
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en



 

 

 

Plant Species Climatic Niche and its 
Relationship with Population Responses 

to Extreme Drought 
 

DOCTORADO EN ECOLOGIA TERRESTRE 

Centre de Recerca Ecològica i Aplicacions Forestals 

Universistat Autònoma de Barcelona 

 
 

 

 

 

 

 

 

 

PhD Thesis Maria Ángeles Pérez Navarro 

Advisors: Francisco Lloret Maya 

Miguel Ángel Esteve Selma 

 

December 2019 

 

 

  
 





Acknowledgements

A pesar de ser firme defensora de que la tesis no supone un mérito excepcional digno
de especiales reconocimientos, no desperdiciaré la oportunidad de agradecer todo lo
vivido durante estos años y dejar grabado lo mucho que deben estas páginas a las
personas que me rodean.

Durante esta etapa, que empezó cuando llegué a Barcelona, he tenido la suerte
de encontrar a personas maravillosas, de viajar por el mundo y de aprender sobre
diferentes aspectos de la vida. Quiero agradecer en primer lugar, a la que fue mi
primera familia en Catalunya, mis compañeros de máster, en especial a Estrella,
Aida, Alba, Aina, Carla, Enrique, John y Gustavo y a mis compañeros de piso Laura
y Josan. Gracias por los ratos en el césped, las visitas a Mataró y las noches arreglando
el mundo en el Cop de ma, gracias, en definitiva, por hacerme sentir en casa.

Cuando una empieza la tesis le dicen que debería preocuparse de escoger bien a
sus directores porque son personas con las que tendrá que compartir cuatro años y ver
más a menudo que a sus propios padres. Yo con Paco apenas tuve dos reuniones antes
de solicitar el doctorado. Después de estos más de cuatro años trabajando juntos sé
que si volviese atrás volvería a elegirte. Gracias Paco por el ejemplo, por las charlas
en los viajes, por tu forma de pensar tan crítica y profunda, por enseñarme tanto más
allá de lo estrictamente académico. . . A Miguel Ángel lo conocía más. Fui su alumna
durante la carrera y sé que pocas personas tienen un conocimiento más holístico de
la naturaleza murciana, mayor integridad y devoción por su trabajo. Gracias por
aportar siempre la perspectiva más naturalista y aplicada, gracias por las charlas de
política y las explicaciones sobre el Mar Menor. Durante estos años he crecido con y
gracias a vosotros, y no podría sentirme más afortunada.

Además esta tesis no hubiese tenido los mismos resultados sino hubiese compar-
tido las dudas, preocupaciones, alegrías y el desánimo con tantos buenos compañeros.

i



Gracias a los compañeros de despacho, a Anna, Javi, Judit, Carlos, Manu, Marta,
Pere y Pol. Sin duda las penas han sido menos penas con vosotros y las fiestas,
almuerzos y barbacoas mucho más divertidas. Gracias por las risas y la terapia de
grupo. No me acostumbro a pensar en un trabajo sin vosotros.

Gracias también a los compañeros de grupo. Enric, Jordi, Luciana y Nuria, el
phoskitos lab no podría tener mejor plantilla. Con vosotros se demuestra que hacer
ciencia no está reñido con un ambiente laboral de calidad, colaborativo, respetuoso
y divertido. Gracias por tantos buenos momentos, por las salidas a la montaña y las
jornadas de convivencia en los congresos. Quiero agradecer también a mis compañeros
de departamento en Murcia. Gracias a Paqui, Jose Miguel y Pablo por el trabajo de
campo y de despacho, por las discusiones académicas y las no tan académicas, por
no haber dudado en ayudar siempre que lo he necesitado. Gracias también a Guillem
por las semanas de trabajo y convivencia en Murcia y tus dosis de amabilidad y
optimismo, a Pep Serra y Gerard Sapes por los sabios consejos y la inspiración.

Durante estos últimos años también he tenido la oportunidad de librarme de
los calurosos veranos catalanes y murcianos escapándome de estancia a otros países.
Gracias a Jens-Christian por la acogida en Aarhus y a Antoine y Olivier por la estancia
en Suiza. Me quedo con el recuerdo de los paseos en bici por Dinamarca y la estampa
de los Alpes por la ventana del despacho y las barbacoas en el lago Leman. Gracias
también a los que han estado siempre ahí, a los amigos de toda la vida, Jose, Maria
José, Mari Nieves, Maria Victoria, Álvaro y Pedro. Gracias por estar tan cerca a
pesar de los kilómetros, gracias por las visitas, por aguantar con paciencia mis quejas
sobre política y ciencia, por los cafés, las terapias y el consuelo. Gracias también
a Victor M. por el tiempo que hemos pasado juntos en Barcelona, por las horas de
desahogo mutuo y los planes culturales.

Quiero agradecer también a mi hermano mayor, por plantar la semilla del amor
por la naturaleza, sin tu ejemplo no hubiese dado los primeros pasos del camino que
ahora completo. Gracias también a mi hermano mellizo por la ayuda incondicional
e implicación, llegando incluso a armarte con botas y cinta métrica para echar una
mano en el trabajo de campo.

Gracias sobre todo a quien desde hace más de tres años es mucho más que un
compañero de despacho. Gracias Víctor por tu compresión, tu paciencia, tus consejos



y buenas ideas. Gracias literalmente por tu ayuda. Gracias por animarme y hacerme
ver siempre el vaso medio lleno. Por darme una segunda familia en Catalunya.

Gracias finalmente a mis padres, a quienes una época cruel y la falta de recursos
les despojó de la oportunidad para completar etapas académicas más allá de los
estudios más elementales. Sabed que habría sido posible llegar hasta aquí sin vosotros.





Table of Contents

1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Understanding species distribution in a changing climate . . . . . . . 2

1.1.1 Climate as driver of species distributions . . . . . . . . . . . . 2
1.1.2 The niche concept . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Species niche and community assembly . . . . . . . . . . . . . 7

1.2 Predicting species distribution . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Species distribution modelling . . . . . . . . . . . . . . . . . . 9
1.2.2 Environmental niche characterization . . . . . . . . . . . . . . 14

1.3 Thesis aims and scope . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Setting the scene: the impact of extreme events . . . . . . . . 15
1.3.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2: Population climatic suitability and extreme drought responses . 19
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3: Temporal variability is key to model the climatic niche . . . . . . 41
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



4: Niche distance as a predictor of species responses to extreme cli-
matic events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5: Climatic disequilibrium reduction in dryland communities . . . . 77
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendix A: Appendix Chapter 2 . . . . . . . . . . . . . . . . . . . . . . 99

Appendix B: Appendix Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 125

Appendix C: Appendix Chapter 4 . . . . . . . . . . . . . . . . . . . . . . 133

Appendix D: Appendix Chapter 5 . . . . . . . . . . . . . . . . . . . . . . 145

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



List of Tables

2.1 Main settings used in the different SDM modeling approaches. . . . . 28
2.2 Main species information and attributes used in statistical analyses.

See methods for details about foliar strategy, RGC (Remaining Green
Canopy), Size and Frequency. . . . . . . . . . . . . . . . . . . . . . . 29

2.3 AIC and Adjusted R2 of GLMs explaining remaining green canopy . . 33
2.4 Results of GLMs explaining remaining green canopy . . . . . . . . . . 34

4.1 Model result of Remaining Green Canopy (RGC) as a function of soil
bedrock and populations’ distances to species niche centroid . . . . . 70

4.2 Model result of Green Canopy (RGC) as a function of soil bedrock and
populations’ distances to the closest point of species niche limit . . . 71

4.3 Model result of mortality percentage as a function of soil bedrock and
populations’ distances to species niche centroid . . . . . . . . . . . . . 71

4.4 Model result of mortality as a function of soil bedrock and populations’
distances to the closest point of species niche limit . . . . . . . . . . . 72

5.1 Mean and standard deviation of Climatic Disequilibrium before and
after drought . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Results of mix models explaining community climatic disequilibrium 90

A.1 Pearson correlation values comparing visual drought estimate and de-
foliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2 Median and range values for Historical Climatic Suitability and
Episode Climatic Suitability . . . . . . . . . . . . . . . . . . . . . . . 123

B.1 Species used for analyses of changes in niche space depending on species
climatic range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vii



B.2 GLM binomial model results relating Pinus decay with species niche
suitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.3 Model results relating models explanatory capacity in relation to the
percentage of populations located in the non-shared niche space) . . . 132

B.4 Model results relating relating ratio of niche area and niche average size)132

C.1 Carbon and nitrogen content of each studied bedrock, following (Anne
1945, Duchaufour 1970) method. . . . . . . . . . . . . . . . . . . . . 138

C.2 Summary table of analysed species . . . . . . . . . . . . . . . . . . . 139
C.3 Final generalized mix models applied for Remaining Green Canopy

(RGC) and mortality respectively. . . . . . . . . . . . . . . . . . . . . 140
C.4 Model accuracy of each sampled species distribution model estimated

with MaxEnt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.5 Results of Generalized Mixed Models explaining Remaining Green

Canopy (RGC) as a function of distances to niche centroid. . . . . . . 142
C.6 Results of Generalized Mixed Models explaining Remaining Green

Canopy (RGC) as a function of distances to species niche limit. . . . 142
C.7 Results of Generalized Mixed Models explaining mortality percentage

as a function of distances to species niche centroid. . . . . . . . . . . 142
C.8 Results of Generalized Mixed Models explaining mortality percentage

as a function ofdistances to species niche limit. . . . . . . . . . . . . . 143
C.9 Results of Generalized Mixed Models explaining Remaining Green

Canopy (RGC) as a function of soil bedrock and population climatic
suitability for the extreme drought episode (2013-2014) . . . . . . . . 143

C.10 Results of Generalized Mixed Models explaining Remaining Green
Canopy (RGC) as a function of soil bedrock and population climatic
suitability for the reference period 1979-2012 . . . . . . . . . . . . . . 143

C.11 Result of lsmeans contrast between bedrock types in mortality and
RGC models with population distances to niche centroid and to the
niche limit during the extreme episode. . . . . . . . . . . . . . . . . . 144

D.1 Carbon and nitrogen content of each studied bedrock. . . . . . . . . . 152
D.2 Summary table of analysed species found in the different study sites. 153
D.3 Least squared means pairwise test results. . . . . . . . . . . . . . . . 154



List of Figures

1.1 Graphical representation of fundamental and realized niches according
to Franklin 2010 and Soberón 2007 view . . . . . . . . . . . . . . . . 7

1.2 Workflow processes in species distribution modeling (SDM) and niche
characterization in the environmenta space . . . . . . . . . . . . . . . 11

2.1 Study region, monthly temperature and precipitation data during the
historical 1950-2000 period . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Remaining Green Canopy (RGC) compared with historical (HCS) and
episodic (ECS) climatic suitability . . . . . . . . . . . . . . . . . . . . 31

2.3 Partial residual plot of RGC (Remaining Green Canopy) in relation to
HCS (Historical Climatic Suitability) . . . . . . . . . . . . . . . . . . 32

3.1 Location map of Pinus halepensis studied forests . . . . . . . . . . . 47
3.2 P . halepensis niche determined by average cliomate and by inter-

annual climatic variability . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Drought-induced affectation in P. halepensis populations in relation

to population niche suitability . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Species niche area ratio in relation to species niche area estimated with

average climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Example of species niche in the environmental space . . . . . . . . . . 62
4.2 Study site and its soil water content availability . . . . . . . . . . . . 64
4.3 Remaining Green Canopy (RGC) and mortality in relation to popula-

tion distances to species niche’ niche . . . . . . . . . . . . . . . . . . 69
4.4 Relationship between Remaining Green Canopy (RGC) and population

climatic suitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

ix



5.1 Study sites and its ombrothermic diagrams . . . . . . . . . . . . . . . 83
5.2 Example of community climate diagram . . . . . . . . . . . . . . . . 87
5.3 Community climatic disequilibrium before and after the extreme

drought event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Change in climatic disequilibrium respect to annual water deficit . . . 93

A.1 MESS analyses ninyerola vs worlclim methods . . . . . . . . . . . . . 100
A.2 AUC and Boyce index per species . . . . . . . . . . . . . . . . . . . . 101
A.3 MESS analyses of the extreme drought year . . . . . . . . . . . . . . 102
A.4 HCS averaged values of the sample plots by species for each imple-

mented model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.5 Pearson correlation values among different implemented models for HCS104
A.6 Pearson correlation values among different implemented models for ECS104
A.7 Filtered occurences of analized species . . . . . . . . . . . . . . . . . 106
A.8 Suitability maps obtained from Mahalanobis distance . . . . . . . . . 110
A.9 Suitability maps obtained from Generalize Additive Models (GAM) . 114
A.10 Suitability maps obtained from Boosted Regression Trees (BRT) . . . 118
A.11 Suitability maps obtained from MaxEnt . . . . . . . . . . . . . . . . 122

B.1 Climatic anomaly of the extreme climatic year 2013-2014 in the Spanish
SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.2 Correlation circle obtained from PCA calibrated with Pinus halepnsis

occurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
B.3 Populations located in the Pinus niche space not shared by the

average-based and the inter-annual variability-based niches . . . . . . 128
B.4 Model explained R2 depending on population subset . . . . . . . . . . 129
B.5 Correlation circle obtained from PCA calibrated with occurrences of

multiples mediterranean species . . . . . . . . . . . . . . . . . . . . . 130

C.1 Ombrothermic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.2 Soil particle composition . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.3 Correlation circle obtained from PCA from the twelve selected climatic

variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
C.4 Correlation circle obtained from PCA calibrated with the five climatic

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



C.5 Remaining Green Canopy (RGC) and mortality percentage models . 137
C.6 Multivariate Environmental Similarity Surface (MESS) analysis for the

South East of the Iberian Peninsula. . . . . . . . . . . . . . . . . . . 138

D.1 Climatic anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
D.2 Correlation circle obtained from PCA from the twelve selected climatic

variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
D.3 Univariant community climatic disequilibrium before and after drought 149
D.4 Soil particle composition of the three different study sites . . . . . . . 150
D.5 Soil water content in percentage of volume of different studied bedrocks 151





Abstract

Understanding how climate affects species’ distribution and performance is a central
issue in ecology since its origins. In last decades, however, the interest in this question
has been reactivated by the current context of climate change. Species Niche Mod-
elling has been widely used to assess shifts in species distribution and to test the re-
lationship between species’ climatic niche and species physiological and demographic
performance, implicitly assuming that species occurrence portrays the environmental
and biotic species’ suitable conditions. Nevertheless it is still largely undetermined
whether these models can portray population and community responses, particularly
in relation to extreme climatic episodes.

In this thesis I aim at exploring the capacity of niche modelling to predict
species decay under extreme climatic conditions, particularly droughts, addressing
some constraints of this approach and proposing possible solutions. To achieve this
goal, I counted with 3 vegetation decay datasets measured in the Spanish SE after
the extreme drought year 2013-2014. Two of these datasets were based on defoliation
sampling of individual plants belonging to more than 40 semiarid shrubland species
(chapters 2, 4 and 5), while the other one was based on regional compiled data of
Pinus halepensis L. affectation in plots of 1km2 (chapter 3). In second chapter I used
different Species Distribution Model (SDMs) algorithms to estimate species’ climatic
suitability before (1950-2000) and during the extreme drought, in order to test the
possible correlation between suitability and decay, and whether the existence of this
relationship depended on the applied SDM algorithm. I consistently found a positive
correlation between remaining green canopy and species’ climatic suitability before
the event, suggesting that populations historically living closer to their species’ tol-
erance limits are more vulnerable to drought. Contrastingly, decreased climatic suit-
ability during the drought period did not correlate with remaining green canopy, likely
because of extremely low climatic suitability values achieved during the exceptional
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climatic episode. In order to test whether this extremely low suitability values could
derive as a consequence of only considering climatic averages when calibrating SDMs,
in the third chapter I developed a method to include inter-annual climatic variability
into niche characterization. I then compared the respective capacities of climatic suit-
abilities obtained from averaged-based and from inter-annual variability-based niches
to explain demographic responses to extreme climatic events. I found that climatic
suitability obtained from both niches quantifications significantly explained species
demographic responses. However, climatic suitability from inter-annual variability-
based niches showed higher explanatory capacity, especially for populations that tend
to be more geographically marginal. In the fourth chapter I tried to overcome the
inability of the SDMs to predict populations decay during extreme conditions, as
observed in the second chapter, by using Euclidean distances to species’ niche in the
environmental space. I compared the capacities of both population distances in the
climatic environmental space and population climatic suitability derived from SDMs
to explain population observed physiological and demographic responses to an ex-
treme event. Additionally, I tested such relationship in populations located in three
different bedrock sites, corresponding to a gradient of water availability. I found that
SDMs-derived suitability failed to explain population decay while distances to the
niche centroid and limit significantly explained population die-off, highlighting that
population displaced farther from species’ niche during the extreme episode showed
higher vulnerability to drought. The results also suggested a relevant role of some
bedrocks buffering species decay responses to extreme drought events mainly accord-
ing to soil water holding capacity. Finally, in the fifth chapter, I used species niche
characterizations in the environmental space and demographic data to address the im-
pact of extreme events at community level. Particularly, I estimated the community
climatic disequilibrium before and after a drought episode along a gradient of water
availability in three bedrock types. Disequilibrium was computed as the difference
between observed climate and community-inferred climate, which was calculated as
the mean of species’ climatic optimum weighted by species abundance collected in
field surveys. I found that extreme drought nested within a decadal trend of increas-
ingly aridity led to a reduction in community climatic disequilibrium, particularly
when combined with low water-retention bedrocks. In addition, community climatic
disequilibrium also varied before the extreme event across bedrock types, according to
soils water-retention capacity. In conclusion, by developing different techniques, de-



rived from species distribution, that characterize climatic accuracy at population and
community level, this work reveals the capacity of species climatic niche to explain
demographic responses under climate change-induced episodes of extreme drought.
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Introduction



2 1. Introduction

1.1 Understanding species distribution in a chang-
ing climate

1.1.1 Climate as driver of species distributions

The current context of anthropogenic climate change has recently fueled the atten-
tion given to climate in ecological studies. However, the interest on knowing the
effect of climate in species distribution is an old issue. More than two centuries ago,
Alexander von Humboldt realized that the vast diversity of plant forms was frequently
distributed following specific patterns along altitudinal and latitudinal gradients, from
dense forest on lowlands and low latitudes to grasses and lichens on high elevations
and latitudes (Morueta-Holme & Svenning, 2018; von Humboldt & Bonpland, 1807
(2009)). Although other authors have previously perceived the possible relationship
between climate and vegetation (Lomolino et al. 2004, Jackson 2009), Humboldt was
the first on reporting causation by systematically inventorying plant distributions
and recording information on environmental parameters. That approach could be
considered as a kind of early correlative distribution model and laid the foundations
of biogeography science. Since Humboldt essay, climate has been widely recognized as
a key factor on plant species distribution (von Humboldt and Bonpland 1807 (2009),
Woodward 1987). Nevertheless, other factors such as soils, biotic interactions, pertur-
bations or herbivory have since been recognized as relevant drivers (Morueta-Holme
and Svenning 2018, Pausas and Bond 2018).

As a consequence of this coupling between vegetation and climate, it is inferred
that plant species could respond to changes in climate mainly in three different ways:
by changing their distribution according to the speed and direction of change in
climate, therefore migrating; by maintaining their distribution but modifying the
way they interact with climate, being able to survive under conditions previously
unsuitable for their survivorship, therefore adapting; or by disappearing if migration
and adaptation rates do not match the climate change climate velocity, therefore
becoming extinct. While paleoecological records along the last Quaternary glacial-
interglacial periods strongly support species capacity to track the climate (Huntley
and Webb 1989, Webb III 1992, Hewitt 2000, Davis and Shaw 2001), past evidences
of plant species adaptations to changing environments are less frequent (Davis and
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Shaw 2001). This suggests that plant species shift their distribution more readily
than they evolve to tolerate new environmental conditions, although both processes
are not mutually exclusive (Ackerly 2003, Aitken et al. 2008).

To properly track the climate at a given temporal scale, plant species are sup-
posed to successfully establish in the new climatically favorable regions (leading edge)
and disappear from regions that have become unfavorable (trailing edge) (Svenning
and Sandel 2013) with a velocity according with the rate of climate change. Con-
versely, if climate change rate exceeds species dispersal capacities to arrive to new
accurate locations, or species have large persistence time which retard populations
extinction in the trailing edge, species will be in disequilibrium with climate (Blonder
et al. 2017). Importantly, this capacity to track the climate is species-dependent,
since each species responds to climate change with a particular rate and direction.
As a consequence, communities composition do not remain constant during shifting
climate processes (Ackerly 2003).

Current climate is changing with a velocity comparable to that observed during
periods of maximum change during the Quaternary (Svenning and Sandel 2013).
Human population growth and the increase in per-capita consumption rates after the
industrial revolution are disrupting global natural systems at an unprecedented pace.
Anthropic greenhouse gas emissions are responsible for the ongoing rapid climate
change, with global average temperatures that could increase up to 4 degrees above
the average for the period 1986-2005 by the end of this century (IPCC Working
Group 1 2014). In addition to increase in global temperature, climate change is also
leading to rainfall reductions in subtropical latitudes as well as increases in climate
variability, which implies an increment in extreme events such as heat waves and
severe droughts (Giorgi and Lionello 2008, IPCC Working Group 1 2014). Plant
responses to these changes are already noticeable, from species migrations upward
in elevation and poleward in latitude (Lenoir et al. 2008, Devictor et al. 2012), to
increasing decay and mortality episodes in lowlands and in the equatorial range edge of
species distribution (Allen and Breshears 1998, Jump et al. 2009). The contemporary
environmental scenario poses a double threat for species’ persistence, since rapid
climate change is combined with the anthropogenic land surface transformation, which
have generated artificial barriers that reduce species’ dispersal capacity and increase
the genetic isolation of populations.
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Thus, knowing the factors that govern species distributions is as relevant today
as it was in Humboldt’s days, since understanding these forces is crucial to face the
current environmental challenge, allowing us to predict the future species distribution
and community composition, to anticipate population, species or ecosystems’ vulner-
ability, as well as to correctly guide efforts in conservation to avoid severe losses in
ecosystem services.

1.1.2 The niche concept

Humboldt progresses on linking organisms and environmental factors and his influence
on further researchers probably constituted the germ for the emergence of the niche
concept. This concept deeply permeates different fields of biology and environmental
sciences, from ecology to evolution.

Since its birth, the niche concept has evolved and incorporated advances from
others ecological theories, and its meaning has varied depending on time and author.
The niche concept emerged in the first third of the 20th century and it is indepen-
dently attributed to Joseph Grinell (1917) and Charles Elton (1927). Grinnell (1917)
was the first explicitly coining the term, and described the niche as the set of environ-
mental conditions that determines species distribution (that is what species require),
while Elton (1927), apparently without influences from Grinnell’s concept (Colwell
and Rangel 2009), defined the niche as the species functional role in the biotic com-
munity, mostly referred to trophic level or food webs (that is, how species impact
their community). In spite of the different orientation of each author, both defini-
tions shared noticeable similarities, as in both cases the niche was a property of the
environment, a place that exist independently of its occupant, that is, without been
necessarily occupied by species.

Inspired by both two authors and by the principle of competitive exclusion
(Volterra 1926, Gause 1934), Hutchinson formalized his niche concept in 1957
(Hutchinson 1957) as the n-dimensional hypervolume defined by the environmental
dimensions within which species can survive and reproduce, permitting species to
exist indefinitely. He also distinguished between fundamental niche, as the set of
environmental conditions that allows species persistence in absence of competition,
and realized niche, as the subset of the fundamental niche in which species can



1.1. Understanding species distribution in a changing climate 5

persist in the presence of competitors. Although this is probably Hutchison’s most
famous and cited contribution, his richest and most innovative view about niche
did not come until 1978 (Hutchinson 1978). Whereas his predecessors described
the niche as a property of the environment, Hutchinson attributed the niche to
species, which truly constitutes a theoretical advance, since in this way it is forced
the separation of the physical space and the environmental space (i.e., an abstract
space that describes the set of requirements of a species). From this duality physical
space-environmental space (or niche-biotope sensu Colwell and Rangel 2009), it
is inferred that species’ distribution ranges are just the geographical translation
of species’ environmental requirements in the abstract hyperspace, as long as the
combination of variables that constitute the species fundamental niche exists in the
geographical space and competitors do not impede the species presence. This entails
that the realized niche is not only constrained by the effects of species interactions (as
stated by Hutchinson), but also implicitly by the lack of contemporary environments
corresponding to parts of the fundamental niche (Colwell and Rangel 2009), see
Figure 1.1a. This duality and the reciprocal correspondence between physical and
environmental spaces constitute the core of species distribution models (SDMs), since
they calibrate species niche in the environmental space from georeferenced occurrence
data and then re-project back the distribution into the physical geographic space
(Colwell and Rangel 2009).

The large weight of interspecific competition in Hutchinson’s niche concept,
possibly as a consequence of the relevance of competitive exclusion in contemporary
theories (Pulliam 2000, Araújo and Guisan 2006, Colwell and Rangel 2009), hindered
an accurate consideration of the role of species’ dispersal limitations in causing species’
absence in determined portions of the fundamental niche (Araújo and Guisan 2006).
Pulliam (2000) integrated the niche concept with metapopulation theory (Hanski
1999), source-sink theory (Pulliam 1988) and dispersal limitation, emphasizing the
relationship between species’ niche and fitness, specifically population growth rate,
which allow to identify species fundamental niche with those environmental conditions
allowing for a positive intrinsic growth. According to him, species may frequently be
present in unsuitable sites where environmental conditions do not permit indefinite
persistence in absence of continued immigration (sink habitats). Alternatively, species
could be absent from suitable habitats due to local extirpation or species dispersal
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limitations. These situations points that estimating species suitability from habitat
occupancy could be an oversimplification (Franklin 2010). These ideas crystallized in
the conceptual model of Soberón (2007) that joins the set of dimensions that affect
species distribution in the geographic space: abiotic factors (A), biotic factors (B),
and accessible area given species’ dispersal capacity (M), see Figure 1.1b. Species may
be found in different combinations of these three dimensions, but population growth
rate will only be positive at the triple intersection (source habitat). Subsets of the
three dimensions where only M and B or M and A intersect will have negative growth
rate (sink habitats). In addition, intersection between A and B (potential habitat)
corresponds to suitable habitat that is unoccupied due to dispersal limitations.

