another 3D-

printed configuration based on a resonating membrane [100], while McGee et al. (2019) 

devised a 3D-printed foam with hollow spheres capable of producing low-frequency 

bandgaps [101]. Finally, as a result of the present work, a 3D-printed prototype LRAM 

panel has been designed and tested numerically and experimentally to assess its trans-

mission loss capabilities [99].  
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C h a p t e r  3  

SC I E NT IF IC  CO NT R I BUT IO NS  

3.1  Multiscale homogenization framework 

3.1.1  Multiscale virtual power principle 

Aiming at characterizing the behavior of LRAMs and to provide a computational frame-

work that can be employed in the design of such metamaterials, a homogenization model 

has been developed. The multiscale framework is based on the ability to identify a re-

peating structure (unit cell) in what is considered a macroscopic domain. In the present 

context, this unit cell configures the metamaterial structure and is treated as the mi-

croscale (see Fig. 5).  

In this regard, a kinematic relation is established between the macro and microscales in 

terms of the displacement field and its symmetric gradient (i.e. strain field). Namely, 

𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) = 𝒖𝒖(𝒙𝒙, 𝑡𝑡) + 𝜵𝜵𝒙𝒙𝒖𝒖(𝒙𝒙, 𝑡𝑡) · (𝒚𝒚 − 𝒚𝒚(􏷟􏷟)) + 𝒖̃𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡), (1) 

𝜵𝜵𝒚𝒚
S𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) = 𝜵𝜵𝒙𝒙

S𝒖𝒖(𝒙𝒙, 𝑡𝑡) + 𝜵𝜵𝒚𝒚
S𝒖̃𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡), (2) 

where 𝒖𝒖 and 𝒖𝒖𝜇𝜇 correspond to the displacement fields in the macro and the microscales, 

respectively, and 𝒖̃𝒖𝜇𝜇 is the micro-fluctuation field. Note in Eqs. (1) and (2) the use of 𝒙𝒙 to 

refer to the spatial coordinates in the macroscopic domain and 𝒚𝒚 to refer to their mi-

croscale counterparts (𝒚𝒚(􏷟􏷟) are the coordinates of the unit cell’s geometric center). The 

symbols 𝜵𝜵𝒙𝒙 and 𝜵𝜵𝒚𝒚 denote the gradient operators in the macro and microscale contexts 

and the superscript (∙)S = ((∙) + (∙)T) 2⁄  is used to specify the symmetric component of (∙). 

A specific set of restrictions over the micro-fluctuation field and its symmetric gradient, 

𝒖̃𝒖𝜇𝜇 and 𝜵𝜵𝒚𝒚
S𝒖̃𝒖𝜇𝜇, need to be considered in order to set the kinematic relation between scales.  
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FIG. 5 Multiscale framework setting. The macroscale domain corresponds to some part or structure with 
a certain internal configuration/topology that is represented by the microscale. 

 

Then, an energetic equivalence between both scales is established by means of an ex-

tended version of the classical Hill-Mandel principle, in which inertial effects can be ac-

counted for (also known as multiscale virtual power principle [36]). In its variational form, 

the postulate reads 

σ ∶ 𝜵𝜵𝒙𝒙
S𝒖̇𝒖 − 𝒇𝒇 · 𝒖̇𝒖 = ⟨σ𝜇𝜇 ∶ 𝜵𝜵𝒚𝒚

S𝒖̇𝒖𝜇𝜇 − 𝒇𝒇𝜇𝜇 · 𝒖̇𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇, (3) 

for all kinematically admissible (i.e. constrained by Eqs. (1) and (2)) displacement-rate 

fields 𝒖̇𝒖 and 𝒖̇𝒖𝜇𝜇. In Eq. (3), σ and σ𝜇𝜇 are the macro and microscale stress tensors, respec-

tively, while 𝒇𝒇  and 𝒇𝒇𝜇𝜇 denote the D’Alembert forces density vectors (which include the 

inertial effects), also for the macro and microscales. The notation ⟨∙⟩𝛺𝛺𝜇𝜇 = 􏷠􏷠
􏿖􏿖𝛺𝛺𝜇𝜇􏿖􏿖

∫ (∙)𝑑𝑑𝑑𝑑
𝛺𝛺𝜇𝜇

 is 

employed here to refer to the average value of (∙) over the unit cell domain 𝛺𝛺𝜇𝜇. 

Macroscale

Microscale

Unit cell
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3.1.2  Lagrange functional-based reformulation 

The problem can be reformulated as a saddle point problem where the specific kinematic 

restrictions are introduced via Lagrange multipliers. In this context, by associating these 

Lagrange multipliers to the minimal kinematic restrictions, the problem results in the fol-

lowing system of equations: 

⟨σ𝜇𝜇 ∶ 𝜵𝜵𝒚𝒚
𝑆𝑆𝛿𝛿𝒖𝒖𝜇𝜇 − 𝒇𝒇𝜇𝜇 · 𝛿𝛿𝒖𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 − 𝜷𝜷 · ⟨𝛿𝛿𝒖𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 − λ ∶ ⟨𝜵𝜵𝒚𝒚

S𝛿𝛿𝒖𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 0, ∀ 𝛿𝛿𝒖𝒖𝜇𝜇;

⟨𝒖𝒖𝜇𝜇 − 𝒖𝒖⟩𝛺𝛺𝜇𝜇 · 𝛿𝛿𝜷𝜷 = 0, ∀ 𝛿𝛿𝜷𝜷;

⟨𝜵𝜵𝒚𝒚
S𝒖𝒖𝜇𝜇 − ε⟩𝛺𝛺𝜇𝜇: 𝛿𝛿λ = 0, ∀ 𝛿𝛿λ;

 

(4) 

(5) 

(6) 

where 𝜷𝜷 and λ are the Lagrange multipliers and the perturbation fields 𝛿𝛿𝒖𝒖𝜇𝜇, 𝛿𝛿𝜷𝜷 and 𝛿𝛿λ, 

are totally unconstrained. Note that in Eq. (6), the macroscopic strain field is denoted by 

ε ≡ 𝜵𝜵𝒙𝒙
S𝒖𝒖. The key aspect about associating the Lagrange multipliers to the minimal kine-

matic restrictions (derived from Eqs. (5) and (6)), is that one can give them a physical 

interpretation. This can be seen by appropriately manipulating Eq. (4) to obtain:  

𝜷𝜷(𝒙𝒙, 𝑡𝑡) = −⟨𝒇𝒇𝜇𝜇(𝒚𝒚, 𝑡𝑡)⟩𝛺𝛺𝜇𝜇 ≡ −𝒇𝒇 (𝒙𝒙, 𝑡𝑡), (7) 

λ(𝒙𝒙, 𝑡𝑡) = ⟨σ𝜇𝜇 − 𝒇𝒇𝜇𝜇(𝒚𝒚, 𝑡𝑡) ⊗S (𝒚𝒚 − 𝒚𝒚(􏷟􏷟))⟩𝛺𝛺𝜇𝜇 ≡ σ(𝒙𝒙, 𝑡𝑡), (8) 

where the operator ⊗S is used to denote the symmetric outer product between tensors 

(i.e. 𝒂𝒂 ⊗S 𝒃𝒃 = (𝒂𝒂 ⊗ 𝒃𝒃 + 𝒃𝒃 ⊗ 𝒂𝒂) 2⁄ ). Specific details on the derivation of these results are given 

in Article I. Note that according to Eqs. (7) and (8), the Lagrange multiplier 𝜷𝜷 can be 

interpreted as the opposite macroscopic D’Alembert force density vector, 𝒇𝒇 , while the 

other Lagrange multiplier, λ, is directly interpreted as the macroscopic stress tensor, σ. 

Considering a Galerkin-based finite element discretization of Eqs. (4)-(6), the resulting 

system can be expressed in matrix form as 

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝕄𝕄𝜇𝜇 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡
𝒖𝒖􏾦̈􏾦𝜇𝜇

𝜷𝜷̈

λ̈
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

+
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎡ 𝕂𝕂𝜇𝜇 −ℕ𝜇𝜇

T −𝔹𝔹𝜇𝜇
T

−ℕ𝜇𝜇 𝟎𝟎 𝟎𝟎
−𝔹𝔹𝜇𝜇 𝟎𝟎 𝟎𝟎 ⎦⎥⎥⎥

⎥⎥⎥⎥
⎥⎥⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡𝒖𝒖􏾦􏾦𝜇𝜇

𝜷𝜷
λ

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

=
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡
𝒃𝒃􏾦􏾦𝜇𝜇

−𝒖𝒖
−ε

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

, (9) 

where 𝕂𝕂𝜇𝜇, 𝕄𝕄𝜇𝜇 are the standard stiffness and mass matrices, ℕ𝜇𝜇 and 𝔹𝔹𝜇𝜇 are matrices 

applying the minimal kinematic restrictions, 𝒖𝒖􏾦􏾦𝜇𝜇 is the vector of nodal micro-displacements 

and 𝒃𝒃􏾦􏾦𝜇𝜇 is another vector containing body forces data. Again, the reader is referred to 

Article I for a complete derivation of all these terms. 
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The system in Eq. (9) clearly shows that the microscale gets the information from the 

displacement and strain fields, 𝒖𝒖 and ε, in the associated macroscopic point (which be-

come actions in the microscale system). These, along with the body forces data given by 

𝒃𝒃􏾦􏾦𝜇𝜇 (if present), are used to obtain the effective response, the information of which is con-

densed on the Lagrange multipliers, 𝜷𝜷 and λ, and returned to the macroscale as the 

D’Alembert force density and stress (acting as reactions in the microscale context).  

3.1.3  Application to acoustic metamaterials problems 

Up to this point, the proposed formulation is general for as long as homogenization theory 

holds, which means: (a) it exists a separation of scales enough to satisfy 𝜆𝜆 ≫ ℓ𝜇𝜇 (i.e. 

inertial effects or force excitations in the macroscale have a wavelength 𝜆𝜆 higher than 

one order of magnitude compared to the characteristic size of the microscale ℓ𝜇𝜇) and (b) 

the kinematic relation between both scales reflects the actual material interaction in the 

microscale. The better these two conditions are satisfied, the better the microscale ef-

fects on the macroscale will be captured by the homogenization scheme. 

However, in the context of this work, where the goal of the proposed multiscale frame-

work is to characterize the behavior of acoustic metamaterials, additional hypotheses can 

be considered to further simplify the model. In particular: 

(a) Supported by the separation of scales condition, 𝜆𝜆 ≫ ℓ𝜇𝜇, the macroscopic strain 

acceleration field can be neglected, ε̈ ≈ 𝟎𝟎, because no deformation modes will be 

excited. Although this condition limits the applicability of the homogenization frame-

work to cases in the low-frequency regime, it is also a requirement for local reso-

nance phenomena to arise. Thus, the model is still capable of characterizing the 

behavior of LRAMs. 

(b) The density distribution on the unit cell satisfies ⟨𝜌𝜌𝜇𝜇(𝒚𝒚 − 𝒚𝒚(􏷟􏷟))⟩𝛺𝛺𝜇𝜇 ≈ 𝟎𝟎, i.e. its center 

of mass lies close to the geometric center 𝒚𝒚(􏷟􏷟). This occurs, for instance, if the unit 

cell topology is symmetric with respect to its geometric center 𝒚𝒚(􏷟􏷟). 

(c) Body forces are neglected, so that the D’Alembert force density vector contains 

only its inertial component, i.e. 𝒇𝒇𝜇𝜇 ≈ −𝜌𝜌𝜇𝜇𝒖̈𝒖𝜇𝜇 and 𝜷𝜷 ≡ −𝒇𝒇 ≈ 𝒑̇𝒑 (with 𝜌𝜌𝜇𝜇 being the den-

sity distribution on the microscale and 𝒑̇𝒑 denoting the time derivative of the linear 

momentum in the macroscale). 
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Furthermore, given the periodic nature of acoustic metamaterial structures, and since 

the study on the microscale is focused on a unit cell, the appropriate set of kinematic 

restrictions considered for the micro-fluctuation field consists of: (1) applying periodic 

boundary conditions and (2) prescribing the value of 𝒖̃𝒖𝜇𝜇 = 𝟎𝟎 at some point on the unit 

cell’s boundary (in order to avoid rigid body motion). These are used instead of the min-

imal kinematic conditions as they give more accurate results in the present context. In 

Fig. 6 a schematic representation of the micro-displacement field is shown. The deriva-

tion of the matrices 𝕀𝕀, 𝕐𝕐𝜃𝜃, 𝕐𝕐𝜀𝜀 and ℙ (from Fig. 6) is given in Article I.  

In order to proceed with the unit cell system resolution, in the context of acoustic met-

amaterials, the system in Eq. (9) will be split into two subsystems. Under the assumptions 

considered, this split will allow us to isolate the quasi-static response from the inertial 

one, simply by dealing with the actions of the system (i.e. the macroscopic displacement 

and strain fields, 𝒖𝒖 and ε) separately. 

The quasi-static subsystem is derived when 𝒖𝒖 = 𝟎𝟎 is considered, so it represents the sys-

tem’s response to a homogeneous strain action, ε. According to hypothesis (a), by as-

suming ε̈ ≈ 𝟎𝟎, the inertial response of this subsystem can be neglected (hence the name 

quasi-static). In this regard, one can anticipate the resulting displacement field to satisfy 

𝒖̈𝒖𝜇𝜇
(􏷠􏷠) ≈ 𝟎𝟎 and, according to Eq. (7) and considering 𝒇𝒇𝜇𝜇

(􏷠􏷠) = −𝜌𝜌𝜇𝜇𝒖̈𝒖𝜇𝜇
(􏷠􏷠), then 𝜷𝜷(􏷠􏷠) ≡ 𝒑̇𝒑(􏷠􏷠) ≈ 𝟎𝟎. This 

subsystem can be solved by means of classical homogenization theory and one is able 

to obtain a value for the effective macroscopic stress as a result, 

σ(􏷠􏷠) ≡ λ(􏷠􏷠) = C eff ∶ ε, (10) 

where C eff is the resulting effective homogenized constitutive tensor.  

On the other hand, the inertial subsystem takes into account the effect of a homogeneous 

displacement 𝒖𝒖 in the action vector, so in this case ε = 𝟎𝟎. Since body forces are being 

neglected here (according to hypothesis (c)), it should be noted that the sum of both 

subsystems accounts for the complete action vector, hence giving the full response of 

the original microscale system. In this case, given the nature of the action for this system 

(that essentially simulates a homogeneous, rigid body-like displacement of the unit cell) 

one can anticipate the traction forces appearing as a reaction to be negligible, σ𝜇𝜇
(􏷡􏷡) · 𝒏𝒏 ≈ 𝟎𝟎 

(𝒏𝒏 here referring to the outward unit normal vector at the unit cell’s boundaries). Further-

more, in virtue of hypothesis (b), it is reasonable to assume that the global contribution 
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of the resulting moments will also be small, thus the term ⟨𝜌𝜌𝜇𝜇𝒖̈𝒖𝜇𝜇
(􏷡􏷡) ⊗S (𝒚𝒚 − 𝒚𝒚(􏷟􏷟))⟩𝛺𝛺𝜇𝜇 ≈ 𝟎𝟎 can 

be neglected too. In this regard, according to Eq. (8), one can expect λ(􏷡􏷡) ≡ σ(􏷡􏷡) ≈ 𝟎𝟎, and 

obtain an effective macroscopic inertial force density as a result, 

𝒑̇𝒑(􏷡􏷡) ≡ 𝜷𝜷(􏷡􏷡) = 𝜌̅𝜌𝒖̈𝒖 + ⟨𝜌𝜌𝜇𝜇𝒖̈̃𝒖𝜇𝜇
(􏷡􏷡)⟩𝛺𝛺𝜇𝜇 = 𝜌̅𝜌𝒖̈𝒖 + 𝔻𝔻𝒖𝒖􏾦̈􏾦𝜇𝜇

∗ , (11) 

where 𝜌̅𝜌 = ⟨𝜌𝜌𝜇𝜇⟩𝛺𝛺𝜇𝜇 is the average density of the unit cell, 𝒖𝒖􏾦̈􏾦𝜇𝜇
∗  is the nodal vector containing 

the free degrees of freedom of the micro-fluctuation acceleration field, 𝒖̈̃𝒖𝜇𝜇
(􏷡􏷡), and 𝔻𝔻 is a 

pseudo-density coupling matrix. 

At this point, it is important to remark two key aspects: 

(1) By expressing the microscale system in the form of Eq. (9), one gets enough phys-

ical insight of the problem to properly apply the simplifying hypotheses considered, 

granting us with the ability to uncouple the macroscopic stress from the macro-

scopic inertial force density and associate the former with the macroscopic strains 

only (through Eq. (10)), and the latter with the macroscopic acceleration field 

(through Eq. (11)).  

(2) The second component appearing in Eq. (11), ⟨𝜌𝜌𝜇𝜇𝒖̈̃𝒖𝜇𝜇
(􏷡􏷡)⟩𝛺𝛺𝜇𝜇 ≡ 𝔻𝔻𝒖𝒖􏾦̈􏾦𝜇𝜇

∗ , corresponds to 

the micro-inertial effects of the metamaterial on the macroscale, thus being the 

most interesting term in this context. However, it requires a full resolution of the 

inertial subsystem in order to obtain the resulting micro-fluctuation field, 𝒖̈̃𝒖𝜇𝜇
(􏷡􏷡) 

𝕄𝕄𝜇𝜇
∗ 𝒖𝒖􏾦̈􏾦𝜇𝜇

∗ + 𝕂𝕂𝜇𝜇
∗ 𝒖𝒖􏾦􏾦𝜇𝜇

∗ = −𝔻𝔻𝑇𝑇𝒖̈𝒖, (12) 

where 𝕄𝕄𝜇𝜇
∗  and 𝕂𝕂𝜇𝜇

∗  are the mass and stiffness matrices obtained after the kinematic 

restrictions over the micro-fluctuation field have been applied. This is not efficient 

from a computational point of view, since this system solving needs to be succes-

sively carried out online and at each point in the macroscale.  

3.1.4  Modal-based reduced-order modelling 

Aiming at counteracting the issue with the computational efficiency of the formulation 

involving the micro-inertial effects, a reduced-order methodology is devised. Given the 

nature of the problem, we want the term ⟨𝜌𝜌𝜇𝜇𝒖̈̃𝒖𝜇𝜇
(􏷡􏷡)⟩𝛺𝛺𝜇𝜇 ≡ 𝔻𝔻𝒖𝒖􏾦̈􏾦𝜇𝜇

∗  to capture the local resonance 

phenomenon characterizing the acoustic metamaterial behavior. To do so, a modal 
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analysis of Eq. (12) is performed, from which the mass-normalized eigenvectors, 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘), 

and eigenvalues, 𝜆𝜆𝜇𝜇
∗(𝑘𝑘), can be obtained: 

􏿴􏿴𝕂𝕂𝜇𝜇
∗ − 𝜆𝜆𝜇𝜇

∗(𝑘𝑘)𝕄𝕄𝜇𝜇
∗ 􏿷􏿷𝝓𝝓􏾦􏾦𝜇𝜇

∗(𝑘𝑘) = 𝟎𝟎,      such that      𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘)𝑇𝑇𝕄𝕄𝜇𝜇

∗ 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘) = 1. (13) 

Then, the solution field can be expressed as 

𝒖𝒖􏾦􏾦𝜇𝜇
∗ = 􏾝􏾝 𝝓𝝓􏾦􏾦𝜇𝜇

∗(𝑘𝑘)𝑞𝑞𝜇𝜇
∗(𝑘𝑘)

𝑘𝑘

, (14) 

where 𝑞𝑞𝜇𝜇
∗(𝑘𝑘) are the modal amplitudes associated to the 𝑘𝑘-th eigenvectors, which become 

the new system unknowns. Furthermore, the system in Eq. (12) can also be projected 

onto each eigenvector, yielding a set of uncoupled equations 

𝜔𝜔𝜇𝜇
∗(𝑘𝑘)􏷡􏷡

𝑞𝑞𝜇𝜇
∗(𝑘𝑘) + 𝑞̈𝑞𝜇𝜇

∗(𝑘𝑘) = −ℚ(𝑘𝑘)𝑇𝑇𝒖̈𝒖, (15) 

where 𝜔𝜔𝜇𝜇
∗(𝑘𝑘)􏷡􏷡

= 𝜆𝜆𝜇𝜇
∗(𝑘𝑘) refer to the natural frequencies and ℚ(𝑘𝑘) = 𝔻𝔻𝝓𝝓􏾦􏾦𝜇𝜇

∗(𝑘𝑘) can be regarded as 

a coupling vector (or the 𝑘𝑘-th component of a coupling matrix ℚ). In this regard, the 

macroscopic inertial force density expression can be written as 

𝒑̇𝒑 ≈ 𝜌̅𝜌𝒖̈𝒖 + 􏾝􏾝 ℚ(𝑘𝑘)𝑞̈𝑞𝜇𝜇
∗(𝑘𝑘)

𝑘𝑘

. (16) 

The actual system reduction here comes from identifying the set of relevant eigenvectors 

(i.e. vibration modes) responsible for local resonance effects. This selection is performed 

at two different levels: 

(1) The first big truncation comes from the separation of scales condition, that limits 

the applicability of the proposed formulation to the low-frequency range. In partic-

ular, all modes associated to a natural frequency 𝜔𝜔𝜇𝜇
∗(𝑘𝑘) above a certain limit can be 

discarded as they will not be excited in the range of application of the model. This 

limit is typically determined by the first natural frequencies associated to defor-

mation modes of the unit cell. 

(2) From the set of remaining modes after the first truncation, only those relevant on 

the macroscale should be considered. In the proposed model, the criterion to de-

termine whether a particular mode is relevant comes down to the coupling vector 

ℚ(𝑘𝑘). A small absolute value of the magnitude of ℚ(𝑘𝑘) indicates that the vibration 
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mode 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘) associated to the natural frequency 𝜔𝜔𝜇𝜇

∗(𝑘𝑘) is poorly coupled with the mac-

roscale, hence its effects can be neglected. In other words, it means that this mode 

is not responsible for local resonance effects. 

 

FIG. 6 Global homogenization scheme for characterizing acoustic metamaterials. The wave equation in 
the macroscale is solved with effective values of the stress and inertial force density terms, σ and 𝒑̇𝒑, 
that come from the resolution of the unit cell system in the microscale under the action of the associated 
macroscopic strain and acceleration fields, ε and 𝒖̈𝒖. This problem is split into a quasi-static component 
and a reduced inertial subsystem allowing us to uncouple the stress and inertial force density contribu-
tions in the macroscale, while still accounting for local resonance effects.  
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3.1.5  Homogenization framework applications 

With Eqs. (10), (15) and (16), we now have all the ingredients to express the set of equa-

tions to be solved in the macroscale: 

⎩⎪⎪⎪
⎪⎪
⎨⎪⎪⎪
⎪⎪
⎧

𝜵𝜵𝒙𝒙 · 􏿴􏿴C eff: 𝜵𝜵𝒙𝒙
S𝒖𝒖(𝒙𝒙, 𝑡𝑡)􏿷􏿷 − 𝜌̅𝜌𝒖̈𝒖(𝒙𝒙, 𝑡𝑡) = 􏾝􏾝 ℚ(𝑘𝑘)𝑞̈𝑞𝜇𝜇

∗(𝑘𝑘)(𝒙𝒙, 𝑡𝑡)
𝑘𝑘

,

𝜔𝜔𝜇𝜇
∗(𝑘𝑘)􏷡􏷡

𝑞𝑞𝜇𝜇
∗(𝑘𝑘)(𝒙𝒙, 𝑡𝑡) + 𝑞̈𝑞𝜇𝜇

∗(𝑘𝑘)(𝒙𝒙, 𝑡𝑡) = −ℚ(𝑘𝑘)𝑇𝑇𝒖̈𝒖(𝒙𝒙, 𝑡𝑡).
 (17) 

Again, it should be noted that local resonance effects are accounted for by the presence 

of the coupling vector ℚ(𝑘𝑘) in the equations. But for this additional term to appear, the unit 

cell design of the acoustic metamaterial plays an important role. In particular, two key 

aspects need to be satisfied: 

(a) Each unit cell is isolated from the rest in order to trigger internal resonance modes. 

This is important for the separation of scales condition, 𝜆𝜆 ≫ ℓ𝜇𝜇, to be satisfied, 

which is also required for local resonance effects to arise. To guarantee this, one 

can rely on employing stiff materials on the unit cell’s boundaries, for instance. 

 

FIG. 7 Different LRAM-based unit cell configurations. All the designs consist of a relatively stiff frame to 
isolate each unit cell from the rest and a resonating element with components acting as masses and 
springs. (a) Bi-material design considered in Article I: the steel inclusion is the resonating element, 
which is attached to a polymer-based frame through thin attachments built with the same material. (b) 
Three-phase composite configuration used in Article II: in this case, the resonating element is a steel 
inclusion coated with a silicone rubber embedded in a stiff matrix. (c) Single material unit cell devised 
for Article III: the support rods on the vertices fix each cell and the combination of the thin attachments 
with the flower-shaped inclusion allow for out-of-plane local resonance effects in the low-frequency 
range of interest, despite employing only one material phase. The numbers correspond to materials 
listed in Tab. 1. 

(a) (b) (c)

1

4 4

2

5

3
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TAB. 1 Material properties considered for the different LRAM designs. 

Material Density (kg/m3) Young’s Mod. (MPa) Poisson’s ratio 

(1) Nylon 1100 2000 0.4 

(2) Epoxy 1180 4350 0.368 

(3) PA 11 1050 1800 0.405 

(4) Steel 7800 180000 0.33 

(5) Silicone rubber 1300 0.1175 0.469 

 

(b) The unit cell contains some kind of resonating element. These resonating ele-

ments are what cause the internal resonance modes that trigger the local reso-

nance effects at a specified frequency. To achieve this, one can combine materi-

als with different properties (preferably compliant materials assuming the role of 

springs and dense inclusions to act as masses) and/or rely on specific topologies 

that produce the same effects. 

In Fig. 7, different LRAM-based unit cell configurations considered in this work are de-

picted. Each one employs a different strategy to achieve the local resonance effects ex-

pected. 

 Homogenized macroscale model to study local resonance effects 

In order to analyze the behavior of LRAMs and provide a better understanding of the 

bandgap formation mechanisms due to local resonance effects, an analytical treatment 

of Eq. (17) will be performed. 

To do so, Eq. (17) will be solved in the frequency domain, for a given frequency 𝜔𝜔, allow-

ing us to condense the system by establishing the following relation:  

𝑞̈𝑞𝜇𝜇
∗(𝑘𝑘)(𝒙𝒙, 𝑡𝑡) =

𝜔𝜔􏷡􏷡

𝜔𝜔𝜇𝜇
∗(𝑘𝑘)􏷡􏷡

− 𝜔𝜔􏷡􏷡
ℚ(𝑘𝑘)𝑇𝑇𝒖̈𝒖(𝒙𝒙, 𝑡𝑡). (18) 

Substituting Eq. (18) into the expression for the inertial force density (given by Eq. (16)) 

allows us to determine an effective density tensor, 

R eff(𝜔𝜔) = 𝜌̅𝜌𝟏𝟏 + 􏾝􏾝
𝜔𝜔􏷡􏷡

𝜔𝜔𝜇𝜇
∗(𝑘𝑘)􏷡􏷡

− 𝜔𝜔􏷡􏷡
ℚ(𝑘𝑘) ⊗ ℚ(𝑘𝑘)𝑇𝑇

𝑘𝑘

, (19) 

where 𝟏𝟏 is the identity tensor. 
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For the sake of simplicity, let us assume plane wave propagation at a given frequency 𝜔𝜔 

and wavenumber 𝜅𝜅. Then 

𝒖𝒖(𝒙𝒙, 𝑡𝑡) = 𝑼𝑼𝑒𝑒𝑖𝑖(𝜅𝜅𝒏𝒏𝜅𝜅·𝒙𝒙−𝜔𝜔𝜔𝜔), (20) 

where 𝑼𝑼  is the wave amplitude and 𝒏𝒏𝜅𝜅 is a unit vector with the wave propagation direc-

tion. In this context, 

𝒖̈𝒖(𝒙𝒙, 𝑡𝑡) = −𝜔𝜔􏷡􏷡𝑼𝑼𝑒𝑒𝑖𝑖(𝜅𝜅𝒏𝒏𝜅𝜅·𝒙𝒙−𝜔𝜔𝜔𝜔), (21) 

𝜵𝜵𝒙𝒙
S𝒖𝒖(𝒙𝒙, 𝑡𝑡) = 𝑖𝑖𝑖𝑖𝒏𝒏𝜅𝜅 ⊗𝑆𝑆 𝑼𝑼𝑒𝑒𝑖𝑖(𝜅𝜅𝒏𝒏𝜅𝜅·𝒙𝒙−𝜔𝜔𝜔𝜔). (22) 

Upon substitution of Eqs. (21) and (22) into Eq. (17), one gets the following dispersion 

relation 

􏿴􏿴𝜔𝜔􏷡􏷡R eff(𝜔𝜔) − 𝜅𝜅􏷡􏷡𝒏𝒏𝜅𝜅
𝑇𝑇 · C eff · 𝒏𝒏𝜅𝜅􏿷􏿷𝑼𝑼 = 𝟎𝟎. (23) 

To further simplify the analysis, let us consider a wave propagating in the 𝑥𝑥-direction, i.e. 

𝒏𝒏𝜅𝜅 = {1, 0, 0}𝑇𝑇, and a single vibration mode arising from the microscale causing local res-

onance effects only in the direction of the wave propagation, i.e. ℚ(􏷠􏷠) = {𝑄𝑄􏷠􏷠
(􏷠􏷠), 0, 0}𝑇𝑇. In this 

regard, assuming the effective metamaterial has a standard linear elastic behavior, one 

gets three eigenvalues and eigenvectors from Eq. (23), namely 

⎩⎪⎪⎪
⎪⎪⎪⎪
⎪⎪⎪⎪
⎪⎪⎪⎪
⎪⎪⎪⎪
⎨⎪⎪⎪
⎪⎪⎪⎪
⎪⎪⎪⎪
⎪⎪⎪⎪
⎪⎪⎪⎪
⎧

𝜅𝜅(􏷠􏷠) = 𝜔𝜔
⎷
⃓
⃓
⃓
􏽭􏽭

𝜌̅𝜌
𝐶𝐶􏷠􏷠􏷠􏷠􏷠􏷠􏷠􏷠

eff +
𝜔𝜔􏷡􏷡

𝜔𝜔𝜇𝜇
∗(􏷠􏷠)􏷡􏷡

− 𝜔𝜔􏷡􏷡

𝑄𝑄􏷠􏷠
(􏷠􏷠)􏷡􏷡

𝐶𝐶􏷠􏷠􏷠􏷠􏷠􏷠􏷠􏷠
eff , 𝑼𝑼(􏷠􏷠) = {𝑈𝑈􏷠􏷠, 0, 0}𝑇𝑇;

𝜅𝜅(􏷡􏷡) = 𝜔𝜔
􏽱􏽱

𝜌̅𝜌
𝐶𝐶􏷠􏷠􏷠􏷠􏷠􏷠􏷠􏷠

eff , 𝑼𝑼(􏷡􏷡) = {0, 𝑈𝑈􏷡􏷡, 0}𝑇𝑇;

𝜅𝜅(􏷢􏷢) = 𝜔𝜔
􏽱􏽱

𝜌̅𝜌
𝐶𝐶􏷠􏷠􏷠􏷠􏷠􏷠􏷠􏷠

eff , 𝑼𝑼(􏷢􏷢) = {0, 0, 𝑈𝑈􏷢􏷢}𝑇𝑇.

 (24) 

Note that 𝜅𝜅(􏷡􏷡) and 𝜅𝜅(􏷢􏷢), which are associated to transverse propagation modes (𝑼𝑼(􏷡􏷡) and 

𝑼𝑼(􏷢􏷢) are normal to the wave propagation direction 𝒏𝒏𝜅𝜅), have a standard dispersion relation 

proportional to the frequency 𝜔𝜔 through a constant propagation speed. However, for 

longitudinal waves the material is dispersive, as the relation between 𝜅𝜅(􏷠􏷠) and 𝜔𝜔 is not 

linear due to the presence of local resonance effects caused by non-null values of 𝑄𝑄􏷠􏷠
(􏷠􏷠). 

A close inspection on this expression allows us to realize: (1) as 𝜔𝜔 approaches the natural 

frequency 𝜔𝜔𝜇𝜇
∗(􏷠􏷠), the corresponding effective density tensor term 𝑅𝑅􏷠􏷠􏷠􏷠

eff → +∞ which causes 
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𝜅𝜅(􏷠􏷠) → +∞; and (2) when 𝜔𝜔 surpasses the value of 𝜔𝜔𝜇𝜇
∗(􏷠􏷠), then 𝑅𝑅􏷠􏷠􏷠􏷠

eff → −∞ (i.e. the met-

amaterial exhibits negative density-like behavior) causing 𝜅𝜅(􏷠􏷠) to be purely imaginary (see 

Fig. 8 for an illustrative example).  

According to Eq. (20), a purely imaginary wavenumber 𝜅𝜅 causes an effective attenuation 

of the wave’s amplitude as it propagates, producing the so-called frequency bandgap. 

This bandgap region is extended until a frequency that makes the corresponding effec-

tive density tensor component become null, 𝑅𝑅􏷠􏷠􏷠􏷠
eff = 0. In Article I, it is demonstrated that 

these frequencies correspond to resonance frequencies for vibration modes in the unre-

stricted microscale inertial system.  

 

FIG. 8 Illustrative example of the local resonance phenomenon. The bandgap corresponds to a region 
bounded by the frequencies of the restricted and unrestricted unit cell systems, whose vibration modes 
are depicted as (a) and (b) (dashed lines indicate the undeformed state). Note that in this region the 
metamaterial exhibits negative density-like behavior, causing a purely imaginary valued wavenumber. 
The plots are adapted from the ones provided in Article I considering Fig. 7-(a) unit cell design. 
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FIG. 9 LRAM-based panel problem setting for computing its transmission loss. The macroscopic domain 
consists of an infinitely extended panel with a certain thickness. Its microscale is modelled as a period-
ically repeated unit cell with a given configuration that allows it to produce local resonance effects. In 
order to compute the transmission loss, acoustic plane waves propagating in the direction normal to the 
panels’ surfaces are considered. On the front side, there are two waves travelling in opposite directions 
corresponding to the incident and reflected waves, while on the rear side, there is only the transmitted 
wave propagating away from the panel. The ratios between these waves’ amplitudes define the reflection 
and transmission coefficients, 𝑅𝑅 and 𝑇𝑇, respectively. 

 

 Transmission loss in LRAM-based panels 

The LRAM application considered throughout this work is the design of noise insulation 

panels with enhanced attenuating capabilities (due to local resonance effects) in a spec-

ified frequency range. These are typically in the low-frequency regime, where standard 

solutions would require the use of thick panels of dense materials.  

The scheme in Fig. 9 is used to characterize the performance of such LRAM-based pan-

els by computing their transmission loss as the ratio of the amplitudes of acoustic plane 

waves propagating normal to the panels’ surfaces on their front and rear sides. Details 

on this computation are provided in Article II. 
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This kind of example has also been used in Article I to validate the homogenization model 

through a comparison of the results obtained with a direct numerical simulation of the 

panel. The results of this study can be seen in Fig. 10. 

 

FIG. 10 Validation of the proposed homogenization scheme. (a) The transmission loss of a panel has 
been computed through a direct numerical simulation and the results are compared with those obtained 
by the proposed homogenization framework. (b) Internal resonance modes for the unit cell design con-
sidered. Notice that only the first 3 modes lie in the audible frequency range, of which only 2 have non-
negligible components in the coupling vector and only the first is responsible for causing local reso-
nance effects for waves propagating in the longitudinal direction. Results adapted from Article I.  
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3.2  Computational design of acoustic metamaterials 

The homogenization framework presented can be employed to characterize the behavior 

of LRAMs. This motivates its use in the design process of such metamaterials aiming, for 

instance, at enhancing its attenuating capabilities. In this context, the application devised 

for LRAMs is in the form of noise insulation panels as described in Section 3.1.5.2. There-

fore, since the levels of attenuation achieved by local resonance effects are large but 

very narrowband, the goal is to enlarge the effective frequency bandgap. In this regard, 

three different strategies have been considered: (1) stacking layers with different LRAM 

unit cell configurations aiming at overlapping their effective bandgaps, (2) taking ad-

vantage of the viscoelastic behavior of certain materials which, in combination with local 

resonance effects, can give rise to a damping emergence phenomenon called 

metadamping and (3) use topology optimization techniques to obtain unit cell designs 

with a targeted frequency range of operation and optimal (maximized) bandwidth. 

3.2.1  Multi-layer LRAM-based panel design 

As a first approach in LRAMs design, the consideration of a multi-layered panel has been 

studied. The idea in this case is to enlarge the effective attenuation band (defined as the 

frequency range with transmission loss levels over a certain baseline value) by using 

different unit cell configurations in each layer, with overlapping frequency bandgaps. This 

concept has been explored using the proposed homogenization scheme as part of the 

examples section in Article I. An adaptation of these results (in terms of transmission 

loss) can be seen in Fig. 11. 

First, it should be noted that the two overlapping bandgaps are produced with small 

changes in the geometrical properties of each unit cell. In this case, a simple reduction 

of 0.25 mm in the outer hole diameter (see Fig. 7-(a)) is enough to slightly increase the 

frequency bandgap width and move it to a 2 kHz higher frequency range. 

The main drawback observed with this design concept is that, while the corresponding 

unit cells’ bandgaps overlap, the resulting transmission loss curve is not capable of pro-

ducing a continuous effective attenuation band throughout the entire expected enlarged 

frequency bandgap. This is because by stacking layers with different unit cell configura-

tions, they interact with each other producing undesired transmission (inverted) peaks at 

frequencies inside the attenuation region.  
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FIG. 11 Transmission loss of a bi-layer LRAM panel. Each layer contains 5 unit cells with variations in 
the geometric parameters of the configuration in Fig. 7-(a), in order to produce two overlapping fre-
quency bandgaps (shaded areas in the plot). Results adapted from Article I. 

 

3.2.2  Introduction of damping effects 

Viscoelastic behavior of materials can be accounted for in the proposed formulation by 

considering, on the microscale, a stress-strain relation of the form 

σ𝜇𝜇 = C𝜇𝜇: 𝜵𝜵𝒚𝒚
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so that the stress tensor gains a strain-rate, 𝜵𝜵𝒚𝒚
S𝒖̇𝒖𝜇𝜇, dependency through a fourth-order 

viscous tensor η𝜇𝜇. First, it should be noted that the introduction of this additional term in 

the formulation does not affect the simplifying hypotheses considered for the application 

of the model to acoustic metamaterials problems. Details on the whole derivation of the 

model with viscoelastic effects can be found in Article II. Here, only the major implications 
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(a) While the assumption considered for the quasi-static subsystem still holds, some 

changes need to be applied to accommodate the presence of dissipation terms. 

Ultimately, this affects the expression obtained for the effective macroscopic stress, 

that now reads 

σ ≈ C eff:ε + ηeff: ε̇. (26) 

In contrast to the previous definition, given by Eq. (10), in this case a new term 

arises accounting for an effective viscous tensor, ηeff, responsible for relating the 

macroscopic stress with the strain-rate, ε̇. 

(b) Another difference appearing as a result of considering viscoelastic effects con-

cerns the inertial subsystem. In this case, the expression for the macroscopic iner-

tial force density remains the same as in Eq. (16), but an additional dissipation term 

appears in the reduced microscale system: 

Ω𝜇𝜇
􏷡􏷡𝒒𝒒𝜇𝜇 + Ω𝜇𝜇

D𝒒̇𝒒𝜇𝜇 + 𝒒̈𝒒𝜇𝜇 = −ℚ𝑇𝑇𝒖̈𝒖, (27) 

where former Eq. (15) in its matrix form has been considered, i.e. with Ω𝜇𝜇
􏷡􏷡 =

diag{ … 𝜔𝜔𝜇𝜇
∗(𝑘𝑘)􏷡􏷡

… } being a diagonal matrix containing all the relevant squared natu-

ral frequencies, 𝒒𝒒𝜇𝜇 = { … 𝑞𝑞𝜇𝜇
∗(𝑘𝑘) … }𝑇𝑇 denoting a column vector with the modal ampli-

tudes and ℚ = { … ℚ(𝑘𝑘) … } referring to a matrix containing the coupling vectors. In 

Eq. (27), Ω𝜇𝜇
D is the new term assuming the role of a damping matrix.  

Regarding Eq. (27), it should be noted that the addition of damping counteracts the ben-

eficial effects of local resonance phenomena. However, in a low-frequency regime, de-

pending on the level of viscosity, it can slightly extend the effective attenuation band. 

Another issue concerning the modal-based reduction is that, unlike the former mi-

croscale system from Eq. (15), the new system in Eq. (27) is not necessarily uncoupled, 

since Ω𝜇𝜇
D is not diagonal, in general. This may cause the reduction scheme to not be so 

efficient, as additional modal amplitudes may be required in order to achieve more accu-

rate results. While this issue is something that needs to be considered, in practice, it has 

been verified that it does not have a major impact on the overall formulation, because the 

degree of coupling is so small that good results can still be obtained considering only the 

relevant modes selected using the criterion established in Section 3.1.4 . 
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FIG. 12 Problem setting for the topology optimization of acoustic metamaterials. (a) Unit cell configura-
tion showing the fixed stiff material frame and the design domain where the topology of the inclusions 
(acting as dense material regions) is obtained. (b) Restricted and unrestricted resonance frequencies 
marking the frequency bandgap limits. Figure extracted from Article II. 

 

3.2.3  Topology optimization of LRAMs 

A LRAMs computational design methodology based on a level-set topology optimization 

strategy has been devised. The objectives for this optimization problem are: 

(1) Fit the relevant resonance frequency triggering local resonance effects into a tar-

geted range. 

(2) Maximize the bandwidth of the frequency bandgap associated to the previous res-

onance frequency. 

To do so, a smooth level-set function 𝜑𝜑(𝒚𝒚) is defined to determine the material distribution 

by means of a characteristic function 

𝜒𝜒(𝒚𝒚) ≔ ℋ 􏿴􏿴𝜑𝜑(𝒚𝒚)􏿷􏿷 ≡ 􏿼􏿼
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1 ∀ 𝒚𝒚  such that  𝜑𝜑(𝒚𝒚) ≥ 0

. (28) 

This characteristic function 𝜒𝜒 takes values of 1 for dense material regions (these will 

correspond to the resonating elements, i.e. the inclusions) and values of 0 for compliant 

material regions (which will be treated as void or coating materials). In this context, the 
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level-set function 𝜑𝜑 becomes the unknown of the problem of minimizing the cost function, 

given by 

𝛱𝛱􏿴􏿴𝜒𝜒(𝜑𝜑)􏿷􏿷 ≔ 𝛼𝛼𝑓𝑓􏷡􏷡 + (1 − 𝛼𝛼)𝑔𝑔􏷡􏷡 (29) 

with 

𝑓𝑓 =
ln 𝜆𝜆𝜇𝜇

∗(􏷠􏷠)􏿴􏿴𝜒𝜒(𝜑𝜑)􏿷􏿷 − ln 𝜆𝜆􏼞􏼞𝜇𝜇
∗

ln 𝜆𝜆𝜇𝜇
∗(􏷠􏷠)􏿴􏿴𝜒𝜒(𝜑𝜑)􏿷􏿷 + ln 𝜆𝜆􏼞􏼞𝜇𝜇∗

, (30) 

𝑔𝑔 =
ln 𝜆𝜆𝜇𝜇

∗(􏷠􏷠)􏿴􏿴𝜒𝜒(𝜑𝜑)􏿷􏿷

ln 𝜆𝜆𝜇𝜇
(􏷠􏷠) 􏿴􏿴𝜒𝜒(𝜑𝜑)􏿷􏿷

, (31) 

In Eqs. (29)-(31), 𝛼𝛼 is a weighting parameter (0 ≤ 𝛼𝛼 ≤ 1) and 𝜆𝜆􏼞􏼞𝜇𝜇
∗ ≡ 𝜔𝜔􏼞􏼞𝜇𝜇

∗ 􏷡􏷡 is the squared 

target frequency where we expect to obtain local resonance effects. The variables 𝜆𝜆𝜇𝜇
∗(􏷠􏷠) 

and 𝜆𝜆𝜇𝜇
(􏷠􏷠) are the first relevant resonance frequencies for the restricted and unrestricted 

microscale inertial systems, respectively, which typically determine the lower and upper 

bounds of the associated frequency bandgap. Thus, at each iteration step, the following 

equations must be satisfied:  

􏿴􏿴𝕂𝕂𝜇𝜇
∗ − 𝜆𝜆𝜇𝜇

∗(􏷠􏷠)𝕄𝕄𝜇𝜇
∗ 􏿷􏿷𝝓𝝓􏾦􏾦𝜇𝜇

∗(􏷠􏷠) = 𝟎𝟎, (32) 

􏿴􏿴𝕂𝕂𝜇𝜇 − 𝜆𝜆𝜇𝜇
(􏷠􏷠)𝕄𝕄𝜇𝜇􏿷􏿷𝝓𝝓􏾦􏾦𝜇𝜇

(􏷠􏷠) = 𝟎𝟎. (33) 

It should be noted that the objective function 𝛱𝛱  is bounded between 0 and 1 and is 

composed by two subfunctions, 𝑓𝑓􏷡􏷡 and 𝑔𝑔􏷡􏷡. The former (see Eq. (30)) reaches its minimum 

when the squared first relevant resonance frequency of the restricted system 𝜆𝜆𝜇𝜇
∗(􏷠􏷠) (i.e. 

the one producing local resonance effects) matches the targeted one 𝜆𝜆􏼞􏼞𝜇𝜇
∗ , satisfying the 

first objective established. As for the latter (see Eq. (31)), its value decreases as the dif-

ference between 𝜆𝜆𝜇𝜇
(􏷠􏷠) and 𝜆𝜆𝜇𝜇

∗(􏷠􏷠) becomes larger (i.e. the frequency bandgap limits extend, 

which satisfies the second objective set). 

