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UNIVERSITAT AUTÒNOMA DE BARCELONA

Abstract

Department of Telecommunication and Systems Engineering

Doctor of Philosophy

Advanced control techniques for the heart rate during treadmill exercise

by Ali ESMAEILI

The objective of this work is to design a heart rate (HR) controller for a treadmill
so that the HR of an individual running on it tracks a pre-specied, potentially time-
varying profile specified by doctors for the cardiac recovery of the person.

Initially, we consider a mathematical model relating the relationship between the
speed of the treadmill and HR of the person running on it. An important issue in
this model is the determination of its parameters. Thus, we first tackle the parameter
estimation problem in this model which is formulated as an optimization one, that is
solved through a heuristic technique known as Particle Swarm Optimization. This
is the first time that this technique is used for the estimation of cardiac models and
is a contribution of the thesis.

Afterward, a super- twisting sliding mode controller is designed to perform the
robust control of treadmill’s speed in the presence of potential unmodelled dynamics
and parametric uncertainties. Numerical examples show that the estimation proce-
dure is able to obtain accurate values for the system’s parameters while the proposed
control approach is able to obtain zero tracking error without chattering, definitely
achieving the control objectives. In both cases, the range of treadmill’s speed goes
from 2 to 14 km/h, range that is not usually employed in previous studies.

Finally, in the last part of this work, the objective is to design a discrete-time
robust controller. Initially, a feedback linearization-based controller is designed, but
it has poor robustness properties. In order to solve this problem, we propose another
method consisting in the Joint parameter-state estimation based-control. However,
this approach does not identify the parameters and it offers some oscillations. To
solve all of these problems and regarding the previous Chapter, we used the discrete-
time sliding mode controller method to complete our study. In the first part of this
Section, as designing a nonlinear model directly is hard, we decided to linearize the
model and then discretize it. Furthermore, the continuous control is generated by a
zero-order hold (ZOH). On the other hand, since the nonlinear model relationship
describes a better relation between HR and speed, a nonlinear is used in the last
part of this thesis. The final and best controller is a discrete-time super-twisting
model that avoids chattering and achieves very good robustness and tracking in
the system. The great systematic procedure to design of the controller, the perfect
tracking and the avoidance of using an observer for this system are other advantages
of this approach. The simulation results in this work that presented in the speed
range of 2-14 km, a range that is not usually employed in previous studies to the
control of the heart rate during treadmill exercise.
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Chapter 1

Introduction

Ischemic Heart Disease (IHD) is a progressive disorder of the arteries that may end
with narrowing or complete occlusion. Among its clinical consequences, we can find
angina pectoris, myocardial infarction, chronic ischemic heart disease, and sudden
death. Cardiovascular diseases, and in particular ischemic heart disease, represent
the main cause of mortality in the world, [1] as can be seen in Figure 1.1 according to
data from the World Health Organization (WHO), [2]. Furthermore, its importance
has increased during the last decade as illustrated in Figure 1.2 and it will continue to
be the main cause of mortality in the world in the year 2030, see Figure 1.3, according
to WHO, [1]. Figure 1.3 shows that Ischaemic Heart Disease is one of the diseases
that most strongly affects the quality and life expectancy of people, [2].

FIGURE 1.1: Main causes of mortality in the world.

One of the main medical priorities after suffering an episode of Ischaemic Heart
Disease is to try to prevent it from recurring (secondary prevention), as well as to
improve the quality of life of the patient in order to recover the maximum functional
capacity, to control the cardiovascular risk factors, achieve social and labor reinte-
gration, decrease the mortality associated with new cardiac events and decrease the
frequency and severity of post-infarct depression. In these cases, Cardiac Rehabilita-
tion (CR) has proven to be a highly effective tool in the recovery of patients and their
ability to return to a normal life. In fact, cardiac rehabilitation is defined as the set of
activities necessary to assure the people that suffer from the heart an optimal phys-
ical, mental and social condition, [1]. CR is recommended not only in patients who
have suffered from IHD but in a wide range of situations such as in patients with
coronary artery bypass grafting and after angioplasty, after heart transplantation,
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FIGURE 1.2: Evolution of the main causes of mortality between 2009
and 2018.

FIGURE 1.3: Forecast of the causes of mortality in the world, period
2018-2030.

in patients with operated valve disease, in congenital defects and in heart cardiac
failure [3], [5]. Numerous studies reveal that cardiac patients undergoing cardiac re-
habilitation have better long-term survival as well as fewer future complications [5],
[6]. In addition, the incorporation of a patient into cardiac rehabilitation programs
can considerably reduce secondary costs, mainly re-hospitalizations. Therefore, one
of the main actions in the field of health and one of the fundamental measures of
secondary prevention for coronary patients is cardiac rehabilitation.

1.1 Cardiac Rehabilitation

Cardiac rehabilitation programs are multidisciplinary programs that include differ-
ent elements, among which we can find health education talks (to advise on changes
in life habits), smoking cessation courses (if applicable), relaxation techniques and
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training in skills to control stress. However, the most important element is a progres-
sive program of physical exercises (mainly aerobic) to improve physical fitness and
functional capacity. This transversal CR program is carried out by a team of profes-
sionals that includes cardiologists, nurses, psychologists, psychiatrists, nutritionists
and social workers, [3].

The CR program is divided into three phases: (I) hospital, (II) ambulatory and
(III) autonomous (throughout the patient’s life) which is monitored through peri-
odic visits to the health center. The key piece in rehabilitation consists of aerobic
exercise on a bicycle, treadmill, or other devices that allows indoor exercise. The
team responsible for the rehabilitation carries out a protocol that establishes exercise
guidelines that is communicated to the patient for its execution (exercise intensity,
time, etc.). The protocols are adjusted for each patient through an evaluation of the
cardiac capacities at the beginning of the recovery, with one of the most known eval-
uation protocols being the so-called BRUCE, [7]. There are several clinical studies
worldwide that show the effectiveness of CR in the coronary recovery of patients. In
[8] - [10] it is shown that participation in CR programs results in a very significant
reduction in mortality from any cause (21-34 Percent lower). In addition, studies [9],
[10] show a decisive influence of the duration of CR on its long-term effects. The
longer the duration of the CR program, the lower the mortality rate. A decrease in
mortality of 19 percent was shown in patients who had received at least 25 sessions
while patients who participated in 36 sessions had a 47 percent lower risk of death
and 31 percent less risk of myocardial infarction than the patients who participated
in a single session.

After phase II of CR (ambulatory) phase III of CR (autonomous), also called
home-based, [8] is initiated. The studies [11], [12] conclude that the forms of home-
based CR and centers-based CR are equally effective in improving the clinical and
health outcomes related to the quality of life and the choice between one and the
other is a reflection of each patient’s individual preference. However, CR in centers
continues to be the preferred option for many patients due to the fact that they per-
ceive a sense of security by having access to specialists from different disciplines and
having more elaborate individual work programs, [8].

Despite the numerous clinical evidence of the beneficial effects of CR programs,
these are, generally, not very widespread in the world. In Spain, in 1995, the esti-
mated CR only reached 2 percent of patients with myocardial infarction. In 2003,
studies showed that the figure had not changed significantly, [5], [8]. The situation
in South America and the Caribbean is very similar, having been documented that
the number of CR programs seems to be insufficient for a population with a high and
growing burden of cardiovascular diseases, [13], [14]. The situation in other Euro-
pean and North American countries is very unequal. In Austria, one of the countries
where CR is most developed, 95 percent of the affected population has phase II cov-
erage, which is reduced to 6 percent in the Netherlands and 30 percent in Denmark
[15]. In the United Kingdom, in 1998 there were 300 CR programs, although there
was underutilization and great variability in the practice and organization of them,
[6] and in Italy, there were around 111 centers, [15]. In the US, around 10-20 percent
of patients who meet criteria participate in CR programs, [16]. Despite these figures,
there are not many studies that analyze the reasons for the poor implementation
of these programs in the world. As an example, [14] sheds light on these causes in
South America: lack of qualified personnel, financial restrictions and lack of physical
space.

At this point we can reach the following conclusions in relation to CR programs:
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• There are numerous clinical evidence that prove its usefulness in the rehabil-
itation and secondary prevention of coronary diseases, in particular ischemic heart
disease.

• Clinical evidence has been shown that CR at home allows obtaining beneficial
effects similar to CR in specialized centers. Even so, many patients prefer to do it in
centers instead of autonomously.

• The convenience of maintaining a sustained CR over time, with a number of
sessions as high as possible, has been demonstrated.

• CR programs have, generally, little implantation in the world. Particularly in
the European Union there is a great dispersion in terms of its implementation in
different countries.

• The possible causes of the low average implantation can be the absence of the
required professionals, financial reasons and lack of space and specialized centers.

1.2 Aim of the work

This work is aimed at making easier the access to CR programs and at spreading its
use by the design of a computerized system that allows the patients to develop the
physical exercise recommended by the specialists (rehabilitation protocol) in a pro-
grammed, safe, autonomous, and above all, effective ways on a treadmill. Usually,
when we get on a treadmill, we specify the speed and inclination of the treadmill
in such a way that the subject runs in those conditions. The heart responds to this
exercise according to its natural dynamics.

The monitoring of the heart rate allows the subject to know if he works in an ad-
equate range of values that allow effective rehabilitation. These values are provided
by the hospital’s CR work team individually to the patient during phase II of reha-
bilitation, while in the autonomous phase (III), [17], which provides protocols, is an
extended manual providing general guidelines for all the patients in a generalized
way. When the heart rate does not meet the rehabilitation goals, the speed and/or
inclination of the treadmill must be modified manually in order to return the heart
to the appropriate recovery interval. The manual manipulation of the speed of the
treadmill supposes an element of fear in the patients, who due to the fear to over-
come a certain level of pulsations maintain a sub-optimal exercise with respect to
the necessary one for its optimal recovery, [18][19]. Additionally, it implies concern
and stress in patients that can be avoided with the development of an automatic
computerized system.

The aim of the project is the design of a robust control system that automatically deter-
mines the speed of a treadmill based on the measurement of the patient’s heart rate in such
a way that allows the heart to follow a heart rate profile established as a reference by the
specialists for the coronary rehabilitation of the subject.

In Fig 1.4 the whole system is shown. Basically, the system has different com-
ponents such as the control system part, and the monitoring of the data which is
getting controlled by the doctors. These components are getting connected to each
other with a telecommunication server that can get the data from the control system
and send them to the monitoring system.

In addition, the control system may also be completed with a telematic communi-
cation that will transmit personalized routines to the patients, store the performance
data obtained by them and be able to perform a statistical, preventive and anticipa-
tory analysis of the data in order to look for patterns that allow anticipating a future
ailment, [19][20][21].
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Likewise, if at the time of the exercise a dangerous situation occurs for the pa-
tient, this will be communicated in the form of an alarm to the pertinent health ser-
vices.

FIGURE 1.4: Whole components of the system.

However, the main objective of the work is not to set up the whole system but
only the speed control part, that is represented in Figure 1.5.

FIGURE 1.5: Main components of the thesis: treadmill’s speed control.

In the following section, we are introducing the steps performed to achieve such
a goal.

1.2.1 Methodology

In particular, the project will develop the steps detailed below.
The first step is to model the relationship between the HR and the treadmill’s

speed. This step implies the model structure and parameter estimation. A literature
review has been done in order to analyze the structure of the different models. These
models are parametrized by a number of parameters and a parameter estimation
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algorithm will be proposed in this work since this will allow having a personalized
and individualized model for each person. So the controller can be adapted for each
patient and also we can have a starting point for the design of the controller.

Currently, there are several models that allow establishing the relationship be-
tween HR and speed, essentially nonlinear. In fact, nonlinearity is one of the most
representative characteristics of the behavior of the heart and a model capable of rep-
resenting it will be necessary nonlinear in order to have a sufficiently precise bench-
mark for the control action. Nonlinear models have been proposed in the form of
Hammerstein models, formed by an input non-linearity and a linear dynamic sys-
tem in [18], [20], [24].

However, a dynamic non-linear model (nonlinearity is dynamic in this case and
not only static as in the Hammerstein models) seems more appropriate for the repre-
sentation of coronary behavior, as proposed in [19], [21] - [23], [25] - [27]. This model
is appropriate for our purposes since it captures by means of a reduced number of
parameters and equations the global behavior of the HR.

Once a nonlinear system has been chosen as a model, the design of the controller
will be done as a second step. Usually, many controllers have been used in many
studies these days but we decided to choose sliding mode control (SMC), and espe-
cially a method which is called super-twisting sliding mode.

The SMC has revealed very useful in the robust control of multiple systems, en-
hance the examples of SMC to real systems such as pneumatic cylinder as actuators
for robot manipulators, and the hydraulic dynamics of the manipulator, [18][20].
However, this is the first time that SMC is used to control the HR during treadmill
exercise since previous works used different control techniques.

In [18], [20], [21], [27] the authors start from a Hammerstein model to make such
a design. In [18], [27] a compensation scheme is proposed that uses an approximate
inverse model of non-linearity in order to cancel it and then design a predictive con-
troller based only on the linear part. In parallel, in [20], [24] the static non-linearity
is inverted while a LQ and H∞ control is subsequently designed for the linear part.

In [21] a robust control is designed through LMIs by minimizing a certain func-
tion that contains the state of the system. A common feature of these works is that
they carry out the design in continuous time and on a common model for all pa-
tients, that is, they do not distinguish the possible variability of conditions between
them. The proposed dynamic nonlinear model is used, for example to synthesize
feedback controller based on Lyapunov techniques in [23], [25], [26]. The main con-
tribution of these works is the use of the complete dynamic model although they
continue to design the controller in continuous time and for fixed models (the same
for all patients).

Previous works in the area suffer from the following disadvantages, which will
be mitigated in the development of this project:

i) They carry out a continuous design when the implementation will be carried
out in discrete-time. Therefore, it would be convenient to take this fact into account
from the beginning of the design.

ii) The design is the same regardless of the patient, so the specific behavior of the
patient in the design is not taken into account, it is not an individualized design.

iii) Most of the designs are made for linear models when it would be advisable
to make a design on an initially non-linear model.

In this regard, different approaches are proposed that improve the disadvantages
existing in the literature:

The first type of control will be the design of a robust control based on SMC for
the selected nonlinear model. At the beginning of the CR of a given patient, an effort
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test will be performed that serves as the basis for the design of the rehabilitation
protocol (this is a usual procedure, [5]). During the stress test, the parameters of the
nonlinear model representing the particular heart of the patient can be identified.
These parameters are incorporated into an individualized dynamic model.

The aim of this objective is to design a control procedure that automatically tunes
an ad-hoc robust controller for the model provided by the patient. The controller
will be individualized and its robust character will allow it to resist small drifts of
the heart model during training and/or time.

Among all of the Sliding Mode Controllers, I choose Super twisting sliding mode
one, because of good tracking properties and chattering avoidance. The super-
twisting sliding mode control is encountering growing attention in the control re-
search community. The objective of this part is to show that the super-twisting slid-
ing mode approach is an effective solution to the cited drawbacks and constitutes a
good candidate for solving a wide range of important practical problems.

Especial attention will be devoted to the chattering effect since this is a crucial
aspect in biomedical applications. To this end, a super-twisting based sliding mode
controller is designed instead of a traditional SMC. The super-twisting approach
will allow avoiding the undesired oscillations that a classical sliding mode controller
may cause. The stability and finite time convergence characteristics of the used al-
gorithm have been recently proved by means of Lyapunov functions [34–37], so the
stability analysis of the proposed controller can be performed in the same way. Sim-
ulation results will show that our approach definitely improves the accuracy of the
model parameter estimation for the treadmill speeds, (up to 14 km/h) these range
of speeds have not been considered in the previous studies. In section 1.3.2 more
details will be given on super-twisting sliding mode control.

Most models, as well as control strategies based on them, have been presented
in the literature in continuous time [19] - [21], [23] - [27] with few examples in -time,
[22], and restricted to a linearized system with the limitations that fact implies. Nev-
ertheless, for implementation of the controllers and the design of an individualized
rehabilitation system, it would be more convenient to have discrete models. The de-
sign of control systems from discrete models offers the attractiveness of dealing with
the aspect of the selection of the sampling period initially (which is a great advan-
tage compared to the continuous time designs that are later discretized) since many
of the primary properties of a feedback control system depend strongly on its value,
[28], [40]. In this way, as a third phase of the project, we will proceed to obtain a dis-
crete model of the heart by discretizing the continuous nonlinear model chosen as a
starting point. The problem of discretization of continuous systems is well solved in
the case of linear systems through very lax conditions in the input signal, for exam-
ple through the use of zero-order holds (ZOH), but it remains an open research topic
for non-linear systems, [28][89]. In section 1.3 I will explain with more details the
techniques to obtain a discrete model of the system. Once we had a discrete model
of the system, a discrete-time controller will be designed.

The final step is to design a discrete-time and controller for the heart rate during
treadmill exercise. To this end, two approaches will be followed:

The first approach is to obtain a discrete-time linear system and design a for
it. Actually, many designs have already been presented in CT. However, controllers
are implemented in Discrete-time these days. It is better, thus, to the design of the
controller in discrete-time.

The second approach is to diversity discretize the nonlinear CT model to obtain
a nonlinear discrete-time one. To this end, the development of Yuz and Gudvin, [36]
will be followed.
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The design of the robust controller is tackled in discrete-time in order to explicitly
take into account the effect of the sampling time during the design process. More-
over, the fact of using a discrete-time model to face the control design problem will
allow us to obtain more accurate controllers than designing a continuous-time one
and then sampling it at a low rate. Finally, the implementation of the proposed
controller will be straightforward since most controllers are implemented in digital
platforms nowadays.

To this end, a feedback linearizing control law is designed for the discrete-time
system. Therefore, the nonlinear model, originally proposed in continuous-time, is
discretized to obtain a suitable model for control design purposes. It will also be
proved under which circumstances the so-obtained discrete model is positive. Then,
As a consequence, a reduced-order observer is deployed to obtain the missing state
variable. Once the discrete-time control is generated, the continuous-time signal is
obtained by using a zero-order hold (ZOH). It will be shown that this control com-
mand is indeed a linear state-feedback control so that a linear controller is enough to
achieve perfect output tracking under the frame of feedback linearization. The main
drawback of the obtained control law is that it requires both state variables to gen-
erate the control command. However, only one of them is measured in practice. But
the big problem that this method has is its poor robustness properties. In order to
solve this problem, we are using another model which is called Joint parameter-state
estimation based-control. The algorithm provides an estimation of unknown/ un-
measurable values, which are then used in the control law calculation. Nevertheless,
the approach still presents problems regarding its complexity and estimation issues.
Another problem appears in this system that does not identify the parameters and it
offers some oscillations.