A central premise to argue for stasis in paleoecological records is the evolu-
tionary conservatism of species environmental tolerances, in other words, species’
trend to maintain niches unchanged along evolutionary periods (Wiens and Gra-
ham 2005). Niche conservatism implies that functional links between environment
and species demography will remain constant in different time periods and space
regions. Even though it has been demonstrated that this assumption does not al-
ways hold -particularly when species ability to migrate is limited (Ackerly 2003) or
during biological invasions (Broennimann and Guisan 2008)- it is implicitly assumed
when forecasting future species distributions, since most distribution models extrap-
olate current links between species and environment. When considering precisely
the prevalence of niche conservatism over niche shifts, it its inferred that species
commonly respond to changes in climate by changing their distribution. This does
not mean, however, that species respond simultaneously to changes in climate, so
species observed ranges are not necessarily in close equilibrium with their environ-
mental optimum conditions (Svenning and Sandel 2013). Therefore, inferring species
requirements and tolerances assuming that species are in equilibrium with climate at
a given time, may lead to niche characterization’ misinterpretations.

After the above mentioned evolution in the niche theory, and despite this fell
from grace during the late 70s and early 80s -probably due to the crisis of the in-
terspecific competition concept, to which niche concept was closely related (Wiens
et al. 2009)-, the niche theory is now suffering a kind of renaissance (Colwell and
Rangel 2009), driven precisely by the growing use of species distribution models in
the current context of climate change and their application in conservation biology.
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Figure 1.1: a) Hutchinson niche concept. The biotope constitutes the range
of environmental variables that occur in a given geographic area. The funda-
mental niche corresponds to the set of environmental conditions that allows
species persistence. The realized niche is a subset of the environmental
space which constitute the fundamental niche coinciding with the availabil-
ity of environmental conditions of the geographical space, discarding those
areas where competitors impede the species presence. (Figure modified from
Franklin 2010). b) Diagram of the three dimensions determining species ge-
ographic distribution. A represents the geographical area where abiotic con-
ditions allow for a species’ positive intrinsic growth rate. B represents the
geographical area where the species can exclude or coexist with competitors.
M represents the total area accessible to the species given it dispersal ca-
pacity. Solid circles represent occupied area with source populations. Open
triangles are sink due to competitive exclusion. Open squares represent sink
populations due to the lack of accurate abiotic conditions. Open circles are
sink populations due to combinations of this previous two (abiotic and bi-
otic conditions). Jo is the occupied area and Jp is the potential occupied
area, where only species dispersal capacity limit the species presence. Figure
simplified from (Soberón 2007).

1.1.3 Species niche and community assembly

Niche differences enable species to coexist explaining a substantial proportion of the
diversity patterns observed in communities. It is widely acknowledged that varia-
tions in biodiversity patterns derives from multiple assembly processes whose rela-
tive importance varies between communities (Takahashi and Tanaka 2016, Li et al.
2018). These processes determining community composition include: drift (neutral
and stochastic processes, Hubbell 2001), selection (niche processes, including both
environmental and biotic filtering, Macarthur and Levins 1967, Keddy 1992), disper-
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sal (a combination of stochastic and trait-dependent processes, Belyea and Lancaster
1999, Vellend 2010) and speciation (Ricklefs 2008, Vellend 2010). In addition, it
is generally recognized that these processes are arranged as hierarchical filters that
allow or impede the entry of each prospective community member (Pearson et al.
2018). Speciation is the responsible of the global species pool and dispersal filter
determine which biological units are able to colonize the local community (Belyea
and Lancaster 1999, Weiher et al. 2011, Pearson et al. 2018). Then, niche processes
select the species subset with appropriate niches for persisting after environmental
and biotic filtering. First, environmental filtering removes those species unsuited to
a specified set of environmental conditions (Keddy 1992) and causes overall similar-
ity in the coexisting species niches. Later, biotic filtering (mainly competition) acts
promoting niche differenciation, and therefore, reduces niche similarity and overlap
(Weiher et al. 2011, Li et al. 2018). Nevertheless, these filters could act simultaneous
and interactively (Adler et al. 2013), varying its relative weight across communities
and time periods. All these drivers, in addition to demographic stochasticity and neu-
tral dynamics, make community assembly a complex and context-dependent process
(Pearson et al. 2018).

Despite this complexity, niche based processes (environmental and biotic filters)
can still have substantial power to explain community structure, and its relevance
could be measured and quantified, taking into account the spatial scale at which each
filter is detectable (Weiher et al. 2011). Among other analyses, depicting species
niches in the environmental space allows to assess the relative importance of these
filtering processes, whether total community niche volume is lower than randomly
expected combined with lower niches’ dissimilarity than random (in order to test
environmental filtering), or whether species niche volume and dissimilarity are higher
than randomly expected (in order to test similarity limitations, due, for instance, to
competition) (Li et al. 2018). Furthermore, it could be particularly useful to assess
community changes occurring along with temporal changes in climate. For example,
showing whether new climatic conditions are filtering community composition by
reducing total niche volume or by reducing distances between community climatic
optimum and occurring climate, linked to extinction or decreasing more unsuited
species and increases or immigration of species with more accurate traits to the new
climate.
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1.2 Predicting species distribution

1.2.1 Species distribution modelling

Species distribution models (SDMs), also known as ecological niche models or pre-
dictive habitat distribution models, are widely used in ecology, evolutionary biology,
and conservation plans (Franklin 2010, Guisan et al. 2013). A common characteristic
of SDMs is that they are deeply rooted on the niche concept (Guisan and Zimmer-
mann 2000). Generally, SDMs could be classify in two main different categories:
correlative SDMs and mechanistic or process-based SDMs. Correlative SDMs statis-
tically relate species occurrences or abundances with the environmental conditions
of the sites where species occur to, then, project species potential distribution back
in the geographic space, not explicitly accounting for the ecological and physiologi-
cal processes underpinning this relationship. It is widely assumed that these SDMs
estimate the species realized niche, since they implicitly include biotic interactions
and cannot represent the regions of the fundamental niche that do not correspond
to environmental combinations of the biotope (Kearney 2006, Colwell and Rangel
2009). In contrast, mechanistic SDMs use species’ performance responses to envi-
ronmental gradients (taken from controlled field or laboratory studies) to determine
the range of species distribution knowing the environmental conditions in the phys-
ical space (Kearney and Porter 2009). Since these models allow to characterize the
species’ physiological tolerance limits to environmental variables, it is assumed that
these mechanistic SDMs approximate the species fundamental niche (Kearney 2006).
Nevertheless, due to the high requirements of knowledge of species’ biology and the
labor intensity of parametrizing species physiological responses (Holt 2009, Schurr
et al. 2012), mechanistic SDMs are not widely used across species, particularly for
those poorly studied ones. Since correlative models are the most widespread SDMs
in literature and were used in the present thesis analyses, I will only detail correlative
model procedures, referred as SDMs hereafter.

From the SDMs work flow (Figure 1.2) it is deduced that the reliability of SDMs
estimates will depend on the quality of species occurrence data and environmental
variables, as well as on the selected algorithm to calibrate the relationship between
them. In addition, model accuracy could be assessed by using different evaluation
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indices.

Species occurrence data used in SDMs are frequently included as pres-
ence/absence. As other statistical analyses, SDMs assumes that data used for
calibration are random representative samples of the studied population. In par-
ticular, since SDMs aim to detect the species-habitat associations, the samples of
occurrences must be representative from an environmental space view which not
necessarily equate to geographical representativeness. Although random stratified
and systematic sampling exist for some species (as national forest inventories or
“gradsect sampling”, Wessels et al. 1998, Mauri et al. 2017), which provide data on
both species’ presence and absence, this is usually not the case for the vast majority
of species. Instead of that, most species only account for presence-only records from
natural history surveys and museum collections, or from independent research stud-
ies, often compiled in global databases such as the Global Biodiversity Information
Facility (GBIF, http://www.gbif.org/). In addition, these datasets are frequently
biased in the geographical space in favor of spatially accessible areas. This bias
could be translated into the environmental space and lead to misleading assessment
of the relationship between species occurrence and environmental variables (Araújo
and Guisan 2006, Franklin 2010). Anyway, even if representative samples with
presence-absence data were reachable for most species, these data would also have
some limitations, such us the equilibrium assumption (see previous section), since
most species have still not reached their optimal conditions (Svenning and Skov
2004), the impact of management practice, favoring or hindering species presence
in determined habitats, or the lack of population fitness information, so leading
to not exclude sink populations (which have negative growth rate and are outside
of species realized niche) from niche estimations. Indeed, these binary datasets
(presence-absence) are worse proxies of species requirements than continuous records
such as species abundance (Colwell and Rangel 2009) which allow to discriminate
species habitat preferences within suitable areas.

On the other hand, these models include environmental variables recognized to
be relevant determining species distribution, such as climate, soil, topography, distur-
bances, etc. (Franklin 2010). The values of these variables for occurrence localities
are generally extracted from maps rather than from in situ measurements, given the
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Figure 1.2: Workflow of SDMs (a) and niche characterization (b), illustrated
on a study area representing the Mediterranean basin. a) Species observa-
tions are georeferenced on the field and the attributes of a set of environmen-
tal maps could be extracted for each one of them. Statistical model algo-
rithm relates species observations to the environmental conditions observed
in occurrences sites, fitting species response curves to each environmental
predictor. The fitted model could be then applied over initial environmental
maps projecting contemporary geographic distribution, or over new environ-
mental conditions not used for model calibration (for example, by projecting
future distribution under climate change). Fitted model is commonly eval-
uated by comparing model predictions with a subset of species occurrence
not used during model fitting. b) Environmental conditions of each pixel of
a region are used to build a principal component analyses (PCA) converting
multiple correlated environmental conditions into a small number of uncor-
related variables. Then the environmental space is defined by the selected
axis of the PCA (three in this case). Species occurrences could be then
translated into this space, where kernel density functions allow to determine
smooth density of every cell of the environmental space, determining species
realized niche. This niche representation allows to obtain different param-
eters such as species niche centroid, limit, etc., as well as to convert niche
density into environmental suitability, which could be translated again into
the geographic space obtaining species geographic distribution maps.
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volume of data and the geographic extent of most species ranges. In spite of the
variety of potentially relevant variables in species distribution, SDMs frequently rely
exclusively on climate predictors due to their primacy controlling species ranges but
also due to the lack of fine grain resolution of other important environmental vari-
ables with high spatial heterogeneity such as soils (Franklin 2010). These climatic
datasets are frequently inferred from a limited number of weather stations which
become scarcer as they go back in time. In addition, the resolution of the most fre-
quent global databases does not exceed 1 km2 (Karger et al. 2017, Fick and Hijmans
2017) -although the spatial resolution of regional climatic databases may be consid-
erably high (Ninyerola et al. 2007) -. These considerations imply that the climate
experienced by organisms at ground level (microclimate) can substantially differ from
dataset-inferred macroclimate, particularly in regions with elevated land cover and
terrain variation (De Frenne et al. 2013). Linking species occurrence to climate values
other than those really perceived by species could lead to errors characterizing species
niche, which will be propagated when projecting species distribution both into past
or future conditions. Less attention has been paid, however, to temporal resolution of
climatic datasets. Generally, climatic variables are included as monthly and annual
averages of reference periods of 30 or 50 years (Hijmans et al. 2005, Karger et al.
2017, Fick and Hijmans 2017), in most cases, irrespective of species lifespan. Using
climatic averages instead of the total climatic variability could lead to constraints in
niche characterization and underestimations in species distribution ranges.

Since the appearance of the first computer-based predictive modelling of species
distribution in the mid-1970s (Austin 1971), an impressive diversity of modelling al-
gorithms has increasingly become available (Guisan and Thuiller 2005). According to
their functioning (and more or less coinciding with their emergence in chronological
order), SDM algorithms could be classified as envelope and distance methods (such as
BIOCLIM or mahalanobis distance), classical statistical approaches (such as GLM,
GAM or MARS) and machine learning (such as random forest or MaxEnt) (Franklin
2010), representing, in addition, a gradient of growing complexity. The former group
required presence-only species records, while the two latter groups require presence-
absence or presence-pseudoabsence data (when real absences are not available). These
variety of algorithms vary in how they deal with categorical variables, allow for predic-
tor interactions, define smoothness of fitted response curves, adopt different statisti-
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cal assumptions, weight variable contributions, predict species ranges and extrapolate
species distribution in novel environments (Elith 2006, Franklin 2010). Some of the
simplest models such as Mahalanobis distance assume that predictors are equally
weighted, follow normal distribution and only consider linear relationships between
them (Franklin 2010), whereas others more complex models such as MaxEnt can in-
clude high-order interaction terms and different degree of response curve smoothness,
although they do not allow to deliberate and exactly control predictor interactions and
the complexity of response curves, as statistical models do (Phillips and Dudík 2008,
Elith and Graham 2009, Elith and Leathwick 2009). Generally, model outputs are
ranged between 0 and 1, and are interpreted as environmental suitability or species’
occurrence probability, though some algorithm outputs require to be transformed to
obtain probability values. In addition, regarding the variety of methodological consid-
erations, different algorithms also imply different predictions of species distributions.
It has been suggested that simplest models are more suitable for extrapolation, while
more complex models are supposed to be more suitable for interpolation (Franklin
2010, but see Elith et al. 2010). Nevertheless, there is still no clear consensus on
which model best determines species distribution (Araújo and New 2007), instead
model algorithm is selected depending on each particular study characteristics.

Although error and uncertainty can be evaluated at different steps of the mod-
eling process, in case of SDMs model evaluation is typically synonymous with model
performance and validity (Franklin 2010). Commonly, it consists on dividing the oc-
currence dataset on a training set to calibrate the model, and a test set to evaluate
predictions’ accuracy. In addition, differently from other statistical-model evalua-
tions, SDMs accuracy measures are applied to categorical or probabilistic predictions
referred to a categorical variable (presence-absence), which requires dedicated evalu-
ation metrics (Guisan et al. 2017). There are different alternative accuracy indexes
depending on the relevance of omission or commission errors, the necessity of using
probability threshold or the dataset used for evaluation (presence-absence or presence-
only). Area Under ROC Curve (AUC) is probably the most frequently used metric,
based on the relationship between true and false positives which does not require
threshold selection. Furthermore, it allows to compare different models predictive ca-
pacity provided that it could be affected by species prevalence (Segurado and Araújo
2004). Other indexes such as sensitivity, specificity, or boyce index could be useful in
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cases that requires to particularly measure false negative rate, false positive rate or
model accuracy using presence-only as test set, respectively.

Here details of numerous aspects about SDMs’ data and implementation are not
explained, since entering into more details is an overwhelming task that largely ex-
ceeds the boundaries of this introduction. I will refer the reader to Franklin 2010 and
Guisan et al. 2017 for a complete explanation about species distribution modelling.

1.2.2 Environmental niche characterization

Both species occurrences and environmental variables (with their strengths and their
weaknesses, as previously described) could also be used to characterize species niche
directly in the environmental space (which constitute the “hutchinsonian duality”
sensu Colwell and Rangel 2009). Differently from SDMs, niche characterization in
the hyperspace allows to obtain niches parameters and estimates other than niche
suitability, such as niche breadth or niche optimum. In this case, the workflow ba-
sically consists on estimating species’ occurrence density along the environmental
axes of a multivariate space (Figure 1.2). Throughout ordinations techniques such
as Principal Component Analysis (PCA), environmental space of multiple correlated
environmental variables could be converted into a small number of uncorrelated linear
combinations of the original variables. Then, the environmental space will be defined
by the selected axes of the ordination analysis (Broennimann et al. 2012), normally
in a number of 2 or 3, due to limitations for representation and interpretation of more
dimensions (but see Blonder et al. 2014). This environmental space or volume could
be divided into a grid of a selected number of cells, each one of them corresponding to
a unique vector of n dimensions (V 1-n) equivalent to number of selected PCA axes,
which correspond to the environmental conditions observed at one or more sites in
the geographical space. PCA could be either build with the environmental conditions
of every pixel of an entire region, or just with the environmental values observed at
species’ occurrences sites. Species occurrences could be then translated into this en-
vironmental space, from which Kernel density function could be applied to determine
the smoothed density of occurrences in each cell of the hyperspace (Broennimann et
al. 2012). Finally, quantile thresholds could be applied to remove possible occurrence
of outliers.
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These density values could be then ranged between 0 and 1 in order to obtain
habitat suitability values, which could be then translated back to the geographi-
cal space. In addition, this and other similar frameworks (Blonder et al. 2014 n-
dymensional hypervolume), allows to estimate other niche parameters not reachable
with conventional SDMs, such as species niche centroid estimation (as niche center of
mass), species boundaries delineation according to selected density percentile, mea-
surements of distances between population locations and niche limit or centroid, as
well as to estimations of niche similarity and overlap when comparing different species
or population niches (Broennimann et al. 2012, Blonder et al. 2014). In addition,
these niche parameters could be also scaled up at community level, allowing to char-
acterize the global community position in the environmental space and its volume
(see Community Inferred Climate and Community Volume in Blonder et al. 2015),
and to test niche-based assembly processes (environmental and biotic filtering) as well
as changes in community assembly over time.

1.3 Thesis aims and scope

1.3.1 Setting the scene: the impact of extreme events

As previously developed, changes in climate over time will lead to both shifts in
species distribution and changes in species niche structure. Actually, under the cur-
rent climate change scenario, different plants species adaptations, mostly related to
warm and dry climate tolerances, are being reported (Franks et al. 2014), as well as
an increase in species die-off events worldwide (Allen et al. 2010). Vegetation decay
episodes often occur as a consequence of extreme climatic events such as heat waves
or extreme droughts, both induced by the increase of climatic variability driven by
climate change. Nevertheless, several mechanisms could impede or reduce species
decay in these situations, such as: favorable local microclimate, positive species in-
teractions or accurate soil and topographic conditions (Cornwell and Ackerly 2009,
Svenning and Sandel 2013, De Frenne et al. 2013).

Regions with high historical climatic variability which are also predicted to be-
come more variable in future, such as the Mediterranean basin (IPCC Working Group
1 2014), are specially prone to suffer this kind of decay events. In this context, the
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southeast of the Iberian Peninsula has recently experienced its driest year on record
(AEMET, 2014), causing extensive die-off across different vegetation communities,
including Pinus halepensis L. forests and areas dominated by shrublands (Esteve-
Selma et al. 2015). This climatic and biologically exceptional situation was used as
a study system to develop the following objectives.

1.3.2 Objectives

In this thesis I address the question of why some species or populations decay while
other persist under extreme climatic events from a species niche perspective, assuming
the correspondence between population fitness and species niche (Pulliam 2000, Sex-
ton et al. 2009), and so generally hypothesizing that populations closer to their species
climatic tolerance limit will be more affected. Particularly, I aim to understand the
capacity of niche-based indices to predict species and population responses to extreme
events, to assess the relevance of inter-annual climatic variability when characterizing
species niches, to evaluate the importance of local environmental variables, and to test
the environmental filtering role of extreme climatic event by reducing communities
climatic mismatch. I address these objectives both at species level (chapters 2, 3 and
4), basing on field decay data of co-occurring shrubland species and Pinus halepensis
L. forests, and at community level (chapter 5) by scaling up co-occurring shrubland
species responses. The specific objectives for each chapter are listed below:

Chapter 2 : To test the correlation between species decay response to an
extreme drought event with species climatic suitability derived from different SDMs.
Here I addressed the possible correlation between species climatic suitability and
remaining green canopy of shrubland co-occurring species after an extreme drought
event. In addition, given the considerable amount of uncertainty existing with respect
to SDMs techniques, I estimated the climatic suitability by using four different SDM
algorithms, following a gradient of model complexity. Particularly, I examined (i)
whether those species with lower climatic suitability showed higher decay responses
to extreme events and (ii) whether this relationship was algorithm-dependent.

Chapter 3 : To include climatic variability in niche characterization in order
to improve the analysis of drought-induced mortality based on species climatic suit-
ability. In this chapter, I estimated the correlation between mortality of more of 4000
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km2 of Pinus halepensis L. forests during an extreme event and climatic suitability ob-
tained from niches characterized only with climatic averages and with the complete
inter-annual climatic resolution. In addition, I compared the differences between
average-based niches and inter-annual variability-based niches for species with differ-
ent distribution ranges. Specifically, I aimed to test (i) whether inter-annual climatic
variability improve niche characterization and the relationship between demographic
responses and niche suitability and (ii) whether those species with narrower distribu-
tion ranges increased more their niche space when considering inter-annual climatic
variability.

Chapter 4 : To use species environmental niche characterization to assess
species decay responses to climatic extremes.
Here I proposed the use of niches parameters directly measured in the environmental
space, such as euclidean distance to the centroid and limits of species niche, which al-
low to obtain continuous values even when climatic suitability is zero, to assess species
decay driven by an extreme climatic event. Then, I compared the predictive capacity
of niche-based distances and climatic suitabilities derived from SDM when predicting
co-occurring shrubland decay under a drought episode. In addition, I analyzed the
effect of local bedrock type, which determines soil water capacity, on the observed de-
cay. Here, I examined (i) whether niche-based distances in the environmental spaces
better predict decay responses to extreme events than climatic suitability, and (ii)
whether some bedrock types could buffer or exacerbates species die-off under similar
extreme climatic conditions.

Chapter 5 : To test the environmental filtering effect of extreme climatic events
and bedrock type in Community Climatic Disequilibrium. Finally, I used species
niche characterizations in the environmental space and demographic data measured
in shrubland communities before and after an extreme drought episode in order to
estimate the Community Inferred Climate before and after the event. I also con-
sidered the effect of different bedrock types, determining a gradient of soil water
capacity. The distance between Community Inferred Climate and the observed cli-
mate corresponds to the Community Climatic Disequilibrium. Then, I compared the
climatic disequilibrium of these shrubland communities before and after drought and
between bedrock types, allowing to test (i) whether extreme drought events reduce
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the climatic disequilibrium of communities, acting as an environmental filter, and (ii)
whether bedrock types with low water retention capacities exacerbated this filtering
effect.
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2.1 Abstract

The differential responses of co-occurring species in rich communities to climate
change - particularly to drought episodes - have fairly been unexplored. Species
Distribution Models (SDMs) are used to assess changes in species suitability under
environmental shifts, but whether they can portray population and community re-
sponses is largely undetermined, especially in relation to extreme events. Here we
studied a shrubland community in SE Spain since this region constitute an ecotone
between the Mediterranean biome and subtropical arid areas, and it has recently
suffered its driest hydrological year on record. We used four different modelling al-
gorithms (Mahalanobis distance, GAM, BRT and MAXENT) to estimate species’
climatic suitability before (1950-2000) and during the extreme drought. For each
SDM, we correlated species’ climatic suitability with their remaining green canopy
as a proxy for species resistance to drought. We consistently found a positive cor-
relation between remaining green canopy and species’ climatic suitability before the
event. This relationship supports the hypothesis of a higher vulnerability of popula-
tions living closer to their species’ limits of aridity tolerance. Contrastingly, climatic
suitability during the drought did not correlate with remaining green canopy, likely
because of the exceptional episode led to almost zero suitability values. Overall, our
approach highlights climatic niche modelling as a robust approach to standardizing
and comparing the behavior of different co-occurring species facing strong climatic
fluctuations. Although many processes contribute to resistance to climatic extremes,
the results confirm the relevance of populations’ position in the species’ climatic niche
for explaining sensitivity to climate change.
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2.2 Introduction

The climatic trends observed over the last decades are promoting vegetation shifts
(Parmesan and Yohe 2003), phenological changes (Zavaleta et al. 2003) and modifi-
cations to disturbance regimes (Mouillot et al. 2002, Allen et al. 2015), as well as
altering the interactions between these processes (Franklin et al. 2016). However, the
adjustment of populations to changing climatic conditions may be more influenced
by the extremes of climatic variability than by average climate trends. For instance,
mortality and recruitment processes – which shape species’ distributions and ranges –
may be largely conditioned by pulses of extreme climatic conditions such as extreme
drought events (del Cacho and Lloret 2012, Greenwood et al. 2017).

Vegetation mortality and die-off processes associated with climatic warming
have often been observed at ecotones corresponding to the rear edge of species’ dis-
tributions (Allen and Breshears 1998, Bigler et al. 2006, Jump et al. 2006, Lesica
and Crone 2016), supporting the assumption that a decline in plant populations
may be more significant at their equatorial latitudinal or lowland altitudinal mar-
gins (Thomas et al. 2004). Translated into the perspective of a plant community,
marked by the coexistence of species that have adapted differently to environmental
conditions, mortality processes would have a greater influence on the populations of
species located close to their tolerance limits, to the benefit of other species that
find the new environment more suitable (Martínez-Vilalta and Lloret 2016). This
hypothesis implicitly correspond to the biogeographic paradigm that species per-
form better in their geographical center of distribution than they do in the margins
(Centre-Periphery hypothesis, see Sexton et al. 2009; but see Dallas et al. 2017),
with the further assumption that geographical and environmental spaces are mostly
concordant (Pironon et al. 2015).

Species Distribution Models (SDMs) have been used to test the relationship
between species’ climatic niche and their physiological or demographic performance
(Serra-Diaz et al. 2013, Pironon et al. 2015, van der Maaten et al. 2017). These are
statistical models that relate the location of species occurrences to the environmental
data on these sites (Franklin 2010). The SDM approach is based on the assumption
that species occurrence portrays the environmental and biotic conditions that are
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suitable for species to survive and reproduce (i.e. the realized niche: Pulliam 2000,
Soberón 2007, Peterson et al. 2011), and so model outputs are interpreted as a
species-specific index of relative suitability or habitat suitability. Accordingly, SDMs
have been widely used under average climatic conditions (climatic norms) to predict
past or future distributional changes of species (Elith and Leathwick 2009). However,
it is not yet known whether these models are able to capture the impact of extreme
climatic events (e.g. droughts), especially in relation to community dynamics.

In the Mediterranean basin, vegetation has developed different strategies for
dealing with variable rainfall, such as shallow roots and deciduous summer leaves
(Valladares et al. 2004, Zunzunegui et al. 2005). Nevertheless, these adaptive
syndromes may not be enough under the predicted scenarios of increased climatic
extremes (IPCC 2013). In this context, the southeast of the Iberian Peninsula has
recently experienced the driest year on record (AEMET 2014), causing an exten-
sive vegetation die-off event in areas dominated by shrubland (Esteve-Selma et al.
2015). This Iberian region represents the ecotone between the Mediterranean biome
and subtropical shrublands of arid lands (Esteve-Selma et al. 2010). This recent
drought-induced mortality event therefore offers the possiblity to assess community
dynamics in relation to biogeographical paradigms at the limits – in this case, the
aridity margin - of the biome’s distribution, which are areas considered to be very
sensitive to climate change (Guiot and Cramer 2016).

