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SUMMARY

Avian influenza (Al) is considered one of the most important viral diseases affecting the poultry industry
and a continuous threat to human population and wildlife. The majority of highly pathogenic avian
influenza (HPAI) epidemics have affected land-based poultry, and classical lineages of HPAI viruses
(HPAIVs) have been more sporadically isolated or rarely caused high mortality in aquatic poultry, wild
birds and peridomestic avian species. However, the epidemiology and pathobiology of HPAI have
radically changed since the emetgence of Goose/Guangdong (Gs/GD) H5 lineage of HPAIVs. This
lineage present unique biological characteristics among HPAIVs, including the capacity to infect and
cause mortality in a broad range of domestic, captive and wild avian species. These demonstrate the
large differences in infection outcome depending of the HPAIV isolate. Several studies show that the
infection outcome is also influenced by host factors. Particularly, a broad variation in susceptibility to
HPAIV infection exists among chicken breeds, suggesting that the genetic background of particular
breeds confers a higher resistance to HPAIV infection. Usually, local chicken breeds have been
considered more resistant to disease than commercial breeds due to lack of artificial selection towards

production-related genes, which could be negatively associated with resistance to pathogens.

To date, a direct compatison of the pathobiology of classical and Gs/GD H5 HPAIVs in avian species
belonging to distinct taxonomic groups is lacking, The variation in susceptibility to HPAIV infection
among chicken breeds has not been studied in detail in Europe, as well as the existence of breed-related
differences in susceptibility to HPAIVs in minor and peridomestic avian species. Consequently, in the
present dissertation we systematically evaluated the differential pathobiological features of a HPAIV
belonging to a classical lineage (H7N1 isolated in Italy in 1999) and a HPAIV of Gs/GD H5 lineage
(H5NS8 isolated in Spain in 2017) in different breeds of chickens (Galus gallus domsestiens), domestic geese

(Anser anser var. domestica) and pigeons (Coluniba livia var. domestica).

In Study I, the Gs/GD H5N8 HPALV isolated in Spain in 2017 was genetically charactetized. The
pathobiological properties of Gs/GD H5N8 HPAIV wete then compared side by side with the
classical H7N1 HPAIV in three expetimental infections (Studies II, IIT and IV). We evaluated the
differences in clinical presentation, gross and microscopic lesions, distribution of viral antigen in tissues
(IHC techniques), viral shedding (QRT-PCR technique) and seroconversion (cELISA) between both
HPAIVs after intranasal inoculation in chickens (I), geese (III) and pigeons (IV). In Study II, the
genotype and allele frequency of a single nucleotide polymorphism (SNP) at position 2032 of chicken

Mx gene and their association with susceptibility to HPAIVs were also determined.
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In Study I, the Gs/GD H5N8 HPAIV that was used in the following expetimental infections was
characterized by means of full-genome sequencing. The phylogenetic analyses of the H5NS isolated in
a backyard goose in Spain in early 2017 indicated that the isolate belongs to clade 2.3.4.4 Group B of
Gs/GD H5 lineage of HPAIVs, and presented high nucleotide identity with H5N8 HPAIVs
previously isolated in Europe, Aftica and Asia in 2016/2017. Based on the differential clustering of the
strains, Burope was affected by at least five different HSN8 HPAIVs reassortants (CL1-5). All gene
segments of the HSN8 HPAIV isolated in Spain clustered in group 2, indicating that the local HSN8
HPAIV strain does not represent a new reassortant virus. The amino acid characterization revealed
several amino acid substitutions associated to adaptation, virulence and transmissibility in chickens,
ducks and different mammal species, but the most common markers of human transmission and

virulence were not present.

In Study II, the inoculation of H7N1 and H5N8 HPAIVs in chickens confirmed that both viruses are
highly lethal for this species. However, the highest frequency of severe clinical signs, highest mortality
ratio and shortest mean death time in those inoculated with H7N1 HPAIV demonstrated that this virus
is more virulent for chickens than HSN8 HPAIV. High levels of viral shedding by the oral and cloacal
routes were observed in chickens inoculated with H7N1 and H5N8 HPAIVs, but the comparatively
lower number of chickens inoculated with HSN8 HPAIV presenting cloacal excretion suggests that the
horizontal transmission of this virus could be affected. The microscopic examination of the tissues
revealed that HSN8 HPAIV replicated in a broader spectrum of tissues in comparison with H7N1
HPAIV, demonstrating the existence of differences in cell tropism between both HPAIVs. However,
the comparatively higher viral replication of H7N1 HPAIV in the brain of inoculated chickens suggest
that the higher mortalities caused by H7N1 HPAIV could be associated with the higher neurotropism
of this strain. We detected broad differences in the susceptibility to HPAIV infection between the
chicken breeds included in this study. Three chicken breeds were comparatively more resistant to
infection based on the lower frequency of clinical signs, mortality and number of birds shedding virus.
However, local breeds were more susceptible to HPAIV infection than commercial breeds,
demonstrating that local breeds do not necessarily present a higher resistance to HPAIVs. The analyses
of the SNP at position 2032 of chicken Mx gene with infection outcome revealed that AA and AG
genotypes are statistically associated with longer mean death times (MDT) than GG genotype.

In Study III, severe neurological signs were observed in domestic geese inoculated with HSN8 HPAIV
and, by 10 dpi, all birds had succumbed to infection. This study demonstrates that Gs/GD clade 2.3.4.4
H5N8 HPAIVs circulating in Europe in 2016,/2017 acquited high virulence for domestic geese. HSN8
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HPAIV produced a systemic infection; however, the most severe lesions and highest detection of viral
antigen were in central nervous system, followed by pancreas, liver, primary lymphoid organs (spleen
and thymus) and heart, indicating that the birds likely died as a result of neurological dysfunction or
multi-organ failure. The high oral and cloacal shedding in geese and the detection of ATV RNA in pool
water indicate that this species could play an important role in the epidemiology of Gs/GD H5N8
HPAIV. In contrast, domestic geese inoculated with H7N1 HPAIV did not present any evident clinical
sign, gross or microscopic lesions or viral antigen in tissues along the experiment. However, the
detection of AIV RNA in plasma and tissues and the seroconversion demonstrate that several geese
became subclinically infected. Oral shedding was detected in several geese inoculated with H7N1
HPALIV, and in some birds at high titers. Some birds were still shedding virus by the oral route at the
end of the study, suggesting that domestic geese may play a role in the perpetuation and interspecies

transmission of classical lineages of H7 HPAIVs. No breed-related differences were detected

In Study IV, H7N1 and H5N8 HPAIVs caused subclinical infections in pigeons, as demonstrated by
the lack of clinical signs of disease, gross lesions, microscopic lesions, viral antigen in tissues and viral
RNA in feather pulps but seroconversion and detection of viral shedding by oral and cloacal routes in
several birds. One pigeon inoculated with HSN8 HPAIV presented severe nervous signs and in the
further pathological examination of tissues, severe areas of necrosis associated to widespread AIV
antigen were observed in the brain. Therefore, we demonstrate for the first time that Gs/GD clade
2.3.4.4 H5N8 HPAIVs could potentially cause lethal infections in pigeons by neurological dysfunction.
The viral shedding in pigeons inoculated with H7N1 and H5SN8 HPAIVs was inconsistent, short and
generally the titers were low. However, since pigeons gather in large numbers and present a wide habitat
use, the biological implications of the viral shedding detected here should be further assessed. No breed-

related differences were detected.

Taken together, the present dissertation demonstrates that the clinico-pathological outcome and viral
shedding after infection with HPAIVs varies largely depending on the virus and the host, highlighting
the necessity to study the pathobiology of HPAIVs in different virus-host combinations. Considering
the broad differences, this data also represents a start point to study viral and hosts factors associated

with the observed results.
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RESUM

La influenca aviaria (IA) és considerada una de les malalties vitiques més importants de la industria
avicola 1 una amenaga constant per als humans 1 les aus salvatges. I.a majoria d’epidemies d’influenca
aviaria d’alta patogenicitat (IAAP) han afectat principalment aus de producci6 terrestres. En canvi, els
virus d'TAAP en rares ocasions han estat aillats o han causat mortalitats elevades en aus domestiques
d’especies aquatiques, aus salvatges i especies d’aus peridomestiques. Malgrat aixo, 'epidemiologia i
patobiologia de la IAAP ha canviat radicalment des de laparicié del llinatge dels virus dTAAP
Goose/Guangdong (Gs/GD) H5. Aquests vitus ptresenten caractetistiques biologiques tniques,
incloent la capacitat d’infectar i causar la mort en un ampli rang d’especies d’aus domestiques, captives i
salvatges. Aquestes dades demostren les grans diferencies entre virus d’TAAP quant al resultat de la
infecci6. Diversos estudis demostren que el resultat de la infeccié també esta influenciat en gran mesura
per factors de 'hoste. Particularment, existeix una amplia variacié en la susceptibilitat a la infecci6 per
virus dTAAP entre diferents races de pollastre, cosa que indica que la base genctica d’algunes races
confereix una major resisténcia a la infeccié per virus d’TAAP. Normalment, les races locals de pollastre
es consideren més resistents que les races comercials degut a la manca de seleccio artificial cap a gens

relacionats amb la produccio, la qual podtia estar associada negativament amb la resistencia a patogens.

Fins a dia d’avui, no hi ha una comparacio sistematica de la patobiologia de virus ITAAP  classics 1
Gs/GD HS5 en especies aviars de different grups taxonomics. La vartiacié en la susceptbilitat de
diferents races de pollastre als virus dTAAP tampoc sha estudiat amb detall a Europa, aixi com
Iexistencia de diferencies en susceptibilitat als virus ITAAP entres races d’aus de produccié menor i
peridomestiques. Tenint en compte aixo, a la present tesi es va avaluar sistematicament les
caractetistiques patobiologiques diferencials d'un virus ITAAP pertanyent a un llinatge classic (H7N1
aillat a Italia al 1999) i d'un virus I'TAAP pertanyent al llinatge Gs/GD H5 (H5NS aillat a Espanya al
2017) en diferents races de pollastres (Gallus gallus domesticus), oques domestiques (Anser anser var.

domestica) i coloms (Columba livia var. domestica).

A Testudi 1, es va caracteritzar el virus PTAAP H5NS aillat a Espanya al 2017. Les caracteristiques
patobiologiques d’aquest virus es varen comparar amb el virus dTAAP classic H7N1 en tres infeccions
experimentals (Estudis II, IIT 1 IV). Es van avaluar les diferéncies en la presentacié clinica, lesions
macroscopiques 1 microscopiques, distribucié d’antigen vitic en els teixits (tecniques dTHC), excrecié
vitica (técnica qRT-PCR) ila seroconversio (cELISA) entre els dos virus TAAP en pollastres (IT), oques
) 1 coloms. (IV). A lestudi II també es va determinar la freqiiencia genotipica i al'lelica d’'un
polimorfisme de nucleotid anic (SNP) a la posici6 2032 del gen Mx del pollastre i la seva associacié amb
la susceptibilitat als virus ITAAP.
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Al'estudi I es va caractetitzar el vitus FTAAP Gs/GD H5NS8 que es va utilitzar en les infeccions
experimentals mitjangant sequienciacié massiva de tots els segments del virus. I’analisi filogenetic del
virus ITAAP H5N8 aillat en una oca domestica a Espanya a principis del 2017 va indicar que el virus
pertany al dade 2.3.4.4 Grup B del llinatge Gs/GD H5 dels vitus dTAAP. El vitus presentava una alta
identitat nucleotidica amb virus FTAAP H5NS aillats a Europa, Africa i Asia al 2016/2017. Tenint en
compte les diferents agrupacions de les soques viriques, Europa es va veure afectada per almenys cinc
virus dTAAP H5N8 recombinants diferents (CL1-5). Tots els segments de gens del virus aillat a
Espanya sagrupaven dins del duster 2, indicant que la soca ITAAP H5N8 local no representa un nou
recombinant. Ia caractetitzacié dels aminoacids va tevelar diverses substitucions d'aminoacids
associades a adaptacio, viruléncia 1 transmissié en pollastres, anecs 1 diferents especies de mamifers, pero

els marcadors més comuns de transmissio 1 viruléncia a humans no estaven presents.

Alestudi II, la inoculaci6 dels virus TAAP H7N1 i H5N8 en pollastres va confirmar que ambdéds
virus produeixen infeccions letals en aquesta espécie. Tanmateix, la major freqtiencia de signes clinics
greus, la major mortalitat i el temps minim de mortalitat més curt en els inoculats amb el virus ITAAP
H7N1 demostren que aquest virus és més virulent en pollastres que el virus ’TAAP H5NS. Es van
observar nivells elevats d’excreci6 oral i cloacal en els pollastres inoculats tant amb el virus dTAAP
H7N1 com en aquells inoculats amb el virus FTAAP H5NS, pero el nombre relativament inferior de
pollastres inoculats amb H5N8 excretant per la cloaca suggereix que la transmissié horitzontal d’aquest
virus podria veure’s afectada. I observacié microscopica dels teixits va indicar que el virus dTAAP
H5NS8 va replicar en un rang més ampli de teixits que el virus ’TAAP H7N1, demostrant I'existencia
de difereéncies en tropisme cel'lular entre els dos virus I'TAAP. Tot i aixi, la major replicacié del virus
dTAAP H7NT1 en el cervell del pollastres suggereix que la major mortalitat causada pel virus I TAAP
H7N1 podria ser deguda al major neutropisme d’aquest virus. Es varen detectar grans diferencies en la
susceptibilitat a la infecci6 als virus ITAAP entre les races de pollastre incloses en aquest estudi. Tres
races de pollastre varen ser relativament més resistents a la infecci basat en la menor freqtiencia de
signes clinics, la mortalitat i el nombre d’individus excretant virus. Tot i aix0, les races locals varen ser
més susceptibles a la infecci6 pels virus ITAAP que les races comercials, demostrant aix{ que les races
locals no presenten necessariament una major resistencia als virus TAAP. L’analisi del SNP a la posicié
2032 del gen Mx de pollastre amb el resultat de la infeccié va revelar que els genotips AA 1 AG estan

associats estadisticament a temps mitjos de mortalitat més tardans que el genotip GG.

A T'estudi III es van observar sighes neurologics greus en les oques domestiques inoculades amb el
virus ITAAP H5N8 i, al dia 10 post-inoculacio, totes les aus havien sucumbit a la infeccié. Aquest estudi

demostra que PH5NS que circulava a Europa al 2016,/2017 va adquitir una alta viruléncia per les oques
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domestiques. El virus ITAAP H5NS va produir una infeccié sistémica; tanmateix, les lesions més greus
1la major deteccié d’antigen viric es varen detectar al sistema nervios central, seguit de pancrees, fetge,
organs limfoides primaris (melsa 1 timus) i cor, indicant que les aus probablement van morir a causa de
la disfuncié neurologica o d’una fallida multisistémica. L'elevada excreci6 oral 1 cloacal en les oques
domestiques i la deteccié ’ARN de virus d’Al a 'aigua indiquen que aquesta espécie podtia jugar un
papet important en la epidemiologia del virus TAAP Gs/GD H5NS. En canvi, les oques domeéstiques
inoculades amb el virus dTAAP H7N1 no varen presentar cap signe clinic evident, lesions
macroscopiques o0 microscopiques o antigen viric en els teixits al llarg de l'experiment. Tot 1 aixo, la
deteccié6 ’ARN de virus d’TA en plasma i teixits i la seroconversié demostren que diverses oques es van
infectar de forma subclinica. Ess va detectar excrecié oral en algunes oques inoculades amb el virus
dTAAP H7N1, i en algunes oques a nivells elevats. Algunes oques encara excretaven virus per via oral
al final de Pestudi, el qual suggereix que les oques domestiques podtien jugar un paper en la perpetuacié
1 transmissio entre especies de virus dTAAP de llinatges classics d'H7. No es varen detectar diferencies

associades a la raca.

Al'estudi IV, els virus TAAP H7N1 i H5N8 van produir infeccions subcliniques en els coloms, com
es demostra per la falta de signes clinics, lesions macroscopiques, lesions microscopiques, antigen vitic
en els teixits 1 ARN viral en polpes de ploma, pero es detecta seroconversio 1 excrecio vitica tant per via
oral com cloacal en diversos coloms. Un colom inoculat amb el virus I TAAP H5N8 va presentar signes
nerviosos greus i en l'examen patologic posterior dels teixits es varen observar arees amplies de necrosi
al cervell associades a extensa presencia d’antigen de virus I’IA. Aixi, hem demostrat per primer cop
que els virus ITAAP H5N8 del llinatge Gs/GD tenen el potencial per produir infeccions letals en
coloms a causa de disfuncié neurologica. I'excrecio vitica detectada en els coloms inoculats amb els
virus ITAAP H7N1 1 H5NS era inconsistent, curta i en general els titols eren baixos. Tot 1 aixi, tenint
en compte el comportament gregari i 'ampli s d’habitats utilitzats pels coloms, la implicacié biologica
de la detecci6 vitica detectada hautia de ser avaluada amb més detall. No es varen detectar diferéncies

associades a la raca.

En conjunt, la present tesi demostra que el resultat clinico-patologic i 'excrecié virica després de la
infeccié amb els virus TAAP varia en gran mesura del virus i de hoste, destacant la necessitat d’estudiar
la patobiologia dels virus 'TAAP en diferents combinacions virus-hoste. Tenint en compte les grans
diferencies, aquestes dades també representen un punt de partida per estudiar els factors virals i de 'hoste

associats als resultats observats.
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GENERAL INTRODUCTION

1. AVIAN INFLUENZA INFECTION

1.1. HISTORY

Through the history there has been several reports of high flock mortality in poultry. The epizootic in
United States in 1872, when a highly lethal disease in poultry progressed temporally with an equine
influenza panzootic suggests that it was an early event of Avian influenza (Al) [1]. However, Perroncito
was the first to document outbreaks of a poultry disease capable of causing extremely high mortality
that was distinguishable of bacterial diseases (e.g. fowl cholera) in 1878 in Italy [2]. The disease, which
was later named fowl plague [3], was recurrently detected from late 1800s to the 1950s within Europe,
and also in Asia, Affica and Ametica [4-8].

In 1901, the causal agent of this poultry disease was already shown to be ultra-filterable, being one of
the earliest diseases discovered to be caused by a virus [9]. In 1931, the isolation of swine influenza viruses
was achieved [10], and two years later the agent of human influenza was discovered [11]. However, it was
not until 1955 that fowl-plague viruses were classified within Influenza A viruses (IAVs), and that their
genetic relationships with mammalian IAVs were revealed [12]. Shortly after, a virus causing mild
respiratory signs in chickens associated to low mortalities was also shown to be an IAV, revealing the
genetic similarities between virulent and mild forms of disease [13, 14]. However, they were not officialy
designated as highly pathogenic AIVs (HPAIV) and low pathogenic AIVs (LPAIV) until 1981 [15] and
2002 [16], respectively.

Until the mid-1950s, all HPAIV's belonged to the H7-subtype, butin 1959 the first outbreak in chickens
caused by a HPAIV of the H5 subtype was reported [17]. Only two years later, another HPAIV of the
H5 subtype was isolated in common terns (S7erma hirundo), which was also the first AIV isolated in wild
birds [18, 19]. Despite further data evidenced the circulation of AIVs in wild birds, it was not until the
systematic investigations cartied out in mid-1970s that it was demonstrated the role of waterfowl and

shorebirds in perpetuating enormous pools of AIVs [20].

At that time, three human influenza pandemics occurred: in 1918 (HIN1),in 1957 (H2N2) and in 1968
(H3N2). HIN1 IAV, which caused deadliest event in the history of humanity, seems to be a fully avian-
like virus that adapted to humans [21]. In contrast, H2N2 and H3N2 were human IAVs that acquired
segments from AIVs [22,23]. Since then, several AIVs subtypes (H5, H6, H7, H9, H10) have crossed

the species barrier directly from avian species and produced infections in humans [24-27]. Despite ATV
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infections in humans range from asymptomatic to fatal, none of them have acquired a sustained human-

to-human transmission.

AlVs outbreaks have been recurrently reported in poultry in the last decades. The outbreaks of HPAIVs
increased specially after the industrialization in the 1970s, when the poultry population grew worlwide,
and the poultry production suffered a radical change from small flocks to large integrated farms with
intense poultry trade [28]. This industrial development also resulted in the formation of Densely
Populated Poultry Areas (DPPAs), where HPAIVs have a more visible impact [28]. Poultry production
has continue to grow: 120 and 81 million tonnes of meat and eggs, respectively, were produced
worldwide by 2016 [29], and the expectation is that demand will continue to grow. Therefore, new

HPAIVs outbreaks are expected to ocutr.

Most HPAI epizootics have been geographically restricted, have affected a low number of farms and/ot
have been eradicated often within a year [30-34]. In contrast, some HPAIVs have become widespread
and/or have persisted over long petiods of time before its successful erradication, thus causing
devastating economic losses in the economy of the poultry industry (millions of birds dead or culled)
[35-42] (Table 1).

HPALV strain Subtype Number of infected farms (birds) Reference
A/chicken/Pennsylvania/1370/83  H5N2 356 (> 17,000,000) 133]
A/chicken/Mexico/8623-607 /94 H5N2 Many (na) [36]
A/chicken/Pakistan/447/94 H7N3 Many (> 6,000,000) 137]
A/tutkey/Ttaly/99 H7N1 413 (16000,000) 138]
A/chicken/Netherlands/2003 H7N7 255 (> 28,000,000) [39]
A/chicken/Canada-BC/2004 H7N3 53 (> 19,000,000) [40]
Achicken/Jalisco/12283 /2012 H7N3 Na (>22,000,000) [41]
AH/13-lineage/2016 H7N9 On-going (na, millions?) [42]

Table 1. Examples of major epidemics reported in the last decades (excluding the Asian-origin H5N1). Information
partially obtained from reference [28].

The majority of HPAI epidemics have affected the chicken species the most, which represents the 91
percent of the world’s poultry population [43]. Outbreaks associated to high mortalities in other
gallinaceous species such as turkeys, partridges and pheasants have also occurred, as well as in ostriches

[44]. In contrast, ducks, geese and other species have been more sporadically affected, and generally
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lacked or presented low mortalities [28]. However, the first demonstration that poultry species infected
subclinically suppose potential sources of infection due to the lack of evident signs of disease ocurred
in 1983, when a HPAIV was detected in a commercial duck farm located between two turkey farms

whete the vitus had caused the first outbreaks [45].

The higher frequency of HPAI epidemics in the last decades is a concern; however, any has reached the
magnitude and geographic extension of that caused by the Goose/Guangdong (Gs/GD) H5 lineage
of HPAIVs, which is considered a panzootic [46]. Over 70 different countries have reported outbreaks
of Gs/GD H5 HPAIVs and the lineage is endemic in at least 8 countties [47]. Gs/GD H5 HPAIVs
have evolved rapidly and to date, 10 distinct phylogenetic clades (0-9) and up to fourth-order sub-clades
(e.g. 2.3.4.4) are characterized [48]. This lineage of HPAIVs has caused the death of millions of land-
based and aquatic poultty of numerous species by either infection ot culling. In addition, Gs/GD H5
HPAIVs have caused lethal infections in zoo and wild birds, including migratory aquatic birds,
synanthropic birds, predators and scavengers [49]. Importantly, these viruses have recurrently crossed
the species barrier and caused infection in mammals, including at least 462 deaths in humans by June

2019 (fatality rate of about 53%0) [50].

The ancestor of all Gs/GD H5 HPAIVs is A/goose/Guangdong/1/1996 H5N1, which was firstly
isolated in domestic geese in 1996 causing unexpected high mortalities for this species (up to 40%) [51].
In 1997, the virus spilled to Hong Kong poultry, where caused several outbreaks until all poultry was
depopulated [52]. Despite the stamping out program was succesful, the virus reappeared and in the
following years, several genotypes were identified in domestic bird populations (mainly in ducks and
geese) [53-55]. Another sign that the pathobiology of HPAIVs was changing was in late 2002, when
H5NI1 caused the death of wild migratory birds in two Hong Kong Parks [56]. From 2003 to 2004,
H5N1 HPAIVs spread to mainland China and to other countries in Southeast and Fast Asia, where
they caused numerous outbreaks in poultry and were isolated in wild bird populations. In addition,
multiple sublineages of these viruses established in poultry in different geographical regions [57].

In April 2005, the Qinghai strain (clade 2.2) caused a massive died-off of several wild bird species at
Qinghai ake, China. More than 6.000 wild birds died, being the 90% of them bar-headed geese (Arnser
indjens) [58]. The detection of H5N1 HPAIV in Qinghai Lake preceded the detection of the virus in
poultry and wild bird species in Central and East Asia in mid-2005, and in late 2005 and 2000, these
viruses disseminated for the first time westwards into south-western and central Europe, Russia, Middle

East and North and West Africa [59]. Multiple clades continued to emerge and circulate in Asia, and the



GENERAL INTRODUCTION

H5N1 HPAIVs belonging to clade 2.3.2.1c were responsible of two new intercontinental waves in 2009
and 2014 [59].

The rapid evolution of this lineage of HPAIV's have resulted in the continous detection of novel variants
containing diverse internal gene constellations. However, until 2008 all strains belonged to the H5N1
subtype. Since 2008 onwatds, Gs/GD H5 HPAIVs of different subtypes (teferred to as HSNx) have
been identified, increasing the complexity of this lineage [60]. These viruses are classified within subclade
2.3.4.4, and include the subtypes H5N1, H5N2, H5N5, H5N6 and H5SN8 HPAIVs that were first
isolated in China [61-64], and H5N3 that originated in Taiwan [65]. Provisionally, they have been further
separated into four distinct groups (A to D), each containing different subypes (Figure 1). The four
groups have caused numerous outbreaks in wild and poultry species in different Asian countries. In
addition, Group A and Group B spread out causing two new intercontinental waves in 2014 and 2016,
respectively, where reassorted with local LPAIV's generating a complex viral population of subtypes and
genotypes [66]. For the first time in this lineage, the HPAIVs of clade 2.3.4.4 also reached North America
(Group A) [67] and Southern Africa (Group B) [68]. By 2015, 2.3.4.4 HPAIVs represented the dominant
clade of the Gs/GD HS5 lineage in different countries. The number of outbreaks have decteased in

2018 and 2019, but outbreaks are still reported in several countries in either domesticated or wild birds
[60, 69].

Europe has been affected by all the transcontinental Gs/GD H5 lineage epizootics (clade 2.2 in 2005,
2.3.2.1cin 2009 and 2014, clade 2.3.4.4 Group A in 2014, and 2.3.4.4 Group B in 2016) [59]. However,
the caused by Gs/GD H5NS clade 2.3.4.4 Group B in 2016/2017 was the latgest in sevetity (repotted
poultry outbreaks and deaths), geographic spread, speed of events, and diversity of wild bird species
infected [70,71]. A novel intercontinental wave of Gs/GD H5 lineage could occur as novel variants with

different biological properties continue to emerge.
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Figure 1. Movement patterns of Gs/GD clade 2.3.4.4 HPAIVs (groups A to D) and H5Nx subtypes identified at

the different continents. HSN8 HPAIVs belonging to Group A (Buan-like) and B (Gochang-like) were isolated in South
Korea in 2014. HSN8 A HPAIV spread in 2014 to other patts of Asia, Europe and North America. In North America and
Taiwan, HSN8 A HPAIV reassorted with local LPAIVs generating different HPAIV subtypes. HSN8 B HPAIV spread

wotlwide in 2016/2017, and was detected in numerous counttdes from Europe, Middle East, Asia, and Aftica, with evidence

for genetic echange with LPAIVs and generation of multiple HPAIVs subtypes. HPAIV reassortants from Europe were

transmitted back into several Asian countries in 2017. HSNG Group C was detected in China in 2013 and then became

established in Laos and Vietham in 2014, wete genetated other HPAIV subtypes. In 2016/2017, they caused outbreaks in
South Korea and Japan. HSNG6 HPAIVs of Group D have been isolated in China and Vietnam. Information summarized

from references [60, 66]. Image modified from reference [60).

1.2. ETIOLOGY

1.2.1. CLASSIFICATION AND NOMENCLATURE

AlVs belong to the Orthomyxoviridae family, which includes seven genus: Influenzavirus A (Type A),

Influenzavirus B (Type B), Influenzavirus C (Type C), Influenzavirus D (Yype D), Thogotovirus, Isavirus and
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QOrnaranfilvirns [72]. The genus are classified based on antigenic differences in the viral nucleoprotein (NP)
and matrix (M1) proteins. AIVs belong to Influenzavirus A, which is the genus that presents the higher
genetic variability and the broadest host range among the seven, and is the only known to cause natural

infections in birds [72].

IAVs are further classified into subtypes based on the antigenicity of the glycoproteins hemagglutinin
(HA) and neuraminidase (NA) present in the surface of the virion. To date, 18 and 11 different subtypes
of HA and NA, respectively, are described. Among them, 16 HA and 9 NA subtypes in virtually all
possible combinations have been isolated from birds [73]. AIV's can also be divided into lineages, which
are usually categorized on a geographical basis (e.g. Eurasian versus North American), and into genetic

groups based on their internal gene constellation [74].

A standarized nomenclature system is used for all Influenza viruses. The viral strain is named using the
follow components: the antigenic type (A, B,C or D), the host whete the virus was isolated (e.g. chicken,
swine, equine), the geographical origin (either a city, state, province or countty), the identification
number of the strain and the year of isolation. The subtype is shown in brackets For example,

A/chicken/Italy/5093/99 (H7N1). If the vitus is isolated from a human being, host is not included [75).

1.2.2. VIRAL STRUCTURE AND PROTEIN FUNCTIONS

IAVs are pleomorfic viruses (spherical of 80 to 120 nm in diameter to filamentous that reach up to 20
pm in length) enveloped by a lipid membrane detived from the host cell that contain segmented,
negative-sense, single-stranded ribonucleic acid (RNA) (-ss vRNA) genomes [72, 76]. IAVs present 8
gene segments that range in size between 890-2341 nucleotides length each and, in total, its genome

contains approximately 13.600 nucleotides [77, 78].

Each segment encodes at least one viral protein, and virions contain a minimum of ten different
polypeptides that are grouped into three different categories: surface proteins (HA, NA, M2), internal
proteins (PB2, PB1, PA, NP, M1), and nonstructural proteins (NS1, NS2) [73]. The transmembrane
glycoproteins HA and NA represents approximately the 80% and 17%, respectively, of the proteins
present in the viral envelope [79]. HA is a trimeric protein that protrudes from the viral surface in a rod-

like shape, whereas NA forms a tetrameric structure that protudes in mushroom-like shape [80]. The
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viral envelope also contains a small portion of the tetrameric protein M2. M1 protein is located in the
inner surface of the viral envelope. In the viral core, the eight VRNA segments are coated within the NP
forming double-helical hairpin structures [81]. This formation also carries the RNA-dependent RNA
polymerase heterotrimer (RARp) formed by PB1, PB2 and PA proteins. Altogether, these structures are
named ribonucleoprotein particles/complex (VRNPs) [81] (Figure 2).
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Figure 2. Structure of IAVs. A. Morphology of the virion and schematic representation of the VRINP. The vRNA (B) and
messenger RNA (mRNA) (C) segments are represented in order of decreasing size. Adapted from reference [82).

Novel proteins in IAVs have been identified, which are the result of translation from alternative reading
frames, gene splicing or ribosomal frameshift. These proteins include the most studied PB1-F2 [83] and
PA-X [84], and the more recently discovered PB2-S1, PB1-N40, PA-N155, PA-N182, M3, M4, M42
and NS3 [85-89]. However, these proteins are not detected in all IAVs subtypes. The main functions of
several of these newly identified viral proteins have been reported, while in other cases the functions
and amounts of molecules in the virions remain unknown. It has been demonstrated that virions also
contain cytoplasmic and membrane-bound cellular host proteins [90]. The main functions of the viral

proteins are presented in Table 2.
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Segment Size Protein Main functions
(mol/vition)
1(PB2) 2341 PB2 (30-60) Cap recognition and binding
RIG-I-mediated IFN-expression
PB2-S1 (nd) Inhibition of RIG-I-dependent intetferon signaling pathway
Interfere RARp activity
2 (PB1) 2341  PBI1 (30-60) Prime viral mRINA transcription
Transcribes VRNA into cRNA
Initiates vRNA synthesis
PB1-F2 (nd) Induces apoptosis
Modulates host interferon response
Modulates susceptibility to secondary bacterial infection
PB1-N40 (nd) ~ May balance expression of PB1 and PB1-I'2
3 (PA) 2233 PA (30-60) RNA endonuclease activity: cleave capped RNA for viral mRNA
synthesis
PA-X (nd) Modulation of the host response and viral virulence
PA-N155(nd)  Promote viral replication and virulence
PA-N182 (nd)  Promote viral replication and virulence
4 (HA) 1778 HA (500) Sialic acid-receptor binding
Membrane fusion
Major antigen
5 (INP) 1565 NP (1000) vRNA binding, protection and synthesis
Nuclear import of vVRNP
6 (NA) 1413 NA (100) Sialidase activity: release of progeny virions
Facilitate the virion to penetrate the mucus bartier and infect new
cells.
7M™ 1027 M1 (3000) Controls the morphology of the virion
Viral assembly andbudding
Nuclear import and export of vRNPs
M2 (20-60) ITon channel activity
Uncoating process
M3 (nd) not known
M4 (nd) not known
M42 (nd) Complements M2 function
8 (NS) 890  NS1 (nd) VRNP entry by hijacking importin-oc

Viral mRNA splicing, maturation and translation
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Counters cellular antiviral responses, including interferons
Inhibits cellular mRINA maturation and translation
NS2/NEP vRNP nuclear export
(130-200) Regulation of vRNA transcription and replication
NS3 (0) not known

Table 2. vVRNA segments and length, encoded proteins and their functions. Information obtained from reference [91].

nd: not determined.

1.2.3. VIRUS REPLICATION CYCLE

The replication of IAVs can be divided into different steps (Figure 3). After entry into the host, the
initial stage of host cell infection is mediated through interaction of the viral HA protein with cell surface
sialic acid receptors (SA) present on cellular glycoprotein or glycolipids [92). The binding of HA to SA
triggers the endocytosis of the virion, which is mainly receptor-mediated by clatthrin-dependent
mechanisms [93] or via macropinocytosis [94]. The endocytosis results in a virion-endosome structure
that is exposed to gradual lower pH through the process of maturation inside the cell. The acidification
of the endosome causes a conformational change in the HA, which leads to the fusion of the viral and
endosomal membrane [95]. The entry of protons and potassium ions through M2 protein further acidify
the virion, causing the dissociation of the vVRNP from the M1 protein and the subsequent release of the

contents of the viral core into the cytoplasm of the host cell [96].

The vRNP is translocated into the host nucleus by nuclear localization signals present in the NP [9¢]. In
the nucleus, the replication and transcription of VRNA occurs [82). vVRNAs are copied into different
types of RNA: complementary RNA ([+]cRNA), used as a template by RdRp for generation of more
copies of VRNA that will be coated within the new virions [97]; [+]mRNA, which are used for protein
translation; small viral RNAs that control the switch from transcription to genome replication [98]; and
mini viral RNAs produced as a result of aberrant replication of the vVRINA genome that act as innate
immune agonists [99]. These processes ate cartied out predominantly by the vRNP, but multiple nuclear

and cytoplasmic host proteins act as cofactors at different stages [100-102].
cytop p tagy
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IAVs vRNA segments lack a 5’ cap sequence that is necessary for transcription. Therefore, RdRp
performs a process known as “cap-snatching”, where the 5'-cap structure of host pre-mRNAs are
recognized and cleaved by PB2 and PA, respectively, obtaining primers that allow the transctiption of
VRINA segments [103]. mRNA transctipts are then polyadenylated [104]. 5’capped,3’polyadenylated viral
mRNAs are released into the cytoplasm by NS1 protein and then translocated into the host ribosomes,
where they are translated using the host machinery [105]. The newly-synthesized HA, NA and M2 viral
proteins are translocated into the lumen of the rough endoplasmic reticulum and Golgi apparatus for
post-translational modifications. Afterwards, they are transported to the cell membrane, where they
attach to and remain in the lipid bilayer [106-108]. In contrast, PB2, PB1, PA, NP, M1, NS1 and NS2
proteins are imported back into the nucleus. There, PB2, PB1, PA and NP proteins are involved in the
secondary cycle of transctiption and in the replication of vVRNA, or bind to copied vRNA to assemble
new vRINPs [82, 109]
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Figure 3. Schematic representation of IAV replication cycle. 1. Virion binds to SA in the surface of host cells. 2.
Endocytosis of the vition and acidification of the endosome. 3. Fusion of viral and endomosal membranes, and release of
vRINDPs into the cytoplasm. 4. vRNPs are transpotted into the nucleus. 5. RARp petforms transcription of vVRINA segments. 6.
Export of viral mRNAs and translation. 7. Viral PB1, PB2, PA, NP, M and NS proteins are transported back into the nucleus.
8. HA, NA and M2 are post-translationally modificated and transported into the cell membrane. 9,10. RdRp replicates vRINA
into cRNAs, which act as templates for the production of vRNAs. 11. Assembly of vRNPs. 12. Progeny vRNPs, M and NS

are transported to the cell membrane. 13. Assembly of progeny virions in the membrane and release. Adapted from reference

[110].
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Once completed the replication, transcription and translation of viral genome, VRNPs are exported
from the nucleus and translocated into the host cell membrane by M1 [111] and NS2 [112] proteins using
recycling endosomes [113] and tubules within a modified endoplasmic reticutum [114]. There, the
assembly of viral components and budding of progeny virions occur. HA, NA and M1 proteins
sequentially cause the modification of the membrane curvature, and M2 further release budding viruses
by membrane scission [115]. NA protein then cleaves SA moieties present on the host cell surface and
from decoy receptors (e.g. mucus), which avoid the self-binding of the proteins and aggregation of
progeny viruses and enable their spread to bystander cells [116]. Despite all VRNA segments contain
highly conserved regions that act as packaging signals, the replication of IAVs is considered highly
inefficient, and more than 90% of the viral particles can be non-infectious due to inadequate packaging

of vRNA segments [117].

1.2.4. ANTIGENIC EVOLUTION

The continous evolution of IAVs enables the production of novel virus variants with different genetic,
antigenic and biological characteristics. That evolution is driven by two phenomenoms that produces

either minor (antigenic drift) or major (antigenic shift) changes [118].

Antigenic drift is based on the accumulation of point mutations in VRNA segments that consequently
alter the amino acid sequence of the proteins. The vRINA replication of IAVs is highly prone to errors
due to the lack of proofreading activity in the polymerase complex, resulting in high mutation rates (2-
3 mutations in each replicated genome) [119]. Thus, IAVs can be considered as a complex population of
heterogeneous, albeit related genetic variants based on the quasispecies concept [120]. Some of the
mutations can be detrimental (eg. reduced polymerase activity), whereas the viruses carrying mutations
that are beneficial are likely positively selected. The phenomenom of antigenic drift occurs in all gene
segments, leading to rapid evolutionary dynamics [121]. However, it is more frequent in HA and NA
glycoproteins, particularly in the antibody-binding sites which are under high selection pressures. In HA,
the nucleotide substitution rate can be as high as 10.15 X107 substitutions/site/year [122]. Despite
antigenic epitopes have been detected in serveral proteins, the protection against IAVs is mediated
mainly by specific antibodies targetting the HA protein, and to a lesser extent the NA. The high
mutation rate in these segments result in the emergence of viral populations with potentially diverse
antigenic properties [123-125], and some may acquite the capacity to escape the host immune responses.