To solve the problem, a pseudo-time variable is used to update the solution, starting from 

an initial state that consist of the design area filled entirely with dense material (i.e. 𝜑𝜑 > 0 

in the whole domain), until it reaches an appropriate converged solution. A Hamilton-

Jacobi approach has been considered, where the updated solution is given by 
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𝜑𝜑(𝑛𝑛+􏷠􏷠)(𝒚𝒚) = 𝜑𝜑(𝑛𝑛)(𝒚𝒚) − ∆𝑡𝑡 𝐶𝐶􏷠􏷠
𝛿𝛿𝛱𝛱𝑡𝑡
𝛿𝛿𝛿𝛿

(𝒚𝒚), (34) 

with ∆𝑡𝑡 being a time-step, 𝐶𝐶􏷠􏷠 > 0 is an adjusting parameter and 𝛿𝛿𝛱𝛱𝑡𝑡 𝛿𝛿𝛿𝛿⁄  is the so-called 

topological sensitivity of the cost function (also known as the variational topological de-

rivative of the functional 𝛱𝛱). Details on the derivation of 𝛿𝛿𝛱𝛱𝑡𝑡 𝛿𝛿𝛿𝛿⁄  can be found in Article II. 

 

FIG. 13 Evolution plots for the topology optimization of acoustic metamaterials. (a) Frequency fitting 
case and (b) Frequency fitting paired with bandgap maximization. In Additional media, a link to a video 
showcasing the topology evolution at each iteration for both cases can be found. Figure extracted from 
Article II. 
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FIG. 14 Transmission loss for the optimized LRAM topologies. Comparison between the frequency fitting 
design and the frequency fitting paired with the bandgap maximization case. Each plot corresponds to 
different viscosity parameters to highlight the effect of considering viscoelastic behavior in the design. 
The effective attenuation bands are defined as the uninterrupted frequency regions with a TL level over 
40 dB. Figure extracted from Article II. 
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Some important aspects concerning the topology optimization problem devised include: 

(a) To ensure the appearance of a topological design that triggers local resonance 

effects, the target squared frequency 𝜆𝜆􏼞􏼞𝜇𝜇
∗  needs to be set in a proper region that is 

typically determined by the dimensions of the unit cell, for a given set of material 

properties. This also implies that 𝛼𝛼 > 0, i.e. the frequency fitting must be part of the 

objective function always. 

(b) The design domain is surrounded by a fixed material frame, which is considered 

infinitely stiff so that no deformation modes appear in the modal analysis. This is 

done also to avoid spurious interactions of the matrix with the inclusion/coating 

materials considered for the topological design area in the early steps of the algo-

rithm. 

(c) The mass of the void/coating material is neglected, again, to avoid spurious modes 

that would difficult the proper identification of the relevant resonance mode. This 

should not affect the value of the resonance frequency, since the parameters that 

play a role in its determination are the elastic properties of the coating phase and 

the mass of the inclusion, both of which remain unaltered with this assumption. 

(d) Finally, in order to help the algorithm become more stable, only the degrees of 

freedom in the direction where one expects local resonance effects to arise are left 

free (assuming the unit cell will work as a LRAM panel subjected to plane waves 

propagating in the predefined direction, this simplification is not a cause for im-

portant issues from the topological design point of view). 

In Fig. 13, an example from Article II of the application of the proposed topological design 

strategy is shown. For comparison, two cases have been studied: one only accounting 

for the frequency fitting (𝛼𝛼 = 1) to get a topology with an internal resonance frequency in 

a target value, and another in which bandgap maximization is also taken into account 

(𝛼𝛼 = 0.5). Notice the big jump in the resonance frequency scale once the inclusion gets 

detached from the matrix. The corresponding transmission loss curves for each case are 

given in Fig. 14, which can be found also in Article II. In this case, one can also see the 

smoothing effect caused by increasing the viscosity of the coating material upon consid-

ering viscoelastic behavior in the model, which translates in slightly wider bandgaps. This, 

combined with topological optimized designs, lead to big improvements in the attenua-

tion properties of the LRAM panel.   
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3.3  Experimental validation 

The last main contribution of this work involves a series of experimental tests with the 

following objectives: (1) to demonstrate the concept of local resonance and show its ef-

fects on a fully 3D-printed acoustic metamaterial prototype and (2) validate the compu-

tational framework developed to characterize them. A detailed description of the experi-

ments carried out and the obtained results can be found in Article III. Here, some im-

portant aspects will be highlighted. 

3.3.1  Prototypes design 

For almost 20 years, there have been plenty of acoustic metamaterials realizations that 

have been tested experimentally. While most of them are based on local resonance as 

the mechanism responsible for their attenuating properties, they differ in the way this 

kind of phenomenon is achieved. For a review on the different concepts and designs 

found in the literature, the reader is referred to Section 2.3 of this work. Most of the early 

designs employed composite structures composed of different material phases in order 

to obtain the desired properties. These designs are effective and capable of exhibiting 

local resonance effects, but they are not practical, mainly because of manufacturability 

issues or the dimensions required.  

In this context, the prototypes for the devised set of experimental tests are designed with 

the notion of making them practical. To do so, given the recent growth and potential of 

new additive manufacturing technologies, the acoustic metamaterials employed as pro-

totypes have been designed so that they can be fully 3D-printed via multi jet fusion (MJF) 

techniques. The main challenge when choosing 3D-printing as the fabrication method is 

in the currently available materials. In order to target the interesting frequency range of 

operation for sound insulation applications (around and below 1000 Hz), the materials 

employed need to allow internal resonances in this low-frequency regime, which typically 

implies the combination of highly compliant and dense materials. Since the majority of 

materials used in 3D-printing are polymers, the aforementioned frequency range is diffi-

cult to achieve with a set of dimensions that makes the metamaterial attractive for prac-

tical purposes, i.e. thin and lightweight, and at the same time, respect the limits and tol-

erances set by the manufacturing system. Here is where the unit cell design plays an 

important role, since it can be exploited to obtain the desired properties, subjected to the 

material restrictions, and be interesting from a practical point of view. 
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FIG. 15 3D-printed acoustic metamaterial panel design. Two skins are stuck at the panel in order to hold 
and isolate each unit cell. The flower-like design of the unit cells is depicted in the bottom right corner 
of the figure. All dimensions are in millimeters. Figure extracted from Article III. 

 

To this end, the prototype built for the experimental tests consists of a panel with a thick-

ness of only 5 mm and composed of unit cells with the design shown in Fig. 13. The 

material employed is a Polyamide (PA11), with a density of 1050 kg/m3, a Young’s mod-

ulus of 1800 MPa and a Poisson’s ratio of 0.405. The unit cell design has been carefully 

chosen so that it can be easily 3D-printed from a single block of material, while still having 

the required elements for local resonance effects to arise. In particular, (1) the support 

rods at the unit cell’s vertices act as fixing points to isolate each unit cell and trigger the 

appearance of internal resonance modes; (2) the central inclusion provides the mass for 

the resonating element, and (3) the thin attachments connecting the inclusion to the sup-

ports assume the role of springs, allowing the unit cell to have relevant resonance modes 

in the desired frequency range, around 1000 Hz. In fact, in order to achieve this fre-

quency range, the particular flower-like topology has been chosen so that the bending 

stiffness of the attachments is small (which is attained with longer elements) and the 

resonating mass is as big as possible (by occupying most of the space available). 
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FIG. 16 Experiment setup for normal-incidence transmission loss measurements. (a) Schematic repre-
sentation showcasing the four microphone positions and holding of the sample panel. (b) Actual im-
pedance tube employed in the experiments. Figure from Article III. 

 

3.3.2  Impedance tube measurements 

Impedance tubes are used to characterize the acoustic performance of materials, in par-

ticular, its transmission and reflection coefficients to normal incidence plane waves. The 

device employed to carry out such kind of experimental tests in the present work consists 

of two tube parts built with medium-density fiberboard 4 cm thick, with a squared section 

of 8 cm x 8 cm. A 3.3 inch loudspeaker (4 Ohm, 30 W) is connected to an amplifier and 

located on one end of the first tube. The other tube’s termination is filled with a polyure-

thane foam to act as an absorbing material, which guarantees an anechoic condition (no 
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reflections). Four 1/2 inch prepolarized microphones with an integrated circuit piezoe-

lectric preamplifier are positioned at different tube sections (see Fig. 14).  

The guidelines from ASTM E1050-98 have been followed in order to set the section size 

and microphone separation to guarantee a frequency range of operation between 200 

and 2000 Hz. Assuming plane wave propagation in this range, the following expressions 

can be used to describe the pressure field in the front (𝑓𝑓) and rear (𝑟𝑟) tube sections in 

the frequency domain: 

𝑃𝑃𝑓𝑓(𝑥𝑥, 𝜔𝜔) = 𝐴𝐴(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐵𝐵(𝜔𝜔)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖, (35) 

𝑃𝑃𝑟𝑟(𝑥𝑥, 𝜔𝜔) = 𝐶𝐶(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, (36) 

where 𝑥𝑥 refers to the longitudinal position in the tube with respect to the sample’s incident 

surface section, 𝜔𝜔 is the frequency, 𝜅𝜅 is the wavenumber (which is related to the speed 

of sound in air, 𝑐𝑐, by 𝜅𝜅 = 𝜔𝜔 𝑐𝑐⁄ ) and 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 are the incident, reflected and transmitted 

wave’s amplitude coefficients, respectively. 

 

FIG. 17 Comparison between experimental and simulated results. The simulations have been performed 
using the proposed homogenization framework (further details in Article III). The experimental curves 
represent the results for the metamaterial panel and two homogeneous panels with an equivalent mass 
(𝑑𝑑 = 6 mm) and thickness (𝑑𝑑 = 9 mm), for comparison. Figure extracted from Article III. 
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Note that reflections on the rear sections of the tube are being neglected here because 

of the anechoic termination. With measurements of the pressure field on the four micro-

phone positions, one can easily obtain the values for these coefficients and compute the 

transmission loss as 

TL(𝜔𝜔) = 10 log􏷠􏷠􏷠􏷠 􏿙􏿙
𝐴𝐴(𝜔𝜔)
𝐶𝐶(𝜔𝜔)

􏿙􏿙
􏷡􏷡
. (37) 

The results of these measurements for the 3D-printed prototype panel can be observed 

in Fig. 17 (also in Article III), along with the transmission loss computation from a simu-

lated panel where the proposed homogenization scheme has been applied. The met-

amaterial case shows increased attenuation around the expected frequency when com-

pared to equivalent homogeneous panels with the same thickness and equivalent mass. 
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C h a p t e r  4  

C O NCL USI ONS  

4.1  Discussion of the results 

By applying the concepts of multiscale homogenization, model-order reduction tech-

niques and topology optimization, a set of computational tools has been developed to 

study and design acoustic metamaterials. The numerical framework proposed highlights 

the potential of the computational design of materials and its ability to characterize com-

plex material behavior, such as local resonance effects. The key aspects developed 

throughout the present thesis are discussed here: 

(a) Multiscale homogenization of acoustic metamaterials. A general multiscale homog-

enization framework capable of accounting for inertial effects has been built upon 

the so-called multiscale virtual power principle. The macroscale (part) is linked to 

the microscale (metamaterial) through a kinematic relation and a Lagrange-based 

form of the energetic equivalence between both scales provides a good setting for 

solving the problem in the microscale and identifying the Lagrange multipliers as 

the macroscopic effective stress and inertial force density terms. Based on (a) the 

separation of scales condition (𝜆𝜆 ≫ ℓ𝜇𝜇) and assuming (b) a density distribution 

symmetrical with respect to each unit cell’s center, along with (c) neglecting body 

forces, the formulation can be simplified to characterize periodic arrangements of 

acoustic metamaterials. Namely, the microscale system can be split onto a quasi-

static component, from which an effective constitutive tensor is obtained, and an 

inertial component, from which the effective inertial force density is derived as a 

function of the macroscopic acceleration and some micro-inertial terms accounting 

for local resonance effects.  



42  Chapter 4 Conclusions 

(b) Modal-based model-order reduction accounting for internal resonances. By solving 

the eigenproblem in the microscale inertial subsystem, one can identify the rele-

vant internal resonance modes responsible for triggering local resonance effects 

on the macroscale. This is translated in a huge reduction of the computational effort 

required to solve the coupling between the macro and microscales due to inertial 

effects, while still allowing the model to properly capture the acoustic metamateri-

als’ behavior. 

(c) Topology optimization for frequency bandgap fitting and maximization. A level-set 

optimization algorithm is used to obtain acoustic metamaterial unit cell’s designs 

that allow to (a) set the target frequency range where local resonance effects are 

expected to arise, and (b) maximize the effective frequency bandgap along with 

the attenuation performance for panel-based applications subject to normal inci-

dent acoustic plane waves. 

(d) Damping phenomena accounting for more realistic material behavior. The homog-

enization framework has been enriched with the incorporation of more realistic ma-

terial behavior in the microscale by accounting for viscoelastic effects. This addition 

has allowed to study the impacts of damping in acoustic metamaterials and, more 

specifically, its role when used in combination with local resonance effects. 

(e) Experimental validation with 3D-printed prototypes. Aiming at experimentally 

demonstrating the effects of local resonance phenomena of acoustic metamateri-

als, an impedance tube-based test has been devised to analyze the transmission 

loss of panels subject to normal-incidence acoustic plane waves. These experi-

ments have been used to both validate the homogenization model and to prove the 

enhanced attenuating capabilities of acoustic metamaterials based on a fully 3D-

printed design. 

The model has been successfully applied to simulate the attenuating capabilities of 

LRAM-based panels subject to normal-incidence acoustic plane waves. Such example 

has been considered to validate the homogenization framework through comparison with 

a direct numerical simulation. The results confirm the applicability range of the model 

within the simplifying hypotheses considered and prove the effectiveness of the modal-

based reduction strategy by achieving reductions of up to 0.1% of the total number of 

degrees of freedom of the problem (in a 2D setting) while still managing to obtain accu-

rate results with < 1% of relative error in the frequency range of interest. 
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Using the computational tools developed in this work, early attempts at designing LRAM-

based panels for sound insulation in a low-frequency range (around 1 kHz) have been 

carried out, following different approaches: 

(a) In Article I, the idea of combining multiple layers with different unit cell designs 

(each one providing a frequency bandgap in different overlapping regions) has 

been explored. The aim is to obtain an extended effective attenuation band by tak-

ing advantage of multiple internal resonances. The preliminary study performed 

reveals that there is still room for improvement in this regard, especially in under-

standing the interaction between the different layers to get a continuous attenua-

tion band. 

(b) In Article II, the topology optimization algorithm has been used to set the local res-

onance effects in a targeted frequency around 1 kHz. Designs with bandgap max-

imization as part of the cost function in the optimization algorithm have been ob-

tained and proven to almost double the frequency bandgap compared to non-op-

timized designs. This translates in an increase of more than 1.5 times the bandwidth 

of effective continuous attenuation over 40 dB. Furthermore, the consideration of 

viscoelastic effects in the coating material phase has also shown that this effective 

bandwidth can be extended an additional 30%. 

(c) In Article III, the first attempt at building a practical acoustic metamaterial prototype 

by employing a currently available 3D-printing technology has been carried out. Its 

design has been devised to get local resonance effects in a frequency range 

around 1 kHz with a set of dimensions that make it both interesting for practical 

applications and manufacturable within the 3D-printing technology limitations. To 

do so, the design consists of a flower-like shaped inclusion in order to maximize 

the resonating mass, while still allowing the presence of thin attachments (acting 

as springs) long enough to produce internal resonances in the frequency range of 

interest. 

4.2  Future research lines 

All the developments and results achieved throughout the present work can be regarded 

as the foundation for further research lines related to the design and characterization of 

acoustic metamaterials. Some of these possible research topics are discussed here: 
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(a) Similar to how viscoelastic effects have been introduced in the model in order to 

account for more realistic behavior, other kind of phenomena can also be added to 

the present formulation in order to enrich it. In this context, the consideration of 

non-linear material behavior could be an example. Another possibility would be to 

extend the range of applicability of the model to higher frequency ranges by incor-

porating Bloch-Floquet conditions. This would allow the model to be used, for in-

stance, in characterizing the behavior of phononic crystal structures. 

(b) The topology optimization algorithm presented is also subject to be updated (for 

example, with new cost functions or restrictions) to obtain more efficient designs 

that are feasible and practical in terms of manufacturability. This would also offer 

the possibility of building prototypes to experimentally test and validate the benefits 

attained with the design optimization. 

(c) Although the proposed model is specifically tailored for the study of acoustic met-

amaterials, given the similarity between such kind of metamaterials with others (in 

electromagnetic applications, for instance), another possible research line devised 

is the adaptation of the framework to these other types of metamaterials. 
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Abstract 

A framework, based on an extended Hill-Mandel principle accounting for inertial effects 

(Multiscale Virtual Work principle), is developed for application to acoustic problems in 

the context of metamaterials modelling. The classical restrictions in the mean values of 

the micro-displacement fluctuations and their gradients are then accounted for in a 

saddle-point formulation of that variational principle in terms of Lagrange functionals. A 

physical interpretation of the involved Lagrange multipliers can then be readily obtained. 

The framework is specifically tailored for modelling the phenomena involved in Locally 

Resonant Acoustic Metamaterials (LRAM). In this view, several additional hypotheses 

based on scale separation are used to split the fully coupled micro-macro set of equations 

into a quasi-static and an inertial system. These are then solved by considering a 

projection of the microscale equations into their natural modes, which allows for a low-

cost computational treatment of the multiscale problem. On this basis, the issue of 

numerically capturing the local resonance phenomena in a FE2 context is addressed. 

Objectivity of the obtained results in terms of the macroscopic Finite Element (FE) 

discretization is checked as well as accuracy of the homogenization procedure by 

comparing with direct numerical simulations (DNS). The appearance of local resonance 
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bandgaps is then modelled for a homogeneous 2D problem and its extension to multi-

layered macroscopic material is presented as an initial attempt towards acoustic 

metamaterial design for tailored band-gap attenuation. 

Keywords:  Multiscale modelling, Computational homogenization, Inertial problems, 

Acoustic metamaterials, Local resonance phenomena 

 

I.1  Motivation 

The field of computational multiscale modelling has experienced a significant 

development in the last decades and its progressively penetrating many different 

application fields within simulation-based techniques. Hierarchical multiscale techniques, 

based on homogenization theory, have specially captured the attention of the 

computational mechanics community given their ability to account for microstructural 

physical phenomena and their impact at a macroscopic scale. Moreover, 

homogenization-based multiscale simulations are regarded significantly inexpensive 

from a computational viewpoint compared to (single scale) direct numerical simulations 

(DNS) or concurrent multiscale techniques [1, 2] in which micro and macro levels are 

simultaneously processed in the computations. This feature is obviously more evident 

when the separation between lower and upper scales increases. 

Our focus is centered in computational homogenization techniques in which the 

constitutive information driving the macroscopic analysis is computed from consecutive 

interactions between the macro and microscale. In other words, there is no explicit (or 

closed form) macroscopic constitutive behavior, but it is obtained through successive 

computations performed over a Representative Volume Element (RVE) of the 

microstructure. Such macro/micro interactions are generally referred to as downscaling 

and upscaling, indicating the sense of the information flow. Examples of these kind of 

techniques are found in Feyel and Chaboche [3], Kouznetsova et al. [4] in which 

homogenization of non-linear behavior of complex microstructures is considered. 

Different types of boundary conditions Miehe and Koch [5], Mesarovic and Padbidri [6] 

can be chosen for the downscaling, which impact the solution field at the boundary of 

the RVE. In the last years, a remarkable progress has been accomplished when applying 

these type of techniques to a wide range of quasi-static applications including complex 
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material behavior such as softening and localization phenomena Verhoosel et al. [7], 

Nguyen et al. [8], [9], Oliver et al. [10], multiphysics phenomena Özdemir et al. [11], large 

deformations [12] and specific structural elements such as beams and plates [13]. 

Computational homogenization techniques including inertial effects constitute the main 

subject of the current contribution. The objective is to present a physically sound 

formulation for the two-scale problem and highlight one of its main emerging applications, 

i.e. multiscale computational analysis and design of materials with unusual properties 

when submitted to dynamic excitations. Several homogenization approaches which 

include inertial effects have been proposed so far, e.g. [14–16], but their formulation in a 

rigorous variational form has only recently been stated in [17, 18], where a general 

multiscale framework is presented, which is grounded on kinematic admissibility, duality 

(relating force and stress-like quantities) and a generalized Hill-Mandel principle 

postulated in terms of a variational statement named the Multiscale Virtual Power 

Principle (MVPP).  

In the present contribution, attention is focused on the application of the aforementioned 

MVPP in acoustics. This allowing some simplifications with respect to the general 

framework. In order to facilitate the corresponding simplifying hypotheses, it turns out to 

be convenient the modification of the MVPP as a saddle-point variational problem 

incorporating Lagrange multipliers associated to the kinematic restrictions. This enables 

deriving the corresponding Euler Lagrange equations as well as the identification of the 

Lagrange multipliers representing the macroscopic D’Alembert forces (body forces 

minus inertial forces) and the overall stresses. Such a formulation is particularly useful 

for the multiscale design approach, since the targeted macroscopic behavior can now 

be easily linked to the microstructural design variables. After defining this multiscale 

setting, the second part of this contribution is specifically tailored to modelling acoustic 

problems. More specifically, for the study of sound cancelling and attenuating acoustic 

metamaterials based on local resonance phenomena. For instance, the formulation as a 

saddle-point problem including Lagrange multipliers enables to identify the limits of the 

frequency bandgaps in terms of the resonant effects of a partially or fully restricted RVE 

and their impact at the macroscopic level. To the authors knowledge, a precedental dual 

formulation written in terms of Lagrange multipliers has appeared in [19], where 

macroscale forces and stresses are identified as the Lagrange multipliers linked to 

microscale fields but applied to the Navier-Stokes equations. The saddle-point problem 
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formulation employing Lagrange multipliers obtained in this contribution from 

fundamental micro-macro balance principles, allows for a clear interpretation of the 

connections between scales in a dynamic context. 

In the current contribution, the microstructural augmented system of equations 

emanating from the Lagrange multipliers-based approach (including the microscopic 

displacements as well as the Lagrange multipliers as unknowns) is then extended, for 

acoustic problems, from minimal kinematic constraints to periodic boundary conditions. 

In contrast with other approaches [16, 20], the resolution of the microstructural system 

with micro-macro constraints is split here into the superposition of a quasi-static and an 

inertial solution (on the resulting Finite Elements RVE system of equations rather than on 

different material phases). This split is grounded on the superposition principle for linear 

systems and the following assumptions for the acoustic material: (i) macroscopic strains 

produce, by themselves, no inertial microscopic response (quasi-static system) and (ii) 

macroscopic displacements produce, by themselves (independently of the strains), 

negligible microscopic reactive stresses against the inertial response (inertial system). 

The aforementioned identification of the Lagrange multipliers plays a fundamental role in 

the justification of these assumptions. In addition, the quasi-static system provides 

directly the homogenized stresses as one of the Lagrange multipliers and the 

homogenized constitutive tensor appearing in classical quasi-static homogenization 

theory, whereas the inertial system, returns the macroscopic inertial forces as the other 

Lagrange multiplier (when body forces are neglected). In order to reduce the 

computational cost of the micro-macro coupled inertial system, a specific Reduced Order 

Modelling technique (ROM) is suggested, i.e. a modal analysis approach where 

microscopic displacements are projected onto the space spanned by the most dominant 

resonating modes. Both quasi-static and reduced inertial systems provide closed form 

expressions for the effective macroscopic stress and inertial forces that lead to the full 

homogenized problem when considered in the macroscale linear momentum balance 

equations. 

Particularizing the micro and macroscale displacement fields for wave-like solution in 

infinite and homogeneous media, the macroscopic linear momentum balance equation, 

with effective properties, turns into a dispersion relation, i.e. for a given frequency and 

propagating wave direction, the wave numbers and associated propagation modes can 

be obtained at the macrostructure. The effect of locally resonating modes for given 
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frequencies is captured at the macroscopic dispersion curves in terms of a band gap 

region in which the wave is attenuated when the excitation frequency lies in the obtained 

bandgap.  

A specific feature of the proposed framework is that a Craig-Bampton reduction 

technique is not required at the RVE level as in [16] and, therefore, assumptions on 

specific material phases are not necessary, conferring to the proposed approach a more 

general character. In fact, the Craig-Bampton technique used in [16] to obtain the 

relevant dynamics considers a fully fixed matrix at the boundary and the resonant modes 

account only for the dynamics of the dense inclusions. In the present approach, the split 

into quasi-static and dynamic solutions mentioned above is referred to the augmented 

system of equations and not to the particular material phases, allowing a more general 

description of the internal dynamics, since all present microstructural phases participate 

in the resonant behavior. This assumption is proven to capture sufficiently well the local 

resonance phenomena compared to Direct Numerical Simulations and objectivity of the 

homogenized response is found for different macroscopic meshes.  

As for acoustic problems modelling, the microstructural topology is considered 

structured in regular cells in the present contribution, this strongly motivating the use of 

periodic boundary conditions, which allows working with generally simpler RVEs or unit 

cells. Up to date, most of contributions in computational homogenization of acoustic 

metamaterials focus on the design of microstructures periodically repeated at the macro 

level representing macroscopic homogeneous layers (cf. [16, 20–23]). From an industrial 

point of view, it is even more interesting to conceive the macrostructure as a 

heterogeneous body, e.g. composed by layers with different underlying resonant 

microstructures. This allows to program the metamaterial assembly to attenuate a wider 

spectrum of frequencies characterizing a certain noise or sound. To the authors 

knowledge, a computational framework for the multidimensional study of multi-layered 

acoustic metamaterials with underlying resonating microstructures has not yet been 

devised and opens the possibility of tackling an enormous range of applications in which 

a wider frequency band is obtained and, therefore, a more complex acoustic signal can 

be attenuated. The applications for the design of such metamaterials are countless, for 

instance, one could devise an acoustic metamaterial for a given target noise source or 

frequency spectra to be attenuated. 
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FIG. 1 Typical multiscale problem configuration. The characteristic size of the microscale, 𝑙𝑙𝜇𝜇, must satisfy 

𝑙𝑙𝜇𝜇 ≪ 𝑙𝑙 in order to preserve the separation of scales. 

 

In order to demonstrate the capabilities of the proposed formulation in the computational 

modelling and design of LRAM, a number of 2D representative simulations (both at the 

micro and macro scales) have been carried out in this work: first, dispersion analyses 

have been performed in an ideal (infinite and homogeneous) medium; second, a more 

realistic FE analysis has been taken to the design of an acoustic panel consisting on a 

finite-size layer of LRAM where the attenuation properties are studied. Finally, the 

potential for material acoustic design aspects is displayed by modelling a two-layer 

macroscopic LRAM. 

I.2  Generalized energetic equivalence-based homogenization framework 

I.2.1  Multi-scale problem set-up 

Let’s consider a macroscopic solid body occupying a domain 𝛺𝛺 ⊂ ℝ𝑚𝑚 with smooth 

boundary 𝜕𝜕𝜕𝜕 (for the sake of simplicity, in the present work, we will assume 𝑚𝑚 = 2, but 

the formulation is general and valid also for 𝑚𝑚 = 3). Spatial coordinates in the macroscale 

will be referred by 𝐱𝐱 and the set of generalized displacement fields will be defined as 

𝒙

𝒚

𝛺𝜇

𝛺

𝑙 𝑙𝜇 ≪ 𝑙

RVE
Unit cell RVE

Micro-scaleMacro-scale
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𝒖𝒖(𝒙𝒙, 𝑡𝑡) ∶ 𝛺𝛺 × [0, 𝑇𝑇] → ℝ𝑚𝑚 (1) 

The displacement gradient tensor J is defined as 

J(𝒙𝒙, 𝑡𝑡) = 𝒖𝒖(𝒙𝒙, 𝑡𝑡) ⊗ 𝜵𝜵𝒙𝒙 ≡ 𝜵𝜵𝒙𝒙𝒖𝒖(𝒙𝒙, 𝑡𝑡) (2) 

J(𝒙𝒙, 𝑡𝑡) = ε(𝒙𝒙, 𝑡𝑡) + Ω􏾧􏾧 (𝒙𝒙, 𝑡𝑡) (3) 

where 

ε(𝒙𝒙, 𝑡𝑡) = 𝜵𝜵𝒙𝒙
S𝒖𝒖(𝒙𝒙, 𝑡𝑡) =

1
2

􏿴􏿴𝒖𝒖(𝒙𝒙, 𝑡𝑡) ⊗ 𝜵𝜵𝒙𝒙 + 𝜵𝜵𝒙𝒙 ⊗ 𝒖𝒖(𝒙𝒙, 𝑡𝑡)􏿷􏿷. (4) 

Ω􏾧􏾧(𝒙𝒙, 𝑡𝑡) = 𝜵𝜵𝒙𝒙
skew𝒖𝒖(𝒙𝒙, 𝑡𝑡) =

1
2

􏿴􏿴𝒖𝒖(𝒙𝒙, 𝑡𝑡) ⊗ 𝜵𝜵𝒙𝒙 − 𝜵𝜵𝒙𝒙 ⊗ 𝒖𝒖(𝒙𝒙, 𝑡𝑡)􏿷􏿷. (5) 

With ε and Ω􏾧􏾧  being, respectively, the (symmetric) infinitesimal strain tensor and the 

(skew-symmetric) infinitesimal rotation tensor [24]. 

At each point 𝒙𝒙 one can associate a representative volume element (RVE) of the 

microscale and, sometimes, it is also possible to identify a periodically repetitive structure 

known as unit cell (cf. Fig. 1). In order to distinguish those variables associated to the 

microscale from their macroscopic counterparts, the subscript 𝜇𝜇 will be used when 

referring to the former. Following this rule, the RVE will be denoted by 𝛺𝛺𝜇𝜇 ⊂ ℝ𝑚𝑚, with a 

smooth boundary 𝜕𝜕𝛺𝛺𝜇𝜇 and its spatial coordinates referred by 𝒚𝒚. Also, for the sake of 

readability, angle brackets ⟨∙⟩𝛺𝛺𝜇𝜇 ⟨∙⟩𝛤𝛤𝜇𝜇
􏿒􏿒  will be used throughout the paper as an operator 

for the RVE volume average integral of the field (∙), so that 

⟨∙⟩𝛺𝛺𝜇𝜇 ≡
1

􏿖􏿖𝛺𝛺𝜇𝜇􏿖􏿖
􏾙􏾙 (∙)𝑑𝑑𝑑𝑑

𝛺𝛺𝜇𝜇

;  ⟨∙⟩𝛤𝛤𝜇𝜇 ≡
1

􏿖􏿖𝛺𝛺𝜇𝜇􏿖􏿖
􏾙􏾙 (∙)𝑑𝑑𝑑𝑑

𝛤𝛤𝜇𝜇

 (6) 

where 𝛤𝛤𝜇𝜇 ⊂ 𝜕𝜕𝛺𝛺𝜇𝜇. 

A kinematic connection between both scales will be established by considering the first 

order expansion of the kinematic variables associated to point 𝒙𝒙 in the macroscale, so 

𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) = 𝒖𝒖(𝒙𝒙, 𝑡𝑡) + J(𝒙𝒙, 𝑡𝑡) · (𝒚𝒚 − 𝒚𝒚􏷟􏷟) + 𝒖̃𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡), (7) 

𝜵𝜵𝒚𝒚𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) = J(𝒙𝒙, 𝑡𝑡) + 𝜵𝜵𝒚𝒚𝒖̃𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡), (8) 

where 𝒖𝒖 and J are the local values of the displacement field and their gradient at the 

macroscopic level, 𝒚𝒚􏷟􏷟 are the coordinates of the centroid of the RVE and 𝒖̃𝒖𝜇𝜇 is the micro-
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fluctuation field. In this context, we impose the fluctuation field and its symmetric gradient 

to satisfy, for any time 𝑡𝑡 ∈ [0, 𝑇𝑇], 

⟨𝒖̃𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡)⟩𝛺𝛺𝜇𝜇 = 𝟎𝟎, or ⟨𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡)⟩𝛺𝛺𝜇𝜇 = 𝒖𝒖(𝒙𝒙, 𝑡𝑡);

⟨𝛻𝛻𝒚𝒚
S𝒖̃𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡)⟩𝛺𝛺𝜇𝜇 = 𝟎𝟎 or ⟨𝛻𝛻𝒚𝒚

S𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡)⟩𝛺𝛺𝜇𝜇 = ε(𝒙𝒙, 𝑡𝑡);
 

(9) 

(10) 

In Eqs. (9) and (10) the fact that 𝒚𝒚􏷟􏷟 is the centroid of the RVE domain and, therefore, 

􏾉􏾉𝒚𝒚 − 𝒚𝒚􏷟􏷟􏽼􏽼
𝛺𝛺𝜇𝜇

= 𝟎𝟎, has been considered. Eqs. (9) and (10) are often referred to in the 

literature as minimal kinematic restrictions [18]. 

REMARK 1 It is important to note that the time scale is the same for both the macro and 

the micro scales, so by fixing a kinematic connection in the displacement fields, we also 

establish a relation between rate (velocity) fields. In particular, this means that 

restrictions (9) and (10) are satisfied also for the rate fields and their corresponding 

symmetric gradients. 

 

I.2.2  Fundamental hypothesis 

The homogenization framework proposed here is a generalization to inertial cases of the 

classical Hill-Mandel principle for quasi-static problems. The model will be derived from 

the work of Blanco et al. [18], in which a general multiscale framework is presented based 

on three main hypotheses: (a) kinematic admissibility between scales, (b) mathematical 

duality of the macroscopic force/stress quantities with the corresponding kinematic 

variables, and (c) the so-called Multiscale Virtual Power Principle, which is used to derive 

the equilibrium equations from variational arguments. Also in [15], a generalization to 

inertial cases of the Hill-Mandel principle is proposed.  

The model proposed here is grounded on the application at the macroscale of the 

classical postulates of continuum mechanics, i.e. linear and angular momentum balance 

laws: 

𝜵𝜵𝒙𝒙 ⋅ σ(𝒙𝒙, 𝑡𝑡) + 𝒇𝒇 (𝒙𝒙, 𝑡𝑡) = 𝟎𝟎, (11) 

σ(𝒙𝒙, 𝑡𝑡) = σT(𝒙𝒙, 𝑡𝑡), ∀ 𝒙𝒙 ∈ 𝛺𝛺, ∀ 𝑡𝑡 ∈ [0, 𝑇𝑇]. (12) 

where σ is the macroscopic stress and 𝒇𝒇  is the D’Alembert force density. 
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For the sake of simplicity, we will remain in the present work in the context of infinitesimal 

strains and elastic behavior (linear elasticity), and in the framework of Cauchy’s continua, 

only accounting for body forces and surface tractions as external actions on the 

continuum medium [24]. 

Eqs. (11) and (12) are complemented by the D’Alembert force density definition and the 

Cauchy’s stress theorem applied to the boundary of 𝛺𝛺: 

𝒇𝒇 (𝒙𝒙, 𝑡𝑡) = 𝒃𝒃(𝒙𝒙, 𝑡𝑡) − 𝒑̇𝒑(𝒙𝒙, 𝑡𝑡), (13) 

σ(𝒙𝒙, 𝑡𝑡) ⋅ 𝒏𝒏(𝒙𝒙) = 𝒕𝒕(𝒙𝒙, 𝑡𝑡), ∀ 𝒙𝒙 ∈ 𝜕𝜕𝜕𝜕 (14) 

where 𝐛𝐛 and 𝐩𝐩 are the body force and the linear momentum densities, respectively, while 

𝐧𝐧 and 𝐭𝐭 are the outward unit normal and traction vectors at the corresponding boundary, 

respectively. Note that we use the dot accent (∙)̇  to refer to time derivatives and the 

superscript (∙)T stands for tensor transposition. 

Now, in the context of linear elasticity, for the microscale, we assume 

σ𝜇𝜇(𝒚𝒚, 𝑡𝑡) = C𝜇𝜇(𝒚𝒚): 𝜵𝜵𝒚𝒚
S𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡), (15) 

where C𝜇𝜇(𝒚𝒚) is the constitutive elastic tensor associated to the microscale material 

phases. Furthermore, given the density field in the microscale 𝜌𝜌𝜇𝜇(𝒚𝒚), we will define the 

linear momentum density at the microscale as 

𝒑𝒑𝜇𝜇(𝒚𝒚, 𝑡𝑡) = 𝜌𝜌𝜇𝜇(𝒚𝒚)𝒖̇𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) (16) 

so the microscopic D’Alembert force density becomes 

𝒇𝒇𝜇𝜇(𝒚𝒚, 𝑡𝑡) = 𝒃𝒃𝜇𝜇(𝒚𝒚, 𝑡𝑡) − 𝒑̇𝒑𝜇𝜇(𝒚𝒚, 𝑡𝑡) = 𝒃𝒃𝜇𝜇(𝒚𝒚, 𝑡𝑡) − 𝜌𝜌𝜇𝜇(𝒚𝒚)𝒖̈𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) (17) 

where 𝜌𝜌𝜇𝜇𝒖̈𝒖𝜇𝜇 is the microscopic inertial force. 

REMARK 2 Notice that the macroscopic counterparts of equations (15) and (17) are not 

specifically postulated since they will be obtained as a result of the homogenization 

procedure. 

 

I.2.3  Hill-Mandel principle 
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The Multiscale Virtual Power Principle in [18] postulates an energetic equivalence 

between scales and can be regarded as a generalization of the classical Hill-Mandel 

principle for quasi-static problems. It is formulated as 

GIVEN 

𝒇𝒇 (𝒖𝒖(𝒙𝒙, 𝑡𝑡)),      σ(𝒖𝒖(𝒙𝒙, 𝑡𝑡)), 𝒙𝒙 ∈ 𝛺𝛺, 𝑡𝑡 ∈ [0, 𝑇𝑇] (18) 

and 

𝒇𝒇𝜇𝜇(𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡)), σ𝜇𝜇(𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡)), 𝒚𝒚 ∈ 𝛺𝛺𝜇𝜇, 𝑡𝑡 ∈ [0, 𝑇𝑇] (19) 

THEN 

σ: 𝜵𝜵𝒙𝒙
S𝒖̇𝒖 − 𝒇𝒇 ⋅ 𝒖̇𝒖 = ⟨σ𝜇𝜇: 𝜵𝜵𝒚𝒚

S𝒖̇𝒖𝜇𝜇 − 𝒇𝒇𝜇𝜇 ⋅ 𝒖̇𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇, (20) 

∀ 𝒖̇𝒖 and ∀ 𝒖̇𝒖𝜇𝜇 ∈ 𝓤𝓤𝜇𝜇, where 𝓤𝓤𝜇𝜇 is the space of kinematically admissible displacement-rate 

fields, 𝒖̇𝒖𝜇𝜇 in the microscale 

𝓤𝓤𝜇𝜇 ≔ 􏿺􏿺𝒖̇𝒖𝜇𝜇 = 𝒖̇𝒖 + 𝜵𝜵𝒙𝒙𝒖̇𝒖 ⋅ (𝒚𝒚 − 𝒚𝒚􏷟􏷟) + 𝒖̇̃𝒖𝜇𝜇 | 𝒖̇̃𝒖𝜇𝜇 ∈ 𝓤𝓤𝜇𝜇
􏷟􏷟􏿽􏿽, (21) 

which, in turn, is defined in terms of the space 𝓤𝓤μ
􏷟􏷟 of admissible micro-fluctuation 

displacement-rate fields, 𝒖̇̃𝒖𝜇𝜇, as 

𝓤𝓤𝜇𝜇
􏷟􏷟 ≔ 􏿺􏿺𝒖̇̃𝒖𝜇𝜇: 𝛺𝛺𝜇𝜇 × [0, 𝑇𝑇] → ℝ𝑚𝑚 | ⟨𝒖̇̃𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 𝟎𝟎; ⟨𝜵𝜵𝒚𝒚

S𝒖̇̃𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 𝟎𝟎􏿽􏿽. (22) 

 

REMARK 3 Notice that, in Eqs. (20) to (22), perturbations 𝒖̇𝒖 are not subjected to any 

restriction, so this allows us to choose, for a given spatial point 𝒙𝒙∗, independent local 

values of 𝒖̇𝒖(𝒙𝒙, 𝑡𝑡)|𝒙𝒙=𝒙𝒙∗ and 𝜵𝜵𝒙𝒙
S𝒖̇𝒖(𝒙𝒙, 𝑡𝑡)|𝒙𝒙=𝒙𝒙∗. Then, following the procedure in [18], one can 

obtain expressions for the homogenized values for the local macroscopic D’Alembert 

force density and stress: 

𝒇𝒇 = ⟨𝒇𝒇𝜇𝜇⟩𝛺𝛺𝜇𝜇; (23) 

σ = ⟨σ𝜇𝜇 − 𝒇𝒇𝜇𝜇 ⊗S (𝒚𝒚 − 𝒚𝒚􏷟􏷟)⟩𝛺𝛺𝜇𝜇. (24) 

From now on, the symbol ⊗S will be used to express 

𝒂𝒂 ⊗S 𝒃𝒃 =
1
2

(𝒂𝒂 ⊗ 𝒃𝒃 + 𝒃𝒃 ⊗ 𝒂𝒂) (25) 
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Insertion of results (23) and (24) into Eq. (20), returns the variational problem to be solved 

in the RVE. Denoting 𝒖̇̃𝒖𝜇𝜇 as 𝛿𝛿𝒖𝒖𝜇𝜇, it reads 

 

FIND 

𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) ∶ 𝛺𝛺𝜇𝜇 × [0, 𝑇𝑇] → ℝ𝑚𝑚, 𝒖𝒖𝜇𝜇 ∈ 𝓤𝓤𝜇𝜇 

FULFILLING 

⟨𝒑̇𝒑𝜇𝜇 ⋅ 𝛿𝛿𝒖𝒖𝜇𝜇 + σ𝜇𝜇: 𝜵𝜵𝒚𝒚
S𝛿𝛿𝒖𝒖𝜇𝜇 − 𝒃𝒃𝜇𝜇 ⋅ 𝛿𝛿𝒖𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 0, ∀ 𝛿𝛿𝒖𝒖𝜇𝜇 ∈ 𝓤𝓤𝜇𝜇

􏷟􏷟 (26) 

where the microscopic counterpart of Eq. (13) has been considered. 

 

REMARK 4 Eq. (26) is a constrained variational principle that is restricted to solutions in 

𝓤𝓤𝜇𝜇 (cf. Eq. (21)), i.e. fulfilling 

􏿼􏿼
⟨𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) − 𝒖𝒖(𝒙𝒙, 𝑡𝑡)⟩𝛺𝛺𝜇𝜇 = 𝟎𝟎,
⟨𝜵𝜵𝒚𝒚

S𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) − ε(𝒙𝒙, 𝑡𝑡)⟩𝛺𝛺𝜇𝜇 = 𝟎𝟎. 
(27) 

 

 

I.2.4  Lagrange functional-based homogenization 

While the variational problem in Eq. (26) can be solved, given the geometrical and 

material distribution of the RVE along with values for the macroscopic displacement and 

strain [18], it will prove more convenient to reformulate it as a saddle-point problem using 

Lagrange multipliers. In this way, one can work with unconstrained perturbation fields 

and obtain the reactions to the constraints (27) directly through the Lagrange multipliers 

identification. A similar approach has already been adopted, for instance, in the work of 

Blanco et al. [19], in the context of the so-called Multiscale Virtual Power Principle for 

homogenization of the Navier-Stokes equations. 