In this study, we use a shrubland community at the arid southern limit of the
Mediterranean biome to assess the differential response of coexisting species to an
extreme drought event according to species’ climatic suitability, as determined from
SDMs. Specifically, we test whether populations living close to the edge of their
species’ climatic niche (i.e. lower suitability values compared to the niche’s optimal
value) are more vulnerable to such extreme events than populations living closer to
their niche center. We use the remaining green canopy of species after the drought
event to examine the correlation between drought-induced die-off and species’ climatic
suitability, considering both the historical suitability, as inferred from historical cli-
matic series, and the drought episode suitability, as reflected by the conditions during
the drought event. Given the considerable amount of uncertainty existing with re-
spect to the various SDM techniques, which use model-specific algorithms (Araújo
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and New 2007), we also test whether the relationship between species’ die-off and
their climatic suitability depends on the SDM algorithm applied. For this purpose,
we applied four SDMs with highly contrasting approaches (Mahalanobis distance,
Generalized Additive Models –GAM–, Boosted Regression Trees –BRT–, and Maxi-
mum Entropy approaches –MaxEnt–) to determine species suitability, that was later
correlated to species’ die-off.

2.3 Material and methods

Study area

The study was carried out in two semi-arid shrubland areas in the province of Murcia
(southeast of the Iberian Peninsula) (Figure 2.1), Campo de Cagitán (38° 06’ N,
1° 32’ W) and Oro Mountain (38° 11’ N, 01° 30’W), 10 km apart but with similar
soil characteristics and climatic conditions. The Campo de Cagitán site was covered
by a small expanse of scrubland embedded in an agricultural matrix, and the Oro
Mountain site was occupied by shrubland close to an open pine forest on a hill slope.
The overall sampled area amounted to 19 hm2.

The potential vegetation comprises an open forest of Pinus halepensis L. and
a sclerophyllous shrubland (garrigue) dominated by Quercus coccifera L., Pistacia
lentiscus L., Olea europea L., Rhamnus lycioides L. and Juniperus oxycedrus L., along
with a highly diverse range of small shrubs, such as Thymus hyemalis Lange and He-
lianthemum spp. (Braun-Blanquet and Bolòs 1957). The current landscape in these
regions is a highly fragmented cropland that is either in use or recently abandoned,
with small patches of forest or shrubland interspersed between the crops. The steep
slopes in some areas preclude the presence of agricultural crops but they are instead
covered by scrublands, often containing the tussock grass Stipa tenacissima L. (which
was cultivated for fibers until the 1960s) and occasional open pine forests.

The region is included within the Mesomediterranean thermoclimatic belt and
the Mediterranean xeric bioclimatic region (Rivas-Martínez et al. 2011), character-
ized by annual mean temperatures of 18.5 °C and an annual rainfall of 200-350 mm.
Precipitation in the area is low and mainly concentrated in the fall, with great vari-
ability between years. During the hydrological year 2013-2014 the Region of Murcia
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suffered the worst drought on record since 1941, demonstrating the extreme condi-
tions of the event. During the drought event a mean regional rainfall of 146.5 mm was
recorded; this corresponds to just 46% of the average value for the period 1971-2000
(Figure 2.1, AEMET 2014). This episode led to high mortality and defoliation in
different forests and shrublands (Esteve-Selma et al. 2015).

Figure 2.1: Study region within the Iberian Peninsula (Murcia region: black
shading in the inset, upper left map) and monthly temperature (lines) and
precipitation (bars) data during the historical 1950-2000 period (light grey
bars and dots) and the 2013-2014 hydrological year (anomaly period; dark
grey bars and triangles).

Field sampling

In March 2015, a set of ten 50m2 replicate plots were established in the study region,
three in the Campo de Cagitán and seven in the Oro Mountain, according to the
shrubland surface area available on each site. This sampling design reflects the re-
gion’s highly fragmented habitat, which prevented us from establishing ten replicates
in a single location.

Sampling plots were established with the following criteria: 1) shrubland with
no signs of recent disturbance, with high species richness, different life forms, and low
S. tenacissima density; and 2) low pine presence, in order to avoid wetter microen-
vironments caused by the shade of tree canopies, which could affect the moisture in
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the air and soil. Each plot consisted of two linear transects of 25 meters long by 1
wide. On each plot, we recorded the total number of individuals per woody species,
estimated their size by measuring two perpendicular diameters crossing at the center
of each individual and visually estimated the proportion of remaining green canopy
(RGC) per individual. A total of 22 species were sampled (Table 2.2). RGC levels
were visually estimated as a proxy for the species response to drought (die-off) as
the percentage of green leaves present relative to the amount in healthy individuals
found in the study area (Sapes et al. 2017). To ensure that the green cover loss
resulted from the drought of the previous year, we avoided individuals with signs of
older decay (e.g., stumps, decomposed stems, branches with no thin tips). To deter-
mine the reliability of the visual RGC estimate, we also measured the length (cm)
of the segments occupied by green leaves and dry leaves (including segments with no
leaves) along a linear path from the tip to the base of two representative branches
of ten individuals per species, on every plot where a species was present. Then, a
directly measured RGC value was calculated per individual as [branch length with
green leaves (cm)/total branch length (cm)]*100. When ten individuals per species
were not found within a given plot, we measured the closest individuals to the sampled
transects until ten replicates were attained. Pearson’s correlation between direct and
visually estimated values of RGC was calculated for plants from each species, always
resulting in values higher than 0.7 (Appendix A Table A.1). These analyses support
the use of visual estimate of RGC as a proxy for die-off (Sapes et al. 2017). Consid-
ering this high correlation and the limited number of individuals with real measures
of defoliation (10 per species and plot), we used the visually estimated RGC (made
for every individual) for the statistical analyses.

The variables described above were then scaled to the landscape level. First,
we calculated the following information for each plot: average percentage of visually
estimated RGC for each species; species frequency (the number of plots where each
species was found over the total number of plots) and the average size of each species
(as the product of the two diameters measured in the plants), since RGC could be
affected by species size or relative abundance (Lloret et al. 2016, Sapes et al. 2017).
The values of species’ RGC and size were then averaged across plots. Finally, to
account for the different species’ strategies in relation to leaf longevity and annual
seasonality (Valladares et al. 2004), all the species were classified into one of the
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following foliar strategies: 1-evergreen, 2- semi-deciduous, 3-summer deciduous, and
4-retamoid or leafless species.

Climatic suitability modelling

For the 22 sampled species, we built SDMs using four different algorithms - Maha-
lanobis distance, GAM, BRT, and MaxEnt - to assess the robustness of the potential
relationships between visual estimates of RGC and the climatic suitability output
of these models. These models represent four highly differentiated modelling meth-
ods: distance-based models (Mahalanobis distance), regression-based models (GAM),
decision tree-based methods (BRT) and a machine-learning technique based on the
principle of maximum entropy (MaxEnt). Therefore, they represent a gradient of
complexity, where some models such as Mahalanobis distance only consider linear
relationships between predictors (Franklin 2010) whereas others such as MaxEnt and
BRT can include high-order interaction terms (Elith et al. 2008, Phillips and Dudík
2008).

The geographical occurrence data for each species were obtained from GBIF
(Global Biodiversity Information Facility: <www.gbif.org>). Occurrence data were
filtered in order to remove taxonomic and geographic inconsistencies and reduce dense
local sampling by randomly thinning species’ records to one observation per 1x1 km
grid cell. We considered the whole distributional range of species; thus, the available
number of occurrences was considerably different from one species to the next, ranging
from 200 to 6,000 after filtering. For each set of filtered occurrences, 70% of presences
were reserved for fitting the model (training data) and the other 30% for the validation
set (testing data), according to the number of environmental predictors selected in our
models and following the rule described by Huberty 1994 for determining the optimum
partitioning of training and test data. To improve the models’ performance accuracy
(Barbet-Massin et al. 2012), 100,000 random background points were simulated for
each species to fit both GAM and MaxEnt algorithms, and a random set of pseudo-
absences equivalent to the number of each species occurrences was simulated for BRT.
Since Mahalanobis distance works without simulated absences, no background points
were used in this case. The background extension was delineated in order to represent
the current or past available geographical space for the selected species (M dimension
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sensu Soberón 2007). In our case, the geographical region used to establish species
background was the Mediterranean basin.

Six climatic variables representative of Mediterranean climate were used as
predictors to calibrate the suitability models: isothermality (mean diurnal temper-
ature range/temperature annual range), temperature seasonality, mean temperature
of wettest quarter, mean temperature of driest quarter, annual precipitation and pre-
cipitation seasonality, all of them with 1 by 1 Km resolution. These variables were
selected from the 19 bioclimatic variables available in Worldclim.org (version 1.4) for
the period 1950-2000 (Hijmans et al. 2005), according to the knowledge of the species’
ecological requirements and in order to reduce variables’ collinearity. Pearson corre-
lation and variation inflation factor (VIF) among variables were always less than 0.75
and 5, respectively. Additionally, we used monthly precipitation and maximum, min-
imum and mean temperature records over the 2013-2014 period from between 68 and
114 weather stations of the Spanish Meteorological Agency (AEMET) to elaborate
the climatic layers during the drought event (also in 1 by 1 km resolution), following
Ninyerola et al. (2000), and using the ‘biovars’ function (dismo package; Hijmans
et. al 2016). To minimize differences in the climatic interpolation methods between
Worldclim and Ninyerola et al. (2000), only latitude, longitude and elevation were
used as explanatory variables for climatic data. In addition, we applied MESS analysis
between these two data set over the Spanish territory (where AEMET data are avail-
able) during the 1950-2000 period to assess dataset dissimilarities, showing the high
concordance and comparability of both climatic interpolation methods over the entire
extension and particularly over the study region (Appendix A Figure A.1). Finally,
species’ historic climatic suitability (HCS) was estimated projecting the models over
the climatic layers for the period 1950-2000, whereas species’ climatic suitability dur-
ing the drought event (episode climatic suitability, ECS) was estimated by projecting
the calibrated models over the climate layers of the anomaly period 2013-2014.
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Table 2.1: Main settings used in the different SDM modeling ap-
proaches.

Method Key reference and main settings

Mahal Mahalanobis distance adehabitatHS package (Calenge, 2015). Modification of the original
function mahasuhab in order to obtain distance and probability
values from other layers not used to calculate variables mean vector.
This function makes it possible to determine probability values,
assuming that under multivariate normality, squared Mahalanobis
distance is approximately distributed as Chi-square with n-1 degrees
of freedom, which makes it possible to calculate p-value maps (Clark
et al., 1993).

GAM Generalized Additive Models mgcv package v.1.8-16 (Wood, 2011). Weighted background
number: 100,000 points. The optimal number of edf for each
variable was selected between 1 and 4 by cross-validation, using gam
function. The number of knots for those species where response
curves being biologically counterintuitive was also reduced.

BRT Boosted Regression Tree gbm package v. 2.1.1 (Ridgeway, 2007). Pseudoabsence number
equivalent to presence species data. Tree complexity of 5 for those
species with more than 250 occurrences and 3 for those species with
less than 250. The learning rate of 0.005 was chosen because it
made it possible to achieve at least 1,000 trees in every case,
following Elith and others (2008).

MaxEnt Maximum entropy MaxEnt v. 3.3.1 (Phillips and Dudik, 2008b) used with default
setting with the exception of: 100,000 background points, 10-fold
cross-validation, regularization multiplier of 3, and threshold feature
unselect in order to produce smoother response curves.

For the four implemented SDM algorithms, model settings were selected follow-
ing recommendations from the literature, and partial dependence plots and predictive
maps were assessed to exclude those settings that produced unreliable response curves
or distribution maps. The final selected settings and main literature are showed in
Table 2.1. To make all the model outputs comparable (between 0 and 1 probability
values), log raw output transformation was applied for MaxEnt models (Phillips and
Dudík 2008) and distance transformation into p-values was applied for Mahalanobis
distances (Clark et al. 1993). Each model’s predictive performance was assessed
by comparing model predictions with testing data, using the Area Under Receiver
Operating-characteristic Curve (AUC, Fielding and Bell 1997) and the Boyce index
(Boyce et al. 2002, Hirzel et al. 2006). These evaluation methods are considered a
reliable approach for our models and allowing comparison among them, since all the
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models were fitted with the same species data set and environmental extension of lay-
ers (Hirzel et al. 2006, Franklin 2010). Finally, multivariate environmental similarity
surface (MESS, Elith et al. 2010) analyses were carried out to measure the simi-
larity between historical climate and the extreme drought period in the occurrence
locations; these analyses allowed to identify extrapolation for predictions during the
anomalous period as areas with high climatic dissimilarities.

Table 2.2: Main species information and attributes used in statistical
analyses. See methods for details about foliar strategy, RGC (Remain-
ing Green Canopy), Size and Frequency.

Family Species Code Life form Foliar strategy RGC (%) Size(cm2) Frequency

Anacardiaceae Pistacia lentiscus PLE Microphanerophyte Evergreen 25.33 0.083 0.5
Asparagaceae Asparagus horridus AHO Chamaephyte Leafless 15.00 0.029 0.1
Asteraceae Artemisia barrelieri ABA Chamaephyte Semideciduous 44.29 0.004 0.9

Artemisia campestris ACA Chamaephyte Semideciduous 13.33 0.012 0.1
Boraginaceae Lithodora fruticosa LFR Nanophanerophyte Semideciduous 47.27 0.029 0.1
Chenopodiaceae Salsola genistoides SGE Nanophanerophyte Leafless 6.67 0.080 0.2
Cistaceae Cistus albidus CAL Nanophanerophyte Semideciduous 77.50 0.045 0.2

Cistus clusii CCL Nanophanerophyte Semideciduous 44.77 0.046 0.9
Helianthemum syriacum HSY Chamaephyte Semideciduous 61.39 0.002 0.3

Cupressaceae Juniperus oxycedrus JOX Microphanerophyte Evergreen 56.69 0.550 0.6
Juniperus phoenicea JPH Microphanerophyte Evergreen 60.00 0.074 0.1

Fagaceae Quercus coccifera QCO Microphanerophyte Evergreen 33.10 0.009 0.7
Lamiaceae Rosmarinus officinalis ROF Nanophanerophyte Semideciduous 53.00 0.235 1.0

Sideritis leucantha SLE Nanophanerophyte Semideciduous 44.77 3.029 0.2
Teucrium capitatum TCA Chamaephyte Semideciduous 68.00 2.019 0.6
Thymus hyemalis THY Chamaephyte Semideciduous 45.28 0.389 1.0

Leguminosae Anthyllis cytisoides ACY Nanophanerophyte Semideciduous 21.46 0.378 0.6
Dorycnium pentaphyllum DPE Nanophanerophyte Semideciduous 21.54 0.577 0.5
Ononis fruticosa OFR Nanophanerophyte Semideciduous 10.11 0.474 0.4

Poaceae Stipa tenacissima STE Hemicryptophyte Evergreen 61.89 0.009 1.0
Rhamnaceae Rhamnus lycioides RLY Microphanerophyte Semideciduous 8.75 0.056 0.3
Timeleaceae Daphne gnidium DGN Nanophanerophyte Semideciduous 15.00 0.004 0.2

Statistical analyses

Generalized Linear Models (GLM) with normal distributions were performed to as-
sess the relationship between SDM-inferred HCS and ECS for each species and their
die-off recorded in the field. The visually estimated species RGC was used as a re-
sponse variable whereas HCS, ECS, the interaction between HCS and ECS, species
size (logarithmically transformed), species frequency, and species foliar category were
introduced as explanatory variables. Difference between HCS and ECS was discarded
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as an explanatory variable in the models, due to the high correlation with ECS which
produced same models results.

The final models were selected according to stepwise selection based on AIC
(Akaike Information Criterion) (Table 2.3). In addition, Phylogenetic Generalized
Linear Models (PGLS) using Phylomatic distances (Webb and Donoghue 2005) were
performed in order to assess the potential effect of phylogenetic species relationships
in the selected model (Freckleton et al. 2002). This PGLS was finally discarded
from the final analyses since phylogeny was not significant in any case (lambda =0).
Finally, consistency in the climatic suitability estimates (HCS, ECS) obtained from
each of the four implemented SDMs was tested by pairwise comparisons, using Pear-
son correlation tests. All statistical analyses were carried out with R version 3.3.2 (R
Core Team 2016).

2.4 Results

All the four SDMs algorithms developed showed high performance accuracy values
with AUC values higher than 0.75 and Boyce index’ values being always positive
and higher than 0.5 (Elith et al. 2002, Hirzel et al. 2006, Appendix A Figure A.2).
Particularly AUC mean values were 0.96±0.02 and Boyce index mean values were
0.93±0.07 MESS analyses showed that precipitation seasonality exhibited high dis-
similarity between extreme event climatic data and training predictor data near the
coastal region. However, the values corresponding to the drought episode were never
outside training boundary values for the study locations (Appendix A Figure A.3).
Climatic suitability dropped dramatically during the drought episode for all species,
irrespective of the SDM method, as shown by the comparison between the respective
HCS and ECS values (Figure 2.2, Appendix A Table A.2).

For the majority of SDM algorithms the stepwise GLM model selection de-
termined that the most parsimonious models explaining species’ RGC were those
including HCS, foliar category and species size as explanatory variables. Only in the
case of Mahalanobis distance did the stepwise GLM model selection fail to remove
any explanatory variables from the saturated model. There was some variation in the
significant variables associated with RGC in the different SDM algorithms. All the
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Figure 2.2: Averaged proportion of Remaining Green Canopy (RGC) in
shrub species with foliar strategies 1 and 2 (top graph) for the ten stud-
ied plots. Species’ RGC values are sorted in increasing order (x-axis) and
error bars are shown. Red and blue dots represent foliar strategies. The
lower graph shows the Historical Climatic Suitability (HCS) and the drought
Episode Climatic Suitability (ECS) values for each species. Blue and red dots
represent median suitability values of HCS and ECS, respectively, and the
error bars correspond to the range between maximum and minimum suit-
ability values predicted by the four applied SDM algorithms (see text for
details).

selected variables were significant in BRT, while in MaxEnt HCS and foliar category
were significant, in GAM foliar category was significant and HCS was only marginally
significant, and in Mahalanobis only HCS and foliar category were marginally signif-
icant (Table 2.4).

In all cases RGC was positively related to HCS (Figure 2.2 and 2.3). Foliar
categories 3 (summer deciduous species) and 4 (leafless species) presented a signifi-
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cant, negative correlation with RGC in BRT, GAM and MaxEnt models, while in the
Mahalanobis distance model, foliar category 3 was only marginally significant. Fi-
nally, species size was only significantly negatively related with RGC in BRT models
(Table 2.4). Species frequency, ECS or the interaction between HCS and ECS were
not significant in any model (Table 2.4).

Figure 2.3: Partial residual plot of RGC (Remaining Green Canopy) in
relation to HCS (Historical Climatic Suitability) obtained for each SDM
model. β (standardized estimate value) and P values for HCS in these models
are shown in the left corner of each plot. Species codes are shown in Table
2.2.

The values of species’ HCS varied from model to model. BRT predicted the
highest suitability values for a given species and MaxEnt the lowest ones. This pat-
tern was consistent for almost all species (Appendix A Figure A.4). For all species,
the majority of pairwise Pearson correlations between the HCS values inferred from
the different SDM algorithms were significant, with correlation values ranging be-
tween 0.45 and 0.78 (Appendix A Figure A.5). However, the correlation between
Mahalanobis distance and BRT was not significant (Appendix A Figure A.5). In con-
trast, most pairwise correlations between models were not significant for ECS, likely
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due to the extremely low ECS values exhibited by most species; in this case, when a
significant correlation was found, the relationship was driven by a single outlier value
(Appendix A Figure A.6).

Table 2.3: AIC and Adjusted R2of GLMs explaining remaining green
canopy as a function of foliar strategy, size, frequency, HCS (Historical
Climatic Suitability), ECS (Episode Climatic Suitability) and the inter-
action between the latter two (HCS:ECS) calculated from four different
SDMs (Mahalabonis distance, GAM, BRT, MaxEnt). AIC stepwise se-
lection was applied to obtain the final models.

Mahalanobis distance GAM BRT MaxEnt

AIC 197.97 196.1 187.33 194.15
R2 adj 0.32 0.33 0.55 0.39
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Table 2.4: Results of GLMs explaining remaining green canopy as a
function of foliar strategy, size, frequency, HCS (Historical Climatic
Suitability), ECS (Episode Climatic Suitability) and the interaction
between the latter two (HCS:ECS) calculated from four different SDMs
(Mahalabonis distance, GAM, BRT, MaxEnt). AIC stepwise selection
was applied to obtain the final models.

Mahalanobis distance GAM BRT MaxEnt

β Std.Error P.value β Std.Error P.value β Std.Error P.value β Std.Error P.value

Intercept (Foliar.STR 1) 0 0 0.939 0 0 0.61 0 0 0.324 0 0 0.051
HCS 0.382 0.213 0.096 0.362 0.196 0.083 0.561 0.157 0.003 0.446 0.199 0.039
Foliar.STR 2 0.062 0.299 0.838 -0.317 0.241 0.207 -0.317 0.198 0.13 -0.364 0.234 0.139
Foliar.STR 3 -0.435 0.23 0.081 -0.563 0.21 0.016 -0.618 0.172 0.002 -0.706 0.223 0.006
Foliar.STR 4 -0.254 0.254 0.336 -0.688 0.218 0.006 -0.69 0.173 0.001 -0.628 0.199 0.006
Log(size) -0.244 0.212 0.271 -0.318 0.201 0.133 -0.373 0.167 0.039 -0.33 0.1934 0.107
FREQUENCY 0.369 0.225 0.125
ECS 27.618 18.64 0.162
HCS:ECS -27.36 18.59 0.165
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2.5 Discussion

We found a clear relationship between field measurements of species performance
under an extreme drought episode and the historical climatic suitability (HCS) of
species derived from SDMs. Within the studied community, co-occurring species liv-
ing closer to their climatic tolerance limit -identified by low HCS values compared to
the optimal value of the distribution range- proved more vulnerable to the extreme
drought episode. This climatic limit corresponds to the aridity margin of species’
climatic niche (Appendix A figures A.7 to A.11). These results are consistent with
the relationship observed between the decay of shrubland and woodland species and
the decrease in climatic suitability in other semi-arid areas in Spain (Sapes et al.
2017) and Southwestern North America (Lloret and Kitzberger 2018). This rela-
tionship is also consistent with other studies which suggest that species’ sensitivity
to climate change is related to niche characteristics such as mean niche position and
niche breadth (Thuiller et al. 2005, Broennimann et al. 2006). Species in the climatic
niche margins are generally assumed to exhibit lower survivorship and recruitment
and higher extinction risk because of the less favorable environmental conditions (We-
ber et al. 2016). Precisely in these situations of the environmental space closest to
the physiological tolerance limits of the species, the effect of climate variability is
probably more severe (Zimmermann et al. 2009), promoting species’ decline or range
shifts at the trailing edge of species distribution (Bigler et al. 2006, Walther et al.
2009).

Species’ drought responses and climatic suitability

Studies that compare habitat suitability with different species’ performances (pop-
ulation density, growth, recruitment, fecundity, etc.) along the species distribution
gradient are scarce and still not fully conclusive with respect to general biogeographic
paradigms (Centre-Periphery hypothesis, Wright et al. 2006, Sexton et al. 2009,
Thuiller et al. 2010, Abeli et al. 2014, Csergő et al. 2017). Likely species interac-
tion, local variables or adaptation mechanisms underlie the limited evidence of the
relationship between species’ performance and climate suitability (Sexton et al. 2009,
2014, Dallas et al. 2017, Lloret and Kitzberger 2018). Our results throw some light
in this sense as they support the relationship between species’ performance when cli-
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matic conditions are extreme and climatically-based descriptions of their suitability
(i.e. HCS).

We also expected that populations experiencing higher displacement of climatic
suitability during the extreme event (low ECS) would experience greater leaf loses and
higher mortality rates. However, contrary to our expectations, we found that species’
suitability during the extreme episode (ECS) did not significantly explain species
leaf loses in the studied community. Our extremely low ECS levels observed for all
species probably made it impossible to obtain contrasted values of ECS among them.
These low values indicate that the climatic episode was extreme enough to displace
all the studied populations far from their climatic optimum, even for those species
that were closer to this optimum during the historical period (Figure 2.2). In addition
to the exceptionality of the extreme event, the extremely low ECS values may derive
from 1) the averaged climatic data used for calibrating the models, which does not
reflect the variability or annual extremes during the considered 50-year period and 2)
the limited ability of models to predict suitability under climatic scenarios that are
highly different from the period used to fit the models (Elith et al. 2010), as shown
by the low MESS values, particularly for precipitation seasonality –bio 15 - (although
these were not negative in the study site) (Appendix A Figure A.3). This situation
may also amplify the differences between different algorithms and species’ prevalence
data in the predictions (Thuiller 2004, Pearson et al. 2006), as supported by the low
correlations between the ECS predicted by the different models (Appendix A Figure
A.6).

In addition to HCS, foliar categories were also significant in explaining the ob-
served species’ RGC, suggesting that leaf strategy and seasonal senescence play a
major role in understanding species performance under strong drought conditions, at
least in Mediterranean type ecosystems. Our results show that summer-deciduous
and leafless species always present significantly lower values of RGC. This result is in
part expected due to the general strategy in Mediterranean species of dropping leaves
during the dry, hot season to limit evapotranspiration and water loss (de la Riva et
al. 2016a). In the Mediterranean basin this semideciduous mechanism typically ap-
pears in combination with shallow roots and low water potentials as an anisohydric
syndrome, in contrast to species with hydrostable syndromes, which present sclero-
phyllous leaves, more sensitive stomatal control and deeper roots (Zunzunegui et al.
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2005, de la Riva et al. 2016b). Thus, estimates of RGC as a proxy of drought re-
sistance can be misleading if these foliar strategies are not considered (Lloret et al.
2016). In addition to foliar strategies, other physiological features and local factors
may modulate the interspecific variability of responses to a given drought episode.
For instance, species-specific resistance to hydraulic failure and carbon economy (Mc-
Dowell et al. 2008, Anderegg et al. 2012, Adams et al. 2017) and mutualistic and
antagonistic biotic interactions (Lloret et al. 2012, Valladares et al. 2014).

