
Edge Computing infrastructure for 5G
networks: a placement optimization

solution

By

ALEJANDRO SANTOYO-GONZÁLEZ

Ph.D. Advisor

CRISTINA CERVELLÓ-PASTOR

Department of Network Engineering
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Thesis submitted to Universitat Politècnica de Catalunya in
accordance with the requirements of the degree of DOCTOR

OF PHILOSOPHY IN NETWORK ENGINEERING.

BARCELONA, APRIL 2020





AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the
requirements of the University’s Regulations and Code of Practice for Research
Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the
candidate’s own work. Work done in collaboration with, or with the assistance of,
others, is indicated as such. Any views expressed in the dissertation are those of the
author.

SIGNED: .................................................... DATE: ..........................................

This work is licensed under the Attribution-NonCommercial-ShareAlike 4.0 In-
ternational License (CC BY-NC-SA 4.0). To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/. A digital copy of
this document can be downloaded from TDX (Theses and Dissertations Online,

http://www.tdx.cat/, the repository of theses managed by the Consorci de Serveis Universitaris de
Catalunya (CSUC) and sponsored by the Government of Catalonia.

i

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tdx.cat/




ABSTRACT

This thesis focuses on how to optimize the placement of the Edge Computing infrastruc-

ture for upcoming 5G networks. To this aim, the core contributions of this research are

twofold: 1) a novel heuristic called Hybrid Simulated Annealing (HSA) to tackle the

NP-hard nature of the problem and, 2) a framework called EdgeON providing a practical tool for

real-life deployment optimization.

In more detail, Edge Computing has grown into a key solution to 5G latency, reliability and

scalability requirements. By bringing computing, storage and networking resources to the edge

of the network, delay-sensitive applications, location-aware systems and upcoming real-time

services leverage the benefits of a reduced physical and logical path between the end-user and

the data or service host.

Nevertheless, the edge node placement problem raises critical concerns regarding deployment

and operational expenditures (i.e., mainly due to the number of nodes to be deployed), current

backhaul network capabilities and non-technical placement limitations. Common approaches to

the placement of edge nodes are based on: Mobile Edge Computing (MEC), where the processing

capabilities are deployed at the Radio Access Network nodes and Facility Location Problem

variations, where a simplistic cost function is used to determine where to optimally place the

infrastructure. However, these methods typically lack the flexibility to be used for edge node

placement under the strict technical requirements identified for 5G networks. They fail to place

resources at the network edge for 5G ultra-dense networking environments in a network-aware

manner.

This doctoral thesis focuses on rigorously defining the Edge Node Placement Problem (ENPP)

for 5G use cases and proposes a novel framework called EdgeON aiming at reducing the overall

expenses when deploying and operating an Edge Computing network, taking into account the

usage and characteristics of the in-place backhaul network and the strict requirements of a
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5G-Edge Computing ecosystem. The developed framework implements several placement and

optimization strategies thoroughly assessing its suitability to solve the network-aware ENPP.

The core of the framework is the in-house developed heuristic HSA, seeking to address the

high complexity of the ENPP while avoiding the non-convergent behavior of other traditional

heuristics (i.e., when applied to similar problems).

The findings of this work validate our approach to solve the network-aware ENPP, the

effectiveness of the heuristic proposed and the overall applicability of EdgeON. Thorough

performance evaluations were conducted on the core placement solutions implemented revealing

the superiority of HSA when compared to widely used heuristics and common edge placement

approaches (i.e., a MEC-based strategy). Furthermore, the practicality of EdgeON was tested

through two main case studies placing services and virtual network functions over the previously

optimally placed edge nodes.

Overall, our proposal is an easy-to-use, effective and fully extensible tool that can be used by

operators seeking to optimize the placement of computing, storage and networking infrastructure

at the users’ vicinity. Therefore, our main contributions not only set strong foundations towards a

cost-effective deployment and operation of an Edge Computing network, but directly impact the

feasibility of upcoming 5G services/use cases and the extensive existing research regarding the

placement of services and even network service chains at the edge.
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INTRODUCTION

I
n recent years, there has been a steep surge in the amount of digital data generated

worldwide due to the rapid evolution of emerging technological paradigms such as the

Internet of Things (IoT). According to Cisco, the number of interconnected mobile devices

will reach over 11 billion by 2021, while the global information provider IHS Markit has stated

that 125 billion smart devices will exist by 2030 [1][2]. Within a decade, from 2010 to 2020, the

transmitted digital data has multiplied its value 200 times and this multiplying factor will be

increased 1000 times more by 2030 [3]. As a consequence, computation-intensive applications

and business models have been quickly evolving and increasing at an incredible pace, stretching

to the limit the capabilities of the remote cloud communication and processing architecture.