In this work, thus, a discrete-time sliding mode controller (SMC) is designed for
the heart rate control in treadmill exercise. Sliding mode controllers have the advan-
tage to provide a superb performance irrespective of the potential uncertainties in
the model, [32][57].

Additionally, SMC also offers other advantages such as a simple design proce-
dure and good robustness properties. Since more and more modern control systems
are implemented by computers, the study of SMC in the discrete-time has been an
important topic in the SMC literature, [93]. The development of the SMC theory
in discrete-time also needed a revision of how the continuous-time algorithms are
adapted to sampled systems. This fact has led researchers to approach discrete-time
sliding-mode control from two directions. The first one is the emulation, that fo-
cuses on how to map continuous-time algorithms to discrete-time ones so that the
switching term can be preserved, [100][102]. The second approach is based on the
equivalent control design and disturbance observer, [98][115].

Initially, I will linearize the system, discretize it and design a SMC for the linear
discrete system. This swill allows us to analyze the sampling-time.

On the other hand, in the following Section of Chapter 4, the nonlinear model
has been employed.

The final approach is to design a super-twisting discrete-time controller for the
nonlinear system.

An approach to design discrete-time robust control systems to using the fast out-
put technique is considered when the system states are not needed online in [101].
Although in [102] a sort of discretization has been applied on high order sliding
mode controllers, the results are not reported in the literature so far, which deals
with the concept of high-order discrete-time sliding mode control (HDSM). The idea
of super-twisting sliding mode control in discrete-time systems will be introduced in
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terms of a certain class of discretizations. Based on the available conditions, we em-
ploy a new strategy to develop a discrete-time Super-Twisting- algorithm (DSTA),
[70]. Despite the successful development of the classical SMC, in the eighties, a
new control technique, called super-twisting sliding mode control, have been inves-
tigated. Its main idea is to reduce to zero, not only the sliding function but also its
higher derivatives.

In the final part of my thesis, a super-twisting sliding mode controller for solving
the problem has been presented. In this section, to solve these issues the controller
has been designed a control system without using a state observer, and have a great
robustness. In this case, the chattering and robustness in the controller are almost
zero. So, I achieved a personalized controller that works without chattering and
with good tracking properties.

1.2.2 Benefits of the work

By developing this system, the following benefits will be achieved that result in
greater incidence and effectiveness of cardiac rehabilitation programs, by allowing:

• Expand the incidence of CR. It will no longer be necessary to have a CR center
near home since these automated treadmills can be available in centers (sports clubs,
gymnasiums) to which those people affected can easily go. This solves the problem
of the poor incidence of CR in multiple regions of the world.

• Individually supervise each individual. The patient performs a CR on their
own but the procedure is individualized and the telematics connection of the data
guarantees that the doctors have access to their complete medical history. In addi-
tion, the system itself warns if a problem occurs that requires immediate attention.
In this way, the patient feels the qualified control and less fear to undertake a CR on
their own and maintain it over time as an additional healthy habit of life.

• Increase the quality of life of patients. As CR is prolonged, so do its positive
effects on patients. This fact allows the physician to achieve greater functional re-
covery by providing them with improved quality of life.

• Reduce the costs of CR. The same team can supervise multiple patients, which
optimizes the use of resources and covers a wider spectrum of patients with the same
level of investment. In addition, the cost of the system is relatively low, a low-cost
computer (Raspberry Pi costs around 35 euros) and affordable material today (heart
rate monitor, etc.).

In short, it will increase the quality of life of patients, reduce costs for the health
system and contribute to the extension of CR programs by homogenizing the inci-
dence of programs between countries.

It is important to note that we are not developing the complete system, in this
thesis we are just focused to obtain a HR controller for the speed of the treadmill.

1.3 Techniques employed in the thesis

This section will introduce the main techniques used to carry out the steps men-
tioned in Methodology Section 1.2.1.

1.3.1 Parameter Estimation algorithm

The first step is parameter identification. Heart rate treadmill models are parameter-
ized by a number of parameters that capture the individual HR response to exercise.
It is vital, thus, to design parameter estimation procedures that allow us to have a
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personalized model for each individual from measured data. In this work, param-
eter estimation is set up as an optimization problem whose solution leads to the
estimated model parameters. The optimization problem is solved by using a Parti-
cle Swarm Optimization (PSO) algorithm. Which is the first time where this method
is used for the problem at hand. The parameter estimation will be focused in the
range of treadmill speeds from 2 up to 14 km/h (2-14 km/h). In many studies, [81],
[82], the usual range of speed is (2-8 km/h), or (2-10 km/h). Therefore, the proposed
methodology is applicable in the large range of speeds from 2 to 14 km/h. Despite
this range is popular in many rehabilitation and training exercises, it is the first time
considered in this problem.

Previously, researchers used different methods in some studies such as the M-
estimator, recursive least squares (RLS) method, and model Hessian to solve the
parameter estimation problem, [50][51]. These methods are effective, from the sta-
tistical point of view, to obtain an adequate estimation of the parameters. However
with PSO, we get better behavior than the previous approaches, since the accuracy
of the estimation parameter is increased by using PSO.

The advantages of the basic particle swarm optimization algorithm are:
(1)PSO is based on the intelligence. It can be applied into both scientific research

and engineering use.
(2)PSO algorithm has no overlapping and mutation calculation. The search is

carried out by the speed of the particle. During the development of several gen-
erations, only the most optimistic particle can transmit information onto the other
particles, and the speed of the researching is very fast.

(3)The calculation in PSO is very simple. Compared with the other developing
calculations, it occupies the bigger optimization ability and it can be completed eas-
ily.

(4) PSO adopts the real number code, and it is directly by the solution. The
number of the dimension is equal to the constant of the solution.

The PSO method is based on swarm intelligence. The research on it is just at
the beginning. Far from the Genetic algorithm (GA) and the simulated annealing
(SA) approach, the PSO has no systematical calculation method and it has no defi-
nite mathematic foundation. On the other hand, besides the interest in evolutionary
procedures that governed EAs (Evolutionary Algorithms), new paradigms from na-
ture were subjected to investigation. The first PSO models introduced the novelty
of using difference vectors among population members to sample new points in the
search space. This novelty diverged from the established procedures of EAs, which
were mostly based on sampling new points from explicit probability distributions.
Additional advantages of PSO were its potential for easy adaptation of operators
and procedures to match the specific requirements of a given problem, as well as its
inherent decentralized structure that promoted parallelization, [52]. PSO has gained
much attention nowadays and has wide applications in different fields such a fitness
distance ratio, [53], adaptive mutation and inertia weight, [54], and parameter iden-
tification in magnet synchronous motors, [55], hybrid neural network and the level
of seismic inversion, [56].

Particle swarm optimization (PSO) algorithms are nature-inspired population-
based metaheuristic algorithms originally accredited to Eberhart, Kennedy, and Shi
[56]. These algorithms mimic the social behavior of birds flocking and fish school-
ing. Starting to form a randomly distributed set of particles (potential solutions), the
algorithms try to improve the solutions according to a quality measure (fitness func-
tion), [48][52]. The improvement is performed through moving the particles around
the search space by means of a set of simple mathematical expressions which model
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some interparticle communications. These mathematical expressions, in their sim-
plest and most basic form, suggest the movement of each particle towards its own
best-experienced position and the swarm’s best position so far, along with some
random perturbations. There is an abundance of different variants using different
updating rules. In Fig 1.6 the process of moving particles in a group is shown. How-
ever, despite being generally known and utilized as an optimization technique, PSO
has its roots in image rendering and computer animation technology where Reeves
[54] defined and implemented a particle system as a set of autonomous individuals
working together to form the appearance of a fuzzy object like a cloud or an ex-
plosion. The idea was to initially generate a set of points and to assign an initial
velocity vector to each of them. Using these velocity vectors, each particle changes
its position iteratively while the velocity vectors are being adjusted by some random
factors. Reynolds [55] added the notion of inter-object communication to Reeves’
particle system to introduce a flocking algorithm in which the individuals were able
to follow some basic flocking rules such as trying to match each other’s velocities.
Such a system allowed modeling more complex group behaviors in an easier and
more natural way.

FIGURE 1.6: The process of moving particles in a group.

Kennedy and Eberhart [54] while trying to “graphically simulate the graceful
but unpredictable choreography of a bird flock” came across the potential optimiza-
tion capabilities of a flock of birds. In the course of refinement and simplification
of their paradigm, they discussed that the behavior of the population of agents that
they were suggesting follows the five principles of swarm intelligence articulated
by Millonas [56]. First is the proximity principle: the population should be able to
carry out simple space and time computations. Second is the quality principle: the
population should be able to respond to quality factors in the environment. The
third is the principle of diverse response: the population should not commit its ac-
tivities along excessively narrow channels. The Fourth is the principle of stability:
the population should not change its mode of behavior every time the environment
changes. The fifth is the principle of adaptability: the population must be able to
change behavior mode when it is worth the computational price. They also men-
tion that they compromisingly call their massless volume-less population members
particles in order to make the use of concepts like velocity and acceleration more
sensible.
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As a development of PSO Kennedy and Eberhart [54] indicated appropriately
particle swarm optimization is probably best presented and understood by explain-
ing its conceptual development. Hence, the algorithm’s transformation process from
its earliest stages to its current canonical form is briefly reviewed in this section. Fu-
ture discussion on the main aspects and issues would be more easily done this way.

The earliest attempt to use the concept for social behavior simulation carried out
by Kennedy and Eberhart [56] resulted in a set of agents randomly spread over a
torus pixel grid which used two main strategies: nearest neighbor velocity match-
ing and craziness. At each iteration, a loop in the program is determined for each
agent which other agent was its nearest neighbor, then assigned that agent’s X and
Y velocities to the agent in focus, [52][53]. As it is predictable, it has been viewed
that sole use of such a strategy will quickly settle down the swarm on a unanimous,
unchanging direction. To avoid this, a stochastic variable called craziness was in-
troduced. At each iteration, some change was added to randomly chosen X and Y
velocities. This change introduced enough variation into the system to give the sim-
ulation a “life-like” appearance. The above observation points out one of the most
necessary features of PSO which indicates its seemingly unalterable nondeterminis-
tic nature: incorporation of randomness.

Kennedy and Eberhart took the next step by replacing the notion of “roost” (a
place that the birds know previously) in Heppner and Grenander [55] by “food” (for
which the birds must search) and therefore converted the social simulation algo-
rithm into an optimization paradigm. The idea was to let the agents (birds) find an
unknown favorable place in the search space (food source) through capitalizing on
one another’s knowledge. Each agent was able of remembering its best position and
knowing the best position of the whole swarm. The extremum of the mathematical
function to be optimized can be thought of as the food source.

Regarding the parameters, like any other metaheuristic algorithm, PSO’s perfor-
mance is dependent on the values of its parameters. The optimal values for the pa-
rameters depend mainly on the problem at hand and even the instance to deal with
and on the search time that the user wants to spend in solving the problem [73]. In
fact the main issue is to provide balance between exploration and exploitation ten-
dencies of the algorithm. Total number of particles, total number of iterations, inertia
weight and/or constriction factor, and cognition and social behavior coefficients (c1
and c2) are the main parameters that should be considered in a canonical PSO. The
total number of iterations could be replaced with a desired precision or any other
termination criterion.

In general, the search space of an n-dimensional optimization problem can be
conceived as an n-dimensional hypersurface. The suitable values for a metaheuris-
tic’s parameters depend on relative ruggedness and smoothness of this hyperspace.
For example, it is imaginable that in a smoother hyperspace, a fewer number of par-
ticles and iteration numbers will be required. Moreover, in a smoother search space,
there will be fewer local optimal positions and less exploration effort will be needed,
while in a rugged search space, a more thorough an exploration of the search space
will be advisable, [74]-[75].

Generally speaking, there are two different strategies for parameter value selec-
tion, namely, off-line parameter initialization and online parameter tuning [73]. In
off-line parameter initialization, the values of different parameters are fixed before
the execution of the metaheuristic. These values are usually decided upon through
empirical study. It should be noted that deciding about a parameter of a metaheuris-
tic algorithm while keeping the others fixed (i.e., one-by-one parameter selection)
may result in misleading observations since the interactions of the parameters are
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not taken into account. However, it is the common practice in the literature since ex-
amining combinations of the algorithm parameters might be very time-consuming.
To perform such an examination, when desired, a meta-optimization approach may
be performed, i.e., the algorithm parameters can be considered as design variables
and be optimized in an overlying level.

The main drawback of the off-line approaches is their high computational cost
since the process should be repeated for different problems and even for different
instances of the same problem. Moreover, appropriate values for a parameter might
change during the optimization process. Hence, online approaches that change the
parameter values during the search procedure must be designed. Online approaches
may be classified in two main groups [72]: dynamic approaches and adaptive ap-
proaches. In a dynamic parameter updating approach, the change of the parameter
value is performed without taking into account the search progress. The adaptive
approach changes the values according to the search progress.

Attempts have been made to introduce guidelines and strategies for selection
of PSO parameters. Shi and Eberhart [88] analyzed the impact of inertia weight
and maximum allowable velocity on the performance of PSO and provided some
guidelines for selecting these two parameters. For this purpose, they utilized differ-
ent combinations of w and Vmax parameters to solve the Schaffer’s f6 test function,
[75][88], while keeping other parameters unchanged. They concluded that when
Vmax is small (<= 2 for the f6 function), an inertia weight of approximately 1 is a
good choice, while when Vmax is not small (>= 3), an inertia weight w = 0.8 is a
good choice. They declared that in absence of proper knowledge regarding the selec-
tion of Vmax, it is also a good choice to set Vmax equal to Xmax, and an inertia weight
w = 0.8 is a good starting point. Furthermore, if a time-varying inertia weight is
employed, even better performance can be expected. I will follow these guidelines
when I use the PSO to solve my parameter optimization problem.

Many different online tuning strategies are also proposed for different PSO pa-
rameters. For inertia weight, methods such as random inertia weight, adaptive in-
ertia weight, sigmoid increasing/decreasing inertia weight, linear decreasing inertia
weight, chaotic inertia weight and chaotic random inertia weight, oscillating inertia
weight, global-local best inertia weight, simulated annealing inertia weight, natural
exponent inertia weight strategy, logarithm decreasing inertia weight, and exponent
decreasing inertia weight are reported in the literature, [56]. All of these methods
replace the inertia weight parameter with a mathematical expression which is either
dependent on the state of the search process (e.g., the global best solution, the current
position of the particle, etc.) or not. Bansal et al. [55] examined the abovementioned
inertia weight strategies for a set of five mathematical problems and concluded that
chaotic inertia weight is the best strategy for better accuracy, while random inertia
weight strategy is best for better efficiency. This shows that the choice of a suitable
inertia weight strategy depends not only on the problem under consideration but
also on the practitioner’s priorities.

Chapter 2 will describe how the PSO algorithm is adapted to the HR model pa-
rameter estimation.

1.3.2 Super-twisting Sliding Mode Control

Following the steps mentioned in section 1.2.1, the other objective of this work is to
use Sliding Mode Control to design our control system, which is for the first time
that this method is used for this kind of systems. The aim is the robustness of the
system and having minimum chattering during the control process. On the other



14 Chapter 1. Introduction

hand, in this work Sliding Mode Control is divided into two parts: the first part
is super twisting sliding mode technique and discretization of a controller by ZOH
method in linear part, and the second part is about discretization of super twisting
sliding mode.

To this end, a super-twisting based sliding mode controller will be designed in-
stead of a traditional SMC, [59], [60]. The super-twisting approach will allow avoid-
ing the undesired oscillations that a classical sliding mode controller may cause. Es-
timated control simulation results will show that our approach definitely improves
the accuracy of the model parameter estimation for these treadmill speeds, (up to 14
km/h) and the SMC also improves the heart rate control which has not been consid-
ered in the past.

These techniques are capable of guaranteeing the attainment of the control objec-
tives in spite of modeling errors and/or parameter uncertainties affecting the con-
trolled plant. Among the existing methodologies, the Sliding Mode Control (SMC)
turns out to be characterized by high simplicity in design and robustness. Essen-
tially, SMC utilizes discontinuous control laws to drive the system state trajectory
onto a specialed surface in the state space, the so-called sliding or switching surface,
and to keep the system state on this manifold for all the subsequent times, [61].

In order to achieve the control objective, the control input must be designed with
an authority sufficient to overcome the uncertainties and the disturbances acting on
the system. The main advantages of this approach are two: first, while the system
is on the sliding manifold it behaves as a reduced order system with respect to the
original plant; and, second, the dynamic of the system while in sliding mode is in-
sensitive to model uncertainties and disturbances, [77].

The control of dynamical systems in the presence of uncertainties and distur-
bances is a common problem to deal with when considering real plants. The effect
of these uncertainties on the system dynamics should be carefully taken into account
in the controller design phase since they can worsen the performance or even cause
system instability. For this reason, during recent years, the problem of controlling
dynamical systems in the presence of heavy uncertainty conditions has become an
important subject of research. As a result, considerable progress has been attained
in robust control techniques, such as nonlinear adaptive control, model predictive
control, backstepping, sliding model control and others, [86][95].

The uncertainty in the model is divided into two general categories, [97][101]:
1. The structural or parametric uncertainty that may be due to system uncertain-

ties and the inaccuracies in the parameters in the model, such as uncertain system
parameters.

2. Non-structural uncertainties or unmodeled dynamics that can be related to the
purposeful simplification of system dynamics and the inaccuracy of system rank or
estimation error, for example, in linear modeling of friction. Inaccuracy in modeling
can have adverse effects on nonlinear systems. Therefore, in any practical design,
they must be explicitly addressed. To control the uncertain systems, controller de-
sign is required to be robust in the presence of uncertainties.

However, in spite of the claimed robustness properties, the real-life implementa-
tion of SMC techniques presents a major drawback: the so-called chattering effect,
i.e., dangerous high-frequency vibrations of the control signal that excite oscillation
in the system’s output. This phenomenon is due to the fact that, in real-life appli-
cations, it is not reasonable to assume that the control signal can switch at infinite
frequency. On the contrary, it is more realistic, due to the inertias of the actuators
and sensors and to the presence of noise and/or exogenous disturbances, to assume
that it switches at a very high, but finite, frequency. Chattering and the need for
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discontinuous control constitute two of the main criticisms to sliding modes control
techniques.

The control input designed in the first-order sliding mode includes the sign func-
tion. Since the implementation of the sliding mode controller is not ideal and the
triggers are not able to switch the moment and it may delay, so the presence of this
function in the control input forces the trigger to momentarily switch. Thus, the size
of the sliding variable, which is the total weight of the error, is not infinitely accurate,
and the phenomenon of shrinking (vibration or Unwanted oscillation) appears.