SDM algorithms and demographic performance

Despite all these potential sources of variability, the four different SDM algorithms
used in our approach highlighted the positive relationship between climatic suitability
(HCS) and resistance to drought (RGC). These results were consistent across species,
as shown by the high correlation between the different models’ HCS values (Appendix
A Figure A.5). The agreement holds despite the wide variety of the modeling ap-
proaches. However, the ‘simplest’ models (Mahalanobis distance and GAM) showed
the lowest performance explaining species’ RGC compared to ‘complex’ ones (BRT
and MaxEnt). This difference in algorithm performance highlight the importance of
the interactions between climatic variables and non-linear relationships when assess-
ing species’ responses to climate, and thus, supporting the use of SDMs versus simpler
approaches based on univariate or multivariate correlations of demographic perfor-
mance with climatic variables. Moreover, algorithms that are generally calibrated to
produce smoother response curves, such as GLMs and GAMs, would be more accu-
rate to predict habitat suitability under new conditions (Elith et al. 2010, Merow et
al. 2014), while models based on presence-only data are more appropriate for pre-
dicting the lowest suitability values in these scenarios (Pearson et al. 2006). There
is no general agreement, however, about the most accurate algorithm in relation to
situations of range shift because even simpler models can lead to erroneous outputs
(Elith et al. 2010, Merow et al. 2014). We therefore urge ecologists to assess the
degree of model complexity needed to use SDMs as a proxy of ecological mechanisms,
such as defoliation in this case.

Caution should also be taken when interpreting SDM predictions, given the as-
sumptions that these kind of models implicitly include (Pearson and Dawson 2003).
Among other limitations, these models commonly use only climatic predictors with
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a broad resolution (~1 km2 ), disregarding other meaningful abiotic factors, and
they are also unable to capture microclimatic effects at small spatial scales (Lenoir
et al. 2013, Franklin et al. 2013, D’Amen et al. 2017). Microsite factors could be
particularly important for our study, given that soil features and depth, slope and ori-
entation are especially relevant to species survival under extreme drought (Colwell et
al. 2008, Hamerlynck and McAuliffe 2008). Furthermore, SDMs assume that species
respond homogeneously to climate change across their range, not including intra-
specific genetic variability and phenotypic plasticity, which may also favor species’
local adaptation under unfavorable conditions (Benito Garzón et al. 2011, Lloret and
García 2016).

The drought episode experienced in the Region of Murcia in 2013-2014 was
extraordinary in historical terms, but these climatic situations are expected to be-
come more frequent in the future (Sheffield and Wood 2008). The ability of plant
communities to withstand these events and subsequently recover their green canopy
will depend on both physiological traits related to the adaptive syndromes of Mediter-
ranean species (Peñuelas et al. 2001) and the balance between demographic processes
such as mortality, growth, and recruitment (Lloret et al. 2012). Under drier climatic
scenarios, leafless and semi-deciduous species with shallow roots (xerophytic mala-
cophyllous) would be expected to be to take more advantage of scarce and irregular
rainfalls than sclerophyllous species with deeper roots. This is consistent with the
particularly high HCS values obtained for malacophyllous species (Figure 2.2 and
2.3). These potential changes in species dominance within the community will likely
lead to less productive shrublands dominated by smaller species (Valladares et al.
2004). Since species’ climatic suitability is broadly related to both physiological and
demographic species performance (Martinez-Meyer et al. 2013), indexes describing
climatic suitability can provide rough estimates of species’ vulnerability to extreme cli-
matic episodes. While community resistance and resilience could minimize ecological
changes, the recurrence of these extreme drought events could lead these Mediter-
ranean communities to cross thresholds beyond which they could collapse (Vicente-
Serrano et al. 2013, Valladares et al. 2014). This depletion of resilience in semi-arid
shrubland communities could promote transitions to desert-like ecosystems, as has
been predicted by some climate change scenarios for southern areas of Europe (Guiot
and Cramer 2016). Accordingly, this study shows the impact of extreme drought
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events even on communities supposedly well adapted to drought conditions (Lázaro
et al. 2001, Sapes et al. 2017).

Conclusion

This study confirms the role of population position within its species climatic niche
in explaining populations’ vulnerability to extreme climatic events. In the studied
semi-arid shrubland, species closer to their climatic tolerance limit were more vul-
nerable to extreme drought. Thus, the predicted recurrence of severe drought events
could reduce the community resilience, increasing the risk of desertification in these
arid lands. Our study empirically concurs with the trends foreseen by theoretical
models, based on predicted suitability and correlations with drought response. This
concurrence supports the use of SDMs to assess the impact of climate change on plant
communities, particularly in extreme climatic conditions. This approach, which links
species performance with regional biogeographic patterns, can probably be applied
to other processes heavily determined by strong climatic fluctuations.





41

3
Temporal variability is

key to model the
climatic niche

Perez-Navarro M.A., Guisan A., Broennimann O., Esteve M.A., Moya-Perez J.M.,
Carreño M.F., Lloret F.



42 3. Temporal variability is key to model the climatic niche

3.1 Abstract

Niche-based species distribution modelling (SDM) has become one of the most per-
vasive tools in ecology and biogeography. SDM relate species occurrences with the
environmental conditions found at these sites. Climatic variables are usually included
in SDMs as averages of a reference period (30-50 years). To date, the impact of not
including climatic variability when estimating species niche and predicting species
distributions has been scarcely considered. Here we first develop a method to in-
clude inter-annual climatic variability in niche characterization. We then compare
climatic suitability obtained from averaged-based and from inter-annual variability-
based niches by analyzing their respective capacities to explain demographic responses
to extreme climatic events. Furthermore, we assessed the relative differences in niche
space when including climatic variability in species with different distribution ranges.
We found that climatic suitability obtained from both niches quantifications signif-
icantly explained species demographic responses. However, climatic suitability from
inter-annual variability-based niches showed higher explanatory capacity, especially
for populations located in the non-overlapping area between the two types of niches
that tend to be geographically marginal populations. In addition, species with re-
stricted distribution ranges increased relatively more their niche space, when con-
sidering climatic variability, probably because in widely distributed species, spatial
variability compensates for temporal variability. According to our results, the com-
mon use of climatic averages when characterizing species niches could lead to over-
estimations of species extinction risk, underestimations of species distribution areas
and risk of species invasions, or errors in conservation plans derived from SDM. From
our study, we highlight that including climatic variability in SDM is particularly im-
portant when dealing with species with restricted distribution and populations at the
margin of their niche.
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3.2 Introduction

In recent years Species Distribution Modelling has become a very active field in bio-
geography, ecology and conservation sciences (Guisan et al. 2013, Araújo et al. 2019).
This technique has been widely used for many purposes, such as niche quantification
(Austin et al. 1990, Breiner et al. 2017), test of ecological and evolutionary hypothe-
ses (Leathwick 1998, Anderson et al. 2002, Graham et al. 2004, Mellert et al. 2011),
prediction of the effects of global change on biodiversity (Thomas et al. 2004, Thuiller
et al. 2005), support of conservation plans (Hannah et al. 2007, Tulloch et al. 2016),
or estimation of invasive species risk (Peterson and Vieglais 2001, Petitpierre et al.
2012).

Species Distribution Models (SDMs) are generally correlative models that sta-
tistically relate species’ presences with the environmental conditions of sites where
species occur (Franklin 2010, Peterson 2011, Guisan et al. 2017). These models are
deeply founded on the Hutchinson’s ecological niche concept (Guisan and Zimmer-
mann 2000), what implies that species’ observed ranges are the geographical trans-
lation of species’ environmental requirements in the n-dimensional space - defined
by these requirements-, discarding the areas where competitors impede the species
presence (Soberón and Nakamura 2009). Several limitations of this method have
been recognized, linked to both the underpinning theory and the commonly used
methodologies. Some of the most criticized limitations include: the equilibrium as-
sumption (Guisan and Thuiller 2005), which neglect any lag between climate changes
and species distributions (Svenning and Skov 2004, Blonder et al. 2015); the lack of
inclusion of biotic interactions or migration rates (Guisan and Thuiller 2005, Barve
et al. 2011) due to the difficulty to report this information in a broad geographic
scale; the niche conservatism assumption (Pearman et al. 2008), since these models
implicitly consider that the niche remains constant over time when projected in time
and space (Guisan et al. 2017); or the frequent use of exclusively climatic predictors
(Franklin 2010, Thuiller 2013), partly encouraged by their widespread availability in
contrast to the lack of fine grain resolution of other important environmental vari-
ables (e.g., soils in plant distributions). Furthermore, climatic variables are usually
included as monthly or annual average of reference periods of 30 to 50 years (Hijmans
et al. 2005, Karger et al. 2017, Fick and Hijmans 2017), in most cases, irrespective of
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whether modeled species’ lifespan is significantly longer or shorter than these periods.

From a theoretical view, characterizing the environmental requirements which
constitute the Hutchinsonian niche (Soberón 2007), using exclusively historical aver-
ages could be constraining to a greater or lesser extent the real volume of species’ niche
in the n-dimensional space. By not accounting for climate variability, it is assumed
that, for example, two species living under the same mean average temperature for
a given period have the same thermal niche, even if one of them live under a yearly
constant climate while the other suffer wide fluctuations in temperatures between
years. Accordingly, it could be expected that the impact of including inter-annual
variability in niche modelling could not be very important for species inhabiting ar-
eas with little temporal climatic variability. However, differences between the niche
characterized with climatic averages and the niche characterized with inter-annual
variability is likely substantial for those species living in habitats submitted to wide
inter-annual climatic variability. In a similar way, it could be expected that species
with small distribution ranges will have greater increases in the estimation of their
niche size when we include inter-annual variability in relation to those species with
larger geographic distribution areas, where spatial variability could compensate for
temporal variability.

The potential distortion in niche size caused by the non-inclusion of the inter-
annual climate variability would have implications on different facets of ecology and
biogeography. For example, we could have been underestimating the present and
future potential species distribution areas. Furthermore, if niche suitability and pop-
ulation dynamics are theoretically related (Pulliam 2000), niche breadth underestima-
tion could contribute, among other ecological implications, to decouple macroclimatic
suitability and demographic processes (Thuiller et al. 2014, Csergő et al. 2017). For
instance, niche suitability estimated from average climate could predict population
absence or decline in some environmental areas where the population intrinsic growth
rate is still positive. Particularly, considering climatic variability could be especially
relevant when predicting biodiversity changes under current climate change scenario
in which both recurrence of climatic extremes and temperature climate means are in-
creasing (Coumou and Rahmstorf 2012, IPCC Working Group 1 2014). Depending on
the magnitude of extreme climatic events, these could promote populations changes
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in their position in the environmental space, that may even push them outside of the
species niche, a situation that would correspond to reduced populations capacity to
survive if these conditions persists. But if niches are wider than traditionally con-
sidered, for a given change in climatic conditions the probability of populations to
be pushed out of the niche size would be reduced. Accordingly, neglecting temporal
climatic variability in SDMs could have led to the overestimation of population and
species extinction risk under climate change.

Despite these substantial implications, inter-annual variability has been scarcely
considered in SDMs (Zimmermann et al. 2009). Studies that have accounted for it,
have included the inter-year variability as a new dimension of the environmental
hyperspace (Zimmermann et al. 2009) or have considered the standard deviation of
the climatic suitability over different years when explaining demographic responses
(Lloret and Kitzberger 2018). However, in any case there is a clear assessment of the
direct impact of including inter-annual climatic variability on niche breadth.

Here, we (1) developed a procedure to include yearly climatic resolution in
species niche characterization, and (2) assessed whether this inclusion of inter-annual
variability improves the expected correspondence between niche suitability and
population-level processes, which in our case correspond to populations responses
to an extreme climatic event. Particularly, we used decay data across more than
4,000 km2 of Pinus halepensis L. forests affected by an extreme drought year in
the Spanish southeast (Esteve-Selma et al. 2015). In addition, (3) we quantified
the relative change in niche size when considering inter-annual climatic variability
respect to only considering average climate, for species with different extent of their
distribution areas across the Mediterranean basin, which corresponds to contrasting
climatic ranges.

3.3 Material and methods

Here we infer species niches by projecting geographic occurrences into two-dimensions
environmental space and then estimating kernel densities (Broennimann et al. 2012,
Blonder et al. 2014). Considering all the yearly climatic records of every species’
occurrences for a given period, we obtain the “inter-annual variability-based” niche
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while by considering only the average climate of every species’ occurrences we obtain
the species “average-based” niche.

Niche suitability and demographic responses in Pinus halepenis

Demographic response data

The study was carried out across forests of Pinus halepensis in the Region of Murcia
(Spanish southeast) (Figure 3.1), an area which represents the arid limit of the species
distribution. The average climate of this region is characterized by annual mean
temperature of 18° C, and annual rainfall ranging from 240 to 400 mm (Worldclim
v 2.0, Fick and Hijmans 2017). During the hydrological year 2013-2014 the Iberian
southeast suffered the most intense drought on records, recording on average less than
50 % of the average precipitation for the period 1970-2000 (AEMET 2014)(Appendix
B Figure B.1) and causing an extensive die-off and plant mortality in forest and
woodlands ecosystems (Esteve-Selma et al. 2015).

Pinus halepensis decay data were collected for the whole Region of Murcia after
the extreme drought episode by the Health Forest Unit of the Agriculture and Water
Council of Murcia. Data were recorded and translated to raster format of 1 km2

considering two categories: highly affected forests and unaffected forests, covering a
total of 4378 km2. Around 20% of the forest surface of the region was highly affected.
In addition, from this total surface, 264 plots were selected to measure the percentage
of affectation from satellite imagery in order to have also a continuous data set which
offer more information than the binary one. These decay percentage values were then
contrasted in the field for 14 plots, obtaining a correlation of 0.79. Therefore, we
used two databases, one with binary data and other with continuous values in order
to better contrast our hypotheses (Figure 3.1).

Species niche characterization based on climate average vs inter-annual variability

Pinus halepensis occurrences dataset used to characterize species niche were collected
from the third Spanish National Forest Inventory (IFN3 2007). Summarizing a total
of 9959 occurrences along the whole country after removing Pinus plantations. This
occurrence dataset already covers most of the Pinus halepensis climatic range (Mauri
et al. 2016).
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Figure 3.1: A) Location of the study site in the SE of the Iberian Penin-
sula. B) Location of Pinus halepensis decay plots with binary records
(1-highly affected – 0-unaffected). Blue colors show not affected plot during
the extreme year while yellow ones show highly affected plots. C) Location
of Pinus halepensis decay plots with continuous records, blue colors show
lowest percentages of affectation while yellow one show higher percentages
of affectation.

As climatic dataset we used 12 bioclimatic variables for every year of the period
1979-2007 (Chelsa database, Karger et al 2017): bio 1 (annual mean temperature),
bio 4 (temperature seasonality), bio 5 (maximum temperature of warmest month),
bio 6 (minimum temperature of coldest month), bio 10 (mean temperature of warmest
quarter), bio 11 (mean temperature of coldest quarter), bio 12 (annual precipitation),
bio 13 (precipitation of wettest month), bio 14 (precipitation of driest month), bio
15 (precipitation seasonality -coefficient of variation), bio 16 (precipitation of wettest
quarter) and bio 17 (precipitation of driest quarter); all of them with 1 km2 resolution.
The period of time was selected in order to use the most accurate climatic layers,
i.e. after 1979 (Karger et al. 2017), and to be in concordance with the occurrence
database, i.e. until 2007, when IFN3 was carried on.

From these 12 bioclimatic variables, we obtained an inter-annual climatic
dataset by extracting the climatic values of Pinus occurrences locations for every year
of the period 1979-2007 (that is, 9959 occurrences x 28 years) and an average climatic
dataset by estimating the mean climate of the 28-year period for every occurrence
location. From the inter-annual climatic dataset we built the environmental space by
using a PCA to reduce the climatic space of the 12 variables into a two dimensional
space (Broennimann et al. 2012).

This two-dimension environmental space was used to represent both the Pinus
averaged-based niche and the Pinus inter-annual variability-based niche by trans-
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lating the climatic values of Pinus occurrences into this environmental space. We
then used kernel density function to determine the Pinus density for each cell of the
two-dimensional environmental space, by applying Gaussian kernel, selecting optimal
bandwidth by cross-validation (Duong and Hazelton 2005) and removing values under
the 0.05 percentile. Finally, niche suitability was estimated by dividing each niche
density value by the maximum density value of the niche, obtaining values ranging
between 0 and 1.

We then obtained the climatic suitability of Pinus populations affected by
drought, after translating the climatic conditions of each population during the ex-
treme year into the two-dimensional environmental space. Climatic conditions of the
extreme year 2013–2014 were obtained from monthly precipitation and maximum,
minimum, and mean temperature records from between 68 and 114 weather stations
of the Spanish Meteorological Agency (AEMET). This climatic dataset was translated
into 1 km2 resolution-maps following Ninyerola et al. (2000) with latitude, longitude
and elevation as explanatory variables for climate. Then we applied the “biovars”
function (dismo package; Hijmans et al. 2016) to convert them into the final biocli-
matic variables format. Finally, we selected the same 12 bioclimatic variables as used
for niche characterization.

Suitability-decay analyses

We applied GLM models with populations decay (binary or continuous) as response
variable, and populations niche suitability during the extreme year (estimated from
inter-annual variability or average based niches) as explanatory variable. We pro-
duced four alternative GLM models: binary decay vs. niche suitability from averaged
based-model, binary decay vs. niche suitability from inter-annual variability-based
model, continuous decay vs. niche suitability from averaged-based model, continuous
decay vs. niche suitability from inter-annual variability-based model. Every model
used binomial error distribution. These models allow us to compare the accuracy of
the relationship between populations decay and niche suitability depending on niche
characterization approach (inter-annual or average based).

In order to know whether this possible difference in accuracy varied in rela-
tion to populations location within the species niche size, we simulated 30,000 decay
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datasets by sub setting the continuous dataset. Particularly, niche suitability differ-
ences are expected to be maximum in the not shared space by both niches, based
respectively on average and inter-annual variability (Appendix B Figure B.3), since
average-based niche predict 0 suitability while inter-annual variability-based niche
predict positive suitability values. So, we randomly simulated different percentages
of populations located in the non-shared space ranging from 0% to 100% with a
population size ranging from 118 to 263 in order to maximize the total number of
populations in each case. Then we compared the explained R2 and p-value obtained
from GLM models with population continuous decay as response variable and average
or inter-annual niche-based suitability as response variable (see above explanation)
and population size for each population simulated dataset (in order to correct the
possible low performance of dataset with les number of populations).

Change in niche size and species climatic range

Species niche characterization based on climate average vs inter-annual variability

We characterized the niche of 42 Mediterranean species with distribution areas rang-
ing from the whole Mediterranean basin to endemic species (i.e. mediterranean, occi-
dental mediterrean, iberoafrican and Iberian Peninsula SE endemic species, Appendix
B Table B.1) using the average and the inter-annual variability-based approaches.
Species occurrence data were collected from (GBIF 2019, http://www.gbif.org)
and herbarium of Jardí Botànic de Barcelona. Then, species’ occurrence records were
filtered to remove taxonomic inconsistencies as well as to reduce possible sampling
bias by reducing observed occurrences to 1 per 1 km2 grid cell. Final datasets ranged
from 200 to 10,000 observations per species.

Average and inter-annual climatic datasets were obtained from CHELSA
database (Karger et al. 2017) for the period 1979-2013. We selected the same
12 bioclimatic variables as selected above for P. halepensis. We obtained the
environmental space by using a PCA built using inter-annual climatic data from
all the occurrences of all 42 analyzed species (Broennimann et al. 2012) (Appendix
B Table B.1). We estimated averaged and inter-annual variability-based niches by
translating each species occurrences into the environmental space and using kernel
density functions as described above.
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Change in niche area –climatic range analyses

From these niches, we calculated the ratio between the niche size (area) determined
with the inter-annual-based approach and the average-based approach. Finally, we
used linear models (lm) with niches’ ratio as response variable and average-based niche
size logarithmically transformed and species distribution range as response variables.

3.4 Results

Niche suitability and demographic responses

The two first PCA axes explained 60% of the variability of the 12 climatic variables
(Appendix B Figure B.2). The niche of P. halepensis characterized with inter-annual
variability (inter-annual variability-based niche) was 42% larger than the niche esti-
mated with the average dataset (average-based niche). These differences implied that
during the extreme climatic year, 93.3% of unaffected forests and 63.3% of highly
affected forests were inside the P. halepensis niche estimated with inter-annual vari-
ability. These values diminished to 52.8% for unaffected forests and 21.2% for highly
affected ones when niche was calculated with average climate (Figure 3.2).

Models which relate species decay with species niche suitability during the
extreme year obtained with both average-based and inter-annual variability-based
niches, show that populations suitability significantly explained species decay irre-
spective of the decay dataset (binary or continuous) (Figure 3.3, Appendix B Table
B.1). However, models with inter-annual variability-based niche suitability had a
better fit explaining decay records and had considerably lower AIC (particularly for
continuous dataset, see Figure 3.3).

The explanatory capacity of models that include suitability from inter-annual
variability-based niche was always higher than that of models including average-based
niche suitability, independently of the proportion of populations located in the non-
shared area by both niches. Difference between the two models predictive capacity
increased as the percentage of populations located in the non-shared area increased
(Appendix B Figure B.4 and Table B.2).
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Figure 3.2: P . halepensis niche determined by two PCA environmental
axis calculated from climatic data and location of highly affected and unaf-
fected populations based on A) average climate and B) inter-annual climatic
variability. Dark blue dots represent highly affected P . halepensis popula-
tions after the extreme event, while light blue dots represent unaffected P .
halepensis population after the extreme event. Orange palette indicate P .
halepensis climatic suitability.

Figure 3.3: Drought-induced affectation in P. halepensis populations in re-
lation to population niche suitability estimated from average climate (dark-
blue color, avg) and from inter-annual climatic variability (yellow color, in-
ter). Models considered drought-induced affectation as A) a binary response
variable (highly affected vs unaffected) or as B) continuous response variable
(percentage of affectation in plots).

Change in niche size and species climatic range

The two first PCA axes explained 60.8% of the variability of the 12 climatic vari-
ables (Appendix B Figure B.5). Lm models across species with different distribution
ranges showed that species with smaller average-based niche area, which correspond
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to species with more restricted distribution range, increased more their niche area
when considering inter-annual climatic suitability than species with larger average-
based niche area and wider distribution ranges (Figure 3.4 and Appendix B Table
B.3). In addition, there were no differences between distribution range groups in the
relationship of niche area ratio with area of average-based species’ niche (Appendix
B Table B.3).

Figure 3.4: Species niche area ratio (niche area estimated with inter-annual
variability / niche area estimated with average climate) in relation to species
niche area estimated with average climate; this niche area corresponds to
distinct distribution ranges across the Mediterranean basin. Green color
represents species widely distributed along the Mediterranean basin, yellow
color represents species mostly distributed in West Mediterranean basin,
light blue color represents iberoafrican species, mostly distributed in North
Africa and South Iberian Peninsula and dark blue color represents species
distributed in South East Iberian Peninsula. Red circle corresponds to Pinus
halepensis.

3.5 Discussion

Including inter-annual variability in niche characterization

This study brings out some limitations of the prevalent niche characterization based
on average climate. Accounting for the temporal climatic variability in the locations
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where species occur increases the range and resolution of species climatic require-
ments constituting the climatic niche, leading to an increase of niche size respect to
the typical use of climate averages. Differently from other studies which include cli-
matic extremes or standard deviation of inter-year climate as a new dimension of the
environmental hyperspace (Zimmermann et al. 2009) in addition to climatic means,
we included the whole distribution of climatic data across time for all occurrence sites,
not adding new dimensions. This procedure allowed effectively quantify differences
in niche size. Among all the time that a population has remained at a given site,
climate likely have exceeded the species tolerance limits in some years. But these
macroclimatic extreme conditions do not necessarily result in population extinction,
due to more favorable conditions in microsites, species local adaptation or facilitation
species interactions (Benito Garzón et al. 2011, De Frenne et al. 2013, Svenning
and Sandel 2013), particularly for long-lived species. Including macroclimatic con-
ditions that overpass the species tolerance limits could lead to overestimate species
climatic niche size. This problem can be dealt by removing certain percentile of niche
density (in our case, the 5% percentile) when delimiting niche size. In spite of this
consideration, our approach presumably distorts niche size less than accounting only
for average climate. Inter-annual variability could be also incorporated in different
SDMs algorithms allowing for a hierarchical data structure (Wang and Maintainer
2016, Kuznetsova et al. 2017). Finally, including climatic variability when building
SDMs is particularly promising under the current climate scenario since it supposes
a more conservative approach to determine future species distribution in changing
climates.

Climatic variability improves the relationship between macroclimatic suit-
ability and demography

Our results emphasize the relevance of accounting climatic variability to explain the
relationship between demographic processes and macroclimatic suitability, specifi-
cally under extreme climatic events. We found that P. halepensis climatic suitability
estimated from niches characterized by inter-annual climatic variability better pre-
dicted species decay in comparison to climatic suitability estimated from niches that
only considered climatic average (Figure 3.3) under extreme events. It is theoretically
assumed that if species niche is properly represented, there should be a correspon-
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dence between population demographic processes (such as growth or mortality rates)
and niche parameters (Pulliam 2000, Thuiller et al. 2014, Csergő et al. 2017). Mul-
tiple studies have tried to assess this relationship (Thuiller et al. 2014, Csergő et
al. 2017), particularly under extreme events (Lloret and Kitzberger, 2018, Pérez
Navarro et al. 2018, Sapes et al. 2017), however this correspondence does not al-
ways emerge (Thuiller et al. 2014, van der Maaten et al. 2017). Very often these
niche-demography relationships, particularly in case of parameters related to growth,
are affected by many local aspects that impede identifying a clear relationship be-
tween niche and population performance (Csergő et al. 2017). Nevertheless, the
presence of decoupling factors does not override the potential impact of climatic vari-
ability when estimating population dynamics from species niche. Actually, neglecting
temporal variability in this kind of studies could introduce a substantial error when
predicting population performance in fluctuating environments (Niehaus et al. 2012).
Although suitability derived from average-based niche may be robust enough to ex-
plain dramatic demographic responses under extreme climatic episodes, as showed in
our results (see also Lloret and Kitzberger 2018, Pérez Navarro et al. 2018, Sapes et
al. 2017), the better the characterization of the niche, the better the species fitness’
predictions.

