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Abstract

Just over one hundred years ago, a series of epidemic influenza outbreaks swept through
the world. Dubbed the “Spanish flu," the entirety of these outbreaks contributed to millions
of excess deaths in less than one year. While research has long been focused on several
aspects of the pandemic, not limited to its virology, aspects of its morbidity and mortality
impact, and social and spatial variation in its manifestation, questions remain unanswered.
This dissertation attempts to address several unresolved questions persist today using newly
digitized data sources, primarily the Madrid Civil Register death records from 1917-1922.
As a body of work, the following chapters contextualize Madrid’s experience of Spanish flu
to both the rest of Spain and other parts of the world. Better understanding of these historical
issues can help contemporary epidemiologists and policy makers to better prepare for future
outbreaks. A discussion of the broad themes noted below are woven through the totality of
the work.

Timing and strength of individual and successive waves:

During the strong fall wave in Spain, is a geographic pattern of transmission visible?
In line with previous assessments of the spread of influenza in Spain in 1918, a clear pattern
of movement from the northeast to the west and south was statistically found using sequence
analysis. Rural areas appear to have a stronger (higher R) and longer lasting fall wave than
the provincial capital cities. However, within the urban center of Madrid, while variation in
timing and strength existed, any geographic pattern is difficult to ascertain. [Chapter 2 and
Appendix D]

What is the impact of successive waves in a population?
In the case of Spain, cities and provinces known to have a herald wave in spring or summer
1918 appear to experience fall waves of lower Reproduction numbers than those areas in
which a herald wave is not known to have occurred. Madrid was hit with a particularly strong
herald wave, and the excess mortality in the city is lower relative to other large urban areas,
especially in the fall wave. With regards to cause of death, it appears that earlier waves
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were particularly deadly to those with pre-existing diseases, such as tuberculosis. These first
outbreaks effectively harvested these deaths, which did not occur in later waves. [Chapters 2,
4, and 6]

Age-specific mortality patterns:

How much excess mortality occurred in each wave, and to what extent did excess mor-
tality peak in young adult ages?
Calculated as the amount of observed mortality above the expected level, age-specific excess
mortality patterns during the outbreak are known to have varied across the world, but often a
particular pattern is visible of increased mortality excess in young-adult ages. In the city of
Madrid, this pattern is less prominent than in other locations in the world, such as Scotland,
but there is a small localized peak in absolute excess mortality during the fall-winter 1918-19
wave. Relative excess mortality is found to be the highest in young adults in all waves. Given
the presence of a strong herald wave in Madrid, the extent to which a protective effect of
earlier exposure may have tempered the amount of mortality and prevalence of a young
adult mortality spike is unknown. In an echo wave in both Madrid (1919-20) and Scotland
(1920-21), the youngest and oldest are most affected, implying both a return to seasonal
influenza mortality patterns and a lack of immunity among the youngest children, conceived
and born after the outbreaks. [Chapters 3, 4, and 6]

Mortality risk from a neighborhood perspective:

How did demographic, social, and spatial variation contribute to increased mortality?
At the time of the outbreaks, Madrid was a very heterogeneous city, consisting of the richest
rich and poorest poor. Some neighborhoods consisted of similar groups of people, while
others were incredibly diverse. This makes the analysis of an area’s traits with respect to
excess mortality difficult. Nonetheless, the thesis clearly finds that irrespective of other social
and constructed characteristics, such as social class, literacy level, and population density,
the amount of baseline mortality in an area is the best predictor of excess mortality during
the outbreaks. That is to say, those areas with the highest rates of pre-pandemic mortality
also faced devastating losses of life during each pandemic wave. This adds to other evidence
in the thesis that suggests those most vulnerable before the influenza epidemic continued to
experience higher levels of mortality during the outbreaks. [Chapters 5, and 6]
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Resumen

Hace poco más de cien años, una pandemia de gripe se extendió por todo el mundo. Apodada
la "gripe española", esta pandemia contribuyó a la muerte de millones de personas en menos
de un año. Durante mucho tiempo el foco del análisis se ha centrado, no sólo en su virología,
si no en aspectos como su impacto en la morbilidad y la mortalidad, y cómo afecto de forma
diferente social y espacialmente, pero aún no se ha dado una respuesta exhaustiva a muchas
de estas cuestiones. Esta tesis doctoral pretende abordar algunas cuestiones que todavía
hoy se encuentran pendientes de resolver, usando para ello fuentes de datos recientemente
digitalizadas, principalmente los registros de defunción del Registro Civil de Madrid de
1917-1922. En los siguientes capítulos se contextualiza la gripe española dentro de una gran
urbe como Madrid, así como en el conjunto de España, comparándola con otras partes del
mundo. Una mejor comprensión de la evolución histórica de la enfermedad puede ayudar a
los epidemiólogos y responsables políticos contemporáneos a prepararse mejor para futuros
brotes. A continuación, se mencionan los temas principales, transversales en la totalidad del
trabajo:

Tiempo y fuerza de las olas individuales y sucesivas:

Durante la Gripe de 1918, la fuerte ola de otoño en España, tiene un patrón geográfico de
transmisión visible y claro. En línea con las anteriores evaluaciones de la propagación de la
gripe en España en 1918, se encontró estadísticamente un patrón claro de movimiento desde
el noreste hacia el oeste y el sur mediante el método de análisis de secuencias. Las zonas
rurales de las provincias parecen tener una ola más fuerte (más alta en R) y más duradera que
la de las capitales de provincia. Sin embargo, dentro de Madrid, si bien existían variaciones
en tiempo y fuerza, cualquier patrón geográfico es difícil de identificar. [capítulo 2 y capítulo
D]

¿Cuál es el impacto de las olas sucesivas en una población?
En el caso de España, las ciudades y provincias que tenían una ola precursora en primavera o
verano (de 1918) parecen experimentar una ola en otoño más atenuada que aquellas áreas
en las que no se sabe que hayan sufrido esa ola precursora. Madrid fue golpeada por una
primera ola precursora particularmente fuerte, y, sin embargo, el exceso de mortalidad es
menor en comparación con otras grandes áreas urbanas, especialmente en la ola de otoño.
Con respecto a las causas de muerte, parece que las olas anteriores fueron particularmente
mortales para aquellos con enfermedades preexistentes, como la tuberculosis. Estos primeros
brotes cosecharon efectivamente estas muertes, que no ocurrieron en oleadas posteriores.
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[capítulos 2, 4, y 6]

Patrones de mortalidad específicos por edad:

¿Cuántas muertes añadidas trajo la Gripe en cada ola, y hasta qué punto el exceso de
mortalidad alcanzó su punto máximo en la edad adulta joven?
Calculado como la cantidad de mortalidad observada por encima del nivel esperado, se sabe
que los patrones de exceso de mortalidad por edad durante el brote han variado en todo el
mundo, pero a menudo se observa un patrón particular de aumento del exceso de mortalidad
en jóvenes y adultos. En la ciudad de Madrid, este patrón es menos prominente que en otros
lugares del mundo, como Escocia, pero hay un exceso absoluto más elevado de mortalidad
durante el otoño-invierno de 1918-19 en Madrid. El exceso relativo de la mortalidad es
más alto entre los adultos jóvenes en todas las oleadas. Dada la presencia de una fuerte ola
precursora en Madrid, se desconoce hasta qué punto un efecto protector de la exposición
temprana pudo haber moderado la mortalidad y la prevalencia de un pico de mortalidad en
adultos jóvenes en sucesivas oleadas. En una onda posterior, tanto en Madrid (1919-20) como
en Escocia (1920-21), los más jóvenes y los mayores son los más afectados, lo que demuestra
un retorno a los patrones de mortalidad por gripe estacional y la falta de inmunidad entre los
ni´ nos más peque´ nos, concebidos y nacidos después de los brotes. [capítulos 3, 4, y 6]

Riesgo de mortalidad desde la perspectiva del barrio.

¿Cómo contribuyó la variación demográfica, social y espacial al aumento de la mortalidad?
En el momento de la pandemia, Madrid era una ciudad muy heterogénea. Algunos barrios
los formaban grupos similares de personas, mientras que en otros los grupos de personas
eran increíblemente diversos. Esto dificulta el análisis de los rasgos de un área respecto al
exceso de mortalidad. No obstante, la tesis encuentra claramente que, independientemente
de otras características sociales, como la clase social, el nivel de alfabetización y la densidad
de población, la mortalidad inherente de cada zona es el mejor indicador del exceso de
mortalidad durante cada uno de los brotes. Es decir, las zonas con las tasas más altas de
mortalidad pre-pandémica también se enfrentan a pérdidas de vidas devastadoras durante
cada ola pandémica. Esto se suma a otras conclusiones de la tesis que sugieren que los más
vulnerables antes de la epidemia de gripe continuaron experimentando niveles más altos de
mortalidad durante los brotes. [capítulos 5, y 6]
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Chapter 1

Introduction

1.1 Personal Demographic Beginnings

Until September 2016, when I began my studies at the Consejo Superior de Investigaciones
Científicas (CSIC) in Madrid, my knowledge of the “Spanish Flu" epidemic largely remained
limited to only understanding its high mortality impact. As I started my master’s degree
in Demography and began my journey into the study of population, my very first lectures
exposed me to the strength of the 1918 epidemic. Professors constantly use the drastic
increase in mortality rates during this year to explain the impact age-specific mortality
differences can have on aggregate population measures. Later, while attending the European
Doctoral School of Demography (EDSD), Miguel Sanchez-Romero taught basic epidemic
modeling and the calculation of the Reproduction Number (R) as part of a week-long section
of the modeling module. This course, my first true exposure to quantifying and understanding
the impact of epidemics, piqued my interest in this area of demography. Around this time, I
was also searching for a PhD position and was referred to the LONGPOP project by several
EDSD teachers. Of the listed available positions, I was immediately intrigued by the first,
“Mapping epidemic diseases through time: influenza," and applied. Several months later,
I was accepted to the project with 14 other Early Stage Researchers throughout Europe,
and, after several more months of visa paperwork, I ultimately began the process of study,
analyses, and review that has culminated in the following dissertation.

My first several months were spent reading and learning about themes associated with
and evolution of the study of Spanish flu over the past one hundred years. As a novice on
the subject, I had to learn about the different waves and their progression through the world,
total and age-specific excess mortality (both absolute and relative) by cause, and how all
of these differed by geography. Moreover, I learned about the continuing debate regarding
acquired immunity and social gradients in mortality. Much work has already added to the
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narrative and understanding of the Spanish flu in the city of Madrid; entire volumes have
focused on the experience of the outbreaks in Madrid and Spain, though these books generally
examined the events and their effects from a social perspective and qualitative lens. They
contain calculations aggregated statistics and sought to understand how propaganda and the
political situation before, during, and after the outbreaks led to changes in social and medical
structures [84, 95, 112, 114]. As I continued to familiarize myself with the subject matter, I
looked forward to how my own work might contribute to the existing body of knowledge on
Spanish flu in Madrid and realized my quantitative skills would provide a missing statistical
component to the story of the largest and most pervasive influenza epidemic in Madrid.

Recent technological developments and financial resources have led a resurgence in
influenza research, both in the academic realm, through scientific articles and collections
(e.g. The Spanish influenza pandemic of 1918-1919: perspectives from the Iberian Peninsula
and the America, The Spanish Influenza Pandemic of 1918-1919: New Perspectives) and
in population non-fiction (e.g. The Great Influenza: The Story of the Deadliest Pandemic
in History, Pale Rider: The Spanish Flu of 1918 and How it Changed the World) [36, 115,
146, 260]. The ability to digitize historical death records means that the progression and
mortality impact of the flu can be re-examined from quantitative perspectives, adding to
our knowledge about how past epidemics spread and may manifest themselves in the future.
These new analyses continue to both solve and call into question longstanding debates on the
global outbreaks, while also reminding scientists, policy makers, and the general public alike
of the importance of epidemic preparedness [286]. While nearly one hundred years have
passed since the Spanish flu, a pandemic could similarly affect the world today should the
global population be caught off guard. In this sense, the following dissertation is meant to
complement and add to the re-emerging body of demographic and epidemiological analyses
on the past pandemic, with the understanding that while other invaluable work on the topic
has been completed, additional perspectives can continue to provide a wider insight into the
ways pandemics have affected communities in the past and may do so in the future.

While my participation in the EDSD supplied an advanced knowledge of demographic
analysis techniques, I needed to familiarize myself with additional methodologies and garner
feedback from the scientific community through courses, conferences, and workshops. The
LONGPOP grant, funded through the European Union’s Horizon 2020 Program, afforded
me the opportunity to attend many courses within our International Training Network (ITN)
of 15 Early Stage Researchers (ESRs) as well as additional events throughout the world that
helped in the overall development and completion of my work. In total, I have attended more
than eight courses and eight conferences between December 2016 and June 2019.
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The Spanish Influenza pandemic contains several defining characteristics, yet unique
elements define its manifestation in individual locations. Thus, it seemed appropriate to chose
another country with which I could compare the Madrid and Spain experience. Scotland
seemed to be an ideal example from which to perform a comparison, especially given the
extreme differences in climate compared to Spain, a relatively (to Madrid) rural population,
and the country’s direct involvement in World War I. The similarities and differences between
the two places could highlight further peculiarities unique to either the pandemic or its
manifestation in a specific geography.

Moreover, as a partner in the LONGPOP project, the University of Edinburgh allowed
me to visit and perform two separate research stays through an associated project called
“Digitising Scotland” at the National Records of Scotland. This project is part of a major
undertaking to digitize and prepare 24 million birth, death, and marriage records in Scotland
beginning from 1856 for statistical analysis. While to date, the dataset has not been completed
and finalized, I was allowed the unique opportunity to work with all death records in Scotland
between 1916 and 1923 for both my own analysis and to test the viability and quality of the
data as it was prepared. I first spent two months in Edinburgh in September and October of
2018, then stayed an additional month in the summer of 2019. Some of the work I completed
there is found in Chapter 6.

The rest of this introduction will present background information relating to the Spanish
Flu in the world and in Spain, thus providing relevant information for the work presented
in the succeeding chapters. While each chapter will include consider literature relating
to the analysis, I have included in the introduction a small literature review to cover the
most important topics of study in the flu. This includes overall timing and strength patterns,
distinguishing age-specific mortality characteristics, and recent interest in the role of acquired
immunity, environment, and sociodemographic status in influenza morbidity and mortality. I
will also highlight the data sources used and provide an overview of their defining character-
istics, but each chapter will also include more detailed relevant information to each specific
analysis. As such, it should be noted that the while the culmination of this dissertation
covers varying aspects of the Spanish Influenza Pandemic in 1918, it is meant to be read
as a collection of individual research essays. Rather than a traditional PhD dissertation of
successive chapters built upon each other, I feel the design employed here is more suitable to
addressing the specific topics of note in each separate analysis.
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1.2 Thesis Outline

1.2.1 Chapter II: Re-examining Strength and Timing Across Spain

The predominant focus of this thesis is the manifestation of Spanish Influenza within the
city of Madrid, but it must be placed in the context of the world and regional neighbors
within Spain. Thus, this chapter looks at the progression of the fall wave in Spain through
all 49 provinces, their capitals, and rural populations between September and December
1918. Presented as a poster (for which an award was won) at the 2019 Annual Meeting of
the Population Association of America, breakpoint analysis, or segmented regression, finds
the start, peak, and end dates of the epidemic outbreak in each geographic area. From these
values, the Reproduction number can be estimated, which serves as a proxy for wave strength.
Using the trajectories of wave progression, the areas are grouped into distinct typologies
using sequence analysis. Overall, the results show a clear north to south-west progression of
the wave through the country as well as large differences between the waves’ manifestation
in urban/rural areas.

1.2.2 Chapter III: Estimating a Mortality Baseline from Limited Data

Although presented sequentially second in the thesis, the motivation for Chapter 3 arose
after beginning the age-specific excess mortality calculations for each wave in Chapter 4.
Because excess calculations are directly related to the underlying expected mortality during
the examination period, it is imperative that the constructed seasonal baseline accurately
reflects the timing and magnitude of mortality peaks and valleys. Generally, three years
of data is considered the “gold standard” from which a baseline is calculated; the data
I used only contained death records for one year, 1917, from which to create a baseline.
Rather than simply acquiesce to using traditional estimation techniques with insufficient
data, I took the opportunity to explore new methods of estimating seasonal mortality. Most
generally, the contents of this chapter explore how aggregated monthly count data and
adaptive methodologies can supplement a primary data source to construct a reasonable
seasonal baseline. An early version of this analysis was presented in February 2018 at the 9th
Demographic Conference of “Young Demographers” and a more complete work at the 2019
Annual Meeting of the Population Association of America and the 3rd European Society of
Historical Demography Conference in 2019.
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1.2.3 Chapter IV: Age-specific excess mortality patterns during the
Spanish influenza pandemic in Madrid, Spain

Chapter four provides new calculations and estimates of excess mortality within the city. I
first expand upon the background of the study of excess mortality in the context of Spanish flu
and then briefly describe a method outlined in Chapter 2 to create a seasonal baseline. Some
extra attention is given to the mortality records (from the Madrid Civil Register), particularly
in the context of cause of death information, used in both this and the following chapter.
From the calculated baseline, I present estimates of all-cause and respiratory-related absolute
and relative excess mortality for three waves of Spanish flu in the city of Madrid between
May 1918 and February 1920. These results are presented for several age groups, then
compared to the 1889-90 influenza epidemic in Madrid, as well as other reports of excess
mortality in Spain and cities throughout the world during the Spanish Flu pandemic. After
oral presentations at both the IUSSP International Population Conference in Capetown and
the IUSSP International Seminar on Pandemics in November 2017, a version of this chapter
was published in an October 2018 special issue of the American Journal of Epidemiology.

1.2.4 Chapter V: Neighborhood variation in excess mortality across
three waves

From the start of this project, I believed the analysis presented in Chapter 5 would become the
most significant in terms of a contribution to the current study of epidemics, specifically how
social, demographic, and economic inequalities contribute to mortality. However, I did not
anticipate the challenges I would face in identifying and executing an appropriate approach to
this analysis. The culmination of this undertaking is presented in this chapter. First, I briefly
outline prior analyses on social inequalities in influenza morbidity and mortality. Then, I
examine the case of Madrid in three ways: at the district level, at the neighborhood level,
and, to a lesser extent, at the individual level in Madrid. I highlight the limitations to each
approach and discuss the results in the context of the manifestation of the influenza epidemic
in Madrid. As the work developed, I presented parts of this chapter at scientific meetings
many times, including at the IUSSP International Seminar on Pandemics in November 2017,
and in 2018 at the Annual Meeting of the Population Association of America (poster), the
European Population Conference, the Social Impact of Epidemics workshop organized by the
European Association for Population Studies (EAPS), and the VIII International Congress of
the Latin American Population Association.
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1.2.5 Chapter VI: Excess Mortality and its effect on seasonal lifetable
measures during the epidemic outbreaks in Scotland

The sixth and last chapter within this thesis expands the context of my work beyond Madrid
and Spain to look at the effects of four influenza outbreaks in Scotland between 1918
and 1921. First, measures of excess mortality by age, sex, and wave are calculated using
traditional methods. The rest of the chapter introduces “seasonal life tables," which are
then decomposed according to Arriaga’s formula to understand how age-specific changes in
mortality during the wave contributed to overall changes in life expectancy and life disparity
during the outbreaks. Results are also shown by cause of death, which highlights the role
a person’s underlying frailty (i.e. having tuberculosis prior to the outbreaks) had in their
mortality risk during the fall wave. A preliminary version of this paper was presented in June
2019 at the Nordic Demographic Symposium in Iceland.

1.2.6 Thesis Conclusion

The conclusion summarizes the totality of the thesis, highlights its important contributions,
then addresses some broad limitations of the work. Three main influenza pandemics have
occurred in the century following the Spanish flu, and their spread and mortality impact
is briefly summarized. With each pandemic, the world learns more about transmission,
and with increased technology and preparedness plans, the ability to recognize and fight
future pandemics is higher than ever. Nonetheless, several vulnerable populations still
exist, particularly in countries and areas of the world with the fewest resources to prepare.
Continued research in historical pandemics, such as that in 1918, can help better understand
the ways in which future outbreaks may affect these areas. The conclusion calls attention
to current preparedness plans, their continued evolution, and the need to remain vigilant to
prevent another worldwide pandemic.

1.3 Origins and Characterization of Influenza

Human influenza outbreaks have been reported in history for hundreds of years, and the
emergence of the influenza virus most certainly happened far before that. Their exact
appearance is debated; some argue the transmission of the virus to humans required close
contact with animals (i.e. domestication), however, influenza was not reported until well after
this happened [161]. Generally, new virus strains jump to human and/or mammalian hosts
after initially circulating among avians. While viruses can jump directly from birds to people,
they often gain human transmissibility directly from swine [266]. The exact relationship
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between new influenza strains and their transmission between species remains a debate today,
but researchers understand that in general, viruses can transfer and mix within their hosts
in a variety of ways [189]. The pandemic of 1918 could have been the first time the H1N1
virus transferred from avians to swine to humans and circulated around the world. This lack
of immunity among humans was thereby a huge driver of the high mortality burden of the
pandemic [228, 267]. It can be noted that during the 1918 human pandemic, simultaneous
outbreaks of influenza occurred in swine [304].

While the virus can be divided into human types A, B, and C, most human epidemic
outbreaks are directly related to Type A influenza, which was first isolated in 1933 [132, 254,
259]. Influenza A subtypes are defined by two types of proteins named haemagglutinin (HA)
and neuraminidase (NA), which generally provide the nomenclature for each variety [132].
For example, the circulating virus that caused the Spanish influenza pandemic was a strain
of H1N1 flu, and probably the first time this subtype circulated in humans, leading to the
large epidemic [254, 304]. As person’s immunity to the virus is derived from their immunity
to both the HA and NA strands, the virus mutates quickly to ensure its survival and thereby
continues to infect those non-immune to the newest strains.

In order to survive, influenza viruses mutate in two ways–antigenic drift and shift–so
that their hosts are never fully immune [52]. Drift occurs much more subtly and frequently
than shift, leading to a change in the virus over time. When the virus reproduces itself,
stepwise mutations occur in the HA and NA proteins so that the host (human, swine, etc.)
cannot properly fight against it [180, 301]. Shift occurs much less often and is overall much
rarer than the first type of mutation, happening only in influenza A subtypes [52]. In this
case, a new type of virus is created through a recombination of proteins, often when two
separate virus strains are both present in the same host and mutate or mix together. [301].
Viruses caused by antigenic shift have the potential to become extremely virulent and cause
pandemics, because hosts may lack the ability to fight against the disease.

1.3.1 Influenza Pandemics

The origins of influenza pandemics, both presumed and confirmed, can be traced back
throughout history. Even as early as 412 BC, records of flu outbreaks exist, when Hippocrates
noted an epidemic of influenza-like illness [116, 149]. However, whether or not these earliest
outbreaks, including ones recorded in 1173 and 1510, existed on a global scale is unknown,
due to a lack of records and evidence to confirm. Moreover, it would have been more difficult
for these viruses to travel given that population settlements were less-connected and time
needed to journey between them was longer [41]. Likely, the first global epidemic occurred
in 1580, spreading from Asia to Africa, Europe, and America.



8 Introduction

The dynamics of these pandemic-level outbreaks have changed slightly over time. Most
generally, the pace at which the outbreaks spread increased in subsequent pandemics, re-
flecting the increased speed and communication within trade networks throughout the world.
In 1729 an influenza pandemic began in Russia in the spring before spreading throughout
Europe in only six months, and this pandemic was succeeded by one in 1781-2, which after
starting in China, traveled to Russia and all of Europe in only eight months[213]. Another
pandemic in 1830-3 also began in China, then spread through Europe and North America,
and it featured successive echo waves in 1831-32 and 1832-33 in many locations [213].

1.3.2 Russian Flu Pandemic

While the spread of these pandemics from the place of initial outbreak to Europe and the rest
of the world happened in less than a year, the so-called “Russian” flu in 1889 is considered
the first pandemic in the modern, industrialized world, spreading throughout Europe in
only six weeks and the world within 12 months [275]. Beginning in October 1889 in St.
Petersburg, Russia, the first cases in Spain were reported in early December, and in Madrid,
the flu peaked at the end of December 1899 [101]. The first true pandemic since that in 1848,
the attack rate of this probable H3N8 virus was considered to be around 50%, and the mean
peak mortality burden in 96 European and U.S. cities was 142%, meaning that mortality in
the peak week was 142% higher than normal. While the spread of the flu was rapid and a
large number of people became sick, the case fatality rate in most places was about 0.1%, on
par with other pandemics in 1957 and 1968 [266, 275]. Conversely, data shows that the 1918
influenza pandemic case fatality rate was nearly one percent, ten times high than these other
pandemics [179].

Similarly, a systematic review of surveys, vital statistics, and other primary sources
revealed the age-specific mortality patterns of this pandemic was closer in shape to those of
other pandemics in the 20th century [276]. Unlike the “w” shaped pattern often found in
the Spanish flu (see section 1.4.3), age-specific mortality patterns typically followed a “j”
shape, meaning that the youngest, and especially the oldest, experienced the highest excess
mortality. Those around age twenty faced the lowest excess mortality.

1.3.3 The 1889 Pandemic in Madrid

The Russian flu was last major influenza pandemic to hit Madrid prior to the Spanish flu
outbreaks, which occurred 28 years later. the first cases related to the epidemic already
raging in much of Europe, were reported in the middle of December, although time-series
of mortality information reveal the wave may have actually started a few weeks before
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[101, 194, 218]. After peaking at the end of the year, mortality returned to expected winter
levels in February 1890, but the outbreak produced a profound mortality impact in the city.
During the wave, absolute excess mortality for all causes and respiratory-related deaths
was 58.3 and 44.5 deaths per 10,000, with the highest age-specific rates occurring in those
older than 50 (peaking at the oldest ages) and younger than 5. Meanwhile, the standardized
mortality ratio (relative excess), peaked among 15-24 year olds, who experienced more than
10 times their expected normal mortality level across all causes of death [218].

Because the excess rates reported in Madrid deal with mortality only, it is difficult to
quantify the amount of flu prevalence in these groups and the role an individual or age group’s
haleness may have played in their ability to fight the disease. While certainly during their
lifetimes, many of the seniors who perished in this pandemic had been exposed to other
strains of influenza virus, their high mortality rates suggest their bodies could not defend
themselves after becoming sick. The high relative rate of mortality among youthful ages
further reflects that this age-group did not carry immunity to this virus. The young-adult
group generally has some of the lowest mortality rates over the life course and overall, their
absolute mortality rates remained low compared to other age groups. However, the mortality
impact of the Russian flu still produced nearly ten times as many expected deaths during the
period, suggesting that even the healthiest groups could not fully fight the disease.