The form of this phenomenon is shown in Fig. 1.7. First, the path of the mode
moves to the sliding surface S = 0 in the region S > 0 and first hits the point. Ideally,
in the control of the ideal sliding mode, the path should begin to slide on the surface
from this point; at this moment, the sign function of the mark is changed, and the
control must be switched. In practice, there is a delay between the change of the
sign function and the switching control. This delay causes the path to passing from
the sliding surface and goes to the area S < 0, while the control is switched and
the direction is changed and directed to the sliding surface to collide with it, and the
function of the change sign marks, and the delay in two the switching control, makes
the route cross the sliding surface. By repeating this action, a "zigzag" movement
will arise. This phenomenon is called unwanted fluctuation or chattering, [72][76].

FIGURE 1.7: The Chattering Phenomenon appearing in classical slid-
ing mode control.

Only few exceptional exceptions can be accepted, and sliding control rules can be
good, [86]. But in general, chattering is very unfavorable because it has the following
disadvantages:

• It provides a lot of control activity.
• It may stimulate high-frequency unmodeled dynamics.
• Reduces control accuracy.
• Increases heat loss in electrical circuits and increases electrical energy con-

sumption.
• Increases wear and tear in mechanical parts and stimulants.
These disadvantages reduce system performance and may lead to unsustainabil-

ity.
There are several ways to smooth the chattering. One of these methods is to

smooth out the control discontinuity in the narrow boundary layer in the adjacent
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sliding surface by a continuous approximation of the discontinuous slider mode con-
troller. The continuous approximation or boundary layer method is the mostly em-
ployed methods in which the bucket function replaces the sign with the saturation
function, [98].

The function is close to the sign function which is showed in Fig 1.8.
In addition to the saturation function, we can use other functions such as the con-

tinuous function in which the parameter ψ in the Figure 1.8 determines the width of
the boundary layer. Due to the approximation, the use of continuous approximation
in each case reduces the control accuracy. But it can be increased by controlling the
accuracy of the boundary layer width as a variable with time. In a special case, the
gradient of the saturation function on the boundary layer can be considered as X
variable by increasing this parameter.

Higher-order sliding modes are endowed with attractive dynamical properties,
such as finite-time convergence and insensitivity to matched perturbations. We refer
the interested reader to the work of Fridman for a survey of recent developments and
open problems on sliding mode control and observation, [122]. The super-twisting
algorithm (STA) is a finite-time stable algorithm. The works of Moreno showed
that the class of systems containing the STA inherits the Lyapunov stability proper-
ties of an associated continuous-time smooth linear system. In turn, Polyakov and
Poznyak provided a methodology for designing Lyapunov functions for the super-
twisting algorithm, via the solution of a partial differential equation and prove the
finite-time convergence of such an algorithm. A different approach toward the Lya-
punov stability analysis of the super-twisting algorithm may be found in the work
of Poznyak where the authors availed of discontinuous Lyapunov functions to esti-
mate its convergence time, [120].

FIGURE 1.8: The Saturation function used in classical SMC to over-
come the chattering effect.

The first attempt to extend the super-twisting algorithm to an algorithm with
several inputs and outputs may be found in the work of Nagesh and Edwards, [70].
There, the authors studied the Lyapunov stability of a particular case of the multi-
variable super-twisting algorithm and described the class of perturbations that pre-
serve the stability of the origin. Recently, Levant and Livne presented the extension
of a scalar algorithm to a multivariable framework based on the homogeneity prop-
erty of the former one.
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This approach concludes that the properties of the scalar case are extended to
the multivariable case. In turn, Basin proposed both a scalar and multivariable al-
gorithm that may be regarded as an extension of that in the work of Nagesh and
Edwards, [60]. The key feature of their system is the addition of terms that ensure
the convergence of the trajectories to the origin before a time that is independent
of the initial condition; such a stability trait is denoted as fixed-time stability. In
the work of Vidal, [61], a multivariable STA with time-varying gains was proposed
such that it preserves the global robust stability of the original despite an uncertain
symmetric input matrix. In the work of Fan and Tian, [59], the authors availed of a
multivariable STA with time-varying gains to design an observer for a hypersonic
vehicle model.

In continuous time systems, the Super-twisting Sliding Mode have been exten-
sively studied and it is shown that preserves the main characteristics of classical SM
while avoiding the undesirable chattering effect. The main purpose to introduce and
use this technique for the HR design problem is to avoid chattering and we use this
technique for this aim.

1.3.3 Discrete-Time Control Systems

According to the methodology section 1.2.1, the design of the robust controller in
our study is also tackled in discrete-time in order to explicitly take into account the
effect of the sampling time during the design process.

In the first Section of chapter 4, the main purpose is to ease off the design of con-
trollers by using a feedback-linearizing control approach that will be shown to lead
to linear state feedback controllers able to achieve perfect tracking under potentially
arbitrary reference signals.

For the second Section of chapter 4, a Joint parameter-state estimation based
control is designed. The identified values are then used in the controller design
feedback-linearization in the last section. This is a two-step procedure since the
identification is firstly performed and afterward, in a second step, the controller is
designed. In addition, some control algorithms need the values of both states in or-
der to implement the control law. Since the second state variable is unmeasurable, it
is generally needed to employ a state observer.

The main problems of this method are complexity and difficulty of estimation.
Also the oscillation of this method was another problem that we face when imple-
menting this algorithm. Regarding result and great performance of the sliding mode
control in Chapter 3 we will use this design to overcome all these difficulties. In or-
der to design a discrete-time sliding mode control (DT-SMC), we will do it first in
the linear system and finally the nonlinear design which will present in Section 4.4.

So far, there are several key discretization methods that are used in industrial
applications, such as the zeroth-order-hold (ZOH), Euler method, and the Tustin
method, [89]. However, ZOH has been frequently used in practice, particularly in
feedback control implementation. Moreover, the fact of using a discrete-time model
to face the control design problem will allow us to obtain more accurate controllers
than by designing a continuous-time one and then sampling it at a certain rate. Fi-
nally, the implementation of the proposed controller will be straightforward since
most controllers are implemented in digital platforms nowadays, [94][112].

According to the aforementioned discussion, the characteristic feature of a con-
tinu ous-time SMC system is that sliding mode occurs on a prescribed manifold,
where switching control is employed to maintain the state on the surface. When a
sliding mode is realized, the system exhibits some superior robustness properties
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with respect to external matched uncertainties. However, the realization of the ideal
sliding mode requires switching with an infinite frequency.

Discrete-time sliding mode control has been extensively studied to address some
basic questions associated with the sliding mode control of discrete-time (DT) sys-
tems with relatively low switching frequencies. Having said that, the quest of in-
depth understanding of the complex dynamical behaviors due to the discretization
of continuous-time SMC systems has to be further explored, [114]. The discretization
behaviors of SMC systems as well as some intrinsic properties of discretized SMC
systems are investigated in this section.

This very feature deteriorates the elegant invariance property enjoyed by most, if
not all continuous-time SMC systems. For Discrete-time systems, it is often assumed
that the sampling frequency is sufficiently high to assume that the closed-loop sys-
tem is continuous-time [89]. However, the actual closed-loop cannot be driven into
true sliding mode but quasi-sliding mode, which was defined in [106]. Obviously,
the most apparent difference between a discrete-time system and its continues-time
counterpart is the limited switching speed of the discontinuous control part. In DT
SMC, because of the zigzagging behaviors, exact sliding on the intersection of pre-
defined switching manifolds to some extent is impossible. To compensate for this
disadvantage of DT-SMC, a new concept, sliding sector, was brought in and has
been studied for quite a while [105-107].

Discretization is a major approach for industrial applications of control systems.
In many cases, control design is based on continuous time system models due to
their simplicity over their discrete-time counterparts, and the practical implementa-
tion is commonly done by using digital microprocessors or computers. There is a
gap between the ideal dynamical performance anticipated based on the design from
the theory for the continuous-time system models and the actual dynamical perfor-
mance when the control system is discretized. The time delay in delivering control
signals due to discretization is the key factor affecting the control performance.

This is particularly, when the control is discontinuous by its nature, such as the
SMC. The ”disruptive” switching may possibly cause incorrect actions due to the
delay of delivering timely control signals. These behaviors may likely cause severe
damage to industrial control devices such as actuators. In addition, the deteriorated
invariance property may worsen the reliability of SMC systems, hence making con-
trolled industrial processes vulnerable to unexpected environmental changes. The
detail of this phenomenon has been intensively studied in [120][121].

There are two main methods for discretization, Euler discretization and ZOH
discretization. In industries, simulations of control systems are usually done via
Euler discretization while their implementation in practice is commonly done via
ZOH discretization.

1.3.4 Euler Discretization

In [122][123], several important issues with regard to the discretization of SMC were
discussed. A mathematical formulation of discretization using Euler’s approxima-
tion was undertaken. It was shown that the solution trajectory must be attractive,
so that the Euler’s and the exact solutions can be consistent, as the sampling pe-
riod decreases. In comparison with other control methods, the sampled SMC suffers
more from the sampling process, as it would lose the high gain property near the
vicinity of the switching surface. To compensate for this, disturbance prediction is
indispensable, which is feasible under the hypothesis that the disturbance is slow
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time-varying. In [114], the discretization behaviours of the most popular SMC sys-
tems using the Euler discretization were studied. It was shown that if the discretized
SMC system is asymptotically stable then every trajectory converges to a period–2
cycle. Some symmetric features of the trajectory in steady state were explored and
boundary conditions for the steady states were derived.

1.3.5 ZOH Discretization

ZOH has been frequently used in practice, particularly in feedback control imple-
mentation.

The use of a discontinuous control law in a system will cause a chattering phe-
nomenon in the vicinity of the sliding manifold, hence leading to a boundary layer
with thickness,[101][118]. In continuous-time SMC, smoothing schemes such as
boundary layer (saturator) are widely used, which in fact results in continuous non-
linear feedback instead of switching control. Nevertheless, it is widely accepted by
the community that this class of controllers can still be regarded as SMC. In such
circumstance, the central issue is to guarantee the precision bound or the smallness
of the error. Similarly, in discrete-time SMC, by substituting the switching term by
means of a function that depends continuously on its arguments instead of being
discontinuous such as the sign function, chattering can be eliminated, [127].

The nature and existence of DSM have been discussed in the literature [130],
[131] and [132]. For discrete-time systems, sliding motions were first studied by
Miloslavjevic in [123] the context of sampled data linear systems. In [115], some
work has been reported for several classes of discrete-time linear systems. There
are two schools of thought on discrete-time sliding mode control. In the first one
[126], an equivalent control is proposed known as discrete-time sliding mode control
(DSMC), that directs the states onto the sliding surface in one sampling period and
subsequently helps to remain on it. This does not need any switching in control. The
second one, it is based on the discretization of continuous reaching law. It is shown
in [118], that the DSMC based on this, is switching type and it brings the trajectories,
to the surface infinite time but unable to slide the trajectory along the surface. The
convergence of error to a final ultimate bound, where the system overcomes the
disturbance, could be called the DSM.

Based on the available conditions, we propose a new application of this method
to develop a so-called discrete-time Super-Twisting sliding mode (DTSTSM). In this
scheme, the system’s trajectories enter into a boundary layer in the vicinity of the
sliding mode and stay inside it forever. This name has been adopted considering
the similarities between the Euler discretization applied on the continuous version
of the super-twisting method.

1.3.6 Discrete-time Super Twisting Sliding Mode Control

The super-twisting algorithm (STA) is one of the most popular algorithms in the field
of robust nonlinear control and observation. It is a second-order sliding mode algo-
rithm for systems of relative degree one with respect to a defined sliding variable
(output). One of its remarkable theoretical properties is the finite-time convergence
of the output in the presence of matched Lipschitz perturbations. Compared to the
first-order sliding mode controller, the STA generates a continuous control signal,
which is desirable in many applications. Stability and robustness properties of the
STA, as well as the closely related problem of convergence time estimation, have
been extensively studied in the literature [119], [120] [128]. Using the STA as a state
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observer and as a controller in an output feedback setting is discussed in [134]. Fur-
thermore, from a practical point of view, the STA enjoys the advantage of simple
implementation in a digital environment.

The robustness features are achieved by a discontinuity introduced in the second
derivative of the system’s output, which generates a sliding mode in the closed-loop
system. An ideal sliding motion is understood as the limit of motions when switch-
ing imperfections vanish and the switching frequency tends to infinity, [127]. How-
ever, in a digital environment, the switching frequency is always limited because the
sampling time is nonzero. This limitation leads to the so-called discretization chat-
tering phenomenon, i.e., self-sustaining oscillations in the systems output and state
variables, which diminish the control performance, [135].

In the case of the STA, the precision of the variable to be controlled is proportional
to the square of the sampling time where the proportionality constant depends on
the chosen controller parameters and the perturbations (Levant, 1993). This is in
particular problematic in many practical applications, as the design of non-adaptive
sliding mode controllers requires the knowledge of upper bounds of the uncertainty,
which is not always known a priori. An overestimation of this bound leads to un-
necessarily high control gains and consequently to large discretization chattering
amplitudes. An adaptive sliding mode controllers, which do not require this infor-
mation, special attention is usually paid to dynamic gain design. In that case, the
gains are reduced if the amplitude of the perturbation decreases in order to avoid
large chattering amplitudes, [136].

A discrete-time sliding mode controller is delicately constructed by designing a
nonlinear sliding manifold based on the super-twisting sliding mode technique and
also discrete-time control law based on the super-twisting algorithm. The rigorous
stability is provided to show that the tracking errors converge to zero in discrete-
time.

Since STW algorithm contains a discontinuous function under the integral, chat-
tering is not eliminated but attenuated. Although they all can alleviate the high-
frequency switching of control action more or less, only STW controller can reach
the sliding mode manifold Discrete-time in the presence of uncertainties or distur-
bances. However, conventional super-twisting algorithm tracking controller usually
can not acquire the discrete-time the convergence of tracking error for the system
whose relative degree is more than one. In order to realize the discrete-time con-
vergence of tracking errors, a so-called nonsingular terminal sliding mode (NTSM)
control method has been proposed in [129]. With the special design of a nonlinear
sliding manifold, the tracking errors converge to zero in discrete-time. Some novel
methods have been proposed in [118] to realize the discrete-time convergence of
tracking error for a system whose relative degree is more than one.

This method is applied and designed for the very first time in parameter estima-
tion and control design. Here I explain the techniques that we use for the state of
the art of controller. Based on the available conditions, we propose a new strategy
to develop a discrete-time Super-Twisting- algorithm (DSTA). However, to the best
of our knowledge, few discrete-time super-twisting versions of the controller have
been proposed. The substitution of the signum function by a saturation, common
trick to reduce the chattering for super-twisting SMC, has straightforward extension
algorithm. It is then fair to assume that the explicit discretization was used to get a
discrete-time super-twisting controller.

In this Section, entirely discrete-time versions of the STA are applied to the prob-
lems at hand. The difficulty of the oscillation of the parameters and great response
of the super-twisting controller in Chapter 3, were great reasons to imply a new
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method to solve these problems. Initially, instead of tackling the nonlinear problem
we tackled the linear on in this section too. On the other hand, the main objectives
of this method will offer great tracking properties, avoidance of state observer, no
chattering, systematic design and robustness.

1.4 Description of the contributions of the thesis

The objective of this work is to design a heart rate (HR) controller for a treadmill so
that the HR of an individual running on it tracks a pre-specified, potentially time-
varying profile specified by doctors for the cardiac recovery of the person. The main
contributions of the thesis are:

i) Design a new parameter estimation algorithm based on PSO. The estimation
algorithm is able to obtain an accurate estimation of the parameters in an individual
forms, which is the main aim is to be able and use for each person.

ii) The second contribution is to design a super-twisting sliding mode control for
the continues-time system. I achieved a very good tracking response with tracking
error of less than one percent. I choose a super-twisting sliding mode control method
because of chattering avoidance and especially got a very good response in the wide
range of the speed that was applied for the first time in this problem.

iii) The final contribution is the design of the robust discrete-time controller.
For this purpose, we proposed first to design a feedback-linearization. A feedback
linearization-based control law is designed to achieve the control objective but the
obtained results have poor robustness. In Section 2 of Chapter 4, a Joint parameter-
state estimation algorithm is developed to obtain an estimation of the parameter val-
ues to use for the control law calculation but due to the complexity of the algorithm
and perfect performance of the super-twisting in Chapter 3 we decided to design
a robust discrete-time controller. In Section 4.3 discrete-time sliding mode control
has been described in two different new methods. instead of tackling the nonlin-
ear problem we tackled the linear in Section 4.4 and the linearization system will
discretize with Zero Hold-Order (ZOH) method. Finally for solving the problems
such as chattering, robustness, perfect tracking and as mentioned great response of
the super-twisting without an observer, a very new method which is called discrete-
time super-twisting sliding mode control will be applied for the first time to solve
the problem of robustness and chattering of the system.

1.5 Structure of the thesis

The thesis is organized as follows:
In Chapter 2, we explain the identification algorithm of a heart rate model pa-

rameters. The parameter estimation problem is formulated as an optimization one
and solved by using Particle Swarm Optimization (PSO). In a section of this chapter,
we compare our results with other techniques that were used before to solve this
problem.

In Chapter 3, Sliding Mode Control, which is the method that we used for the
first time in this work for designing our controller, is defined. Regarding the Sliding
Mode control, they are some techniques that we used. The ZOH technique is one
of the techniques that we used to design a discrete-time controller for the system at
hand. This method will be explained in Chapter 4.

In Chapter 4, the explanation of robust Discrete-time Control can be seen. The
important issue for using this technique is about it is chattering-free, the ability of
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not needing an observer, robustness and perfect tracking for solving the problems.
Actually, by using this technique we got a great response from our system that can
be individualized by every person.

Finally, Chapter 5 summarizes the conclusions of the thesis.
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Chapter 2

Identification of heart rate model
parameters

In this chapter, the identification of the heart rate model parameters is presented.
The PSO algorithm is used in this chapter to solve the parameter estimation prob-
lem for the first time and the results that we obtained are superb. Some methods
previously have been proposed to solve the parameter estimation. We used the
M-estimator method to compare our results because M-estimator is one of the best
methods from the statistical point of view to solve the parameter estimation prob-
lem. Eventually, the results show that the PSO approach has a great response com-
pared to the M-estimator.

2.1 Introduction

In order to meet the metabolic demand during exercise, the heart rate (HR) of an
exerciser increases. Thus, the knowledge of how HR responds to exercise will im-
prove our understanding of exercise physiology. In addition, it may also be useful
for predicting cardiovascular disease mortality, [40]. The understanding of HR re-
sponse with exercise may also lead to an improvement in developing training pro-
tocols for athletics, more efficient weight loss protocols for the overweight people,
and in facilitating the assessment of physical fitness and health of individuals, [41].
For instance, this may give us some points in order to prevent heart attack during
treadmill exercise.