In addition, the inclusion of inter-annual variability when predicting species
responses is especially relevant for populations located in the non-overlapping space
between the two niche margins (i.e. corona, between inter-annual and average-based
niches) (Appendix B Figure B.4). This area of the species niche (when considering
a two-dimensions of the space niche) corresponds to unsuitable climatic conditions
according to average-based niche but suitable climatic conditions when including
climatic variability in niche characterization. Therefore, average-based niche in this
non-shared area does not have predictive capacity for demographic responses. Thus,
if the locations’ sample was composed only by populations from this area, the only
model using climatic suitability that would predict populations response correctly
and significantly would be the inter-annual-based one (Appendix B Figure B.5). This
mismatch would also imply that populations located in this area, which in many cases
correspond to populations sited at the geographic range margin, would be wrongfully
located out of the niche size when using average-based species niche.
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Change in niche size across species with different climatic and distribution
ranges

These abovementioned implications of including inter-year variability could be even
more important for species with narrow distribution ranges, which implies smaller
average-based niche, comparing with those with broader distribution. Our results
showed that, in the Mediterranean basin, species with smaller average-based niche
areas increased relatively more their niche area when considering inter-annual climatic
variability (Figure 3.4), probably because in species with narrow distribution ranges,
spatial climatic variability do not compensate for temporal variability. Therefore,
endemic and rare species probably would increase more their niche size, particularly
when inhabiting highly fluctuating climates.

Other implications of inter-annual variability vs average-based climatic
models

This study highlights some limitations that have been barely considered to date of
using climatic averaged datasets of 30-50 years’ periods (Hijmans et al. 2005, Karger
et al. 2017, Fick and Hijmans 2017) when modelling species niche (Zimmermann
et al. 2009). Not accounting for the whole temporal climatic resolution of species
occurrences when modelling climatic niche could result in errors affecting from the
characterization of species geographical distribution to extinction risk estimates. Un-
derestimations in niche size could lead to understate species geographically suitable
areas and such errors could be then also propagated into management plans derived
(i.e. selection of favorable areas for protecting species or assisted migrations). Most
importantly, these possible niche underestimations could vary depending on species
distribution ranges. In addition to the error derived from the non-inclusion of climatic
variability, using systematically 30-years averaged climatic periods could be specially
pernicious when characterizing the climatic niche of short-lived species, as in plagues
(Jaime et al. 2019) since they emerge explosively as a consequence of specific climatic
conditions that appear in particular years of the period.

Estimates of invasion risk or extinction rate could be also affected by niche char-
acterization errors. In this case, niche size underestimation could lead to understate
invasion risk or to overestimate extinction debt as populations and species could be
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able to survive under changing climates or extreme events more than expected with
average-based niches. In addition to temporal climatic variability there are others
sources of climatic variability not included in the prevalent climatic datasets (World-
clim, CHELSA), such as the climatic heterogeneity held within geographic units due
to a coarse spatial resolution (Geiger et al. 1995, Lenoir et al. 2013, De Frenne et al.
2013, Lembrechts et al. 2019). This lack of resolution, which could be particularly im-
portant for plants living in particularly favorable microhabitats, and for small-stature
plants which actually experience temperatures at ground-surface level (Lembrechts et
al. 2019), may hinder to accurately portray species requirements (Guisan et al. 2019)
and can neglect the important buffer capacity of microclimates on the ecosystem re-
sponse to climate change (Ackerly et al. 2010). Nevertheless, high resolution climatic
datasets - even at daily resolution - are increasingly becoming available (Wan 2008,
Bramer et al. 2018) and they suppose a promising option to deal with these spatial
and temporal limitations.
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4.1 Abstract

From niche theory it could be assumed that population performance decreases from
niche optimum toward the edge of the species niche. Species Distribution Models
(SDMs) outputs have been often used to assess the relationship between demograph-
ical trends and niche space, but empirical studies has proven weak or inconclusive.
Among other limitations that could impede the emergence of this relationship (species
interactions, local favorable environmental conditions not included in the models),
SDMs could exhibit a limited capacity to predict suitability under highly shifting
environmental conditions. Here we propose the use of distances in the environmen-
tal space between niche and population environmental conditions to predict species
performance under climates exceptionally distant from species optimum. For this
purpose, we took advantage of an extreme drought event occurring in the SE of the
Iberian Peninsula that highly affected rich semiarid shrubland communities located
in three different bedrock sites implying a gradient of water availability. Then, we
comparatively analyzed the relationship between (1) population decay (mortality and
remaining green canopy) and distances between populations and species niche limit
and centroid in the environmental space, and (2) species decay and climatic suitability
estimated from SDMs (MaxEnt). We found that distances to the niche centroid and
limit better explained population decay than SDMs-derived suitability, highlighting
that population located farther from species’ niche during the extreme episode showed
higher vulnerability to drought. In addition, we found significant differences between
bedrock sites suggesting a relevant buffering role of soils on species decay responses to
extreme drought events. We conclude that distances between populations in the envi-
ronmental space are consistent with demographic responses to extreme drought. This
approach reveals to be more efficient than the use of climate suitability indices derived
from SDMs, particularly when dealing with extreme climate events that correspond
to situations outside the species environmental niche.
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4.2 Introduction

In his concluding remarks Hutchinson (1957) defined the niche as the n-dymensional
hypervolume -an abstract range of multiple ecological conditions- which allow species
to persist indefinitely. In spite of the contemporary limitations of niche formalization
and representation at that time, Hutchison also suggested that within this hypervol-
ume, all points would not have equal probability for species’ persistence, considering
that there would be “an optimal part of the niche with markedly suboptimal condi-
tions near the boundaries”. This expectation could be considered as inspiration for a
largely known paradigms in biogeography: the Centre-Periphery Hypothesis (CPH)
(Pironon et al. 2017). This hypothesis predicts that species’ abundance and fitness
progressively declines from the geographic distribution center towards the distribu-
tion edges, by assuming an exact concordance between environmental and geographic
spaces, given that population performance would decline from the niche optimum
towards the limits (Maguire and Jr. 1973, Brown 1984, Pironon et al. 2016). Never-
theless, the correlation between species niche estimates and population abundance or
performance is not consistently supported by literature (Sexton et al. 2009, Pironon
et al. 2016, Dallas et al. 2017), particularly when considering growth or recruitment
rates. These poor correlations could be due to the influence of density-dependence
processes (Thuiller et al. 2014), the non-consideration of some relevant local mircro-
habitat conditions (such as soils or biotic interactions) in niche estimation (Csergő et
al. 2017, Lembrechts et al. 2019), or the existence of non-equilibrium dynamics (such
as high population growth in recently colonized areas even though these locations are
scarcely envrionmentally suitable, Thuiller et al. 2014, Osorio-Olvera et al. 2019).
The existence of these decoupling factors, however, do not invalidate the potential
role of niche estimates explaining population performance (Csergő et al. 2017), par-
ticularly when this could be strongly influenced by climate, as in the case of plant
decay and mortality associated to extreme climatic events (Sapes et al. 2017, Lloret
and Kitzberger 2018, Pérez Navarro et al. 2018).

Species Distribution Models (SDMs) provides niche statistics estimates which
could be interpreted as species probability of occurrence, or environmental suitability,
usually ranging between 0 –non suitable environment- to 1 –optimal environmental
conditions- (Franklin 2010). They frequently consist on correlative models which



60 4. Niche distance as a predictor of species responses to extreme climatic events

relates species occurrences with the environmental conditions of these sites without
attending to the functional causality of this relationship, although there also exist
other mechanistic modelling approaches which do attend to functional relationships
Guisan and Zimmermann 2000, Franklin 2010, Guisan et al. 2017). SDMs are rea-
sonably accurate for characterizing current natural distributions of species (Elith and
Leathwick 2009, Guisan et al. 2013), although they are also increasingly used to pre-
dict changes in species distribution under shifting environmental conditions, as in case
of climate change scenarios or potential novel areas for alien species invasion (Thomas
et al. 2004, Thuiller et al. 2005, Broennimann and Guisan 2008, Araújo et al. 2019).
However, when projecting SDMs under environmental conditions highly dissimilar
from those used to calibrate the models, these models could lead to non-reliable suit-
ability estimates (Dormann 2007, Elith et al. 2010), for instance, by systematically
producing 0 value outputs, and therefore hindering the correlation with demographic
parameters (Pérez Navarro et al. 2018).

According to the niche theoretical frame, species probability of occurrence would
be null outside of the niche space, but there are several circumstances that may allow
populations to persist outside of fundamental niche boundaries. For instance, they
could persist under unfavorable conditions (sink habitats, with a negative population
growth) if they are sustained by immigration from source habitats (Pulliam 2000).
Plant longevity may also delay climate-induced changes in species distribution (Sven-
ning and Sandel 2013). Finally, pulses of abrupt climatic changes can temporarily
displace populations outside of the species niche (Pérez Navarro et al. 2018). Under
these situations of populations living outside the niche space, negative population
growth rates (i.e. decay) are, in fact, related to the lack of suitability of environ-
mental conditions. So, it could be expected to find more negative growth rates in
populations located far away from the niche limit compared to populations located
outside but closer to the niche. This implies that, in the same way as points within
species niche would not show equal capacity for hosting species presence (Hutchinson
1957, Maguire and Jr. 1973, Brown 1984), points outside of species niche would not
have the same potential for hindering species occurrence.

Accordingly, niche parameters which allow to estimate niche environmental ac-
curacy even if population are located outside of species niche (when niche suitability
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estimates can attain zero values) can be useful to explain demographic responses,
particularly in sink populations, population suffering extreme climatic events or alien
species expansion. Here we propose the use of Euclidean distances between population
locations in the environmental niche space and species niche centroid or limits as mea-
sures to obtain continuous niche estimates even outside of niche boundaries (Figure
4.1). While niche centroid represents the optimal conditions for species performance,
niche limit represent the threshold separating species persistence from extinction, that
is, positive from negative growth rates. So, higher distances to niche centroid are ex-
pected to result in a more decrease in populations’ fitness and abundance(possibly
with a particular decrease after trespassing he niche boundaries), while distances to
niche limit will imply positive or negative responses depending on population position
within or outside of the niche.

In this study, we took advantage of an extreme drought year occurring in the
SE of the Iberian Peninsula which largely affected vegetation communities to ana-
lyze the relationship between niche estimates and demographic responses in shrub-
land communities located in three different bedrocks inducing different water deficit.
Specifically, we (1) tested whether populations located farther from the species niche
during the extreme event show higher population decay, measured as remaining green
canopy (RGC) and mortality; (2) compared the predictive capacity of distances to
climatic niche centroid and distances to climatic niche limit when explaining popula-
tions decay of different species; (3) compared niche-based distances and SDM outputs
as predictors of populations decay; (4) compared the relationship between niche esti-
mates and demographic responses on three different bedrock with distinct soil water
retention capacity.

4.3 Material and methods

Study area

The study was carried out in three semiarid shrubland areas in the southeast of the
Iberian Peninsula (Figure 4.2: Cuatro Calas (1.63°W, 37.38°N), Moreras’ mountain
(1.32°W, 37.56° N) and Calblanque Natural Park (0.74° W, 37.61° N), each of them
sited in a different dominant lithology: sandstone, limestone and metamorphic, re-
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Figure 4.1: Example of species niche in an environmental space defined
by two environmental axis. White to red color gradient represents species
climatic suitability, where 1 correspond to niche optimum and 0 to the envi-
ronmental space outside of the niche. The black dot represents a population
located outside of species niche boundaries, and “a” and “b” are distances
to the niche centroid and to the closest point of the niche boundary, respec-
tively.

spectively. These areas share similar vegetation communities, dominated by semiarid
shrubland species – genus Genista spp. (Fabaceae), Helianthemum spp. (Cistaceae),
Teucrium spp. (Lamiaceae) or Thymus spp. (Lamiaceae)- mixed with some big-size
grasses such as Macrochloa tenacissima (L.) (Poaceae). Study sites also show rela-
tively low anthropization symptoms, since they are encompassed within Natura 2000
network or Natural Parks.

The study sites are included within the Mediterranean xeric bioclimate (Rivas
Martínez et al. 2017), which is characterized by mean annual temperatures of 17° C,
and annual rainfall of 245-280 mm (reference period 1971-2000, AEMET and IP 2011).
During the hydrological year 2013-2014 the Iberian southeast suffered its driest year
on record, leading to extensive plant communities’ die-off. Particularly, Cuatro Calas
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and Moreras Mountain accumulated less than 30% of the average precipitation for the
reference period 1971-2000 and Calblanque Natural Park less than 70 % (Appendix
C Figure C.1, AEMET 2014).

Regarding to site soils, Cuatro Calas and the Moreras Mountain are Lithic
Leptosols (around 10 cm in depth)(IUSS Working Group WRB 2015), while in Cal-
blanque they are Skeletic Regosol (i.e., around 1m in depth)(IUSS Working Group
WRB 2015). In addition, soils in Moreras’ Mountain (limestone bedrock) showed
the highest water retention capacity in relation to soil volume, while Cuatro Calas
soils (sandstone bedrock) showed the lowest water retention capacity (Figure 4.2).
However, it is worth noting that the absolute water retention capacity was higher
in Calblanque than in the other localities, due to its considerably higher soil depth.
Soil water retention capacity was obtained for each bedrock as the difference between
moisture content at the field capacity and wilting point. Both these values were
obtained following Cassel and Nielsen (1986), from three soil samples per bedrock
type, where each sample consisted on two replicates of the upper 10cm. In addition,
organic carbon content (Anne 1945, Duchaufour 1970) and particle size composition
(Gee and Bauder 1986) were also estimated (see Appendix C Figure C.2 and Table
C.1).

Die-off data

During January-March 2016, 30 replicated plots of 5x5m were established within each
area, being separated from each other by at least 25 linear meters. All plots shared
similar topographic characteristics with moderate to slight slope and south or south-
east orientation. Within each plot we recorded the total number of individual per
woody species (total of 38 species) and visually estimated the proportion of remaining
green canopy (RGC) per individual (as a proxy of species die-off, Sapes et al. 2017,
Pérez Navarro et al. 2018). In order to ensure that the green cover loss resulted from
the recent drought, we avoided individuals with signs of older decay (e.g., stumps,
decomposed stems, branches with no thin tips). Each individual was also categorized
as alive (RGC > 0%) or dead (RGC = 0%).



64 4. Niche distance as a predictor of species responses to extreme climatic events

Figure 4.2: Top right panel shows the location of the study region in the
Mediterranean basin. Left panel shows the expanded map of the study
area, indicating the study sites: A) Cuatro Calas (sandstone bedrock), B)
Moreras’ mountain (limestone bedrock) and C) Calblanque Natural Park
(schist metamorphic bedrock). Bottom right panel shows the soil water
content available for the top 15 cm of each study site estimated following
(Cassel and Nielsen 1986).

Niche characterization and distances extraction

We compiled the geographical distribution data of the 38 sampled species from the
Global Biodiversity Information Facility (GBIF) (GBIF 2019, http://www.gbif.
org) and the herbarium of the Institut Botànic de Barcelona. Species occurrence
records were then filtered in order to remove taxonomic and geographic inconsisten-
cies and to reduce possible sampling bias by randomly thinning species’ records to
one observation per Km2 (in concordance with the spatial resolution of the climatic
dataset) for those datasets with more than 100 occurrences. Species occurrences
datasets finally ranged from 60 to 7,000 observations.

We used 12 bioclimatic variables for every year of the period 1979-2013 (34
years): annual mean temperature (bio 1), temperature seasonality (standard devi-
ation ×100) (bio 4), maximum temperature of warmest month (bio 5), minimum
temperature of coldest month (bio 6), mean temperature of warmest quarter (bio
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10), mean temperature of coldest quarter (bio 11), annual precipitation (bio 12), pre-
cipitation of wettest month (bio 13), precipitation of driest month (bio 14), precipi-
tation seasonality (coefficient of variation) (bio 15), precipitation of wettest quarter
(bio 16), and precipitation of driest quarter (bio 17); all of them with 1 Km2 res-
olution. These variables were obtained after translating monthly temperature and
precipitation variables from Chelsa database (Karger et al. 2017) by applying the
biovars function (dismo package Hijmans et al. 2016). The remaining bioclimatic
variables were discarded in order to facilitate the interpretation of environmental
axis, removing variables that potentially correlate differently for different species or
different time periods (i.e. temperature of hottest quarter with precipitation of hottest
quarter, since during the average period these variables correlates negatively due to
summer drought, while during the extreme year rainfall was higher precisely during
summer months).

Then, we used a Principal Component Analysis (PCA) to convert the envi-
ronmental space of the 12 bioclimatic variables for the 1979-2012 period into a two-
dimensional surface defined by the first and second principal components (Broenni-
mann et al. 2012). The PCA was calibrated using every year-climate from all the
occurrences sites of all the 38 analysed species (Appendix C Table C.2). These first
and second axes explained together the 60.8% of the 12 variables’ variability (see
Appendix C Figure C.2). This explicit consideration of between-year climatic vari-
ability allows for a more accurate niche characterization, while considering a time
scale (yearly) comparable to the extreme event.

We characterized species climatic niches by translating species’ geographical
occurrences into the environmental climatic space and applying kernel density func-
tions (Broennimann et al. 2012) (ks package version 1.11.3, Duong 2018), which
allow to determine density values for each cell of the species environmental space.
Particularly, we applied Gaussian kernel functions and selected optimal bandwidth
by cross-validation (Duong and Hazelton 2005). Then, we estimated the species niche
centroid as the gravity center of species’ niche (i.e. mean of environmental axis val-
ues weighted by species’ density), and species niche limit as the perimeter of species’
niche space after discarding densities below the 0.05 lowest percentile.

We then translated the climatic conditions of each studied population (i.e.,
occurring in plots) during the reference average period 1979-2012 and during the
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extreme year 2013-2014 into the two-dimension environmental space (population cli-
mate, hereafter). Mean climatic conditions of the reference period 1979-2013 period
were obtained by averaging yearly climate of each population site for the previously
selected variables. Climatic variables of the extreme year 2013–2014 were obtained
in 1 Km2 resolution from monthly precipitation and maximum, minimum, and mean
temperature records from between 68 and 114 weather stations of the Spanish Mete-
orological Agency (AEMET), by applying Ninyerola et al. (2000) procedure (Pérez
Navarro 2018) and the “biovars” function (dismo package; Hijmans et al. 2016).
Then, we selected the same 12 bioclimatic variables used for niche characterization.
Since the climate databases had 1 Km2 resolution, almost all the plots within the
same study area had the same observed climate value.

Finally, we estimated Euclidean distances in the environmental space between
(1) population climate and species climatic niche centroid, and (2) between population
climate and the closest point of the niche limit, for both the reference 1979-2012
period and during the extreme 2013-2014 year. In addition, we also classified species’
population according to whether they were “inside” or “outside” of species niche
perimeter.

Species niche modelling

From these described species occurrence and climatic average datasets, we built
Species Distribution Models (SDMs) for every sampled species in order to estimate
populations’ climatic suitability both during the average 1979-2012 and the extreme
drought episode 2013-2014. We specifically used MaxEnt algorithm throughout R
(dismo package Hijmans et al. 2011), with 5 biologically relevant and uncorrelated
variables from the 12 variables used in niche characterization: bio 4, bio 10, bio
12, bio 15 and bio 17. We also compared PCA axis built with all the 12 variables
and with this 5, in order to discard differences between the two approaches (SDMs
and niche distances) due to the use of different climatic variables (Appendix C Fig-
ure C.2 and C.3). Each species model was built with 20,000 background points in
the biogeographic study region (i.e., Mediterranean basin), five-fold cross-validation,
regularization multiplier of 3, and threshold feature unselect to produce smoother
response curves. Then models accuracy was evaluated using the area under of the
Receiver Operating Characteristic curve (ROC) curve (AUC; Hanley and McNeil
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1982), where values higher to 0.75 indicates high model performance (Elith et al.
2002). Each species’ model was finally projected over the average reference climate
(1979-2012), and also over the extreme climatic conditions (2013-2014), in order to
obtain populations’ climatic suitability during the reference and the extreme period.

Statistical analyses

We applied generalized linear mixed models (GLMM) (lmerTest R package, version
3.1.0., Kuznetsova et al. 2017) with species decay (RGC or mortality) as response
variable, and population distances to species niche and bedrock type as explanatory
variables, with species and plot as crossed random effects. In order to reduce noise
in model residuals we aggregated the original database with 12,124 individuals and
added the number of individuals as a weighting factor of mix models. Due to the
high affectation of species during the extreme drought year, RGC variable showed a
zero-inflated distribution, so we decided to separately model RGC > 0 as response
variable (with Gaussian error distribution) and mortality percentage (with binomial
error distribution) as response variables. We finally built four models for each subset
of population distances to niche for both reference (1979-2017) and extreme (2013-
2014) period: (1) RGC as a function of niche centroid distance, bedrock type and
their interaction (2) RGC as a function of niche limit distance bedrock type and their
interaction, (3) mortality as a function of niche centroid distance, bedrock and their
interaction; and (4) mortality as a function of limit distance, bedrock type and their
interaction (Appendix C Table C.3). In order to know whether population distance
to the niche limit was inwards or outwards the niche, we additionally included a niche
location variable (“inside” or “outside”) interacting with limit distance. The inter-
actions between bedrock and population distance to centroid or limit were discarded
from models in those cases where models showed convergence limitation.

Then, we replicated RGC generalized mix models but replacing distance to
niche by climatic suitability derived from SDMs as explanatory variable. Therefore,
RGC was the response variable and lithology and climatic suitability during the ref-
erence period or during the extreme period as explanatory variables. We therefore
built two alternative models for climatic suitability: RGC as response variable with
lithology and suitability during the average period and their interaction as explana-
tory variables, and RGC as response variable with lithology and suitability during
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the extreme episode and their interaction as explanatory variables (Appendix C Ta-
ble C.3). In both cases we used Gaussian error distribution and plot and species as
crossed random effects.

4.4 Results

Both distances to niche in the environmental space and climatic suitability estimated
for the reference period significantly explained the observed remaining green canopy
(RGC) after the extreme events (Figure 4.3 A-B and Appendix C figure C.5 A-B),
supporting that species farther from their climatic niche or with lower climatic suit-
ability during the reference period were more vulnerable during extreme drought
episodes in terms of green cover. Particularly, in the case of niche estimates, distance
to centroid was marginally significant while distance to the niche limit for popula-
tion located within the niche (meaning population located closer to centroid) was
significant related to higher RGC (Appendix C Figure C.5 A-B, and Tables C.5 and
C.6). Also, distance to niche limit for population located out of the niche related
significantly with more RGC, probably due to the low number of population located
outside of the niche.

However when considering climatic conditions of the extreme episode, only dis-
tances in the environmental space significantly explained species decay in terms of
green canopy (Figure 4.3 A-B, Figure 4.4 A), indicating that those population located
farther from species niche during the extreme period suffered higher losses in species
green canopy. In this case both distance to niche centroid and distance to niche
limit when species where located outside of the niche were significant (Tables 4.1 and
4.2). Contrastingly, climatic suitability during the extreme event did not correlate
with RGC presumably due to the extremely low suitability values obtained for almost
every populations, as a consequence of the high difference between calibration and
projection conditions (Appendix C Figure C.6, and Table C.9).

On the other hand, when analyzing the relationship between mortality and
distances in the environmental space we obtained that distance to species niche limit
interacting with population position significantly related to species mortality whereas
population distance to niche centroid didn’t show to be significant (Figure 4.3 C-D,
Tables 4.3 and 4.4, and Appendix C Figure C.5 C-D and Tables C.6 and C.7).
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Figure 4.3: Remaining Green Canopy (RGC) in relation to population dis-
tances during the extreme drought event to their respective species niche
centroid (A) and to the closest point of the niche limit (B); and mortality
percentage in relation to population distances during the extreme drought
event to their respective species niche centroid (C) and to the closest point of
the niche limit (D). In all four cases, only the subset of populations located
outside the niche were considered. Yellow dots shows distances of popu-
lations located in Moreras’ Mountain (limestone bedrock), magenta dots
shows distances of plots located in Calblanque Natural Parck (metamorphic
bedrock) and blue dots show distances of populations located in Cuatro Calas
(sandstone bedrock). Yellow line, magenta and blue lines represent the re-
gression lines of each model for each bedrock type (limestone, metamorphic,
and sandstone, respectively). Each panel also shows R2 model values and
ANOVA P-values (Pv) for testing significance of niche distances.

Finally, site bedrock also showed to be significant, where Metamorphic exhibited
the higher RGC and lower mortality percentage while limestone and sandstone did
not show difference between them in most models explaining decay as a response of
distances during extreme event and bedrock type (Appendix C Table C.11).
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Figure 4.4: Relationship between Remaining Green Canopy (RGC) and cli-
matic suitability estimated for each plot for (A) the reference period 2079-
2012, and (B) the extreme drought year 2013-2014; in both cases climatic
suitability was estimated with MaxEnt. Although both models included
bedrock as explanatory variable this is not represented in order to better
visualize the lack of significance of climatic suitability estimated during the
extreme year. Complete model results are included in Appendix C Table
C.6 and C.7. Each panel also shows R2 model values and ANOVA P-value
(Pv) for testing the significance of climatic suitability.

Table 4.1: Results of Generalized Mixed Models explaining Remaining
Green Canopy (RGC) as a function of soil bedrock and populations’ dis-
tances to the species niche centroid during the extreme drought episode
(2013-2014) and the interaction between these two variables, with plot
and species as crossed random effects.

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 69.813 10.056 41.689 6.942 0.000 ***
Metamorphic -4.462 7.846 554.030 -0.569 0.570
Sandstone 7.942 8.224 628.866 0.966 0.335
centroid_distance -5.751 2.212 40.492 -2.600 0.013 *
Metamorphic:centroid_distance 2.923 1.342 634.558 2.178 0.030 *
Sandstone:centroid_distance -0.864 1.517 667.956 -0.570 0.569

Statistical significant levels: "." p<0.1 ; "*" p<0.05 ; "**" p<0.01 ; "***" p<0.001
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Table 4.2: Results of Generalized Mixed Models explaining Remaining
Green Canopy (RGC) as a function of soil bedrock and populations
distances to the closest point of species niche limit during the extreme
drought episode (2013-2014), and the interaction with population po-
sition inside (in) or outside (out) the niche during the extreme event,
with plot and species as crossed random effects.