5G networking has been envisioned to answer the requirements of the use cases and tech-

nological trends associated with such traffic growth (see Figure 1.1). Throughout the past 5

years, the advances in 5G standardization and implementation have encouraged the industry to

invest and accelerate the introduction of solution proposals for 5G use cases (e.g., Virtual and

Augmented Reality, Autonomous Driving, Real-time Manufacturing). Namely, both the industry

and academia have been dedicating extensive resources to develop appropriate frameworks,

testbeds and prototypes of a 5G network architecture. The goal being to place such architecture

over a shared (yet sliced) underlying infrastructure and flexible marketplace where isolation

1



CHAPTER 1. INTRODUCTION

Figure 1.1: 5G use cases and requirements [5]. The 5G requirements are grouped into three main
categories and five underlying subcategories in order to clarify use cases and scenarios.

is guaranteed throughout all operational layers, aiming at the efficient implementation of next

generation services in the longer run. Overall, these efforts have targeted the following core

purposes: top-level system flexibility, automation, self-awareness and cost-effective orchestration

and operation [4].

Under these envisioned 5G networks, a user-centered ecosystem providing seamless inte-

gration between users and devices is to be achieved based on smart interconnection, artifi-

cial intelligence-based systems and automated self-aware orchestration and management. To

this aim, the scenario classification devised by the International Telecommunications Union-

Radiocommunication Sector (ITU-R), shows mission-critical services depending on strict delay

constraints reaching less than 1 ms [3][6]. Real-time critical communications and traffic safety

impose additional complexities as they require top-level reliability and availability while ensuring

ultra-low latency. Meanwhile, emerging ultra-high bandwidth requirements joined to the evolu-

tion of service and traffic patterns, are leading to an unprecedented need for hyper-connectivity

and ultra-reliable high performance.

Enhanced Mobile Broadband (eMBB) and Massive Machine-type Communications (mMTC)

2



will certainly push the limits of current networking platforms since around 1 million intercon-

nected devices per squared kilometer are to be supported [2, 4], thus rising complex technical

challenges regarding radio resource allocation, data transmission, routing/processing and Quality

of Service (QoS) delivery. Smart Cities and e-Health deployments will pose strict data rate de-

mands, while Autonomous Driving and Industry Monitoring will require nearly 100% reliability

and millisecond-level latency [3]. In addition to severe QoS and Quality of Experience (QoE)

needs, 5G is required to enforce high security and privacy for e-Banking, Security Monitoring,

Traffic Safety and Mobile Health. Moreover, overall power consumption is to be reduced to ensure

long-time battery life and green networking.

In this context, the remote datacenter model has become inefficient and unable to cope

with the rising technical demands. By providing an end-to-end communication delay of around

60−100 ms, current remote clouds are unable to guarantee the required 1 ms round-trip maximum

latency and stable jitter for delay-sensitive and location-aware use cases [4, 5, 7]. Privacy and

security concerns are additionally stretching the cloud capabilities. As the use of applications

working over distributed platforms increases (e.g., blockchain-based systems, multimedia cache

servers), centralized service models are being discarded in favor of decentralized, highly-resilient,

close-to-the-user infrastructure. Scalability has additionally grown into a critical concern given

the massive amounts of data to be processed. Deep data analysis mechanisms to accurately

segment and generate maximum value from each customer are causing critical bottlenecks in

the data transmission systems, while restraining the use of distributed and resource intensive

deep/machine learning systems at higher scales.

The convergence of Edge Computing (EC), Network Function Virtualization (NFV), Software-

Defined Networks (SDNs) and other enabling technologies will become the pillars to answer the

aforementioned challenges and to implement next generation standalone 5G networks. Namely,

EC has become a solid alternative to the traditional datacenter-based service scheme. By bringing

computing, storage and networking resources to the users’ vicinity, EC aims at reducing the

physical and logical distance between hosts and end-users, while satisfying the requirements of

distributed resource-intensive applications and delay-sensitive use cases through a geographically

distributed set of small-sized Edge Nodes (ENs). Concretely, EC is able to effectively reduce
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around 20% of the average response time and 90% of the north-south traffic when compared to a

remote cloud service architecture, while significantly improving scalability [8–11]. However, a

distributed set of nodes raises critical concerns regarding Capital Expenditures (CAPEX) and

Operational Expenditures (OPEX), deployment strategies, QoS and QoE.