To do so, let’s first consider the variational statement (26) as the optimality condition for 

a constrained minimization problem in the RVE, that is 

𝛿𝛿𝛱𝛱𝜇𝜇(𝒖𝒖𝜇𝜇; 𝛿𝛿𝒖𝒖𝜇𝜇) = ⟨𝒑̇𝒑𝜇𝜇 ⋅ 𝛿𝛿𝒖𝒖𝜇𝜇 + σ𝜇𝜇: 𝜵𝜵𝒚𝒚
S𝛿𝛿𝒖𝒖𝜇𝜇 − 𝒃𝒃𝜇𝜇 ⋅ 𝛿𝛿𝒖𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 0, (28) 

with restrictions 𝒖𝒖𝜇𝜇 ∈ 𝓤𝓤𝜇𝜇 and 𝛿𝛿𝒖𝒖𝜇𝜇 ∈ 𝓤𝓤𝜇𝜇
􏷟􏷟. 

Disregard the explicit expression of functional 𝛱𝛱𝜇𝜇(𝒖𝒖𝜇𝜇), we can obtain the extended 

Lagrangian functional by adding constraints (9) and (10) through their corresponding 
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Lagrange multipliers, 𝜷𝜷 and λ, respectively. This yields the following saddle-point 

problem in terms of unconstrained displacement fields as 

FIND 

𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) ∶ 𝛺𝛺𝜇𝜇 × [0 × 𝑇𝑇] → ℝ𝑚𝑚,  

𝜷𝜷(𝑡𝑡) ∶ [0, 𝑇𝑇] → ℝ𝑚𝑚,  

λ(𝑡𝑡) ∶ [0, 𝑇𝑇] → Sym􏷡􏷡(ℝ𝑚𝑚),  

FULFILLING 

􏿺􏿺𝒖𝒖𝜇𝜇, 𝜷𝜷,λ􏿽􏿽 = arg min
𝒖𝒖𝜇𝜇

max
𝜷𝜷,λ

􏿺􏿺𝛱𝛱𝜇𝜇(𝒖𝒖𝜇𝜇) − 𝜷𝜷 ⋅ ⟨𝒖𝒖𝜇𝜇 − 𝒖𝒖⟩𝛺𝛺𝜇𝜇 − λ ∶ ⟨𝜵𝜵𝒚𝒚
S𝒖𝒖𝜇𝜇 − ε⟩𝛺𝛺𝜇𝜇􏿽􏿽. (29) 

The optimality conditions for the saddle-point problem (29) result in the following 

variational system of equations: 

⟨(𝒑̇𝒑𝜇𝜇 − 𝒃𝒃𝜇𝜇 − 𝜷𝜷) ⋅ 𝛿𝛿𝒖𝒖𝜇𝜇 + (σ𝜇𝜇 − λ) ∶ 𝜵𝜵𝒚𝒚
S𝛿𝛿𝒖𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 0, ∀ 𝛿𝛿𝒖𝒖𝜇𝜇;

⟨𝒖𝒖𝜇𝜇 − 𝒖𝒖⟩𝛺𝛺𝜇𝜇 ⋅ 𝛿𝛿𝜷𝜷 = 0, ∀ 𝛿𝛿𝜷𝜷;

⟨𝜵𝜵𝒚𝒚
S𝒖𝒖𝜇𝜇 − ε⟩𝛺𝛺𝜇𝜇 ∶ 𝛿𝛿λ = 0, ∀ 𝛿𝛿λ.

 

(30) 

(31) 

(32) 

Note that, in contrast to the restricted variational equation (26), in expressions (30) to 

(32), the variables (including the perturbation fields 𝛿𝛿𝒖𝒖𝜇𝜇, 𝛿𝛿𝜷𝜷 and 𝛿𝛿λ) are totally 

unconstrained. In this regard, one can take advantage of this situation, appropriately 

choosing 𝛿𝛿𝒖𝒖𝜇𝜇 so that, in particular, 

(a) for 𝛿𝛿𝒖𝒖𝜇𝜇 = 𝒂𝒂, ∀ 𝒂𝒂 spatially constant vector, one gets, from Eq. (30), 

𝜷𝜷 = ⟨𝒑̇𝒑𝜇𝜇 − 𝒃𝒃𝜇𝜇⟩𝛺𝛺𝜇𝜇 = −⟨𝒇𝒇𝜇𝜇⟩𝛺𝛺𝜇𝜇; (33) 

(b) for 𝛿𝛿𝒖𝒖𝜇𝜇 = A ⋅ (𝒚𝒚 − 𝒚𝒚􏷟􏷟), ∀A spatially constant symmetric second-order tensor, then 

λ = ⟨σ𝜇𝜇 + (𝒑̇𝒑𝜇𝜇 − 𝒃𝒃𝜇𝜇) ⊗S (𝒚𝒚 − 𝒚𝒚􏷟􏷟)⟩𝛺𝛺𝜇𝜇 = ⟨σ𝜇𝜇 − 𝒇𝒇𝜇𝜇 ⊗S (𝒚𝒚 − 𝒚𝒚􏷟􏷟)〉𝛺𝛺𝜇𝜇. (34) 

Comparing the results with expressions (23) and (24), prior to fully solving the system of 

Eqs. (30) to (32), one can identify the Lagrange multipliers 𝜷𝜷 and λ as the local 

macroscopic homogenized D’Alembert force density and stress, respectively, thus 

𝜷𝜷(𝒙𝒙, 𝑡𝑡) = −𝒇𝒇 (𝒙𝒙, 𝑡𝑡) = −⟨𝒇𝒇𝜇𝜇⟩𝛺𝛺𝜇𝜇 (35) 

λ(𝒙𝒙, 𝑡𝑡) = σ(𝒙𝒙, 𝑡𝑡) = ⟨σ𝜇𝜇 − 𝒇𝒇𝜇𝜇 ⊗S (𝒚𝒚 − 𝒚𝒚􏷟􏷟)〉𝛺𝛺𝜇𝜇 (36) 



Article I  67 

In Fig. 2 a sketch of the key ideas involving the proposed homogenization procedure is 

presented. In addition, Fig. 3 shows a graphical representation of the actions and 

reactions involved in the RVE problem. 

 

 

FIG. 2 Summary and key concepts of the two equivalent homogenization procedures based on the Hill-
Mandel principle of energetic equivalence between scales: using the classical variational formulation 
and the saddle-point problem formulation. 

 

 

 

FIG. 3 Schematic representation of 
the RVE problem. The macroscopic 
displacement and strain at a given 
point are inputs in the associated 
RVE system. The macroscopic stress 
and D’Alembert force density are 
related to microscopic traction forces 
σ ⋅ 𝒏𝒏𝜇𝜇 and constant body force 𝒇𝒇  

reactions, respectively. 

 

 

Classical variational problem formulation Saddle-point problem formulation

𝛔𝜇 ∶ 𝜵𝒚S𝛿 𝒖𝒖𝜇 − 𝒇𝜇 ⋅ 𝛿 𝒖𝒖𝜇 𝛺𝜇 = 0, ∀𝛿 𝒖𝒖𝜇 ∈ 𝓤𝜇0

𝛔 = 𝛔𝜇 − 𝒇𝜇 ⊗S 𝒚 − 𝒚0 𝛺𝜇

Hill-Mandel principle

𝛔 ∶ 𝛆̇ − 𝒇 ⋅ 𝒖̇𝒖 = 𝛔𝜇 ∶ 𝜵𝒚S𝒖̇𝒖𝜇 − 𝒇𝜇 ⋅ 𝒖̇𝒖𝜇 𝛺𝜇

Unknown field: 𝒖𝒖𝜇

Perturbation restrictions: 𝛿𝒖𝒖𝜇 ∈ 𝓤𝜇
0

Variational statement (constrained):

Results:
𝒇 = 𝒇𝜇 𝛺𝜇

𝒖𝒖𝜇 𝛺𝜇
= 𝒖𝒖  

𝛌 = 𝛔𝜇 − 𝒇𝜇 ⊗S 𝒚 − 𝒚0 𝛺𝜇

Unknown fields: 𝒖𝒖𝜇 ,𝜷,𝛌

Perturbation restrictions: None

Variational statement (unconstrained):

Results:

𝜷 = − 𝒇𝜇 𝛺𝜇

𝛔𝜇  − 𝛌 :𝜵𝒚S𝛿𝒖𝒖𝜇 − 𝒇𝜇 + 𝜷 ⋅ 𝛿 𝒖𝒖𝜇 𝛺𝜇 = 0,∀𝛿𝒖𝒖𝜇

𝜵𝒚S𝒖𝒖𝜇 𝛺𝜇
= 𝛆  

𝒖𝒖 𝒙, 𝑡
𝛆 𝒙, 𝑡

𝒇 𝒙, 𝑡 = −𝜷 𝒙, 𝑡
𝛔 𝒙, 𝑡 = 𝛌 𝒙, 𝑡

𝛌 ⋅ 𝒏𝜇

𝜷

𝒖𝒖𝜇 ∈ 𝓤𝜇
𝛺𝜇

𝛺
𝒙
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I.3  Application to acoustic problems 

The formulation presented so far, takes into account the minimal kinematic restrictions 

for the micro-displacement and strain fields (see expressions (9) and (10)) and is general 

for all kind of inertial problems as far as the energetic equivalence principle (and thus the 

separation of scales) holds. From now on, we will focus on problems in the field of 

acoustics, for which some additional hypotheses may be suitably employed in order to 

simplify both the analysis and the interpretation of the results. It should be noted that, in 

the context of acoustic problems, one may already find other homogenization schemes 

available in the literature. For instance, in the work of Sridhar et al. [16], an extension of 

the Hill-Mandel principle to inertial cases is used along with substructuring techniques 

(namely the Craig-Bampton Mode Synthesis) to derive a multiscale model for locally 

resonant acoustic metamaterials. The proposed homogenization framework, although 

eventually leading to similar results, offers a clear approach that allows us to simplify the 

model in the context of acoustic problems by simply employing physical hypotheses that 

do not require us to rely on substructuring techniques. In addition, from now on, body 

forces in equations in Section I.2 will be neglected, which is considered a reasonable 

assumption for the tackled acoustic problems. That is 

𝒇𝒇 = 𝒃𝒃 − 𝒑̇𝒑 ≈ −𝒑̇𝒑 (37) 

𝒇𝒇𝜇𝜇 = 𝒃𝒃𝜇𝜇 − 𝒑̇𝒑𝜇𝜇 ≈ −𝒑̇𝒑𝜇𝜇 (38) 

I.3.1  Introduction of periodic boundary conditions 

When dealing with periodic materials or structures (such as, for instance, in several 

problems involving acoustic metamaterials), it is sometimes convenient to impose 

additional sets of conditions which may offer a more accurate representation of the 

kinematic coupling between scales.  

In this particular framework, it proves suitable to consider periodic boundary conditions 

for the micro-fluctuation field 𝒖̃𝒖𝜇𝜇 on the RVE boundary. 

For the sake of simplicity, let’s consider the common case of a squared (or rectangular) 

RVE1 (see Fig. 4). In order to introduce periodic boundary conditions, one can consider 

 

1 More general RVE shapes can be considered by a generalization of the proposed scheme. 
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the boundary lines 𝛤𝛤 (−) = 𝛤𝛤􏷠􏷠
(−) ∪ 𝛤𝛤􏷡􏷡

(−) and 𝛤𝛤(+) = 𝛤𝛤􏷠􏷠
(+) ∪ 𝛤𝛤􏷡􏷡

(+), such that 𝜕𝜕𝛺𝛺𝜇𝜇 = 𝛤𝛤 (−) ∪ 𝛤𝛤 (+). 

Let’s define the jump function of (∙) as 

⟦∙⟧(𝒚𝒚, 𝑡𝑡) = (∙)(𝒚𝒚 + ℓ(𝒚𝒚), 𝑡𝑡) − (∙)(𝒚𝒚, 𝑡𝑡), ∀ 𝒚𝒚 ∈ 𝛤𝛤 (−) (39) 

where 

ℓ(𝒚𝒚) = ⎩⎪⎪
⎨⎪⎪
⎧

ℓ􏷠􏷠, for 𝒚𝒚 ∈ 𝛤𝛤􏷠􏷠
(−)

ℓ􏷡􏷡, for 𝒚𝒚 ∈ 𝛤𝛤􏷡􏷡
(−) (40) 

with ℓ􏸈􏸈 being the periodicity vector associated to each boundary region 𝛤𝛤𝑖𝑖
(−) (cf. Fig. 4). It 

should be noted, from the definition of ℓ, that ⟦𝒚𝒚⟧ = ℓ(𝒚𝒚), ∀ 𝒚𝒚 ∈ 𝛤𝛤 (−). In this framework, 

periodic boundary conditions can be formulated (see Eq. (7)) as 

⟦𝒖̃𝒖𝜇𝜇⟧ = 0,      or      ⟦𝒖𝒖𝜇𝜇⟧ = J ⋅  ⟦𝒖̃𝒖𝜇𝜇⟧ = J ⋅ ℓ, ∀ 𝒚𝒚 ∈ 𝛤𝛤 (−) (41) 

It is worth noting that, by construction, the periodic boundary conditions in Eq. (41) fulfil 

the following equation: 

⟨𝒖̃𝒖𝜇𝜇 ⊗S 𝒏𝒏𝜇𝜇⟩𝜕𝜕𝛺𝛺𝜇𝜇 = 𝟎𝟎 → ⟨𝒖𝒖𝜇𝜇 ⊗S 𝒏𝒏𝜇𝜇⟩𝜕𝜕𝛺𝛺𝜇𝜇 = 𝜵𝜵𝒙𝒙
S𝒖𝒖 ≡ ε → ⟨𝜵𝜵𝒚𝒚

S𝒖𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 𝜵𝜵𝒙𝒙
S𝒖𝒖 ≡ ε. (42) 

where the divergence theorem has been applied in Eq. (42). Therefore, periodic 

boundary conditions, automatically impose the requested minimal kinematic restriction 

(10), and the later does not need to be imposed any more. 

Then, periodic conditions modify the space of admissible micro-fluctuation fields 𝓤𝓤μ
􏷟􏷟 to 

𝓤𝓤μ
􏷟􏷟∗, where 

𝓤𝓤𝜇𝜇
􏷟􏷟∗ ≔ 􏿺􏿺𝒖̃𝒖𝜇𝜇 ∶ 𝛺𝛺𝜇𝜇 × [0, 𝑇𝑇] → ℝ𝑚𝑚 | ⟨𝒖̃𝒖𝜇𝜇〉𝛺𝛺𝜇𝜇 = 𝟎𝟎;  ⟦𝒖̃𝒖𝜇𝜇⟧ = 𝟎𝟎􏿽􏿽 ⊂ 𝓤𝓤𝜇𝜇

􏷟􏷟. (43) 

Note that expressions (23) and (24), derived as consequences from the generalized Hill-

Mandel principle, are still valid in this context, as the micro-fluctuation fields chosen to 

obtain them, 𝒖̇̃𝒖𝜇𝜇 = 𝟎𝟎, still satisfy 𝒖̇̃𝒖𝜇𝜇 ∈ 𝓤𝓤𝜇𝜇
􏷟􏷟∗. In addition, the periodic boundary conditions in 

the saddle-point problem (29) can then be accounted simply by removing λ in those 

equations and considering a new field of Lagrange multipliers 𝜸𝜸(𝒚𝒚) enforcing restriction 

(41) point-wise at the boundary 𝛤𝛤(−). The saddle-point problem (29) can then be 

rephrased as 
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FIG. 4 Micro-displacement field components and representation of the periodic boundaries in a typical 
2D square unit cell. Periodic boundary conditions can be applied in the micro-fluctuation field in order 
to better represent the kinematic connection in some specific problems. 

 

FIND 

𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) ∶ 𝛺𝛺𝜇𝜇 × [0 × 𝑇𝑇] → ℝ𝑚𝑚,  

𝜷𝜷(𝑡𝑡) ∶ [0, 𝑇𝑇] → ℝ𝑚𝑚,  

𝜸𝜸(𝒚𝒚, 𝑡𝑡) ∶ 𝛤𝛤 (−) × [0, 𝑇𝑇] → ℝ𝑚𝑚  

FULFILLING 

{𝒖𝒖𝜇𝜇, 𝜷𝜷, 𝜸𝜸} = arg min
𝒖𝒖𝜇𝜇

max
𝜷𝜷,𝜸𝜸

{𝛱𝛱𝜇𝜇(𝒖𝒖𝜇𝜇) − 𝜷𝜷 ⋅ ⟨𝒖𝒖𝜇𝜇 − 𝒖𝒖⟩𝛺𝛺𝜇𝜇 − ⟨𝜸𝜸 ⋅ (⟦𝒖𝒖𝜇𝜇⟧ − J ⋅ ℓ)⟩𝛤𝛤(−)}, (44) 

where the constraint in Eq. (41) has been considered, with the optimality conditions 

yielding 

⟨(𝒑̇𝒑𝜇𝜇 − 𝜷𝜷) ⋅ 𝛿𝛿𝒖𝒖𝜇𝜇 + σ𝜇𝜇 ∶ 𝜵𝜵𝒚𝒚
S𝛿𝛿𝒖𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 − ⟨𝜸𝜸 ⋅  ⟦𝛿𝛿𝒖𝒖𝜇𝜇⟧〉𝛤𝛤(−) = 0, ∀ 𝛿𝛿𝒖𝒖𝜇𝜇;

⟨𝒖𝒖𝜇𝜇 − 𝒖𝒖⟩𝛺𝛺𝜇𝜇 ⋅ 𝛿𝛿𝜷𝜷 = 0, ∀ 𝛿𝛿𝜷𝜷;

⟨(⟦𝒖𝒖𝜇𝜇⟧ − J ⋅ ℓ) ⋅ 𝜸𝜸⟩𝛤𝛤(−) = 0, ∀ 𝛿𝛿𝜸𝜸.

 

(45) 

(46) 

(47) 

 

𝛤1−

𝛤2−

ℓ2

ℓ1

𝛤1+

𝛤2+

Rigid body
displacement

Homogeneous
gradient displacement

Micro-fluctuation

displacement field

𝒖𝒖𝜇 𝒖𝒖 𝐉 ⋅ 𝒚 − 𝒚𝟎 𝒖𝒖�𝜇

Periodic
boundary
conditions

𝛤− = 𝛤1− ∪ 𝛤2− 𝛤+ = 𝛤1+ ∪ 𝛤2+
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REMARK 5 Interestingly, one should note that the identification of 𝜷𝜷 as the effective macro-

inertia still holds in this case, as one can take 𝛿𝛿𝒖𝒖𝜇𝜇 = 𝒂𝒂 constant, so that ⟦𝛿𝛿𝒖𝒖𝜇𝜇⟧ = 𝟎𝟎 and 

𝜵𝜵𝒚𝒚
S𝛿𝛿𝒖𝒖𝜇𝜇 = 𝟎𝟎 in Eq. (45), and still get the expression (33). As for the macro-stress, it can 

be related with 𝜸𝜸 by considering, again, 𝛿𝛿𝒖𝒖𝜇𝜇 =  A ⋅ (𝒚𝒚 − 𝒚𝒚􏷟􏷟) (with A being a constant 

symmetric second-order tensor) in (45) so it finally yields 

⟨𝜸𝜸 ⊗S ℓ⟩𝛤𝛤(−) = ⟨σ𝜇𝜇 + 𝒑̇𝒑𝜇𝜇 ⊗S (𝒚𝒚 − 𝒚𝒚􏷟􏷟)⟩𝛺𝛺𝜇𝜇 = σ (48) 

where ⟦𝛿𝛿𝒖𝒖𝜇𝜇⟧ = A ⋅ ⟦𝒚𝒚⟧ = A ⋅ ℓ (see Eq. (41)) has been considered. 

 

REMARK 6 Note that, in contrast to λ, which turned out to be constant over the RVE, thus 

only incorporating 3 new degrees of freedom in the extended Lagrange multipliers 

system, 𝜸𝜸(𝒚𝒚) has a point-wise variation in the boundary 𝛤𝛤 (−), which translates into a large 

set of degrees of freedom when the system is spatially discretized. Hence, it is better, 

in practice, the strong-form imposition of periodic boundary conditions on 𝒖𝒖𝜇𝜇 in the 

system of equations (45) to (47), so the semi-restricted saddle-point problem reads 

FIND 

𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) ∶ 𝛺𝛺𝜇𝜇 × [0, 𝑇𝑇] → ℝ𝑚𝑚,   with 𝒖𝒖𝜇𝜇 | ⟦𝒖𝒖𝜇𝜇⟧ = J ⋅ ℓ,  

𝜷𝜷(𝑡𝑡) ∶ [0, 𝑇𝑇] → ℝ𝑚𝑚,  

FULFILLING 

{𝒖𝒖𝜇𝜇, 𝜷𝜷} = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝒖𝒖𝜇𝜇

𝑚𝑚𝑚𝑚𝑚𝑚
𝜷𝜷

{𝛱𝛱𝜇𝜇(𝒖𝒖𝜇𝜇) − 𝜷𝜷 ⋅ ⟨𝒖𝒖𝜇𝜇 − 𝒖𝒖⟩𝛺𝛺𝜇𝜇}. (49) 

 

 

I.3.2  Multi-scale problem resolution 

In what follows, the analysis will be focused on problems that, at a macroscopic level, 

have the following setup: 

𝜵𝜵𝒙𝒙 ⋅ σ = 𝒑̇𝒑, 
s.t. 𝒖𝒖(𝒙𝒙, 0) = 𝒖𝒖􏷟􏷟(𝒙𝒙), 𝒖̇𝒖(𝒙𝒙, 0) = 𝒗𝒗􏷟􏷟(𝒙𝒙),

𝒖𝒖(𝒙𝒙, 𝑡𝑡) = 𝒖𝒖􏼞􏼞(𝒙𝒙, 𝑡𝑡), ∀ 𝒙𝒙 ∈ 𝛤𝛤𝑢𝑢,
σ(𝒙𝒙, 𝑡𝑡) ⋅ 𝒏𝒏(𝒙𝒙) = 𝒕𝒕(̅𝒙𝒙, 𝑡𝑡), ∀ 𝒙𝒙 ∈ 𝛤𝛤𝜎𝜎.

 
(50) 

where the macroscopic body forces have been neglected, 𝒃𝒃 ≈ 𝟎𝟎, and 𝛤𝛤𝑢𝑢 and 𝛤𝛤𝜎𝜎 denote 

the boundary regions of 𝛺𝛺 (such that 𝛤𝛤𝑢𝑢 ∪ 𝛤𝛤𝜎𝜎 = 𝜕𝜕𝜕𝜕) where displacements and tractions 

are prescribed, respectively. 
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The resolution scheme starts with the analysis of the RVE, where a Galerkin-based spatial 

finite element discretization has been considered, with the resulting discretized 

augmented system in matrix form given by 

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝕄𝕄𝜇𝜇 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝒖𝒖􏾦̈􏾦𝜇𝜇

𝜷𝜷̈
λ̈

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

+
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡ 𝕂𝕂𝜇𝜇 −ℕ𝜇𝜇

T −𝔹𝔹𝜇𝜇
T

−ℕ𝜇𝜇 𝟎𝟎 𝟎𝟎
−𝔹𝔹𝜇𝜇 𝟎𝟎 𝟎𝟎 ⎦⎥⎥⎥

⎥⎥⎥⎥
⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡𝒖𝒖􏾦􏾦𝜇𝜇

𝜷𝜷
λ

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

= − ⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝟎𝟎
𝒖𝒖
ε

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

, (51) 

where 𝒖𝒖􏾦􏾦𝜇𝜇 stands for the vector of the micro-displacement field nodal values, 𝕄𝕄𝜇𝜇 and 𝕂𝕂𝜇𝜇 

are the standard mass and stiffness matrices, respectively, while ℕ𝜇𝜇 and 𝔹𝔹𝜇𝜇 are 

additional matrices, the derivation and definitions of which are detailed in Appendix I.A. 

I.3.2.1 Right-hand side decomposition 

To proceed with the derivation, given that the RVE system is linear, we will split it into two 

subsystems, each of them accounting for some part of the right-hand side of Eq. (51): 

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝕄𝕄𝜇𝜇 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡
𝒖𝒖􏾦̈􏾦𝜇𝜇

(􏷠􏷠)

𝜷𝜷(̈􏷠􏷠)

λ̈(􏷠􏷠)
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

+
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎡ 𝕂𝕂𝜇𝜇 −ℕ𝜇𝜇

T −𝔹𝔹𝜇𝜇
T

−ℕ𝜇𝜇 𝟎𝟎 𝟎𝟎
−𝔹𝔹𝜇𝜇 𝟎𝟎 𝟎𝟎 ⎦⎥⎥⎥

⎥⎥⎥⎥
⎥⎥⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡
𝒖𝒖􏾦􏾦𝜇𝜇

(􏷠􏷠)

𝜷𝜷(􏷠􏷠)

λ(􏷠􏷠)
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

= − ⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝟎𝟎
𝟎𝟎
ε

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

, (52) 

and 

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝕄𝕄𝜇𝜇 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡
𝒖𝒖􏾦̈􏾦𝜇𝜇

(􏷡􏷡)

𝜷𝜷(̈􏷡􏷡)

λ̈(􏷡􏷡)
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

+
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎡ 𝕂𝕂𝜇𝜇 −ℕ𝜇𝜇

T −𝔹𝔹𝜇𝜇
T

−ℕ𝜇𝜇 𝟎𝟎 𝟎𝟎
−𝔹𝔹𝜇𝜇 𝟎𝟎 𝟎𝟎 ⎦⎥⎥⎥

⎥⎥⎥⎥
⎥⎥⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡
𝒖𝒖􏾦􏾦𝜇𝜇

(􏷡􏷡)

𝜷𝜷(􏷡􏷡)

λ(􏷡􏷡)
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

= − ⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝟎𝟎
𝒖𝒖
𝟎𝟎

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

, (53) 

so that the sum of the systems (52) and (53) returns the original system (51). 

 

REMARK 7 The hypotheses that will be assumed here, while acceptable in a wide range 

of acoustic problems, will simplify the resolution approach at the cost of establishing a 

certain limiting frequency up to which the model is valid. It should be noted, however, 

that for most acoustic applications, the frequency region of interest raises up to 20 kHz, 

which is the typical upper bound of the human hearing range, so that higher frequencies 

may be considered not relevant in those contexts. This includes also, for instance, the 

low-frequency range at which locally resonant acoustic metamaterials typically operate, 

which is given by the separation of scales condition that, in this context, translates into 
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that macroscopic wavelengths 𝜆𝜆 must satisfy 𝜆𝜆 ≫  𝑙𝑙𝜇𝜇 [16]. This makes the proposed 

approach well-suited for the study and characterization of local resonance phenomena2. 

 

I.3.2.2 Quasi-static solution 

Focusing on the subsystem (52), the hypothesis that will be assumed here is that the 

macroscopic strain accelerations for the tackled acoustic (elastic wave propagation) 

problems is small enough to consider that the RVE system behaves quasi-statically [24], 

that is, its inertial response is negligible (𝒖̈𝒖𝜇𝜇
(􏷠􏷠) ≈ 𝟎𝟎). This hypothesis is supported by the 

separation of scales assumption, according to which λ ≫ lμ and, therefore, macroscopic 

strains time evolution ε(𝒙𝒙, 𝑡𝑡) can be considered slow enough to not induce, by 

themselves, relevant microscopic acceleration 𝒖̈𝒖𝜇𝜇
(􏷠􏷠)(𝒚𝒚, 𝑡𝑡). This, according to Eq. (33), 

allows us to anticipate 

𝒖̈𝒖𝜇𝜇
(􏷠􏷠) ≈ 𝟎𝟎 →   𝜷𝜷(􏷠􏷠) = ⟨𝜌𝜌𝜇𝜇𝒖̈𝒖𝜇𝜇

(􏷠􏷠)⟩𝛺𝛺𝜇𝜇 ≈ 𝟎𝟎, (54) 

making us able to take out the second row and column from the system (52), yielding the 

classical quasi-static system of equations3 

􏿰􏿰
𝕂𝕂𝜇𝜇 −𝔹𝔹𝜇𝜇

T

−𝔹𝔹𝜇𝜇 𝟎𝟎 􏿳􏿳 􏿰􏿰𝒖𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠)

λ(􏷠􏷠)􏿳􏿳 = − 􏿯􏿯
𝟎𝟎
ε

􏿲􏿲, (55) 

which can be solved for λ(􏷠􏷠) giving 

λ(􏷠􏷠) = σ(􏷠􏷠) = Cmin
eff ∶ ε (56) 

where Cmin
eff  is the classical elastic effective (homogenized) and quasi-static constitutive 

tensor. 

 

2 In addition, in the considered acoustic homogenization settings, the microscopic cells will exhibit 
at least two symmetry axes and the inertial component of the macroscopic stresses, 
⟨𝜌𝜌𝜇𝜇𝒖̈𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) ⊗S (𝒚𝒚 − 𝒚𝒚􏷟􏷟)⟩𝛺𝛺𝜇𝜇, is exactly equal to zero. Therefore, this term will be neglected in what 

follows. 
3 Where, under the hypothesis of infinitesimal microfluctuation field, 𝒖̃𝒖𝜇𝜇

(􏷠􏷠) ≈ 𝟎𝟎, and for the 

considered case 𝐮𝐮 = 𝟎𝟎, the remaining condition, in Eq. (52), ℕ𝜇𝜇𝒖𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠) = ⟨𝒖𝒖𝜇𝜇

(􏷠􏷠)⟩𝛺𝛺𝜇𝜇 = ⟨𝒖𝒖 + ε ⋅ (𝒚𝒚 − 𝒚𝒚􏷟􏷟) +
𝒖̃𝒖𝜇𝜇

(􏷠􏷠)⟩𝛺𝛺𝜇𝜇 = ⟨𝒖̃𝒖𝜇𝜇
(􏷠􏷠)⟩𝛺𝛺𝜇𝜇 ≈ 𝟎𝟎 is automatically fulfilled. 
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REMARK 8 For the case of applying periodic boundary conditions, as mentioned in 

Section I.3.1, the variable λ(􏷠􏷠) is withdrawn from equation (55) and periodic boundary 

conditions are directly applied on 𝒖𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠), leading to 

𝕂𝕂𝜇𝜇
∗ 𝒖𝒖􏾦􏾦𝜇𝜇

∗(􏷠􏷠) = −𝕊𝕊Tε. (57) 

σ(􏷠􏷠) = Cper
eff ∶ ε. (58) 

Details on the resolution of the systems (55) and (57) and the computation of Cmin
eff  and 

Cper
eff  can be found in Appendix I.B.2. 

 

I.3.2.3 Inertial solution 

As for the subsystem (53), since only small displacements 𝒖𝒖 appear on the right-hand 

side as driving actions, the following assumption is made4 

λ(􏷡􏷡) ≈ 𝟎𝟎. (59) 

Similarly to the previous case, this hypothesis allows us to remove the third row and 

column from the system (53), which results in what is called here the inertial system of 

equations5  

􏿯􏿯
𝕄𝕄𝜇𝜇 𝟎𝟎

𝟎𝟎 𝟎𝟎
􏿲􏿲 􏿰􏿰

𝒖𝒖􏾦̈􏾦𝜇𝜇
(􏷡􏷡)

𝜷𝜷(̈􏷡􏷡)􏿳􏿳 + 􏿰􏿰
𝕂𝕂𝜇𝜇 −ℕ𝜇𝜇

T

−ℕ𝜇𝜇 𝟎𝟎 􏿳􏿳 􏿰􏿰
𝒖𝒖􏾦􏾦𝜇𝜇

(􏷡􏷡)

𝜷𝜷(􏷡􏷡)􏿳􏿳 = − 􏿯􏿯
𝟎𝟎
𝒖𝒖

􏿲􏿲 (60) 

The variable 𝜷𝜷(􏷡􏷡) can be condensed out in Eq. (60) giving rise to the system 

𝕄𝕄𝜇𝜇
∗ 𝒖𝒖􏾦̈􏾦𝜇𝜇

∗ + 𝕂𝕂𝜇𝜇
∗ 𝒖𝒖􏾦􏾦𝜇𝜇

∗ = −𝔻𝔻T𝒖̈𝒖, (61) 

where 𝒖𝒖􏾦􏾦𝜇𝜇
∗  stands for the vector of nodal values of a fluctuation-like field, 𝔻𝔻 can be 

regarded as a density-like matrix coupling the micro and macro accelerations, while 𝕄𝕄𝜇𝜇
∗  

and 𝕂𝕂𝜇𝜇
∗  are, respectively, the mass and stiffness matrices that one obtains after 

condensing the restrictions in system (60). Details on the derivations of these terms are 

given in Appendix I.B.3. From now on, we will refer to system (61) as the restricted inertial 

 

4 Since, under the assumption that the microfluctuation gradient is infinitesimal, 𝜵𝜵𝒚𝒚
S𝒖̃𝒖𝜇𝜇

(􏷡􏷡) ≈ 𝟎𝟎, then, 

for ε = 𝟎𝟎, ε𝜇𝜇
(􏷡􏷡) = ε + 𝜵𝜵𝒚𝒚

S𝒖̃𝒖𝜇𝜇
(􏷡􏷡) ≈ 𝟎𝟎, and σ𝜇𝜇

(􏷡􏷡) = C𝜇𝜇 ∶ ε𝜇𝜇
(􏷡􏷡) ≈ 𝟎𝟎. Thus λ(􏷡􏷡) ≈ ⟨σ𝜇𝜇

(􏷡􏷡)⟩𝛺𝛺𝜇𝜇 ≈ 𝟎𝟎. 
5 Where, the additional condition, in Eq. (53), 𝔹𝔹𝜇𝜇𝒖𝒖􏾦􏾦𝜇𝜇

(􏷡􏷡) = ⟨ε𝜇𝜇
(􏷡􏷡)⟩𝛺𝛺𝜇𝜇 ≈ 𝟎𝟎, is automatically fulfilled from 

the assumption of infinitesimal microfluctuation gradient. 
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system. It should be noted that expressions obtained in this case apply disregard periodic 

boundary conditions are considered or not (the only difference is in how the matrices 

involved are defined, which is explained in more detail in Appendix I.B.3. 

As for the resulting macroscopic inertial force, it reads 

𝜷𝜷(􏷡􏷡) = R􏼙􏼙 ⋅ 𝒖̈𝒖 + 𝔻𝔻𝒖𝒖􏾦̈􏾦𝜇𝜇
∗ , (62) 

where R􏼙􏼙 is the effective average density tensor that, as explained in Appendix I.B.3, for 

some specific cases, R􏼙􏼙  = 𝜌̅𝜌I, and R􏼙􏼙 ⋅ 𝒖̈𝒖 = 𝜌̅𝜌𝒖̈𝒖 with 𝜌̅𝜌 being the RVE average density, 

𝜌̅𝜌 = ⟨𝜌𝜌𝜇𝜇⟩𝛺𝛺𝜇𝜇. (63) 

 

REMARK 9 Note that, according to Eq. (62), we can identify a component in the 

homogenized inertial force that accounts for its own macroscopic acceleration, 𝐑𝐑􏼙􏼙 ⋅ 𝒖̈𝒖, 

and an additional inertial term, 𝔻𝔻𝒖𝒖􏾦̈􏾦𝜇𝜇
∗  (coupled micro-macro inertial forces), that arises 

from the density-like matrix, 𝔻𝔻, and the micro-fluctuation acceleration field, 𝒖𝒖􏾦̈􏾦𝜇𝜇
∗ , 

stemming from the solution to the RVE Eq. (61). We anticipate that local resonance 

phenomena result from the mutual cancellation of both these terms, giving rise to 

unusual dynamic properties, such as the frequency bandgaps, that will be tackled in 

Section I.4. 

 
I.3.3  Modal analysis 

I.3.3.1 Micro-inertial problem projection onto the restricted system modes 

The hypotheses made in the resolution of the global RVE system have allowed us to 

isolate the inertial contribution of the micro-fluctuation field that is transferred to the 

macroscale in Eq. (61). Now, in order to allow for a better interpretation of the dynamic 

role that 𝒖𝒖􏾦̈􏾦𝜇𝜇
∗  plays in the macroscale, it will be useful to consider the generalized 

eigenvalue problem of the restricted system 𝕂𝕂𝜇𝜇
∗ − 𝕄𝕄𝜇𝜇

∗  defined as 

FIND 

Φ𝜇𝜇
∗ = [𝝓𝝓􏾦􏾦𝜇𝜇

∗(􏷠􏷠) … 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑁𝑁)] (64) 

𝜦𝜦∗ = [𝜆𝜆∗(􏷠􏷠) … 𝜆𝜆∗(𝑁𝑁)]T (65) 



76  Article I 

FULFILLING 

􏿴􏿴𝕂𝕂𝜇𝜇
∗ − 𝜆𝜆∗(𝑘𝑘)𝕄𝕄𝜇𝜇

∗ 􏿷􏿷𝝓𝝓􏾦􏾦∗(𝑘𝑘) = 𝟎𝟎, 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘)T𝕄𝕄𝜇𝜇

∗ 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘) = 1 (66) 

where the second equation (66) simply indicates that the eigenmodes are mass-

normalized. 

For the specific case of a dynamic system, each eigenvalue 𝜆𝜆∗(𝑘𝑘) can be identified as the 

squared natural frequency 𝜔𝜔𝜇𝜇
∗(𝑘𝑘)􏷡􏷡 (𝜆𝜆∗(𝑘𝑘) = 𝜔𝜔𝜇𝜇

∗(𝑘𝑘)􏷡􏷡), with 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘) being the 𝑘𝑘-th natural vibration 

mode, fulfilling 

Φ𝜇𝜇
∗T𝕄𝕄𝜇𝜇

∗ Φ𝜇𝜇
∗ = I   and   Φ𝜇𝜇

∗T 𝕂𝕂𝜇𝜇
∗ Φ𝜇𝜇

∗ = Ω𝜇𝜇
∗􏷡􏷡, (67) 

Ω𝜇𝜇
∗ = diag[𝜔𝜔𝜇𝜇

∗(􏷠􏷠) … 𝜔𝜔𝜇𝜇
∗(𝑁𝑁)], (68) 

where Ω𝜇𝜇
∗  is a diagonal matrix containing the natural frequencies, 𝜔𝜔𝜇𝜇

∗(𝑘𝑘), of the restricted 

system. 

Now, the solution 𝒖𝒖􏾦􏾦𝜇𝜇
∗  can be projected onto the space spanned by the eigenmodes Φ𝜇𝜇

∗  

as 

𝒖𝒖􏾦􏾦𝜇𝜇
∗ = 􏾝􏾝 𝝓𝝓􏾦􏾦𝜇𝜇

∗(𝑘𝑘)𝑞𝑞𝜇𝜇
∗(𝑘𝑘) = Φ𝜇𝜇

∗ 𝒒𝒒𝜇𝜇
∗

𝑘𝑘

, (69) 

where 𝒒𝒒𝜇𝜇
∗  is the column vector of modal amplitudes, 𝑞𝑞𝜇𝜇

∗(𝑘𝑘), for the restricted system. Note 

that this decomposition does not imply any additional simplifications as long as we 

consider k ranging from 1 to the total number of degrees of freedom of the system (61). 

Additionally, Eq. (61) can be also projected onto the whole set of its mass-normalized 

natural vibration modes, yielding 

Φ𝜇𝜇
∗T𝕄𝕄𝜇𝜇

∗ Φ𝜇𝜇
∗𝒒̈𝒒𝜇𝜇

∗ + Φ𝜇𝜇
∗T𝕂𝕂𝜇𝜇

∗ Φ𝜇𝜇
∗𝒒𝒒𝜇𝜇

∗ = −Φ𝜇𝜇
∗T𝔻𝔻T𝒖̈𝒖, (70) 

which, taking into account Eq. (67), results 

Ω𝜇𝜇
∗􏷡􏷡𝒒𝒒𝜇𝜇

∗ + 𝒒̈𝒒𝜇𝜇
∗ = −ℚT𝒖̈𝒖, (71) 

with ℚ being the from now on called coupling matrix 

ℚ = 𝔻𝔻Φ𝜇𝜇
∗. (72) 
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Note also that, by introducing expression (69) into Eq. (62), we obtain 

𝜷𝜷(􏷡􏷡) = R􏼙􏼙 · 𝒖̈𝒖 + ℚ𝒒̈𝒒𝜇𝜇
∗ . (73) 

The system of equations (71) turns out to be uncoupled for every degree of freedom 𝑞𝑞𝜇𝜇
(𝑘𝑘), 

which facilitates the physical and mathematical interpretation of the solution. 

Precedent settings in which the RVE problem is projected onto the natural modes of the 

RVE can be found, in the context of Bloch-Floquet theory, in [25]. However, the specific 

issue in the present approach is that it allows discrimination of the projection relevant 

modes on the basis of the information provided by the coupling matrix in Eq. (72), 

similarly to what is done in [16]. 

I.3.3.2 Micro-inertial problem projection onto the unrestricted system modes 

By considering the generalized eigenvalue problem, but now in terms of the unrestricted 

system 𝕂𝕂𝜇𝜇 − 𝕄𝕄𝜇𝜇 in the first equation (60), i.e. 

𝕄𝕄𝜇𝜇𝒖𝒖􏾦̈􏾦𝜇𝜇 + 𝕂𝕂𝜇𝜇𝒖𝒖􏾦􏾦𝜇𝜇 = 𝟎𝟎, (74) 

one may find also the natural frequencies and the mass-normalized vibration modes 

matrices, in this case reading Ω𝜇𝜇 and Φ𝜇𝜇, respectively. 

Again, the solution field 𝒖𝒖􏾦􏾦𝜇𝜇
(􏷡􏷡) to problem (60) can be alternatively projected onto the space 

spanned by the unrestricted system eigenmodes, Φ𝜇𝜇, as 

𝒖𝒖􏾦􏾦𝜇𝜇
(􏷡􏷡) = Φ𝜇𝜇𝒒𝒒𝜇𝜇, (75) 

so 

􏿯􏿯
I 𝟎𝟎
𝟎𝟎 𝟎𝟎

􏿲􏿲 􏿰􏿰
𝒒̈𝒒𝜇𝜇

𝜷𝜷(̈􏷡􏷡)􏿳􏿳 + 􏿰􏿰
Ω𝜇𝜇

􏷡􏷡 −Φ𝜇𝜇
Tℕ𝜇𝜇

T

−ℕ𝜇𝜇Φ𝜇𝜇 𝟎𝟎 􏿳􏿳 􏿯􏿯
𝒒𝒒𝜇𝜇

𝜷𝜷(􏷡􏷡)􏿲􏿲 = − 􏿯􏿯
𝟎𝟎
𝒖𝒖

􏿲􏿲. (76) 

This alternative system projection will be useful to tackle the dynamic effects of the RVE 

system. 

I.3.3.3 Micro-inertial system reduction 

Let’s now focus on the optimization of the computational cost of the problem. For these 

purposes, we will use a procedure that could be inserted into the so-called Reduced 
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Order Model (ROM) techniques. The goal is to solve the problem in an optimal low-

dimension sub-space spanned by the most relevant modes [26]. 

REMARK 10 Note that the system (71) has, in principle, as much degrees of freedom as 

𝒖𝒖􏾦􏾦𝜇𝜇
(􏷡􏷡) in the original system. However, as the coupling matrix ℚ in Eq. (73) reveals, not all 

the natural vibration modes will have the same effect on the macroscale. In particular, 

the relative importance of each mode 𝑘𝑘 can be assessed by its corresponding column, 

𝑸𝑸(𝑘𝑘), in the coupling matrix ℚ, allowing us to determine the set of relevant modes as 

those whose associated column, 𝑸𝑸(𝑘𝑘), is not negligible. The setting proposed here 

automatically yields a reduced order model of the microscale RVE problem, i.e. based 

on the projection of the FE problem in Eq. (60) on the space spanned by the relevant 

resonant RVE modes. As it will be seen in Section I.4, the number of required modes 

(RVE degrees of freedom) is enormously reduced in comparison to the original FE 

element problem, this leading to a substantial reduction of the multiscale analysis 

computational cost. 