Several models have been proposed in the works of literature to model the heart
rate response to treadmill velocity, [47]. For instance, [80], proposes a Hammerstein
model composed of a static non-linearity defined by a look-up table followed by a
linear dynamical system while [89] proposes a non-linear dynamical model. Any-
way, nonlinearity must be present in the model due to the nonlinear response of the
heart rate to the exercise. A further discussion of models has been carried out in Sec-
tion 1.3.1 of Chapter 1. The models are parameterized by a number of parameters
that capture the individual HR response to exercise. It is vital, thus, to design pa-
rameter estimation procedures that allow us to have a personalized model for each
individual from measured data.

In this work, parameter estimation is set up as an optimization problem whose
solution leads to the estimated model parameters. The optimization problem is
solved by using a particle swarm optimization (PSO) algorithm. The introduction
to the PSO algorithm along with its use in the solution of optimization problems
been done in Section 1.3.1 of Chapter 1. The proposed approach in comparison with
the M-estimator procedure shows that PSO advice better behavior than the previous
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approaches, while the accuracy of the estimation parameter is increased by using
PSO.

In this study, the parameter estimation problem is solved by using the Particle
Swarm Optimization (PSO) method, which is the first time where this method is
used for the problem at hand. The parameter estimation will be focused in the range
of treadmill speeds from 2 up to 14 km/h (2-14 km/h). In many studies, [19][21][24],
the usual range of speed is (2-8 km/h), or (2-10 km/h). Therefore, the proposed
methodology is applicable in the large range of speeds from 2 to 14 km/h. Despite
this range is popular in many rehabilitation and training exercises, it is the first time
considered in this problem.

This chapter is organized as follows. Initially, the model of the system is con-
sidered in Section 2.2 . In this Section, the PSO algorithm used for solving the pa-
rameters estimation problem is also introduced. Finally, in the last section (Section
2.3) the results and comparisons with another parameter estimation method, called
M-estimator method are presented.

2.2 Heart rate model

The following nonlinear model describes the relationship between speed and heart
rate during treadmill exercise, [1], and it is the model that will be used through the
thesis:

ẋ1(t) = −a1x1(t) + a2x2(t) + a3u2(t) (2.1)
ẋ2(t) = −a4x2(t) + ϕ(x1(t)) (2.2)

ϕ(x1(t)) =
a5x1(t)

1 + exp (−(x1(t)− a6))
(2.3)

y(t) = x1(t) + HRrest (2.4)

Where x(0) = [x1(t), x2(t)] = [0, 0] is the usual initial condition and a1, ..., a6 are
positive scalars that are adjusted from real data to describe the particular response
of each individual to exercise. The output y(t) relates to the change of HR of the
person, and HRrest is the value of the Heart Rate at rest. The control input u(t) de-
scribes the speed of the treadmill. The component x1(t) describes the change of HR
from the heart rate at rest mainly due to the central response to exercise, whereas
the component x2(t) describes the slower and more complex local peripheral effects.
The positive feedback signal x2, or a dynamic disturbance input to the x1 subsystem,
may be treated as a reaction of HR to the effects from the peripheral local responses
or factors. In this case, the metabolites from the peripheral local metabolism further
accelerate the HR during exercise. For instance, in the case of the peripheral local
metabolism, the accumulated metabolic by-products, such as adenosine, K+, H+,
lactic acid and other metabolites, cause vasodilatation and hyperemia inactive mus-
cles, [34]. Vasodilatation in the active muscles causes a reduction in total peripheral
resistance which in turn causes a decrease in mean arterial blood pressure. In order
to regulate the blood pressure, the cardiac output needs to be increased, meaning
that stroke volume and HR are increased via the baroreceptor reflex, [34].

The nonnegative nonlinear function ϕ(x1) has the property that ϕ(x1) << 1
when x1 is small, whereas when x1 is much larger than a6, ϕ(x1(t)) approaches the
linear function x1(t). If x1 is small and a6 is large, the variable x1 is multiplied by
a small factor(i.e. a4

1+exp(−x1(t)−a6)
≈ 0 in the second equation of (1), so x2 becomes

nearly independent of x1 . If x1(0) = x2(0) = 0 which is typical initial condition and
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the input u(t) is small, the state x1(t) may not be large enough to make the factor
a4

1+exp(−x1(t)−a6)
significant, and x2(t) will remain close to zero. As a result, system (1)

can be approximated by the system x1(t) = −a1x1(t) + a3u2(t) with x2(t) = 0. On
the other hand, if the input u(t) is sufficiently large, the state x1(t) will be driven to a
level that the factor a4

1+exp(−x1(t)−a6)
is significant, and x2(t) is no longer independent

of x1(t).
It is important to bear in mind that the objective of this chaper is twofold: 1) Pro-

pose a parameter estimation method based on PSO, and, 2) use M-estimator method
to compare the results, both things used for the first time in this problem and also
for speeds ranging from 2 to 14 km/h. In this way, the estimation of the model’s
parameters X = (xi) = [a1.....a6] is formulated as an optimization problem. Hence,
the optimization of a cost function will provide an estimation of the parameters. The
PSO algorithm will be used to solve the so-obtained optimization problem.

PSO consists of a population (or swarm) of M particles, each of which represents
a n dimensional potential solution of the optimization problem. In our approach,
n = 6 is the number of parameters to be estimated. Particles are assigned random
initial positions and they change their positions iteratively to reach the global op-
timal solution. It is desired to minimize the fitness function as the PSO iterations
progress.

The parameter estimation problem is cast into an optimization one so that the
minimum of the fitness cost function will provide an estimation of the parameters
of the system. The Squared Error Loss (SEL) is the most common cost function to
be optimized for speed estimation problems and it is also the easiest to work with
from a mathematical point of view. The SEL is linked with variance and bias of an
estimator, so that the cost function is formulated for the estimated parameter vector
X̂k at iteration step k as :

Ik = Var(ŷk) + bias(X̂k) (2.5)

where ŷk is the estimated output. Both terms in Eq. (2.5) are nonnegative i.e. Var(ŷk)
>0, Bias(X̂k) ≥ 0, so that the minimum of the cost function Ik is given by Ik = 0.
Therefore, when the cost function Ik vanishes then (Varŷk = 0) and bias(X̂k) = 0
implying that the estimation of the parameters is performed adequately. The mini-
mization of such cost function is done by using the PSO algorithm.

Each particle evaluates its fitness (given by Eq. (2.5)) [34][46][49], and every par-
ticle i = [1, ..., M] has a memory to store the value of its best own position Pbest id,
which is defined as the position where the particle has minimum fitness. Besides,
the best of Pbest id of all particles, called Gbestd, is stored too. At each iteration k,
the PSO modifies each dimension of the position xid in a particle by adding a veloc-
ity vid and moves the particle towards the linear combination of Pbest id and Gbestd
according to:

vid(k + 1) = w vid(k) + c1 rand1(pid − xid) + c2 rand2(pgd − xid) (2.6)

xid(k + 1) = xid(k) + vid(k + 1) (2.7)

In fact, according to Eqs. (2.6)-(2.7), some new particles may be out of the search
space so that a projection to the boundaries of such space is included in the algo-
rithm, [46]. Moreover, the most common approach to restrict the particle position in
the search space is to set the violated components of the particle equal to the value of
the violated boundary, [34]. In the problem at hand, the constraint violation appears



26 Chapter 2. Identification of heart rate model parameters

when the algorithm provides a negative value for the parameters. Consequently, the
projection algorithm takes the form:

xid =


0 xid < 0

xid otherwise (2.8)

In this way, we can guarantee that the estimated parameters are nonnegative
and the velocity and position of each particle are updated by the equations until a
termination condition is met and the algorithm finally stops.

Typically, the number of subsequent iterations without improvement of the best
solution and/or the dispersion of the particles current (or best) positions in the
search space has been used as indicators of search stagnation. Frequently, the afore-
mentioned termination criteria are combined in forms such as:

IF (|Ik+1 − Ik| ≤ ε) OR (k ≥ kmax). Then Stop (2.9)

where Ik is is the function to be optimized (in this case, (2.3)) and k stands for the
iteration number, respectively, and ε is the corresponding user-defined tolerance.
However, the search stagnation criterion can prematurely stop the algorithm even if
the computational budget is not exceeded. Successful application of this criterion is
based on the existence of a proper stagnation measure. The parameters c1 and c2 are
the so-called cognitive and social parameters, respectively, and satisfy 0 < c1, c2 < 1,
[56][34].

Finally, w is the inertia weight selected as 0.4 ≤ w ≤ 0.9, the range where the
algorithm provides the best results, [54]. Regarding Section 1.3.1 in Chapter 1, we
used all these fixed parameters because they are the standard range employed in the
algorithms to get a better result. Basically, in the previous studies, the researchers
used different ranges, but they could improve the results obtained by these values.
Finally, they discover that the best range for these parameters can be these ranges
that we used in our study to get the best results.

Figure 2.1 displays the pseudocode of the PSO algorithm developed in our study.
The PSO search is carried out by the speed of the particle. During the development
of several generations, only the most optimistic particles can transmit information to
the other ones. One of the advantages of the PSO method is that it can be applied to
optimization problems of large dimensions, often producing quality solutions more
rapidly than alternative methods, [55].

2.2.1 M-estimator

Previously in some studies, researchers used different methods such as the to solve
the parameter estimation problem, [34][51]. The comparison with the M-estimator
procedure will show that PSO has better behavior than the previous approach, while
the accuracy of the estimation parameter is increased by using PSO.

As it will be shown in section 2.3, the theory of M-estimation is introduced for
comparison purposes. The previous researchers used robust performance of esti-
mation for two main reasons, namely: 1)there may be outliers in the data, that are
sample values considered very different from the majority of the sample and 2)the
data may depart from the underlying distribution assumptions, [51]. This method is
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FOR each particle i 

         Initialize position xid   

         Initialize velocity vid  

       End FOR 

   End FOR 

Iteration k=1 

DO   

   FOR each particle i 

    Calculate fitness value 

    IF fitness value is better than p_bestid  in history set current fitness 

value as the p_bestid    

        END IF 

   End FOR 

Choose the particle having the best fitness value as the g_bestd  

FOR each particle i 

     Calculate the velocity according to the equation  

            vid(k+1)= w vid(k)+c1 rand1(pid - xid)+c2 rand2(pg - xid) 

            update particle position according to the equation 

            xid(k+1)=xid(k)+vid(k+1) 

     IF  xid= ✌
✄✁ ✞☛� ✂ ✄
✞☛� ☎✆✝✟✠✡☞✍✟    End IF 

End FOR 

IF ✒✎✏✑✓ ✔ ✎✏✕ ✖ ✗ ☎✘ ✙✚ ✛ ✚✜✢✣✤ ✥✝✟✦✧✆★✩ 

k=k+1 while maximum iteration or minimum error are not acceded 

FIGURE 2.1: PSO pseudocode employed to solve the optimization
problem.

good for estimating the parameters, which is the reason why we compare our app-
roach with this one. This method is effective, from the statistical point of view, to
obtain an adequate estimation of the parameters. The class of M-estimators contains
the maximum likelihood estimator (ML) as a special case. If we assume that the data
come from the model distribution F(µ, σ) then the log-likelihood can be written as:

n

∑
i=0

{log( f0(
xi − µ

σ
)− logσ) (2.10)

The first order condition for the M-estimator of µ is then given by:

1
n

n

∑
i=0

ψM(
xi − µM

σ
) = 0 (2.11)
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while the M-estimator of scale verifies

1
n

n

∑
i=0

ρM(
xi − µ

σM
) = 1 (2.12)

with ψM(u) being the so-called score function, and ρM(u) = ψM(u)u. Under reg-
ularity conditions the ML estimators have a 100 percent efficiency, meaning that
their asymptotic variance equals the inverse of the Fisher information, the lower
bound of the Cramer-Rao inequality, [34][51]. The parameters are estimated by solv-
ing Eq. (2.12) with respect to xi. The estimated parameters obtained by using the
M-estimator are applied again to parametrize Eq. (2.1)-(2.4). In order to, we are cal-
culating the fit-in error (since it is an error coming from a difference in the output of
the models and actual data) in this part, that is only in open loop and it is only for
estimation purposes. The fit-in errors are calculated as:

J1,k = [rk − pk] (2.13)
J2,k = [rk − mk] (2.14)

where : rk = re f erence, (HR output o f  data)
pk = PSO output
mk = M − estimator parameter output
In the next section the results regarding the proposed algorithm are discussed.

2.3 Simulation results

This Section is composed of the estimation results obtained by means of the PSO
algorithm. Secondly, the comparison results between the PSO and M-estimator pa-
rameter estimation procedures is presented.

Now, we will apply the PSO parameter estimation algorithm to the data de-
scribed in tables below corresponding to ten subjects. These data are numerical data
used for testing the algorithm and they do not correspond to real subjects. The pa-
rameters of the PSO algorithm are given by c1 = 0.87, c2 = 0.67, w = 58, rand1 = 0.1,
rand2 = 0.5 and ε ≥ 0.15. Then, tolerance is small and selected according to the cri-
teria commented in section 2.2. The actual parameters of the ten subjects are given in
Tables 2.1 and 2.2 and the estimated ones obtained from the PSO proposed approach
are in Tables 2.3 and 2.4.

TABLE 2.1: Actual parameters of subjects 1 - 5.

Parameters Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
a1 2.512 2.791 2.683 2.592 2.611
a2 25.92 25.74 25.25 25.41 25.84
a3 0.81 0.85 0.79 0.8 0.81
a4 0.9021 0.9087 0.909 0.9011 0.9108
a5 0.038 0.041 0.035 0.039 0.042
a6 5.37 5.51 5.43 5.65 5.29

HRrest 64 69 66 68 69

As it can be noticed from Tables 2.1, 2.2, 2.3 and 2.4, the estimated parameters
obtained by the proposed PSO approach are close to the actual ones. These results
mean that the PSO algorithm performs very well.
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TABLE 2.2: Actual parameters of subjects 6 - 10.

Parameters Subject 6 Subject 7 Subject 8 Subject 9 Subject 10
a1 3.12 3.7 3.05 3.25 3.9
a2 21.25 21.95 21.1 21.55 21.8
a3 1.5 1.6 1.3 1.4 1.7
a4 1.9 1.8 1.8 1.25 1.9
a5 1.01 1.21 1.16 1.09 1.25
a6 8.15 8.35 8.5 8.6 8.3

HRrest 62 67 64 68 61

TABLE 2.3: Estimated parameters obtained by running the PSO algo-
rithm of subjects 1 - 5.

Parameters Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
a1 2.508 2.789 2.681 2.588 2.615
a2 25.88 25.69 25.2 25.48 25.71
a3 0.849 0.855 0.788 0.798 0.809
a4 0.9011 0.9079 0.9088 0.9019 0.9098
a5 0.04 0.043 0.039 0.032 0.04
a6 5.41 5.49 5.47 5.59 5.59

TABLE 2.4: Estimated parameters obtained by running the PSO algo-
rithm of subjects 6 - 10.

Parameters Subject 6 Subject 7 Subject 8 Subject 9 Subject 10
a1 2.95 3.15 2.8 2.95 3.5
a2 20.8 21.5 20.5 20.85 21.25
a3 1.1 1.2 0.95 1.15 1.2
a4 1.5 1.3 1.2 0.95 1.5
a5 0.8 0.9 1.0 0.85 1.0
a6 7.75 7.9 8.2 8.1 7.9
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Figure 2.2 shows the actual heart rate corresponding to one of our subjects (sub-
ject No.3) along with the output of the estimated model obtained by using the PSO
algorithm described in Section 2.2. As it can be observed in this figure, the estimated
model captures the dynamics of the heart rate of this person. It means that the PSO
algorithm has a good response. Moreover, PSO is able to provide accurate parame-
ter values and able to reproduce the behavior of the heart rate. Figure 2.3 displays
the HR generated by the original model parametrized by the parameters in Table 1
along with the values obtained when the estimated parameters values are used to
obtain the HR response according to (2.1)-(2.4). The potential mismatch between the
actual and the estimated outputs comes from the estimation errors, that in this case
are very low, as Figure 2.7 will be shown. In a real case, this mismatch may come
from an uncertain unmodeled dynamics that could come from the real system as
well as parametric errors coming from an estimation error.

FIGURE 2.2: Heart rate response for subject NO 3 ( that shows in
green points) with using PSO at speed of (2-14 km/h)

FIGURE 2.3: Heart rate response with using PSO at speed of (2-14
km/h)- for 4 random subjects
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The following figures (Fig.2.4 and Fig.2.5) display the evolution of the estimated
parameters for subjects No.1 and No.8 of Table 2.1 and the estimated ones. These
figures show that after a small number of iterations the estimated parameters are
close to the actual ones, a fact that is displayed numerically in Tables 2.2, 2.3 and 2.4.

FIGURE 2.4: Evolution of estimated parameter for subject No.1

FIGURE 2.5: Evolution of estimated parameter for subject No.8

The following Figure 2.6 displays the actual value of parameters for the ten sub-
jects. Since the value of the actual parameters exhibits a large variability, we can con-
clude that the algorithm works for people in a diversity of situations being described
by very different parameters value. Therefore, Figure 2.7 shows the relative error of
the estimated parameters. As it can be observed, the proposed PSO algorithm is
able to achieve a superb estimation since the relative error, given by a−aestimation

a × 100,
which is very low and the proposed algorithm with this high variability for the pa-
rameter values has a superb response.

Figure 2.8 shows the fit-in results of the output of the PSO and M-estimator.
Thus, it is shown demonstrates that in many points the output of PSO intersects with
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FIGURE 2.6: Actual values of parameters.

FIGURE 2.7: Relative Error of estimated parameters.

the reference signal and it means that PSO estimation is really close to the reference.
On the other hand, the M-estimator displays an output that intercepts at some points
with the reference, it has many variations in most of the points and this is not as
effective as PSO. Therefore, PSO outperforms M-estimator. As it can be seen at the
beginning of the process in Figure 2.9, PSO after 500 seconds starts definitely better
than the M-estimator and it slightly goes better afterward. Both of these models have
a good response, but PSO performs better during the speed process. On the other
hand, PSO has a lower error against the M-estimator. The speeds that are presented
to this figure (2.9) is not the same for all the parameters.

In Fig. 2.10 the value of the cost function (Eq. (2.5)) in Particle Swarm Optimiza-
tion and M-estimator are displayed. The cost function (2) in the PSO after 5 iterations
reduces faster than the M-estimator. So this fact can be interpreted as that estimation
is performed faster in PSO method than by the M-estimator, and this fact is reflected
in the quality of estimation.