The cost of deploying an EN directly depends on two main factors: location-dependent and

computation-dependent expenses [42]. The former accounts for the costs related to power and

network connections installation, land (or space) acquisition, basic supplies (e.g., cost of the water

and electricity). The latter refers to the required computing, storage and networking capacity to

be allocated, software licenses, management expenses, staff salary.

On the other hand, the numerous tradeoffs involved make the EN network deployment chal-

lenging. At first glance, placing an EN is constrained by the underlying network capacity and the

operators’ Point-of-Presences (PoPs), Central Offices and other suitable sites, in order to ensure

lower costs, maximum transmission efficiency, power usage reduction and high-performance

interconnection. Moreover, a clear tradeoff results from the number of ENs and the allocated

capacity, directly impacting the total expenses and the operators’ ability to maximize the Return

of Investment (ROI). Ensuring high-performance processing requires the utilization ratio to be

preserved under a certain threshold to avoid QoS and QoE degradation due to capacity overload.

However, if the capacity and demand allocation are not properly managed, both CAPEX and

OPEX may rise significantly, due to underutilized or oversubscribed nodes.

In addition, close-to-the-user proximity to satisfy low latency requirements poses a challenge

regarding the site selection. Placing the infrastructure at the Radio Access Network (RAN) nodes,

following the Mobile Edge Computing (MEC) approach, is often seen as the solution. Nevertheless,

this is commonly unfeasible since base stations are typically placed at remote locations with very

limited physical equipment space (e.g., macro-cell towers located at the top of a remote hill, small-

cells placed at street cabinets) [12]. Moreover, following a continuous placement approach (i.e., the

territory is analyzed as a set of coordinates and all coordinate pairs are analyzed) is unfeasible

as it increases the problem complexity and overall expenses. Nevertheless, a discrete strategy

-i.e., where a list of potential sites is known beforehand- should carefully consider existing

potential sites (i.e., Internet Service Providers-PoPs (ISP-PoPs), Content Delivery Network-
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PoPs (CDN-PoPs), Central Offices) and any available unforeseen locations.

Under these circumstances, the EN placement strategy has become crucial. By optimizing

the EN placement, the overall deployment and operation cost savings can be highly increased

and the user requirements can be fully satisfied [27]. For 5G networks, ultra-dense networking

will remarkably change the placement of mobile base stations, cache servers, datacenters and

thousands of ENs are to be deployed within a city to satisfy 5G ultra-low-latency and reliability

needs. Therefore, the economical feasibility of the 5G/EC ecosystem is tied to the optimization

of the capacity planning and deployment strategies, i.e., the EN placement methods. However,

most capacity planning studies assume that the service infrastructure has been already deployed

focusing on the resource allocation and capacity problem, thus overlooking the need to optimize

the location selection procedures [13, 14].

Extensive research has been found regarding problems closely related ot the EN site selection

optimization: Facility Location Problems (FLPs), datacenter, base station and generic server

placement (e.g., cache servers) [15–24]. Additionally, few articles were found targeting the edge

server placement problem [13, 25–27]. Several limitations prohibit the use of these studies to

effectively place an EN network under 5G constraints. FLP solutions, for instance, cannot be

directly applied for the EC infrastructure deployment due to typical cost function simplicity,

traditional convergence into a specific operational problem (e.g., Weber, coverage) and lack of

non-technical restrictions analysis [21]. Datacenter and generic server placement strategies

overlook the need for a shared and geographically distributed infrastructure where the member

nodes must cooperatively solve offloaded tasks while maintaining minimum latency levels. In

addition, the lack of flexibility forces these models to be discarded when applied to the ultra-dense

networking demands of 5G networking [24, 28]. Base station placement is mostly done based on

tessellation and clustering methods that may not be suitable for 5G traffic patterns and service

trends under ultra-dense 5G networking [15, 16]. Finally, the edge server placement solutions

found have not been tailored to 5G requirements, while covering a limited set of specific scenarios,

overlooking the underlying network capacity constraints and over-simplifying the user demand

distribution through traditional clustering approaches.

