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Plants growing in the field are affected by several adverse environmental conditions at 

the same time. The simultaneity of abiotic factors affecting plants creates a new stress 

situation different from the individual ones. Global warming is increasing earth surface 

temperature, and this is accompanied by other environmental changes (soil degradation, 

increase of drought periods, changes in precipitation pattern). All these changes will 

affect the arable lands around the world and crop production will be reduced unless new 

cultivars capable to face the environmental changes are developed. 

Therefore, the main objective of this PhD is to study the impact of different abiotic 

stresses in combination with high temperatures on plant physiology. To achieve this 

objective, the present work is divided into four chapters. In Chapter 1, it is demonstrated 

that Carrizo citrange is more tolerant to drought and heat stress combination than 

Cleopatra mandarin. Our work reveals that the higher activation of the enzymes involved 

in the antioxidant ROS detoxification system of Carrizo prevents cells from the oxidative 

damage derived from this stress combination. It is showed that the activity of SOD in 

Carrizo is higher than in Cleopatra at basal levels and under stress combination. 

Furthermore, gene expression and enzymatic activity of APX and CAT are strongly 

induced under stress combination in Carrizo, while in Cleopatra this induction is much 

lower. In Chapter 2, it is showed that under drought and heat stress combination the 

accumulation of key proteins for plant acclimation to drought or heat stress, such as APX1 

and the chaperone HSP101, is higher in Carrizo than in Cleopatra, which may be involved 

in the higher tolerance of the former to the adverse situation. Chapter 3 aims to further 

study the effect of abiotic stress conditions in combination with high temperatures in 

citrus plants. For this purpose, Carrizo citrange plants were subjected to wounding or 

salinity at high temperatures. Results indicate that high temperatures modify Carrizo 

responses to wounding and salinity. Under wounding and heat stress, stomatal aperture 

in plants is lower than under wounding at low temperatures. In addition, Jasmonates 

accumulation pattern changed. While wounding caused a higher accumulation of JA, 

stress combination caused a lower increase of JA levels and a significant rise of OPDA 

content. Salt and heat stress combination caused more severe damage on Carrizo plants 

than salt stress at low temperatures. Due to the stress combination, toxic chloride ions 

highly accumulated in Carrizo leaves. Salt and heat stress combination induced high 

accumulations of ABA and JA and resulted in a specific transcriptomic, stomatal and 

transpiration response different from that caused by individual stresses. Finally, in 



xx 

Chapter 4, to deeply investigate physiological, hormonal and molecular responses of 

plants to high light intensity and high temperatures, Arabidopsis thaliana plants were 

subjected to a combination of these stresses. JA and JA-Ile levels increased specifically 

under stress combination whereas no change was observed under individual high light or 

heat stress. This hormonal increase after stress combination together with the 

upregulation of JA-responsive genes and the lower tolerance of the JA-deficient mutant 

aos to stress combination indicated that JA is a key hormone for plant acclimation to a 

combination of high light and heat stress. In addition, it was observed that Arabidopsis 

plants affected by high light and heat stress were unable to restore PSII activity after 

stress, likely because damage caused in D1 protein exceeded its repairment and 

reassembly under the simultaneous stress conditions.  

Therefore, this work has focus in studying physiological, hormonal and transcriptomic 

responses to different stress situations in citrus and model plants to obtain a global view 

of plant mechanisms to tolerate complex abiotic stress situations.  
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Las plantas cultivadas se ven afectadas por numerosas condiciones ambientales adversas 

al mismo tiempo. Cuando dos o más factores abióticos afectan a las plantas de manera 

simultánea se crea una nueva condición de estrés, diferente a la provocada por los estreses 

individuales. Debido al calentamiento global, la temperatura de la superficie terrestre está 

aumentando, y esto viene acompañado por otros cambios medioambientales (degradación 

de suelos, incremento de sequías, cambios en los patrones de precipitaciones). Todos 

estos cambios afectan a las zonas de cultivos de todo el mundo y la producción agrícola 

se verá reducida a menos que se desarrollen nuevos cultivares capaces de soportar los 

cambios ambientales. 

El objetivo principal de esta tesis es estudiar el impacto en la fisiología de las plantas de 

diversos estreses abióticos en combinación con las altas temperaturas. Para conseguir este 

propósito, el trabajo presente se ha dividido en cuatro capítulos. En el Capítulo 1, se ha 

demostrado que el patrón de cítricos Carrizo citrange es más tolerante a la combinación 

de sequía y calor que el patrón Cleopatra mandarin. Nuestro trabajo revela que la mayor 

actividad de las enzimas antioxidantes encargadas de la detoxificación de las moléculas 

ROS en las plantas de Carrizo previene a las células del daño oxidativo que se deriva de 

la combinación de estrés. En el estudio se muestra que la actividad de SOD a niveles 

basales y bajo estrés combinado es mayor en Carrizo que en Cleopatra. Además, la 

expresión genética y la actividad enzimática de APX y CAT son altamente inducidas en 

condiciones de stress combinado en plantas de Carrizo, mientras que en Cleopatra esta 

inducción es mucho menor. En el Capítulo 2, se muestra que bajo combinación de sequía 

y calor la acumulación de proteínas clave para la aclimatación a sequía y/o calor, como 

lo son APX1 y la chaperona HSP101, es mayor en Carrizo que en Cleopatra, lo que 

confiere al primero mayor tolerancia a la situación de estrés. En el Capítulo 3 se estudió 

el efecto de diferentes estreses abióticos en combinación con altas temperaturas en 

cítricos. Para llevar a cabo el estudio, se sometieron plantas de Carrizo citrange a estrés 

por herida mecánica o salinidad bajo altas temperaturas. Los resultados indicaron que las 

altas temperaturas modificaron las respuestas de las plantas Carrizo a la herida mecánica 

y a la salinidad. Las plantas sometidas a herida y calor simultáneamente mostraron una 

apertura estomática menor que las que se sometieron a herida en temperaturas control. 

Además, la acumulación de jasmonatos cambió. El daño mecánico a temperatura control 

causó un incremento de JA, mientras que en condiciones de altas temperaturas el aumento 

de JA fue menor y hubo un incremento significativo de OPDA. La combinación de 
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salinidad y calor causó mayores daños en las plantas de Carrizo que la salinidad o el calor 

de manera individual. Debido a la combinación de estrés, los iones tóxicos de cloruro se 

acumularon en gran cantidad en las hojas de Carrizo.  Las condiciones de salinidad y calor 

en combinación provocaron la alta acumulación de ABA y JA y resultó en una regulación 

transcriptómica y estomática específica diferente a la causada por los estreses 

individuales. Finalmente, en el Capítulo 4, para investigar en mayor profundidad las 

respuestas fisiológicas, hormonales y moleculares de las plantas a la combinación de alta 

intensidad de luz y altas temperaturas, se sometieron plantas de Arabidopsis thaliana a 

esta combinación de estrés. El contenido foliar de JA y JA-Ile se incrementó 

específicamente bajo condiciones de estrés, mientras que no hubo variaciones en las 

plantas solo bajo alta intensidad de luz o altas temperaturas. Este incremento hormonal 

tras la combinación de estrés junto con la sobreexpresión de genes asociados a JA y la 

menor tolerancia del mutante aos, deficiente en la acumulación de JA, indican que el JA 

es una hormona clave en la aclimatación de las plantas a la combinación de alta intensidad 

de luz y altas temperaturas. Además, se observó que las plantas de Arabidopsis bajo la 

combinación de estrés eran incapaces de recuperar la actividad del PSII tras el estrés, 

posiblemente debido a que el daño causado en la proteína D1 fue superior a la capacidad 

de reparación en la condición de estrés simultáneo.  

Por lo tanto, este trabajo se ha enfocado en el estudio de las respuestas fisiológicas, 

hormonales y transcriptómicas de las plantas a diferentes condiciones de estrés para 

obtener una visión global del mecanismo de tolerancia de las plantas a situaciones 

complejas de estrés abiótico.  
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Les plantes cultivades es veuen afectades per nombroses condicions ambientals adverses 

al mateix temps. Quan dos o més factors abiòtics afecten a les plantes simultàniament es 

crea una nova condició d’estrès, diferent a la provocada pels estressos individuals. Degut 

a l’escalfament global, la temperatura de la superfície terrestre està augmentant, i això ve 

acompanyat per altres canvis en el medi ambient (degradació de sòls, increment de 

sequera, canvis en el règim de precipitacions). Tots aquests canvis afecten a les zones de 

cultius de tot el món i la producció agrícola es veurà reduïda a menys que es desenvolupen 

nous cultivars capaços de suportar els canvis ambientals. 

L’objectiu principal d’aquesta tesi és estudiar l’impacte de la fisiologia de les plantes de 

diversos estressos abiòtics en combinació amb les altes temperatures. Per a aconseguir 

aquest propòsit, el treball present s’ha dividit en quatre capítols. En el Capítol 1, s’ha 

demostrat que el patró de cítrics Carrizo citrange és més tolerant a la combinació de 

sequera i calor que el patró Cleopatra mandarin. El nostre treball revela que la major 

activitat dels enzims antioxidants encarregades de la detoxificació de les molècules ROS 

en les plantes de Carrizo prové a les cèl·lules del dany oxidatiu que es deriva de la 

combinació d’estrès. A l’estudi es mostra que l’activitat basal i  baix l’estrès combinat de 

SOD es major en Carrizo que en Cleopatra. A més a més, l’expressió genètica i l’activitat 

enzimàtica d’APX i CAT són altament induïdes en condicions d’estrès en plantes de 

Carrizo, mentre que en Cleopatra aquesta inducció és molt menor. En el Capítol 2, es 

mostra que baix la combinació de sequera i calor l’acumulació de proteïnes clau per a 

l’aclimatació a sequera i/o calor, com són APX1 i la xaperona HSP101, és major en  

Carrizo que en Cleopatra, fet que confereix al primer major tolerància a la situació 

d’estrès. En el Capítol 3 es va estudiar l’efecte de diferents estressos abiòtics en 

combinació amb altes temperatures en cítrics. Per dur a terme l’estudi, es van sotmetre 

plantes de Carrizo citrange a estrès per ferida mecànica o salinitat baix les altes 

temperatures. Els resultats van indicar que les altes temperatures van modificar les 

respostes de les plantes de Carrizo a la ferida mecànica i a la salinitat. Les plantes 

sotmeses a ferida i calor simultàniament mostraren una apertura estomàtica menor que 

les que es van sotmetre a ferida a temperatures control. A més a més, l’acumulació de 

jasmonats va canviar. El dany mecànic a temperatura control va causar un increment de 

JA, mentre que en condicions d’altes temperatures l’augment de JA va ser menor i va 

haver-hi un increment significatiu d’OPDA. La combinació de salinitat i calor va causar 

danys més grans en les plantes de Carrizo que la salinitat o el calor de manera individual. 
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Degut a la combinació d’estrès, el ions tòxics de clorur es van acumular en grans 

quantitats en les fulles de Carrizo. Les condicions de salinitat i calor en combinació van 

provocar l’alta acumulació d’ABA i JA i va resultar en una regulació transcriptòmica i 

estomàtica específica diferent a la causada pels estressos individuals. Finalment, en el 

Capítol 4, per a investigar en major profunditat les respostes fisiològiques, hormonals i 

moleculars de les plantes a la combinació d’alta intensitat de llum i altes temperatures, es 

van sotmetre plantes d’Arabidopsis thaliana a la combinació d’estrès. El contingut foliar 

de JA i JA-Ile es va incrementar específicament baix condicions d’estrès, mentre que no 

va haver variacions en les plantes únicament baix alta intensitat de llum o altes 

temperatures. Aquest increment hormonal després de la combinació d’estrès junt amb la 

sobre expressió de gens associats a JA i la menor tolerància del mutant aos, deficient en 

l’acumulació de JA, indiquen que el JA és una hormona clau en l’aclimatació de les 

plantes a la combinació d’alta intensitat de llum i altes temperatures. A més a més, es va 

observar que les plantes d’Arabidopsis baix la combinació d’estrès van ser incapaços de 

recuperar l’activitat del PSS després de l’estrès, possiblement degut a que el dany causat 

en la proteïna D1 va ser superior a la capacitat de reparació en la condició d’estrès 

simultani.  

Per tant, este treball s’ha enfocat en l’estudi de les respostes fisiològiques, hormonals i 

transcriptòmiques de les plantes a diferents condicions d’estrès per a obtindré una visió 

global del mecanisme de tolerància de les plantes a situacions complexes d’estrès abiòtic.  



 

 

Introduction 

 

 
 

 

High temperatures modify plant responses to 

abiotic stress conditions 

Balfagón et al. (2020) Physiologia Plantarum 

doi: 10.1111/ppl.13151. 

 

 



 

 



Introduction 

3 
 

IN
T

R
O

D
U

C
T

IO
N

 

Abstract 

Climate change is altering our global environment in which plants grow and survive. We 

already experienced an increase in worldwide average earth surface temperatures, as well as 

frequency and extent of damaging heat waves. These conditions collide in the field with 

other abiotic stresses such as water deficit, high salinity, increased light irradiation, etc., 

generating complex harmful conditions that destabilize agricultural systems. The conditions 

generated during these episodes of stress combination greatly differ from those occurring in 

the field when different stress factors occur individually; conditions that have been the focus 

of study for decades. Fortunately, knowledge on physiological and molecular responses to 

stress combinations and the cost they inflict on plant growth and yield has been exponentially 

increasing in the past several years. Thus, it is currently accepted that plant responses to 

stress combinations cannot be reduced to the addition of the responses to the individual 

stresses that are combined. Understanding plant performance under multiple stress 

combinations will allow breeding crops capable of maintaining yield production under the 

new climatic conditions. Here, after reviewing recent data on physiological, hormonal and 

transcriptional responses to high temperatures, in combination with other common abiotic 

stress factors, we propose new approaches to investigate the response of plants to stress 

combinations and discuss strategies for improving crop resilience.  

 

Introduction 

 

Plants are sensitive to the changing environment and respond to any alterations in it by 

adjusting their gene expression and, eventually, their metabolism and physiology. Climate 

change is modifying our environment, causing an increase in earth average temperatures, 

which results in extreme heat waves and rainfalls; moreover, drought and soil contamination 

is reducing cropland surface. As a result, global crop production is expected to decrease 

unless this process could be mitigated. During the last century, temperatures have increased 

approximately one degree in the major cultivated areas, and is expected to keep increasing 

over the next years (Zhao et al., 2017)(IPCC 2019, http://www.ipcc.ch/). Heat stress is 

harmful for plants when occurring during different critical development stages, such as the 

reproductive period (Teixeira et al., 2013). In this sense, exposure to abnormal high 

temperatures affects pollen viability, fertilization, grain filling and fruit formation (Hatfield 

and Prueger, 2015). Thus, due to the increasing temperatures the staple food production is 

expected to decrease between 5,6% and 18,2% by 2100 (Zhao et al., 2017). Global areas 
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affected by drought will also increase from 15.4 % to 44 % by 2100 (Li et al., 2009). 

Moreover, not only rising temperatures increase drought, but dried soils warm the 

atmosphere in turn by retaining less water and increasing the frequency of heat waves 

(Teuling, 2018).  

Plant performance and crop yield under combined conditions of high temperatures and 

drought (or other co-occurring abiotic stress factors) have been object of recent studies 

(Martinez et al., 2018; Zandalinas et al., 2018a; Elferjani and Soolanayakanahally, 2018; 

Balfagón et al., 2019 a, b; Mahalingam and Bregitzer, 2019; Fábián et al., 2019; Jumrani 

and Bhatia, 2019). Plant responses to two or more stress factors simultaneously affecting it 

are unique and cannot be considered as the sum of responses to each of the individual stresses 

affecting the plant (Mittler, 2006; Zandalinas et al., 2018b). 

This review summarizes recent studies on the effect of abiotic stress combinations that 

include high temperatures as one of their components, focusing on physiological, hormonal 

and molecular responses of different plants species. Based on current climate predictions for 

the near future, there is an urgent need to develop tolerant plants to different stress 

combinations. Therefore, strategies for improving crop resilience are also proposed.   

 

Plant development under abiotic stresses at high temperatures 

 

Temperatures above the plant optimal range cause physiological changes that alter their 

development (Szymańska et al., 2017). Under high temperatures, photochemical reactions 

and carbon metabolism are two of the most affected processes. Heat inactivates PSII electron 

acceptor and donor sides, disables enzymes of the Calvin cycle, reduces Rubisco activity 

and increases oxidative damage by enhancing ROS production. As a result, plant 

photosynthesis and carbon assimilation is highly compromised under heat stress (Yamamoto 

et al., 2008; Pospíšil, 2016; Szymańska et al., 2017). Co-occurring abiotic stress factors such 

as drought, salinity or light stress (that also affect electron chain transport, carbon 

assimilation or oxidative status) can aggravate these conditions and cause irreversible 

damages to the photosynthesis apparatus (Fig. 1). Therefore, improving mechanisms that 

avoid heat-derived damages to the photosynthetic apparatus may be essential for plant 

acclimation to abiotic stress factors in a warmer environment. A transcriptomic study in 

Arabidopsis plants under a combination of high light intensity and heat stress showed an 

increase of transcripts encoding photosynthetic proteins, many of them involved in 

degradation, repair and reassembly of PSII (Balfagón et al., 2019b). These results suggest 
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that, under these conditions, de novo biosynthesis of proteins involved in the photosynthetic 

apparatus occurs. Under high light and heat stress combination, the steady-state level of the 

D1 protein (considered the most sensitive protein to stresses in the PSII complex) decreased, 

suggesting that under these conditions photodamage of PSII could be exceeding the rates of 

biosynthesis, repair and reassembly of the D1 protein. In contrast, plants subjected only to 

high light conditions over accumulated D1 protein. Photodamage caused by the stress 

combination resulted in a decline in PSII activity (φPSII and Fv/Fm) and the inability of plants 

to recover PSII function following recovery from the adverse conditions. In contrast, plants 

subjected to high light showed reduced PSII activity but this process was restored following 

a recovery period (Balfagón et al., 2019b). Similarly, tomato plants subjected to drought and 

heat stress combination decreased the activity of the photosynthetic apparatus. Under 

drought (combined or not with heat stress), tomato plants reduced electron transport rate 

(ETR) and φPSII, compared to control conditions or heat stress alone. However, after a 

recovery period only plants under drought were able to restore ETR and φPSII while plants 

under stress combination were not. Therefore, stress combination caused an irreversible 

damage on the photosynthetic apparatus and tomato plants were unable to restore PSII 

performance after the combined stress period (Zhou et al., 2019). 

Damage induced by abiotic stress to photosynthetic proteins, photosystems I and II, the 

oxygen evolving complex, and components of the electron transmission chain severely 

decreases photosynthetic rate and plant performance (Pospíšil, 2016; Szymańska et al., 

2017; Zhou et al., 2019; Balfagón et al., 2019b). Therefore, the ability of plants to maintain 

a proper photosynthetic rate under stressful conditions could be critical for plant tolerance 

and survival. For example, it was reported that two different citrus genotypes, Carrizo 

citrange and Cleopatra mandarin, showed different abilities to cope with high temperatures, 

impacting alone or in combination with drought. Under water stress, closure of stomata along 

with reductions in transpiration and photosynthetic rates happened in both genotypes. On the 

other hand, heat stress increased transpiration, probably as a mechanism to cool leaf surface 

via evaporation. In Carrizo plants, this response was accompanied by a rise in stomatal 

conductance and photosynthetic rate. However, Cleopatra mandarin that is more sensitive 

to high temperatures, maintained stomatal conductance and photosynthetic rates similar to 

control values. Stress combination induced stomatal closure, transpiration decline, and 

photosynthesis reduction, and caused the most detrimental effect on both genotypes 

(Zandalinas et al., 2016b). Stomatal closure may be the cause of the observed reduction of 

the PSII efficiency whereas the decrease in photosynthetic rates could be associated to the 
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impairment in the CO2 fixation. Similarly to that observed in Arabidopsis (Rizhsky et al., 

2004), citrus stomatal response to drought prevailed over that to heat stress. Thus, plants 

closed the stomata to reduce water loss despite its potential effect on increasing leaf 

temperature. The impossible challenge of alleviating the effects of high temperatures and at 

the same time performing photosynthesis under drought stress combination caused much 

more severe damage than that caused by each of the different stresses applied individually 

(Zandalinas et al., 2016b). When heat was combined with high light stress, wheat plants 

reduced chlorophyll content, relative water content and total protein content. In addition, 

oxidative damage increased under conditions of combined stress in plants, and excess light 

caused damage to PSII reaction centers and reduced photosynthetic activity. High light and 

heat stress combination led to a rapid stomatal closure and subsequently to a decline of the 

photosynthetic rate due to a reduction in CO2 assimilation and Rubisco activity (Chen et al., 

2017). In contrast, in Arabidopsis the combination of heat and high light stresses resulted in 

opening of stomata (Balfagón et al., 2019b). 

The negative impact of different abiotic stress combinations on the photosynthetic apparatus, 

photosynthesis rate and carbon assimilation results in adverse consequences to plant 

development and yield. However, crop production is directly related to the development of 

reproductive organs. Gametogenesis, pollen formation, ovary and embryo sac 

differentiation, and flowering and fertilization are processes that are very sensitive to high 

temperatures (Prasad et al., 2017). As a result, heat stress is one of the most detrimental 

factors in reproductive-organ formation in natural fields and, together with other stress 

factors, can strongly decrease crop production (Fig. 2). For example, four barley cultivars 

with different tolerance to heat and drought showed a severe yield loss (over 95%) after 

being subjected to a combination of both stress conditions during the heading stage, whereas 

the stress combination imposed during the vegetative stage only reduced yield of one cultivar 

(around 60%) (Mahalingam and Bregitzer, 2019). These results suggest that the impact of 

this stress combination on plant yield depends on the developmental stage of the plant. In 

addition, seed production of barley plants under the combination of high temperatures and 

drought during the heading stage was almost null, whereas under individual drought or heat 

stress was higher (although markedly decreased compared to control) (Mahalingam and 

Bregitzer, 2019). In addition, wheat plants sensitive to the combination of high temperature 

and drought, Cappelle Desprez, showed a reduction in yield of over 55% compared to 

controls as a consequence of loss of fertility following 5 days of stress combination (Fábián 

et al., 2019). In that work, it was suggested that spike fertility was affected because of the 
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sensitivity of pollen and the damage to female reproductive organs. In canola plants, drought 

and heat stress combination reduced the number of siliques, which resulted in a yield 

reduction close to 89%. Furthermore, due to the decrease of photosynthetic carbon 

assimilation, seed oil yield was considerably reduced in canola plants under drought and heat 

stress combination (Elferjani and Soolanayakanahally, 2018). Seed oil comes mostly from 

the photosynthetic carbon assimilation of leaves and green silique walls, afterwards 

carbohydrates convert into triacylglycerol (Baud and Lepiniec, 2010). Modifying sowing 

season and other managing techniques can prevent some of the harmful consequences of 

high temperatures on grain or fruit production (Fahad et al., 2017). However, breeding 

efforts must be directed at developing cultivars more tolerant to high temperatures and stress 

combination during the reproductive stage.  

In addition to the damaging impacts of different stress combinations involving high 

temperatures on plant photosynthesis, other physiological processes can also be affected 

during combined stresses (Fig. 2). For example, it was reported that metabolism of 

carbohydrates of lentil plants subjected to drought and heat stress combination was severly 

affected (Sehgal et al., 2017). These adverse conditions inhibited the activity of the enzymes 

sucrose synthase and starch phosphorylase, causing a decrease in sucrose and starch levels 

in leaves and seeds. Although drought alone also caused a reduction in both compounds in 

leaves and seeds, levels were impacted more than those found under stress combination. 

Heat stress induced an increase in sucrose and starch accumulation in leaves but a reduction 

in seeds. Finally, plants under stress combination showed the lowest biomass and fewer and 

smaller seeds compared to plants subjected to individual stress conditions (Sehgal et al., 

2017).  
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Figure 1. Model for plant acclimation to conditions of abiotic stress combinations, including 

drought, salinity, high light or elevated CO2 concentration and high temperatures. Abbreviations 

used: HSPs, heat shock proteins; APX, ascorbate peroxidase; TFs, transcription factors. 

 

 

Hormonal signaling, heat stress and abiotic stress combination 

 

Hormones are key molecules that transmit signals derived from abiotic stress conditions 

throughout the plant and trigger responses to cope with those adverse situations. Different 

stress combinations activate unique physiological and molecular responses in plants that are 

regulated by specific hormonal changes. Therefore, the ability of plants to modulate the 

hormonal balance when subjected to harmful conditions may be key for plant acclimation 

and survival. 

Abscisic acid (ABA) is considered the main hormone in plant responses to abiotic stresses 

(Gómez-Cadenas et al., 2015) and it plays an important role during the acclimation of plants 

to different stress combinations involving high temperatures. For example, poplar plants 

over-accumulated ABA in roots and leaves when subjected to a combination of drought and 

high temperatures compared to their response to individual stress conditions. In addition, 

transcript levels of genes involved in ABA biosynthesis and signaling such as ABR family, 

NCED3 and ABF3, were up-regulated in leaves of poplar plants subjected to heat stress and 

drought. Moreover, transcription factors (TFs) induced by ABA, such as RESPONSIVE TO 

DESICCATION 26 (RD26) and ABA REPRESSOR1 (ABR1), were up-regulated in roots 
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and leaves of poplar plants subjected to drought and heat stress (Jia et al., 2017). In 

agreement to these results, Arabidopsis ABA-signaling mutants (abi1-1) were more 

sensitive to drought and heat stress combination due, at least in part, to the impaired 

accumulation of the ABA-dependent proteins APX1 and MBF1c (Zandalinas et al., 2016a).  

In addition to its key role during the combination of high temperatures and drought, ABA 

was also involved in plant responses to salt and heat stress combination. Following the 

application of individual salt stress conditions to citrus plants, ABA accumulated in leaves 

probably in order to close stomata, reduce transpiration and, therefore, decrease salt uptake 

from soil water absorption (Moya et al., 2003). When salt stress was combined with high 

temperatures, ABA levels were even higher than those of plants subjected to salt stress 

conditions. Moreover, some ABA-responsive genes such as AREB1, AREB2, RD22 and 

RD29,  were up-regulated in correlation with the ABA increase, demonstrating the role of 

ABA as gene modulator in response to the combination of heat and salinity (Balfagón et al., 

2019a). These results are in accordance with transcriptomic studies in Arabidopsis plants 

subjected to salt and heat stress combination (Suzuki et al., 2016), in which it was shown 

that in response to this stress combination, 11% of the up-regulated hormone-response 

transcripts were ABA-dependent (the most highly represented group). In addition, the 

survival rate of ABA deficient and signaling mutants, aba1 and abi1, respectively, 

significantly decreased with respect to wild type plants (Suzuki et al., 2016).  