1.4 The Spanish Flu Pandemic in the World

1.4.1 Origins

The exact origin of the 1918 Spanish Influenza pandemic remains a debated topic, especially
as to whether the virus began and circulated in avian species or if it was due to a re-assortment
of proteins in swine [117, 267, 279]. In either case, the virus was likely circulating in swine
and humans for at least several years prior to the start of the outbreak [258]. Researchers
also debate about the specific geographic location from which the pandemic emerged. Due
to the ongoing first World War, the initial reports of flu outbreak came from Spain, which, as
a non-participant, did not face a press embargo and published news of the contagious illness
in May 1918 [85]. Yet despite providing its name for the nomenclature of the pandemic,
outbreaks began decidedly earlier. For some time, it was widely presumed human outbreaks
began in military bases in Kansas (USA), home to many going, returning, and training to
partake in the war [36, 79, 204]. However, continued investigations have revealed earlier
possibilities of the first large-scale transmissions; documents have shown that even in the
winter of 1916, a large-scale outbreak of influenza-like illness occurred in a crowded British
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military base in Étaples [128, 204]. The illness reported high rates of mortality and nearly
similar symptoms or severe bronchitis found in the ensuant pandemic. A few months later, a
similar outbreak occurred in barracks in Aldershot, in the southern United Kingdom [15].
The crowded nature of these facilities and near-constant movement of soldiers during the war
support the plausibility that initial transmission and outbreaks began in France, then spread
to the UK and US before all over world [205]. However, tissue samples have not yet been
tested to confirm these earlier origins, and overall uncertainty remains.

Still, other places in the world have noted higher than normal (though not necessarily of
epidemic levels) influenza and respiratory related deaths in the several years preceding the
pandemic. Spain itself may have experienced higher numbers of influenza and respiratory
related deaths in 1915, 1916, and 1917 [112, 299].

Surveillance systems and vaccination programs continue to better understand and halt the
transmission and occurrence of pandemics. Nonetheless, it remains impossible to predict
the timing of a pandemic despite the relative frequency of occurrence and their study over
the last several hundred years. Thus, ongoing studies of past pandemics, such as those
presented here, continue to provide context and information so that scientists may understand
the demographic and social mechanisms of influenza transmission, and perhaps one day
eliminate the real threat of pandemics.

1.4.2 Waves

The timeline of the pandemic is broadly classified into three different waves–a short but
intense “herald" wave in the Spring of 1918 in temperate regions, a longer wave in the
late fall and winter of 1918-1919 which accounted for a majority of deaths, and a third,
less lethal wave taking place in the following year. Both the first and third waves were
not universally experienced; those locations that were more remote or practiced better
preventative techniques often skipped the first wave but instead endured longer and more
persistent second waves [141]. Yet the rapidity with which these waves reappeared was
a new phenomenon compared to prior flu pandemics. These traditionally occurred on an
annual basis, such as in the case of the Russian flu pandemic, which appeared in yearly waves
between 1889 and 1893 [181]. Descriptions below focus on the herald and fall waves, but in
addition to a third winter wave in some locations, “echo waves” in the years following the
pandemic often occurred, generally featuring heightened excess mortality among those less
than one year old [67, 68, 82, 198, 256].
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Herald

Especially in the northern hemisphere, the epidemic outbreaks in different locations occurred
during one or more of several wave periods [142, 229]. Following its initial appearance
in Kansas recorded on the fifth of March, influenza spread through military bases in the
midwest, south, and along the east coast of the United States, eventually transmitting to and
appearing in civilian populations as well in March and April 1918 [79]. The wave reached
New York before April, parts of Mexico in April and May [68, 198].

Likely owing to the strong transportation flows of soldiers across the Atlantic, the virus
appeared in France in April, spreading outward throughout Europe from there [209]. Flu
came to Spain and Portugal in mid-May, whence the virus finally got the name “Spanish”
flu. Around the same time, the virus had made it to south and central parts of the United
Kingdom, Italy and Greece (through Mediterranean ports of entry), and southern Scandinavia
[209]. By July, the flu had spread through the rest of Scandinavia and to parts of Poland and
eastern Europe, but did not continue its easterly spread across land. Other reports indicate
that the spring wave made it to India and other parts of Asia, but eventually, the spread of
the harsh virus waned in the summer months. While it infected many individuals and was
prevalent in the locations it affected, the spring herald wave had a much smaller mortality
impact than that of the fall. However, some research has noted that as the wave progressed, it
gained virulence and its manifestation began to more closely resemble that of the fall virus
[280].

Fall

In late August, the fall wave appeared and began to spread through the world, seemingly
first reported in Brest, a large port in western France [79, 209, 213]. Slightly after or nearly
simultaneously, ships brought the virus to ports in Boston and Sierra Leone; when the crews
were treated by doctors and nurses, the virus was transmitted onward, and from these three
hubs spread across these landmasses [209]. In fact, large ports and railway lines proved to be
a major source of transmission as the virus progressed through the world, as the beginning of
outbreaks often began in or along ports and railways, then continued onwards in conjunction
with large travel routes. As the virus continued to spread throughout the world, it became
clear that it was much more virulent than its predecessor in the herald outbreaks. While both
waves were were quite contagious and spread rapidly, the circulating strain in the fall had a
case fatality rate of around 10 times higher than average flu outbreaks [107, 179].

Directionally, the fall wave spread in a similar manner to the herald wave. By the end
of September, all of northern and western Europe was in the throes of the outbreaks, and
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by October, the pandemic had reached the northernmost and easternmost parts of Europe,
including Iceland, Lapland, Turkey and parts of Russia [209]. Most of the outbreaks in
western, southern, and central, Europe peaked in October, but continued to rage through
November or later. In North America, the pandemic spread via ports on the east, south, and
west coasts and Chicago into the heart of the US via rivers such as the Mississippi, and from
the east coast into Canada via the Saint Lawrence river [79, 172, 209]. As stressed above,
ports served as entrance points in South America, Africa, and Asia, and from there, newly
constructed railways carried the virus onwards [208, 209]. The pandemic even made it to
New Zealand by October, but did not strike Australia until January 1919, when even a huge
quarantine effort could no longer prevent the spread of the virus [171].

1.4.3 Mortality Impact

Several recent attempts to quantify the total number of individuals who perished to the
pandemic place the total number of deaths in the millions worldwide, and some estimates
argue the number is much closer to 50 or 100 million [141, 186, 261]. This number is far
more than other past and contemporary pandemics; while the “Black Death" in the 14th
century killed more than 1

3 of the (smaller) population of Europe and AIDS has killed around
35 million throughout the world since 1990, these numbers pale in comparison to the number
of deaths that happened in such a swift amount of time at the beginning of the 20th century
[274, 303].

The overall mortality impact remains highly debated for many reasons. The ongoing
world war meant that several countries were careful to guard information about the outbreaks
among civilian and especially their military populations. Moreover, destruction from subse-
quent wars in the twentieth century, such as the Spanish Civil War and World War II, has
made the recovery and study of some historical documents nearly impossible.

Moreover, although the prevalence of the pandemic was nearly universal, the timing
and severity of the outbreaks were highly variant, including differences in the onset, length,
and number of individual waves, as well as demographic factors such as the total impact of
morbidity and mortality by age and sex. At the time of the pandemic, much of the world
lacked sufficient medical supplies, training, and funds, to help contain the spread and burden
of the disease as it progressed [179]. While analyses in Europe, North and South America,
parts of Asia and Oceania and other developed areas continue to update and refine estimates
of influenza related mortality, rural and undeveloped populations lacked baseline and real-
time information during the outbreaks. Thus, the true number of deceased is unknown, and
general estimates still vary by millions today [141, 186, 209, 261].
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Other aspects of the Spanish influenza pandemic and manifestation of its symptoms
should be mentioned. The majority of influenza-related deaths resulted from secondary
respiratory ailments following flu contraction (rather than influenza itself), most commonly
bacterial pneumonia [80, 135, 181, 181, 182]. More related deaths came from additional types
of bacterial infections and severe-acute respiratory distress, often evidenced by Cianosis,
in which a lack of oxygen in the blood turns the skin blueish-gray shortly before death
[181, 252]. Death also came quickly; generally, those who sought medical treatment died
within two days of hospital or clinic admission [105]. However, while analyses studying
flu-related deaths often focus, when possible, on the subset of influenza-like illnesses and
other respiratory illnesses, other seemingly unrelated causes of death also tend to spike during
each wave. Such is the case of the Russian influenza pandemic of 1889 in Madrid, when
causes of death such as heart disease, meningitis, and brain disease spiked at the same time
of the outbreaks in the city [101, 218]. Thus, the study of all causes of death are important in
relation to total mortality impact.

Age-specific Mortality

While the flu’s great strength is not doubted, a “normal" epidemic with similarly high
virulence would result in a similar-to-normal mortality pattern in which the youngest and
oldest die at the highest excess rates [229]. In many studies, this is not the case in the 1918
pandemic; rather, age-specific mortality in many places peaked in young-adulthood rather
than among the elderly and statistically most impacted young adults between the ages of
25 and 30 [110, 233, 278, 284]. Supporting evidence can be found in analyses employing
a variety of methods and different types of data; for example, a comparison of age specific
mortality based on individual death records in Kentucky from 1911-1919 identified a peak
mortality risk in 1918 (relative to the baseline years) for those aged between 24 and 26
[284]. Another study employed various sources of mortality data, including parish and civil
registers, throughout the United States and Canada from September to December of 1918,
finding mortality peaks around age 28 for both all cause and pandemic related mortality
[110]. Despite the large number of these similar studies analyzing the age specific impact,
still more continue–in 2018, another study found similar patterns in Copenhagen [278].
However, the authors argued against the proposal that exposure to the Russian flu pandemic
may have played a role, instead highlighting that while the birth year of the mortality peak
corresponded to the Russian flu, the hump of young adult excess was much wider, extending
between birth years of 1878 and 1908.

These analyses have helped to develop and promote the idea of “Original Antigenic Sin"
as a means of explaining the 1918 mortality peak among young adults [109, 298]. Most
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generally, the “doctrine" states that young children experience a critical stage of development
during which their immune systems learn to fight viruses. Individuals at or around age 28
during the Spanish flu (H1N1 strain) were exposed to the Russian flu (H2N2 or H3N8) in
1888-90, and thereby, their immune system´s developed the methods necessary to defend
the body from the other strains [132, 275]. By “incorrectly" fighting the H1N1 strain, the
immune system became compromised and weakened the body to the prolonged effects of the
flu (i.e. pneumonia).

This possible explanation for the young-adult excess hump is not limited to the exposure
directly surrounding the Russian flu pandemic. Other hypotheses include general ideas about
the circulation of an H1 subtype in the population some time in the early to mid 1800s
[229]. If the older adults with relatively less excess mortality than their younger counterparts
had been exposed to an H1 variant prior to its departure as a circulating virus, perhaps this
explains their disproportionate excess mortality to young adults [167]. Regardless, no firm
consensus has been reached to directly explain the mid-adult hump.

When examining old-age influenza related mortality in 1918-1920, results vary. A
few studies documenting excess age-specific mortality rates during the 1918-20 influenza
pandemic reported either lower than expected elderly mortality in the US and European
settings or little excess mortality [79]. For example an analysis of the three 1918-1919
pandemic waves in Copenhagen, using weekly surveillance data from 1910 to 1919, reported
negligible excess mortality for those 65 and older [24]. These results mirrored another
analysis of monthly mortality data from New York City that showed mortality risk of those
65 and older did not increase in pandemic periods between 1915 and 1918 [198].

Yet other analyses exist that contrast these findings. One such study uses single years of
“normal" death count information (usually from 1917) to show elderly mortality remained
constant [162], while another analysis, using three years of mortality archives as a baseline,
found those 70+ faced two times the relative mortality risk in the fall and winter waves of
1918 and 1919 [68]. During the 1918 pandemic, in these cases of high excess mortality for
both young adults and seniors, a true W-shaped pattern of excess mortality risk by age and a
pattern occurs, where excess mortality rates peak in infants and young children, young adults,
and the elderly population.

The appearance of this w-shaped mortality curve varies by location and perhaps exposure
to previous strains of a familiar virus [156, 162]. Analyses conducted with census data and
raw death counts during epidemic periods (with little to no baseline mortality information)
reveal conflicting results as to a general mortality pattern by age; some evidence in rural and
“geographically isolated" populations show a w-shaped mortality pattern [159, 249, 296].
However, similarly completed analyses in other remote areas instead find a v-shaped mortality
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curve, in which the heightened mortality rates for adults does not decrease after the young-
adult peak [79, 81, 162]. Other w-shaped mortality curves can be found in non-remote urban
and rural locations throughout the world (for example, a study in the United States measuring
country-wide annual excess mortality determined from a yearly five-year baseline [156] or
analyses in Copenhagen using nine years of weekly surveillance and mortality data [24]).

Manifestation in Europe: Analyzing additional effects by lifetable decomposition

Estimates of excess mortality refer to the total number of extra deaths attributed to the flu
while age-specific excess estimates can quantify the extent to which the epidemic generally
disproportionately affected young adults. However, other analyses can provide additional
insight into the impact of the flu on the total population and its mortality patterns during the
time period of the epidemic. To demonstrate this and contextualize the mortality ramifications
of the flu in a different manner, this section uses data from the Human Mortality Database
(HMD) [136] to estimate the contribution of epidemic flu in several European countries to
two classic demographic measures. Further methodology can be found in Appendix A.

Synonymous with demography and life tables, life expectancy is the average number
of years a person born under specific age-specific mortality conditions lives [215]. While
generally, this measure is best interpreted from a cohort perspective (so that it is represented
as the average amount of years lived by those in a single birth cohort), this analysis uses
period mortality rates, such that e0 is the average number of years a person would live if
mortality rates at the time they were born continue to stay the same as they age. E-dagger
(e†

x) is another measure calculated via life tables that describes the disparity in age at death
[281] and is the average life expectancy remaining at age of death. High values of e-dagger
imply large variations throughout the population in the age at death.

Twelve countries from the HMD have period life tables for the time period during the
pandemic, all of which (with the exception of New Zealand) are in Europe. The decomposi-
tion of these life tables shows the stark overall mortality impact of the Spanish flu had during
1918 and the way in which its unique characteristics, such as the age-specific mortality hump
in young adults, impacted life expectancy and e-dagger. Graphics depicting the results for
these countries by sex are found in A, and those for males in Spain are found here in figures
1.1 and 1.2.
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As this thesis focuses predominantly within the country of Spain, some additional infor-
mation related to the decomposition of Spanish males is noted here. Aggregate (smoothed)
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life expectancy at birth in 1917 was 42.03 and when trends in life expectancy were extrapo-
lated, the value was expected to be 41.70 in 1918. Notably, in a time of generally declining
mortality in Europe, the life expectancy (perhaps due to changing population distribution
by age, though not a part of this analysis) in Spain was expected to decrease slightly in
1918 given the smoothed trends in age-specific mortality from 1908 to 1917. Despite this
expected value, real life expectancy of Spanish males was only 30.02 in 1918. With these
total differences in average life expectancy in mind, the decomposition explains how each
age group contributed temporally and absolutely to the total change between 1917 and 1918.

As expected, there is little temporal change in the contributions to both life expectancy
and e-dagger. This temporal change is greatest at age 0, which reflects improvements in
infant mortality in the preceding ten years that, despite the outbreak of the Spanish flu,
continued to decrease in Spain in 1918. These lower rates contributed to an increase in life
expectancy, despite the more than 10 year decrease in net average life expectancy. The largest
absolute changes occur around age 28, which is expected given known age distribution of
influenza-related excess mortality in many countries in 1918. Several countries show odd
patterns in terms of the temporal trends at middle ages (France, Great Britain, Italy). This is
perhaps a relic of mortality trends due to the First World War, as the focus is on men.1 High
mortality among soldiers in the four preceding years of the war may influence the smoothing
parameters and therefore the extrapolated expected rates in 1918.

Trends of decreasing life expectancy and e-dagger do not exist in the female population
during this time, likely, as mentioned, due to women not being on the front lines in the First
World War. The trend component does exist, especially at the youngest and, to a lesser extent,
in older ages. However, as expected, the difference in both life expectancy and e-dagger
primarily exists due to the absolute differences between expected and observed mortality in
1918. That is to say the likely effect of influenza played a predominant role in the decrease in
life expectancy and increase in lifespan disparity in the year 1918. Moreover, the change in
these two elements comes from contributions at the youngest ages and in the mid-twenties,
corresponding with both high infant mortality and age-specific mortality patterns during the
flu.

1Spain was not involved in World War I.
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1.5 The evolution of Madrid: small village to large capital

1.5.1 A short history of the city: early expansion and growth

As a city, the importance of Madrid grew significantly beginning in 1561, when Philip II
moved the Habsburg court to the city, effectively making it the center of the vast Spanish
empire [152]. At the time, the city had a modest population compared to other court cities in
Spain, only 18,000, but by 1598 and the death of Philip II, the city had grown to more than
80,000 [50]. Still yet, relative to other European capitals, the city maintained an identity as a
small town until the 1800s [241].

Following a time of unstable monarchy, the Napoleonic years, and finally the death of
Ferdinand VII, the growth of the city began in earnest as new policies lead to an influx of
immigrants from all over Spain. In addition to being the capital of Spain, the location of the
city, in roughly the center of the Iberian peninsula, likely also contributed to its increased
growth [71, 108]. Unfortunately, the physical size of the city remained small, and crowding
contributed to epidemics that often occurred, such as a large outbreak of cholera in 1834,
though this was only one of many to take place [152].

Extreme population increase and growing inequality

In the mid 19th century, Madrid began to grow at an astounding rate, and construction
and renovation projects attempted to both allow room for growth and modernize the city
[287]. Railroad lines began to be constructed, such as the first route to Aranjuez in 1851,
and additional water sources were brought to the city via the construction of the Canal de
Isabel II and its associated projects (e.g. the Acueducto de Amaniel) [56, 76]. Despite these
improvements, inequality between the social and economic classes was a large issue. In
1857, Carlos María’s plan of city enlargement, the Ensanche de Madrid, was commissioned
[51, 287]. The urban planner and architect’s design involved an expansion of the city’s
footprint by about three times its size, roughly divided into three new parts. In the north and
east, new the new neighborhoods of Argüelles, Chamberí, Salamanca, and Retiro primarily
housed those middle and upper class, while in the south, areas such as Arganzuela grew to
become home to many of the poorer and unqualified migrants from the south of Spain [35].
This pattern of organized segregation was not unheard of in Europe at the time, as wealthy
and upper class individuals sought to isolate themselves from foreign and inhabitants of
lower socioeconomic status [203]. While ultimately, the plan came to fruition, construction
of the Ensanche occurred slower than the initially proposed, meaning that crowding in the
city continued to be an issue through the end of the 19th and early 20th centuries.
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Nonetheless, the ultimate effect of these newly constructed neighborhoods and the
expansion of the city led to an increased separation by social class; where before, classes had
intermingled within the same neighborhoods, they soon lived apart and interacted only within
some of the city’s public spaces (i.e. parks such as Retiro, which became a public space in
1868) [32, 152]. Rents in the enlarged areas of the city to the east were on average much
more than four times as much as those in the south [17]. Within both of these neighborhoods,
immigrants settled close to main transportation routes and paid less, in houses of poorer
quality, and the most recent im-migrants paid even smaller rents. This is a relic of the un-
and under-employment of those both new to the city and those residing in the southern parts
[17, 287].

During this time of transformation and physical growth, the population also grew rapidly.
What had until the 1800s remained largely a small court capital of modest numbers of people,
the population rose from around 200,000 in the early part of the 19th century to nearly half
a million by the end of the century. Internal migration drove the majority of this change,
and the bulk of these new inhabitants were of lower social class, crowded into areas in the
southern part of the city, such as the Latina and Inclusa districts, or in the very periphery of
the city, far away from the newly planned and built neighborhoods for the wealthy [211]. The
cramped and low-quality living quarters of these areas meant that high mortality, especially
among young children, and disease outbreaks such as cholera (1885 and 1890) were common.
Yellow fever and small pox also contributed to excess mortality, as more than half a million
individuals succumbed to these infectious diseases in several outbreaks over the course of
the 19th century [244]. Tuberculosis was another disease to hit the area hard. While general
mortality declines had begun by the end of the 19th century and tempered some of the extreme
levels of deaths, from the end of the Russian Influenza epidemic until at least 1905, frequent
outbreaks of smallpox and cholera continued to plague the city [44].

Expanding infrastructure and migrant settlement

The extreme growth of Madrid during this time not only changed the demographic makeup
of the city, it dramatically altered the built urban environment. More people led to a higher
demand in infrastructure such as housing and transportation options, and construction in the
city during the Ensanche reflected that. The first tram line linked the new middle and upper
class neighborhoods of Argüelles and Salamanca to Sol, perhaps the largest commercial and
shopping hub, in 1871, and construction on these new forms of transportation continued
[119]. At the turn of the century in 1902, the tram lines had all been electrified, and less
than twenty years later in October 1919, just before the large fourth wave of Spanish flu
outbreak in the city, the first line of the Madrid metro was opened by King Alfonso XIII and
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immediately followed by the continued construction and opening of more lines and stations
in the following years [152, 240]. As these lines of transport within the city grew, so did
transportation to nearby municipalities in the province, whose population was growing at an
even higher rate than the city itself [87].

One of the now-most iconic streets of the city, running through the center of Madrid,
Gran Vía, was the result of decades of planning (beginning in the mid nineteenth century) and
construction (beginning in 1910) [166]. Several neighborhoods and streets were destroyed in
its making, particularly those of urban slums filled with not just migrants, but also long-term
residents with lower social class, which forced the removal of poor individuals from the city
center to the outskirts [152]. While the construction of this now iconic main avenue led to the
creation of a “modern” street front to connect two important areas of the city, its synthesis
can be seen as an analogy for the contradiction of the city at the time; as the city grew into the
large capital it is today, many parts were left to struggle unnoticed. Moreover, the new areas
to which many of the former Gran Vía area inhabitants moved to did not provide improved
living standards. The crowdedness and lack of modern utilities in these areas contributed to
their elevated mortality rates in comparison with central and “richer” areas.

Also, new technology contributed to modernization within the city as it grew during this
time period. Electric lights first lit Sol in 1878 and then illuminated city streets by the end of
the 19th century [143]. However, while several private companies also installed electricity in
homes and other private places, these were largely limited to those who could afford it [152].
But the while addition of these technologies increased the facility of life, they continued to
reinforce the persistent inequality within the city as the divide between those able and unable
to afford modern conveniences increased.

Because many migrants from similar social groups and provinces of Spain tended to
settle in the same neighborhoods of Madrid upon their arrival, often, lower socioeconomic
classes in Madrid consisted of entire migrant groups. That is to say, especially in the case
of migrants from the south and areas within 100 kilometers of the city, little differences in
group status existed. For example, a large crowded building housing around 1,000 people
near the Puerta de Toledo was almost exclusively occupied by people from Toledo [287].
Other similarly crowded parts of the city, particularly in the south, were primarily composed
of migrants from nearby towns. That is to say, in the initial parts of large migration to the
city, even those born in Madrid to migrant families were often surrounded by the culture of
their parents’ home, limiting their overall ability to interact with other groups and areas of
the city [16, 34].

However, as time wore on, the poor living conditions actually pushed people to seek other,
less expensive living arrangements, regardless of their familial hometown. This integration
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into the city is also apparent in the percentage of married couples from the same region,
which drastically reduced between 1860 and 1930 [287]. However, the extent to which these
trends prevail also depended on one’s social status; those of highly regarded professions
most often coupled with those from outside their home province, while those without any
qualifications, who often worked odd jobs and preformed manual labor, most often partnered
with someone with their home province [272]. Thus, one could argue economic hardship
among migrants led to an integration of the population but reinforced patterns of financial
inequality [287].

Yet, this pattern could also be observed from an opposite direction. In the southern part
of the city, the example of a large tobacco factory can be used as the embodiment of the
migratory experience for many. The workers in the factory were overwhelmingly women,
from Alicante, and extremely poor. The daily toil at the factory rolling cigarettes was also
long, demanding, and exhausting. But the integration found between many other migrants
existed to a much lesser extent, as jobs predominantly passed down from mother to daughter.
The result of this environment led to less integration between these migrants and others, but
fostered a sense of community within themselves [17].

1.5.2 Population changes and demographic shifts

As noted, during the early 20th century, the city of Madrid experienced vast change as
rural-urban migration brought Spaniards to the city and new technology modernized the
growing area. In 1900, the population was roughly 570,000, but by the end of the Spanish flu
outbreaks in 1920, the population had already grown to 728,937, or more than 30% in the
twenty year period [29]. During the time period between 1887 and 1930, the rate at which
the population grew increased from 15% in the period of 1887-90 to 27% between 1920-30,
indicative of the increased momentum of growth in the capital [87].

Yet while the overall population increased substantially in the late 19th and early 20th

centuries, demographic indicators reveal the ongoing process of the demographic and epi-
demiologic transitions during this time [73, 199]. Especially in the Spanish context, urban
areas, and particularly their male inhabitants, faced a higher mortality risk [225]. But broadly
speaking, despite the associated increased penalties of living in a densely populated area,
fertility, mortality, and the prevalence of some diseases in Madrid were in the middle of a
steep decline during the period prior to the Spanish flu outbreaks [87].
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Mortality decline and improvement of sociodemographic indicators

In general, the country of Spain experienced the demographic transition quite late, compared
to other European countries. Prior to the transition, without migration, the city’s growth
would have been stunted due to extremely high rates of mortality, particularly among infants
and children [17]. However, mortality improvement had slowly begun in the beginning of the
twentieth century, particularly in indicators of infant and early child mortality, which steadily
declined during this time. Madrid, which had one of the highest levels of infant mortality
ever recorded in Spain in 1882 (358 per 1,000), experienced a drop by nearly half in 0 - 1
year old mortality between 1900 and 1930 [87]. In fact, in the city of Madrid, the probability
of death between birth and age 1 (0q1) fell drastically from between around 225-250 in the
1860s to normal rates of roughly 170-200 in the first decade of the 1900s [245]. These rates
continued to fall, and by 1960 child mortality was just above 30 per 10,000 [221]. 2

In other locations in central Spain, infant and child mortality due to infectious diseases
steadily declined beginning at the turn of the 20th century and reached levels nearly 40%
lower at the beginning of the Spanish flu epidemic than in 1885 [246]. Prior to this steep
decline, many areas actually faced higher mortality between ages one and four than from
zero to one. This is indicative of the presence of many diseases from which breastfeeding
provides immunity to a child, but when weaned, made the child susceptible to contracting
and dying from the disease [227, 246].