 

Since the modal amplitudes 𝒒𝒒𝜇𝜇
∗  in the system (71) are uncoupled, a first reduction can be 

performed retaining only the relevant modes and amplitudes (𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘), 𝑞𝑞𝜇𝜇

∗(𝑘𝑘)) in both the 

system (71) and their corresponding columns in ℚ. 

Additionally, as pointed out in Remark 7, in the particular context of acoustic problems, 

one could perform this reduction considering also that the macroscopic frequency range 

of interest is restricted to a certain set below a limiting frequency 𝜔𝜔lim. This makes all the 

relevant modes associated to higher natural frequencies not interesting in this framework 

allowing us to remove also their corresponding degrees of freedom from the system. In 

this regard, this approach is, for instance, especially well-suited for the analysis of locally 

resonant acoustic metamaterials, as it will be seen in the examples in Section I.4, where 

this computational cost reduction strategy will be applied. 

I.3.4  Homogenized macroscale problem 

I.3.4.1 General model 

With the hypotheses considered for the RVE system resolution (see Sections I.3.2.2 and 

I.3.2.3), including the micro-inertial system modal projection, we obtain, as effective 

macroscopic inertial force and stress, 
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𝒑̇𝒑(𝒙𝒙, 𝑡𝑡) = 𝜷𝜷(􏷠􏷠)(𝒙𝒙, 𝑡𝑡) + 𝜷𝜷(􏷡􏷡)(𝒙𝒙, 𝑡𝑡) ≈ 𝜷𝜷(􏷡􏷡)(𝒙𝒙, 𝑡𝑡) = R􏼙􏼙 ⋅ 𝒖̈𝒖(𝒙𝒙, 𝑡𝑡) + ℚ𝒒̈𝒒𝜇𝜇
∗ (𝒙𝒙, 𝑡𝑡), (77) 

σ(𝒙𝒙, 𝑡𝑡) = λ(􏷠􏷠)(𝒙𝒙, 𝑡𝑡) + λ(􏷡􏷡)(𝒙𝒙, 𝑡𝑡) ≈ λ(􏷠􏷠)(𝒙𝒙, 𝑡𝑡) = C eff ∶ 𝜵𝜵𝒙𝒙
S𝒖𝒖(𝒙𝒙, 𝑡𝑡), (78) 

where Eqs. (54) and (59) have been considered. 

Introducing the previous expressions into the macroscale equation (50) yields the 

general homogenized equivalent problem 

Macroscopic problem: 

𝜵𝜵𝒙𝒙 ⋅ (C eff ∶ 𝜵𝜵𝒙𝒙
S𝒖𝒖) = (𝒑̇𝒑 ≈ 𝜷𝜷(􏷡􏷡)) = R􏼙􏼙 ⋅ 𝒖̈𝒖 + ℚ𝒒̈𝒒𝜇𝜇

∗ , 
(79) 

Microscopic problem: 

𝒒̈𝒒𝜇𝜇
∗ + Ω𝜇𝜇

∗􏷡􏷡𝒒𝒒𝜇𝜇
∗ = −ℚT𝒖̈𝒖. 

(80) 

Eqs. (79) and (80) constitute a coupled system of equations which allows for solving the 

macroscopic and microscopic unknowns 𝒖𝒖 and 𝒒𝒒𝜇𝜇
∗ , respectively. 

 

BOX 1 Algorithm for the resolution of the multiscale homogenized acoustic problem 

Data: 

- Frequency range of interest: [𝜔𝜔􏷟􏷟, 𝜔𝜔lim] 

- Unit cell finite element discretization results: 
Mass matrix: 𝕄𝕄𝜇𝜇  → Eq. (A.20) 
Stiffness matrix: 𝕂𝕂𝜇𝜇  → Eq. (A.21) 
Restrictions matrices: ℕ𝜇𝜇  → Eq. (A.22) 
 𝔹𝔹𝜇𝜇  → Eq. (A.23) 
Additional matrices: 𝕀𝕀  → Eq. (B.25) 
 𝕐𝕐  → Eq. (B.26) 

 

Determine the homogenized mechanical and inertial properties (homogenization): 

- Apply periodic boundary conditions? 

→ No 
- Compute matrix: 𝕋𝕋 = I  

- Compute effective constitutive tensor: Cmin
eff  → Eq. (B.12) 

→ Yes 
- Compute matrix: ℙ → Eq. (B.3) 

 𝕃𝕃𝜀𝜀 → Eq. (B.4) 

 𝕃𝕃𝜃𝜃 → Eq. (B.5) 

 𝕋𝕋 = ℙ  

- Compute effective constitutive tensor: C𝑝𝑝𝑝𝑝𝑝𝑝
eff  → Eq. (B.22) 
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BOX 1 Algorithm for the resolution of the multiscale homogenized acoustic problem 

- Compute matrices for the inertia problem: 
Restricted mass matrix: 𝕄𝕄𝜇𝜇

∗   → Eq. (B.38) 
Restricted stiffness matrix: 𝕂𝕂𝜇𝜇

∗  → Eq. (B.37) 
Average density tensor: 𝑹𝑹􏼙􏼙 → Eq. (B.34) 
Density-like matrix: 𝔻𝔻 → Eq. (B.35) 

 

- Modal analysis of the restricted RVE system: 

(𝕂𝕂𝜇𝜇
∗ − 𝜔𝜔𝜇𝜇

∗􏷡􏷡𝕄𝕄𝜇𝜇
∗ )𝝓𝝓􏾦􏾦𝜇𝜇

∗ = 𝟎𝟎  →    Ω𝜇𝜇
∗􏷡􏷡, Φ𝜇𝜇

∗  

- Retain only relevant modes and frequencies: 

𝜔𝜔𝜇𝜇
∗(𝑘𝑘), 𝝓𝝓􏾦􏾦𝜇𝜇

∗(𝑘𝑘)  |  􏿏􏿏𝔻𝔻𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘)􏿏􏿏 > 𝛿𝛿tol   and   𝜔𝜔𝜇𝜇

∗(𝑘𝑘) < 𝜔𝜔lim (81) 

- Compute coupling matrix:  ℚ = 𝔻𝔻Φ𝜇𝜇
∗  

Solve the coupled macro-micro acoustic problem (FE discretization of Eqs. (79) and (80)): 

􏿰􏿰
𝕄𝕄uu 𝕄𝕄uq

𝕄𝕄qu 𝕄𝕄qq
􏿳􏿳 􏿰􏿰

𝒖𝒖􏾦̈􏾦
𝒒𝒒􏾦̈􏾦

􏿳􏿳 + 􏿰􏿰
𝕂𝕂uu 𝟎𝟎

𝟎𝟎 𝕂𝕂qq
􏿳􏿳 􏿰􏿰
𝒖𝒖􏾧􏾧
𝒒𝒒􏾦􏾦􏿳􏿳 = 􏿰􏿰

𝒇𝒇 ̂

𝟎𝟎
􏿳􏿳  

 

 

I.3.4.2 A model for the ideal wave propagation problem 

Note that the formulation presented so far is general within the hypotheses assumed for 

the RVE system resolution. In the particular framework of acoustic problems, we will 

consider wave-like solutions of the kind 

𝒖𝒖(𝒙𝒙, 𝑡𝑡) = 𝑼𝑼(𝜿𝜿 ⋅ 𝒙𝒙 − 𝜔𝜔𝜔𝜔), (82) 

where 𝐔𝐔 is the amplitude function, 𝜔𝜔 is the angular frequency (time frequency). In Eq. 

(82), 𝜿𝜿 = 𝜅𝜅𝒏𝒏𝜅𝜅 is the wavevector, where 𝒏𝒏𝜅𝜅 gives the propagation direction and 𝜅𝜅 the 

corresponding wavenumber (spatial frequency), which is in turn related with the 

wavelength according to 𝜅𝜅 = 2𝜋𝜋 𝜆𝜆⁄ . The simplest representation of a plane wave of 

constant frequency 𝜔𝜔 and propagation direction 𝒏𝒏𝜅𝜅 travelling along a macroscopic infinite 

structure comes from expressing 𝒖𝒖 as a harmonic function, typically formulated in the 

complex numbers space as 

𝒖𝒖(𝒙𝒙, 𝑡𝑡) = 𝑼𝑼𝑒𝑒𝑖𝑖(𝜅𝜅𝒏𝒏𝜅𝜅⋅𝒙𝒙−𝜔𝜔𝜔𝜔), (83) 

with 

𝒖̈𝒖(𝒙𝒙, 𝑡𝑡) = −𝜔𝜔􏷡􏷡𝑼𝑼𝑒𝑒𝑖𝑖(𝜅𝜅𝒏𝒏𝜅𝜅⋅𝒙𝒙−𝜔𝜔𝜔𝜔), (84) 



Article I  81 

𝜵𝜵𝒙𝒙
S𝒖𝒖(𝑥𝑥, 𝑡𝑡) = 𝑖𝑖𝑖𝑖𝒏𝒏𝜅𝜅 ⊗S 𝑼𝑼𝑒𝑒𝑖𝑖(𝜅𝜅𝒏𝒏𝜅𝜅⋅𝒙𝒙−𝜔𝜔𝜔𝜔), (85) 

where, for the sake of simplicity, the amplitude vector 𝑼𝑼 ∈ ℝ𝑚𝑚 has been assumed 

constant. 

 

REMARK 11 It has to be emphasized that the type of waves in Eqs. (83) to (85) can only 

be the solution of ideal wave propagation problems, typically: waves propagating in an 

infinite and homogeneous medium with the propagating wave not being affected by 

boundary conditions (reflected waves, etc.). This is what we term here as ideal wave 

propagation problem. 

 

In this context, we look for solutions of the microscale problem with modal amplitudes 

vectors 𝒒𝒒𝜇𝜇
∗  behaving as harmonic oscillators with the excitation macroscopic frequency 

𝜔𝜔, thus satisfying 

𝒒̈𝒒𝜇𝜇
∗ (𝑡𝑡, 𝜔𝜔) = −𝜔𝜔􏷡􏷡𝒒𝒒𝜇𝜇

∗ (𝑡𝑡, 𝜔𝜔), (86) 

whose general solution is 𝒒𝒒𝜇𝜇
∗ = 𝑸𝑸𝜇𝜇

∗ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖. 

By replacing expression (86) into Eq. (80), allows us to solve the unknowns 𝒒𝒒𝜇𝜇
∗  in the RVE 

as 

𝒒𝒒𝜇𝜇
∗ (𝑡𝑡, 𝜔𝜔) = (𝜔𝜔􏷡􏷡I − Ω𝜇𝜇

∗􏷡􏷡)−􏷠􏷠ℚT𝒖̈𝒖(𝒙𝒙, 𝑡𝑡), (87) 

which can be transferred to the macroscale (by replacing Eq. (87) in Eq. (79)), yielding 

𝜵𝜵𝒙𝒙 ⋅ (C eff ∶ 𝜵𝜵𝒙𝒙
S𝒖𝒖) = (𝒑̇𝒑 ≈ 𝜷𝜷(􏷡􏷡)) = R eff(𝜔𝜔) ⋅ 𝒖̈𝒖, (88) 

R eff(𝜔𝜔) = R􏼙􏼙 + R̃(𝜔𝜔);  R̃(𝜔𝜔) = ℚ􏿴􏿴Ω𝜇𝜇
∗􏷡􏷡 𝜔𝜔􏷡􏷡⁄ − I􏿷􏿷

−􏷠􏷠
ℚT, (89) 

where R􏼙􏼙 is the effective average density tensor defined in Appendix I.B.3 and R eff 

assumes the role of an effective, frequency dependent pseudo-density tensor. 

Note also that expression (88) has the format of a wave equation for which Eq. (83) is 

expected to be a solution. In fact, replacing solutions of such kind into Eq. (88), one 

obtains the so-called dispersion relation: 

D(𝜔𝜔, 𝜅𝜅)𝑼𝑼􏾧􏾧 = 􏿰􏿰𝒏𝒏𝜅𝜅
TC eff𝒏𝒏𝜅𝜅 − 􏿵􏿵

𝜔𝜔
𝜅𝜅

􏿸􏿸
􏷡􏷡

R eff(𝜔𝜔)􏿳􏿳 𝑼𝑼􏾧􏾧 = 𝟎𝟎. (90) 
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Eq. (90) provides, for a given pair (𝜔𝜔, 𝒏𝒏𝜅𝜅), the corresponding wavenumber 𝜅𝜅 and 

amplitude unit vector 𝑼𝑼􏾧􏾧 , as a result of a standard eigenvalues and eigenvectors problem. 

It is worth noting that precedent and somehow alternative settings can be found for fast 

computation of dispersion properties of materials, in the context of Bloch-Floquet theory, 

in [27–29]. However, in this work, the goal is not a detailed comparison of different 

methods but to establish and assess a variational based hierarchical homogenization 

procedure suitable for computational modelling of real 2D and 3D acoustic problems. 

Note that, in general, we cannot guarantee that R eff(𝜔𝜔) is positive definite for any 

frequency 𝜔𝜔. In particular: 

(a) For excitation frequencies 𝜔𝜔 equal to a natural frequency of the unrestricted 

system (74), 𝜔𝜔 = 𝜔𝜔𝜇𝜇
(𝑛𝑛), one may consider 𝒒̈𝒒𝜇𝜇 = −𝜔𝜔􏷡􏷡𝒒𝒒𝜇𝜇 in Eq. (76) and solve for 𝜷𝜷(􏷡􏷡) 

yielding 

􏾝􏾝
􏿴􏿴ℕ𝜇𝜇𝝓𝝓􏾦􏾦𝜇𝜇

(𝑘𝑘)􏿷􏿷􏿴􏿴ℕ𝜇𝜇𝝓𝝓􏾦􏾦𝜇𝜇
(𝑘𝑘)􏿷􏿷

T

𝜔𝜔𝜇𝜇
(𝑘𝑘)􏷡􏷡 − 𝜔𝜔𝑘𝑘

𝜷𝜷(􏷡􏷡) = 𝑼𝑼𝑒𝑒𝑖𝑖(𝜅𝜅𝒏𝒏𝜅𝜅⋅𝒙𝒙−𝜔𝜔𝜔𝜔). (91) 

Now, multiplying both sides of Eq. (91) by 𝜔𝜔𝜇𝜇
(𝑛𝑛)􏷡􏷡 − 𝜔𝜔􏷡􏷡 and taking the limit for 𝜔𝜔 →

𝜔𝜔𝜇𝜇
(𝑛𝑛) it yields 

􏿴􏿴ℕ𝜇𝜇𝝓𝝓􏾦􏾦𝜇𝜇
(𝑛𝑛)􏿷􏿷􏿴􏿴ℕ𝜇𝜇𝝓𝝓􏾦􏾦𝜇𝜇

(𝑛𝑛)􏿷􏿷
T
𝜷𝜷(􏷡􏷡) = 𝟎𝟎. (92) 

As long as 𝝓𝝓􏾦􏾦𝜇𝜇
(𝑛𝑛) ∉ ker ℕ𝜇𝜇, Eq. (92) yields 𝜷𝜷(􏷡􏷡) = 𝟎𝟎 disregard the value of 𝑼𝑼 . Recalling 

that, in this considered ideal case, the macroscopic inertial force is given by (see 

Eq. (88)) 

𝜷𝜷(􏷡􏷡) = R eff ⋅ 𝒖̈𝒖 = −𝜔𝜔􏷡􏷡R eff(𝜔𝜔) ⋅ 𝑼𝑼𝑒𝑒𝑖𝑖(𝜅𝜅𝒏𝒏𝜅𝜅⋅𝒙𝒙−𝜔𝜔𝜔𝜔) = 𝟎𝟎, (93) 

∀ 𝑼𝑼 , it yields 

R eff = 𝟎𝟎. (94) 

This means that, at excitation frequencies, 𝜔𝜔, equal to some natural frequencies of 

the unrestricted system, 𝜔𝜔𝜇𝜇
(𝑛𝑛) , the matrix R eff becomes null and, therefore, the 

macroscopic problem (79) becomes quasi-static. In addition, by replacing this 

condition into Eq. (90), it yields 𝜅𝜅 = 0 and then 𝜆𝜆 = 2𝜋𝜋 𝜅𝜅⁄ → ∞. 
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(b) For excitation frequencies 𝜔𝜔 approaching to a natural frequency of the restricted 

system (61), 𝜔𝜔 → 𝜔𝜔𝜇𝜇
∗(𝑛𝑛), Eq. (89) expressed in index notation reveals 

𝑅𝑅𝑖𝑖𝑖𝑖
eff(𝜔𝜔) = 𝑅𝑅􏼞􏼞𝑖𝑖𝑖𝑖 + 􏾝􏾝

𝑄𝑄𝑖𝑖𝑖𝑖𝑄𝑄𝑗𝑗𝑗𝑗

􏿴􏿴𝜔𝜔𝜇𝜇
∗(𝑘𝑘) 𝜔𝜔⁄ 􏿷􏿷

􏷡􏷡
− 1𝑘𝑘

, (95) 

Now, with regard to matrix D in Eq. (90), we consider the following possible 

situations: 

(b1) 𝜔𝜔 → 𝜔𝜔𝜇𝜇
∗(𝑛𝑛) from the left (𝜔𝜔 ≲ 𝜔𝜔𝜇𝜇

∗(𝑛𝑛)), 

𝑅𝑅𝑖𝑖𝑖𝑖
eff → +∞ →  matrix D is positive-definite, 

→  𝜅𝜅 ∈ ℝ with 𝜅𝜅 → ∞. 
(96) 

(b2) 𝜔𝜔 → 𝜔𝜔𝜇𝜇
∗(𝑛𝑛) from the right (𝜔𝜔 ≳ 𝜔𝜔𝜇𝜇

∗(𝑛𝑛)), 

𝑅𝑅𝑖𝑖𝑖𝑖
eff → −∞ →  matrix D is negative-definite, 

→  𝜅𝜅 ∈ ℂ with Im(𝜅𝜅) → ∞
Re(𝜅𝜅) = 0 . 

(97) 

This means that, at excitation frequencies, 𝜔𝜔, equal to some natural frequencies of 

the restricted system, 𝜔𝜔𝜇𝜇
∗(𝑛𝑛) , some components of the pseudo-density tensor, R eff, 

pass from −∞  to +∞ and the wavenumber 𝜅𝜅 passes from real-valued to imaginary-

valued. 

REMARK 12 It should be noted that in case (b2) (or, in general, for any purely imaginary 

𝜅𝜅), the complex character of the wavenumber 𝜅𝜅 makes Eq. (83) to become 

𝒖𝒖(𝒙𝒙, 𝑡𝑡) = 𝑨𝑨(𝒙𝒙)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖;  𝑨𝑨(𝒙𝒙) = 𝑼𝑼𝑒𝑒−|𝜅𝜅|𝒏𝒏𝜅𝜅⋅𝒙𝒙 (98) 

where 𝑨𝑨(𝒙𝒙) implies an amplitude decay in the propagation direction (the wave amplitude 

decreases as the wave advances). 

 

As a consequence of the previous considerations, one could identify frequency intervals 

bounded by natural frequencies of the restricted and unrestricted problems, [𝜔𝜔𝜇𝜇
∗ , 𝜔𝜔𝜇𝜇], 

where the effective pseudo-density matrix, R eff, becomes unbounded and negative-

definite (at the beginning of the interval) and it subsequently evolves to R eff = 𝟎𝟎 (at the 

end of the interval), while the wavenumber 𝜅𝜅 remains imaginary-valued. 
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In addition, [𝜔𝜔𝜇𝜇
∗ , 𝜔𝜔𝜇𝜇] defines a band of incidental frequencies where the macroscopic 

wave gets progressively attenuated, due to local resonance phenomena, as it advances 

in the infinite medium according to Eq. (98). This corresponds to the so-called frequency 

bandgaps [30]. 

The specific determination of the band-gap positions in the frequency domain can only 

be analytically obtained for the considered ideal problem (infinite and homogeneous 

media). Otherwise, one should resort to numerical solutions (see Section I.4 for examples 

illustrating such behavior). 

 

 

FIG. 5 Global homogenization scheme applied to acoustic problems. Macroscopic displacement and 
strain are actions in the RVE system. The macro-stress is obtained as a reaction of the quasi-static 
component of the RVE system, while the macro-inertial force, which accounts for local micro-resonating 
modes, comes from the inertial component of the RVE system. 
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FIG. 6 Unit cell configuration parameters. The numbers correspond to each material ID in Tab. 1. 
 

I.4  Examples 

In the following, the algorithm sketch in Box 1 is applied to the resolution of a number of 

2D multiscale homogenized acoustic problems. 

I.4.1  Unit cell effects for the ideal problem 

We will consider here an infinite and homogeneous domain in the macroscale so that the 

assumptions considered for the developments in Section I.3.4.2 can be applied. The goal 

would be to compare the effects of the cell design into the acoustic macroscopic 

properties. The macroscopic problem Eq. (79) can be solved analytically, in this case, 

while the microscopic equation (80) will be solved numerically with FE discretization.  

Even though the results that will be obtained in this example may not represent the actual 

material behavior, it is interesting for academic purposes as it provides a controlled 

environment for easily understand the phenomena involved in the unusual properties of 

acoustic metamaterials. 

In order to achieve the typical properties of acoustic metamaterials, the unit cell design 

must be such that it guarantees the existence of relevant resonating modes in the 

frequency range of interest (up to 20 kHz). This is accomplished, for instance, with the 

so called locally resonant acoustic metamaterials (LRAM), as local resonance 

phenomena occur in conditions that meet the considered assumptions. 

𝑙𝜇

𝑏

𝑟

𝑅
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TAB. 1 Material and geometrical properties for the LRAM unit cell designs. 

Parameter Units Nylon Steel 
Material ID – 1 2 
Density kg m–3 1100 7800 
Young’s modulus GPa 2 180 
Poisson’s ratio – 0.40 0.33 

Dim. Units Config. A Config. B Config. C 

𝑙𝑙𝜇𝜇  mm 5.000 5.000 5.000 

𝑟𝑟  mm 1.250 0.500 1.250 

𝑅𝑅  mm 1.875 1.000 1.750 

𝑏𝑏  mm 0.100 0.100 0.100 

 

For a practical LRAM design, one needs, at least, the following elements as parts of the 

unit cell: 

(a) A rigid component that supports the structure. This element assumes the role of a 

matrix in this configuration, supporting the resonating elements and attaching them 

together. The relative stiffness of these elements is what guarantees the separation 

of scales 𝜆𝜆 ≫ 𝑙𝑙𝜇𝜇. 

(b) A dense component that acts as resonating element. The key aspect for a practical 

LRAM design is to allow these elements to have natural vibration frequencies in the 

desired frequency range. They typically are surrounded by highly flexible materials 

(or void regions) in order to promote the appearance of low natural frequencies. 

Frequency bandgap sizes and locations are related to the shape and density of 

these elements. 

In order to display these facts, three different geometric configurations have been 

considered. Fig. 6 depicts the geometrical parameters and material distribution for the 

considered reference unit cell. The values for the geometrical and material properties 

considered in the examples are listed in Tab. 1. 

The meshes used consist of 2D linear triangular elements} with around 2000 degrees of 

freedom in each case. The global homogenization scheme of Section I.3 has been 

applied considering periodic boundary conditions and prescribing the micro-fluctuation 

field at some point in the RVE boundary in order to prevent rigid body motions. Therefore, 
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in one corner of the unit cell, the micro-fluctuation displacement has been prescribed6  

(this has already been done in other similar works such as [16])7. The mass and stiffness 

matrices have been computed considering, respectively, 3 and 1 Gaussian quadrature 

points for their integration over the element. A modal analysis has been performed with 

Matlab considering both the fully unrestricted 𝕂𝕂𝜇𝜇-𝕄𝕄𝜇𝜇 and the restricted system 𝕂𝕂𝜇𝜇
∗ -𝕄𝕄𝜇𝜇

∗ .  

For the unit cell configuration A, Fig. 7 shows the first 5 vibration modes and the 

associated natural frequencies for both the unrestricted and restricted systems. The 

results show that the first and third vibration modes, which are the only ones (in the 

frequency range of interest) that exhibit some non-negligible8 components in their 

corresponding columns of the coupling matrix ℚ (see Remark 10), appear to be good 

candidates as resonating modes. Focusing on longitudinal waves (with wave amplitudes 

in the propagation direction), which are the interesting ones in the context of acoustic 

problems, only the first mode becomes relevant. Therefore, one would expect the model 

to capture its effects on the macroscale. Tab. 2 gives the specific effective properties (for 

the horizontal component) that have been obtained from the analysis of each unit cell 

configuration. 

A frequency analysis of the macroscopic problem has then been performed over a 

frequency range from 0 to 25 kHz (a total number of 500 evenly spaced frequency test 

points have been considered) aiming at studying the propagation characteristics in the 

horizontal direction (𝒏𝒏𝜅𝜅 = 𝒆𝒆􏷠􏷠). Note that with the hypotheses assumed, the effective 

constitutive tensor, C eff in Eq. (88), is considered constant in this frequency range. 

In Fig. 8, the resulting macroscopic acoustic properties, namely the first component of 

the density tensors, 𝑅𝑅􏷠􏷠􏷠􏷠
eff, 𝑅𝑅􏼞􏼞􏷠􏷠􏷠􏷠, and 𝑅̃𝑅􏷠􏷠􏷠􏷠 (see Eq. (89)), and the normalized wavenumber 

𝜅𝜅𝑙𝑙𝜇𝜇 2𝜋𝜋⁄  obtained from the dispersion relation (90), are shown. It can be checked that the 

phenomena anticipated in Eqs. (96) and (97) at the frequency band interval (bandgap) 

[𝜔𝜔𝜇𝜇
∗(􏷠􏷠), 𝜔𝜔𝜇𝜇

(􏷠􏷠)] show up there. 

 

6 Periodic boundary conditions extend this restriction to the other three corners. 
7 Numerical experimentation shows that adding this type of restriction slightly improves the 
homogenized results (specific reasons for this are currently investigated). However, it can be 
proven that these restrictions add symmetric corresponding reactions at the squared RVE that 
cancel with each other in the summation and, therefore, do not change the physical interpretation 
of the Lagrange multiplier 𝜷𝜷. 
8 The considered value of 𝛿𝛿tol in Eq. (81) has been 𝛿𝛿tol  =  10−􏷧􏷧. 
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FIG. 7 First 5 vibration modes and the associated natural frequencies of the unit cell configuration A for 
the unrestricted system (top) and the restricted system (bottom). The corresponding columns 𝑸𝑸(𝑘𝑘) of 
the coupling matrix ℚ are also shown (units of kg1/2 m–3/2). 

 

TAB. 2 Effective properties for the LRAM unit cell designs. 

Param. Units Config. A Config. B Config. C 

𝐶𝐶􏷠􏷠􏷠􏷠
eff  GPa 0.948 2.532 1.125 

𝑅𝑅􏼞􏼞􏷠􏷠􏷠􏷠  kg m–3 2149 1208 2211 

𝑄𝑄􏷠􏷠
(􏷠􏷠)  kg1/2 m–3/2 –39.39 17.42 –39.58 

𝜔𝜔𝜇𝜇
∗(􏷠􏷠)  kHz 5.32 17.48 6.89 

𝜔𝜔𝜇𝜇
(􏷠􏷠)  kHz 9.83 19.82 12.39 

 

I.4.2  Validation of the proposed homogenization model 

In order to validate the homogenization model for acoustic problems proposed in Section 

I.3 (see also Fig. 5), let’s now consider a more realistic macroscopic problem, similar9 to 

the one proposed in [16], consisting of a small-width homogeneous macroscopic layer. 

Fig. 9 schematically represents the macroscopic problem setup. In the thickness 

 

9 It differs from the one in the referenced work in the 2D character of the homogenized 
macroscopic model considered here in contrast of the 1D model considered there. 
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(horizontal) direction, 10 stacked type A unit cells are considered to define the macro-

structure. In the vertical direction, the layer is considered infinite-sized and the 

corresponding boundary conditions will be applied. For the sake of simplicity, and to 

properly capturing the local resonance phenomenon, we will focus the study on 

simulating a horizontal plane wave propagating through the finite macroscopic domain 

of analysis 𝛺𝛺 in the thickness direction (see Fig. 9).  

An harmonic wave at a given frequency 𝜔𝜔 on the horizontal direction is prescribed at the 

macroscopic left boundary of the layer as 𝒖𝒖􏼞􏼞 = 𝑼𝑼􏷟􏷟 sin 𝜔𝜔𝜔𝜔 𝒆𝒆􏷠􏷠 (see Fig. 9). In order to 

represent the vertical infinite dimension of 𝛺𝛺, periodic macroscopic displacement 

conditions are imposed at the upper and lower boundaries of 𝛺𝛺, 𝛤𝛤 (+) and 𝛤𝛤 (−), 

respectively. As for the unit cell, the boundary conditions are the same than in the 

previous example.  

The right macroscopic boundary of 𝛺𝛺 will be left free, aiming at analysing how the 

displacement amplitude is affected by the presence of frequency bandgaps. The 

validation of the proposed homogenization scheme will be done by comparing the results 

of a Direct Numerical Simulation (DNS) analysis, using a mono-scale FEM mesh 

consisting of linear triangular elements (the same as considered for the RVE 

calculations), with the ones obtained with the homogenization model with different 

macroscopic FEM meshes consisting of linear quadrilateral elements with 4 Gaussian 

integration points.  

A frequency analysis has been performed over a range of evenly spaced 500 excitation 

frequencies 𝜔𝜔 from 0 to 25 kHz, from which the amplitudes ratio between the horizontal 

displacements of the upper-right corner (point B in Fig. 9) and the input harmonic 

excitation has been obtained (point A in Fig. 9). The results are shown in Fig. 10. It is 

interesting to see that the obtained frequency bandgap is very similar to the one 

predicted in the ideal problem in the previous example. In addition, the other peaks 

shown up in the curve correspond to resonating frequencies of the homogenized 

macroscopic medium. 

In Fig. 11, the profiles of the horizontal displacements amplitudes for the steady state 

response along the upper boundary 𝛤𝛤(+) are shown, for some selected frequencies, and 

compared for both the DNS and the multiscale model. We clearly observe the attenuating 
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effect on the wave amplitude only for frequencies inside the bandgap (see, for instance, 

the profile for 𝜔𝜔 = 7.21 kHz in Fig. 11). 

 

FIG. 8 First component of the effective pseudo-density tensor (left column) and corresponding 
normalized wavenumber (right column) for each unit cell configuration. The frequency bandgap is 
defined by the resonating frequencies for the restricted and unrestricted RVE systems in every 

configuration. See, for instance, for unit cell A, 𝜔𝜔𝜇𝜇
∗(􏷠􏷠) = 5.32 kHz and 𝜔𝜔𝜇𝜇

(􏷠􏷠) = 9.32 kHz in Fig. 7. Notice 

the sign change of 𝑅𝑅􏷠􏷠􏷠􏷠
eff (from +∞ to −∞) at the beginning of the bands and 𝑅𝑅􏷠􏷠􏷠􏷠

eff = 0 at their end, as 
well as the imaginary character of the wavenumber (responsible for the attenuation of the macroscopic 
amplitude) at the bands for all cases. Since the number of tested frequencies is 500, the lines in the 
plots actually represent all the frequency test points studied. 
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FIG. 9 Macro-scale problem setup. A harmonic horizontal displacement is prescribed on the left 
boundary of both the DNS (up) and the homogenized model (down). Periodic boundary conditions are 
applied on the upper and lower boundaries to simulate infinite material extension in the vertical direction. 
The mesh used for the DNS model is composed of 18400 triangular elements while for the homogenized 
model, meshes with 10, 40 and 250 (as in the figure) quadrilateral elements have been used. 

 

It should be noted that the results from the homogenization differ from those of the DNS 

upon increasing the frequency of the analysis (see Fig. 10). This is expected since the 

simplifying hypotheses assumed hold more strongly the closer one gets to the quasi-

static case (𝜔𝜔 = 0) and the effects of higher-frequency resonating modes (which are 

neglected here) become more relevant. In addition, upon increasing the macroscopic 

frequency we approach the separation of scales limit, causing the whole multiscale 

theory to fail. However, the results show excellent agreement in the frequency range of 

interest, where the hypotheses assumed hold more strongly. This proves the correctness 

of the proposed homogenization scheme for this case. 
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I.4.3  First approach to LRAM design 

In Section I.4.1 we have been able to see that minor changes in the RVE topology can 

lead to different results and, in this particular case, different bandgap location and sizes. 

This fact alone opens a wide range of possibilities towards topology optimization designs 

aiming, for instance, to control the size and location of the frequency bandgaps (here 

alternatively termed acoustic attenuation bands). Let’s consider that we aim at designing 

an artificial material (metamaterial) with optimal attenuation properties, for instance, in 

the human hearing range. Materials with homogeneous macro-structures (see Section 

I.4.2) show a limited number of band-gaps not covering the full interval of interest, so the 

following question arises: by stacking homogeneous layers (every one attenuating a 

certain range of frequencies), can one design a multi-layered material whose attenuation 

band spans the full range of interest? 

 

FIG. 10 Amplitudes ratio of the horizontal 
component of the displacement at point B. 
Comparison of the DNS and the 
homogenized model results for different 
number of elements. Amplitude ratios 
smaller than 1 imply effective wave 
attenuation whereas those larger than 1 
imply effective wave amplification. Since 
500 test points have been considered in 
the range [0, 25] kHz, the lines in the plot 
represent the actual frequencies tested. 

 

 

FIG. 11 Amplitudes ratio of the horizontal 
component of the displacement of the top 
boundary points along the horizontal 
direction. Comparison of the DNS and the 
homogenized model results for different 
input frequencies. 
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FIG. 12 Amplitudes ratio of the horizontal component of the displacement at point B for two multi-layer 
configurations: (a) two layers of 25 mm each with unit cell configurations A and B with their predicted 
band-gap regions (shaded areas) separated; and (b) two layers of 2.5 cm each with unit cell 
configurations A and C with their predicted bandgap regions (shaded areas) overlapped. The DNS results 
are compared with those obtained from the homogenized model. Amplitude ratios smaller than 1 imply 
effective wave attenuation whereas those larger than 1 imply effective wave amplification. 

 

Fig. 12 shows the attenuation curves corresponding to two different bi-layered materials, 

obtained both from a DNS and homogenization analysis equal to those performed for the 

example in Section I.4.2. Also, the predicted bandgaps corresponding to every unit cell 

are depicted in the same figure. Once again, when comparing with the DNS solution, we 

realize the good performance of the proposed multiscale homogenization scheme also 

for non-homogeneous problems.  

In the first case (a), the predicted bandgaps for each unit cell lie in two separated regions 

of the frequency domain, and in the macroscale, we observe an additional low-level 

attenuation that lies in between the two band-gap regions. In the second case (b), where 

the ideally predicted bandgaps overlap, the non-homogeneous solution shows an 

attenuation band that spans the two ideal bandgap regions with relevant attenuation 

levels. In this sense one could say that design (b) improves design (a) for the purposes 

of getting a continuous wider attenuation band for the multi-layer material.  

This is a mere exemplification that there is room for the computational design of acoustic 

metamaterials, in this case with multi-layered configurations, when a reliable 
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homogenization scheme, as the one proposed in this work, is available. Additional 

research on this subject is currently ongoing. 

I.5  Conclusions 

Along this work, a hierarchical multiscale homogenization approach accounting for 

inertial effects in acoustic problems has been presented with the following features: 

(a) Consideration of the standard Cauchy’s continua at the macroscale assuming 

classical conservation of linear and angular momentum and the Multiscale Virtual 

Power Principle in [18]. 

(b) The resulting mechanical problem is then mathematically stated as an unrestricted 

saddle-point problem by incorporating Lagrange multipliers as new dual unknowns. 

Then, they can be analytically identified by an appropriate choice of the 

perturbation fields and explained in a physical manner in terms of macroscopic 

stresses and D’Alembert force density terms. 

(c) The resulting formulation is finally specified for acoustic problems, and some 

assumptions (decomposition into the sum of a quasi-static and inertial systems) 

allow identifying the simple coupling terms between the micro and macroscale 

equations. In addition, a computational cost reduction strategy, based on projection 

onto the restricted and unrestricted natural modes of the microstructure, is used. 

(d) In this context, a simple, physically meaningful and efficient homogenization 

scheme accounting for inertial effects is proposed. This scheme can then be 

applied to computational homogenization of acoustic metamaterials. 

The multiscale formulation presented in this contribution is illustrated with a number of 

representative simulations for both a homogeneous macrostructure and an 

heterogeneous macroscopic body with a layered structure. In both cases a 

microstructure with a particular natural frequency is associated to each homogeneous 

portion of the macrostructure. The framework represents a starting point for the coupling 

of topology optimization tools in order to design specific microstructures rendering the 

desired macroscopic frequency cancelling and attenuating properties. The latter part is 

left for a future contribution in which a complete computational material design tool is 

outlined based on the proposed homogenization procedure and goal oriented 

macroscopic cost functions. 
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As shown in the presented results, our framework has proven to successfully capture the 

unusual macroscopic behavior of acoustic metamaterials caused by local resonance 

phenomena at a significantly low computational cost. A first academic example has 

validated the expected frequency band gap which is theoretically bounded (in terms of 

the wave number) between the microscopic eigenfrequencies obtained for the 

constrained and unconstrained cases. The expected behavior of the effective pseudo-

density, i.e. nullifying at resonating frequencies of the unrestricted system and tending to 

infinite for the restricted system, is also observed in the reported validation test.  

The multilayer metamaterial study reported in the second example suggests that there is 

room for the design of complex acoustic metamaterials capable of attenuating a specific 

target frequency spectrum, e.g. human voice, environmental noise or engine vibration. 

In this view, the combination of sufficient layers with different microscopic topologies are 

envisaged to cover the desired spectrum of frequencies to be attenuated. Further 

research is, however, required to complement these preliminary results and open the 

possibility to study more complex constitutive behaviors at the microscale, e.g. 

viscoelastic effects and other dissipative phenomena, in order to provide a wider 

attenuating frequency range and more effective attenuation mechanisms. 

Acknowledgements 

The research leading to these results has received funding from the European Research 

Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / 

ERC Grant Agreement n. 320815 (ERC Advanced Grant Project “Advanced tools for 

computational design of engineering materials” COMP-DES-MAT). 

Oriol Lloberas-Valls gratefully acknowledges the funding received from the Spanish 

Ministry of Economy and Competitiveness through the National Research Plan 2014: 

MAT2014-60919-R. 

Appendix I.A Finite element discretization 

In order to solve the RVE problem, a Galerkin-based discretization is considered in the 

spatial domain, so that the microscale domain 𝛺𝛺𝜇𝜇 is split in 𝑁𝑁𝑒𝑒 elements, 𝛺𝛺𝜇𝜇
(𝑒𝑒) ⊂ 𝛺𝛺𝜇𝜇, for 

𝑒𝑒 = 1, 2 … 𝑁𝑁𝑒𝑒. In each 𝛺𝛺𝜇𝜇
(𝑒𝑒), the solution fields and their variations are interpolated by 
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𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) = 𝑵𝑵𝜇𝜇
(𝑒𝑒)(𝒚𝒚)𝒖𝒖􏾦􏾦𝜇𝜇

(𝑒𝑒)(𝑡𝑡) or 𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) = 􏾝􏾝 𝑁𝑁𝜇𝜇
𝑎𝑎(𝒚𝒚)𝒖𝒖􏾦􏾦𝜇𝜇

𝑎𝑎 (𝑡𝑡)
𝑎𝑎

, (A.1) 

𝒖̈𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) = 𝑵𝑵𝜇𝜇
(𝑒𝑒)(𝒚𝒚)𝒖𝒖􏾦̈􏾦𝜇𝜇

(𝑒𝑒)(𝑡𝑡) or 𝒖̈𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) = 􏾝􏾝 𝑁𝑁𝜇𝜇
𝑎𝑎(𝒚𝒚)𝒖𝒖􏾦̈􏾦𝜇𝜇

𝑎𝑎 (𝑡𝑡)
𝑎𝑎

, (A.2) 

𝛿𝛿𝒖𝒖𝜇𝜇(𝒚𝒚) = 𝑵𝑵𝜇𝜇
(𝑒𝑒)(𝒚𝒚)𝛿𝛿𝒖𝒖􏾦􏾦𝜇𝜇

(𝑒𝑒) or  𝛿𝛿𝒖𝒖𝜇𝜇(𝒚𝒚) = 􏾝􏾝 𝑁𝑁𝜇𝜇
𝑎𝑎(𝒚𝒚)𝛿𝛿𝒖𝒖􏾦􏾦𝜇𝜇

𝑎𝑎

𝑎𝑎

, (A.3) 

where the superscript 𝑎𝑎 denotes the discrete nodes where the solution fields are 

interpolated, with the interpolation values being 𝒖𝒖𝜇𝜇
𝑎𝑎  and 𝛿𝛿𝒖𝒖𝜇𝜇

𝑎𝑎 , and 𝑁𝑁𝜇𝜇
𝑎𝑎(𝒚𝒚) are the associated 

shape functions. In compact form, 𝒖𝒖􏾦􏾦𝜇𝜇
(𝑒𝑒) and 𝛿𝛿𝒖𝒖􏾦􏾦𝜇𝜇

(𝑒𝑒) dispose 𝒖𝒖𝜇𝜇
𝑎𝑎  and 𝛿𝛿𝒖𝒖𝜇𝜇

𝑎𝑎 , respectively, in 

column vector fashion, while 𝑵𝑵𝜇𝜇
(𝑒𝑒) dispose 𝑁𝑁𝜇𝜇

𝑎𝑎(𝒚𝒚) in row vector fashion. According to these 

definitions, the symmetric gradient of the displacement fields is obtained by 

𝜵𝜵𝒚𝒚
S𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) = B𝜇𝜇

(𝑒𝑒)(𝒚𝒚)𝒖𝒖􏾦􏾦𝜇𝜇
(𝑒𝑒)(𝑡𝑡) or 𝜵𝜵𝒚𝒚

S𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) = 􏾝􏾝 B𝜇𝜇
𝑎𝑎(𝒚𝒚)𝒖𝒖􏾦􏾦𝜇𝜇

𝑎𝑎 (𝑡𝑡)
𝑎𝑎

, (A.4) 

𝜵𝜵𝒚𝒚
S𝛿𝛿𝒖𝒖𝜇𝜇(𝒚𝒚) = B𝜇𝜇

(𝑒𝑒)(𝒚𝒚)𝛿𝛿𝒖𝒖􏾦􏾦𝜇𝜇
(𝑒𝑒) or 𝜵𝜵𝒚𝒚

S𝛿𝛿𝒖𝒖𝜇𝜇(𝒚𝒚) = 􏾝􏾝 B𝜇𝜇
𝑎𝑎(𝒚𝒚)𝛿𝛿𝒖𝒖􏾦􏾦𝜇𝜇

𝑎𝑎

𝑎𝑎

, (A.5) 

where B𝜇𝜇
𝑎𝑎(𝒚𝒚) are defined, according to Voigt’s notation, as 

B𝜇𝜇
𝑎𝑎(𝒚𝒚) =

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡𝜕𝜕𝑁𝑁𝜇𝜇

𝑎𝑎 𝜕𝜕𝑦𝑦􏷠􏷠⁄ 0
0 𝜕𝜕𝑁𝑁𝜇𝜇

𝑎𝑎 𝜕𝜕𝑦𝑦􏷡􏷡⁄
𝜕𝜕𝑁𝑁𝜇𝜇

𝑎𝑎 𝜕𝜕𝑦𝑦􏷡􏷡⁄ 𝜕𝜕𝑁𝑁𝜇𝜇
𝑎𝑎 𝜕𝜕𝑦𝑦􏷠􏷠⁄ ⎦⎥⎥⎥

⎥⎥⎥⎥
⎥⎥
⎤

, (A.6) 

and B𝜇𝜇
(𝑒𝑒) corresponds to the arrangement of these terms in matrix form. The discretized 

form of the variational statements (30) to (32), can be written, for each element, as 

􏾝􏾝 􏾝􏾝⟨𝛿𝛿𝒖𝒖􏾦􏾦𝜇𝜇
𝑏𝑏 ⋅ (𝜌𝜌𝜇𝜇

(𝑒𝑒)𝑁𝑁𝜇𝜇
𝑏𝑏𝑁𝑁𝜇𝜇

𝑎𝑎𝒖𝒖􏾦̈􏾦𝜇𝜇
𝑎𝑎 + B𝜇𝜇

𝑏𝑏TC𝜇𝜇
(𝑒𝑒)B𝜇𝜇

𝑎𝑎𝒖𝒖􏾦􏾦𝜇𝜇
𝑎𝑎 − 𝑁𝑁𝜇𝜇

𝑏𝑏𝜷𝜷 − 𝐵𝐵𝜇𝜇
𝑏𝑏Tλ)⟩𝛺𝛺𝜇𝜇

(𝑒𝑒)

𝑏𝑏𝑎𝑎

= 0, ∀ 𝛿𝛿𝒖𝒖􏾦􏾦𝜇𝜇
𝑏𝑏 ,  (A.7) 

􏾝􏾝⟨𝑁𝑁𝜇𝜇
𝑎𝑎𝒖𝒖􏾦􏾦𝜇𝜇

𝑎𝑎 ⟩𝛺𝛺𝜇𝜇
(𝑒𝑒)

𝑎𝑎

= ⟨𝒖𝒖⟩𝛺𝛺𝜇𝜇
(𝑒𝑒) , (A.8) 

􏾝􏾝⟨B𝜇𝜇
𝑎𝑎𝒖𝒖􏾦􏾦𝜇𝜇

𝑎𝑎 ⟩𝛺𝛺𝜇𝜇
(𝑒𝑒)

𝑎𝑎

= ⟨ε⟩𝛺𝛺𝜇𝜇
(𝑒𝑒) , (A.9) 

or, in matrix form, 

⟨𝜌𝜌𝜇𝜇
(𝑒𝑒)𝑵𝑵𝜇𝜇

(𝑒𝑒)T𝑵𝑵𝜇𝜇
(𝑒𝑒)⟩𝛺𝛺𝜇𝜇

(𝑒𝑒)𝒖𝒖􏾦̈􏾦𝜇𝜇
(𝑒𝑒) + ⟨B𝜇𝜇

(𝑒𝑒)TC𝜇𝜇
(𝑒𝑒)B𝜇𝜇

(𝑒𝑒)⟩𝛺𝛺𝜇𝜇
(𝑒𝑒)𝒖𝒖􏾦􏾦𝜇𝜇

(𝑒𝑒) − ⟨𝑵𝑵𝜇𝜇
(𝑒𝑒)T⟩𝛺𝛺𝜇𝜇

(𝑒𝑒)𝜷𝜷 − ⟨B𝜇𝜇
(𝑒𝑒)T⟩𝛺𝛺𝜇𝜇

(𝑒𝑒)λ = 𝟎𝟎, (A.10) 
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⟨𝑵𝑵𝜇𝜇
(𝑒𝑒)⟩𝛺𝛺𝜇𝜇

(𝑒𝑒)𝒖𝒖􏾦􏾦𝜇𝜇
(𝑒𝑒) = ⟨𝒖𝒖⟩𝛺𝛺𝜇𝜇

(𝑒𝑒) , (A.11) 

⟨B𝜇𝜇
(𝑒𝑒)⟩𝛺𝛺𝜇𝜇

(𝑒𝑒)𝒖𝒖􏾦􏾦𝜇𝜇
(𝑒𝑒) = ⟨ε⟩𝛺𝛺𝜇𝜇

(𝑒𝑒) , (A.12) 

where, assuming each element is composed of a single material phase, then 𝜌𝜌𝜇𝜇
(𝑒𝑒) is the 

corresponding density and C𝜇𝜇
(𝑒𝑒) the constitutive tensor. Considering plane strain 

behavior, C𝜇𝜇
(𝑒𝑒) can be expressed, using Voigt’s notation, as 

C𝜇𝜇
(𝑒𝑒) =

𝐸𝐸(𝑒𝑒)

(1 + 𝜈𝜈(𝑒𝑒))(1 − 2𝜈𝜈(𝑒𝑒)) ⎣⎢⎢⎢
⎢⎢⎢
⎡1 − 𝜈𝜈(𝑒𝑒) 𝜈𝜈(𝑒𝑒) 0

𝜈𝜈(𝑒𝑒) 1 − 𝜈𝜈(𝑒𝑒) 0
0 0 1 − 2𝜈𝜈(𝑒𝑒) 2⁄

⎦⎥⎥⎥
⎥⎥⎥
⎤
, (A.13) 

with 𝐸𝐸(𝑒𝑒) being the element’s associated material Young’s modulus and 𝜈𝜈(𝑒𝑒) its Poisson’s 

ratio. 