Despite the important role of ABA for citrus acclimation to the combination of heat and 

salinity,  ABA accumulation in plants subjected to stress combination did not correlate with 

stomatal closure (Balfagón et al., 2019a), as it happened under individual salt stress. A 

similar lack of correlation among ABA levels and stomatal closure was observed in citrus 

plants under the combination of drought and heat stress (Zandalinas et al., 2016b). These 

data suggest that other signaling molecules could play an intermediate role in stomatal 

closure when salt and drought occurred at high temperatures (Fig. 3). Previously, H2O2 and 

Jasmonic acid (JA) have been proposed as alternative signals (Murata et al., 2015). Balfagón 

et al., (2019a) showed that a notable accumulation of JA and its conjugate to isoleucine JA-

Ile, occurred under the combined effect of salinity and high temperatures, suggesting a 

possible role of oxylipins in citrus responses to this stress combination. Furthermore, recent 

studies in Arabidopsis showed that high light intensity and heat stress combination resulted 

in a marked increase in JA content that was not caused by any of the individual stress 

conditions. In addition, the mutant aos, impaired in JA biosynthesis, was more susceptible 

than wild type plants to this stress combination. Moreover, the levels of 822 JA-responsive 
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transcripts were uniquely up-regulated under stress combination and JA-related genes ZAT6 

and ZAT10, as well as the ROS scavengers APX1 and APX2, were down-regulated in the 

aos mutant with respect to the wild type (Balfagón et al., 2019b). Overall, these data suggest 

that JA could play a key role for plant acclimation to high light and heat stress combination, 

and that the ability to regulate the expression of JA-dependent genes could be important to 

cope with the combined effect of heat and high light stress. 

Therefore, different studies focused on hormonal changes during a combination of high 

temperatures and other abiotic stresses such as salinity or high light intensity agreed that a 

coordinated hormonal response to each specific stress combination is essential to trigger the 

proper acclimation responses (Fig. 3). Thus, more effort in developing crops with enhanced 

hormonal responses to specific stress combinations should be considered to improve plant 

performance. 

 

Figure 2. Effect of stress combination on the physiology and survival of different plant species. Data 

was obtained from the published studies on right.  Abbreviations used: D, drought; H, heat; e[CO2], 

elevated CO2 concentration; HL, high light; S, salinity. 

 

Transcriptomic and proteomic responses 

 

Previous studies focused on transcriptomic responses of plants to different stress 

combinations involving high temperatures, revealed some common patterns of gene 

regulation among different species and different stress combinations. Deciphering the most 

important pathways and gene families exclusively regulated during these abiotic stress 

combinations could provide valuable information for the development of new breeding 
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programs to achieve crops more resilient under natural field conditions. For example, the 

transcriptomic profile of Arabidopsis plants subjected to the combination of high light and 

heat stress showed that 4654 genes were up-regulated specifically under this stress 

combination. Among those up-regulated genes, some of the more represented biological 

processes were oxidation-reduction processes, protein transport, protein catabolic processes 

and photosynthesis (Balfagón et al., 2019b). On the other hand, the simultaneous application 

of drought and heat stress in Wild barley (Hordeum spontaneum) resulted in a unique 

transcript expression profile composed of the up-regulation of 535 genes, of which 486 were 

not found among up-regulated genes under the individual stress conditions. The main 

biological processes represented by these genes were oxidation-reduction process and 

protein amino acid phosphorylation (Ashoub et al., 2018). Similarly, Soybean plants grown 

under combined drought and heat triggered the expression of genes involved in oxidation-

reduction, small molecule metabolic processes and protein folding, among others (Wang et 

al., 2018). Meta-analysis of the transcriptomic response of Arabidopsis plants to three 

different stress combinations involving heat stress (high temperatures together with drought, 

salinity or high light intensity) showed that the more represented biological processes among 

the up-regulated genes common to all stress combinations were: response to stress stimulus 

such as heat, water deprivation, salt stress or high light intensity. Also, some genes that 

respond to oxidative stress and hydrogen peroxide were highly up-regulated under these 

three stress combinations. In addition, other biological processes including protein folding 

and RNA splicing were also highly represented from those up-regulated genes (Zandalinas 

et al., 2019).  

In general, transcriptomic studies have shown that changes in gene expression in response 

to different stress combinations, that share as a common factor high temperatures, are unique 

and different from the addition of responses to each of the individual stresses (Rizhsky et 

al., 2004; Suzuki et al., 2016; Lawas et al., 2018; Balfagón et al., 2019b). Moreover, it seems 

that there is not a specific response to all stress combinations but each situation induces a 

particular gene expression pattern. However, despite the transcriptomic variations among  

different stress combinations, there are common biological processes enriched by different 

abiotic stress combinations (Zandalinas et al., 2019). Notably, the up-regulation of many 

ABA-responsive genes showed the importance of this hormone in triggering acclimation 

responses to general abiotic stress combinations (Suzuki et al., 2016; Jia et al., 2017; 

Balfagón et al., 2019b).  
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Reactive oxygen species (ROS) are produced during different abiotic stresses and their over 

accumulation in cells coupled with the lack of a powerful antioxidant systems may cause 

damage to proteins, DNA and lipids (Suzuki and Mittler, 2006). Genes involved in 

oxidation-reduction processes and genes that respond to oxidative stress or hydrogen 

peroxide, were up-regulated in several abiotic stress combinations and plant species 

(Rizhsky et al., 2004; Suzuki et al., 2016; Ashoub et al., 2018; Wang et al., 2018; Balfagón 

et al., 2019b). Rice lines that over expressed the enzyme glycolate oxidase (GLO), which 

catalyzes glycolate oxidation to produce peroxisomal H2O2, showed an improved 

photosynthetic capacity and a higher resistance to photo-oxidative stress than wild type 

plants under high light and heat stress combination. These results suggest that the induction 

of GLO, involved in photorespiratory metabolism, can confer tolerance to high light at high 

temperatures increasing photosynthesis rate and reducing oxidative damage (Cui et al., 

2016).  Therefore, the ability of plants to trigger responses to cope with oxidative damage is 

crucial to acclimate or survive under situations of stress combination. Other biological 

processes enriched by gene expression under different stress combinations were the protein 

folding, phosphorylation and RNA splicing ( Jia et al., 2017; Ashoub et al., 2018; Wang et 

al., 2018; Balfagón et al., 2019b). This could indicate that accumulation and/or activation, 

through phosphorylation, of proteins with protective (like chaperones) and signaling 

functions (like TFs) are crucial to maintain cell functioning and homeostasis against adverse 

conditions.  

To regulate gene expression, TFs bind to specific elements in the promoters of target genes. 

High light and heat stress combination impacting Arabidopsis plants specifically induced the 

expression of several genes encoding APETALA2/ethylene-responsive (AP2/EREBPs) TFs, 

including ERF109, ERF88, DREB1D, ERF25, ERF57, ERF4, and ERF99 (Balfagón et al., 

2019b). The AP2/EREBP family is a plant-specific TF group that includes DREBs and ERFs 

subfamilies, involved in plants responses to abiotic stress (Mizoi et al., 2012; Agarwal et al., 

2017). In soybean plants, for example, the up-regulation of 8 AP2/EREBPs genes only 

occurs when drought and heat stress were combined (Wang et al., 2018). These data suggest 

that AP2/EREBP TF family might play an important role in coordinating gene responses to 

abiotic stress combinations such as high light or drought combined with high temperatures. 

Meta-analysis of transcriptomic studies in Arabidopsis under high temperatures in 

combination with other three abiotic stresses (drought, salinity and high light intensity) 

showed a common up-regulation of 4 AP2/EREBP TFs in all stress combinations and 

revealed an additive, negative and/or combinatorial manner of regulation used by 
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AP2/EREBPs to control transcript expression, acclimation and development during stress 

combination (Zandalinas et al., 2019). 

Molecular responses to stress combination have also been studied at the proteomics level.  

The over accumulation of proteins involved in the repair or the replacement of damaged 

protein complexes can confer tolerance to abiotic stresses including high temperatures. 

Suaeda salsa L., a tolerant plant to salinity and high temperatures, showed a different pattern 

of protein accumulation when plants were subjected to combined salt and heat or to any of 

the two stress conditions applied individually. Suaeda salsa plants showed an improved 

performance of PSII under salt and high temperatures as a result of a higher accumulation 

of chlorophyll a/b binding proteins (LHCII), considered key for the proper function of PSII 

(Li et al., 2011). In maize leaves, 32 proteins related to the chloroplast function were 

accumulated under drought and heat stress combination, such as PSI reaction center subunit 

V/N or the FtsH protease, involved in the turnover of the PSII reaction center-related D1 

protein (Zhao et al., 2016). On the other hand, accumulation of protective proteins, such as 

chaperones or ROS scavenging enzymes is a common response related to the tolerance of 

plants to different stress combinations (Zandalinas et al., 2016a, 2017; Balfagón et al., 2018). 

Protein analyses in citrus under drought and heat stress combination demonstrated that 

accumulation of the ROS scavenger, APX, and two heat shock proteins, HSP101 and 

HSP17.6 conferred tolerance to these conditions (Balfagón et al., 2018).  

The varying transcriptome and proteome responses to different abiotic stress conditions 

involving high temperatures reveal the importance of developing unique crop breeding 

strategies to face stress combinations at high temperatures.   
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Figure 3. Hormonal interactions that regulate stomatal responses under individual or combined stress 

conditions. Abbreviations used: ABA, abscisic acid; JA, jasmonic acid, SA, salicylic acid. 

 

Future directions 

Climate change is a major threat to global crop yield production. The increase in average 

temperatures, in addition to more frequent extreme climate events or the loss of available 

land for agriculture, is likely to compromise crop production in the near future (Zhao et al., 

2017). In light of this predicted scenario, it is essential to develop new crops capable of 

acclimating to these environmental changes that often impact plants in combination, in order 

to increase current and future plant yields. High temperatures negatively impact 

photosynthesis, carbon assimilation and sexual organ formation (Pospíšil, 2016; Prasad et 

al., 2017; Szymańska et al., 2017). Other abiotic stressors occurring in combination with 

heat stress exacerbate the damage to plant and affect yield (Figs. 1, 2). Breeding programs 

and agricultural practices must focus on avoiding the effects of these conditions, as well as 

on improving different crop-specific mechanisms of heat damage control and repair, 

considering physiological, hormonal and genetic mechanisms in an integrated manner. New 

cultivars must be effective in protecting and repairing their photosynthetic machinery, 

maintaining carbon assimilation rates and developing reproductive organs in a warmer 

environment. The research reviewed here indicates that high and/or fast accumulation of 

stress signaling hormones such as ABA and JA, the induction of certain gene families and/or 

transcription factors involved in initiating acclimation responses and the production of 
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protective proteins like HSPs, may be key factors that determine plant success to acclimate 

to the different stress combinations that include high temperatures. 

Data reviewed here identify some of the most affected processes during plant growth under 

abiotic stress combinations at high temperatures. In addition, it shows common responses to 

different stress combinations that can be used to improve tolerance to these harmful 

environmental conditions. However, most of research described here was performed under 

laboratory conditions. It is necessary, therefore, that the conclusions obtained from these 

studies will be further supported by evidence obtained from field studies under real harsh 

climatic conditions.  
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The main objective of this work consists in the study of the impact of different abiotic 

stresses in combination with high temperatures on plant physiology. 

To achieve this aim, the following partial objectives were established: 

1. Determine the physiological and molecular responses of two citrus genotypes 

(Carrizo citrange and Cleopatra mandarin) to the combination of drought and high 

temperatures (Chapter 1). 

2. Study the relationship between the antioxidant activity and the tolerance of these 

citrus genotypes to drought and heat stress combination (Chapter 2). 

3. Analyze the physiological and hormonal responses of the citrus genotype Carrizo 

citrange to mechanical wounding and salinity in combination with high 

temperatures. (Chapter 3). 

4. Evaluate the physiological, hormonal and transcriptomic responses to high light 

and heat stress combination in the model plant Arabidopsis thaliana (Chapter 4). 

 



 
 

Results 
 
 

Chapter 1  

 

Modulation of antioxidant defense system is 
associated with combined drought and heat stress 
tolerance in citrus 

Zandalinas & Balfagón et al. (2017) Frontiers in Plant 
Science 8:953 



 



Chapter 1 

27 
 

C
H

A
P

T
E

R
 1

 

Abstract 

Drought and high temperatures are two major abiotic stress factors that often occur 

simultaneously in nature, affecting negatively crop performance and yield. Moreover, 

these environmental challenges induce oxidative stress in plants through the production 

of reactive oxygen species (ROS). Carrizo citrange and Cleopatra mandarin are two citrus 

genotypes with contrasting ability to cope with the combination of drought and heat 

stress. In this work, a direct relationship between an increased antioxidant activity and 

stress tolerance is reported. According to our results, the ability of Carrizo plants to 

efficiently coordinate superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase 

(CAT), and glutathione reductase (GR) activities involved in ROS detoxification along 

with the maintenance of a favorable GSH/GSSG ratio could be related to their relative 

tolerance to this stress combination. On the other hand, the increment of SOD activity 

and the inefficient GR activation along with the lack of CAT and APX activities in 

Cleopatra plants in response to the combination of drought and heat stress, could 

contribute to an increased oxidative stress and the higher sensibility of this citrus genotype 

to this stress combination. 

Introduction 

Environmental stresses cause large economic losses in agriculture every year, 

constraining crop yield and production. Owing to the consequences of the climate change, 

different combinations of abiotic stress conditions are severely impacting on plants in the 

natural field. Although research on plants is traditionally based on the study of the 

responses to single abiotic factors, further effort has been made over the last years to 

analyze plant responses to different combined stresses, either abiotic or biotic (Suzuki et 

al., 2014; Zandalinas et al., 2017a). Particularly, drought and heat are considered one of 

the most frequent abiotic stress combinations that drastically affect global agricultural 

systems (International Panel of Climate Change, IPCC 2014). 

In general, abiotic stresses that limit CO2 availability due to stomatal closure enhance the 

accumulation of reactive oxygen species (ROS). Interestingly, while ROS, such as H2O2, 

are considered important signal transduction molecules (Baxter et al., 2014; Mittler, 

2016), they are also toxic, causing extensive cellular damage and inhibition of 

photosynthesis (Choudhury et al., 2016). To prevent damage, ROS accumulation is 

mitigated by the antioxidant machinery including ROS-scavenging enzymes and 
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increased levels of antioxidants such as ascorbate (AsA) and glutathione (GSH), 

components of the so-called Halliwell-Asada cycle (Mittler et al., 2004). One of the key 

enzymes of the antioxidant defense system is the superoxide dismutase (SOD), which 

constitutes the first level of defense against superoxide radicals. SOD-catalyzed O2
●⁻ 

dismutation renders H2O2 as a reaction product, which in turn is removed by ascorbate 

peroxidase (APX) and catalase (CAT) activities (Mittler et al., 2004). APX reduces H2O2 

using AsA as the electron donor and the balance between GSH and oxidized glutathione 

(GSSG) is critical for maintaining a favorable redox status for the detoxification of H2O2. 

In addition, glutathione reductase (GR), the rate-limiting enzyme of AsA-GSH cycle, 

keeps the GSH/GSSG ratio favorable for ascorbate reduction (Foyer and Noctor, 2005).  

Several studies have reported that the ability of plants to balance ROS production and 

scavenging is associated to a higher tolerance to different environmental stresses (Arbona 

et al., 2008; Hernandez et al., 2000; Lin et al., 2004; Martinez et al., 2016). The 

accumulation of high amount of ROS-response transcripts in plants subjected to different 

combinations of stress factors, reflects the relevance of ROS as an important component 

of acclimation pathways during combined stresses (reviewed in Suzuki et al. 2014). For 

example, it has been suggested the key role of cytosolic APX1 for the acclimation of 

plants to a combination of drought and heat (Koussevitzky et al., 2008). In that work, 

Arabidopsis mutants deficient in this enzyme (apx1), were found to be highly sensitive to 

this stress combination. Furthermore, ROS-ABA interactions are very important for plant 

acclimation to stress combination. In this way, previous reports have shown that mutants 

impaired in the function of the ABA and ROS-regulated PP2Cs (abi-1) were sensitive to 

the combined impact of drought and heat, as well as salinity and heat (Suzuki et al., 2016; 

Zandalinas et al., 2016a). Furthermore, several studies have reported that the expression 

of different ROS-scavenging enzymes and the accumulation of different antioxidants 

exhibit a unique mechanism of response during stress combination that is different than 

that found in response to each individual stress (Giraud et al., 2008; Jin et al., 2016; Keles 

and Oncel, 2002; Martinez et al., 2016; Pandey et al., 2015; Prasch and Sonnewald, 2013; 

Rasmussen et al., 2013; Rivero et al., 2013; Rizhsky et al., 2002, 2004; Vile et al., 2012).   

Metabolite profiling of leaves of both citrus genotypes in response to combined drought 

and heat revealed that the accumulation of secondary metabolites with antioxidant 

function is associated to sensitivity to this stress combination (Zandalinas et al., 2017b). 



Chapter 1 

29 
 

C
H

A
P

T
E

R
 1

 

Therefore, the higher sensitivity of Cleopatra plants required a higher accumulation of 

protective metabolites oriented to mitigate the damaging effects of stress, including 

flavonols, flavones and limonoids (Zandalinas et al., 2017b). However, the role of the 

antioxidant defense involving ROS-scavenging enzymes in the tolerance of citrus plants 

to combined drought and heat is currently unknown. Previous reports have associated the 

ability to modulate the antioxidant system with the tolerance of citrus plants to 

waterlogging (Arbona et al., 2008; Hossain et al., 2009), salinity (Arbona et al., 2003) or 

water stress (Wu et al., 2006). In general, these investigations concluded that coordinated 

antioxidant activity associated to increased activities of SOD and CAT, along with a 

modulation of the AsA–GSH cycle, allowed citrus plants to reduce stress-induced 

oxidative damage. In addition, a recent study demonstrated that the antioxidant response 

of different citrus plants subjected to Cu stress was dependent on the signaling regulated 

by the rootstocks, suggesting that the use of appropriate rootstocks contributes to alleviate 

the effects of Cu stress (Hippler et al., 2016).     

The aim of the present work was to investigate how oxidative metabolism and related 

antioxidants were modified during the combination of drought and high temperatures in 

two citrus genotypes (Carrizo citrange and Cleopatra mandarin) with different ability to 

cope with combined stresses (Zandalinas et al., 2016b) and to correlate the modulation of 

the antioxidant system with the different tolerance to this stress combination. 

Materials and methods 

Plant material and growth conditions  

Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) and Cleopatra 

mandarin (Citrus reshni Hort. Ex Tan.) plants were purchased from a commercial nursery 

(Beniplant S.L., Penyíscola, Spain). One-year-old seedlings of both citrus genotypes were 

grown in plastic pots filled with perlite and watered three times a week with a half-

strength Hoagland solution under greenhouse conditions, with natural photoperiod and 

day and night temperature averaging 25.0 ± 3.0 °C and 18.0 ± 3.0 °C, respectively. Then, 

plants were maintained for two weeks in growth chambers to acclimate to a 16-h 

photoperiod at 25 °C and relative moisture at approximately 80%. Temperature and 

relative moisture were recorded regularly with a portable USB datalogger (OM-EL-WIN-

USB, Omega, New Jersey, USA). 
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Stress treatments and experimental designs 

A 24-h experiment of combined drought and heat was performed with both types of plants 

(Figure 1). High temperatures (40 ºC) were firstly imposed for 7 days to a group of plants, 

maintaining another group at 25 °C as control. After imposing the temperature treatment, 

severe water stress conditions were applied by transplanting a group of plants grown at 

25 ºC or at 40 ºC to dry perlite. Therefore, four experimental groups for each citrus 

genotype were established: well-watered plants at 25 °C (CT) and at 40 °C (HS) and 

plants subjected to water stress at 25 °C (WS) and at 40 °C (WS +HS). Leaves with an 

intermediate position in the canopy were harvested and immediately submerged in liquid 

N2. 

Figure 1.  Experimental design used to subject Carrizo and Cleopatra plants to drought (WS), 

heat stress (HS) and a combination of drought and heat stress (WS + HS) with details of period 

times for each stress treatment. Percentages of affected leaves in Carrizo (CC) and Cleopatra 

(CM) subjected to WS, HS and WS+HS are also indicated. 

 

Proline concentration 

Proline analysis was performed as described by Bates et al. (1973) with some 

modifications. Briefly, 50 mg of ground leaf tissue was extracted in 5 ml of 3% 

sulfosalicylic acid (Panreac, Barcelona, Spain) by sonication for 30 min. After 

centrifuging at 4000 g for 20 min at 4 °C, 1 ml of the supernatant was mixed with 1 ml 

of glacial acetic acid and ninhydrin reagent (Panreac) in a 1:1 (v:v) ratio. The reaction 

mixture was incubated in a water bath at 100 °C for 1 h and subsequently centrifuged at 

2000 g for 5 min at 4 °C. Finally, absorbance was read at 520 nm. A standard curve was 

assayed with pure proline (Sigma-Aldrich, St. Louis, MO, USA). 
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Leaf water status  

Relative water content (RWC) of citrus leaves was calculated using adjacent leaves, 

which were weighed to obtain a leaf fresh mass (Mf). Leaves were allowed to rehydrate 

overnight in an opaque beaker filled with water. Therefore, they were reweighed to obtain 

turgid mass (Mt). Finally, leaves were dried at 80 °C for 48 h to obtain dry mass (Md). 

RWC was calculated as [(Mf -Md) × (Mt-Md)
−1] × 100 according to Morgan (1984). 

Malondialdehyde concentration  

Malondialdehyde (MDA) content was measured following the procedure of Hodges et al. 

(1999) with modifications. Ground leaf tissue (0.2 g) were extracted in 2 mL 80% ethanol 

by sonication for 30 min and, after that, centrifuged at 12000 g for 10 min. Different 

aliquots of the supernatant were mixed either with 20% trichloroacetic acid or with a 

mixture of 20% trichloroacetic acid and 0.5% thiobarbituric acid. Both mixtures were 

incubated in a water bath at 90 °C for 1 h. After cooling samples in ice, homogenates 

were centrifuged at 2000 g for 10 min at 4 °C. Lastly, the absorbance at 440, 534 and 600 

nm of supernatants was read. 

Gene expression 

The specific primers used for the amplification of each gene are included in Table S1. 

qRT-PCR analyses were performed in a StepOne Real-Time PCR system (Applied 

Biosystems, CA, USA). The reaction mixture contained 1 μL of cDNA, 5 μL of 

SYBRGreen (Applied Biosystems) and 1 μM of each gene-specific primer pair in a final 

volume of 10 μL. The thermal profile used to analyze the relative gene expression 

consisted of 10 min at 95 °C for pre-incubation, followed by 40 cycles of 10 s at 95 °C 

for denaturation, 10 s at 60 °C for annealing and 20 s at 72 °C for extension. Amplicon 

specificity of the PCR reaction was evaluated by the presence of a single peak in the 

dissociation curve after the amplification steps. The expression levels of all genes was 

normalized against the expression of two endogenous control genes (tubulin and actin) 

based on previous housekeeping selection for citrus tissues (Mafra et al., 2012) and the 

relative expression were calculated by using Relative Expression Software Tool (REST; 

Pfaffl et al. 2002). For all genes studied, the reference sample was the expression value 

obtained at the non-stressed samples and set at zero. 
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Antioxidant enzyme activities  

About 100 mg of frozen ground leaf tissue were extracted in 2 mL of phosphate buffer in 

a ball mill (MillMix20, Domel, Železniki, Slovenija). After centrifugation 14000 g at 4 

oC for 10 min, supernatant were recovered. Different buffers were used for enzyme 

extractions as follows: for APX, 50 mM phosphate buffer (pH 7.8) supplemented with 1 

mM sodium ascorbate and 1 mM EDTA; for SOD, 50 mM phosphate buffer (pH 6.8) 

with 1.33 mM diethyl-diamino-pentaacetic acid; finally, CAT and GR were extracted in 

50 mM phosphate buffer (pH 6.8 and pH 7.5, respectively). The APX activity was assayed 

following the depletion in absorbance at 290 nm due to AsA consumption. The SOD 

activity was determined following the O2
●⁻-induced reduction of nitroblue tetrazolium 

using the xanthine–xanthine oxidase system. CAT was determined using the hydrogen 

peroxide-dependent reduction of titanium chloride. The GR activity was studied 

following the increase in absorbance at 412 nm during 2 min as result of the production 

of the adduct DTNB-GSH after GSSG reduction. The reaction was initiated by adding a 

suitable aliquot of enzyme extract and the increment in absorbance was recorded during 

3 min at 265 nm. Soluble protein content was determined according to Bradford (1976) 

using BSA as a standard. Enzyme activity was expressed as U mg-1 protein. Further 

details on enzyme assays are provided in Hossain et al. (2009). 

Ascorbate and glutathione levels 

Procedures for ascorbate and glutathione determinations are described in Hossain et al. 

(2009). In short, ascorbate assay is derived from the reduction of Fe3+ to Fe2+ in acidic 

solution by ascorbate. Fe2+ forms a red chelate with bipyridyl that absorbs at 525 nm. 

DHA was calculated by subtracting AsA from total ascorbate. The DTNB-GSSG 

reductase recycling process was used to calculate both total (GSH+GSSG) and GSSG 

levels.  

Statistical analyses  

Data are means of three independent determinations and were subjected to analysis of 

variance (ANOVA) using a two-way ANOVA with the interaction genotype x stress 

followed by Tukey posthoc test (P<0.05) when a significant difference was detected. 
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Results 

Leaf damage induced by drought, heat and combined stresses 

As shown in Figure 1, 24-hour of drought applied individually induced visible leaf 

damage in both citrus genotypes (30.2% and 28.1% of Carrizo and Cleopatra leaves, 

respectively, were injured). Carrizo plants subjected to continuous heat stress (40oC) were 

slightly affected, showing only 5% and 7% of total leaves damaged at 6 days and at the 

end of the experiment, respectively. On the contrary, after 4 days of heat regime, 26% of 

Cleopatra leaves were damaged, reaching about 59.9% at the end of the experiment. 

Plants subjected to a combination of drought and heat stress showed the highest 

percentage of leaf damage in both citrus genotypes. Hence, 39.2% and 87.8% of leaves 

were affected by the combined stresses in Carrizo and Cleopatra, respectively (Figure 1). 