Some discussion has questioned to what extent an “urban penalty" may actually exist
during this time and in contemporary society not only in Madrid and Europe, but also
throughout the developing world [203, 220]. During the first third of the 20th century
in Madrid, infant and child mortality fell across both urban and rural areas, but the gap
between the higher urban and lower rural mortality decreased so that by the mid 1920s,
both population types had similar young child mortality (and rates of decline), and infant
mortality in urban areas fell below that of rural regions. Before this change, perhaps sick
children were brought to the city to die in hospitals, inflating the urban rates. Or, deaths
were mis- or under-registered in rural areas. Other evidence using data from the charity
Foundling Hospital of Madrid, which normally housed pregnant women facing adverse
economic and health problems and orphans or abandoned infants, found no clear evidence of
an urban penalty in infant mortality in the early 20th century in Madrid [231]. Overall, the
high mortality in Madrid and its quick decline between 1900 and 1933 reflected, despite the
afore-mentioned crowded living situations and large inequality, the overall improvement of
health in the city during the time.

2It should be noted that these mortality rates returned to high levels during the years associated with Spanish
flu.
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In the years prior to the outbreaks, some attempts had been made by medical professionals
to call attention to the need for precautionary measures in the event of epidemic outbreaks,
especially given high mortality rates to preventative diseases in the country [111]. Despite
overall improvements in mortality in the city and across the country, many doctors and
medical professionals in Spain recognized the extent to which medical institutions and
governmental policies lacked the ability to provide effective support in the case of large scale
outbreaks [130, 243]. Although mortality rates were falling, both air and waterborne diseases
continued to play a large role in the high mortality of the city [115]. However, these calls for
more authority and regulations often fell on deaf ears; the social position and overall authority
of doctors and medical professionals at the time was low, despite recent advancements in
diagnosis and treatment of diseases [112, 288]. In fact, when the first outbreaks of influenza
began, there was no government ministry related directly to public health [114]. Instead, any
general medical direction or regulation fell under the Ministerio de Gobernación, or Ministry
of Government.

Fertility decline and changing marriage patterns

In line with the first demographic transition, as mortality declined, so did fertility rates. In
Madrid, births to women of childbearing age fell from 129 per 1,000 in 1877 to 103 in 1900.
After stagnating a bit, they fell again to 91 per 1,000 by 1920, a drop of more than 30% in 50
years. By contrast, the levels across all of Spain fell from 143 per 1,000 in 1877 to 114 in
1920, nearly 10% less than the fall observed in Madrid [87].

In all of Spain, some of this decline in births may also have been due to a delay in
marriage. Between 1887 and 1930, the percentage of women married by age 30 fell from
nearly 42% to under 30% [87]. However, during this same period, Madrid did not experience
the same decline. Rather, in 1887, only 27.6% of women under 30 were married, falling
only slightly to 26.7% in 1930. Yet despite this seeming delay in first marriage age, among
both men and women, the percentage of widowers and widows decreased during this time,
theoretically meaning several things. First, some of the social pressure (for women especially)
to not remarry dissipated. But also, decreasing mortality rates were leading to longer lives
lived together (expressed demographically as “l-bar” (l̄)) [87]. Finally, perhaps the extremely
high migration to the city from elsewhere in Spain led to a lack of familial support, resulting
in a perceived need to take financial support and emotional comfort from marriage.

Other factors in the dynamics of the higher age at marriage in Madrid are likely due to the
large role migration played in the development of the population and the need (or desire) for
young migrant women and men to establish themselves in new surroundings before marriage.
With respect to this, Madrid had a disproportionately high population of young women who
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came from other parts of Spain to work as domestic helpers, which often prevented their
marriage possibilities [18].

When considering all migrants, most (men and women) came from within 100 kilometers
of the city, but large numbers of single women also arrived from northern provinces [87, 287].
Men who migrated looking for industrial work also came from unindustrialized areas in
the South, because other urban poles in the north of the country (Barcelona and Bilbao)
attracted migrants from those areas [17]. Those male migrants from the north would often be
professionals of some sort whose work required their presence in Madrid.

Initially, most settled outside of the city center (in 1860, only 11% of migrants in the
province lived in the center), but this percentage grew over time, so that by 1930, 21.3%
of all migrants in the province of Madrid lived in the capital [287]. These migrants, who
initially came on their own in search of work (with a temporary stay in mind), gradually
started to both become permanent residents and attempt to reunite with their families in their
new home city. When multiple generations of extended families lived in the city, they often
settled in the same neighborhoods, even blocks, to remain close [155].

With regard to the evolution of economic activity and employment within the population,
large differences existed between men and women. As noted above, women dominated
the large domestic labor industry in Madrid, and between 1900 and 1930, there was hardly
any change in the percentage of women employed as maids, nannys, etc. The changing
employment status of men, however, drove a lot of the economic sector changes in the first
third of the 20th century. Overall, the percent of men employed in the “modern” workplace
(industrial, government, and other professional jobs) nearly doubled to 43% in 1930. The
percentage of those in “traditional” industries (agricultural, commercial, etc.) declined by
half to nearly 15%, and an increased amount of men and women (though more men) went to
school [87]. It should also be noted that as the capital city, Madrid also had a large presence
of soldiers, and that over the several decades before the Spanish Influenza outbreaks, their
numbers in the city at any given time had increased due to a general decrease in Spanish
military conflicts.

Thus, on the eve of the Spanish Influenza outbreaks, the state of Spain and especially
Madrid can be summarized as follows. While a large world war was fought one country
away, Spain was in the middle of a large demographic shift; long after many other European
countries, the demographic transition was finally in full swing as birth and death rates
plummeted. Migration to the city from all over Spain, but particularly the non-industrialized
south, drove the increase in both population and inequality. New technologies spread through
the city, bringing electricity to the masses and making transportation within the city easier.
And no one suspected that the widely popular and catchy song, “Naples Soldier” from the
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opera The Song of Forgetting (La Canción del Olvido) would lend its name to a massive
influenza outbreak in the city, later known worldwide as the Spanish Influenza pandemic
[85].
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Re-examining strength and timing across
Spain





Abstract

Transmission and spread of the Spanish flu through Spain in the fall of 1918 has been
theorized, but not statistically proven. This work uses newly digitized sources of daily
influenza death counts for 49 provinces in Spain, their capitals, and their remaining area to
estimate the start, peak, and end dates of the wave with segmented regression, as well as the
Reproduction Number of the outbreak. Then, sequence analysis groups the trajectories of
each geography, identifying distinct patterns in the manifestation of the wave. The results
find a distinct north to south west pattern of influenza spread in the fall of 1918. Clear
differences in the Reproduction number between the provincial capitals and other areas
also exist, perhaps indicating a small herald wave may have provided some immunity to
those living in urban areas. The analysis highlights the importance of understanding the
progression of influenza through Spain and the role consecutive waves may have played in
the mortality during the fall wave.

Resumen
El capítulo 2, trata la transmisión y propagación de la gripe española a través de España

en el otoño de 1918, que hasta ahora había sido descrita a través de fuentes secundarias
pero que ahora se ha probado estadísticamente el proceso de difusión. Este trabajo utiliza
nuevas fuentes digitalizadas de recuentos diarios de defunciones por gripe en 49 provincias
de España, sus capitales y el resto de las provincias para estimar las fechas de inicio, ápice y
fin de la ola, usando para ello la metodología de regresión segmentada, así como la tasa de
reproducción del brote. Posteriormente, la metodología del análisis de secuencias, agrupa
las trayectorias de cada zona geográfica, identificando distintos patrones en la manifestación
de la pandemia. Los resultados encuentran un patrón distinto de diseminación de la gripe
de norte a suroeste en el otoño de 1918. También existen claras diferencias en la tasa de
reproducción entre las capitales de provincia y otras áreas, lo que tal vez indica que una
pequeña ola precursora podría haber proporcionado cierta inmunidad a quienes viven en
áreas urbanas. El análisis destaca la importancia de entender la progresión de la gripe en
España y el papel que las olas consecutivas pueden haber desempeñado en la mortalidad
durante la ola de otoño.
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2.1 Background: Influenza transmission and manifestation
in Spain

Considerable research has examined how spatial differences and temporal patterns affect flu
mortality. In seasonal influenza outbreaks, climatic differences between tropical and northern
countries appear play a role in seasonal influenza activity [90]. However, while the country
of Spain contains diverse climate biomes that may affect transmission at a larger scale, the
rapidity and strength at which the outbreaks spread does not appear to have played a large
role in its movement through the Iberian peninsula [141, 265].

Moreover, the geographic route of transmission also can vary considerably, dependent on
the amount of human interaction and movement from place to place. Very often, research has
found a correlation between the route of transmission and high volume transport networks,
including during the 1918 Spanish flu [232]. Historically, the transmission network that
defines the mechanisms of disease spread is widely used and connects large nodes of
population, whether on foot, by train, or in contemporary society, by airplane [147, 300, 302].
Another study has also looked at transportation networks at the time of the fall 1918 Spanish
flu outbreak in Newfoundland, trying to understand the connection between when cases were
first identified in conjunction with nearby transport nodes [207], and a recent analysis found
that in India, the disease spread along rail networks [232].

Some parts of Spain experienced a herald wave in May and June of 1918, which was
thought to have begun in Madrid before moving outward on main transportation routes
in the country [112, 273]. This certainly may have affect the absolute mortality impact
between and within provinces during the large fall wave. For example, a virus will spread
more slowly in a population with some immunity (i.e. the reproduction number Re f f ective

in a partially-immune population will be lower than R0),1 assuming the virus has not yet
mutated and evolved to be significantly different from the initial strain [168]. Additionally,
the total length of pandemic wave is important, as it describes the heightened risk of others
to contract the virus, allowing it to continue to spread. Several calculations for the R values
of the Spanish Influenza outbreaks have found that despite its great mortality burden, the
Reproduction Number tended to fall in line with other epidemics and pandemics in the 20th

century [179]. Rather, the high case fatality rate, roughly ten times higher than a normal
influenza epidemic, drove much of the high numbers of death [107, 179].

1The Reproduction Number (R0), can be interpreted as the number of additional cases a single case will
cause [60]. In an epidemic period, the Reproduction number will be greater than one, meaning that the number
of infected individuals increases as time progresses.
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Calculations of 45 cities in the United States found that an “extreme" R would still have
been less than 4, additional estimates in Winnipeg, Canada were found to be 2 [60, 179].
These values are even lower in some South American estimates; depending on the generation
interval, Boyacá, Colombia estimates ranged between 1.4 and 1.7, and in Lima, Peru, the
number was revealed to likely be between 1.3 and 1.5 [67, 69]. In Europe, studies calculated
Copenhagen, Oslo, and Gothenburg had higher values in the spring wave, and in Geneva,
the opposite was found, with a mean estimated spring value of 1.49 and fall of 3.75 [24, 58].
A review across several studies found that among 51 Reproduction Numbers reported from
studies on the 1918 pandemic, the median value was 1.8 [42].

Several research articles explain and quantify the outbreaks in individual provinces and
regions (for example in Palencia and Logroño [33, 88]), but in order to fully understand
the totality of its transmission throughout Spain, the entire country should be considered
together. A comprehensive background on the Spanish Influenza virus in Spain qualitatively
describes the four unique, but not universally experienced waves of influenza in Spain
beginning with a herald wave in May 1918 and ending with a large echo wave in the winter
of 1919-1920 [95, 273]. The brunt of the spring herald outbreak was found in the city of
Madrid [64, 72]. Attempts to quantify the spatial-temporal influenza patterns throughout
Spain found significant variations in excess mortality among 49 provinces of Spain, finding
cumulative (across all waves) excess rates as high as 212.2 (per 10,000) in Zamora and 6.2 in
the Canary Islands [64].

Slightly over half of the provinces experienced herald and or winter waves in the spring
and summer of 1918 and winter of 1919, but with the exception of Madrid, this mortality
paled in comparison to the dramatic fall wave of 1918. As the virus spread through the
peninsula, seemingly nothing could stop it. As the virus began to rage, there was some
hesitancy to declare an epidemiologic emergency, due to the perceived negative implications
of having to cancel planned festivities, temporarily close offices, and provide additional
resources. However, the epidemic was first officially recognized in Valladolid, and other
entities soon followed suit [217]. Nonetheless, while often official events or offices were
closed to prevent transmission, such non-shuttered gathering places as church and theaters
still allowed for continued transmission of the virus between individuals [40, 95]. In fact,
people often flocked to church in order to pray for the end of the pandemic, even further
allowing the dissemination of the virus [95].

When the epidemic struck, doctors and other medical officials, especially in smaller cities
where their numbers were few, were overwhelmed with the number of cases, both stumped
by the virulence of the disease and the lack sufficient supplies and supplies to care properly
for each patient [33, 40, 88, 217]. Efforts were made to educate and encourage the public
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in methods to individually reduce individual transmission via disinfecting and avoidance of
individual contact. Large-scale attempts to contain the virus were also employed via use of
disinfectant on streets, in railway stations and on trains, and in other public and private spaces
[40, 95, 236, 273]. However, its overall effectiveness in preventing spread it not known.

Two more waves of influenza hit the country in the first several months of 1919 and later
that year in December 1919 to January 1920, when an echo wave occurred. Considering
the entire country, the total mortality impact of the third wave pales in comparison to the
fourth [273]. The echo wave in 1919-1920 is well documented in qualitative accounts, but
the impact of this outbreak in contemporary literature is muted [26, 95, 120]. In this last
echo wave, most reports note mortality was concentrated in 0 to 1 year olds, who would not
have been alive during the previous outbreaks.

In the work quantifying provincial excess in Spain, the data used contains several issues
limiting the overall interpretation of the results. Not only does the “Boletín mensual de
estadística demográfica sanitaria" data end in 1919, making the study of the aforementioned
echo wave impossible, the death counts are presented as monthly statistics, which make it
difficult to pinpoint the onset timing of each wave. The quality of the data in these monthly
bulletins also varies by each Spanish province, as the data was aggregated based on reported
statistics from each town in the province and do not have universal coverage based on various
response rates [219].2

A large debate also revolves around the role of social status and mortality risk. At the
individual and community level, those with lower social status, especially among youth and
elderly, tend to experience a higher mortality risk from seasonal influenza [77, 187], but
questions remain about this pattern during epidemic outbreaks. Some analyses point to the
similar gradients [123, 160, 163, 271], while others find no relationship or conflicting results
between class and mortality, perhaps a result of extreme virulence of the strain [78, 271, 277].
In the context of Spain during the Spanish Influenza outbreaks, provinces and their capitals
can be examined as individual entities with varying population structures, main occupational
sectors, median incomes, population density, etc.

Disentangling the role immunity and environment (and thereby transmission processes)
played in total and wave-specific mortality risk has been and remains a complex process.
This chapter first attempts to quantify the progression and strength of each epidemic Spanish
influenza wave in Spain, using newly uncovered daily mortality logs for each province and
provincial capital of Spain in 1918. Using linearizion techniques to estimate breakpoints
and linear slopes of the start, peak, and end dates of each wave, one can estimate to the

2For example, in the province of Cuenca, the median percentage of reported statistics (based on a weighted
average of the total population in the province) is only 38 percent (low of 21% in July/September and a high of
53% in August), but in the province of Toledo, generally, there is 89% coverage of statistics.
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day when each wave began and map its progression through Spain, as well as the wave
strength (via the R). After these initial estimations, the relationship between wave strength
and province-specific measures can be analyzed to examine to what extent preceding waves
(immunity) and other socio-demographic variables may have played a role in overall excess
mortality due to these waves.

2.2 Data: monthly counts and death records

From May through July and September through December 1918, the Spanish Institute of
Geography and Statistics collected daily mortality death counts for each provincial capital
and entire province in Spain, thus capturing with detail the entirety of the spring wave and
most of the immense fall wave throughout the country [299]. Called the “Resumen (Mensual)
del Movimiento Natural de la Población de España y de las Capitales de provincia," or
Monthly Spanish Statistics Bulletin, these reports include daily death counts of those who
succumbed to influenza.

In the provincial capitals of Spain between September and December 1918, 21,048 deaths
were recorded attributed to “Gripe" (influenza). This does not strictly take into account deaths
according to respiratory and other diseases normally associated with influenza mortality, such
as pneumonia, broncopneumonia, and bronchitis [181, 182]. Figure 2.1 displays the daily
death rates for influenza in the provincial capitals of Spain for the available data, highlighting
selected cities. In both graphs, the figure shows clear differences in the rate of growth in
the initial phase of the fall wave, as well as differences in timing. However, the spring wave
shows greater noise and much smaller mortality rates. Many provinces experience few deaths,
making the following analysis difficult to preform. Thus, the spring wave is meant to provide
a visual understanding of the spring wave to complement and contextualize the results, but
will not be analyzed here.
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Fig. 2.1 Daily death counts for each of the 49 provinces in Spain are plotted for the period May 1st through
July 31st and September 1st through December 31th in gray. Notable provinces are plotted in distinct colors.

With respect to the rest of Spain, the experience of Spanish flu in Madrid was extremely
different, and so here, differences in strength and timing by wave in the city are also examined
by aggregating weekly deaths from death records from the Civil Register between 1917-
1922 [72, 224]. This source contains more than 103,500 mortality records, which allows
the examination of the differences in the progression of the Spanish flu and each wave’s
(Spring 1918, Fall 1918, Winter 1919, and Winter 1918-19) strength within the city, to see
to what extent differences exist within a singular urban environment. Figure 2.2 shows the
raw mortality rate during the period immediately before, during, and after the epidemic
outbreaks.3

3For more information regarding the death records in the Madrid Civil Registry between 1917 and 1922,
refer to section 4.2.1 in chapter 4.
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Fig. 2.2 Weekly raw mortality rate for the city of Madrid from 1917-1922 based on the civil register of death
records. Defined epidemic periods are shaded in gray.

2.3 Methods

2.3.1 Breakpoint analysis

Mathematically estimating the starting, peak, and ending dates of the wave allows for a precise
understanding of the timing of each attribute of an outbreak; simply using secondary sources
and visual analysis of the timeline of deaths can lead to an observation bias and subsequently
estimate incorrect values for the reproduction number. These dates are calculated according
to a segmented method that estimates the break points of each wave based on a traditional
model of an epidemic outbreak of influenza [184, 185, 196]. The typical outbreak may
be generalized into four roughly linear parts: the initial seasonal baseline mortality (pre-
epidemic), the period of increasing deaths as the epidemic breaks out and spreads, the decline
of new daily cases following the peak outbreak period, and finally a return to baseline
mortality. Due to the expected exponential increase in the number of deaths during the
ascending phase, the log number of deaths is the response variable. Each phase can then be
considered a log-linear component of a piecewise regression.
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This linearization technique allows the estimation of breakpoints in the data, thereby
identifying likely dates and associated standard errors of the beginning, peak, and end of
each wave [184]. First, a general linear regression is fit predicting the log number of deaths
based on the cumulation of time passed during a period of time that fully encompasses the
potential dates of the wave of study. Breakpoints are estimated from the linear regression
model through the R Segmented package [185]. The outcome provides estimates and
standard errors for the breakpoints that delineate the change in phases according to the
general epidemic model. Using the equation below, the first and second breakpoint are used
to calculate the Reproduction number, such that:
R0 = er∗t

such that R is equal to the slope of the increase in deaths during the ascending period of the
epidemic.

2.3.2 Sequence analysis

In order to better contextualize the progression of the fall wave of the epidemic throughout
Spain, the results of the breakpoint analysis are further explored through sequence analysis.
Most generally, sequence analysis allows individual trajectories to be analyzed as a whole
so that general patterns and clusters within the entire group can be observed [238]. In the
case of the fall wave in Spain, this analysis groups provinces or one of their sub-populations
together based on the length and timing of each phase of the epidemic cycle. Normally,
the general grouping and comparison of trajectories requires a large number of individual
sequences to identify and group from which overarching patterns. However, while only 49
total observations are analyzed in any grouping (for each province), the clustered results can
still provide some insight into the geographic patterns of wave progression through Spain.

More specifically, the sequences for each province are created by assigning an epidemic
phase (pre-epidemic baseline, ascending, descending, and post-epidemic mortality) for each
of the 91 days of the observation period. The change from one state to the next is defined
from the breakpoints found in the segmented regression. Each of the provincial capitals for
which no wave could be statistically detected were assigned an additional “no wave" value
for all 91 days. After defining the “distances," or general differences, between each trajectory
and the cost of changing one sequence to another, the provinces are grouped according to the
calculated similarities and differences between each trajectory [238].

While different methods exist to determine the extent of dissimilarity between sequences
(provinces), many are not optimal for this analysis, as they take into account changes in
the progression of one state to the next [263]. The primary interest lies in the timing and
length of each spell, as the inherent structure of an epidemic wave infers that each sequence
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progresses through states in the same order. Thus, we estimate the dissimilarities using the
Euclidean and Chi-squared methods, which are better suited to examining when and for how
long each province remained in each state [263]. Separate analyses of wave progression are
completed for each provincial, capital, and “rural" population.

2.4 Results

2.4.1 Breakpoint analysis

The segmented regression reveals that most provinces experienced the entirety of the fall
wave between September and November 1918, though there are some exceptions. Statistically
speaking, a few provinces, including Sevilla, Huelva, Guadalajara, and Cordoba, have not yet
returned to pre-epidemic mortality levels by the end of November. In the case of the Canary
Islands, to which the outbreak arrived the latest, the results show that the epidemic is still
in the ascending phase when the availability of the daily data ceases. Despite the variations
in the number of deaths and overall mortality rate during this time, figures 2.3, 2.4, and 2.5
reveal that nearly all provinces, their capitals, and their rural populations faced the same
typical triangle shape of influenza epidemics mortality characterized by a rise, peak, and fall
of mortality rates as they return to initial levels. A summary of the numerical values of the
analysis is presented in table 2.1.
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Fig. 2.3 Segmented Regression for all-province population in the fall wave 1918 shows estimated breakpoints
(red dotted lines) for start, peak, and end dates of the wave in 49 provinces of Madrid. Black dots represent raw
mortality rates, gray lines represent smoothed mortality, green line represents linear regression, and blue lines
show segmented linear regression prediction.
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Table 2.1 Summary of Numerical Results from Segmented Regression

Min. Median Mean Max. NA’s

Rural R 2.21 4.00 3.94 5.23 2
Capitals R 0.67 1.84 1.63 4.00 13
Provincial R 2.28 4.15 4.06 5.27 2
Rural Length 31.15 42.21 43.47 58.73 10
Capitals Length 13.61 36.60 36.69 51.75 14
Provincial Length 29.58 41.75 43.47 70.08 10
Rural Start 13.52 30.24 31.39 54.71 0
Capitals Start 16.64 31.37 33.65 72.35 5
Provincial Start 12.52 30.07 31.17 53.71 0
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Fig. 2.4 Segmented Regression for capital population of each province in the fall wave 1918 shows estimated
breakpoints (red dotted lines) for start, peak, and end dates of the wave in 49 provinces of Madrid. Black dots
represent raw mortality rates, gray lines represent smoothed mortality, green line represents linear regression,
and blue lines show segmented linear regression prediction.
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Fig. 2.5 Segmented Regression for rural population of each province in the fall wave 1918 shows estimated
breakpoints (red dotted lines) for start, peak, and end dates of the wave in 49 provinces of Madrid. Black dots
represent raw mortality rates, gray lines represent smoothed mortality, green line represents linear regression,
and blue lines show segmented linear regression prediction.



42 Re-examining strength and timing across Spain

Total provincial population

Figures 2.6 and 2.7 show the estimated start date and total length of the fall 1918 wave for
each of the populations of study. In general, the color patterns of the map reveal a north to
south gradient in the progression of the start of the wave, although the provinces of Granada
in the south and Salamanca in the west experience the start of the wave earlier than all other
provinces. While due to data limitations, the analysis could only calculate waves that lasted
up to 89 days between September 1st and November 30th, the breakpoint analysis reveals
that in those provinces witnessing the entirety of a wave in this time period, the length lasted
between 30 (Segovia) and 70 (Granada) days in all provinces.

Start of Fall 1918 Influenza wave in Spain

Province Capital Other

10 20 30 40 50 60 70

Fig. 2.6 Note: The Canary Islands are not included in this map, but the wave began later here than the other
areas. The start is the number of days from September 1, 1918 that the wave began. White-colored areas mean
that the start could not be statistically estimated.

Length of Fall 1918 Influenza wave in Spain

Province Capital Other

10 20 30 40 50 60 70

Fig. 2.7 Note: The Canary Islands are not included in this map, but the wave was not completely observed in
any population. White-colored areas mean that the length could not be statistically estimated.
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Capital and rural populations

When considering only the provincial capitals, which have fewer deaths than the province as
a whole, the estimation of breakpoints becomes more difficult. Due to the aforementioned
timing limitations of the data, the analysis only revealed start or start and peak points for
some capitals. In some capitals, especially in small cities in provinces in the center of Spain,
not enough deaths were present to discern a traditional epidemic wave pattern using the
applied segmented regression analysis. This rendered some of the breakpoint estimations
and further calculations impossible. That said, the same north to south gradient in timing
found for the provinces remains when considering only the capitals, although overall, there
is more heterogeneity in the capitals. This pattern is most evident when considering that the
majority of provincial capitals for which peak and ending dates could not be calculated are
situated in the central and southern part of the Iberian peninsula.

Perhaps most interesting, many results between the capitals themselves and their province
as a whole are dissimilar. While the province of Granada experienced the longest wave,
the wave in the capital lasted the shortest amount of time (13 days). However, while many
capitals do experience shorter waves than their province, this is not a characteristic throughout
Spain. In terms of all estimated measures calculated from the breakpoint analysis, there is
no easily discernible relationship in the manifestation of waves within provinces, neither
between the capital and outside population nor between the province as a whole and another
population subset.

The answer to this conundrum may likely lie in such factors as capital and rural the
population size and density in addition to transportation links connecting areas within and
outside of the province. For example, some evidence has been found to suggest that the spring
wave spread along transport routes away from Madrid [112], suggesting that connectivity
played a large role in transmission. Moreover, total population size and density could also
facilitate or hinder transmission mechanisms of the virus within a geographic area. If a
capital city experienced a herald wave, the total time and strength of the succeeding fall
wave may therefore be longer and weaker than in the surrounding, previously unexposed
rural area of the province. Without clear quantitative analyses and evidence to determine the
occurrence of a herald wave in the geographies examined here, the true answer remains a
puzzle.