For the above reasons, our focus throughout this thesis will be to propose and solve the
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optimization problem pursuing the cost-effective placement of ENs complying with the identified

5G requirements.

1.1 Research Problem and Objectives

From the context thoroughly detailed in the above section, rises a clear need to cost-effectively

place the service infrastructure at the network edge to meet 5G requirements. Such problem

is hereinafter referred to as: Edge Node Placement Problem (ENPP). As a direct consequence,

this thesis seeks to answer the following research question: Is it feasible to solve the ENPP,

thus optimally placing the ENs in a given territory, while optimizing the overall de-

ployment costs, ensuring both cost-effectiveness and 5G technical and non-technical

requirement satisfaction?

To address the identified problem, a set of main objectives and tasks were defined. The

primary goals of the present thesis are summarized below:

1. To define a set of EN placement parameters merging the deployment principles of 5G, EC

and its enabling technologies to effectively consider the tradeoffs involved in the ENPP.

2. To define and rigorously formalize the ENPP as a multi-objective optimization problem, con-

sidering the use cases and specific requirements of 5G environments and the characteristics

of the in-place network and computing infrastructure.

3. To propose a novel ENPP solution for a reference EC architecture, aiming at overall

cost minimization and balanced capacity allocation, while ensuring customer demand

satisfaction.

4. To evaluate the developed strategy by comparing it to other heuristic and meta-heuristic

implementations applied to the ENPP solution or closely related problems (e.g., FLPs).

5. To propose and evaluate two real-life scenarios where the placed ENs is effectively used

to deploy and execute Virtual Network Functions (VNFs), i.e., a Distributed Denial of

Service (DDoS) attack detection, 5G User Plane Functions (UPFs).
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Furthermore, a set of core tasks is specified, directly linked to the main research problem and

goals:

1. To perform a thorough and systematic review of the state-of-the-art and prior literature on

5G, EC and other relevant enabling technologies.

2. To study closely related research problems (e.g., FLPs, datacenter/server/base station

placement problem) in order to determine the scope and core challenges of the ENPP and

its underlying complexities when tailored to a demanding ecosystem such as 5G.

3. To develop a controlled simulated environment in order to evaluate the proposed solution

against exact mathematical methods, seeking to accurately analyze the developed solution

performance and capabilities to be applied in real-life scenarios.

4. To evaluate the proposed EN placement strategy by comparing it to other heuristic and

meta-heuristic implementations applied to the ENPP solution, using realistic simulated

scenarios.

5. To analyze the proposed VNFs executed over the EC network in order to evaluate its

performance and core benefits for 5G use cases.

1.2 Methodology

The research carried out in this thesis was divided in several main working areas defined by

the objectives presented in Section 1.1. The following subsections explain the structure of the

methodology followed during this work.

Systematic Literature Review

Despite current efforts in EC development and standardization, there is still no formal definition

of what is the “edge” or what edge nodes should be. As a result, there is a lack of research

regarding where to cost-effectively place the physical service infrastructure at the users’ vicinity

(i.e., the ENs) for 5G use cases.
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To answer this question, a study of the future 5G/EC ecosystem is performed in this document.

Current research about the related 5G technologies is critically assessed, considering standardi-

zation, development efforts and available solutions. Additionally, closely related problems are

identified and studied. Among them, high priority is given to FLPs, server and base station

placement, low to high-density datacenter placement and edge server site selection.

ENPP placement parameters definition

The baseline to solve the ENPP is the definition of a comprehensive and effective set of placement

parameters. Through achieving this goal, the solution proposed in this thesis is able to thoroughly

evaluate each EN potential site and achieve cost optimization without affecting user demand

satisfaction and overall service performance.

From the revised literature and the 5G requirements, certain parameters stand out (e.g.,

latency, bandwidth, site rentals). However, additional considerations such as non-technical restric-

tions and future service patterns are also analyzed. The objective was to propose a set of criteria

to assess potential sites to return a location subset optimizing the deployment and operation

cost of the EN network. To this aim, besides location-dependent and infrastructure-dependent

costs, accurate predictions on future service trends and technological advances were considered,

along with industry advances on 5G enabling technologies, telecommunication operators market

strategies and emergent business opportunities.