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 48.507 3.809 61.546 12.735 0.000 ***
Metamorphic 12.890 3.235 204.888 3.984 0.000 ***
Sandstone 1.438 4.105 213.173 0.350 0.726
limit_distance:in 16.321 16.292 616.216 1.002 0.317
limit_distance:out -10.334 2.689 143.419 -3.843 0.000 ***

Statistical significant levels: "." p<0.1 ; "*" p<0.05 ; "**" p<0.01 ; "***" p<0.001

Table 4.3: Results of Generalized Mixed Models explaining mortality
percentage as a function of soil bedrock and populations’ distances to
species niche centroid during the extreme drought episode (2013-2014)
and the interaction between these two variables, with plot and species
as crossed random effects.

Estimate Std. Error Z value Pr(>|z|)

(Intercept) -1.006 0.844 -1.192 0.233
Metamorphic 0.294 0.336 0.875 0.382
Sandstone 0.913 0.438 2.083 0.037 *
centroid_distance 0.095 0.189 0.501 0.616
Metamorphic:centroid_distance -0.218 0.034 -6.369 0.000 ***
Sandstone:centroid_distance 0.005 0.063 0.073 0.942

Statistical significant levels: "." p<0.1 ; "*" p<0.05 ; "**" p<0.01 ; "***"
p<0.001
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Table 4.4: Results of Generalized Mixed Models explaining mortality as
a function of soil bedrock and populations’ distances to the closest point
of species niche limit during the extreme drought episode (2013-2014),
and the interaction with population position inside (in) or outside (out)
the niche during the extreme event (2013-2014), with plot and species
as crossed random effects.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.087 0.286 -3.794 0.000 ***
Metamorphic -1.608 0.200 -8.042 0.000 ***
Sandstone 0.035 0.235 0.150 0.881
limit_distance:in -3.240 1.425 -2.274 0.023 *
limit_distance:out 0.844 0.138 6.117 0.000 ***

Statistical significant levels: "." p<0.1 ; "*" p<0.05 ; "**" p<0.01 ;
"***" p<0.001

4.5 Discussion

Niche estimates and demographic responses under extreme events

In this study we show that population distances in the environmental space to species’
niche limit and centroid both during the extreme event and during the reference cli-
matic period explained species different green canopy and mortality during an extreme
drought episode (Figure 4.3 and Appendix C Figure C.5). In spite of the weak liter-
ature support to the correlation between species performance and niche parameters
(Sexton et al. 2009, Dallas et al. 2017), several studies have shown populations higher
performance or abundance at species niche core compared to the species range mar-
gins (Jump and Woodward 2003, VanDerWal et al. 2009, Martinez-Meyer et al. 2013,
Sangüesa-Barreda et al. 2018), especially under extreme climatic conditions (Sapes
et al. 2017, Lloret and Kitzberger 2018, Pérez Navarro et al. 2018). These last stud-
ies evidenced the correlation between climatic suitability under historical reference
conditions and population decay during extreme drought, pointing that populations
historically located farther from species’ climatic optimums showed higher sensitivity
to extreme climatic events. Nevertheless, by using distances in environmental space
we have also demonstrated that those populations more displaced from the species
niche during the extreme climatic episode are also more prone to decay, indepen-
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dently from the population location within the species niche during the reference
period. Actually, population distances to niche limit and centroid during the extreme
episode even explained a slightly higher percentage of variability in decay models
than distances during the reference period, particularly when analyzing mortality
(see models R2, Figure 4.3 and Appendix C Figure C.5). The relationship between
populations’ performance and niche distances could emerge more evidently during ex-
treme climatic episodes in relation to normal years, because demographic responses
under exceptionally extreme climates are likely more influenced by climate than by
other environmental forces such as unmeasured microhabitat conditions, species in-
teractions or favorable community structure (Dallas et al. 2017).

Looking closely at decay models during the extreme event, we observe that
the models analyzing green canopy loss showed lower explained variability than mor-
tality models. These results are consistent with other studies in which green cover
losses were seen to be influenced by a wider range of contributors beyond the purely
climatic ones comparing to mortality responses (Galiano et al. 2010). Interestingly,
distances to niche limit or centroid seemed not to be completely interchangeable when
explaining continuous physiological responses or binary states (dead-alive). Whereas
distances to niche centroid resulted slightly better explicative than distances to niche
limit to explain population differences in green canopy (Figure 4.3 A-B and Tables
4.1 and 4.2), distances to niche limit and population position (within or outside of the
niche), better explained population mortality observed patterns (Figure 4.3 C-D, Ta-
bles 4.3 and 4.4). These findings are consistent with general biogeographic paradigms
assuming a gradient of population fitness within the niche, from niche centroid to
niche boundaries (Maguire and Jr. 1973, Pironon et al. 2016), with mortality being
particularly relevant outside of species niche, where environmental conditions do not
fulfill species’ requirements (Hutchinson 1957, Maguire and Jr. 1973).

Distances in the environmental space vs climatic suitability

Our finding supports the use of niche estimates other than climatic suitability under
climatic conditions that are highly dissimilar from species tolerance. While population
distances to niche limit and centroid during an extreme drought event significantly
explain population observed decay responses (both mortality and green cover losses),
the near-zero suitability values obtained from SDM (MaxEnt) for the majority of
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species during the extreme event presumably prevented from obtaining a significant
correlation between decay and suitability. These extremely low climatic suitability
values probably emerge as a consequence of the exceptionality of the extreme year
that actually displaced most populations outside of the species niche, even for those
species with more arid distribution, in addition to the limited ability of models to
predict suitability under climatic scenarios highly dissimilar from calibration climatic
conditions (Elith et al. 2010). Although MaxEnt does not lead to response curves
particularly unrealistic outwards training data (since it makes “clamped” predictions,
which constantly keep the same prediction of the most extreme environmental value)
(Elith and Graham 2009, Elith et al. 2010), it implicitly assumes that modelled
parameters and variables interaction obtained for calibration dataset will be main-
tained in shifting environmental scenarios (Phillips and Dudík 2008, Merow et al.
2013), which could potentially lead to extrapolation errors. Conversely, other sim-
pler methods that do not include variables interaction or complex parametrization,
can provide output values beyond niche limits. They can be particularly useful to
explain demographic responses under highly dissimilar environmental conditions by
predicting decay under extreme climatic events, determining negative growth rates
for populations located outside of species niche (sink populations) (Pulliam 2000),
or assessing niche shift risk (Guisan et al. 2014) for invasive species in novel condi-
tions. Particularly euclidean distances in the environmental space and Mahalanobis
distances have been proposed as good proxies of climatic suitability when aiming to
relate population performance and species niche (Martinez-Meyer 2013, Osorio-Olvera
2019). These approaches correct for variables correlation and do not include variables
interaction, not making interaction assumptions under changing conditions. In ad-
dition, they provide continuous values, not constrained between 0 and 1, obtaining
values even if environmental conditions do not fulfill species requirements.

Nonetheless, it worth noting some considerations concerning both approaches.
Niche-related variables and suitability indices do not necessarily depict real species
physiological optimums and limits, as far as they do not represent the species fun-
damental niche. They are derived from geographical species occurrences, which only
account for the regions of the fundamental niche which correspond to the current
climate and implicitly include species interactions and dispersal limitations (Colwell
and Rangel 2009). In addition, the impossibility of distinguishing between source and
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sink populations in most occurrence databases (Osorio-Olvera et al. 2019), as well
as the possible bias in record sampling makes it difficult to exactly portray species’
realized niche. Here we tried to overcome this last limitation by randomly thinning
species records to 1 occurrence per km2 and by visually checking every species’ niches
and SDMs response curves. In addition, our niche estimations did not account for
environmental conditions actually experienced at plant or population level (Lenoir et
al. 2013, Lembrechts et al. 2019a), since global environmental databases frequently
present a relatively coarse spatial resolution (i.e., 1 Km2). Finally, both niche dis-
tances and SDMs outputs were highly sensitive to the selected climatic variables defin-
ing niche dimensions, since different climatic variables subsets are differently related
among them - both temporal and spatially (Elith et al. 2010)- leading to different
environmental hyperspaces. We tried to overcame this constraint in niche character-
ization by avoiding variables that temporally correlates in different way within the
study area (ie. precipitation of hottest quarter negatively correlated with tempera-
ture of hottest quarter during the average period, but positively during the extreme
drought year since most precipitation were recorded precisely in summer), and we
also discarded highly correlated variables in SDM analyses.

Soils’ relevance on species decay

Even using the most accurate niche estimates, the correlation between population
performance and niche position could be total or partially masked by the influence of
other factors and processes, such as species interaction (Svenning and Sandel 2013,
Dallas and Hastings 2018), local adaptation (Benito Garzón et al. 2011), or micro-
habitat variables which usually are not included in niche characterization (Lenoir et
al. 2013, De Frenne et al. 2013, Csergő et al. 2017). In our case, we included soil
bedrock as explanatory variable in the decay models, obtaining that this variable was
always significantly relevant explaining RGC and mortality (Tables 4.1 to 4.4 and
Appendix C Tables C.4 to C.9). Although our study design had a block-site struc-
ture, where population living in the same bedrock type are also located in the same
area, soils are the main candidates among local environmental factors to determine
site differences in RGC and mortality since study plots share similar topography,
slope, orientation and distance to coast line. Specifically, we found that populations
located over metamorphic bedrock type was less affected during the extreme drought
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event (Figure 4.3 and Appendix C Figure C.5), being also significantly different from
populations located in the other two bedrocks types (Appendix C Table C.10). These
differences could be due to metamorphic bedrock soils having the lowest C:N ratio
(Appendix C Table C.1) therefore higher available N, and higher total water holding
capacity. These results are consistent with the generally acknowledged role of soils
on species performance, particularly under drought conditions (Shantz 1927, Ashraf
et al. 2011, Lévesque et al. 2016, Davis et al. 2019).

Conclusion

Our study empirically supports the use of niche distances in the environmental space
in relation to climatic suitability as a proxy of environmental accuracy to explain
population responses under conditions that do not fulfill species requirements. Our
results specifically highlight that species located farther from niche centroid and limit
during extreme drought episode were more prone in terms of defoliation and mor-
tality. Similarly, populations historically located farther from the niche were more
vulnerable. Nevertheless local environmental conditions such as soils characteristics
could buffer the impact of this adverse macroclimatic events.
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5.1 Abstract

The high velocity of contemporary climate change is exceeding plant species’ capac-
ity to track the climate, leading to an ecological context in which climatic conditions
do not reflect the climatic preferences of the species present in a community. This
disequilibrium between climate and community composition could diminish, however,
when critical climate thresholds are exceeded, due to widespread reductions in less
suitable species. Here, we assessed the effect of an extreme drought episode which led
to compositional changes in rich semiarid shrubland communities in the SE Iberian
Peninsula. Using a community climate framework, we compared the community cli-
matic disequilibrium before and after the drought episode along a gradient of water
availability in three bedrock types. Disequilibrium was computed as the difference be-
tween observed climate and community-inferred climate, which was calculated as the
mean of species’ climatic optimum weighted by species abundance collected in field
surveys. We found that extreme drought nested within a decadal trend of increas-
ingly aridity led to a reduction in community climatic disequilibrium, particularly
when combined with low water-retention bedrocks. In addition, community climatic
disequilibrium also varied before the extreme event across bedrock types, according
to soils water-retention capacity. Our study highlights the fact that extreme drought
events pushing communities in the same direction as climate change trends may de-
crease community climatic mismatch, thus acting as environmental filters that reduce
the abundance of species with lower drought tolerance limits. Nevertheless, local en-
vironmental conditions, such as soils in different types of bedrock, may constraint
such direct climatic effects by buffering or enhancing water limitation via water re-
tention capacity. Therefore, the forecasting of community dynamics under climate
change would benefit from integrating local and macro-scale environmental drivers on
community composition, particularly under the increasingly extreme climatic events
expected with climate change.
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5.2 Introduction

It has been recognized that climatic gradients influence species distribution and af-
fect community composition. Accordingly, changes in climate are expected to modify
many species distribution; however, populations and communities do not always re-
spond properly or instantly to climatic modifications (Blonder et al. 2015). As a
consequence, community composition may not accurately match the climatic condi-
tions observed at local scale (Davis 1986, Svenning and Sandel 2013, Blonder et al.
2015). This mismatch between the observed climatic conditions and those inferred
from the community composition (hereafter community-inferred climate, Lenoir et al.
2013, Blonder et al. 2015) is generally known as climatic disequilibrium or climatic
lag (Davis 1986, Svenning and Sandel 2013, Blonder et al. 2015, Bertrand et al.
2016). This lag depends on a species’ capacity to keep up with climate, across a spec-
trum ranging from equilibrium state, in which all the species have niche optimums
close to the climate observed at a given occurrence locality and occur in all such suit-
able localities, to different disequilibrium states, in which species lack the niches best
suited to the observed climate or those species with climatically appropriate niches
are, nevertheless, absent from the community (Blonder et al. 2017). Nevertheless,
certain amount of species absences could be expected at equilibrium at fine spatial
grains under some population dynamics (Holt et al. 2005).

Several processes underlie the climatic disequilibrium of vegetation. Some are
connected to the establishment of species in the community: the failure of more
climatically appropriate species to immigrate because their low dispersal capacity
(Svenning and Skov 2007), a slow rate of establishment and growth (Svenning and
Sandel 2013) or absence from the regional pool (Blonder et al. 2015). Other causes
are related to the durability of established species: persistence in the community
of largely unsuitable species, mainly due to their longevity (Kuussaari et al. 2009,
Jackson and Sax 2010, Bertrand et al. 2016), delayed loss of ecosystem structures
modifying microclimates (e.g. arboreal strata)(Davis et al. 2019), existence of re-
maining appropriate conditions at a microscale (De Frenne et al. 2013), positive
interactions between species (Webb 1986, Svenning and Sandel 2013), or adaptation
to local conditions (Benito Garzón et al. 2011). Thus, this climatic mismatch con-
stitutes a climatic debt (Bertrand et al. 2016), in which species are expected to
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eventually disappear from the community, but how or when these losses may happen
is still unknown.

Community climatic disequilibrium could, however, be reduced due to changes
in relative species abundance (Lenoir and Svenning 2015), by abundance increases
or immigration of better climatically adapted species, or by abundance decreases
or extinction of less climate suitable ones (Blonder et al. 2015). Eventually, rapid
reductions in community climatic disequilibrium would represent a sudden payment of
the community climatic debt, such as after extreme climatic events or as a consequence
of long-term accumulated changes in climatic conditions, when these exceed a critical
threshold (van Mantgem et al. 2009, Carnicer et al. 2011, Lenoir and Svenning 2015).

Extreme climatic events may act as environmental filters by removing less well-
adapted species, thereby triggering community re-assembly and abruptly reducing the
lag between community-inferred climate and observed climate (Lenoir and Svenning
2015). Significantly, this reduction is mainly likely to occur as long as extreme cli-
matic events push communities in the same direction as the trends in climate change
(Allen and Breshears 1998, Miriti et al. 2007, De Frenne et al. 2013, Grant et
al. 2016). In contrast, other aspects such as microhabitat, mutualistic species in-
teractions and species plasticity could buffer the impact of extreme climatic events,
preventing any major changes in species composition (Ackerly et al. 2010, Lloret and
Granzow-de la Cerda 2013, De Frenne et al. 2013, Valladares et al. 2014, Graae
et al. 2018). Particularly in arid environments, some microhabitat characteristics,
such as bedrock and soil properties, emerge as key determinants of plant community
composition (Maestre and Cortina 2002, Ulrich et al. 2014), reflecting the role of
soils as a major regulator of water availability through their water-holding capacity
(Cornwell and Ackerly 2009, Piedallu et al. 2013). Thus, soils and bedrocks could
buffer or exacerbate the impact of extreme drought events on vegetation, depending
on the belowground water uptake that they provide (McDowell et al. 2019).

In this study, we aim to quantify and compare the effect of extreme climate
episodes on community climatic disequilibrium, using a recent extreme drought event
which largely affected shrubland communities in the southeast Iberian Peninsula
(AEMET, 2014) as the study case. Using a community climate framework (Blon-
der et al. 2015), we estimated the community climatic disequilibrium before and
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after the drought event along a gradient of soil water-holding capacity determined by
three different types of bedrock. Climatic disequilibrium was calculated as the differ-
ence between community-inferred climate and observed climate, considering inferred
climate as the centroid of species climatic optimums weighted by species’ relative
abundance before and after the drought. This consideration of species abundance
is particularly relevant since studies on community climatic disequilibrium usually
obviate it (Gotelli et al. 2010, Blonder et al. 2015) and only consider species ex-
tinction and colonization. Indeed, local changes in abundance could be considered as
intermediate states of ongoing shifting composition (Maggini et al. 2011, Lenoir and
Svenning 2015) and they may be detectable anywhere within species range (Bowler
and Böhning-Gaese 2017). Specifically, we hypothesized that: (1) Extreme drought
episodes would act as environmental filters by pushing communities in the same di-
rection as recent trends in climate change, (in this case, increasing aridity (IPCC,
2014), leading to a reduction in the climatic disequilibrium. (2) Furthermore, the in-
teraction between drought and bedrock types with a low capacity for water retention
will exacerbate the disequilibrium reduction, while the interaction between drought
and those bedrock types with higher water-retention capacities will buffer against
climatic disequilibrium reduction. (3) According to its water retention capacity, site
bedrock will, by itself, influence variations in climatic disequilibrium, even under non-
extreme climatic conditions, reflecting buffer effects also towards non-extreme climate
variation.

5.3 Material and methods

We integrated local climatic data, species composition and abundance in local commu-
nities and species climate niches to build community climate diagrams which served
as the basis for estimating both the community-inferred climate and climatic disequi-
librium before and after the drought following Blonder et al. (2015).

Study area and field analyses

The study was carried out in three semiarid shrubland areas close to each other in the
southeast of the Iberian Peninsula, each with a different type of bedrock (Figure 5.1):
Cuatro Calas (1.63°W, 37.38°N) on sandstone, Moreras Mountain (1.32°W, 37.56°
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N) on limestone, and Calblanque Natural Park (0.74° W, 37.61° N) on metamorphic
bedrock of schist and slate. Moreover, these areas show relatively low human influence
as they are all located within protected areas (Natura 2000 network and Natural
Park).

All the sites fall under the Mediterranean xeric bioclimate (Rivas-Martínez et
al. 2017) and they share the same potential vegetation, with a great number of
medium-size and small shrubs such as Anthillys spp., Chamaerops humilis L., Genista
spp., Helianthemum spp., Periploca angustifolia Labill., Salsola spp., Sideritis spp.
and Teucrium spp., as well as some abundant long-lived grasses such as Macrochloa
tenacissima (L.) Kunth. The average climate (historical reference period 1970-2000)
is similar across the three sites, with a mean annual temperature of 18° C and annual
rainfall ranging between 245 and 275 mm (Worldclim version 2.0, Fick and Hijmans
2017) (Figure 5.1), with no significant differences in inter-annual precipitation vari-
ability (Appendix D Figure D.1). During the hydrological year 2013-2014 the Iberian
southeast suffered the most intense drought on record (since 1941, AEMET 2014),
causing extensive die-off and plant mortality in several forests and scrublands (Esteve-
Selma et al. 2015). During that year, in Cuatro Calas and the Moreras Mountain
(on sandstone and limestone bedrock, respectively), the accumulated rainfall was less
than 30% of the average precipitation for the reference period 1970-2000, while in Cal-
blanque (metamorphic bedrock) it amounted to around 65% of the average (Figure
5.1).

Soils in Cuatro Calas and the Moreras Mountain are Lithic Leptosols (around
10 cm in depth) (IUSS Working Group WRB 2015), while in Calblanque they are
Skeletic Regosol (i.e., around 1m in depth) (IUSS Working Group WRB 2015). In
each case, we estimated soil properties using three soil samples per bedrock type, each
one consisting of two replicates of the upper 10 cm. In each sample, we measured the
moisture content at field capacity (-0.5 MPa) and wilting point (-1.5 MPa) (Richards
and Weaver 1943, Richards 1954, Cassel and Nielsen 1986), as well as the organic
carbon content (Anne 1945, Duchaufour 1970) and particle size composition (Gee and
Bauder 1986) (see Appendix D Figure D.4 and Table D.1). Finally, we estimated the
annual water deficit of each plot during the extreme period, as the sum of the deficit
months, by considering the monthly precipitation of each plot, extractable water (field
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capacity – wilting point) and the monthly potential evapotranspiration (Thornthwaite
and Mather 1957). The soil in the Moreras Mountain (limestone bedrock) presented
the highest water retention capacity per soil volume unit, followed by the Calblanque
and Cuatro Calas soils (metamorphic and sandstone bedrock, respectively) (Figure
5.1 and Appendix D Figure D.5); nevertheless, the absolute extractable water was
higher in Calblanque than in the other localities, since it had the highest soil depth.

Figure 5.1: A) Study region within the Iberian Peninsula (SE region: grey
shading in the inset, upper left map) and studied localities within the SE
region, indicating study sites: (B) indicates Cuatro Calas locality (sandstone
bedrock), (C) Moreras Mountain (limestone bedrock) and (D) Calblanque
Natural Park (metamorphic bedrock). Soil water content available for the
top 15cm is shown in the bottom-left inset. B), C) and D) represent the om-
brothermic diagrams for Cuatro Calas, Moreras Mountain and Calblanque
Natural Park, respectively. Red lines correspond to temperatures while blue
lines correspond to precipitation. Solid lines correspond to average climatic
period (1970-2000, Worldclim v.2.0, Fick and Hijmans, 2017); dotted lines
correspond to data from the extreme climatic year (from Spanish Weather
Agency, AEMET). Light grey area represents average water deficit for the
average period and dark grey area represents extra water deficit for the ex-
treme year
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Community data

During January-March 2016, 30 replicated plots of 5×5m were established within
each area (total number of plots: 90), separated from each other by at least 25 m.
All plots presented a gentle low slope and a south or southeast orientation. On each
plot, we recorded the number of dead and living individuals from each woody species
(38 species in total). The dead individuals were identified according to the following
two criteria: (1) lack of green leaves and (2) presence of thin branches (to ensure
that they had not died long before the drought episode) (Sapes et al. 2017, Pérez
Navarro et al. 2018). In addition, we intentionally dismissed small and low-lignified
individuals with less than three whorls (indicating stem yearly elongation) in order
to avoid individuals established after the drought period. From these records, we
calculated the species’ relative abundance before and after the drought. Species’
relative abundance before drought was measured as the sum of surviving and dead
individuals per species/total of dead and surviving individuals, so considering that
each dead individual was alive before the extreme event). Very small individuals could
have died and disintegrated beyond recognition, but we assume that this eventuality
would occurred similarly in the different species and affected to a reduced number
of individuals. Species’ relative abundance after drought was measured as the sum
of surviving individuals from each species/total surviving individuals. We chose this
relative species abundances approach in our study since it is widely assumed that the
number of individuals is a good proxy for estimating species requirements (Sexton et
al. 2009, Thuiller et al. 2014).

Species occurrence data

The geographical distribution data from the 38 sampled species were collected from
the Global Biodiversity Information Facility (GBIF) database (GBIF 2019, http:
//www.gbif.org) and the herbarium of the Institut Botànic de Barcelona. The
species occurrence records were then scrubbed for taxonomic name (to remove any
non-accurate synonyms) and location (to remove taxonomic and geographic inconsis-
tencies). In order to deal with possible sampling bias, we also reduced the occurrence
density, for those datasets with more than 100 occurrences, by randomly thinning
species’ records to one observation per sq. km – equivalent to the grid resolution of
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climate dataset. The final datasets ranged from 60 to 7,000 observations per species.

Climate data

We used 12 bioclimatic variables for the reference period 1970-2000 (Worldclim ver-
sion 2.0, Fick and Hijmans 2017). These correspond to the observed climate, and all
were obtained with a 1 sq. km resolution: annual mean temperature, temperature
seasonality (standard deviation ×100), maximum temperature of warmest month,
minimum temperature of coldest month, mean temperature of warmest quarter, mean
temperature of coldest quarter, annual precipitation, precipitation of wettest month,
precipitation of driest month, precipitation seasonality (coefficient of variation), pre-
cipitation of wettest quarter and precipitation of driest quarter. We selected these 12
bioclimatic variables instead of the total 19 biovariables available in the Worldclim
database in order to facilitate subsequent interpretation, avoiding highly correlated
variables which correspond to those integrating temperature and precipitation infor-
mation (i.e. maximum temperature of driest quarter).

Community climate framework

To build the community climate diagram, we first used a Principal Component Anal-
ysis (PCA) to convert the environmental space of the 12 bioclimatic variables for
the 1970-2000 period (observed climate) into a two-dimensional surface defined by
the first and second principal components (Broennimann et al. 2012). The PCA
was built using climate data from all the occurrences sites of all the 38 analysed
species (Appendix D Table D.2) and it explained 78.5% of the 12 variables’ variabil-
ity (see Appendix D Figure D.2). We chose this multivariate climatic approach to
integrate all climate variables, weighting equally independent climate gradients and to
determine the overall displacement of the community-inferred climate after drought.
Furthermore, we explored the associated univariate relations to assist interpretation
of results.

We next characterized each species climatic niche by translating the geographi-
cal species occurrences into the environmental space and using kernel density functions
(Broennimann et al. 2012) (ks package version 1.11.3, Duong 2018) that allow deter-
mining density values for each cell of the environmental space. We applied Gaussian
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kernel, selected optimal bandwidth by cross-validation (Duong and Hazelton 2005),
and removed values under 0.05 percentile. In addition, we established the species
niche centroid as the gravity centre of the niche (i.e. mean of environmental values
weighted by species’ density). From that, we estimated the community-inferred cli-
mate for each of the 90 study plots, before and after the drought episode as the
centre of species realized niches by weighting each species’ climatic niche centroid by
its relative observed abundance in the plot.

We also translated the observed climate of each of the plots during the aver-
age period 1970-2000 (Worldclim version 2.0, Fick and Hijmans 2017) into the same
two-dimensional environmental space. Since the climate database has a 1000 m reso-
lution, almost all the plots within the same study area had the same observed climate
value. Both the observed climate, the species composition of a community and the
community-inferred climate can be seen on a community climate diagram (Figure
5.2). This approach follows that of Blonder et al. (2015) while also accounts for
species abundance, which is a relevant factor for describing community composition.
Finally, we also estimated a plot’s climatic disequilibrium as the Euclidean distance
(i.e., difference) in the PCA space between community-inferred climate and observed
climate, where values of 0 in climatic disequilibrium should be interpreted as the
complete equilibrium of community composition-inferred climate with the observed
climate period.