Reproduction number

As mentioned in section 2.3.1, the Segmented Regression approach to estimate the timing
of the wave also results in information from which the Reproduction Number (R) may be
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calculated. Figure 2.8 shows the Reproduction number for the fall wave from left to right
by province, their capitals only, and for the population outside of the capital. According to
the method used, the Reproduction numbers estimated are substantially lower in the capitals
than in the provinces as a whole or their populations outside of the capital. This may be due
to a number of reasons. First, the low number of daily deaths in the capitals, even during the
wave, makes it difficult to calculate R when considering the change in slope from baseline to
peak wave mortality. This type of calculation requires a continued increase in the number of
daily deaths from the beginning of the wave until the peak in mortality, but this slope is quite
flat (meaning a low R) when capitals have a low number of peak deaths and/or sustain this
peak mortality for several days in a row. Inherently, a capital with baseline daily mortality
of one and an epidemic peak of three deaths can have a maximum R value of 2, no matter
how small the exposure population. Capitals may also have generally lower R values due to
acquired immunity within the population. Assuming capitals are better connected to large
cities than rural areas of the province, perhaps some of the population became exposed to the
virus during a small, even undetectable spring wave, thus providing greater protection during
the fall wave from the deadly outbreaks.
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Fig. 2.8 Map showing variation in the Reproduction Number (R) of the fall wave by province, capital, and
rural populations. Each scale corresponds to the map on its left, and R could not be calculated for gray-shaded
areas.
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Fig. 2.9 Map showing density of the Reproduction Number (R) for total provinces, capitals, and rural
populations.
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The Madrid experience

The breakpoint regression results for the city of Madrid for four waves of influenza between
1918 and 1920 can be found in figure 2.10. Results for the fall wave may differ slightly than
that portrayed in 2.4, for several reasons. For example, the data itself is from a different
source (the monthly bulletins versus the civil register on deaths), and the data used to create
figure 2.10 contains deaths to all causes rather than only to influenza. Nonetheless, the
results show four distinct waves, of which the fall had the highest calculated R due to the
pre-outbreak decreasing slope. While much of Spain did not experience the herald wave,
its presence in Madrid is clear. Further analyses and discussion on the waves in Madrid are
found in chapters 4 and 5 and appendix E.
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Fig. 2.10 Results of the breakpoint regression for four pandemic waves in the city of Madrid

2.4.2 Sequence Analysis

After defining the state trajectories for each province, capital, and rural area, the sequences
were grouped based on two measures of dissimilarity. Each of the two methods used revealed
a different optimal number of groups, 5 (Euclidean) and 3 (Chi-2). The results of these two
groupings are presented in figures 2.12 and 2.11, and additional figures demonstrating the
results of the analysis are found in Appendix B.



46 Re-examining strength and timing across Spain

Chi-2 dissimilarity measure
Province Capital Other

1   2   3 

Fig. 2.11 Three optimal groupings based on timing and time spent in each state.

Euclidean dissimilarity measure
Province Capital Other

1  2  3  4  5

Fig. 2.12 Five optimal groupings based on timing and time spent in each state.

The Chi-2 method, which found three optimal groupings, mainly classified the provinces,
capitals, and rural areas according to the extent that the wave passed through. Most generally,
those places that experienced all phases of a wave are typified in the first grouping, while
those places, particularly the capital cities, in which no wave could be discerned, are classified
into the third group. As a whole, this clustering of the wave trajectories does not provide
much additional insight into the progression of the wave.

When using the Euclidean distance measure to calculate trajectory dissimilarities, most
of the hierarchical clustering algorithms identified five as the ideal number of typologies with
which to group the geographic units. These five groupings are generally classified according
to the extent that a unit experienced the phases as well as the amount of time spent in the
phases. Most of these variations are due to differences in the timing of wave onset. For
example, considering the entire province, Type 1 and Type 2 differ in the average amount
of time spent in the pre- and post- wave states, while Type 3 provinces also experience all
parts of the wave, but at a much later time than the first two parts. All geographic levels also
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contain at least one grouping that includes provinces that did not experience a complete wave
in the period of analysis, and the capital cities include a typology for those (in the middle of
the country) for which no wave could be statistically detected.

Especially at the provincial and rural levels, a north-to-south gradient is visually apparent
on the map (figure 2.12). However, one can argue that the groups at the capital city levels are
also spatially correlated. While it is difficult to calculate measures of spatial autocorrelation
for categorical variables (i.e. the typologies), Moran’s I calculations for the start dates reveal
significant levels of spatial autocorrelation (see table 2.2). Overall, the detected sequence
clusters and their visualization on a map reveal statistically what previously had been reported
only through anecdotal and qualitative research. These results conclude that the fall wave in
Spain began in the north at the western edge of the French border, then spread west and south
towards Portugal before diffusing northwest, northeast, and finally towards the southwest
corner of the country.

Table 2.2 Moran’s I for selected values

Geography Moran’s I (start date) p value

Total Province 0.3301 3.7e-05
Rural Areas 0.3694 5.0e-06

2.5 Discussion and conclusions

This chapter expands upon a previous work looking at the spatial-temporal excess mortality
patterns by examining the spread of influenza through Spain in the fall of 1918 [64]. In this
analysis, daily death counts are used to estimate the start and progression of the fall wave
of Spanish influenza through provinces, their capitals, and rural populations in Spain. The
results point to a clear north to south and slight east to west gradient in the movement of
the wave. The province of Granada in the south of Spain, home to a port, also experienced
the start of the wave very early. This analysis is important in that it statistically confirms
previous qualitative accounts and general theory that in the fall, the flu arrived from migrant
workers in southern France returning to their homes in Spain and Portugal [40, 95, 273].

As noted, at the time of the fall 1918 outbreaks, large numbers of migrant workers from
southern Spain and Portugal were returning home from temporary work in southern France
[40, 236]. With World War One in its final days and the return of soldiers eminent, their
efforts in mines were no longer needed. Given the importance of railway connections at the
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time, in terms of transport, the spread of the flu in Spain found in these results must be thought
of in the context of these arteries of migration and prior anecdotal evidence and accounts
[88, 95, 235, 273]. Figure 2.13 shows a network map of the railways in Spain and Portugal
in 1921 [290]. Presuming that little change in the structure of these lines changed between
1918 and 1921, it is very easy to see the line that Portuguese return-migrants would have
taken home, from San Sebastian and Bilbao down through Burgos, Palencia, and Salamanca.
This train path directly correlates to that of the sequence analysis shown in figure 2.12, in
which these very same provinces first experienced the fall wave. This very much agrees with
what other studies have found regarding the importance of transportation networks and the
transmission of disease. Moreover, the timing of the epidemic in Northern Portugal occurred
slightly later than in the ports of Lisbon and Porto, and corresponds more to the pattern of
timing found in northwest Spain [193].

Fig. 2.13 Transport Map of Portuguese and Spanish Railways. Source: Enzyklopädie des Eisenbahnwesens
1921

Clear differences in the manifestation of the wave in provincial capitals and other pop-
ulations are also apparent. Generally speaking, the Reproduction number (R) is lower in



2.5 Discussion and conclusions 49

the capital cities than in the other areas, indicating a slower spread, perhaps to a higher
percentage of immune. This would contradict other findings suggesting higher transmission
and mortality in urban environments [59, 175, 210]. However, the greater interconnectivity of
these urban centers may mean that the herald wave spread to the capitals and their populations
became exposed to an earlier strain of the virus [24, 59]. This could theoretically provide
some cross protection and immunity in the fall wave, resulting in lower transmission and
mortality in the outbreak [24, 37].

Due to the small amount of deaths and the incomplete coverage of the herald wave in the
spring and summer of 1918, this study does not quantitatively consider the role spring wave
mortality may have played in the larger fall wave. However, purely visual evidence in figure
2.1 shows that those highlighted cities with a clear mortality peak during the spring wave
appear to have a muted fall wave (i.e. Barcelona, Madrid, Cordoba, Jaen) compared to those
cities without an obvious peak in the spring who then experienced a larger wave in the fall (i.e.
Burgos, La Coroña, Vizcaya). Contemporary studies find that urban areas and transportation
hubs play a particularly large role in the transmission of influenza throughout the world [75].
The provinces with a clear spring peak tend to contain much larger cities at the time and
served as transportation hubs; their exposure to the initial wave may have provided cross
protection in the fall, contributing to lower mortality and influenza transmission [37].

Furthermore, while this chapter has identified the timing and strength of each wave, as
well as the total progression through the country, more work can be done to ascertain some
of the inter-group differences in the sequence analysis. As Spain was, and remains today, a
diverse place of different cultures, industries, and climates, provincial, and urban and rural
differences should, in the future, be examined from a greater lens. Did the demographic,
social, and economic make up of an area, in conjunction with climactic and geographic
differences, play a role in the strength of each wave. Moreover, given the emphasis of
consecutive waves in this work, more information must be found detailing the possibility of
a spring outbreak in each province to determine the role it may have played in the fall.

This study clearly identifies the geographical spread of influenza through Spain and finds
differences in the force of transmission between sub-geographies through the calculation of
the Reproduction number, suggesting a relationship between the presence of a herald wave
and the strength of the fall 1918 wave. Studies focusing on modern transmission of influenza
continue to focus on the spread of the virus both throughout the world and within smaller
environments, often identifying human transportation flows and their density as a main
method of transmission [75, 283]. Other findings advocate that population heterogeneity may
play a role in the spread of influenza [55, 176]. While determinants of influenza spread are
important, epidemics often consist of more than a single wave, thereby changing the initial
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mechanisms of transmission. These results are a reminder that those modeling and seeking
to understand epidemic spread and strength must also consider the role successive waves
may play in the strength and mortality impact of an outbreak.



Chapter 3

Estimating a seasonal mortality baseline
from limited data





Abstract

Quantifying the strength and timing of epidemics requires a reasonable expectation of
seasonal baseline mortality. However, in historical and some subgroups of contemporary
populations, it is difficult to find this information at weekly or daily intervals. Using several
data sources of varying temporal aggregations (individual death records, weekly, and monthly
aggregated death counts primarily related to the Spanish flu), this chapter explores traditional
methods of baseline and excess mortality calculations as well as some adaptations. Then
additional ways to calculate and refine the seasonality in a yearly mortality baseline using
both Metropolis-hastings MCMC and interpolation are presented that provide a probability
based approach to estimation. Baseline and excess mortality estimates are shown from all
models, followed by a discussion of the merits and practicality of each method.

Resumen

El capítulo tres, trata de cuantificar la fuerza y el momento de la epidemia, estimando la
mortalidad estacional de referencia. Sin embargo, históricamente y en algunos subgrupos de
población contemporánea, es difícil encontrar esta información a intervalos semanales o diar-
ios. Utilizando varias fuentes de datos con agregaciones temporales variables (registros de
defunción individuales, recuentos de defunción agregados semanales y mensuales relaciona-
dos principalmente con la gripe española), este capítulo explora los métodos tradicionales
de cálculo de la mortalidad base de referencia y con ello el exceso de mortalidad, así como
algunas adaptaciones. Posteriormente se presentan formas adicionales de calcular y refinar
los valores estacionales de referencia utilizando tanto el método Metropolis-hastings MCMC
como la interpolación que proporciona un enfoque basado en una estimación probabilistica.
Se muestran las estimaciones de la mortalidad estacional de referencia y el exceso de mortal-
idad de todos los modelos, seguidas de una explicación de dichos modelos y la utilidad de
cada uno de ellos.
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3.1 Background: influenza epidemics and the seasonal mor-
tality baseline

Contemporary estimations claim the influenza pandemic events between 1918 and 1921, the
so-called “Spanish" flu, account for the deaths of more than 50 million people throughout the
world [141]. The series of successive influenza virus outbreaks gripped the world beginning
in early 1918, however results of various phylogenetic and molecular-clock analyses indicate
the initial circulation of the virus from avian or swine and other mammal species to humans
may have occurred as early as 1911 [258, 298]. The difference in influenza-related mortality
by year and flu sub-type is often examined by using age specific mortality rates as both an
absolute value and as a ratio of excess mortality rates between vulnerable (young and old)
and lesser affected populations [256]. Ergo, a reliable estimation of baseline overall and
baseline mortality is essential.

The first major world-wide influenza pandemic during the modern age of transportation
was that of the “Russian" flu in 1889-1890, spreading to every corner of Europe in only 6
weeks and throughout the world as the winter progressed [101, 218]. Due to this shift in
the speed of which influenza pandemics spread and their increase in scope, the study of
pandemic timing has also become a topic of interest. However, within the context of the
1918 Spanish flu, quantitative research about the specific timing of each wave is difficult, as
at smaller geographic levels, most longitudinal mortality data is aggregated. Thus, while
some areas collected daily information about the flu as it progressed, it is difficult to ascertain
how its specific timing may have differed from baseline flares of seasonal influenza. Smaller
intervals of baseline mortality data in these areas may provide a better indication of the
specific time-frame from which the virus spread not only into Spain, but through the rest
the world. While the location of the first human infection remains unclear, the virus likely
moved to Spain via Spanish and Portuguese labor migrants returning to the Iberia peninsula
from Southern France during the World War I [273].

In fact, the actual timeline and progression leading to the virus’s emergence is debated,
though the H1N1 strains responsible for the Spanish flu may have been present in both swine
and humans more than 5 years before the first waves in 1918 [258]. While strains of the H1N1
virus continue to circulate in the form of seasonal influenza viruses, biological remnants
of the particularly deadly 1918 strains are still found in avian species via the presence of
specific encoded proteins [294]. In this manner, continued research into the timing of the
Spanish flu, as well as its health and mortality impacts on different populations is essential to
understanding the potential effects that a virulent influenza strain could have on the global
population today. To quantify these impacts at a refined level, a reasonable and reliable
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mortality baseline (at small time intervals of time) in non-epidemic years from which excess
mortality may be determined is vital.

3.1.1 Seasonality in mortality

Distinct seasonal fluctuations in mortality vary greatly according to some such factors as
geographic differences and specific cause of death. These intra-year variations have been
noted and studied in different contexts, and these peaks change over time and may be linked
to the effects of modernization and population aging [153, 222]. Traditionally, countries with
different climates experienced mortality peaks at different times and by different magnitudes;
before technology allowed for better inside climate control, summer peaks could be found
in warmer environments, while winter seasonal peak of mortality were generally higher
in colder locales [153]. It should be noted that the degree of seasonal difference varies
from place to place and is not necessarily dependent on climactic environment or level of
development. As the age structure of the population in more advanced countries changes
and ages, the general pattern of mortality seasonality again changes, and this may be driven
by causes of death more likely to affect those at advanced ages [100, 222]. For example, in
contemporary developed countries, respiratory-related causes of death tend to affect those at
older ages to a greater degree than those in young- and mid-adulthood, and these diseases face
a higher degree of seasonality [100]. While historical populations faced different population
dynamics than this modern example, the importance of understanding and modeling this
seasonality when quantifying an epidemic impact cannot be understated.

Figure 3.1 shows the raw average weekly death rate in Madrid from 1917-1922, years
before, during, and after the waves of the Spanish flu epidemic (designated by gray blocks).
The red line is the average level of mortality throughout the period; this line is clearly
different from the seasonal pattern of mortality visible during the time period.
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Fig. 3.1 All-age all-cause raw mortality in Madrid, 1917-1922

When further disaggregating yearly death rates by demographic variables, it becomes
obvious that the effects seasonal timing plays in mortality vary greatly across age. Figure
3.2 demonstrates this; clearly the youngest and oldest ages (less than 5 and greater than 70)
are much more sensitive to seasonal patterns. These groups also have substantially higher
mortality than their young-adult and middle-age counterparts, who on average have lower
weekly morality rates than the yearly average.
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Fig. 3.2 Age-specific all-cause raw mortality in Madrid, 1917-1922

Moreover, because epidemic waves during the 1918 pandemic often struck more than
once in a location and at different times of the year, calculations of excess mortality depend
heavily on the estimated underlying level of mortality. For example, in the 1918 herald wave
in Madrid, some weeks had excess levels well above the seasonal level, but others were
barely–or not at all–above what would have been a normal seasonal peak in the fall or winter
[72].
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To contextualize the seasonal baseline within the study of epidemics and excess mortality,
the effect of a reliable mortality baseline can shape the debate surrounding the specific topics
of interest in the flu. In the wealth of information and research on Spanish and other influenza
outbreaks, much examination has focused on how age-specific mortality differs from seasonal
outbreaks. Often, analyses featuring little-to-no baseline mortality information show high
rates of excess mortality for young adults, which in the past led to some discussion of a
“w"-shaped curve of excess mortality (for example, [110, 158, 284]). However, other research
calls into question this large peak; while the standard mortality ratio (SMR) continues to
follow the shape of an inverted “V"–that is, the probability of dying in the epidemic period
relative to a non-epidemic period is higher in the young adult ages–, the actual amount of
excess mortality peaks only at the lowest and highest ages. While this is not to say only one
shape of age-specific mortality curve is possible, the extent to which a baseline is calculated
and implemented can have a large impact on results. Given the ongoing debate about total
mortality related to the Spanish flu and its associated pattern, I found it fitting, one hundred
(and one) years following the pandemic, to reexamine traditional baseline estimation methods
and the application of an interpolation technique to refine aggregate data for timing analyses
on a smaller-scale.

As such, the rest of this chapter explores various baseline estimations using data from
the city of Madrid before, during, and after the 1918 influenza pandemic and is structured
as follows. First, the data used in these calculations is briefly outlined, whose peculiarities
inspired this examination. Next, the “standard" Serfling Regression model used to estimate
seasonal mortality patterns is quickly introduced, then potential applications of this method
are provided that may ensure a better fit and quantify uncertainty when faced with with
limited pre-epidemic mortality data. The use of a Metropolis-hastings MCMC approach to
estimate the distribution of deaths throughout the year by optimizing the Serfling parameters
is also considered. Finally, the essay switches gears to explore how monthly-aggregated
data may be interpolated in order to provide a “best-guess" of weekly mortality patterns
throughout the year. After providing the results of these methods when applied to the
Madrid data, excess mortality is calculated according to each method and the similarities and
differences of each completed baseline as well as the applications of these methods in the
future discussed.
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3.2 Data used for baseline estimation

The Madrid Civil Register of Deaths provides excellent, detailed information from death
records, including age, sex, marital status, location, data, and cause of death [224].1 However,
currently, the typed, analysis-ready version of these death records is only available for the
years 1917-1922. This is enough to cover the full period of Spanish-flu related epidemic
waves in Madrid, but only one year of data from before the first outbreak is available from
which to calculate a baseline.

Other mortality data sources during the period of study exist, including the Boletín
Mensual Estadístico Demográfico-Sanitaria, which provides monthly mortality information
by selected causes for the entire Madrid province (both the city proper and surrounding rural
area in the administrative region) [299]. While the data does not provide individual level
information, these monthly death counts published by the Ministry of Government in Spain
for the years 1915-1919 encapsulate the first three waves of influenza in Spain. In addition
to total deaths, this data also provides counts for several causes; thus, baseline estimations
for both overall and influenza-specific mortality in the city and province of Madrid could be
created and compared, though they are not done so in this chapter.

Finally, information about the total city population was obtained from the Yearly Sta-
tistical Books of Madrid. At the time of the influenza outbreaks, the evolution of the city’s
population was recorded via a quasi-register based system, of which a census-equivalent
(padrón) was taken every five years. Published on an annual basis, the volumes provide
population by district both for the city and the region of Madrid given reported and estimated
changes. Because the mortality data describes two different geographic areas and thus,
different population numbers, mortality estimates are calibrated according to the at risk
population of both the city and the region it encompassed.

3.3 Methods: Creating a mortality baseline

Several methods exist to infer a seasonal mortality baseline using the single year of 1917
data, but without additional years of death time-series information, one cannot be sure that
1917 is representative of general mortality patterns during this time. Monthly counts from
1915-1917 also allow a way to see if mortality in 1917 is significantly different from prior
years, but do not allow for the same level of refinement a weekly series may provide.

1The Madrid Civil Register of Deaths is covered in more detail in the following chapter (4) and its appendix
(C).
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The Serfling regression model which incorporates parameters for time and seasonal trends
in mortality is briefly reviewed. Then, some additional modifications to the traditional model
are outlined that may better fit Madrid’s non-traditional mortality patterns and overcome data
limitations before explaining how the application of a Metropolis-Hastings Markov Chain
Monte Carlo model can also estimate the mortality baseline and its upper bound. Lastly, an
analytical exploration into how interpolating monthly-aggregated data can provide additional
insight into mortality patterns at the weekly level is preformed.

While for epidemiologists, the “gold standard" of mortality baseline estimation remains
the noted Serfling regression model and “current model" for count data, additional methods
exists to calculate changing mortality patterns across the year. Several studies have begun to
estimate seasonal mortality through the use of other methods, such as with Poisson counts or
cubic splines (i.e. [118, 268, 269, 293]), which also allow for baseline changes during the
observation period, such for the introduction of a vaccine. These methods are not specifically
reviewed in this chapter. The chapter does however expand to discuss the use of MCMCs
to model seasonal variations in mortality and determine the presence of epidemic waves
through examining the likelihood that an observed point of weekly mortality occurs based on
the parameterized baseline distribution [129].

3.3.1 Serfling regression

Often, in an effort to quantify seasonal mortality and smooth a baseline across several years
of data, researchers employ a Serfling cyclical regression model [250], which provides
an average mortality level incorporating time and seasonal peaks through cosine and sine
parameters.

Deathsxt
Populationxt

= u+α ∗ (t)+β ∗ sin( 2π

52.17 ∗ t)+β ∗ cos( 2π

52.17 ∗ t)

After calculation of the baseline, observed deaths during the period of analysis above
the upper 95% confidence interval bound of the expected values are defined as an epidemic
period, from which excess mortality is calculated. However, the traditional Serfling baseline
approach generally relies on the presence of several years of pre-epidemic mortality data–
normally at least three years–to account for the fluidity in seasonal mortality. Additionally,
shorter time periods could result in a loss of continuity between the beginning and end of the
year. In the case of the 1917 data, this is displayed in Figure 3.3, where due to the change in
the timing of the seasonal peak between the winter of 1916-1917 and 1917-1918, the baseline
suggests there is significantly higher mortality in week fifty-two of the year than in week one.
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Fig. 3.3 The black line shows the real weekly mortality rates from 1917-1922, while the solid red line displays
the predicted mortality values based on a simple Serfling regression (left). Lines show the real weekly mortality
rates from 1917-1922, while the solid black line displays the predicted mortality value based on a simple
Serfling regression (right).

Other issues can arise when mortality does not follow the parameter patterns of a tra-
ditional Serfling model. For example, Madrid experiences a small but noticeable summer
mortality peak which the basic Serfling model does not account for (see Figure 3.3), common
in “undeveloped" or pre-industrialized populations [153]. The simple Serfling model does
not account for this bump, but this may be rectified through the addition of more time and
seasonality parameters to better fit the mortality pattern [74]. While statistical research tends
to avoid over-fitting the data, in the creation of a mortality baseline, the true representation
of seasonal differences in mortality is paramount. If the mortality data used to create the
baseline is trusted to be a correct representation of actual mortality, and that actual mortality
is assumed to follow a normal pattern in the area of study, than the regression model with
additional parameters used to create the baseline can be better in providing a realistic ex-
pectation of normal mortality than the simple approach. In the case of the 1917 mortality
records, the visible mortality peak in the summer can be represented through the addition of
parameters such that the baseline equation is written as

Deathsxt
Populationxt

= u+α ∗ (t)+α ∗ (100
t )2+

β ∗ sin( 2π

52.17 ∗ t)+β ∗ sin( 4π

52.17 ∗ t)+
β ∗ sin( 8π

52.17 ∗ t)+ γ ∗ cos( 2π

52.17 ∗ t)+
γ ∗ cos( 4π

52.17 ∗ t)+ γ ∗ cos( 8π

52.17 ∗ t)
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The added coefficients in the model account for both linear and non-linear time (α) and
seasonal (β & γ) variations in normal mortality activity that create the oscillations present in
the data.

Serfling Regression with parametric bootstrapping

While visual analysis reveals similarity in the yearly pre- and post-Spanish flu epidemic
mortality data, only mortality information from before the epidemic is used to construct the
baseline, as post-outbreak mortality may be influenced by the increased number of deaths
during the flu onslaught [242, 256]. In fact, figure 3.3 does appear to show some decrease
in overall mortality in the years following the epidemic outbreaks. Thus, it could be that
using only the one year of available death records (1917) may ultimately provide an incorrect
estimation of the baseline, as it forced the assumption that mortality in 1917 followed a
normal pattern at all ages. By applying parametric bootstrapping to the 1917 Serfling model
with added parameters, some uncertainty is generated to account for the potential variability
of the 1917 data from typical mortality patterns [96].

To do so, data is first simulated before fitting the above regression model, accounting
for the possibility of aforementioned fluctuation in the annual timing of winter and summer
mortality peaks. A single set of mortality points from which the bootstrapped points were
estimated consisted of six consecutive iterations of total weekly deaths in 1917, to mimic
the six years of mortality data used in this analysis.2 For each of these 312 week sets of
weekly death counts, the number of expected deaths is simulated assuming a Poisson count
distribution. The Poisson estimations assumed the mean and variance of a week were equal
the observed total number of deaths in that week of 1917.

From each of simulated six-year datasets, α , β , and γ parameters are estimated according
to the modified seasonal regression model above. The mean values of the coefficients from
the models are used to compute the upper baseline from the upper quartile value of the 95%
confidence interval of coefficients. As in previous literature, weeks with mortality above the
upper baseline are deemed “epidemic" [69, 74, 160, 257, 269].

3.3.2 Metropolis-Hastings Markov Chain Monte Carlo

In the example above, numbers of weekly deaths are simulated according to parameters of
their observed values in 1917 to account for the lack of multi-year baseline data. From these
simulated vectors of weekly mortality data,a baseline and upper 95% certainty epidemic

2 Each year is considered to have 52 weeks, and calculate the “total" deaths in the 52nd week of the year as
the 7

8 or 7
9 of deaths in the final week and associated excess day(s) of the year (1920 was a leap year).
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threshold are created according to Serfling regression. However, other ways exist to estimate
these baseline parameters that may better take into account how each parameter affects
mortality at different times. Here, an application of the Metropolis-Hastings algorithm via
Monte Carlo Markov Chains recreates the distribution of deaths throughout the year [177].

The application of these methods are particularly appropriate when considering the inter-
year seasonality in mortality. As modeled in Serfling regression, mortality throughout the
year depends heavily on parameters that define seasonal peaks according to time points within
the year. Rather than maximizing the likelihood of the regression function, the Metropolis-
Hastings algorithm approaches the vector of weekly deaths as a probability distribution of
deaths throughout the year. That is to say, the distribution can be expressed mathematically
as the integral of the parameters from time 0 to the end of the year, or, in the case of Madrid,
as:

∫ 52

0
t +(

100
t

)2 + sin(
2πt

52.14
)+ sin(

4πt
52.14

)+ sin(
8πt

52.14
)+ cos(

2πt
52.14

)+ cos(
4πt

52.14
)+ cos(

8πt
52.14

)+ ε

By sampling the distribution parameters within the state space, defined as the space of one
year, the algorithm converges to a specific distribution by comparing the log-likelihoods of
the functions for current and randomly selected proposed values [239]. After the distribution
and its parameters have been optimized, the 95% probability of the distribution can be
calculated from the parameter quantiles of accepted values during the random walk. As in the
other methods, weeks in which total deaths are higher than this 95% threshold are assumed
to be “epidemic."