Impact of drought, heat and combined stresses on water status  

Leaf RWC of Carrizo and Cleopatra plants subjected to drought, heat stress and a 

combination of drought and heat stress was measured (Table 1). Drought and heat stress 

conditions similarly decreased leaf RWC in Carrizo and Cleopatra: in Carrizo plants 

subjected to WS and HS, RWC reached 60.32% and 75.32% respect to control values, 

respectively. In Cleopatra plants, RWC decreased to 59.66% and 69.01% (with respect to 

controls) in response to WS and HS, respectively. Interestingly, stress combination had 

an additive impact on this parameter, showing the greatest decrease (43.38% and 39.41% 

with respect to control values in Carrizo and Cleopatra, respectively; Table 1). 
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Table 1. Relative water content (RWC) of Carrizo and Cleopatra leaves subjected to drought 

(WS), heat (HS) and their combination (WS + HS). Data are presented as mean value of three 

different replicates ± SD. Different letters denote statistical significance at p ≤ 0.05. G: genotype; 

S: stress treatment; GxS: interaction genotype x stress treatment. *P < 0.05; **P < 0.01; ***P < 

0.001; ns: no statistical differences. 

Genotype  RWC (%) 

Carrizo   

 

CT 92.96±0.75  a 

WS 60.32±3.01  bc 

HS 75.32±4.73  b 

WS + HS 43.38 ± 5.17  de 

Cleopatra   

 

CT 93.72±3.01  a 

WS 59.66±4.31  cd 

HS 69.01±3.92  bcd 

WS + HS 39.41±6.07  e 

G: ** 

S: *** 

GxS: ns 
  

 

Proline concentration 

Endogenous proline levels were examined in leaves and roots of both citrus genotypes in 

response to individual and combined stresses (Figure 2). In general, basal proline content 

of both Cleopatra leaves and roots almost doubled the levels observed in Carrizo. 

Furthermore, proline concentration in Carrizo leaves significantly increased respect to 

control values in response to individual stresses. In addition, stress combination induced 

the highest proline concentration in this genotype (52.6 nmol g-1 FW). Proline content 

only increased in response to WS and WS+HS in Cleopatra leaves (Figure 2A). On the 

other hand, significant increments of proline levels were observed in Carrizo roots 

subjected to WS (2.2-fold) and especially to WS+HS (3.1-fold), whereas HS did not 

impact on proline build-up. Finally, proline levels increased similarly in Cleopatra roots 

in response to WS and WS+HS (about 2-fold) and HS caused a reduction of its levels 

below control values (Figure 2B). 

MDA concentration 

Oxidative damage in terms of malondialdehyde (MDA) concentration in response to 

drought, heat stress and the combination of drought and heat stress was studied in leaves 

and roots of both citrus genotypes (Figure 3). MDA accumulated in Carrizo leaves in 

response to WS and more prominently in response to WS+HS, reaching 170.02 nmol g-1 

FW. On the contrary, Cleopatra leaves increased MDA content in response to HS and 
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especially during WS+HS (234.21 nmol g-1 FW, Figure 3A). MDA accumulation pattern 

in roots was different between both citrus genotypes. Whereas WS induced MDA 

accumulation only in Cleopatra, HS slightly increased its accumulation in both citrus 

plants. Strikingly, stress combination resulted in a minor MDA accumulation in Carrizo 

roots (133.83 nmol g-1 FW) whereas in Cleopatra roots, it resulted in a strong MDA 

accumulation, reaching 250.24 nmol g-1 FW (Figure 3B).  

 

  

Figure 2. Proline accumulation in leaves (A) 

and roots (B) of Carrizo and Cleopatra plants 

subjected to drought (WS), heat (HS) and a 

combination of drought and heat stress (WS + 

HS). Different letters denote statistical 

significance at p ≤ 0.05. G: genotypes; S: 

stress treatment; GxS: interaction genotype x 

stress treatment. *P < 0.05; **P < 0.01; ***P 

< 0.001; ns: no statistical differences. 

 

Figure 3. Malondialdehyde (MDA) 

accumulation in leaves (A) and roots (B) of 

Carrizo and Cleopatra plants subjected to 

drought (WS), heat (HS) and a combination of 

drought and heat stress (WS + HS). Different 

letters denote statistical significance at p ≤ 

0.05. G: genotypes; S: stress treatment; GxS: 

interaction genotype x stress treatment. *P < 

0.05; **P < 0.01; ***P < 0.001; ns: no 

statistical differences. 
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Antioxidant enzymatic activity  

To find out the importance of the antioxidant enzymatic machinery in coping with the 

oxidative stress induced by abiotic stress, the activity of antioxidant enzymes (SOD, 

CAT, APX, GR) in Carrizo and Cleopatra leaves in response to drought, heat and their 

combination was studied. Additionally, the transcript levels of genes encoding for those 

enzymes were analyzed in both citrus genotypes under each stress condition.  

Under all conditions (control or stress), the SOD activity was significantly higher in 

Carrizo (5-fold) compared to Cleopatra plants. Imposition of individual and combined 

stresses had no significant impact on SOD activity in Carrizo leaves, whereas Cleopatra 

plants showed a 2-fold and 3-fold increment of this enzymatic activity in response to 

individual (WS and HS) and combined stresses (WS+HS), respectively (Figure 4A). 

Furthermore, the relative expression of the gene encoding SOD-CuZn in Carrizo was up-

regulated under individual stress conditions. In Cleopatra leaves, an accumulation of 

SOD-CuZn transcripts was observed in response to HS and WS+HS treatments. In 

addition, SOD-Fe transcripts slightly accumulated in response to HS in Carrizo and in 

response to WS and WS+HS in Cleopatra (Figure 4B).  

Similar to SOD, CAT activity was more than 3-fold higher in Carrizo than in Cleopatra 

in all conditions studied. In response to individual drought and heat stress, CAT activity 

did not change with respect to control values in leaves of both citrus genotypes. 

Interestingly, under stress combination, CAT activity increased in Carrizo and decreased 

in Cleopatra compared to control levels (Figure 5A). Analysis of the relative 

accumulation of CAT transcripts in Carrizo revealed a remarkable up-regulation under 

individual and especially under combined stress conditions. Contrarily, CAT was down-

regulated in Cleopatra leaves, particularly under WS and WS+HS (Figure 5B). 

APX activity significantly increased in response to heat stress and the combination of 

drought and heat stress with respect to control conditions in Carrizo leaves, whereas in 

Cleopatra a significant increment in APX activity was observed only in response to heat 

stress (Figure 6A). Moreover, the relative expression of APX was up-regulated under 

heat stress and especially under WS and WS+HS in Carrizo, whereas only HS and 

WS+HS induced the accumulation of APX transcripts in Cleopatra (Figure 6B). 

In Carrizo plants, WS significantly increased the GR activity whereas neither HS nor 

WS+HS had effect on it. In contrast, in Cleopatra plants, WS and WS+HS increased GR 
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activity and HS did not change this enzymatic activity respect to control levels (Figure 

7A). Nevertheless, GR transcript number increased under all stress conditions studied in 

both genotypes, mainly in Carrizo leaves under stress combination (Figure 7B). 

 

 

  

Figure 4. Effects of drought (WS), heat (HS) 

and a combination of drought and heat stress 

(WS + HS) on SOD activity (A) and transcript 

expression (B) in leaves of Carrizo and 

Cleopatra plants. Different letters denote 

statistical significance at p ≤ 0.05. G: 

genotypes; S: stress treatment; GxS: 

interaction genotype x stress treatment. *P < 

0.05; **P < 0.01; ***P < 0.001; ns: no 

statistical differences. Scale for gene 

expression is log2 of the mean values after 

normalization against control plants. 

Figure 5. Effects of drought (WS), heat (HS) 

and a combination of drought and heat stress 

(WS + HS) on CAT activity (A) and transcript 

expression (B) in leaves of Carrizo and 

Cleopatra plants. Different letters denote 

statistical significance at p ≤ 0.05. G: 

genotypes; S: stress treatment; GxS: 

interaction genotype x stress treatment. *P < 

0.05; **P < 0.01; ***P < 0.001; ns: no 

statistical differences. Scale for gene 

expression is log2 of the mean values after 

normalization against control plants. 
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Figure 6. Effects of drought (WS), heat (HS) 

and a combination of drought and heat stress 

(WS + HS) on APX activity (A) and transcript 

expression (B) in leaves of Carrizo and 

Cleopatra plants. Different letters denote 

statistical significance at p ≤ 0.05. G: 

genotypes; S: stress treatment; GxS: 

interaction genotype x stress treatment. *P < 

0.05; **P < 0.01; ***P < 0.001; ns: no 

statistical differences. Scale for gene 

expression is log2 of the mean values after 

normalization against control plants. 

Figure 7. Effects of drought (WS), heat (HS) 

and a combination of drought and heat stress 

(WS + HS) on GR activity (A) and transcript 

expression (B) in leaves of Carrizo and 

Cleopatra plants. Different letters denote 

statistical significance at p ≤ 0.05. G: 

genotypes; S: stress treatment; GxS: 

interaction genotype x stress treatment. *P < 

0.05; **P < 0.01; ***P < 0.001; ns: no 

statistical differences. Scale for gene 

expression is log2 of the mean values after 

normalization against control plants. 

 

Antioxidant metabolites 

Under combined stress, tAsA and AsA levels increased in Carrizo and Cleopatra leaves 

with respect to control values (Table 2). Moreover, Cleopatra showed a higher tAsA 

content than Carrizo under combined stress conditions. However, DHA content only 

increased in Cleopatra leaves in response to stress combination. Due to the concomitant 

changes in AsA and DHA levels in response to each stress condition, no significant 

alteration in leaf redox AsA/DHA ratio was observed within each citrus genotype (Table 

2). Additionally, in response to stress combination, Carrizo and Cleopatra leaves 

accumulated significant higher levels of tGSH, GSH and GSSG respect to control values 

(Table 3). Furthermore, HS induced an accumulation of tGSH, GSH and GSSG 

compared to control conditions only in Carrizo leaves. GSH/GSSG ratio increased in 
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Cleopatra leaves upon imposition of WS with respect to control values and higher values 

in this ratio were found in CT and WS conditions respect to Carrizo values (Table 3). 

Table 2. Ascorbate (AsA), total ascorbate (tASA) and dehydroascorbate (DHA) content in 

Carrizo and Cleopatra leaves subjected to drought (WS), heat (HS) and their combination (WS + 

HS). Data are presented as mean value of three different replicates ± SD. Different letters denote 

statistical significance at p ≤ 0.05. G: genotype; S: stress treatment; GxS: interaction genotype x 

stress treatment. *P < 0.05; **P < 0.01; ***P < 0.001; ns: no statistical differences. 

Genotype 
tAsA 

(µmol g-1 FW) 

AsA 

(µmol g-1 FW) 

DHA 

(µmol g-1 FW) 
AsA/DHA 

Carrizo     

CT 4.68±0.2    e 4.26±0.09  b 0.42±0.11  bc 11.58±2.79   ab 

WS 3.87±0.31    e 3.58±0.26   b 0.29±0.05    c 13.11±1.59    a 

HS 7.24±0.55  bc 6.0±0.35 ab 1.24±0.33  bc 5.04±2.3  bc 

WS+HS 9.35±0.32    b 8.53±0.33   a 0.81±0.16  bc 10.51±1.76  ab 

Cleopatra     

CT 4.75±0.74   de 3.91±0.52   b 0.84±0.39  bc 6.52±1.99 abc 

WS 7.02±0.72   cd 4.82±0.48   b 2.2±0.39    b 2.40±0.47     c 

HS 6.12±0.21 cde 4.13±0.25   b 1.99±0.18  bc 2.10±0.23    c 

WS+HS 13.84±0.41     a 8.4±1.18   a 5.44±1.17    a 1.68±0.35    c 

 G: *** 

S: ** 

GxS: ns 

G: *** 

S: ns 

GxS: ns 

G: *** 

S: *** 

GxS: *** 

G: ns 

S: *** 

GxS: ns 

Table 3. Total glutathione (tGSH), reduced glutathione (GSH) and oxidized glutathione (GSSG) 

content in Carrizo and Cleopatra leaves subjected to drought (WS), heat (HS) and their 

combination (WS + HS). Data are presented as mean value of three different replicates ± SD. 

Different letters denote statistical significance at p ≤ 0.05. G: genotype; S: stress treatment; GxS: 

interaction genotype x stress treatment. *P < 0.05; **P < 0.01; ***P < 0.001; ns: no statistical 

differences. 

Genotype 
tGSH 

(nmol g-1 FW) 

GSH 

(nmol g-1 FW) 

GSSG 

(nmol g-1 FW) 
GSH/GSSG 

Carrizo     

CT 96.5±3.2   cd 81.2±5.8  cd 15.4±7.3  bc 4.5±2.0   c 

WS 83.4±7.7   cd 75.7±7.2  cd 7.7±3.5    c 6.6±0.4   c 

HS 147.8±5.5     a 118.3±12.6  ab 29.4±8.2    a 4.8±1.5   c 

WS+HS 153.5±22.6     a 129.4±22.7    a 24.1±0.4  ab 5.4±1.0   c 

Cleopatra     

CT 77.8±6.8   cd 73.5±6.8     d 4.3±0.1    c 17.0±1.3   b 

WS 75.5±5.3     d 68.4±8.2     d 7.1±3.4    c 20.9±1.8   a 

HS 107.9±5.5   bc 92.8±4.8 bcd 15.1±0.7  bc 6.1±0.1   c 

WS+HS 132.6±4.2   ab 109.9±3.7 abc 22.7±1.3  ab 4.9±0.3   c 

 G: *** 

S: ** 

GxS: ns 

G: ** 

S: ns 

GxS: ns 

G: *** 

S: * 

GxS: ns 

G: *** 

S: *** 

GxS: *** 
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Discussion 

In general, abiotic stresses including high temperatures, drought or different combinations 

of environmental challenges, induce in plants metabolic imbalances that can cause an 

oxidative stress in cells. This effect results in the generation and accumulation of ROS, 

promoting oxidation of cellular components, hindering metabolic activities and affecting 

organelle integrity (Suzuki et al., 2012). Particularly in citrus plants, it has been proposed 

that environmental cues such as waterlogging, Cu toxicity, salinity or drought induce 

oxidative damage (Arbona et al., 2003, 2008; Hippler et al., 2016; Hossain et al., 2009; 

Wu et al., 2006), highlighting the importance of modulating the antioxidant system 

efficiently to cope with these abiotic stresses. In the present work, the antioxidant 

machinery of two citrus genotypes, Carrizo citrange and Cleopatra mandarin, with 

contrasting ability to tolerate the combination of drought and heat (Zandalinas et al., 

2016b) was investigated to correlate differences in the modulation of the antioxidant 

system with tolerance to this stress combination. In this sense, Cleopatra constitutes a 

genotype more sensitive than Carrizo to drought combined with heat according to data 

presented in Figure 1 and also reported in Zandalinas et al. (2016c). Therefore, the 

percentage of damaged leaves in response to heat or a combination of drought and heat 

was significantly higher in Cleopatra than in Carrizo (Figure 1), demonstrating the higher 

ability of Carrizo to deal with stresses that involve high temperatures. Moreover, a 

positive correlation between stress sensitivity and proline accumulation was observed. 

Hence, Cleopatra accumulated higher amounts of proline in leaves and roots in response 

to the combination of drought and heat compared to Carrizo. Additionally, both citrus 

genotypes accumulated higher levels of this metabolite in response to combined stress 

factors, a more damaging situation with respect to individual stresses. This result matches 

other works in which a higher stress pressure exerts a major proline accumulation (Arbona 

et al., 2008; Claussen, 2005) due to its protective roles, including maintenance of redox 

balance and radical scavenging, maintenance of protein structure and contribution to 

reduce cell membrane damage (Shao et al., 2008; Szabados and Savouré, 2010). 

In addition, the accumulation of MDA as an estimation of oxidative damage was also 

higher in leaves and roots of Cleopatra in response to combined stresses (Figure 3), 

suggesting that the extent of oxidative damage is directly linked to susceptibility of citrus 

plants to the combination of drought and heat stress. The increased SOD and CAT 

activities of Carrizo in basal and stress conditions compared to Cleopatra (Figure 4A and 
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5A) could be related to an active and efficient antioxidant response that might be involved 

in maintaining a lower MDA content (and oxidative stress) especially under the 

combination of drought and heat, and therefore helping citrus plants to cope with the 

combined stresses. On the contrary, whereas SOD activity of Cleopatra leaves increased 

in response to stress imposition, CAT activity did not change in response to individual 

stresses and even decreased under WS+HS compared to control levels. In addition to 

CAT, APX removes H2O2 and this reaction has been previously reported to be a crucial 

process for the tolerance of plants to combined drought and heat (Koussevitzky et al., 

2008). In our work, APX activity was significantly induced by HS and WS+HS in Carrizo 

leaves (Figure 6A), suggesting an efficient H2O2 scavenging ability under these stress 

conditions. However, in Cleopatra, only HS significantly induced an increased APX 

activity (Figure 6A). However, under high temperatures, this enzyme activity could be 

insufficient to scavenge the excess of H2O2 when CAT activity is not activated (Figure 

5A), rendering an increased oxidative damage. Additionally, APX dismutes H2O2 using 

AsA as the electron donor. Both citrus genotypes showed increases in leaf AsA and tAsA 

contents in response to WS+HS, suggesting that the accumulation of AsA could be related 

with a strong stress pressure. In addition, Cleopatra showed higher tAsA and DHA levels 

as well as a lower AsA/DHA ratio with respect to Carrizo during this stress combination 

(Table 2), which are according to the lower APX activity observed during WS+HS in 

this citrus genotype (Figure 6A).   

Accurate modulation of the glutathione cycle is involved in maintaining a favorable 

GSH/GSSG ratio required for cellular redox regulation. In this way, GR activity could 

effectively recycle GSH at the expense of NADPH. The pattern observed for GR activity 

in Figure 7 indicates that Carrizo, despite increasing tGSH, GSH and GSSG levels in 

response to HS and WS+HS (Table 3), preserved the GR activity as well as the 

GSH/GSSG ratio around control values, probably as a result of a lower incidence of 

oxidative damage. In contrast, in Cleopatra leaves, the reduction in GSH/GSSG ratio with 

respect to control values, especially under WS+HS (Table 3), suggests an impairment of 

GSH recycling. This result points to a better ROS non-enzymatic detoxification system 

and to an efficient GSH recycling in Carrizo plants compared to Cleopatra, with no 

apparent NADPH limitation. In this sense, it has been previously reported that 

maintenance of a more oxidized glutathione status could be a consequence of an enhanced 

ROS accumulation (Foyer and Noctor, 2011). Our results are in accordance with this 
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statement since MDA specially accumulated in Cleopatra in response to WS+HS (Figure 

3). Furthermore, the activation of GR activity observed in Cleopatra under this stress 

combination (Figure 7A) might be insufficient to keep a proper GSH/GSSH ratio, leading 

to a lower ability for ROS detoxification (Arbona et al., 2008) and, as a result, to a higher 

sensitivity of this citrus genotype to WS+HS. These results also demonstrated the 

previous hypothesis suggesting that a deficient antioxidant system in Cleopatra plants 

under the combination of drought and heat would lead to an enhanced activation of 

secondary metabolites with antioxidant properties including flavonols, flavones and 

limonoids to supplement the antioxidant deficiency and mitigate the damaging effects of 

stress (Zandalinas et al., 2017b). However, all these metabolic strategies, including 

proline accumulation (Figure 2), do not seem to be effective as Cleopatra mandarin 

suffered important damage under WS+HS conditions.  

Drought and heat stress are two major abiotic stresses occurring simultaneously in natural 

environments that cause oxidative stress in plants through the production of ROS. 

According to our data, the combination of drought and heat negatively impacted both 

citrus genotypes (Figure 1) but the effective activation of the antioxidant machinery was 

associated to the ability to tolerate this stress combination. Accordingly, the increment of 

SOD activity (Figure 4A) along with the decline in CAT activity (Figure 5A) and the 

lack of APX activity increase (Figure 6A) compared to control values in Cleopatra plants 

in response to WS+HS could be partially responsible of the increased oxidative damage 

and sensitivity of this citrus genotype to the combination of drought and high 

temperatures. In contrast, the ability of Carrizo plants to efficiently activate antioxidant 

enzymes involved in ROS detoxification along with preserving a favorable GSH/GSSG 

ratio would be partially related to genotype tolerance to combined stresses. This work 

provides physiological basis for directing future genetic programs to improve the 

antioxidant system of Cleopatra mandarin, a genotype that has been very useful as a 

rootstock for plants cultivated under conditions of water scarcity. However, its future use 

can be seriously compromised in a scenario of climatic change due to the high sensibility 

to combined conditions of heat and drought. 
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Supplementary material 

Table S1. Designed primers for gene expression analyses by quantitative RT-PCR. 

 

 

Citrus gene Locus Forward / 
Reverse Sequence (5’→3’) Amplicon 

size (bp) 

SOD-CuZn orange1.1g031837m 
F CTTGGTGGAACTGAGGGTGT 

173 
R GGGTTAAAGTGGGGTCCAGT 

SOD-Fe orange1.1g026199m F CAGCTTCATCTGCTCCAACA 
148 

R GGTGGAGGCTTCAAATCAAA 

CAT orange1.1g042356m 
F GTAACCAAGACCTGGCCTGA 

134 
R ATGCCAGGAACCACAATAGC 

APX orange1.1g024615m F 
R 

CCATTCGGAACCATGAGGCT  

CTCAACGCCAACAACACCAG 153 

GR orange1.1g042564m 
F 
R 

CTTGGAGCATCAATGTGTGG 

AGCAACACGTCTCGTCACAG 
165 

ACT orange1.1g037845m 
F CCCTTCCTCATGCCATTCTTC 

105 
R CGGCTGTGGTGGTAAACATG 

TUB orange1.1g013335m 
F GGGGCAAAATGAGCACTAAA 

187 
R CGCCTGAACATCTCCTGAAT 



 
 

Results 
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Abstract 

Usually several environmental stresses occur in nature simultaneously causing a unique 

plant response. However, most of the studies until now have focused in individually-

applied abiotic stress conditions. Carrizo citrange (Poncirus trifoliata L. Raf. X Citrus 

sinensis L. Osb.) and Cleopatra mandarin (Citrus reshni Hort. ex Tan.) are two citrus 

rootstocks with contrasting tolerance to drought and heat stress and have been used in this 

work as a model for the study of plant tolerance to the combination of drought and high 

temperatures. According to our results, leaf integrity and photosynthetic machinery are 

less affected in Carrizo than in Cleopatra under combined conditions of drought and heat 

stress. The pattern of accumulation of three proteins (APX, HSP101 and HSP17.6) 

involved in abiotic stress tolerance shows that they do not accumulate under water stress 

conditions individually applied. However, contents of APX and HSP101 are higher in 

Carrizo than in Cleopatra under stress combination whereas HSP17.6 has a similar 

behavior in both types of plants. This, together with a better stomatal control and a higher 

APX activity of Carrizo, contributes to the higher tolerance of Carrizo plants to the 

combination of stresses and point to it as a better rootstock than Cleopatra (traditionally 

used in areas with scare water supplies) under the predictable future climatic conditions 

with frequent periods of drought combined with high temperatures. This work also 

provides the basis for testing the tolerance of different citrus varieties grafted on these 

rootstocks and growing under different field conditions.  

 

 

1. Introduction 

Environmental stresses cause molecular and physiological changes in plants. Through 

these changes, plants respond to adverse conditions to reduce damage and acclimate to 

the unfavorable situations. In the field, the major crop losses are recently caused by the 

action of combined stresses, that converge in a new unique adverse situation with 

different consequences to plants with respect to those caused by the stresses applied 

individually (Mittler 2006, Mittler and Blumwald 2010, Zandalinas et al. 2018). Although 

the consequences of abiotic stress applied individually have been deeply studied in many 

plant species, the effects of combined stresses on citrus plants are barely understood 

(Zandalinas et al. 2016b). A deeper knowledge could be important for genetic 
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improvement and/or agronomical practices oriented to avoid yield losses derived from 

the climatic change. 

One of the plant mechanisms to cope with abiotic stress conditions is the accumulation 

of key proteins with a protective role. Among them, heat shock proteins (HSP) are 

molecular chaperones that have been detected in almost all type of organisms. They are 

characterized by a carboxylic termination called heat-shock domain. In plants, HSPs are 

classified according to their approximate molecular weight: HSP100, HSP90, HSP70, 

HSP60, and small HSPs. They protect other proteins from denaturalization during stress 

situations regulating refolding, localization and accumulation as well as preventing 

agglomeration and degradation (Nakamoto and Vígh 2007). Although it has been 

demonstrated the key role of HSPs on plant responses to heat stress, they are induced by 

different types of biotic and abiotic stress conditions. As an example, they play an 

important role on plant tolerance to oxidative stress (Wang et al. 2003; Rizhsky et al. 

2004). Moreover, recent work showed that specific HSPs are involved plant responses to 

stress combination (Rizhsky et al. 2004, Zandalinas et al. 2016a). In addition, it has been 

shown that APX plays a central role under drought and heat stress combination in Citrus 

and Arabidopsis thaliana (Koussevitzky et al. 2008, Zandalinas et al. 2017). 

Recently, we have demonstrated that two citrus genotypes, Carrizo citrange and Cleopatra 

mandarin, have different abilities to tolerate drought, heat stress and the combination of 

both adverse situations. Thus, Carrizo is more tolerant to heat stress (HS) and  combined 

drought and heat stress (WS+HS) whereas Cleopatra is more tolerant to drought (WS) 

(Argamasilla et al. 2014; Zandalinas et al. 2016b). This different tolerance can be 

explained partially by their distinct stomatal response that allows a better leaf cooling in 

Carrizo plants under heat. Antioxidant machinery in Carrizo is also more efficient and 

contributes to the acclimation of this genotype to the stress combination.  

In this work, we aimed to further understand the mechanism of citrus tolerance to 

simultaneous abiotic stress conditions by studying the accumulation of ascorbate 

peroxidase (APX), HSP101 and HSP17.6 (three proteins considered key in plant 

tolerance to abiotic stress conditions) in two citrus genotypes with contrasting tolerance 

to water stress and high temperatures.  

2. Materials and methods 

2.1 Plant material and growth conditions 
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One-year-old seedlings of two citrus genotypes, Carrizo citrange (Poncirus trifoliata L. 

Raf. X Citrus sinensis L. Osb.) and Cleopatra mandarin (Citrus reshni Hort. ex Tan.) 

purchased from a commercial nursery (Beniplant S.L., Penyíscola, Spain), were grown 

as described in Zandalinas et al. 2017. Briefly, plants were grown in 0,6 l plastic pots with 

perlite as substrate and were watered three times a week with a half-strength Hoagland 

solution under greenhouse conditions. Then, plants were transferred to growth chambers 

with 16 h photoperiod at 25 oC and relative moisture fixed at 80% approximately and 

keep there for 2 weeks.  