Statistical analyses

Following this approach, we obtained 30 disequilibrium values per bedrock type before
drought and 30 disequilibrium values per bedrock type after drought (one climatic
disequilibrium estimate per plot and period time). In order to evaluate the effects of
the extreme event and bedrock type on climatic disequilibrium, we built a linear mixed
model (lmerTest R package, version 3.0-1, Kuznetsova et al. 2017) with climatic
disequilibrium as the response variable and period (before and after drought), bedrock
type, and their interaction as explanatory ones. Plot was included as a random effect.
We then used least-square means (lsmeans R package, version 2.27-62, Lenth 2016)
to perform comparisons between bedrock types within period and differences between
periods within bedrock types. We used t-test within each bedrock type before the
extreme event to elucidate whether climatic disequilibrium values were significantly
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Figure 5.2: Example of community climate diagram (plot 29 of sandstone be-
fore drought). The panel shows a twodimensional projection of the climatic
space obtained from the PCA analysis with the twelve selected climatic vari-
ables (see Figure D.2 in Appendix D). Each colour dot represents a different
species niche centroid for those species present within the plot, sized by
observed species abundance. Species acronyms are listed in Table D.2 in
Appendix D. Black dot shows the community-inferred climate while black
triangle represents the observed plot climate (1970-2000, Worldclim v.2.0,
Fick and Hijmans, 2017), translated into this two-dimensional climatic sur-
face. Grey arrow represents the climatic disequilibrium between observed
and inferred climate.

different than 0 and community inferred climate were not in equilibrium before the
extreme drought. Finally, using the abovementioned methods, we also ran univariate
analyses of changes in disequilibrium per each climatic variable within each bedrock
type, by using similar mixed models with disequilibrium values per each variable
separately as a response variable, period as an explanatory variable and plot as a
random effect.
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5.4 Results

Community climatic disequilibrium showed considerable variations between commu-
nities before and after drought, and between communities located in different bedrock
types. In general, disequilibrium was higher before the drought (Table 5.1, Table 5.2)
and considerably reduced after drought, with important differences of magnitude be-
tween bedrock types (Table 5.2, Figure 5.3). Sandstone communities showed the
highest change, with a significant decrease in community climatic disequilibrium of
11.34% (from 2.47 mean disequilibrium before drought to 2.19 after drought) (Table
5.1). Climatic disequilibrium in the limestone plots also showed a significant decrease,
of 3.81% from 2.89 mean disequilibrium before drought to 2.78 after drought (Table
5.1). In contrast, plots located in the area with metamorphic bedrock did not show
significant changes in climatic disequilibrium (2.97 mean disequilibrium before and
2.98 mean disequilibrium after the drought).

Figure 5.3: Community climatic disequilibrium (distance between inferred
and observed climate in the community climate diagram) before and after
the extreme drought event in the three studied bedrock types. Asterisks
indicate significant decrease in climatic disequilibrium after drought in the
respective bedrock type; different letters (a,b) indicate significant differences
in climatic disequilibrium between bedrock type (lsmeans pairwise test) be-
fore drought; the various symbols (α, β) indicate significant differences in
climatic disequilibrium between bedrock type (lsmeans pairwise test) after
drought
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Table 5.1: Mean and standard deviation of Climatic Disequilibrium
(CD) before and after drought in each bedrock type; asterisks indicate
significant difference from 0.

bedrock mean CD before sd CD before mean CD after sd CD after

sandstone 2.474 0.645 2.197 0.598
limestone 2.891 0.367 2.777 0.431
metamorphic 2.965 0.550 2.978 0.650

Statistical significant levels: "." p<0.1 ; "*" p<0.05 ; "**" p<0.01 ; "***"
p<0.001

As regards the individual climatic variables, the highest significant reduction
in climatic disequilibrium was observed in the precipitation of driest month and the
driest quarter in all three bedrocks (Appendix D Figure D.3). While plots in the
sandstone bedrock showed significant changes in climatic disequilibrium in almost
all the climatic variables, plots in the metamorphic and limestone bedrocks showed
significant changes in only a few variables, mostly related to precipitation (Appendix
D Figure D.3).

We also found that climatic disequilibrium values differed between bedrock
types both before and after the drought and always showed distributions with mean
values significantly different from 0 (Table 5.1). Particularly, sandstone had signif-
icantly lower disequilibrium than the other two bedrock types before and after the
drought (Figure 5.3 and Appendix D Table D.3). In addition, these disequilibrium
differences between sandstone plots with its metamorphic and limestone counterparts
were even higher after the extreme drought (Figure 5.3 and Appendix D Table D.3).



90 5. Climatic disequilibrium reduction in dryland communities

Table 5.2: Results of mix models explaining community climatic dise-
quilibrium as a function of bedrock type (sandstone, limestone, meta-
morphic), time period (before or after the extreme event) and their
interaction (bedrock type: time period) with plot as random effect
variable.

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 2.778 0.100 99.335 27.642 0.000 ***
bedrock metamorphic 0.200 0.142 99.335 1.410 0.162
bedrock sandstone -0.580 0.142 99.335 -4.084 0.000 ***
time before 0.113 0.052 87 2.186 0.032 *
bedrock metamorphic : time before -0.126 0.073 87 -1.720 0.089 .
bedrocks andstone : time before 0.164 0.073 87 2.236 0.028 *

Statistical significant levels: "." p<0.1 ; "*" p<0.05 ; "**" p<0.01 ; "***" p<0.001

5.5 Discussion

Impact of extreme drought on climatic disequilibrium

We found that those communities living on areas subject to more severe water limita-
tions during the extreme drought year significantly reduced their climatic mismatch
with respect to the average contemporary climate (Figure 5.3), endorsing the role
of extreme climatic events as drivers of community assembly (Jentsch et al. 2007,
Lenoir and Svenning 2015). Hence, our results support that extreme climatic events
would act as environmental filters that remove species with niches conferring low
performance (here, species associated to relatively moist climate) in favour of those
more adapted to the new climatic circumstances (here, associated to relatively dry
climate) (Keddy 1992, Diaz et al. 1998, Grant et al. 2016).

We note that this effect of extreme events, like the drought in our study case,
likely only caused a reduction in community climatic disequilibrium because it acted
as a pressure in the same direction as the prevailing climatic trends (in this case,
increasingly arid conditions, Guiot and Cramer 2016), instead of producing random
or stochastic changes in community composition (Kreyling et al. 2011). Therefore, the
drought episode pushed communities to faster track the changing climate (Easterling
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et al. 2000). Actually, this directional pressure in favour of more arid-adapted species
is further supported by the fact that climate variables related with precipitation
showed the highest reductions in community disequilibrium in the univariate analyses
(Appendix D Figure D.3).

This explicit influence of the extreme drought on community composition is
also consistent with the prevalence of environmental filtering as the main carver of
community structure under harsh environmental conditions (Valladares et al. 2008, de
la Riva et al. 2017, Li and Shipley 2018). It is supposed that extreme climatic events
lead to fast ecological shifts and dramatic changes in local abundance in comparison
with gradual changes in climatic trends (Svenning and Sandel 2013). However, the
impact of extreme climatic events on community composition may remain unnoticed
in the long term, being confounded with gradual changes, as extreme climatic events
occur in pulses as part of larger climate trends (Easterling et al. 2000).

Bedrock and soil modulate vegetation response to climate

Despite the potential impact of extreme events on communities, they do not always
imply changes in community climatic mismatch. Community compositional changes
could be buffered by the intrinsic characteristics of plant communities, such as species
longevity, biotic interactions (facilitation), as well as species’ phenotypic plasticity
and adaptation (Benito Garzón et al. 2011, Svenning and Sandel 2013, Blonder et
al. 2017). In addition, local-scale environmental factors, such as ecosystem struc-
ture, topoclimatic variability and edaphic characteristics likely play an important
role (Lenoir et al. 2013, Svenning and Sandel 2013, De Frenne et al. 2013).

Since our study system is dominated by species with relatively short lifespans,
climatic mismatch cannot be attributed to plant longevity, which is often the main
cause of communities’ climatic mismatch on the trailing edge (Svenning and Sandel
2013). In contrast, our study highlights the importance of local-scale environmental
factors such as bedrock and associated soil properties. Although our study design
(with all same bedrock plots blocked within the same site) prevent us to separate
the effect of soil and bedrock from other local circumstances, soils could be one
of the main reasons explaining differences in climatic disequilibrium, particularly
because the analysed plots were particularly homogeneous in terms of topography and
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vegetation structure. The sandstone area had the lowest climatic mismatch during the
reference period, although this was still significantly higher than 0 (Table 5.1), among
other possible reasons because its soil structure and low water retention capacity
exacerbates arid climatic conditions (Figure 5.3). In contrast, metamorphic bedrock,
which has a high water retention capacity and deep soil, showed the highest historical
climatic disequilibrium (Figure 5.3). The relevance of soil properties, largely due
to bedrock characteristics, on community composition has been widely recognized,
(Prentice et al. 1992, Kruckeberg 2002, Fridley et al. 2011); actually, the interaction
between climate and soils can contribute to decouple the species-climate relationship
(Fridley et al. 2011, Ulrich et al. 2014, Simpson et al. 2016, Pérez-Ramos et al. 2017,
Davis et al. 2019).

In addition to site differences before drought, our results also revealed differences
in the magnitude of disequilibrium change between sites during the extreme event.
While differences in disequilibrium change between metamorphic and the other two
bedrocks could also be due to the higher precipitation in the metamorphic site during
the extreme event (Figure 5.1), differences in disequilibrium changes between lime-
stone and sandstone could not be linked to different water deficits during the drought
(limestone and sandstone, Figure 5.4). Although not significant, the quantitative
differences between sandstone and limestone plots could be related to soil properties.
For example it could be due to lower nutrient content and higher C:N ratio of sand-
stone plots (Appendix D Table D.2). This low soil nutrient content has often been
related to low plant resistance to drought (Ashraf et al. 2011, Lévesque et al. 2016).
So, including soil properties in biogeographical analyses would improve our under-
standing of species distribution, community structure and vegetation’s responses to
climate change (Bertrand et al. 2012, Piedallu et al. 2013, Lévesque et al. 2016).

Considerations about community climate (disequilibrium) characterization

There are, however, some methodological limitations to plant community analysis
based on species’ bioclimatic characterization. Firstly, the climatic niches represented
here are equivalent to species realized niches as far as they derive from contemporary
observational species occurrences (which implicitly include biotic interactions and an-
thropogenic impacts) (Kearney 2006), and therefore, they do not necessarily portray
species’ physiological optimums (Murphy et al. 2006, Blonder et al. 2015). Currently,
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Figure 5.4: Change in climatic disequilibrium respect to annual water deficit
of the three different bedrock types during the extreme drought event. An-
nual water deficit was calculated as the sum of monthly deficits. Change in
climatic disequilibrium was calculated as disequilibrium before drought mi-
nus disequilibrium after drought. Different letters (a,b) indicate significant
differences in changes in climatic disequilibrium between bedrock types.

this limitation could only be overcome for few species with available experimentally-
derived response curves (Araújo et al. 2013). Secondly, since species are considered
uniform entities constant over time, this approach neglects local or temporal adapta-
tion, that could endow a population with different environmental requirements from
the mean niche requirements of its species (Benito Garzón et al. 2011, Svenning and
Sandel 2013). This assumption could be particularly important in our analyses since
most of the species were located on the margins of their geographical range, where
populations are particularly prone to show deviant local adaptations (Hampe and Pe-
tit 2005, Valladares et al. 2014, Solarik et al. 2018). Finally, special caution should be
taken as regards occurrence and climate databases. Since community-inferred climate
relies on every single species’ climatic niche, any bias in the estimation of individual
species’ niches will be also propagated to community-scale statistics (Blonder et al.
2017). In order to reduce possible bias, we standardized the bandwidth selection for
all the species (Blonder et al. 2014) and visually checked every species’ niche to rule
out any overfitting. With respect to climate databases, both community-inferred cli-
mate and observed climate are frequently computed on the basis of a relatively coarse
spatial resolution (i.e., 1 sq. km) that fails to capture the local climatic conditions
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(at 10- to 100-m resolution) actually experienced at population level (Fridley 2009,
Randin et al. 2009, Ackerly et al. 2010, Lenoir et al. 2013).

In addition to these general limitations, we overcame another habitual con-
straint on bioclimatic-based community analysis, namely equal weighting of species
(Gotelli et al. 2010, Blonder et al. 2015), by comparing species abundance data
before and after the extreme climatic episode. This allowed us to detect more subtle
impacts on species abundance relative to the total loss of a local population, which
can be considered as proxies of intermediate states of ongoing range shifts, before
changes in the overall range could be detected (Parmesan 2006, Maggini et al. 2011,
Lenoir and Svenning 2015).

Implications for plant communities under climate change

Our results confirm a community trend to be dominated by species living in more
arid environments in contexts of increasing drought, in addition to the generally
expected tendency towards increases in warm-adapted species to the detriment of
species adapted to cooler conditions (Barry et al. 1995, De Frenne et al. 2013).
The predicted increase in the recurrence of heat waves and extreme drought events
associated with climate change (IPCC, 2014) will foreseeably favour communities
tracking the new climate, particularly if communities’ resistance is overwhelmed by
the magnitude or recurrence of extreme events. Moreover, reduced resilience would be
especially dangerous in arid environments, as it could trigger desertification processes
(Vicente-Serrano et al. 2013).

However, large uncertainty is still present in predictions of community responses
to climate change, notably since they are frequently based on species distribution ap-
proaches, which commonly disregard lags between species ranges and climate (Blonder
et al. 2017, Gaüzère et al. 2018), as well as rarely incorporate biotic effects and their
interaction with abiotic processes. Actually, changes in the species abundance of plant
communities induced by extreme events would also alter the strength and direction
of biotic interaction and coexistence dynamics (Thibault and Brown 2008, Grant et
al. 2016), which may lead to more stochastic community trajectories (Kreyling et
al. 2011, Alexander et al. 2016, Cadotte and Tucker 2017). Disregarding community
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climatic disequilibrium and coexistence dynamics could lead to misleading conclu-
sions on diversity dynamics under climate change. Our results highlight the impact
of extreme climatic events, such as strong droughts, on community assembly. Our
case study illustrates how such events may act as catalyst of species filtering driven
by climate change, accelerating species tracking of climate and associated commu-
nity change. At the same time, community responses to these events are modulated
by local environmental conditions such as soil characteristics, particularly as regards
water availability. Therefore, the improvement of community predictability under
climate change will require better understanding of the interactions between local
environmental drivers and species requirements and interactions, particularly when
large perturbations affect the dynamics of species coexistence. Our approach is based
on the bioclimatic characterization of the community by scaling-up species’ niches
using a biogeographic perspective. This approach has proved valuable for assessing
the effect of climate change on plant communities in the short and medium term,
particularly when extreme episodes occur.
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General conclusions

• Historical climatic suitability derived from Species Distribution Models (SDMs)
showed to be a useful proxy to explain drought-induced population decay, inde-
pendently of the SDM algorithm applied. In the studied semiarid communities
of SE Spain, species with lower historical climatic suitability, i.e., historically
located further from species climatic optimum, showed to be more vulnerable
to decay.

• Populations’ climatic suitability during the extreme episode failed to explain
species green canopy losses in the studied community. Presumably, the excep-
tional climatic conditions during the extreme episode lead to extremely low
climatic suitability values indistinctly for all species, hindering to obtain con-
trasted values between species and preventing any possible significant correla-
tion with decay.

• Extremely low climatic suitability values could derive, in part, as a consequence
of the non-inclusion of temporal climatic variability in species niche charac-
terization. Climatic suitability derived from species niche which accounted for
inter-annual climatic variability better explained observed patterns of monospe-
cific (Pinus halepensis) forest mortality than climatic suitability derived from
climate averaged-based niches.

• Populations living in the environmental space located between the niches de-
rived from inter-annual climate and from average climate, are likely wrongfully
estimated to be out of the niche space when using average climatic variables,
so, not showing correlation between demographic processes associated to decay
and niche suitability.
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• Differences between climatic inter-annual based and average based niches were
relatively higher in species with restricted distribution ranges, in comparison
with widely distributed species, suggesting that, in the Mediterranean context,
spatial variability may compensate for temporal variability. So, when character-
izing species niches with climatic averages, these species are expected to exhibit
overestimated extinction inferred risk and smaller potential distribution range.

• In contrast to SDMs-derived climatic suitability, population distances in the
environmental space to species’ niche limit and centroid properly explained
population performance responses when population climatic conditions exceed
niche range boundaries, such as during extreme climatic events. In particular,
those populations further displaced during the extreme climatic episode from
species niche limit and centroid showed to be more prone to decay.

• Extreme climatic events pushing communities in the same direction as the pre-
vailing climatic trends led community composition to be re-sorted in favor of
those species with climatic niche optimum closer to the current climate, as evi-
denced by the reduction of climatic disequilibrium between Community Inferred
Climate and contemporary observed climate during an extreme drought episode
nested within a decadal trend of increasing aridity.

• Soils in different types of bedrock, mainly via water holding capacity, can mod-
ulate population responses under extreme drought climatic events, therefore
exacerbating or buffering the effect of extreme drought events on community
assembly. Those soils with higher water retention capacity buffered extreme
drought impact on less drought adapted species and hindered for considerable
reductions in community climatic disequilibrium.
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Figure A.1: Multivariate Environmental Similarity Surface (MESS) analy-
sis between Worldclim data base and Spanish climatic data base following
Ninyerola and others 2000 and climatic data from iberian climatic atlas for
1950-2000 period. Negative values mean dissimilarities between the two data
bases. BIO3= Isothermality, BIO4= Temperature Seasonality, BIO8= Mean
Temperature of Wettest Quarter, BIO9= Mean Temperature of Driest Quar-
ter, BIO12= Annual Precipitation and BIO15= Precipitation Seasonality.
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Figure A.2: Above: Area Under ROC Curve (AUC) by specie and models.
Vertical lines represent AUC standard deviation interval of each model while
horizontal lines show AUC mean values. Below: Boyce index values by specie
and models. Vertical lines represent standard deviation for Boyce values
while horizontal lines show Boyce mean values. Notice that the species
order is different for each plot.
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Figure A.3: Multivariate Environmental Similarity Surface (MESS) analysis
for the Region of Murcia. Bio3 to Bio15 shows the similarity between the
new environment (extreme episode 2013-2014) and the environments use
to calibrate the model (historic period 1950-2000) for each different vari-
ables implemented in the models. BIO3= Isothermality, BIO4= Temper-
ature Seasonality, BIO8= Mean Temperature of Wettest Quarter, BIO9=
Mean Temperature of Driest Quarter, BIO12= Annual Precipitation and
BIO15= Precipitation Seasonality. Negative values are indicative of envi-
ronmental dissimilarities between variables. Note that bio15 (precipitation
seasonality) is the main contributor to final MESS. Black square represents
the study site location.
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Figure A.4: HCS averaged values of the sample plots by species for each
implemented model.
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Figure A.5: Pearson correlation values among different implemented models
for HCS. Significant values are highlighted in bold. Correlation plots are
also shown
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for ECS. Significant values are highlighted in bold. Correlation plots are
also shown.
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Anthyllis cytisoides Artemisia barrelieri

Artemisia campestris sub. glutinosa Asparagus horridus

Cistus albidus Cistus clusii

Daphne gnidium Dorycnium pentaphyllum

Helianthemum syriacum Juniperus oxycedrus

Juniperus phoenicea Lithodora fruticosa



106 Appendix A. Appendix Chapter 2

Ononis fruticosa Pistacia lentiscus

Quercus coccifera Rhamnus lycioides

Rosmarinus officiinalis Salsola genistoides

Sideritis leucantha Stipa tenaccisima

Teucrium capitatum Thymus hyemalis

Figure A.7: Filtered occurences of every analized species.
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Figure A.8: Suitability maps obtained from Mahalanobis distance. Note
that Mediterranean basin maps were used to project the models under 1950-
2000 average conditions, while Region of Murcia maps were used to project
the models under extreme hydrological year 2013-2014.
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Figure A.9: Suitability maps obtained from Generalize Additive Models
(GAM). Note that Mediterranean basin maps were used to project the mod-
els under 1950-2000 average conditions, while Region of Murcia maps were
used to project the models under extreme hydrological year 2013-2014.
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Figure A.10: Suitability maps obtained from Boosted Regression Trees
(BRT). Note that Mediterranean basin maps were used to project the mod-
els under 1950-2000 average conditions, while Region of Murcia maps were
used to project the models under extreme hydrological year 2013-2014.
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Figure A.11: Suitability maps obtained from MaxEnt. Note that Mediter-
ranean basin maps were used to project the models under 1950-2000 average
conditions, while Region of Murcia maps were used to project the models
under extreme hydrological year 2013-2014.
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Table A.1: Pearson correlation values comparing visual drought esti-
mate and defoliation directly measure by centimeters, for each mea-
sured species. N is the number of measured individual for all study
site.

Species N Pearson corr

Anthyllis cytisoides 60 0.919
Artemisia barrelieri 90 0.938
Artemisia campestris 10 0.966
Asparagus horridus 10 0.935
Cistus albidus 10 0.701
Cistus clusii 86 0.978
Daphne gnidium 20 0.720
Dorycnium pentaphyllum 50 0.935
Fumana ericoides 90 0.984
Helianthemum syriacum 30 0.935
Juniperus oxycedrus 44 0.899
Juniperus phoenicea 10 0.901
Lithodora fruticosa 10 0.882
Ononis fruticosa 40 0.851
Pistacia lentiscus 50 0.889
Quercus coccifera 70 0.961
Rhamnus lycioides 25 0.890
Rosmarinus officinalis 100 0.860
Salsola genistoides 15 0.821
Sideritis leucantha 13 0.880
Stippa tenacissima 100 0.952
Teucrium capitatum gracillimum 44 0.873
Thymus hyemalis 100 0.946

Table A.2: Median and range values for Historical Climatic Suitability
(HCS) and Episode Climatic Suitability (ECS) of different SDM applied
for the co-occurring species in the studied community.

X1 mahal GAM BRT MaxEnt

HCS range 0.902 - 0.031 0.965 - 0.613 0.992 - 0.332 0.751 - 0.121
HCS median 0.5423 0.845 0.8527 0.3632
ECS range 8.267x10-7 - 0 0.303 - 2.22x10-16 0.104 - 1.26x10-3 0.084 - 1.51x10-5
ECS median 4.83x10-16 0.0032 0.0053 0.0034
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Figure B.1: Climatic anomaly of the extreme climatic year 2013-2014 in
the Spanish SE. Temperature anomaly is measured as degrees change re-
spect to the average for the period 1970-2000, while precipitation anomaly
is estimated as relative change (%) respect to the average period 1970-2000.
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Figure B.2: Correlation circle obtained from PCA from the twelve selected
climatic variables. Where BIO1= Annual Mean Temperature, BIO4= Tem-
perature Seasonality (standard deviation×100), BIO5= Max Temperature of
Warmest Month, BIO6= Min Temperature of Coldest Month, BIO10= Mean
Temperature of Warmest Quarter, BIO11= Mean Temperature of Coldest
Quarter, BIO12= Annual Precipitation, BIO13= Precipitation of Wettest
Month, BIO14= Precipitation of Driest Month, BIO15= Precipitation Sea-
sonality (Coefficient of Variation), BIO16= Precipitation of Wettest Quar-
ter, BIO17= Precipitation of Driest Quarter. The PCA was calibrated using
climatic data from the total filtered 9,959 occurrences of Pinus halepensis
occurrences from the Spanish National Forest Inventory (IFN). First and
second axes contained 60% of explained variability. The variables’ color
represents the percentage of each variable’ contribution to the PCA.
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Figure B.3: Populations located in the niche space that is not shared by the
average-based and the inter-annual variability-based niches. Orange region
represents the area of the variability-based niche that is not included within
the average-based niche area.
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Figure B.4: Model explained R2 depending on population subset, where
response variable was plot mortality percentage and explanatory variables
was plot climatic suitability. X axis ranged from 0 percentage of population
located in the non-shared niche space by inter-annual and average-based
niches to 100. Blue color represent R2 values obtained with climatic suit-
ability derived from the average-based niche while yellow color represent
R2 values obtained with climatic suitability derived from the inter-annual
variability-based niche.
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Figure B.5: Correlation circle obtained from PCA from the twelve selected
climatic variables. Where BIO1= Annual Mean Temperature, BIO4= Tem-
perature Seasonality (standard deviation×100), BIO5 = Max Temperature
of Warmest Month, BIO6= Min Temperature of Coldest Month, BIO10
= Mean Temperature of Warmest Quarter, BIO11= Mean Temperature
of Coldest Quarter, BIO12= Annual Precipitation, BIO13= Precipitation
of Wettest Month, BIO14 = Precipitation of Driest Month, BIO15= Pre-
cipitation Seasonality (Coefficient of Variation), BIO16= Precipitation of
Wettest Quarter, BIO17 = Precipitation of Driest Quarter. The PCA was
calibrated using climatic data from the total filtered 116,835 occurrences
from the Spanish National Forest Inventory (IFN) and gbif.org for all the
42 selected species. First and second axes contained 60.8% of explained
variability. The variables’ color represents the percentage of each variable’
contribution to the PCA.
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Table B.1: Species used for analyses of changes in niche space de-
pending on species climatic range. Table shows area of average based-
niche (niche area av), inter-annual based-niche (niche area in), niche
rate (area of average based-niche/area of inter-annual variability based-
niche) and species’ distribution range, where endemic SE means species
endemic from the Spanish south east and mediterraneean occ means
species mostly distributed in the west of the Mediterranean basin.