Thinking of the yearly baseline mortality pattern as a distribution is quite useful. For
example, one can consider that the mortality rate in a year is relatively constant–i.e., from
year to year, the total number of deaths in a stable population (akin to the total density of the
distribution) will not change. However, the distribution of these deaths changes throughout
the year, resulting in a non-normal distribution that generally has two modes at the beginning
and end of the year. In the case of Madrid, the deaths appear to have a distinct tri-modal
distribution with peaks at the beginning (winter), middle (small summer peak), and end of the
year. This general distribution, for which the Metropolis-hastings algorithm seeks to define
parameters, follows the same general pattern from year to year. While the peaks are defined
mostly according to the observed points in 1917, the uncertainty allows for the possibility
that the exact timing of these peaks may vary from year to year, as does the onset of seasonal
diseases and weather patterns.
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Implementation

To implement the Metropolis-Hastings procedure, the target distribution is defined according
to the adapted Serfling regression parameters explored in section 3.3.1, such that 9 parameters
are proposed and tested with each iteration. This includes a value for the intercept, two
for the time variables, and three-each for sine and cosine values. The initial proposed
distribution gives a value of average mortality to the intercept and 9 to the other seasonal
and time-varying parameters such that the mortality distribution is represented as a straight
line, equal throughout the state space (year). A Markov Chain samples new parameters
selected from a random uniform distribution, then accepts or rejects these new parameters
based on the change in log-likelihood of the function [239]. The log-likelihood value is
preferred over the normal likelihood as it is more numerically stable. If the log-likelihood
of the proposed parameters is better than that of the previous ones by a randomly specified
amount, the proposed parameters become the new values from which a new set of randomly
selected proposed values are generated. Over time, the parameters convene to an optimal
distribution based on the 1917 weekly mortality. This method can be generalized for all
seasonal mortality distributions by optimized the log-likelihood of an appropriate set of
parameters.

3.3.3 Interpolation of monthly data

The above methods explored involve mathematically determining a baseline from data at
smaller intervals in order to quantify seasonal patterns in weekly mortality. Especially in the
context of both historical and population- and geographic-specific subgroups, mortality data
is not always available in such refined time intervals. Thus, here an idea to interpolating
data such that weekly death counts can be inferred from monthly aggregated mortality
information is presented [293]. Several methods exist to interpolate values form smaller
intervals of time from aggregated values. Within the realm of fertility research, this often
involves determining single-year age specific fertility rates from grouped five-year intervals.
Here, similar methods to those outlined in the Human Fertility Database [137] are used to
interpolate yearly age-specific rates from aggregated data.

Monotonicity is a requirement of most interpolation techniques, but both yearly mortality
and the age-specific fertility curve do not follow a pattern of strictly increasing or decreasing
values through time (see Figure 3.4). However, by using the aggregate amount of expected
births (or deaths, in this case) across the time period of study, a strictly increasing number of
total deaths can be observed; that is, there will never be fewer total deaths during a year on
one day than on the day before.
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Fig. 3.4 Aggregate mortality data by month (left) and cumulative (right)

To interpolate, the logit of the cumulative (year-to-date) monthly mortality rates is cal-
culated as Y (t) = log[ Mt

Mtmax
−Mt ], where Y is equal to the logit of the cumulative mortality

rate (M) at time t. T ranges from 0, interpreted as the beginning of the year (before the
nonoccurence of any deaths), to 12 (the end of December), when all deaths have occurred,
equal to Mt . At these extreme t points, the logit value is replaced with reasonable values.
As according to the method in the Human Fertility Database, I then perform cubic spline
interpolation according to the “Interp1" function of the “signal" package in R.3 The interpo-
lation is preformed for 52 points along the logit function of cumulative mortality in order to
represent the weeks of the year.

Inverse logit transformation is used to return the interpolated values to cumulative
mortality rates, using the formula M(x)hat = [ eYhat (x)

1+eYhat (x)
] ∗Mxmax . From the difference of

these cumulative points, determine weekly mortality estimates are determined for three years
of the monthly aggregated mortality data. The baseline and its 95% estimate are created
by taking the upper bound of a Poisson distribution containing each the three interpolated
points.

3HFD uses Hermite spline interpolation, but cubic splines are used, as they are a better fit and mathematical
estimation
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3.4 Results and discussion

3.4.1 Baseline results from Serfling regression with parametric boot-
strapping

The estimation technique for the mortality baseline created a general linear pattern mimicking
mortality patterns for the year 1917. In the years following the main epidemic waves, the
all-cause baseline continues to mimic the general shape and pattern of the baseline, but the
overall mortality rate falls relative to 1917. Given the additional variables present in the
individual data of individual deaths, this method can also be used to create refined mortality
baselines for additional population sub-groups and estimate baseline mortality accordingly.

Fig. 3.5 Grey points show the real weekly mortality rates from 1917-1922, while the blue and red lines display
mean and upper 95% bound baseline from simulated 1917 deaths data. Shaded gray blocks represent the three
epidemic wave periods.

3.4.2 Metropolis Hastings Markov Chain Monte Carlo optimization

Figure 3.6 shows graphical results of the Metropolis-Hastings MCMC for two potential
distributions. The gray-scale shows, after the a series of “warm up" steps, the accepted
distribution parameters during the optimization process from start (gray) to end (black). The
white line shows the mean distribution, and the red lines represent the upper and lower 95%
confidence intervals. The first figure demonstrates the random walk of the optimization
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process using the Madrid 1917 data. The second figure shows the results of this algorithm to
a different distribution of deaths, similar to the standard Serfling regression parameters, such
that:
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Fig. 3.6 MH MCMC results for 1917 Madrid data (left) and other distribution (right)

In both cases, the algorithm slowly optimizes the distribution by sampling and accepting
or rejecting new parameter values. In outbreak periods, observed weekly rates higher than the
red 95% confidence interval of the accepted parameters will be considered epidemic weeks,
and the level of excess is the difference between the observed value and mean expected value
(white line).

3.4.3 Baseline according to interpolation method

Initial results obtained by strictly adhering to the HFD methods revealed realistic estimations
of the baseline for all months, with the exception of the first and last several month of the
year. In the case of time t = 0 to time t = 4, the cumulative mortality rate is equal to zero at
the beginning of the year and some value of January mortality at t = 4, but the interpolation
function interprets this as zero deaths occurred at time 0, rather than simply that zero deaths
during the year had occurred. Likewise, the end of the year shows a flattening of mortality
rates towards zero as the values of the logits move towards an asymptote of the function
where cumulative mortality remains the same. This is not realistic, as cumulative mortality
will continue to grow even after the end of the early observation period.
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To rectify this,“phantom deaths" are added to the beginning and end of the year before
calculating cumulative mortality, the logits, and performing interpolation. This can be
interpreted as providing information about mortality patterns before and after the end of the
year (i.e. December mortality in the year prior to the baseline and January of the following
year). These these six (two each for 1915, 1916, and 1917) values are randomly generated
according to a Poisson distribution fit from the number of monthly deaths during the months
of January and December present in the data. Thus, the initial problems of the interpolated
values remain at the extremes of the interpolated function, but all values of cumulative
mortality during the observation year fall within a part of the increasing logit function such
that the resulting values are realistic.

Both cases of interpolation results are visually depicted in Figure 3.7, where the quick rise
of mortality in the beginning of the year and plateau at the end are easily visible. The right
side of the figure also depicts the change in the expected number of deaths at the beginning
and end of the year without and with the addition of the phantom deaths.
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Fig. 3.7 Interpolation issues and adaptation: Initial technique–(a) estimated weekly values of cumulative
yearly mortality and (b) mis-estimation of deaths at the beginning and end of the year. Phantom deaths–(c)
interpolated cumulative mortality including additional December-January deaths and (d) realistic estimation of
deaths from January to December of observed year

3.4.4 Comparison of baselines

Figure 3.8 shows both baselines overlain on all mortality data as well as for the year 1917
according to both monthly and death record data.4 There are many similarities between the
three; all share the same basic shape and take into account the summer mortality peak, and

4The presented results tables (e.g. table 3.1) show excess mortality estimates according to the interpolation
methods for both the entire province of Madrid, as well as only the city. This is to facilitate comparison and
discussion with another paper on excess mortality in Spain that used monthly estimates. The figures depicting
the interpolated baselines do so according to the monthly mortality data at the city-only level.
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the baselines follow nearly identical paths and values in the second half of the year. Overall,
the baselines reinforce each other’s legitimacy, as the three years of interpolated data validate
the relative shape of the curve determined by only 1917 data. Moreover, the thickness of
the confidence intervals show that neither the simulated data and the number of simulations
involved in the bootstrapping nor the iterations of the MH MCMC optimization over-fit the
variability in the baseline estimation.
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Fig. 3.8 Blue shaded region shows baseline and upper 95% of interpolated monthly data, gray shaded region
shows the same for parametric bootstrapping of death records, green shaded region shows same for the M-H
MCMC estimated baseline; mortality rates for all years of data plotted on left, two years of 1917 (death records
and interpolated provincial counts) on right

Outside of its calculation method, the MH MCMC baseline largely differs from the
parametric bootstrapping technique in that it predicts the mean and 95% uncertainty interval
of the summer and winter peaks with greater certainty and the spring and fall mortality troughs
with less uncertainty. This is due to the selection mechanism for the proposed parameters; it
should be noted that a greater number of simulations and increase in the specified burnout
period would further decrease the level of uncertainty and lower the confidence intervals.
Overall, the two share very similar mean values of predicted mortality levels, though this
is expected given they are derived from the dame data and are calculated using the same
parameter values, even if via different methods.

Nonetheless, there are also noticeable differences in the baselines. Because the data used
to construct the single-year baseline follows the distribution of deaths in 1917, the resulting
shape of the mortality curve, despite the introduced uncertainty, adheres to the timing and
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strength of the peaks in 1917. That is to say, the winter seasonal peak in 1917 occurred
mid-way through January, and this is reflected through the early peak in the 1917-only
baselines, while the interpolated monthly data peaks at the start of the year. Likewise, the
summer peak was lower in 1917 than what was observed in the aggregated monthly data.
However, this could also possibly be attributed to the timing of the summer peak. Whereas
the individual death dates can pinpoint an exact peak, the monthly data may show a muted
rise if the peak occurred during the end of one month and the beginning of another.

In general, the methods using only the 1917 data highlight the importance of using more
than one year of baseline mortality data; both place winter mortality peaks in the middle of
January and at the end of December. In a five-year continuous time-series of these rates, this
would indicate a small winter “trough" in the beginning of January. However, as a general
pattern of seasonal mortality, this valley is unrealistic. However, it also cannot be assured
with certainty that the monthly data is interpolated correctly such that the location of the
peaks within a month is where it actually occurred. The interpolation infers a smoothed rate
of increase towards and away from the peak according to the monthly points, and without
more precise information, researchers must have reason to believe this assumption is true.

Several additional interpolation methods exist that should be considered in order to
best quantify a weekly baseline from aggregated data. Other types of methods, such as
polynomial regression, were briefly considered [148], but due to the summer mortality
peak, the high-order function produced results that were more complex than the seasonal
parameterized baseline. Another option to determine the weekly baseline involves using a
calibrated splines method to estimate four segments of the mortality curve across the year
[248]. Though this technique would require estimation of several segments of the baseline,
its applications to fertility data (if the age-specific fertility curve is thought of in a similar
manner to the time-of-year-specific mortality curve) appear to produce at least comparable, if
not better results than the current Human Fertility Database technique [125] and thus might
be considered as a possible additional procedure to interpolate mortality data.

3.4.5 Excess mortality

Table 3.1 shows five estimates of excess mortality in Madrid for the influenza waves in the
spring of 1918 and the combined fall/winter waves in 1918-1919. The first estimates are
derived from the technique of parametric bootstrapping the single year of 1917 mortality data.
The second column is calculated from the 95% probability interval of the MH MCMC derived
distribution of deaths, and the third and fourth sets are estimated from the interpolated data,
using the upper 95% interval of an assumed Poisson distribution, where the third corresponds
to the city only, and the fourth corresponds to the entire month. The final set of estimates
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come from a previously published paper on excess mortality in Spain during the pandemic
[64]. These excess mortality rates are based on a simple three year Serfling model using the
monthly data in its aggregated form.

Table 3.1 Estimates of Excess Mortality with Different Baseline Estimations (absolute excess rates per 10,000)

Serfling with MH MCMC Interp Data & Interp Data Monthly Data
Wave Param Bootstrapping (City) (Province)

Spring 1918 19.42 17.70 16.11 15.20 11.7
Fall/Winter 1918-1919 33.50 44.28 63.01 52.23 55
Overall 52.92 61.97 79.13 67.42 66.7

Despite the differences in the overall baseline discussed above, most of the baseline
estimations presented here reveal very similar numerical results of excess mortality during
the two waves in Madrid. With little exception, the estimates of excess mortality calculated
from the baselines are much more similar to each other than to those of the previous study of
excess monthly mortality in all provinces of Spain [64]. For example, the excess mortality
from both of the baselines calculated here is much lower in the fall/winter wave, and higher
in the spring. When the interpolated data is used to calculate a baseline with the MH MCMC
method, higher results of excess mortality than in the other methods is also found, most
notably in the combined fall/winter wave. Part of this could come from the lower expected
mortality of interpolated data at the beginning of the year, but it is difficult to ascertain
what specifically contributes to these differences. Also, it should be mentioned the previous
estimates use the same monthly data as in the three-year baseline (but in 1918 and 1919) to
estimate the excess, while here, the death records are used exclusively to estimate the excess
from calibrated baselines in the first four methods of table 3.1.

The mortality data sources used in this analysis also cover slightly different geographic
areas, which could account for some of the discrepancies in excess mortality. The overall
timing of the baseline mortality rate for the city of Madrid may be different from the province
due to varying levels of influenza immunity. Previous exposure to influenza virus and a
person’s triggered immune defense changes the probability of (a) contracting a specific strain
of influenza from exposure and (b) the body’s reaction to fighting such a virus [109]. The
city itself experienced a strong spring wave and this is present in the provincial data due to
its inclusion of the city. However, the population in the countryside of the surrounding region
likely did not face the same exposure to the spring wave, meaning the monthly provincial
data may not perfectly reflect the mortality conditions in the city during the outbreaks.

Additionally, by far the largest estimate of excess mortality comes from the monthly
interpolated counts that were recorded within the city during the combination of the fall
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and winter waves in 1918-19. This excess estimate of 63.01 is almost larger than all of
the other total estimates from the calculations. Because the actual mathematics have been
checked, then checked again, this number, should the data have been recorded correctly,
stands. However, the nature of the data sources do challenge the results and may provide at
least a partial explanation for this high number. The Madrid Civil Register, which provided
the information leading to these high interpolated counts, accounts for all deaths in the
city, irregardless of the place of origin or residence of the deceased. The Boletín Mensual
Estadístico Demográfico-Sanitaria was compiled from self reported statistics by physicians
and often lacked complete coverage of the province for which it was reported [219]. The
reporting percentage and amount of coverage also varied from year to year. Moreover,
reporting delays may have furthered skewed these self-reported statistics, but the extent to
which that may have happened is not examined here. Thus, it is possible the number of deaths
to flu were misreported either in the baseline period, during the waves of flu themselves, or
at both times, but by different amounts.

In many urban centers that experienced a stronger herald wave in the spring or summer
of 1918, the severity of the succeeding fall wave is less pronounced relative to the rest of the
world. Often, the total effect of the epidemic was lower in cities with herald waves. While the
spring wave lacked the virulence of the successive fall outbreaks, its overall transmission rates
were quite high, and where present, the virus tended to spread through much of the population
[24, 198]. However, excess mortality rates specific to the spring waves are generally lower
than in the fall. Thus, the differences in the province-wide mortality from the city estimates
may be due to a lack of exposure to the spring wave, followed by a strong fall wave to which
the provincial population had no mortality. While further sensitivity analysis will be done to
look at the differences in the city and surrounding populations, the current results reveal a
stark contrast of more than 50% higher mortality in the province itself.

3.4.6 Final notes: seasonal mortality baseline calibration

While here, this chapter explores novel ways to calibrate a mortality baseline, caution
should be taken when deciding the best approach to take. When producing a mortality
baseline, it is most essential that the seasonal rates are a reasonable expectation of “normal"
mortality patterns for the population of analysis. As mentioned, the monthly data used in the
comparison paper covers the entire province of Madrid, whereas the individual-level death
records provide information from the city only. While the provincial-level data takes into
account the population of the city as well, the differences in mortality during the baseline
period of 1917 are stark, specifically during the winter peaks. Both baselines accurately
reflect their input data–that is, according to available data, they both paint a believable
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picture of mortality–, but there are large, significant differences in the epidemic threshold,
particularly in the first two thirds of the year.

The content of this chapter focuses on the city of Madrid during several waves of Spanish
influenza, but as noted, these estimation techniques are applicable to all types of aggregated
mortality data. Or, it can be used with other types of aggregate data that need to be examined
at a finer level, provided there is no reason to believe a large spike may occur within an
aggregated period. That is to say, while the method is applicable in a wide range of cases
to several types of aggregated data, caution should be exercised, and it should be noted
that the interpolation method will always produce a smoothed result. To further understand
the benefits and limitations of the interpolation and baseline re-calculation process, future
analyses should incorporate data from other locations and time periods.

Yet, in this analysis, the results show that reasonable mortality time-series at finer time
intervals can be created through interpolating higher-level aggregated data. For example,
the severity of the 1918 Influenza Pandemic throughout the world led many cities, counties,
and other administrative areas to collect daily and/or weekly surveillance and mortality
data during the epidemic periods, especially in the fall of 1918. However, the continued
usefulness of this data in contemporary studies relies heavily on the estimation of baseline
mortality during the time and the discernment of how much larger an outbreak was compared
to seasonal flu. In these same areas with detailed 1918 information, often, previous years
of mortality data are available only in a larger aggregate scale. Thus, interpolating this
information, as shown through these estimations, provides a viable method through which a
finer baseline may be calculated. From this, researchers can better understand some of the
intricacies of the influenza pandemic and other events still debated today.





Chapter 4

Age-specific excess mortality patterns
during the Spanish influenza pandemic
in Madrid, Spain





Abstract

Although much progress has been made to uncover age-specific mortality patterns of the 1918
influenza pandemic in populations around the world, more studies in different populations
are needed to make sense of the heterogeneous mortality impact of this deadly pandemic.
Here the absolute and relative magnitude of 3 pandemic waves in city of Madrid between
1918-1920 are assessed based on age-specific all-cause and respiratory excess death rates.
Excess death rates are estimated using a Serfling model with a parametric bootstrapping
approach to calibrate baseline mortality levels with quantified uncertainty. Then excess
all-cause and pneumonia and influenza mortality rates for different pandemic waves and
age groups are calculated and presented. Age-specific analyses reveal the youngest and
oldest experienced the highest excess mortality rates, and young adults faced the highest
standardized mortality risk. Waves differed in strength; the peak standardized mortality risk
occurred during the herald wave in spring 1918, but the highest excess rates occurred during
the fall and winter 1918-1919. The analysis finds little evidence to support a ’w’-shaped
age-specific curve. The results indicate acquired immunity may have tempered a protracted
fall wave, but recrudescent waves following the initial two outbreaks heightened the total
mortality impact of the pandemic.

Resumen
El capítulo cuatro, se centra en el análisis de la mortalidad por edad durante la pandemia.

Aunque se han hecho muchos progresos para mostrar los patrones de mortalidad por edad
de la pandemia de gripe de 1918 en poblaciones de todo el mundo, son necessarios más
estudios en diferentes poblaciones para dar sentido a la hetereogenidad de esa letal pandemia
en cuanto al patrón por edad de la mortalidad. Aquí se evalúa la magnitud absoluta y relativa
de tres de las olas pandémicas de gripe en la ciudad de Madrid entre 1918-1920 en base a
las tasas de mortalidad por todas las causas y causas de tipo respiratorio específicas de cada
edad. Las tasas de mortalidad extraordinaria se estiman utilizando un modelo estadístico
de Serfling con un enfoque de bootstrap paramétrico para calibrar los niveles de mortalidad
de referencia con una incertidumbre cuantificada, es decir, permitiendo establecer unos
márgenes de confianza. Luego se calculan y presentan las tasas de mortalidad por todas las
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causas, neumonía y gripe para las diferentes olas pandémicas y por grupos de edad. Los
análisis específicos por edad revelan que los más jóvenes y los mayores experimentaron las
mayores tasas de exceso de mortalidad, y que los adultos jóvenes afrontaron el mayor riesgo
de mortalidad estandarizada. Cada ola difería en fuerza; el pico de riesgo de mortalidad
estandarizada ocurrió durante la ola de primavera de 1918, pero las tasas de exceso más altas
ocurrieron durante el otoño y el invierno de 1918-1919. El análisis encuentra poca evidencia
que apoye una curva específica por edad en forma de "w". Los resultados indican que la
inmunidad adquirida puede haber atenuado unas olas prolongadas, pero las olas posteriores
que siguieron a los dos brotes iniciales aumentaron el impacto total de la pandemia en la
mortalidad.
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4.1 Background: differences in epidemic waves and age-
specific mortality patterns

The 1918-1920 influenza pandemic or the so-called “Spanish" flu, is responsible for millions
of deaths worldwide [141, 186]. In Europe, the excess mortality rate associated with the
1918-19 influenza pandemic has been estimated at 1.1% or approximately an 86% elevation
in all-cause mortality [26]. This pandemic rapidly spread around the world in a series of
pandemic waves that gripped the world beginning in early 1918 [255]. However, results
of various phylogenetic and molecular-clock analyses suggest that the initial circulation of
the virus from avian or swine and other mammal species to humans may have occurred
a few years earlier [206, 258, 298]. Moreover, the symptoms and age-specific mortality
patterns associated with this particular pandemic are particularly unique. For example, the
most severe patients were often young adults presenting with heliotrope cyanosis and acute
respiratory distress. In fact, young adults consistently exhibited the highest excess mortality
rates from a number of detailed historical investigations. Contrast this to seasonal influenza
epidemics which primarily affect the very young and elderly [178, 256].

The name “Spanish" flu comes from the first news reports of influenza-like-illness in
Madrid in the late spring of 1918. However, this pandemic gained its moniker because the
first mentions of the virus were published in Spain, where the press faced no censorship
during World War I due to the country’s neutrality [95]. San Isidro, the festivals surrounding
Madrid’s patron saint, lasted several weeks in early and mid May, and the close contact of
Madrileños at the festivities probably contributed to its transmission [112, 273]. Many fell ill
with respiratory symptoms in May 1918, including King Alfonso XIII, the prime minister,
and other top government officials, which was well documented in the press [95, 273]. The
outbreaks were strong, rapid, and affected many individuals, though overall, mortality was
reported to be relatively low. During this time, many public and private offices closed
[40, 95].

Yet when the flu returned to the city in fall of 1918, public officials in Madrid seemed
reluctant to acknowledge its presence and argued over its prevalence. The provincial health
inspector noted the existence of a second flu outbreak in September [4]. However, even into
mid and late October, officials in positions of varying importance argued publicly, through
several days of newspaper editorials and official announcements over the extent to which an
influenza epidemic was present in the city [112, 114]. A consensus could not be reached as to
whether the outbreak was limited to a few cases in public quarters such as prisons, hospitals,
and orphanages, or if it truly was widespread across the city. As the outbreaks continued,
their pervasiveness could not be denied.
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Because respiratory disease outbreaks occurred in neighboring France as early as April
1918, it is likely that the virus was introduced into Spain via Spanish and Portuguese
labor migrants in Southern France [273]. Prior research provides abundant information
regarding the timing, severity, and excess mortality of the 1918 influenza pandemic in Spain
[64, 95, 273] as well as some estimates of transmission potential of the virus within the city
of Madrid [64, 99, 196]. This previous work on the effect of the Spanish Influenza in Madrid
and in Spain was strongly based on the historiographic analysis of the pandemic and used
aggregated mortality data to analyze the mortality, social, and administrative changes in
the city during and due to the pandemic [84, 95, 111, 112, 113]. The work here and in the
following chapter does not pretend to replicate the important and impressive work already
performed by previous scholars but instead aims to expand the analysis by looking more in
detail at mortality by age and place, complementing and adding more evidence to what the
pionering work found.

Nevertheless, these analyses provide a primarily descriptive picture of the pandemic in
Spain through the lens of period press reports and mid-century publications including on
the evolution of sanitation and health in Spain [94, 95, 120, 273], though newly digitized
data sources provide increased opportunities to quantify the impact of the pandemic on the
Spanish population [64]. For instance, estimates of pandemic excess respiratory death rates
have ranged from 6.1 per 10,000 for the Canary Islands to 169.7 per 10,000 for Burgos [64].
Moreover, spatial factors such as latitude, population density and the proportion of children
have explained about 40% of between-province variation in cumulative excess death rates in
Spain during 1918-1919 [64]. Few of these analyses take into account a recrudescent wave
in Spain, which peaked in Madrid in late December 1919 and in later months in the rest of
Spain [26], resulting in an additional 17,841 deaths specifically from influenza and primarily
affected the young [94, 120].

Although much progress has been made in uncovering the age-specific mortality patterns
of this pandemic in a number of populations in Latin America [65, 67, 68, 69] as well
as in US and European settings [24, 82, 198, 233, 278, 284], more studies are needed to
make sense of the heterogeneous mortality impact of this deadly pandemic across different
populations around the world. For instance, characterizing and comparing the age-specific
excess death rates across pandemic waves during 1918-20 in different populations could
suggest alternative hypotheses on the drivers of pandemic mortality risk at the time and place
more emphasis on lesser studied phenomena associated with the pandemic.

Despite previous efforts to characterize the impact of the 1918 influenza pandemic in
Spain, prior studies have not systematically investigated differences in mortality impact
between age groups and pandemic waves. This chapter takes a step forward and analyze
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detailed series of deaths after retrieving over 70,000 individual death certificates representing
all cause deaths during 1917-1920. Here, the analysis aims to assess the timing of pandemic
waves and their magnitude in absolute and relative terms based on all-cause and respiratory
excess death rates across across age groups and 3 pandemic waves in the city of Madrid
during 1918-1920, including a recrudescent wave in winter 1919-1920.

4.2 Methods

4.2.1 Madrid mortality data

All death certificates from the Madrid Civil Registry, the same source used for some of the
baseline estimation in chapter 3, between 1917 and 1920 were retrieved to construct time
series of mortality during the 1918-20 influenza pandemic (Figure 4.1). Each record provides
specific details of the deceased, including the date of death, age, and causes of death. For
years 1917-1920, the registry holds a total of 70,061 death records (an average 17,650 deaths
per year). Cause of death information for each death record allowed us to extract influenza
and respiratory deaths.
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Fig. 4.1 Sample of death records from the 27-May-1918 from the Civil Register of Madrid.
Source: Archivo Villa de Madrid

Causes of death

It is now well recognized that a significant fraction of the pandemic deaths resulted from sec-
ondary respiratory ailments (e.g., most commonly bacterial pneumonia) following influenza
infection (rather from influenza infection alone) [181, 182]. Additional influenza-related
deaths have been attributed to other types of bacterial infections and severe-acute respiratory
distress, often evidenced by the appearance of blueish-gray skin shortly before death [181].
As such, estimates of respiratory related mortality also provide key information regarding the
effects of influenza-specific mortality. As in prior studies (e.g., [68]), excess death rates are
estimated for all-cause deaths and for pneumonia and influenza related mortality, a death cat-
egory that comprises all death records containing influenza, pneumonia, bronchopneumonia,
or bronchitis as a cause of death after removing death certificates that contained tuberculosis
as a cause of death.