2.2 Stress treatments and experimental design 

An experiment of drought stress, heat stress and combined drought and heat was 

performed in Carrizo and Cleopatra plants as described in Zandalinas et al. (2017). Severe 

drought conditions were imposed to plants by transplanting them to dry perlite during 24 

hours. Prior to imposition of drought regime, heat stress was applied for 7 days. 

Therefore, we established four experimental groups for each genotype: well-watered 

plants at a) 25 oC (CT) and b) 40 oC (HS) and plants subjected to drought at c) 25 oC (WS) 

and d) 40 oC (WS+HS). Leaf tissue was sampled 24h after the stress imposition.  

2.3 Quantum yield of photosystem II (ΦPSII) and stomatal conductance (gs) 

ΦPSII was analyzed using a portable fluorometer (FluorPen FP-MAX 100, Photon Systems 

Instruments, Czech Republic). Stomatal conductance (gs) was measured by using an 

LCpro+ portable infrared gas analyzer (ADC BioScientific Ltd., Hoddesdon, UK) under 

ambient CO2 and moisture. Supplemental light was provided by a PAR lamp at 1000 

µmol m-2 s-1 photon flux density, and air flow was set at 150 µmol mol-1.  

2.4 APX enzyme activity  

APX (EC 1.11.1.11) enzymatic activity was quantified as described previously (Hossain 

et al. 2009) . Briefly, frozen ground leaf tissue was extracted in phosphate buffer and after 

centrifugation, enzymatic activity was assayed following the depletion in absorbance at 

290 nm due to ascorbate (AsA) consumption.  

2.5 Gene expression 

The amplification of cytoplasmic APX2 gene (orange1.1g024615m) was performed by 

using the following primers: 5’-CCATTCGGAACCATGAGGCT-3’ and 5’-

CTCAACGCCAACAACACCAG-3’. qRT-PCR analyses were performed in a StepOne 
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Real-Time PCR system (Applied Biosystems, CA, USA). The reaction mixture contained 

1 μL of cDNA, 5 μL of SYBRGreen (Applied Biosystems) and 1 μM of each gene-

specific primer pair in a final volume of 10 μL. The thermal profile used to analyze the 

relative gene expression consisted of 10 min at 95 °C for pre-incubation, followed by 40 

cycles of 10 s at 95 °C for denaturation, 10 s at 60 °C for annealing and 20 s at 72 °C for 

extension. Gene expression levels was normalized against the expression of two 

endogenous control genes based on previous housekeeping selection for citrus tissues 

(Mafra et al. 2012): tubulin (5’-GGGGCAAAATGAGCACTAAA-3’ and 5’-

CGCCTGAACATCTCCTGAAT-3’) and actin (5’-CCCTTCCTCATGCCATTCTTC-3’ 

and 5’- CGGCTGTGGTGGTAAACATG-3’). The relative expression were calculated by 

using Relative Expression Software Tool (REST; Pfaffl et al. 2002). 

2.6 Protein extraction and Western Blot analysis 

For protein extraction, 100 mg of frozen ground leaf tissue were extracted in 500 µL of 

Laemli buffer 2x (Bio-Rad, Hercules, CA, USA) supplemented with β-mercaptoethanol 

(9:1) and heated during 10 minutes in a thermoblock at 85 oC. After centrifugation at 

14000 g and 4 oC for 10 min, supernatant was recovered. Protein concentration was 

calculated by measuring the absorbance at 660 nm using the Pierce reactive (Thermo 

Scientific, Rockford, IL, USA). A standard curve was performed with BSA. 20 µg of 

protein samples were fractionated by SDS-PAGE on 7,5 % to 12 % Tris gel with Tris 

running buffer and transferred to a PVDF membrane according to the manufacturer’s 

protocol (Bio-Rad). Membranes were blocked for 1h with 3% BSA and, then, were 

incubated with primaries antibodies against APX2 (orange1.1g024615m, L-Ascorcorbate 

peroxidase 2, cytosolic) (1:10000), HSP101 (orange1.1g046258m, ATP dependent CLP 

Protease) (1:1000), HSP17.6 (orange1.1g031266m, Small heat-shock protein HSP20 

family) (1:1000) and actin (1:5000) from Agrisera (Vännäs, Sweden) at 4 oC overnight. 

After washing, membranes were incubated with goat anti-rabbit IgG (H&L), HRP 

conjugated antibodies with a dilution 1:25000 for 1h. Blots were washed again three times 

for 10-15 minutes and incubated with the Pierce ECL 2 Western Blotting Substrate 

(Thermo Scientific, Rockford, IL, USA) according to the manufacturer’s protocol. The 

band signals were detected by using the ImageQuant LAS 500 imager (GE Healthcare 

Bio-Sciences AB, Uppsala, Sweden). BlastP analysis were performed between the 

proteins sequences in Citrus sinensis and Arabidopsis thaliana with the following results: 
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APX2 (Qc 99%; E value 1 e-153; Identity 78%), HSP101 (Qc 98%; E value 0.0; Identity 

88%), HSP17.6 (Qc 99%; E value 7e-82; identity 72%). 

2.7 Statistical analyses  

For ΦPSII and gs, at least 10 measurements were taken on three leaves in three replicate 

plants from each genotype and stress treatment. For the rest of parameters, data are means 

of three independent determinations. One-way analysis of variance (ANOVA) was 

performed followed by Tukey posthoc test (p<0.05) when a significant difference was 

detected. 

3. Results 

3.1 Effect of WS, HS and WS+HS on Carrizo and Cleopatra plants 

Stress treatments (drought, heat and their combination) were imposed to Carrizo and 

Cleopatra plants and the impact of these conditions was found to be genotype-specific. 

Figure 1 shows typical symptoms of visible damage caused by abiotic stress. This damage 

was quantified by the ability of plants to maintain healthy sprouts (as in panels A and B 

in Figure 1). As shown in Figure 2, leaf damage caused by drought was higher in Carrizo 

than in Cleopatra. However, whereas Cleopatra plants were highly affected by heat stress 

(63.4% of affected leaves), only 5.9% of Carrizo leaves were damaged under the same 

conditions. When both stresses were combined, the percentage of damaged leaves 

increased in both genotypes but especially in Cleopatra, showing Carrizo plants greater 

performance (Figure 2).  

When plants were subjected to WS, stomatal aperture decreased respect to control 

conditions in both genotypes although in Cleopatra the stomatal closure was more 

pronounced. Under HS conditions, Cleopatra plants showed a slight increase in gs values, 

whereas values of this parameter in Carrizo leaves increased to a large degree (almost 3-

fold higher than control values). Similar to WS, combined stress conditions reduced gs 

values in both Cleopatra and Carrizo plants, having a more pronounced effect in Cleopatra 

than in Carrizo (Figure 2).  



Chapter 2 

56 
 

C
H

A
P

T
E

R
 2

 

Chlorophyll fluorescence parameters were also measured in response to individual and 

combined stresses (Figure 2). In leaves of both citrus genotypes, quantum efficiency of 

PSII (ΦPSII) was slightly affected by WS. On the contrary, HS did not have significative 

consequences on this parameter in Carrizo but it significantly decreased ΦPSII values in 

Cleopatra plants. Moreover, WS+HS had the most detrimental effect on quantum 

efficiency in both kind of citrus leaves, but especially in Cleopatra plants (Figure 2). 

 

Figure 2. Leaf damage, stomatal conductance (gs) and quantum yield (ΦPSII) in Carrizo and 

Cleopatra plants subjected to drought (WS), heat stress (HS) and the combination of drought and 

heat stress (WS+HS). Different letters denote statistical significance at p ≤ 0.05 within each 

parameter. 

 

Figure 1. Stress-induced leaf damage in Carrizo 

citrange (A, C and E) and Cleopatra mandarin (B, 

D and F). A and B: intact leaves; C and D: 

Chlorotic leaves; E and F: partially necrotic 

leaves. 
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3.2 APX activity and expression of Carrizo and Cleopatra plants subjected to WS, HS 

and WS+HS 

Figure 3 shows APX enzymatic activity and transcript accumulation in Carrizo and 

Cleopatra plants in response to WS, HS and WS+HS conditions. Drought similarly 

enhanced the APX activity in both genotypes whereas transcript expression increased 

only in Carrizo plants. Heat stress induced the highest APX activity in both genotypes, 

having Cleopatra a more pronounced response. APX gene was upregulated under HS, 

following the same pattern than the enzymatic activity in both Carrizo and Cleopatra 

plants. Finally, under stress combination Carrizo plants showed an APX activity similar 

to that observed under heat stress. In contrast, in Cleopatra plants, APX activity was 

significantly lower under stress combination with respect to heat stress. APX expression 

achieved the highest rate under WS+HS in Carrizo whereas in Cleopatra, it slightly 

increased with respect to control plants, correlating with the enzymatic activity. 

Figure 3. APX activity and APX2 gene expression in Carrizo and Cleopatra plants subjected to 

drought (WS), heat stress (HS) and the combination of drought and heat stress (WS+HS). 

Different letters denote statistical significance at p ≤ 0.05 within each parameter. 

 

3.3 Accumulation of APX, HSP101 and HSP17.6 proteins in Carrizo and Cleopatra 

plants subjected to WS, HS and WS+HS 

The accumulation of three proteins (HSP101, HSP17.6 and APX2) was studied in Carrizo 

and Cleopatra plants subjected to drought, heat stress and their combination. As shown 

in Figure 4, Drought did not have significant effects on APX, HSP101 and HSP17.6 

accumulations respect to control plants in any of the two studied genotypes. Heat stress 

induced the accumulation of APX and HSP101 in both citrus leaves, but especially in 
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Carrizo. HSP17.6 accumulation increased considerably under heat stress in Carrizo and 

Cleopatra, finding similar levels in both genotypes. WS+HS induced a marked 

accumulation of these three proteins in Carrizo leaves and it also caused significant 

accumulation in Cleopatra ones. However, for APX and HSP101, the extent of this 

increase was clearly lower.  

 

 

Figure 4. APX2, HSP101 and HSP17.6 levels in Carrizo and Cleopatra plants subjected to 

drought (WS), heat stress (HS) and the combination of drought and heat stress (WS+HS). Top: 

Quantification graphs. Bottom: Representative protein blots and loading controls. Different letters 

denote statistical significance at p ≤ 0.05. 

 

4. Discussion 

Tolerance of Carrizo citrange and Cleopatra mandarin plants to drought, heat stress and 

the combination of both conditions has been previously studied, concluding that Carrizo 

plants are more tolerant to HS and WS+HS than Cleopatra. This enhanced tolerance can 

be explained, at least in part, by a higher stomata opening and transpiration rate that allow 

cooling the leaf surface (Zandalinas et al. 2016b). In this sense, data presented in Figure 

2 confirmed that Cleopatra is more sensitive to the heat stress and the combination of 

drought and high temperatures assayed in this work since the percentage of affected 

leaves is higher in Cleopatra plants. This difference in tolerance is due, at least in part, to 

the reduced ability of Cleopatra stomata to open under high temperatures (Figure 2) 

together with a worse performance of the antioxidant enzyme APX (Figure 3, Zandalinas 

et al. 2017). 
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The enzyme APX reduces the H2O2, resulting from O2
·- scavenging by superoxide 

dismutase (SOD), using AsA as the electron donor and rendering water and 

monodehydroascorbate. The role of APX, together with other antioxidant enzymes like 

SOD or  catalase (CAT), is key for the protection of the photosynthetic machinery from 

the oxidative damage produced by environmental stresses (Silva et al. 2010). APX has a 

pivotal role in the acclimation of plants to stress combination, as drought and high 

temperatures (Rizhsky et al. 2002; Koussevitzky et al. 2008). Although APX activity 

increased slightly in both genotypes under WS conditions (Figure 3), there was not APX2 

accumulation (the main isoform involved in antioxidant activity under stress conditions 

in both, citrus and Arabidopsis thaliana, Hossain et al. 2009, Zandalinas et al. 2016a). 

This suggests that other APX isoforms (thylakoidal or stromal APX) could have a minor 

role in the enzymatic increase observed under this condition. The higher accumulation of 

APX protein observed in Carrizo plants under HS and, particularly, under WS+HS with 

respect to Cleopatra (Figure 4), indicates that the antioxidant machinery in Carrizo was 

more activated under these stress conditions, since not only APX gene expression was 

higher in this genotype but also functional protein strongly accumulated. These results 

suggest that the accumulation of APX is a specific response of Carrizo plants to combined 

conditions of water stress and high temperatures and that the antioxidant system is 

probably involved in citrus tolerance to this stress combination. In addition, it is 

remarkable that it is a differentiated response from the responses to the individual stresses. 

Furthermore, from this study it seems clear the importance of studying the accumulation 

of a protein and its activity and not only its gene expression. The role of a protein in cells 

cannot be estimated only by measuring gene expression, considering that post-

transcriptional regulation can be determinant for the final production of the protein and 

its functionality. Different example can be found elsewhere with transcript accumulations 

that result in no final phenotype. As an example, in Manzi et al. (2017), an up-regulation 

of genes coding for the enzymes involved in the abscisic acid (ABA) biosynthesis 

pathway was reported under drought stress conditions. However, there was not 

accumulation of ABA in this tissue under that particular experimental design.  

In addition to APX, the HSP is a family of proteins characterized by its role as molecular 

chaperones during stress conditions. They prevent protein misfolding or aggregation and 

promote the reactivation of proteins already aggregated. There are numerous subgroups 

of HSP regarding its molecular mass. HSP101, which belongs to HSP100 subgroup, could 
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form molecular complexes with others HSPs to correct protein folding. HSP101 is a 

pivotal protein in establishing thermotolerance and stress combination resistance 

(Queitsch et al. 2000, Wu et al. 2013, Suzuki et al. 2016). HSP17.6 belongs to the 

subgroup of small heat shock proteins (smHSP) which accumulate rapidly under stress 

situations, principally heat stress. It was shown that plants overexpressing HSP17.6 had 

increased osmotolerance (Sun et al. 2001). Furthermore, in Arabidopsis thaliana, an 

increase of HSP17.6 levels in response to exogenous treatment of H2O2 has been reported, 

suggesting its role in coping with oxidative stress (Sun et al. 2001, Volkov et al. 2006). 

The higher accumulation of HSP101 in Carrizo plants with respect to Cleopatra under HS 

and WS+HS suggests that this protein regulates plant acclimation to conditions involving 

high temperatures. Since no differences were found in the accumulation of HSP101 under 

high temperatures individually applied and combined stresses, it seems that HSP101 is a 

heat stress-specific protein. This result correlates with the up-regulation of HSP101 in 

Arabidopsis thaliana plants subjected to different stress situations involving heat 

(Rizhsky et al. 2004, Suzuki et al. 2016). The fact that HSP17.6 remarkably accumulated 

in both genotypes under heat stress applied individually or in combination with drought 

suggests that the accumulation of this protein is heat-dependent and do not respond to 

additional stress conditions. Furthermore, in contrast to the other proteins studied in this 

work, the sensitive genotype to high temperatures (Cleopatra) accumulated similar 

protein levels than the tolerant one (Carrizo). Thus, HSP17.6 does not seem to be central 

for the acclimation of citrus plants to situations involving high temperatures. 

In this work, we have studied the accumulation of three important proteins under drought, 

high temperatures and their combination in Carrizo citrange and Cleopatra mandarin, two 

citrus genotypes with contrasting ability to tolerate these stress conditions. Our results 

extend the knowledge on the basis for the higher tolerance of Carrizo to combined stress 

conditions. It has been shown that three different proteins putatively involved in plant 

tolerance to heat stress (APX, HSP101 and HSP17.6) have distinct accumulation patterns 

in citrus under high temperatures or combined conditions of heat and water stress. APX 

would be crucial for the acclimation of citrus to stress combinations whereas HSP101 

accumulation would be determinant for thermotolerance. However, HSP17.6 might have 

a residual role on tolerance to these conditions. Carrizo citrange has different 

characteristics (a suitable stomatal behavior under high temperatures together with an 

efficient antioxidant machinery and an ability to specifically accumulate key proteins) 
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that appoint it as a predictable better rootstock than Cleopatra (traditionally employed in 

areas with scare water supplies) to be used under the present (and future) changing 

climatic conditions, in which periods of drought and high temperatures will be more 

frequent and of greater intensity. Further agronomic studies will be needed to test the 

tolerance of different citrus varieties grafted on these rootstocks growing under different 

field conditions. 
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Abstract 

Plants growing in the field are subjected to multiple stress factors acting simultaneously. 

Abnormally high temperatures are expecting to affect wild plants and crops in the next 

years due to global warming. In this work, we have studied physiological, hormonal and 

molecular responses of the citrus rootstock, Carrizo citrange (Poncirus trifoliata L. Raf. 

X Citrus sinensis L.Osb.) subjected to wounding or high salinity individually occurring 

or in combination with heat stress. According to our results, combination of high salinity 

and heat stress aggravated the negative effects of salt intoxication in Carrizo. The high 

transpiration rate caused by high temperatures counteracted physiological responses of 

plants to salt stress and increased Cl- intake in leaves. In addition, 12-oxo-phytodienoic 

acid (OPDA) accumulated specifically under combination of wounding and heat stress, 

whereas at low temperatures, wounded plants accumulated jasmonic acid (JA) and JA-

isoleucine (JA-Ile). Moreover, an antagonism between salicylic acid (SA) and JA was 

observed, and wounded plants subjected to high temperatures did not accumulate JA nor 

JA-Ile whereas SA levels increased (via ICS biosynthetic pathway). Wounded plants did 

not accumulate abscisic acid (ABA) but its catabolite phaseic acid (PA). This could act 

as a signal for the upregulation of (ABA)-RESPONSIVE ELEMENT (ABRE)-BINDING 

TRANSCRIPTION FACTOR 2 CsAREB2 and RESPONSIVE TO DISSECATION 22 

(CsRD22) in an ABA-independent way. This work uncovers some mechanisms that 

explain Carrizo citrange tolerance to high temperatures together with different hormonal 

signals in response to specific stresses. It is suggested that co-occurring abiotic stress 

conditions can modify (either enhance or reduce) the hormonal response to modulate 

specific responses.  

 

 

Introduction  

Abiotic stress is an important detrimental factor for crop yield and productivity. 

Environmental adverse conditions such as drought, heat, salinity, soil toxicity, flooding 

or high light intensity among others, negatively impact on plants compromising growth, 

yield and even plant survival. These unfavorable situations lead to adaptive responses in 

plants, including morphological, physiological, biochemical and molecular changes 

(Zhang and Sonnewald 2017, Vives-Peris et al. 2017, Devireddy et al. 2018, De Ollas et 

al. 2018). Although the effects of individually-applied abiotic stresses on plants have been 

widely studied, extensive efforts to study plant responses to different stress combinations 
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are just recently emerging. Recent studies have demonstrated that the biochemical and 

molecular responses of plants to stress combinations are different from those changes 

caused by the same stresses applied individually (Mittler 2006, Suzuki et al. 2014, 

Zandalinas et al. 2018, Balfagón et al. 2018). 

Increased temperatures associated to the climate change are predicted to have a negative 

effect on crops leading to important losses in yields (Lobell et al. 2011). Due to the global 

warming, heat waves are increasing in frequency and intensity and worldwide surface 

temperature is expected to rise considerably in the coming years (IPCC 2014; 

http://www.ipcc.ch/). Moreover, under field conditions, high temperatures usually appear 

together with drought and/or low-quality water supplies and also can be combined with 

other stress factors like high light intensity, flooding, nutrient deficiencies, mechanical 

wounding or increased concentrations of heavy metals, among others. For example, it has 

been reported that the combination of high temperatures and increased CO2 concentration 

enhances the accumulation of Cd and reduces Zn levels in shoots and roots of Triticum 

aestivum leading to reduced seedlings growth (Wang et al. 2016). Combination of drought 

and high temperatures has been deeply studied in citrus plants. It has been reported that 

stomatal regulation, efficiency in reactive oxygen species (ROS) scavenging and 

accumulation of key proteins are crucial plant responses to survive this stress combination 

(Zandalinas et al. 2016b, 2017, Balfagón et al. 2018). Furthermore, combination of high 

temperatures and ozone stress had a negative effect on Betula pendula growth and leaf 

biomass production because allocation of carbon is partly altered by ozone stress 

(Kasurinen et al. 2012). Also, it has been described that aldehyde dehydrogenase (ALDH) 

enzymes, which contribute to redox balance by producing NADPH and NADH, are key 

in Arabidopsis thaliana (Arabidopsis) survival under combination of wounding and heat 

stress (Zhao et al. 2017). 

Phytohormones are demonstrated to play a pivotal role in the response of plants to abiotic 

stress applied individually or in combination (Peleg and Blumwald 2011, Gómez-

Cadenas et al. 2015, Suzuki 2016a). Among them, abscisic acid (ABA) is key to activate 

plant responses to water deficit, salinity and heat. ABA induces the accumulation of 

different proteins involved in acclimation and regulates stomatal closure under osmotic 

stress or heat stress situations (Finkelstein 2013, Gómez-Cadenas et al. 2015). In 

Arabidopsis, it has been demonstrated that ABA is crucial for the accumulation of 

essential proteins during a combination of water deficit and heat stress (Zandalinas et al. 

2016a). Furthermore, Suzuki et al. (2016b) demonstrated that mutants deficient in ABA 
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metabolism and signaling were more susceptible than wild type plants to a combination 

of salt and heat stress. Apart from ABA, its catabolite phaseic acid (PA) has been 

demonstrated to act as a signaling molecule that fine-tunes environmental adaptation and 

development. In particularly, PA selectively alters the expression of ABA-responsive and 

non-responsive genes (Weng et al. 2016). 

Jasmonates (JAs) and salicylic acid (SA), although being widely studied for its role under 

biotic stress conditions, are also involved in plant tolerance to abiotic stress. Thus, 

jasmonic acid (JA) was reported to accumulate in Arabidopsis plants exposed to cold, and 

mutants deficient in JA biosynthesis or signaling have an increased sensitivity to freezing 

stress relative to wild type plants (Hu et al. 2013). Moreover, in wheat, the ALLENE 

OXIDE SYNTHASE (AOC)-catalyzed branch of the JA biosynthesis pathway provides 

salt resistance in a MYC2-dependent way (Zhao et al. 2014). In addition, the JA 

precursor, 12-oxo-phytodienoic acid (OPDA), causes stomatal closure and enhances plant 

tolerance under drought stress (Kazan 2015). SA has been reported to be an important 

signal in plants under abiotic stress, particularly under high temperatures. SA may protect 

the photosystem II complex (PSII) from an increase of ROS and improve photosynthetic 

capacity under salt, drought or heat stress (Wang et al. 2010). Also, SA acting together 

with JAs was demonstrated to confer thermotolerance in Arabidopsis (Clarke et al. 2009). 

Citrus is an economically important fruit tree worldwide. The Mediterranean and sub-

tropical areas where citrus are usually cultivated are especially vulnerable to global 

warming, which threatens crop production. This scenario rises awareness about the study 

of genotypes acclimated to high temperatures that could deal with other predicted stress 

conditions. Hence, the aim of this work was to evaluate the tolerance of Carrizo citrange, 

a citrus rootstock acclimated to high temperatures, to different stress combinations 

(wounding or salt stress combined with heat stress). To achieve this, physiological, 

hormonal and molecular responses of plants to individual and combined stress conditions 

were studied.  

 

Materials and methods 

Plant material and growth conditions 

Carrizo citrange (Poncirus trifoliata L. Raf. X Citrus sinensis L.Osb.) plants were 

purchased from a commercial nursery (Beniplant S.L., Penyíscola, Spain). One-year-old 

seedlings of Carrizo were grown in 0.6-l plastic pots filled with perlite and watered three 

times a week with 0.5 l of a half-strength Hoagland solution (Lopez-Climent et al. 2008) 
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in greenhouse conditions, with natural photoperiod and day and night temperature 

averaging 25.0 ± 3.0oC and 18.0 ± 3.0oC, respectively. Then, plants were transferred for 

2 weeks to growth chambers to acclimate to a 16-h photoperiod at 300 µmol m-2 s-1 at 

25oC and relative moisture was fixed approximately at 80%. 

 

Experimental designs and stress treatments 

An experimental system was designed in which wounding and high salinity in the 

watering solution were applied individually or in combination with high temperatures 

(40oC). Therefore, 6 experimental groups were established: (1) intact plants growing at 

25oC (control, CT), (2) or at 40oC (heat shock, HS), (3) wounded plants growing at 25oC 

(wounded, Wo) (4) or at 40oC (wounded + heat shock, Wo+HS), (5) salinized plants 

growing at 25oC (NaCl) (6) or at 40oC (NaCl+HS). All the conditions were applied at the 

same time for 15 days. Wounding was performed by drilling 50% of the leaves with a 

paper puncher (three times per leaf). Only not wounded leaves were collected and used 

for further analyses. High salinity in the water solution was achieved by adding 60 mM 

NaCl to the nutrient solution. Each experiment was repeated twice. 

 

Plant status and water-plant relations 

To analyze the phenotypical effect of the different stresses studied in this work, damaged 

leaves and new sprouts were quantified at day 15 on each group of plants. 

Relative water content of citrus leaves was calculated at day 15 by using adjacent leaves, 

which were weighed to obtain a leaf fresh mass (Mf). Leaves were allowed to rehydrate 

overnight in an opaque beaker filled with water. Therefore, they were reweighed to obtain 

turgid mass (Mt). Finally, leaves were dried at 80°C for 48 h to obtain dry mass (Md). 

RWC was calculated as [(Mf - Md) × (Mt - Md)-1] × 100 according to Morgan (1984). 

 

Physiological parameters 

Transpiration (E) and stomatal conductance (gs) were measured using a LCpro+ portable 

infrared gas analyzer (ADC BioScientific Ltd., Hoddesdon, UK) under ambient CO2 and 

moisture. Supplemental light was provided by a PAR lamp at 1000 µmol m-2 s-1 photon 

flux density, and air flow was set at 150 µmol mol-1. After instrument stabilization, at 

least 10 measurements were taken on three leaves in three replicate plants from each stress 

treatment. 
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Chloride analysis 

Chloride content in shoot tissues was measured by automatic titration as described in 

López-Climent et al. (2008). Briefly, approximately 250 mg of frozen grind plant tissue 

was incubated for 12 h with 0.1 N HNO3 (Panreac, Barcelona, Spain) and 10% glacial 

acetic acid (Sigma–Aldrich, St. Louis, MO). Finally, the chloride concentration was 

obtained by measuring 0.5 ml of the solution with a chloride meter (Model 926; Sherwood 

Scientific Ltd., Cambridge, UK). 