For that reason, antigenic drift is the major responsible of reduced vaccine eficacy in the human
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population and the main cause of IAV seasonal epidemics [126]. Similarly, commercial vaccines used in
poultry may not elicit complete protection againsts different genetic variants of AIVs [127-129].
Therefore, the analysis of the antigenic characteristics of the new emergent viruses for updating and

selecting the most suitable vaccines is needed.

Antigenic shift/re-assortment is based on the genetic exchange of whole vVRNA segments between
IAVs in a single co-infected cell. Since the genome of IAVs is segmented, the simultaneous assembly
of different IAV's can result in the generation of progeny viruses that contain a combination of segments
different from all the parental strains. In theory, co-infection with two IAVs could led to 254 possible
recombinants, plus the two parental strains. However, the frequency of reassortments and biological
efficiency of recombinant progeny vaty largely depending on many factors, including compatibility
among RNA packaging signals, compatibility of polymerase subunits and HA/NA functional balance
[130]. In humans, antigenic shift have been the cause of devastating IAV human pandemics in the 20®
century, when IAVs cartying a novel HA or HA/NA subtype combination to which most of the people
were immunologically naive were introduced into the population [131]. In birds, novel AIV reassortants
are isolated from different wild and domestic avian species during surveillance and clinical diagnosis [132,
133]. In addition, experimental incoulation of two AIVs in birds can lead to a high frequency of
reassortment events and in the generation of reassortants with higher virulence than the parental strains
[134]. Antigenic shift can also refer to the direct transmission of IAVs to naive hosts once crossed the

species bartier (e.g. from birds to humans), as well as the re-emergence of a previously circulating strain

[135].

1.2.5.VIRAL PATHOTYPES

AlVs are classified into LPAIVs or HPAIVs pathotypes in the basis of their virulence in chickens and
the amino acid motif at the HA proteolytic cleavage site. HPAIVs are those that present an intravenous
pathogenicity index (IVPI) greater than 1.2 (mean clinical score obtained as follows: 0=normal, 1 =sick,
2 =severely sick, 3 =dead) in six-week-old chickens within 10 days o, alternatively, cause at least 75%
mortality in four-to eight-week-old chickens, following intravenous inoculation with 0.2 ml of a 1/10
dilution of infective allantoic fluid. H5 and H7 AIVs that have an IVPI <1.2 or cause less than 75%
mortality are further sequenced to determine the amount of basic amino acids (arginine —R- and lysine
—K-) present at the cleavage site of the HA [136]. LPAIVs possess a mono-basic cleavage site (MCs),
thus, contain a single basic amino acid in the critical position -1 of the cleavage site (e.g.
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PEKQTR/GLEF). In contrast, HPAIVs contain a multi-basic cleavage site (MBCs). These vituses
present several basic amino acids in the cleavage site -1 and in the direct previous sequence (e.g:
PQRESRRKK/GLF) [137). If the amino acid motif of the vitus is similar to that observed in other
HPAIVs, the vitus is classified as HPAIV. All AIVs that do not meet the ctiteria for HPAIVs are then
classified as LPAIVs [136].

LPAIVs are the direct ancestors of HPAIVs [138]. For unknown reasons and with few exceptions,
HPAIVs have been restricted to H5 and H7 subtypes. From 1959 onwards, there have been at least 39
independent H5 and H7 LPAIV to HPAIV conversion events [139]. Since LPAIVs of H5 and H7
subtypes are prone to mutation to HPAIVs, all H5 and H7 AIVs detected in poultty or wild birds are
of mandatory notification to the World Organization for Animal Health (OIE) as notifiable avian
influenza (NAI), either as highly pathogenic notifiable avian influenza (HPNAI) or low pathogenic
notifiable avian influenza (LPNAI). Therefore, LPAI usually refers to LPAIV subtypes that are not
included within the classification of NAT [140].

Thes shift from LPAIV to HPAIV is the result of the acquisition of multiple basic amino acids at the
HA cleavage site, and there are evidences that this occurs after circulation of the virus in gallinaceous
poultry, including chickens and turkeys [141-143]. The period until the emergence of the HPAIV variant
is highly variable, but the probability is expected to be higher if the precursor circulates extensively in
the population [144]. This process is mediated by several mechanisms. For most H5 AIVs, spontaneous
duplication of putine triplets due to a transcription error by the polymerase complex and substitution
of non-basic with basic amino acids appear to be the main mechanism of acquisition of basic amino
acids. In contrast, non-homologus recombination with other gene sequences (either with another gene
segment or host genome) and accumulation of single nucleotide insertions without repeating

nucleotides are the predominant for H7 AIVs [145].

It is important to highlight that the definition of LPAIV or HPAIV based on the pathogenicity in
chickens and the proteolytic cleavage site of the HA does not necessarily correspond with their virulence

in other species of birds, or in mammals [146].
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1.3. EPIDEMIOLOGY

1.3.1. HOST RANGE

IAVs can infect a broad diversity of hosts belonging to different taxonomic groups; however, almost all
antigenic variants have been isolated in the class Aves. Over 105 species belonging to 26 different
families and 12 Orders of birds have been infected with IA Vs [147]. Despite there is a general consensus
thatall orders of birds are susceptible to IAVs, wild birds belonging to Anatidae in the Order_Ansersformes
(ducks, geese, swans), followed by Scolopacidae (shotebirds/waders) and latidae (gulls, terns) in the
order Charadriiformes constitute the reservoirs of IAVs [73]. In these species, 16 HA and 9 NA different
subtypes of IAVs in almost all the possible combinations naturally circulate in an apparent conserved
status (low evolutionary rates) and subclinical way [148]. The remaining two HA (17-18) and NA (10-11)
IAVs subtypes have been identified in several species of bats [149, 150]. A potential new subtype was

recently isolated in Egyptian bats [151].

Phylogenetic studies demonstrate that IAVs from waterbirds represent the ancestors of IAVs isolated
in other avian species, including poultry, and mammals (Figure 4). The transmission of IAVs between
different species is mainly determined by the receptor binding properties of the virus, but numerous
viral and host factors are involved [152, 153]. In general, IAVs from the wild reservoir present poor
binding affinity and /ot teplication fitness in other hosts and must undergo changes in order to efficiently
infect a new species. This process may require multiple mutations or reassortment of viral segments,
and may even need passage in intermediate hosts (e.g. quail, swine) in order to overcome the species-
bartiers [154]. The interspecies transmssion of IAVs is more common between wid birds and poultry
and taking into account the genetic similarities, domestic waterfowl become more readily infected with
wild bird-origin AIVs than most land-based poultry species [155]. IAVs can acquire a high degree of
adaptation to land-based poultty, resulting in IAVs that can infect and be transmited efficiently in the
population [156]. Some IAVs have also adapted to non-avian species, resulting in the formation of major
lineages of IAVs in humans [157], swine [158], horses [159] and dogs [160]. As a result of adaptation in a
new species, these IAVs usually lose the capacity to replicate easily in the wild reservoir [161]. In other
species, the isolation of IA Vs is generally more sporadic and there is no clear evidence of stable lineages.
This group include cats, ferrets, whales and marine mammals [162, 163]. Other mammal species such as
mice and guinea pigs have are susceptible to infection and therefore, like ferrets, they are broadly used

as animal models [164]. Antibodies againsts influenza viruses or influenza virus-like RNA have been
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detected in amphibians and reptiles, and even in hagfish and spiny ells, but their genus remains

undefined in most cases [165, 166].

Wild birds Humans
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Figure 4. Host range of IAVs. Diagrammatic representation of the host range and transmission of IAVs between different

hosts, and the most common subtypes isolated in each species. Obtained from reference [152].

For most IAVs subtypes and without taking into account the wild reservoirs, the host range is generally
restricted to one species, or two in particular strains (e.g. H3N8 in dogs and horses) [167]. A small number
of IAVs have infected three or more non-reservoir species (e.g. H3N2 in turkeys, pigs and humans)
[168]. The exception are the HPAIVs belonging to Gs/GD HS5 lineage, which are unique regarding their
host range. These viruses have been detected in more than 172 species, including members of the avian
orders of Galliformes, Anseriformes, Charadrigformes, Columibiformes, Psittacciformes, Struthioniformes, Ciconitformaes,
Faleoniformes, Gruggormes, Passeriformes, Pelecaniformes, Strigiformes, Podicipediformes, Phoenicopteriformes, and the
mammalian orders of Artiodactyla, Carmivora, Lagomorpha, Prinates, Perissodactyla and Rodentia [49).
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1.3.2. RESERVOIR

Wild Anseriforms and Charadriiforms represents the reservoirs of AIVs, where they circulate as
LPAIVs [73]. The prevalence and diversity of AIVs are usually higher in waterfowl, particularly in
dabbling ducks of the Anatinae sub-family and Anseriformes species, including mallards, teals and
pintails. Among them, the largest amounts and vatiety of AIVs subtypes are generally isolated from wild
mallard ducks (Anas platyrhyndhos), especially in young individuals (up to 30% isolation rate) [147,169, 170].
However, waterfowl do not represent the reservoir of all AIVs subtypes (e.g. H13 and H16) and high

prevalences have been detected in other waterbird species, including gulls [171-173].

The perpetuation of AIVs in wild waterfowl populations is associated with the high influx of adults and
immunologically naive juveniles of different avian species in breeding areas in spring and summer. These
conditions facilitate largely the interspecies transmission of LPAIVs and just before the fall migration,
the prevalence of infection usually reaches the highest values [147]. The overlap of different migratory
species facilites the cross-flyway of AIVs and even there are numerous evidences of intercontinental
exchange by migratory birds [174-177]. The prevalence declines troughout the fall migration because of
the acquisition of immunity in the juveniles and the distribution of birds among the different migratory
routes. How wild waterfowl acquire AIVs again in the spring is still under debate: some waterfowl
species may perpetuate the viruses through all the migration period [178], other waterbird species (e.g.
shorebirds) may carry the viruses back into waterfowl breeding areas [179], or infectious particles may
persist through the winter period in the frozen waters and reinfect the birds in the spring [180]. In the
southern hemisphere the migration patterns of wild birds appear to be more complex, and therefore
the annual cycle of AIVs s less predictable. Domestic waterfowl can also act as reservoirs of AIVs. High
prevalences and variety of LPAIV subtypes have been detected in domestic ducks, particularly in breeds
raised in free-range husbandry [181-183. However, since they are raised as poultry, their role in the

epidemiology of AIVs is different.

In ducks, LPAIVs replicate predominantly in the epithelial cells of the intestinal tract, despite virus
replication in the respiratory tract has also been shown. High quantitities of infectious patticles are shed
by the cloaca within the faeces (up to 10° mean egg infectious doses /gram of feces), and the viruses
can be shed up to 30 days after infection [184, 185]. The contamination of the environtment preceeds the
fecal-oral route of transmission (ingestion) of the viruses by either dabbling in contaminated water or
preening on feathers contaminated with feces [186]. The fecal-cloacal route by the mechanism known

as “cloacal-drinking” represents an additional route of infection [186]. In some waterfowl species, viral
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shedding via the oropharynx may also ocur during relatively long periods of time [187], and the
transmission of LPAIVs via the respiratory route (oral-oral) has been speculated to play a role in

waterfowl species that mainly forage in landfills [188].

Apart from those belonging to Gs/GD HS5 lineage, HPAIVs have not caused widespread infections in
free-living waterbirds populations [189], with the exception of H5N3 detected in terns in South Africa
in 1961 [18]. Similary, HPAIVs have been more sporadically detected in domestic waterbirds and, in case
of infection, it was usually associated greograhically and chronologically with active outbreaks in land-
based poultry (28, 190]. Since HPAIVs appear to be adapted to gallinaceous species and therefore less
likely to infect efficienty waterbirds [161], these species have not been historically considered reservoirs
of HPAIVs [191]. However, the high detection of HPAIVs in domestic ducks in particular outbreaks
[192] and the demonstration that classical lineages of HPAIVs can be transmitted in different ducks
species by direct contact [161, 193-195] suggest that the comparatively low isolation of HPAIVs in
waterfowl populations in some cases could be due to insufficient exposure rather than to poor biological

compatibility.

The exception are the HPAIVs belonging to Gs/GD H5 lineage. Gs/GD H5 HPAIVs have been
recurrently isolated in a broad variety of migratory waterbird species and is kwown that they have been
pivotal in their dispersal among broad geographic regions, even between continents [196-198]. Despite
particular clades and/or genotypes of Gs/GD H5 lineage of HPAIVs seems to be in process of
adaptation to wild waterbirds, these viruses have been often isolated from dead or sick individuals [199].
Mallards, Eurasian wigeons and Norhern pintails are three of the few species able to shed high quantities
of Gs/GD H5 HPAIVsin relatively long petiods of time without exhibiting any evident clinical sign of
disease, and even big differences between isolates exists [200-202]. Therefore, if this lineage can
perpetuate stably in the wild population or if it mirrors a continuous spill back from infected poultry is
still debatable [199]. In contrast, evidences indicate that the Gs/GD H5 lineage of HPAIV's have become
established in domestic waterfowl populations. Gs/GD H5 HPAIVs are detected at high rates in
domestic waterfowl infected subclinically, especially in domestic ducks [203-206]. After experimental
inoculation, domestic ducks can present viral shedding during long petiods of time (up to two weeks)
in the absence of clinical signs [207-209]. Therefore, domestic waterfowl populations appear to play a
main role in the perpetuation of Gs/GD H5 HPAIVs in endemic countties. A special role in the
epidemiology of Gs/GD H5 HPAIVs has been attributed to free-grazing ducks. This type of
production is based on the movement of ducks among harvested rice paddy fields and waterlands,

where ducks make direct contact and share the same environtment with other duck flocks and with
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wild bitds, facilitating then the maintenance of Gs/GD H5 HPAIVs in the wild-domestic intetface [210,
211].

In contraposition with the predominant cloacal shedding of LPAIVs, HPAIVs have acquired the
capacity to be predominantly shed by the respiratory route rather than by the cloaca [209], and excretion
via the conjunctiva has also been documented [212]. However, the mean virus titer shed is generally
lower and the median infectious period shorter for HPAIVs than for LPAIVs in both wild and

domestic waterfowl species, which results in lower environmental contamination [213].

The environment could act as an abiotic reservoir of AIVs. Several AIVs subtypes that circulate in the
wild reservoir have been detected in water, including rivers, lakes and ponds [214]. The maintenance of
the virus in the environment is largely influenced by numerous factors, including the relative humidity,
temperature, pH, salinity, content of organic material and ammonia, contamination status, UV radiation,
freezing/thawing cycles and the viral strain [215-217). In general, is considered that clean filtered
freshwater maintained at a low temperature (below 17°C), low salinity (<20.000 parts per million), and
neutral to slightly basic pH (7.4-8.2) represent the ideal conditions [217]. Under the appropriate
environment, the virus may maintain its infectivity for more than a year [215]. However, the molecular
basis for environmental stability of AIVs remains unknown. AIVs can also persist long periods of time

in infected tissue samples, but the survival largely varies dependent of the tissue type and the temperature
[218,219).

1.3.3. INTRODUCTION AND TRANSMISSION

The introduction and spread of AIVs in poultry is complex and is influenced by numerous factors,
including the strain and virulence of the viral isolate, the ecological characteristics of the area, the
concentration of poultry premises and the level of biosecurity. In general, AIVs, either as LPAIVs or
HPAIVs, may enter into a poultry flock by the following routes: 1) direct contact with waterbirds,
especially waterfowl [220]; 2) use of unpurified, raw surface water sources for drinking or food
contaminated with infective droppings [220]; 3) mechanical transmission via movement of people,
vehicles, fomites, food or water between farms or flocks [221, 222]; 4) movement and trade (legal or
illegal) of live infected poultty, poultry products and captive wild birds [223-225]; 5) contact with peri-

domestic avian and mammal species and flying insects that act either as biological vectors or carty the

22



GENERAL INTRODUCTION

virus mechanically (e.g. in feet and feathers) [226-228]; 6) introduction via non-avian intermediate hosts
(e.g. swine) [229]; and 7) aitborne by dust or water droplets in case of proximity to infected flocks or

contaminated manure [230, 231].

There are strong evidences indicating that direct or indirect contact with migratory waterbirds represent
the main source of primary introduction of AIVs to poultry. Generally, the frequency of isolation of
LPAIVs in poultry is higher in farms located within wild bird migratory routes and in outdoor
production systems [232]. Moreover, AIVs from poultry present high nucleotide identity with LPAIVs
previously isolated from wild birds in the same territory [233-236]. However, the direct transmission of a
HPAIV from wild to domestic bitds was not demonstrated until the emergence of the Gs/GD H5
lineage. The temporal and geographical correlation between poultry outbreaks with annual wild
waterbird migratory movements, particulatly of waterfowl [237-240], and the genetic relationship
between Gs/GD H5 HPAIVs isolated from poultry and wild birds [241] indicate that direct spillover of
HPAIVs between wild-domestic populations may also occur in this lineage. Domestic ducks are also
considered to play an important role in the introduction of wild bird-origin AIVs to land-based poultty,
including the HPAIVs of Gs/GD H5 lineage [242-244). In addition, international trade of poultry seems
to be responsible for the initial introduction of AIVs in different countries, for example during the

expansion of the Gs/GD H5 lineage of HPAIVs in South-East Asia in 2004 [245).

The main sources of AIVs spread after the index case is reported apear to be related to human activities.
Movements of farm personnel and live poultry between holdings represent important sources of virus
dispersal, especially in poultry flocks raised under low biosecurity standards and in farms included in
large contact networks [246, 247]. In the appropiate conditions (continous contact between infected and

susceptible birds), AIVs can be perpetuated in the domestic bird population.

A key source of AIVs infections to poultry has been attributed to live bird markets (LBM). This
marketing system allows the contact of numerous species of birds of variable origin, and therefore
respresent a hotspot for interspecies transmission, perpetuation and genetic evolution of AIVs [248-250].
In some studies, the prevalence of AIVs in LBMs can reach higher levels than in farms [251], and given
the contact network among them, L BMs represent a potential source of infection for poultry flocks.
Several studies also indicate that LBMs are playing a pivotal role in the epidemiology of Gs/GD H5
HPAIVSs [252-254]

In chickens and other gallinaceous species, AIVs are shed from both the oral and cloacal routes;
however, slightly higher quantities are generally detected in the oropharynx. Despite the marked
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differences among isolates, LPAIVs and HPAIVs can be detected in respiratory secretions and faeces
as eatly as 1-2 day post-inoculation (dpi) under experimental conditions [255]. In addition to the
fecal/oral route, the high shedding of AIVs via the oropharynx in this species suggest the potential role
of oral/oral transmission. Expetimental studies reveal that chickens are susceptible to aerosolized ATVs
[256] and can be transmitted by this route, but usually within short distances [257, 258]. In general terms,
the transmission to contact birds appear to be easier for HPAIVs than for LPAIVs, especially driven
by the higher viral shedding reported in HPAIV-infected birds [259, 260]. However, the mean infectious
period is shorter for HPAIVs as a result of the rapid death in infected individuals, which leads to similar
or lower basic reproductive ratios (mean number of secondary cases from an infected individual) than
the reported for LPAIVs [261,262]. Although the experience at the field level demonstrates that HPAIV's
can spread rapidly beween farms, some risk assessments also conclude that LPAIVs are also more likely

to be introduced into other farms due to the lower probability of detecting the virus in a timely fashion
[263].

HPAIVs have also been detected in poultry products such as meat, eggs and feathers of different
species, and sometimes in the eatly stages of infection (1-3 dpi) [264]. Therefore, they suppose additional
sources of environmental contamination and viral transmission [265]. Infected carcasses may contribute
to the interspecies transmission of HPAIVs by predation, as evidenced by the death of different birds

of prey [266] and mammalian carnivores [267-269].

1.4. PATHOBIOLOGY

The outcome after AIV infection in birds is the consequence of the gene constellation of the virus and
the susceptibility of the host. It ranges from lack of infection, to asymptomatic infection, to mild disease
involving decrease in activity and respiratory and reproductive signs, to severe, systemic disease with
mortalities that can reach the 100% [270]. Other vatiables such as dose [271] and route of infection [272],
previous exposure to homologous or heterologous subtypes of AIVs [273] and other viral agents [274],
and concomitant infections [275-277], have also been demonstrated to influence largely the infection

outcome, demonstrating the complex pathobiology of AIVs.
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1.4.1. PATHOGENESIS

In gallinaceous species, the chains of events that occur after AIV infection are well described. LPAIVs
replicate mainly in the nasal epithelium, with further spread to the epithelial cells in other parts of the
respiratory tract and into the intestinal tract [278-280]. Some LLPAIVs can spread systemically and infect
epithelial cells of kidney and oviduct [280]. Rarely, LPAIVs have been detected in the pancreatic acinar
epithelium, hepatocytes, lymphoid organs, skeletal muscles and bone marrow [281,282]. In Anseriformes
species, LPAIVs replicates mainly in the epithelial cells of the intestinal tract and in Bursa of Fabricius
[279], but replication in respiratory organs, including lung and air sacs, has also been detected [283, 284].
Less information is recorded in other taxonomic groups of birds, but in general terms the replication of

LPAIVs seems to be mostly restricted to the respiratory and intestinal tracts [270].

Similar to LPAIVs, HPAIVs in gallinaceous species replicate first in the epithelial cells of the nasal cavity
but within 24 hours, the virus can be already detected in capillary endothelium and inflammatory cells,
including heterophils and macrophages. The replication of HPAIVs in these cells precedes the virus
spread through the vascular (viremia) and lymphatic systems, which allows their dissemination into
numerous organs. HPAIVs can be detected at 24 hours post-infection (hpi) in a large variety of cells in
different organs, including parenchymal, endothelial and inflammatory cells, and the peak of viral titers
can be reached as soon as 48 hpi. The organs most commonly affected are brain, pancreas, heart, adrenal
gland, kidney and lung, but large differences are present among strains and species [270]. In non-
gallinaceous species, the different stages of HPAIV infection other than those of Gs/GD HS5 lineage
have been comparatively less studied. In some studies, HPAIVs were not reisolated from internal
organs in the inoculated birds [285]. However, other HPAIVs have been recovered from several organs
in different species, including ducks, demonstrating the potential capacity of classical lineages of

HPAIVs to disseminate systemically in other taxonomic groups of birds [193, 279, 286].

The HPAIVs belonging to Gs/GD H5 lineage have acquited unusual pathological charactetistics,
including increased infectivity and tissue tropism in a huge range of domestic, captive and wild avian
species. In gallinaceous species, the pathogenesis is similar to that reported for other lineages of
HPAIVs, with high virus replication detected in vascular endothelial cells and inflammatory cells early
after infection and later on in parenchymal cells of visceral organs, brain and skin [270]. In non-
galliformes species, the infection process varies largely depending on the species and the viral strain, but
in general terms four situations may occur: 1) lack of evident virus replication; 2) virus replicates but at

low titers and is locally restricted; 3) high viral replication is detected in two to three vital organs (usually
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involving brain); and 4) systemic infection with high viral titers in numerous organs [270, 287]. Since
Gs/GD H5 HPAIVs have continually evolved into different clades and genetic groups, the
pathogenesis can diverge greatly within the same species. For example, eatly Gs/GD H5N1 HPAIVs
isolates replicated to a very limited extent in ducks [288], whereas strains isolated from 2002 onwards

acquired the capacity to produce a systemic infection in this species [289].

Despite the wide variation in the pathogenesis of AIVs depending on the viral pathotype and the species
and current gaps in knowledge, the damage caused by AIVs has been associated with three
pathophysiological mechanisms: direct replication of the virus in cells, indirect effects from

production of innate immune response mediators, and endothelial cell dysfunction [270].

Necrosis and apoptosis play a main pathogenic role in AIV infections. The importance of necrosis
and apoptosis is demonstrated by the correlation of high levels of ATV antigen/RNA in tissues and
compatible cellular, histological and biochemical alterations of necrosis and apoptosis in affected organs
290, 291]. High levels of cell death in critical organs can disturb the maintenance of organ function and
lead to single or multi-organ failure. However, the molecular bases of cell death during AIV infection in
birds remain pootly understood. For apoptosis, activation of Fas-/Fasl-mediated apoptosis pathway
[292] and acceleration of extracellular Ca2+ influx that leads to mitochondtial dysfunction [293] have been
proposed. Alternatively, some data suggests that apoptosis could play a protective role during AIV
infections. Ducks infected with Gs/GD H5N1 HPAIV induced a rapid apoptosis of infected cells in
compatison with chickens, with associated lower viral titers in tissues [294]. This limited eatly replication

may have an important effect in the their reduced susceptibility to HPAIVs.

The role of vascular dysfunction as a pathogenic factor of HPAIVs infections is known so far, but is
species-specific [295]. Chicken endothelial cells are particulatly susceptible to HPAIVs. In this species,
the high endothelial cell tropism of HPAIVs produces an increase in vascular permeability,
thermoregulation impariment, profuse recruitment of inflammatory cells and coagulopathies. These is
associated to edema, hemorrhages and micro-thrombosis that ultimately leads to ischemia in tissues and
multiple organ failure [296-299]. In other gallinaceous species, the endothelial cell tropism of HPAIVs
appears to be less intense [295]. AIV antigen is not usually detected in the endothelial cells of waterbirds
infected with HPAIVs. Sporadic infection of endothelial cells has been recorded in mute swans,
whopper swans, tufted ducks, wood ducks, call ducks, commercial ducks, Canada geese and laughing
gulls, but the detection is restricted to few birds and/ot low propottion of endothelial cells [295, 300],

indicating that HPAIVs also present a limited tropism for the endothelial cells in watetbirds species. It
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has also been demonstrated 7 2 that duck endothelial cells are much less susceptible to HPAIVSs than
chicken endothelial cells [301]. The exception are black swans, where infection with Gs/GD H5N1

HPAIV has been associated with widespread detection in endothelial cells [302].

Another mechanism of pathogenicity in AIV infections is the immune-mediated damage. AIVs
infection triggers the production of antiviral proteins, chemokines and pro-inflammatory cytokines in
an attempt of the host to limit the viral replication. Whereas a proper innate immune response is key to
limit viral spread, an aberrant immune response can result in immunopathologies [303]. The replication
of HPAIVs in chickens is usually associated with the dysregulation of inflammatory responses and
exacerbated production of cellular mediators such as pro-inflammatory cytokines (hypercytokinemia)
[304-307], which can lead to capillary leakage and tissue damage [308]. In ducks, the tolerance to most
HPAIVs have been associated with either a mild inflamatory response [309] or an early inflammatory
response and robust production of type I interferon and other antiviral genes [310], but this species
appear to limit the duration of the pro-inflammatory cytokine expression [311]. Therefore, early innate
immune responses appear to play a major role in the differences in susceptibility between chickens and
waterfowl species. Interestingly, some Gs/GD H5 HPAIVs acquired the capacity to overcome and
destroy eatly host immune tresponses ot induce a sustained and/or excessive exptession of pro-
inflammatory cytokines in ducks, which lead to increased disease severity [309, 312, 313]. In pigeons, the
reduced pathogenicity caused by HPAIVs is also accompanied by a moderate host cytokine expression
of the host [314].

1.4.2. CLINICAL PRESENTATION

The limited tropism of LPAIVs in gallinaceous species generally results in the absence of clinical signs
in infected birds [315, 316]. If present, the signs are mild and non-specific, including ruffled feathers,
decreased activity, decreased feed and water consumption that lead to mild weight loss, upper
respiratory signs, including coughing, sneezing, rales and excessive ocular discharge, and diarrhea [317,
318]. In hens, drop in both production and quality of eggs (misshapen, fragile and lack of pigment) have
been also documented [319]. The morbidity caused by LPAIVs can be high (>50%0). However, mortality
rates are generally low (<5%). Mortalities can be considerably higher in juvenile birds, in case of

concomitant infections, or in unfavorable environmental conditions (e.g. excess ammonia, improper
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room temperature) [320]. The susceptibility varies between species; turkeys generally present higher

mortalities than chickens [193, 315].

In waterbirds, LPAIVs infections are asymptomatic [283, 284, 315]. However, some studies indicate that
LPAIVs infection may have detrimental effects on these species. Mallards may exhibit a transient
decrease in body weight and egg production [284, 321], whereas swans can present a delayed migratory
timing as a consequence of an impaired digestive system that increment the rate of stop-overs [322].
Pekin ducks inoculated with particular LPAIVs presented mild conjunctivits and nasal discharge [315],
and slight weakness and loss of appetite have been reported in goslings [323]. In ratites, LPAIVs causes
tespiratory signs such as ocular and/or nasal dischatge, and in particular cases, diarthoea may be
observed [270]. In Columbiformes, LPAIVs cause subclinical infections [316, 324, 325, whereas clinical

signs in passetiformes [326] and psittaciformes have been sporadically reported [327].

HPAIVs generally cause high morbidities and mortalities (up to 100%) in gallinaceous birds, but the
MDT varies depending on the viral strain and the species. In HPAIV that present a strong replication
in endothelial cells, the presentation can be peracute (1-2 dpi) and the birds are found dead without prior
clinical signs or only few birds exhibit apathy or prostration [193,317,328,329]. HPAIV' can also cause an
acute or subacute presentation (3 to 10 days) associated with the replication of the viruses in
parenchymal cells in different organs. In this stage, the birds can present a broad variety of clinical signs;
however, none of them is pathognomonic. Infected birds ususally exhibit lower activity that progresses
to severe apathy and prostration, and decrease in feed and water consumption leading to weight loss
and dehydration. Several birds may also present evident nervous signs, such as tremors of head and
neck, torticollis, opisthotonus, nystagmus, repetitive movements (e.g. rolling, circling, pedaling), ataxia,
patesis and/or paralysis. Diarthoea may also be present, but respitatoty signs ate generally less frequent
than in LPAIV infections. In hens, the birds stop the production of eggs or they present severe
deformations [317, 329-333]. Similar as in other lineages of HPAIVS, those belonging to Gs/GD H5
lineage cause high morbidities and mortalities in chickens and other gallinaceous species. However,
marked differences are found among clades and subtypes: eatly Gs/GD H5N1 HPAIVs generally
caused death in chickens in a short period of time and in some cases without previous evident signs of
disease [297), whereas several Gs/GD clade 2.3.4.4 H5Nx HPAIVs reassortants have caused

compatatively lower mortalities and/or extended MDT' [334-338].

HPAIVs produce no or mild clinical signs in ducks and geese, such as transient decrease in activity and
body weight [193, 279, 285, 286, 330, 331, 339-343]. Neither morbiditity nor motablity have been recorded in
gulls [344]. However, particular H7 HPAIVs subtypes have caused severe clinical signs, including apathy,
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diarthea and netvous signs (citcling, rolling, incoordination, steady gait and/or opisthotonus), in
domestic ducks. The mortalities range from 20 to 80 % depending on the virus and route of inoculation
329, 345, 346], demonstrating the potential virulence of classical lineages of HPAIV's for other taxonomics
groups of birds. HPAIVs can also cause severe disease and mortality in ostriches, being severe apathy
and nervous signs the most common signs [270]. Pigeons rarely show clinical signs after HPAIV
expetrimental infection, and in case of mortalities it is limited to a small percentage out of the total
inoculated [333, 341, 347-351]. HPAIVs of Gs/GD lineage have generally acquired a higher virulence for
non-galliformes species in comparison with classical strains. After experimental inoculation, the
infection ranges from assymptomatic to severe associated to high mortalities, largely varying on the
species and the isolate. Moreover, there are large differences in the severity of infection even within the
same species. In susceptible birds, severe clinical signs, generally involving severe apathy and progressive
neurologic disorders, may be observed prior to death. This group includes domestic and wild waterbirds
such as geese [288, 302, 352-361], ducks [289, 336, 357, 362-369] and storks [370], emus and ostriches [355, 371],
birds of prey [363, 372], songbirds [373-375] and columbiformes [375-379], among others. The MDT in
these species is generally longer than in galliforms, but it can be similar (3 to 7 dpi). In other cases,
infection may also result in mild or lack of evident signs of disease. The most evident examples of this
group include domestic and wild ducks [200, 201, 288, 334-336, 355, 362, 366, 368, 380-387], pigeons [354, 355,

388-392] and to a lesser extent, geese [367, 393].

Alltogether, existing literature evidences the complex pathobiology of HPAIVs and the vatiety in clinical
presentation among avian hosts, even between closely related isolates and species. In Table 3 to 5 are
summarized the clinico-pathological outcomes after intranasal inoculation with classical lineages of
HPAIVs and Gs/GD 2.3.4.4 H5 HPAIVs in chickens (Table 2), domestic geese (Table 3), and pigeons
(Table 4).
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. . N . AIV Transmission Ref

A Virus Breed (age in weeks) Mortality in % (dose) MDT/range/last death in days antigen ¥/N)

Classical HPAIVs

A/turkey/England/50-92/91 (H5N1) SPE WL (6) 80 (1042, 100 (1053), 80 (10°9 3.5 (102,26 (1053, 3.5 (1053 CNS! nd [394]
SPF light breed (3) 100 (107 nd Systemic nd [279]
SPE WL (6) 100 (1073 1-5 Systemic nd [395]
A/chicken/Scotland/59 (H5N1) SPF WL (2) 50 (10°9 4.6 nd nd [331]
A/chicken/Pennsylvania/1370/83 (H5N2) SPF WL (2) 90 (1062) 52 nd nd [331]
WL (5to 6) 100 (104, 100 (10°) 5-9 (104, 47 (109 nd Y [390]
Laying hens (>6 months) 100 (10, 100 (10°) 47 (104, by 4 (107 Systemic Y [390]
SPE WL (6) 100 (109 6.2/74 (teplicates) nd Y [259]
A/chicken/Pennsylvania/SERPL-PA/83 (H5N2) na (1-3d) 100 (na) 221028 nd nd [332]
na(lto2) 100 (na) 461059 nd nd [332]
na(3to4) 83 to 100 (na) 711086 nd nd [332]
na (5) 50 to 67 (na) 8t085 nd nd [332]
na (Adule) 92 (na) 6.5 nd nd [332]
A/chicken/Taiwan/0502/2012 (H5N2) na (4) 100 (109) By 4 Systemic nd [285]
A/chicken/Queretaro/114588-19/95 (H5N2) na (4) 100 (na) 2.8t04.9 nd nd [397]
SPEF WL (3 to 4) 100 (107 nd Systemic nd [398]
A/tern /South Africa/61 (H5N3) SPFWL (2) 100 (1053 53 nd nd [331]
SPE WL (6) 80 (1042, 80 (10°2), 80 (109 4 (104,35 (1053, 3.25 (109 CNS! nd [394]
A/chicken/Chile/184240-1/02 (H5N3) WL 4) 100 (109 23 Systemic nd [328]
A/wtkey/Ireland /1378 /83 (H5N8) SPEFWL (2) 90 (10%9) 43 nd nd [331]
A/duck/Ireland /113/84 (H5N8) SPEFWL (2) 100 (1052 2.7 nd nd [331]
SPF light breed (3) 100 (1079) nd Systemic nd [279]
A/wrkey/Ontario/7732/66 (H5N9) SPEWL (2) 20 (10%9) 5 nd nd [331]
na (6) 50 (109), 50 (109), 100 (105), 100 (109) 5.5 (109),6 (103, 5.8 (105, 5.5 (109) nd nd [333]
A/chicken/Italy/13474/99 (H7N1) Broiler A (7-10) 100 (103+02) 27 nd nd [399]
Broiler B (7-10) 27 (1034025 48 nd nd [399]
Broiler C (7-10) 90 (10502 26 nd nd [399]
WL D (7-10) 100 (103+02) 36 nd nd [399]
NHE (7-10) 05 (105102 27 nd nd [399]

30



A/chicken/Ttaly/5093/99 (HTN1)
A/fowl/Germany/34 (HTN1)
A/chicken/Jalisco/ CPA-37905/2015 (H7N3)
A/chicken/Jalisco/CPA1/2012 (H7N3)

A/fowl/Victoria/75 (H7N7)
A/chicken/Victotia/76 (H7N7)
A/chicken/Victoria/1/85 (H7N7)

A/chicken/Nethetlands/621557/03 (H7N7)
A/turkey/Indiana/16-001403-1/2016 (H7N8)
A/chicken/Tennessee/17-007147-2/2017 (H7N9)
A/Chicken/Heyuan/16876/2016 (H7N9)
A/Chicken/Huizhou/HZ-3/2016 (H7N9)
A/Chicken/Guangdong/SD008/2017 (H7N9)

A/chicken/China/0603/2008 (H5NT)

A/peregrine falcon/Hong Kong/810/2009 (H5N1)
DK/ECL0230/10 (HH5N2)

DK/EC/10131/14 (H5N2)

A/northern pintail/Washington,/40964,/2014 (H5N2)
A/turkey/Minnesota/12582/2015 (H5N2)

A/turkey/South Dakota/12511/2015 (H5N2)

SPF (15d)

na (2)

SPFWL (3)

SPF White Rock (10)
SPF WL (5)

na(2)

Broilers (6)

SPF WL (6)

SPF WL (6)
Broilers (6)
Broilers (14)

SPF (6to 8)

SPF light breed (3)
SPF WL (6)

SPF WL (3)

SPF WL (4)

SPF (6)

SPF (6)

SPF (6)

Gs/GD clade 2.3.4.4 H5SNx HPAIVs

SPF (6)

na (4)

SPF (6)
SPF (6)
SPF WL (4)
SPEF WL (4)
Broiler (5)
Broiler (8)
B.Breeder (>30)
SPEF WL (4)
SPF WL (4)

0 (1019, 0 (10%9), 75 (1059
100 (na)

100 (109)

100 (109)

100 (109)

100 (na)

100 (na)

60 (103), 80 (10%), 100 (105)
100 (109)

100 (na)

100 (na)

100 (na)

100 (1067)

100 (109

0 (107, 80 (10%), 94 (109

60 (102), 100 (104), 100 (106),

100 (109)
100 (109)
100 (109)

100 (109)

100 (109)

100 (109)

100 (109)

0 (10%), 0 (104, 60 (109)

0 (10%), 60 (10%), 100 (106)
0 (10%), 0 (104, 100 (109)
0 (10%), 0 (104, 100 (109)
0 (10%), 0 (104, 100 (109)
0 (10%), 60 (10, 100 (106)
0 (10%), 80 (10%), 100 (106)

4.8 (10»)

19

32

nd

nd

7.2

By7
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A/chicken/Iowa/13388/2015 (H5N2)
A/tutkey/Arkansas/7791/2015 (H5N2)
A/goose/Eastern China/ 1106/2016 (H5N2)
A/duck/Eastern China/YD1516/2016 (H5N2)
GS/EC/S0513/13 (H5N6)

DK/EC/S0711/14 (H5NG6)
A/duck/Laos/XBY004/2014 (H5N6)
A/duck/Guangzhou/018/2014 (H5N6)
A/duck/Guangzhou/021/2014 (H5N6)
A/duck/Quang Ngai/AI334/2014 (H5NG6)
A/ otiental magpie-robin/Guangdong/SW8/2014 (H5N6)

A/common moorhen/Guangdong/GZ174/2014 (H5N6)
A/Pallas’s sandgrouse/Guangdong/ZH?283/2015 (H5N6)

A/chicken/Japan/AQ-HE144/2015 (H5NG)
A/Goose/Guangdong/GS144/2015 (H5N6)
A/Goose/Guangdong/GS148/2016 (H5N6)
A/Goose/Guangdong/QY01/2016(H5NG)
A/Environment/Korea/W541/2016 (H5N6)
A/Waterfowl/Korea/S57/2016 (H5NG6)
A/duck/Korea/ES2/2016 (H5NG6)