However, additional causes of death, seemingly unrelated to influenza mortality, have
been found to rise and peak at dates exactly coinciding with those of influenza waves. These
patterns are especially prevalent in Madrid, and they have been dissected and analyzed by
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two cause of death coding systems. The information regarding the magnitude and timing of
changes in causes of death during the time of the pandemic can be found in Appendix C.1.

Additional information

Further, information regarding the population composition of Madrid was obtained from
the city’s yearly population books to estimate death rates [214]. With this information, the
results could be standardized according to the age structure of the population of Madrid at the
time. Spain experienced one of the highest excess mortality rates during the 1918 influenza
pandemic in Europe [26], although this country did not take part in World War I. Perhaps this
pandemic outcome is associated with the fact that Spain was going through a demographic
transition experiencing elevated mortality rates that were only comparable to those of Eastern
Europe. Of note, the life expectancy in Spain was 41 years in 1910 and 40 in 1920 [92].

4.2.2 Estimating mortality baselines with quantified uncertainty

A more detailed explanation of estimating mortality baselines can be found in chapter 3, but
the parametric bootstrapping technique applied to the data is briefly retold here. Initial estima-
tions of a baseline using a simple cyclical Serfling linear regression model failed to capture a
small but noticeable summer mortality peak [250]. To account for this variation, modifica-
tions to the initial Serfling parameters, as in another study of the 1957 influenza pandemic
in Maricopa County, Arizona [74]. accounted for both time (α) and seasonal (β & γ) vari-
ations in normal flu activity. The new model identifies the oscillations (at time t) according to:

Deathsxt
Populationxt

= u+α ∗ (t)+α ∗ (100
t )2+

β ∗ sin(2∗ π

52.17 ∗ t)+β ∗ sin(4∗ π

52.17 ∗ t)+β ∗ sin(8∗ π

52.17 ∗ t)+
γ ∗ cos(2∗ π

52.17 ∗ t)+ γ ∗ cos(4∗ π

52.17 ∗ t)+ γ ∗ cos(8∗ π

52.17 ∗ t)

Parametric bootstrapping was used to further account for uncertainty in the 1917 baseline
mortality level [96]. The complete five year baseline was calculated from the mean values
of the coefficients from simulated models, and the upper baseline from the upper quartile
value of the 95% Confidence Interval of coefficients. To calculate excess mortality, weeks
with mortality above the upper baseline are classified as “pandemic weeks" [69, 74, 160].
As the difference between the fall and winter wave was difficult to discern, three distinct
wave periods are defined as May-July 1918, August 1918- April 1919, and November
1919-February 1920. That is to say, while there is evidence to suggest the city of Madrid
experienced one 1918 fall wave and a 1918-19 winter wave, these become unclear when
disaggregating the data into smaller categories such as age groups. For this reason and to
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facilitate comparisons with prior studies [64, 101], the successive fall and winter increases in
excess mortality are calculated as if they were one pandemic wave.

Excess mortality for each wave is calculated by summing the total deaths above the
baseline during the epidemic periods. To aid in the comparison of these results with other
research, the provided relative estimates for each wave and age group allow relative com-
parisons across age groups [64, 251]. For each wave, the relative risk is defined as the ratio
of total excess mortality observed to expected baseline mortality during pandemic weeks,
when total mortality exceeded the 95% confidence interval of the baseline. This aids in the
direct comparison of the total mortality impact of the flu between study groups, as baseline
mortality varies substantially by age group [69].

4.3 Results: quantified age-specific excess

The analyses of weekly mortality rates from January 1917 to December 1921 revealed three
distinct periods of pandemic-related mortality: a brief but well-defined spring wave (May-July
1918), an intense fall-winter wave during August 1918- April 1919 and a recrudescent winter
wave during November 1919-February 1920 (Figures 4.2 & 4.3). Overall, peaks in respiratory
and all-cause death rates were well synchronized. All- cause and respiratory related excess
deaths for all age groups generally followed the same pattern of excess mortality by wave;
the fall/winter wave has the highest excess rates, followed by the third recrudescent wave,
then the herald wave in spring 1918. Additionally, the shape of the age-specific standardized
mortality risk (SMR) remains the same, but the total elevated risk in all waves is much
more pronounced when considering only respiratory mortality.1 The cumulative estimates
of excess mortality for these three pandemic waves were 86.8 per 10,000 from all-cause
mortality and 44.6 per 10,000 from respiratory mortality, or approximately 6,500 total excess
deaths, of which 3,300 were respiratory related.

1Given the recognized high peak of mortality among those aged 25-30, this group was also individually
analyzed. The results are in C.2.
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Fig. 4.2 Lines show the real weekly mortality rates from 1917-1922 (green), and mean (red)
and upper 95% bound (blue) baseline from simulated 1917 deaths data. Shaded gray blocks
represent the three epidemic wave periods.
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Fig. 4.3 Lines show the real weekly mortality rates from 1917-1922 (green), and mean (red)
and upper 95% bound (blue) baseline from simulated 1917 deaths data. Shaded gray blocks
represent the three epidemic wave periods.

Total excess mortality for epidemic weeks during the observed period is highest during
the second fall-winter wave in 1918-19. A total excess rate of about 33.5 deaths per 10,000
is calculated based on all-cause deaths and 22.3 per 10,000 based on respiratory deaths. In
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contrast, the spring-summer wave was associated with an excess death rate at 8.2 per 10,000
based on respiratory mortality and 19 per 10,000 for all-cause mortality. It is interesting that
the third wave in winter of 1919-20 generated a substantial death rate at 34 deaths per 10,000
based on all-cause deaths, which is comparable to that of the intense fall-winter 1918-19
wave. However, it is worth noting that the first and third waves were relatively brief and
pointy while some age groups exhibited two well-defined peaks during the protracted second
wave in fall-winter 1918-19 (Figure 4.3).

Table 4.1 Age-Specific Excess Mortality by Wave

Weekly Excess
Age Group Total Mortality Rate Standardized

Excess Deaths (Per 10,000) Mortality Risk

Spring Wave, 1918
Overall 1456 19.42 1.57
[00,05) 375 57.57 1.40
[05,15) 95 6.58 2.03
[15,25) 165 10.59 2.28
[25,50) 486 18.13 1.95
[50,70) 213 21.32 1.55
[70, In f ) 127 80.39 1.68

Fall and Winter, 1918 -1919
Overall 2511 33.50 1.27
[00,05) 293 44.90 1.22
[05,15) 364 25.11 1.82
[15,25) 401 25.73 1.83
[25,50) 1250 46.63 1.58
[50,70) 262 26.22 1.24
[70, In f ) 275 173.58 1.24

Winter Wave 1919-1920
Overall 2538 33.86 1.52
[00,05) 823 126.34 1.59
[05,15) 261 17.98 2.18
[15,25) 235 15.08 2.14
[25,50) 467 17.41 1.63
[50,70) 344 34.45 1.41
[70, In f ) 485 306.51 1.63

In general, age-specific excess mortality rates were lowest during the Spring wave and
highest during the protracted second wave, as shown in Figure 4.4. Compared to the first
two pandemic waves, the youngest and oldest groups were particularly affected during the
recrudescent wave in the winter of 1919-1920. In fact, during the third wave, those above
70 faced excess all-cause and respiratory mortality rates that were more than three times
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higher than in the first wave. Further, during the last wave, infants and children aged up to 15
experienced more than double the all-cause and respiratory excess mortality rates estimated
for the first two waves. The 5-15 and 15-24 year age groups maintained similar patterns in
each of the waves, facing the lowest excess rates in the spring herald wave and highest in the
combined fall and winter waves of 1918-1919. The 25-50 year old group faced their highest
excess mortality rates in the second wave in fall-winter 1918-19.
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Fig. 4.4 Total excess mortality rates per 10,000 for all-cause (left) and respiratory related
(right) deaths plotted by age group for each wave.
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Fig. 4.5 Standardized Mortality Ratio for all-cause (left) and respiratory related (right) deaths
plotted by age group for each wave.

While the herald spring wave accounts for slightly more than 20% of all total excess
deaths, the SMR during this period was higher than in the succeeding waves, due to lower
baseline mortality during spring and summer (see figure 4.5). Remarkably, although individu-
als 15-25 yrs. exhibited low excess mortality rates relative to other age groups, this age group
exhibited the highest SMR across all pandemic waves. Generally, the age-specific pattern of
the SMR is that of an upside-down ’v,’ with the exception of the oldest age group. During the
first and third waves, those above 70 yrs. experienced a higher SMR than individuals 50-70
yrs. Most generally, the highest SMRs occur in the first and last waves, though the highest
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calculated SMRs for respiratory-related mortality (4.4 and 4.2) are found for individuals
15-25 yrs. in the first and second waves.

4.4 Discussion: implications of Madrid excess mortality in
the context of other research

While estimates of excess mortality reveal variability in age-specific patterns throughout the
world, the results are unique in that the highest absolute excess rates occurred among older
populations (age70) compared to previous reports from Europe and the US [24, 198, 256].
Specifically, the Madrid age-specific excess dominant pattern resembles that of seasonal
influenza epidemics where the highest excess rates occur in the youngest and oldest groups
[68, 69, 162]. However, much of the elderly population of Madrid would have been exposed
to other viruses; for example, in the decades preceding the Spanish flu, the "Russian"
Influenza pandemic that struck Madrid in the winter of 1889-90 produced overall all-cause
excess mortality rates of 58.3 per 10,000 and produced an age-specific excess mortality
pattern that is similar to each of the three pandemic waves in Madrid [218].

The results also confirm earlier analyses of a particularly lethal spring wave in Madrid
relative to smaller mortality peaks, but high incidence rates in some locations such as Norway
and Denmark [24, 198, 255]. In Madrid, weekly excess death rates during the spring wave
nearly rivaled that of the protracted fall/winter 1918-1919 wave.

This analysis allows the timing and excess mortality of this first wave in Madrid to be
contextualized relative to herald pandemic waves in North America and civilian outbreaks
in Europe. Many of the first purported spring outbreaks occurred in U.S. military camps,
spreading to larger cities in April and May, before the herald wave in Madrid [255]. However,
the mid-late May outbreak was the first reported in civilian Europe. In the following
months, reported influenza outbreaks in Europe occurred east- and north-ward to other
parts of Spain and Italy, then England, Sweden and Norway, and Switzerland and Poland
[22, 24, 64, 82, 133, 181, 255, 284]. However, it remains difficult to distinguish to what
extent the virus spread through military rather than general population movement [255].

Analyses of hospitalization, mortality, and other surveillance sources in both military and
civilian settings have found evidence of cross-protection between spring and fall influenza
outbreaks during waves of the 1918-1919 epidemic [37, 89, 169, 237]. The high pandemic
mortality found in the analysis, together with evidence of high incidence rates during spring-
summer waves [85, 94, 95] could have provided some immunity and cross-protection to
the strain of virus in the succeeding fall wave. Conversely, in New York City, a noticeable
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age-shift in influenza mortality patterns occurred in early 1918, perhaps suggesting the
presence of the new virus strain, yet there is little total excess mortality until the strong fall
wave, which killed more than 9 times as many people [198]. This may partially explain the
slower growth and protracted wave in Madrid that begins in September 1918 and continues
through the winter and early spring of 1919.

Following the enduring second wave, the results provide clear evidence of a powerful
recrudescent wave that peaked at the very end of 1919 and appears in locations throughout
the world in the spring of 1920 [26, 65, 67, 68, 82, 133, 141, 198, 230, 256]. In Madrid,
the all cause excess rates of this echo wave are on par with that of the elongated second
wave, and all-cause and respiratory excess mortality rates higher than in the Spring 1918
wave. In other countries and cities where this wave has been documented, a slight shift in the
age-specific mortality often occurs with a return to high excess mortality among those above
65 [67, 68, 82, 198, 256]. As in the case of these estimates, the mortality of young adults
often drops slightly but remains persistently high and well above the pre-pandemic level.

In line with previous reviews and mortality estimates focusing on the impact within
Spain, during this fourth wave, infants and young children suffered particularly high rates
of mortality [94, 95, 120]. Because high rates of excess mortality exist in all age groups,
lack of acquired immunity from earlier waves may only explain the excess mortality among
infants and young children. However, this theory can also be debated. In the United States,
for example, births during the outbreak in fall 1918 dropped considerably, but returned to
normal levels several months after the outbreak before again dropping 9-10 months after
[54, 83]. Those children born in the 5-6 months following an outbreak would have been
in utero, and therefore possibly exposed to the virus via their mother, during the earlier
epidemic wave. Antigenic shift or mutation in the virus could also describe why the mortality
remains elevated across all ages, but currently, it remains difficult to ascertain exactly why
these mortality patterns changed during this strong wave.

Though not specifically analyzed here, one more all-cause and respiratory-related mor-
tality peak occurs in late December 1921, present in all age groups but predominately in
those older than 50 and younger than 5 [61]. Recrudescent waves can still occur years after
the initial and main pandemic waves, echoing the initial impact of an outbreak, such as in
the 2011 A/H1N1 epidemic recurrence in Mexico following the 2009 A/H1N1 pandemic
[62]. Their presence and impact should continue to be studied and quantified, as they may
significantly change the overall mortality impact of the influenza pandemic.

These estimates of pandemic mortality impact in Madrid can be compared to those derived
from a previous study that analyzed excess monthly all-cause and respiratory mortality in all
provinces of Spain during the herald spring wave and second fall/winter wave [64]. Here, the
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analysis finds higher overall excess rates in the Spring wave (19.4 v. 11.7 per 10,000) but
lower in the second wave (33.5 v. 55 per 10,000). This study also calculates lower excess
respiratory mortality in both the herald and protracted second waves. These differences may
be attributed to the fact that both studies employed different sources of mortality data and
the previous study analyzed pandemic impact in the entire province of Madrid while the
current study focuses on the capital city alone. Moreover, the spring wave may have largely
affected the city itself (which was analyzed) and the surrounding province (the subject of the
prior study) to a lesser degree, resulting in the differences in excess mortality estimates. This
could extend to the second wave; perhaps, those living in the city gained some immunity
from exposure to the first wave, while those without this exposure had no cross-protection.
Future work could aim to disentangle additional factors driving these differences.

Considering the pandemic events collectively known as the Spanish influenza, the case of
Madrid provides additional insights into how, in a large urban environment, individual waves
and their progression contributed to the overall mortality impact on the city. While other
analyses look at herald waves and question the impacts of acquired immunity from spring
to fall [24, 198], the force of the spring wave in Madrid, relative to the successive fall and
winter outbreaks, appears to indicate some type of protective effect, perhaps due to a small
amount of antigenic shift in the virus between the two waves. Currently, only strains from
the spring and fall waves of 1918 have been studied, meaning that the extent earlier and later
strains differed cannot be confirmed [134, 253, 258]. Yet, continued analyses of successive
waves using new data sources and innovative approaches should be undertaken to better
understand acquired immunity and the protection it may provide against successive outbreaks.
Using contemporary and historic demographic mortality and surveillance data of recent
and past epidemics, further insights into the ways early outbreaks affect the immunity and
transmission can affect the way public health officials respond to contain future outbreaks.
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Table 4.2 Age-Specific Excess Respiratory Mortality by Wave

Weekly Excess
Age Group Total Mortality Rate Standardized

Excess Deaths (Per 10,000) Mortality Risk

Spring Wave, 1918
Overall 613 8.17 2.59
[00,05) 253 38.81 2.62
[05,15) 19 1.31 3.11
[15,25) 49 3.13 4.43
[25,50) 114 4.25 2.89
[50,70) 100 9.98 2.27
[70, In f ) 77 48.72 3.15

Fall and Winter, 1918 -1919
Overall 1670 22.28 1.82
[00,05) 308 47.25 1.69
[05,15) 82 5.64 2.27
[15,25) 185 11.87 4.20
[25,50) 524 19.56 2.77
[50,70) 346 34.66 1.65
[70, In f ) 250 157.79 1.88

Winter Wave 1919-1920
Overall 1061 14.15 1.86
[00,05) 397 61.01 2.04
[05,15) 58 3.97 2.35
[15,25) 83 5.33 3.56
[25,50) 180 6.71 2.18
[50,70) 168 16.85 1.67
[70, In f ) 193 121.84 1.89





Chapter 5

Neighborhood variation in excess
mortality across three waves of influenza
in Madrid





Abstract

Responsible for 50-100 million deaths worldwide, the influenza pandemic events of 1918-
1920 continue to be studied. While recent studies examine the contribution of socioeconomic
status to influenza mortality, this analysis looks at three consecutive epidemic waves and adds
a geographic element to look at the intersection of structural and social characteristics within
neighborhoods. Two sources of data (the Madrid padrón from 1915 and death records from
1917-1922) are employed to help disentangle the roles neighborhood socioeconomic and
structural factors played in mortality during three epidemic waves of Spanish flu from May
1918 to February of 1919. Focusing on 91 neighborhoods in the city, this chapter explores the
role that the composition of each neighborhood (such as literacy level, average rental prices,
career make-up of inhabitants, density measures, etc.) may have played in the variation of
excess mortality (aggregate and wave-specific). Findings show significant differences in
model results by wave, underlining the potential importance of acquired immunity within a
population and the effect of greater medical resources in sustained epidemic waves.

Resumen

El capítulo cinco se centra en el análisis de la Madrid dentro de la propia ciudad de Madrid.
Aunque estudios recientes examinan la contribución de las características socioeconómicas
a la mortalidad por gripe, este trabajo analiza tres olas epidémicas consecutivas y agrega
un elemento geográfico para observar la intersección de las características estructurales y
sociales dentro de los barrios. Se emplean dos fuentes de datos (el padrón de habitantes
de Madrid de 1915 y los registros de defunciones de 1917-1922) para ayudar a descifrar
el papel que los factores socioeconómicos y estructurales del barrio desempeñaron en la
mortalidad durante las tres olas epidémicas de la gripe española acontecidas entre mayo de
1918 y febrero de 1919. Centrándose en 91 barrios de la ciudad, este capítulo explora el papel
que la composición de cada barrio (es decir el nivel de alfabetización, los precios medios de
alquiler, la composición profesional de los habitantes, las medidas de densidad, etc.) puede
haber desempeñado en la variación del exceso de mortalidad (agregada y específica de las
olas). Los resultados muestran diferencias significativas en los resultados de los modelos
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por ola, lo que subraya la importancia potencial de la inmunidad adquirida dentro de una
población y el efecto de mayores recursos médicos en olas epidémicas sostenidas.
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5.1 Background: Social variation in excess mortality dur-
ing influenza epidemics

Though it occurred more than 100 years ago, researchers continue to study the strong mortality
impact of the Spanish Influenza pandemic, particularly the variation in its manifestation
and severity throughout the world. Though studied extensively, questions remain about the
ways in which spatial, temporal, and social differences affect influenza mortality, particularly
during pandemics.

While climatic differences between tropical and northern countries play a role in seasonal
influenza activity [265], the high world-wide mortality of the 1918 Spanish flu pandemic
[141] indicates these climactic patterns did not play a major role in regional death outcome.
Typically characterized into three waves (Spring, Fall, and Winter), the extent to which each
wave existed and its severity differed by location, creating debate regarding transmission
mechanisms and the role acquired immunity in consecutive breakouts may have played in the
tempering of each successive wave. While a virus will spread more slowly in a population
with some immunity (i.e. the reproduction number Re f f ective in a partially-immune population
will be lower than R0), the mortality of those exposed to the flu may differ according to their
exposure and environmental surroundings [168]. Furthermore, mutation and evolution of
the virus may further play a role in the extent to which a person, once immune to an earlier
strain, is again susceptible to a circulating virus [168, 255].

Some prior studies focusing on entire cities (i.e. New York, Copenhagen, Mexico
City) examines transmission mechanisms and the role acquired immunity in consecutive
breakouts may have played in the tempering of each successive wave of Spanish Influenza
[24, 68, 134, 181, 198]. These mechanisms may also have been different between economic
classes [163]. However, without biological evidence, this link is difficult to prove. Other
research clearly points toward a social gradient in the transmission and strength of seasonal
influenza outbreaks and preventative vaccination campaigns in the US and across the world,
especially in elderly and minority populations [77, 187]. Yet the extent that these patterns
remain the same or differ during pandemic events is debated. For example, many of the
earlier analyses of the 1918 influenza pandemic led researchers to postulate that the viral
strain present in the 1918-1920 pandemic events was so virulent that aside from affecting all
age groups, the airborne nature of the disease outweighed the potential of any other social
variables to create class mortality differentials [78, 271, 277]. Several examples of these
studies, such as in a Great Britain Ministry of Health survey about fatality and social status
in 1920, can be found in a 2006 review [160, 271].
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In the age of technology, historical data sources can be digitized so that researchers can
analyze mortality dynamics in past pandemics to be better prepared for potential outbreaks
in the future One study using individual level data did find a class gradient to a fall wave of
influenza in Sweden, finding that farmers were least affected and low skilled laborers were
most susceptible to death in 1918 [38]. However, these results were less clear among females
and did not offer a strict gradient. Other recent research explores the correlation between
district level demographic and social levels and flu mortality during the 1918 pandemic,
yet these analyses generally focus on single waves. For example, a census tract analysis
found that during the strong fall wave in Chicago (the end of September to November
1918), influenza and related mortality was higher in places with greater illiteracy [123].
Neighborhood of residence and apartment size, as a proxy for household wealth, were found
to have had effects on influenza survival in Kristiana during 1918 [160]. Even outside the
realm of the 1918 pandemic, Reproduction Number has been found to be correlated with the
average number of people in a residence [275].

These small-area studies within cities often focus on one or two waves of pandemic
outbreak, but this can ignore the changing transmission mechanisms and role acquired
immunity plays in consecutive breakouts [134, 181, 198]. Few papers combine the strength
and timing of each wave with the impact of the socioeconomic status, as this requires
information about the individual’s or group’s income and/or occupation across more than
one wave in a location. Moreover, the recorded presence of herald waves and their measured
strength is limited to some large cities, and social data can be difficult to discern in an effected
place. A study of influenza prevalence in Bergen, Norway suggests a change in the effect of
social status (measured as apartment size), where those with smaller apartments experienced
higher morbidity in a herald wave and less in the fall wave [163]. The role compositional
factors played in mortality during each of the three influenza waves in Madrid may have
changed according to changing immunity in the population and virus makeup.

5.1.1 Influenza in Madrid

The progression and mortality impact of the Spanish influenza in Madrid has been detailed
in previous chapters. Four waves hit the city between May 1918 and February 1920, causing
thousands of excess deaths in the population. Thus far in this thesis, the age-specific mortality
pattern for each wave has been detailed, as well as the role consecutive waves may have
played in tempering mortality in later waves. For example, the strength of the herald wave
is postulated to have minimized the mortality of the succeeding fall wave, which, though
protracted with three distinct peaks in October, December, and February, was relatively mild
compared to the outbreaks during this time in Europe and North America [95, 218]. The less
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studied fourth wave of the pandemic (sometimes referred to an an “echo" wave) produced the
largest mortality peak of the period in Madrid from December 1919 to January 1920 [94].

During these outbreaks, age-specific excess mortality also follows a different pattern;
with the exception of the fall wave (which experienced a small mortality bump), young adult
absolute excess remains low. Nonetheless, due to low baseline rates among these adults,
the highest relative excess rates are observed in those between 5 and 70. Prior research
has likewise found that those districts with the highest mortality rates in the years before
the influenza outbreaks similarly experienced the highest levels of excess mortality during
epidemic [112, 113]. Was it strictly the age-structure in these areas that contributed to
heightened excess? What other factors may have played a role in mortality risk?

Madrid, in the middle of a large period of growth during a stage of urbanization in Spain,
also had a large degree of social and economic district variation (for a summary, see [23]).
The city was officially organized into 100 neighborhoods, contained in 10 districts, in various
stages of development and urbanization, with high levels of inequality and distinct population
compositions. All this may have played a role in the spread of influenza and spatial mortality
differences [160, 186]. Given the role of environment, exposure, and social factors associated
with influenza mortality, as well as the wave and age specific patterns of influenza in Madrid,
this chapter seeks to understand and disentangle these relationships at the neighborhood level.
Here, mortality during the outbreaks is examined to determine how the type of buildings,
apartments, and population in each neighborhood related to varied mortality levels, and if
these factors changed by wave.

5.2 Data and methods

5.2.1 Madrid civil register of deaths

The “domicilio" (address) variable from the Civil Register records on deaths in Madrid
is used to match each record to the city geography and determine the excess mortality by
district and neighborhood (“barrio"). In addition to address, each record contains a death date,
demographic and some contain limited socio-economic information, such as occupation. This
unique, individual-level data allows for analyses to demonstrate the flow and characteristics
of each wave across districts, as well as the changes in death by age group and specific cause
within and between each location.

During the influenza epidemic, it is likely many people died at another location than
where they were living. Unfortunately, many death certificates are coded with the address of
death rather than the deceased’s address. Thus, it is also likely that due to the epidemic, many
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neighborhoods with large hospitals or first aid centers experienced inflated excess mortality,
due to higher numbers of deaths in these medical centers from those actually living outside
the neighborhood. In order to eliminate this confounding effect in the results, this analysis
has been conducted with two sets of data; one included all deaths, as coded on the death
certificate, and the other included only deaths that are believed to have occurred outside of a
medical institution. To create the non-first aid subset, address information on all institutions
in Madrid, not limited to hospitals, first aid clinics, other medical centers was collected. From
this list of 324 locations, additional descriptive data provided information that led to the
decision that 140 of these institutions that may have experienced a disproportionate increase
in mortality during the epidemic waves, leading to falsely inflated excess mortality in the
neighborhood. It was important to understand which institutions may have led to artificially
increased neighborhood mortality, as this may have confounded the results concerning the
relationship between neighborhood mortality and the structure and population that lived there.
All deaths whose addresses matched one of these 140 institutions were excluded from the
analysis.

Initially, the data consisted of 103,323 typed death records between 1917-1922, but when
ascribing a neighborhood to each record, several additional problems became apparent, both
due to missing values on the records and current data limitations. Some death records do not
have an address written from which to determine a neighborhood, and a few have no death
date written. Using the official 1900 cadastral map of Madrid [126] to code addresses into
neighborhoods created additional problems due to the large growth of the city between the
year of the digitized cadastre, 1900, and the period of observation. A number of death records
have a written address also not listed in an additional 1915 database. This also hindered the
ability to include several deaths on the outskirts in all years of the analysis.