 

Hormone analyses 

Hormone extraction and analysis were carried out as described in Durgbanshi et al. (2005) 

with few modifications. Briefly, 0.1 g of fresh tissue (FW) was extracted in 2 ml of 

ultrapure water after spiking with 50 ng of [2H6]-ABA, [2H3]-PA, [13C]-SA, and 

dihydrojasmonic acid in a ball mill (MillMix20, Domel, Železniki, Slovenia). [2H6]-ABA 

was used to determine ABA, [2H3]-PA was used to determine PA and DPA, [13C]-SA was 

used to determine SA and dihydrojasmonic acid to determine JA, OPDA and JA-Ile. After 

centrifugation at 4000 g at 4ºC for 10 min, supernatants were recovered and pH adjusted 

to 3 with 30% acetic acid. The water extract was partitioned twice against 2 ml of diethyl 

ether and the organic layer recovered and evaporated under vacuum in a centrifuge 

concentrator (Speed Vac; Jouan, Saint Herblain Cedex, France). Once dried, the residue 

was resuspended in a 10:90 MeOH:H2O solution by gentle sonication. The resulting 

solution was filtered through 0.22 µm polytetrafluoroethylene membrane syringe filters 

(Albet S.A., Barcelona, Spain) and directly injected into an ultra-performance LC system 

(Acquity SDS; Waters Corp., Milford, MA). Chromatographic separations were carried 

out on a reversed-phase C18 column (Gravity, 50 × 2.1 mm, 1.8-µm particle size; 

Macherey-Nagel GmbH, Düren, Germany) using a MeOH:H2O (both supplemented with 

0.1% acetic acid) gradient at a flow rate of 300 µl min−1. Hormones were quantified with 

a TQS triple quadrupole mass spectrometer (Micromass, Manchester, UK) connected 

online to the output of the column though an orthogonal Z-spray electrospray ion source. 

Measurements were carried out in mode MRM negative (run conditions and transitions 

used are described in Table S2). 

 

RNA isolation, cDNA synthesis and qRT-PCR analyses 

RNA was extracted from frozen plant tissues using a RNeasy Mini kit (Qiagen, Hilden, 

Germany) following the manufacturer’s instructions. Total RNA concentration and purity 
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was determined using a Nanodrop 2000 spectrophotometer (Thermo Scientific, 

Wilmington, DE) from the ratio of absorbance readings at 260 and 280 nm. Reverse 

transcription was carried out from 1 µg of total RNA using Primerscript RT reagent with 

oligo(dT) primer (Takara Bio Inc., Kusatsu, Japan). 

The specific primers used for the amplification of each gene are included in Table S1. 

qRT-PCR analyses were performed in a StepOne Real-Time PCR system (Applied 

Biosystems, Foster City, CA). The reaction mixture contained 1 μl of cDNA, 5 μl of 

SYBRGreen (Applied Biosystems) and 1 μM of each gene-specific primer pair in a final 

volume of 10 μl. The thermal profile used to analyze the relative gene expression 

consisted of 10 min at 95°C for pre-incubation, followed by 40 cycles of 10 s at 95°C for 

denaturation, 10 s at 60°C for annealing and 20 s at 72°C for extension. Amplicon 

specificity of the PCR reaction was evaluated by the presence of a single peak in the 

dissociation curve after the amplification steps. The expression levels of all genes were 

normalized against the expression of two endogenous control genes (TUBULIN and 

ACTIN) based on previous housekeeping selection for citrus tissues (Mafra et al. 2012) 

and the relative expression were calculated using REST software (Pfaffl et al. 2002). For 

all genes studied, the reference sample was the expression value obtained at the non-

stressed samples and set at one. Three technical replicates were analyzed on each 

biological replicate. 

 

Statistical analyses  

One-way analysis of variance (ANOVA) was performed followed by Tukey posthoc test 

(p<0.01) when a significant difference was detected. 

 

Results 

Vegetative growth and leaf damage  

Carrizo plants were exposed for 15 days to two abiotic stress conditions (wounding and 

salt stress) applied individually or combined with high temperatures. To evaluate plant 

tolerance to these adverse situations, number of new sprouts and leaf damage were 

recorded at the end of the experimental period (Fig. 1). Emission of new sprouts was 

lower in plants subjected to salt stress than in controls. Heat stress (HS) increased 

significantly the vegetative growth of Carrizo plants. However, plants cultivated under 

high temperatures in combination with high salinity reduced the number of new sprouts 

in comparison with those under HS, recording values similar to control plants. Wounding 
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(Wo) applied individually or in combination with heat stress did not alter vegetative 

growth (Fig. 1A). Leaf damage in plants under Wo, HS and Wo+HS was very low and 

similar to controls. However, plants under NaCl and NaCl+HS conditions had an 

increased number of damaged leaves. The combination of high salinity and heat was the 

most harmful condition for citrus plants, with 29.7% of leaves affected (Fig. 1B). 

 

Fig. 1. Phenotypic traits: New sprouts per plant (A) and damaged leaves (B), in Carrizo plants in 

response to wounding (Wo), salt stress (NaCl), heat stress (HS), combination of wounding and 

heat stress (Wo+HS) and combination of salt and heat stress (NaCl+HS) for 15 days. Different 

letters denote statistical significance among treatments at P ≤ 0.01. 

 

Leaf water status 

Leaf relative water content of Carrizo plants subjected to wounding and salt stress applied 

individually or in combination with heat stress was measured (Fig. 2). NaCl+HS was the 

only stress condition that caused a significant decrease of leaf RWC (values were 52.9% 

of those registered in control plants). The rest of adverse situations did not affect leaf 

RWC.  
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Fig. 2. Leaf relative water content (RWC) of Carrizo plants subjected to wounding (Wo), salt 

stress (NaCl), heat stress (HS), combination of wounding and heat stress (Wo+HS) and 

combination of salt and heat stress (NaCl+HS) for 15 days. Different letters denote statistical 

significance among treatments at P ≤ 0.01. 

 

Leaf transpiration and stomatal conductance parameters  

Leaf transpiration (E) and stomatal conductance (gs) were measured in citrus plants in 

response to each stress (Fig. 3). Wounded plants did not increase leaf transpiration nor 

stomatal conductance values respect to controls. Plants under salt stress strongly reduced 

E and gs to values that were 37.1% and 26.6% of those found in control plants. Heat stress 

caused the highest increase of E and gs in Carrizo plants (3.1-fold and 2.0-fold increases 

with respect to controls, respectively). Transpiration levels in Wo+HS plants increased 

significantly with respect to CT plants, although they were similar to Wo ones (Fig. 3A). 

In opposition, stomatal conductance considerably decreased in Wo+HS plants. Similarly, 

NaCl+HS plants increased transpiration compared to CT plants and especially to NaCl 

plants but transpiration in NaCl+HS plants was not as high as in HS ones. Stomatal 

conductance in NaCl plants were the lowest registered followed by levels in NaCl+HS 

plants (Fig. 3B). 
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Fig. 3. Leaf transpiration (E, panel A) and stomatal conductance (gs, panel B) of Carrizo plants 

subjected to wounding (Wo), salt stress (NaCl), heat stress (HS), combination of wounding and 

heat stress (Wo+HS) and combination of salt and heat stress (NaCl+HS) for 15 days. Different 

letters denote statistical significance among treatments at P ≤ 0.01. 

 

Cl- intake 

Leaf Cl- levels were measured in Carrizo plants after 15 days of stress treatments (Fig. 

4). Adverse conditions not involving NaCl (Wo, HS, Wo+HS,) did not cause leaf Cl- 

accumulation with respect to control plants. However, leaf concentration of this toxic ion 

considerably increased in plants treated with NaCl, either at 25ºC (1.9-fold increase with 

respect control plants) or at 40ºC (3.7-fold increase). 
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Fig. 4. Leaf chloride content in Carrizo plants subjected to wounding (Wo), salt stress (NaCl), 

heat stress (HS), combination of wounding and heat stress (Wo+HS) and combination of salt and 

heat stress (NaCl+HS) for 15 days. Different letters denote statistical significance among 

treatments at P ≤ 0.01. 

 

ABA metabolism  

Leaf concentration of ABA and the two main products of its catabolism, PA and DPA 

(dehydrophaseic acid), were analyzed in Carrizo plants subjected to the different stress 

conditions (Fig. 5A-C). Wounded plants did not accumulate ABA at any of the two 

temperatures studied. At 25ºC, PA levels in Wo plants were higher than in CT conditions 

although DPA levels were similar to basal levels. However, Wo+HS plants had higher 

levels of PA and DPA than Wo and CT plants. Salt stress caused a significant 

accumulation of ABA in Carrizo plants, whereas PA levels did not change and DPA 

concentration decreased with respect to CT plants. When salt stress was combined with 

high temperatures, ABA content reached the highest levels. In addition, PA and DPA 

strongly accumulated under this combined stress conditions. Finally, ABA content did 

not significantly increase under heat stress with respect to control values although both 

PA and DPA concentrations were higher under this condition.  

 

Jasmonate metabolism 

Leaf concentrations of JA, its conjugate JA-isoleucine (JA-Ile) and its precursor OPDA 

were measured in Carrizo plants subjected to the different abiotic stress conditions (Fig. 

6A-C). Jasmonic acid levels increased in Wo+HS plants (4.4-fold with respect to CT) and 

especially in Wo and NaCl+HS plants (37.1- and 39.4-fold, respectively). NaCl and HS 
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did not change JA levels compared to controls (Fig. 6A). JA-Ile concentration slightly 

increased in plants subjected to wounding stress, alone or combined with heat stress. 

However, NaCl+HS caused the strongest increase in JA-Ile leaf concentration (9.4-fold, 

Fig. 6B). Finally, OPDA concentration pattern was different from that of JA or JA-Ile. 

Wo and HS plants did not show significant differences with respect to control plants but 

Wo+HS plants had the highest OPDA levels. Whereas salt stress caused a decreased in 

OPDA concentration with respect to CT, NaCl+HS reverted this phenotype and induced 

an OPDA accumulation (Fig. 6C).  

 

Fig. 5. ABA (A), PA (B) and DPA (C) leaf 

content in Carrizo plants subjected to 

wounding (Wo), salt stress (NaCl), heat stress 

(HS), combination of wounding and heat 

stress (Wo+HS) and combination of salt and 

heat stress (NaCl+HS) for 15 days. Different 

letters denote statistical among treatments at P 

≤ 0.01. 

Fig. 6. JA (A), JA-Ile (B) and OPDA (C) leaf 

content in Carrizo plants subjected to 

wounding (Wo), salt stress (NaCl), heat stress 

(HS), combination of wounding and heat 

stress (Wo+HS) and combination of salt and 

heat stress (NaCl+HS) for 15 days. Different 

letters denote statistical significance among 

treatments at P ≤ 0.01. 
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SA metabolism 

SA leaf concentration did not vary significantly with respect to CT in wounded or 

salinized plants (Fig. 7). In contrast, when these adverse conditions were combined with 

high temperatures, SA concentration increased significantly. In Wo+HS plants, SA 

reached levels 2.2 times higher than controls, whereas in NaCl+HS plants concentration 

SA level was 5.6 times superior compared to unstressed plants. Heat stress individually 

applied also caused a slightly increased in SA content in Carrizo plants.  

 

Fig. 7. SA leaf content in Carrizo plants subjected to wounding (Wo), salt stress (NaCl), heat 

stress (HS), combination of wounding and heat stress (Wo+HS) and combination of salt and heat 

stress (NaCl+HS) for 15 days. Different letters denote statistical significance among treatments 

at P ≤ 0.01. 

 

Changes on hormone-related gene expression 

Relative expression of genes involved in ABA biosynthesis and signaling pathways was 

measured in leaves after all stress treatments (Fig. 8A-F). Salt stress did not affect the 

expression of 9-NEOXANTHIN CIS-EPOXICAROTENOID DIOXYGENASE 

(CsNCED1, the AtNCED3 homologous) gene involved in ABA biosynthesis (Cutler and 

Krochko 1999) in Carrizo leaves. However, salt stress combined with heat stress caused 

a strong upregulation (108-fold increase with respect to controls). Both heat stress and 

wounding increased the relative expression of CsNCED1 (4.7- and up to 15.4-fold, 

respectively) but levels were even higher when wounding and heat stress were combined 

(42.9-fold, Fig. 8A). ALDEHYDE OXIDASE 3 (CsAAO3), also involved in ABA 

biosynthesis (Cutler and Krochko 1999), had a different expression pattern: it was 

downregulated under Wo+HS and NaCl+HS conditions (opposite to CsNCED1). On the 
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other hand, NaCl induced the highest CsAAO3 upregulation (up to 7.9-fold) contrasting 

again with CsNCED1. Finally, wounding and heat stress applied individually did not 

change CsAAO3 expression respect to controls (Fig. 8B). Expression of (ABA)-

RESPONSIVE ELEMENT (ABRE)-BINDING TRANSCRIPTION FACTOR1 (CsAREB1), 

CsAREB2, CsRD22 and RESPONSIVE TO DISSECATION29 (CsRD29), involved in the 

ABA signaling pathway (Narusaka et al. 2003, Yoshida et al. 2010), were also studied. 

CsAREB1 expression did not increase in Wo plants compared to controls and decreased 

in Wo+HS plants. In salt-stressed plants, the expression of this gene increased 

significantly and when salt stress was combined with heat stress, CsAREB1 expression 

strongly increased (up to 61.7-fold). Heat stress also induced a significant increase of 

CsAREB1 expression (3.3-fold increase, Fig. 8C). CsAREB2 was upregulated in Wo 

plants whereas in Wo+HS plants the expression of this gene did not change compared to 

control values. Salt stress, applied alone or combined with heat stress, caused an 

important accumulation of CsAREB2 transcripts (6.5- and 7.5-fold, Fig. 8D). Expressions 

of CsRD22 and CsRD29 genes were similar under all stress conditions (Fig. 8E-F). Both 

genes were strongly upregulated in NaCl and NaCl+HS plants. Heat stress did not affect 

the expression of CsRD22 in Carrizo leaves compared to control level but it induced a 

slight downregulation of CsRD29. Wounding did not change the pattern of expression of 

these genes at any of the two temperatures assayed (Fig. 8E-F). 



Chapter 3 

80 
 

C
H

A
P

T
E

R
 3

 

 

Fig. 8. Relative expression of genes involved in ABA biosynthesis (CsNCED1, panel A and 

CsAAO3, panel B) and signaling (CsAREB1, panel C; CsAREB2, panel D; CsRD22, panel E and 

CsRD29, panel F) in Carrizo plants subjected to wounding (Wo), salt stress (NaCl), heat stress 

(HS), combination of wounding and heat stress (Wo+HS) and combination of salt and heat stress 

(NaCl+HS) for 15 days. Different letters denote statistical significance among treatments at P ≤ 

0.01. 

 

Relative expression of genes involved in jasmonate biosynthesis and signaling pathways 

were measured in leaves after all stress conditions (Fig. 9A-D). Despite that 

LIPOXYGENASE (CsLOX), ALLENE OXIDE SYNTHASE (CsAOS) and JASMONIC 

ACID RESISTANT 1 (CsJAR1) are involved in the JA biosynthesis pathway, they showed 

different patterns of expression under each stress condition. CsLOX was strongly 

upregulated in wounded and salinized plants. In addition, HS, Wo+HS and NaCl+HS 

conditions induced increases in CsLOX transcription but to a lower extent (Fig. 9A). 

CsAOS was upregulated by wounding at the two temperatures assayed in this work. 

Moreover, CsAOS expression did not change under high salinity at control temperature 

but it strongly increased when NaCl was combined with HS (up to 192.7-fold, Fig. 9B). 

CsNCED1

R
e
la

ti
v
e
 e

x
p
re

s
s
io

n
 l
e
v
e
ls

0

10

20

30

40

50

100

150

a a

c

b

d

e CsAAO3

R
e
la

ti
v
e
 e

x
p
re

s
s
io

n
 l
e
v
e
ls

0

1

2

8

10

12

14

a
b

c

c

c

d

CsAREB1

R
e
la

ti
v
e
 e

x
p
re

s
s
io

n
 l
e
v
e
ls

0

1

2

3

4

5

60
80

a

b

bc

cd

d

e CsAREB2

R
e
la

ti
v
e
 e

x
p
re

s
s
io

n
 l
e
v
e
ls

2

4

6

8

10

aa
ab

b

c
c

CsRD22

C
T

W
o

N
a
C

l

H
S

W
o
+
H

S

N
a
C

l+
H

S

R
e
la

ti
v
e
 e

x
p
re

s
s
io

n
 l
e
v
e
ls

2

4

6

8

10

12

a
a a

c

b

c

CsRD29

C
T

W
o

N
a
C

l

H
S

W
o
+
H

S

N
a
C

l+
H

S

R
e
la

ti
v
e
 e

x
p
re

s
s
io

n
 l
e
v
e
ls

5

10

15

20

b b a

b

d

c

A B

DC

E F



Chapter 3 

81 
 

C
H

A
P

T
E

R
 3

 

All the stress conditions enhanced the expression of CsJAR1 with respect to controls, 

especially in response to wounding and salt stress applied alone or in combination with 

HS (Fig. 9C). Moreover, VEGETATIVE STORAGE PROTEIN 2 (CsVSP2), involved in 

jasmonate signaling pathway (Caarls et al. 2015), was upregulated in Carrizo leaves in 

response to wounding (80.2-fold increase with respect to controls). When Wo was applied 

at high temperatures, CsVSP2 transcripts increased but to a lower extent (4.9-fold). 

Finally, NaCl and NaCl+HS conditions caused similar CsVSP2 upregulation (8.5-fold 

and 13.5-fold respectively, Fig. 9D).   

 

Fig. 9. Relative expression of genes involved in JAs biosynthesis (CsLOX, panel A; CsAOS, panel 

B and CsJAR1, panel C) and signaling (CsVSP2, panel D) in Carrizo plants subjected to wounding 

(Wo), salt stress (NaCl), heat stress (HS), combination of wounding and heat stress (Wo+HS) and 

combination of salt and heat stress (NaCl+HS) for 15 days. Different letters denote statistical 

significance among treatments at P ≤ 0.01. 

 

Relative expressions of ISOCHORISMATE SYNTHASE 1 (CsICS1) and 

PHENYLALANINE AMMONIA-LYASE (CsPAL), considered crucial in the two 

differentiated SA biosynthesis pathways (Dempsey et al. 2011), were studied (Fig. 10A-

C). Whereas Wo did not affect CsICS1 expression whereas plants under salt stress had 

9.6-fold higher CsICS1 transcripts number with respect to control plants. Plants under all 

the different heat stress conditions upregulated CsICS1. Heat stress applied alone raised 

the expression up to 9.8-fold compared to control. In addition, when combining high 

temperatures and other stress condition CsICS1 expression raised considerably (22.1-fold 
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increase for Wo+HS plants and 651.2-fold for NaCl+HS plants, Fig. 10A). None of the 

stress conditions assayed modified CsPAL expression with respect to control (Fig. 10B). 

PATHOGENESIS-RELATED GENE 2 (CsPR2) was upregulated in plants under stress 

conditions involving heat stress, similarly to CsICS1 gene expression. In contrast, Wo 

and NaCl did not change CsPR2 expression respect to CT. However, this gene was 

strongly upregulated in Wo+HS and NaCl+HS plants (51.2-fold and 31.9-fold, 

respectively, Fig. 10C). 

Fig. 10. Relative expression of genes involved in SA biosynthesis (CsICS1, panel A and CsPAL, 

panel B) and signaling (CsPR2, panel C) in Carrizo plants subjected to wounding (Wo), salt stress 

(NaCl), heat stress (HS), combination of wounding and heat stress (Wo+HS) and combination of 

salt and heat stress (NaCl+HS) for 15 days. Different letters denote statistical significance among 

treatments at P ≤ 0.01. 
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Discussion 

Plants cultivated in the field are exposed to adverse environmental conditions that often 

occur simultaneously. Recent studies have focused on plant responses to specific stress 

combinations demonstrating that those responses are unique and not only the sum of 

responses to each individual stress (Mittler 2006, Suzuki et al. 2014, Zandalinas et al. 

2018). However, the knowledge about the effects of different stress combinations on 

crops needs to be deeply addressed due to the changing climate conditions that lead to 

important economic losses. In citrus plants, the combination of drought and high 

temperatures has been recently studied in two genotypes: Carrizo citrange (Poncirus 

trifoliata L. Raf. X Citrus sinensis L.Osb.) and Cleopatra mandarin (Citrus reshni Hort. 

ex Tan.) (Zandalinas et al. 2016b, 2017, Balfagón et al. 2018). These studies demonstrated 

that Carrizo was more tolerant than Cleopatra to the combined action of drought and high 

temperature. Thus, a better performance in stomatal responses, that allowed a better leaf 

cooling under heat (Zandalinas et al. 2016b), along with an efficient antioxidant 

machinery (Zandalinas et al. 2017) and a significant accumulation of key acclimation 

proteins (Balfagón et al. 2018) contributed to the best performance of Carrizo under this 

stress combination.  

In this work, the acclimation responses of Carrizo citrange to mechanical wounding and 

salt stress, applied individually or in combination with heat stress, were evaluated. Firstly, 

the phenotypical response of plants to the different individual and combined stresses was 

assessed. Salt stress negatively affected plant growth (Fig. 1A), showing a greater impact 

on leaves when combined with high temperatures (Fig. 1B). On the contrary wounding, 

either at low or at high temperatures, did not visually affect leaves (Fig 1B). These results 

highlight the sensibility of Carrizo to salt stress, as previously reported (Gómez-Cadenas 

et al. 1998, Moya et al. 2002).  

Data in this work also show that the specific stress combinations caused different 

physiological responses compared to isolated adverse conditions (Figs 2 and 3). 

Strikingly, although combinations of high temperatures with salt stress or with wounding 

resulted in similar physiological responses (Fig. 3), these stress combinations differently 

affected plant performance (Figs 1 and 2). Whereas Wo+HS had no phenotypical impact 

(Fig. 1) and did no alter the leaf water status (RWC; Fig. 2), NaCl+HS strongly induced 

leaf damage (Fig. 1B) and caused a decrease in RWC (Fig. 2), as well as a significant 

increment in leaf Cl- levels (Fig. 4). This indicates that the combination of high salinity 

and heat stress was the most harmful condition for Carrizo plants. It has been previously 
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reported that the absorption of chloride (the most toxic ion in citrus plants) under 

salinization is mostly driven by passive forces from water uptake (Moya et al. 2003). In 

our work, salt-stressed plants reduced transpiration (Fig. 3A) and stomatal conductance 

(Fig. 3B), probably to prevent further Cl- intoxication by reducing water uptake and flow 

through the plant. Although NaCl+HS plants had reduced E and gs with respect to HS 

plants, levels of these two parameters were still higher than those of NaCl plants due to 

the effect of high temperatures (Fig. 3). Consequently, the intake of Cl- considerably 

increased together with the water uptake under NaCl+HS conditions (Fig. 4), causing a 

very damaging situation to Carrizo plants. 

The pattern of hormonal changes (ABA, JA and SA) in Carrizo leaves in response to the 

individual and combined stresses and their possible involvement in the physiological and 

molecular responses to each stress was also addressed. ABA has been previously 

suggested to be key in the adaptation of plants to salt stress (Gómez-Cadenas et al. 2015). 

In addition, in Arabidopsis plants, ABA was demonstrated to have a pivotal role for plant 

acclimation to the combination of salt and heat stress (Suzuki et al. 2016b). In this work, 

ABA levels only increased in response to high salinity (Fig. 5A). Therefore, ABA 

accumulation seems to be responsible, at least in part, for the observed stomatal closure, 

oriented to limit Cl- intoxication. Furthermore, when salt stress was combined with high 

temperatures, the highest ABA levels were observed. This response was probably 

oriented to counteract the aperture of the stomata caused by the high temperatures (Fig. 

3A). Under salt stress, applied individually or in combination with heat, ABA 

biosynthetic pathway was activated as demonstrated by the upregulation of CsNCED1 in 

NaCl and NaCl+HS plants (Fig. 8A) as well as CsAAO3 in NaCl plants (Fig. 8B). To 

further confirm ABA signaling in these stress situations, expression of other genes was 

followed (Fig. 8C-F). Among them, AREB1 and AREB2 are transcription factors 

activated in an ABA-dependent manner that regulate, together with ABF3 and ABF1, 

most of downstream gene expression of three subclass III SNF1 RELATED KINASE 2 

(SnRK2s) (Yoshida et al. 2014); RD22 and RD29 are induced in response to osmotic 

stress situations through AREB TFs in an ABA-dependent manner (Narusaka et al. 2003, 

Yamaguchi-Shinozaki and Shinozaki 2006). In this work, CsRD22 and CsRD29 

expression (Fig. 8E-F) in Carrizo plants subjected to salt stress (applied alone or in 

combination with heat stress) increased probably through the action of the TFs CsAREB1 

and CsAREB2 (Fig. 8C-D), confirming thus the activation of ABA signaling under these 

stress conditions. 
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Although Wo and Wo+HS plants did not accumulate significant levels of ABA (Fig. 5A), 

upregulations of CsNCED1 and CsAAO3 (Fig. 8A-B), along with an upregulation of 

CsAREB2 in Wo plants (Fig. 8D) and CsRD22 in Wo+HS plants (Fig. 8E) were observed. 

This could indicate an ABA signaling activation in these stress situations in an ABA-

independent manner. A possible explanation could be that PA is recognized by a subset 

of ABA-receptors of the PYRABACTIN RESISTANCE (PYL/PYR/RCAR) family in a 

way that partially overlaps with ABA-mediated regulation (Weng et al. 2016). Therefore, 

the enhanced expression of CsAREB2 in Wo plants (Fig. 8D) and CsRD22 in Wo+HS 

plants (Fig. 8E) could be a response caused by the observed PA accumulation (Fig. 5B).  

Jasmonic acid is a hormone widely related to biotic stress responses in plants (Kazan and 

Manners 2008). In the present work, an accumulation of JA and JA-Ile (Fig. 6A-B), as 

well as an upregulation of JA-related genes involved in biosynthesis and signaling 

(CsLOX, CsAOS, CsJAR1 and CsVSP2; Fig. 9) were observed in Wo plants, highlighting 

the importance of this hormone in plant adaptations to wounding as previously reported 

(Wasternack and Song 2016). Interestingly, whereas JA and JA-Ile levels in Wo plants 

were significantly higher than in Wo+HS plants (Fig. 6A-B), OPDA content had the 

opposite behavior (Fig. 6C). It has been previously reported than OPDA can induce 

stomatal closure and trigger a signal, independently from JA, in guard cells (Murata et al. 