A/Chicken/Guangdong/CK46,/2016 (H5NG)
A/Goose/Guangdong/GS74/2016 (H5NG)
A/chicken/Anhui/MZ33/2016 (H5N6)
A/chicken/Anhui/MZ34/2016 (H5N6)
A/chicken/Henan/YB0597/2016 (H5NG6)
A/chicken/Niigata/1-1T /2016 (H5NG6)
A/muscovy duck/Aomoti/1-3T /2016 (H5N6)
A/duck/Hyogo/1/2016 (H5NG6)

SPF WL (4)
SPF WL (4)
SPF (5)
SPF (5)
SPF (6)
SPF (6)
SPF (5)
SPF WL (6)
SPF WL (6)
SPEF WL (4)
SPEF WL (6)
SPF (6)
SPEF WL (6)
SPF WL (6)
SPF (6)
SPF WL (4)
SPF WL (5)
SPF WL (5)
SPF (6)
SPEF WL (5)
WL (3
SPF WL (na)
Broiler (na)
KNC (na)
SPF WL (4)
SPF WL (4)
SPF (4)
SPF (4)
SPF (4)
SPEF WL (4)
SPEF WL (4)
SPEF WL (4)

20 (109, 60 (104, 100 (109)
0 (10%), 0 (104, 89 (109)

10 (10%), 100 (109)

10 (10%), 100 (109)

100 (109)

100 (109)

100 (109)

100

100

0 (10%), 40 (10%), 100 (106)
100 (109)

100 (109)

100 (109)

100 (109)

100 (109)

0 (10%), 0 (104, 100 (109)
100 (109

0 (109

100 (109)

100 (106)

100 (109)

0 (10%), 75 (10%), 100 (105), 100 (106)
0 (10%), 60 (10%), 100 (105), 100 (106)
40 (109, 80 (105), 100 (105), 100 (107)
100 (109)

100 (109),

100 (109)

100 (109)

100 (109)

0 (107), 80 (101, 100 (106)
0 (10%), 0 (10, 80 (109)

0 (10%), 0 (104, 100 (109)

2 (109,23 (104, 2.4 (105
21

3 (10%),3-5 (109

6 (10%),4-7 (109

45

45

1.75

By 6

By 7

3 (10%,3.2 (109

25

4

22

22

33

2 (109

3.63

By 4

By2

By5
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A/chicken/Gifu/1-1T /2017 (H5N6)

A/ chicken/Kumamoto/1-2C/2016 (H5N6)
A/mute swan/Kyoto/1T /2016 (H5N6)
A/chicken/Miyazaki/2-2C/2017 (H5N6)
A/black swan/Akita/1/2016 (H5NG6)

A/AP /Korea/W612/2017 (H5NG)
A/chicken/Kagawa/1T-1/2018 (H5NG)
A/Northern Goshawk/Tokyo/1301B003T /2018 (H5N6)
A/Jungle crow/Hyogo/2803E023C/2018 (H5NG6)
A/Watetfowl/S005/Korea/2014 (H5NS8)
A/breeder duck/ kotea/Gochang1/2014 (H5NS)
A/broiler duck/ korea/Buan2/2014 (H5N8)

GS/EC/L1204 (H5NS)

DK/EC/S1109/14 (H5NS)

A/ gytfalcon/Washington/40188-6/2014 (H5NS8)
A/Baikal teal/Korea/K14-E016/2014 (H5NS)

A/chicken/Kumamoto/1-7/2014 (H5N8)

A/ chicken/Miyazaki/7/2014 (H5N8)

A/duck/Chiba/26-372-48/2014 (HI5N8)
A/Common Teal/Kotea/W555/2017 (FISNS)

SPF WL (4)

SPF WL (4)

SPEF WL (4)

SPEF WL (4)

na (7)

SPF (na)

SPEF WL L-M-6 strain (4)
SPF WL L-M-6 strain (4)
SPF WL L-M-6 strain (4)
WL (3)

SPF (5)

SPF (5)

SPF WL

KNC

SPF (6)

SPF (6)

SPEF WL (4)

Layers (3)

KNC (10)

WL (5)

WL (10)

na (4)

SPF WL (4)

SPF WL (4)

SPF WL (5)

0 (10%), 0 (104, 100 (109)

0 (10%), 0 (104, 100 (109)

0 (10%), 100 (104, 100 (109)

0 (10%), 20 (10%), 100 (106)

100 (109)

100 (109)

0 (10%), 0 (104, 80 (109), 100 (106)

0 (10%), 20 (10%), 100 (105), 100 (106)
0 (10%), 20 (10%), 40 (109), 100 (109)
100 (109)

100 (1069)

100 (1059)

0 (1053), 0 (10%), 60 (1055, 100 (1055)
0 (1055), 40 (109), 100 (107), 100 (1089)
100 (109)

100 (109)

0 (10%), 40 (10%), 100 (106)

100 (109)

60 (109)

0 (10%), 0 (104, 100 (109)

0 (10%), 0 (104, 100 (109)

75 (109)

0 (107, 25 (10%), 75 (109, 100 (109), 100
(107

0 (10%), 100 (104, 100 (109), 100 (109), 100

107
100 (109)

2 (109

2 (109

34 (104,22 (109

2 (104,22 (109

3

By 4

By 4 (10°), by 3 (109

3 (10%, by 5 (109, by 3 (109
5 (10%, 4.5 (10°), by 4 (109
By 4

25

45

4.6 (10,32 (1099

8 (10%), 5 (1073, 4.4 (1089
45

45
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Table 3. Clinico-pathological outcome after intranasal inoculation of selected HPAIVs belonging to classical lineages and Gs/GD clade 2.3.4.4 H5 lineage in chickens. Y: yes; N: no; Na: not

available; nd: not determined. 'Other organs not evaluated.
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. . . MDT/range/last ~ AIV Transmission Ref
0
Virus Breed , age in weeks Morttality in % (dose) death in days antigen (Y/N)
Classical HPAIVs
A/tutkey/Ontario/7732/66 (H5N9) na (6-month, 2 years-old) 0 (109 - nd N [333]
A/chicken/Leipzig/79 (HTN7) White Chinese geese (5) 0 (1073) - nd nd [339]
A/Goose/Leipzig/137-8/1979 (H7N7) White Chinese geese (5) 0.(107) - nd nd [339]
A/Goose/Leipzig/187-7/1979 (HTN7) White Chinese geese (5) 0.(107) - nd nd [339]
A/Goose/Leipzig/192-7/1979 (H7N7) White Chinese geese (5) 0.(107) - nd nd [339]
Gs/GD clade 2.3.4.4 H5Nx HPAIVs
A/chicken/BC/FAV-002/2015 (H5N1) Chinese geese (Adults) 22 5 Systemic Y [358]
A/Northern Pintail/Washington/40964/2014 (H5N2) ~ White Chinese geese (2) 0 (109, 0 (10, 25 (106) 8 Systemic Y [359]
A/Goose/Guangdong/QY01/2016 (H5NG6) na (3) 33 (109) 5 Systemic Y [354]
A/gytfalcon/Washington/40188-6/2014 (HI5NS) White Chinese geese (2) 0 (109, 0 (10%), 0 (106) - Systemic Y [359]
A/tutkey/Germany-MV/R2472/2014 (H5NS) Pommeranian land (Adults) 0 (106 TCIDs)) - Systemic Y [367]

Table 4. Clinico-pathological outcome after intranasal inoculation of selected HPAIVs belonging to classical lineages and Gs/GD clade 2.3.4.4 H5 lineage in domestic geese. Y: yes; N: no; na:

not available; nd: not determined.
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. . .. MDT/range/last . Transmission  Ref
Virus Breed , age in weeks Mortality in % (dose) death in days AIV antigen /N)
Classical HPAIVs

A/chicken/Penn/1370/83(H5N2) na (8-32 months) 0.(109) - nd nd [348]
A/turkey/Ontario/7732/66 (H5N9) na (6 months, 2 years) 0(109 - nd N 1333]
na (2-3 yeats) 5 (na) nd nd nd [341]

A/FPV/Rostock/34 (H7TN1) na (Adults) 0 (5% suspension of EMT") - nd nd [349]
A/Carduelis/Germany/72 (H7N1) na(Adults) 0 (1081 - nd N 350]
Racing fancy and show (adults) 9 (1021), 0 (1081) 9 nd nd [347]

A/Chicken/Australia/32972/85 (H7N7) na (8-32 months) 0.(109) - nd nd [348]
2003 outbreak strain, the Nethetlands (H7IN7) na (na) 0 (107 - - N [351]

Gs/GD clade 2.3.4.4 H5Nx HPAIVs

A/Notthern pintail/ Washington/40964/2014 (H5N2)  Rock pigeons (na) 0 (10° PFU) - nd nd [391]
A/turkey/Minnesota/9845-4/2015 (H5N2) Rock pigeons (na) 13 (105 PFU)2 7 nd nd [391]
A/Goose/Guangdong/QY01/2016 (H5NG6) na (6) 0 (109 - Systemic N [354]
A/gyrfalcon/Washington/41088-6/2014 (H5NS) Rock pigeons (ns) 0 (10° PFU) - nd nd [391]
A/baikal teal/Korea/2406/2014 (H5NS) Dormestic (1) 0 (107/ml 02 m) - Systemic (weak) N 386]
A/Mallard/Korea/KU3-2/2015 (H5NS) Domestic (ns) 0 (107/ml 0.2 ml) - Systemic (weak) N [386]
A/Speckled pigeon/South Africa/08-004B /2017 Racing (1) 0 (109, 0 (109, 0 (109 i od N [392]

(H5NS)

Table 5. Clinico-pathological outcome after intranasal inoculation of selected HPAIVs belonging to classical lineages and Gs/GD clade 2.3.4.4 H5 lineage in pigeons. Y: yes; N: no; na: not

available; nd: not determined. 'Embryo membrane tissue; Cause of death not established.
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1.4.3. GROSS AND MICROSCOPIC LESIONS

The most common gross lesions reported in LPAIV-infected gallinaceous species include congestion,
edema and occasionally hemorrhages in organs of the upper respiratory tract, including nasal cavity,
sinuses, conjunctiva and trachea. In some cases, inflammation of intestine and hemorrhages in cecal
tonsils are also observed. Egg yolk peritonitis and swollen oviducts have been reported in hens, and
rarely the kidneys may be enlarged. In case of secondary infection by bacteria, more severe lesions such
as fibrino-purulent bronchopneumonia, air sacculitis and coelomitis are described [317). Microscopic
findings consist in inflammatory lesions in respiratory tissues, including rhinitis, sinusitis and tracheitis
[418]. Salpingitis, oophoritis and interstitial nephritis can also be observed in some cases [319]. Other
microscopic lesions that may be present include lymphoid depletion (without evident signs of necrosis)
in bursa of Fabricius, thymus and spleen [317]. Infected domestic ducks and geese generally lack gross
and microscopic lesions, but conjunctivitis, sinusitis, tracheitis and pneumonia have been reported in
some cases [283, 284, 418]. Inflammatory lesions in respiratory and digestive organs can also be observed

in other taxonomic groups of birds, such as in ratites [270].

The gross lesions reported in HPAIV infections in gallinaceous species vary largely dependent of the
clinical presentation. In peracute deaths gross lesions are not generally observed, whereas if the birds
succumbed in the acute or subacute stage they are more frequent [317). The most common lesions
include edema of the face (predominantly in periorbital area, including conjunctiva and eyelid), comb,
wattles, snood, upper neck, leg shanks and feet, which may be accompanied by subcutaneous
haemotrhages (petechias and/or ecchymosis), and cyanosis of the wattles, combs and snoods, and
hyperaemia of the conjunctiva and eyelids [317, 328]. Areas compatible with necrosis and haemorrhages
of variable intensity may be observed in multiple internal organs, usually in pancreas, heart, mucosa of
proventriculus and gizzard, brain, lung, liver, kidney, pectoral muscles, cecal tonsil, Peyer’s patches and
spleen. Several birds can also present haemorrages in fat tissues such as coronary and pad fat. Other
lesions that may appear include edema, congestion and enlargement in several organs, including ptrimary
lymphoid organs [317,328,402,419]. Affected hens may also present free yolks in the coelomic cavity [317].
Similar as in the macroscopic examination, birds dying during the peracute stage generally lack
microscopic lesions. In the acute and peracute stage, the microscopic lesions are usually more evident.
Areas of necrosis and inflaimmation of variable intensity frequently associated to haemorthages and
oedema can be observed in multiple organs. Usually, the more severe microscopic lesions are detected
in the brain, heart, pancreas, skin, lungs, adrenal glands, and primary and secondary lymphoid organs,

but other otgans may also be affected dependent of the tropism of each virus [395,419,420]. In general,
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the histological finding of inflammation tend to predominate in comparison with necrosis in those birds

that survive a longer period of time [317).

Few reports have described the gross and microscopic lesions caused by classical lineages of HPAIV's
in non-gallinaceos species. Infected birds generally lack gross lesions, but mild interstitial pneumonia
and pancreatic mottling have been observed in rare ocasions [344]. In contrast, there are numerous
studies repotting the gross and microscopic lesions caused by Gs/GD H5 HPAIVs in a broad range
of avian species belonging to different taxonomic groups. Despite the broad variety of gross lesions,
they are generally similar to those reported in gallinaceous species, including the presence of necrotic
areas and hemorrhages in pancreas, gizzard, heart and central nervous system, among other organs.
However, edema and hemorrhages in head and legs are rare in non-galliformes species [360, 364, 370, 421,
422]. Microscopic necrotico-inflammatory lesions can be observed in different organs, but the main
otgans affected may vary between species [360, 364, 370, 371, 421, 422]. Particulatly, Gs/GD H5 HPAIVs
seems to have acquired a strong tropism towards the central nervous system, and non-suppurative

encephalitis associated to severe areas of necrosis has been reported in a broad range of species [365, 367,

372-374, 376, 423-420]

1.4.4. DETERMINANTS OF INFECTION

1.4.4.1. VIRAL FACTORS

The HA is the main viral determinant of species susceptibility, tissue tropism and pathogenicity in IAVs
infections. In order to initiate infection, IAVs requires the binding to SA receptors present in the surface
of host cells. Avian-adapted IAVs preferentially bind to N-acetylneuraminic acid (Neu5Ac) receptors
linked to the penultimate galactose residue of cell surface glycans in an «-2,3 configuration, whereas
mammalian-adapted IAVs presents higher affinity towards those linked to galactose in an «-2,6
configuration [427]. The type and distribution of SA in tissues vaties between species, and is considered
to determine largely the host range and tissue tropism of AIV's [428-430]. However, mutations in the HA
can affect the receptor binding of IAVs and therefore, their host tropism and virulence [431-433]. In
addition, other substructures and modifications such as sulfation, acetylation, glycosilation, fucosylation

and internal sialylation of glycans can impact the binding affinity of the HA in different hosts [434].
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The binding of IAVs to host cell receptors and the merging of the viral envelope with the endosomal
membrane require the post-translational cleavage of the HA, which is initially produced as a single
polypeptide precursor (HAO), into HA1 and HA2 subunits [435]. The MCs present in LPAIVs is only
cleavable by few extracellular host proteases such as trypsin and trypsin-like enzymes (e.g. plasmin,
blood clotting factor-like proteases) that are present in the respiratory and intestinal tract of the birds
[436]. In contrast, MBCs present in HPAIVs are susceptible to several common intracellular proteases,
including the ubiquitous proprotein-processing endoproteases furin and PC6 [437]. HA protein is then
cleaved during the assembly of virions, and are already infectious when are released from infected cells.
Therefore, HPAIVs possess the potential to replicate in a broader range of tissues. The fusion of the
viral envelope with the cellular endosomal membrane is also activated in a specific range of pH.
Particular mutations can change the acid stability of the HA, enabling fusion at a higher/lower
endosomal pH and therefore alter the pathogenicity of AIVs [438].

The reversion to a MCs abolishes the virulence of HPAIVs in chickens [439]. However, data evidences
the influence of other viral factors beyond the HA proteolytic cleavage site in the pathogenicity of AIVs.
Experimental engineering of a MBCs in a LPAIVs does not necessarily result in a virulent variant [440]
and some AIVs that lack MBCs are highly virulent to chickens [441]. In addition, AIVs that posses a
MBCs that did not cause extensive mortality in chickens have been identified [442]. Finally, the sequence
analysis of LPAIV and HPAIV isolates reveal the presence of mutations in other positions beyond the
cleavage site [443, 444] and in other gene segments [145]. Pathogenesis studies in chickens and ducks
demonstrate that PB2, PB1, PB1-F2, PA, PA-X, NP, NA, M and NS proteins are all important
determinants of adaptation, virulence, tropism and transmissibility, either by particular substitutions [445,
446] or stalks in the amino acid sequence [447-449). However, the residues involved may differ in each
species. Several experimental studies also demonstrate that the functional balance between HA and NA
proteins impacts the fitness and virulence of HPAIVs, which drives in large part the higher presence of

particular HxNx combinations in nature [450-452].

After the transduction of HA, NA and M2 proteins, they are moved into the endoplasmatic reticulum
for translational modifications, which include the addition of oligosaccharides to the consensus N-X-
S/T (whete X is any amino acid except proline) glycosilation motf [453]. N-linked glycosylation sites
(NLG) in HA and NA proteins are important modulators of the structure and function of these
proteins. Modifications in either the number or location of NLG sites in the HA protein have
demonstrated to impact the biological activity of the vitus, including host range (receptor binding),
virulence (cleavability of HAQ) and antigenicity (recognizition and neutralization by antibodies) [454-456].
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NLGs in NA protein have also been associated with interspecies transmission of IAVs; however, their

biological role has not been so extensively studied [456].

1.4.4.2. HOST FACTORS

Despite the species is the main factor determining the differential susceptibility to AIVs among hosts,
other factors have an impact in the infection outcome. Differences associated to the age of birds have
been documented, but the effect appears to be highly dependent on the species. A study found that age
is not considered a determinant factor in the susceptibility of chickens to HPAIVs, at least to the strain
tested [406]. In contrast, important differences in susceptibility to HPAIVs associated to the age of the
birds exists in ducks [457-459], geese [300] and turkeys [460]. In these species, younger birds present more
sevete clinical signs, higher mortalities and/or longer MDTS in association to higher vital titets in organs
and viral shedding.

The susceptibility to AIVs differs not only between species but also within the same host species. A
high degree of variation in susceptibility to HPAIV infection, including the Italian H7N1 HPAIV [399,
461] and the Gs/GD H5N1 [462-465], H5SNG [412] and H5NS [338, 416) HPAIVs, has been described
between breeds/lines of chickens, despite none is completely resistant. Generally, brown-feathered
chicken breeds are more resistant to AIVs than white type breeds [399, 462, 466]. In addition, there is a
generally believe that local breeds are more resistant to disease than commercial breeds [467). Whereas
local breeds have been subjected to natural selection by endemic diseases, climate conditions, availability
of nutrients and other stresses, commercial breeds have been artificially selected for high production
efficiency, which may lead to undesirable side effects [468]. Some studies indicated that local chicken
breeds present a higher natural resistance to AIV's in compatison with commercial breeds [464]; however,
other results do not support the theory of increased susceptibility to infection in high-performance

breeds [462, 465]. In ducks, the differences in susceptibility between breeds seems to be much slighter
[469, 470).

During AIVs infection, pathogen associated molecular patterns present in the vition are recognized by
host pathogen recognition receptors present in host cells, including retinoic acid-inducible gene-I (RIG-
D)-like receptors (RLRs) and toll-like receptors (TLR) [471]. This triggers the activation of innate signaling
patways, leading to the production of pro-inflammatory cytokines, antiviral proteins and chemokines

that play an important role in the innate immune response and in the further activation of adaptive
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immune responses. It has been demonstrated that the activation of RIG-I plays an important role in
the early induction of type I interferon responses and supression of virus replication [311]. Whereas ducks
[472], geese [473] and other species such as pigeons [474] present RIG-I activity, this protein is absent in
chickens. Thus, some signaling patways may be affected and contribute to their increased susceptibility
to disease [475]. Ducks induce an early and robust antibody response against AIVs after intravenous
inoculation in comparison with chickens, which correlated with lack of detection of the virus in internal
organs [476]. Ducks also appear to produce persistent cellular immune responses againsts AIVs in
compatison with chickens [477). All these factors could be important in the species-related differences

observed.

The differences in susceptibility between hosts have prompted the search of alleles in immune-
associated genes that may be associated with resistance to AIV infection. These could be useful for the
identification of new targets for selective breeding and even genetic modification [478] and for the
prediction of AIV disease outcome in infected birds [479]. Interferon-induced GTP-binding protein
Mx1 (Mx) is an antiviral protein induced by type 1 interferon that interfere in the eatly stages of viral
replication by inhibiting viral polymerases in the nucleus [480]. A single nucleotide polymorphism (SNP)
atexon 14, position 2032 of chicken Mx gene produces the amino acid substitution setine to asparagine
at position 631 (S631N) in Mx protein [481]. This position is located within the C-terminal GTPase
effector domain, and the presence of an asparagine appears to confer a higher antiviral response against
different avian infectious agents 7 i, including AIVs [482, 483]. However, other studies did not found
an evident inhibitory effect [484,485]. In addition, different groups found conflicting results regarding the
effects of that particular amino acid substitution against AIVs in chickens 7 vivo: whereas one study
indicated that this substitution conferred a higher resistance to HSN2 HPAIV infection [486], most
studies did not found significant differences [399, 461, 487]. The higher survival of chickens carrying the
B21 haplotype in the Major Histocompatibility Complex (MHC) class II after a natural outbreak of
Gs/GD H5N1 HPAIV suggested that this allele could also play a protective role, whereas MHC-B13
haplotype was associated with an increased susceptibility [488]. However, other studies could not
associate survival and polymorphisms at MHC [461]. Several studies associate genomic regions on
different chromosomes [489, 490] and expression of particular genes [491] with survivability of chickens
inoculated with HPAIV, but their exact role remains unknown. Therefore, the genetic basis for

resistance to AIVs is a complex, polygenic trait that still remains undeciphered.
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1.5. PREVENTION, DIAGNOSIS AND CONTROL

Given the wide circulation of AIVs in the wild bird population, the high transmissibility in poultry and
their long persistence in the environment in the appropiate conditions, the implementation of proper
biosecurity and hygiene measures are the first critical pillar to avoid the introduction into poultry
premises [492]. There is no a standard set of measures of mandatory compliance; instead, each country
should analyse which are the major potential sources of AIV infection taking into account their
ecological characteristics and type of poultty production. However, the following general measures have
shown to be effective in reducing the risk of infection: avoid the entry of birds of unknown sanitary
status, separate land-base poultry from domestic waterfowl, limit contact with wild birds and
peridomestic species and do not keep elements that may atract them (e.g. poultry feed), maintain strict
control over access by vehicles, people and fomites, clean and disinfect appropriately poultry houses
and equipment, dispose propetly farm waste and poultry carcasses, and in case of signs of disease

compatible wih AIV infection, report rapidly to the competent authority [493)].

The compliance and applicability of the biosecurity measures reported above varies largely between
poultry production systems [494]. In general, is more limited in small-scale commercial farms [495, 496],
backyards and in scavenging flocks [497], which intrinsically bear a higher risk for ATV introduction [498].
Household poultry are known to play an important role in the transmission and perpetuation of AIVs
[499], but small backyard flocks raising local breeds of different species and ages are still predominant in
developing countries and in most cases represent the main source of income (approximately 80 percent
of rural households raise poultry [29)). In addition, the consumption of meat and eggs originated from
poultry produced in extensive systems is prefered in certain developed countries [500], and particular
products require to keep the birds outdoor at some point (e.g. during breeding stage in the production
of foie gras) [501]. Therefore, there is a need to recognize risk factors and manage the biosecurity
measures in these systems. Biosecurity measures should also be implemented in LBM. These include
the separation of different poultry species, proper cleaning and disinfection protocols and conduct
regular market closures [502]. In all cases, thete is a need to educate and train the farmers, owners and/or

animal handlers to early detect clinical signs compatible with AIV infection.

A proper surveillance is the second key pillar of the control of AIVs. Surveillance programs are useful
to evaluate the circulation of AIVs in the wild bird population and to rapidly detect their introduction
into poultry; however, the exact protocols can vary between countries. In European Union, a risk-based

surveillance or based on a representative sampling coupled to serological diagnosis are the common
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approaches to evaluate the circulation of AIVs in poultry holdings (including waterfowl flocks) [503]. In
case of positive samples, futher sampling is required for testing by virological methods. In general, the
serological approach is less useful in case of HPAIV infection since most poultty species usually die in
a short period of time and before producing detectable antibodies. Because of that, active surveillance
is complemented by a passive surveillance through notification of compatible clinical signs/mortality in
the flock. In these cases, oral swabs (OS), cloacal swabs (CS) and tissues are collected for virological
testing [503].. Given the central role of .LBMs in the epidemiology of Al in numerous countries, these
markets have also been targeted by surveillance programms. Generally, OS and CS ate collected from
domestic species along with environmental samples (e.g. swabs from poultry cages, feed and water tray),

which are then tested by different laboratory assays in order to evaluate the presence of the virus [504].

The sutveillance in wild birds have been intensified since the intercontinental spread of Gs/GD H5N1
HPAIV in 2005 [505, 506]. In the European Union, the strategy consists in targetting those species that
are at a higher risk of becoming infected, named “target species”. These include in particular migratory
waterbirds [503]. Areas near to waterbodies should be also particulatly targeted, especially if they are in
proximity to poultry holdings [503]. Active surveillance in wild birds requires to trap the birds, which can
be made by different techniques (e.g. baitep traps, cannon nets, mist netting), with further collection of
both OS and CS. The collection of fresh feces has been shown to be a good alternative to CS [507).
Passive surveillance is also effective for the early detection of HPAIVs in wild birds. As in poultry, the
collection of OS, CS and tissues in wild birds found dead are recommended [508]. These samples are
used for molecular detection and/or vitus isolation. Overall, a proper surveillance in wild birds allows

the identification of asymptomatic cartiers and sentinel species [509].

There are some practical considerations that must be taken into account when obtaining samples for
surveillance in poultry and wild birds. Generally, OS and CS are placed separately. However, some
authors demonstrate that swabs obtained from poultry of the same flock or premise can be pooled with
succesful results at the same time that save costs [510]. Even though, a study conducted in broilers
reported that this practice can reduce the probability of detecting the virus in case of high-flock
prevalences [511]. In wild birds, the collection of OS and CS from the same bird in the same tube can
increase the frequency of positive samples in comparison with OS or CS alone [512]. Is important that
the correct sampling is coupled to accurate transport and storage conditions. In general, swabs should
be maintained in a buffered, salt-balanced medium with protein at approximately 4°C, and arrive to the

laboratory in few days (ideally within the 24 hours of collection) [513].
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In dead birds, the tissues of choice vary dependent of the species and nature of the isolate. For LPAIVs,
tissues are not considered optimal samples, but intestine and bursa of Fabricius, and trachea and lung
could be the recommended in waterfowl and land-based poultry, respectively [514]. Given the systemic
dissemination of HPAIVs, numerous tissues are suitable for their detection, including brain, lung, air
sac, pancreas, liver, spleen and kidney. However, tissues should not be pooled with swabs or tissues

from other birds. Tissues should be maintained in refrigeration until the arrival at the laboratory [514].

Since infected birds may lack signs of disease and if present they are not pathognomonic, accurate
laboratory methods are always needed to detect the causative agent. Different serological and
virological techniques have been developed and used succesfully in field surveillance and clinical
diagnosis of IA Vs, but their sensitivity, specificity, cost and the time needed until the obtention of results
largely varies between them (Table 6).

Assay Target Sensitivity ~ Specificity Cost Time
Virus isolation Infectious virus Veryhigh ~ Moderate High 1-2 weeks
Antigen detection ~ TAV protein Low High Moderate 15 minutes
Immunoassays
Real-ime RT-PCR ITAV RNA Veryhigh  Very high Moderate 3 houts
AGID 1. IAV NP and M proteins Moderate  Moderate Moderate 48 hours
2. Ab to IAV NP and M proteins
ELISA Abto IAV Moderate  Moderate Low 2-3 hours
HA inhibition 1. HA subtyping High Moderate -high  Moderate -high 2 hours
2. Ab to particular HA subtypes
NA inhibition 1. NA subtyping Moderate ~ Moderate -high  Moderate 3 hours

2. Ab to particular NA subtypes

Table 6. Characteristics of common IAV laboratory assays. Table obtained from reference [514].

The serological techniques most used to detect antibodies againsts AIVs include HA inhibition and NA
inhibition tests, agar gel immunodiffusion, virus neutralization, complement fixation, enzyme and
enzyme-linked immunoassays (ELISA) and indirect immunofluorescence [515]. For the direct detection
of the virus, the isolation in embryonated chicken eggs remains as the gold standard due to its high
sensitivity and the capacity to obtain more volume of vitus for future laboratory analyzes. Therefore, it
is still used for the diagnosis of the index case during a possible AIV outbreak [516]. Isolation is usually
followed by other classic techniques that allow the detection of the virus, including agar gel
immunodiffusion, haemagglutination assay and virus neutralization tests. The HA and NA of the AIV
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are futher subtyped by HI and NI tests, respectively, using a battery of hyperimmune sera. Then, the

virulence of the virus can be tested by an 7 v pathogenicity test [517].

The techniques included in the classical pathway are time-consuming and require high level of
biosecurity, which is contributing to their gradual replacement by molecular techniques that directly
target the genome of IAVs. Genetic detection techniques are considerably faster than classical methods
while maintaining high sensitivity. These techniques, particulatly reverse-transcriptase PCR (RT-PCR)
and real-time RT-PCR (quantitative RT-PCR), have been implemented with succesful results for rapid
diagnosis in clinical samples and for large-scale surveillance [518]. The first step is the detection of IAV
RNA using universal primers that target highly conserved regions in their genome, generally within NP
or M segments [519, 520]. Positive samples can be further subtyped by means of HA- and N A-specific
primers, usually towards H5 and H7 subtypes in clinical samples [521, 522]. In addition, quantitative RT-
PCR detects the fluorescence at a dose-dependent manner, allowing to quantify the viral loads in the
sample [523]. Primers sets that enables the detection and sequencing of the proteolytic cleavage site of
HA have also been developed [524], which are useful to rapidly assess the pathotype of the isolate without

an i vivo pathogenicity test.

Other genetic detection techniques, including loop-mediated isothermal amplification (LAMP) [525,526],
nucleic acid sequence-based amplification (NASBA) [527, 528] and next-generation sequencing (NGS)
[529], have also been useful and despite are still not widely used at the present time, they are contributing
more and more to the diagnosis, subtyping and charactetization of AIVs. There have been also recent
developments in several antigen-capture immunoassays techniques. Antigen-capture ELISAs [530, 531]
and immunochromatography protocols [532, 533] that allow the rapid detection of conserved epitopes
in the NP of all IAVs or target particular HA subtypes have been described. However, they are often
used as screening tests since they present low sensitivity in compatison to other techniques [516].
Detection of the virus (either proteins or RNA) in tissues by immunohistochemistry (IHC),
immunofluorescense and in situ hibridization are not generally applied as primary diagnostic techniques,

but instead have been widely used to study the pathogenesis of AIV's [400, 421, 534].

Once AlVs ate detected in a poultry flock, different control measures are applied to avoid secondary
transmission and eradicate the virus. General requirements include the culling of all birds within the
farm, proper destruction of all potentially contaminated material and poultry waste, cleaning and
disinfection of farm installations, control on movements between farms and maintain a strict quarantine
before restocking, Protection (3 kms) and surveillance (10 kms) zones around the infected holding are

also established. Within these zones, reinforced eradication and control measures are applied [535, 536].
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In developed countries, the traditional stamping out and movement regulation policies have been
successful, resolving most AIV outbreaks in a period of few months to a year. If the virus become
widespread or in countries facing an endemic status, poultry can be vaccinated in order to minimize the
need for culling. However, suboptimal vaccination strategies and high vaccine pressure from broad
and/or long-term vaccination of poultry appears to facilitate the genetic and antigenic evolution of ATVs
[537-539]. In Egypt, the mass vaccination of all commercial flocks and backyard poultry is thought to
have played an important role in the emergence of the subclades 2.2.1.1 and 2.2.1.2 of Gs/GD H5
lineage of HPAIVs [540]. Moreover, vaccines may protect against clinical disease but not against virus
transmission, enabling the silent spread of HPAIVs [127, 541]. Some vaccines may also intetrfere in the
differentiation between wild-type and vaccine strains. In general terms, the vaccination of European
poultry flocks is prohibited. However, the Directive gives the possibility to implement emergency
vaccination programs as a short-term measure [542]. In addition, birds can be preventively vaccinated if
areas or flocks at a particular high risk for virus introduction are identified. Vaccination of zoo and high
valuable birds is also contemplated [542]. Vaccination plans in poultry, either preventive or as an
emergence, were implemented in Italy in 2000 [543] and in Portugal in 2007 [544] against LPAIVs, and
in France [545] and the Netherlands [546] in 2006 in response to the intercontinental spread of the
Gs/GD H5N1 HPAIV.

Different types of AIV vaccines with variable efficacy and security under experimental conditions have
been described. However, only inactivated vaccines and live recombinant vaccines are licensed for use
in the field. Inactivated vaccines can be monovalent (including either H5 or H7 strains) or bivalent
(including both), and may also contain neuraminidase subtypes. The use of combined vaccines with

other antigens should be also considered in case of prolonged vaccination programs [547].
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HYPOTHESIS AND OBJECTIVES

The outcome after infection with HPAIVs in birds is highly dependent of numerous viral and host
factors. The subtype, clade and genetic group of the HPAIV and even specific mutations in viral genes
produce significant variations in the infection outcome. Since HPAIVs evolve continuously, they can
acquire unusual biological characteristics in particular avian species of different orders in the process.
Host factors, including the order, species, breed, age at infection and immune status of the bird also
influence the infection dynamics. Particulatly, a variation in susceptibility to HPAIVs between breeds
with different genetic background has been described. Moreover, there is the general believe that local
breeds are more resistant to disease as a result of the natural selection by autochthonous pathogens and

minor artificial selection towards productive-associated genes.

To date, studies comparing side by side the pathobiology of classical and Gs/GD H5 HPAIV lineages
in avian species of different taxonomic groups are lacking. Consequently, the first general objective of
the present dissertation was to systematically evaluate the differential pathobiology of two distinct
HPAIVs in a range of avian species belonging to different orders. The H7N1 isolated in 1999 in Italy
cotresponding with a classical strain of HPAIV, and the H5N8 isolated in Spain during the 2016/2017
European epidemics that cotresponds with a recent HPAIV of the Gs/GD H5 lineage were used. The
second general objective was to determine the variation in susceptibility to HPAIVs in several breeds

of chickens, geese and pigeons with different genetic background.

Specific objectives of this thesis are:

* To genetically charactetize the HSN8 HPAIV isolated in Spain duting the 2016/2017

European epidemics.

" To study the differential pathobiological features of H7N1 and H5N8 HPAIVs in a broad
range of local and commercial chicken breeds, and to discern the role of viral and host factors

in the infection outcome.

* To evaluate the pathobiology of H7N1 and H5N8 HPAIVs in backyard and commercial

domestic geese and the role of this species in the wild-domestic interface of HPAIL

* To determine the pathobiology of H7N1 and H5N8 HPAIVs in local and urban pigeons and

the role of this peridomestic and urban species as a host of HPAIVs.
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3.1. INTRODUCTION

Since its emetgence, the HA of the Gs/GD H5 lineage of HPAIVs has continually diversified into
multiple genetic clades (0-9) and subclades [48]. Particularly, the clade 2.3.4.4 has reassorted with distinct
NA subtypes of AIVs circulating in domestic and wild birds, including N2, N3, N5, N6 and N8 [60].
The H5N8 HPAILV belonging to clade 2.3.4.4 of Gs/GD lineage was first isolated in domestic poultry
in China in 2010 [64]. In 2013, reassortants of HSNS8 with LPAIVs were isolated in healthy domestic
and wild ducks [548-550]. In 2014, the virus caused several outbreaks in South Korea [551, 552] and further
spread into Japan, Russia, Europe and North America. Despite two distinct genetic groups of H5SN8
HPAIV were isolated (A and B), the intercontinental spread was caused by HSN8 A (Buan-like)
HPAIVs [66]. In 2016, a novel reassortant H5SN8 B (Gochang-like) HPAIV was simultaneously
detected in dead wild birds in UVs-Nuur Lake in the Republic of Tyva (Sibetia) [553] and in Qinghai
Lake (China) [554]. Subsequently, the virus spread again into Europe [555, 556], and also into Russia [557],
Middle East [558-560] and Aftica [561]. Between October 2016 and December 2017, HSN8 B HPAIVSs
caused unprecedented outbreaks in numerous European countties in both domestic and wild birds,
with evidence for local virus amplification [562] and gene exchange with LPAIVs [563]. Up to August
2017, this virus caused 1,112 outbreaks in domestic and 955 in wild birds in 30 European countries [71].
To date, the 2016-2017 H5N8 B HPAIV is the responsible of the largest epidemic by a HPAIV ever

reported in the continent [70].

In early 2017, the HSN8 HPAIV reached Spain. In January and February 2017, two greylag geese and
a white stork were found dead in Central (Castile and Ledn) and Northeast (Catalonia) regions of Spain,
respectively [564]. The samples were positive to H5N8 by specific gRT-PCR. Following the detection in
the white stork, the HSN8 was detected in a commercial duck farm located in the same province. The
farm presented a notorious increase in mortality and several ducks showed clinical signs typical of
HPAIV infection, including coughing and torticollis. Nine additional commercial duck farms (7 farms
epidemiologically linked with the primary focus and 2 holdings on the 3 km petimeter) and several
backyard domestic flocks (located in the same province) tested positive to HSNS HPAIV.

In order to study the genetic charactetistics of the H5N8 virus that caused the outbreaks in domestic
waterfowl in Spain in 2017, and to better elucidate its relationships with the HSN8 detected in Europe,
Asia and Aftica duting 2016/2017 epidemics, we performed whole-genome charactetization of the

isolate.
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3.2. MATERIALS AND METHODS

Virus isolation

The A/Goose/Spain/IA17CR02699/2017 (H5NB8) isolated in a tracheal swab from a backyard goose
(Anser anser var. domestions) during the 2017 epidemic in Spain was propagated in 10 days-old SPF
embryonated eggs. The allantoic fluid was harvested at 24 hpi. RNA was extracted from virus-
containing allantoic fluid using RNeasy Mini Kit (Qiagen, Valencia, CA, USA), following manufacturer’s
instructions. A one-step Tagman RT-qPCR that targets a highly conserved region of AIV M1 segment,
using the primers and probe as well as conditions of amplification previously described [521, 565], was
performed in Fast7500 equipment (Applied Biosystems, Foster City, CA, USA). High viral loads in the
sample were confirmed (Ct~21).

Whole-genome sequencing

The whole-genome sequencing was performed using an Ilumina Miseq platform. Briefly, a RNAseq
library (Ilumina, San Diego, CA, US) was constructed and checked using IabChip. A 250 Nano run of
Miseq was performed (Ilumina, San Diego, CA, US). Sample reads yielding a QC score >20 were
accepted for further filtering. Reads were mapped against a reference genome of H5N8 AIV, and a
consensus sequence for every segment was assembled using a tailor-made script. The consensus full
genome sequences corresponding to the eight segments of HSNS8 were deposited in Genbank under
accession numbers MK494920- MK494927.