Finally, in Figure 2.11 the evaluation of the fit-in error of the M-estimator with
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respect to the PSO has been shown. It is one of the main reasons that we choose
the M-estimator method to compare with PSO. on the other hand, it proves that this
method (M-estimator) has a good response by itself and works well too. As it is clear,
the M-estimator evaluation and PSO are having a very good response with respect
to the reference signal.

FIGURE 2.8: Comparing heart rate estimation results with PSO and
M-estimator.

FIGURE 2.9: Speed of the treadmill employed for estimation pur-
poses.

2.4 Conclusion

In this chapter, we introduced a new method to solve the parameter estimation prob-
lem for the heart rate model which is formulated as an optimization one and solved
by using Particle Swarm Optimization (PSO). PSO also has been proposed to obtain
an accurate estimation of the model parameters. Numerical examples show that the
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FIGURE 2.10: Evaluation of the cost function (2.5) with PSO and M-
estimator.

estimation procedure is able to obtain accurate values for the system’s parameters.
In this case, the range of treadmill’s speed goes from 2 to 14 km/h, the range that is
not usually employed in previous studies.

In order to compare better our results, we decided to use the M-estimator method
which is one of the best methods for solving the parameter estimation. At the end of
this chapter, in Section 2.3, results have been shown. As it is clear that our method
(PSO) had a great response compared to the M-estimator and our system performed
greatly with the PSO algorithm.

In Chapter 3, the design of a sliding mode controller (SMC) for the HR control
during treadmill exercise is explained and any small disfluency of the obtained pa-
rameters is compensated by using the SMC.

The material contained in this Chapter has been publihed in [88] and partly in
[34].
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FIGURE 2.11: Fit-in error functions (2.13) and (2.14).
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Chapter 3

Super-Twisting Sliding Mode
Control

The objective of this chapter is to design a heart rate (HR) controller for a tread-
mill so that the HR of an individual running on it tracks a pre-specified, potentially
time-varying profile specified by doctors for the cardiac recovery of the person. The
technique that we are using to design the controller is Sliding Mode. In this way, a
super-twisting sliding mode controller is designed to perform the robust control of
treadmill’s speed in the presence of potentially unmodelled dynamics or paramet-
ric uncertainties. Numerical examples show that the proposed control approach is
able to obtain zero tracking error without chattering, definitely achieving the control
objectives.

3.1 Introduction

Despite the estimation procedure developed in the previous chapter, some uncer-
tainty and external disturbances may still appear in the system, so it is interesting to
develop a robust controller for this type of systems.

The Variable Structure Control (VSC) is a general approach for designing robust
control systems and it is composed by a series of continuous subsystems with a
suitable logic switching. This type of control has taken on a growing importance
over the years since it is suitable to control a wide range of systems such as linear
and nonlinear, time-invariant and time-variant systems, single input single output
systems (SISO) or multi-input multi-output systems (MIMO), continuous or discrete
time systems, [61].

Nowadays the Super-twisting Sliding Mode Control (STSMC) has increased its
spread thanks to the emergence of new classes of problems and the progress in
switching components. The STSMC is a control technique very renowned due to
its robustness property with respect to the parameters variation of the system and
the external disturbances, and it is a very good technique for chattering avoidance.
Thus, a Super-twisting Sliding Mode Controller (SMC) approach is adopted to de-
sign the controller.

Sliding mode controllers at large have revealed very useful in the robust control
of multiple systems, such as pneumatic cylinder as actuators for robot manipulators,
[59] and the hydraulic dynamics of the manipulator, [60]).However, this is the first
time that SMC is used to control the HR during treadmill exercise. A survey on pre-
vious work has been done in Section 1.3.2 of Chapter 1. Especial attention will be
devoted to the chattering effect since this is a crucial aspect in biomedical applica-
tions, [62], and also bear in mind that the super-twisting have got some applications
in the past,[61][67][70]. To this end, a super-twisting based sliding mode controller
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will be designed instead of a traditional SMC, [57]. The super-twisting approach
will allow avoiding the undesired oscillations that a classical sliding mode contro-
ller may cause. In Section 3.4 of this Chapter, simulation results will be presented.
In our approach, the accuracy of the model of parameter estimation for treadmill
speeds has been improved. On the other hand speed range is (up to 14 km/h) which
has not been considered in the previous studies.

In the next section, I will introduce the foundations of SMC in order to afterward
illustrate the design of the super-twisting algorithm.

3.2 Classic Sliding Mode Control

Sliding mode control is a combination of linear feedback and Lyapunov methods
with a particular variable shift. To illustrate this, consider the following equation:

x(n) = f (X) + b(X)u (3.1)

where f (X) = fun + fnom is a non-linear function that is not fully identified, in which
fun is the unmodeled unknown part and fnom is the nominal, known part, b(X) is
control and u is control input. In the system (3.1), the control input appears in the
nth derivative of x(t) and therefore the relative degree of the system is equal to n.In
controlling the standard sliding mode, for simplicity in design, we should first define
it with a variable weighted error in a variable, which is called the sliding variable. A
particular form for the sliding variable is :

S(t) =
(

d
dt

+ λ

)(n)

x̃(t) = x̃{n) + ... + λn−1 x̃ (3.2)

Where λ > 0 is the weighting factor, x̃ is the variables of the state, x is state variable
error and xr is reference. So x̃ is defined as follows:

x̃ = xr − x (3.3)

In the following, the objective of controlling the sliding variable is to stabilize
and converge to zero (S(t) → 0) . To do this, we have the derivative of the sliding
surface:

S(t) =
dn(x̃)

dtn + ... + λn x̃ = x̃n + ... + λn x̃ (3.4)

By placing (3.2) and (3.3) in (3.4) we will have:

S(t) = xn − xr
n + ... + λn(x − xr)

= f (x) + u − xr
n + ... + λn(x − xr) (3.5)

As it can be seen, the control input appears in the first derivative of the sliding
variable, and so the relative degree of this system is equal to one. Therefore, chang-
ing the variable and defining the sliding variable, systems with a relative degree n
turn into problems with a relative degree of one. Now, for the control of this first-
order system, we use the Lyapunov stability theory. For this purpose, the following
Lyapunov candidate candidate function is considered:

V(t) =
1
2

S(t)2 (3.6)
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Which is a positive definite function. According to the theory of the stability of Lya-
punov, if the derivative of this function is negative, the stability will be asymptotic.
But in sliding mode control theory, to ensure the congestion of the slippery time
limit, the condition (3.7) is considered, which is known as sliding condition.

V̇(t) = S(t)Ṡ(t) ≤ −η |S(t)| (3.7)

Where η is a positive constant. By integrating both sides of (3.7) we have:

S(t)
dS(t)

dt
≤ −η |S(t)| (3.8)∫ S(t)

S(0)

S(t)
|S(t)|dS ≤

∫ tr

0
−ηdt (3.9){

tr ≤ |S(0)|
η , S(t) > 0

tr ≤ −|S(0)|
η , S(0) < 0

(3.10)

Therefore, the duration of the convergence of the sliding variable can be calculated
from the following equation (3.11):

tr ≤
|S(0)|

η
(3.11)

To establish the above condition (3.7), the sliding mode controller consists of two
parts usliding and uequivalent which usliding counteracts the uncertainties of the system
and uequivalent is the so-called equivalent control, and will mathematically describe
the definition of the super-twisting algorithm.

In Section 3.3 the design of the controller in the non-linear system is tackled by
the Super-twisting sliding mode control. Also, keep in mind that this technique is
very new for this kind of systems and it is for the very first time that is designed.

3.3 Super-twisting sliding mode control

This section contains the design of the super-twisting sliding mode control for the
HR system. Thus, define the tracking error as:

e = R − y (3.12)

where R denotes the reference signal (that is, the HR profile to be tracked) and y is
the output of our system e(t) denotes, therefore, the tracking error. The role of the
controller is to ensure that the system’s output accurately tracks the reference signal
R. Bear in mind that R is known in advance since it is defined by the medical team
for the appropriate recovery of the patient, (see Chapter 1) and consequently Ṙ is
also known in advance.

When the system is perturbed or uncertain, the finite-time stabilization is not
ensured. Hence, a reaching law based discontinuous control is developed which
rejects the uncertainties of the system and ensures that the control objectives are
fulfilled. Also, the nominal parameters come from Chapter 2 and are individualized
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for each person. The uncertainties in our system can be modeled as:

ẋ1(t) =− a1x1(t) + a2x2(t) + a3u(t)2 + funcer1(x)
ẋ2(t) =− a4x2(t) + ϕ(x1(t)) + funcer2(x)

ϕ(x1(t)) =
a5x1(t)

1 + exp (−(x1(t)− a6))

y(t) = x1(t) + HRrest

(3.13)

where funcer1(x) and funcer2(x) account for the unmodelled dynamics and parametric
uncertainty in each of the model equations. On the other hand, we need to consider
the following assumptions.

Assumption 1. funcer1(x) and funcer2(x) are upper-bounded .
Assumption 2. One upper-bound for each one of these terms is known.
These are common assumptions in SMC, [62], and it is feasible to know these

bounds in this problem. For instance, the uncertainties in the parameters maybe
upper-bounded by the values and techniques exposed in chapter 2. Also, there are
some approaches for which the bounds may be unknown and are estimated by the
algorithm itself, [61] in an adaptive way. The sliding mode controller is composed
of two parts:

u = uequiv − usliding (3.14)

where uequiv is the so-called equivalent control used to remove certain terms while
the sliding term usliding is the term used to counteract the uncertainties of the system
and will be of the super-twisting type, [60]. This approach will also help us avoid
the chattering effect, that would be very harmful in the control system. Initially, the
equivalent control will be derived while the final control law will be obtained by
incorporating the super-twisting sliding term.

The following sliding manifold with the integral term is proposed:

S(t) = e(t) + λ
∫ t

0
e(τ)dτ (3.15)

where λ is a strictly positive constant. The equivalent control is obtained by derivat-
ing with respect to time and then equating the so-obtained derivative to zero. In this
way we have:

e(t) = R(t)− y(t) = R(t)− x1(t) + HRrest

ė(t) = Ṙ(t)− ẋ1(t) + ˙HRrest

= Ṙ(t) + a1x1(t)− a2x2(t)− a3u2(t) + funcer1(t) (3.16)

Thus, if we substitute the above expressions into (3.16) and simplify it, the derivative
of the sliding manifold reads:

Ṡ(t) = ė(t) + λe(t)
= Ṙ − ẏ + λe(t) = Ṙ − ẋ1 + λe(t)
= Ṙ − (−a1x1 + a2x2 + a3u2 + funcer1) + λe(t) (3.17)
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If Ṡ(t) = 0 we have:

Ṙ + a1x1 − a2x2 − a3u2 − funcer1 + λe(t) = 0 (3.18)

Now, if we isolate u2 we obtain:

a3u2 = Ṙ(t) + a1x1 − a2x2 − funcer1 + λe(t) (3.19)

u2(t) =
1
a3
(Ṙ(t) + a1x1 − a2x2) + λe(t) (3.20)

The uncertain terms funcer1 do not appear in (3.20) since they are unknown. There-
fore, they do not appear in the equivalent control part. The super-twisting sliding
term is given by, [80]

usliding = K|S|αsign(S) (3.21)

It is important to point out that the total control command is given by (3.15) while
being composed of the sum of (3.21). Therefore, the value of both state variables x1
and x2 is needed to calculate the control law. The heart rate x1 can be measured
easily, as there exist multiple devices to measure the HR of an individual in real
time. However, the peripherical effects x2 cannot be measured. As a consequence,
a state observer is needed in order to implement the control command in practice.
The state observer is given by:

˙̂x2 (t) = −a4 x̂2 (t) + ϕ (x1 (t)) (3.22)

With arbitrary initial condition x̂2(0), since x2 is infusible to obtain and funcer1 is
unknown. The final control law reads:

u(t) =
1
a3

(
Ṙ(t) + a1x1(t)− a2 x̂2(t) + λe(t)

)
− K|S|αsign(S) (3.23)

Despite the observer works with arbitrary initial conditions, a judicious choice
is given by x̂2(0) = 0 since at the beginning for the exercise, the peripherical effects
are small and the initial value of the state variable is close to zero. In this way, the
initial observation error would be zero and will maintain close to zero during all the
observation. Therefore, the following Assumption 3 is feasible.

Assumption 3. The observation error (x̃2(0) = x̂2(0)− x(0)) at the initial time is
bounded and an upper-bound for it is known.

On the other hand, the need for a state observer will be relaxed in Chapter 4,
where a robust discrete-time controller is designed. The switching gain K has to
be selected so as to guarantee the stability and reference tracking of the closed-loop
system. In order to obtain a guideline for its tuning we consider the following Lya-
punov function candidate:

V(t) =
1
2

S2 (3.24)
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Its time-derivative is given by:

V̇(t) = SṠ = S
(

Ṙ − ẋ1(t) + λe(t)
)

= S (a2 x̂2(t)− a2x2(t)− Ka3|S|αsign(S)− funcer1(x))
= S (a2 x̃2(t)− Ka3|S|αsign(S)− funcer1(x))
= −Ka3|S|α+1 + S (a2 x̃2(t)− funcer1(x)) (3.25)

where (x̃2(t) = x̂2(t) − x2(t)), represents the observation error. In order to en-
sure the appropriate operation of the controller, the time derivative (3.25) should
be negative-definite, fact that is achieved if:

Ka3 > |a2 x̃2(t)− funcer1(x)| (3.26)

Condition (3.26) can be further elaborated in the following way. The dynamics of
the observation error is obtained by Eq. (3.22), whose result is:

˙̃x2(t) = −a4 x̃2(t)− funder2(x) (3.27)

The solution to this equation is given by:

x̃2(t) = e−a4t x̃2(0)−
∫ t

0
e−a4(t−τ) funcer2(x)dτ (3.28)

If the uncertain function funcer2 is upper-bounded, i.e. sup | funcer2| < ∞, fact that
holds since according to Assumption 1 the uncertainty terms are bounded, then
(3.28) can be upper-bounded accordingly as:

|x̃2(t)| ≤ e−a4t|x̃2(0)|+
1
a4

sup | funcer2(x)|
(
1 − e−a4t) (3.29)

≤ |x̃2(0)|+
1
a4

sup | funcer2(x)| (3.30)

for all t ≥ 0. In this way, (3.26) is satisfied if the following condition holds:

Ka3 >

(
a2|x̃2(0)|+

a2

a4
sup | funcer2(x)|+ sup | funcer1(x)|

)
(3.31)

since

a2|x̃2(0)|+
a2

a4
sup | funcer2(x)|+ sup | funcer1(x)|

≥ a2|x̃2(t)|+ sup | funcer1(x)|
≥ |a2 x̃2(t)− funcer1(x)| (3.32)

Thus, the switching gain K must be selected to fulfill (3.32), a condition that depends
on an upper-bound of the observation error, the nominal parameters of the system
and upper bounds of the uncertainties. In the end, we must bear in mind that we
are working with the square of the control signal so that the actual speed command
is given by:

uactual =
√

max(0, u) (3.33)

In the case of recovery and training programs, the controller is able to make the heart
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rate follow the predefined profile set up. In the next section, the simulation results
showing the performance obtained by the control algorithm are presented.

Figure 3.1 shows the overall schematic of the implementation of the heart rate
control loop system based on the treadmill velocity by the Super-twisting sliding
mode controller in the Matlab’s Simulink environment. Also in Fig.3.2, how to im-
plement an integral sliding mode controller.

FIGURE 3.1: General schematic implementation of the heart rate con-
trol loop system based on treadmill speed by super- twisting sliding

mode Controller.

3.4 Simulation and results

In this Section, we choose one person (subject No.3) from the Tables 2.1-2.4 shown
in Chapter 2 to show the results achieved by the proposed controller. We want to
highlight that similar good results are obtained for all the subjects. The controller
parameters are α = 0.5 and K = 10. It is important to note that, the selected K has
been adjusted by trial-error, in this case, inspired by the results obtained in Chapter
2 for this subject. In Fig. 3.3, the actual Heart rate (HR) and the reference signal
are shown. In this figure (Fig. 3.3), the output and the reference signal are super-
impressed implying that the control objective has been achieved. The zoom of the
first 150 seconds in the previous figure (Fig. 3.3) is shown in Figure 3.4. On the other
hand, Figure 3.5 shows the speed calculated from the STSMC given by Eq. (3.17).
In this case, the tracking error after the reaching phase is very small, despite the
changes in the reference signal and it shows how the STSMC has a great response
regards to the absence of chattering in the output and in the control command.
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FIGURE 3.2: Implementation of integral super-twisting sliding mode
controller in order to avoid chattering phenomenon.

The effect of the λ parameter in the outcome of the system is to help an SMC
controller to have better performance.

On the other hand, PID is a common approach in the control of systems. For this
reason, it is used to solve the control problem in many studies. The SMC control will
be compared with the PID controller implemented in [106]. Since PID controllers are
widely used in practice we will show the results achieved by the proposed controller
in this scenario. In Fig. 3.6, the comparison of the actual HR obtained by using the
STSMC and the PID controller is shown. As it is clear, the STSMC works much better
than PID showing that it is able to obtain a zero tracking error despite the presence of
uncertainties in the system’s model. Overall, the presented method is able to obtain
appropriate and superb closed-loop behavior.

In the Figure (3.7) treadmill speed coresponding to the application and each con-
troller has been shown. Regarding the tracking signal, the super-twisting sliding
mode has a better performance compare to PID one. The difference of the perfor-
mance in STSMD and PID is not much but the signal of STSMC is closer to the refer-
ence and has a perfect response compare to the PID.

Figure (3.8) displays the evaluation of the cost function (which formulation ap-
pers in Chapter 2, Eq.2.5) between the PID and STSMC. As it can be seen at the
beginning of the process in Figure (3.8), the Super-twisting controller after 500 sec-
onds starts definitely better than the PID and it slightly goes better afterward. Both
of these models have a great response, but STSMC performs better process. On the
other hand, STSMC has a lower evaluation of the cost function to compare to the
PID one.
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FIGURE 3.3: Heart Rate provided by the STSMC controller.

3.5 Conclusion

In this chapter, the design of a super-twisting based sliding control law has been
performed for the system in order to counteract the remaining potential unmod-
elled dynamics or parametric uncertainties in the system. In all situations, the range
of treadmill speeds goes from 2 up to 14 km/h, range not usually employed in pre-
vious studies. Simulation results show how the proposed SMC controller is capa-
ble of obtaining zero tracking error without chattering. The model proposed in our
work includes parameters depending on miscellaneous environmental and personal
items such as temperature and differ from one individual to another in respect to his
physical and health conditions. The individualized model of each patient is used
to design a super-twisting sliding mode controller able to regulate the speed of the
treadmill in order to make the patient’s heart rate.

The content of this Chapter has been published in the journal paper [34].
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FIGURE 3.4: The first 150 seconds HR provided by the STSMC con-
troller.