The system of equations (A.10) to (A.12) can be compactly written as 

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡
𝕄𝕄𝜇𝜇

(𝑒𝑒) 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡
𝒖𝒖􏾦̈􏾦𝜇𝜇

(𝑒𝑒)

𝜷𝜷̈
λ̈

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

+
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡

𝕂𝕂𝜇𝜇
(𝑒𝑒) −ℕ𝜇𝜇

(𝑒𝑒)T −𝔹𝔹𝜇𝜇
(𝑒𝑒)T

−ℕ𝜇𝜇
(𝑒𝑒) 𝟎𝟎 𝟎𝟎

−𝔹𝔹𝜇𝜇
(𝑒𝑒) 𝟎𝟎 𝟎𝟎 ⎦⎥⎥⎥

⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡
𝒖𝒖􏾦􏾦𝜇𝜇

(𝑒𝑒)

𝜷𝜷
λ

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

= −
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡ 𝟎𝟎
⟨𝒖𝒖⟩𝛺𝛺𝜇𝜇

(𝑒𝑒) 

⟨ε⟩𝛺𝛺𝜇𝜇
(𝑒𝑒) 

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

, (A.14) 

with 𝕄𝕄𝜇𝜇
(𝑒𝑒) = ⟨𝜌𝜌𝜇𝜇

(𝑒𝑒)𝑵𝑵𝜇𝜇
(𝑒𝑒)T𝑵𝑵𝜇𝜇

(𝑒𝑒)⟩𝛺𝛺𝜇𝜇
(𝑒𝑒) , (A.15) 

𝕂𝕂𝜇𝜇
(𝑒𝑒) = ⟨B𝜇𝜇

(𝑒𝑒)TC𝜇𝜇
(𝑒𝑒)B𝜇𝜇

(𝑒𝑒)⟩𝛺𝛺𝜇𝜇
(𝑒𝑒) , (A.16) 

ℕ𝜇𝜇
(𝑒𝑒) = ⟨𝑵𝑵𝜇𝜇

(𝑒𝑒)⟩𝛺𝛺𝜇𝜇
(𝑒𝑒) , (A.17) 

𝔹𝔹𝜇𝜇
(𝑒𝑒) = ⟨B𝜇𝜇

(𝑒𝑒)⟩𝛺𝛺𝜇𝜇
(𝑒𝑒) . (A.18) 

After a standard matrix assembly process, the global system results 

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝕄𝕄𝜇𝜇 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝒖𝒖􏾦̈􏾦𝜇𝜇

𝜷𝜷̈
λ̈

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

+
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡ 𝕂𝕂𝜇𝜇 −ℕ𝜇𝜇

T −𝔹𝔹𝜇𝜇
T

−ℕ𝜇𝜇 𝟎𝟎 𝟎𝟎
−𝔹𝔹𝜇𝜇 𝟎𝟎 𝟎𝟎 ⎦⎥⎥⎥

⎥⎥⎥⎥
⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡𝒖𝒖􏾦􏾦𝜇𝜇

𝜷𝜷
λ

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

= − ⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝟎𝟎
𝒖𝒖
ε

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

, (A.19) 

with 𝕄𝕄𝜇𝜇 = A
𝑒𝑒

𝕄𝕄𝜇𝜇
(𝑒𝑒), (A.20) 

𝕂𝕂𝜇𝜇 = A
𝑒𝑒

𝕂𝕂𝜇𝜇
(𝑒𝑒), (A.21) 
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ℕ𝜇𝜇 = A
𝑒𝑒

ℕ𝜇𝜇
(𝑒𝑒), (A.22) 

𝔹𝔹𝜇𝜇 = A
𝑒𝑒

𝔹𝔹𝜇𝜇
(𝑒𝑒), (A.23) 

where the big A symbol has been used to denote the matrix assembly operation. 

Appendix I.B RVE system resolution 

I.B.1 Application of periodic boundary conditions 

For 2D cases J in Eq. (41) can be written as 

J = ε + Ω􏾧􏾧 ;   ε = 􏿮􏿮𝜀𝜀􏷠􏷠􏷠􏷠 𝜀𝜀􏷠􏷠􏷠􏷠
𝜀𝜀􏷠􏷠􏷠􏷠 𝜀𝜀􏷡􏷡􏷡􏷡

􏿱􏿱 ;  Ω􏾧􏾧 = 􏿮􏿮 0 𝜃𝜃
−𝜃𝜃 0􏿱􏿱 (B.1) 

where 𝜃𝜃(𝒙𝒙, 𝑡𝑡) is the infinitesimal in-plane rotation angle. 

In order to apply the periodic boundary conditions, the second equation in expression 

(41) will be discretized, yielding 

𝒖𝒖􏾦􏾦𝜇𝜇 = [ℙ 𝕃𝕃𝜀𝜀 𝕃𝕃𝜃𝜃] 􏿰􏿰
𝒖𝒖􏾦􏾦𝜇𝜇

∗

ε
𝜃𝜃

􏿳􏿳 ,      or      
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡

𝒖𝒖􏾦􏾦𝜇𝜇
(𝑖𝑖)

𝒖𝒖􏾦􏾦𝜇𝜇
(−)

𝒖𝒖􏾦􏾦𝜇𝜇
(+)⎦⎥⎥

⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

= ⎣⎢⎢⎢
⎢⎢
⎡I 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 I 𝟎𝟎 𝟎𝟎
𝟎𝟎 I L𝜀𝜀 L𝜃𝜃

⎦⎥⎥⎥
⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡

𝒖𝒖􏾦􏾦𝜇𝜇
(𝑖𝑖)

𝒖𝒖􏾦􏾦𝜇𝜇
(−)

ε
𝜃𝜃

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

, (B.2) 

where, using 2D Voigt’s notation, 

ℙ = 􏿰􏿰
I 𝟎𝟎
𝟎𝟎 I
𝟎𝟎 I

􏿳􏿳 (B.3) 

L𝜀𝜀 =
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡ ⋮
ℓ􏷠􏷠(𝒚𝒚􏾦􏾦(𝑗𝑗)) 0 ℓ􏷡􏷡(𝒚𝒚􏾦􏾦(𝑗𝑗)) 2⁄

0 ℓ􏷡􏷡(𝒚𝒚􏾦􏾦(𝑗𝑗)) ℓ􏷠􏷠(𝒚𝒚􏾦􏾦(𝑗𝑗)) 2⁄
⋮

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

, ∀ 𝒚𝒚􏾦􏾦(𝑗𝑗) ∈ 𝛤𝛤 (−), (B.4) 

L𝜃𝜃 =
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡ ⋮
−ℓ􏷡􏷡(𝒚𝒚􏾦􏾦(𝑗𝑗))
ℓ􏷠􏷠(𝒚𝒚􏾦􏾦(𝑗𝑗))

⋮
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

, ∀ 𝒚𝒚􏾦􏾦(𝑗𝑗) ∈ 𝛤𝛤 (−), (B.5) 

where the superscripts (𝑖𝑖), (−) and (+) refer to internal nodes and nodes lying on the 

boundary regions 𝛤𝛤 (−) and 𝛤𝛤 (+), respectively. 
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I.B.2 Resolution of the quasi-static system 

I.B.2.1 Quasi-static system with minimal kinematic conditions 

According to expression (55), the quasi-static system considering the minimal kinematic 

restrictions reads 

􏿰􏿰
𝕂𝕂𝜇𝜇 −𝔹𝔹𝜇𝜇

T

−𝔹𝔹𝜇𝜇 𝟎𝟎 􏿳􏿳 􏿰􏿰𝒖𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠)

λ(􏷠􏷠)􏿳􏿳 = − 􏿯􏿯
𝟎𝟎
ε

􏿲􏿲. (B.6) 

It should be noted that the system (B.6) is defined except for a rigid body motion, 𝒖𝒖RB, 

which belongs to both the kernels of 𝕂𝕂𝜇𝜇 and 𝔹𝔹𝜇𝜇, that is 

𝕂𝕂𝜇𝜇𝒖𝒖RB = 𝟎𝟎, (B.7) 

𝔹𝔹𝜇𝜇𝒖𝒖RB = 𝟎𝟎. (B.8) 

This means that, while no closed solution exists for 𝒖𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠), the solution for 𝛌𝛌(􏷠􏷠) is defined 

disregard the value of 𝒖𝒖RB. Then, by prescribing arbitrarily 3 DOFs in 𝒖𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠), the system 

(B.6) becomes 

⎣⎢⎢⎢
⎢⎢⎢
⎡
𝕂𝕂𝜇𝜇

𝑓𝑓𝑓𝑓 −𝔹𝔹𝜇𝜇
𝑓𝑓T

−𝔹𝔹𝜇𝜇
𝑓𝑓 𝟎𝟎 ⎦⎥⎥⎥

⎥⎥⎥
⎤

􏿰􏿰𝒖𝒖􏾦􏾦𝜇𝜇
𝑓𝑓(􏷠􏷠)

λ(􏷠􏷠)
􏿳􏿳 = − 􏿯􏿯

𝟎𝟎
ε

􏿲􏿲 (B.9) 

which is now non-singular. Using the Schur complement of 𝕂𝕂𝜇𝜇
𝑓𝑓𝑓𝑓

 the system can be 

condensed so 

𝔹𝔹𝜇𝜇
𝑓𝑓(𝕂𝕂𝜇𝜇

𝑓𝑓𝑓𝑓)−􏷠􏷠𝔹𝔹𝜇𝜇
𝑓𝑓Tλ(􏷠􏷠) = ε, (B.10) 

and, eventually, λ(􏷠􏷠) becomes 

λ(􏷠􏷠) = 􏿴􏿴𝔹𝔹𝜇𝜇
𝑓𝑓(𝕂𝕂𝜇𝜇

𝑓𝑓𝑓𝑓)−􏷠􏷠𝔹𝔹𝜇𝜇
𝑓𝑓T􏿷􏿷

−􏷠􏷠
ε. (B.11) 

From expression (B.11), one can identify the quasi-static effective constitutive tensor as 

Cmin
eff = 􏿴􏿴𝔹𝔹𝜇𝜇

𝑓𝑓(𝕂𝕂𝜇𝜇
𝑓𝑓𝑓𝑓)−􏷠􏷠𝔹𝔹𝜇𝜇

𝑓𝑓T􏿷􏿷
−􏷠􏷠

. (B.12) 

I.B.2.2 Quasi-static system with periodic boundary conditions 

Discretization of the optimality conditions of the problem (49), constrained by the periodic 

boundary conditions, yields 
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𝕂𝕂𝜇𝜇𝒖𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠) = 𝒓̂𝒓(􏷠􏷠),    or    

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡ 𝕂𝕂𝜇𝜇

𝑖𝑖𝑖𝑖 𝕂𝕂𝜇𝜇
𝑖𝑖− 𝕂𝕂𝜇𝜇

𝑖𝑖+

𝕂𝕂𝜇𝜇
−𝑖𝑖 𝕂𝕂𝜇𝜇

−− 𝕂𝕂𝜇𝜇
−+

𝕂𝕂𝜇𝜇
+𝑖𝑖 𝕂𝕂𝜇𝜇

+− 𝕂𝕂𝜇𝜇
++⎦⎥⎥⎥

⎥⎥⎥⎥
⎥⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡

𝒖𝒖􏾦􏾦𝜇𝜇
(𝑖𝑖)

𝒖𝒖􏾦􏾦𝜇𝜇
(−)

𝒖𝒖􏾦􏾦𝜇𝜇
(+)⎦⎥⎥

⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

= ⎣⎢⎢⎢
⎢⎢⎢⎢
⎡ 𝟎𝟎
−𝜸𝜸􏾦􏾦(􏷠􏷠)

𝜸𝜸􏾦􏾦(􏷠􏷠) ⎦⎥⎥⎥
⎥⎥⎥⎥
⎤

 (B.13) 

where the superscripts (𝑖𝑖), (−) and (+) refer, again, to internal nodes and nodes lying on 

the boundary regions 𝛤𝛤 (−) and 𝛤𝛤 (+), respectively. In Eq. (B.13), 𝜸𝜸􏾦􏾦(􏷠􏷠) is the vector of the 

nodal Lagrange multipliers acting as boundary reactions to imposing the periodic 

boundary conditions. 

Notice that 𝒖𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠) in Eq. (B.13) is defined except for a rigid body motion (involving an in-

plane translation and rotation). Now, applying the periodic boundary conditions (see Eq. 

(B.2)) into the system (B.13), yields   

⎣⎢⎢⎢
⎢⎢⎢⎢
⎡ℙT

𝕃𝕃𝜀𝜀
T

𝕃𝕃𝜃𝜃
T⎦⎥⎥⎥
⎥⎥⎥⎥
⎤

𝕂𝕂𝜇𝜇[ℙ 𝕃𝕃𝜀𝜀 𝕃𝕃𝜃𝜃] 􏿰􏿰
𝒖𝒖􏾦􏾦𝜇𝜇

∗

ε
𝜃𝜃

􏿳􏿳 = ⎣⎢⎢⎢
⎢⎢⎢⎢
⎡ℙT

𝕃𝕃𝜀𝜀
T

𝕃𝕃𝜃𝜃
T⎦⎥⎥⎥
⎥⎥⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎡ 𝟎𝟎
−𝜸𝜸􏾦􏾦(􏷠􏷠)

𝜸𝜸􏾦􏾦(􏷠􏷠) ⎦⎥⎥⎥
⎥⎥⎥⎥
⎤

= ⎣⎢⎢⎢
⎢⎢⎢⎢
⎡ 𝟎𝟎
−L𝜀𝜀

T𝜸𝜸􏾦􏾦(􏷠􏷠)

L𝜃𝜃
T 𝜸𝜸􏾦􏾦(􏷠􏷠) ⎦⎥⎥⎥

⎥⎥⎥⎥
⎤

. (B.14) 

Now, since 𝕃𝕃𝜃𝜃𝜃𝜃 is a rigid body rotation field, thus belonging to the kernel of 𝕂𝕂𝜇𝜇, then 

𝕂𝕂𝜇𝜇𝕃𝕃𝜃𝜃 = 𝟎𝟎, 𝕃𝕃𝜃𝜃
𝑇𝑇𝕂𝕂𝜇𝜇 = 𝟎𝟎 and Eq. (B.14) can be rewritten as 

􏿯􏿯ℙ
T

𝕃𝕃𝜀𝜀
T􏿲􏿲 𝕂𝕂𝜇𝜇[ℙ 𝕃𝕃𝜀𝜀] 􏿯􏿯𝒖𝒖􏾦􏾦𝜇𝜇

∗

ε 􏿲􏿲 = 􏿯􏿯
𝟎𝟎

L𝜀𝜀
T𝜸𝜸􏾦􏾦(􏷠􏷠)􏿲􏿲, (B.15) 

L𝜃𝜃
T 𝜸𝜸􏾦􏾦(􏷠􏷠) = 𝟎𝟎, (B.16) 

Eq. (B.16) simply states the equilibrium of moments associated to the reactions 𝜸𝜸􏾦􏾦(􏷠􏷠). 

Additionally, since L𝜀𝜀
T𝜸𝜸􏾦􏾦(􏷠􏷠) = σ(􏷠􏷠) is the discrete counterpart of Eq. (48), we find 

􏿯􏿯𝕂𝕂𝜇𝜇
∗ 𝕊𝕊T

𝕊𝕊 C􏼙􏼙
􏿲􏿲 􏿯􏿯𝒖𝒖􏾦􏾦𝜇𝜇

∗(􏷠􏷠)

ε
􏿲􏿲 = 􏿯􏿯

𝟎𝟎
σ(􏷠􏷠)􏿲􏿲 (B.17) 

with 𝕂𝕂𝜇𝜇
∗ = ℙT𝕂𝕂𝜇𝜇ℙ, (B.18) 

C􏼙􏼙 = 𝕃𝕃𝜀𝜀
T𝕂𝕂𝜇𝜇𝕃𝕃𝜀𝜀, (B.19) 

𝕊𝕊 = 𝕃𝕃𝜀𝜀
T𝕂𝕂𝜇𝜇ℙ, (B.20) 

Note that, in systems (B.15) and (B.17), the homogenized stress, σ(􏷠􏷠), appears as a 

reaction to the action ε. In Eq. (B.17), the solution field 𝒖𝒖􏾦􏾦𝜇𝜇
∗(􏷠􏷠) is now defined except for a 

rigid body translation (recall that the rotation, 𝜃𝜃, has been removed from the original 

system (B.14) and does not appear in the equation). Hence, now only 2 DOFs in 𝒖𝒖􏾦􏾦𝜇𝜇
∗(􏷠􏷠) 
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need to be arbitrarily prescribed in order to avoid the singularity of the system matrix. 

Under these conditions, for a given ε, the system (B.17) can be solved for σ(􏷠􏷠), yielding 

σ(􏷠􏷠) = (C􏼙􏼙 − 𝕊𝕊𝑓𝑓(𝕂𝕂𝜇𝜇
∗𝑓𝑓𝑓𝑓)−􏷠􏷠𝕊𝕊𝑓𝑓T) ∶ ε = Cper

eff ∶ ε, (B.21) 

where Cper
eff  is the quasi-static effective constitutive tensor accounting periodic boundary 

conditions, reading 

Cper
eff = C􏼙􏼙 − 𝕊𝕊𝑓𝑓(𝕂𝕂𝜇𝜇

∗𝑓𝑓𝑓𝑓)−􏷠􏷠𝕊𝕊𝑓𝑓T. (B.22) 

I.B.3 Resolution of the inertial system 

Recalling Eq. (60), the inertial RVE system reads 

􏿯􏿯
𝕄𝕄𝜇𝜇 𝟎𝟎

𝟎𝟎 𝟎𝟎
􏿲􏿲 􏿰􏿰

𝒖𝒖􏾦̈􏾦𝜇𝜇
(􏷡􏷡)

𝜷𝜷(̈􏷡􏷡)􏿳􏿳 + 􏿰􏿰
𝕂𝕂𝜇𝜇 −ℕ𝜇𝜇

T

−ℕ𝜇𝜇 𝟎𝟎 􏿳􏿳 􏿰􏿰
𝒖𝒖􏾦􏾦𝜇𝜇

(􏷡􏷡)

𝜷𝜷(􏷡􏷡)􏿳􏿳 = − 􏿯􏿯
𝟎𝟎
𝒖𝒖

􏿲􏿲 (B.23) 

In order to deal with the system(B.23), it will be useful to explicitly consider the rigid body 

motion of the micro-displacement field, 𝒖𝒖􏾦􏾦𝜇𝜇
(􏷡􏷡), so 

𝒖𝒖􏾦􏾦𝜇𝜇 = [𝕀𝕀 𝕐𝕐 𝕋𝕋] ⎣⎢⎢⎢
⎢⎢⎢
⎡ 𝒄𝒄

𝜃𝜃
𝒖𝒖􏾦􏾦𝜇𝜇

∗(􏷡􏷡)⎦⎥⎥⎥
⎥⎥⎥
⎤
 (B.24) 

with 

𝕀𝕀 = ⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡ ⋮
1 0
0 1

⋮
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

, (B.25) 

𝕐𝕐 =
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡ ⋮
−(𝑦𝑦􏾦􏾦􏷡􏷡

(𝑗𝑗) − 𝑦𝑦􏷡􏷡
(􏷟􏷟))

𝑦𝑦􏾦􏾦􏷠􏷠
(𝑗𝑗) − 𝑦𝑦􏷠􏷠

(􏷟􏷟)

⋮
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

, (B.26) 

𝕋𝕋 = 􏿼􏿼
I, for minimal kinematic conditions

ℙ, for periodic boundary conditions
 (B.27) 

where 𝒄𝒄 is a rigid body translation, 𝜃𝜃 is an infinitesimal in-plane rotation angle and 𝒖𝒖􏾦􏾦𝜇𝜇
∗(􏷡􏷡) is 

the remaining component of the solution field that in this case assumes the role of a 

micro-fluctuation like field. Note that, since the driving action in this case is such that ε =

𝟎𝟎, periodic boundary conditions can be accounted in this resolution scheme simply by 
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setting 𝕋𝕋 = ℙ instead of 𝕋𝕋 = I, which would be the case when accounting for minimal 

kinematic restrictions. 

Now, introducing expression (B.24) into the system (B.23) and pre-multiplying the first 

equation by [𝕀𝕀 𝕐𝕐 𝕋𝕋]T, one finds 

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡ 𝕀𝕀T𝕄𝕄𝜇𝜇𝕀𝕀 𝕀𝕀T𝕄𝕄𝜇𝜇𝕐𝕐 𝕀𝕀T𝕄𝕄𝜇𝜇𝕋𝕋 𝟎𝟎
𝕐𝕐T𝕄𝕄𝜇𝜇𝕀𝕀 𝕐𝕐T𝕄𝕄𝜇𝜇𝕐𝕐 𝕐𝕐T𝕄𝕄𝜇𝜇𝕋𝕋 𝟎𝟎
𝕋𝕋T𝕄𝕄𝜇𝜇𝕀𝕀 𝕋𝕋T𝕄𝕄𝜇𝜇𝕐𝕐 𝕋𝕋T𝕄𝕄𝜇𝜇𝕋𝕋 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡ 𝒄̈𝒄

𝜃̈𝜃
𝒖𝒖􏾦̈􏾦𝜇𝜇

∗(􏷡􏷡)

𝜷𝜷(̈􏷡􏷡) ⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

+
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡ 𝟎𝟎 𝟎𝟎 𝟎𝟎 −I

𝟎𝟎 0 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝕋𝕋T𝕂𝕂𝜇𝜇𝕋𝕋 −𝕋𝕋Tℕ𝜇𝜇

T

−I 𝟎𝟎 −ℕ𝜇𝜇𝕋𝕋 𝟎𝟎 ⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡ 𝒄𝒄

𝜃𝜃
𝒖𝒖􏾦􏾦𝜇𝜇

∗(􏷡􏷡)

𝜷𝜷(􏷡􏷡) ⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

= −
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡𝟎𝟎
𝟎𝟎
𝟎𝟎
𝒖𝒖

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

. (B.28) 

Note that since both 𝕀𝕀 and 𝕐𝕐 are rigid body modes, then 𝕂𝕂𝜇𝜇[𝕀𝕀 𝕐𝕐] = 𝟎𝟎, which has already 

been considered in Eq. (B.28). Furthermore, from the construction of the matrix ℕ𝜇𝜇, it 

should also be easy to verify that ℕ𝜇𝜇𝕀𝕀 = I and, since 𝒚𝒚􏷟􏷟 is the centroid of the RVE, ℕ𝜇𝜇𝕐𝕐 =

𝟎𝟎. 

From the second equation in system (B.28), we obtain 

𝜃̈𝜃 = −(𝕐𝕐𝑇𝑇𝕄𝕄𝜇𝜇𝕐𝕐)−􏷠􏷠𝕐𝕐𝑇𝑇𝕄𝕄𝜇𝜇(𝒄̈𝒄 − 𝒖𝒖􏾦̈􏾦𝜇𝜇
∗(􏷡􏷡)), (B.29) 

which can be substituted into the system yielding 

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡

𝕀𝕀T𝕄𝕄􏾨􏾨𝜇𝜇𝕀𝕀 𝕀𝕀T𝕄𝕄􏾨􏾨𝜇𝜇𝕋𝕋 𝟎𝟎
𝕋𝕋T𝕄𝕄􏾨􏾨𝜇𝜇𝕀𝕀 𝕋𝕋T𝕄𝕄􏾨􏾨𝜇𝜇𝕋𝕋 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡ 𝒄̈𝒄
𝒖𝒖􏾦̈􏾦𝜇𝜇

∗(􏷡􏷡)

𝜷𝜷(̈􏷡􏷡) ⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

+ ⎣⎢⎢⎢
⎢⎢⎢⎢
⎡ 𝟎𝟎 𝟎𝟎 −I

𝟎𝟎 𝕋𝕋T𝕂𝕂𝜇𝜇𝕋𝕋 −𝕋𝕋Tℕ𝜇𝜇
T

−I −ℕ𝜇𝜇𝕋𝕋 𝟎𝟎 ⎦⎥⎥⎥
⎥⎥⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎡ 𝒄𝒄
𝒖𝒖􏾦􏾦𝜇𝜇

∗(􏷡􏷡)

𝜷𝜷(􏷡􏷡) ⎦⎥⎥⎥
⎥⎥⎥⎥
⎤

= − 􏿰􏿰
𝟎𝟎
𝟎𝟎
𝒖𝒖

􏿳􏿳. (B.30) 

where 

𝕄𝕄􏾨􏾨𝜇𝜇 = 𝕄𝕄𝜇𝜇(𝐼𝐼 − 𝕐𝕐(𝕐𝕐T𝕄𝕄𝜇𝜇𝕐𝕐)−􏷠􏷠𝕐𝕐T𝕄𝕄𝜇𝜇), (B.31) 

Now, from the last equation in system (B.30), we obtain 

𝒄𝒄 = 𝒖𝒖 − ℕ𝜇𝜇𝕋𝕋𝒖𝒖􏾦􏾦𝜇𝜇
∗(􏷡􏷡). (B.32) 

Introducing expression (B.32) into the second equation in system (B.30) yields 

𝜷𝜷(􏷡􏷡) = R􏼙􏼙 ⋅ 𝒖̈𝒖 + 𝔻𝔻𝒖𝒖􏾦̈􏾦𝜇𝜇
∗(􏷡􏷡), (B.33) 

where 

R􏼙􏼙 = 𝕀𝕀T𝕄𝕄􏾨􏾨𝜇𝜇𝕀𝕀, (B.34) 

𝔻𝔻 = 𝕀𝕀T𝕄𝕄􏾨􏾨𝜇𝜇(I − 𝕀𝕀ℕ𝜇𝜇)𝕋𝕋. (B.35) 
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Finally, by introducing expressions (B.32) and (B.33) into the second equation in system 

(B.28), one finds 

𝕄𝕄𝜇𝜇
∗ 𝒖𝒖􏾦̈􏾦𝜇𝜇

∗(􏷡􏷡) + 𝕂𝕂𝜇𝜇
∗ 𝒖𝒖􏾦􏾦𝜇𝜇

∗(􏷡􏷡) = −𝔻𝔻T𝒖̈𝒖, (B.36) 

where 

𝕂𝕂𝜇𝜇
∗ = 𝕋𝕋T𝕂𝕂𝜇𝜇𝕋𝕋, (B.37) 

𝕄𝕄𝜇𝜇
∗ = 𝕋𝕋T(I − 𝕀𝕀ℕ𝜇𝜇)T𝕄𝕄􏾨􏾨𝜇𝜇(I − 𝕀𝕀ℕ𝜇𝜇)𝕋𝕋 (B.38) 

 

REMARK 13 It should be pointed out here, from the construction of the matrices 𝕄𝕄𝜇𝜇, 𝕀𝕀 

and 𝕐𝕐, that 

𝕀𝕀T𝕄𝕄𝜇𝜇𝕀𝕀 = 􏿰􏿰
⟨𝜌𝜌𝜇𝜇⟩𝛺𝛺𝜇𝜇 0

0 ⟨𝜌𝜌𝜇𝜇⟩𝛺𝛺𝜇𝜇
􏿳􏿳, (B.39) 

𝕀𝕀T𝕄𝕄𝜇𝜇𝕐𝕐 = ⎣⎢⎢⎢
⎢⎢⎢
⎡
−⟨𝜌𝜌𝜇𝜇(𝑦𝑦􏷡􏷡 − 𝑦𝑦􏷡􏷡

(􏷟􏷟))⟩𝛺𝛺𝜇𝜇

⟨𝜌𝜌𝜇𝜇(𝑦𝑦􏷠􏷠 − 𝑦𝑦􏷠􏷠
(􏷟􏷟))⟩𝛺𝛺𝜇𝜇

⎦⎥⎥⎥
⎥⎥⎥
⎤

= ⎣⎢⎢⎢
⎢⎢⎢
⎡
⟨𝜌𝜌𝜇𝜇⟩𝛺𝛺𝜇𝜇𝑦𝑦􏷡􏷡

(􏷟􏷟) − ⟨𝜌𝜌𝜇𝜇𝑦𝑦􏷡􏷡⟩𝛺𝛺𝜇𝜇

⟨𝜌𝜌𝜇𝜇𝑦𝑦􏷠􏷠⟩𝛺𝛺𝜇𝜇 − ⟨𝜌𝜌𝜇𝜇⟩𝛺𝛺𝜇𝜇𝑦𝑦􏷠􏷠
(􏷟􏷟)⎦⎥⎥⎥

⎥⎥⎥
⎤
 (B.40) 

From Eq. (B.40), we see that in cases where the geometric center of the RVE, 𝒚𝒚􏷟􏷟, 

coincides with its center of mass 𝒚𝒚𝐺𝐺, i.e. 

𝒚𝒚􏷟􏷟 = 𝒚𝒚𝐺𝐺 =
⟨𝜌𝜌𝜇𝜇𝒚𝒚⟩𝛺𝛺𝜇𝜇

⟨𝜌𝜌𝜇𝜇⟩𝛺𝛺𝜇𝜇

 (B.41) 

the matrix 𝕀𝕀𝑇𝑇𝕄𝕄𝜇𝜇𝕐𝕐 automatically vanishes, yielding 

R􏼙􏼙 = 𝕀𝕀T𝕄𝕄𝜇𝜇𝕀𝕀 = ⟨𝜌𝜌𝜇𝜇⟩𝛺𝛺𝜇𝜇I, (B.42) 

𝔻𝔻 = 𝕀𝕀T𝕄𝕄𝜇𝜇(I − 𝕀𝕀ℕ𝜇𝜇)𝕋𝕋. (B.43) 
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Abstract 

The so-called Locally Resonant Acoustic Metamaterials (LRAM) are considered for the 

design of specifically engineered devices capable of stopping waves from propagating 

in certain frequency regions (bandgaps), this making them applicable for acoustic 

insulation purposes. This fact has inspired the design of a new kind of lightweight acoustic 

insulation panels with the ability to attenuate noise sources in the low frequency range 

(below 5000 Hz) without requiring thick pieces of very dense materials. A design 

procedure based on different computational mechanics tools, namely, (1) a multiscale 

homogenization framework, (2) model order reduction strategies and (3) topological 

optimization procedures, is proposed. It aims at attenuating sound waves through the 

panel for a target set of resonance frequencies as well as maximizing the associated 

bandgaps. The resulting design’s performance is later studied by introducing viscoelastic 

properties in the coating phase, in order to both analyse their effects on the overall design 

and account for more realistic behaviour. The study displays the emerging field of 

Computational Material Design (CMD) as a computational mechanics area with 

enormous potential for the design of metamaterial-based industrial acoustic parts. 

Keywords:  Multiscale modelling, Computational design, Topology optimization, Acoustic 

metamaterials 
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II.1  Motivation 

The concept of Locally Resonant Acoustic Metamaterials (LRAM) has been object of 

growing interest among the scientific and technological communities in recent years. The 

notion of metamaterials emerged in the late 1990s as a new kind of engineered materials, 

by optimizing their morphology or arrangement at lower scales, capable of exhibiting 

properties “on demand” that are not found in naturally occurring materials. In the specific 

case of acoustic metamaterials, these properties involve exotic or counter-intuitive 

behavior caused by the interaction of the material with acoustic or elastic waves’ 

propagation features. These types of materials could be used, for instance, to design 

acoustic insulation panels that target specific frequency bands (especially in the low-

frequency range, i.e. below 5000 Hz, where most sources of environmental noise are 

produced). In contrast to conventional acoustic panels, which require either a large 

thickness or high mass density in order to provide effective sound attenuation at lower 

frequencies, LRAM-based panels can achieve good levels of transmission loss in the 

whole frequency range of interest with relatively thin, lightweight designs. 

Scientific research in the field of metamaterials started in the late 19th century with the 

works of Floquet and Rayleigh among others, who studied phenomena related to the 

propagation of waves in periodic systems. However, it was not until the beginning of this 

century when the first implementation of an acoustic metamaterial capable of stopping 

waves from transmitting in a certain frequency band was reported by Liu et al. [1]. Later 

on, Ho et al. [2] and Calius et al. [3] performed other experimental demonstrations with 

silicone rubber-coated metal spheres embedded in polymer matrices, while more 

recently, Claeys et al. [4]  have carried out tests with a fully 3D-printed design with internal 

resonators capable of achieving also good attenuation properties in the low-frequency 

range. The idea of LRAM-based insulation panels has already been explored, both 

theoretically and experimentally, for membrane-type [5, 6] and plate-type [7] acoustic 

metamaterials.  

On the other hand, computational models for the study and characterization of LRAMs 

have been traditionally focused on periodically repeated microstructures where Bloch-

Floquet boundary conditions can be applied [8, 9]. More recent developments include 

the works of Sridhar et al. [10, 11] and Roca et al. [12], in which computational 
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homogenization frameworks accounting for inertial effects have been proposed, capable 

of capturing the local resonance phenomena that characterizes such kind of materials.  

Aiming at trying to enlarge the effective attenuation band achieved by the local resonance 

phenomenon in metamaterials is a challenging task, since the so-called frequency 

bandgaps produced by typical LRAM designs, which are the source of their attenuation 

capabilities, tend to be too narrow in the frequency spectrum. In this regard, several 

proposals have been made recently in the literature in order to find a solution for this 

problem. For instance, Matsuki et al. [13] proposed a topology optimization-based 

method to obtain optimal LRAM configurations with multiple attenuation peaks, which 

can be considered one of the first attempts to apply optimization procedures to LRAM 

materials. Other approaches are focused on taking advantage of the viscoelastic nature 

of the coating materials in typical LRAM configurations. The first notions on the beneficial 

effects of viscous damping in acoustic metamaterials were reported by Hussein and 

Frazier [14], who introduced the concept of metadamping to refer to the damping 

emergence phenomenon produced as a result of combining the effects of local 

resonance with viscous dissipation. The concept of metadamping has also been explored 

in more detail in subsequent works [15] and the idea of acoustic metamaterial 

configurations based on this (phononic resonators) has been proposed by DePauw et al. 

[16]. This phenomenon has also been studied more recently in the context of acoustic 

metamaterials in the work of Manimala and Sun [17], where they show, by means of an 

analytical approach, the dispersion properties of LRAMs with different models of 

viscoelastic (dissipative) behavior for the coating material, and the works of Krushynska 

et al. [18] and Lewinska et al. [19], in which generalized viscoelastic modelling is 

introduced in the study of the attenuation performance of LRAMs.  

In this paper, the authors attempt at setting a computational based methodology for the 

modelling, analysis and design of metamaterial parts exhibiting local resonance 

phenomena by combining three well-established complementary computational tools: (1) 

a multiscale hierarchical homogenization procedure specifically devised for acoustic 

problems, described in [12], (2) the exploitation of Reduced Order Modelling (ROM) 

techniques, to minimize the resulting computational cost, based on selective projections 

of the RVE behaviour onto the space spanned by its natural modes and (3) topology 

optimization techniques.  
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A design strategy is proposed to optimize the attenuation performance of an insulation 

panel made of LRAMs for a target band of frequencies, by optimizing the topology of the 

material at the mesoscale. This allows considering its industrial manufacture by means 

of emergent 3D-printing or similar techniques. The proposed design strategy is based on 

(a) fitting the lower bound of the target band with some natural resonance frequency of 

the material at the design scale, and (b) maximizing the target band’s bandwidth. The 

resulting design exhibits acoustic insulation properties much improved, in comparison to 

those that could have been obtained by simple trial-and-error procedures, which proves 

the benefits of the considered CMD methodology. 

II.2  Multiscale modelling of LRAMs 

The computational homogenization framework introduced in [12] has been used here as 

the base model upon which the methodology for the design of LRAMs will be built. The 

framework can be applied to problems where a separation of scales is present, for 

instance, allowing us to identify a representative volume element (RVE), typically a unit 

cell, in a macroscopic structure. This separation of scales is established in terms of the 

macroscopic characteristic wavelength, 𝜆𝜆, which has to be larger than the characteristic 

size of the lower scale, ℓ𝜇𝜇, otherwise the validity of the homogenization model cannot be 

guaranteed. This is not an impediment to deal with LRAMs considering they are designed 

to operate in the low-frequency regime where the condition 

𝜆𝜆 ≫ ℓ𝜇𝜇 (1) 

is easily satisfied. In fact, expression (1) is also a condition required for local resonance 

phenomena to arise [9]. 

For clarity purposes, from now on magnitudes referring to the microscale will be 

subscripted by 𝜇𝜇, in order to distinguish them from their macroscopic counterparts. 

Additionally, space coordinates for the macroscale will be referred by 𝒙𝒙, while those for 

the microscale will be referred by 𝒚𝒚, when necessary. 

The framework is grounded on a generalization accounting for inertial effects of the 

classical Hill-Mandel principle [20], in which the macroscale is assumed to behave as a 

Cauchy’s continua, thus satisfying the classical postulates of linear and angular 

momentum: 
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𝜵𝜵𝒙𝒙 ⋅ σ(𝒙𝒙, 𝑡𝑡) = 𝒑̇𝒑(𝒙𝒙, 𝑡𝑡), (2) 

σ(𝒙𝒙, 𝑡𝑡) = σT(𝒙𝒙, 𝑡𝑡), ∀ 𝒙𝒙 ∈ 𝛺𝛺, ∀ 𝑡𝑡 ∈ [0, 𝑇𝑇], (3) 

where σ is the macroscopic stress, 𝒑̇𝒑 is the macroscopic inertial force, 𝑡𝑡 refers to the time 

variable, (∙)̇  stands for the time derivative of (∙), and 𝛺𝛺 refers to the spatial macroscopic 

domain. Note that body forces have not been considered, for the sake of simplicity, since 

they are not relevant in the context of acoustic problems that are tackled here. 

By applying an energetic equivalence between scales, which is given by a variational 

statement of the generalized Hill-Mandel principle, i.e. 

𝒑̇𝒑 ⋅ 𝒖̇𝒖 + σ ∶ ε̇ = ⟨𝒑̇𝒑𝜇𝜇 ⋅ 𝒖̇𝒖𝜇𝜇 + σ𝜇𝜇 ∶ 𝜵𝜵𝒚𝒚
S𝒖̇𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇, ∀ 𝒖̇𝒖, ε̇    𝑎𝑎𝑎𝑎𝑎𝑎     ∀ 𝒖̇𝒖𝜇𝜇 ∈ 𝓤𝓤𝜇𝜇; (4) 

along with kinematic restrictions that link the macroscopic displacements, 𝒖𝒖, and strains, 

ε = 𝜵𝜵𝒙𝒙
S𝒖𝒖, with their microscale counterparts, 𝒖𝒖𝜇𝜇 and ε𝜇𝜇 = 𝜵𝜵𝒚𝒚

S𝒖𝒖𝜇𝜇, namely 

𝓤𝓤𝜇𝜇 ≔ 􏿺􏿺𝒖𝒖𝜇𝜇 ∶ 𝛺𝛺 × [0, 𝑇𝑇] → ℝ𝑚𝑚  |  ⟨𝒖𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 𝒖𝒖;  ⟨𝜵𝜵𝒚𝒚
S𝒖𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = ε􏿽􏿽, (5) 

one can obtain a Lagrange-extended dynamic system of equations for the RVE in which 

the Lagrange multipliers, 𝜷𝜷 and λ respectively, corresponding to the reactions to the 

minimal kinematic restrictions given by Eq. (5) can be identified as 

𝜷𝜷 = ⟨𝒑̇𝒑𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 𝒑̇𝒑 (6) 

λ = ⟨σ𝜇𝜇 + 𝒑̇𝒑𝜇𝜇 ⊗S (𝒚𝒚 − 𝒚𝒚(􏷟􏷟))⟩𝛺𝛺𝜇𝜇. (7) 

An in-depth explanation of the theory and further details on the derivation of these terms 

can be found in Roca et al. [12]. Note that the angle brackets symbol is used to refer to 

the average volume integral over the RVE, i.e. ⟨(∙)⟩𝛺𝛺𝜇𝜇 = ∫ (∙)𝑑𝑑𝑑𝑑
𝛺𝛺𝜇𝜇

. 