Phylogenetic and molecular genetic analysis

The obtained sequences were subjected to BLAST analyses in Global Initiative on Sharing All Influenza
Data (GISAID) database [566. The closest strains updated to GISAID until the isolation of
A/Goose/Spain/TA17CR02699,/2017 (H5N8) (2017.03.02) wete annotated. Sequences available in
GISAID until 2018.12.31 were downloaded and used for multiple sequence alignment in BioEdit 7.0.
The nucleotide homologies between Spanish isolate and sequences available in databases were evaluated
by the ClustalW method in BioEdit 7.0. The phylogenetic trees for each gene of AIVs (based on the
nucleotides of the coding sequence) were constructed in MEGA X, using the Neighbor-joining
algorithm, the Tamura-Nei model and 1000 bootstrap replicates to evaluate the confidence of the

internal branches of the tree [567-570]. The presence of specific amino acids in particular positions in
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AV proteins previously associated with host tropism, transmissibility and/or virulence of HPAIVs in

mammals and avian species were evaluated using BioEdit 7.0.

3.3. RESULTS

Homology and phylogenetic analyses

The complete genome of the positive sample was fully sequenced. The size in base pairs (bp) of the
complete segments was as follows: 2337 (PB2), 2331 (PB1), 2219 (PA), 1746 (HA), 1558 (NP), 1419
(NA), 1023 (MP), 883 (INS). All genome segments of the Spanish isolate presented high nucleotide
identity (99.5-99-9%) to H5N8 HPAIVs previously isolated in Europe and Asia duting 2016/2017

(Table 7).

Genome Nucleotide Isolation
Closest strain (complete segment)

segment Id (%o) date
HA A/goose/Hungary/55128/2016 (A/H5NS) 99,8% 16.11.11
NA A/Indian Runner Duck/Czech Republic/749-17/2017 (H5NS) 99,6% 17.01.16
PB2 A/Anas platythynchos/Belgium/1899/2017 (A/H5N8) 99,8% 17.02.27
PB1 A/Anas platythynchos/Belgium/1899/2017 (A/H5N8) 99,7% 17.02.27
PA A/duck/France/161108h/2016 (A/H5N8) 99,9% 16.11.28
NP A/duck/France/161108h/2016 (A/H5NS8) 99,7% 16.11.28
MP A/ chicken/Kalmykia/2643/2016 (A/H5N8) 99,5% 16.11.21
NS A/domestic goose/Germany-BY /R677/2017 (A/H5N8) 99,5% 17.01.25

Table 7. Closest strains to H5SN8 isolated in Spain, identity (%) and isolation date.

Based on the topology of the HA gene phylogenetic tree, the Spanish H5N8 isolate clustered within the
genetic clade 2.3.4.4 group B of Gs/GD lineage, closely related with H5N8 B isolated in wild and
domestic birds in Europe, Asia and Africa in 2016, 2017 and 2018 (Figure 5A). High homogeneity
among H5N8 B 2016,/2017 European isolates was found in NA (Figure 5B), M and NS (Sup. Figure
1A-B). However, based on PB2, PB1, PA and NP tree topology (Sup. Figure 1C-F), European
isolates separated into five different clusters (named CL1, CL2, CL3, CIL4, CL5). Spanish H5N8 B fell
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in all gene segments into CL2, which includes HSN8 B HPAIVs isolated from several European
countries (France, Italy, Poland, Germany, Hungary, Croatia and Macedonia).

— Afwild duck/Poland’57/2017 HSNS HA
( A) L A/Tufted DuckSwitzerland'V'237/2016 HSNS HA
I Atufted duck/Germany’AR8459-L01988/2016 HSNS HA
[— A/Common Goldeneye/Sweden/'SVA161117KU0322/SZ0002165/2016 HA HSNS
A/L-bl-ba-gull NL-Sovon/16014324-014/2016 HSNS HA
75 || | ABuzzard NL-Durgerdam/16015100-004/2016 H5NS HA
B6 - A/Eur Wig/NL-Groningen'16015376-003/2016 HSNS HA
A/G ¢ grebe/NL-Monnickendam/16013865-009-010/2016 HSNS HA
 A'ufted duck’Denmark/17740-1/2016 HSNS HA
Aldecoy duck'France/161104¢/2016 HSNS HA
Afturkey/Rostov-on-Don'11/2017 HSNS HA
AlchickenBelgum/807/2017 HSNS HA
AfwigeonTraly/1 TVIRS7-312017 HSNS HA
i{_— Afgoose/Samara’455/2018 HSNS HA
A/Peregrine falcon Hungary/4882/2017 HSNS HA

3

Alturkey/England/052131/2016 HSNS HA
Aleurasian wigeon/Germany-NI'AR249-1.02143/2017 H5N8 HA
A'gadwall Kurgan2442/2016 HSNS HA
A'Eur Wig/NL-Zoeterwoude16015702-010/2016 HSNS HA
‘E A/Common-coot Egypt/CA285/2016 HSNS HA

Avchicken/Czech Republic206-17 22017 HSNS HA

Agrevlag goose/Germany-NI'AR1395-L02144/2017 HSNS HA
A'turkeyPoland’63/2016 HSNS HA

A'mute swan'Croatia/70/2016 HSNS HA
AlchickenRepublic of Macedonia’AR1167-L02131/2017 HSNS HA
A/DuckHungary/55764/2016 HSNS HA L 2344B
Aturkey Ttaly/17VIR973-2/2017 HSNS HA CL1-5
Alchicken/Czech Republic/55-17 1/2017 HSNS HA
AlduckFrance/161108h/2016 HSNS HA
@ A'Goose'SpainTA17CR026992017 HSNS HA
A/Buteo buteo/Belgium/3022/2017 HSNS HA
Afturkey/Poland'72/2017 HSNS HA
Aldomestic goose/Poland’'124/2017 HSNS HA
AlchickenPoland/79A/2016 HSNS HA
A'black swan/Germany-BW/R1364/2017 HSNS HA

—99|:p‘chickcn-£g_\m'(}harbiya- 15/2017 HSNS HA
Alchicken/Egypt'Buheira-12/2017 HSNS HA

] Alduck/Cameroon/17RS1661-3/2017 HSNS HA
<E Alduck/Democratic Republic of the Congo/17RS8882-33/2017 H5NS HA

Algrey-headed gull Uganda MUWRP-538/2017 HSN8 HA
Alcommon tern /Uvs-Nuur Lake/26/2016 HSNS HA
i{ Algreat crested grebe/Tyva/34/2016 HSNS HA
Algrey heron Uvs-Nuur Lake/20/2016 HSNS HA
100 | A/Chicken/Riyadh/A15/2018 HSN8 HA

L A'FalconRivadh/AI5/2017 HSNS HA
Alpainted stork/India'10CA03/2016 HSNS HA

A/Chicken'South Africa’S2017/08 0561 P1/2017 HSNS HA

Alchicken/Cameroon/17RS1661-1/2017 HSNS HA.

Alcommon teal Korea W555/2017 HSNS HA

Alturkey/Ttaly/1 TVIRS538-1/2017 HSNS HA

Algreen-winged teal Egypt'871:2016 HSNS HA

Al/domestic duck/Siberia’S0K/2016 HSNS HA .
Algyrfalcon/'Washington/41088-6/2014 HSNS HA

Abaikal teal’ Korea'1449/2014 HSNS HA

A/duck’England/36226/14 HSNS HA

Aturkey/Germany/AR3390-L00939/2014 HSNS HA

A/domestic duck'Hungary/7341/2015 HSNS HA

Alchicken'Netherlands/14015766/2014 HSN8 HA

0.0050
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73 | A'Tufted Duck/Switzerland 'V237/2016 HSNS NA
a4 Afrufted duck/Germany’/AR8459-1.01988/2016 HSNS NA
Afwild duck/Poland’57/2017 HSNS NA
94 Arufted duck'Denmark’17740-1/2016 HSNS NA
— A/L-bl-ba-gull'NL-Sovon'16014324-014/2016 HSNS NA
— A'G c grebe/NL-Monnickendam/16013865-009-010:2016 HSNS NA
95 —— A/Eur Wig'NL-Groningen'16015376-003/2016 HSNS NA
A/Buzzard' NL-Durgerdam/16015100-004/2016 HSNS NA

Aldecoy duckFrance'161104e/2016 HSNS NA
—I—A'mrlcey'Rostov—on—Don-'l1-'2017 HSNS NA

Ajgoose/Samara’455/2018 HSNS NA
l‘;ﬁckmfgypreharﬁya»li 2017 H5NS NA
A/Peregrine falcon'Hungary/4882/2017 HSNS NA

— Afgadwall Kurgan/2442/2016 HSNS NA
N A'Eur Wig/NL-Zoeterwoude/16015702-010/2016 HSNS NA

Afturkey/England/052131/2016 HSNS NA

Aleurasian wigeon'Germany-NI'AR249-1.02143/2017 HSN8 NA
AlchickenBelgium/807:2017 HSNS NA
_'—_A‘wigem-‘kal}'-‘l'f\m7-3‘2017 HSNS NA
— A‘mute swan/'Croatia’70/2016 HSN8 NA
—— AcchickenRepublic of Macedonia’AR1167-L02131/2017 HSNS NA
— ADuckHungary'55764/2016 HSNS NA
Alchicken/Czech Republic/55-17 1/2017 (H5N8) HSNS NA
Afturkey/Ttaly/1 TVIR973-2/2017 HSNS NA
Aldomestic goosePoland/124/2017 HSNS NA
A/Buteo buteo/Belgium/3022/2017 HSNS NA
AlduckFrance'161108h'2016 HSNS NA
A'turkey/Poland/72/2017 HSNS NA
Adblack swan'Germany-BW/R1364/2017 HSNS NA
AlchickenPoland/79A/2016 HSNS NA
@ A/Goose/SpainTA17CR02699:2017 HSNS NA
A/Common-coot’Egypt/CA285/2016 HSNS NA
Acchicken/Czech Republic’206-17 212017 HSNS NA
Avgrevlag goose/Germany-NI'AR1395-L02144/2017 HSN8 NA
99 ' A'turkeyPoland'63/2016 HSNS NA

AlturkeyTtaly'17VIR538-1/2017 HSNS NA

Alduck/Democratic Republic of the Congo/17RS882-33/2017 HSNS NA
7
. LE Alduck/Cameroon’17TRS1661-3/2017 HSNS NA

Algrey-headed gull'Uganda MUWRP-538/2017 HSN8 NA
| A/Chicken'Rivadh/A15/2018 HSNS NA
100 AF. alconRiyadh/AI5/2017 HSNS NA
Alchicken'Egypt/Buheira-12/2017 HSNS NA
Afgreen-winged teal Egypt’871/2016 HSNS NA

Ald ic duck/Siberia’S0K2016 HSNS NA

Alcommon teal'Korea'Ws55/2017 HSNS NA
Alchicken'Cameroon/17RS1661-1/2017 HSNS NA

Alpainted stork/India’10CA03/2016 HSNS NA

A/Chicken/South Africa’$2017/08 0561 P1/2017 HSN8 NA

A'common tern /Uvs-Nuur Lake'26/2016 HSNS NA
Algreat crested grebe/Tyva'34/2016 HSN8 NA
Algyrfalcon/Washington'41088-6/2014 HSNS NA
Al/baikal teal Korea/1449/2014 HSN8 NA

_{ Algrey heron /Uvs-Nuur Lake/20/2016 HSN8 NA

0.0050

Alchicken'Netherlands/14015766/2014 HSN8 NA
A/domestic duck/Hungary/7341/2015 HSN8 NA
Alduck/England/36226/14 HSNS NA
A/turkey/Germany/AR3390-L00939/2014 HSN§ NA

100

— A/Common Goldeneye/Sweden'SVA161117KU0322/SZ0002165/2016 HSNS NA 7
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~ CL1-5

Figure 5. Neighbor-joining phylogenetic trees of HA (A) and NA (B) gene segments. The Spanish H5NS is
highlighted with a black dot. Bootstrap values =70% (700/1000 replicates) are shown. The different genetic groups are

presented: cluster 1 (orange), cluster 2 (blue), cluster 3 (green), cluster 4 (yellow), cluster 5 (grey). Scale bar indicates nucleotide
substitution per site.
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Amino acid analyses

The mutations present in surface glycoproteins, internal and non-structural proteins of Spanish H5N8
HPAIV that are associated with a phenotype are listed in Table 7. The amino acid charactetization
revealed that the HS5NS8 Spanish isolate presents a MBCs identical to other H5N8 HPAIVs:
PLREKRRKR |GLF (| denotes cleavage site). Spanish isolate presented eight potential glycosylation
sites (H5 numbering): 10, 11, 23, 165, 193, 286, 483, 542, which can affect HA receptor-binding
specificity. The HA presented mutations associated with increased virus binding to human-like 2,6 SA
and associated with virulence and airborne transmission in mammals (Table 8). However, Spanish
H5N8 presented Q222 and G224 at the receptor-binding site (RBS), indicating that the virus mainly
retained the preferential binding to SA in an «2,3 configuration (avian-like receptors). Two mutations
associated with increased virulence in chickens were also detected. The NA presented six potential
glycosylation sites at positions 54, 67, 84, 144, 294 and 398. We detected two mutations in NA protein

associated with reduced susceptibility to oseltamivir and zanamivi.

We found numerous mutations in the RNP complex (PB2, PB1, PA, NP) associated with increased
vitulence to mammals and/or mammalian markers. However, the Spanish H5N8 did not present the
mammalian markers 627K and 701N in PB2 protein, which are commonly found in lethal human
infections. We also detected several mutations associated with increased virulence of HPAIVs in
mammals and/or inhibition of host gene expression (e.g interferon pathway) in M1, M2 and NS1
proteins. However, mutations associated with resistance to amantadine were not present in M2 protein.
Mutations related to increased pathogenicity, transmissibility and inhibition of host responses in bird

species (chickens and ducks) were also detected in PB2, PB1, PA, NP, M1 and NS1 proteins.
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Protein Mutation Phenotype (Subtype)
PB2 To31 Increased virulence in mice (H5NT) [571].
L8V Increased polymerase activity and virulence in mice (H5NT1) [572].
K123E Increased virulence in chickens (H7N7) [573]
K251R Increased virulence in mice (pH1NT) [574].
1283M Increased virulence in mice (H5NS) [575].
G309D Enhanced polymerase activity and virulence in mice (H5N1) [572)].
T339K Enhanced polymerase activity and virulence in mice (H5NT1) [572].
Q368R Enhanced polymerase activity and virulence in ferrets (H5N1) [570].
K389R Increased polymerase activity and replication in mammualian cell line (H7N9) [577).
H447Q Increased polymerase activity and virulence in ferrets (H5N1) [576].
R477G Increased polymerase activity and virulence in mice (H5NT1) [572].
1495V Increased polymerase activity and virulence in mice (H5NT1) [572].
1504V Increased polymerase activity and virulence in mice (H1NT1) [578].
V598T Increased polymerase activity and replication in mammalian cells, increased virulence in mice (H7N9) [577).
AGT6T Enhanced polymerase activity, increased virulence in mice (H5NT1) [572].
PB1 D3V Increased polymerase activity and viral replication in avian and mammalian cell lines (H5N1) [579].
L13p Increased polymerase activity, mammalian host marker (H5NT1) [153, 580].
C38Y Increased polymerase activity and virulence in chickens (H5N1) [445]
K328N Increased polymerase activity and virulence in ferrets (H5N1) [576].
S375N/T Increased polymerase activity, increased virulence in ferrets, human host marker (H5N1) [21, 576)].
H436Y Increased polymerase activity and virulence in mallards, ferrets and mice [581].
A469T Increased transmissibility in guinea pigs [582].
L1473V Increased polymerase activity and replication efficiency in mammalian cells (pHI1N1, H5NT1) [583].
D622G Increased polymerase activity and virulence in mice (H5N1) [584].
V652A Increased virulence in mice (pH1NT) [574].
M677T Increased virulence in mice (H5N1) [571].
PA S37A Increased polymerase activity in mammalian cells (H7N9) [585].
K237E Increased polymerase activity and pathogenicity in mallards (H5N1) [313].
F277S Adaptation to mammalian hosts (H10NS8) [580].
C278Q Adaptation to mammalian hosts (H10NS) [580].
N383D Increased replication and virulence in mice, increased virulence in ducks (H5N1) [587, 588].
N409S Increased polymeraste activity in mammalian cells (H7N9) [585].
A515T Increased polymerase activity and virulence in mallards (H5N1) [581].
1550L Enhanced polymerase activity and virulence in mice [578].
L653P Adaptation to mammalian hosts (H10NS8) [580].
F672L Increased transmissibility in chickens (HONZ2) [589]
HA! S107R Increased virulence in chickens and mice, increased pH of fusion (H5NT1) [438].
T108I Increased virulence in chickens and mice, increased replication (H5N1) [438, 590].
S123p Incteased virus binding to 2,6 SA (H5N1) [591].

61



STUDY 1

S133A Increased pseudovirus binding to 2,6 SA (H5N1) [592].
S154N Increased virus binding to 2,6 SA (H5N1) [455].
T156A Increased pseudovirus binding to 2,6 SA, increased transmissibility in guinea pigs and ferrets (H5SNT1) [455,
593, 594]
V182N Increased virus binding to 2,6 SA, decreased binding to 2,3 SA (H13N6) [595].
K218Q Increased virus binding to 2,6 and 2,3 SA (H5NT1) [596]
NP M105V Increased virulence in chickens (H5N1) [597, 598].
Al84K Increased replication in avian cells and virulence in chickens, up-regulation of interferon response (H5N1)
[440].
1353V Increased virulence in mice (pH1NT1) [574].
K398Q Mammal adaptation marker (HONZ2) [599].
NA? 177 Reduced susceptibility to oseltamivir and zanamivir (H5NT) [600].
1314V Reduced susceptibility to oseltamivir (H5N1) [601].
M1 N30D Increased virulence in mice (H5N1) [602].
143M Increased virulence in mice, chickens and ducks (H5NT1) [603].
T215A Increased virulence in mice (H5N1) [602].
NSs1 P3S Enhanced replication in mammalian cells and pathogenicity in mice (H7N1 backbone with HSN1 NS) [604].
R41K Enhanced replication in mammalian cells and pathogenicity in mice (H7N1 backbone with H5SN1 NS) [604].
P42S Increased virulence in mice, decreased antiviral response in mice (H5N1) [605].
K55E Enhanced replication in mammalian cells, decreased interferon response (H5N1) [606].
L103F Increased virulence in mice (H5N1), inhibition of host gene expression (HIN2) [607, 608).
1106M Increased viral replication in mammualian cells and virulence in mice (HIN1 with internal genes from H7N9,
H5NT1), inhibition of host gene expression (HIN2) [607—-609)].
P114S Inhibition of host gene expression (HIN2) [608].
G125D Inhibition of host gene expression (HIN2) [608].
C138F Increased replication in mammalian cells, decteased intetferon response (H5N1) [606).
V149A Increased virulence in mice and chickens, antagonism of IFN induction (H5N1) [610].
V1781 Enhanced virulence and promoted the vitus replication 7z zizo (H7N9) [611].

Table 8. Amino acid substitutions present in Spanish HS5NS isolate reported to change the virulence,
transmissibility and/or host tropism of HPAIVs in avian and/or mammal species. ' H5 numbering

(A/Vietnam/1203/04 (HPAT)). 2N2 numbering (A/Aichi/2/1968 (H3N2)).
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3.4. DISCUSSION

Our study demonstrates that the cause of the HPAI outbreak occurring in Catalonia, Spain, in early
2017s is a H5N8 belonging to clade 2.3.4.4 group B of Gs/GD HPAIVs. Previous reports indicated
the existence of two separately genotypes within H5SNS8 B: 1 (Sibetia) and 2 (European), generated
through reassortment of H5N8 B and LPAIVs present in Central Asian flyway [612]. Later on, Voronina
et al. [613] indicated that at least four genetic groups exist within HSN8 B based on the differential genetic
clustering. The FEuropean isolates clustered within Base Group, Mediterranean Group and a singleton,
demonstrating that more than a single genetic group existed in Europe. More profound investigations
of H5N8 B diversity in Germany, Italy, Nethetlands and Poland indicated that Europe was affected by
at least five different HSN8 B HPAIV reassortants [614-617]. Italian H5SN8 B belonging to CL.1 further
evolved into two main groups, named Italy-A and Italy-B [618]. By means of full-genome
characterization of the isolate, we also identified that European isolates fell into five different clusters
(named CL1, CI.2, CL.3, CI.4 and CL5). The different clustering would indicate that multiple incursions
and/or emetgence in Europe of distinct genetic vatiants of HSN8 B (formed by multiple reassortment
events) had occurred. During H5N8 B worldwide spread, multiple reassortants were also detected in
African and Asiatic countries, including Egypt [619], Cameroon [620] and India [621], indicating further

evolution.

The goose-isolated HSN8 B HPAIV belonging to clade 2.3.4.4 isolated in Spain clusters within CI.2,
along with H5N8 B isolated in several European countries. The phylogenetic three reveals that the
Spanish H5N8 characterized in this study is a reassortant similar to those previously reported in Poland,
Italy and Germany. The original reassortment events that lead place to HSN8 B CL2 are not completely
untaveled. However, Fusaro ¢ a/, [614] indicated that A/turkey/Italy/17VIR973-2/201, which clusters
within CL2, is a rtesult of the reassortment of three different AlVs: PB2 from
A/Environtment/Chongging/45208/15 (H5NG)-like, NP from European wild birds and the
remaining segments from A/Bar-headed goose/Qinghai/2016 (H5NS8)-like AI vituses. Using
GISAID search, we noted that the NP gene segment of Spanish isolate presented high nucleotide
identity (99%0) with LPAIVs present in Georgia in 2016 (located in the frontier between Eastern Europe
and Western Asia), suggesting a reassortment event or a common ancestor. However, only one isolate
was fully-characterized; thus, we cannot rule out the presence of more genotypes in Spain during the

outbreaks in 2017.
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The epidemiological surveys performed in the infected farms revealed that the most likely cause of
infection in the first two farms and in the backyard flocks was contact with migratory wild birds since:
1) the isolation of HSN8 HPAIV in a white stork in the same province indicate that the virus was already
circulating in wild birds, 2) the farms and the backyard flocks showed feasible contact with wild birds,
and 3) epidemiological and phylogeny information in different countries suggest that wild birds played
an important role in the spread of H5N8 B HPAIVs duting 2016/2017 epidemics [197). In the
remaining eight commercial farms, the cause of infection was associated to secondary spread from the

first two farms (rearing farms), particularly movement of infected ducks.

In Europe, 70% of the domestic outbreaks occurred in duck holdings and only 12%0 in chicken holdings
[71]. In Spain, the species affected were also domestic ducks and mixed backyard flocks and those
presented a notorious increase in the mortality with evident clinical sighs of HPAIL The higher
proportion in waterfowl indicates that particularities of the production in commercial ducks may be
associated with higher probability to H5N8 infection. The higher positivity in duck production could
also be attributed to major changes in the affinity, tropism and/or virulence of H5N8B in waterfowl
species. An experimental study indicates that European H5N8 B HPAIVs are more virulent to
domestic ducks than European H5N8 HPAIV belonging to Group A [367]. Despite the viral factors
determining the pathogenicity of H5N8 B in waterfowl is unknown, we noticed that H5SN8 B viruses
present the substitution 237E in the PA protein, which is associated with increased virus replication,
polymerase activity and PA nuclear accumulation in ducks [313]. This mutation is absent in H5N8 A
isolated duting 2014/2015 European epidemics (data not shown). Host factors may also determine the
higher incidence of waterfowl in compatison with galliformes species. Since AIVs adapted in different
species can present different receptor specificities [622], HSN8 B viruses may present higher affinity
towards influenza receptors in a particular configuration present in waterfowl but not galliformes

species. However, this hypothesis needs further study.

To date, no human cases of H5N8 have been reported, and experimental studies performed in mice
and ferrets indicate that HSN8 B present low zoonotic potential [367. Motreover, HSN8 B cases in
poultry have dramatically decreased in 2018 and 2019, reducing the potential spillover from poultry to
human population. Despite the H5N8 HPAIV isolated in Spain presented multiple mutations
associated with increased virulence and/ ot host tropism in mammal species in mostly all gene segments,
the isolate retains an avian-like specificity in key points of the viral genome. Since Gs/GD HS5 lineage
of HPAIVs continues to evolve, mainly by reassortment events, H5N8 could increase its virulence and

host-tropism in mammalian species [623].
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In Spain, most of the poultry production is intensive and has high biosecurity standards. This, together
with the reinforcement of the passive surveillance of the National Avian Influenza Surveillance Program
due to the spread of Gs/GD H5N8 HPAIV in Europe in 2016 and the rapid establishment of control
measures resulted in the prevention of H5SN8-dissemination among the Spanish tertitory. In late 2018
and early 2019, H5N8 has reemerged in Bulgaria and Iran, respectively, demonstrating the continuous
threat of HPAIVs [69). Continuous surveillance in wild bird and poultry as well as proper biosecurity
measures in backyard and commercial premises should be ensured in order to early detect HSN8 and

avoid its propagation.
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4.1. INTRODUCTION

Chickens are highly susceptible to HPAIVs; however, the severity of infection varies depending on the
viral strain. The inoculation of most HPAIVs in chickens causes evident clinical signs (e.g. apathy,
nervous signs) and gross lesions (e.g. cutaneous edema, cyanosis of the comb and wattles, haemorrhages
in skin), and chickens usually die in a period ranging from 3 to 6 dpi. However, some HPAIVSs produce
a peracute infection that kills birds in a shorter period of time (within 3 dpi) [328-332, 334, 399, 402].
Differences can be observed even in close related isolates of the same subtype, indicating that point or
few mutations in viral proteins may have a pivotal effect in their virulence [464]. In 2016,/2017, the H5SN8
HPAIV belonging to clade 2344 B of Gs/GD H5 lineage was tesponsible of the fourth
intercontinental wave of this lineage. Despite Europe has been affected by the four waves of Gs/GD
H5 lineage, the caused by HSN8 B HPAIV was the largest in magnitude (reported poultry outbreaks
and deaths), geogtaphic spread and rapidity of incidents [70, 71]. Since Gs/GD H5N8 B HPAIVs may
present altered biological properties in chickens, the evaluation of its pathobiological characteristics is

needed.

The pathogenicity of HPAIVs is also influenced by numerous host factors, including species, age at
infection and immune responses. Several reports demonstrate that a wide range of susceptibility to
HPALIV infection is present between chicken breeds/lines. Some breeds display a comparatively high
resistance, whereas other breeds are particularly susceptible [399, 461-466]. Local chicken breeds are
generally raised in small-scale farms and in backyards that allow the direct contact with wild and
synanthropic birds and their droppings. Consequently, these birds are likely more exposed to AIVs than
commercial chicken breeds, which are raised under high biosecurity standards. However, there is a
general believe that local chicken breeds are natural resistant to disease, which is associated with the
natural selection over the years by autochthonous pathogens, food availability and harmful climate [467].
This assumption is usually a result of empiric experience at the field, and the results of experimental
studies addressing the susceptibility of local chicken breeds to HPAIVs do not always support this
theory [462, 465]. To date, there is no information regarding the susceptibility of local chicken breeds
from Spain to HPAIVs.

Despite the genetic background that confers higher resistance to HPAIVs in chickens remains
unknown, it was reported that the G/A polymorphism at position 2032 in chicken Mx gene
(substitution of setine to asparagine at position 631 in the protein) conferred an antiviral effect against

AIVs n vitro [483). However, several 7 vitro and in vivo experiments have failed to demonstrate a clear
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correlation between this polymorphism and inhibition of AIVs or survival after infection, respectively

[399, 461, 484, 485, 487). Therefore, the role of Mx in AIVs infections in chickens is still under debate.

Since the pathobiology of HPAIVs in chickens is multifactorial and numerous viral and host factors
can largely influence the infection outcome, the aims of this study were to 1) evaluate the pathobiology
of a recent H5SN8 HPAIV isolated in Spain (Gs/GD lineage, clade 2.3.4.4, Group B) in compatison
with a classical H7N1 HPAIV in different local, commercial and experimental chicken lines from Spain
with diverse genetic backgrounds; and 2) determine the role of virus factors (differences in the sequence
of amino acids in viral proteins between both HPAIVs) and host factors (allele at position 2032 of

chicken Mx gene) in the infection outcome.

4.2. MATERIALS AND METHODS

Viruses

The vituses used in this study were: A /Chicken/Italy/5093/1999 (H7N1), isolated in 1999-2000 duting
an Italian epidemic that mainly affected Veneto and Lombardia regions (kindly provided by Dr. Ana
Moreno from the Instituto Zogprofilattico Sperimentale della 1ombardia e dell Emsilia Romagna), and
A/Goose/Spain/IA17CR02699/2017 (H5NS8 clade 2.3.4.4. group B), isolated in Catalonia (Northemn
Spain) duting the 2016/2017 European epizootics. Both vituses ate highly pathogenic based on the
amino acid sequences at the HAO cleavage sitee PEIPKGSRVRR|GLF (H7N1) and
PLREKRRKR | GLF (H5NS). Virus stocks were produced in 10 days-old SPF embryonated eggs. The
allantoic fluid was obtained at 24-48 hpi, filtered and aliquoted at -75°C until use. Serial ten-fold dilutions
of the filtered viruses in PBS were used for titration in 10 days-old SPIF embryonated eggs. The mean

egg lethal doses (ELDsy) were determined by Reed and Muench method [624].

H7N1 was subjected to full-genome characterization using next-generation sequencing methods.
Briefly, viral RNA was extracted from virus-containing allantoic fluid using RNeasy Mini Kit (Qiagen,
Valencia, CA, USA), following manufacturer’s instructions. The whole-genome sequencing was carried
out using an Ilumina Miseq platform. A RNAseq library (Ilumina, San Diego, CA, US) was constructed
and checked using LabChip. A 250 Nano run of Miseq was performed (Illumina, San Diego, CA, US).
Sample reads yielding a QC score >20 were accepted for further filtering. Reads were mapped against

reference genomes of H7N1 AIVs, and a consensus sequence for every segment was assembled using
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a tailor-made script. The amino acid identity and the differences in the amino acid sequence in the 8
conserved internal and non-structural viral proteins (PB2, PB1, PA, NP, M1, M2, NS1, NS2) between
H7N1 and H5N8 HPAIVs, which was already fully-sequenced in Study I, were determined. The
consensus full genome sequences corresponding to the eight segments of H7N1 and H5N8 are
available in Genbank under accession numbers: D(Q991325.2 to DQ991332.2 (H7N1) and MK494920
to MIK494927 (H5NS).

Animals and facilities

15 days-old chickens (Gadus gallus domesticns) of six different local breeds from Spain (Empordanesa,
Penedesenca, Catalana del Prat, Flor d’Ametller, Castellana negra, Euskal oiloa), a commercial breed (Ross 308
Broiler) and a commercial-experimental line (SPF White Leghorns) were used. All breeds were obtained
from local breeders. The local breeds included in this study are common in non-commercial, small-scale
flocks, usually in backyards alone or mixed with other species in different regions of Spain. For their
characteristics, these breeds are common in chicken contests, and their meat and sub-products are used
for self-consumption or sold in local markets because of their added value in the market chain. Specific

programs have been established to ensure their conservation [625)].

At arrival, the animals were individually identified and placed in negative-pressured HEPA-filtered
isolators present in Biosecurity Level 3 (BSL-3) facilities of Censre de Recerca en Sanitat Aninal (Programa de
Sanitat Animal, IRT'A). During the 5 days-acclimation period, serum samples were obtained from all
birds to ensure that they were seronegative to IAV by an ELISA competition (c-ELISA) test ID-VET,
Montpellier, France). Furthermore, OS and CS were collected from 5 random chickens of each group
and confirmed to be negative to AIV RNA by one-step qRT-PCR. During the experimental
procedures, food and water were provided ad /ibitum. The experimental design was approved by the
ethical commission of IRTA and the Government of Catalonia (Departament de Territori i Sostenibilitat,
Direccid General de Politigues Amibientals i Medi Natural) under reference code CEEA 18/2017-9457.

Experimental design and sampling
After acclimation, 15 chickens of each breed (except for Castellana negra and Broilers that consisted in
groups of 13 birds, and Euskal viola inoculated with H7N1 that was a group of 10 animals) were

intranasally challenged with H7N1 or H5SN8 HPAIV diluted in PBS in order to inoculate 10° ELDs) in
a final volume of 0.05 mL (0.025 ml inoculated in each nostril). Animals belonging to negative control
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group (2-5 animals/breed) were intranasally inoculated with 0.05 mL of stetile phosphate-buffered
saline (PBS).

All birds were monitored daily for clinical signs until 10 dpi. A standardized OIE clinical scoring system
was used [140]. Animals with absence of clinical signs were classified as 0. Birds presenting one of the
following clinical signs were considered sick (1) and those showing more than one were considered
severely sick (2): respiratory involvement, depression, diarrthea, cyanosis of the exposed skin or wattles,
edema of the face and/or head and netvous signs. Animals found dead wete scored as 3. For ethical
reasons, motibund chickens were anesthetized using the combination of ketamine/xylazine (20 mg/kg
body weight, Imalgene 100 and 0,3 mg/kg body weight, Rompun 20 mg/ml) via the intramuscular
route, euthanized with intravenous pentobarbital (140 mg/kg body weight, Euthasol 400 mg/ml) and
scored as dead. The percentage of mortality and MDT were calculated for each virus in all the breeds.

All birds presenting severe clinical signs or found dead were subjected to macroscopic examination. In
addition, three chickens of each breed inoculated with H7N1 and H5SN8 HPAIV's were killed at 3 dpi
using the combination of drugs reported above to collect tissue samples for pathological studies. The
selection of birds was biased towards those found dead or presenting evident clinical signs of disease.
Two birds of each breed belonging to mock-infected groups were also necropsied at 3 dpi. In order to
evaluate viral shedding, OS and CS were collected from the first 9 chickens of each breed (selected
previously to the inoculation) challenged with H7N1 and H5N8 HPAIVs, and from negative control
animals, at 1, 3, 6 and 10 dpi. The same birds were sampled through the experiment.

Pathologic examination and immunohistochemical testing

Tissue samples collected from the chickens necropsied at 3 dpi were immersed in 10% formalin for
fixation duting 72 hours and embedded in paraffin wax. Samples included skin, thymus, pectoral
muscle, nasal cavity, trachea, lung, central nervous system, heart, spleen, liver, kidney, proventriculus,

gizzard, pancreas, small intestine, large intestine and bursa of Fabricius.

Microtome sections of 3 um of thickness (Leica RM2255, Nussloch, Germany) from formalin-fixed,
paraffin-embedded tissues (FFPE) collected at 3 dpi were processed, stained with haematoxylin and
eosin (H/E) and then examined under light microscopy. An IHC technique was petformed in the same
tissues. Briefly, samples were pretreated with 0.1% protease at 37°C during 8 minutes. A mouse-derived
monoclonal commercial antibody against NP of IAVs (ATCC, HB-65, H16L-10-4R5) was used as a

primary antibody. The slides were incubated overnight at 4°C. The samples were then incubated with
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an anti-mouse secondary antibody conjugated to an HRP-Labelled Polymer (Dako, immunoglobulins
As, Denmark). The antigen—antibody reaction was visualized using the chromogen 3,3™
diaminobenzidine tetrahydrochloride (DAB). Sections were counterstained with Mayer’s haematoxylin
and examined under light microscopy. The positivity in the tissues was semi-quantitatively assessed
taking into consideration the percentage of NP-positive and negative cells in the tissue. The samples
were classified as follows: no positive cells (-), <10%o positive cells (+), 10-40% positive cells (++), >40%
positive cells (+++) in a tissue section. Positive and negative controls were used. The positive control
was a central nervous system from a chicken experimentally infected with H7N1 HPAIV [400], and the
negative control consisted in the same tissue incubated with PBS instead of the primary antibody and

the tissues collected from negative control chickens.

Viral RINA detection and quantification in swabs

Swabs were placed in 0.5 ml of sterile PBS enriched with Penicillin-Streptomycin (Thermo Fisher
Scientific, Waltham, Massachusetts, USA) and Nystatin (Sigma-Aldrich, Missouri, USA) at a final
concentration of 6%. Swabs were conserved at -75°C until further use. Viral RNA was extracted using
Nucleospin RNA virus kit (Macherey-Nagel, Diren, Germany), following manufacturer’s instructions.
A highly conserved region of 99 bp present in IAV M1 gene was amplified and detected by one-step
Tagman RT-PCR technique in Fast7500 equipment (Applied Biosystems, Foster City, CA, USA), using
the same primers and probe as well as conditions of amplification previously described [521, 565]. To
extrapolate the genome equivalent copies (GEC) present in the swabs, a standard curve obtained by
amplification of the same region of M1 gene was used. Briefly, the amplified region was ligated in
pGEM-T vector (Promega, Madison, Wisconsin, USA). The ligation product was purified using
MinFlute Reaction Cleanup Kit (Qiagen, Valencia, CA, USA) and transfected into electrocompetent
E.coli cells (Thermo Fisher Scientific, Waltham, Massachusetts, USA) by electroporation. The
recombinant plasmid was purified from transformed colonies using NucleoSpin Plasmid (Macherey-
Nagel, Diiren, Germany) and quantified in Biodrop (Biodrop plLite, Cambridge, England). GEC were
calculated using DNA Copy Number Calculation (Thermo Fisher Scientific, Waltham, Massachusetts,
USA). Serial ten-fold dilutions were used to obtain the standard curve. The limit of detection of the

technique was 1,89 log GEC in both OS and CS.
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RFLP-PCR Mx

Prior to infection, total blood in a 1:1 ratio with anticoagulant (Alsever’s solution, Sigma-Aldrich,
Missouri, USA) was obtained from all chickens belonging to H7N1 and H5N8 HPAIV-inoculated
groups. Genomic DNA was isolated from 10 pl anticoagulated blood using a standard DNA
purification kit (IDNeasy Mini Kit, Qiagen, Valencia, CA, USA), following manufacturer’s instructions.
To avoid RNA contamination, samples were treated with RNase (RNase A, Qiagen, CA, USA). As
desctibed by Siront ¢ a/. [626], the following primers were used to amplify a 299 pb region in exon 14 of
chicken Mx gene: forward 5-GCACTGTCACCTCTTAATAGA-3 and reverse 5-
GTATTGGTAGGCTTTGTTGA-3". PCR reaction mixture included 60 ng genomic DNA, 10 umol
of each primer, 10X buffer, 1.5 mM MgCI2, 0.2 mM of each dNTP and native Taq DNA polymerase
(5 U/ul) (Taq DNA Polymerase, native, ThermoFisher Scientific, Massachusetts, USA) in a final
volume of 25 ul. Mx region was amplified in GeneAmp PCR System 9700 equipment (Applied
Byosistems, CA, USA) as follows: 95°C for 10 min, 35 cycles of 94°C for 1 min, annealing at 53°C for
1 min, and 72°C for 1 min, and a final extension step at 72°C for 10 min.

5 pl of PCR products were run in a 2% agarose gel in 1X TAE buffer with ethidium bromide (EtBr) to
confirm the presence of a specific band at 299 pb. PCR products were incubated at 37°C during 16
hours with a restriction enzyme (Hpy8I-MjalV, 10 U/ul,, Thermo Fisher Scientific, Massachusetts,
USA), following manufacturer’s instructions. The restriction enzyme (5-GTN|NAC-3’) cleaves the
sequence 2 pb downstream of the Mx polymorphism in presence of guanine (G), whereas the product
is not cut in case of an adenine (A) at this position. Digestion products were visualized in a 2% agarose
gel in 1X TAE buffer with EtBr. Animals were classified in homozygous-resistant genotype (AA),
heterozygous-intermediate genotype (AG) and homozygous-susceptible genotype (GG).