2015). Thus, OPDA accumulation under Wo+HS conditions (Fig. 6C) could be a 

response to reduce stomatal opening and consequently water loss. Therefore, the pattern 

of jasmonate accumulation in plants under wounding was different from those under 

wounding combined with heat stress. This result suggests that OPDA has a specific role 

to adjust stomatal aperture in Carrizo plants under this stress combination. Similarly, 

combination of high salinity and heat stress induced JA, JA-Ile and OPDA accumulation 

(Fig. 6) as well as an upregulation of jasmonate biosynthetic and signaling pathways (Fig. 

9A). This response could be an additional mechanism to the ABA signal that further 

counteracts heat effects by closing stomata, reducing transpiration and, thus, avoiding salt 

intoxication. 

SA has been previously proposed to protect the PSII complex and membrane integrity 

under heat stress conditions (Clarke et al. 2004, Wang et al. 2010, 2014). Accordingly, 

SA significantly accumulated in response to heat stress applied alone, and especially in 

response to heat stress combined with salinity or wounding, showing an additive output 

(Fig. 7). A similar SA additive response was previously observed in citrus plants in 

response to the combined action of drought and heat (Zandalinas et al. 2016b), indicating 
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that SA accumulation parallels the physiological impact of the individual and combined 

stresses. Furthermore, the SA accumulation pattern of Carrizo plants subjected to each 

stress condition correlated with CsICS1 gene expression (Fig. 10A), whereas CsPAL 

expression had a marginal change under these stress conditions (Fig. 10B). To further 

analyzed SA signaling, the upregulation of CsPR2 (SA signaling marker; Zandalinas et 

al. 2016b) confirmed the activation of SA-dependent molecular responses in response to 

both stress combinations studied in this work (Fig. 10C). Cross-communication between 

SA and JA signaling pathways has been extendedly reported in response to different biotic 

stresses to fine tune transcriptional programs that determine resistance to invaders (Thaler 

et al. 2012, Caarls et al. 2015). In this work, a possible antagonistic interaction between 

SA and JA could emerge in wounded plants (Figs. 6A-7). Thus, wounded plants at control 

temperature strongly accumulated JA (Fig. 6A) with no variation in SA levels (Fig. 7). 

However, when SA was accumulated in response to heat stress (Fig. 7), levels of JA 

considerably decreased (Figs. 6A).  

Results obtained in this work indicate that physiological, hormonal and molecular 

responses of Carrizo plants are different when wounding and salt stress are applied 

individually or in combination with heat stress. Combination of high salinity and heat 

stress resulted in the most harmful conditions. Transpiration and stomatal conductance 

increment caused by high temperatures counteracted the plant adaptative responses to salt 

stress resulting in a negative interaction and a serious salt intoxication of the plants (Fig. 

3). Different hormonal accumulation and signaling in response to specific stresses could 

lead to unique responses, allowing plants to mount proper acclimation mechanisms. 

Therefore, adding a new stress can modify (either enhance or reduce) the plant hormonal 

response which modulate the response to a specific stress (Fig. 11). It has been shown 

that PA could have a signaling role activating the expression of ABA-related genes in 

wounded Carrizo plants, enhancing its accumulation when HS was added (Fig. 5B). In 

addition, differential pattern of jasmonate accumulation was observed in response to Wo 

and Wo+HS plants (Fig. 6). OPDA accumulated specially in wounded plants under heat 

stress whereas JA and JA-Ile seemed to have a more important role when wounding was 

applied at control temperatures (Fig. 6). As a response to high temperatures, SA levels 

increased in Carrizo plants (Fig. 7), via ICS biosynthetic pathway (Fig. 10A). 

Furthermore, a putative antagonism between SA and JA was observed in wounded plants. 

The response to mechanical wounding seemed to be mediated by jasmonates although at 

high temperatures SA signal could be more determinant (Fig. 11).  
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Fig. 11. Hormonal relations in Carrizo plants to modulate an appropriate response to different 

stress combinations. Green arrows indicate an increase in the hormone accumulation by the 

addition of a new stress condition to an existing one whereas yellow lines indicate a reduction in 

hormonal content. 

 

Due to global warming, temperatures will increase in coming years and it is important for 

the citriculture to find rootstocks not only tolerant to high temperatures, but also capable 

of withstanding other co-occurring stress conditions such as soil toxicity or mechanical 

wounding. Our work extends the knowledge about the performance of Carrizo citrange 

to different stress combinations in which heat stress is involved and provides information 

for the improvement of citrus rootstocks adapted to the environmental conditions to come. 
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Supporting information 

Additional supporting information may be found in the online version of this article: 

Table S1. Designed primers for gene expression analyses by quantitative RT-PCR. 

 

 

 

 

 

Citrus gene Locus Forward / 
Reverse Sequence (5’→3’) Amplicon 

size (bp) 

CsNCED1 orange1.1g007379m 
F GTCCCCAAAATACCCTCCAT 

151 
R GACTGCGTCCAAGGCTAAAG 

CsAAO3 orange1.1g000629m F CACTTAGGTCAACCCCTGGA 
174 

R CCCGAACTTTTTCCAACAGA 

CsAREB1 orange1.1g021624m 
F GTTGGTGGCAAGGTTAATGG 

214 
R GAGCTAGGGGATGCTGATTC 

CsAREB2 orange1.1g013197m F 
R 

GTGGACTGGGGAAGGATTTT   

CCCTCCAAACTTCATCGACT 201 

CsRD22 orange1.1g000107m 
F 
R 

GTGCATTGTGTCGTGGATTC 

TCTCCGCATCTGATTTTTCC 
142 

CsRD29 orange1.1g007806m 
F 

R 

GCTCTATGCCAGCATCAACA 

CCTTCTCGCTGCCTGTATTA 
150 

CsLOX orange1.1g002617m 
F 

R 

GCAACATTGCCACTGAAGATCCATC 

GTAGCTTGAATCTGGGAAGGGAAGG 
103 

CsAOS orange1.1g039030m 
F 

R 

GTTTCAGCTCGCTCCGTTAC 

TGGCAAATACGAGGTTGTGA 
209 

CsJAR1 orange1.1g007464m 
F 

R 

TTCTTCTGAGGGGTGGAT 

ACCTGCAACATTGGTGACAA 
217 

CsVSP2 orange1.1g023352m 
F 

R 

CATCCGCCATCTTTTTCTGG 

CATTTTTCGGGAACAGTCGC 
195 

CsICS1 orange1.1g044177m 
F 

R 

GTTGAATGTGGTGCGTCATC 

CCATGTGGACATTGGTGTGT 
150 

CsPAL orange1.1g037382m 
F 

R 

GAGGCACAATCACTGCTTCA 

AGAGGCTTCCTGAGCATCAA 
125 

CsPR2 orange1.1g019014m 
F 

R 

GGGCAGTTTGGTTACAGGAA 

CTCTCCGACACCACAATCCT 
104 

CsACT orange1.1g037845m 
F CCCTTCCTCATGCCATTCTTC 

105 
R CGGCTGTGGTGGTAAACATG 

CsTUB orange1.1g013335m 
F GGGGCAAAATGAGCACTAAA 

187 
R CGCCTGAACATCTCCTGAAT 



Chapter 3 

93 
 

C
H

A
P

T
E

R
 3

 

 

Table S2. Run conditions and transitions used for the analysis of selected phytohormones. 

 

 

 

Figure S1. Leaf phenotypic traits in Carrizo plants subjected to different stresses. 

 

 

A B

D E F

C

Compound Dwell 

(secs) 

Cone 

voltaje (V) 

Collision 

energy (eV) 

Precursor 

ion (m/z) 

Diagnostic 

transition (m/z) 

ABA 0.050 25 12 263 263 → 153 

[2H6]-ABA 0.050 25 12 269 269 → 159 

PA 0.025 25 20 279 279 → 139 

[2H3]-PA 0.025 25 20 282 282 → 142 

SA 0.050 20 20 137 137 → 93 

[13C]-SA 0.050 25 15 143 143 → 99 

JA 0.050 25 15 209 209 → 59 

JA-ile 0.050 25 12 322 322 → 130 

OPDA 0.050 40 25 291 291 → 165 

DHJA 0.050 25 15 211 211 → 59 
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Abstract 

In the field, plants experience high light intensities that are often accompanied by elevated 

temperatures. Such conditions are a serious threat to agriculture production, since 

photosynthesis is highly sensitive to both high light intensities and high temperature 

stress. One of the potential cellular targets of high light and heat stress combination is 

photosystem II (PSII) because its degree of photoinhibition depends on the balance 

between the rate of PSII damage (induced by light stress), and the rate of PSII repair 

(impaired under heat stress). Here, we studied the response of Arabidopsis thaliana plants 

to a combination of high light and heat stress conditions. High light and heat stress 

combination was accompanied by an irreversible damage to PSII, a decrease in D1 (PsbA) 

protein levels, and an enhanced transcriptional response indicative of PSII repair 

activation. We further identified several unique aspects of this stress combination that 

included enhanced accumulation of jasmonic acid (JA) and JA-isoleucine (JA-Ile), 

elevated expression of over 2200 different transcripts that are unique to the stress 

combination (including many that are JA-associated), and distinctive structural changes 

to chloroplasts. Further analysis of a mutant deficient in JA biosynthesis (allene oxide 

synthase; aos) subjected to a combination of light and heat stress, revealed that JA is 

required for regulating several transcriptional responses unique to the stress combination. 

This mutant also displayed enhanced sensitivity to the stress combination. Our study 

reveals that JA plays an important role in the acclimation of plants to a combination of 

high light and heat stress.  

 

Introduction 

The majority of plants growing under direct sunlight routinely encounter light intensities 

that exceed their photosynthetic capacity (Ort, 2001). An additional environmental 

parameter that may accompany high light intensities is heat stress. In the past several 

years, the frequency of extreme weather events combining high light and high 

temperature conditions have been increasing dramatically, especially in the summer 

during midday, in which temperatures often rise to 30–40°C and light intensity reaches 

2000 µmol m-2 s-1 (Yamamoto et al., 2008; Suzuki et al., 2014). High light intensity or 

high temperatures are both abiotic conditions that can drastically impact the 

photosynthetic machinery and limit the growth and development of plants. During high 
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light stress, the reaction centers become saturated and the excess excitation energy can 

become harmful since it can irreversibly damage photosystem II (PSII; Murata et al., 

2007; Ruban, 2009; Ruban, 2015). This damaging scenario leads to photoinhibition, a 

sustained decline in photosynthetic efficiency caused by the imbalance between the rate 

of photodamage to PSII and the rate of PSII repair (Nishiyama et al., 2006; Murata et al., 

2007). In addition to high light stress, heat stress can compromise PSII electron transport 

due to the increase in fluidity of the thylakoid membranes which causes dislodging of 

PSII light harvesting complexes (LHC) and decreased integrity of PSII (Mathur et al., 

2014). Heat stress can also impair the repair process of PSII, exacerbating the effects of 

high light stress (Takahashi and Murata, 2008; Dogra et al., 2019). On top of that, high 

light intensities and heat stress may each induce the production of reactive oxygen species 

(ROS) via different mechanisms (Murata et al., 2007; Pospíšil, 2016), potentially leading 

to a distinct ROS signature when the two stresses are combined (Choudhury et al., 2017). 

In plants, PSII contains more than 20 subunits including four major core subunits termed 

D1 (PsbA), D2 (PsbD), CP43 (PsbC), and CP47 (PsbB) (Allen et al., 2011). Among them, 

the D1 protein is the main site susceptible to damage by heat stress or high light (Murata 

et al., 2007; Yamamoto et al., 2008; Su et al., 2014). Plants evolved several different 

protective systems to survive under unfavorable light conditions (Szymańska et al., 2017). 

Following PSII inactivation by light, its activity can be restored by a highly coordinated 

multistep repair system that involves degradation of damaged D1, new D1 synthesis and 

PSII reassembly (Lu, 2016). This repair cycle includes the disassembly of the PSII-LHCII 

supercomplex and the PSII core dimer in grana stacks, followed by lateral migration of 

the PSII core monomer to stroma-exposed thylakoid membranes, dephosphorylation, 

partial disassembly of the PSII core monomer, and degradation of photodamaged D1. 

Finally, synthesis and reassembly of new D1, re-incorporation of CP43, migration of the 

PSII core monomer back to grana stacks, dimerization into PSII core dimers and 

reformation of PSII-LHCII supercomplexes occur (reviewed in Lu, 2016). More than 60 

auxiliary proteins, enzymes or components of thylakoid protein trafficking/targeting 

systems are directly or indirectly involved in the PSII repair cycle (Baena-González and 

Aro, 2002; Lu, 2016). For example, FtsH proteases are involved in the degradation of 

photodamaged D1. It has been reported that var2-2 plants, deficient in FtsH, are much 

more susceptible to light-induced PSII photoinhibition than wild-type plants (Bailey et 
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al., 2002), suggesting that impaired PSII repair could lead to failure in acclimation to high 

light intensity.  

Plant hormones play important roles in regulating responses to a wide variety of biotic 

and abiotic stresses. Among them, jasmonates have been traditionally associated with 

defense responses against herbivores, necrotrophic pathogens, nematodes and other biotic 

threats. In addition, jasmonic acid (JA) and its conjugate form, JA-isoleucine (JA-Ile), 

have been implicated in responses to abiotic challenges such as UV, osmotic stress, 

salinity, cold, heat, and heavy metal stresses (reviewed in Wasternack and Hause, 2013; 

Dar et al., 2015; Kazan, 2015). A study of the ultra-fast transcriptomic response of 

Arabidopsis to light stress revealed that approximately  12% of transcripts that 

accumulated within seconds of light stress application were JA-response transcripts 

(Suzuki et al., 2015), suggesting a possible role for this phytohormone in rapid responses 

to high light intensity stress. 

Because in the field, light and heat stress combination occurs during the summer season 

in many of the areas used for crop production worldwide, we studied the effect of this 

stress combination on the model plant Arabidopsis thaliana. Here, we uncover the unique 

transcriptomic, physiological, and hormonal responses of Arabidopsis plants to a 

combination of high light and heat stress. Because both stresses impact PSII performance, 

albeit in different ways, we hypothesized that the stress combination would have a severe 

effect on PSII performance, higher than each of the individual stresses would have. Here 

we show that a combination of heat and high light stress has a detrimental effect on plants 

and that this combination displays unique physiological and molecular characteristics, 

including a decreased ability to repair PSII. We further reveal that JA plays a key role in 

the response of plants to this stress combination. In contrast, abscisic acid (ABA) and 

salicylic acid (SA) play a much lesser role. Our findings reveal that the response of 

Arabidopsis plants to a combination of light and heat stress is unique and might require 

dedicated breeding efforts to overcome under field conditions. 
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Results 

Acclimation of Arabidopsis plants to high light (HL), heat stress (HS) and a 

combination of high light and heat stress (HL+HS) 

To study high light, heat stress and their combination, we subjected wild-type Arabidopsis 

plants (Col) to a light intensity of 600 µmol m-2 s-1 (HL), a temperature of 42oC (HS), or 

to a light intensity of 600 µmol m-2 s-1 combined with a temperature of 42oC (HL+HS) 

for 7 hours (Fig. 1A; Supplemental Fig. S1). In contrast, control (CT) plants were 

maintained at 50 µmol m-2 s-1, 23oC. PSII performance in terms of quantum yield of PSII 

(ΦPSII) and maximal efficiency of PSII (Fv/Fm) were determined in Col plants subjected 

to HL, HS and HL+HS (Fig. 1B and 1C). ΦPSII and Fv/Fm values significantly decreased 

following the application of HL and more dramatically following the application of 

HL+HS, compared to CT values. In contrast, HS did not significantly affect PSII activity 

(Fig. 1B and 1C, top panels). To examine the ability of plants to recover from stress, we 

measured ΦPSII and Fv/Fm 24 hours following the stress treatments (Fig. 1B and 1C, 

bottom panels; Supplemental Fig. S1). As shown in Figure 1B and 1C, ΦPSII and Fv/Fm 

values of plants subjected to HL returned to control values whereas those of plants 

subjected to the stress combination remained significantly lower compared to CT plants. 

These findings suggest that PSII function cannot be completely recovered following 

exposure to HL+HS conditions. Leaf Damage Index (LDI) demonstrated that 

approximately 6% of leaves showed damage in response to HL, whereas all leaves looked 

healthy in plants subjected to HS (Fig. 1A and 1D). In contrast, Col plants subjected to 

the stress combination showed a higher number of affected leaves (35% dead and 38% 

damaged; Fig. 1A and 1D). In addition, whereas all plants survived the application of HL 

or HS, the combination of HL and HS significantly decreased survival rate to 75% (Fig. 

1A and 1D). 



Chapter 4 

101 
 

C
H

A
P

T
E

R
 4

 

 

Fig. 1. A combination of heat and high light stress is detrimental to plants. (A) Representative 

images of Col plants subjected high light (HL), heat stress (HS) and a combination of high light 

and heat stress (HL+HS). (B) Quantum yield of PSII (ΦPSII) immediately after the application of 

each stress (top) and 24 h following recovery from the stress treatments (bottom). (C) Maximum 

efficiency of PSII (Fv/Fm) immediately after the application of each stress (top) and 24 h 

following recovery from the stress treatments (bottom). (D) Leaf Damage Index of Col plants 

following the stress treatments (top) and survival of plants subjected to the different stresses 

(bottom). Different letters denote statistical significance at P < 0.05. Scale bar in A indicates 1 

cm. CT, control. 

 

Stomatal responses of Arabidopsis plants to HL, HS, and HL+HS stress combination  

Because stomata were previously shown to close during light stress (Devireddy et al., 

2018), but open during heat (Rizhsky et al., 2004; Teskey et al., 2015; Zandalinas et al., 

2016a; Urban et al., 2017), suggesting a potential conflict in the response of plants to 

HL+HS, we tested the effect of HL+HS on stomatal aperture (Fig. 2). Whereas HL 

induced a decrease in stomatal aperture (23% compared to CT), both HS and HL+HS 

induced stomatal opening. Leaf temperature increased in plants subjected to HL by about 

4°C compared to leaves of CT plants. In contrast, the leaf temperature of HS plants was 

higher, reaching about 10°C more than CT, while combined HL+HS caused leaf 

temperature to be about 10-12°C more than CT. Consequently, leaf relative water content 

(RWC) significantly decreased primarily in plants subjected to HS or HL+HS compared 
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to control values (Fig. 2). These results demonstrate that from the standpoint of signal 

transduction mechanisms regulating stomatal conductance, the combination of HL+HS is 

more similar to HS than to HL.    

 

Fig. 2. Heat and light stress combination displays a heat-like stomatal response. Stomatal aperture 

(left), surface leaf temperature (middle) and leaf relative water content (RWC; right) of Col plants 

subjected to high light (HL), heat stress (HS) and a combination of high light and heat stress 

(HL+HS). Different letters denote statistical significance at P < 0.05. Representative stomatal 

images are shown on left. Scale bar in stomatal images indicates 10 μm. CT, control. 

Transcriptomic responses of Arabidopsis plants to HL, HS, and HL+HS stress 

combination  

A transcriptomic (RNA-Seq) analysis of Col plants subjected to HL, HS and HL+HS 

conditions revealed that the steady-state level of 3942, 5304 and 6314 transcripts was 

significantly enhanced in response to HL, HS and HL+HS, respectively (Fig. 3A; 

Supplemental Tables S1-S6), and a high proportion of these transcripts was associated 

with hormone and ROS responses (Supplemental Table S7; Suzuki et al., 2015; 

Zandalinas et al., 2019a). In addition, the steady-state level of 3670, 4994 and 5678 

transcripts was significantly decreased in response to HL, HS and HL+HS, respectively 

(Fig. 3A; Supplemental Tables S4-S6). Of the 6314 transcripts significantly elevated in 

response to HL+HS, 2125 transcripts (34%) were common with HL-induced transcripts, 

3166 transcripts (50%) were common with HS-induced transcripts, and 2239 transcripts 
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(36%) were found to be specifically upregulated by the stress combination. These results 

suggest that a considerable proportion of the transcriptomic changes in plants subjected 

to HL+HS is specific for the stress combination. According to Gene Ontology (GO) term 

enrichment analysis (Fig. 3B; Supplemental Fig. S2), HL+HS-specific transcripts were 

involved in different biological processes including oxidation-reduction processes, 

protein transport, protein catabolic processes or photosynthesis, as well as related to 

responses to cadmium, salt stress or involved in the tricarboxylic acid cycle (Fig. 3B).  

 

Fig. 3. Heat and light stress combination is accompanied by a unique transcriptomic response. 

(A) Venn diagrams showing the overlap among the upregulated (top) or downregulated (bottom) 

transcripts in each of the different stress treatments [high light (HL), heat stress (HS) and a 

combination of high light and heat stress (HL+HS)]. (B) Gene Ontology (GO) annotation of 

transcripts specifically upregulated in leaves of Arabidopsis in response to the combination of 

high light and heat stress (HL+HS; numbers above each bar represent P value for statistical 

significance). 
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The expression of selected transcriptional regulators involved in plant responses to 

different stresses, such as Heat Shock Factors (HSFs), APETALA2/ethylene-responsive 

element binding proteins (AP2/EREBPs), or MYBs revealed a differential expression 

pattern in plants subjected to HL, HS and HL+HS, compared to CT (Fig. 4). As shown in 

Figure 4, some HSFs displayed an additive manner of expression, with HSFA2, HSFA7A, 

HSFB1, HSFB2A and HSFB2B showing the highest expression values in response to 

HL+HS. In contrast, other HSFs were specifically upregulated in response to HS 

(HSFA6B) or HL (HSFA1D; Fig. 4A). Interestingly, no HSF was found to be uniquely 

expressed during the HL+HS response. In contrast to HSFs, several AP2/EREBP 

transcription factors were upregulated specifically in response to HL+HS (Fig. 4B). These 

included ERF109, ERF88, DREB1D, ERF25, ERF57, ERF4 and ERF99 (Fig. 4B). A 

similar pattern with the steady-state level of several transcriptional regulator enhanced 

specifically during HL+HS was also found in the MYB family (Fig. 4C). For instance, 

MYB50, MYB15, MYB35, MYB62, MYB86, MYB77, MYB17 and MYB23 were 

specifically upregulated in response to HL+HS, whereas MYB90, MYB11, MYB114, 

MYB113 and MYB97, were specifically upregulated in response to HL or HS (Fig. 4C). 

These findings highlight particular transcriptional regulators and their related families as 

potential breeding targets for future efforts to develop plants with enhanced tolerance to 

HL+HS combination. In addition, they reveal the complexity underlying plant 

acclimation to stress combination.  
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Fig. 4. Differential expression of transcriptional regulators during the stress combination. Heat 

maps showing the response of different transcriptional regulators in each stress condition (relative 

to control) are shown. (A) Heat Shock Factor (HSF) family. (B) APETALA2/ethylene-responsive 

element binding protein (AP2/EREBP) family. (C) MYB family. 
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Fig. 5. Enhanced expression of transcripts encoding PSII and PSII repair proteins during a 

combination of light and heat stress is accompanied by a decrease in D1. (A) Heat map showing 

changes in expression of transcripts encoding proteins of the photosynthetic apparatus in Col 

leaves in response to high light (HL), heat stress (HS) and the combination of high light and heat 

stress (HL+HS). (B) Accumulation of D1 proteins in response to each stress condition. Different 

letters denote statistical significance at P < 0.05. CT, control. (C) Heat map showing changes in 

the expression of transcripts encoding proteins involved in the D1 turnover in Col leaves in 

response to each stress.  

Impact of HL+HS combination on PSII and different chloroplast structures 

Because HL intensity and HS negatively impact the photosynthetic machinery (Mathur 

et al., 2014; Ruban, 2015), and one of the major impacts of HL+HS appears to be PSII 

(Fig. 1), we analyzed the expression of transcripts encoding photosynthetic proteins in 

our RNA-Seq data set (Fig. 3). As shown in Figure 5A, transcripts encoding PSII (PsbC, 

PsbA, PsbB, PsbE, PsbF, PsbH or PsbZ), PSI (PsaA, PsaK, PsaC or PsaH) proteins, 
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photosynthetic electron transport (PetE and PetF) were upregulated in response to 
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Mattoo, 2008), we further analyzed the levels of D1 under the different stresses (Fig. 5B), 

as well as the expression of transcripts that encode proteins involved in the PSII repair 

cycle (Lu, 2016; Fig. 5C). Whereas HS and HL significantly increased the accumulation 

of D1 with respect to CT plants, plants subjected to HL+HS displayed reduced levels of 

this protein (Fig. 5B). In addition, many transcripts encoding proteins involved in D1 

degradation (FtsH1, FtsH5, FtsH6, FtsH8), its repair (CYP20-3, PSB27), and the 

reassembly of PSII (CYP20-3, LQY1, PBF1, HCF136, PSB33) (Järvi et al., 2015; Lu, 

2016), were upregulated in response to HL+HS, suggesting that the PSII repair cycle is 

activated under this stress combination (Fig. 5C). Our findings suggest that the D1 protein 

of PSII is particularly sensitive to the combination of HL+HS, and that plants subjected 

to this stress combination are attempting to repair this protein. Nevertheless, as shown in 

Figure 1, the combination of HL+HS results in an overall decline in PSII activity during 

the stress combination. 

To determine the degree of structural changes to chloroplasts resulting from the stress 

combination, we conducted transmission electron microscopy (TEM) analysis of leaf 

samples from plants subjected to the different treatments. As shown in Figure 6, HL-

induced structural changes to chloroplasts included a decrease in the number of starch 

granules and enhanced stacking of thylakoids (number of thylakoid membranes per µm; 

Fig. 6B). In contrast, chloroplasts of HS-treated plants appeared to contain a higher 

number of starch granules, as well as reduced granal stacking (Fig. 6B). Interestingly, 

compared to controls, HL+HS-induced structural changes included an increased number 

of starch granules, of which about 75% appeared highly distorted, as well as fewer 

thylakoids per µm (Fig. 6). Plant subjected to HL+HS displayed therefore unique 

structural features of distorted starch granules, as well as reduced granal stacking. These 

features suggest that the impact of HL+HS on chloroplast structure and metabolism is 

unique and should be addressed in future studies. 
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Fig. 6. Unique structural features of chloroplasts from plants subjected to high light (HL), heat 

stress (HS) and a combination of high light and heat stress (HL+HS). (A) Representative 

transmission electron microscope images of chloroplasts of Col plants subjected to the different 

stresses. (B) Quantification bar graphs showing structural changes to chloroplasts of plants 

subjected to the different stresses. At least 100 images, each containing 2-4 chloroplasts from at 

least three plants from each treatment were analyzed. Different letters denote statistical 

significance at P < 0.05. Scale bar in A indicates 0.5 or 0.2 μm. CT, control. 