In total, due to the limitations of the data (roughly equally distributed), about 2500 deaths
are not coded to a neighborhood each year. Other issues with some missing data reveal
inaccuracies in some neighborhoods during the time period of study. Thus, the following
analysis uses 91 of the 100 total neighborhoods in Madrid at the time, which are equally
distributed throughout the geographic landscape of the city and maintain a high accuracy of
death registration throughout the baseline period of 1917 and during each outbreak. However,
the accuracy level in coding deaths to a district is quite high, due to the structure of the
registration system at the time. Before the results of the primary neighborhood analysis are
presented below, a series of analyses at the district level were preformed in order to provide
some larger-scale background to the neighborhood results. These are available in appendix
D.
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As mentioned, in order to verify the role hospital deaths may have inflated excess mortality
in some neighborhoods, the analysis is limited to only deaths for which the address is not at
one of 140 identified medical centers. From these records, neighborhood absolute and relative
excess mortality rates are calculated for all epidemic periods combined, as well as individual
waves from May to August 1918, September 1918 to April 1919, and November 1919 to
February 1920. The level of excess mortality is equal to the difference between observed
deaths during the periods of each wave in 1917 and the number of deaths during each waves.
Following the elimination of these medical center deaths and those in neighborhoods with
incompletely coded deaths during the baseline or outbreak period, 86,704 deaths between
1917 and 1922 remain from which the following analysis is completed. 1 Thus, it is likely
that in general, the estimates under-report excess mortality in neighborhoods, because deaths
removed from the analysis due to there occurrence at a hospital are not included as a death in
another neighborhood, likely that of where the deceased individual lived. The hospital deaths
that were removed from the analysis were not reallocated to other neighborhoods (that is, put
back into the analysis via a probabilistic distribution), as there was difficulty in determining
exactly how these deaths could be divided into neighborhoods to an acceptable degree of
precision. Thus, the decision was made to use the estimates of calculated excess mortality
without hospital death reallocation under the assumption that the results would overall be
more reliable, if conservative.

5.2.2 1915 Padrón

The 1915 padrón of Madrid provides information about the constructed composition of
the city, such as the number and type of buildings, rental prices, and measures of density.
The padrón also provides limited data about the social composition of the districts and
neighborhoods, including the proportion of literate population and tabulations of occupations.
While the level of detail in the padrón provides a fascinating glimpse into the city composition
during this time, certain elements must be combined and altered in order to create variables
that bring meaning to the analysis. Thus, for the neighborhood-level analysis, several changes
were implemented.

The padrón provides neighborhood-level information on building use by total number of
units, including types of commercial space and size and building position of apartments in the
city. Generally speaking, houses located in the basement and the highest floors were smaller

1As visible in the Figure 5.1, which shows raw weekly mortality rates from 1917-1922 by neighborhood
in the city, some neighborhoods with hospitals continue to experience extreme levels of mortality even in the
absence of these deaths, such as the neighborhood of Doctor Forquet, slightly south of the city center.2 This
particular neighborhood is also home to an asylum and several orphanages, which had underlying rates of high
mortality.
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and of lower quality, while those apartments on the first and second floors were occupied by
those who could afford higher rental prices. By aggregating housing generally occupied by
those with the lowest income and social position as a percentage of total housing units in the
neighborhood, a single variable contains information on the amount of housing generally
occupied by lower-income renters. In conjunction with this supplied housing data, a single
variable calculating the weighted average of all neighborhood housing unit prices from a
14-category table with counts of apartment rental prices in each neighborhood creates a single
variable to describe rental prices from the raw data. In addition, all types of commercial units
are grouped into a “commercial" variable that denotes the total amount of private businesses
in the neighborhood as a percentage of all types of building units.

Further manipulation the raw padrón data led to the creation of variables describing the
social interaction and stratification in each neighborhood with a HISCAM score [150]. After
matching a listing of occupations in the neighborhoods to HISCO codes, they were then linked
to HISCAM codes using both the male-only universal scale U2 (using only the listed male
occupations) and the later period scale of both men and women L (using all occupations in the
neighborhood). After creating an average HISCAM score for each neighborhood through a
weighted average of the count of each code in the neighborhood, the final neighborhood-level
variable equals the average of the aggregate HISCAM scores. Two HISCAM coding schemes
were used for several reasons, not limited to: a) the HISCAM numbers were used from data
not found in southern European countries, b) while most married women did not work, many
single females were employed, c) while the results showed that the two schemes were highly
correlated, there were some differences in neighborhoods between the two schemes’ scores
[150].

Because age-specific mortality follows a specific pattern in the city of Madrid [218], it
is necessary to control for differences in population structure within neighborhoods. Thus,
the proportion of the population in each neighborhood that falls within the age range of 5
to 75 is also calculated from a larger group of age-specific numbers. The broader 5 to 75
group was chosen as during each of the waves, this group had the lowest rates of absolute
and highest rates of relative excess mortality.

Figure 5.2 shows the total and wave-specific standardized mortality ratio for each of
the 91 included neighborhoods in the analysis, while summary statistics of other included
variables are found in table 5.1. Further descriptive visuals in the Appendix D highlight the
relationship between the explanatory variables and excess mortality (absolute and relative).
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Fig. 5.1 Weekly mortality rates with (right) and without (left) hospital and medical center
deaths during a peak-outbreak week during the Herald wave in 1918.

Fig. 5.2 Standardized Mortality Ratio by neighborhood, all-cause deaths
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Table 5.1 Selected Descriptive Statistics

Mean Std. Dev. Min Max
Total Excess 0.30 0.26 -0.20 1.12
Spring Excess 0.73 0.67 -0.40 3.00
Fall Excess 0.14 0.24 -0.34 0.93
Winter Excess 0.52 0.43 -0.16 2.37
Literacy 0.82 0.07 0.65 0.95
HISCAM 51.68 3.67 44.68 58.32
Poor Housing 0.18 0.14 0.06 0.70
People per Building 49.84 17.26 11.36 103.64
Average Rent 52.98 37.97 9.68 206.13
Commercial 0.10 0.04 0.02 0.21
Population 5 to 75 0.91 0.02 0.86 0.95

Checking for spatial autocorrelation within the city

The administrative neighborhoods of the city are clearly defined, but the extent to which each
neighborhood can be considered an independent observation must be determined. That is to
say, the proximity of neighborhoods to each other may play a role in the variables observed in
each neighborhood, leading to spatial autocorrelation in the data and model issues [97, 292].
It should also be noted that many of the explanatory variables used in the the neighborhood
analysis are highly spatially correlated. Thus, after computing the standard mortality ratio
for total and each wave in all neighborhoods, Moran’s I for the absolute and relative mortality
in each neighborhood was computed, finding no evidence of spatial autocorrelation. Further
analysis of the residuals and other measures found also found a lack of spatial dependence.

5.2.3 Modeling relationship between neighborhood composition and
excess mortality

While the strength of an outbreak my be quantified in terms of relative and absolute excess
mortality rates, modeling the impact of factors on disease-related mortality requires a slightly
modified technique. The focus of this analysis is the examination of the probability of
experiencing the observed number of cases in a neighborhood based on the expected (baseline)
amount of cases. More than absolute and relative excess mortality values, this takes into
account the underlying mortality distribution of disease and population size [70, 121]. For
example, variations in population size across neighborhoods mean that a single death in a
lower populated neighborhood raises the mortality rate more than a single extra death in
a larger neighborhood. In this case, the number of observed cases (dependent variable) is
offset by the log of the total number of expected deaths in a count-data regression model



5.3 Results: excess mortality variation by neighborhood composition 107

[122]. The coefficients can be roughly interpreted as the factor of change to the incidence
rate of the disease.

An assumption of Poisson models is that the mean and variance within the distribution
are equal to each other. Following tests, this condition of the Poisson distribution is clearly
violated in the data, as it is very over-dispersed. Ignoring this violation will result in small
standard errors and overestimated significance of the model. A negative binomial regression
model can account for this violation, producing more precise results due to the inclusion of a
theta term θ that accounts for the unobserved heterogeneity in the data and over-dispersion
[45]. More specifically, the negative binomial and Poisson regressions differ in that the mean
and variance estimation in a Poisson regression are:

E[Yi|xi] = λi and Var[Yi|xi] = λi

However, the negative binomial model allows for over dispersion in the data by:

E[Yi|xi,εi] = e(α+βx′i+εi) = hiλi

The hi parameter has an assumed gamma distribution with a mean equal to 1 and a variance
equal to 1

θ
[124]. Estimation of the parameters is completed using the MASS package of R,

which fits the additional hi parameter through maximum likelihood estimation and provides
the θ value of hi’s distribution [282]. As they are nested models, the comparison of the
Poisson and negative binomial models is done through a likelihood ratio test. Poisson and
negative binomial regressions were compared for all models.

5.3 Results: excess mortality variation by neighborhood
composition

Results of negative-binomial regressions for total and wave-specific mortality with all vari-
ables are presented in table 5.2. The coefficients are presented as exponents for ease in
interpretation; see figure 5.3 for a plot of the standardized coefficients of the presented
models. In all models, the data fit the negative-binomial distribution with parameter θ

significantly better than the Poisson distribution. The models presented in table 5.2 each
contain all of the descriptive variables outlined above; addition and deletion of variables in
other models does not change the significance of any of the others.

Considering total mortality across all epidemic periods, a single variable can be said
to have a strong relationship with excess mortality: the amount of “lower status" housing.
As the percentage of small basement and upper level/attic apartments in a neighborhood
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increases, the rate of excess mortality across all waves also increases. This relationship holds
and strengthens in the fall wave, where the magnitude of this variable doubles from overall
mortality. Not including mortality from previous waves, this housing variable has a weak
relationship in the winter wave.

In each model for the fall and winter wave, the amount of excess mortality in the
immediately preceding wave is highly correlated with the level of excess experienced in
the same neighborhood during the studied wave. In the fall, the coefficient (exponentiated,
almost 1) is nearly proportional to the amount of spring mortality, meaning the level of
excess is similar from one way to the next. However, in the winter wave, the expected excess
mortality is more than doubled from the fall, likely demonstrative of the magnitude of the
winter wave. This indicates that despite the other variables in the model, neighborhoods
with high mortality in one wave generally also had high levels of mortality (relative to other
neighborhoods) in the other waves.

While the model focusing only on the herald wave mortality finds no relationship between
any of the variables and excess mortality, some significant relationships do exist in the
subsequent waves, most notably in the fall. In addition to the quality of housing, the
proportional amount of those older than 5 and less than 75, as well as the amount of
commercial property in the neighborhood increase the amount of overall wave mortality in
the fall. This relationship strengthens with the addition of the amount of excess mortality
experienced in the spring herald wave. Conversely, the significance of the proportion of
“poor" housing and literacy during the initial winter wave model is tempered by the addition
of both spring and fall excess. In the winter model which only includes excess mortality
for the immediately preceding fall wave, the positive relationship between the percentage
businesses and excess increases in strength (but with smaller magnitude) from the initial
model.

However, there are some additional inferences that can be made from the results of model
fit to encourage continued work on the subject. For example, while no model appears to
aptly describe the relationship between the descriptive variables and the excess mortality, one
can hypothesize that characteristics of the neighborhood population played different roles
in the individual waves. Both the first and last model, analyzing the SMR of the total and
last winter 1919-1920 wave, fits best when looking contextually at the built environment and
total population. Both find that the lower density of built area per person in neighborhoods
plays a large role in higher influenza-related relative mortality. While this variable remains
slightly significant in models for the protracted fall-winter 1918-1919 waves (as well as the
total population size), the model fits more poorly. In both this and the spring wave, results
find that demographic indicators of population size and age composition better fit a model
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Fig. 5.3 Plot of standardized regression coefficients for presented models



Table 5.2 Regression Results for All Models

Models with all variables (exponentiated coefficients, original standard errors)

Dependent variable:

Total Observed Deaths Spring Observed Deaths Fall Observed Deaths Winter Observed Deaths

(1) (2) (3) (4) (5) (6) (7)

Poor_Housing 1.658∗ 0.664 2.143∗∗ 2.288∗∗∗ 1.697
′

0.783 0.806
(0.224) (0.444) (0.238) (0.229) (0.312) (0.241) (0.245)

Literacy 0.977 0.396 1.184 1.372 1.091∗∗ 0.988 1.017
(0.378) (0.744) (0.399) (0.384) (0.522) (0.382) (0.385)

HISCAM 0.997 0.996 0.995 0.995 0.998 1.002 1.002
(0.006) (0.012) (0.006) (0.006) (0.008) (0.006) (0.006)

People_Building 1.000 1.002 1.001 1.001 1.000 0.999 0.999
(0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002)

Average_Rent 1.000 1.001 1.000 1.000 1.000 1.000 1.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Commercial 3.473 0.157 5.243
′

7.489∗ 11.746∗ 2.041∗∗ 2.277
(0.839) (1.627) (0.869) (0.838) (1.138) (0.850) (0.862)

Population_5_75 5.684 4.931 13.324
′

12.073
′

1.055 0.162 0.162
(1.443) (2.835) (1.517) (1.453) (1.986) (1.474) (1.471)

Spring_Excess 1.091∗∗ 1.022
(0.030) (0.031)

Fall_Excess 2.174∗∗∗ 2.138∗∗∗

(0.088) (0.091)

Constant 0.249 1.244 0.086 0.075 1.044 6.584 6.189
(1.212) (2.375) (1.270) (1.216) (1.663) (1.240) (1.241)

Observations 91 91 91 91 91 91 91
Log Likelihood −463.460 −553.871 −783.259 −779.254 −702.659 −673.766 −673.521
θ 34.886 (5.962) 7.909 (1.191) 26.916 (3.982) 29.376 (4.351) 15.757 (2.331) 29.659 (4.441) 29.819 (4.465)
Akaike Inf. Crit. 942.919 1,123.742 1,582.518 1,576.509 1,421.319 1,365.531 1,367.042

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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describing the relative excess. Despite this interesting finding regarding model fit, one must
remember that despite this, there is no real relationship between any of the variables and the
mortality in the spring herald wave.

Despite other recent findings in Chicago [123], literacy is not present in any best-fit
model as an indicator (significantly or not) of mortality differences between baseline and
epidemic mortality.

5.4 Discussion: understanding social dimension of neigh-
borhood and individual level mortality risk during epi-
demics

The relationship between the dependent variables and regression model differ in each wave.
While certainly, much variation in excess mortality is not explained via these models, the
results may be indicative of varying levels of immunity throughout the population acquired
from previous waves, especially provided that the level of mortality in each preceding
wave has the strongest relationship to the observed excess mortality in the wave of interest.
However, the strength of the preceding wave as an indication of current wave excess mortality
may also simply indicate only that those neighborhoods with high excess mortality during the
outbreaks continued to have high excess mortality when the epidemic returned. To this effect,
the relationship between excess mortality during the spring wave and the protracted fall wave
is strong, but nearly proportional. Also, this relationship is always positive, meaning that
the the higher the excess mortality in the preceding wave, the studied wave’s mortality is
predicted to also be higher.

In the Madrid-specific case, the idea that higher neighborhood mortality in one wave is
associated with higher mortality in succeeding waves is not unexpected. The nature of the
model used in this analysis takes into account underlying mortality in each neighborhood
through the inclusion of an offset variable. Thus, it is difficult to directly associate high mor-
tality neighborhoods before the epidemic with those neighborhoods with the highest excess.
Nonetheless, this previously found association (see [112, 113]) provides support to these
findings regarding successive waves of high excess in neighborhoods with characteristically
high mortality.

In the spring, there is no significant relationship between the variables and the amount of
neighborhood excess mortality. While other cities have reported strong, but not particularly
lethal herald waves, the initial outbreak in May 1918 produced high levels of excess mortality,
the wave’s peak being much higher than any observed week in the subsequent wave from fall
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1918 through winter 1919. Perhaps the virulence and transmission speed of this particular
wave was such that it did affect all parts of the city with equal ferocity. This would support
initial post-outbreak research that argued the flu killed indiscriminatingly [271, 277].

In terms of mortality impact, the protracted fall wave, compared to other parts of Spain
and the world, was muted in Madrid, continuing with three small peaks dispersed between
September 1918 and April 1919. It is also the wave were a slight absolute excess mortality
bump does occur in young adults, as has been found in many populations throughout
the world. Here, the strongest relationships can be found between the composition of a
neighborhood and its mortality experience in preceding waves. As has been indicated in
Chicago and Kristiana, areas and individuals with lower social status may have experienced a
heightened mortality risk [123, 160]. Here, an indication of this effect may be found through
the amount and type of housing found in a neighborhood, but this is not observed in other
variables that may have described the social makeup of the neighborhood, such as the mean
HISCAM score, the average rental price, and the percentage of population that could both
read and write.

Yet, we should note that the results presented here, as in much of the other literature,
focus on a single urban area, in which a large population of all classes lived within several
kilometers of each other. However, other analyses considering larger geographical units
(even adjusted for differing geographies within these units) have some times found, both at
the level of the individual or larger administrative unit, differences between social status or
baseline mortality and excess mortality harder to disentangle[38, 64]. The extent to which,
in these larger areas versus single cities, transmission dynamics and previous exposure may
have affected mortality during the outbreaks may also play a role in the observed results.

The last wave of pandemic influenza struck with a vengeance between December 1919
and January 1920. In this wave, there is also little found social impact on mortality, beyond
that of the increased mortality in neighborhoods with higher numbers of stores and businesses
as a percentage of total building units. The interpretation of this may be vague, but it could
be a result of transmission dynamics in neighborhoods where people traveled to for work or
to run errands.

While the results do not directly contradict recent findings, they also are not able to
provide strong further evidence of a social dimension to influenza mortality during the
Spanish flu outbreaks. Certainly, the historical nature of and available data for the analysis
limit the extent to which one can examine the relationship. Yet as the overall mortality
experience of the flu differed throughout the world, the extent to which social status within
a single urban environment influenced mortality also likely varied. This analysis provides
another example from which researchers can advance research to disentangle this relationship



5.4 Discussion: understanding social dimension of neighborhood and individual level
mortality risk during epidemics 113

between environment, social and material resources, and health. The continued effort to
understand this relationship can lead to contemporary solutions in future influenza epidemics.





Chapter 6

Scotland during the Spanish flu: new
perspectives on age-specific mortality
changes





Abstract

Newly digitized sources with detailed death information provide researchers the opportu-
nity to examine conundrums about past pandemics, including the 1918 Spanish influenza
outbreaks, such as the unique age-specific mortality curve in which young adults died at
abnormally high rates, particularly to respiratory causes. Here, mortality records for the
entire country of Scotland are used to look at all cause age-specific excess during four distinct
epidemic waves between 1918 and 1922. After introducing the concept of and creating “sea-
sonal death tables," changes in wave-specific measures of life expectancy (e0) and lifespan
inequality (e†) are decomposed by individual wave groups. The results show large changes in
these aggregate measures between pre- and during- wave periods driven by increased young
adult mortality and highlight how underlying frailty in the population, due to such diseases
as tuberculosis, led to a harvesting effect in the strong fall wave. The discussion focuses on
the necessity of targeting susceptible groups in vaccination and other prevention programs
before and during future pandemics.

Resumen

El capítulo seis trata de mostrar una comparativa internacional. Las fuentes recientemente
digitalizadas con información detallada sobre muertes proporcionan a los investigadores
la oportunidad de examinar los enigmas sobre pandemias pasadas. Aquí, los registros de
mortalidad de toda Escocia se utilizan para examinar el exceso de mortalidad por edad
durante cuatro olas epidémicas distintas entre 1918 y 1922, examinando el alcance de la
curva de mortalidad por edad en la que los adultos jóvenes murieron a tasas anormalmente
altas Después de introducir el concepto y crear "tablas de mortalidad estacional", los cambios
en las medidas específicas de la esperanza de vida (e0) y la desigualdad en la esperanza de
vida (edagger) se descomponen por grupos de olas individuales. Los resultados muestran
grandes cambios en estas medidas agregadas entre los períodos previos y durante la ola,
impulsados por el aumento de la mortalidad de los adultos jóvenes, y ponen de relieve
cómo la fragilidad subyacente de la población, debida a enfermedades como la tuberculosis,
condujo a un exceso de mortalidad en la fuerte ola de otoño. El debate se centra en la
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necesidad de dirigirse a los grupos susceptibles en los programas de vacunación y otros
programas de prevención, antes y durante pandemias futuras.
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6.1 Background: Spanish flu in Scotland

6.1.1 Timing in the country

Former studies on the global path of the outbreaks put the arrival of a herald wave flu in
Britain in June of 1918 [140, 209]. Though in this herald wave, the virus in Britain is thought
to have been brought via an incoming ship in a port city, its exact origin is unknown. In
Scotland, this small wave peaked in July 1918, but did not reach the entire country. In fact,
these initial outbreaks went largely unnoticed in much of the country and have not been
studied statistically. Monthly data indicates that as a whole, the fall wave occurred later that
year between October and January and was responsible for the highest death counts during
the outbreaks. Scotland also experienced a lethal winter wave stretching from late January
through April 1919 [140]. An echo wave gripped the country in December 1921 and January
1922, but it seems little or no research has been dedicated to this outbreak, nor has its impact
been quantified.

Scotland’s fall and winter experience differed from that of England and Wales. These
two countries combined had a much higher relative fall peak than in the subsequent winter
wave. Nearly three times as many deaths occurred in the hardest hit fall month, November
1918, than in March, the peak month of the 1919 winter wave [140].

Within the “principal towns" of Scotland, the peak week of each wave also varied, with
the largest and most well connected towns experiencing the highest absolute weekly rates,
nearly all of which occurred in the third winter wave. In prior literature, no focus is given to
the geographic regions primarily affected by the spring wave, which creates the question, if
these transport hubs had higher mortality in the third wave, did the spring wave hit only these
cities, and did the impact of this exposure create some immunity in the population during the
fall wave?

6.1.2 Age-specific mortality patterns in Scotland and beyond

When comparing seasonal and pandemic influenza, young adults often face increased mortal-
ity during epidemics relative to seasonal flu, when infants, young children, and elderly are
disproportionately affected. Many studies have shown high young adult age peaks during
the Spanish Influenza pandemic, though this pattern is not universal (see section 1.4.3 and
chapter 4). Given the circulation of both the H1N1 strain associated with the pandemic
and other strains of seasonal influenza viruses circulating before, concurrently, and after the
outbreaks, additional research has looked at the change in age specific mortality patterns in
an attempt to identify the appearance of the virus in a population [198, 255]. Echo waves are



120 Scotland during the Spanish flu: new perspectives on age-specific mortality changes

known to have occurred in many locations throughout the world. Generally, excess mortality
during these re-occurrences returns to the traditional seasonal pattern, particularly affecting
0-1 year olds, who would not have been alive during the initial waves.

Using a newly available source of data, individual records of all registered civilian
deaths in Scotland from 1916 to 1923, this paper re-examines the mortality experience of
Scotland during four distinct waves of epidemic flu between 1918 and 1922. The paper first
quantifies excess mortality in several age groups for each wave to add to the research on
age-specific mortality excess. Then, traditional demographic methods are used to create
and decompose “seasonal" death tables to further understand the ways in which changes in
age-specific mortality during the individual waves contributed to population-level changes in
life expectancy and lifespan disparity.

6.2 Excess mortality calculation

6.2.1 Data: Digitising Scotland project

The Digitising Scotland project, many years in the making, is a large-scale collaborative
effort to digitize all birth, marriage, and death records in Scotland between 1856 and 1973
for analysis [91]. As the data keying and verification process is still on-going, the project
presented in part here is the first to be able to take advantage of these records for research.
Individual registered records of death between 1916 and 1923 include information such
as when and where the person died (and in which district the death was registered), sex,
age at death, self and parents occupation information, and cause of death.1 A sample of a
death record, according to the form used between 1861 and 1965 is located in figure 6.1.
Of the total 564,230 records in the dataset, 564,008 occur between 1916 and 1923, and a
total of 1821 of these (0.29%) do not contain information about the age at death. Thus, for
all-cause age specific analyses, a total of 562,356 records are used to make the estimations.
Additionally, total population numbers, used to determine death rates, come from annual
statistics published by the National Records of Scotland.

Age at death distribution (by some causes)

Before estimating excess deaths, simple count frequencies by wave provide an idea of the
magnitude of each wave without reference to baseline mortality (see Table 6.1).

1Civilian deaths; those who died away from Scotland in WWI are not present in these records. Nearly
always, the district where the individual dies is the same as that in which the death is registered.
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Fig. 6.1 Sample Scottish death record from 1861 with names redacted. Source: National
Records of Scotland [197].
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Table 6.1 Total Deaths During Each Wave

Sex Wave Deaths Mortality Rate per 10,000
Male Herald 30406 131
Female Herald 29614 118
Male Fall 52109 225
Female Fall 54526 218
Male Winter 54631 236
Female Winter 56333 224

Of all waves, the winter outbreak has the highest number of deaths, especially considering
the youngest and older ages. However, the fall outbreak contributes the most total deaths to
each age between 5 and 40. Unsurprisingly, the spring herald wave and 1922-23 account for
the fewest deaths of the epidemic waves. However, considering that these crude death rates
are not indicative of the baseline mortality at the time, the total excess due to each wave must
by calculated in consideration of expected mortality absent the influenza outbreaks.

6.2.2 Methods: baseline and excess mortality estimates

In order to understand the mortality impact of Spanish flu on the total population and
several subgroups, the underlying mortality level must first be quantified. Unlike the unique
mortality patterns in Madrid (see chapter 3), the seasonal baseline in Scotland could be easily
parameterized with a simple Serfling regression. As noted in chapter 3, the equation takes into
account seasonal (α) and time (β ) trends in mortality, where Mt is the mortality rate at time
t: Mt = α ∗ sin( 2π

52.17∗t )+α ∗ cos( 2π

52.17∗t )+β ∗ t Separate models were estimated for each
age group and by sex for all causes of death. From each model, the 95% confidence interval
of the baseline is calculated, from which waves are determined as periods with sustained
mortality above the upper bound. For each wave, absolute excess mortality is quantified as
the difference between the observed rate and the baseline mortality estimate. Relative excess
mortality equals the observed rate divided by the expected rate of the baseline.

6.2.3 Results: excess mortality calculations

Sex differences in mortality

281,124 deaths are women, and 283,024 are to men. As noted, mortality has been found to
peak at around age 28, specifically among men. This general finding is also found for men in
the data, but more interestingly, a slightly younger mortality peak in women occurs at age 26.
At ages less than 35, death counts for women are much higher, however this might be easily
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explained by the large numbers of men fighting in World War I at the time. Their physical
absence in Scotland and the fact that they are not included in the death records is the likely
reason so many more deaths occur among women during the epidemic waves. While the
number of female deaths continues to remain higher than men in the years following the
conclusion of the war; this could also remain as a relic of the smaller population of men (due
to large casualties of the cohorts that fought in the war).

The largest differences between male and female excess occur in the echo wave, when
men, especially those in late youth and middle age, have much lower excess rates than
women. This may be an artifact of the data, which may reflect the return of soldiers and
therefore increase the population denominator, or perhaps, the results show an effect of
immunity. It is plausible to imagine that these soldiers were exposed to different strains of
the virus while away, making them less susceptible to death in this fall wave.