The proportion of birds dead at the end of the study by genotype groups were compared using the
Pearson's chi-square test. Then, post-hoc pairwise comparisons with Bonferroni cotrections were
carried out [627]. Also, for the animals that succumbed to infection, the MDT by genotypes were
compared. First, the normality of the data was assessed using the Shapiro-Wilk test. Then groups were
compared using either the anova test (in case of normally distributed data), or the Kruskal-Wallis test (in
case of non-normally distributed data). Finally, post-hoc comparisons were carried out using the Tukey
test (for normally distributed data), or Dunn's test with Bonferroni correction (in case of non-normally

distributed data). All calculations were carried out using R statistical software (http://cran.r-
project.org/).
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4.3. RESULTS

Clinical signs and mortality

Severe clinical signs were observed in H7N1 and H5N8 HPAIVs-inoculated chickens in all breeds, but
the frequency varied depending on the viral isolate and the chicken breed. At 2 dpi, several chickens of
different breeds inoculated with H7N1 HPAIV presented severe apathy, were prostrated or found dead
without previous evident clinical signs. Few chickens inoculated with HSN8 HPAIV also presented
severe apathy at 2 dpi and were consequently euthanized. From 2 dpi and lasting until 9 (H7N1) or 10
dpt (H5NS), severe clinical signs were detected in several chickens at different times post-inoculation.
The main clinical signs observed in both HPAIV infections were moderate apathy that progressed to
prostration, and less frequently subcutaneous oedema, cyanosis of the comb and wattles and nervous
signs (ataxia, circling, tremor and head shaking). The percentage of animals presenting prostration and
nervous signs was higher in chickens challenged with H7N1 HPAIV than in those inoculated with
H5N8 HPAIV. Similarly, the onset of nervous signs was eatlier in H7N1 HPAIV-inoculated groups
than in the inoculated with HSN8 HPAIV (3 dpi zersus 5 dpi, respectively). Moreover, H/N1 HPAIV
produced a higher mortality rate in chickens than HSN8 HPAIV (70 and 47%, respectively), as well as
a shorter MDT (3,3 and 4,9 dpi, respectively) (Figure 6).
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Figure 6. Survival curves of the different chicken breeds experimentally inoculated with H7N1 (A) or H5N8 (B)
HPAIVs at a dose of 105 ELDx,.

Regarding breeds, Castellana negra, Broiler and SPF chicken breeds presented less frequency of clinical
signs and considerably lower mortality rates (=50%0) than Penedesenca, Catalana del Prat, Flor d-Ametller and
Euskal Oiloa (250%0) breeds in both H7N1 and HSN8 HPAIVs-inoculations. Only Ewpordanesa breed
presented differing susceptibility depending of the virus tested (93 and 33% mortality after challenge
with H7N1 and H5NS, respectively). Cazalana del Prat and Penedesenca presented the highest incidence of

nervous signs and cutaneous edema among all the breeds tested, respectively (Table 9).
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Virus Parameter Empordanesa. Penedesenca C.Prat F Ametler  CNegra. E.Oiloa Broiler SPF Mean
H7N1  Percentage of dead birds 93 100 100 80 25 73 46 40 70
Mean death time, dpi 33 42 33 33 27 3 3 38 33
Clinical signs (%o)
Severe apathy 93 73 67 40 15 67 31 40 55
Cutaneous edema/cyanosis 7 20 7 0 0 0 0 7 5
Nervous signs 0 7 20 0 8 20 8 0 8
H5N8  Percentage of dead birds 33 76 85 73 25 50 25 8 47
Mean death time (dpi) 42 79 58 5,7 27 28 3,7 6 4,9
Clinical signs (%o)
Severe apathy 7 40 40 53 23 40 8 67 35
Cutaneous edema/ cyanosis 0 7 7 7 0 0 0 8 4
Nervous signs 0 7 0 0 0 0 0 0 4

Table 9. Clinical signs, mortality and MDT of the different chicken breeds challenged with H7N1 or H5N8 HPAIVs. Dpi: Day post-infection.
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Gross lesions

Gross examination of the chickens inoculated with H7N1 or H5N8 HPAIVs revealed similar lesions
with both viruses in all breeds. At 2 dpi, few chickens inoculated with H7N1 HPAIV exhibited
multifocal haemorthages in proventriculus and gizzard, whereas non- evident lesions were present in
the chickens inoculated with HSN8 HPAIV. From 3 dpi to the end of the study, the most common
findings in the chickens inoculated with H7N1 and H5N8 HPAIVs were multifocal petechiae and
necrotic areas in pancreas, and/or multifocal petechiae in proventriculus, gizzard and in the
proventriculus-gizzard junction. Congestion in central nervous system was also a common finding, Iess
frequently, several chickens exhibited hemorrhages of variable intensity in skin (e.g. legs), subcutaneous
edema, lung consolidation and diffuse congestion in internal organs. At 10 dpi, one chicken inoculated
with H5N8 HPAIV presented multifocal petechias in bursa of Fabricius. No evident lesions were

observed in negative control birds.

Histopathological findings

Microscopic examination of the tissues collected from dead or severely-affected chickens at 3 dpi
revealed evident lesions of variable intensity in all breeds in mostly all the collected organs. However,
we detected differences in the severity and viral replication in the different tissues between H7N1 and
H5N8 HPAIV-inoculated chickens. In both viral infections, the predominant microscopic lesions in
the tissues were ateas of necrosis and haemortrhages with mixed inflammatory infiltrate (macrophages,
lymphoplasmacytic cells and heterophils). The extension and sevetity of microscopic lesions correlated
well with the intensity of IAV antigen (IHC techniques) in the tissue. The main organs affected were
similar in all the chicken breeds inoculated with the same virus (Table 10 and 11).
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H7N1 P C F N (0] B S NP+ cell types Microscopic lesions

Skin +(1/3) +(1/3) +(3/3) +(2/3) +(1/3) +(2/3) +(2/3) ++(2/3)  Follicular epithelial cells, keratinocytes, ~ Mixed  inflammatory cell infiltrate in  dermis, oedema, congestion,
ECIC microthrombosis, vasculitis.

Pectoral muscle +(1/3 +@/3 +@/3 +(1/3 +3/3 +(3/3 +@/3 +@/3 Myocytes Focal degenerated and necrotic fibers with mild inflammatory infiltrate.

i + + + + + ++ + + iratory :

Nasal cavity 73 s /3 @3 3 /3 /3 (173 Repimory  and olfactory  cdl, Ateas of necrosis of epithelial cells (loss of continuity, loss of cilia) with mixed
Bowman glands, nasal glands, | cory cell infiltrati on
nasolacrimal duct, EC, IC inflammatory O congestion:

Lung ++(1/3) +(2/3) +(2/3) +(2/3) +(3/3) +(3/3) +(3/3) +(2/3) ECIC Increase of cellularity (mixed inflammatory cells) in air capillaries interstitum,

> microthrombosis, interstitial oedema.
+++ +++ ++ + ++ +++ ++ ++ i S inj S

Central nervous system 1/3) (3/3) (3/3 (3/3) (3/3) (3/3) (3/3) (/3  Neurons, glial cells, Putkinje cells Areas of necrosi (chromatolyss and spongiosis) with microgliosis, congeston.
(cerebellum), EC

Pancreas +(1/3) +++3/3) ++3/3 +(1/3) ++(1/3) ++(3/3) +++(2/3) +(@2/3)  Exoctine acinar cells, EC, IC Ateas of necrosis with inflammatory cell infiltration.

Heart +++(1/3) +++(3/3)  +++(3/3)  ++(3/3) ++@3/3) +++(3/3 ++(3/3) ++(3/3) Areas of necrosis of myocytes (fiber degeneration and hyalinization) with mixed
Myocytes, EC,IC . . .

inflammatory cell infiltrate.
Spleen ++@/3) +@/3 t0/3) +0/3 +@/3 +(3/3 +@/3 +(1/3)  ECIC Mild ateas of necrosis with mixed inflammatoty infiltrate.
Thymus ++(1/3) +(2/3) +(1/3) +2/3) +2/3) +2/3 ++(3/3) +(1/3  ECIC Mild necrotic areas (ptimarily in medulla) with few macrophages.
. n + + + i n i i e o . ) i~
Liver 1/3) (3/3) (3/3) (3/3) 2/3) (3/3) 2/3) (3/3) Kuppfer cells G, IC Mild distension of | hepa?:lc sinusoids with presence of inflammatory cells (mainly
macrophages), congestion.

Kidney +(1/3) +(/3 t6/3)  +6/3 +@2/3 +(/3) +@/3 +@2/3)  Bpithelial tubular cells, EC, IC Acute tubular necrosis with mild mixed inflammatory infiltrate, congestion.

Proventticulus +(1/3) +(3/3) +(3/3) +(1/3) +@2/3) +©2/3) +@2/3) +@2/3) ECIC Areas of necrosis of lymphoid tissue.

Gizzard +(1/3) +(3/3) +(3/3) +(2/3) +(2/3) ++(3/3) +(3/3) +(3/3)  Epithelial cells of the ventricular glands,  Areas of necrosis in glandular cells with mixed inflammatory cell infiltration,
smooth muscle cells, EC, IC muscular cells necrosis and degeneration.

B.Fabricius +(1/3) +(3/3) +(3/3) +(1/3) +(1/3) +(3/3) +(2/3) +(2/3) ECIC Areas of necrosis with inflammatory cell infiltrate (macrophages and

o heterophils) in germinal centers and interstitial compartment.
Small intestine +(1/3) +(1/3) +@2/3) +(1/3) +©2/3) +(1/3) +@/3) ECIC No appatent lesions.
Large intestine +(1/3) +(1/3) +@2/3) +(1/3) +(1/3) +(1/3) - EGIC No apparent lesions.

Table 10. Average distribution of NP-positive cells and associated lesions in tissues collected at 3 dpi from different chicken breeds inoculated with H7N1 HPAIV. n=3/group. -: no positive
cells, +: <10% positive cells, ++: 10-40% positive cells, +-++: >40% positive cells. E: Enpordanesa, P: Penedesenca, C: Catalana del Prat, F: Flor d_Ametller, N: Castellana Negra, O: Euskal Oiloa, B: Broiler, S: SPE.

EC: endotelial cells, IC: inflammatory cells.
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H5N8 E P C F N (6] B S NP+ cell types Microscopic lesions
Skin +(2/3) +(1/3) ++(2/3) +(3/3) +(1/3) +(3/3) +(1/3) +(1/3)  Follicular epithelial cells, Mixed inflammatory cell infiltrate in  dermis, oedema, congestion,
keratinocytes, EC, IC microthrombosis, vasculitis.
Pectoral muscle +(2/3) +(1/3) +(2/3) +(3/3) +(2/3) +(3/3) +(1/3) +(1/3)  Myocytes Focal degenerated and necrotic fibers with mild inflammatory infiltrate.
Nasal cavity ++(3/3) +(1/3) ++(2/3) ++(3/3) ++2/3  ++(3/3 +(1/3) ++(1/3)  Respiratory and olfactory cells,  Areas of necrosis of epithelial cells (loss of continuity, loss of cilia) with mixed
Bowman glands. Nasal glands,  inflammatory cell infiltration, congestion.
nasolactimal duct, EC, IC
Lung +++(2/3) +(1/3) R/ (/3 ++2/3)  ++(3/3 ++(1/3) ++(1/3)  Air capillaries cells, EC, IC Increase of cellularity (mixed inflammatory cells) in air capillaries interstitium, focal
areas of necrosis in pneumocytes, mictothrombosis, intersticial oedema.
Central netvous system ++(3/3) +(1/3) +++(2/3) ++(3/3) ++2/3  ++(3/3 +(1/3) +(1/3)  Neurons, glial cells, Purkinje cells  Areas of nectosis (chromatolisis and spongjosis) with microgliosis, congestion.
(cetebellum), EC
Pancreas ++(3/3) ++(1/3) ++(2/3) ++(3/3) +1/3) ++(3/3 +(1/3) +(1/3)  Exoctine acinar cells, EC, IC Areas of necrosis with inflammatory cell infiltration.
Heart ++@2/3) (13 (223 ++(3/3) ++2/3  ++(3/3 ++(1/3) +(1/3)  Myocytes, EC,1C Areas of necrosis of myocytes (fiber degeneration and hyalinization) with mixed
inflammatory cell infiltrate.
Spleen ++@2/3) ++(1/3) ++(2/3) ++(3/3) ++2/3)  ++(3/3 ++(2/3) +(2/3) ECIC Areas of necrosis (including germinal centers) with mixed inflammatorty infiltrate.
Thymus ++(2/3) ++(1/3) ++(2/3) ++(3/3) ++@2/3) ++(2/3 ++(1/3) +(1/3 ECIC Areas of nectosis with inflammatory cell infiltrate in medulla and more restricted
in cortex, congestion.
Liver +(2/3) ++(1/3) ++(2/3) +(3/3) +@2/3)  ++(3/3 ++(1/3) +(1/3)  Hepatocytes, Kuppfer cells, EC,  Focal areas of nectosis with mixed inflammatory cell infiltrate, mild distension of
1C hepatic sinusoids, congestion.
Kidney +(2/3) +(1/3) +(2/3) +(3/3) +(2/3) +(3/3) +(1/3) +(1/3)  Epithelial tubular cells, EC, IC Acute tubular necrosis with mild mixed inflammatory infiltrate, congestion.
Proventriculus +(2/3) ++(1/3) ++(2/3) +(2/3) +(2/3) +(3/3) +(1/3) +(1/3)  Epithelial  cells  of  the  Focalareas of nectosis in glandular cells and mainly in lymphoid tissue.
proventticular glands, EC, IC
Gizzard ++(2/3) ++(1/3) ++(2/3) ++(3/3) +@2/3)  ++(3/3 ++(1/3) +(1/3)  Epithelial cells of the ventricular ~ Areas of necrosis in glandular cells with mixed inflammatory cell infiltration,
glands, smooth muscle cells, EC,  muscular cells necrosis and degeneration.
1C
B.Fabricius +(2/3) +(1/3) ++(2/3) +(3/3) +@2/3) ++(3/3) +(1/3) +(1/3) ECIC Areas of necrosis with inflammatory cell infiltrate (macrophages and heterophils)
in germinal centers and interstitial compartment.
Small intestine +(2/3) +(1/3) +(2/3) +(3/3) +@2/3) ++(3/3) +(1/3) +(1/3) ECIC Necrosis of lymphoid tissue with mixed inflammatory infiltrate.
Large intestine +(2/3) +(1/3) ++2/3) +(3/3) +(1/3) +(3/3) - +(1/3 ECIC Necrosis of lymphoid tissue with mixed inflammatory infiltrate.

Table 11. Average distribution of NP-positive cells and associated lesions in tissues collected at 3 dpi from different chicken breeds inoculated with HSN8 HPAIV. n=3/group. -: no positive
cells, +: <10% positive cells, ++: 10-40% positive cells, +++: >40% positive cells. E: Engpordanesa, P: Penedesenca, C: Catalana del Prat, F: Flor d_Ametller, N: Castellana Negra, O: Euskal Oiloa, B: Broiler, S: SPE.
EC: endotelial cells, IC: inflammatory cells.
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In H7N1 HPAIV-inoculated chickens, the most relevant microscopic lesions and viral replication were
observed in heart, followed by central nervous system and pancreas. Viral replication in the heart was
associated with fiber degeneration/necrosis and hyalinization of myocytes mixed with mild
inflammatory cell infiltration (mainly macrophages) (Figure 7 A/B). In the central nervous system,
non-suppurative encephalitis consisting in multifocal areas of necrosis in cerebral hemispheres, intense
spongiosis, neuronal chromatolysis and gliosis were commonly observed (Figure 7 C/D). In
cerebellum, chromatolysis of Purkinje neurons was a common finding. The lesions observed in
pancreas were multifocal areas of lytic necrosis of exocrine gland cells (Figure 7 E/F). The remaining
tissues generally presented mild necrotic and/or inflammatory lesions and few positive cells (Figure 7

H/I; J/K).

The chickens inoculated with H5N8 HPAIV presented the most severe lesions and intense viral
replication in the lung and heart, but evident lesions and high viral replication were also detected in
spleen, thymus, central nervous system, nasal cavity, gizzard, pancreas and liver. The lesions in the heart,
central nervous system and pancreas were similar to those described in H7N1 HPAIV-inoculated
chickens (Figure 7 K/L; M/N; and N/O). In the lung, interstitial pneumonia consisting on moderate
to severe increase of the cellularity (macrophages and lymphoid cells) in air capillaries and focal areas of
nectosis associated with intense viral replication was commonly obsetved (Figure 7 P/Q). In lymphoid
tissues, including spleen, thymus and bursa of Fabricius, multifocal areas of necrosis and apoptosis of
variable intensity in mononuclear cells were present. Particularly, diffuse necrotic areas and widespread
viral replication were present in the spleen of one chicken (Figure 7 R/S). Several animals also
presented multifocal areas of necrosis in respiratory and olfactory epithelial cells in the nasal cavity.
Multifocal areas of necrosis in glandular cells with mixed inflammatory cell infiltration, muscular cell
degeneration and necrosis of lymphoid tissue were detected in gizzard and proventriculus. In the liver,
we detected focal areas of necrosis with mild distention of hepatic sinusoids. The remaining tissues (skin,
pectoral muscle, kidney and intestines) presented mild necrotic and/or inflammatoty lesions and few

positive cells.
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Figure 7. Microscopic lesions (HE staining) and viral replication (IHC staining) at 3 dpi in several organs obtained
from chicken breeds experimentally inoculated with H7N1 and H5N8 HPAIVs. Myocardium A/B, K/L: multifocal
necrosis of myocardiocytes with inflammatory infiltrate (A,K) and NP-positive myocardiocytes and inflammatory cells (B,L).
CNS C/D, M/N: multifocal ateas of nectosis in cetebral hemisphetes (CM), widespread NP-positive neurons and glial cells
(D/N). Pancreas F/F, N/O: diffuse area of necrosis in pancreatic acinar cells (E/ N) associated with widespread NP-positive
cells in necrotic areas and surrounding acinar pancteatic cells (F/O). Lung G/H, P/Q: mild increase of inctease of cellulatity
(mixed inflammatory cells) in air capillaries interstitum (G) and few NP-positive inflammatory cells (H). Severe increase of
increase of cellularity in air capillaries interstitium, focal areas of nectosis in pneumocytes, microthrombosis and diffuse oedema
(P), widespread NP-positive cells in inflammatory cells, endothelial cells and air capillary cells (). Spleen1/J, R/S: non-apparent
lesions (I) and few NP-positive lymphoid-cells (J). Areas of necrosis with mixed inflammatory cell infiltration (R), widespread
NP-cells in inflammatory and endothelial cells ().
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Viral shedding

Differences in the viral shedding between H7N1 and H5N8 HPAIV-inoculated chickens were detected
(Figure 8). High viral excretion by both oropharyngeal and cloacal routes was detected in chickens
inoculated with H7N1 HPAIV. At 1 dpi, viral RNA was detected in several OS but notin CS. The peak
of shedding by means of proportion of positive swabs and levels of viral RNA occurred at 3 dpi. By 6
dpi, few birds presented detectable levels of virus RNA in OS and CS, but the levels detected were
similar with those collected at 3 dpi. No viral RNA was present in the OS and CS collected at 10 dpt.

Regarding H5SN8 HPAIV-inoculated groups, a low number OS presented detectable levels of viral
RNA at 1 dpi. The proportion of positive OS and levels of viral RNA peaked at 3 dpi. In contrast, a
low number of birds inoculated with HSN8 HPAIV presented cloacal shedding at the different dpi
tested. However, the levels of viral RNA in the positive CS at 3 dpi were similar to those present in OS.
By 6 and 10 dpi, viral shedding was still detected in several birds by both the oral and cloacal routes and

in some samples, the levels were high.

Broiler

Oral shedding. H7N1-inoculated Cloacal shedding. H7N 1-inoculated
81 8
’ M Empordanesa 3/9 El Empordanesa
610
N " o] 12 217 212 Bl Penedesenca , /:/53/8 B renedesenca
Lol o C.Prat 8/9) C.Prat
© /6 419 F.Ametller 2 >
; 2/%/9 619 12 = ASGIQ 12 F.Ametller
H 319 79 4 C.Negra E C.Negra
94 1 - £ Oloa E 4 Bl co0iloa
e " Broiler o Broiler
S SPF s 12 SPF
24. SRR ... EEE EEE - P 2
0 . v v .
~ > > ~ > © K
dpi
dpi
Oral shedding. H5N 8-inoculated Cloacal shedding. H5N 8-inoculated
81 1/6 ,
- 2(9
Empordanesa
519 3/9
i wl 2 ¥ B penedesenca e " W € mpordanesa
6 8 6 y 214 B renedesenca
° 819 414 415 C.prat oard " e
= 91979 F.Ametller 2 C.Prat
H d C.Negra E F.Ametller
9 4 B Eoiloa S C-Neora
© w Bl Eoiloa
° )
g =
S S
S

SPF

Figure 8. Viral titers expressed as log GEC in OS and CS obtained from chickens inoculated with H7N1 (A, B) or
H5NS (C, D) HPAIVs at different time points. Viral titers are represented as the mean values £ SEM. The numbers above
the columns represent the number of chickens shedding vitus out of the total sampled. GEC: Genome equivalent copies; Dpi:
day post-infection.
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Despite the levels of viral RNA in OS and CS obtained through the experiment were quantitatively
similar in all the chicken breeds included in the study, a higher proportion of chickens of the Empordanesa,
Penedesenca, Catalana del Prat, Flor d_Ametller and Enskal Oloa breeds excreted virus by oral and cloacal

routes in both viral infections than those belonging to Castellana negra, Broiler and SPF breeds.

Amino acid characterization

High amino acid identity between H7N1 and H5SN8 HPAIVs was found in PB2, PB1, PA, NP and
MP proteins, but not in NS protein (Table 12). Both HPAIVs present amino acids in particular
positions associated to virulence and/or transmission of HPAIVs in chickens and ducks (PB2: 123E;
PB1: 3V, 38Y, 436Y; PA: 237E, 383D, 515T, 672L; NP: 105V, 184K; M1: 43M; NS: 106M, 125D,
149A) [313, 445, 446, 573, 579, 581, 587-589, 597, 598, 603, 607-610]. Only 5 differing amino acids between the
proteins sequence of H7N1 and H5N8 HPAIVs associated with a biological function were detected,
and all were found in HSN8 HPAIV. This virus presented 375N and 42S-55E-103F in PB1 and NS1
proteins, respectively, which are associated with increased virulence and/or inhibition of host immune
response in mammals [21, 576, 605-607], and 103F and 114S in NS1 that produce the inhibition of host

gene expression in chicken cells [608].

Protein  Aald (%) Differing amino acids (H5N8 vs H7NT)
PB2 98,9 K80R, M90L, N127H, 1255V, S286G, V4511, R508M, R555K
PB1 98,5 A110T, G154D, R168K, S216G, G2618S, T374N, N3758, K586R, V6061, S694N, K745E
PA 98,6 G59E, I61T, HI6N, N115K, N184S, E252K, 1.261M, S453C, 1459M, Y503F
NP 99,2 1201V, T350A, S377N, S403A
M1 98 V33A, L144F, 1165M, N207S, R230K
M2 98,9 V501
NS 67,3 Mol, L7T, F14Y, Y17H, V18I, R21K, F221., A23S, D24M, Q25R, E26D, G28C, 1.33D, S42A, R44I<,

N48S, G53D, I54C, E55R, T56V, R59M, AGOE, Q63K, R67D, ET0K, E71S, S73T, A76N, M79L,
'TSOA, V81L, S86A, S87P, LIOL T94S, 1.95L, M9SL, D101E, F103Y, K108R, A112T, SH4G, C116M,
1117V, N127R, V1291, V136L, 11371, R140Q, A143T, 1145V, 11468, E153D, G158A, L1631, F166M,
'T1708, D171'T, V180L T191S, V1921, V194A, T197N, 11981, R204G, N205I, S206R, N207D, D209N,
R211G, S213P

NS2 81,8 MGL L7T, M14Q, G22E, E26V, G36E, S37R, LA0L Y48S, G63A, KGAT, E67D, QGSE, G708, ESIA,
V83C, H85N, R86L, K88T, 189K, M100L, Q111S

83



STUDY II

Table 12. Amino acid identity and diffeting amino acids in the viral proteins sequence between
A/Goose/Spain/IA17CR02699/2017 (H5N8) and A/Chicken/Italy/5093/1999 (H7N1) HPAIVs. The amino acids
previously associated with a phenotype are highlighted in black..

Polymorphism at position 2032 of Mx gene and association with infection

outcome

We found wide differences regarding genotype and allele distribution at position 2032 of chicken Mx
gene in the breeds included in this study (Table 10). The three genotypes AA, AG, GG were present
in Empordanesa, Penedesenca, Catalana del Prat and Castellana negra breeds with variable frequency. The
heterozygous genotype (AG) was the predominant in Empordanesa and Catalana del Prat breeds.
Penedesenca presented a higher frequency of the homozygous-resistant genotype (AA), whereas Castellana
negra had more frequently the homozygous-susceptible genotype (GG). Almost all Flor d’Awmsetller and
Euskal Oiloa chickens presented the homozygous-susceptible genotype (0.094 and 0.923, respectively),
and any the resistant genotype. SPF chickens presented predominantly the homozygous-resistant
genotype (AA), and in a minor amount the heterozygous one, but not the homozygous-susceptible one.
Broiler chickens were fixed for the homozygous-susceptible genotype (GG). Overall, the average
genotype frequency of the susceptible genotype GG (0.50) was higher than AG (0.29) and AA (0.21)
genotypes. The A allele was present in all the chicken breeds except in Broilers, but the frequency varied
from 0.030 and 0.038 in Flor d_Amsetller and Euskal viloa breeds, respectively, to 0.903 in SPF chickens. G
allele was present in all the chicken breeds. In this case, the range of frequencies varied in the interval of
1.00 present in Broiler chickens to 0.097 in SPF chickens. G allele (0.65) was mote predominant in the
chicken population tested than A allele (0.306).

In order to study the association of Mx genotypes at position 2032 with percentage of survival at the
end of the study and mean days of death in the birds that succumbed to infection, statistical analyses
were performed. The differences in the proportion of dead birds were not statistically significant among
genotypes. However, the Kruskal-Wallis test indicated statistically significant differences in the MDTs
among genotype groups (p.value=6.3x107). Post-hoc pairwise using the Dunn's test with Bonferroni
cotrection indicates differences were statistically significant between groups AA and GG (5 zersus 3.6

dpi, p=0.0015), and between groups AG and GG (4.7 zersus 3.6 dpi, p=0.00006).
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Breed Genotype frequency Allele frequency

AA AG GG A G
Empordanesa 0129 0452 0419 0.355 0.645
Penedtesenca 0485 0304 0152 0.667 0.333
Catalana del Prat 0156 0750  0.094 0.531 0.469
Flor d'Anetller 0.000 0061 0939 0.030 0.970
Castellana negra 0.100 0400  0.500 0.300 0.700
Euskal oiloa 0.000 0077 0923 0.038 0.962
Broiler 0.000  0.000  1.000 0.000 1.000
SPF 0.806 0194  0.000 0.903 0.097

Table 13. Genotype AA, AG and GG and allele frequencies of A and G alleles in exon 14, position 2032 of chicken
Mzx gene in different chicken breeds. AA, resistant genotype; AG, heterozygous genotype; GG, susceptible genotype.

4.4. DISCUSSION

Auvailable data demonstrates that the susceptibility to HPAIVs varies largely depending of the viral
isolate and the genetic background of the host. In order to evaluate the existence of viral- and host-
dependent differences in HPAIV infections in chickens, we selected a classical HPATV (H7N1 isolated
from a chicken in Italy) and a recent HPAIV of the Gs/GD H5 lineage (H5N8 Gs/GD clade 2.3.4.4
group B isolated from a domestic goose in Spain) and assessed their pathobiology in a broad spectrum

of chicken breeds from Spain (local and commercial breeds).

Both HPAIVs used in this study were highly virulent for chickens, as expected based on the presence
of a MBCs site in the HA protein and demonstrated expetimentally by the severe clinical signs and fatal
outcomes observed through the experiment. However, H7N1 and H5N8 HPAIVs differed in the
progression of the disease they caused in chickens. With the highest frequency of prostration and
neurological signs, highest mortality rates and shortest MDT, H7N1 HPAIV is considerably more
virulent for chickens than H5SN8 HPAIV. The viral shedding pattern also varied between H7N1 and
H5N8 HPAIVs. The differences in oral excretion between H7N1 and H5N8-inoculated chickens were
minor, with both groups presenting a similar number of birds shedding virus (70% and 58% by 3 dpi,
respectively) and mean levels of viral RNA in OS (5.1 and 4.6 by 3 dpi, respectively). However, a low
number of chickens inoculated with HSN8 HPAIV presented cloacal excretion. Despite some birds
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were still shedding at the end of the study, our findings suggest the potential for decreased horizontal
transmission efficiency of Gs/GD H5NS clade 2.3.4.4 B HPAIV among chickens. In concordance
with our results, previous studies demonstrate that Italian H7N1 HPAIV exhibit high virulence and
transmissibility in several galliformes species [400, 534, 628, whereas Gs/GD clade 2.3.44 H5Nx
reassortants (including HSN8 HPAIVs) generally cause lower mortalities, longer MIDT's and present
lower transmissibility in chickens in compatison with the ancestral Gs/GD H5N1 HPAIVs [334-338).
These results confirm the variable pathogenicity and potential transmissibility of HPAIV's of different
lineages and host-origin in the chicken species.

The comparatively lower frequency of clinical signs and mortality, longer MDT and reduced excretion
in H5N8 HPAIV-inoculated chickens suggest a suboptimal affinity and/or adaptation of H5N8
HPAIV to chickens. This could have partially contributed to the limited number of H5N8 HPAIV
outbreaks in chicken holdings during the 2016-2017 epidemics in Europe (11 % of the total reported
outbreaks), in comparison with its detections in waterfowl holdings, including in Spain [71]. However,
since different genotypes of HSN8 HPAIV circulated in Europe at that time [617], important differences
in the biological properties of HSN8 HPAIV between European strains may exist. The production
characteristics of this species could also be an important factor. Migratory wild birds are thought to have
played a pivotal role in the wotldwide dissemination of Gs/GD H5N8 HPAIVs. Since chicken
production in Furope in mostly intensive and farms present high biosecurity standards, the low
detection in chicken holdings during the 2016/2017 epidemics may also be due to a low exposute to

the virus.

Despite the different course of infection caused by H7N1 and H5SN8 HPAIVs, the clinical signs and
macroscopic lesions in the severely affected chickens were similar and consistent with HPAIV infection.
The viral antigen detected in mostly all collected organs in H7N1 and H5N8 HPAIVs-inoculated
chickens that succumbed to infection demonstrate the widespread dissemination of both HPAIVs.
However, the intensity of replication and associated microscopic lesions in the different tissues were
virus-dependent, indicating differences in their tissue tropism. Chickens inoculated with H7N1
presented severe lesions and high viral replication in heart, central nervous system and pancreas. In
addition to those observed in H7N1-inoculated birds, inflammatory and necrotizing lesions associated
to intense viral replication were detected in the lungs and primary lymphoid organs collected from
chickens inoculated with HSN8 HPAIV. Widespread staining was generally detected in lymphocytes in
these tissues, indicating a high avidity of HSN8 HPAIV for lymphoid-cell populations. The cause of
death in the chickens that succumbed to infection after H/N1 and H5N8 HPAIV inoculation appear
to be the result of the multi-organ replication of these viruses. However, HSN8 HPAIV presents a
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reduced neurotropism, a hallmark of HPAIV pathogenesis, based on the comparatively lower amounts
of viral antigen and lesions detected in the brain of HSN8 HPAIV-inoculated chickens in comparison
with those inoculated with H7N1 HPAIV. The reduced neurotropism could be a reason of the lower
mortalities caused by H5SN8 HPAIV. Other mechanisms of pathogenicity not evaluated in the present
study may also impact the differences in virulence between H7N1 and H5N8 HPAIVs in chickens,
including an aberrant innate immune response in H7N1 HPAIV-inoculated chickens after infection

[308].

Particular amino acids in specific positions of PB2, PB1, PA, NP, MP and NS proteins sequence have
been associated with increased pathogenicity and transmissibility of HPAIVs in chickens and/or ducks
[445, 446, 629]. Even closely related HPAIV isolates differ in their virulence in chickens, indicating that
point or few mutations in the viral genome may produce significant biological effects [464]. Whereas
there is no evidence of sustained circulation of Spanish HSN8 HPAIV in galliformes species, the Italian
H7N1 HPAIV emerged from a LPAIV precursor that had been circulating in gallinaceous poultry for
several months [630]. Thetefore, H7N1 HPAIV may present markets of adaptation and/or virulence in
internal and non-structural proteins that are lacking in HSN8 HPAIV. With the exception of NS
protein, the amino acid identity in internal and non-structural proteins was high (>98%%). Several amino
acid substitutions associated with increased virulence of HPAIVs in chickens or chicken-derived cells
were present in PB2, PB1, PA, NP, M1 and NS1 proteins in both H7N1 and HSN8 HPAIV's [445, 446,
573, 579, 589, 597, 598, 603, 608]. Only two differing amino acids in the sequence of the proteins between
H7N1 and H5N8 HPAIVs have been reported to have a biological effect in the chicken species: 103F
and 114S that are present in NS1 protein of H5SN8 HPAIV. These mutations are associated with
inhibition of host gene expression [608]. However, they were reported in a LPAIV strain and their effect
n vivo was not evaluated. Therefore, the differences in infection outcome between the two HPAIVs
may be due to a single or a combination of amino acid substitutions whose effects have not been yet
characterized. Since they belong to different subtypes, the HA and NA surface glycoproteins are also
expected to have played a critical role in the differential outcomes. Actually, we detected that H7N1
HPAIV presented an amino acid substitution in HA (388T, H5 numbering) and NA proteins (401T,
N2 numbering) which are associated with increased pathogenicity in chickens and increased binding to
a2,3 SA, respectively [573, 631], and are not present in HSN8 HPAIV (data not shown). However, the

biological implications of the amino acid substitutions reported hete requite further evaluation.

The outcome after infection with HPAIVs is also largely influenced by host factors. Several reports
demonstrate a wide range of susceptibilities to AIVs among breeds and lines of chickens. Specifically,
significant variations in mortalities after expetimental inoculation with Gs/GD H5N1, H5N6, H5N8
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HPAIVs [338, 412, 416, 462-465] and the Italian HPAIV H7NT1 [399, 461] have been reported. We then
evaluated the existence of breed-related differences in the susceptibility to HPAIVs in a broad range of
local chicken breeds, and in two commercial breeds. In the present study, four breeds (Empordanesa,
Penedesenca, Catalana del Prat, Flor d-Ametller, Euskal Oiloa) were highly susceptible to HPAIV infection,
whereas three breeds (Castellana negra, Broiler and SPF chickens) were considerably more resistant. The
breeds that were more resistant exhibited less frequency of severe clinical signs, lower mortality rates
and lower number of animals shedding virus to both HPAIVs infections than susceptible breeds,
demonstrating that the genetic background of particular chicken breeds confer a higher natural
resistance to diverse HPAIVs subtypes. Moreover, two of the highly susceptible breeds presented a
higher incidence of cutaneous edema and nervous signs, suggesting that the clinical presentation may

vary to some extent dependent of the breed.

Local chicken breeds are believed to be more resistant to disease as a result of the natural selection by
autochthonous pathogens and minor artificial selection towards productive-associated genes [467).
However, almost all the local chicken breeds included in our study were highly susceptible to both
HPAIVs. This is in concordance with previous reports [462,465], demonstrating that local breeds do not
necessatily present an improved resistance to infectious diseases. The high susceptibility of the local
chicken breeds included in our study is a concern; these breeds are usually raised in backyards in the
absence or little biosecurity measures. Since Spain is located within natural migratory routes between
Eurasia and Africa, these particular breeds are expected to be highly vulnerable to infection with
HPAIVs carried by migratory birds. Because of that, local chicken breeds could act as sentinels for

HPAIV environmental contamination.

The genetics of resistance to HPAIVs remains unknown. However, particular alleles present in immune
response-related genes have shown a positive correlation with antiviral activity [481, 488]. Mx proteins
are induced by type 1 interferons and interfere with viral functions by inhibiting viral polymerases in the
nucleus [480]. The substitution of serine with asparagine at position 631 of Mx protein, which is
produced by a patticular non-synonymous G/A polymorphism in exon 14 of chicken Mx gene, was
associated with higher antiviral activity  vitro [481]. In vifro and in vive studies do not always show a clear
cotrelation between this allele and inhibition of ATV replication and/or survival after HPAIV infection,
respectively [399, 461, 484, 485, 487]. Therefore, the impact of this particular amino acid substitution is still
unclear. In the present study, we evaluated the genotype frequencies of that particular SNP in the
different chicken breeds and evaluated their association with infection outcome. Similar as in other
studies reporting high diversity in genotype and allele frequency in that position between breeds [632],
we detected huge differences in the frequency of the three genotypes among the spectrum of local,
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commercial and experimental breeds included in our study. As reported previously, White Leghorns
and Broilers appear to be almost fixed for the resistant and susceptible genotype, respectively [482, 632,
633]. In contrast, the results in local breeds were more variable, which could be associated with the higher
genetic diversity generally present in unselected breeds. Overall, the susceptible G allele was more
prevalent in Spanish chickens, while the resistant A allele prevails in chickens from India [634], Indonesia
[635] and Egypt [636]. The statistical analyses showed that the different genotypes in the target Mx region
were not associated with significant differences in mortality ratios. However, the birds carrying the AA
and AG presented a statistically significant longer MDT than those carrying the GG genotype. In
concordance with our results, the study carried out by Ewald e a/ [486] observed that chickens
homozygous for GG allele presented a delayed MIDT. These suggest that the presence of an asparagine
at position 631 in Mx protein may result in a higher antiviral effect response of Mx protein against
HPAIVs, but, as shown in our studies, the biological implications of this change 7 v are probably
limited.

This study represents an exhaustive characterization of the pathobiology of two HPAIVs in a broad
range of chicken breeds. Our results demonstrate that the outcome after infection with HPAIVs is
influenced by numerous tightly interconnected factors, including the viral isolate, the genetic
background of the breed and particular alleles in genes encoding antiviral proteins, undetlining the
complexity of HPAIV infections. A proper surveillance and education of caretakers in commercial but

also in Jocal chicken holdings are required to early detect the circulation of HPAIVs in the territory.
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5.1. INTRODUCTION

The isolation of HPAIVs in waterbirds has been more sporadic than in galliformes species. With the
exception for A/tern/South Africa/1961 (H5N3) [18, 19], evident data indicating that HPATIVs could
be maintained or cause extensive mortality in waterbird populations is lacking. However, since the
emergence of the Gs/GD H5 lineage of HPAIVs, the role of wild and domestic waterfowl in the
epidemiology of HPAIVs has radically changed. Domestic waterfowl, especially ducks and geese, has
been fundamental in the emetgence, petpetuation, genetic evolution and transmission of Gs/GD H5
HPAIVs [53-55, 243, 637). During their evolution, Gs/GD H5 HPAIVs have also acquired altered
pathobiological characteristics for waterfowl species. In comparison with the resistance or minimal
susceptibility of domestic waterfowl to most HPAIVs in terms of clinical disease [193, 279, 285, 286, 330,
331,340-343], infection with Gs/GD H5 HPAIV's may result lethal in these species. The clinical outcome
ranges from subclinical to severe (100% mortalities) depending on viral factors, including the clade,
genetic group and particular mutations in viral gene segments, and host factors, such as the species and

age at infection [364, 638-640).