After a Galerkin-based finite elements discretization, this so-called extended RVE system 

has the form: 

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝕄𝕄𝜇𝜇 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝒖𝒖􏾦̈􏾦𝜇𝜇

𝜷𝜷̈
λ̈

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

+
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡ 𝕂𝕂𝜇𝜇 −ℕ𝜇𝜇

T −𝔹𝔹𝜇𝜇
T

−ℕ𝜇𝜇 𝟎𝟎 𝟎𝟎
−𝔹𝔹𝜇𝜇 𝟎𝟎 𝟎𝟎 ⎦⎥⎥⎥

⎥⎥⎥⎥
⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡𝒖𝒖􏾦􏾦𝜇𝜇

𝜷𝜷
λ

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

= ⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡ 𝟎𝟎
−𝒖𝒖
-ε

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

, (8) 

where 𝕄𝕄𝜇𝜇 and 𝕂𝕂𝜇𝜇 are the standard mass and stiffness matrices of the RVE system, 𝒖𝒖􏾦􏾦𝜇𝜇 is 

the column vector with the nodal values for microscale displacement field, 𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡), while 

𝜷𝜷 and λ are, respectively, the Lagrange multipliers associated to the kinematic 
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restrictions over displacements and their gradient, which are imposed by the matrices 

ℕ𝜇𝜇 and 𝔹𝔹𝜇𝜇, respectively. 

Note that, in the system (8), the displacement and strain of the associated point, 𝒖𝒖(𝒙𝒙, 𝑡𝑡), 

ε(𝒙𝒙, 𝑡𝑡), become actions and, as indicated by Eqs. (6) and (7), one can relate the resulting 

Lagrange multipliers, 𝜷𝜷(𝒙𝒙, 𝑡𝑡) and λ(𝒙𝒙, 𝑡𝑡), with the macroscopic inertial force and stress at 

that point, 𝒑̇𝒑(𝒙𝒙, 𝑡𝑡) and σ(𝒙𝒙, 𝑡𝑡), respectively. As it is shown in [12], the system (8) can be 

split into: 

(1) Quasi-static system (𝒖𝒖 = 𝟎𝟎) 

􏿰􏿰
𝕂𝕂𝜇𝜇 −𝔹𝔹𝜇𝜇

T

−𝔹𝔹𝜇𝜇 𝟎𝟎 􏿳􏿳 􏿰􏿰𝒖𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠)

λ(􏷠􏷠)􏿳􏿳 = 􏿯􏿯
𝟎𝟎

−ε
􏿲􏿲 (9) 

(2) Inertial system (ε = 𝟎𝟎) 

􏿯􏿯
𝕄𝕄𝜇𝜇 𝟎𝟎

𝟎𝟎 𝟎𝟎
􏿲􏿲 􏿰􏿰

𝒖𝒖􏾦̈􏾦𝜇𝜇
(􏷡􏷡)

𝜷𝜷(̈􏷡􏷡)􏿳􏿳 + 􏿰􏿰
𝕂𝕂𝜇𝜇 −ℕ𝜇𝜇

T

−ℕ𝜇𝜇 𝟎𝟎 􏿳􏿳 􏿰􏿰
𝒖𝒖􏾦􏾦𝜇𝜇

(􏷡􏷡)

𝜷𝜷(􏷡􏷡)􏿳􏿳 = 􏿯􏿯
𝟎𝟎

−𝒖𝒖
􏿲􏿲 (10) 

The split is based on considering each action separately in each subsystem along with 

certain hypotheses, which are suitable for the study of local resonance phenomena in 

acoustic problems. In particular: 

(a) The macroscopic strain accelerations are negligible, i.e. ε̈ ≈ 𝟎𝟎, allowing for the 

system (9) to actually behave quasi-statically, thus 𝜷𝜷(􏷠􏷠) = 𝒑̇𝒑(􏷠􏷠) ≈ 𝟎𝟎. 

(b) The RVE’s topology exhibits symmetry with respect to its geometric center, which 

allows us to assume, for the subsystem (10), λ(􏷡􏷡) = σ(􏷡􏷡) ≈ 𝟎𝟎. 

From the quasi-static part of the system, one can derive an expression for the 

macroscopic stress that reads 

σ(𝒙𝒙, 𝑡𝑡) ≈ C eff(𝒙𝒙) ∶ ε(𝒙𝒙, 𝑡𝑡), (11) 

where C eff is an effective constitutive tensor. 

On the other hand, from the inertial subsystem, it is possible to obtain the macroscopic 

inertial force as 

𝒑̇𝒑(𝒙𝒙, 𝑡𝑡) ≈ 𝜌̅𝜌(𝒙𝒙)𝒖̈𝒖(𝒙𝒙, 𝑡𝑡) + ℚ(𝒙𝒙) ⋅ 𝒒̈𝒒𝜇𝜇(𝒙𝒙, 𝑡𝑡), (12) 
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where 𝜌̅𝜌 is the RVE average mass density and the second term in Eq. (12) represents the 

contribution of coupled micro-inertial effects (through the matrix ℚ) whose behavior is 

dictated by the reduced set of uncoupled equations resulting from the modal projection 

of the inertial subsystem (10) 

𝒒̈𝒒𝜇𝜇(𝒙𝒙, 𝑡𝑡) + Ω𝜇𝜇
􏷡􏷡(𝒙𝒙)𝒒𝒒𝜇𝜇(𝒙𝒙, 𝑡𝑡) = −ℚT(𝒙𝒙) ⋅ 𝒖̈𝒖(𝒙𝒙, 𝑡𝑡), (13) 

where Ω𝜇𝜇 is a diagonal matrix containing the relevant natural frequencies of the inertial 

subsystem. More details on the derivation of these terms can be found in [12]. 

II.3  Modelling the viscoelastic behavior in LRAMs 

The consideration of viscoelastic phenomena affects the model for the stress-strain 

relation. While in [12], materials in the microscale where assumed to behave as linear 

elastic solids, here, in order to account for rate-dependent effects, a more enriched 

Kelvin-Voigt model will be introduced [18, 19], so that the stress-strain relation becomes 

σ𝜇𝜇(𝒚𝒚, 𝑡𝑡) = C𝜇𝜇(𝒚𝒚) ∶ 𝜵𝜵𝒚𝒚
S𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) + η𝜇𝜇(𝒚𝒚) ∶ 𝜵𝜵𝒚𝒚

S𝒖̇𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡), (14) 

where C𝜇𝜇 remains as the fourth-order constitutive tensor for an isotropic, linear elastic 

material and η𝜇𝜇 assumes the role of an analogous fourth-order viscous tensor. Since for 

most polymer-type materials (potential candidates as dissipative coating materials), rate-

dependency affects mainly the deviatoric component of the strain velocity, typically the 

viscosity tensor will be considered as 

η(𝒚𝒚) = 2𝜇𝜇𝜇𝜇(𝒚𝒚)I dev, (15) 

where 𝜇𝜇𝜇𝜇 is the materials’ viscosity distribution and I dev is the deviatoric fourth-order 

tensor, defined in index notation as 

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
dev =

1
2

(𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗) −
1
3

𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘, (16) 

with 𝛿𝛿𝑖𝑖𝑖𝑖 being Kronecker deltas (1 for 𝑖𝑖 = 𝑗𝑗 and 0 otherwise). 

Since the hypotheses for homogenization can be compatible with the introduction of this 

additional effect, the model still holds and the formulation naturally adapts to 

accommodate this new term. A detailed development of the model’s equations with this 

additional term is provided in Appendix II.A, so in this section, only the changes in the 

results will be discussed, i.e.: 
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(a) The first relevant difference is in the expression for the macroscopic stress, which 

now reads 

σ(𝒙𝒙, 𝑡𝑡) ≈ C eff(𝒙𝒙) ∶ ε(𝒙𝒙, 𝑡𝑡) + ηeff(𝒙𝒙) ∶ ε̇(𝒙𝒙, 𝑡𝑡). (17) 

Notice the appearance of an effective viscous tensor ηeff. This is not surprising 

considering the viscoelastic model assumed for the microscale in Eq. (14), which 

has an analogous form. 

(b) The second difference appears in the projected inertial system of reduced degrees 

of freedom. While formally the expression for the macroscopic inertia is the same 

than in Eq. (12), an additional damping term appears in former equation (13), which 

now reads 

𝒒̈𝒒𝜇𝜇(𝒙𝒙, 𝑡𝑡) + Ω𝜇𝜇
D(𝒙𝒙)𝒒̇𝒒𝜇𝜇(𝒙𝒙, 𝑡𝑡) + Ω𝜇𝜇

􏷡􏷡(𝒙𝒙)𝒒𝒒𝜇𝜇(𝒙𝒙, 𝑡𝑡) = −ℚT(𝒙𝒙) ⋅ 𝒖̈𝒖(𝒙𝒙, 𝑡𝑡), (18) 

The new matrix Ω𝜇𝜇
D is responsible for damping the vibration near the resonance 

frequencies of the RVE. While this counteracts the effects of local resonance 

phenomena in the macroscale (especially the higher the frequency becomes), in a 

relatively low-frequency regime (where LRAMs operate), and for certain levels of 

viscosity, it can provide the beneficial effect of extending the effective attenuation 

band. This phenomenon will be observed and further described in Section II.5. 

REMARK 1 It is important to notice that, while the system of equations (13) is fully 

uncoupled, which allows us to perform an effective reduction of the number of degrees 

of freedom that need to be considered in the analysis, the same cannot be guaranteed 

for the system (18), due to the presence of the matrix Ω𝜇𝜇
D, which is non-diagonal, in 

general, and can make the homogenization model more computationally expensive than 

in the case where no viscoelastic effects are considered. This increase in computational 

cost is related to the degree of coupling existing in the matrix Ω𝜇𝜇
D, which ultimately 

depends on the RVE topology, material properties and modelling of viscoelastic effects 

in the microscale. For instance, the system (18) would remain fully uncoupled only in 

cases where the damping matrix is already diagonal or either it is proportional to the 

stiffness and/or the mass matrices (typically known as proportional Rayleigh damping 

model), which cause the matrix Ω𝜇𝜇
D to be diagonal. In the specific cases accounting for 

viscous effects considered in this work, strain rate dependence is only considered in 
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one of the material components, i.e. the coating, thus, in general, the matrix Ω𝜇𝜇
D is non-

diagonal. However, the degree of coupling with non-relevant modes will be small 

enough to be negligible in practice. 

 

II.4  Topological design of LRAMs 

Aiming at obtaining LRAMs with topologies designed to achieve better attenuation 

properties, i.e. increasing the levels and range of transmission loss (in the specific case 

of acoustic insulation panels), a level-set based topology optimization strategy is 

proposed here with two main objectives: 

(a) Fit the relevant resonance frequencies of the resulting topology into a targeted 

band. This is done by matching the lower-bound of the target band with a relevant 

resonance frequency of the RVE (see FIG. 1). 

(b) Maximize the bandwidth of the target band in terms of the topology of the RVE 

materials. 

In such methodologies, a suitable cost function is minimized, in a variational way, with 

respect to a characteristic function 

𝜒𝜒(𝒚𝒚) ∶ 𝛺𝛺𝜇𝜇 → {0, 1}, (19) 

that defines the material distribution in the design domain 𝛺𝛺𝜇𝜇, taking values of 1 for dense 

material regions (inclusions): 𝒚𝒚 ∈ 𝛺𝛺𝜇𝜇
+ and 0 for soft material regions (coating/void): 𝒚𝒚 ∈

𝛺𝛺𝜇𝜇
− (𝛺𝛺𝜇𝜇

+ ∪ 𝛺𝛺𝜇𝜇
− = 𝛺𝛺𝜇𝜇). These regions are typically determined by a smooth level-set 

function 𝜙𝜙(𝒚𝒚) such that 

𝜒𝜒(𝒚𝒚) ∶= ℋ (𝜙𝜙(𝒚𝒚)) ≡ 􏿼􏿼
0 ∀ 𝒚𝒚  such that  𝜙𝜙(𝒚𝒚) < 0
1 ∀ 𝒚𝒚  such that  𝜙𝜙(𝒚𝒚) ≥ 0

, (20) 

so that the function 𝜙𝜙(𝒚𝒚) becomes the unknown of the problem in a variational context. 

Prior to presenting the optimization problem itself, let us first review the RVE equations 

that will be required to solve this problem. First, in order to obtain the RVE’s relevant 

resonance frequencies, the modal problem of the restricted system must be solved 

􏿴􏿴𝕂𝕂𝜇𝜇
∗ − 𝜆𝜆𝜇𝜇

∗(𝑘𝑘)𝕄𝕄𝜇𝜇
∗ 􏿷􏿷𝝓𝝓􏾦􏾦𝜇𝜇

∗(𝑘𝑘) = 𝟎𝟎, 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘)T𝕄𝕄𝜇𝜇

∗ 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘) = 1, (21) 
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FIG. 1 RVE configuration for the LRAM topology optimization (left) and typical effective LRAM density 
diagram depicting the frequency bandgap corresponding to negative densities (right). In order to ensure 
LRAM-like behavior, a fixed matrix of material is considered, 𝛺𝛺𝜇𝜇

􏷟􏷟 , with constant material properties and 

𝜒𝜒(𝑦𝑦) = 1, ∀ 𝑦𝑦 ∈ 𝛺𝛺𝜇𝜇
􏷟􏷟 . Only in the inside region the characteristic function 𝜒𝜒 is allowed to change giving 

rise to dense material volumes corresponding to inclusions, 𝛺𝛺𝜇𝜇
+, and soft material volumes 

corresponding to void/coating material, 𝛺𝛺𝜇𝜇
−. The resulting resonance frequencies 𝜔𝜔𝜇𝜇

∗(􏷠􏷠) = 􏽯􏽯𝜆𝜆𝜇𝜇
∗(􏷠􏷠) and 

𝜔𝜔𝜇𝜇
(􏷠􏷠) = 􏽯􏽯𝜆𝜆𝜇𝜇

(􏷠􏷠) associated to the restricted and unrestricted system modes, respectively, determine the 

lower and upper bounds of the target band, whose lower bound is matched to 𝜆𝜆􏼞􏼞𝜇𝜇
∗ . 

 

where 𝕂𝕂𝜇𝜇
∗  and 𝕄𝕄𝜇𝜇

∗  are the resulting stiffness and mass matrices once the kinematic 

restrictions on the microfluctuation field have been applied. In this specific case, since 

the local resonance phenomenon occurs at frequencies corresponding to internal 

vibration modes, a good approximation to meet our goals consists of prescribing all RVE 

boundaries. The terms 𝜆𝜆𝜇𝜇
∗(𝑘𝑘) and 𝝓𝝓􏾦􏾦𝜇𝜇

∗(𝑘𝑘) correspond to the squared natural frequencies and 

mass-normalized vibration modes of the system. According to Eq. (12), only those modes 

𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘) such that their corresponding columns in the generalized coupling matrix ℚ are 

larger than a certain tolerance 𝛿𝛿tol, should be considered as relevant. Thus, the set of 

relevant resonance frequencies is given by 

𝜔𝜔𝜇𝜇
∗(𝑘𝑘) = 􏽯􏽯𝜆𝜆𝜇𝜇

∗(𝑘𝑘)   such that   ‖ℚ(𝑘𝑘)‖ ≡ ‖⟨𝜌𝜌𝜇𝜇𝝓𝝓𝜇𝜇
∗(𝑘𝑘)⟩𝛺𝛺𝜇𝜇‖ > 𝛿𝛿tol. (22) 

Matrix
Fixed domain 𝛺𝛺𝜇𝜇

0

Design domain
Inclusion Coating/void

Dense material domain 𝛺𝛺𝜇𝜇+ Soft material domain 𝛺𝛺𝜇𝜇−
𝜌𝜌ef

f

𝜌𝜌 > 0

𝜆𝜆�𝜇𝜇
∗

𝜌𝜌 < 0

𝜌𝜌 > 0
Target band

Effective LRAM density

Restricted 
system 
modes

Unrestricted 
system 
modes

𝜆𝜆𝜇𝜇
∗(1) 𝜆𝜆𝜇𝜇

(1)
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Furthermore, since transmission loss peaks in LRAM panels are closely related to 

frequency bandgaps, whose lower and upper limits can be identified, respectively, with 

the relevant resonance frequencies of the restricted and unrestricted RVE system, 𝜔𝜔𝜇𝜇
∗(𝑘𝑘) 

and 𝜔𝜔𝜇𝜇
(𝑘𝑘), as reported in [12] (see Fig. 1 for a schematic representation), one can maximize 

their bandwidth, for instance, by minimizing the ratio 𝜆𝜆𝜇𝜇
∗(𝑘𝑘) 𝜆𝜆𝜇𝜇

(𝑘𝑘)􏿓􏿓 , where 𝜆𝜆𝜇𝜇
(𝑘𝑘) comes from the 

modal problem considering the mass and stiffness matrices of the RVE system prior to 

applying the kinematic restrictions, i.e. 

􏿴􏿴𝕂𝕂𝜇𝜇 − 𝜆𝜆𝜇𝜇
(𝑘𝑘)𝕄𝕄𝜇𝜇􏿷􏿷𝝓𝝓􏾦􏾦𝜇𝜇

(𝑘𝑘) = 𝟎𝟎, 𝝓𝝓􏾦􏾦𝜇𝜇
(𝑘𝑘)T𝕄𝕄𝜇𝜇𝝓𝝓􏾦􏾦𝜇𝜇

(𝑘𝑘) = 1, (23) 

where in this case, the only relevant 𝜆𝜆𝜇𝜇
(𝑘𝑘) that correspond to upper bounds of the 

frequency bandgaps can be identified by 

𝜔𝜔𝜇𝜇
(𝑘𝑘) = 􏽯􏽯𝜆𝜆𝜇𝜇

(𝑘𝑘)   such that   𝜆𝜆𝜇𝜇
(𝑘𝑘) > 0   and   ‖⟨𝝓𝝓𝜇𝜇

(𝑘𝑘)⟩𝛺𝛺𝜇𝜇‖ > 𝛿𝛿tol. (24) 

Note that, in this case, the additional condition 𝜆𝜆𝜇𝜇
(𝑘𝑘) > 0 needs to be applied in order to 

avoid rigid body translation modes, which are relevant according to condition ‖⟨𝝓𝝓𝜇𝜇
(𝑘𝑘)⟩𝛺𝛺𝜇𝜇‖ >

𝛿𝛿tol, but do not define the upper bounds of any bandgap. 

In this regard, the objective function proposed to minimize is given by 

𝛱𝛱(𝜒𝜒(𝜙𝜙)) = 𝛼𝛼𝑓𝑓􏷡􏷡 + (1 − 𝛼𝛼)𝑔𝑔􏷡􏷡, (25) 

with 

𝑓𝑓 =
ln 𝜆𝜆𝜇𝜇

∗(􏷠􏷠)(𝜒𝜒(𝜙𝜙)) − ln 𝜆𝜆􏼞􏼞𝜇𝜇
∗

ln 𝜆𝜆𝜇𝜇
∗(􏷠􏷠)(𝜒𝜒(𝜙𝜙)) + ln 𝜆𝜆􏼞􏼞𝜇𝜇∗

 (26) 

𝑔𝑔 =
ln 𝜆𝜆𝜇𝜇

∗(􏷠􏷠)(𝜒𝜒(𝜙𝜙))

ln 𝜆𝜆𝜇𝜇
(􏷠􏷠)(𝜒𝜒(𝜙𝜙))

 (27) 

subject to the state-equations (21) and (23). In Eqs. (25) to (27), 𝛼𝛼 is a weighting 

parameter to establish the relative importance of each term in the global objective 

function, 𝜆𝜆􏼞􏼞𝜇𝜇
∗  is the imposed targeted squared frequency to fit with the first relevant 

squared resonance frequency for the restricted RVE system 𝜆𝜆𝜇𝜇
∗(􏷠􏷠), while 𝜆𝜆𝜇𝜇

(􏷠􏷠) refers to the 

first relevant squared resonance frequency for the unrestricted RVE system. Note that, 

as long as 0 ≤ 𝛼𝛼 ≤ 1, the objective function will be bounded 𝛱𝛱 ∈ [0, 1], so that it reaches 
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its minimum value when all the desired objectives are fulfilled. For the sake of simplicity, 

only the first frequency band is targeted to fit in this framework, but Eq. (25) can be easily 

extended to target multiple frequency bands simply by adding the corresponding terms 

in the cost function. 

 

FIG. 2 Global procedure to evaluate the transmission loss of a LRAM panel with a topology optimized 
design. The material distribution is obtained from the topology optimization algorithm. This result is 
used to build an RVE with the actual material properties from which the effective properties are computed 
by employing the multiscale homogenization framework. Finally, a macroscale analysis is performed 
over a slice of the panel, imposing displacement and traction compatibility conditions with the incoming 
and outgoing waves and periodic boundary conditions at the material boundaries (in order to simulate 
the infinite extension of the panel in the vertical direction). This analysis is performed in the frequency 
domain for several test frequencies allowing us to obtain the transmission and reflection coefficients of 
the panel, 𝑇𝑇 and 𝑅𝑅, respectively. 
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The optimization problem then reads 

FIND 

𝜒𝜒(𝒚𝒚) = ℋ (𝜙𝜙(𝒚𝒚)) ∶ 𝛺𝛺𝜇𝜇 → {0, 1};  

FULFILLING 

𝜒𝜒 = arg min
𝜒𝜒

𝛱𝛱(𝜆𝜆𝜇𝜇
∗(􏷠􏷠)(𝜒𝜒), 𝜆𝜆𝜇𝜇

(􏷠􏷠)(𝜒𝜒)) , 

s.t. 􏿴􏿴𝕂𝕂𝜇𝜇
∗ − 𝜆𝜆𝜇𝜇

∗(𝑘𝑘)𝕄𝕄𝜇𝜇
∗ 􏿷􏿷𝝓𝝓􏾦􏾦𝜇𝜇

∗(𝑘𝑘) = 𝟎𝟎,

􏿴􏿴𝕂𝕂𝜇𝜇 − 𝜆𝜆𝜇𝜇
(𝑘𝑘)𝕄𝕄𝜇𝜇􏿷􏿷𝝓𝝓􏾦􏾦𝜇𝜇

(𝑘𝑘) = 𝟎𝟎.
 

(28) 

A time-marching technique is used to update the problem with a pseudo-time variable, 

from an initial state (typically all the design area full with dense material) towards a 

problem’s solution. In this case, a Hamilton-Jacobi approach has been considered in 

which the problem’s evolution has been defined in a rate form as 

𝜙̇𝜙(𝒚𝒚, 𝑡𝑡) ≡
𝜕𝜕𝜕𝜕(𝒚𝒚, 𝑡𝑡)

𝜕𝜕𝜕𝜕
= −𝐶𝐶􏷠􏷠

𝛿𝛿𝛱𝛱𝑡𝑡
𝛿𝛿𝛿𝛿

(𝒚𝒚), (29) 

allowing us to obtain the updated value of function 𝜙𝜙 from the previous iteration step 

through a straightforward time discretization of Eq. (29) 

𝜙𝜙𝑛𝑛+􏷠􏷠(𝒚𝒚) = 𝜙𝜙𝑛𝑛(𝒚𝒚) − ∆𝑡𝑡𝐶𝐶􏷠􏷠
𝛿𝛿𝛱𝛱𝑡𝑡
𝛿𝛿𝛿𝛿

(𝒚𝒚), ∀ 𝒚𝒚 ∈ 𝛺𝛺𝜇𝜇 (30) 

where ∆𝑡𝑡 is a pseudo-time step, 𝐶𝐶􏷠􏷠 > 0 is a parameter and 𝛿𝛿𝛱𝛱𝑡𝑡 𝛿𝛿𝛿𝛿⁄  is the topological 

sensitivity, evaluated at point 𝒚𝒚, of the cost function (25), here named as the Variational 

Topological Derivative (VTD) of the functional 𝛱𝛱 . In Appendix II.B it is proven that the 

iterative scheme in Eq. (30) yields an iterative descend of the cost function 𝛱𝛱 , i.e. 𝛱̇𝛱𝑡𝑡(𝜒𝜒) ≤

0 ∀ 𝑡𝑡, a crucial aspect for the convergence of the Hamilton-Jacobi algorithm. 

To ensure that local resonance phenomena arise in the computed designs throughout 

the optimization process, the frequency fitting will always be required, and typically aimed 

at the smallest relevant resonance frequency achievable (i.e. 𝛼𝛼 > 0) which, for a given 

set of material properties, will be constrained by the dimensions of the design domain (in 

this case the RVE). Furthermore, the RVE will consist of a fixed matrix material frame 

(non-design domain) so that the actual design domain is the inclusion/coating distribution 

on the inside (see Fig. 1). 
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Some additional hypotheses have been made in order to avoid spurious modes resulting 

from the modal analysis, which helps the optimization algorithm to become more stable 

and converge to the desired solutions. These hypotheses are listed and explained below: 

(a) The matrix fixed frame is considered infinitely stiff so that no deformation modes, 

which are non-relevant in this context, appear in the modal analysis. This is done 

to prevent modes in which the matrix interacts with the other materials, especially 

in early steps of the algorithm, when the whole domain is filled with material. 

(b) The void/coating material is considered massless. Since the modes causing the 

local resonance phenomena to arise are those in which the inclusions vibrate inside 

the coating phase, the relevant properties that are to be considered will be the 

density of the inclusion phase and the stiffness of the coating material. Forcing the 

density of the coating material to zero (or a very small tolerance value), avoids the 

appearance of spurious modes in the modal analysis which greatly helps the 

identification of the relevant resonance modes. 

(c) Since the focus in this context is in horizontally oriented modes (the panel will be 

subjected to plane waves propagating on the horizontal direction), all vertical 

degrees of freedom are prescribed in both the restricted and unrestricted systems. 

By restricting the analysis to a single dimension, both the identification of the 

relevant modes and the pairing of each bandgap limiting frequencies become 

much easier. 

 

II.5  Application to the design of an acoustic insulation panel 

Let us consider an infinitely large flat panel with a given thickness 𝐿𝐿 built with stacked 

LRAM unit cells (of size ℓ𝜇𝜇) consisting of 3 material phases: an epoxy matrix frame at the 

boundaries along with a certain distribution of steel inclusions embedded in a silicone 

rubber coating (see Fig. 1 for a graphical depiction of a typical RVE configuration). The 

material properties used in the examples that follow are listed in Tab. 1. The coating 

material will be considered viscoelastic, with the viscosity 𝜇𝜇 left out as a parameter in 

order to enable the possibility of evaluating the LRAM behaviour for various degrees of 

dissipation. Since the aim of this analysis is to assess the attenuation of acoustic waves 

through a slab of a designed LRAM panel, the transmission loss in the specific frequency 

range of interest (in this case below 3000 Hz) will be computed. To do so, a 3-step 
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analysis is performed. First, the topology optimization procedure explained in Section II.4  

is used to obtain a material distribution for the LRAM design that meets the desired 

properties. Then, a RVE is built upon the results obtained from the previous step with the 

actual material properties, so the homogenization procedure detailed in Sections II.2 and 

II.3 can be applied to compute the effective material properties associated to that LRAM 

design. Finally, an analysis on the macroscale is performed by computing the 

transmission loss in the desired frequency range for a flat panel composed of the 

homogenized LRAM subjected to acoustic plane waves. Details on each of these 

procedures is given in the following sections, while a summary of the global scheme is 

depicted in Fig. 2. A plane-strain 2D approach is considered in all the examples instead 

of a 3D setting simply to avoid the unnecessary complexity associated with them which, 

at least regarding the effects and conclusions that are expected to point out in this work, 

do not give any relevant additional insights. Therefore, for the sake of clarity in terms of 

interpretation of the results, the examples shown here are all 2D, even though both the 

formulation and the conclusions that can be extracted can be extended to 3D. 

 

 

FIG. 3 Representation of the valid regions for achievable first target resonating frequencies in terms of 
the RVE size. Upper and lower limits and the so-called non-feasible region have been obtained with the 
material and numerical properties for this example, which are listed in Tab. 1. The green shaded area 
corresponds to the region of achievable first target resonating frequencies within the range of interest. 
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TAB. 1 Material properties [3]. 

Material 
Density 
𝜌𝜌𝜇𝜇 (kg/m3) 

Bulk mod. 
𝐾𝐾𝜇𝜇 (MPa) 

Shear mod. 
𝐺𝐺𝜇𝜇 (MPa) 

Epoxy 1180 5.49 × 103 1.59 × 103 

Steel 7780 1.72 × 105 7.96 × 104 

Silicone rubber 1300 0.63 0.04 

 

II.5.1  Topology optimization of the LRAM 

A 2D structured mesh of 100 × 100 quadrilateral elements with 4 Gaussian integration 

points has been used for the computations in this stage. The elastic properties of the 

matrix phase have been scaled by a factor 1010 to guarantee its behavior as a rigid 

component, while the density of the coating has been scaled by 10–10  to avoid spurious, 

non-relevant modes resulting from the modal analysis. A value of ∆𝑡𝑡 = 10–3 has been 

considered as a pseudo-timestep for the time-marching algorithm, along with an initial 

𝜙𝜙􏷟􏷟 > 0 that makes all the design domain to be full of inclusion dense material (see Eq. 

(20)). The size of the RVE has been chosen to be 1 × 1 cm to ensure that the resulting 

resonating frequencies lie on the desired range. This is important since for a given set of 

material properties and a domain size, there are limitations in the achievable resonant 

frequencies. An obvious first upper limit can be found in the first resonant frequency 

obtained by the initial full-material configuration, which depends on the properties of the 

inclusion phase as well as the RVE size and is typically well above (by several orders of 

magnitude) the desired frequency range. On the other hand, a theoretical lower limit can 

also be estimated as 

𝜔𝜔𝜇𝜇
∗(􏷠􏷠) >

1
ℓ𝜇𝜇

⎷
⃓
⃓
⃓
􏽭􏽭

𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖

􏿻􏿻𝐾𝐾𝜇𝜇
(𝑖𝑖) + 4

3 𝐺𝐺𝜇𝜇
(𝑖𝑖)􏿾􏿾

𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖

𝜌𝜌𝜇𝜇
(𝑖𝑖)  (31) 

where the index 𝑖𝑖 here refers to each material. Furthermore, given the high contrast 

between the properties of the inclusion and coating components, there is a range of 

frequencies between these lower and upper limits for which the algorithm finds it more 

difficult to converge to a solution. This is because solutions in this range typically contain 

physically unstable solutions characterized by large changes in the resonance 

frequencies for small perturbations in the topology (in this case, caused by the 

appearance of unrealistically thin strings of material). Therefore, designs inside this zone 
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should be avoided to preclude such unstable behavior. Note also that these solutions can 

be easily avoided for a given target frequency by reducing the size of the design domain 

(see Fig. 3 as an example). 

For this example, a target frequency of 𝜔𝜔𝜇𝜇
∗(􏷠􏷠) = 1000 Hz is selected and two different 

weighting parameters have been tested: one that causes only the frequency fitting to be 

considered in the objective function (𝛼𝛼 = 1), and another one where the weight is 

distributed equally among the fitting and the bandgap maximization parts (𝛼𝛼 = 0.5). Fig. 

4 shows the evolution of the objective function and the volume fraction of material, 

respectively. The first relevant resonating frequencies for the restricted and unrestricted 

problems can be seen in Fig. 5. 

These results show how the algorithm removes inclusion material in the topology, 

reducing the value returned by the objective function, as seen Fig. 4-(a), and thus 

approaching the desired targets with each iteration step. It is worth noting the sudden 

jump produced around the 100th iteration in both cases. It is caused by the 

disengagement of the inclusion material from itself, which makes the coating phase to 

fully envelop it. Since the stiffness of the coating material is several orders of magnitude 

lower, the resulting configuration makes it easier for the enclosed inclusion to vibrate, 

which translates into a much lower resonance frequency. 

Interestingly, while the volume fraction of material ends up being very similar in both 

cases, as seen in Fig. 4-(b), the resulting topologies are quite different. Note also that the 

resonance frequency for the restricted problem follows a similar evolution in both cases 

(eventually meeting the target frequency of 1000 Hz), but the differences between their 

associated topologies make their respective unrestricted system’s resonance frequency 

to evolve differently (see Fig. 5). In particular, when the bandgap maximization is also 

part of the objective function the algorithm tends to remove material from the matrix 

internal borders, concentrating the maximum amount of mass onto the central inclusion. 

This translates into a significant increase of the bandgap size, for a similar volume fraction 

of material distribution, by almost 6 times (around 600 Hz in the first case and up to 3500 

Hz in the second). 
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FIG. 4 (a) Evolution of the objective function upon each iteration for the frequency fitting case (top) and 
the frequency fitting along with bandgap maximization (bottom). For 𝛼𝛼 = 0.5, a trade-off must be met 
between the frequency fitting part and the bandgap maximization component, which makes it more 
difficult for the algorithm to converge. (b) Evolution of the volume fraction upon each iteration. Note that 
the colorbar represents the volume fraction distribution of each material in the domain. The fixed matrix 
(blue) represents 19% of the volume in both cases, and the remaining 81% is distributed between 
inclusion (grey) and coating phases (orange). 

 

REMARK 2 It must be considered that the frequencies obtained from the optimization 

process will not be equal to those computed when actual material properties (without 

scaling factors) are considered, as it will be seen in the results of the next section. 

However, this is not a major issue for our purposes, since with the actual material 

properties, the system tends to be less restricted and so the resulting frequencies are 

smaller, which is often desirable. In any case, the size of the RVE can be adjusted 

accordingly to match the target frequencies, if desired. 

 

II.5.2  Homogenization of the optimized LRAM 

With the material distributions obtained in the previous step, RVEs are built, maintaining 

their size but with the actual material properties. The homogenization framework detailed 

in Sections II.2 and II.3 is applied to compute the effective material parameters associated 

to each LRAM design. These include the effective constitutive tensor, C eff, the average 
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density 𝜌̅𝜌, the coupling matrices related to micro-inertial phenomena, ℚ, Ω𝜇𝜇, and the 

additional terms ηeff, Ω𝜇𝜇
D, accounting for viscous effects. For these computations, 2D 

meshes of triangle elements with an average relative size of 0.02 and 3 Gaussian 

integration points have been used, which provide around 7000 degrees of freedom. Fig. 

6 shows the resulting first resonance modes and frequencies which, as previously 

anticipated in Remark 2, are smaller than the computed as part of the optimization 

process in the previous section. Note, however, that the predicted bandgap in the case 

with 𝛼𝛼 = 0.5 is much larger than in the other case (around 1500 to 450 Hz, which is 

between 3 and 4 times bigger). This can also be seen in the dispersion diagrams of Fig. 

7, which are calculated assuming a plane wave travelling in the 𝑥𝑥-direction in an infinite 

extension of the homogenized material domain (see [12] for details on this computation). 

For the case without viscosity (𝜇𝜇 = 0), a non-null imaginary component of the 

wavenumber indicates the presence of a frequency bandgap. In Fig. 7, the results of 

applying Bloch-Floquet boundary conditions on the same RVEs [9] are also shown to 

validate the proposed model. Note that there is good agreement between both 

computations, even for the cases where viscosity is present. 

II.5.3  Transmission loss computation 

Finally, a macroscale analysis is performed over a homogenized panel from which the 

transmission coefficient is obtained. For the sake of simplicity, the panel is assumed to 

be surrounded by air (with density 𝜌𝜌𝑎𝑎 = 1.2 kg/m3 and sound propagation speed 𝑣𝑣𝑎𝑎 = 344 

m/s) where a plane wave travels perpendicular to the panel’s surface. In order to find the 

transmission coefficient in this case, compatibility conditions for the normal component 

of the displacement and traction forces are imposed at the panel’s interfaces with the air 

media. In this context, one can assume the air at the left-hand side to propagate as a 

wave at a certain frequency 𝜔𝜔: 

𝑢𝑢𝑥𝑥
(𝑙𝑙)(𝒙𝒙, 𝑡𝑡) = (𝑒𝑒𝑖𝑖𝜅𝜅𝑎𝑎𝑥𝑥 − 𝑅𝑅𝑒𝑒−𝑖𝑖𝜅𝜅𝑎𝑎𝑥𝑥)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 (32) 

𝑝𝑝(𝑙𝑙)(𝒙𝒙, 𝑡𝑡) = −𝑖𝑖𝜌𝜌𝑎𝑎𝑣𝑣𝑎𝑎𝜔𝜔(𝑒𝑒𝑖𝑖𝜅𝜅𝑎𝑎𝑥𝑥 + 𝑅𝑅𝑒𝑒−𝑖𝑖𝜅𝜅𝑎𝑎𝑥𝑥)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 (33) 

where 𝑢𝑢𝑥𝑥
(𝑙𝑙) and 𝑝𝑝(𝑙𝑙) are the horizontal displacement and pressure fields, respectively, 𝜅𝜅𝑎𝑎 =

𝜔𝜔 𝑣𝑣𝑎𝑎⁄  is the wavenumber and 𝑅𝑅 is the reflection coefficient, i.e. the fraction of the incident 

wave’s amplitude that is reflected at the panel’s interface. At the right-hand side, only 

part of the wave is transmitted, so 
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FIG. 5 Evolution of the first relevant resonance frequencies for the restricted and unrestricted systems 
upon each iteration for the frequency fitting case (top) and frequency fitting along with bandgap 
maximization case (bottom). The topology determined by the level-set function 𝜙𝜙 at several iteration 
steps is also shown. Note the sudden jump in frequencies coincides with the iteration when the inclusion 
is disengaged. This gap gives an idea of the region of unattainable frequencies due to numerical issues. 
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FIG. 6 First relevant resonance modes and frequencies for the restricted and unrestricted systems for 
the topologies resulting from the frequency fitting optimization (left) and the frequency fitting coupled 
with the bandgap maximization (right). The solid black lines represent the material interfaces of the non-
deformed state. 

 

𝑢𝑢𝑥𝑥
(𝑟𝑟)(𝒙𝒙, 𝑡𝑡) = 𝑇𝑇𝑒𝑒𝑖𝑖(𝜅𝜅𝑎𝑎𝑥𝑥−𝜔𝜔𝜔𝜔) (34) 

𝑝𝑝(𝑟𝑟)(𝒙𝒙, 𝑡𝑡) = −𝑖𝑖𝜌𝜌𝑎𝑎𝑣𝑣𝑎𝑎𝜔𝜔𝜔𝜔𝑒𝑒𝑖𝑖(𝜅𝜅𝑎𝑎𝑥𝑥−𝜔𝜔𝜔𝜔) (35) 

where 𝑇𝑇 is the transmission coefficient, i.e. the fraction of the incident wave’s amplitude 

that is transmitted through the panel. To find 𝑅𝑅 and 𝑇𝑇, a simple 2D FE discretization of 4 

× 4 quadrilateral elements with 4 gaussian integration points over a portion of the panel 

is performed. The resulting system is solved in the frequency domain for each frequency 

in the desired range, in this case from 0 to 3000 Hz. Periodic boundary conditions are 

applied on the top and bottom boundary nodes (to simulate the infinite extension of the 

panel in the vertical direction) and the compatibility conditions given by Eqs. (32) to (35) 

are applied on the left and right boundary nodes. The resulting system can be expressed 

in matrix form as 

􏿴􏿴𝕂𝕂 − 𝑖𝑖𝑖𝑖𝑖𝑖ℂ − 𝜔𝜔􏷡􏷡𝕄𝕄􏿷􏿷U􏾧􏾧(𝑅𝑅, 𝑇𝑇) = F􏾦􏾦(𝑅𝑅, 𝑇𝑇). (36) 

Since both U􏾧􏾧  and F􏾦􏾦 are functions of the reflection and transmission coefficients (as a 

result of applying the compatibility conditions), Eq. (36) can be reduced to a system with 

only 𝑅𝑅 and 𝑇𝑇 as unknowns (details on the derivation of this system are given in Appendix 

II.C). Thus, for a given frequency 𝜔𝜔 and viscosity 𝜇𝜇, once the transmission coefficient 𝑇𝑇 

is solved, the transmission loss is computed using the expression 

TL(𝜔𝜔, 𝜇𝜇) = −20 log􏷠􏷠􏷠􏷠􏿖􏿖𝑇𝑇(𝜔𝜔, 𝜇𝜇)􏿖􏿖 [dB]. (37) 

𝛼 = 1.0 𝛼 = 0.5

Restricted Unrestricted Restricted Unrestricted

𝜔𝜇
∗ 1 = 853 Hz 𝜔𝜇

1 = 1308 Hz 𝜔𝜇
∗ 1 = 867 Hz 𝜔𝜇

∗ 1 = 2384 Hz

ℚ 1 = 54.22
0

kg1/2m–3/2 ℚ 1 = 65.48
0

kg1/2m–3/2
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FIG. 7 Dispersion diagram for the topologies resulting from the frequency fitting optimization (left) and 
the frequency fitting coupled with the bandgap maximization (right). The shaded areas correspond to 
the bandgap regions corresponding to purely imaginary wavenumbers in the case without viscosity 
(𝜇𝜇 = 0). The units for the viscosity parameter 𝜇𝜇 are Pa·s. Note that the real part of the normalized 
wavenumber corresponds to the solid lines and ‘x’ markers, while its imaginary component is 
represented through dashed lines and ‘+’ markers in the same axes. The results obtained with the 
multiscale homogenization procedure are compared with those obtained applying Bloch-Floquet 
boundary conditions on the same RVEs, for validation purposes. 
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FIG. 8 Transmission loss (TL) for the topologies resulting from the frequency fitting optimization (solid 
blue line) and the frequency fitting coupled with the bandgap maximization (red dashed line). The light-
shaded arrows indicate the bandwidth of the effective attenuation bands corresponding to the first 
uninterrupted attenuations > 40 dB. The units for the viscosity parameter 𝜇𝜇 are Pa·s. 
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cases start around 250 Hz, but they extend to 1180 Hz in the first case and to 1840 in 

the second (660 Hz increase). 

It can also be observed that the viscosity has the beneficial effect of smoothing the 

undesired inverted resonance peaks but at the same time it also dampens the attenuation 

peaks caused by the local resonance phenomena occurring at the microscale. 

Depending on the desired attenuation performance, one can take advantage of the 

viscoelastic properties of the coating component to slightly increase the effective 

attenuation band or even bypass the undesired inverted resonance peak while keeping 

a continuous effective attenuation band with a good level of attenuation in the low 

frequency range of interest (as it can be seen for the case of 𝜇𝜇 = 10 Pa · s, where viscous 

effects are more relevant). 

II.6  Concluding remarks 

While the methodology presented has been used in the study of flat panels under plane 

acoustic pressure waves, it can be suitably adapted to more complex cases still satisfying 

the low-frequency range restriction. On the one hand, the objective function of the 

topology optimization algorithm can be adapted to tackle one or multiple frequencies 

depending on the user interest. On the other hand, the ability of the homogenization 

procedure to provide a set of effective constitutive properties makes it possible to easily 

study the behavior of complex geometries in the macroscale under several sets of 

boundary conditions and external actions, including, for instance, the characterization of 

transient states or multiple layer configurations, so long as they satisfy the hypotheses 

considered. This is in contrast to other homogenization approaches, such as those based 

on the Bloch-Floquet theory, which have the ability to study the effective behavior of 

RVEs without restrictions in terms of frequencies, but that are limited to predetermined 

macroscopic configurations, namely, infinitely periodic structures, in the case of the 

Bloch-Floquet theory, that cannot account for the introduction of other more realistic sets 

of boundary conditions.   