Accumulation of H2O2, ABA, SA, JA and JA-Ile in Arabidopsis plants subjected to 

HL+HS combination  

A large number of plant hormones and ROS are involved in the response of plants to 

different abiotic stresses and their combination (Peleg and Blumwald, 2011; Choudhury 

et al., 2017). To further dissect the response of plants to a combination of HL+HS, we 

measured the levels of H2O2, ABA, SA, JA and JA-Ile in all treatments. As shown in 

Figure 7, H2O2 and ABA content significantly increased in Col leaves in response to HS 

and the combination of HL and HS (Fig. 7A and B). In contrast, SA levels decreased in 

response to all stress treatments (Fig. 7C). Interestingly, compared to CT, HL and HS 
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treatments, the levels of JA and its conjugate JA-Ile dramatically increased in response to 

the stress combination (Fig. 7D). These results suggest that jasmonates could be playing 

an important role in the acclimation of plants to this stress combination. 

 

Fig. 7. Levels of H2O2, ABA, SA, JA and JA-Ile in Col plants subjected to high light (HL), heat 

stress (HS) and a combination of high light and heat stress (HL+HS). (A) H2O2. (B) ABA. (C) 

SA. (D) JA and JA-Ile accumulation. Different letters denote statistical significance at P < 0.05. 

CT, control. 

Characterizing the response of JA-deficient (allene oxide synthase; aos) plants to 

HL+HS stress combination 

To further dissect the role of JA in the response of plants to HL+HS combination, we 

compared our transcriptomic data with previous reports that identified JA-associated 

transcripts (Suzuki et al., 2015; Hickman et al., 2017). We found that out of the 6314 

transcripts that were upregulated in response to HL+HS, 822 transcripts (13%) were JA-

responsive transcripts (Fig. 8A; Supplemental Fig. S3). In addition, as shown in Figure 

8A, the expression of many JA-response transcriptional regulators was upregulated in 

response to HL+HS and some of these were specific for the stress combination (including 

bZIP3, BHLH114, BHLH137, WRKY8, WRKY57 and WRKY18). In addition, the 

expression of many transcripts involved in JA biosynthesis was upregulated in plants 

subjected to the stress combination (Supplemental Fig. S3). These findings suggest that 

JA could be mediating some of the HL+HS-specific transcriptional responses identified 

in Figure 3.  

To further study the role of JA in the response of plants to HL+HS combination, we 

analyzed the response of the highly studied JA-deficient mutant aos (Park et al., 2002; 

Chehab et al., 2012; Hu et al., 2013; Gasperini et al., 2015) to HL, HS and HL+HS (Fig. 
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8B-8D; Supplemental Fig. S4). As shown in Figure 8C, compared to CT, ΦPSII and Fv/Fm 

values of aos mutants significantly decreased in response to HL and more markedly in 

response to HL+HS. In addition, whereas all aos plants survived the individual HL or HS 

stresses, the survival rate of aos plants subjected to a combination of HL and HS 

decreased to about 49% (Fig. 8D, top panel). Furthermore, when analyzing leaf damage 

(LDI) in aos plants subjected to the different stresses, we found that about 33% of leaves 

were damaged by HL whereas signs of stress were not apparent in aos plants subjected 

to HS. In contrast, HL+HS negatively influenced leaf appearance, with 60% of leaves 

dead, 30% of leaves damaged and only 10% of leaves healthy (Fig. 8D, bottom panel). 

Compared to Col plants, aos mutants were therefore more sensitive to the stress 

combination [displaying a significantly reduced survival rate and LDI; Fig. 8B and 8D, 

Supplemental Table S8)]. In contrast, to the aos mutant, mutants deficient in ABA (aba2) 

or SA (sid2) did not display higher sensitivity to the HL+HS stress combination compare 

to wild type Col plants (Supplemental Figs. S5 and S6; Supplemental Table S8). 

To determine whether the differences in survival of Col and aos plants subjected to the 

stress combination (Supplemental Table S8) were related to JA-dependent changes in 

transcript expression, we analyzed the expression of different JA-responsive 

transcriptional regulators (ZAT6, ZAT10 and MYB15), as well as the ROS-scavengers 

APX1 and APX2, in Col and aos plants subjected to the different stress treatments (Fig. 

8E). Compared to wild-type plants, the expression of ZAT6, ZAT10, APX1 and APX2 

was significantly reduced in aos plants in response to the combination of HL+HS (Fig. 

8E), suggesting the JA-dependent responses could be key for plant tolerance to the 

combination of high light and heat stress. 
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Fig. 8. Involvement of JA in the response of plants to a combination of 

high light and heat stress (HL+HS). (A) Venn diagram showing the overlap 

between JA-responsive transcripts and transcripts upregulated in response 

to a combination of high light and heat stress (HL+HS, top), and heat map 

showing changes in the expression of JA-response transcriptional 

regulators during high light (HL), heat stress (HS) and HL+HS (bottom). 

(B) Representative images of aos plants subjected to the different stresses 

and their combination. (C) Quantum yield of PSII (ΦPSII, top) and 

maximum efficiency of PSII (Fv/Fm, bottom) immediately following the 

application of each stress in aos plants. (D) Leaf Damage Index showing 

the appearance of aos plants in response to each stress (top) and survival 

of aos plants subjected to the different stresses (bottom). (E) Relative 

expression of the transcriptional regulators ZAT6, ZAT10 and MYB15 and 

the ROS-scavengers APX1 and APX2 in Col and aos plants in response to 

the different stresses. Different letters denote statistical significance at P < 

0.05. Asterisks denote Student’s t-test significance at P < 0.05. Bar in B 

indicates 1 cm. CT, control.  
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MYB15
MYB62
bZIP3
CDF1
BHLH114
WRKY8
RVE7
RAP2-9
KNAT7
BHLH137
ERF4
AS2
BHLH125
B3-containing TF
ERF13
WRKY57
PRE5
MIK19.31
WRKY18
NAC018
BIM2
HAT22
ERF008
TCP20

100<0 Fold change
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Discussion 

Plants growing within their natural habitat are routinely subjected to a combination of 

different environmental stresses that could adversely impact their growth and productivity 

(Mittler, 2006). The ability to sense and respond to these adverse conditions is therefore 

crucial for plants. Of particular importance for this study is the ability of plants to 

acclimate to a combination of HL and HS. The frequency of this stress combination has 

been increasing during the last several years, affecting the photosynthetic performance of 

plants (Yamamoto et al., 2008; Suzuki et al., 2014). Previous reports analyzed some 

aspects of the response of different plant species to a combination of HL and HS. 

Lipidomics analysis in tomato identified lipophilic antioxidant molecules that could 

potentially contribute to the protection of PSII against photodamage and enhance 

tolerance to a combined high-temperature and high-light stress (Spicher et al., 2017). In 

addition, studies in sunflower identified HL+HS-specific responses involving the 

upregulation of transcripts associated with energy metabolism, protein synthesis, cell wall 

activity and signal transduction components (Hewezi et al., 2008). However, to our 

knowledge, a comprehensive physiological, hormonal and transcriptomic analysis of this 

stress combination has not been conducted in the model plant Arabidopsis thaliana to 

date.  

Our study of the stomatal responses of plants subjected to HL, HS and HL+HS 

combination (Fig. 2) suggest that during the stress combination the effect of high 

temperature, i.e., opening of stomata to increase transpiration and cool the leaf (Rizhsky 

et al., 2004; Zandalinas et al., 2016a), prevailed over the effect of HL, i.e., reducing 

stomatal aperture (Devireddy et al., 2018). Light stress-induced stomatal closure, 
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potentially to prevent water loss (Fig. 2), could limit CO2 uptake and therefore energy 

supply (Flexas et al., 2002), possibly leading to a decreased number of starch granules in 

chloroplasts (Fig. 6). In contrast, HS and HL+HS enhanced stomatal aperture, to decrease 

leaf temperature via transpiration (Rizhsky et al., 2002; Rizhsky et al., 2004; Zandalinas 

et al., 2016a), potentially leading to a reduced RWC in these plants (Fig. 2). The 

appearance of more starch granules in the chloroplasts of HS- and HL+HS-treated plants 

(Fig. 6) could indicate an increased rate of CO2 fixation due to stomatal opening (Fig. 2). 

Interestingly, under the combined HL+HS stress, starch granules appeared highly 

distorted (Fig. 6). The reason for this distortion could be attributed to an altered 

amylose/amylopectin ratio during the stress combination, and/or a possible rupture of the 

plastidial envelope during stress combination, allowing access for starch-degrading 

enzyme (Bondada and Syvertsen, 2005). Further studies are needed to unravel the role of 

different metabolic pathways during a combination of HL and HS and their effect on 

chloroplast structures. It is nevertheless important to note that, in contrast to a 

combination of drought and heat stress, in which the effect of drought prevailed over the 

effect of heat on stomatal conductance (i.e., stomata remained closed during the stress 

combination; Rizhsky et al., 2002; Rizhsky et al., 2004), in the current study the effect of 

HS prevailed over HL (i.e., stomata remained open; Fig. 2). Further studies addressing 

the different mechanisms modulating stomatal conductance during different types of 

stress combination may reveal the exact molecular mechanisms that control such 

interesting interactions. 

Expression analysis of transcripts encoding different photosynthetic proteins, as well as 

proteins involved in the degradation, repair and reassembly of PSII (Lu, 2016; Fig. 5A 

and 5C), suggested that during HL+HS combination the de novo biosynthesis of many 

proteins comprising the photosynthetic apparatus [e.g., PsbA (D1), PsbD (D2), PsbC 

(CP43) and PsbB (CP47); Fig. 5A], is enhanced. Nevertheless, the steady-state level of 

the D1 protein declined during HL+HS stress combination (Fig. 5B), suggesting that the 

rate of photodamage to PSII occurring during this stress combination (Fig. 1B and 1C) 

exceeds the active biosynthesis, repair and reassembly of D1 proteins (Fig. 5A and 5C). 

As a possible consequence, PSII activity and survival of plants declined during the stress 

combination (Fig. 1). Further studies directly measuring the rate of D1 turnover are of 

course needed to address this possibility. Because HS and HL+HS result in enhanced 

accumulation of ROS (Fig. 7A), and ROS were proposed to directly or indirectly affect 
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the rate of D1 turnover (Murata et al., 2007; Yamamoto et al., 2008), the role of ROS in 

affecting PSII function during HL+HS combination should also be addressed in future 

studies. In contrast to HL+HS, D1 protein markedly accumulated during HL (Fig. 5B) 

and the HL-induced decrease in PSII activity could be restored 24 h following the stress 

period (Fig. 1), probably due to the induction of D1 turnover, repair and assembly of PSII 

(Bailey et al., 2002; Fig. 5C). In this respect it should be noted that only HL specifically 

induced the expression of transcripts encoding MPH2, a chloroplast thylakoid lumen 

protein that is required for proper photosynthetic acclimation of plants under fluctuating 

light environments (Liu and Last, 2017; Fig. 5C).   

While we could not find a significant change in the acclimation response of ABA- and 

SA-deficient mutants (aba2, sid2, respectively) to the combination of HL+HS (compared 

to wild type Col; Supplemental Figs. S5 and S6; Supplemental Table S8), we found a 

significant decline in the ability of the JA biosynthesis mutant (aos) to acclimate to a 

combination of HL+HS (Fig. 8; Supplemental Table S8). The AOS protein produces most 

of the non-volatile oxylipins in plants and is a focus of attention in large part due to its 

key role in the biosynthesis of JA and biologically active JA-Ile (Farmer and Goossens, 

2019). Although JA and JA-Ile have been widely associated with the defense response of 

plants against pathogens and insect attack (Wasternack, 2015), many of the roles of 

jasmonates in nature are still unknown (Hickman et al., 2017; Farmer and Goossens, 

2019). Our findings suggest that JA-dependent gene expression could be important for 

the acclimation of plants to HL and HS acclimation (Fig. 8). For instance, expression of 

the JA-regulated ZAT6 and ZAT10 (Suzuki et al., 2015; Hickman et al., 2017), or the 

ROS-scavengers APX1 and APX2 (all important transcripts involved in the acclimation 

of plants to different abiotic stresses) was significantly reduced in response to HL+HS in 

aos plants compared to Col (Fig. 8E). ZAT6 was proposed to positively modulate biotic 

and abiotic stress tolerance (Shi et al., 2014), and ZAT10 is involved in APX2 induction 

in response to excess light (Li et al., 2009). Moreover, overexpression of ZAT10 resulted 

in enhanced tolerance to photoinhibitory light (Rossel et al., 2007), as well as enhanced 

tolerance to salinity, heat and osmotic stresses in Arabidopsis plants (Mittler et al., 2006). 

APX1 plays an important role in Arabidopsis tolerance to the combination of drought and 

heat stress (Koussevitzky et al., 2008; Zandalinas et al., 2016a). In addition, it has been 

reported that APX2 is induced by high light intensities and HS (Panchuk et al., 2002; 

Mullineaux et al., 2006), and that the induction of APX2 by excess light involved H2O2  
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(accumulated in response to HS and HL+HS; Fig. 7; Fryer et al., 2003; Rossel et al., 2006; 

Bechtold et al., 2008). The JA-dependent modulation of these transcripts in response to 

the combination of HL and HS could therefore be important for plant acclimation to a 

combination of HL+HS. Further studies are needed to shed more light on the role of each 

of these genes in the JA-dependent response of plants to HL+HS stress combination.  

In nature, photosynthetic organisms may experience extreme changes in light intensity 

that are often accompanied by high temperatures. Taken together, our study reveals that 

a combination of HL and HS could dramatically compromise the photosynthetic capacity 

of plants, and that the plant hormone JA positively regulates plant responses to this stress 

combination.  

 

Materials and Methods 

Plant material and growth conditions 

Arabidopsis thaliana Col-0 (var. Columbia-0), aos (Salk_01775C), sid2 (Salk_093400C) 

and aba2 (CS3835) plants were grown in peat pellets (Jiffy-7, 

http://www.jiffygroup.com/) at 23oC under long day growth conditions (12-hour light 

from 7 AM to 7 PM; 50 µmol m-2 s-1/12-hour dark from 7 PM to 7 AM).  

 

Stress treatments 

Three different stress treatments were performed in parallel: high light, heat stresses and 

a combination of high light and heat stress (Supplemental Fig. S1). High light stress was 

applied by exposing 30-day-old plants to 600 µmol m-2 s-1 (Philips, 

F54T5/TL84/HO/ALTO) at 23oC for 7 hours. Heat stress was imposed by transferring 

30-day-old plants to 42oC, 50 µmol m-2 s-1, for 7 hours. The high light stress and heat 

stress combination was performed by simultaneously subjecting plants to 600 µmol m-2 

s-1 light stress and 42oC for 7 hours (Supplemental Fig. S1). Control plants were 

maintained at 50 µmol m-2 s-1, 23oC. Following the stresses, plants of each treatment were 

divided into plants sampled for analysis as described below, or plants allowed to recover 

under controlled conditions until flowering time to score for survival (Supplemental Fig. 

S1). Twenty four hours following the stress treatments, Leaf Damage Index (LDI; Gallas 
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and Waters, 2015), and PSII activity (ΦPSII, Fv/Fm) were also determined (Supplemental 

Fig. S1). All experiments were carried out at the same time of the light cycle (from 9 AM 

to 4 PM) and were repeated at least three times. 

 

Photosynthetic parameters 

Quantum yield of Photosystem II (ΦPSII) and maximum efficiency of Photosystem II 

(Fv/Fm) were measured using a portable fluorometer (FluorPen FP 110/S, Photon 

Systems Instruments, Czech Republic). Photosynthetic parameters were analyzed at two 

time points: immediately after the 7 hours of individual and combined stress treatments, 

and 24 hours following the stress treatments (recovery; Supplemental Fig. S1). 

Photosynthetic measurements were taken for at least 15 plants using two fully-expanded 

young leaves per plant for each stress treatment, and each experiment was repeated at 

least three times. 

 

Stomatal aperture measurements and leaf temperatures 

Stomatal aperture analyses were performed as described in (Morillon and Chrispeels, 

2001; Zandalinas et al., 2016a). Briefly, two leaves per plant were cut and their lower 

surface was immediately stuck to a microspore slide with a medical adhesive (Hollister, 

Libertyville, IL, USA). The leaf was removed and the slides were washed with distilled 

water. The lower epidermis of the leaf stuck to the slide was visualized under the 

microscope and stomatal images acquired. Measurements of stomatal aperture were 

performed with the imaging software ImageJ. At least 600 stomata were measured in 15 

plants for each treatment. Surface leaf temperature was measured using an infrared 

thermal camera (FLIR C2; Flir Systems Inc, Sweden; https://www.flir.com/). Leaf 

temperature was measured on two expanded young leaves per plant using at least 15 

plants for each stress treatment. 

  

RWC 

Rosette relative water content (RWC) was calculated at the end of the stress treatments. 

Rosettes were weighed to obtain a fresh mass (Mf) immediately after the individual and 
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combined stresses. Rosettes were allowed to rehydrate overnight in an opaque beaker 

filled with distilled water. Then, they were reweighed to obtain turgid mass (Mt). Finally, 

rosettes were dried at 80°C for 48 h to obtain dry mass (Md). RWC was calculated as 

[(Mf − Md) × (Mt − Md) −1] × 100 according to (Morgan, 1984). 

 

RNA-seq analysis 

Three true leaves pooled from at least 30 different plants subjected to each of the control 

and stress treatments were used for each biological repeat for RNA-Seq analysis, and 

three biological repeats were performed. Total RNA was isolated using TRIzol reagent 

(Invitrogen Life Technologies) according to the manufacturer's instructions and purified 

using a NucleoSpin RNA Clean‐up kit (Macherey‐Nagel). Initial RNA sample quality, 

RNA quantification, preparation of RNA libraries and sequencing were performed as 

previously described (Zandalinas et al., 2019a). RNA library construction and sequencing 

were performed by the DNA Core Facility at the University of Missouri, Columbia, 

Missouri (USA). Single-end sequenced reads obtained from the Illumina Next-Seq 500 

platform were quality-tested using FastQC v0.11.7 (Andrews, 2010) and aligned to the 

reference genome of Arabidopsis (genome build 10) obtained from TAIR 

(https://www.arab idopsis.org/) using STAR aligner v2.4.0.1 (Dobin et al., 2013). Default 

mapping parameters (10 mismatches/read; nine multi- mapping locations/read) were used 

as described in (Zandalinas et al., 2019a). The genome index was generated using the 

gene annotation file (gff file) obtained from TAIR (https://www.arabidopsis.org/) for the 

genome build 10. Differential gene expression analysis was carried out using R-based 

package DESeq2 v1.20.0 available in Bioconductor (Love et al., 2014). Transcripts 

differentially expressed compared to controls were identified by examining the difference 

in their abundance under the different conditions. The difference in expression was 

quantified in terms of the logarithm of the ratio of mean normalized counts between two 

conditions (log fold change) and differentially expressed transcripts were defined as those 

with an adjusted P-value < 0.05 in their fold change (negative binomial Wald test 

followed by a Benjamini-Hochberg correction). Functional annotations and 

overrepresentation of GO terms (P < 0.05) were performed using DAVID Bioinformatics 

Resources 6.8 (https://david.ncifcrf.gov/; Huang et al., 2009). Heat maps were generated 

using MeV v. 4.9.0 software (Saeed et al., 2006). 
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Transmission electron microscopy 

Leaves of Col plants subjected to the different stresses were analyzed by transmission 

electron microscopy as described in (Zandalinas et al., 2019b). Briefly, leaves were fixed 

in 2% paraformaldehyde, 2% glutaraldehyde in 100 mM sodium cacodylate buffer 

pH=7.35. Fixed tissues were rinsed with 100 mM sodium cacodylate buffer, pH 7.35 

containing 130 mM sucrose. Secondary fixation was performed using 1% osmium 

tetroxide (Ted Pella, Inc. Redding, California) in cacodylate buffer using a Pelco Biowave 

(Ted Pella, Inc. Redding, California) operated at 100 Watts for 1 min. Tissues were 

incubated at 4oC for 1 h, then rinsed with cacodylate buffer followed by washes with 

distilled water. En bloc staining was performed using 1% aqueous uranyl acetate, 

incubated at 4oC overnight and then rinsed with distilled water. A graded dehydration 

series was performed using ethanol, transitioned into acetone, and dehydrated tissues 

were then infiltrated with a 1v/1v of Epon and Spurr resin for 24 h at room temperature 

and polymerized at 60 C overnight. Sections were cut to a thickness of 80 nm using an 

ultramicrotome (Ultracut UCT, Leica Microsystems, Germany) and a diamond knife 

(Diatome, Hatfield PA). Images were acquired with a JEOL JEM 1400 transmission 

electron microscope (JEOL, Peabody, MA) at 80 kV on a Gatan Ultrascan 1000 CCD 

(Gatan, Inc, Pleasanton, CA) at the Electron Microscopy Core Facility, University of 

Missouri. At least 100 images, each containing 2-4 chloroplasts from at least three 

different plants from each treatment were analyzed. Affected starch granules were defined 

as those containing black spots/lines and the number of thylakoids was recorded per 1 µm 

perpendicular to thylakoid orientation in at least 50 chloroplasts per stress treatment. 

 

H2O2 and hormonal analysis 

Hormone extraction and analysis were carried out as described in (Durgbanshi et al., 

2005) with few modifications. Briefly, 0.1g of dry tissue was extracted in 2 mL of 

ultrapure water after spiking with 50 ng of [2H6]-ABA, [C13]-SA and dihydrojasmonic 

acid in a ball mill (MillMix20, Domel, Železniki, Slovenija). Following centrifugation at 

4000 g, 4ºC, for 10 min, supernatants were recovered and pH adjusted to 3 with 30% 

acetic acid. The water extract was partitioned twice against 2 mL of diethyl ether and the 

organic layer recovered and evaporated under vacuum in a centrifuge concentrator (Speed 
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Vac, Jouan, Saint Herblain Cedex, France). Once dried, the residue was resuspended in a 

10:90 MeOH:H2O solution by gentle sonication. The resulting solution was filtered 

through 0.22 µm polytetrafluoroethylene membrane syringe filters (Albet S.A., 

Barcelona, Spain) and directly injected into an ultra performance LC system (Acquity 

SDS, Waters Corp., Milford, MA, USA). Chromatographic separations were carried out 

on a reversed-phase C18 column (Gravity, 50×2.1mm, 1.8-µm particle size, Macherey-

Nagel GmbH, Germany) using a MeOH:H2O (both supplemented with 0.1% acetic acid) 

gradient at a flow rate of 300 µL min−1. Hormones were quantified with a TQS triple 

quadrupole mass spectrometer (Micromass, Manchester, UK). 

H2O2 accumulation in leaves was measured using the Amplex Red Hydrogen Peroxide-

Peroxidase Assay kit (Molecular Probes, Invitrogen, Carlsbad, CA, USA) as described in 

(Suzuki et al., 2015; Zandalinas et al., 2016a). Briefly, 500 µL of 50 mM sodium 

phosphate buffer (pH 7.4) containing 50 µM Amplex Red and 0.05 U mL−1 horseradish 

peroxidase was added to ground, frozen tissues. Samples were centrifuged at 12000 g for 

12 min at 4°C. 450 µL of supernatant was transferred into fresh tubes and incubated for 

30 min at room temperature in the dark. Absorbance at 560 nm was measured using a 

NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA). The 

concentration of H2O2 in each sample was determined from a standard curve consisting 

of 0, 0.5, 1, 3, 6, and 9 µM of H2O2. Following absorbance measurement, tissue samples 

were dried using a speed vacuum concentrator for 90 min and H2O2 accumulation per 

gram of dry weight was calculated. 

 

Protein blot and qRT-PCR analysis 

Protein was isolated, quantified and analyzed by protein blot as previously described 

(Zandalinas et al., 2016a). Relative expression analysis by qRT-PCR was performed 

according to (Zandalinas et al., 2016b) by using CFX Connect Real-Time PCR Detection 

System (Bio- Rad) and gene-specific primers (Supplemental Table S9). 

 

Statistical analysis 

Results are presented as the mean ± SD. Statistical analysis were performed by two-way 

ANOVA followed by a Tukey post hoc test (P < 0.05) when a significant difference was 
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detected (different letters denote statistical significance at P < 0.05). Differentially 

expressed transcripts were defined as those that had a fold change with an adjusted P-

value < 0.05 (ANOVA, and/or negative binomial Wald test followed by a Benjamini-

Hochberg correction). Venn diagram overlaps was subjected to hypergeometric testing 

using phyper (R package). For relative expression analysis by qRT-PCR, statistical 

analyses were performed by two-tailed Student’s t-test (asterisks denote statistical 

significance at P < 0.05 with respect to wild type). 

Accession numbers 

Raw and processed RNA-Seq data files were deposited in GEO 

(https://www.ncbi.nlm.nih.gov/geo/) under the following accession number GSE134391. 
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Supplementary material 

 

Fig. S1. The experimental design used for the study of high light (HL, yellow), heat stress (HS, 

orange) and a combination of high light and heat stress (HL+HS, red) using Arabidopsis plants. 

HL was applied by exposing 30-day-old plants to 600 µmol m-2 s-1 (Philips, 

F54T5/TL84/HO/ALTO) at 23°C. HS was applied by transferring 30-day-old plants to 42°C. 