Despite chicken farming is the leading producer in poultry sector with approximately the 90% of world
poultry meat and egg production, rearing minor avian species such as domestic waterfowl also
represents a significant part of the national agriculture in different countries of the world [29).
Descendants of the wild Greylag goose (Anseranser, Western breeds) and the Swan goose (Anser cygnoidse,
Eastern breeds), geese wete one of the first birds to be domesticated [641]. Used as a multi-purpose
poultry species, most goose breeds are raised for their meat, but also for feathers, down and fatty livers,
in several production systems that range from backyards to specialized commercial farms. Overall,
production of domestic geese is economically important in China and Central Europe [642]. Moreovet,
local breeds of domestic geese are used for controlling weeds in several crops, kept as guard birds or
pets. As in ducks, the isolation of HPAIVs in domestic geese populations have been sporadic and
generally associated to low mortalities [28], and the few studies performed in domestic geese indicate that
classical lineages of HPAIVSs are avirulent for this species under experimental conditions [333, 339]. In
contrast, data cleatly demonstrates that domestic geese have played a main role in the epidemiology of
Gs/GD H5 HPAIVs [643], and the presence of geese on farms is considered a tisk factor of Gs/GD
H5 HPAIVs outbreaks in poultry flocks [644]. In addition, natural or experimental infections with several
Gs/GD HPAIVs have produced severe disease in domestic geese, generally higher than in domestic

ducks [352, 354-361].
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Dhuring the 2016-2017 European epidemics caused by H5NS clade 2.3.4.4 group B of Gs/GD lineage
of HPAIVs, an unprecedented number of outbreaks were recorded in duck and geese holdings (up to
70% of repotted outbreaks) [71]. This was not observed duting previous Gs/GD H5 HPAIV
epidemics, including the phylogenetically related HSN8 HPAIV belonging to Group A that caused
several outbreaks in Europe in 2014/2015. The higher proportion of outbreaks in domestic waterfowl
suggests that particularities of the production in these species are associated with higher probability to
H5N8 Group B HPAIV infection. However, it could also reflect the acquisition of an increased affinity,
tropism and/or virulence towards waterfowl species. Grund e¢f a/. [367) teported that the increased
virulence of H5SN8 Group B HPAIV to domestic ducks was associated with the neuro- and hepato-
tropism characteristics of the virus. Despite domestic geese were the second domestic species most
affected, the pathobiological features of H5N8 Group B HPAIV in this species have not been

characterized to date.

Taking into consideration the large number of outbreaks in geese holdings caused by Gs/GD H5N8
clade 2.3.4.4 Group B HPAIV, the low isolation rates of HPAIVs others than those belonging to
Gs/GD lineage in domestic geese, and the lack of direct compatison of different HPAIVs in this
species, the aims of this study were to: 1) perform a profound investigation of the differential
pathobiology of a HSN8 Gs/GD Group B and a classical H7N1 HPAIVs in domestic geese, and 2)
evaluate the susceptibility and potential role of local and commercial breeds of geese in the epidemiology

of these HPAIVs.

5.2. MATERIALS AND METHODS

Viruses

The vituses used in this study were: A /Chicken/Italy/5093/1999 (H7N1), isolated in 1999-2000 duting
an Italian epidemic that mainly affected Veneto and Lombardia regions (kindly provided by Dr. Ana
Moreno from the Iustituto Zogpfifilattico Sperimentale della 1 ombardia e dell Enilia  Romagna) and
A/Goose/Spain/IA17CR02699/2017 (H5N8 clade 2.3.44. group B), isolated in Catalonia
(Norttheastern Spain) during the 2016/2017 European epizootics. Both viruses are highly pathogenic
based on the aminoacid sequences at the HAO cleavage site: PEIPKGSRVRR |GLF (H7N1) and
PLREKRRKR | GLF (H5NS). Virus stocks were produced in 10 days-old SPF embryonated eggs. The
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allantoic fluid was obtained at 24-48 hpi, filtered and aliquoted at -75°C until use. Serial ten-fold dilutions
of the filtered viruses in PBS were used for titration in 10 days-old SPFF embryonated eggs. The mean
egg lethal doses (ELLDs) were determined by Reed and Muench method [624]. The consensus full
genome sequences corresponding to the eight segments of H7N1 and H5NB8 are available in Genbank
under accession numbers: 1DQ991325.2 to 1D(Q991332.2 (H7N1) and MK494920 to MK494927

(FI5NS).

Animals and facilities

A total of 29 geese (Anser anser var.domestica) of approximately 3-5 months of age were used in this study.
Two breeds were included: 18 birds of the Enspordanesa breed, a local geese breed present in backyards
in Spain alone or mixed with other domestic avian species, and 11 G35-line geese, which is a commercial
breed raised in specialized farms. At arrival, the birds were individually identified and placed in different
negative-pressured HEPA-filtered boxes present in BSL-3 facilities in Censre de Recerca en Sanitat Anintal
(Programa de Sanitat Animal, IRT'A). Water pools under the minimum size required by the Spanish Royal
Dectee 53/2013, which lays down the basic obligations and general principles concerning the animal
protection in expetimentation, were included in the boxes (Figure 9). The birds were kept 5 days for
acclimation. Prior to infection, serum samples were obtained from all birds to ensure that they were
seronegative to IAVs by a cELISA (ID-VET, Montpellier, France). Furthermore, OS and CS were
collected from all birds and confirmed to be negative to AIV by one-step qRT-PCR. During the
experimental procedures, food and water were provided ad /lbitum. The experimental design was
approved by the ethical commission of Institut de Recerca i Tecnologia Agroalimentaries IRTA) and the
Government of Catalonia (Departament de Territori i Sostenibilitat, Direccio General de Politigues Ambientals i
Med;i Natural) under reference code CEEA 57/2017- 10185.

Figure 9. Water pools installed in the HEPA-filtered boxes containing local (A) and commercial (B) domestic geese.
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Experimental design and sampling

29 geese were randomly separated into four challenged groups. For each HPAIV (H7N1 and H5NS),
5 commercial and 8 local geese were challenged via the intranasal route. The viruses were diluted in PBS
in order to inoculate 10° ELD5 in a final volume of 0.05 mL. (0.025 ml inoculated in each nostril). 1
commercial and 2 local geese used as negative control birds, and due to space limitations, they were

euthanized prior to infection in order to collect samples (as desctibed below).

All birds were monitored daily for clinical signs until 15 dpi. A standardized OIE clinical scoring system
was used [140]. Moribund geese were anesthetized using ketamine/xylazine (20 mg/kg body weight,
Imalgene 100 and 0,3 mg/kg body weight, Rompun 20 mg/ml) via the intramuscular route, euthanized
with intravenous pentobarbital (140 mg/kg body weight, Euthasol 400 mg/ml) and scored as dead.
The clinical signs, mortality and MDT were recorded for each virus and breed.

Programmed necropsies were performed at 4 dpiand at the end of the study (15 dpi) in order to evaluate
gross lesions and collect tissues for pathological studies and viral detection and quantification. 3 birds (2
local and 1 commercial) inoculated with H7N1 and H5N8 HPAIVs were randomly selected and
sacrificed at 4 dpi. At the end of the study, 2 geese of each breed were necropsied. All birds found dead
as well as those euthanized for ethical reasons during the experiment were included. In order to evaluate
viral shedding, OS and CS were obtained from all birds at 1, 3, 6 and 10 dpi. 1,5 ml of pool water were
collected from all pools at the same time points. Furthermore, approximately 0.75 ml of total blood in
a 1:1 ratio with anticoagulant (Alsever’s solution, Sigma-Aldrich, Missouri, USA) was extracted from the
medial brachial vein of all geese at 3, 6 and 10 dpi. At the end of the study, serum samples wete obtained

from all survivor birds. All samples were appropriately conserved at -75°C until further use.

Pathological examination and immunohistochemical testing

Tissues collected in necropsies were immersed in 10% formalin for fixation during 48 hours and
embedded in paraffin wax. These samples included skin, thymus, ocular conjunctiva, pectoral muscle,
nasal cavity, trachea, lung, central nervous system, heart, spleen, liver, kidney, proventriculus, gizzard,
pancreas, duodenum, cecum, colon and bursa of Fabrticius. Microtome sections of 3 um of thickness
(Leica RM2255, Nussloch, Germany) from FFPE tissues wete processed, stained with H/E and then
examined under light microscopy. An IHC technique was performed in the same tissues as described
in Study II on serial sections of the tissues. The positivity in the tissues was semiquantitatively assessed

taking into consideration the percentage of NP-positive and negative cells in the tissue. The samples
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were classified as follows: no positive cells (-), <10%o positive cells (+), 10-40% positive cells (++), >40%
positive cells (+++) in a tissue section. Positive and negative controls were used. The positive control
was a central nervous system from a chicken experimentally infected with H7N1 HPAIV [400], and the
negative control consisted in the same tissue incubated with PBS instead of the primary antibody the

tissues collected from negative control geese.

ATV RNA detection and quantitation

Swabs were placed in 0.5 ml of sterile PBS enriched with Penicillin-Streptomycin (Thermo Fisher
Scientific, Waltham, Massachusetts, USA) and Nystatin (Sigma-Aldrich, Missouri, USA) at a final
concentration of 6%. Blood was centrifuged at 3100 revolutions per minute for 10 minutes and plasma
was collected. Thin sections of spleen, central nervous system and lung were obtained during necropsies
and placed in 1 ml of RN Alater Stabilization Solution (Invitrogen, Carlsbad, CA, USA). After overnight
conservation at 4°, RNAlater was removed from samples and 30 mg of each tissue were weighted,
homogenized in 400 ul of Nuclease-free water using a pestle, centrifuged for 3 minutes and the
supernatant collected. Viral RNA was extracted from OS and CS, pool water, plasma and from
homogenized RNAlater-stabilised tissues using Nucleospin RNA virus kit (Macherey-Nagel, Diiren,
Germany), following manufacturer’s instructions. A highly conserved region of IAVs M1 gene was
detected by one-step Tagman RT-PCR in Fast7500 equipment (Applied Biosystems, Foster City, CA,
USA), using the primers and probe as well as conditions of amplification previously described [521, 565].
To extrapolate the GEC present in the samples, the same standard curve obtained by amplification of
M1 gene fragment used in Study II was included in the gRT-PCR reactions. The limit of detection of
the technique was 1.89 log GEC in OS and CS, 2.37 log GEC in plasma and water and 1.79 log GEC

in tissue samples.
Seroconversion
To evaluate seroconversion, serums were tested by a cELISA test that detects Abs against the NP of

IAVs (ID Screen® Influenza A Antibody Competition Multi-species, ID-VET, Montpellier, France).

The technique was performed following manufacturer’s instructions.
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5.3. RESULTS

Clinical signs and mortality

Clinical signs were only observed in HSN8 HPAIV-inoculated geese, being apathy and neurological
signs the most frequently observed. Until 5 dpi, no evident clinical sighs or mortality were recorded. At
5 dpi, one local goose was found dead without previous evident clinical signs. At 6 dpi, two geese (one
local and one commercial) presented severe nervous signs, including ataxia and head shaking, and were
consequently euthanized. Furthermore, two geese (one of each breed) were found dead without
showing prior clinical signs. At 7 dpi, two local geese presented severe apathy and incoordination. The
remaining geese showed mild apathy and tremor. At 9 dpi, one commercial goose was found dead. At
10 dpi, the remaining geese (one local and one commercial) were euthanized for ethical reasons, reaching

a mortality of 100% in both breeds (Figure 10).
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Figure 10. Survival curves of domestic geese expetimentally inoculated with H7N1 o H5N8 HPAIVs at a dose of
105 ELDs.

The MDT was 6,2 and 7 dpi in commercial and local geese, respectively. No differential susceptibility
between local and commercial breeds to HSN8 HPAIV infection was present, consideting mortality
was 100% in both breeds and no major differences in MDT. Neither clinical signs nor mortality were
recorded in H7N1 HPAIV-inoculated geese along the experimental petiod (Figure 10).

Gross lesions

Evident macroscopic lesions were only detected in the group of domestic geese inoculated with H5N8

HPAIV, being the pancreas the most affected organ. Macroscopic examination of HSN8 HPAIV-
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inoculated geese serially euthanized at 4 dpi revealed moderate congestion in nasal turbinates and
intestinal blood vessels. Moreover, two geese presented splenomegaly. However, evident lesions were
not detected until 5 dpi, when the geese found dead presented multifocal areas of hemorrhages and
necrosis in pancreas (Figure 11A), and tracheal congestion. Similar lesions in pancreas were observed
in the necropsies performed in the severely-affected geese from 6 to 10 dpi. At 6 dpi, two geese also
presented multifocal areas of necrosis in the liver associated with a moderate hepatomegaly. At 6 dpi,
one geese presented multifocal petechiae in bursa of Fabricius, and another exhibited petechiae in
gizzard. From 6 to 10 dpi, moderate to severe congestion in several organs, such as cecal tonsil,
subcutaneous tissue and central nervous system, as well as necrotic areas in heart, were also frequently
observed. At 10 dpi, one goose presented moderate friability of the liver, severe congestion of the
intestinal mucosa and marked multifocal hemorrhages in central nervous system (Figure 11B).

Figure 11. Diffuse hemorrhagic areas in pancreas (A) and central nervous system (B) found in geese experimentally
inoculated with H5SN8 HPAIV.

Regarding H7N1 HPAIV-inoculated geese, birds necropsied at 4 and 15 dpi presented non-specific
gross lesions, including mild to moderate congestion in nasal turbinates and intestinal blood vessels.

One goose also presented splenomegaly at 4 dpi.

Histopathological findings

Microscopic obsetvation of tissues revealed evident lesions in mostly all HSN8 HPAIV-inoculated
geese tissues, independently of the tested breed. The main microscopic findings were multifocal to
diffuse areas of necrosis and hemorrhages associated with inflammatory cell infiltration of variable
intensity. NP-positive cells in HSN8 HPAIV-inoculated geese were observed in mostly all collected
tissues and correlated well with pathological findings. NP-positive staining was mostly detected in
parenchymal cells, epithelial cells and inflammatory cells (Table 14).
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Tissue 4 dpi 5 dpi 6 dpi 7 dpi 9 dpi 10 dpi NP+ cells Microscopic lesions
L C L C L C L c L C L C
Central nervous system - - +++ nd +++ A+H++ 44+ nd nd  +  + +  Neurons, glial cells, ependymal cells, Multifocal areas of necrosis, diffuse congestion,
Purkinje cells petivascular cufting (10 dpi)

Pancreas + - ++ nd 4+ +++ ++ nd nd + - - Acnar cells, macrophages Multifocal areas of necrosis with inflammatory
infiltrate

Liver + - 4+ nd  +F ++ ++ nd nd + - - Hepatocytes, Kupffer cells, macrophages ~ Multifocal areas of necrosis and hemorthages
with inflammatory infiltrate

Spleen + - + nd  ++ ++ ++ nd nod + - - Lymphoid cells, macrophages, Multifocal areas of necrosis and hemorthages
with inflammatory infiltrate

Thymus + - 4+ nd  +F + ++ nd nod + - - Lymphoid cells, macrophages, Multifocal areas of necrosis with inflammatoty
infiltrate

Heart - - + nd + ++ + nd nd + - - Myocardyocytes Multifocal areas of necrosis with inflammatory
infiltrate

Skin - - - nd + + - nd nd - - - Feather follicles No apparent lesions

Nasal turbinates + - + nd + + ++ nd nd - - - Respitatory epithelial cells, inflammatoty ~ Diffuse congestion and edema with

cells inflammatory infiltrate

Lung + - + nd + + + nd nod - - - Macrophages Diffuse congestion

B.Fabricius + - + nd + - + nd nd - - - Lymphocytes, macrophages Bursal depletion, focal hemorthagic areas

Kidney - - - nd + - + nd nod - - - Tubular epithelial cells, inflammatory cells  Congestion, focal hemorthagic areas, focal
necrosis of tubular cells

Proventriculus - - - nd + + - nd nod - - - Epithelial cells of the gastric glands No apparent lesions

Small intestine - - - nd + + + nd od - - - Lymphoid cells No apparent lesions

Table 14. Average distribution of NP-positive cells and associated microscopic lesions in tissues collected from local and commercial geese expetimentally inoculated with HPATV H5NS.

No positive cells (<), <10% positive cells (+), 10-40% positive cells (++), >40% positive cells, nd: not determined. L: local geese; C: commercial geese.
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The most severely affected organ was the central nervous system, followed by pancreas, liver, spleen,
thymus and heart. In central nervous system, non-suppurative encephalitis characterized by multifocal
areas of necrosis, spongiosis of the neuropil, chromatolysis, karyolysis, gliosis and diffuse congestion
associated to widespread AIV antigen were present in cerebral cortex at 5 dpi, which correlated with the
onset of mortality. In the cerebellum, necrosis of Purkinje cells associated to AIV antigen was also
observed. Severe lesions and high viral antigen were observed in central nervous system in all birds until
7 dpi, and declined by 9 dpi (Figure 12A/B). At 10 dpi, the geese presented petivascular cuffing in
brain, and was the only tissue that presented AIV-positive cells. Acinar cells lytic necrosis in pancreas
was observed in neatly all geese, in association with low (4 dpi) to intense (6 dpi) ALV antigen in necrotic
areas and surrounding acinar pancreatic cells (Figure 12C/D). Starting at 4 dpi and peaking at 6-7 dpi,
severe multifocal areas of lytic necrosis and hemortrhages associated to widespread viral antigen were
detected in liver (Figure 12E/F). In thymus and spleen, multifocal areas of necrosis and inflammatory
infiltrate as well as moderate amounts of viral antigen were present from 4 to 9 dpi, reaching the
maximum levels by 6-7 dpi (Figure 12G/H and 1/J, respectively). In heart, multifocal areas of
degenerated and/ot necrotic myocytes and mononuclear cell infiltration associated to low-moderate
amounts of Al antigen were present from 5 to 9 dpi (Figure 12K/L). Mild focal areas of necrosis and
hemorrhages associated to low viral antigen were detected in other organs from 4 to 7 dpi, including
kidney and bursa of Fabricius. In nasal cavity and lung, diffuse congestion associated to low amounts
of viral antigen were also present. Single positive cells without evident microscopic lesions were detected
in proventriculus and lamina propria of small intestine at 6 dpt and in 6-7 dpi, respectively. In general,
higher amounts of AIV-positive cells were present in HSN8 HPAIV-inoculated local geese than in the
commercial breed. No evident microscopic lesions or AIV-antigen positive cells were observed in

H7N1 HPAIV-inoculated or negative control geese.
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Figure 12. Serial sections of different organs of geese expetimentally inoculated with HSN8 HPAIV stained with

conventional HE staining and IHC techniques against NP nucleoprotein, respectively (20x). CNS A/B: diffuse areas
of spongiosis and gliosis of cerebral parenchyma (A) and NP-positive neurons and glial cells (B). Pancteas C/D: diffuse areas
of Iytic necrosis of acinar pancreatic cells (C) and NP-positive cells in necrotic areas and surrounding acinar pancreatic cells (D).
Liver E/F: multifocal ateas of necrosis in liver parenchyma (E) and diffuse NP-positive hepatocytes, Kupfer cells and
inflammatory cells (F). Spleen G/H: multifocal areas of mild nectosis and diffuse congestion (G) and ptesence of inflammatoty
cells positive to NP (H). Thymus I/]: ateas of nectrosis in medulla (I) and NP-positive lymphoid cells (). Myocardium K/L:
multifocal necrosis of myocardiocytes with mild inflammatory infiltrate (K) and NP-positive myocardiocytes and inflammatory
cells (D).
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Viral shedding

High viral RNA excretion was present in HSN8 HPAIV-inoculated geese in both OS and CS from 3
dpi to 6 dpi (Figure 13A-B). Virus was firstly detected at 1 dpi only in OS from two commercial geese.
At 3 dpi, moderate levels of viral RNA were present in nearly all local and commercial geese in both OS
and CS samples. At 6 dpi, all birds presented viral RNA from OS and CS. At that day, viral RNA
reached the maximum levels in OS in both breeds, and it was maintained at levels similar as in 3 dpi in

CS also in both breeds. At 10 dpi, only one local goose presented detectable levels of viral RNA.

Regarding H7N1 HPAIV-inoculated geese, a very low number of birds presented viral shedding and it
was principally restricted to samples from OS (Figure 13C-D). At 3 dpi, one local goose presented
high levels of viral RNA from OS and in lower amounts from CS. At 6 dpi, the same local goose and
one commercial goose tested positive to viral RNA only from OS. Lastly, at 10 dpi, viral RNA was
detected again only from OS in one local goose and in two commercial geese. The local and one
commercial geese positive at 10 dpi were negative the previous days of sampling. We did not detect
differences concerning viral shedding between local and commercial geese neither in HSN8 nor H7N1
HPAIVs -inoculated geese.
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Figure 13. Viral titers expressed as log GEC in OS and CS obtained from domestic geese (local and commercial)
inoculated with H5NS (A, B) or H7N1 (C, D) HPAIVs at different time points post-inoculation. The ratios above the
columns represent the number of birds shedding virus out of the total sampled. Reptesented as Mean + SEM. GEC: Genome

equivalent copies; Dpi: day post-infection.
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Viral RNA in pool water was detected in both enclosures of HSN8 and H7N1 HPAIVs experimental
groups. Viral RNA in the case of HSN8 HPAIV-inoculated groups was firstly detected at 6 dpi in both
local (4,37 log CGE) and commercial geese (4,33 log CGE) groups, and the levels were constant until
10 dpi (4,28 log CGE, 4 log CGE, respectively). In contrast, viral RNA in the case of H7N1 HPAIV-
challenged group was only present at 10 dpi in local geese, and was near to undetectable levels (2,49 log
CGE).

Viral RNA in plasma

High levels of viral RNA were detected in plasma from almost all HSN8 HPAIV-inoculated local and
commercial geese at 3 dpi, and all were positive at 6 dpi (Figure 14A). In general, the levels in plasma
correlated well with levels presented in swabs. At 10 dpi, no viral RNA was detected in plasma. Viral
RNA in plasma of H7N1 HPAIV-inoculated geese was only detected in one local goose from 3 to 6
dpt and in one commercial goose at 3 dpi. The levels of viral RNA were generally lower and the decay
was considerably faster than in HSN8 HPAIV-inoculated geese (Figure 14B). We did not detect
differences concerning viral RNA in plasma between local and commercial geese neither in HSN8 nor
in H7N1 HPAIV-inoculated geese.
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Figure 14. Viral titers expressed as log GEC in plasma obtained from domestic geese (local and commercial)
inoculated with H5N8 (A) or H7N1 (B) HPAIVs at different time points post-inoculation. The ratios above the
columns represent the number of birds showing vitemia out of the total sampled. Represented as Mean = SEM. GEC:

Genome equivalent copies; Dpi: day post-infection.
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Viral RNA in tissues

Since we did not found evident differences in mortality and in the main organs affected between local
and commercial geese, the quantitation of viral RNA in brain, spleen and lung in both breeds were
grouped. In HSN8 HPAIV-inoculated groups (Figure 15A), hich amounts of viral RNA were detected
in the spleen and lung at 4 dpi in all geese euthanized for pathological purpose. Low levels were present
at that time in brain. Viral RNA in brain notably increased in all naturally-dead and severely-affected
geese from 5 to 10 dpi, reaching titers higher than 9 log CGE at 6, 7 and 9 dpi. At 10 dpi, high levels of
virus were still detected in brain samples. Viral RNA in spleen and lung were detected in all birds and
remained high at the different time points, reaching the maximum levels at 7 dpi. At 10 dpi, low levels

were present in lung, and were undetectable in spleen.

Regarding H7N1 HPAIV-inoculated geese (Figure 15B)., moderate amounts of viral RNA were
detected in spleen and in lung at 4 dpi, but not in brain. At 15 dpi, both geese tested positive to AIV
RNA in brain samples. One bird also presented AIV RNA in lung, but near to the limit of detection of
the technique. No viral RNA was detected in control birds.
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Figure 15. Viral titers expressed as log GEC in tissues (brain, spleen and lung) obtained from domestic geese (local
and commercial) inoculated with H5N8 (A) or H7N1 (B) HPAIVs at different time points post-inoculation. The
ratios above the columns represent the number of birds were viral RNA was detected out of the total sampled. Represented as

Mean + SEM. GEC: Genome equivalent copies; Dpi: day post-infection.

Seroconversion

Allincluded birds wete seronegative ptior to infection. At 15 dpi, 33,3% (2/6) and 75% (3/4) of H7TN1-

inoculated local and commercial survivor geese, respectively, seroconverted.
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5.4. DISCUSSION

Before the emergence of Gs/GD H5 lineage, the isolation of HPAIVs in domestic geese was sporadic
and not associated to high mortalities [28]. In addition, several studies demonstrate that domestic geese
have played an important role in the emergence, evolution, perpetuation and interspecies transmission
of HPAIVs belonging to Gs/GD HS5 lineage [643], but the information about their potential role in the
epidemiology of other HPAIVs is lacking. In 2016-2017, the HPATV H5N8 belonging to clade 2.3.4.4
Group B of Gs/GD lineage caused an unprecedented number of outbreaks in domestic duck and
geese holdings in Europe, which was not observed during the previous intercontinental waves of this
lineage. Here, a local and a commercial breed of domestic geese were intranasally inoculated with a
classical HPAIV strain (Italian H7N1) and a Gs/GD-HPAIV strain (Spanish H5N8 clade 2.3.4.4 B).
To our knowledge, this is the first study performing a direct comparison of the pathobiological features
of a classical and a Gs/GD-lineage strain in domestic geese.

Our data clearly demonstrated that domestic geese were highly susceptible to HSN8 HPAIV infection.
Starting at 5 and lasting until 10 dpi, the mortality rate in the domestic geese inoculated with H5SN8
HPAIV reached the 100%. Previous studies have reported a wide variation of susceptibility of domestic
geese to Gs/GD H5 HPAIVs. The lethality ranges from 0 to 100% depending on the subtype, clade
and genetic group of the Gs/GD H5 HPAIV, dose of inocula, the species (Anser anser, Anser eygnoides),
breed and age at infection [352-361, 367, 393]. In the present study, two factors could influence the
pathogenicity of HSN8 HPAIV in geese, most probably by reducing it. First, we challenged domestic
geese with a dose of inoculum comparatively lower than the generally used for experimental infections
in waterfowl species (10°ELDs zersus 10° ELDsyor highet). Second, we used geese of approximately 3-
5 months of age, while most studies have performed the experimental infections in younger birds [352,
354-361]. The high mortality rates observed in our study despite the factors mentioned above, together
with the mortalities reported by Grund e 4/ [367] and Slomka e a/. [369] in domestic ducks demonstrate
that the HSN8 HPAIVs belonging to clade 2.3.4.4 Group B of Gs/GD lineage circulating in Europe

in 2016-2017 acquired virulence to domestic waterfowl populations.

The virulence of Gs/GD H5 HPAIVs in a wide range of avian and mammal species has been
associated with the strong neurotropism charactetistics of this lineage. Domestic geese infected with
Gs/GD H5 HPAIVs usually exhibit neurological sighs and microscopic lesions and viral antigen/RNA
are detected in the central nervous system with or without mortality associated [352, 354-361]. In our

study, the main clinical signs observed in the severely-affected geese were neurological, including tremor,
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ataxia and head shaking. The histological lesions of the tissues coincided with the clinical manifestations:
birds infected with HSN8 HPAIV showed multifocal to diffuse areas of necrosis in the central nervous
system associated to widespread presence of AIV antigen demonstrated by IHC. These findings
correlated well with the onset of mortality at 5 dpi and were common until the end of the study. As
expected, viral RNA quantification in brain was in concordance with IHC results, being the organ that
presented the highest viral loads. Thus, our results demonstrate that Gs/GD H5N8 2.3.4.4 Group B
HPALIV is highly neurovirulent in domestic geese. Despite neurological dysfunction was considered the
main cause of the high mortalities, lesions in other organs could have an important effect in the infection
outcome. Our data indicated that HSN8 HPAIV presented a multi-organ tropism in domestic geese.
Multifocal areas of hemorrhages in the pancreas were commonly observed during the macroscopic
examination of the birds. Microscopically, the birds exhibited large necrotic and inflammatory lesions
and high levels of AIV antigen presence in pancreas, liver, and to a lesser extent in spleen and thymus.
The intensity of the lesions produced by H5N8 HPAIV in these organs could lead to multi-organ
failure, and compromise the cellular immunity in case birds survive to infection. Similarly, Grund e ai.
[367] reported that the high virulence of the H5NS clade 2.3.4.4 Group B HPAIV in domestic ducks

was also probably associated with the intense hepato-tropism of this virus.

Previous reports have demonstrated that HPAIVs other than those belonging to Gs/GD HS5 lineage
can readily infect domestic waterfowl and replicate in different internal organs, but in the majority of
cases they produce a subclinical to mild disease [193, 279, 285, 286, 330, 331, 333, 339-343]. However,
expetimental inoculation of particular H7 HPAIVs have caused severe clinical signs and mortality in
ducks, in variable proportion depending on the species, virus strain and route of inoculation [329, 345,
346]. These studies demonstrate the potential virulence of particular classical lineages of HPAIVs for
domestic waterfowl. Therefore, the low mortalities reported in domestic waterfowl during most
HPAIV outbreaks may have been in some cases the result of low exposure needed to initiate infection
rather than to low virulence of the viruses for these species. During the epidemics caused by the HPAIV
H7NT1 in Italy in 1999/2000, several flocks consisting in mixed poultry species teported high mortalities.
However, domestic waterfowl were generally unaffected. In contrast, a particular outbreak was
characterized by mortality and nervous signs in domestic ducks and geese [190]. By means of IHC
techniques, the authors demonstrated AIV antigen in pancreas and in the central nervous system in
these birds [190]. In the present study, domestic geese were susceptible to infection with the Italian H7N1
HPAIV as demonstrated by the seroconversion in several individuals. However, none of the birds
showed evident clinical signs, gross or microscopic lesions, and all of them survived. Our results,
together with those obtained by Nayaran ¢ @/ [333] and R6hm e al. [339] support the theory that most
classical lineages of HPAIVs appear to be avirulent for domestic geese under expetimental conditions.
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However, we detected AIV RNA in plasma and in the three collected organs (central nervous system,
pancreas and spleen) at different time-points in several geese inoculated with H7N1 HPAIV.
Interestingly, one goose still presented detectable levels of viral RNA in brain and lung at the end of the
study. Even though, the detection of viral RNA in tissues and plasma was inconsistent and at lower
levels in comparison with those obtained from H5N8 HPAIV-inoculated geese, and all birds lacked
AlV-positive cells by IHC techniques. These results provide evidence for a poor capacity of H7N1
HPALIV to produce a robust systemic infection in domestic geese. Therefore, differences related to the
viral isolate, to the exposed dose, or to underlying factors in the birds (e.g. immunosupression,
concomitant pathogens) could have facilitated the systemic dissemination of H7N1 HPAIV in that
particular flock during the Italian 1999/2000 epidemics, and consequently, contributed to the mortality.

In the present study, we also evaluated the potential role of domestic geese in the epidemiology of the
selected HPAIVs. Previous reports indicate the potentially important role of domestic geese in the
epidemiology of Gs/GD H5 HPAIVs, as determined by high viral shedding and transmission to
contact birds, and in some cases in a subclinical way [352, 354-361]. In our study, HSN8 HPAIV-
inoculated geese shed large amounts of virus by oral (ranging from 2,16 to 7,75 log GEC) and cloacal
(ranging from 2,43 to 7,52 log GEC) routes, suggesting that both fecal-oral and oral-oral routes could
play a major role in the transmission of HSN8 HPAIVs in domestic waterfowl populations. Oral
excretion did not significantly surpassed cloacal excretion in our study. Since the shift from
predominantly cloacal shedding to oral is usually associated to adaptation to galliformes species [194], our
findings suggest that the local HSN8 HPAIV strain may retain the wild waterfowl-shedding pattern. In
addition, previous studies observed that Mandarin ducks and mallards inoculated with HSN8 HPAIV
(clade 2.3.4.4 Group A and B) presented higher cloacal viral shedding than those infected with H5N1
(Clade 2.2 and 2.3.2.1) [645] and H5NOG (clade 2.3.4.4 Group C) HPAIVs [387]. These findings suggest a
higher efficiency of particular strains of Gs/GD H5NS8 subtype in the hotizontal transmission among

infected waterfowl species.

We detected a moderate viral load in the pool water at the later stages of infection. The detection in
water despite we did not concentrated the samples suggests that sharing contaminated water can play
an important epidemiological role as a source of HSN8 HPAIV infection. For instance, proximity to
outdoor water, ponds and lakes frequently visited by domestic and wild waterfowl are considered a
potential fisk factor in the transmission of Gs/GD H5 HPAIVs to land-based poultry flocks [646]. The
detection of a high viral load in plasma indicates that blood (i.e. as a result of fighting between infected

geese) may represent an additional source of environmental contamination.
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Despite the absence of clinical signs and mortality until 5 dpi, high viral shedding was already detected
at 3 dpi. This, together with the high viral loads detected in all samples including water, suggest the
possible involvement of domestic geese in the dissemination of HSNS8 B HPAIV between waterfowl
holdings and spill back to wild birds, either directly or through a common source of water, during the
2016-2017 H5N8 B European epidemics.

The study conducted by Pantin-Jackwood ¢ a/ [194] demonstrated that mallards experimentally
inoculated with a battery of classical H5 and H7 HPAIVs strains transmitted the virus to contact
mallards. In addition, lesser scaups (Ay#hya affinis) infected with two North-American H7 lineages of
HPAIVs shed virus up to 14 days after infection [343]. Domestic geese inoculated with H7N7 isolated
in Germany also excreted titers similar to those in chickens up to 7 days [339. H7N2 and H7N3
HPAIVs derived from the Asian H7N9 lineage also appears to be in process of adaptation to waterfowl,
with domestic and mallard ducks shedding virus for several days after experimental inoculation [286, 647].
The high and/or prolonged viral excretion reported in these studies suggest that waterfowl could play
a role in the dispersal of HPAIVs other than those belonging to Gs/GD lineage in case the infection is
established. However, the literature studying the potential role of domestic waterfowl in the
epidemiology of classical HPAIVs is still scarce. In our study, a low number of H7N1 HPAIV-
inoculated geese shed virus during the experiment and was mostly restricted by the oral route, suggesting
a high degree of adaptation of the virus to gallinaceous species. Similarly, few birds presented detectable
levels of viral RNA in plasma and were close to the limits of detection of the technique in pool water.
However, the levels detected in the positive OS were comparable with those collected from H5N8
HPAIV-inoculated geese (up to 6,32 log GEC). In addition, the detection of viral RNA in swabs in two
geese at 10 dpi that were negative the prior days of sampling could be indicative of intra-species
transmission of the virus, either by aerosols or through the pool water. Since geese did not present any
evident clinical sign through the study, we suggest that domestic geese may play, to some extent, a role
in the perpetuation and transmission of classical HPAIVs to more susceptible avian species without

being noticed.

Several mutations in viral gene segments that lead to amino acid substitutions in AIV proteins have
been associated as markers of adaptation, and/or to increased virulence and transmissibility of HPAIVs
in birds. PB2, PB1, PB1-F2, PA, HA, NP, and NS gene segments ate all responsible for Gs/GD H5N1
HPAIV pathogenicity in ducks [313, 581, 588, 648, 649]. In geese, no information is available. The H7N1
and H5N8 HPAIVs strains used in the present study presented numerous amino acid differences in
NS protein (67.3% identity) and to a lesser extentin PB2, PB1, PA, NP and M proteins (=95% identity).

Both HPAIVs presented amino acid substitutions associated with increased virulence in ducks (PB1:
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430Y; PA: 237EW, 383D; M1: 43M) [313, 581, 587, 588, 603]. Since the majority of these amino acid
mutations have been reported in HPAIVs of Gs/GD lineage and the effect of some amino acid
mutations are dependent on the virus lineage [650], some of these mutations could explain the higher
pathogenicity of HSN8 HPAIV. The differences observed between viruses in our study could also be
associated to molecular markers of adaptation and virulence to waterfowl species that are still

unidentified.

Some studies demonstrate wide differences in the susceptibility to HPAIVs between chicken
breeds/lines [338, 399, 412, 416, 461-465], wheteas in ducks the differences appear to be minor [469, 470]. In
the present study, we did not detect evident differences in susceptibility between the local and
commercial breed. However, the high mortalities of both, local and commercial geese, after infection
with H5N8 HPAIV makes them suitable sentinels for the presence of the virus in the domestic-wild
interface (local breed) and its introduction into commercial holdings (commercial breed). Domestic
geese should be also targeted in active surveillance programs to eatly detect the circulation of HPAIVs
of the Gs/GD lineage since they presented high viral loads of vitus in different samples (OS, CS and
blood) before the presence of evident clinical signs. The susceptibility of local geese to HSN8 and, to a
lesser extent, to H7N1 HPAIVs is of particular interest. This breed is mostly reared in backyards, usually
mixed with other domestic poultry species under minor biosecurity measures, which facilitates the
exchange of HPAIVs between wild and domestic avian species and the potential generation of novel

HPALIV reassortants with unknown biological characteristic to avian and mammal species.

The results of the present study demonstrate that domestic geese are susceptible to HSN8 and H7N1
HPAIVs. However, we demonstrate the lower infectivity, virulence and excretion of the classical H7N1
HPALIV strain in domestic geese in compatison with the Gs/GD lineage H5NS strain when compared
side by side. Since viral shedding were detected in both H7N1 and H5N8-inoculated geese, and
HPAIVs continue to evolve and acquire new biological characteristics, an enhanced monitoring in a
broad range of avian species, including backyard and commercial geese must be guaranteed in order to

avoid the perpetuation of HPAIVs in the domestic-wild interface.
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STUDY IV

6.1. INTRODUCTION

Pigeons are synanthropic birds that congregate in habitats where large quantities of food, water and
shelters for roosting and nesting are accessible. Pigeons preferentially forage on agticultural areas and a
high number of these birds can be present in the vicinities of poultry holdings [651]. Their habits facilitate
the direct contact with domestic poultry, particularly with those present in backyards and in free-range
husbandry, and the contamination of feed and water with feces during their storage. In these areas,
pigeons are also exposed to numerous species of wild birds, including their predators, and they can be
the gate to wild birds pathogens go through reaching poultry species. Pigeons are one of the most
common birds found in urban areas, where forage is based on spilled food, then living in proximity with
humans and their beings and sharing habitats with aquatic birds (e.g. with mallards in parks) [651].
Pigeons are also present in LBMs, backyards and professional lofts, especially the breeds raised for meat

ot for contests, including the multi-million dollar pigeon racing industry [652].

The close association with wild birds, poultry and humans suggests that pigeons are likely to be
recurrently exposed to AIVs. Therefore, infected pigeons could act spreaders of AIVs between farms
and be involved in the zoonotic transmission into human population as a “bridging species”. However,
available data indicates that pigeons play a minimum role in the epidemiology of Al Several studies have
detected specific antibodies and several subtypes of AIVs in free-living and captive pigeons but the
overall prevalences are low [653-650]. In most experimental trials, pigeons were resistant or minimally
susceptible to HPAIV infection, with several studies reporting an inconsistent presence of clinical signs,
gross and microscopic lesions, lack of mortality, reisolation of the virus and viral antigen in tissues,
and/or low seroconvetsion rates [316, 347, 348, 375, 390, 657, 658]. Moreovet, pigeons ate consideted poor
propagators of HPAIVs by the transient and low viral shedding observed after expetimental inoculation
and the lack of transmission to co-housed pigeons and/or chickens [316,375,379, 389, 390, 657]. Thus, they

are usually referred as dead-end hosts.