In this regard, the design procedure presented in this work offers a powerful tool for the 

design of LRAM acoustic insulation devices tackling the low frequency range. By 

combining the optimization algorithm for designing the RVE topology with the 

homogenization method for characterizing the material’s performance, one can easily 

assess the transmission loss of a panel for a broad range of frequencies. The studies 
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carried out show the influence of the RVE topology in achieving certain properties in the 

final design such as, for instance, an increased bandgap size for a given frequency range 

with the same amount of material, and thus the same mass. It is worth noting that while 

the target frequencies and choice of materials greatly determine the size of the RVE, its 

topology optimization can be used to reduce the effective density making the resulting 

panel suitable for lightweight applications. On the other hand, it has been observed that 

the presence of highly viscoelastic materials in the design generally affects negatively 

the local resonance performance of the RVE. However, in certain viscosity ranges, one 

can take advantage of the resulting damping effects to smooth undesired resonance 

peaks in the macroscale and even join attenuation bands, especially in higher frequency 

ranges, while still maintaining good attenuation levels in the low-frequency range of 

interest where the local resonance of the RVE takes place. 
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Appendix II.A Introduction of viscoelastic effects in the homogenization 
framework 

Considering Eq. (14) for the stress definition in the microscale, causes a damping matrix, 

ℂ𝜇𝜇, to arise from the Finite Element discretization of the RVE system, in addition to the 

standard mass and stiffness matrices, 𝕄𝕄𝜇𝜇 and 𝕂𝕂𝜇𝜇. This damping matrix appears only in 

the elements where viscoelastic effects are considered, in which it is defined as 

ℂ𝜇𝜇
(𝑒𝑒) = ⟨B𝜇𝜇

(𝑒𝑒)𝑇𝑇 ∶ η𝜇𝜇
(𝑒𝑒) ∶ B𝜇𝜇

(𝑒𝑒)⟩𝛺𝛺𝜇𝜇
(𝑒𝑒)  (A.1) 

where B𝜇𝜇
(𝑒𝑒) gives the derivatives of the shape functions for the type of elements 

considered, and η𝜇𝜇
(𝑒𝑒) is the element’s viscous tensor, which can be expressed, following 

Voigt’s notation, in terms of the associated material’s viscosity, 𝜇𝜇(𝑒𝑒), as 
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η𝜇𝜇
(𝑒𝑒) = 𝜇𝜇(𝑒𝑒)

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡ 4 3⁄ − 2 3⁄ − 2 3⁄ 0 0 0
− 2 3⁄ 4 3⁄ − 2 3⁄ 0 0 0
− 2 3⁄ − 2 3⁄ 4 3⁄ 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

. (A.2) 

After a standard assembly process, denoted here with the big A symbol, one can obtain 

the global damping matrix 

ℂ𝜇𝜇 = A
𝑒𝑒

ℂ𝜇𝜇
(𝑒𝑒), (A.3) 

and the extended RVE dynamic system results 

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝕄𝕄𝜇𝜇 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡𝒖𝒖􏾦̈􏾦𝜇𝜇

𝜷𝜷̈
λ̈

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

+
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡ℂ𝜇𝜇 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡
𝒖𝒖􏾦̇􏾦𝜇𝜇

𝜷̇𝜷
λ̇

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

+
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡ 𝕂𝕂𝜇𝜇 −ℕ𝜇𝜇

T −𝔹𝔹𝜇𝜇
T

−ℕ𝜇𝜇 𝟎𝟎 𝟎𝟎
−𝔹𝔹𝜇𝜇 𝟎𝟎 𝟎𝟎 ⎦⎥⎥⎥

⎥⎥⎥⎥
⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡𝒖𝒖􏾦􏾦𝜇𝜇

𝜷𝜷
λ

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

= ⎣⎢⎢⎢
⎢⎢⎢⎢
⎢
⎡ 𝟎𝟎
−𝒖𝒖
-ε

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥
⎤

. (A.4) 

Note also that matrices denoted by ℕ𝜇𝜇 and 𝔹𝔹𝜇𝜇 appear in system (A.4). These come from 

the discretization of the minimal kinematic restrictions, as explained in detail in Roca et 

al. [12]. As a reminder, 

ℕ𝜇𝜇 = A
𝑒𝑒

⟨𝑵𝑵𝜇𝜇
(𝑒𝑒)⟩𝛺𝛺𝜇𝜇

(𝑒𝑒) ,     so     ℕ𝜇𝜇𝒖𝒖􏾦􏾦𝜇𝜇 ≡ ⟨𝒖𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 𝒖𝒖, (A.5) 

𝔹𝔹𝜇𝜇 = A
𝑒𝑒

⟨B𝜇𝜇
(𝑒𝑒)⟩𝛺𝛺𝜇𝜇

(𝑒𝑒) ,     so     𝔹𝔹𝜇𝜇𝒖𝒖􏾦􏾦𝜇𝜇 ≡ ⟨𝜵𝜵𝒚𝒚
S𝒖𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = ε, (A.6) 

where 𝑵𝑵𝜇𝜇
(𝑒𝑒) corresponds to the shape functions for the type of elements considered. 

Since the hypotheses for the split of the system (A.4) into its quasi-static and inertial 

components still hold, despite the introduction of viscoelastic effects in the framework, 

one obtains: 

(a) Quasi-static system  

􏿯􏿯
ℂ𝜇𝜇 𝟎𝟎
𝟎𝟎 𝟎𝟎

􏿲􏿲 􏿰􏿰𝒖𝒖􏾦̇􏾦𝜇𝜇
(􏷠􏷠)

λ̇(􏷠􏷠)􏿳􏿳 + 􏿰􏿰
𝕂𝕂𝜇𝜇 −𝔹𝔹𝜇𝜇

T

−𝔹𝔹𝜇𝜇 𝟎𝟎 􏿳􏿳 􏿰􏿰𝒖𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠)

λ(􏷠􏷠)􏿳􏿳 = 􏿯􏿯
𝟎𝟎

−ε
􏿲􏿲. (A.7) 

For the sake of generality, let us assume that kinematic conditions are imposed 

directly on the system through 

𝒖𝒖𝜇𝜇
(􏷠􏷠) = ε ⋅ ∆ 𝒚𝒚 + 𝒖̃𝒖𝜇𝜇

(􏷠􏷠) (A.8) 
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where ∆𝒚𝒚 = 𝒚𝒚 − 𝒚𝒚(􏷟􏷟), and 𝒚𝒚(􏷟􏷟) is the centroid of the RVE (𝒚𝒚(􏷟􏷟) = ⟨𝒚𝒚⟩𝛺𝛺𝜇𝜇). In discretized 

form, this is 

𝒖𝒖𝜇𝜇
(􏷠􏷠) = 􏿮􏿮𝕐𝕐 ℙ𝜇𝜇􏿱􏿱 􏿯􏿯

ε
𝒖𝒖􏾦􏾦𝜇𝜇

∗(􏷠􏷠)􏿲􏿲 (A.9) 

with 

𝕐𝕐 =

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡ ⋮
∆𝑦𝑦􏾦􏾦􏷠􏷠

(𝑗𝑗) 0 0 0 ∆𝑦𝑦􏾦􏾦􏷢􏷢
(𝑗𝑗) 2⁄ ∆𝑦𝑦􏾦􏾦􏷡􏷡

(𝑗𝑗) 2⁄

0 ∆𝑦𝑦􏾦􏾦􏷡􏷡
(𝑗𝑗) 0 ∆𝑦𝑦􏾦􏾦􏷢􏷢

(𝑗𝑗) 2⁄ 0 ∆𝑦𝑦􏾦􏾦􏷠􏷠
(𝑗𝑗) 2⁄

0 0 ∆𝑦𝑦􏾦􏾦􏷢􏷢
(𝑗𝑗) ∆𝑦𝑦􏾦􏾦􏷡􏷡

(𝑗𝑗) 2⁄ ∆𝑦𝑦􏾦􏾦􏷠􏷠
(𝑗𝑗) 2⁄ 0

⋮
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

. (A.10) 

and ℙ𝜇𝜇 being a matrix that imposes the desired boundary conditions on the 

discretized microfluctuation field, 𝒖̃𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠). Typically, for the kind of problems tackled, 

periodic boundary conditions along with prescription of certain degrees of freedom 

to prevent rigid body motions offer good results. In such cases, 

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡
𝒖̃𝒖􏾦􏾦𝜇𝜇

(􏷠􏷠)􏷟􏷟

𝒖̃𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠)𝑖𝑖

𝒖̃𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠)+

𝒖̃𝒖􏾦􏾦𝜇𝜇
(􏷠􏷠)−⎦⎥⎥⎥

⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

=

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎡𝟎𝟎 𝟎𝟎

I 𝟎𝟎

𝟎𝟎 I

𝟎𝟎 I
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢⎢
⎡

𝒖𝒖􏾦􏾦𝜇𝜇
∗(􏷠􏷠)𝑖𝑖

𝒖𝒖􏾦􏾦𝜇𝜇
∗(􏷠􏷠)+⎦⎥⎥⎥

⎥⎥⎥
⎤
, (A.11) 

where superscripts 0, 𝑖𝑖, + and − are used to refer to prescribed, internal, and 

periodic boundaries degrees of freedom, respectively. 

Note that, from the definition of matrix 𝔹𝔹𝜇𝜇 (see Eq. (A.6)), it can be seen that 𝔹𝔹𝜇𝜇𝕐𝕐 ≡

⟨𝜵𝜵𝒚𝒚
S∆𝒚𝒚⟩𝛺𝛺𝜇𝜇 = I. Thus, by premultiplying the first equation in system (A.7) by 𝕐𝕐T and 

introducing expression (A.9) allows us to find, after some algebraic manipulation, 

λ(􏷠􏷠) = 𝕐𝕐Tℂ𝜇𝜇(𝕐𝕐ε̇ + ℙ𝜇𝜇𝒖𝒖􏾦̇􏾦𝜇𝜇
∗(􏷠􏷠)) + 𝕐𝕐T𝕂𝕂𝜇𝜇(𝕐𝕐ε + ℙ𝜇𝜇𝒖𝒖􏾦􏾦𝜇𝜇

∗(􏷠􏷠)). (A.12) 

Assuming the kinematic restriction imposed is compatible with that associated to 

the Lagrange multiplier, projecting the system into a set satisfying the micro-

fluctuation field boundary conditions, i.e. pre-multiplying the first equation in 

system (A.7) by ℙ𝜇𝜇
T, results in  

ℙ𝜇𝜇
Tℂ𝜇𝜇ℙ𝜇𝜇𝒖𝒖􏾦̇􏾦𝜇𝜇

∗(􏷠􏷠) + ℙ𝜇𝜇
T𝕂𝕂𝜇𝜇ℙ𝜇𝜇𝒖𝒖􏾦􏾦𝜇𝜇

∗(􏷠􏷠) = −ℙ𝜇𝜇
Tℂ𝜇𝜇𝕐𝕐ε̇ − ℙ𝜇𝜇

T𝕂𝕂𝜇𝜇𝕐𝕐ε. (A.13) 
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Taking the time derivative of Eq. (A.13) gives 

ℙ𝜇𝜇
T𝕂𝕂𝜇𝜇ℙ𝜇𝜇𝒖𝒖􏾦̇􏾦𝜇𝜇

∗(􏷠􏷠) = −ℙ𝜇𝜇
T𝕂𝕂𝜇𝜇𝕐𝕐ε̇, (A.14) 

where the hypothesis for the quasi-static system, ε̈ ≈ 𝟎𝟎 (which makes 𝒖𝒖􏾦̈􏾦𝜇𝜇
∗(􏷠􏷠) ≈ 𝟎𝟎), has 

been considered. The solution for 𝒖𝒖􏾦̇􏾦𝜇𝜇
∗(􏷠􏷠) obtained from Eq. (A.14) in terms of the 

macroscopic strain rate, 𝛆̇𝛆, can be introduced into Eq. (A.13) to compute the 

solution field 

𝒖𝒖􏾦􏾦𝜇𝜇
∗(􏷠􏷠) = −(ℙ𝜇𝜇

T𝕂𝕂𝜇𝜇ℙ𝜇𝜇)−􏷠􏷠ℙ𝜇𝜇
T(𝕂𝕂𝜇𝜇𝕐𝕐ε + ℂ𝜇𝜇𝕐̃𝕐ε̇), (A.15) 

with 

𝕐̃𝕐 = (I − ℙ𝜇𝜇(ℙ𝜇𝜇
T𝕂𝕂𝜇𝜇ℙ𝜇𝜇)−􏷠􏷠ℙ𝜇𝜇

T𝕂𝕂𝜇𝜇)𝕐𝕐. (A.16) 

Finally, substituting expression (A.15) into Eq. (A.12), yields 

λ(􏷠􏷠) = 𝕐𝕐T𝕂𝕂𝜇𝜇𝕐̃𝕐􏿋􏿋􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏿍􏿍

 C eff 

∶ ε + 𝕐̃𝕐Tℂ𝜇𝜇𝕐̃𝕐􏿋􏿋􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏿍􏿍

 ηeff 

∶ ε̇. 
(A.17) 

Note that C eff in Eq. (A.17) assumes the role of an effective constitutive tensor and 

it is the same than the one obtained in Roca et al. [12], without considering 

viscoelastic effects. In fact, the quasi-static influence of viscoelasticity in the model 

is accounted by the new term ηeff, which acts as a sort of effective viscous tensor 

relating the macroscopic stress with strain rates. 

(b) Inertial system 

􏿯􏿯
𝕄𝕄𝜇𝜇 𝟎𝟎

𝟎𝟎 𝟎𝟎
􏿲􏿲 􏿰􏿰

𝒖𝒖􏾦̈􏾦𝜇𝜇
(􏷡􏷡)

𝜷𝜷(̈􏷡􏷡)􏿳􏿳 + 􏿯􏿯
ℂ𝜇𝜇 𝟎𝟎
𝟎𝟎 𝟎𝟎

􏿲􏿲 􏿰􏿰
𝒖𝒖􏾦̇􏾦𝜇𝜇

(􏷡􏷡)

𝜷̇𝜷(􏷡􏷡)􏿳􏿳 + 􏿰􏿰
𝕂𝕂𝜇𝜇 −ℕ𝜇𝜇

T

−ℕ𝜇𝜇 𝟎𝟎 􏿳􏿳 􏿰􏿰
𝒖𝒖􏾦􏾦𝜇𝜇

(􏷡􏷡)

𝜷𝜷(􏷡􏷡)􏿳􏿳 = 􏿯􏿯
𝟎𝟎

−𝒖𝒖
􏿲􏿲. (A.18) 

Following a similar procedure than in the quasi-static case, in order to maintain the 

generality of the formulation, the specific kinematic conditions considered here will 

also be introduced directly in the system (A.18) by taking 

𝒖𝒖𝜇𝜇
(􏷡􏷡) = 𝒖𝒖 + 𝒖̃𝒖𝜇𝜇

(􏷡􏷡), (A.19) 

which can be expressed in discretized form as 

𝒖𝒖􏾦􏾦𝜇𝜇
(􏷡􏷡) = [𝕀𝕀 ℙ𝜇𝜇] 􏿯􏿯

𝒖𝒖
𝒖𝒖􏾦􏾦𝜇𝜇

∗(􏷡􏷡)􏿲􏿲, (A.20) 
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with 

𝕀𝕀 =
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡ ⋮
1 0 0
0 1 0
0 0 1

⋮
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

, (A.21) 

and ℙ𝜇𝜇 being, again, a matrix imposing the desired boundary conditions over the 

micro-fluctuation field (see, for instance, Eq. (A.11)). In this case, it is easy to verify, 

from the matrix ℕ𝜇𝜇 definition in Eq. (A.5), that ℕ𝜇𝜇𝕀𝕀 = I. Also note that, since 𝕀𝕀 is a 

rigid body translation mode, it belongs to both the kernels of 𝕂𝕂𝜇𝜇 and ℂ𝜇𝜇 (i.e. 𝕂𝕂𝜇𝜇𝕀𝕀 =

𝟎𝟎 and ℂ𝜇𝜇𝕀𝕀 = 𝟎𝟎). These properties allow us to obtain, after pre-multiplying the first 

equation in system (A.18) by 𝕀𝕀T and some algebraic manipulation, 

𝜷𝜷(􏷡􏷡) = 𝕀𝕀𝑇𝑇𝕄𝕄𝜇𝜇𝕀𝕀􏿋􏿋􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏿍􏿍
 𝜌̅𝜌I = ⟨𝜌𝜌𝜇𝜇⟩𝛺𝛺𝜇𝜇I 

𝒖̈𝒖 + 𝕀𝕀𝑇𝑇𝕄𝕄𝜇𝜇ℙ𝜇𝜇􏿋􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍􏿍
 𝔻𝔻 

𝒖𝒖􏾦̈􏾦𝜇𝜇
∗(􏷡􏷡).  

(A.22) 

Again, projecting the system (A.18) into a set satisfying the imposed kinematic 

restrictions on the micro-fluctuation field through ℙ𝜇𝜇 (nullifying the effect of the 

Lagrange multiplier), allows us to obtain 

ℙ𝜇𝜇
T𝕄𝕄𝜇𝜇ℙ𝜇𝜇􏿋􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍􏿍
 𝕄𝕄𝜇𝜇∗  

𝒖𝒖􏾦̈􏾦𝜇𝜇
∗(􏷡􏷡) + ℙ𝜇𝜇

Tℂ𝜇𝜇ℙ𝜇𝜇􏿋􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍􏿍
 ℂ𝜇𝜇∗  

𝒖𝒖􏾦̇􏾦𝜇𝜇
∗(􏷡􏷡) + ℙ𝜇𝜇

T𝕂𝕂𝜇𝜇ℙ𝜇𝜇􏿋􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍􏿍
 𝕂𝕂𝜇𝜇∗  

𝒖𝒖􏾦􏾦𝜇𝜇
∗(􏷡􏷡) = − ℙ𝜇𝜇

T𝕄𝕄𝜇𝜇𝕀𝕀􏿋􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏿍􏿍

 𝔻𝔻T 

𝒖̈𝒖.  
(A.23) 

In order to make the model computationally efficient, a model order reduction is 

performed by projecting the solution field 𝒖𝒖􏾦􏾦𝜇𝜇
∗(􏷡􏷡) onto the space spanned by the 

eigenmodes of the undamped system (A.23) 

(𝕂𝕂𝜇𝜇
∗ − 𝜆𝜆𝜇𝜇

∗(𝑘𝑘)𝕄𝕄𝜇𝜇
∗ )𝝓𝝓􏾦􏾦𝜇𝜇

∗(𝑘𝑘) = 𝟎𝟎, (A.24) 

where 𝜆𝜆𝜇𝜇
∗(𝑘𝑘) = (𝜔𝜔𝜇𝜇

∗(𝑘𝑘))􏷡􏷡 here refer to the squared natural frequencies and 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘) are the 

associated mass-normalized vibration modes (i.e. 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘)T𝕄𝕄𝜇𝜇

∗ 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘) = 1 and 

𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘)T𝕂𝕂𝜇𝜇

∗ 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘) = (𝜔𝜔𝜇𝜇

∗(𝑘𝑘))􏷡􏷡)1. Now, defining Ω𝜇𝜇
∗  as the diagonal matrix with only the 

 

1 Code functionalities allowing the computation of only the smallest eigenvalues in magnitude and 
their associated eigenvectors (which are potential candidates to become relevant modes in the 
frequency range of interest) have been used, this translating into a reduction of the computational 
cost of the modal problem evaluation. 
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natural frequencies in the range of interest, Φ𝜇𝜇
∗  as a matrix that contains their 

associated mass-normalized eigenmodes, and 𝒒𝒒𝜇𝜇
∗  as the column vector with their 

corresponding modal amplitudes, one can express 

𝒖𝒖􏾦􏾦𝜇𝜇
∗(􏷡􏷡) = Φ𝜇𝜇

∗ 𝒒𝒒𝜇𝜇
∗ , (A.25) 

and Eqs. (A.22) and (A.23) become 

𝜷𝜷(􏷡􏷡) = 𝜌̅𝜌𝒖̈𝒖 + 𝔻𝔻Φ𝜇𝜇
∗􏿅􏿅

 ℚ 

 𝒒̈𝒒𝜇𝜇
∗ , 

(A.26) 

𝒒̈𝒒𝜇𝜇
∗ + 𝜱𝜱𝜇𝜇

∗𝑇𝑇ℂ𝜇𝜇𝜱𝜱𝜇𝜇
∗􏿋􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍􏿍

 Ω𝜇𝜇D 

𝒒̇𝒒𝜇𝜇
∗ + Ω𝜇𝜇

∗􏷡􏷡𝒒𝒒𝜇𝜇
∗ = 𝜱𝜱𝜇𝜇

∗𝑇𝑇𝔻𝔻𝑇𝑇􏿋􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏿍􏿍

 ℚT 

𝒖̈𝒖. 
(A.27) 

Appendix II.B Sensitivity of the LRAM topology optimization cost function 

For any functional of the form 

𝛱𝛱𝑡𝑡􏿴􏿴𝜒𝜒(𝜙𝜙)􏿷􏿷 = 􏾙􏾙 𝜋𝜋(𝜒𝜒(𝜙𝜙(𝒚𝒚, 𝑡𝑡)))𝑑𝑑𝑑𝑑
𝛺𝛺𝜇𝜇

 (B.1) 

the VTD at any point 𝒚𝒚􏾦􏾦 in the domain is given by 

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

(𝒚𝒚􏾦􏾦) = 􏾙􏾙
𝜕𝜕𝜕𝜕(𝜒𝜒(𝜙𝜙(𝒚𝒚, 𝑡𝑡)))

𝜕𝜕𝜕𝜕
𝛿𝛿𝒚𝒚􏾦􏾦𝑑𝑑𝑑𝑑

𝛺𝛺𝜇𝜇

=
𝜕𝜕𝜕𝜕(𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝜕𝜕
􏿙􏿙
𝒚𝒚=𝒚𝒚􏾦􏾦

 (B.2) 

where 𝛿𝛿𝒚𝒚􏾦􏾦 is the point-Dirac’s delta shifted to point 𝒚𝒚􏾦􏾦 fulfilling 

􏾙􏾙 𝑓𝑓(𝒚𝒚)𝛿𝛿𝒚𝒚􏾦􏾦𝑑𝑑𝑑𝑑
𝛺𝛺𝜇𝜇

= 𝑓𝑓(𝒚𝒚􏾦􏾦). (B.3) 

On the other hand, the evolution of the cost function can be computed, accounting for 

Eq. (29), as 

𝛱̇𝛱 = 􏾙􏾙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜙̇𝜙𝑑𝑑𝑑𝑑
𝛺𝛺𝜇𝜇

= −𝐶𝐶􏷠􏷠 􏾙􏾙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

(𝒚𝒚)􏿋􏿋􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏿍􏿍

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 (𝒚𝒚, 𝑡𝑡) 

𝑑𝑑𝑑𝑑
𝛺𝛺𝜇𝜇

= −𝐶𝐶􏷠􏷠 􏾙􏾙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

􏿵􏿵
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

􏿸􏿸
􏷡􏷡

𝑑𝑑𝑑𝑑
𝛺𝛺𝜇𝜇

, 
(B.4) 

where Eq. (B.2) has been considered. From Eq. (20), it can be proven that 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 􏿎􏿎𝜵𝜵𝜙𝜙􏿎􏿎−􏷠􏷠𝛿𝛿𝛤𝛤𝜙𝜙 (B.5) 
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where 𝛿𝛿𝛤𝛤𝜙𝜙 stands for the line/surface-Dirac’s delta shifted to the zero level-set of 𝜙𝜙 in 𝛺𝛺𝜇𝜇, 

i.e. 𝛤𝛤𝜙𝜙 ≔ {𝒚𝒚 ∈ 𝛺𝛺𝜇𝜇 | 𝜙𝜙(𝒚𝒚) = 0}, thus fulfilling 

􏾙􏾙 𝑓𝑓(𝒚𝒚)𝛿𝛿𝛤𝛤𝜙𝜙𝑑𝑑𝑑𝑑
𝛺𝛺𝜇𝜇

= 􏾙􏾙 𝑓𝑓(𝒚𝒚)𝑑𝑑𝑑𝑑
𝛤𝛤𝜙𝜙

. (B.6) 

Replacing Eqs. (B.5) and (B.6) into Eq. (B.4) yields 

𝛱̇𝛱 = −𝐶𝐶􏷠􏷠 􏾙􏾙 􏿎􏿎𝜵𝜵𝜙𝜙􏿎􏿎−􏷠􏷠 􏿵􏿵
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

􏿸􏿸
􏷡􏷡

𝑑𝑑𝑑𝑑
𝛤𝛤𝜙𝜙

≤ 0. (B.7) 

Eq. (B.7) proofs the descending character of the cost function 𝛱𝛱  along time/iteration 

evolution. 

The sensitivity of the cost function (25) will be evaluated using the variational topological 

derivative (VTD). To do so, first the chain rule will be applied to Eq. (25) to obtain 

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

=
4𝛼𝛼𝛼𝛼

𝜆𝜆𝜇𝜇
∗(􏷠􏷠) ln 𝜆𝜆􏼞􏼞𝜇𝜇∗

⎝⎜⎜⎜
⎜⎜⎜
⎛

ln 𝜆𝜆􏼞􏼞𝜇𝜇
∗

ln 𝜆𝜆𝜇𝜇
∗(􏷠􏷠) + ln 𝜆𝜆􏼞􏼞𝜇𝜇∗

⎠⎟⎟⎟
⎟⎟⎟
⎞􏷡􏷡

𝛿𝛿𝜆𝜆𝜇𝜇
∗(􏷠􏷠)

𝛿𝛿𝛿𝛿
+

2(1 − 𝛼𝛼)𝑔𝑔
𝜆𝜆𝜇𝜇

∗(􏷠􏷠) ln 𝜆𝜆𝜇𝜇
(􏷠􏷠) ⎝⎜⎜⎜

⎜⎜⎜
⎛
𝛿𝛿𝜆𝜆𝜇𝜇

∗(􏷠􏷠)

𝛿𝛿𝛿𝛿
− 𝑔𝑔

𝜆𝜆𝜇𝜇
∗(􏷠􏷠)

𝜆𝜆𝜇𝜇
(􏷠􏷠)

𝛿𝛿𝜆𝜆𝜇𝜇
(􏷠􏷠)

𝛿𝛿𝛿𝛿 ⎠⎟⎟⎟
⎟⎟⎟
⎞
. (B.8) 

Now, in order to compute 𝛿𝛿𝜆𝜆𝜇𝜇
∗(􏷠􏷠) 𝛿𝛿𝛿𝛿􏿒􏿒  and 𝛿𝛿𝜆𝜆𝜇𝜇

(􏷠􏷠) 𝛿𝛿𝛿𝛿􏿒􏿒  let us take the derivative of the state-

equations (21) and (23), which gives 

𝕄𝕄𝜇𝜇
∗ 𝝓𝝓􏾦􏾦𝜇𝜇

∗(􏷠􏷠) 𝛿𝛿𝜆𝜆𝜇𝜇
∗(􏷠􏷠)

𝛿𝛿𝛿𝛿
= 􏿶􏿶

𝛿𝛿𝕂𝕂𝜇𝜇
∗

𝛿𝛿𝛿𝛿
− 𝜆𝜆𝜇𝜇

∗(􏷠􏷠) 𝛿𝛿𝕄𝕄𝜇𝜇
∗

𝛿𝛿𝛿𝛿 􏿹􏿹 𝝓𝝓􏾦􏾦𝜇𝜇
∗(􏷠􏷠) + 􏿴􏿴𝕂𝕂𝜇𝜇

∗ − 𝜆𝜆𝜇𝜇
∗(􏷠􏷠)𝕄𝕄𝜇𝜇

∗ 􏿷􏿷
𝛿𝛿𝝓𝝓􏾦􏾦𝜇𝜇

∗(􏷠􏷠)

𝛿𝛿𝛿𝛿
, (B.9) 

𝕄𝕄𝜇𝜇𝝓𝝓�𝜇𝜇
(1) 𝛿𝛿𝜆𝜆𝜇𝜇

(1)

𝛿𝛿𝛿𝛿 = �
𝛿𝛿𝕂𝕂𝜇𝜇

𝛿𝛿𝛿𝛿 − 𝜆𝜆𝜇𝜇
(1) 𝛿𝛿𝕄𝕄𝜇𝜇

𝛿𝛿𝛿𝛿 �𝝓𝝓�𝜇𝜇
(1) + �𝕂𝕂𝜇𝜇 − 𝜆𝜆𝜇𝜇

(1)𝕄𝕄𝜇𝜇�
𝛿𝛿𝝓𝝓�𝜇𝜇

(1)

𝛿𝛿𝛿𝛿 . (B.10) 

Pre-multiplying Eqs. (B.9) and (B.10) by 𝝓𝝓􏾦􏾦𝜇𝜇
∗(􏷠􏷠)T and 𝝓𝝓􏾦􏾦𝜇𝜇

(􏷠􏷠)T, respectively, allows us to obtain 

𝛿𝛿𝜆𝜆𝜇𝜇
∗(􏷠􏷠)

𝛿𝛿𝛿𝛿
= 𝝓𝝓􏾦􏾦𝜇𝜇

∗(􏷠􏷠)T 􏿶􏿶
𝛿𝛿𝕂𝕂𝜇𝜇

∗

𝛿𝛿𝛿𝛿
− 𝜆𝜆𝜇𝜇

∗(􏷠􏷠) 𝛿𝛿𝕄𝕄𝜇𝜇
∗

𝛿𝛿𝛿𝛿 􏿹􏿹 𝝓𝝓􏾦􏾦𝜇𝜇
∗(􏷠􏷠), (B.11) 

𝛿𝛿𝜆𝜆𝜇𝜇
(􏷠􏷠)

𝛿𝛿𝛿𝛿
= 𝝓𝝓􏾦􏾦𝜇𝜇

(􏷠􏷠)T 􏿶􏿶
𝛿𝛿𝕂𝕂𝜇𝜇

𝛿𝛿𝛿𝛿
− 𝜆𝜆𝜇𝜇

(􏷠􏷠) 𝛿𝛿𝕄𝕄𝜇𝜇

𝛿𝛿𝛿𝛿 􏿹􏿹 𝝓𝝓􏾦􏾦𝜇𝜇
(􏷠􏷠). (B.12) 

Notice that the fact the vibration modes in each system are mass-normalized has been 

used. See also how the term multiplying the derivatives of the vibration modes in each 

system vanishes due to Eqs. (21) and (23). According to the VTD definition, one finds 
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𝝓𝝓􏾦􏾦𝜇𝜇
(􏷠􏷠)T 𝛿𝛿𝕂𝕂𝜇𝜇

𝛿𝛿𝛿𝛿
(𝒚𝒚􏾦􏾦)𝝓𝝓􏾦􏾦𝜇𝜇

(􏷠􏷠) ≡ 𝜵𝜵𝒚𝒚
S𝝓𝝓𝜇𝜇

(􏷠􏷠)(𝒚𝒚􏾦􏾦) ∶
𝜕𝜕C𝜇𝜇(𝜒𝜒(𝒚𝒚􏾦􏾦))

𝜕𝜕𝜕𝜕
 ∶ 𝜵𝜵𝒚𝒚

S𝝓𝝓𝜇𝜇
(􏷠􏷠)(𝒚𝒚􏾦􏾦), (B.13) 

𝝓𝝓􏾦􏾦𝜇𝜇
(􏷠􏷠)T 𝛿𝛿𝕄𝕄𝜇𝜇

𝛿𝛿𝛿𝛿
(𝒚𝒚􏾦􏾦)𝝓𝝓􏾦􏾦𝜇𝜇

(􏷠􏷠) ≡
𝝏𝝏𝜌𝜌𝜇𝜇(𝜒𝜒(𝒚𝒚􏾦􏾦))

𝜕𝜕𝜕𝜕
‖𝝓𝝓𝜇𝜇

(􏷠􏷠)(𝒚𝒚􏾦􏾦)‖􏷡􏷡, (B.14) 

where 𝜕𝜕C𝜇𝜇(𝜒𝜒(𝒚𝒚􏾦􏾦)) 𝜕𝜕𝜕𝜕⁄  and 𝜕𝜕𝜌𝜌𝜇𝜇(𝜒𝜒(𝒚𝒚􏾦􏾦)) 𝜕𝜕𝜕𝜕⁄  are regular function derivatives of the constitutive 

tensor and density distribution on the design domain evaluated at point 𝒚𝒚􏾦􏾦. In the context 

of linear elastic isotropic behavior of the material phases, let us now consider 𝐾𝐾𝜇𝜇
+, 𝐺𝐺𝜇𝜇

+ and 

𝜌𝜌𝜇𝜇
+ the bulk modulus, shear modulus and density of the dense material region 𝛺𝛺𝜇𝜇

+ 

(inclusions) and 𝐾𝐾𝜇𝜇
−, 𝐺𝐺𝜇𝜇

− and 𝜌𝜌𝜇𝜇
− the bulk modulus, shear modulus and density of the soft 

material region 𝛺𝛺𝜇𝜇
− (void/coating), such that 

C𝜇𝜇(𝜒𝜒) = 𝐾𝐾􏾧􏾧𝜇𝜇(𝜒𝜒)I ⊗ I + 2𝐺𝐺􏾧􏾧𝜇𝜇(𝜒𝜒)I dev, (B.15) 

𝜌𝜌𝜇𝜇(𝜒𝜒) = 𝜌̂𝜌𝜇𝜇(𝜒𝜒), (B.16) 

where 𝐾𝐾􏾧􏾧𝜇𝜇, 𝐺𝐺􏾧􏾧𝜇𝜇, 𝜌̂𝜌𝜇𝜇 are interpolation functions of the form 

ℎ􏾦􏾦(𝜒𝜒) = 􏿯􏿯𝜒𝜒(ℎ+)
􏷠􏷠
𝑛𝑛 + (1 − 𝜒𝜒)(ℎ−)

􏷠􏷠
𝑛𝑛􏿲􏿲

𝑛𝑛
. (B.17) 

Note that for 𝑛𝑛 > 0 (typically a value of 2 is chosen), Eq. (B.17) returns ℎ+ for dense 

material regions (𝜒𝜒 = 1) and ℎ− for soft material regions (𝜒𝜒 = 0). Eventually, one can 

compute 

𝜕𝜕C𝜇𝜇(𝜒𝜒)
𝜕𝜕𝜕𝜕

= 𝑛𝑛(𝐾𝐾􏾧􏾧𝜇𝜇(𝜒𝜒))
𝑛𝑛−􏷠􏷠

𝑛𝑛 􏿵􏿵(𝐾𝐾𝜇𝜇
+)

􏷠􏷠
𝑛𝑛 − (𝐾𝐾𝜇𝜇

−)
􏷠􏷠
𝑛𝑛􏿸􏿸 I ⊗ I + 2𝑛𝑛(𝐺𝐺􏾧􏾧𝜇𝜇(𝜒𝜒))

𝑛𝑛−􏷠􏷠
𝑛𝑛 􏿵􏿵(𝐺𝐺𝜇𝜇

+)
􏷠􏷠
𝑛𝑛 − (𝐺𝐺𝜇𝜇

−)
􏷠􏷠
𝑛𝑛􏿸􏿸 I dev, (B.18) 

𝜕𝜕𝜌𝜌𝜇𝜇(𝜒𝜒)
𝜕𝜕𝜕𝜕

= 𝑛𝑛(𝜌̂𝜌𝜇𝜇(𝜒𝜒))
𝑛𝑛−􏷠􏷠

𝑛𝑛 􏿵􏿵(𝜌𝜌𝜇𝜇
+)

􏷠􏷠
𝑛𝑛 − (𝜌𝜌𝜇𝜇

−)
􏷠􏷠
𝑛𝑛􏿸􏿸 (B.19) 

Appendix II.C Transmission loss computation for a dynamic system 

Let us consider a 2D section of a flat panel with a certain material distribution inside such 

that a FE discretization of the dynamic system yields 

𝕄𝕄𝒖𝒖􏾦̈􏾦 + ℂ𝒖𝒖􏾦̇􏾦 + 𝕂𝕂𝒖𝒖􏾦􏾦 = 𝒇𝒇 ̂. (C.1) 

The domain is assumed infinite in the vertical direction and in contact with air at both 

sides in the horizontal direction. A plane wave travels at a certain frequency in the air 

domain in contact with the left side of the panel and it continues to propagate at the same 
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frequency once it reaches the right side of the panel. Note that, since the analysis is 

performed for a given frequency, the system (C.1) may be expressed in the frequency 

domain as 

𝔻𝔻(𝜔𝜔)𝑼𝑼􏾧􏾧 = 𝑭̂𝑭,   𝔻𝔻(𝜔𝜔) = 𝕂𝕂 − 𝑖𝑖𝑖𝑖ℂ − 𝜔𝜔􏷡􏷡𝕄𝕄. (C.2) 

Since the air domain is assumed to spread infinitely at both sides, there will be two waves 

on the left side propagating in opposite directions perpendicular to the panel’s surface 

as a result of the incident wave reflection, while only one wave will be transmitted to the 

air in the right side. The analytical solutions for the displacement and pressure fields of 

these waves are given by Eqs. (32) and (33) for the air on the left side and by Eqs. (34) 

and (35) for the air on the right side. Note that the reflection and transmission coefficients, 

𝑅𝑅 and 𝑇𝑇 respectively, are the unknowns to be solved in this problem. 

In order to express the system (C.2) in terms of 𝑅𝑅 and 𝑇𝑇 compatibility conditions for the 

horizontal component of the displacements and pressure will be applied, which yields: 

𝑼𝑼􏾧􏾧 =
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡
𝑼𝑼􏾧􏾧 (𝑖𝑖)

𝑼𝑼􏾧􏾧 (𝑏𝑏)

𝑼𝑼􏾧􏾧(𝑡𝑡)

𝑼𝑼􏾧􏾧 (𝑙𝑙)

𝑼𝑼􏾧􏾧(𝑟𝑟)
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

=
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡I 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 I 𝟎𝟎 𝟎𝟎
𝟎𝟎 I 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 −𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

􏿋􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍􏿍
 ℙ𝒖𝒖 

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡
𝑼𝑼􏾧􏾧(𝑖𝑖)

𝑼𝑼􏾧􏾧 (𝑏𝑏)

𝑅𝑅
𝑇𝑇

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

􏿅􏿅

 𝑼𝑼􏾧􏾧􏷠􏷠 

+
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡𝟎𝟎
𝟎𝟎
𝟎𝟎
𝟏𝟏
𝟎𝟎

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

⏟

 𝑼𝑼􏾧􏾧􏷟􏷟 

 (C.3) 

𝑭̂𝑭 =
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎡𝑭̂𝑭 (𝑖𝑖)

𝑭̂𝑭 (𝑏𝑏)

𝑭̂𝑭 (𝑡𝑡)

𝑭̂𝑭 (𝑙𝑙)

𝑭̂𝑭 (𝑟𝑟)
⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎤

= −𝑖𝑖𝐾𝐾𝑎𝑎
⎝⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜
⎛

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

􏿋􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍􏿍
 ℙ𝒇𝒇  

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎡
𝑼𝑼􏾧􏾧(𝑖𝑖)

𝑼𝑼􏾧􏾧(𝑏𝑏)

𝑅𝑅
𝑇𝑇

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎤

􏿅􏿅

 𝑼𝑼􏾧􏾧􏷠􏷠 

+
⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡𝟎𝟎
𝟎𝟎
𝟎𝟎
𝟏𝟏
𝟎𝟎

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

⎠⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎟
⎞

􏿄􏿄

 𝑼𝑼􏾧􏾧􏷟􏷟 

, 
(C.4) 

where I are identity matrices, 𝟎𝟎 refer to matrices/vectors of zeros, 𝟏𝟏 are column vectors 

of ones, 𝐾𝐾𝑎𝑎 = 𝜌𝜌𝑎𝑎𝑣𝑣𝑎𝑎𝜔𝜔𝜔𝜔 (with 𝑆𝑆 being the panel’s surface area in contact with the air at each 

side) and the superscripts (𝑙𝑙) and (𝑟𝑟) refer to the left and right side horizontal degrees of 

freedom, respectively, (𝑏𝑏) and (𝑡𝑡) refer to both horizontal and vertical degrees of freedom 

at the bottom and top sides of the domain, respectively, and (𝑖𝑖) refers to the remaining 

degrees of freedom. Pre-multiplying the system (C.2) by ℙ𝒖𝒖
T yields 

(ℙ𝒖𝒖
T𝔻𝔻ℙ𝒖𝒖 + 𝑖𝑖𝐾𝐾𝑎𝑎ℙ𝒖𝒖

Tℙ𝒇𝒇 )􏿋􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍􏿍
 𝔸𝔸 

𝑼𝑼􏾧􏾧􏷠􏷠 = −ℙ𝒖𝒖
T(𝔻𝔻 + 𝑖𝑖𝐾𝐾𝑎𝑎I)𝑼𝑼􏾧􏾧􏷟􏷟􏿋􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍􏿍

 𝑩𝑩􏾦􏾦 

. 
(C.5) 
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Now, defining 

𝑼𝑼􏾧􏾧(𝑓𝑓) = 􏿯􏿯𝑼𝑼􏾧􏾧(𝑖𝑖)

𝑼𝑼􏾧􏾧(𝑏𝑏)􏿲􏿲 (C.6) 

allows one to express 

⎣⎢⎢⎢
⎢⎢
⎡𝔸𝔸(𝑓𝑓𝑓𝑓) 𝑨𝑨(𝑓𝑓𝑓𝑓) 𝑨𝑨(𝑓𝑓𝑓𝑓)

𝑨𝑨(𝐿𝐿𝐿𝐿) 𝐴𝐴(𝐿𝐿𝐿𝐿) 𝐴𝐴(𝐿𝐿𝐿𝐿)

𝑨𝑨(𝑅𝑅𝑅𝑅) 𝐴𝐴(𝑅𝑅𝑅𝑅) 𝐴𝐴(𝑅𝑅𝑅𝑅)
⎦⎥⎥⎥
⎥⎥
⎤

⎣⎢⎢⎢
⎢⎢
⎡
𝑼𝑼􏾧􏾧(𝑓𝑓)

𝑅𝑅
𝑇𝑇

⎦⎥⎥⎥
⎥⎥
⎤

= ⎣⎢⎢⎢
⎢⎢⎢
⎡
𝑩𝑩􏾦􏾦(𝑓𝑓) 
𝐵𝐵􏾦􏾦(𝐿𝐿)

𝐵𝐵􏾦􏾦(𝑅𝑅)
⎦⎥⎥⎥
⎥⎥⎥
⎤
. (C.7) 

The system in Eq. (C.7) can be reduced by first expressing 

𝑼𝑼􏾧􏾧(𝑓𝑓) = (𝔸𝔸(𝑓𝑓𝑓𝑓))−􏷠􏷠(𝑩𝑩􏾦􏾦(𝑓𝑓) − 𝑨𝑨(𝑓𝑓𝑓𝑓)𝑅𝑅 − 𝑨𝑨(𝑓𝑓𝑓𝑓)𝑇𝑇) (C.8) 

and then introducing expression (C.8) into the second and third equations of system 

(C.7), so that 

􏿯􏿯𝐴̅𝐴(𝐿𝐿𝐿𝐿) 𝐴̅𝐴(𝐿𝐿𝐿𝐿)

𝐴̅𝐴(𝑅𝑅𝑅𝑅) 𝐴̅𝐴(𝑅𝑅𝑅𝑅)􏿲􏿲 􏿮􏿮𝑅𝑅𝑇𝑇􏿱􏿱 = 􏿯􏿯𝐵𝐵􏼞􏼞(𝐿𝐿)

𝐵𝐵􏼞􏼞(𝑅𝑅)􏿲􏿲 (C.9) 

where, for each row 𝑎𝑎 = {𝐿𝐿, 𝑅𝑅} and column b = {𝐿𝐿, 𝑅𝑅}, 

𝐴̅𝐴(𝑎𝑎,𝑏𝑏) = 𝐴𝐴(𝑎𝑎,𝑏𝑏) − 𝑨𝑨(𝑎𝑎𝑎𝑎)(𝐴̅𝐴(𝐿𝐿𝐿𝐿))−􏷠􏷠𝑨𝑨(𝑓𝑓𝑓𝑓), (C.10) 

𝐵𝐵􏼞􏼞(𝑎𝑎) = 𝐵𝐵(𝑎𝑎) − 𝑨𝑨(𝑎𝑎𝑎𝑎)(𝐴̅𝐴(𝐿𝐿𝐿𝐿))−􏷠􏷠𝑩𝑩􏾦􏾦(𝑓𝑓). (C.11) 

Note that the system in Eq. (C.9) is a complex 2 × 2 system, the solution of which gives 

the reflection and transmission coefficients: 

𝑅𝑅 =
𝐴̅𝐴(𝑅𝑅𝑅𝑅)𝐵𝐵􏼞􏼞(𝐿𝐿) − 𝐴̅𝐴(𝐿𝐿𝐿𝐿)𝐵𝐵􏼞􏼞(𝑅𝑅)

𝐴̅𝐴(𝐿𝐿𝐿𝐿)𝐴̅𝐴(𝑅𝑅𝑅𝑅) − 𝐴̅𝐴(𝑅𝑅𝑅𝑅)𝐴̅𝐴(𝐿𝐿𝐿𝐿), 
(C.12) 

𝑇𝑇 =
𝐴̅𝐴(𝐿𝐿𝐿𝐿)𝐵𝐵􏼞􏼞(𝑅𝑅) − 𝐴̅𝐴(𝑅𝑅𝑅𝑅)𝐵𝐵􏼞􏼞(𝐿𝐿)

𝐴̅𝐴(𝐿𝐿𝐿𝐿)𝐴̅𝐴(𝑅𝑅𝑅𝑅) − 𝐴̅𝐴(𝑅𝑅𝑅𝑅)𝐴̅𝐴(𝐿𝐿𝐿𝐿). 
(C.13) 

The transmission loss is finally obtained by 

TL = −20 log􏷠􏷠􏷠􏷠|𝑇𝑇| (C.14) 

where |𝑇𝑇| refers to the complex module of the transmission coefficient 𝑇𝑇. 
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Abstract 

The so-called Locally resonant acoustic metamaterials (LRAMs) are a new kind of 

artificially engineered materials capable of attenuating acoustic waves. As the name 

suggests, this phenomenon occurs in the vicinity of internal frequencies of the material 

structure and can give rise to acoustic bandgaps. One possible way to achieve this is by 

considering periodic arrangements of a certain topology (unit cell), smaller in size than 

the characteristic wavelength. In this context, a computational model based on a 

homogenization framework has been developed from which one can obtain the 

aforementioned resonance frequencies for a given LRAM unit cell design in the sub-

wavelength regime, which is suitable for low-frequency applications. Aiming at validating 

both the proposed numerical model and the local resonance phenomena responsible for 

the attenuation capabilities of such materials, a 3D-printed prototype consisting of a plate 

with a well selected LRAM unit cell design has been built and its acoustic response to 

normal incident waves in the range between 500 and 2000 Hz has been tested in an 

impedance tube. The results demonstrate the attenuating capabilities of the proposed 

design in the targeted frequency range for normal incident sound pressure waves and 

also establish the proposed formulation as the fundamental base for the computational 

design of 3D-printed LRAM-based structures. 
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III.1  Introduction 

The notion of metamaterials as artificially engineered structures capable of exhibiting 

properties which cannot be found in ordinary materials has awoken the interest among 

both the scientific and industrial communities due to their potential applications [1]. Even 

though the concept was born in the context of electromagnetism, where materials 

behave as if they had negative refractive indices, the idea rapidly extended to other fields 

where wave propagation phenomena occur. Specifically for this matter, in the context of 

acoustics, metamaterials show the ability to effectively stop waves from propagating in 

certain frequency ranges, typically called frequency bandgaps, due to local resonance 

effects [2]. These kinds of phenomena are triggered when the material is excited by an 

acoustic wave at a frequency close to certain internal resonance frequencies, typically 

related to the metamaterial’s topology in the lower scale, effectively causing significant 

levels of attenuation of the wave’s amplitude from a macroscopic point of view [3, 4]. This 

is interesting in applications where significant levels of acoustic attenuation need to be 

achieved for specific frequency regions, especially in the low-frequency range (i.e. 

around 1000 Hz), where more conventional solutions would require impractical amounts 

of mass. 