Age-specific mortality time series

Figure 6.2 reveals three distinct waves of Spanish flu between 1918 and 1919 as well as one
echo wave between 1921 and 22. The herald wave in July 1918 is mild, quite small, and not
universally experienced; the mortality associated with this first wave is primarily observed
between the ages of 10 and 50. Despite the low overall excess in this wave, the age-specific
structure of mortality does strongly suggest that the mortality spike is a result of a small
outbreak of influenza associated with the fall pandemics. Other research has shown that the
first small outbreaks in the spring contain mortality peaks at younger ages, more consistent
with the characteristic fall age-specific mortality pattern than in the previous year’s seasonal
influenza mortality [198].

Additionally, two clearly defined waves in the fall of 1918 and winter 1919 account for
the majority of mortality, with two large, distinct peaks in all ages except for those above 70.
These waves also exhibit differing mortality patterns by age; up to age 40, the peak week
of absolute mortality occurs in the fall wave, but beginning with the 40 to 50 age group,
the apex of weekly excess mortality occurs in the winter wave. An echo wave in 1921-22
produces varying amounts of mortality excess according to age group, but primarily, the
youngest (those under 5) and older adults are affected.
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Fig. 6.2 The red line shows the real weekly mortality rates from 1916-1923, while the black line displays the
predicted mortality values based on a simple Serfling regression.

Age-specific excess mortality

Table 6.2 shows excess mortality estimates by age-group and wave, including the total excess
amount, for both sexes. Figure 6.3 graphically depicts these numerical estimates. Sex-specific
estimates can be found in Appendix E. Total excess mortality of all four waves in Scotland is
quantified as 26,685 excess all-cause deaths (excess rate of 55 per 10,000).
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Fig. 6.3 Age-specific Absolute and Relative Excess Mortality by Wave, Scotland 1918-1922

The virulent fall wave witnessed across the world also produced the most excess deaths
in the whole of Scotland, followed by the subsequent winter wave. The spring herald wave
produced the smallest amount of total excess mortality, despite occurring during the period
with the lowest baseline rates, and the echo wave produced slightly less than half the excess
deaths as the strongest (fall) wave.

Throughout Scotland, wave and age specific mortality reveals the familiar “w” shaped
excess mortality pattern in the two largest waves of influenza, fall 1918 and winter 1919. The
highest rates of excess are present in the fall wave, when those 25 to 30 had more than 4.5
times the expected levels of mortality. As seen in the weekly time series of mortality rates,
the herald wave in July of 1918 produced small levels of excess mortality, especially at the
youngest and oldest ages, but the excess mortality hump in young adults is consistent with the
subsequent fall and winter waves. Notably, in the echo wave, the pattern of absolute excess
mortality returns to a pattern relatively consistent with that of seasonal flu; the youngest and
oldest age group experience the highest rates of excess mortality, while this level remains
low for children and young adults.

Sex- and age-specific excess mortality

Figure 6.4 shows absolute and relative excess mortality by wave for each sex for ten age
groups. Given that the youngest children and elderly have the highest baseline mortality and
the patterns of absolute excess, it is no surprise that they exhibit the lowest levels of relative



126 Scotland during the Spanish flu: new perspectives on age-specific mortality changes

mortality in all waves. Moreover, they have the highest Standardized Mortality Ratio (SMR)
in the echo wave, more than that in any of the preceding waves of Spanish flu. With one
exception, the highest levels of relative excess are found among 25 to 30 year olds, similar to
other places finding a mortality peak around age 28 [110, 284]. This relative rate implies that
during the fall wave, nearly 5 times as many people died than in the same period given the
calculated baseline levels of mortality. These patterns are generally consistent across sexes.
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Fig. 6.4 Age-specific Absolute and Relative Excess Mortality by Wave and Sex, Scotland
1918-1922.



6.3 Seasonal death tables and their decomposition 127

It is worth noting that while the winter wave in 1919 and echo wave in 1921-22 produced
higher gross weekly rates of mortality, due to higher baseline rates during this time of year
(due to seasonality in mortality) and smaller time-frame of outbreak (particularly in the echo
wave), the total levels of excess (both absolute and relative) are smaller than those observed
in the fall.

6.3 Seasonal Death Tables2

As is well documented, mortality patterns generally change throughout the year, and in the
context of the Spanish flu, the age-specific mortality patterns shifted before, during, and
after the pandemic. A simple visualization of the density of age at death in those over 5
(Figure 6.5) reveals large changes in the age structure of death in Scotland between 1916 and
1923, particularly during 1918 and 1919, the two years in which the largest epidemic waves
hit. Moreover, the density of deaths by age in each wave differs, demonstrating changing
age-specific mortality impact during the first, second, third, and echo waves (Figure 6.6) and
the strain of virus mutates and much of the population acquires some form of immunity.

2A conscious decision has been made to use the term “death table" rather than “life table." This is largely
due to two reasons. First, the seasonal nature of the table, in that it does not accurately capture the entire yearly
mortality experience of the population. Secondly, their creation and use is to examine large increases in deaths
during the pandemic rather than focusing on years of life lived.
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Thus, in order to understand and quantify the mortality impact of a single wave of
influenza, the underlying expected mortality during the time of the year at which the outbreak
occurs must be considered in conjunction with the wave.

By tabulating the number of deaths and population exposure by age during the period of
each wave during the years before, during, and after the outbreaks (see figure 6.7), so-called
“seasonal death tables” can summarize the mortality schedule of a particular time of year
and provide detailed information about its changes during the period of a specific epidemic
wave (for example, see figure 6.8). Once in the lifetable framework, subsequent calculations
and decomposition techniques can reveal at which specific ages and by how much did the
mortality structure change and contribute to the aggregate change in mortality schedule.
These seasonal death tables differ from traditional mortality schedules in that they focus on
the mortality at a particular time of year; while many analyses have found the change in life
expectancy during 1918 as a whole [127], the change may be even more dramatic during a
particular wave.

It should be stressed that because these death tables do not represent the total mortality
pattern within a year, they must be used through an abstract lens of mortality characterized
within a specific period. While generally, period lifetables reflect the mortality patterns at a
given time, they can also be used to approximate the average expected life expectancy of an
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individual born in the time, given unchanging mortality rates over time. Because these death
tables only represent mortality patterns at a specific point of the year, their use should always
be explained and justified in the context of the proposed research. In this context, without
an influenza outbreak, pre-epidemic period mortality rates would be expected to remain
reasonably similar to those only one year later. By comparing the age-specific mortality rates
during the same period of the year before and during each outbreak, the mortality impact of
individual waves of influenza can be understood in a different way.
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Sex-specific period death tables were created for the period of each wave, as well as the
same period in the years preceding the outbreaks, as presented in Appendix E and visualized
in figure 6.8. Between 1916 and 1917, life expectancy improves, but mortality is much higher
in the periods in 1918 and 1919 (winter wave) during each outbreak, leading to lower life
expectancy. Across all years and ages, the life expectancy, based on the crude death rates,
is highest during the period of time corresponding to the years before the herald outbreak,
while, generally, the winter period has the lowest. This is expected, as it corresponds to
the seasonality of mortality, whereby more people die in the winter months. The exception
occurs during the fall epidemic wave, life expectancy falls to its lowest in all periods–31
years in both males and females.

While still lower than the pre-epidemic period, overall, the mortality during the herald
wave is the closest to its “normal" expected mortality (the years preceding the outbreak).
Moreover, the shape of the mortality and life expectancy curves are similar in all years during
the herald period. This is unsurprising; the age-specific curves of absolute and relative excess
rates showed little notable differences during the spring wave, especially relative to the fall.

However, large differences can be observed in the death tables that reflect the mortality
patterns during the fall and winter waves. Generally, as populations shift to today’s current
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mortality structure in which more people die at older ages, a “rectangularization" of the
survivor or lx curve occurs, meaning that more people survive to older ages, at which a
sharp drop off occurs as the modal peak grows and more individuals die around this age.
However, the Kaplan-Meier estimates of the seasonal death tables, shown in figure 6.9,
show a “de-rectangularization" effect of the survivor cure during the periods associated with
influenza waves (particularly the fall and winter), due to the characteristic deaths to those at
younger ages. The effect is muted in the small Herald wave and even less present in the last
echo wave, in which as noted in section 6.2.3, the age-pattern in excess mortality returned to
a pattern more consistent with seasonal influenza.
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6.3.1 Age-specific contribution to change in life expectancy: Arriaga
decomposition

The seasonal death tables allow mortality changes to be compared and visualized, but the
numeric extent to which each age contributed to aggregate measures describing mortality
within the population can better be understood using decomposition techniques [49]. Here,
Arriaga decomposition is used to demonstrate how the changes in life expectancy and life
disparity in each individual wave can be understood by changes in age-specific mortality
patterns. Arriaga’s formula, published in 1984 was one of a number of similar discrete
methods for lifetable decomposition published in the 1980s, along with Andreev, and Pressat
[281]. The formula decomposes the total age-specific contributions to the change in life
expectancy into Direct and Indirect contributions [27]. That is to say, because e0 is actually
a function of the total number of life years lived, T0, or the sum of nLx values across all age
intervals, the number of survivors that changes in a given age interval between death tables
affects the total calculation of e0 in two ways. The direct effect of age-specific mortality
differences to the change in life expectancy at birth measures the effect that the change of
mortality rates within a single age group had on the change in the number of years lived in
that group, nLx. The indirect effect can be described as the change in Tx in each subsequent
age group due to the change in survivorship in previous age groups. In the case of the Spanish
flu, younger age groups die at higher rates, thereby indirectly decreasing the total number of
people years lived in subsequent age groups. Together, the direct and indirect contributions
to the change in e0 total the overall change in average life expectancy from one period ot the
next.

It has been documented that many died not simply from “influenza" but from a variety of
respiratory-related diseases, such as pneumonia and bronchitis. Furthermore, much research
has been completed that demonstrates a particular relationship between mortality during
the Spanish flu pandemic and tuberculosis [14, 195, 305], although the sex-specific effects
have been debated [43, 191, 192]. Not only did those with tuberculosis tend to die at higher
rates [164], this overall effect contributed to a harvesting of deaths that would have been to
tuberculosis, leading to much lower rates of tuberculosis mortality in the years following
the influenza outbreaks in many parts of the world. It is possible to divide each age-specific
contribution to show how each specific cause of death contributed to differences in life
expectancy. In order to do so, one must simply multiply the age-specific contribution by the
proportion of deaths to each cause by age. The results are divided into deaths to (a) respiratory
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causes, including influenza, (b) tuberculosis,3 and (c) other causes and are included in figure
6.10.

In the case of each individual wave,the decomposition highlights the role that the increased
mortality in young adult age groups contributed greatly to the overall mortality schedule of
the population. Figure 6.10 shows the age-specific contributions to the overall change in
life expectancy according to period rates during each wave and by sex. Table 6.3 shows the
total contribution for each sex to the decrease in life expectancy in each wave by cause. Life
expectancy falls in each wave, but especially so in the fall and winter wave of 1918 and 1919.
Female life expectancy drops by nearly 15 years in the fall for women, and between 7 and 8
years for both sexes in the winter waves. While the lower mortality of the spring wave also
leads to a smaller change in life expectancy, the role of young-adult age groups in decreasing
the life expectancy during this time, consistent with the age-specific mortality patterns of the
flu, is quite visible.

With regards to causes of death, the results show a distinct pattern. Whereby the “other"
deaths make up the majority of the contribution to changing life expectancy, those ascribed
to respiratory illnesses also provide a large amount of the difference. Given the similarity
in age-specific contributions of the two, this visualization is a good demonstration of the
importance of considering both respiratory and all-cause causes of death. However, most
striking is the contribution of tuberculosis as a cause of death contributing to change in
e0. The majority of the contribution occurs during the fall wave. In the subsequent winter
wave, there is little contribution of tuberculosis deaths (as there were few) to reduced life
expectancy.

Notably, the differences in the amount of direct and indirect age-specific contributions
is large. Generally speaking, the direct effect within each age group towards the total
change in life expectancy is much smaller than the indirect change. This pattern is quite
easily understood; because mortality is different (higher) at child and young adult ages, this
indirectly affects the amount of total person years that can be lived in the population at
later ages, effectively lowering the total number of person years lived in the life table. At
the oldest ages, the changes in mortality rates at each age directly effect the change in life
expectancy more so than the measured indirect contributions. Because there are fewer in
each age group–ergo fewer total life years left to live–left at the end of the death table, each
change in mortality rates has a higher total impact on the remaining life expectancy and
thereby, within the age group, the contribution due to the direct change in rates is higher than
the indirect contribution.

3Tuberculosis deaths include: Sturma, Scrofula, Phthisis, consumption, Lupus Vulgaris, Pott’s disease,
Meningitis, and Tuberculosis
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Table 6.2 Excess mortality in Scotland by age and wave

Age Group Wave Excess Mortality Rate Excess Deaths Standardized Mortality Ratio
[0,5) Total 148.87 6882 1.64
[5,10) Total 21.03 1043 1.96
[10,20) Total 21.36 2056 2.22
[20,25) Total 44.97 1869 2.41
[25,30) Total 76.56 2844 3.23
[30,40) Total 55.26 3723 2.31
[40,50) Total 32.96 1942 1.60
[50,60) Total 39.70 1703 1.40
[60,70) Total 77.29 2124 1.44
70+ Total 140.44 2311 1.35
[0,5) Spring 0.88 41 1.08
[5,10) Spring 0.73 36 1.27
[10,20) Spring 1.90 182 1.65
[20,25) Spring 3.86 160 1.70
[25,30) Spring 4.62 171 1.93
[30,40) Spring 2.68 181 1.51
[40,50) Spring 1.84 1085 1.23
[50,60) Spring 1.98 83 1.13
[60,70) Spring 1.78 48 1.10
70+ Spring 0.87 14 1.05
[0,5) Fall 47.50 2224 1.71
[5,10) Fall 14.60 726 2.72
[10,20) Fall 14.71 1414 2.90
[20,25) Fall 26.03 1076 3.43
[25,30) Fall 44.77 1659 4.80
[30,40) Fall 31.47 2126 3.04
[40,50) Fall 17.34 1016 1.78
[50,60) Fall 14.70 620 1.48
[60,70) Fall 20.23 542 1.33
70+ Fall 13.10 210 1.20
[0,5) Winter 48.98 2174 1.53
[5,10) Winter 5.22 258 1.62
[10,20) Winter 4.53 438 1.72
[20,25) Winter 13.17 551 2.22
[25,30) Winter 23.19 864 2.89
[30,40) Winter 15.36 1036 2.05
[40,50) Winter 9.75 577 1.67
[50,60) Winter 15.36 658 1.47
[60,70) Winter 30.39 826 1.58
70+ Winter 65.08 1051 1.35
[0,5) Echo 51.51 2443 1.83
[5,10) Echo 0.47 23 1.20
[10,20) Echo 0.22 22 1.36
[20,25) Echo 1.90 82 1.40
[25,30) Echo 3.98 150 1.74
[30,40) Echo 5.75 381 1.84
[40,50) Echo 4.03 241 1.39
[50,60) Echo 7.67 342 1.37
[60,70) Echo 24.89 708 1.56
70+ Echo 61.39 1036 1.45
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Table 6.3 Total contributions towards change in e0 by wave, sex, and cause

Sex Wave Cause Total contribution
to decrease in e0

Female Herald All Causes -1.12
Female Herald Other -0.57
Female Herald Respiratory -0.52
Female Herald Tuberculosis -0.03
Female Fall All Causes -14.59
Female Fall Other -6.85
Female Fall Respiratory -6.33
Female Fall Tuberculosis -1.41
Female Winter All Causes -8.16
Female Winter Other -5.55
Female Winter Respiratory -2.65
Female Winter Tuberculosis 0.04
Male Herald All Causes -3.67
Male Herald Other -3.08
Male Herald Respiratory -0.57
Male Herald Tuberculosis -0.02
Male Fall All Causes -14.81
Male Fall Other -7.08
Male Fall Respiratory -6.34
Male Fall Tuberculosis -1.39
Male Winter All Causes -9.08
Male Winter Other -6.39
Male Winter Respiratory -2.77
Male Winter Tuberculosis 0.08
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6.3.2 Age-specific contribution to change in E-dagger (e†): step-wise
decomposition

One of the main principles in Arriaga’s formula is that changes in each individual age-
specific rate each play a different role in the overall difference of life expectancy between
two populations. Step-wise decomposition takes a similar approach to understanding these
population-level differences, but it also allows the decomposition for more complicated
lifetable functions, beyond ex. Basically, by changing the age-specific mortality rates of a
population (a) to another (b) one at a time and then recalculating the aggregate measure of
interest, the contribution of the change in each age-group towards the life table function is
decomposed [25].

Here, the measure of life span disparity, also known as e-dagger, or e†, is decomposed
by the step-wise technique to display the effect of each wave on the “equalness" of the
lengths of life lived [49]. In contemporary mortality schedules, demographers generally see
improvements in e† as mortality becomes concentrated around the modal age of death, and
then as the standard deviation around this mode decreases [106]. However, in historical
populations, e-dagger was still heavily influenced by the level of infant and child mortality.
During the Spanish flu, heightened in mortality in middle ages also contributed to higher
levels of lifespan disparity. That is to say, while before the flu, the age-specific mortality
schedule featured a bi-modal hump, during the 1918-19 outbreaks, particularly in the fall
and winter, the addition of higher rates in middle ages, especially around the additional
third mode (as seen in figure 6.6), increased e†. During the waves, the total person years of
life to live at birth (T0) decreased, thereby increasing the lifespan disparity. By step-wise
decomposing this measure by age, it is possible to see exactly to what extent the additional
mortality at each age played a role in added lifespan inequalities during the waves and led
to the decrease in total person years lived. Figure 6.11 shows these results by the selected
causes of death, and table 6.4 shows the total contribution to the change in each wave by
cause for each sex.

As expected the total lifespan disparity according to e† increases for both sexes across
all three measured waves. The age-specific contributions follow the same patterns across
the fall and winter waves, generally representing an expansion of mortality across all ages
rather than a shift in mortality rates to an older age (mode) or compression around that mean
(standard deviation). The youngest ages contribute the most to each change in disparity,
though their role differs by wave. In the spring wave, because the mortality at the youngest
ages is relatively unaffected by the outbreak, the youngest ages actually contribute to a
decrease in lifespan inequality. This makes sense, as outside of the Spanish flu, infant and
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Table 6.4 Total contributions towards change in e† by wave, sex, and cause

Sex Wave Cause Total contribution
to decrease in e†

Female Herald All Causes -1.12
Female Herald Other -0.57
Female Herald Respiratory -0.52
Female Herald Tuberculosis -0.03
Female Fall All Causes -14.59
Female Fall Other -6.85
Female Fall Respiratory -6.33
Female Fall Tuberculosis -1.41
Female Winter All Causes -8.16
Female Winter Other -5.55
Female Winter Respiratory -2.65
Female Winter Tuberculosis 0.04
Male Herald All Causes -3.67
Male Herald Other -3.08
Male Herald Respiratory -0.57
Male Herald Tuberculosis -0.02
Male Fall All Causes -14.81
Male Fall Other -7.08
Male Fall Respiratory -6.34
Male Fall Tuberculosis -1.39
Male Winter All Causes -9.08
Male Winter Other -6.39
Male Winter Respiratory -2.77
Male Winter Tuberculosis 0.08
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child mortality rates were on the decline. However, in the fall and winter waves, in which
infant and children also died at high rates, their increased mortality contributes to a larger
amount of lifespan inequality. Though the analysis is not completed here, it is likely the
age-specific contributions to infant and child deaths to e dagger were even greater in the
echo wave, as they died in excess at the highest rates and therefore contributed most to the
decrease in total and potential number of person years lived.

Similar to the decomposition of life expectancy, a peak in contribution to changes
in lifespan disparity can be found around young adult ages, mimicking the local mode of
mortality during the waves. In the fall and (to a smaller extent) winter waves, the contributions
to increased lifespan disparity follows a positive slope up to the local mode, followed by
a steeper descent of smaller age-specific contributions towards the life expectancy at birth.
The age-specific contributions on the left hand side of the mode are prevalent over more age
groups, as the value of lx and Tx at these age groups is higher, and therefore more person
years are lived, despite increased mortality. Following the peak, the quicker decrease in
contributions can be explained due to the lower value of lx, meaning that fewer individuals in
the death table contribute to the measure of life span inequality.

With regard to cause of death, a similar pattern to that of the change in e0 exists. A visible
amount of the contribution to lifespan equality changes due to tuberculosis deaths in the
second fall wave, but this disappears in the winter wave. While levels of excess mortality still
exist in older age groups, the contribution of these ages to lifespan equality actually decreases
during the wave. This is a mechanism of the modal age at death during the period before the
outbreaks. The trough represents the old age mortality hump prior to each influenza wave.
Because the heightened mortality rates imply that more deaths occur around the ages of
highest adult mortality pre-outbreak, these ages actually lower the level of lifespan disparity,
meaning that in the death table, a higher density of deaths happen in the same age groups.
Especially noticeable in the herald, but also slightly visible in the fall waves, an oft observed
pattern in lifespan disparity at the oldest ages can be found. Those living to the highest age
contribute to an increase in lifespan inequality because they live many more years than the
highest age at death.

6.4 Concluding remarks

With regard to age-specific mortality, the results presented here mirror a “textbook" example
of Spanish flu. The outbreaks began with a small, mild herald wave that did not reach
the entire country. Then a large fall wave affected the entire population, but a mortality
hump existed among those between 25 and 30. This pattern continued in a winter wave,
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beginning in January 1919 and lasting into the Spring of that same year. As seen in the
weekly time series of mortality rates, the herald wave in July of 1918 produced small levels
of excess mortality, but the excess mortality hump in young adults is largely consistent with
the subsequent fall and winter waves, if a bit smaller, suggesting this was in fact a similar
strain of virus. The echo wave in 1921 was large, but primarily reflected a return to seasonal
age-specific patterns.

With regards to the standardized mortality ratio, the results show much higher relative
deaths in the fall wave than in others. However, these large ratios are largely due to a
lower seasonal baseline in the fall. In the echo wave, there is a local peak among the 0-5
year olds, although there remains slightly elevated relative excess amount the middle ages,
suggesting both that the lethal virus was still circulating in the population, and that among
this population, there were still many at risk.

Perhaps the most interesting results lie in the creation and decomposition of death tables
according to the mortality rates during the waves. Understanding that the herald wave was
both small in size and did not reach all parts of the country, it makes sense that the overall drop
in life expectancy was lower that the other waves. Similarly, given the lower fall mortality
(relative to winter), it also makes sense that this wave shows the largest drop in period life
expectancy. However, the cause-specific decomposition provides interesting results that
highlight the frailty of those in the population suffering and dying from tuberculosis.

Those with already weakened immune systems, especially those with tuberculosis, were
likely to die from the virus at higher rates, and additional evidence finds that the influenza
epidemic likely contributed to a large decrease in tuberculosis rates in the years succeeding
the epidemic, likely due to the harvesting effect of the flu [14, 195, 305]. Lab research has
since confirmed that tuberculosis and influenza virus infection hinders survival in mice [223].
The results of the decomposition presented in this chapter provide further support to this
theory (see table 6.4). Here, the decomposition by cause of death shows that even between
the second and third waves of flu, the contribution of tuberculosis deaths towards the change
in life expectancy disappears.

In the herald wave, the total mortality impact was minimal, and in fact, was not universally
present in the country. Even still, there is evidence that deaths to tuberculosis contributed to
the small decrease in life expectancy and increase in lifespan disparity. However, the second
two powerful and wide-reaching waves spread throughout the country and provided similar
patterns of age-specific excess mortality. Given their comparable features, the differences
by cause of death are stark–there is a clear harvesting effect in the fall wave of those with
tuberculosis. In the fall wave, life expectancy is reduced by roughly 1.4 years for both men
and women due only to an increase in tuberculosis deaths.
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However, in the winter wave, tuberculosis has no negative contribution to the change in
life expectancy between the pre-influenza period of the wave and the wave itself. Moreover,
the net contribution of tuberculosis towards the change in lifetable measures between the
same period of the year before and during the winter wave is positive, adding 0.04 and 0.08
years of life expectancy to women and men respectively. This implies the presence of a
harvesting effect, wherein due to the increase in mortality of those infected with tuberculosis
in the fall wave, the sum of the age-specific mortality rates for tuberculosis during the winter
wave was higher than in the same period of the year before the winter wave.

One thing should be noted with respect to the findings. During the pre-influenza period
in the winter wave, there were higher rates of tuberculosis deaths than in the pre-influenza
period associated with the fall wave. Nonetheless, the disappearance of the tuberculosis
contribution can also be compared relative to the contribution to the change in life expectancy
and lifespan equality for non-tuberculosis respiratory-related causes. In the pre-influenza
period of the fall, the overall death rates of respiratory causes were also lower than in the
pre-wave winter period. However, they continue to contribute a high percentage to the
decrease in life expectancy in both waves, thereby highlighting the stark drop in tuberculosis
deaths between the fall and winter waves. This reinforces the idea that those with tuberculosis
were not only more susceptible to death from the contraction of influenza, but those that
contracted and succumbed to the virus did so overwhelmingly and solely in the large second
fall wave.

Today, though incidence continues to decline, tuberculosis remains one of the highest
causes of death in the world, and the World Heath Organization estimates more than 10
million individuals contracted and 1.6 million people died from some form of tuberculosis
in 2017 [10]. Moreover, while the disease is curable, several strains of the bacterium are
drug resistant, making their treatment more difficult [202]. Some regions of the world
with high tuberculosis rates are also underdeveloped areas where a large influenza outbreak
would likely have a higher mortality impact due to a lack of infrastructure to treat and limit
transmission of the virus [139]. Thus, even 100 years after the Spanish influenza outbreaks,
the prevalence of tuberculosis, particularly in those with depleted immune systems and areas
with fewer resources to combat a potential pandemic is high. Officials involved in pandemic
preparedness plans must consider the heightened risk of those with tuberculosis and other
diseases that limit respiratory and immune capacity in the context of influenza mortality
during future outbreaks.

Finally, further work can also be completed within the context of the Digitising Scotland
data to understand differences in mortality risk during the Spanish flu by pre-existing health
conditions. Tuberculosis is certainly not the only disease, diagnosed or not, that limits
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respiratory function. Coal mines were of large economic importance in the central belt of
Scotland in the early 20th century, providing many jobs to men who worked within mines
and coal pits [48]. Coal miners are known to suffer from several other chronic lung diseases
due to extended exposure to coal dust [28, 151]. Future work can examine and highlight
differences in mortality based on occupations, especially in the context of compromised
lung capacity. As in the case of tuberculosis-specific mortality, findings can alert public
health, medical, and policy officials to additional sub-populations that may have heightened
mortality risk in future pandemic outbreaks, when strains are more virulent. Continued
research into past influenza pandemics, especially the hard-hitting Spanish flu, will help
researchers understand how to prepare for and minimize excess mortality in future outbreaks.
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