In general, the limited replication of AIVs in pigeons is associated with the expression pattern of SA in
this species: the upper respiratory tract of pigeons contain predominantly SA in an a2,6 configuration
(human-like), whereas a2,3 SA (avian-like) are almost restricted to the lung alveolar cells and rectum
[659]. However, a degree of variation exists in the susceptibility of pigeons to HPAIVs, especially evident
since the emergence of the Gs/GD H5 lineage of HPAIVs. Particular HPAIVs belonging to Gs/GD
H5 lineage, including H5N1 and H5NS, have been isolated from pigeons that died naturally or
presented evident signs of infection [392, 660-662]. Moteovet, patticular Gs/GD H5N1 HPAIVs isolates
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acquired virulence to pigeons: several birds presented clear nervous signs before death or died in the
absence of clinical signs, in association to viral replication in internal organs [375-379]. Presence of pigeons
near poultry holdings has been considered a tisk factor of introduction of Gs/GD H5 HPAIVs in
backyard chickens [663], indicating the possible involvement of pigeons in Gs/GD H5 HPAIVs
outbreaks in poultry. In addition, Gs/GD H5N1 HPALV of clade 1 was efficiently transmitted to co-
housed chickens [378]. Since particular HPATVs may have acquired unusual avidity towards pigeons, it

is important to characterize the pathobiology of different HPAIVs in this species.

The outcome after infection with HPAIVs is influenced by the virus isolate, but also largely by
numerous host factors. Several experiments in chickens demonstrated that the susceptibility to infection
is highly dependent of the genetic background of the breed/line [338,399, 412, 416, 461-465]. However, the
existence of breed-specific differences in peri-domestic avian species, including pigeons, has not been
evaluated to date. Moreover, the different breeds of pigeons are present in diverse environments, and
some of them are raised as domestic birds; thus, they could play a different role in the epidemiology of

Al in case of infection.

Considering the differences in outcome and shedding after infection with different HPAIVs in pigeons
and the potential breed-specific variations in susceptibility between breeds, herein we evaluated the
differential pathobiology of two HPAIVs in two breeds of pigeons. A classical H7NT1 isolated in Italy
during the 1999-2000 epidemics and a HSN8 belonging to Gs/Gd H5 lineage isolated in Spain duting
the 2016/2017 European epidemics wete inoculated in local and urban pigeons. The infectivity, the
pathogenesis and the viral shedding were assessed.

6.2. MATERIALS AND METHODS

Viruses

The vituses used in this study were: A/Chicken/Italy/5093/1999 (H7N1), isolated in 1999-2000 duting
an Italian epidemic that mainly affected Veneto and Lombardia regions (kindly provided by Dr. Ana
Moteno from the Instituto Zogprofilattico Sperimentale della  Lomtbardia e dell'Emilia Romagna) and
A/Goose/Spain/IA17CR02699/2017 (H5NS8 clade 2.3.4.4. group B), isolated in Catalonia (Northern
Spain) duting the 2016/2017 European epizootics. Both vituses ate highly pathogenic based on the
aminoacid sequences at the HAO cleavage sitee PEIPKGSRVRR|GLF (H7N1) and
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PLREKRRKR | GLF (H5NS). Virus stocks were produced in 10 days-old SPF embryonated eggs. The
allantoic fluid was obtained at 24-48 hpi, filtered and aliquoted at -75°C until use. Serial ten-fold dilutions
of the filtered viruses in PBS were used for titration in 10 days-old SPIF embryonated eggs. The mean
egg lethal doses (ELDs) were determined by Reed and Muench method [624]. The consensus full
genome sequences corresponding to the eight segments of H7N1 and H5N8 are available in Genbank
under accession numbers: Q9913252 to DQ991332.2 (H7N1) and MK494920 to MK494927

(FI5NS).
Animals and facilities

In total, 70 pigeons (Colunzba livia domestica) of approximately 6 months of age were used in the present
study. Two breeds were included: Colonz del vol catala (35 birds), which is a local breed of Catalonia
(northern Spain) generally present in backyard flocks that has been selected for flight in flock and

plumage colours, and urban pigeons (35 birds), extensively present in urban and peri-domestic areas.

At arrival, the animals were individually identified and placed in separated negative-pressured HEPA-
filtered boxes present in BSL-3 facilities in Centre de Recerca en Sanitat Animal (Programa de Sanitat Aninsal,
IRTA). In order to ensure animal welfare the installations were entiched with perches, as desctibed in
the Spanish Royal Decree 53/2013 that lays down the basic obligations and general principles
concerning the animal protection in experimentation. Prior to infection, serum samples were obtained
from all animals to ensure that they were seronegative to IAV and Newcastle disease virus (NDV) by
cELISA (ID-VET, Montpellier, France). In addition, OS and CS were collected from 5 random pigeons
of each group (10 animals/breed) and confirmed to be negative to IAV by one-step qRT-PCR.

During the experimental procedures, food and water were provided ad libitum. The experimental design
was approved by the ethical commission of Institut de Recerca i Tecnologia Agroalimentaries IRTA) and the
Government of Catalonia (Departament de Territori i Sostenibilitat, Direccio General de Politigues Ambientals i
Medi Natural) under reference code CEEA 92/2018-10253.

Experimental design and sampling

04 pigeons (32 local and 32 urban) were randomly separated into 4 infected groups of 16 birds each.
After 5 days of acclimation, for each virus (H7N1 and H5NS) 16 local and 16 urban pigeons were
inoculated with the corresponding virus diluted in PBS in order to inoculate 10°ELDs) in a final volume
of 0.05 mL (0.025 mL inoculated in each nostril). 6 pigeons that were previously demonstrated
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seronegative to IAV and NDV by cELISA test were euthanized prior to infection in order to collect

tissue samples as negative control birds.

All birds were monitored daily for clinical signs until 14 dpi. An OIE scoring for AIV infection was
used [140). Motibund pigeons wete anesthetized using ketamine/xylazine (20 mg/kg body weight,
Imalgene 100 and 0,3 mg/kg body weight, Rompun 20 mg/ml) via the intramuscular route, euthanized
with intravenous pentobarbital (140 mg/keg body weight, Euthasol 400 mg/ml) and scoted as dead.
The mortalities and MDT were recorded in each group. In order to evaluate viral shedding, OS and CS
were obtained from the first 9 birds of each group (selected previously to the inoculation) at 1, 3, 6, 10
and 14 dpi. Pulps from immature feathers (FP) were collected from the ventral area in the same birds
at 3 and 6 dpi. 2 birds were sacrificed, using the combination of sedation and euthanasia described
above, at 3, 6, 10 and 14 dpi (at 14 dpi only one pigeon was euthanized) to evaluate gross lesions, and
tissues were collected and formalin-fixed from the necropsies performed for pathological studies. The
selection of birds was biased towards those found dead or presenting evident clinical signs of disease.
At the end of the study, serum samples were obtained from all survivor pigeons in order to evaluate

seroconversion.

Pathological examination and immunohistochemical testing

A standardized necropsy was performed in order to detect gross lesions and collect tissues for
pathological studies. Tissue samples were collected, immersed in 10% formalin for fixation during 72
hours and embedded in paraffin wax. Samples included skin, thymus, ocular conjunctiva, pectoral
muscle, nasal cavity, trachea, lung, central nervous system, heatt, spleen, liver, kidney, proventriculum,
gizzard, pancreas, duodenum, cecum, colon and bursa of Fabricius. Tissue samples collected at 3, 6 and
10 dpi were subjected to microscopic examination. Microtome sections of 3 um of thickness (Leica
RM2255, Nussloch, Germany) from FFPE tissues were processed, stained with H/E and then
examined under light microscopy. An IHC technique was performed as described in Study II on serial
sections of the tissues. The positivity in the tissues was semi-quantitatively assessed taking into
consideration the percentage of NP-positive and negative cells. The samples were classified as follows:
no positive cells (-), <10% positive cells (+), 10-40% positive cells (++), >40% positive cells (+++) in
a tissue section. Positive and negative controls were used. The positive control was a central nervous
system from a chicken experimentally infected with H7N1 HPAIV [400], and the negative controls
consisted in the same tissue incubated with PBS instead of the primary antibody and the tissues collected

from seronegative pigeons that were euthanized prior to infection.
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Viral RNA quantitation in swabs and feather pulps

Swabs were placed in 0.5 ml of sterile PBS enriched with Penicillin-Streptomycin (Thermo Fisher
Scientific, Waltham, Massachusetts, USA) and Nystatin (Sigma-Aldrich, Missouri, USA) at a final
concentration of 6% The pulps were separated from the feathers and homogenized in 0.5 ml of sterile
PBS with 6% antibiotics. All samples described above were conserved at -75°C until further use. Viral
RNA was extracted from OS, CS and FP using Magattract 96 cador pathogen kit and BioSprint 96
equipment (Qiagen, Valencia, CA, USA), following manufacturer’s instructions. A highly conserved
region of AIV M1 gene was detected by one-step Tagman RT-PCR in Fast7500 equipment (Applied
Biosystems, Foster City, CA, USA), using the primers and probe as well as conditions of amplification
previously described [521, 565]. Samples presenting a Ct value lower than 40 were considered positive to
IAV RNA. To extrapolate the GEC present in the samples, a standard curve obtained by amplification
of M1 gene fragment (99 bp) was used. The limit of detection of the technique was 2,07 log GEC in

swabs and in FPs.

Seroconversion

To evaluate seroconversion, sera of all survivor animals were tested by a cELISA test (ID Screen®
Influenza A Antibody Competition Multi-species, ID-VET, Montpellier, France), following

manufacturet’s instructions.

6.3. RESULTS

Clinical signs and mortality

Clinical signs were only observed in a local pigeon inoculated with HSN8 HPAIV. At 5 dpi, this pigeon
presented reluctance to movement, severe apathy and nervous signs, including tremor and ataxia. At 6
dpi, the bird presented similar nervous signs and was prostrated, and was consequently euthanized for
ethical reasons. The remaining local and urban pigeons inoculated with HSN8 HPAIV did not present
any evident clinical sign. .ocal and urban pigeons inoculated with H7N1 HPAIV did not exhibit any
evident clinical sign through the study.
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Gross lesions

Consistent gross lesions were only observed in the pigeon inoculated with HSN8 HPAIV that was
euthanized at 6 dpi. The lesions were restricted to the pancreas, which presented a generalized mild
discoloration with small petechial haemorrhages. The remaining birds inoculated with H5N8 and
H7N1 HPAIVs serially necropsied at 3, 6, 10 and 14 dpi did not present any evident macroscopic lesion,

neither in negative control animals.

Histopathological findings

Pigeons serially necropsied at 3, 6 and 10 dpi were subjected to microscopic examination. Only the
pigeon inoculated with HSN8 HPAIV euthanized at 6 dpi presented microscopic lesions and NP+
cells, which were restricted to the central nervous system and myocardium. The most severe
microscopic lesions and the higher percentage (>40%0) of cells expressing the presence of viral antigen
by means of IHC techniques were observed in the brain. The cerebral hemispheres presented extensive
areas of non-suppurative encephalitis consisting in severe spongiosis, gliosis and neuronal
chromatolysis, and lymphocytic cuffing; the IHC technique revealed widespread AIV antigen in
neurons and glial cells (Figure 16A-B). The myocardium of the same bird presented focal areas of
moderate necrosis and degeneration of myocytes with mixed inflammatory infiltrate
(lymphoplasmacytic and heterophils); in these areas IHC techniques revealed a low percentage (<10%0)
of myocytes and inflammatory cells expressing the presence of viral antigen (Figure 16C-D). No
microscopic lesions neither NP-positive cells were detected in the pancreas. The remaining tissues of
the same bird and the other examined pigeons inoculated with H7N1 or H5N8 HPAIVs did not
present evident microscopic lesions nor NP-cells positivity. Negative control animals showed neither

microscopic lesions nor viral antigen in tissues.
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Figure 16. Serial sections of the central nervous system and heart of a local pigeon experimentally inoculated with
HS5N8 HPAIV stained with conventional HE staining and IHC techniques against NP nucleoprotein, respectively.
CNS A/B, diffuse areas of nectosis, gliosis and petivascular cuffing (A) and NP-positive neurons and glial cells (B). Myocardium
C/D., multifocal nectosis of myocardiocytes with mild inflammatory infiltrate (C) and NP-positive myocardiocytes (D).

Viral shedding

In H7N1 HPAIV-inoculated birds, three OS collected from urban pigeons were positive at 1 dpi, and
two urban pigeons different from those at 1 dpi tested positive at 3 dpi. In CS, one urban pigeon
maintained detectable levels from 3 to 6 dpi. The levels of viral RNA in OS and CS remained low
through the experiment (ranging from 2,93 to 3,86 log GEC and from 3,16 to 4,23, respectively)

(Figure 17).

In H5N8 HPAIV-inoculated birds, the OS collected from one local and one urban pigeon tested
positive to ATV RNA at 1 dpi; at 3 dpi, one pigeon of each breed different from those that were positive
at 1 dpi presented detectable levels of viral RNA. Similatly, one pigeon of each breed different from
those positive at 1 and 3 dpi were positive at 6 dpi. In the case of the CS, viral RNA was detected in two
urban pigeons at 1 dpi, and only a local pigeon tested positive at 3 dpi. The levels of ATV RNA in OS
and CS were generally low; only one CS collected at 1 dpi (5,16 log GEC) and one OS collected at 6 dpi
(5,021og GEC) presented moderate amounts of viral RNA (Figure 17).

No viral RNA was detected in the OS and CS collected at 10 and 14 dpi in any expetimental group, or
in the swabs collected in the local pigeons inoculated with H7N1 HPAIV. No viral RNA was detected
in the feather pulps collected at 3 and 6 dpi in any bird.
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In summary, viral RNA from OS and CS was only in 4 local pigeons inoculated with H7N1 HPAIV,
and in two local and three urban pigeons inoculated with HSN8 HPAIV. Oral and cloacal shedding in
the same bird was only observed in a local pigeon and in an urban pigeon inoculated with H5N8
HPAIV at 3 and 1 dpj, respectively. The detection in the birds was transient, inconsistent, and the viral

shedding restricted from 1 to 6 dpi.

Oral shedding. H7N 1-inoculated Cloacal shedding. H7N1-inoculated

Ml Localpigeon Il Localpigeon
Urban pigeon Urban pigeon

>
L

=)
1

19

I 2/9

Log GEC/sample
~

Log GEC/sample
~

~
~

Oral shedding. H5N8-inoculated Cloacal shedding. H5N8-inoculated

Il Localpigeon Il Localpigeon

Urban pigeon Urban pigeon

=3
1

1/9 219

1/9
1/9

19 19
19

1/9

~

2 2
a (=3
£ €
© ©
@ @
2 2
O 4 O 4
w w
O o
o o
=] o
4 |

dpi dpi

Figure 17. Viral titers expressed as log GEC in OS (A, C) and CS (B, D) obtained from local and urban pigeons
inoculated with H7N1 (A,B) or H5N8 (C,D) HPAIVs at different times post-inoculation. The ratios above the
columns represent the number of birds shedding virus out of the total sampled. Represented as Mean £ SEM. GEC: Genome

equivalent copies; Dpi: day post-infection.

Seroconversion

Allincluded pigeons were seronegative to AIV prior to infection. At the end of the study (14 dpi), 60%
(6/10) of the urban pigeons inoculated with H7N1 HPAIV seroconverted, and no local pigeons tested
positive. Regarding HSN8 HPATV-inoculated birds, 30% (3/10) of the local and 30% (3/10) of the

urban pigeons seroconverted.
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6.4. DISCUSSION

Auvailable data indicate that the susceptibility of pigeons to HPAIVs is dependent of the virus isolate,
and may also be influenced by the genetic background of the breed as in chickens. In the present study,
the differential pathobiology of a classical HTN1 HPAIV and a Gs/GD H5N8 HPALV in pigeons and
the existence of breed-specific variations in susceptibility between local and urban pigeons were

evaluated.

Pigeons can be infected with HPAIVs, but birds usually lack evident signs of disease and if so, recover
entirely within a short period of time [347, 348, 375, 388, 390, 657, 658]. However, some HPAIVs have
produced severe clinical signs and mortality in this species. Despite in the majority of cases the mortality
ratios have been minimal, infection with particular Gs/GD H5N1 HPAIVs resulted in mortalities up
to 37.5% [375-379], demonstrating important differences in virulence between HPAIV strains for
pigeons. In the present study, the experimental inoculation of a classical H7TN1 HPAIV and a Gs/GD
H5N8 HPAIV in pigeons resulted in the lack of evident clinical signs, mortality, gross lesions,
microscopic lesions and viral replication in tissues by IHC techniques in all pigeons, except in one local
pigeon inoculated with HSN8 HPAIV. However, the infection was established in several birds, as
demonstrated by the viral shedding and seroconversion. Thus, the results of the present study support
the existing literature that pigeons become infected by diverse HPAIVs, although the infection is
subclinical [664].

Our data suggest that HPATIVs belonging to Gs/GD H5 lineage ate potentally more vitulent to pigeons
than other lineages of HPAIVs. Whereas neither clinical signs nor mortality was recorded in any bird
inoculated with H7N1 HPAIV, one local pigeon inoculated with HSN8 HPAIV exhibited severe
apathy and evident nervous signs, including tremor and ataxia, and had to be euthanized for ethical
reasons. Despite the bird was euthanized, it is likely that the infection would have resulted in death
within a short petiod of time. The clinical presentation observed was similar to that previously reported
in pigeons inoculated with patticular Gs/GD H5N1 HPAIVs [375-379], but to our knowledge, this is
the first expetimental study teporting severe clinical signs in pigeons after inoculation with Gs/GD
H5N8 HPALV of clade 2.34.4. The present study demonstrates that despite marginal, Gs/Gd H5
HPAIVs hatboring distinct NA subtypes other than N1 can produce deadly infections in pigeons.

Herein, we teport for the first time mortalities in pigeons using a titer of inoculum lower than 10°ELDs.
The dose of inoculum is also known to largely influence the infection outcome; however, it has been

suggested that the relatively high mottalities caused by particular Gs/GD H5N1 HPAIVs in pigeons
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could be associated with excessive titets of inoculum (10** ELDs) that could contribute to cell damage

from inflammatory processes [664].

The severe clinical signs in the local pigeon inoculated with HSN8 HPAIV correlated well with presence
of microscopic lesions and viral antigen in particular tissues. This bird presented large areas of necrosis
in the central nervous system associated to widespread presence of viral antigen, indicating that the fatal
outcome was likely associated with neurological dysfunction. Presence of viral antigen and microscopic
lesions in the central nervous system are common in pigeons, even in asymptomatic infections, and in
other spedies infected with Gs/GD H5 HPAIVs, demonstrating the strong neurotropism of this
lineage [367, 375-379, 390, 423-426]. In lethal infections in pigeons, the central nervous system generally
presents the highest viral loads and more severe microscopic lesions [376]. This particular pigeon also
presented mild multifocal necrotic and inflammatory lesions in the myocardium, associated to moderate
amounts of viral antigen in myocardiocytes, indicating that the virus was circulating in the bloodstream.
However, no microscopic lesions and viral antigen were observed in any other organ in that pigeon.
This, together with the absence of viral antigen in the remaining pigeons and the lack of detection of
viral RNA in FPs in all birds indicate that despite HSN8 HPAIV can replicate at high titers in the central

nervous system, the virus is not prone to produce a robust systemic infection in pigeons.

The outcome after infection with HPAIVs is dependent on numerous viral but also host factors.
Previous reports have demonstrated that the genetic background of the breed largely influences the
infection outcome [338, 399, 412, 416, 461-465]. To our knowledge, the existence of breed-specific
differences in susceptibility to AIVs in peri-domestic avian species, including pigeons, has not been
tested to date. Herein, we did not detect any evidence of differential susceptibility between the local and
urban breed, neither in clinical presentation, pathogenesis nor viral shedding. Taken into account the
low mortality rates present in this study, we cannot discard that the highly virulent infection caused by
H5N8 HPAIV could be related to the possible existence of other infectious agents and non-infectious
factors, such as nutritional deficiencies, stress and immune status that aggravated the infection in that
particular pigeon, rather than to breed-specific factors. However, why only a particular bird presented
higher susceptibility could not be unraveled. All pigeons tested seronegative to NDV, and a qRT-PCR
targeting a highly conserved region of NDV was performed in brain and pancreas of this bird in order

to detect an eatly infection, with negative results (data not shown).

Pigeons are naturally present in a wide range of habitats driven by the availability of resources, and could
play a role in the transmission of HPAIVs by direct contact with susceptible species and/or indirectly

by contamination of the environment with infective secretions. Most expetimental studies demonstrate
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that the viral shedding after HPAIV infection in pigeons is brief and viral titers are under the minimum
threshold required to infect other species, even in sick individuals [375, 379, 389, 390, 657]. Therefore, the
transmission of HPAIVs between poultry holdings by pigeons is more likely to occur mechanically (e.g.
carrying the virus on their feet and feathers). However, one study demonstrated effective transmission
of Gs/GD H5N1 HPAIV to co-housed chickens [378], suggesting that pigeons could actively act as a
biological vector of particular HPAIVs. Therefore, the shedding pattern of pigeons infected with
different HPAIVs should be further assessed to determine if they represent a risk for HPAIV
interspecies transmission. In the present study, viral RNA was detected in oral and cloacal swabs in few
pigeons inoculated with the classical H7N1 HPAIV and the Gs/GD H5N8 HPAIV, but the detection
was inconsistent, short and generally at low titers. These results suggest a minimum role of pigeons as
amplifiers of HPAIVs regardless of the viral lineage. However, moderate levels of viral RNA were
detected in some OS and CS in HSN8 HPAIV-inoculated groups (up to 4,23 log GEC), including in
the pigeon that succumbed to infection. Since pigeons often gather in large numbers, we speculate that
even a small percentage of pigeons shedding moderate levels of virus could represent a risk of H5N8
HPAIV environmental contamination and spill over into avian species that are more susceptible.

However, transmission studies are required to test this hypothesis.

Several studies detected high titers of HPAIVs within the feather of HPAIV-infected chickens and
ducks, and the transmission following feather consumption has been already demonstrated [665]. In this
study, the lack of viral RNA and antigen in all FP despite some animals became subclinically infected
indicate that feathers from pigeons do not likely play an important role in the interspecies transmission
of HPAIVs. In contrast, the large quantities of viral antigen detected in the brain of one pigeon
inoculated with HSN8 HPAIV indicate that a high viral load may be present in this organ. It was
previously reported that a cat succumbed to Gs/GD H5N1 HPAIV after consuming a pigeon carcass
infected with the virus [267]. This fact and the apparent increased virulence of Gs/GD H5N8 Group B
in a variety of wild bird species suggest that pigeons represent a potential risk of infection to H5SNS to

predators (e.g; cats, crow, and hawk).

In summary, we found that pigeons are susceptible to HPAIVs belonging to classical and Gs/GD
lineages, but the infection is asymptomatic. However, the severe clinical signs, microscopic lesions and
viral antigen detected in one pigeon inoculated with HSN8 HPAIV suggest some differences in the
pathobiology of classical HPAIVs and Gs/GD HPAIVs in this species. Since Gs/GD lineage
continues to evolve, novel HPAIVs with unprecedented pathobiological characteristics in pigeons and

other peri-domestic avian species could emerge. Moreover, the viral excretion in some pigeons indicate
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than increased surveillance in synanthropic avian species during active outbreaks in poultry are needed

in order to avoid the spread between farms and the potential introduction into human population.
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GENERAL DISCUSSION

Through the history there have been several reports of HPAIVs that expanded through broad
geographic regions, affected a high number of flocks and/or caused outbreaks during long petiods of
time before their successful eradication [35-42]. Gallinaceous species, particulatly chickens and turkeys,
have been the main species affected during HPAIV epidemics. In contrast, the isolation of HPAIVs in
domestic waterfowl, wild birds or peridomestic avian species have been more sporadic, rarely
accompanied by high mortalities, and in most cases associated to active HPAIV outbreaks in land-based
poultry in the vicinities [28]. To date, any HPAIV epidemics have reached the severity in terms of
economic losses and geographical extent that those caused by the Gs/GD H5 lineage of HPAIVs [47].
Moreover, these viruses produced a change of paradigm in the pathobiology and epidemiology of
HPAIVs. First, these viruses have been isolated and present unique infectivity and virulence in a broad
range of hosts, including numerous species of wild and domestic birds, mammals and humans [49].
Second, these viruses are thought to be carred through large geographic regions (even
intercontinentally) by migratory wild birds, and in particular species in a subclinical way [196-198)]. Third,

it has been the unique lineage to become established in domestic waterfowl [203-200].

Numerous authors have evaluated the pathobiology of HPAIVs in different avian species belonging to
different taxonomic groups. The studies have used a variety of strains, different doses of inocula and
routes of inoculation, and birds of different ages and immune status. Altogether, existing literature
demonstrate that the outcome after infection with HPAIVSs in birds is complex and highly dependent
of numerous viral and host factors, underlining the necessity to study the pathobiology of HPAIVs in
different virus-host combinations. However, fewer studies have determined the pathobiology of a single
HPAIV isolate in different avian species within the same experimental conditions. In addition, there are
a low number of studies comparing side by side the pathobiology of HPAIV belonging to classical
lineages and HPAIVs of Gs/GD H5 lineage in the same species. Consequently, one objective of the
present dissertation was to systematically evaluate the pathobiology of two distinct HPAIVs in a range
of avian species belonging to different orders. The H7N1 virus which caused important economic
losses in 1999-2000 in Italy was used as a classical strain of HPAIV. The H5NS virus is a descendant of
the Gs/GD H5N1 lineage first detected in Southern Asia in 1996. This patticular strain was isolated in
Spain during the 2016-2017 European epidemics and belongs to the most widespread clade of this
lineage at the present time. Chickens (Gallus gallus domsesticus), geese (Anser anser var. domestica) and pigeons
(Columibia livia var. domestica) were selected as representative members of the Orders Galliformes,

Ansetiformes and Columbiformes, respectively.

Several reports reveal the existence of important breed-related differences in the infection outcome after

expetimental inoculation with HPAIVs. Particularly, there is a general believe that local breeds are more
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resistant to disease than commercial breeds, but existing studies do not always support this theory. Most
of the studies addressing this issue have been carried out in developing countties, where local chicken
breeds represent an important source of protein intake [29]. To our knowledge, the differences in
susceptibility to HPAIVs between chicken breeds from Spain have not been evaluated. Moreover,
studies evaluating the differences related to the breed in other species than can play a role in the
epidemiology of HPAIVs are lacking. Therefore, another objective was to determine the variation in
susceptibility to HPAIVs in several breeds of chickens, geese and pigeons with different genetic
backgrounds. The main findings of the thesis are presented in this general discussion, as well as the
limitations and potential improvements of the different studies. However, the specific results of each
study are discussed in more detail in each section and therefore will not be subjected to analysis again in

this general discussion.

The probability of introduction of AIVs by legal trade of live poultry or poultry products in Spain is
considered low [666]. However, Spain harbours a broad diversity of resident wild bird species, is located
within natural migration routes between Eurasia and Africa and present a high number of wetlands
where a variety of birds congregate. All these characteristics likely provide the Spanish tertitory the
optimal conditions for the circulation of LPAIVs in the wild bird population. Areas with a considerably
high relative risk for the introduction of the HSN1 HPAIV by migratory birds have also been identified
[667, 668]. However, surveillance programs carried out in poultry in Spain demonstrate that they are
usually free of AIVs [669],and HPAIVs have not been detected in the wild bird population [507, 565, 670,
671]. The exceptions include the isolation of HSN'1 HPAIV of Gs/GD lineage in a dead great crested
grebe (Podiceps cristatus) in 2006 [672], the HSN3 LPAIV detected in a duck meat production farm [673]
and H7N7 HPAIV outbreak in a layer farm in 2009 [674], and the isolation of H7N1 LPAIV in a
breeding hen farm in 2013 [675]. In 2017, the HSN8 HPAIV reached Spain. Following the detection in
two geese and a white stork in eatly 2017, the virus was detected in commercial duck farms and in
several backyard flocks. Before the biological characterization of the virus, the virus isolate was fully-
sequenced. The genetic characterization of the HSN8 HPAIV isolated in a domestic goose (Study I)
revealed that the virus belonged to clade 2.3.44 Group B (Gochang-like) of Gs/Gd lineage, and
presented high identity (>99.5%) with HSN8 HPAIVs isolated in Eurasia during the autumn-winter
period of 2016-2017. All segments of Spanish H5NS clustered within cluster 2, suggesting that the
phenotype of Spanish isolate may be representative of all HSN8 HPAIVs classified in that particular
group. However, only one isolate was fully-sequenced; thus, we cannot rule-out that genetically and

biologically-distinct H5NS isolates circulated in Spain at that time.
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The H5N8 HPAIV was then phenotypically compared with the classical H7N1 HPAIV by means of
three different experimental infections (Studies II, III and IV). We focused in the differences in
clinical presentation, gross and microscopic lesions (HE staining), viral antigen in tissues (IHC
technique), viral shedding (qQRT-PCR technique) and seroconversion (cELISA) between both HPAIV
isolates in chickens (study II), geese (study I1I) and pigeons (study IV).

With the dose of inocula selected (10° ELDsg), which represents a medium dose, we could demonstrate
successful infection (by means of clinical signs, mortality, viral shedding and/or setoconversion) in the
three species with both H7N1 and H5N8 HPAIVs. However, we found huge differences in the
infectivity, clinical presentation, pathogenesis and viral shedding dependent of the virus isolate and the

host.

Chickens represent the predominant species in poultry production, and provide approximately the 90%
of the poultry meat and eggs produced wortldwide [43]. Their pivotal importance in poultry production
and the generally high mortalities reported in this species and other major galliforms such as turkeys
during HPAIV outbreaks have resulted in a large collection of experimental studies evaluating the
pathobiology of different HPAIVs in these species. In contrast, the number of experimental studies
evaluating the pathobiology of HPAIVs others than those belonging to Gs/GD lineage in minor
galliformes species and in other taxonomic groups of birds is more limited. As expected, based on
previous results in different galliformes species [400, 534, 628], H7N1 HPAIV infection in chickens
resulted in severe clinical signs and high mortalities. A complete different scenario was observed in geese
and pigeons. Inoculation of these species with H7N1 HPAIV resulted in the lack of evident clinical
signs, mortality, gross lesions, microscopic lesions and viral antigen in tissues by IHC in all birds. The
infection could only be demonstrated in some individuals by means of viral shedding at some point
post-inoculation and/or seroconversion. The majotity of studies demonstrate that expetimental
inoculation with classical lineages of HPAIV's can result in infection in domestic waterfowl and pigeons,
but they rarely show signs of disease or are mild, similar as reported herein [193, 279, 285, 286, 330, 331, 333,
339-343, 347-351]. In case of mortalities, they are usually limited to a low proportion of birds out of the
total inoculated [341). However, recent studies demonstrate that HPAIVs of the H7 subtype can also
cause high mortalities in waterbirds [329, 345, 346]. ‘The lack of mortality in domestic geese differ from
the results reported recently by Scheibner ez a/ [345], where inoculation of 10 days-old domestic ducks
with the same strain of Italian H7N1 HPAIV used in our study caused 20 to 50% mortality in Pekin
and Muscovy ducks, respectively. The differences in susceptibility between ducks and geese suggest
species-related differences in susceptibility to HPAIVs of the H7 subtype. However, other host factors

such as differences in age of the birds probably have played a more important role.
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Since Gs/GD H5 HPAIVs have been isolated in a broad range of hosts in the field, the pathobiology
of these viruses in non-galliformes birds has been subjected to more profound investigation. Existing
literature show enormous differences in mortality after experimental inoculation, which vary dependent
on the viral isolate and the host. In our study, the inoculation of HSN8 HPAIV caused mortality in all
inoculated domestic geese. Our results, together with the mortalities reported in domestic ducks [367,
369], demonstrate that the HSN8 HPAIV belonging to clade 2.3.4.4 Group B circulating in Europe in
2016-2017 were more virulent to domestic waterfowl than those H5NS clade 2.3.4.4 B HPAIVs
circulating in South Korea [387] and most H5N8 clade 2.3.4.4 Group A HPAIVs [359, 367, 386, 645].
Scheibner ¢ al. [367] showed that all domestic ducks inoculated with HSN8 B succumbed to infection
when inoculated by the intra-muscular route, but the mortality rates in those inoculated by the natural
route (oro-nasal) decreased to the 20%. Similarly, the mortalities in domestic ducks were approximately
17% in the study of Slomka 7 a/. [369]. Herein, the mortalities after intranasal inoculation reached the
100%, indicating that domestic geese are more susceptible to HSN8 B HPAIV than domestic ducks.
The higher sevetity of clinical signs after inoculation with Gs/GD H5 HPAIVs in geese compared to

ducks has also been observed in other experimental studies comparing side by side both species [288,
352, 355, 359, 670).

Several experimental studies demonstrate that HSN8 HPAIVs of clade 2.3.4.4 of variable origin present
a reduced pathogenicty to chickens in comparison with their parental HSN1 [334-338]. Despite H5N8
HPALIV isolated in Spain was highly virulent to chickens, the infection resulted in a lower frequency of
severe clinical signs, lower mortality and longer MDT than in those inoculated with H7N1 HPAIV.
Since H5N8 HPAIV was isolated from a domestic goose and infected easily this species after
experimental inoculation, our results may be an indication that the local strain retains a strong preference

for waterbirds that may result in a lower affinity to galliformes species.

Gs/GD H5 HPAIVs have been detected in tissues of dead pigeons and doves, including HSN8 B in
South Aftica [392, 660-662].. Conversely, under experimental conditions, Gs/Gd H5 HPAIVs have
caused high mortality ratios only when high doses of inocula were used [375-379]. In our experiment,
with the exception of one pigeon inoculated with HSN8 HPAIV that presented severe clinical signs
and lesions associated to viral antigen, HSN8 HPAIV produced a subclinical infection in this species.
This is in agreement with the majority of available literature describing the refractory nature of pigeons
to disease after Gs/GD H5 HPAIV infection [347, 348, 375, 388, 390, 657, 658]. Even though, the presence
of a pigeon inoculated with HSN8 HPAIV presenting severe clinical sighs despite using a comparatively
lower dose of inoculum suggest that this local strain also gained the potential to cause lethal infections

in columbiformes species.
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The mortalities recorded in waterbirds after experimental infection with HPAIVs of the H7 subtype
suggest that HPAIVSs others than those belonging to Gs/GD HS5 lineage can acquite virulence to these
species and potentially, to other taxonomic groups of birds. Therefore, the pathobiology of new
emergent HPAIVs others than those belonging to Gs/GD H5 lineage should also be evaluated in
different species. However, we demonstrate that within the same experimental conditions (same dose
of inocula and birds in the same range of age), HSN8 HPAIV is mote infective and/or virulent in a
broader range of hosts than H7N1 HPAIV. This could explain the higher detection of HPAIVs
belonging to Gs/GD H5 lineage in compatison with other lineages of HPAIVs. The big limitation of
the present dissertation is that we only selected one classical strain of HPAIV and one HPAIV of
Gs/GD H5 lineage. Taking into consideration the differences in infection outcome between HPAIVs,
even in those classified within the same genetic group [464], the situation could be completely different
if other strains had been selected. However, this demonstrates that the continuous evolution of

HPAIVs may result in the acquisition of unprecedented pathobiological features to different species.

Regardless of the virus and the species, the presence of nervous signs in severely-affected birds was a
common feature. This finding has been reported in numerous experimental studies using a variety of
HPAIVs and avian species [270, 317, 677]. Despite the neurological involvement was frequent, we
detected some variations in the clinical presentation dependent of the species. Several chickens
inoculated with either H7N1 or H5N8 HPAIVs died during the peracute stage of infection (2 dpi)
without previous evident clinical signs of disease. In contrast, all geese and the single pigeon that
succumbed to H5N8 HPAIV infection presented a delayed clinical course, being recorded the first
clinical signs at 5 dpi. Moreover, haemorthages and oedema in skin that were observed in several
infected chickens were not seen in any goose or pigeon. In agreement with our results, expetimental
infection of domestic waterfowl and pigeons generally results in the absence of cyanotic and edematous
lesions in skin and in extended MDTs than the reported in galliformes [302, 352, 354-361, 375-379]. These
distinct features could be associated with the excessive replication of HPAIVs in endothelial cells of
galliformes, which contribute to increased haemorthagic and edematous lesions and rapid death [296-
299]. As in most studies [295], we did not detect extensive viral replication in endothelium in infected
geese and pigeons in any collected organ, included in dead individuals. Thus, the distinct ability of
HPAIVs to replicate efficiently in endothelial cells of different species appears to be one important
factor determining the different clinical presentations reported here, and demonstrates that the main

mechanisms of pathogenicity of HPAIVs differ largely between species.
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The macroscopic findings observed in birds naturally or expetrimentally inoculated with HPAIVs are
diverse. The results of our study demonstrate that the tissue tropism of a particular HPAIVS strain can
differ largely between severely affected individuals of different species. In HSN8 HPAIV-inoculated
groups, the pancreas was the only organ that presented evident gross lesions in the three avian species
and in case of the pigeon, it was not associated with viral antigen by IHC techniques. Chickens and
geese inoculated with both viruses presented AIV antigen in almost all collected organs. Particulatly, the
central nervous system, pancreas and heart of both species recurrently presented large amounts of viral
antigen associated to severe necrotico-inflammatory lesions. In chickens, HSN8 HPAIV also replicated
at high levels in lung, whereas in geese the virus presented a marked hepato-tropism. However,
comparatively low levels of viral antigen were detected in the liver and lung in chickens and geese,
respectively. In the pigeon that succumbed to infection, the presence of viral antigen was restricted to
the central nervous system and to a much lesser extent, to the heart. All in all, the results of the IHC
technique reveal that the virus was circulating systemically in severely-affected birds; however, the
variation in AIV antigen distribution between species infected with the same strain suggest that host
factors shape to a large degree the tissue tropism of HPAIVs. The study of Kwon ef @/ [676] assessed the
tissue tropism of a Gs/GD H5N1 HPAIV in five watetfowl species and found similar results to those
presented here: whereas some presented viral antigen in multiple organs, in other species the replication
was restricted to two or three organs, and mallard ducks lacked viral antigen in all tissues. Therefore,
large differences in the main tissues affected exist even between closely related species. Differences in
the distribution, type and substructures of SA receptors in tissues and in the immune responses after

infection could be key factors that influence the differential tissue distribution of HPAIVs.

Despite the variability of affected tissues dependent on the virus and the species, the intense lesions and
viral replication in numerous organs in chickens suggest that multi-organ failure is the likely cause for
the lethal outcome. In geese, the onset of mortality clearly corresponded with an intense replication in
the central nervous system; however, the high viral replication detected in other vital organs suggests
that a similar situation as in chickens occurred. In contrast, in the pigeon the death was cleatly associated
with neurological dysfunction. In agreement with existing literature [365, 367, 372-374, 376, 423-426], our
results confirm that the central nervous system seems to be a primaty target organ and a strong

determinant of the pathogenesis of HPAIVs in a wide variety of avian species.