Among the first actual realizations of acoustic metamaterials, Liu et al. [2] built a 

composite structure that possessed negative elastic constants, exhibiting bandgaps in 

localized regions of the frequency spectrum. Research in this line was followed by several 

other experimental demonstrations [5–8], in which the acoustic metamaterial consisted 

of a polymer-based matrix structure with embedded silicone rubber-coated metal 

inclusions. In fact, this is the typical configuration that allows local resonance phenomena 

to arise, since the relative rigidity of the polymer matrix allows resonance modes to be 

localized in each cell and the combination of the low stiffness of the silicone rubber with 

the high density of the metal inclusions trigger these internal resonance modes in the 

low-frequency range. Other acoustic metamaterial configurations based on the concept 

of local resonance have also been explored, including the use of binary materials [9], 

materials with porous topologies or hollow cavities [10, 11] or contact-based 
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metamaterials consisting of microspheres attached to a membrane [12, 13], among 

others. Configurations based on resonating beams [14], plates [15, 16] or membranes 

[17] have also been explored. While most studies have been carried out on periodic 

arrangements, recent works show that irregularities and random structures also exhibit 

attenuation capabilities and can even improve them with proper selection of certain 

parameters [18–21].  

In terms of numerical modelling of acoustic metamaterials and their related phenomena, 

several works can be found in the literature. For instance, in Xiao et al. [22] an analytical 

model for a simple 1D string with spring-mass resonators attached is developed in order 

to understand the bandgap formation mechanisms. A more sophisticated analysis based 

on the Bloch-Floquet theory has been performed by Liu and Hussein [23] to study wave 

propagation effects in periodic media, which has been used, for instance, to study the 

dispersion properties of 2D and 3D periodic unit cells [24]. Also in this line, Bloch-based 

models have been used to characterize resonance modes responsible for local 

resonance effects in periodic structures [25]. In the homogenization field, Fokin et al. [26] 

proposed a method to retrieve effective properties of LRAM from experimental 

measurements of the transmission and reflection coefficients, while in  Nemat-Nasser et 

al. [27] a homogenization method based on the Floquet theory for elastic composites with 

periodic structures is presented. In more recent works, computational homogenization 

frameworks based on multiscale variational principles have also been proposed and 

proved to be capable of accounting for local resonance phenomena [28–32]. 

While the concepts and realizations discussed so far have provided a better 

understanding of the local resonance phenomenon, and served as a proof of the 

properties of acoustic metamaterials, they are still far from actual industrial application, 

mainly due to limitations in the construction process. In this regard, a new kind of acoustic 

metamaterial has been devised, which is meant to be built entirely through emerging 

additive manufacturing techniques (i.e. 3D-printing). Experiments have been performed 

focused on the vibration attenuation properties of 3D-printed structures such as in 

McGee et al. [33], where both experimental and numerical analysis of a 3D-printed foam 

based on resonating hollow-spheres and binders have been performed. Given the 

material properties of common 3D-printing materials available and current limitations of 

manufacturing techniques, proper experimental evaluation of acoustic attenuation 

capabilities of these kinds of devices have been more challenging, since either their 
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dimensions or the frequency ranges of operation are unsuitable for common measuring 

devices such as impedance tubes. However, some attempts have been made and can 

be found in the literature. As examples, Claeys et al. [34] have carried out experimental 

tests measuring the insertion loss of acoustic enclosures consisting of unit cells with 

internal resonators, built entirely through Selective Laser Sintering (SLS) methods. On 

the other hand, Leblanc and Lavie [35] have measured the transmission loss in a 3D-

printed single cell of a membrane-type acoustic metamaterial built with Fused Deposition 

Modeling (FDM) technology. Following this line, the aim of this work is to present both a 

numerical and an experimental assessment of the acoustic attenuating capabilities, 

namely the normal-incidence transmission loss, to demonstrate the appearance of local 

resonance effects in a metamaterial entirely 3D-printed through Multi Jet Fusion (MJF) 

technique. To this end, a computational model has been used to obtain the relevant 

resonant modes and frequencies for a LRAM unit cell design, and the corresponding 3D-

printed samples in the shape of panels have been built in order to test their transmission 

loss capabilities at normal incidence. 

III.2  Experimental Setup 

The impedance tube method has been typically used to evaluate the acoustic 

performance of materials. It consists of two impedance tubes of constant section, with a 

speaker on one end and an anechoic termination on the other. The material sample to 

be tested is placed between both tubes and the sound pressure level of the acoustic 

wave emitted by the speaker is measured at different locations along the tube with 

microphones. In particular, the reflection coefficient can be obtained through 

measurements from two or more microphones located at different distances from the 

sample’s incident surface in the front tube section. For transmission loss determination, 

typically two additional microphones are placed on the rear tube section.  

While in the standard method for measuring the normal incidence sound transmission 

loss, a sample of the material is put inside the tubes (and so it needs to be cut so that it 

fills the whole section of the enclosure), a slightly modified version was proposed by Ho 

et al. [6], which is suitable for locally resonant acoustic metamaterials testing. In this case, 

a sample panel is pressed and held firmly between both impedance tubes. This method 

allows more flexibility for the samples shape and configuration while also being able to 

capture the local resonance behavior expected, as reported in Ho et al. [6]. 
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FIG. 1 Experiment setup representation of the impedance tubes used for measuring the normal incidence 
sound transmission loss of a sample LRAM panel. The tube cavity has a 8 cm × 8 cm squared section 
and each pair of microphones are separated 7.6 cm apart. The frequency range of operation goes from 
500 to 2000 Hz. All measures in the figure represent cm. (a) Schematic representation and (b) actual 
experimental setup. 

 

The apparatus employed for measuring the normal incidence sound transmission loss 

consists of two impedance tubes with an 8 cm × 8 cm section with 4 cm thick medium-

density fiberboard (MDF) walls for isolating the acoustic wave inside from environmental 

sources. A 3.3 inch loudspeaker (4 Ohm, 30 Watts) connected to an amplifier is located 

on one end of the front tube, and the last 30 cm of the other tube are filled with a 

polyurethane foam, acting as absorbing material in order to guarantee an anechoic 
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termination. A total of 4 1/2" pre-polarized microphones with an ICP preamplifier are 

placed at different positions: two on the front tube positioned at 10 and 17.6 cm from the 

sample’s front surface, and two on the rear tube positioned also at 10 and 17.6 cm from 

the sample’s rear surface. According to ASTM E1050-98 [36], the section size and 

separation between each pair of microphones should guarantee valid results in the 

frequency range between 200 and 2000 Hz. A schematic representation of the 

experimental setup can be found in Fig. 1. 

The transmission of each sample panel can be obtained from the measurements of the 

four microphones. Considering the acoustic wave inside the tube is plane, it can be 

expressed, in the frequency domain, as 

𝑃𝑃𝑓𝑓(𝑥𝑥, 𝜔𝜔) = 𝐴𝐴(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐵𝐵(𝜔𝜔)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 (1) 

in the front tube, and 

𝑃𝑃𝑟𝑟(𝑥𝑥, 𝜔𝜔) = 𝐶𝐶(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐷𝐷(𝜔𝜔)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 (2) 

in the rear tube. 

In the above equations, 𝑥𝑥 refers to the distance with respect to the front surface of the 

sample panel, 𝜔𝜔 is the wave’s frequency, 𝜅𝜅 = 𝜔𝜔 𝑐𝑐⁄  is the wavenumber (with 𝑐𝑐 being the 

speed of sound in air) and 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 and 𝐷𝐷 are the complex amplitudes of (a) the wave 

emitted by the loudspeaker, (b) the wave reflected by the panel in the front tube, (c) the 

wave transmitted through the panel to the rear tube and (d) the wave reflected on the 

rear tube, respectively. 

Under anechoic termination condition in the rear tube, i.e. 𝐷𝐷 = 0, the transmission 𝑇𝑇 of 

the sample panel can be obtained directly as 

𝑇𝑇(𝜔𝜔) =
𝐶𝐶(𝜔𝜔)
𝐴𝐴(𝜔𝜔)

 (3) 

The coefficients 𝐴𝐴 and 𝐶𝐶 appearing in Eq. (3) can be obtained from Eqs. (1) and (2) by 

replacing 𝑃𝑃𝑓𝑓 and 𝑃𝑃𝑟𝑟 with the corresponding sound pressure values measured at each 

frequency: 

𝑃𝑃􏷠􏷠(𝜔𝜔) = 𝐴𝐴(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥􏷪􏷪 + 𝐵𝐵(𝜔𝜔)𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥􏷪􏷪,   with 𝑥𝑥􏷠􏷠 = −17.6 cm (4) 

𝑃𝑃􏷡􏷡(𝜔𝜔) = 𝐴𝐴(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥􏷫􏷫 + 𝐵𝐵(𝜔𝜔)𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥􏷫􏷫,   with 𝑥𝑥􏷡􏷡 = −10 cm (5) 
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𝑃𝑃􏷢􏷢(𝜔𝜔) = 𝐶𝐶(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥􏷬􏷬 + 𝐷𝐷(𝜔𝜔)𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥􏷬􏷬,   with 𝑥𝑥􏷢􏷢 = 𝑑𝑑 + 10 cm (6) 

𝑃𝑃􏷣􏷣(𝜔𝜔) = 𝐶𝐶(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥􏷭􏷭 + 𝐷𝐷(𝜔𝜔)𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥􏷭􏷭,   with 𝑥𝑥􏷣􏷣 = 𝑑𝑑 + 17.6 cm (7) 

where 𝑑𝑑 is the thickness of the sample panel. The values of each 𝑃𝑃𝑘𝑘 (the subscript 𝑘𝑘 here 

refers to each microphone, i.e. 𝑘𝑘 = 1, 2, 3 or 4) have been obtained from the Fourier 

transform of the time samples of actual pressure measurements in the corresponding 

microphone positions. For this experiment, a pink noise (a noise source on the whole 

audible frequency range with equal amount of energy for each octave) has been emitted 

by the loudspeaker and pressure measurements at each position have been recorded 

for a total of 10 s, with a sample time of 2 × 10–4 s. 

The procedure described in ASTM E1050-98 [36] has been considered for correcting 

the amplitude and phase of the measured pressure values. To do so, a calibration transfer 

function, 𝐻𝐻𝑘𝑘
𝑐𝑐 has been computed for each microphone: 

𝐻𝐻𝑘𝑘
𝑐𝑐(𝜔𝜔) =

􏽱􏽱

𝑃𝑃􏷠􏷠
𝐼𝐼 (𝜔𝜔)𝑃𝑃𝑘𝑘

𝐼𝐼𝐼𝐼(𝜔𝜔)
𝑃𝑃𝑘𝑘

𝐼𝐼 (𝜔𝜔)𝑃𝑃􏷠􏷠
𝐼𝐼𝐼𝐼(𝜔𝜔)

 (8) 

where 𝑃𝑃􏷠􏷠
𝐼𝐼  and 𝑃𝑃𝑘𝑘

𝐼𝐼  are the complex Fourier transformed pressures measured by 

microphones 1 and 𝑘𝑘 for the empty tube case (without a sample panel), and 𝑃𝑃􏷠􏷠
𝐼𝐼𝐼𝐼 and 𝑃𝑃𝑘𝑘

𝐼𝐼𝐼𝐼 

are the corresponding values for the same case but in which the microphones 1 and 𝑘𝑘 

have switched positions. Note that the microphone position 1 is being used as a 

reference. 

Now, from Eqs. (4) and (5) and by correcting the pressure values at each microphone 

position with their corresponding calibration transfer function, it can be obtained 

𝐴𝐴(𝜔𝜔) = 𝑖𝑖
𝑃𝑃􏷠􏷠𝐻𝐻􏷠􏷠

𝑐𝑐𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥􏷫􏷫 − 𝑃𝑃􏷡􏷡𝐻𝐻􏷡􏷡
𝑐𝑐𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥􏷪􏷪

2 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥􏷡􏷡 − 𝑥𝑥􏷠􏷠)
 (9) 

while from Eqs. (6) and (7), 

𝐶𝐶(𝜔𝜔) = 𝑖𝑖
𝑃𝑃􏷢􏷢𝐻𝐻􏷢􏷢

𝑐𝑐𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥􏷭􏷭 − 𝑃𝑃􏷣􏷣𝐻𝐻􏷣􏷣
𝑐𝑐𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥􏷬􏷬

2 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥􏷣􏷣 − 𝑥𝑥􏷢􏷢)
 (10) 

Finally, by inserting into Eq. (3) the values obtained for coefficients 𝐴𝐴 and 𝐶𝐶 from Eqs. (9) 

and (10), respectively, the transmission loss can be obtained as 

TL(𝜔𝜔) = 10 log􏷠􏷠􏷠􏷠 􏿵􏿵
1

|𝑇𝑇|􏷡􏷡
􏿸􏿸 (11) 
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It should be noted that the anechoic termination condition has been validated in the 

employed apparatus by comparing the transmission loss for an empty tube case (no 

panel) obtained with Eq. (3) with that obtained considering all four coefficients, 

𝑇𝑇(𝜔𝜔) =
𝐴𝐴(𝜔𝜔) · 𝐶𝐶(𝜔𝜔) − 𝐵𝐵(𝜔𝜔) · 𝐷𝐷(𝜔𝜔)

𝐴𝐴􏷡􏷡(𝜔𝜔) − 𝐷𝐷􏷡􏷡(𝜔𝜔)
 (12) 

and verifying that they give almost the same result with differences of less than 0.2 dB. 

III.3  Numerical Model 

The computational homogenization framework introduced by Roca et al. [31] will be used 

in this work to characterize the modes and frequencies responsible for local resonance 

phenomena to arise and to identify the metamaterial unit cell homogenized properties to 

understand the response of the medium in the impedance tube. Even though a detailed 

description of the model can be found in Roca et al. [31, 32], a brief summary will also be 

presented here, for completeness. 

The model is based on multiscale theory and can be applied as long as the unit cell size, 

ℓ𝜇𝜇, is much smaller (at least an order of magnitude) than the macroscopic wavelength, 

𝜆𝜆, i.e. 

𝜆𝜆 ≫ ℓ𝜇𝜇 (13) 

The whole formulation is grounded on the application of the linear and angular 

momentum balance postulates for continuum mechanics in the macroscale, which read, 

respectively, 

𝜵𝜵𝒙𝒙 ⋅ σ(𝒙𝒙, 𝑡𝑡) = 𝒑̇𝒑(𝒙𝒙, 𝑡𝑡) (14) 

σ(𝒙𝒙, 𝑡𝑡) = σT(𝒙𝒙, 𝑡𝑡) (15) 

where 𝑡𝑡 refers to time, 𝒙𝒙 are the spatial coordinates in the macroscale, σ is the 

macroscopic effective second-order stress tensor and 𝒑̇𝒑 is the macroscopic effective 

inertial force density. Note that the symbol (∙)T is used to denote the transpose of (∙). To 

each point 𝒙𝒙 in the macroscale, a representative volume element (RVE) or, in this case, 

a unit cell, is assigned, and a kinematic relation for the displacement field is imposed, in 

particular, 

𝒖𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) = 𝒖𝒖(𝒙𝒙, 𝑡𝑡) + (𝒚𝒚 − 𝒚𝒚(􏷟􏷟)) ⋅ 𝜵𝜵𝒙𝒙𝒖𝒖(𝒙𝒙, 𝑡𝑡) + 𝒖̃𝒖𝜇𝜇(𝒚𝒚, 𝑡𝑡) (16) 
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where the subscript 𝜇𝜇 is used to distinguish microscale variables from their macroscopic 

counterparts, 𝒚𝒚 are the spatial coordinates in the microscale context, 𝒚𝒚(􏷟􏷟) are the 

coordinates of the centroid of the RVE and 𝒖̃𝒖𝜇𝜇 is a micro-fluctuation field, satisfying the 

minimal kinematic conditions 

⟨𝒖̃𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 𝟎𝟎 (17) 

⟨𝜵𝜵𝒚𝒚
S𝒖̃𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 𝟎𝟎 (18) 

Note that the notation ⟨∙⟩𝛺𝛺𝜇𝜇 is used to refer to the mean value of (∙) integrated over the 

RVE volume 𝛺𝛺𝜇𝜇, i.e. 

⟨∙⟩𝛺𝛺𝜇𝜇 =
1

􏿖􏿖𝛺𝛺𝜇𝜇􏿖􏿖
􏾙􏾙 (∙)𝑑𝑑𝑑𝑑

𝛺𝛺𝜇𝜇

 (19) 

Finally, an energetic equivalence between both scales is established, by means of the 

generalized Hill-Mandel principle, which reads 

𝒑̇𝒑 ⋅ 𝒖̇𝒖 + σ ∶ 𝜵𝜵𝒙𝒙
S𝒖̇𝒖 = ⟨𝒑̇𝒑𝜇𝜇 ⋅ 𝒖̇𝒖𝜇𝜇 + σ𝜇𝜇 ∶ 𝜵𝜵𝒚𝒚

S𝒖̇𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇, ∀ 𝒖̇𝒖, 𝜵𝜵𝒙𝒙
S𝒖̇𝒖, ∀ 𝒖̇𝒖𝜇𝜇 ∈ 𝓤𝓤𝜇𝜇 (20) 

where 𝓤𝓤𝜇𝜇 is the space of admissible microdisplacement fields, i.e. those satisfying Eq. 

(16) along with conditions (17) and (18), and the superscript (∙)S is used to indicate the 

symmetric component of tensor (∙). From the variational statement given by Eq. (20), and 

after considering the kinematic restrictions of Eqs. (16) to (18), one can obtain the 

following relations (again, the reader is referred to Roca et al. [31] for details): 

σ = ⟨σ𝜇𝜇 + 􏿴􏿴𝒚𝒚 − 𝒚𝒚(􏷟􏷟)􏿷􏿷 ⊗S 𝒑̇𝒑𝜇𝜇⟩𝛺𝛺𝜇𝜇 (21) 

𝒑̇𝒑 = ⟨𝒑̇𝒑𝜇𝜇⟩𝛺𝛺𝜇𝜇  (22) 

where the symbol ⊗S refers to the symmetric outer product, i.e. 𝒂𝒂 ⊗𝑆𝑆 𝒃𝒃 = (𝒂𝒂 ⊗ 𝒃𝒃 + 𝒃𝒃 ⊗ 𝒂𝒂) 2⁄ . 

Then, the weak form of the RVE problem, upon the introduction of the test function 𝛿𝛿𝒖𝒖𝜇𝜇 ≡

𝒖̇̃𝒖𝜇𝜇, reads 

⟨𝒑̇𝒑𝜇𝜇 ⋅ 𝛿𝛿𝒖𝒖𝜇𝜇 + σ𝜇𝜇 ∶ 𝜵𝜵𝒚𝒚
S𝛿𝛿𝒖𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 0, ∀ 𝒖𝒖𝜇𝜇 ∈ 𝓤𝓤𝜇𝜇, ∀ 𝛿𝛿𝒖𝒖𝜇𝜇 ∈ 𝓤𝓤𝜇𝜇

􏷟􏷟 (23) 

where 𝓤𝓤𝜇𝜇
􏷟􏷟 is the space of admissible micro-fluctuation fields (i.e. satisfying Eqs. (17) and 

(18)). Then, by considering 

σ𝜇𝜇 = C𝜇𝜇: 𝜵𝜵𝒚𝒚
S𝒖𝒖𝜇𝜇 + η𝜇𝜇: 𝜵𝜵𝒚𝒚

S𝒖̇𝒖𝜇𝜇 (24) 
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𝒑̇𝒑𝜇𝜇 = 𝜌𝜌𝜇𝜇𝒖̈𝒖𝜇𝜇 (25) 

where C𝜇𝜇 is the fourth-order constitutive tensor, η𝜇𝜇 is a viscosity fourth-order tensor 

accounting for viscoelastic effects and 𝜌𝜌𝜇𝜇 is the mass density distribution of the RVE, the 

variational statement given by Eq. (23) can be used to find the micro-fluctuation field 

solution, 𝒖̃𝒖𝜇𝜇, in terms of the macroscopic displacement and displacement gradient, 𝒖𝒖, 

𝜵𝜵𝒙𝒙𝒖𝒖, which become actions in the resulting system. 

The resolution scheme that follows is based on two main simplifying hypotheses: 

(a) The separation of scales condition given by Eq. (13) is satisfied so that the natural 

frequencies triggering local resonance effects arising in the low-frequency region, 

far below the range where the first RVE deformation modes appear. 

(b) The center of mass of the RVE is close enough to its centroid so that the inertial 

contributions on the effective macroscopic stress can be neglected. 

The first hypothesis (a) allows us to neglect the inertial response due to macroscopic 

deformation actions, because they will not be relevant in the frequency range of interest. 

This makes it possible to split the system into a quasi-static component whose action is 

simply the macroscopic strain, 𝜵𝜵𝒙𝒙
S𝒖𝒖, and an inertial component whose action becomes 

the macroscopic acceleration, 𝒖̈𝒖. From the quasi-static subsystem, an expression for the 

macroscopic stress tensor can be obtained, relating it to the macroscopic strain through 

an effective constitutive tensor: 

σ = C eff: 𝜵𝜵𝒙𝒙
S𝒖𝒖 + ηeff: 𝜵𝜵𝒙𝒙

S𝒖̇𝒖 (26) 

The terms C eff and ηeff in the previous equation are obtained applying the classical 

homogenization theory to the quasi-static system, i.e. by imposing periodic boundary 

conditions on the RVE system under the action of a macroscopic strain. By performing a 

Galerkin-based Finite Element (FE) discretization, the system can be solved yielding 

Ceff = 𝕐𝕐�T𝕂𝕂𝜇𝜇𝕐𝕐� (27) 

ηeff = 𝕐𝕐�Tℂ𝜇𝜇𝕐𝕐� (28) 

with 

𝕐̃𝕐 = 𝕐𝕐 − ℙ(ℙT𝕂𝕂𝜇𝜇ℙ)−􏷠􏷠ℙT𝕂𝕂𝜇𝜇𝕐𝕐 (29) 
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where 𝕂𝕂𝜇𝜇 is the RVE stiffness matrix, ℂ𝜇𝜇 is the RVE damping matrix, ℙ is a boolean matrix 

imposing the periodic boundary conditions and 𝕐𝕐 is a matrix containing the nodal 

coordinates, 𝒚𝒚􏾦􏾦(𝑖𝑖), arranged such that 

𝕐𝕐 =

⎣⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎡ ⋮
𝑦𝑦􏾦􏾦􏷠􏷠

(𝑖𝑖) 0 0 0 𝑦𝑦􏾦􏾦􏷢􏷢
(𝑖𝑖) 2⁄ 𝑦𝑦􏾦􏾦􏷡􏷡

(𝑖𝑖) 2⁄
0 𝑦𝑦􏾦􏾦􏷡􏷡

(𝑖𝑖) 0 𝑦𝑦􏾦􏾦􏷢􏷢
(𝑖𝑖) 2⁄ 0 𝑦𝑦􏾦􏾦􏷠􏷠

(𝑖𝑖) 2⁄
0 0 𝑦𝑦􏾦􏾦􏷢􏷢

(𝑖𝑖) 𝑦𝑦􏾦􏾦􏷡􏷡
(𝑖𝑖) 2⁄ 𝑦𝑦􏾦􏾦􏷠􏷠

(𝑖𝑖) 2⁄ 0
⋮

⎦⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎤

 (30) 

The second hypothesis (b) allows us to condense all the inertial effects into a 

macroscopic inertial force density term, including all the local resonance phenomena 

that are the focus of this analysis. In particular, by combining Eqs. (22) and (16) 

(considering, by the definition of 𝒚𝒚(􏷟􏷟) as the centroid of the RVE, ⟨𝒚𝒚 − 𝒚𝒚(􏷟􏷟)〉𝛺𝛺𝜇𝜇 = 𝟎𝟎), one can 

obtain 

𝒑̇𝒑 = 𝜌̅𝜌𝒖̈𝒖 + ⟨𝜌𝜌𝜇𝜇𝒖̈̃𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 (31) 

where 𝜌̅𝜌 = ⟨𝜌𝜌𝜇𝜇⟩𝛺𝛺𝜇𝜇 is the volume averaged RVE density and ⟨𝜌𝜌𝜇𝜇𝒖̈̃𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 is the averaged 

micro-inertial fluctuation contribution and the term responsible for local resonance 

phenomena. It should be noted that, according to hypothesis (a), the micro-fluctuation 

field responsible for those effects is obtained from the inertial subsystem, i.e. the RVE 

system under the action of a uniform acceleration field and a set of boundary conditions 

capable of triggering internal resonance modes. This can be achieved, for instance, by 

prescribing all boundary degrees of freedom, and then solving the modal problem 

(𝕂𝕂𝜇𝜇
∗ − 𝜆𝜆𝜇𝜇

∗(𝑘𝑘)𝕄𝕄𝜇𝜇
∗ )𝝓𝝓􏾦􏾦𝜇𝜇

∗(𝑘𝑘) = 𝟎𝟎 (32) 

where 𝕂𝕂𝜇𝜇 and 𝕄𝕄𝜇𝜇 are the RVE stiffness and mass matrices, respectively (the superscript 

(∙)∗ indicates that the considered boundary conditions have already been applied), 𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘) 

are the resulting mass-normalized eigenvectors and 𝜆𝜆𝜇𝜇
∗(𝑘𝑘) = (𝜔𝜔𝜇𝜇

∗(𝑘𝑘))􏷡􏷡 are the eigenvalues. 

The resulting microfluctuation field can be expressed in terms of internal variables, 𝑞𝑞𝜇𝜇
∗(𝑘𝑘), 

associated to each of the resonance modes: 

𝒖̃𝒖𝜇𝜇 =  􏾝􏾝 ℙ􏷟􏷟𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘)𝑞𝑞𝜇𝜇

∗(𝑘𝑘)

𝑘𝑘

 (33) 
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where ℙ􏷟􏷟 is a boolean matrix imposing the required boundary conditions. This allows us 

to express the second term in Eq. (31) as 

⟨𝜌𝜌𝜇𝜇𝒖̈̃𝒖𝜇𝜇⟩𝛺𝛺𝜇𝜇 = 􏾝􏾝
1

􏽮􏽮|𝛺𝛺𝜇𝜇|
𝕀𝕀𝑇𝑇𝕄𝕄𝜇𝜇ℙ􏷟􏷟𝝓𝝓􏾦􏾦𝜇𝜇

∗(𝑘𝑘)

􏿋􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍􏿍

 𝒓𝒓𝜇𝜇
(𝑘𝑘) 

𝑞̈𝑞𝜇𝜇
∗(𝑘𝑘)

𝑘𝑘

 
(34) 

where 𝕀𝕀 is a column vector of identity second-order tensors. The internal variables are 

solved through the following microscale system: 

𝑞̈𝑞𝜇𝜇
∗(𝑘𝑘) + 􏾝􏾝 𝜔𝜔𝜇𝜇

𝐷𝐷(𝑘𝑘,𝑗𝑗)𝑞̇𝑞𝜇𝜇
∗(𝑗𝑗)

𝑗𝑗

+ (𝜔𝜔𝜇𝜇
∗(𝑘𝑘))􏷡􏷡𝑞𝑞𝜇𝜇

∗(𝑘𝑘) = −𝒓𝒓𝜇𝜇
(𝑘𝑘) ⋅ 𝒖̈𝒖 (35) 

with 

𝜔𝜔𝜇𝜇
𝐷𝐷(𝑘𝑘,𝑗𝑗) =

1
|𝛺𝛺𝜇𝜇|

𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑘𝑘)Tℙ􏷟􏷟

Tℂ𝜇𝜇ℙ􏷟􏷟𝝓𝝓􏾦􏾦𝜇𝜇
∗(𝑗𝑗) (36) 

It is important to note that not all the internal modes obtained from Eq. (32) are 

responsible for triggering local resonance effects. In particular, only those with a relevant 

effect on the macroscale are capable of affecting the metamaterial behavior, giving rise 

to frequency bandgaps of acoustic wave attenuation. This discrimination can be easily 

performed in the present context by evaluating the norm of 𝒓𝒓𝜇𝜇
(𝑘𝑘), so 

‖𝒓𝒓𝜇𝜇
(𝑘𝑘)‖   􏿻􏿻

> 0 →   the 𝑘𝑘-th mode is relevant

= 0 → the 𝑘𝑘-the mode is non-relevant
 (37) 

allowing us to identify the resonance modes and frequencies that trigger local resonance 

effects for a given RVE design. 

III.4  Prototypes Design 

The sample used for the experimental tests consists of a 120 mm × 120 mm panel 5 mm 

thick with a 6 × 6 grid of unit cells at the central part, occupying the whole 80 mm × 80 

mm tube section. The overall size of each unit cell, 12 mm × 12 mm × 5 mm, is chosen 

so as to be thin enough for practical applications and to satisfy the separation of scales 

condition given in Eq. (13) (note that in the limit case, i.e. for a frequency of 2000 Hz, and 

considering air as acoustic propagation medium, 𝜆𝜆 ℓ𝜇𝜇⁄ > 10, which is acceptable for 

triggering local resonance effects and considering the homogenization framework valid). 

In Fig. 2 a schematic representation of the panel can be found. The metamaterial panel 
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has been monolithically 3D-printed and two 120 mm × 120 mm × 2 mm skin panels of 

the same material have been stuck to each side, in order to isolate and constrain the unit 

cells, enabling the appearance of internal resonance modes. The unit cells have been 

designed so that they can be easily 3D-printed from a single block or material, while still 

being composed of the required elements for local resonance phenomena to arise. 

Namely, (1) the support rods at the vertices, which become the union points of the cells 

with the skin panels, isolate each cell, enabling the appearance of internal modes, (2) the 

central inclusion acts as a mass, becoming the resonating component and (3) the thin 

attachments allow the unit cell to have relevant resonance modes in the desired 

frequency range. The panels have been manufactured using Polyamide 11 (PA 11) as 

3D-printing material through MJF technology. MJF employs a process similar to SLS in 

which parts are built by fusing layers of powder polymer. Unlike with SLS, a fusing agent 

is previously dispensed in the powder in order to promote the absorption of infrared light 

in each cross section, which typically yields faster and slightly more accurate results, for 

smaller features, than those obtained with SLS [37]. 

 

 

FIG. 2 Acoustic metamaterial panel design. The panel is stuck to two skins made with the same material, 
as in the top right corner of the figure, in order to hold and isolate the unit cells. A detailed unit cell 
design is depicted in the bottom right corner of the figure. Dimensions in millimeters. 
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The homogenization procedure described in Section III.3 has been applied to the 

metamaterial unit cell design with the material properties, provided by the manufacturer, 

given in Tab. 1. To do so, a FE mesh of tetrahedra has been used, consisting of around 

137000 elements with 3 Gaussian integration points each. In the range between 500 and 

2000 Hz, there is only one relevant internal resonance mode (see Fig. 3) at a frequency 

around 1050 Hz, which can trigger local resonance phenomena at the macroscale. It 

should be noted that the specific design of the unit cell results from the challenge of 

achieving the internal resonance in the desired frequency range, for the given material 

properties, while keeping the overall unit cell thin and small (within manufacturability 

limitations) for practical applications. To do so, (1) the bending stiffness for the thin 

attachments (which is responsible for the internal resonance mode depicted in Fig. 3) 

must be small and (2) the mass of the resonating inclusion must be large enough. Since 

the diameters of the attachments are close to the manufacturability limitations, the easiest 

way to minimize its stiffness to bending is by increasing its length. On the other hand, the 

mass of the resonating inclusion can be also increased if its volume occupies as much 

space available in the unit cell as possible. The combination of both yields the flower-like 

look of the design and enables the appearance of the internal resonance mode at a 

frequency around 1000 Hz. 

 

 

FIG. 3 (a) Displacement of the internal vibration mode responsible for the attenuation peak at 1050 Hz 
and (b) corresponding mode causing the transmission peak indicating the upper bandgap limit at 1380 
Hz. The black dashed line indicates the undeformed unit cell contour. Note that in the attenuation peak, 
the inclusion vibrates keeping the supports fixed (causing the macroscopic wave to effectively stop 
propagating), while in the transmission peak, the inclusion remains nearly fixed and the supports vibrate 
(further increasing the wave transmission through the panel). 
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TAB. 1 3D-printing material properties. 

Material Density (kg/m3) Young’s modulus (MPa) Poisson’s ratio 
PA 11 1050 1800 0.405 

 

III.5  Results 

III.5.1  Experimental test 

The sample metamaterial panel has been tested and the normal incidence sound 

transmission loss for a range of frequencies from 500 to 1500 Hz has been obtained as 

described in Section III.2. The results are given in Fig. 5 where a region of increased 

acoustic attenuation can be identified around the frequency of 1000 Hz, very close to the 

frequency of 1050 Hz, where local resonance phenomena were expected to arise 

according to the unit cell analysis. For comparison, the same test has been performed 

on two 120 mm × 120 mm homogeneous panels 3D-printed with the same material: one 

with the same equivalent mass as the metamaterial panel assembly, and another with the 

same thickness, which correspond to panel sizes of 6 and 9 mm, respectively. Fig. 5 

shows the average results from three different measures for each sample panel. The 

standard deviation has been measured in each case with values ranging from 0.4 dB for 

the homogeneous panels to 2.9 dB for the metamaterial case, with this being higher due 

to very small variations in the peaks location (< 1 %) causing larger differences in their 

transmission loss levels. However, these values are acceptable for a proper qualitative 

assessment of the phenomenon. 

It should be noted that, for the metamaterial panel, aside from the attenuation peak 

around the frequency of 1000 Hz, there are also two inverted peaks, i.e. transmission 

peaks, at frequencies of 550 Hz and 1250 Hz. The latter (transmission peak at 1250 Hz) 

corresponds to the unit cell resonance frequency that typically marks the end of the 

bandgap region, while the former (transmission peak at 550 Hz) is caused by the pressing 

of the panel against the sealing component (which allows certain elasticity) that holds it 

between the two parts of the impedance tube. This inverted peak also appears for the 

homogeneous panels at the approximate frequencies of 800 and 950 Hz. It should be 

noted that these results, and in particular the aforementioned transmission peaks, are 

not expected in standard impedance tube measurements where the sample is placed 

inside the tube. However, several tests have been performed with different samples 
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(varying materials and geometric properties) in order to verify the repeatability of the 

results is guaranteed even with the non-standard mounting procedure. It has been 

observed that even though those peaks are caused by the mounting of the sample, they 

are related to material and geometric properties of the samples (results are the same for 

different samples with equivalent material and geometric properties). 

III.5.2  Numerical analysis 

A macroscopic analysis of the panel response in the tube has been performed, with the 

simulation setup depicted in Fig. 4. The solid domain has been discretized with 18 × 18 

× 9 hexahedral elements with 4 Gaussian quadrature points each and consists of two 

material phases. The skins and the metamaterial panel outer frame have both been 

modelled as standard solid isotropic materials, with the properties given in Tab. 1. The 

internal volume, corresponding to where the actual metamaterial unit cells can be found 

in the panel, has been modelled as a homogenized material with an effective constitutive 

tensor, C eff, an effective viscosity tensor ηeff, an average density, 𝜌̅𝜌, and the relevant 

internal resonance modes and frequencies, 𝒓𝒓𝜇𝜇
(𝑘𝑘) and 𝜔𝜔𝜇𝜇

∗(𝑘𝑘), along with 𝜔𝜔𝜇𝜇
D(𝑘𝑘,𝑗𝑗)

, obtained from 

the unit cell analysis. The procedure described in Roca et al. [32] has been considered 

in this case for computing the transmission coefficient, from which the transmission loss 

can be directly obtained. To do so, an appropriate set of displacements and traction 

forces have been imposed in the sections of the front and rear faces that are exposed to 

the plane waves travelling inside the tube: (a) an incident wave of arbitrary amplitude 

towards the panel’s front face, (b) a reflected wave, with a reflection coefficient 𝑅𝑅, 

travelling in the opposite direction, also from the panel’s front face, and (c) a transmitted 

wave, with a transmission coefficient 𝑇𝑇, travelling away from the panel’s rear face. In 

particular, defining 𝜅𝜅 = 𝜔𝜔 𝑐𝑐⁄  as the wavenumber (with 𝑐𝑐 being the speed of sound in air) 

and 𝜌𝜌𝑎𝑎 as the density of air, the boundary conditions (on both displacements 𝒖𝒖 and 

traction forces 𝒇𝒇 ) to simulate the normal incident plane wave on the front and rear faces 

can be written as: 

(a) In the front face 

𝒏𝒏 ⋅ 𝒖𝒖 = (𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 (38) 

𝒇𝒇 = −𝑖𝑖𝒏𝒏𝜌𝜌𝑎𝑎𝑐𝑐𝑐𝑐(𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 (39) 
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FIG. 4 Transmission loss simulation set-up. The solid domain consists of two material phases: the 
standard isotropic 3D-printing material and an internal region where the actual metamaterial cells can 
be found. The latter has been modelled as a homogenized material, with the properties obtained from 
the RVE analysis. Springs of a certain stiffness 𝑘𝑘 have been introduced in the pressed area of both the 
front and rear faces of the panel, in order to simulate the elastic behavior of the sealing. In the remaining 
region, which is the area actually exposed to the acoustic waves inside the tube, an incident, a reflected 
and a transmitted plane wave have been imposed as depicted in the figure in order to obtain the 
transmission coefficient. 

 

(b) In the rear face 

𝒏𝒏 ⋅ 𝒖𝒖 = 𝑇𝑇𝑒𝑒𝑖𝑖(𝜅𝜅𝜅𝜅−𝜔𝜔𝜔𝜔) (40) 

𝒇𝒇 = −𝑖𝑖𝒏𝒏𝜌𝜌𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖(𝜅𝜅𝜅𝜅−𝜔𝜔𝜔𝜔) (41) 

where 𝑅𝑅 and 𝑇𝑇 become the unknowns. The system from which both coefficients can be 

obtained has been solved in the frequency domain for a range of 500 frequencies 

between 500 and 1500 Hz. The results can be seen on Fig. 5, where the simulated curves 

can be compared to the ones obtained from the experimental test with the impedance 

tube. As for the accuracy of the numerical results, it should be noted that it depends 

mainly on (a) the number of internal modes considered and (b) the frequency range of 

study, so that the model is more accurate the smaller the frequency. In particular for this 

case (normal-incidence plane wave excitation), the next relevant modes frequencies are 

above 10 kHz, so the single mode considered is enough to guarantee accurate results. 

More specifically, from previous studies [31], it could be verified that the expected relative 
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error when comparing results to full direct numerical simulations is smaller than 0.1 % 

when the separation of scales is 𝜆𝜆 ℓ𝜇𝜇⁄ > 10 (as in this case), reaching localized peaks of 

errors around 1 % near the resonance frequencies, with these numbers not being largely 

affected by mesh size. 

Note that in order to simulate the effect of the panel’s holding against the sealing 

component (i.e. the transmission peak at 550 Hz), springs of a given stiffness 𝑘𝑘 = 4000 

N/m have been considered in the pressed area of both the front and rear faces of the 

panel (see FIG. 4). Furthermore, in order to smooth the simulated resonance peaks, an 

additional analysis has been performed where damping effects have been considered by 

introducing a certain degree of viscoelastic behavior to the material (with a viscosity of 

𝜇𝜇 = 3000 Pa·s, chosen in order to fit the experimental results).   

III.6  Discussion 

Results from Fig. 5 show that the metamaterial panel attenuation performance as a 

response to normal incident acoustic waves around the region where local resonance 

effects were expected is improved when compared to those of homogeneous panels with 

the same effective mass or thickness. Even without considering the transmission peaks 

in the homogeneous panels’ cases, an increase of 15 to 25 dB from the baseline values 

can be observed in a frequency range of around 300 Hz. It is worth noting the normal 

incidence sound transmission loss decrease in the metamaterial panel for frequencies 

above the upper bandgap limit, which make it a suitable choice especially for low-

frequency applications. 

On the other hand, from the obtained results in Fig. 5, it can be seen that both the 

experimental and simulated curves’ shapes are the same, capturing in each case the 

attenuation rise around the frequency responsible for the local resonance effects and 

then the transmission peak indicating the bandgap end. However, it should be noted that 

there are some differences in the frequencies where the peaks are produced, which are 

most likely caused by geometrical tolerances in the fabrication process of the samples. 

In particular, the internal resonance frequency is very sensitive to the thickness of the 

attachments, causing variations of the order of ± 200 Hz for diameter deviations of ± 0.1 

mm. This is an indication that small variations in the geometry of the unit cells can give 

rise to several attenuation peaks, a fact that, if properly considered in the design process, 

may be of interest, for instance, when trying to enlarge the effective attenuation band. 
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This shows the importance of the design process of acoustic metamaterials and how 

there is room for improvement and optimization towards achieving the desired properties 

and behavior. In this regard, the need for very accurate fabrication methods is also of 

utmost importance in order to achieve the expected results and performance, as 

unplanned variations of just 12 % in the diameter at this scale, can cause a 20 % deviation 

in the expected frequencies. It is important to note that for the present study, 

measurements have been performed with only one sample panel. However, in order to 

evaluate the accuracy of the 3D-printed prototype, measurements of the thickness of the 

attachments have been made, yielding an average value of 0.79 ± 0.03 mm, with a 

standard deviation of 0.009 mm. This represents around 1.2 % variation from the design 

value (0.8 mm), and while the expected impact on the results should not be large (around 

2 % deviation in frequency), it certainly is an issue that should be considered when 

designing unit cell models at this scale with the current state of 3D-printing technologies. 

 

FIG. 5 Transmission loss results obtained experimentally for the homogeneous sample panels of 
equivalent mass (blue triangles) and thickness (red crosses) and the metamaterial sample panel (black 
circles). The results obtained numerically for the metamaterial panel are also given for comparison, both 
for the undamped case (solid black line) and the case accounting for viscoelastic effects on the material 
(dashed black line). 
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III.7  Conclusions 

The results of this work can be used to both confirm the appearance of local resonance 

effects in 3D-printed acoustic metamaterials as a response to normal incident sound 

pressure waves, and to validate the proposed numerical scheme as a tool for 

characterizing such kinds of phenomena. This can be regarded as a first step towards an 

alternative approach  to what has been the standard in acoustic metamaterial unit cell 

design so far, where instead of achieving the desired metamaterial behavior by 

combining two or more materials with different properties, the same effects are obtained 

with only one material and relying more on geometric and topological aspects of the 

design. On a next stage, more sophisticated computational techniques, such as topology 

optimization algorithms, can be involved in the design process in order to achieve 

optimized designs for targeted sets of properties. Additionally, this novel approach is 

naturally compatible with emerging manufacturing technologies, which can facilitate the 

fabrication process, making these materials more appealing and bringing them one step 

closer to practical applications. 
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