FIGURE 3.5: Speed provided by the STSMC controller.



3.5. Conclusion 47

FIGURE 3.6: Heart rate tracking error with STSMC and PID.

FIGURE 3.7: Treadmill speed coresponding to the application to each
controller.
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FIGURE 3.8: Evaluation of the cost function with STSMC and PID.
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Chapter 4

Discrete-time Control

The objective of this Chapter is to design a discrete-time robust controller for the
heart rate system. To this end, a feedback linearization-based controller is designed.
It offers good results when the parameters of the system are known, but it has poor
robustness properties. To solve this problem, the Joint parameter-state estimation
algorithm is proposed, but it is complex, it does not identify parameters, it offers
some oscillations and we already know that SMC offers a great response as Chapter
3 has shown.

Therefore, a discrete-time robust sliding mode controller is designed. Initially,
we start by linearization SMC. Then it will be extended to the nonlinear case. The
nonlinear system will offer great tracking properties, the avoidance of state observer,
and it will offer a systematic design without chattering and great tracking and ro-
bustness properties.

4.1 Introduction

In this Chapter, a discrete-time sliding mode controller (SMC) is designed for the
heart rate control in treadmill exercise. Sliding mode controllers have the advantage
to provide a superb performance irrespective of the potential uncertainties in the
model, [95]. Additionally, SMC also offers other advantages such as a simple design
procedure and good robustness properties.

Since more and more modern control systems are implemented by computers,
the study of SMC in the discrete-time has been an important topic in the SMC
literature, [101][102]. The development of the SMC theory in discrete-time also
needed a revision of how the continuous-time algorithms are adapted to sampled
systems. This fact has led researchers to approach discrete-time sliding-mode con-
trol from two directions. The first one is the emulation, that focuses on how to map
continuous-time algorithms to discrete-time ones so that the switching term can be
preserved, [105]. The second approach is based on the equivalent control design and
disturbance observer, [123].

This section is divided into six subsections. In the first Section, we are design-
ing a feedback-linearization controller. The feedback-linearization system is a good
strategy to design the controller but the obtained results have poor robustness so,
in order to improve this point, we apply a Joint parameter-state algorithm in sec-
tion 4.2. In this section, we tried to solve this problem and we got good promising
feedback but due to the complexity of the algorithm, the problem with the estima-
tion process and the good results obtained by the super twisting controller design in
Chapter 3, we decided to design a sliding mode controller. Initially, instead of tack-
ling the nonlinear problem we tackled the linear on in section 4.4. The results have a
good response but the other problem that we face in this design was not identify the
parameters and it offers some oscillation. Moreover, for solving this problem and
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also other problems like chattering, robustness, perfect tracking, systematic design
and not using any observer we decided to design a very new method which is called
discrete-time super-twisting sliding mode control. The results that we achieved are
great and we could solve all of these problems that we mentioned in the last con-
trollers.

4.2 Feedback-Linearization Based Control

This section contains the design of a discrete-time state-feedback output tracking
control for the heart rate during treadmill exercise. Initially, the nonlinear model
describing the relationship between the heart rate and the speed of a treadmill is
discretized. Afterward, a feedback linearization-based control law is proposed to
achieve perfect output tracking. The control objective is to make the runner’s heart
rate follow a heart rate reference profile set by specialists as reference. The set-up of
the problem in discrete-time allows taking into consideration the effect of sampling
during the controller design procedure instead of relegating it to the implementation
stage. It will be shown that a linear state feedback controller is enough to make the
nonlinear model’s output track the reference profile regardless of its possibly com-
plex time variation. Since the full state is not available for measurement a reduced-
order state observer is incorporated into the discrete-time control law. Then, the
continuous control command is generated by using a zero-order hold (ZOH). The
designed control system is tested on the original continuous-time nonlinear model
by computer simulation to demonstrate the effectiveness of the proposed method to
achieve the required objective.

Consider the nonlinear state space controlled system given in [88][34]:

ẋ1(t) = −a1x1(t) + a2x2(t) + a6w(t) (4.1)
ẋ2(t) = −a3x2(t) + a4x1(t)ϕ(x1(t)) (4.2)

ϕ(x1(t)) =
1

1 + exp (−(x1(t)− a6))
(4.3)

y(t) = x1(t) + HRrest (4.4)

The input variable w(t) = u(t)2 corresponds to the square of the speed of the tread-
mill, u(t). The state variable x1(t) represents the heart rate variation from the at-rest
value HR0 and x2(t) represents the influence of local peripheral effects (like tem-
perature, hydratation or sweat) on the heart rate. In this way, this model allows
considering heart rate fluctuations not only with the running speed but also with
environmental and physiological conditions. The output y(t) is, thus, one-quarter
of the actual heart rate of the exerciser given by the model from the at-rest heart
rate value of this same person. The model parameters are given by the constants
ai, i = 1, 2...6 which may depend on each person.

The control problem is the design of a discrete-time speed controller making the
output y(t) follow as accurately as possible a specific given profile r(t) (i.e. y(t) →
r(t) as t → ∞). The controller’s role is to regulate the treadmill speed in order to
change exercise intensity and, as a consequence, exerciser’s heart rate. At this point
it is worth recalling some structural properties of model (4.1)-(4.4), since they will be
used afterwards in this Chapter [88]:

1) State variables x1(t) and x2(t) remain nonnegative for all time provided that
parameters ai, i = 1, 2...6 and initial conditions are nonnegative.



4.2. Feedback-Linearization Based Control 51

2) The function ψ(x1(t)) is globally Lipschitz with Lipschitz constant k f .

3) When treadmill speed is zero (i.e. u = 0) the heart rate deviation from the
heart rate at rest quickly tends to zero provided that a1a3

a2a4
> m̄ = min(1, k f ).

Assumption 1. It is assumed that Condition 3) holds for the model (4.1)-(4.4).
Assumption 1 implies that the considered model is supposed to be asymptot-

ically stable. This is a feasible assumption based on the fact that the heart rate
does not diverge in the absence of an external stimulus. Since the controller is to
be designed in discrete-time, the next section deals with discretizing the original
continuous-time system (4.1)-(4.4).

4.2.1 Discrete-Time model

The theory of dynamical systems discretization is well-developed for linear systems.
However, the discretization of nonlinear systems is much harder. In this work, we
follow the approach of [88] to obtain a nonlinear discrete-time model accurate to
some order in the sampling period. To this end, we must first rewrite system (4.1)-
(4.4) in normal form, [98]. A quick inspection reveals that its relative degree is unity
so that it is already written in normal form. Thus, the discretization of (4.1)-(4.4)
according to [88][98], yields to:

x1,k+1 = x1,k + h (−a1x1,k + a2x2,k + a6wk) (4.5)
x2,k+1 = x2,k + h (−a3x2,k + a4x1,kϕ(x1,k)) (4.6)

yk =
1
4
(x1,k + HR0) (4.7)

where h > 0 denotes the sampling period and x1,k and x2,k are the discrete state
variables. The reference signal, r(t), and output signal y(t) are also sampled at the
sampling rate h to provide the sampled signals rk = r(kh) and yk = y(kh).

Assumption 2. The reference signal rk is bounded and known one step ahead.
Assumption 3. The state variable x1,k is available through measurement.
These are feasible assumptions since the reference profile is fully determined for

each individual beforehand and heart rate can be easily measured through pulsome-
ters. Eqs. (4.5)- (4.6) are the starting point to design the controller. However, we will
first show that the so-obtained discrete model retains the characteristic features of
its continuous-time counterpart.

Theorem 1. The discrete-time model (4.5)-(4.6) has nonnegative solutions for all
k ≥ 0 provided that the parameters ai, i = 1, 2...6 and initial conditions are nonneg-
ative and the sampling period satisfies 0 < (1 − ha3) and 0 < (1 − ha1).

Proof. Equations (4.5) and (4.6) can be rewritten as:

x1,k+1 = (1 − ha1) x1,k + ha2x2,k + ha6wk (4.8)

x2,k+1 = (1 − ha3) x2,k + ha4x1,kϕ(x1,k) (4.9)

We can now proceed by total induction. The initial conditions x1,0 and x2,0 are non-
negative by hypothesis. Suppose now that x1,k and x2,k are nonnegative and we have
to prove that so are x1,k+1 and x2,k+1. However, this fact can be proved straightfor-
wardly since all the right-hand sides of Eqs. (4.8) and (4.9) are nonnegative because
so are the parameters, x1,k and x2,k, wk = u2

k ≥ 0 and 0 < (1 − ha3) and 0 < (1 − ha1).
�. Therefore, the discrete-time model retains the positivity of the original system.
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Remark. 1. As a corollary of Theorem 1, the sampling period must be chosen such
that:

0 < h < min
(

1
a1

,
1
a3

)
(4.10)

Moreover, the autonomous system is also asymptotically stable.
Theorem 2. Assume that the sampling time is selected such that Eq. (4.2) holds (so

that the discrete-time system is positive). Then, the autonomous system (4.8)-(4.9)
with wk = 0 is asymptotically stable provided that Assumption 1 is met.

Proof. The autonomous nonlinear system (4.8)-(4.9) can be upper-bounded by
using the fact x1,kϕ(x1,k) ≤ x1,k as:

xk+1 ≤
(

(1 − ha1) ha2
ha4 (1 − ha3)

)
xk (4.11)

If the limiting system (4.2) is asymptotically stable so will be the discrete-time non-
linear system (4.9)-(4.8). The eigenvalues of the dynamics matrix of (4.11) are given
by:

λ± = 1 − h
2
(a1 + a3)±

h
2

√
(a1 − a3)2 + 4a4a2 (4.12)

The limiting system is asymptotically stable provided that:

−1 < λ± < 1 (4.13)

Some algebra on Eq. (4.12) shows that condition (4.13) holds if a1a3
a2a4

> 1, fact that
is implied by Condition 3). Thus, the discrete-time system is asymptotically stable
provided that the original continuous-time one is and the sampling period is chosen
in such a way that the discretization preserves the positivity of the model. �

Hence, the so-obtained discrete-time system retains the same properties as the
continuous-time one. The next step is to design a controller for system (4.8)-(4.9).

4.2.2 Controller design

The controller is based on feedback linearization. Since the discrete-time system is
expressed in normal form and its zero dynamics is stable1,, the control law reads:

wk =
1

ha6
(−(1 − ha1)x1,k − ha2x2,k + νk) (4.14)

which renders the nonlinear discrete-time system into the linear one:

x1,k+1 = νk (4.15)

If we now write the reference signal as rk =
1
4 (r̂k + HR0) and choose νk = r̂k+1, then

Eq. (4.15) becomes x1,k+1 = r̂k+1 and the reference signal is perfectly tracked by the
output at all discrete time tk = kh. Note that Assumption 2 has been used to define
the reference signal and allows attaining the perfect tracking. Moreover, it can be

1The stability of the zero dynamics can be checked directly.
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noticed that the feedback linearizing control law (4.14) can be cast into the form:

wk = −1 − ha1

ha6
x1,k −

a2

a6
x2,k +

1
ha6

νk (4.16)

= −Lxk + Gνk, (4.17)

L =

[
1 − ha1

ha6

a2

a6

]
, G =

1
ha6

(4.18)

which is a state-feedback control law. A direct consequence from this equation is that
a linear controller is enough to perfectly track any reference signal for the nonlinear
model of the heart rate response (when the parameters of the system are known).
The only nonlinearity appearing in the control law will come from the quadratic
relationship with the speed, wk = u2

k . Nevertheless, Eq. (4.18) needs the values of x1,k
and x2,k in order to be realizable. x1,k is obtained from measurement as Assumption
3 states, but x2,k is not measured. Thus, we need an observer to obtain this value
that is then used to implement the control command as it happened in Chapter 3.
Therefore, a reduced-order observer will be designed in the next subsection with
such a purpose.

4.2.3 Observer design

The observed state variable x̂2,k is given by:

x̂2,k+1 = (1 − ha3) x̂2,k + ha4x1,kϕ(x1,k) (4.19)

with arbitrary nonnegative initial condition x̂2,0. This observer converges asymptot-
ically to the actual value of x2,k since the substration of (4.9) and (4.7) leads to:

x̃2,k+1 = (1 − ha3) x̃2,k (4.20)

Hence, x̃2,k = x2,k − x̂2,k converges asymptotically to zero (indeed, exponentially
and monotically) provided that the sampling time satisfies 0 < (1 − ha3) which is
guaranteed if (4.9) holds. Note that since ha3 > 0 then (1 − ha3) < 1. Therefore, the
actual control law reads:

wk =
1

ha6
(−(1 − ha1)x1,k − ha2 x̂2,k + νk) (4.21)

while the speed of the treadmill is given by:

uk =
√

max (0, wk) (4.22)

in order to generate a feasible speed. The continuous-time control signal is given by
the ZOH reconstruction of uk:

u(t) = uk, t ∈ [kh, (k + 1)h) (4.23)

In the next subsection the stability analysis of the closed-loop system is performed.

4.2.4 Stability analysis of the discrete-time closed-loop system

The following result arises regarding the stability of the discrete-time closed-loop
system.
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Theorem 3. The state variables from the system (4.8)-(4.9) remain bounded for all
discrete-time tk = kh provided that Assumptions 1, 2 and 3 hold, ||x̃2,0|| is bounded
and the sampling time h is chosen satisfying equation (4.23).

Proof. Condition 3) from Section 4.2 guarantees the boundedness of state vari-
ables in the absence of an external source. Thus, we just need to prove the bound-
edness of state variables when a positive external signal (4.23) is actually applied to
the system. In such a case, the discrete-time closed-loop is given by:

ek+1 = ha2 x̃2,k (4.24)
x̃2,k+1 = (1 − ha3) x̃2,k (4.25)
x2,k+1 = (1 − ha3) x2,k + ha4x1,kϕ(x1,k) (4.26)

where ek = x1,k − r̂k is the tracking error. The solution to Eq. (4.25) is given by:

x̃2,k = (1 − ha3)
k x̃2,0 (4.27)

Since ||x̃2,0|| is bounded and 0 < (1 − ha3) thanks to Eq. (4.27), then (1 − ha3)
k → 0

monotically as k → ∞. Hence, x̃2,k → 0 as k → ∞ and the observer provides an
asymptotically exact observation of the state variable x2,k. Moreover, ||x̃2,k|| ≤ ||x̃2,0||
for all k ≥ 0. Therefore, from equation (4.24) we have:

||ek+1|| = ha2||x̃2,k|| ≤ ha2||x̃2,0|| < ∞ (4.28)

for all k ≥ 0, implying that ek is bounded at all time. Since the reference signal rk
(and, hence, r̂k) is bounded from Assumption 2, then x1,k is bounded at all time.
Furthermore, from Eq. (4.7) it can also be concluded that the output yk is bounded.
On the other hand, the solution to Eq. (4.28) is given by:

x2,k = (1 − ha3)
k x2,0 + ha4

k−1

∑
p=0

(1 − ha3)
k−p−1 x1,pϕ(x1,p) (4.29)

However,

0 < ψ(x1,k) =
1

1 + exp (−(x1,k − a6))
< 1 (4.30)

for all x1,k and,

k−1

∑
p=0

(1 − ha3)
k−p−1 x1,pψ(x1,p) ≤

k−1

∑
p=0

(1 − ha3)
k−p−1 x1,p (4.31)

Moreover, since x1,k has been proved to be bounded, there exists a positive finite
constant M such that ||x1,q|| ≤ M for all q = 1, 2...k − p − 1, so that

k−1

∑
p=0

(1 − ha3)
k−p−1 x1,p ≤ M

k−1

∑
p=0

(1 − ha3)
k−p−1

= M
1 − (1 − ha3)

k

ha3
(4.32)

Thus, Eq. (4.32) can be upper-bounded as:

||x2,k|| ≤ (1 − ha3)
k ||x2,0||+ ha4M

1 − (1 − ha3)
k

ha3
(4.33)
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Since the right-hand side of Eq. (4.33) is bounded for all k ≥ 0, then x2,k is also
bounded and the proof is completed. �

Notice that the observer provides an asymptotically exact estimation of x2,k re-
gardless of the value the control signal. This fact can be used to intuitively show
that the reference profile can be asymptotically perfectly tracked. Thus, there exists
a finite integer k′ such that x̂2,k ≈ x2,k for all k ≥ k′. In this way, Eq. (4.33) can be
re-written as:

x1,k+1 = ha6Lxk + ha6wk (4.34)

When wk ≥ 0 and uk =
√

wk, then the error dynamics is represented by Eq. (4.33)
that can be proved to converge to zero guaranteeing the perfect asymptotic tracking.
On the other hand, when uk = 0 because max (0, wk) = 0, then we have that wk =
−Lxk + Gνk < 0, i.e. Lxk > Gνk. In this case, Eq. (4.34) satisfies:

x1,k+1 > ha6Gνk = r̂k+1 (4.35)

Eq. (4.35) implies that the actual heart rate is bigger than the desired one. Therefore,
the control input is zero and the system itself decreases the heart rate in order to
track the reference value. Thus, in both cases the output tries to converge to the
reference, and asymptotically attains the tracking.

4.2.5 Stability of the continuous-time closed-loop system

In this Section, the stability of the continuous-time system is addressed. The starting
point is the stability of the discrete-time system proved in the previous Subsection
4.2.6. In this way, we already know that xk, yk and uk are bounded for any integer
k ≥ 0. Therefore, the stability of the continuous-time system is guaranteed if we
prove that model (4.1)-(4.4) does not have a finite escape time. Thus, state variables
would not be able to diverge on any finite interval [kh, (k + 1)h). The absence of a
finite escape time is granted provided that the nonlinear function ψ(x1(t)) is globally
Lipschitz. This is generally an overly conservative condition but, fortunately, is sat-
isfied by the function at hand as Condition 2) in Section 4.2 states. As a consequence,
state variables cannot diverge on any finite interval, and the continuous-time system
signals are bounded at all time.

4.2.6 Simulation Examples

This Section contains some numerical simulation examples showing the results achie-
ved by the proposed controller. The following particular values for the model, ex-
tracted from [120], will be used in the examples:

a1 = 2.2, a2 = 19.96, a3 = 0.0831,
a4 = 0.002526, a5 = 8.32, a6 = 0.38 (4.36)

The heart rate at-rest is taken as HR0 = 40 bpm, the initial states are xT
0 = [0 0]

and the observer is initialized as x̂2,0 = 5. This is a rather atypical initialization for
the observer but a nonzero value has been selected in order to show the effectiveness
of the control law in this less favorable case. The sampling time is h = 0.1s satisfying
Eq. (4.11) since 0.1 < min

( 1
2.2 , 1

0.0831

)
= 0.45s. The maximum theoretical heart rate

is 220 bpm2. This value means that there is one beat every 0.27 s. The selected

2The maximum theoretical heart rate for an individual of age A is usually taken as 220-A.
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sampling time is enough to be able to measure the heart rate without aliasing. The
simulations are performed in Matlab.