Species Niche area av Niche area in Niche rate Distr range

Anthyllis terniflora 8.185 21.856 2.670 endemic SE

Artemisia barrelieri 12.619 34.393 2.725 endemic SE

Asparagus horridus 37.065 59.544 1.606 mediterranean

Chamaerops humilis 19.124 39.579 2.070 iberoafrican

Cistus clusii 15.010 35.679 2.377 mediterranean occ

Cistus monspeliensis 35.642 64.681 1.815 mediterranean

Coronilla juncea 19.049 39.719 2.085 mediterranean occ

Dorycnium pentaphyllum 33.890 61.624 1.818 mediterranean occ

Frankenia corymbosa 8.917 26.437 2.965 iberoafrican

Fumana ericoides 35.136 65.437 1.862 mediterranean occ

Fumana laevipes 19.356 39.366 2.034 mediterranean occ

Fumana thymifolia 35.459 62.157 1.753 mediterranean

Genista valentina 8.635 30.559 3.539 endemic SE

Globularia alypum 22.391 46.018 2.055 mediterranean

Helianthemum syriacum 18.758 39.410 2.101 mediterranean

Helianthemum violaceum 18.513 40.585 2.192 iberoafrican

Helianthemum viscarium 6.997 21.046 3.008 iberoafrican

Helichrysum stoechas 31.154 56.958 1.828 mediterranean

Hyparrhenia hirta 31.256 58.032 1.857 iberoafrican

Launaea arborescens 22.925 46.767 2.040 iberoafrican

Launaea lanifera 9.986 25.835 2.587 iberoafrican

Lavandula dentata 26.418 47.171 1.786 iberoafrican

Lycium intricatum 13.456 33.463 2.487 iberoafrican

Lygeum spartum 16.895 35.325 2.091 iberoafrican

Paronychia suffruticosa 23.259 50.011 2.150 endemic SE

Periploca angustifolia 6.763 25.751 3.808 iberoafrican

Phagnalon rupestre 43.312 70.418 1.626 mediterranean

Phagnalon saxatile 37.291 62.075 1.665 mediterranean

Pinus halepensis 20.781 41.029 1.974 mediterranean occ

Rhamnus lycioides 34.148 60.770 1.780 mediterranean

Rosmarinus officinalis 35.674 62.756 1.759 mediterranean

Salsola genistoides 6.980 20.683 2.963 endemic SE

Salsola oppositifolia 10.617 24.630 2.320 iberoafrican

Salsola papillosa 4.144 14.237 3.435 endemic SE

Satureja obovata 17.471 40.550 2.321 mediterranean occ

Sideritis ibanyezii 3.161 12.455 3.940 endemic SE

Stipa tenacissima 18.355 37.528 2.045 iberoafrican

Teucrium capitatum 14.707 31.387 2.134 mediterranean occ

Teucrium freynii 5.638 17.164 3.044 endemic SE

Teucrium lanigerum 3.424 13.174 3.847 endemic SE

Thymelaea hirsuta 22.451 44.471 1.981 mediterranean

Thymus hyemalis 5.540 18.523 3.344 endemic SE
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Table B.2: GLM binomial model results relating species decay (as bi-
nary or continuous response) with species niche suitability obtained
from average-based and from inter-annual variability-based models.
Models R2 and AIC are given in the main text (Figure 3.3).

Dataset Response Explanatory Estimate SE Pvalue

interannual binary intercept -0.58 0.05 <0.001

suitability -4.40 0.26 <0.001

interannual continuous intercept -0.53 0.19 0.006

suitability -5.70 1.40 <0.001

average binary intercept -1.02 0.04 <0.001

suitability -3.80 0.28 <0.001

average continuous intercept -0.84 0.16 <0.001

suitability -7.02 2.08 <0.001

Table B.3: Model results relating models explanatory capacity (R2)
in relation to the percentage of populations located in the non-shared
area between the two niche estimations (average-based and inter-annual
variability-based niche). R2 were obtained by models that relate decay
records as continuous response with different subsets of the records,
in order to simulate the different percentages of population located in
the non-shared area. Explanatory variables of the model are: corona
percentage (percentage of population located in the non-shared niches
area), niche model (averaged-based or inter-annual variability-based
and n (number of records of the model, which varies from 118 to 264).

Explanatory Estimate SE Pvalue R2= 0.954

Intercept 0.387 0.000472 <0.001

corona percentage -0.379 0.000457 <0.001

dataset interannual 0.0157 0.000331 <0.001

n 2.18x10-5 1.5x10-6 <0.001

Corona percentage : dataset interannual 0.0872 0.000632 <0.001

Table B.4: Model results with ratio of niche area (inter-annual
variability-based niche area/average-based area) as response variable
and log(average-based niche area) and distribution range as explana-
tory variables.

Explanatory Estimate SE Pvalue R2 = 0.895

Intercept (SE endemic) 4.79 0.16 <0.001

Log(niche area average) -0.85 0.08 <0.001

Distrib ib af -0.12 0.11 0.279

Distribmed -0.06 0.15 0.701

Distribmed occ -0.14 0.13 0.299
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Figure C.1: Ombrothermic diagrams for A) Cuatro Calas, B) Moreras Moun-
tain and C) Calblanque Natural Park, respectively. Red lines correspond to
temperatures, and blue lines correspond to precipitation. Solid lines cor-
respond to the reference climatic period (1979-2012, Chelsa v.1.2, Karger
et al. 2017) and dotted lines correspond to extreme climatic year (2013-
2014) (data from Spanish Weather Agency, AEMET). Vertical blue and red
lines over the reference period lines show Standard Error estimated for each
month in the period 1979-2012.

Figure C.2: Soil particle composition of the three different study sites’
bedrocks (i.e., Moreras’ Mountain, Calblanque Natural Parck, and Cuatro
Calas, respectively to this graphic order. Yellow colour represents the pro-
portion of sands, orange the proportion of clays and 30 dark orange the
proportion of silts.
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Figure C.3: Correlation circle obtained from PCA from the twelve selected
climatic variables. Where BIO1 = Annual Mean Temperature, BIO4 = Tem-
perature Seasonality (standard deviation×100), BIO5 = Max Temperature
of Warmest Month, BIO6 = Min Temperature of Coldest Month, BIO10=
Mean Temperature of Warmest Quarter, BIO11 = Mean Temperature of
Coldest Quarter, BIO12 = Annual Precipitation, BIO13 = Precipitation of
Wettest Month, BIO14 = Precipitation of Driest Month, BIO15 = Precipita-
tion Seasonality (Coefficient of Variation), BIO16 = Precipitation of Wettest
Quarter, BIO17 = Precipitation of Driest Quarter. The PCA was calibrated
using climatic data from the total filtered 106,876 occurrences from gbif.org
for all the 38 sampled species. The first and second axes contained 60.8%
of explained variability. The variables’ colour represents the percentage of
each variable’ contribution to the PCA.
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Figure C.4: Correlation circle obtained from PCA calibrated with the five
climatic variables included in SDMs (MaxEnt) using climatic data from the
total filtered 106,876 occurrences from gbif.org for all the 38 sampled species.
In order to discard difference between environmental spaces calibrated with
the first 12 variables (Figure S3) instead of this 6 variables. We calculated
the pearson correlation between the contribution of these 6 variables in both
calibrated pca. We obtained a correlation of -0.9425 for axis 1, and 0.9115
for axis 2. BIO1 = Annual Mean Temperature, BIO4 = Temperature Sea-
sonality (standard deviation×100), BIO10 = Mean Temperature of Warmest
Quarter, BIO12 = Annual Precipitation, BIO15 = Precipitation Seasonality
(Coefficient of Variation), BIO17 = Precipitation of Driest Quarter. The
PCA was calibrated using climatic data from the total filtered 106,876 oc-
currences from gbif.org for all the 38 sampled species. The first and second
axes contained 63.6% of explained variability. The variables’ colour repre-
sents the percentage of each variable’ contribution to the PCA.
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Figure C.5: Remaining Green Canopy (RGC) in relation to population dis-
tances during the reference period 1979-2012 to their respective species niche
centroid (A) and to the closest point of the niche limit (B),.; Mortality per-
centage in relation to population distances during the reference period 1979-
2012 to their respective species niche centroid (C) and to the closest point of
the niche limit (D). In all four cases, only the subset of populations located
within the niche were considered. Yellow dots show distances of populations
located in Moreras’ Mountain (limestone bedrock), magenta dots show dis-
tances of populations located in Calblanque Natural Parck (metamorphic
bedrock) and blue dots show distances of populations located in Cuatro
Calas (sandstone bedrock). Yellow, magenta and blue lines represent the
regression lines of the model for each bedrock type. Each panel also shows
R2 model values and ANOVA P-values (Pv) for testing significance of niche
distances.
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Figure C.6: Multivariate Environmental Similarity Surface (MESS) analysis
for the South East of the Iberian Peninsula. We calculated the median
similarity between the new environment (extreme episode 2013-2014) and
the environment used to fit each species model (average reference period
1979-2012 CHELSA database) for each variable implemented in our models.
Negative values are indicative of high environmental dissimilarities between
variables.

Table C.1: Carbon and nitrogen content of each studied bedrock, fol-
lowing (Anne 1945, Duchaufour 1970) method.

Bedrock Locality Replicate Organic C (g/100g) Total N (g/100g) C:N ratio

C1 1.42 0.19 7.47

Metamorphic Calblanque C2 1.22 0.17 7.18

C3 3.91 0.31 12.61

H1 0.71 0.06 11.83

Sandstone Cuatro Calas H2 0.94 0.09 10.44

H3 1.09 0.09 12.11

M1 3.17 0.35 9.06

Limestone Moreras M2 1.83 0.22 8.32

M3 2.52 0.23 10.96
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Table C.2: Summary table of analysed species found in the different
study sites. The table shows the species codes used in climatic diagrams
and the species families, as well as the study area in which they were
found. In the latter column, S represents Cuatro Calas area (sandstone
bedrock), M Calblanque area (metamorphic bedrock) and L Moreras
Mountain area (limestone bedrock).

SPECIES NAME SPECIES CODE FAMILY LOCALITY

Anthyllis terniflora ATER Leguminosae S

Artemisia barrelieri ABAR Asteraceae S, M

Asparagus horridus AHOR Asparagaceae S, L, M

Chamaerops humilis CHUM Arecaceae M

Cistus Clusii CCLU Cistaceae S, M

Cistus monspeliensis CMON Cistaceae M

Coronilla juncea CJUN Leguminosae M

Dorycnium pentaphyllum DPEN Leguminosae M

Frankenia corymbosa FCOR Frankeniaceae S, M

Fumana ericoides FERI Cistaceae S, L, M

Fumana laevipes FLAE Cistaceae L, M

Fumana thymifolia FTHY Cistaceae L

Genista valentina GVAL Leguminosae L

Globularia alypum GALY Plantaginaceae L

Helianthemum syriacum HSYR Cistaceae M

Helianthemum violaceum HVIO Cistaceae S, L

Helianthemum viscarium HVIS Cistaceae S

Hyparrhenia hirta HHIR Poaceae L

Launaea arborescens LARB Asteraceae S, L, M

Launaea lanifera LLAN Asteraceae S, L

Lavandula dentata LDEN Lamiaceae S

Lycium intricatum LINT Solanaceae S, M

Lygeum spartum LSPA Poaceae M

Paronychia suffruticosa PSUF Caryophillaceae M

Periploca angustifolia PANG Apocynaceae S, L

Rosmarinus officinalis ROFF Lamiaceae S, L, M

Salsola genistoides SGEN Amaranthaceae S, L

Salsola oppositifolia SOPP Amaranthaceae S

Salsola papillosa SPAP Amaranthaceae M

Satureja obovata SOBO Lamiaceae L

Sideritis ibanyezii SIBA Lamiaceae S, M

Stipa tenacissima STEN Poaceae S, L, M

Teucrium capitatum TCAP Lamiaceae S, M

Teucrium freynii TFRE Lamiaceae L

Teucrium lanigerum TLAN Lamiaceae S, L

Thymelaea hirsuta THIR Thymelaeaceae S, L, M

Thymus hyemalis THYE Lamiaceae S, L, M
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Table C.3: Final generalized mix models applied for Remaining Green
Canopy (RGC) and mortality respectively.

Response variable Explanatory variables Random effects

RGC centroid distance av + lithology + centroid distance av : lithology species + plot

RGC limit distance av : in out av + lithology species + plot

mortality centroid distance av + lithology species + plot

mortality limit distance av : in out av + lithology species + plot

RGC centroid distance av + lithology + centroid distance av : lithology species + plot

RGC limitdistance av : in out av + lithology species + plot

mortality centroid distance av + lithology species + plot

mortality limit distance av : in out av + lithology species + plot

RGC climatic suitability av + lithology + climatic suitability av : lithology species + plot

RGC climatic suitability ex + lithology species + plot
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Table C.4: Model accuracy of each sampled species distribution model
estimated with MaxEnt. AUC column shows average of 5 alternative
models (5-fold cross-validation) and Sd-AUC column shows the stan-
dard deviation of AUC values per species.

species AUC sd AUC

Anthyllis terniflora 0.998 0.001
Artemisia barrelieri 0.992 0.001
Asparagus horridus 0.974 0.002
Chamaerops humilis 0.990 0.001
Cistus clusii 0.994 0.001
Cistus monspeliensis 0.970 0.002
Coronilla juncea 0.989 0.001
Dorycnium pentaphyllum 0.974 0.002
Frankenia corymbosa 0.993 0.002
Fumana ericoides 0.974 0.004
Fumana laevipes 0.992 0.001
Fumana thymifolia 0.971 0.002
Genista valentina 0.998 0.001
Globularia alypum 0.987 0.001
Helianthemum syriacum 0.988 0.001
Helianthemum violaceum 0.990 0.001
Helianthemum viscarium 0.991 0.005
Helichrysum stoechas 0.959 0.003
Hyparrhenia hirta 0.983 0.001
Launaea arborescens 0.985 0.004
Launaea lanifera 0.992 0.002
Lavandula dentata 0.985 0.003
Lycium intricatum 0.991 0.004
Lygeum spartum 0.978 0.002
Paronychia suffruticosa 0.993 0.001
Periploca angustifolia 0.985 0.008
Rosmarinus officinalis 0.955 0.004
Salsola genistoides 0.998 0.000
Salsola oppositifolia 0.993 0.002
Salsola papillosa 0.998 0.002
Satureja obovata 0.994 0.001
Sideritis ibanyezii 0.998 0.001
Stipa tenacissima 0.990 0.001
Teucrium capitatum 0.997 0.001
Teucrium freynii 0.996 0.002
Teucrium lanigerum 0.997 0.004
Thymelaea hirsuta 0.987 0.002
Thymus hyemalis 0.997 0.001
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Table C.5: Results of Generalized Mixed Models explaining Remaining
Green Canopy (RGC) as a function of soil bedrock and population
distances to species niche centroid during the reference period 1979-
2012 and the interaction between these two variables, with plot and
species as crossed random effects.

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 56.188 6.439 42.212 8.727 0.000 ***

Metamorphic -0.686 5.906 363.381 -0.116 0.908

Sandstone -2.341 4.406 566.555 -0.531 0.595

Centroid distance -4.413 2.189 42.493 -2.016 0.050 .

Metamorphic : centroid distance 2.904 1.386 635.260 2.096 0.036 *

Sandstone : centroid distance -0.538 1.488 670.157 -0.362 0.718

Table C.6: Results of Generalized Mixed Models explaining Remaining
Green Canopy (RGC) as a function of soil bedrock and populations
distances to the closest point of species niche limit during the reference
period 1979-2012 and the interaction between distance and population
position in or out of the niche. The model corresponds to the reference
period, with plot and species as crossed random effects.

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 30.626 4.664 66.320 6.567 0.000 ***

Metamorphic 8.242 3.259 196.478 2.529 0.012 *

Sandstone -7.656 2.662 140.782 -2.876 0.005 **

Limit distance : in 12.805 3.703 160.670 3.458 0.001 ***

Limit distance : out 25.340 9.626 265.609 2.632 0.009 **

Table C.7: Results of Generalized Mixed Models explaining mortality
percentage as a function of soil bedrock and population distances to
species niche centroid during the reference period 1979-2012, with plot
and species as crossed random effects.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.553 0.453 -1.221 0.222

Metamorphic -0.898 0.218 -4.124 0.000 ***

Sandstone 1.033 0.171 6.054 0.000 ***

Centroid distance -0.021 0.150 -0.141 0.888
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Table C.8: Results of Generalized Mixed Models explaining mortality
percentage as a function of soil bedrock and populations distances to
the closest point of species niche limit during the reference period 1979-
2012 and the interaction between distance and population position in
or out of the niche during the reference period, with plot and species
as crossed random effects.

Estimate Std. Error z Pr(>|z|)

(Intercept) 0.200 0.327 0.611 0.541

Metamorphic -1.212 0.204 -5.925 0.000 ***

Sandstone 0.865 0.170 5.092 0.000 ***

Limit distance : in -0.864 0.198 -4.364 0.000 ***

Limit distance : out -1.881 0.567 -3.316 0.001 ***

Table C.9: Results of Generalized Mixed Models explaining Remaining
Green Canopy (RGC) as a function of soil bedrock and population
climatic suitability estimated with MaxEnt for the extreme drought
episode (2013-2014), and the interaction between these two variables,
with plot and species as crossed random effects

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 42.182 3.788 54.362 11.136 0.000 ***

Metamorphic 4.873 2.510 117.039 1.941 0.055 .

Sandstone -8.934 2.718 151.633 -3.287 0.001 **

Climatic suitability 27.623 27.315 563.040 1.011 0.312

Metamorphic : climatic suitability -64.222 39.044 608.632 -1.645 0.101

Sandstone : climatic suitability 4.295 26.351 650.332 0.163 0.871

Table C.10: Results of Generalized Mixed Models explaining Remaining
Green Canopy (RGC) as a function of soil bedrock and population
climatic suitability estimated with MaxEnt for the reference period
1979-2012 and the interaction between these two variables, with plot
and species as crossed random effects.

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 17.567 6.348 70.157 2.767 0.007 **

Metamorphic 13.452 5.367 536.820 2.506 0.012 *

Sandstone -4.461 5.114 633.276 -0.872 0.383

Climatic suitability 57.826 12.387 111.003 4.668 0.000 ***

Metamorphic : climatic suitability -29.566 11.390 604.822 -2.596 0.010 **

Sandstone : climatic suitability -3.462 12.733 540.867 -0.272 0.786
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Table C.11: Result of lsmeans contrast (post-hoc test) between bedrock
types in models relating mortality percentage or remaining green
canopy with population distances to niche centroid and to the niche
limit during the extreme episode (2013-2014).

model contrast estimate SE df t.ratio p.value

limestone - metamorphic -7.350 3.180 494 -2.310 0.0553 .

limestone - sandstone 4.330 3.360 321 1.287 0.4033rgc bedrock + centroid distance + bedrock :

centroid distance
metamorphic - sandstone 11.680 2.900 2580 4.027 0.0002 ***

limestone - metamorphic -12.890 3.270 1290 -3.943 0.0002 ***

limestone - sandstone -1.440 4.160 636 -0.346 0.9363
rgc bedrock + limitdistance : in out

metamorphic - sandstone 11.450 2.910 1951 3.938 0.0003 ***

limestone - metamorphic 0.841 0.261 Inf 3.226 0.0036 **

limestone - sandstone -0.937 0.279 Inf -3.360 0.0022 **mortality per bedrock + centroid distance +

bedrock : centroid distance
metamorphic - sandstone -1.778 0.179 Inf -9.937 <.0001 ***

limestone - metamorphic 1.608 0.200 Inf 8.042 <.0001 ***

limestone - sandstone -0.035 0.235 Inf -0.150 0.9877mortality per bedrcok + limit distance :

in out
metamorphic -sandstone -1.643 0.182 Inf -9.041 <.0001 ***
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Figure D.1: The graphic shows climatic anomalies for the three studied
areas. Red colour represents Moreras Mountain (i.e., limestone bedrock),
green colour represents Calblanque Natural Park (i.e. metamorphic bedrock)
and blue colour represents Cuatro Calas area (i.e. sandstone bedrock).
Yearly anomaly values were calculated as (annual rainfall – mean period
rainfall)/ mean period rainfall. Moreover, mix models explaining precipita-
tion anomaly in function of site with year as random effect were performed,
showing no significant differences between sites. P value and model marginal
R2 are shown in the bottom left area of the graphic.
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Figure D.2: Correlation circle obtained from PCA from the twelve selected
climatic variables. Where BIO1 = Annual Mean Temperature, BIO4 = Tem-
perature Seasonality (standard deviation×100), BIO5 = Max Temperature
of Warmest Month, BIO6 = Min Temperature of Coldest Month, BIO10
= Mean Temperature of Warmest Quarter, BIO11 = Mean Temperature of
Coldest Quarter, BIO12 = Annual Precipitation, BIO13 = Precipitation of
Wettest Month, BIO14 = Precipitation of Driest Month, BIO15 = Precipita-
tion Seasonality (Coefficient of Variation), BIO16 = Precipitation of Wettest
Quarter, BIO17 = Precipitation of Driest Quarter. The PCA was calibrated
using climatic data from the total filtered 106,876 occurrences from gbif.org
for all the 38 sampled species. First and second axes contained 78.5% of ex-
plained variability. The variables’ colour represents the percentage of each
variable’ contribution to the PCA.
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A)

B)
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C)

Figure D.3: Univariant community climatic disequilibrium before (average
period 1970-2000 Worldclim) and after drought (2013-2014) for each indi-
vidual climatic variable. Community climatic disequilibrium was estimated
as (CIC-OC)/OC per each variable. Variables with * showed significant
changes in community disequilibrium after drought. A graphic shows uni-
variant community climatic disequilibrium for sandstone bedrock, B graphic
shows univariant community climatic disequilibrium for limestone bedrock
and C graphic shows univariant community climatic disequilibrium for meta-
morphic bedrock.
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Figure D.4: Soil particle composition of the three different study sites’
bedrock (i.e., metamorphic bedrock = Calblanque, limestone bedrock =
Moreras Mountain, sandstone bedrock = Cuatro Calas). Yellow colour rep-
resents the proportion of sands, orange the proportion of clays and dark
orange the proportion of silts.
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Figure D.5: Soil water content in percentage of volume of different bedrocks
under different water potentials, simulated with "medfate" package (Cáceres
et al. 2015) using each soil particle composition and organic matter content.
In our study we used -0.5 MPa (as field capacity) and -1.5 MPa (as wilting
point) but note that regardless of the water potential, limestone bedrock
always shows the higher water content, followed by soils in metamorphic
and sandstone bedrocks, respectively.
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Table D.1: Carbon and nitrogen content of each studied bedrock.

Bedrock Locality Replicate Organic C (g/100g) Total N (g/100g) C:N ratio

C1 1.42 0.19 7.47

Metamorphic Calblanque C2 1.22 0.17 7.18

C3 3.91 0.31 12.61

H1 0.71 0.06 11.83

Sandstone Cuatro Calas H2 0.94 0.09 10.44

H3 1.09 0.09 12.11

M1 3.17 0.35 9.06

Limestone Moreras M2 1.83 0.22 8.32

M3 2.52 0.23 10.96
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Table D.2: Summary table of analysed species found in the different
study sites. The table shows the species codes used in climatic dia-
grams and the species families, as well as the study area in which they
were found. In the latter column, S represents the Cuatro calas area
(sandstone bedrock), M the Calblanque area (metamorphic bedrock)
and L the Moreras Mountain area (limestone bedrock).

SPECIES NAME SPECIES CODE FAMILY LOCALITY

Anthyllis terniflora ATER Leguminosae S

Artemisia barrelieri ABAR Asteraceae S, M

Asparagus horridus AHOR Asparagaceae S, L, M

Chamaerops humilis CHUM Arecaceae M

Cistus Clusii CCLU Cistaceae S, M

Cistus monspeliensis CMON Cistaceae M

Coronilla juncea CJUN Leguminosae M

Dorycnium pentaphyllum DPEN Leguminosae M

Frankenia corymbosa FCOR Frankeniaceae S, M

Fumana ericoides FERI Cistaceae S, L, M

Fumana laevipes FLAE Cistaceae L, M

Fumana thymifolia FTHY Cistaceae L

Genista valentina GVAL Leguminosae L

Globularia alypum GALY Plantaginaceae L

Helianthemum syriacum HSYR Cistaceae M

Helianthemum violaceum HVIO Cistaceae S, L

Helianthemum viscarium HVIS Cistaceae S

Hyparrhenia hirta HHIR Poaceae L

Launaea arborescens LARB Asteraceae S, L, M

Launaea lanifera LLAN Asteraceae S, L

Lavandula dentata LDEN Lamiaceae S

Lycium intricatum LINT Solanaceae S, M

Lygeum spartum LSPA Poaceae M

Paronychia suffruticosa PSUF Caryophillaceae M

Periploca angustifolia PANG Apocynaceae S, L

Rosmarinus officinalis ROFF Lamiaceae S, L, M

Salsola genistoides SGEN Amaranthaceae S, L

Salsola oppositifolia SOPP Amaranthaceae S

Salsola papillosa SPAP Amaranthaceae M

Satureja obovata SOBO Lamiaceae L

Sideritis ibanyezii SIBA Lamiaceae S, M

Stipa tenacissima STEN Poaceae S, L, M

Teucrium capitatum TCAP Lamiaceae S, M

Teucrium freynii TFRE Lamiaceae L

Teucrium lanigerum TLAN Lamiaceae S, L

Thymelaea hirsuta THIR Thymelaeaceae S, L, M

Thymus hyemalis THYE Lamiaceae S, L, M



154 Appendix D. Appendix Chapter 5

Table D.3: Least squared means pairwise test results. These analyses
were performed controlling the effect of the rest of the factors.

CONTRAST ESTIMATE SE DF T.RATIO P.VALUE

sandstone after - sadstone before -0.277 0.052 87.00 -5.349 <.0001
limestone after - limestone before -0.113 0.052 87.00 -2.186 0.0315
metamorphic after - metamorphic before 0.013 0.052 87.00 0.246 0.8064
limestone after - metamorphic after -0.200 0.142 99.33 -1.410 0.3397
limestone after - sandstone after 0.580 0.142 99.33 4.084 0.0003
metamorphic after -sandstone after 0.781 0.142 99.33 5.494 <.0001
limestone before - metamorphic before -0.074 0.142 99.33 -0.523 0.8604
limestone before - sandstone before 0.417 0.142 99.33 2.931 0.0116
metamorphic before - sandsone before 0.491 0.142 99.33 3.454 0.0023
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Acronyms

AEMET: Agencia Estatal de Meteorología (Spanish Meteorological Agency)
AIC:Akaike Information Criterion
AUC: Area Under ROC (Receiver-Operator Characteristic) Curve
BRT: Boosted Regression Trees
CD: Climatic Disequilibrium
CIC: Community Inferred Climate
CPH: Centre-Periphery Hypothesis (also known as distance-abundance hypothesis)
ECS: Episodic Climatic Suitability
ENM: Ecological Niche Models
GAM: Generalized Additive Models
GBIF: Global Biodiversity Information Facility
GLM: Generalized Linear Models
HCS: Historical Climatic Suitability
IPCC: Intergovernmental Panel on Climate Change
IUSS: International Union of Soil Sciences
MESS: Multivariate Environmental Suitability Surface
OC: Observed climate
PCA: Principal Component Analysis
RGC: Remaining Green Canopy
SDM: Species Distribution Models
VIF: Variance Inflation Factor
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