In the present dissertation, we also evaluated the viral shedding in order to assess the potential role of
each species to transmit different HPAIVs by direct contact or to contaminate the environment with
infective secretions. The intense replication and severe infection of H7N1 and H5N8 HPAIVs in

chickens and H5N8 HPAIV in geese corresponded with high viral shedding by both the oral and cloacal
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routes. Numerous experimental studies in different species also found that severity of infection
correlates with intensity of viral excretion [354-356, 400, 534, 628]. Our results demonstrate that chickens
and domestic geese can play an important role as amplifiers and disseminators of these HPAIVs in case
of infection, but it is unlikely that viral shedding may occur during long petiods of time without being

noticed by farmers.

High viral shedding can also occur in the absence of evident clinical signs, as demonstrated in domestic
waterfowl infected with HPATVs of the Gs/GD HS5 lineage, which can shed virus duting relatively long
periods of time in a subclinical way [207-209]. In our studies, several domestic geese inoculated with
H7N1 HPAIV and few pigeons inoculated with H7N1 and H5N8 HPAIV became subclinically
infected and presented viral shedding by either the oral or cloacal route, or both. Despite the overall
viral excretion in these birds were considered low, the viral loads in some OS collected from geese were
considerably high. In addition, the detection of viral shedding in two geese at the last day of sampling
(by 10 dpi) that were negative in the previous days of sampling suggest that intra-group transmission
was occurting without being unnoticed. Therefore, our results suggest that domestic geese could play a
role in the epidemiology of HPAIVs other than those of Gs/GD H5 lineage, even in those strains that
are apparently adapted to gallinaceous species. Similar results were reported by Pantin-Jackwood e 4l
[194], when several non-Gs/GD H5 and H7 HPAIVs were transmitted between mallards in the absence
of disease. Other studies have also demonstrated the capacity of waterbirds to excrete the Asian H7IN9
lineage HPAIV at similar levels to those in chickens, and virus excretion have been detected up to 14
days after infection [286]. Thus, the low detection in waterfowl duting outbreaks caused by classical
lineages of HPAIVs in some cases could be the result of low exposure rather than to the poor biological
compatibility. The potential role of different species in the dispersal, interspecies transmission and

environmental contamination to different HPAIVs should be re-evaluated.

More and more, different studies are associating particular nucleotide changes that lead to amino acid
substitutions in PB2, PB1, PA, HA, NP, NA, MP and NS viral proteins with adaptation, virulence
and/or transmissibility of HPAIVs [629]. However, their effect appears to be lineage- specific and the
residues involved could also vary between species [650]. Herein, the higher infectivity and virulence of
the HPAIVs corresponded with their host of isolation (H7N1 HPAIV in a chicken, HSN8 HPAIV in
a domestic goose). This suggests that the viruses may have acquired some mutations during their natural
passage that increased their affinity to replicate easily in these species. In general, the amino acid identity
between H7N1 and H5N8 HPAIVs was high in all viral proteins, and both HPAIVSs shared the same
amino acids in particular positions associated to adaptation, virulence and/transmission of HPAIVs in

chickens and ducks (PB2: 123E; PB1: 3V, 38Y, 430Y; PA: 237E, 383D, 515T, 6721; NP: 105V, 184K
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MT1: 43M; NS: 106M, 125D, 149A) [313, 445, 446, 573, 579, 581, 587-589, 597, 598, 603, 607-610]. For example,
we detected that H5N8 clade 2.3.4.4 B present a glutamic acid at position 237 in PA protein, which is
associated with increased virus replication, polymerase activity and PA nuclear accumulation in ducks
[313]. In case this mutation also provides HSN8 HPAIV a higher virulence to domestic geese, this
substitution could partially contribute to the apparent high virulence of HSN8 B HPAIV in domestic
geese in comparison with HSN8 A HPAIVs. However, H7N1 also presents that particular amino acid
in that position despite it is avirulent to domestic geese. Despite this particular amino acid may have a
biological effect in H5N8 but not in H7N1 HPAIV, it is likely that pathogenic differences cannot be
determined by mutations of single amino acids and is more probable to be caused by the synergistic
effect of different amino acid substitutions in the same or other viral proteins that are still not described.
Only two amino acids associated with a change in the phenotype differed between H7N1 and H5N8
HPAIVs (114S and 103F in NS1 protein), and their effect 7 ziv0 has not been evaluated [608]. Since we
did not performed “gain of function” studies, the viral segments and particular amino acids associated
with the differential infectivity and virulence of H7N1 and HSN8 HPAIVs in the different species could
not be established. Since they belong to different HA and NA subtypes, their pathobiology could be
attributed in large part to HA and NA proteins and their compatibility, both known to contribute largely

to the HPATV outcome [450-452, 629.

Another objective of the dissertation was to evaluate the existence of breed-related differences to
HPAIV infection in different species. Several studies demonstrate a huge variation in susceptibility to
infection with viruses (e.g. Infectious Bursal disease), bactetia (e.g. Sadnonella gallinarnm) and parasites (e.g:
Eimeria spp) among chicken breeds/lines [467). In waterfowl species, few studies have evaluated this
assumption, whereas in other species such as in pigeons this information is lacking. Similarly as in two
previous published studies using the same H7N1 HPAIV [399, 461], we detected significant differences
in the severity of clinical presentation between chicken breeds. Interestingly, the breeds presenting
higher resistance to H7N1 HPAIV were also more resistant to H5SN8 HPAIV infection. This
demonstrates that the resistance appear not to be subtype-specific, and the genetic background of
particular breeds may confer an innate protection to different HPAIVs. In contrast, we did not found
evident differences related to the breed in domestic geese and pigeons, but it could be due to the low
number of breeds included and the extreme variation in virulence between both strains. In concordance
with our studies, the differences in susceptibility to HPAIV infection between domestic duck breeds in

two previous study were also reported to be low [469, 470].

As in most developed countties, the poultry industry in Spain is based on the production of highly-

performance breeds of broilers and layer hens reared on commercial farms with high biosecurity
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standards, and a smaller percentage is estimated to be outdoors or rear local breeds [536]. The wotldwide
presence of highly productive chicken breeds is considered to be a main reason of the decreasing genetic
diversity and population of local breeds, which in some cases can be at risk of extinction [678]. There is
a general believe that local breeds have acquired a natural resistance to disease as a result of the natural
selection over the years by autochthonous pathogens, harmful climate and nutritional deficiencies [467].
In contrast, the high artificial selection in commercial breeds towards production-driven genes may be
associated to undesirable side effects, including a potentially increased susceptibility to pathogens [468].
Therefore, valuable genetic resources would be lost if local breeds become extinct [678]. However, if
local breeds present a higher immunological competence to HPAIVs in comparison with commercial
breeds is still controversial. We found that 5 out of the 6 local chicken breeds included in the studies
were mote susceptible to HPAIV infection than commercial broilers and White-Leghorm SPF chickens,
as demonstrated by more frequency of birds showing clinical signs and succumbing to infection, and
higher number of birds shedding virus. These results are in agreement with other studies [462, 465],
demonstrating that selection towards productive efficiency do not necessarily has a negative impact in

resistance to HPAIV infection

In the case of chickens, regardless of the breed, we detected huge differences in susceptibility to HPAIV
infection between individuals in the same group. With variable proportion depending on the overall
susceptibility of the breed and the virulence of the virus, some birds died before the presence of evident
signs of disease, several presented severe clinical signs prior to death associated to high viral shedding,
whereas others in the same group did not show any evident sign of disease and did not shed detectable
levels of virus by any route through all the experiment. Therefore, our results demonstrate the existence
of individual-related factors and suggest that in independence of the breed, some birds are able to clear

the virus in the earliest stages of infection.

Taking into account the huge individual differences in mortality in each breed group of chickens, we
evaluated the possible role of the presence of a setine or an asparagine at position 631 of chicken Mx
protein, which depends of the G to A nucleotide substitution, respectively. The presence of an
asparagine at this position has been associated with a higher antiviral response against AIVs, butits effect
zn vivo remains unresolved [399, 461, 483, 487). When grouping the birds of all breeds based on their
genotype, the association of the different genotypes (AA, AG, GG) with percentage of mortality
resulted not significant. However, AA and AG individuals presented a statistically significantly longer
MDT than GG individuals. However, the MDT between groups only varied by 1 day. Despite the
presence of an asparagines could confer chickens a higher capacity to impair viral replication in the eatly

stages of infection, the biological implications 7 zzvo are low. Therefore, selection based on other antiviral
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genes is likely to contribute more to improve poultry breeding than Mx gene. Since the resistance to
HPAIVs is multi-genic and we only measured a particular SNP in one exon of an antiviral gene, a
broader battery of genes should be analysed to interfere the reason of the huge differences in

susceptibility observed between chickens.

The HPAIV surveillance strategies depend on the target species (poultry or wild birds), and the
approximation may vary among countties, but in general requires the collection of OS, CS, blood
and/or tissues [503]. In our studies, the highest frequency of positive cases in OS in the different vitus-
host combinations suggests that this sample is the one of choice to detect HPAIVs in live birds. In
geese, the detection in plasma correlated well with that in swabs; however, the difficulties in the sampling
and their lack of improved sensitivity in comparison with OS discard plasma as a routine sample. Taking
into account the high viral loads of HPAIV detected in feather pulps in several avian species after
expetimental inoculation, this sample have also been suggested to be useful for HPAIV diagnosis [679,
680]. In pigeons, the lack of a robust systemic infection indicates that feathers are not suitable for HPAIV
screening and diagnosis. In addition, the detection of high amounts of viral antigen in the brain of
severely affected birds in the three species indicate that this tissue is the sample of choice in birds found
dead.

A proper surveillance approach should include sampling of those birds that are at a higher risk of
infection. The permissiveness of local chickens but also of the local geese and pigeons to be infected by
the HPAIVs used in the present study is a concern. These breeds can be found in backyards under low
biosecutity measures, which allow the direct contact between them and with wild and peti-domestic
birds. In these conditions, domestic geese can act as an intermediate host between wild birds and other
species, increasing the risk of interspecies transmission and the potential generation of reassortants with
altered pathogenic characteristics. In addition, these viruses may have the potential to spill back to wild
birds. Since the range of susceptibilities varied from subclinical infection to severe associated to high
and fast mortalities, local birds raised in backyards should be targeted during surveillance programs, and
could serve as sentinels for the circulation of HPAIVs in the area. Therefore, a proper education of

animal handlers to early recognize signs compatible with AIV infection is needed.

The present dissertation presents some limitations that are necessary to discuss. First, we used birds
within a specific range of ages within the same study, but not between studies. Chickens were less than
one month of age at the time of infection, whereas geese and pigeons where approximately of 3-5 and
6 months of age, respectively. Age has been demonstrated to be a main determinant of HPAIV

infection In ducks, geese and turkeys, the mortality varies largely between young and adult birds, being
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the juveniles considerably more susceptible [300, 457-459, 681, 682]. Thus, it is possible that the mortality
in geese and pigeons could be higher than the reported in the present dissertation if younger birds were
used. In fact, the higher mortality reported in ducks after inoculation with the same H7N1 HPAIV
strain used in the present dissertation could be caused by differences in age [345]. A similar situation
could occur in pigeons. Second, we used gRT-PCR in order to evaluate the viral load in the different
samples. Molecular detection techniques represent a good alternative to viral isolation and titration in
embtyonated eggs and/or cells, which ate more time-consuming. Howevet, these techniques can also
detect non-infectious particles. Since we did not conduct transmission studies, the biological significance
of the viral excretion can be struggling when the viral loads are low, such as in pool water in H7N1
HPAIV-inoculated geese, and in OS and CS collected from pigeons.

In summaty, the results of this dissertation demonstrate the complexity of infections with HPAIV:s.
The result of the infection depends greatly on the virus, and the host, including species, breed and
individual factors, indicating that HPAIVs can acquire unusual characteristics during their evolution.
Therefore, we highlight the necessity to continuously evaluate the pathobiological features of the
emergent HPAIVs in different hosts. In addition, the establishment of infection in a sublinical way in
domestic geese indicates that they could play a more important role than the one considered so far. We
believe that the results of the present dissertation also provide a start point for future studies otiented to

investigate the host-virus factors associated with the infection outcome in the different hosts.

143






CHAPTER 8

CONCLUSIONS






CONCLUSIONS

H5N8 HPAIV causing outbreaks in birds in Catalonia (northern Spain) in February-March
2017 belongs to clade 2.3.4.4 Group B of the Asian Gs/GD lineage of HPAIVs. The virus
presents high homology with H5N8 B HPAIVs isolated in several European countries during
2016/2017 epidemics and clusters within genetic group 2.

The lower frequency of clinical signs, lower mortalities, longer MDTs and lower cloacal
excretion in chickens inoculated with HSN8 HPAIV in comparison with those inoculated with
H7N1 HPAIV indicate a lower affinity and/or adaptation of the HSN8 HPAIV to chickens.

The genetic background at individual and breed levels are important factors influencing the
HPALIV infection outcome in chickens. However, almost all the local chicken breeds included
presented a higher susceptibility to HPAIV infection than commercial breeds.

The genotypes AA and AG at position 2032 of chicken Mx gene are associated to slight but
statistically significant longer mean times of sutvival after HPAIV infection, but not to the

survival rate, contributing to the idea that HPAIV infection outcome is a polygenic trait.

The high mortalities and systemic infections in the geese inoculated with HPAIV H5N8
demonstrate that the H5N8 Group B viruses circulating in Europe have acquired high
virulence for domestic waterfowl. The intense viral shedding by the oral and cloacal routes and
the detection of the virus in pool water indicate that geese could play an important role in the

epidemiology of this vitus.

Domestic geese are susceptible to H/N1 HPAIV infection but the virus is avirulent for this
species. The high levels of viral RNA in some oral swabs and the evidences for intra-group
transmission suggest that domestic geese can play a role in the perpetuation and interspecies

transmission of classical lineages of HPAIVs.

Pigeons can be infected with H7N1 and H5SN8 HPAIVs without presenting evident signs of
disease. However, the presence of a pigeon with severe signs indicates that H5N8 can produce
lethal infection in this species. The low shedding indicate a minimum role of pigeons as
amplifiers of HPAIVs, but considering the wide habitat utilization of pigeons, they could play

a role in the environmental dissemination of HPAIVs.
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8. 'The high amounts of viral antigen detected in the brain in all the included species that
succumbed to infection confirm that the neurotropism is a strong determinant of virulence of

HPAIVs.
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A/Common Goldeneye/Sweden'SVA161117KU0322/SZ0002165/2016 HSNS M )

~|V.‘\.“mﬂcd duck/Denmark/17740-1/2016 HSN8 M

A'Tufted Duck/Switzerland'V237/2016 HSN8 M

A'Eur Wig/NL-Groningen'16015376-003/2016 HSNS M

— Awild duck/Poland'57/2017 HSNS M

I A/L-bl-ba-gull NL-Sovon'16014324-014/2016 HSNS M

Avtufted duck’Germany’AR8459-L01988/2016 HSNS M

I A'G c grebe/NL-Monnickendam/16013865-009-0102016 HSNS M
- A/Buzzard NL-Durgerdam/16015100-004:2016 HSN8 M

A/Peregrine falconHungary/4882/2017 HSNS M
-[ Algoose/Samara/455/2018 HSNS M
AlchickenEgypt/Gharbiya-15/2017 HSN8 M
— A’turkey/Rostov-on-Don/11/2017 HSNS M
| - A'decoy duckFrance161104e/2016 HSNS M
Alchicken/Belgium/807/2017 HSNS M
-I-_.At-’wigcon-'halyf 17VIR57-3/2017 HSNS M
A'gadwall Kurgan/2442/2016 HSN8 M
 Aleurasian wigeon/Germany-NI'AR249-102143/2017 HSNS M
A'turkey/England052131/2016 HSNS M
A/Eur Wig'NL-Zoeterwoude/16015702-010/2016 HSN8 M
r A/chickenRepublic of Macedonia’AR1167-L02131/2017 HSN8S M
- A'black swan'Germany-BW/R1364/2017 HSNS M

I

H— @ A'Goose/SpainTA17CR02699/2017 HSNS M
- AlduckFrance/161108h2016 HSNS M
[— Aldomestic goosePoland’124/2017 HSNS M
AlchickenPoland79A/2016 HSNS M
A/DuckHungary/55764/2016 HSNS M
 A‘turkeyTtaly/17VIR973-2/2017 HSNS M
‘l_ A'grevlag goose'Germany-NI'AR1395-L02144°2017 HSNS M
AfrurkeyPoland'63:2016 HSNS M
- A‘mute swan/Croatia’70/2016 HSNS M
Alchicken/Czech Republic/55-17 1:2017 HSN8 M
[ Avturkey/Poland/72/2017 HSNS M
A/Common-coot Egypt/CA285/2016 HSNS M

A/Buteo buteo/Belgium/3022/2017 HSNS M

Alchicken’Czech Republic/206-17 212017 HSNS M

75 | - A/erey heron /Uvs-Nuur Lake/20/2016 HSNS M

36

Algreat crested grebe Tyva/34/2016 HSNS M

A/common tern Uvs-Nuur Lake/26/2016 HSN§ M
A/Chicken'Riyadh/A15/2018 HSN8 M
A'FalconRiyadh/AIS/2017 HSNS M

Algrey-headed gul'Uganda MUWRP-538/2017 HSNS M
Alduck/Cameroon/l TRS1661-3/2017 HSNS M
L AlchickenEgypt/Buheira-12:2017 HSNS M
Aturkey Ttaly/1 TVIR538-1/2017 HSNS M
L Apainted stork Tndia'10CA03/2016 HSNS M
Algreen-winged teal Egypt/871/2016 HSNS M
A’domestic duck Siberia/S0K/2016 HSNS M
Emon teal Korea/W5535/2017 HSNS M

91 - Alduck/Democratic Republic of the Congo/17RS882-33/2017 HSN8 M
84
i {L

Alchicken'Cameroon/17RS1661-1/2017 HSNS M
A/Chicken/South Africa’$2017/08 0561 P1/2017 HSNS M
A'baikal teal’Korea'1449/2014 HSNS M
Algyrfalcon'Washington/41088-6/2014 HSNS M

0.010

100 | | AA/chicken/Netherlands/14015766/2014 HSNS M
Alturkey/Germany/AR3390-L00939/2014 HSN8 M
70 - A/domestic duck/Hungary/7341/2015 HSN8 M
A/duck/England/36226/14 HSN8 M

SUPP. MATERIAL

— CL1-5
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SUPP. MATERIAL

71 | A'L-bl-ba-gull'NL-Sovon'16014324-014/2016 HSNS NS
(B) % A/Buzzard NL-Durgerdam/16015100-004/2016 HSNS NS
A/G ¢ grebe/NL-Monnickendam/16013865-009-010/2016 HSN8 NS
A/Eur Wig/NL-Groningen'16015376-003/2016 HSN8 NS
A/Tufted Duck/Switzerland'V237/2016 HSN8 NS
— A'tufted duck/Germany/AR8459-L.01988/2016 HSN8 NS
A'C Goldeneye/Sweden/'SVA161117KU0322/SZ0002165/2016 HSNS NS
‘|.‘ A/wild duckPoland/57/2017 HSNS NS
Altufted duck/Denmark/17740-1/2016 HSN8 NS
~ Afchicken/Czech Republic/55-17 1/2017 HSN8 NS
Afrurkey/Ttaly'17VIR973-2:2017 HSNS NS
L @ A'Goose/SpainTA17CR02699/2017 HSNS NS
AlduckFrance/161108h2016 HSNS NS
Ablack swan/Germany-BW/R1364/2017 HSN8 NS
A/Buteo buteo/Belgium3022/2017 HSNS NS
Alturkey/Poland/72/2017 HSNS NS
Aldomestic goosePoland/124/2017 HSN8 NS
AlchickenPoland/79A/2016 HSNS NS
A/Common-coot Egypt/CA285/2016 HSN8 NS
Alchicken/Czech Republic'206-17 22017 HSN8 NS
Algreylag goose/Germany-NI'AR1395-L02144:2017 HSNS NS
80 AvturkeyPoland/63/2016 HSNS NS
Aldecoy duckFrance/161104e/2016 HSN8 NS
L Afturkey'Rostov-on-Don/11/2017 HSNS NS
- ADuckHungary/35764/2016 HSN8 NS L CL1-5
A'mute swan/Croatia’70/2016 HSN8 NS
— A/chicken'Republic of Macedonia/AR1167-L02131/2017 HSN8 NS
AfwigeonTtaly/17VIRS57-3/2017 HSNS NS
Algadwall’Kurgan2442:2016 HSN8 NS
Aturkey'England/052131/2016 HSN8 NS
Aleurasian wigeon/Germany-NI'/AR249-L02143/2017 HSN8 N§
A/Eur Wig/'NL-Zoeterwoude/16015702-010/2016 HSNS NS
_F AlchickenEgypt/Gharbiva-15:2017 HSNS NS

Afgoose/Samara’455/2018 HSNS NS
A/Peregrine falcon'Hungary/4882/2017 HSN8 NS
- A/chicken/Belgium/807/2017 HSN8 NS
AlchickenEgyptBuheira-12/2017 H5N8 NS
Alduck/Cameroon/1 TRS1661-3/2017 HSNS NS
- A'grey-headed gullUganda MUWRP-538/2017 HSN8 NS
Algrey heron /Uvs-Nuur Lake/20/2016 HSN8 NS
A/common tern /Uvs-Nuur Lake/26/2016 HSN8 NS
Algreat crested grebe/Tyva/34/2016 HSN8 NS

98 | A/ChickenRiyadh/A15/2018 HSNS NS
—| AFalconRiyadh/AI5/2017 HSNS NS
- Afgreen-winged teal Egypt'871/2016 HSN8 NS
A/domestic duck/Siberia/S0K/'2016 HSNS NS

L__| Apainted storkIndia'10CA03/2016 HSN8 NS

1 Aichicken'Cameroon'1 TRS1661-112017 HSNS NS

— A‘turkey/Ttaly'17VIR538-1/2017 HSN8 NS

—— A’common teal’Korea W555/2017 HSN8 NS -

A/Chicken/South Africa/S2017/08 0561 P1/2017 HSN8 NS
A/duckDemocratic Republic of the Congo/1 7RS882-33/2017 HSN8 NS
Algyrfalcon'Washington/41088-6/2014 HSN8 NS

I Abaikal teal’Korea'1449/2014 HSN8 NS

Alchicken/Netherlands/14015766/2014 HSNS NS

A'turkey/Germany’AR3390-L00939/2014 HSNS NS

791 A/domestic duck/Hungary/7341/2015 HSNS NS
A/duck/England/36226/14 HSNS NS

99

0.010
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SUPP. MATERIAL

Afwild duck/Poland'57/2017 HSNS PB2

83 | A/Common Goldeneye/Sweden/SVA161117KU0322/SZ0002165/2016 HSNS PB2
A'tufted duck/Germany/AR8459-L01988/2016 HSNS PB2

A'tufted duck Denmark/17740-1/2016 HSNS PB2

A/Eur Wig/NL-Groningen'16015376-003/2016 HSNS PB2

A/Buzzard NL-Durgerdam/16015100-004/2016 HSNS PB2

A/G ¢ grebe/'NL-Monnickendam/16013865-009-010:2016 HSNS PB2
A/L-bl-ba-gull' NL-Sovon/16014324-014/2016 HSNS PB2
A'turkeyRostov-on-Don'11/2017 HSNS PB2

©)

Alchicken/Belgium/807:2017 HSNS PB2
Afwigeon'Ttaly/17VIRS7-3/2017 HSNS PB2

APeregrine falconHungary/4882/2017 HSNS PB2
Algoose’Samara’455/2018 HSNS PB2
AlchickenEgypt'Gharbiya-15/2017 HSNS PB2

Algadwall’ Kurgan2442/2016 HSNS PB2

Aleurasian wigeon'Germany-NI'AR249-102143/2017 HSNS PB2
AturkeyEngland/052131/2016 HSNS PB2

A‘Eur Wig/'NL-Zoeterwoude'16015702-010/2016 HSNS PB2 _
Alchicken’Egypt'Buheira-12/2017 HSNS PB2

Algrey heron /Uvs-Nuur Lake/20/2016 HSN8 PB2

Algreat crested grebe/Tyva‘34/2016 HSNS PB2

Afcommon tern /Uvs-Nuur Lake/26/2016 HSNS PB2
Alchicken’Cameroon’17RS1661-1/2017 HSNS PB2

A/Chicken'South Africa’$2017/08 0561 P1/2017 HSNS PB2

A/painted stork/India’'10CA03/2016 HSNS PB2

Alturkey Traly/17VIRS538-1/2017 HSNS PB2 CL4
Algreen-winged teal Egypt'871/2016 HSNS PB2

70

~

A/domestic duck'Siberia/S0K/2016 HSNS PB2
Alcommon teal Korea' Ws55:2017 HSNS PB2
A/duck/Cameroon/1 TRS1661-3/2017 HSNS PB2
Alduck/Democratic Republic of the Congo/17RS882-33/2017 HSNS PB2
95 | A/grey-headed gull Uganda MUWRP-538/2017 HSNS PB2
100 | A/ChickenRiyadh/A15/2018 HSNS PB2
l AfFalcon/Riyadh/AT5/2017 HSNS PB2
75 — Algreylag goose/Germany-NT'AR1395-L02144/2017 HSNS PB2
A’turkey/Poland /632016 HSNS PB2
100 A/Common-coot Egypt/CA285/2016 HSNS PB2
Alchicken/Czech Republic/206-17 212017 H5NS PB2
— AlchickenRepublic of Macedonia’ AR1167-L02131/2017 HSNS PB2
Aturkey Poland 7212017 HSNS PB2
{ -I-_Nclickeu’Czcch Republic/55-17 1/2017 HSNS PB2
A'turkey/Ttaly/1 7VIR973-2/2017 HSNS PB2
A/mute swan/Croatia 702016 HSNS PB2 — CL23
ADuck/Hungary 5576412016 HSNS PB2
— A'black swan'Germany-BW/R1364/2017 HSNS PB2
Alduck France/161108h2016 HSNS PB2
. @ AGoose/SpainTA17CR02699/2017 HSNS PB2
Alchicken'Poland'79A/2016 HSNS PB2
A'domestic goose/Poland/124/2017 HSNS PB2
A/Buteo buteo/Belgium /30222017 HSNS PB2
Algyrfalcon'Washington/41088-6/2014 HSNS PB2
Abaikal teal Korea/1449/2014 HSNS PB2

Alturkey/Germany/AR3390-L00939/2014 HSNS PB2
A/duck/England/36226/14 HSNS PB2

A/domestic duck/Hungary/7341/2015 HSNS PB2
Alchicken/Netherlands/14015766/2014 HSNS PB2

100

853

0.020

Aldecoy duckFrance/161104/2016 HSNS PB2 — CL1-5

155



(D)

97

—p9

SUPP. MATERIAL

A'wild duckPoland’57/2017 HSNS PB1

A'tufted duckDenmark’17740-1/2016 HSN8 PB1

A/Common Goldeneye/Sweden/SVA161117KU0322/SZ0002165/2016 HSNS PB1

A/Tufted Duck/Switzerland'V237/2016 HSNS PB1

A'tufted duck/Germany’ AR8459-L01988/2016 HSNS PB1

A/L-bl-ba-gull' NL-Sovon/16014324-014/2016 H5NS PB1

A/Buzzard' NL-Durgerdam/16015100-004/2016 HSNS PB1

A/Eur Wig/NL-Groningen/16015376-003/2016 HSNS PB1

A/G ¢ grebe/NL-Monnickendam/16013865-009-010/2016 HSNS PB1

- A/Common-coot'Egypt/CA285/2016 HSNS PB1

Algadwall Kurgan/2442/2016 HSN8 PB1

AlchickenBelgium'807/2017 HSNS PB1

E AfwigeonTtaly/17VIR57-3/2017 HSNS PB1

{ Aldecoy duck’France'161104e/2016 HSNS PB1
Alturkey/Rostov-on-Don/11/2017 H5NS PB1

— Alchicken'Egypt'Gharbiya-15/2017 H5N8 PB1

— Al/goose/Samara’455/2018 HSNS PB1

- A/Peregrine falcon'Hungary/4882/2017 HSN8 PB1

{ Avturkey/England/052131/2016 HSNS PB1

Aleurasian wigeon'Germany-NI'AR249-102143/2017 H5NS PB1
AEur Wig/NL-Zoeterwoude/16015702-010/2016 HSNS PB1

— A‘mute swan/Croatia’70/2016 HSN8 PB1

- ADuckHungary/55764:2016 HSNS PB1

— AdchickenRepublic of Macedonia/AR1167-L02131/2017 H5NS PB1
35 { Alchicken/Czech Republic/55-17 1/2017 HSNS PB1
A'turkeyTtaly’17VIR973-2/2017 HSNS PB1
A’duckFrance'161108h/2016 HSNS PBI

— @ A/Goose/SpainTA17CR02699/2017 HSNS PB1

- Ablack swan'Germany-BW/R1364/2017 H5NS PB1

- A’/domestic goose/Poland’124/2017 H5NS PB1

I A/Buteo buteo/Belgium/3022/2017 HSNS PB1

[ Al'turkey/Poland/72/2017 HSN8 PB1
AlchickenPoland/79A/2016 HSNS PB1

Aturkey/Ttaly/1 TVIR538-1/2017 HSNS PB1

Algreen-winged teal Egypt'871/2016 HSN8 PB1

Alcommon teal’ Korea'Ws55/2017 HSNS PB1

Alpainted stork/India'10CA03/2016 HSNS PB1

Alchicken/Cameroon'17RS1661-1/2017 HSNS PB1

A/Chicken’South Africa’$2017/08 0561 P1/2017 HSNS PB1
A/duck/Democratic Republic of the Congo/17RS882-33/2017 HSNS PB1

78

;F-‘mmk*Camam*171151661-3-'201 7 HSNS PB1
761 Algrey-headed gull Uganda MUWRP-538/2017 HSNS PB1

_[ Algrey heron /Uvs-Nuur Lake/20/2016 HSNS PB1
100 ' A/common tern /Uvs-Nuur Lake/26/2016 HSNS PB1

Algreat crested grebe/Tyva/34/2016 HSN8 PB1

100 ¥
100 | | A'erevlag goose/Germany-NI'AR1395-L02144:2017 HSNS PB1

95 '— A'murkeyPoland'63:2016 HSN8 PB1

AlchickenEgypt'Buheira-12/2017 HSNS PB1

100 - A/Chicken'Riyadh/A15/2018 HSNS PB1

[ A/Falcon/Riyadh/AI5/2017 HSNS PB1

AlchickenCzech Republic'206-17 22017 HSNS PB1
CL3

Algyrfalcon'Washington/41088-6/2014 HSNS PB1
Abaikal teal’Korea/1449/2014 HSNS PB1

0.010

100
A/domestic duckHungary/7341/2015 HSNS PB1

Al'turkey/Germany/AR3390-L00939/2014 H5SNS PB1
AlchickenNetherlands/14015766/2014 HSNS PB1
Alduck’England/36226/14 HSNS PB1

73

L CL1,2,4,5
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(E) AlduckFrance'161108h2016 HSNS PA
A'black swan'Germany-BW/R1364/2017 HSNS PA
A/Buteo buteo/Belgum3022/2017 HSNS PA
® @ A'Goose’'SpainTA17CR02699:2017 HSNS PA
AlchickenPoland'79A/2016 HSNS PA
Aldomestic goosePoland'124/2017 HSNS PA
A'turkey/Poland/72/2017 HSNS PA
Avchicken/Czech Republic/55-17 1/2017 HSNS PA L
Adtrkey/Ttaly/17VIR973-2/2017 HSNS PA CL.2-3
— AdchickenRepublic of Macedonia’AR1167-L02131/2017 HSNS PA
— A‘mute swan/Croatia’70/2016 H5N8 PA
[ |L ADuckHungary/55764/2016 HSNS PA
A/Common-coot’ Egypt/CA285/2016 HSNS PA
Alchicken’Czech Republic206-17 212017 HSNS PA
Algreylag goose/Germany-NI'AR1395-L02144/2017 HSNS PA
A'turkeyPoland’63/2016 HSNS PA
Afcommon tern Uvs-Nuur Lake/26/2016 HSNS PA
Afgreat crested grebe/Tyva/34/2016 HSN8 PA
Algrey heron /Uvs-Nuur Lake/20/2016 HSNS PA
Afduck/Cameroon/17RS1661-3/2017 HSNS PA

83

A/duck/Democratic Republic of the Congo/1 TRS882-33/2017 HSNS PA
Algrey-headed gull Uganda MUWRP-538/2017 HSNS PA
——— A/Chicken/South Africa’$2017/08 0561 P1/2017 HSNS PA
I A teal Korea/W355/2017 HSNS PA

— A'domestic duckSiberia/S0K/2016 HSNS PA

— Alturkey/Ttaly/1 7VIRS38-1/2017 HSNS PA CL4

r Algreen-winged teal Egypt'871/2016 HSNS PA

Alpainted stork/India'10CA0312016 HSNS PA

D‘c&km-’Cmam’ 17RS1661-1/2017 HSN8 PA

A/Chicken/Riyadh/A15/2018 HSN8 PA
100 ' A/Falcon/Riyadh/A15/2017 HSNS PA
A/Buzzard/NL-Durgerdam16015100-004/2016 HSNS PA
100 | A/G ¢ grebe/NL-Monnickendam/16013865-009-010/2016 HSNS PA
A/L-bl-ba-gull NL-Sovon/16014324-014/2016 H5SNS PA CL3
A'Eur Wig/NL-Groningen/16015376-003/2016 HSNS PA
Alchicken/Egypt/Buheira-12/2017 HSNS PA
AlchickenEgypt/Gharbiya-15/2017 HSN8 PA
A'goose/Samara’455/2018 HSN8 PA
A/Peregrine falcon'Hungary/4882:2017 HSN8 PA
Algadwall’Kurgan2442/2016 HSN8 PA

Aleurasian wigeon'Germany-NI'AR249-L02143/2017 HSNS PA
A/Eur Wig/NL-Zoeterwoude/16015702-010/2016 HSNS PA
A'nurkey/England'052131/2016 HSNS PA
Alchicken'Belgium/807/2017 HSN8 PA L oLt
AlwigeonTtaly/1 7VIR57-3/2017 HSNS PA
Aldecoy duck'France/161104e/2016 HSNS PA
AlturkeyRostov-on-Don/11/2017 HSNS PA
A'tufted duck/Germany’ AR8459-L01988/2016 HSNS PA
A'Tufted Duck/Switzerland'V237/2016 HSN8 PA
A/Common Goldeneye/Sweden/SVA161117KU0322/S20002165/2016 HSNS PA
Al/wild duck/Poland/57/2017 HSNS PA
A'tufted duckDenmark’17740-1/2016 HSNS PA
Algyrfalcon'Washington/41088-6/2014 HSNS PA
Arbaikal teal’Korea/1449/2014 HSNS PA
0 76 Ad ic duck/Hungary/7341/2015 HSNS PA
Alchicken'Netherlands/14015766/2014 HSNS PA
98 | A’/duck/England'36226/14 HSN8 PA

Alturkey/Germany/ AR3390-L00939/2014 HSNS PA.

0.010
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SUPP. MATERIAL

(F) r A/Common Goldeneye/Sweden'SVA161117KU0322/SZ0002165/2016 HSN8 NP 7
I Afwild duckPoland’57:2017 HSNS NP
 A‘tufted duckDenmark’17740-1/2016 HSN8 NP
I Aftufted duck/Germany/AR8459-L01988/2016 HSNS NP
'— A'Tufted Duck/Switzerland'V237/2016 HSNS NP
A/G ¢ grebe/NL-Monnickendam/16013865-009-010/2016 H5SN8 NP
A/L-bl-ba-gull NL-Sovon'16014324-014/2016 HSN8 NP
-I A/Buzzard NL-Durgerdam/16015100-004/2016 HSN8 NP
A/Eur Wig/NL-Groningen'16015376-003/2016 HSNS NP
Alchicken/Belgium’'$07/2017 HSNS NP
Alwigeon Traly/| TVIRS7-3/2017 HSNS NP - CL1-5
Aldecoy duckFrance/161104e/2016 HSN8 NP
Aturkey/Rostov-on-Don/11/2017 HSNS NP
Algadwall'Kurgan2442/2016 HSN8 NP
Alturkey/England/052131/2016 HSNS NP
Aleurasian wigeon/Germany-NI'AR249-102143:2017 HSNS NP
A/Eur Wig/NL-Zoeterwoude 16015702-010:2016 HSNS NP
. Algoose/Samara’455/2018 HSNS NP
-Fs\'clﬁcken-"ﬁgypt@harbi}'a—l 5/2017 HSN8 NP
™ A'Peregrine falcon/Hungary/4882/2017 HSNS NP
10 AlchickenEgyptBuheira-12/2017 HSNS NP -
Avchicken/Czech Republic’206-17 212017 HSNS NP
Algrevlag goose'Germany-NI'AR1395-L0214412017 HSNS NP
A'turkey/Poland'63:2016 HSNS NP
A/Common-coot Egypt'CA285/2016 HSNS NP
A‘mute swan'Croatia’70/2016 HSNS NP
A/DuckHungary/55764/2016 HSNS NP
AlchickenRepublic of Macedonia’AR1167-L02131/2017 HSNS NP
A/duckFrance'161108h2016 HSN8 NP
A/Buteo buteo/Belgium3022/2017 HSN8 NP
Alchicken'Czech Republic/55-17 112017 HSNS NP
Arturkey/Ttaly/17VIR973-2/2017 HSNS NP
@ A'Goose/SpainTA17CR02699/2017 HSNS NP
A'turkey/Poland/72/2017 H5NS NP
Adblack swan/Germany-BW/R1364/2017 HSNS NP
A/domestic goose/Poland/124/2017 HSN8 NP
95' A/chickenPoland/79A/2016 HSNS NP
Alcommon tern Uvs-Nuur Lake/26/2016 HSN8 NP
Algreat crested grebe/Tyva/34/2016 HSNS NP
Algrey heron Uvs-Nuur Lake/20/2016 HSNS NP
Alduck/Cameroon/17TRS1661-3/2017 HSNS NP
AlduckDemocratic Republic of the Congo/17RS882-33/2017 HSN8 NP
Algrey-headed gull'Uganda MUWRP-538/2017 HSNS NP
Alcommon teal Korea'W555/2017 HSNS NP
A/Chicken/South Africa’S2017/08 0561 P1/2017 HSNS NP |
A/Chicken/Riyadh/A15/2018 HSNS NP
A/FalconRiyadh/AI5/2017 HSNS NP
Alchicken'Cameroon/17RS1661-1/2017 HSN§ NP
Alpainted storkIndia‘'10CA03/2016 HSN8 NP — cL4
Afrurkey Ttaly/1 7VIRS538-1/2017 HSN8 NP
Algreen-winged teal Egypt'871/2016 HSNS NP
Afdomestic duck'Siberia’S0K/2016 HSN8 NP _
I_ A/gyrfalcon'Washington/41088-6/2014 HSNS NP
Avbaikal teal’ Korea/1449/2014 HSN8 NP
Aldomestic duck/Hungary/7341/2015 HSNS NP
Alduck/England/36226/14 HSN8 NP
Alchicken'Netherlands/14015766/2014 HSNS NP
Alrurkey/Germany/AR3390-L00939/2014 H5N§ NP

87

100

93

—CL2-3

100

100
80

0.010

Supp. Figure 1. Neighbor-joining phylogenetic trees of M (A), NS (B), PB2 (C), PB1 (D), PA (E) and NP (F) gene segments.
The Spanish H5N8 is highlichted with a black dot. Bootstrap values 270% (700/1000 replicates) ate shown. The different
genetic groups are presented: cluster 1 (orange), cluster 2 (blue), cluster 3 (green), cluster 4 (yellow), cluster 5 (grey). Scale bar

indicates nucleotide substitution per site.
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