Figure 4.1 displays the reference signal used to test de controller along with the
actual output of the system. It can be noticed that the output perfectly tracks the
reference asymptotically. This fact is confirmed by Figure 4.2, that displays the error
between both signals and vanishes asymptotically. During the first seconds of oper-
ation there is an error caused by the mismatch in the estimation of x2,k as Figure 4.3
displays. However, the error between the actual state variable and the observed one
converges to zero asymptotically and monotically while the control law enforces the
perfect tracking of the reference. Figure 4.4 depicts the speed of the treadmill acting
as control command. It can be seen that the control is zero during the first seconds
of simulation. Again, this fact is caused by the error in the estimation of x2,k. In con-
clusion, the presented control law is able to make the heart rate follow the desired
reference profile, achieving the proposed objective.

FIGURE 4.1: Actual heart rate and reference signal.

FIGURE 4.2: Error between the actual heart rate and reference signal.
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FIGURE 4.3: Evolution of the observation error, x̃2,k.

FIGURE 4.4: Control command: speed of the treadmill.

Robustness analysis

Now, the performance of the closed-loop is tested when the parameters of the system
are not perfectly known. To this end, we will modify the parameters of the model
used in the controller by adding an uncertainty of 10% to their nominal values. The
same procedure is performed in the parameters used in the observer. The increment
or decrement of each value is selected randomly. The particular values employed in
the simulation are given by:

â1 = 2.42, â2 = 21.956, â3 = 0.0748,
â4 = 0.0028, â5 = 9.152, â6 = 0.418 (4.37)

In this way, Figure 4.5 displays the output of the system and the reference signal
while Figure 4.6 depicts the tracking error. It can be concluded that the parameter
mismatch generates a tracking error. However, as Figure 4.6 shows, the error lies
between 1 and 2 bpm in the steady-state. If we take into account that the reference
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value in the steady state is 100 bpm, the error is less than 2% of the value of the
signal despite the parameter variation is of 10%. This performance, however, is not
good enough for a rehabilitation system. Therefore, our future research goes in the
direction of making the control law more robust while attaining a better closed-loop
performance. Since the control system exhibits this robustness issues, we will study
some approaches to improve the robustness.

FIGURE 4.5: Actual heart rate and reference signal in the presence of
parameters mismatch.

FIGURE 4.6: Error between the actual heart rate and reference signal
in the presence of parameters mismatch.

The material of this Section was published in Conference paper [88].
In the next section, a joint parameter-state algorithm is employed to overcome

the limitation of parameter mismatch that may come in this approach.
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4.3 Joint parameter-state estimation based-control

In the previous Section, a feedback-linearization based control low has been de-
signed but it suffered from robustness issues. The control command requires the
values of the parameters of the model along with the states. Since both of them are
unknown/unmeasurable, a joint parameter-state estimation algorithm is deployed
in this subsection to obtain an estimation of their values, which are then used in the
control law calculation. Simulation examples show the great response achieved by
this approach in the control of heart rate during treadmill exercise.

Thus, we will design a feedback linearization-inspired control law based on the
simultaneous parameter-state estimation of the treadmill heart rate model. In this
way, the parameters of the model are estimated online without the need of an a
priori parameter identification stage while the unavailable state is simultaneously
observed. The design of such a system will make easier the development of person-
alized exercise routines for patients since it will avoid the beforehand identification
procedure. Furthermore, the controller will always be able to apply an accurate
control command despite the potential long-term variations through a time of the
model. This fact adds reliability to the system. The simultaneous state-parameter
estimation is one of the main problems in the control engineering field and many ef-
forts have been devoted to it during the last years, [104][69]. The discretized nonlin-
ear model is given by Eqs. (4.6) and (4.8) will be the starting point of the design.Then,
the approach adopted in [132] is used to simultaneously estimate the parameters
and the unmeasurable state. The so-obtained values are finally used to calculate the
feedback-linearization based control law Eqs (4.16-4.18) in order to control the pa-
tient’s heart rate during treadmill exercise. To the best of author’s knowledge, this
is the first work in heart rate control during treadmill exercise that combines the
simultaneous estimation of parameters and state.

4.3.1 Joint Parameter-State Estimation

This section contains the simultaneous parameter-state estimation algorithm for the
discrete-time system (4.1)-(4.4). The approach presented in [69] and [132] is adopted
for such a purpose. To this end, we first cast the nonlinear discrete-time system as:

xk+1 = f (xk, wk, a) (4.38)

where xk = [x1k x2k]
T denotes the state, a = [a1 a2 ... a6]

T stands for the unknown
parameters and:

f (xk, wk, a) =
[

f1(xk, wk, a)
f2(xk, wk, a)

]
(4.39)

=

[
(1 − ha1)x1k + ha2x2k + ha6wk
(1 − ha3)x2k + ha4x1kψ(x1k)

]
(4.40)

Notice that equations (4.38)-(4.40) correspond to the system (2) in [104] with A = 0
and φ = 0. It can also be readily checked that the system satisfies all the technical as-
sumptions required in [69] in order to apply the algorithm. Notice that the auxiliary
output, zk = x1k = [1 0]xk = Cxk, will be used in the estimation. The joint estimator
equations are given by:



60 Chapter 4. Discrete-time Control

x̂k+1 = f (σ(x̂k), wk, âk) + L(Cx̂k − zk) + ρk (4.41)
ρk = λk+1 (âk+1 − âk) (4.42)

λk+1 = LCλk +
∂ f
∂a

(σ(x̂k), wk, âk) , λ0 = 0 (4.43)

âk+1 = âk −
α

γ
W−1

k+1λT
k CT (Cx̂k − zk) (4.44)

Wk+1 =

(
1 − α

γ

)
Wk +

α

γ
λT

k CTCλk, W0 > 0

(4.45)

where:

• L is the observer gain,

• σ(·) is the asymmetric saturation function:

σ(ξ) = (σ(ξ1) σ(ξ2))
T (4.46

with:

σi(ξi) =


ξi ri ≤ ξi ≤ r̄i
r̄i ξi ≥ r̄i
ri ξi ≤ ri

(4.47)

where ri and r̄i for i = 1, 2 are two real numbers such that ri ≤ xik ≤ r̄i for
i = 1, 2.

• α and γ are two positive numbers satisfying 0 < α < γ.

The way in which the control parameters should be selected and their influence in
the estimation performance is discussed in [132]. The value of the gradient matrix
involved in the calculations is given by:

(
∂ f
∂a

)T

=



−hx1k 0
hx2k 0

0 −hx2k
0 hx1kψ(x1k)
0 m(x1k)

hwk 0

 (4.48)

with:
m(x1k) = −ha4x1ke−(x1k−a5)ψ(x1k)

2 (4.49)

The parameter values along with the observed state x̂2k are now used to implement
the control command (4.45) as:

wk = −1 − hâ1

hâ6
x1k −

â2

â6
x̂2k +

1
hâ6

νk (4.50)

4.3.2 Simulation Examples

This Section contains some numerical simulation examples showing the results achieved
by the joint parameters-state estimation algorithm along with the feedback-linearization
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controller. The parameters of the model are the same as in Section 4.2.6. The estima-
tion algorithm is initialized with the following parameters:

â1 = 5, â2 = 5, â3 = 5,
â4 = 5, â5 = 0.5, â6 = 5 (4.51)

Notice that the estimated parameters are initialized with values that are very differ-
ent from the actual ones in order to show the performance achieved by the appro-
ach. Moreover, α = 1, γ = 160, r̄1 = r̄2 = 100, r1 = r2 = 0, L = [0.2 0.05]T and
x̂20 = [0 0]T. Notice that this is a judicious choice for the initial estimated states since
the exercise usually starts from the at-rest situation. Figure 4.7 displays the actual
heart rate of the runner and the reference signal. It can be seen in this figure that both
plots are practically superimposed, implying that the tracking objective is achieved
with great accuracy. Moreover, Figure 4.8 shows the tracking error attained by the
control scheme. As it can be observed in Figure 4.8 the error is less than 1 bpm (beat
per minute) showing a good response from the control system.
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FIGURE 4.7: Actual heart rate and reference signal.

The behaviour of the state observer is depicted in Figure 4.9 where the observa-
tion error is shown. On the other hand, Figures 4.10 and 4.11 display the evolution
of the estimated parameters. The final values for the estimated parameters are given
by:

â1end = 0.60, â2end = −1.56, â3end = 5, (4.52)
â4end = 5, â5end = 0.5, â6end = 0.515 (4.53)

As it can be deduced from Figures 4.9, 4.10 and 4.11 and final values (4.23) and
(4.24), neither the second state nor the parameters are identified correctly. Further-
more, parameter â2end is even negative. However, the parameter identification is not
needed to achieve a good closed-loop behaviour since state and parameter identi-
fication are only attained when certain persistent excitation conditions, which may
not be accomplished in closed-loop control, are held. Notice that a6 is the most crit-
ical parameter in the implementation of the control law (4.3.1). This parameter is
adjusted by the algorithm in order to obtain an accurate closed-loop behaviour, fi-
nally attaining the control objective. It is also noticeable that parameters â3, â4 and
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FIGURE 4.8: Tracking error between the actual heart rate and the ref-
erence signal.

â5 are not updated by the algorithm. Thus, the control objective is achieved by up-
dating only the state and some of the parameters of the model. Finally, Figure 4.12
displays the speed of the treadmill, that is the calculated control law. To conclude, it
is worth noticing the fact that the controller excites some low amplitude oscillation
in the output, as it can be observed in Figure 4.8. The oscillation is caused by the
transient behaviour induced by the change in the reference signal.
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FIGURE 4.9: Observation error for the x2(t) variable.

Apart from the complexity and difficulty of estimation, the oscillation of this
method was another problem that we face when implementing this algorithm. So
we will use sliding mode control to finally overcome all these difficulties. In order
to design a discrete-time sliding mode control (DT-SMC), we will do it first in the
linear system and finally the nonlinear design which is presented in the following
section (Section 4.4).
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FIGURE 4.10: Evolution of the estimated parameters â1, â2 and â6.
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FIGURE 4.11: Evolution of the estimated parameters â3, â4 and â5.
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FIGURE 4.12: Speed of the treadmill.



64 Chapter 4. Discrete-time Control

4.4 Discrete-time Sliding Mode Control

Extensive research has been done over the last decades on the discrete-time sliding
mode control (SMC) systems due to the fast developments of digital microprocessor-
based control technology. There are two streams of SMC systems in discrete-time
domain: one is that the dynamical systems are discretized first and a SMC is then
designed for the discrete-time system; the other is that the SMC design is done in the
continuous-time domain and then digitized for implementation. The latter has been
shown to give rise to irregular discretization behaviors if the sampling rate is not
selected properly. For example, irregular and complex periodic behaviors are found
in zero-order-holder (ZOH) discretization of SMC systems and Euler’s discretization
of SMC system.

We will present a discrete-time sliding mode control to solve the difficulty and
oscillation of the estimation that mentioned in the last section. Initially, the design
will be in the linear case and afterwards the nonlinear case is considered. In the last
subsection of this Section discrete-time, super-twisting sliding mode control will be
present, which a very new method and it applies for the first time to solve these
problems.

4.4.1 Problem Formulation

The following nonlinear model used in previous Sections is considered:

ẋ1(t) = −a1x1(t) + a2x2(t) + a3u2(t) + fu1(x) (4.54)
ẋ2(t) = −a4x2(t) + ϕ(x1(t)) + fu2(x) (4.55)

ϕ(x1(t)) =
a5x1(t)

1 + exp (−(x1(t)− a6))
(4.56)

y(t) = x1(t) + HRrest (4.57)

Where x(0) = [x1(0), x2(0)] = [0, 0] is the usual initial condition and a1, ..., a6 are
positive scalars.

fu1(x) and fu2(x) account for the parametric and unmodeled dynamics of the
system. The following Assumption will be done:

Assumption 2.1. The uncertain terms fu1 and fu2 are upper-bounded so that
Sup | fu1| = k1 < ∞, Sup | fu2| = k2 < ∞.

The uncertainty-free model satisfies the conditions from Section 4.2.
Assumption 2.2 implies that autonomous-system is globally stable. Thus, this

fact will allow us to obtain an upper bound of the discrete-time uncertainty in terms
of the original continuous-time one. The method chosen in this Section is to lin-
earize the nonlinear system and discretize the so-obtained linear system. This pro-
cess is described in the next subsection. This will allow analyzing how the original
uncertainty is propagated into the uncertainty of the discrete-time model.

4.4.2 Linearization and ZOH discretization

In order to linearize the equations (4.54-4.57), we must first obtain the system equi-
librium point xe. In operation, the equilibrium point will vary because of the tread-
mill’s speed. Although there are different linearization approaches, we choose to
linearize the system around the fixed point (0, 0). Despite this point is not realistic
in practical applications since the heart rate will be different from the heart rate at
rest when speed is applied to the treadmill, it provides an easy model to design a
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controller. The SMC will be then in charge of counteracting potential mismatches
in the model including the one coming from the linearization. By setting the condi-
tions ẋ(t) = 0, u(t) = 0, the system equilibrium point is xe = [0, 0]T. Through the
linearization of equations (4.54-4.57) we have, around the equilibrium point:

ẋ(t) = Ax + Bw + Fl(t), (4.58)
y = Cx + HRrest (4.59)

A = ∇x f |xe,ue
=

[
∂ f 1
∂x1

∂ f 1
∂x2

∂ f 2
∂x1

∂ f 2
∂x2

]
=

[
−a1 a2

a5
1+exp(a6)

−a4

]
(4.60)

B = ∇u g|xe,ue
=

[
a3
0

]
, Fl = [ fu1 fu2]

T + flin (4.61)

C = [1 0] (4.62)

where x ∈ R2×1 is the state, y ∈ R is the output, the control is w(t) ∈ R, with
w(t) = u(t)2, and the disturbance is Fl ∈ R2×1. The state matrix is A ∈ R2×2, the
control matrix is B ∈ R2×1, the output matrix is C ∈ R1×2 and Fl accounts for the
uncertainties in the linear model that contains the original uncertainty and the one
coming from linearization, flin.

Proceeding further, the discretized counterpart of 4.54 is given by:

xk+1 = Φxk + Γwk + dk, x0 = x(0), yk = Cxk + HRrest (4.63)

with:

Φ = eAT (4.64)

dk =
∫ T

0
eAτ Fl((k + 1)T − τ)dτ, xk = xkT (4.65)

Γ =
∫ T

0
eAτ Bdτ (4.66)

and T > 0 being the sampling period. Now, the uncertainty term dk is upper-
bounded as follows.

It is important to note that, we want to analyze how the original uncertainty
translates into the uncertainty in discrete-time. Therefore, further calculations are
deployed.

Since Assumptions 2.1 and 2.2 hold, the matrix A is Hurwitz and we have, [87]:∥∥∥eAt
∥∥∥ ≤ Ce−ρt, C ≥ 1, ρ ≥ 0 (4.67)

In this way,

∥dk∥ ≤
∥∥∥∥∫ T

0
eAτ Fl((k + 1)T − τ)dτ

∥∥∥∥
≤

∫ T

0
Ce−ρτ ∥Fl((k+ 1)T − τ)∥dτ

≤ C Sup
τ ∈ [0, T] ∥Fl((k + 1)T − τ)∥

∫ T

0
e−ρτdτ

≤ C Sup
τ ∈ [0, T] ∥Fl((k + 1)T − τ)∥

(
1 − e−ρT

ρ

)
(4.68)
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Eq. (4.67) captures the uncertainty contained in Fl during the whole interval [kT, (k + 1)T])
through the term supτ∈[0,T] ||Fl(T − τ)||.

Eq. (4.68) can be further developed since:

Sup
τ ∈ [KT, (k+ 1)T ]

∥Fl((k + 1)T − τ)∥

=
Sup

τ ∈ [0, T] ∥ flu((k + 1)T − τ) + ∥ flin((k + 1)T − τ)∥

≤ Sup
τ ∈ [0, T]

∥ fu((k+ 1)T − τ)∥

+
Sup

τ ∈ [KT, (k+ 1)T] ∥ flin((k+ 1)T − τ)∥

≤ Max(k1, k2) +
Sup

τ ∈ [KT, (k + 1)T] ∥ flin((k + 1)T − τ)∥ (4.69)

Now the linearization term can be upper bounded as:

sup
τ∈[kT,(k+1)T)

|| flin((k + 1)T − τ)|| ≤ Klin (4.70)

Now it will be shown that such a constant Klin exists . As it is clear, the first equation
(4.58) is linear. However, (4.54-4.57) is affected by the nonlinear term (3). In order to
avoid this nonlinear dependence, the ϕ function can be inset between its two extreme
values which are the limits of this function when x1(t) tends respectively to zero and
to infinity :

lim
x1→0

ϕ(x1) = ϕ1 =
a5

1 + exp(a6)

lim
x1→∞

ϕ(x1) = ϕ2 = 1 (4.71)

so that
ϕ1 ≤ ϕ(x1(t)) ≤ ϕ2 (4.72)

In this way, the above values define the following two extreme linear systems,
given by Σ0 and Σ1:

Σ0 : {ẋ10 = −a1x10(t) + a2x20(t) + a3w(t)
ẋ20 = −a4x20(t) + ϕ1x10(t)

(4.73)

Σ1 : { ẋ11 = −a1x11(t) + a2x21(t) + a3w(t)
ẋ21 = −a4x21(t) + ϕ2x11(t)

(4.73)

Thus, the original nonlinear system, Σ, can be bounded as:

Σ0 ≤ Σ ≤ Σ1 (4.75)

Notice that the linearized system (4.58-4.62) corresponds to the extreme case Σ1.
Therefore, the maximum linearization error is given by the difference between Σ1
and Σ0. Hence, we have for Σ1:

Σ1 : {ẋ21 = −a4x21(t) + ϕ2x11(t) (4.76)
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and for Σ0:
Σ0 : {ẋ20 = −a4x20(t) + ϕ1x10(t) (4.77)

so that the original dynamical equation satisfies:

ẋ20(t) ≤ ẋ2(t) ≤ ẋ21(t) (4.78)

The systems Σ0 and Σ1 are asymptotically stable as a consequence of Assumption
2.2. Therefore, there exist finite positive constants δ1 and δ2 such that:

|x20(t)| ≤ δ1 (4.79)
, |x21(t)| ≤ δ2 (4.80)

If we now choose Klin = δ1 + δ2 we obtain an upper-bounding of the maximum
error comitted by the linearization process. Thus, there exist a finite positive constant
Klin so that (4.70) holds.