HL+HS was performed by simultaneously subjecting plants to 600 µmol m-2 s-1 light stress and 

42°C. Stress treatments were performed in parallel during 7 hours. Following the stress 

treatments, plants were divided into plants sampled for analysis (Relative water content, RNA-

Seq, protein blot analysis, stomatal aperture, leaf temperature, hormonal and hydrogen peroxide 

measurements, transmission electron microscopy and PSII measurements), or plants allowed to 

recover under controlled conditions until flowering time to score for survival. 24 hours following 

the stress treatments, PSII measurements, as well as Leaf Damage Index (LDI) were also 

determined. All experiments were carried out at the same time of the light cycle (from 9 AM to 4 

PM) and were repeated at least three times using Col, aos, sid2 and aba2 plants. RWC, relative 

water content; TEM, transmission electron microscopy; PSII, photosystem II. 
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Fig. S2. Gene Ontology (GO) annotation of transcripts specifically upregulated (top) or 

downregulated (bottom) in leaves of Col plants subjected to high light (HL), heat stress (HS) and 

a combination of high light and heat stress (HL+HS). Numbers above each bar represent P value 

for statistical significance. 
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Supplemental Figure S3. Accumulation of D1 and PsaH in Col plants subjected to high light 

(HL), heat stress (HS), and combined high light and heat stress (HL+HS). (A) Representative 

images of protein blots for D1 protein (top), and PsaH (middle), as well as a loading control 

(Coomassie-stained gel; bottom) of Col plants subjected to the different stresses. (B) 

Quantification bar graph showing the accumulation of PsaH in response to the different stresses, 

relative to control conditions. Error bars represent SD (N=3). Different letters denote statistical 

significance at P < 0.05 (ANOVA). CT, control. 
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Fig. S4. Heat maps showing significantly upregulated or downregulated transcripts involved in 

JA biosynthesis and signaling in Col plants subjected to high light (HL), heat stress (HS) and the 

combination of high light and heat stress (HL+HS). 
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Fig. S5. PSII performance and RWC of JA-deficient aos plants subjected to high light (HL), heat 

stress (HS) and a combination of high light and heat stress (HL+HS). (A) Quantum yield of PSII 

(ΦPSII) and maximum efficiency of PSII (Fv/Fm) after 24 h of stress imposition in aos plants under 

control conditions. (B) Leaf RWC of aos plants subjected to the different stresses. Different letters 

denote statistical significance at P < 0.05. CT, control. 
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Fig. S6. PSII performance, survival rate, Leaf Damage Index, RWC and stomatal responses rate 

of SA-deficient sid2 plants subjected to high light (HL), heat stress (HS) and a combination of 

high light and heat stress (HL+HS). (A) Representative images of sid2 plants subjected to the 

different stresses. (B) Quantum yield of PSII (ΦPSII) immediately after the application of each 

stress (top) and after 24 h of stress imposition in plants under control conditions (bottom). (C) 

Maximum efficiency of PSII (Fv/Fm) immediately after the application of each stress in sid2 

plants subjected to the different stresses. (D) Survival rate of sid2 plants subjected to the different 

stresses. (E) Leaf Damage Index showing the appearance of sid2 plants in response to each stress. 

(F) Leaf RWC of sid2 plants subjected to the different stresses. (G) Stomatal aperture of sid2 

plants subjected to the different stresses. Different letters denote statistical significance at P < 

0.05. Scale bar in A indicates 1 cm. CT, control. 
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Fig. S7. PSII performance, survival rate, Leaf Damage Index, RWC and stomatal responses rate 

of ABA-deficient aba2 plants subjected to high light (HL), heat stress (HS) and a combination of 

high light and heat stress (HL+HS). (A) Representative images of aba2 plants subjected to the 

different stresses. (B) Quantum yield of PSII (ΦPSII) immediately after the application of each 

stress (top) and after 24 h of stress imposition in plants under control conditions (bottom). (C) 

Maximum efficiency of PSII (Fv/Fm) immediately after the application of each stress in aba2 

plants subjected to the different stresses. (D) Survival rate of aba2 plants subjected to the different 

stresses. (E) Leaf Damage Index showing the appearance of aba2 plants in response to each stress. 

(F) Leaf RWC of aba2 plants subjected to the different stresses. (G) Stomatal aperture of aba2 

plants subjected to the different stresses. Different letters denote statistical significance at P < 

0.05. Scale bar in A indicates 1 cm. CT, control. 

 

Table S1-S7. Transcripts significantly up or downregulated (P< 0.05) in Col plants 

subjected to HL, HS and HL+HS. Available online: 

http://www.plantphysiol.org/content/181/4/1668/tab-figures-data 
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Climate change and global warming are changing environmental conditions that 

challenge plants, animals and other organisms. Average surface temperature is rising; 

atmospheric CO2 concentration significantly grew up in the last two decades and was 

accompanied by other greenhouse gases such as methane, nitrous oxide and ozone; arable 

areas affected by drought are increasing and precipitation patterns are changing around 

the world (Li et al. 2009; Zhao et al. 2017; Zandalinas et al. 2018; IPCC 2019, 

http://www.ipcc.ch/). Environmental conditions caused by climate change are 

challenging optimal development of plants and crop production is compromised. In 

addition, some of the environmental changes associated to the climate change impact  

Therefore, it is needed to develop new crops capable to face abiotic stress factors in a 

warmer environment and maintain their productivity when growing under stress 

combination conditions (Mittler and Blumwald, 2010; Suzuki et al., 2014a; Zandalinas et 

al., 2018). To respond to these detrimental situations, plants, as sensitive organisms, 

modify their gene expression, metabolism and physiology to acclimate to the new 

conditions. However, the acclimation process has an energetic cost that is reflected in 

plant growth and production (Koyro et al. 2012). When acclimation to harsh 

environmental conditions cannot be successfully achieved, plants may suffer important 

damage and even die.  

Abiotic stress conditions such as drought, heat, cold or light excess are important 

detrimental factors that impact plant growth, productivity and survival (Calanca, 2017). 

In the field, these abiotic stress factors usually occur at the same time creating a new stress 

to plants different from the individual adverse conditions. Therefore, plant acclimation 

responses to stress combinations are unique and cannot be predicted by the sum of 

responses to the individual stresses (Mittler, 2006). In this scenario, it seems necessary to 

carry out research taking into consideration how two or more stresses coincident on time 

affect plant development. During the last years, several studies dealing with the effect of 

stress combination on different plant species have been published and it has been 

demonstrated that the effect of the stress combination on plants is different from that 

produced by individual stress factors (Suzuki et al., 2014b; Martinez et al., 2018; 

Zandalinas et al., 2018; Fábián et al., 2019; Jumrani and Bhatia, 2019; Mahalingam and 

Bregitzer, 2019; Zandalinas et al., 2019).  

Our research conducted in Citrus and Arabidopsis is aimed to decipher the acclimation 

responses of plants to different stress factors applied in combination with high 
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temperatures. In the first and second chapter we worked with two citrus rootstock 

genotypes, Carrizo citrange and Cleopatra mandarin. Previous studies have demonstrated 

their different tolerance to abiotic stress (López-Climent et al., 2008; Arbona et al., 2009; 

Argamasilla et al., 2014). Therefore, Cleopatra is more tolerant to drought and salinity 

due to the ability to regulate water relations by lower transpiration rate and closing 

stomata (López-Climent et al., 2008), whereas Carrizo is more tolerant to soil flooding 

due to the ability to maintain gas exchange parameters and chlorophyll fluorescence as 

control values (Arbona et al. 2009; Argamasilla et al. 2014). Also, it was shown that 

Carrizo is more tolerant to drought and heat stress combination than Cleopatra due, in 

part, to a better stomatal regulation that allowed the plant to keep a high transpiration rate 

and reduce leaf temperature (Zandalinas et al., 2016b). In the third chapter, we used 

Carrizo citrange genotype, with a better performance under high temperatures 

(Zandalinas et al., 2016b; Zandalinas et al., 2017), to study the effects of mechanical 

wounding and soil salinity in combination with high temperatures, two frequent stress 

conditions in citriculture. Finally, in chapter 4, we performed a study in Arabidopsis 

thaliana about plant responses to high light intensity and heat stress. Although the 

combination of high light intensity and high temperatures is a common phenomenon in 

nature, the knowledge about its impact in plants is scarce. The convenience of using a 

model plant such as Arabidopsis allowed us to study physiological, transcriptomic and 

proteomic alterations caused by high light and heat stress combination. The information 

obtained, therefore, could be transferred to crops in future experiments with citrus or other 

staple crops. 

Environmental changes and stress factors can also cause metabolic imbalances in cells 

that induce oxidative stress because of the generation of reactive oxygen species (ROS). 

Despite its signaling function (Baxter et al. 2014; Mittler et al. 2016), ROS are also toxic 

when over accumulate, causing cellular damage and photosynthesis inhibition 

(Choudhury et al., 2017). Antioxidant cell machinery, including antioxidant enzymes and 

molecules, is in charge of ROS detoxifying to prevent damage. Superoxide dismutase 

(SOD) enzyme is the first level of defense against super oxide radicals. SOD catalyzes 

O2
●⁻ to form H2O2, which is removed by ascorbate peroxidase (APX) and catalase (CAT) 

activities. APX reduces H2O2 using AsA as the electron donor and the balance between 

GSH and oxidized glutathione (GSSG) is critical for maintaining a favorable redox status 

for the detoxification of H2O2. In addition, glutathione reductase (GR), the rate-limiting 
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enzyme of AsA-GSH cycle, keeps the GSH/GSSG ratio favorable for ascorbate reduction 

(Foyer and Noctor, 2005). The ability of plants to balance ROS production and 

scavenging has been correlated with higher tolerance to different environmental stresses 

(Arbona et al., 2008; Hossain et al., 2009; Martinez et al., 2016), and specifically to stress 

combination (Koussevitzky et al., 2008; Suzuki et al., 2014a). According to the data 

collected in chapter 1 and 2, Carrizo citrange genotype is more tolerant to drought and 

heat stress combination than Cleopatra mandarin due to a higher efficiency of the 

antioxidant machinery and an increased accumulation of key proteins involved in plant 

acclimation to stress. Carrizo plants showed an active antioxidant system in which not 

only antioxidant enzymes were more active but also GSH/GSSH ratio was constant. 

Therefore, Carrizo plants showed a higher SOD activity than Cleopatra plants under both 

control and stress conditions. Furthermore, APX and Catalase activity increased in 

Carrizo after combination of drought and heat stress while in Cleopatra the activity 

remained constant or decreased under these conditions. Also, transcript analyses indicated 

a higher relative gene expression of CAT and APX in Carrizo respect to Cleopatra. These 

data correlate with the oxidative damage, estimated by MDA accumulation, observed in 

both genotypes under drought and heat stress combination. Although both genotypes 

significantly accumulated MDA under stress combination respect to control and single 

drought or heat stress, levels in Cleopatra plants were higher than in Carrizo ones. In 

addition, the specific accumulation of APX in Carrizo under stress combination indicates 

that the antioxidant machinery of this genotype is more activated than in Cleopatra. Other 

proteins can protect plants from cell damage derived from ROS accumulation and high 

temperatures. In this sense, HSP101 protein, a chaperone that confers thermotolerance 

(Queitsch et al., 2000; Wu et al., 2013), significantly accumulated in both citrus genotypes 

in response to high temperatures, applied alone or in combination with drought stress. 

However, its content in Carrizo was higher than in Cleopatra, suggesting a possible role 

of this protein in the higher tolerance of Carrizo plants to high temperatures. Finally, the 

study of molecular responses at different levels (gene expression, protein accumulation 

and enzymatic activity) gives us valuable information to understand the mechanism of 

citrus plant to cope with stress combination.  

Zandalinas et al. (2016b) demonstrated that Cleopatra is sensitive to drought and heat 

stress combination, since plants of this genotype cultivated under stress combination 

suffered an important oxidative damage and a strong reduction of the photosynthesis rate. 



General discussion 

140 
 

G
E

N
E

R
A

L
 

D
IS

C
U

S
S

IO
N

 

The higher tolerance of Carrizo was related to its ability to modulate stomatal closure and 

to maintain high transpiration rates (in contrast to Cleopatra). Therefore, responses such 

as leaf cooling by keeping open stomata and high transpiration rate, efficient activation 

of the antioxidant cell machinery and the accumulation of certain proteins such as 

HSP101 can be determinant for citrus plants to cope with drought and heat stress factors. 

Therefore, we conclude that Carrizo citrange is more adapted to drought and heat stress 

combination due to the adequate physiological and molecular responses. 

In chapter 3 we evaluate the responses of Carrizo to other abiotic stress factors that could 

affect plants in combination with high temperatures. Stress combinations of wounding or 

salinity combined with heat stress changed Carrizo responses compared to the individual 

stresses. For example, high temperatures modified plant responses to mechanical 

wounding in lettuce (Saltveit, 2000). After wounding, an increase of PAL activity and a 

three-fold increase of phenolic compounds was observed in lettuce leaves. However, 

when wounding was applied at high temperatures, PAL activity and phenolic leaf content 

remained as control values, and other acclimation genes were upregulated, including heat 

shock proteins (Saltveit, 2000). Similarly, heat stress changed the metabolic responses of 

tomato plants to salt stress (Rivero et al., 2014). In this study, it was shown that heat stress 

provided protection to tomato plants from salt stress. Stress combination induced a 

specific accumulation of trehalose and glycine betaine that was not present under salt 

stress alone. The increase of these compounds was linked to the maintenance of the 

Na+/K+ ratio (despite salt stress effect) and, therefore, to a better cell water status and 

photosynthesis compared to plants subjected only to salt stress (Rivero et al., 2014). In 

Carrizo citrange, after mechanical wounding, leaf JA content increased concomitantly to 

the upregulation of the JA-responsive gene CsVP2. The biosynthesis and accumulation 

of Jasmonates as well as their signaling role in response to wounding has been widely 

studied in various species (Wasternack et al., 2006; Wasternack and Hause, 2013). 

However, the increase in JA levels caused by wounding was reduced at high temperatures, 

as well as CsVP2 expression. Instead of JA, OPDA accumulated significantly in wounded 

plants under stress combination. Furthermore, this switch in metabolite accumulation was 

accompanied by a reduction in the stomatal aperture to levels lower than control. Previous 

studies have demonstrated that OPDA can induce stomatal closure and trigger a signal in 

guard cells independently from JA (Murata et al. 2015). Our results could indicate a 

similar role for OPDA as a regulator of stomatal aperture in citrus plants under wounding 
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combined with heat stress. On the other hand, salt stress induced an over-accumulation 

of ABA leaf content in Carrizo plants that correlated with reductions of stomatal 

conductance and leaf transpiration. ABA has been demonstrated to be a key hormone for 

the acclimation to salt stress (Gómez-Cadenas et al., 2015). In citrus, it is known that the 

damage caused by salinity is due to chloride ion (Cl-) accumulation in leaves and the 

capability of citrus plants to tolerate salt stress is linked to the ability to exclude this ion 

from the leaf cells (Moya et al., 2002). Cl- absorption is produced together with the water 

uptake in roots; therefore, under salt stress conditions, tolerance of citrus plants depends 

on the resistance of roots to Cl- (Moya et al., 2003). In addition, a study in Arabidopsis 

plants demonstrated that ABA accumulation and signaling is a key response for plant 

acclimation to salt and heat stress combination (Suzuki et al., 2016). In that study, it was 

shown that in response to this stress combination, more than 10% of the up-regulated 

genes were ABA-dependent and, in addition, mutants impaired in ABA biosynthesis and 

signaling (aba1 and abi1, respectively) were more sensitive to this stress combination 

(Suzuki et al., 2016). In our work, salt stress combined with heat stress caused the highest 

accumulation of ABA. This hormonal burst could be directed to signal stomatal closure, 

abnormally opened because of high temperatures, and to trigger the upregulation of genes 

involved in stress acclimation. Jasmonic acid and Ja-Ile also accumulated in Carrizo 

leaves after salt and heat stress imposition. However, under isolated salt or heat stress 

conditions, levels of these metabolites did not change respect to control conditions. The 

specific accumulation of JA under the stress combination suggests that it could be a 

pivotal hormone in citrus tolerance to salt and heat stress combination. In chapter 4, we 

observed similar JA and JA-Ile accumulation patterns in Arabidopsis plants under high 

light intensity and heat stress. In this case, the stress combination caused a specific over-

accumulation of JA and JA-Ile. Furthermore, aos plants, impaired in JA biosynthesis, 

resulted less tolerant to the stress combination showing less survival than wild type plants. 

JA could trigger a molecular response to the stress combination, inducing the 

upregulation of acclimation genes. In this sense, as transcriptomic analyses showed that 

822 JA-responsive transcripts were upregulated under the stress combination. In addition, 

the relative expressions of the genes ZAT10, involved in light, salinity or heat tolerance 

(Mittler, 2006); ZAT6, proposed to positively modulate biotic and biotic stress tolerance 

(Suzuki et al., 2015; Hickman et al., 2017); and APX1 and APX2, involved in plant 

tolerance to drought, heat or light stress (Fryer et al., 2003; Rossel et al., 2007; 

Koussevitzky et al., 2008; Zandalinas et al., 2016a) were lower in the aos mutant under 
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stress combination respect to WT plants. Thus, the specific accumulation of JA under 

stress combination in both Carrizo and Arabidopsis plants suggests a possible role for JA 

in plant acclimation to different stress combinations involving high temperatures. JA may 

have a role in citrus plants modulating stomatal aperture in wounded or salt stressed plants 

at high temperatures, acquiring a complemental role to ABA or other signaling molecules 

(Murata et al. 2015). In response to high light and heat stress combination, JA and JA-Ile 

could be participating in the upregulation of genes involved in plant acclimation. In the 

fourth chapter, moreover, we also demonstrated that under high light and heat stress 

combination the expression of genes encoding proteins comprising the photosynthetic 

apparatus (PsbA [D1], PsbD [D2], PsbC [CP43], and PsbB [CP47]) is enhanced. Under 

high light conditions, reaction centers of photosystems become saturated with excitation 

energy that can be dangerous because it can lead to irreversible damage in the reaction 

centers, resulting in a decrease of the efficiency and electron transported rate (Ruban, 

2015). In our study, D1 protein content declined during stress combination compared to 

control plants, indicating that photodamage to PSII is exceeding the biosynthesis, repair 

and reassembly of D1 protein (most affected PSII component by HL and HS derived 

damage, Murata et al. 2007; Yamamoto et al. 2008; Su et al. 2014). The damage caused 

to the PSII and the inability to repair it could explain that plants subjected to stress 

combination were unable to reestablish PSII activity after 24h of the stress. In contrast, 

plants over accumulated D1 protein under individual high light or heat stress and, in 

addition, light-stressed plants were capable to restore PSII activity after 24h. 

In summary, all the results obtained in this doctoral thesis project indicate that high 

temperatures change the way plants face abiotic stresses. Every abiotic stress condition 

at high temperatures caused a different response in plants and that responses cannot be 

inferred by the responses to the individual stresses. We demonstrated that the high activity 

of the antioxidant enzymes accompanied by a higher accumulation of APX and HSP101 

proteins are key responses that can important in improving growth and survival of citrus 

growth under combined conditions of drought and high temperatures. In this work, a 

different response of citrus to wounding and high salt concentrations is observed when 

these stresses are in combination with high temperatures. Results indicated that 

jasmonates acquire a different role under these conditions and may be determinant for 

plant survival. Finally, we demonstrated that high light intensity causes a different 

hormonal and transcriptomic response in Arabidopsis when is accompanied by high 
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temperatures. The ability to restore PSII damage during and after stress is a key factor to 

guarantee plant survival. From our data is concluded that JA is a pivotal hormone in 

Arabidopsis plants under high light and heat stress because of its role activating a 

transcriptomic response that can be determinant to the plant. In addition, JA accumulation 

is a specific response to the stress.  

This work provides valuable information for breeding programs focused on the 

improvement of citrus rootstocks adapted to warmer environmental conditions. The 

expected increase of temperatures during the next years can change the worldwide 

productivity of citrus plants. Therefore, it is important to develop new rootstocks and 

varieties capable to withstanding stress conditions co-occurring with high temperatures. 

In addition, our work shows some of the main responses of plants to different stress 

conditions and helps to unravel plant physiological and molecular acclimation 

mechanisms to the stress combinations. 
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1. High temperatures change the effect of individual abiotic stresses (drought, 

salinity, wounding and high light intensity) on plants. Therefore, physiological, 

hormonal, proteomic and transcriptomic plant responses to abiotic stress are 

modified in warm environments.  

 

2. Carrizo citrange is more tolerant than Cleopatra mandarin to drought and heat 

stress combination. This is, at least in part, due to a higher efficiency of the 

antioxidant machinery that prevents oxidative damage, a higher accumulation of 

HSP101 that confers thermotolerance and a better stomatal modulation that 

allows high transpiration rate and leaf cooling.  

 

3. The change in Jasmonate accumulation in Carrizo citrange plants under 

wounding at high temperatures (with a reduction of JA accumulation and an 

increase of OPDA content with respect to wounded plants to low temperatures) 

indicate a switch in hormonal regulation under combined stress conditions and 

suggests a role to OPDA, independent from JA, to modulate acclimation 

responses. 

 

4. The harmful effect of salt stress on Carrizo citrange is aggravated in combination 

with high temperatures due to a higher leaf chloride accumulation caused by the 

increase in the transpiration rate. ABA accumulation under salt and heat stress 

combination is directed to regulate stomatal closure and, in consequence, reduce 

transpiration. Specific JA accumulation, together with ABA, under this stress 

combination may be important to trigger a molecular acclimation response to 

salt and heat stress combination.  

 

5. Damage produced to PSII during high light and heat stress can be fatal to plant 

survival. This is supported by the fact that under high light and heat stress 

combination, PSII efficiency is more affected and plants cannot restore it after 

the recovery period. In addition, degradation of D1 protein is higher at stress 

combination which indicates that repair and reassembly of PSII components, 

particularly D1 protein, are key process in Arabidopsis plants to tolerate this 

stress combination. 
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 6. Jasmonic acid plays an important role in the acclimation of Arabidopsis thaliana 

to a combination of high light and heat stress. This hormone triggers a specific 

response of genes involved in light, heat and oxidative stress acclimation. This 

conclusion is also supported by the behavior of the aos mutant, impaired in JA 

biosynthesis, which is more sensitive to light and heat stress combination and 

has diminished upregulation of important genes in light and heat stress 

acclimation.  
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1. Las altas temperaturas cambian el efecto que los estreses abióticos individuales 

(sequía, salinidad, herida y alta intensidad de luz) causan sobre las plantas. Por 

lo tanto, la respuesta fisiológica, hormonal, proteómica, y transcriptómica de las 

plantas al estrés abiótico es modificada en situaciones de altas temperaturas. 

 

2. Carrizo citrange es más tolerante que Cleopatra mandarin a la combinación de 

sequía y altas temperaturas. Esto es debido, en parte, a una mayor eficiencia del 

sistema antioxidante que previene el daño oxidativo, a una mayor acumulación 

de la proteína HSP101 que confiere termotolerancia y a una modulación 

estomática más adecuada que permite aumentar la transpiración y enfriar la hoja.  

 

3. El cambio en la acumulación de jasmonatos en las plantas de Carrizo citrange 

sometidas a herida y altas temperaturas (reducción de JA y aumento de OPDA 

con respecto a las plantas heridas a temperatura control) indica un cambio en la 

regulación hormonal de las plantas bajo combinación de estrés y sugiere un rol 

del OPDA, independiente del JA, en la activación de respuestas de aclimatación. 

 

4. El efecto dañino del estrés salino en Carrizo citrange es agravado en 

combinación con el estrés por calor debido a una mayor acumulación foliar de 

cloruros causada por el incremento de la transpiración. La acumulación de ABA 

bajo combinación de estrés salino y calor está dirigida a regular el cierre 

estomático y, en consecuencia, reducir la transpiración. La acumulación de JA, 

junto con el ABA, en condiciones de estrés combinado podría ser clave en la 

señalización de respuestas moleculares de aclimatación al estrés combinado de 

salinidad y calor. 

 

5. El daño producido en el PSII durante el estrés por alta intensidad de luz y altas 

temperaturas puede ser fatal para la supervivencia de las plantas. Esta idea se 

sustenta en el hecho de que, bajo la combinación de los dos estreses, la eficiencia 

del PSII se ve más afectada y las plantas no pueden retomar los valores iniciales 

de eficiencia después de un periodo de recuperación. Además, la degradación de 

la proteína D1 es mayor en las plantas sometidas al estrés combinado, lo que 

indica que la reparación y reposición de los componentes del PSII, 
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 particularmente la proteína D1, son procesos clave en las plantas de Arabidopsis 

para tolerar esta combinación de estrés. 

 

6. El ácido jasmónico tiene un rol importante en la aclimatación de Arabidopsis 

thaliana a la combinación de estrés por luz y calor. Esta hormona desencadena 

una respuesta genética específica a la aclimatación de luz, calor y estrés 

oxidativo. Además, el mutante defectivo en la síntesis de JA aos es más sensible 

a la combinación de estrés por luz y calor, y la activación de genes implicados 

en la aclimatación a estos estreses se ve disminuida en este mutante. 
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1. Les altes temperatures canvien l’efecte que els estressos abiòtics individuals 

(sequera, salinitat, ferida i alta intensitat de llum) causen en les plantes. Per tant, 

la resposta fisiològica, hormonal, proteòmica i transcriptòmica de les plantes a 

l’estrès abiòtic és modificada en situacions d’altes temperatures. 

 

2. Carrizo citrange és més tolerant que Cleopatra mandarin a la combinació de 

sequera i altes temperatures. Això es degut, en part, a un major eficiència del 

sistema antioxidant que preveu el dany oxidatiu, a una major acumulació de la 

proteïna HSP101 que confereix termotolerancia i a una modulació estomàtica 

més adequada que permet augmentar la transpiració y refredar la fulla. 

 

3. El canvi en la acumulació de jasmonats en les plantes de Carrizo citrange 

sotmeses a ferida i altes temperatures (reducció d’JA i augment d’OPDA amb 

comparació a les plantes ferides a temperatura control) indica un canvi en la 

regulació hormonal de les plantes sotmeses a la combinació d’estrès i suggereix 

un rol de l’OPDA, independent de l’JA, en l’activació de respostes 

d’aclimatació.   

 

4. L’efecte nociu de l’estrès salí en Carrizo citrange es engreujat en combinació 

amb l’estrès per calor degut a una major acumulació foliar de clorurs causada 

per l’increment de la transpiració. L’acumulació d’ABA en situacions de 

combinació d’estrès salí y calor està dirigida a regular el tancament estomàtic i, 

en conseqüència, reduir la transpiració. L’acumulació d’JA, junt amb el ABA, 

en condicions d’estrès combinat podria ser clau en la senyalització de respostes 

moleculars d’aclimatació a l’estrès combinat de salinitat i calor.  

 

5. El dany ocasionat en el PSII durant l’estrès per alta intensitat de llum i altes 

temperatures pot ser fatal per a la supervivència de les plantes. Aquesta idea es 

sustenta en el fet de que, baix la combinació dels dos estressos, l’eficiència del 

PSII es veu més afectada i les plantes no poden reprendre els valor inicials 

d’eficiència després d’un període de recuperació. A més, la degradació de la 

proteïna D1 es major en les plantes sotmeses a l’estrès combinat, el que indica 

que la reparació i reposició del components del PSII, particularment la proteïna 

D1, son processos clau en les plants d’Arabidopsis per tolerar aquesta 

combinació d’estrès.  
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6. L’àcid jasmònic té un rol important en l’aclimatació d’Arabidopsis thaliana a la 

combinació d’estrès per llum y calor. Aquesta hormona desencadena una 

resposta genètica específica a l’aclimatació de llum, calor i estrès oxidatiu. A 

més, el mutant defectiu en la síntesis d’JA aos és més sensible a la combinació 

d’estrès per llum i calor, i l’activació de gens implicats en l’aclimatació a aquests 

estressos es veu disminuïda en aquest mutant. 
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