In this way, we can upper-bound the discrete-time uncertainty as:

||dk|| ≤
C
ρ
(max(k1, k2) + Klin)

(
1 − e−ρT

)
(4.81)

so that the final upper-bounding is given by (4.81).
Thus, we have been able to obtain an upper-bound of the discrete-time uncer-

tainty from the uncertainty in CT.
Now we can expand the exponential term of (4.81) in a Mac-Laurin series to

obtain: (
1 − e−ρT

)
= −

∞

∑
j=1

(−ρT)j

j!
(4.82)

= ρT − ρ2T2

2
−

∞

∑
j=3

(−1)jρjT j

j!
(4.83)

It is a well-known result on alternate series that when we truncate such a series up
to a term, the error between the truncation and the original series is less in absolute
value than the next term of the series (the first term neglected), [132]. Thus, we have:

(1 − e−ρT) = ρT + ε(T) (4.84)

This means that if we take (4.83) and use this approximation in (4.84), the approxi-
mation error satisfies:

|ε(T)| ≤ ρ2T2

2
(4.85)

This means that ε(T) ∈ O(T2) where O(·) stands for the Landau’s Big O notation,
[132]. Thus, a variable v is said to be O(Tr) if, and only if, there is a C > 0 such that
for any sufficiently small T the following inequality holds:

|v| ≤ CTr (4.86)

where r is an integer. The so obtained equation (4.84) means that the upper-
bounding of the uncertainties dk with this approximation is correct up to O(T2),
providing an estimation on how the selection of the sampling time influences the
uncertainties upper-bound.
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This subection is devoted to obtain a discrete-time model suitable to design a
discrete-time sliding mode controller. Moreover, a relationship between the continuous-
time and discrete-time uncertainties has been obtained. The following subsection
describes how the controller is designed.

4.4.3 Control Design

The control objective is to design a discrete-time sliding manifold and a discrete-time
Sliding Mode Control law for the sampled-data system (4.63).

Consider the discrete-time sliding manifold given by:

Sk = D0(rk − yk) (4.87)

where D0 is a constant and rk ∈ ℜ. The objective is to force the output yk to track
the reference signal rk. The control law is designed by incorporating a disturbance
estimator given by, [88]:

d̂k = xk − Φxk−1 − Γuk−1 (4.88)

The reaching equation is of SMC type and given by, [132]:

Sk+1 − Sk = −qTSk − εTsgn(Sk) + dk − d0 − δdsgn(Sk) (4.89)

where q, ε are free design parameters that must be selected in such a way that the
inequalities 0 < ε < 0.5 and 0 < (1 − qT) < 1 are satisfied while δd ≥ ∥dk∥, [89].
Thus, δd is selected based on (4.86).

The following assumption is necessary in order to calculate the control law.
Assumption 3.1. The reference signal must be known one step ahead, i.e. the

value at (k + 1) should be known at k.
Considering Sk+1 = D(rk+1 − yk+1) and inserting the system equations (4.87)

into the reaching rule, (4.89) is rewritten as follows:

Drk+1 − DC(Φx2k + Γwk) = (1 − qT)D(rk − Cx2k) (4.90)
−(εT + δd)sgn(Sk)− d0 + d̂k

By using this equation, the control input for the system with equation (4.90) is ob-
tained as:

wk = (DCΓ)−1 [DC(Φ − 1 + qT)x2k + (1 − qT)Drk (4.91)
−Dr(k+1) − d0 − (δd + εT)sgn(Sk) + d̂k

Given the relation Eq. (4.89) and the equation (4.90), the control input is now ex-
pressed as follows:

wk = (DCΓ)−1 [DC(Φ − 1 + qT)x2k + (1 − qT)Drk (4.92)
−Dr(k+1) − εTsgn(Sk) + qTDHRrest + d̂k

Using the disturbance estimation, Eq. (4.92), the actual Sliding Mode control law is
given by

wk = (DCΓ)−1 [DC(Φ − 1 + qT)x2k − εTsgn(Sk) (4.93)
+ qTDHRrest]
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Note that x2k is not available from measurments. Thus, the next section describes a
state estimator used to obtain an approximation to its value.

4.4.4 State Observer

The discrete-time model is given by:

xk = Φxk−1 + Γwk−1 + dk−1 (4.94)

x2k = Φ21x1k−1 + Φ22x2k−1 + Γ2wk−1 + dk−1 (4.95)

so that the second equation reads:
Where Φij stands for the elements of matrix Φ that only depends on the param-

eters that are unknown. The state estimator is given by:

x̂2k = Φ21x1k−1 + Φ22 x̂2k−1 + Γ2wk−1 (4.96)

where x̂20 = 0. Since x1k−1 is measureable, the nominal values for the matrices are
given and the previous control signal is known, it is feasible to obtain an estimation
of the second state variable, x2k, from (4.96).

In the end, we must bear in mind that we are working with the square of the
control signal so that the actual speed command is given by:

uk =
√

Max(0, wk) (4.97)

In the case of recovery and training programs, the controller is able to make the heart
rate follow the predefined profile set up. On the other hand, since we are applying
a zero-order hold, the continuous-time control law takes the form:

u(t) = uk, t ∈ [KT, (K + 1)T) (4.98)

In the next section, the results and response of discrete sliding mode control
based on the design performed in this section are shown.

4.4.5 Results and Simulation

This Section contains some numerical simulation examples showing the results achieved
by the proposed controller. The following particular values for simulation , extracted
from [1][141], will be used in the examples:

a1 = 2.647 , a2 = 25.87 , a3 = 0.83
a4 = 0.904 , a5 = 0.04 , a6 = 5.23

(4.99)

and the nominal ones used for controller design purposes are given by:

â1 = 1.85 , â2 = 23.15 , â3 = 0.79
â4 = 0.855 , â5 = 0.038 , â6 = 4.7

(4.100)

The parameters are considered to be uncertain. Although, the average error in the
parameters is 5 percent, the minimum error is 2 percent and the maximum error is
about 9 percent. The heart rate at-rest is taken as HR = 65 bpm. The maximum theo-
retical heart rate is 220 bpm. The sampling time is given by T = 0.27 s. The selected
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sampling time is enough to be able to measure the heart rate without aliasing. The
simulations are performed in Matlab.

Figure 4.13 and 4.14 display the response of the discrete sliding mode controller
and control signal of the treadmill speed based on the parameters of the model at
the treadmill speed of 2-14 km / h. In this case, it is also observed that the controller
has been able to ransfer the heart rate to a reference value without any overdrive for
less than 10 seconds. Also, the control signal is applied quite smoothly. Therefore,
the implementation of the controller in practice does not require a specific drive and
implementation will be simple.

FIGURE 4.13: Heart rate provided by the DTSMC controller

FIGURE 4.14: Speed provided by the DTSMC controller

On the other hand, 4.15 shows the heart rate estimation error by using the dis-
crete time sliding mode control. As it can be seen, the error is decreasing and after
few seconds and is close to zero.
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FIGURE 4.15: Observer estimation error of DTSMC

Figure 4.16 displays the observation error obtained by the state observer intro-
duced in subection 4.4.3. This is the error between the actual state variable and the
observed one. It is shown that it converges to zero asymptotically and monotonically
while the control law enforces the perfect tracking of the reference.

FIGURE 4.16: Tracking error of DTSMC

Regarding the comparation between discrete-time sliding mode control (DTSMC)
and proportional–integral–derivative (PID), we are presenting 2 figures (4.17 and
4.18) that compare the performance between them.

In Fig.4.17 we are showing the heart rate provided by the DTSMC and PID con-
trollers. Even though the PID controller has a quite good response, the DTSMC has
a better response because it is closer to the reference signal.

Finally, 4.18 displays the tracking error comparison between our method (DTSMC)
and PID controller. As it is clear, DTSMC is close to zero and after few seconds has a
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better response compared to PID.

FIGURE 4.17: Comparing Heart rate provided by the DTSMC contro-
ller and PID

FIGURE 4.18: Comparing tracking error of DTSMC and PID

In the following Section, the nonlinear model will be present. This model has
been designed for the first time to solve the difficulty and oscillation of the parame-
ters that we had in our last results. In this method, we are using super-twisting slid-
ing mode control and will be discretized. In this method, we will achieve a robust
controller with avoiding the chattering and also having very good tacking results
and without using any observer, which are the benefits of this model to compare it
with the other models that we designed to reach to this model.
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4.4.6 Nonlinear Model

The application of this control law is confronted with a serious problem. In fact, slid-
ing mode necessitates an infinite switching frequency which is impossible to realize
in practice because of the calculation time and of the sensors dynamics that can not
be neglected, [131][138].

Based on the available conditions, we employ a new strategy to develop a discrete-
time Super-Twisting- algorithm (DSTA). Despite the successful development of the
classical SMC, in the eighties, a new control technique, called super-twisting sliding
mode control, have been investigated. Its main idea is to reduce to zero, not only the
sliding function but also its high order derivatives.

This model has many benefits such as not using any observer. It also allows for
avoiding any chattering and has a very good system design and great robustness
compare to other models.

4.4.7 Discrete-time Super-twisting Sliding Mode Controller

The starting point is the nonlinear discrete model given in (4.5)-(4.7) reproduced
here for convenience.

x1,k+1 = x1,k + h (−a1x1,k + a2x2,k + a6wk) (4.101)
x2,k+1 = x2,k + h (−a3x2,k + a4x1,kϕ(x1,k)) (4.102)

yk =
1
4
(x1,k + HR0) (4.103)

where h > 0 denotes the sampling period and x1,k and x2,k are the discrete state
variables. The reference signal, r(t), and output signal y(t) are also sampled at the
sampling rate h to provide the sampled signals rk = r(kh) and yk = y(kh).

The assumptions can be found in Section 4.2.1.

4.4.8 Control Design

Consider the following discrete-time reduced nonlinear system:

xk+1 = (1 − ha1)xk + ha6wk + fk (4.104)

where x = x1 and xk = x1,k , u ∈ R is the control input and f represent the uncer-
tainty and its continues.

This system is a simplification of the discrete-time system (4.101-4.102). When
the whole model is reduced to just one equation representing HR. Thus, the system
is reduced to a single-variable one and the remaining dynamics, given by the second
state variable x2, is considered as a perturbation on the system. In this way, a model
is simplified to the price of increasing the amount of uncertainty of the model.

The discrete-time super-twisting algorithm is designed based on the approach of
[138].

Consider now the sliding surface given by:

S(k) = rk − xk = Sk (4.105)

Regarding the Eq. (4.103) and the sliding surface we have:

Sk+1 = rk+1 − xk+1 = rk+1 − (1 − ha1)xk − ha6wk − fk (4.106)
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Eqs. (4.106) can be written as:

Sk+1 = rk+1 − (1 − ha1)xk + (1 − ha1)rk − (1 − ha1)rk − ha6wk − fk (4.107)

So that we have for the sliding surface:

Sk+1 = (1 − ha1)Sk + rk+1k − (1 − ha1)rk − ha6wk − fk (4.108)

In order to design the controller we make the definition:

Vk = rk+1k − (1 − ha1)rk − ha6wk (4.109)

The control law is defined in terms of Vk as:

wk =
1

ha6
[rk+1 − (1 − ha1)rk − Vk] (4.110)

According to [138], the Controller can be processed as the following equations:

Vk = −k1ϕ1(Sk) + δk (4.111)
δk+1 = δk − k2ϕ2(Sk) (4.112)

Where
ϕ1(Sk) = |Sk|

1
2 Sign(Sk) (4.113)

ϕ2(Sk) = Sign(Sk) (4.114)

It is important to mention that k1 and k2 are controller parameters and they are
to be determinded, so as to obtain a good tracking response and robustness. Also
k2 << k1, [138].

In the end, we must bear in mind that we are working with the square of the
control signal so that the actual speed command is given by:

uk =
√

Max(0, wk) (4.115)

In the case of recovery and training programs, the controller is able to make the heart
rate follow the predefined profile set up.

In the next section, the results and response of discrete sliding super-twisting
sliding mode control based on the design performed in this Section are shown.

4.4.9 Results and Simulation

This Section contains some numerical simulation examples showing the results achieved
by the proposed controller. The particular values for simulation, extracted from
[133], are the same as the values that we used in Section 4.2.6.

Figure 4.19 displays the response of the discrete super-twisting sliding mode con-
troller and control signal of the treadmill HR based on the parameters of the model at
the large range of treadmill speeds. In this case, it is also observed that the controller
has been able to transfer the heart rate to a reference value without any overdrive for
less than 10 seconds. Also, the control signal is applied quite smoothly. Therefore,
the implementation of the controller in practice does not require a specific drive and
implementation will be simple.
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Figure 4.20 shows the treadmill speed of the controller without any chattering.
On the other hand, Figure 4.21 shows the heart rate tracking error by using the dis-
crete super-twisting sliding mode control time. As it can be seen, the error is de-
creasing and after few seconds and is close to zero.

Finally in Fig.4.22 the evaluation of the tracking errors between all the techniques
that we used to this Chapter has been shown. As it is clear, the tracking error of the
DTSTSMC has a very great response compared with the other techniques and it
proves that the discrete-time super-twisting sliding mode control is the best contro-
ller with these comparisons. Eventually, Fig 4.23 shows the zoom of the evaluation
tracking errors of all techniques to present better the more details.

FIGURE 4.19: Heart rate provided by the DTSTSMC controller.

FIGURE 4.20: Speed provided by the DTSTSMC controller.
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FIGURE 4.21: Tracking error of DTSTSMC.

4.4.10 Conclusion

The aim of this work is to design a discrete-time robust controller for the heart rate
during treadmill exercise. In the first Section of this Chapter, we tried to design a
feedback-linearization which is a very good strategy to design a controller but we
faced into the not good robustness response in the result. Thus, for solving this
problem we used Joint parameter-state estimation that has a good response. On
the other hand in this controller, we reached to the complexity of this algorithm
and problem of the estimation process that we had in this algorithm. Although,
regarding the stability of the system and good respond that we got from designing
the super-twisting SMC in Chapter 3, we decided to use this technique and discretize
it as a new model to solve the previous problems.

Eventually, we used the super-twisting sliding mode controller and discretized
it. The previous problems were solved and the system has also very good results as
you can see in the last section of Chapter 4. The benefits of this system are such as
robust discrete-time controller without chattering and the stability of the system is
great. Also, it has a very systematic design and it did not need to use an observer.

It is important to note that, the material of this Chapter contained with 3 pub-
lished IEEE conference paper, [88][132][133] and one journal paper which is under
process.
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FIGURE 4.22: Evaluation of the Tracking errors of DTSTSMC,
DTSMC, Joint-parameter and Feedback-Linearization.

FIGURE 4.23: Zoom evaluation of the Tracking errors of DTSTSMC,
DTSMC, Joint-parameter and Feedback-Linearization.
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Chapter 5

Conclusions

Cardiac Rehabilitation has proven to be an effective tool in the recovery of cardiac
patients and it has been shown that is not very widespread in the world.

In order to mitigate this issue, a system consisting of a treadmill is designed. The
main component is the speed controller that is used between 2-14 km/h in this work.
In order to complete the system, we need a model and a controller.

Chapter 2 of this work considered the parameter estimation problem formulated
as an optimization one and solved by using Particle Swarm Optimization (PSO). This
algorithm is used for the first time in this field. Numerical examples showed that
the estimation procedure is able to obtain accurate values for the system’s parame-
ters and the achieved results and comparisons showed improvement with respect to
other estimation methods.

In Chapter 3 the design of the controller has been done. The super twisting slid-
ing mode control is used for the design of the controller. A super-twisting sliding
mode controller is designed to perform the robust control of treadmill’s speed in
the presence of potential unmodelled dynamics of parametric uncertainties. The
proposed control approach is able to obtain zero tracking error without chattering,
definitely achieving the control objectives.

In the first section of Chapter 4 a feedback- linearization based control for the
heart rate during treadmill exercise is designed. The set-up of the problem in discrete-
time allows taking into consideration the effect of sampling during the controller
design procedure instead of relegating it to the implementation stage. The control
command requires the values of the parameters of the model along with the states.
Thus, at this point parameters are assumed to be known and the state observer is
designed for the unmeasurable-state.

It is shown that a linear state feedback controller is enough to make the nonlinear
model’s output track the reference profile regardless of its possibly complex time
variation when the model parameters are known. However, the controller lacks of
the robustness when there exists a mismatch between the nominal parameters and
the actual ones.

Thus, the next section of this chapter (Section 4.3) a joint parameter-state estima-
tion algorithm is designed to provide the values of the parameters and unmeasur-
able states to the control law. The use of this algorithm allows obtaining asymptotic
perfect tracking in the presence of uncertainty in the model’s parameters. More-
over, the identification of the parameters might allow monitoring the evolution of
the coronary condition of the patients. However, the algorithm is not able to identify
the actual values of the system’s parameters and the output exhibits certain oscilla-
tion, that may be undesirable. The complexity of the algorithm, the lack of the iden-
tification of the parameters, the pursume of the oscillation and the great response the
parameters and great response of the super-twisting controller in Chapter 3, made
us make a decision to imply a new method to solve these problems.
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5.1 Future View

The work also has a great opportunity to be expanded in several ways. From the the-
oretical point of view, it has opened the door to the design of joint state-parameter es-
timators and to the mathematical demonstration of stability of the proposed schemes.
From a practical point of view, the work can be extended with the implementation
of the system on a real treadmill as well as the verification of the results obtained by
simulation with real test subjects. I believe that the system developed contributes to
the improvement of health care services for those patients who have suffered some
heart disease and the system presented has a high application in real life. On the
other hand, it is interesting to develop it as large system that it mentioned in the
first Chapter. Developing the controller for conecting with other parts of the whole
project.

In the last Section of Chapter 4 a discrete sliding mode system is tackled. We start
by linearization SMC. The linear model is then discretized by using a Zero-Order
Hold (ZOH) in order to obtain a discrete-time model. This discrete-time model is
then used to design a sliding mode controller. Anyhow, the full state is not available
for measurement and a reduced-order disturbance observer is incorporated into the
discrete-time control law. Then, the continuous control command is generated by
using a zero-order hold (ZOH). Simulation results presented that the designed con-
troller is able to make the runner’s heart rate follow the prescribed profile irrespec-
tive of the uncertainties in the model.

For the last part of the work a discrete-time, super-twisting sliding mode con-
trol is used and it is extended to the nonlinear case. This controller is designed for
the first time and solves the difficulty of the oscillation of the outputs and chatter-
ing. The results such as reference tracking and tracking error that we achieved have
a great response. Furthermore, simulation examples showed that the designed con-
troller covered a wide range of speeds and results that are presented in this range are
not usually employed in previous studies for heart rate control. The nonlinear sys-
tem offered a great tracking property, an avoidance of state observer, no chattering,
systematic design and robustness.

Eventually, with all of these reasons and improvements, we can say that this
approach is the best one to solve all of these problems.
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