On the other hand, service demand geo-distribution and hourly behavior are also directly

linked to the EN placement. Nevertheless, its interrelation remains an open question in the

5G context due to the lack of operational data. Such continuously changing environment has

been systematically and carefully reviewed, as a cost-effective placement solution should offer

adequate flexibility levels to cope with such ecosystem dynamics

Overall, cost reduction, usability and applicability of any ENPP solving approach, depends

on the scope and effectiveness of its evaluation and optimization criteria. For this reason, a list of

parameters for the ENPP solution is one of the main outputs obtained with this work.

Network-agnostic ENPP solution

5G service performance for ultra-low latency scenarios will primarily depend on the offloading
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of computation tasks to ENs. To efficiently handle the peak load and satisfy the requirements

of remote program execution in real-life scenarios, any EN placement strategy must be aware

of the underlying network capacity and current usage ratio. Such condition imposes additional

concerns an complexities to the ENPP formulation and solution.

In order to effectively solve the ENPP in such heavily constrained scenarios, solid modeling,

testing and analysis methods must be developed as foundations. To this aim, we firstly propose

a latency-constrained network-agnostic solution to the ENPP based on an in-house developed

heuristic. From this starting point, additional parameters are added to the model and the problem

solution is extended through the proposal and evaluation of a fully extensible framework.

Network-aware ENPP solution

Based on two network-agnostic variants of the ENPP solved through in-house placement strate-

gies, we propose a network-aware solution to the ENPP considering 5G technical requirements

with special focus on: ultra-low latency, ultra-high reliability and ultra-dense networking. To

ensure the practicality and applicability of our proposal, we present a framework (implementing

several placement strategies in order to thoroughly assess our placement heuristic) for the EN

placement in the devised scenarios.

As no standardized EC architecture has been defined yet, we theoretically formalize and solve

the ENPP for a reference deployment architecture and EN definition. The research decision of

solving the ENPP for a simplified reference architecture goes far beyond problem simplification.

Given the lack of operational knowledge about 5G networking and the evolution of next generation

service and traffic patterns, assuming a flexible but realistic reference architecture for the

5G/EC ecosystem, allowed us to effectively analyze the EN placement tradeoffs and propose

a placement strategy tailored to the requirements of the 5G verticals. In addition, with the

advent of revolutionary wireless RAN technologies, such as millimeter-wave communications, we

envision geographical areas where the the 5G/EC environment would most likely be deployed

over a convergent (i.e., mixing fixed and wireless technologies) backhaul network [6, 29].

Evaluation and optimization of the ENPP solution strategies

After proposing effective solving schemes for the ENPP variants analyzed, it was mandatory to
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evaluate them and compare them with other existing placement methods. This allowed us to

significantly improve and optimize our solutions while assuring the applicability of their results.

To this aim, several heuristics were implemented, tailored to the ENPP characteristics

and following an homogeneous development approach, using a suitable testbed for evaluation

purposes. Through a critical analysis of the testing process, the validation of the solutions was

achieved while optimizing their underlying components and practicality to the point of proposing

a generic flexible framework for the placement of ENs within next generation networks.

Finally, the EN placement strategy evaluation was extended by analyzing two case studies

where VNFs were assumed to be deployed over the optimally placed edge infrastructure.

1.3 Resources

To carry out this research, the Department of Network Engineering (ENTEL) provided all the

required resources and support, along with outstanding professional guidance and expertise.

Additionally, access to training activities, knowledge exchange spaces and other relevant scientific

opportunities was granted in order to increase the reach and scope of this research while obtaining

adequate feedback.

As of specific materials and tools, Python was the programming language selected to imple-

ment all coding tasks, while the mathematical formulations were developed and solved using

Pyomo [30, 31] and Gurobi/GNU Linear Programming Kit (GLPK) [32] as underlying solvers. In

addition, part of the input data was gently supplied by Telegeography’s GlobalComms from its

proprietary database1, about ISP-PoPs operating in Spain.

1.4 Contributions

Answering the core problem and research objectives pursued within this thesis and based on

several articles published in recognized journals and conferences, our main contributions can be

summarized as follows:

1https://www2.telegeography.com/globalcomms-database-service
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1. A novel set of EN placement parameters tailored to 5G use case requirements.

Mainly aiming at achieving ultra-low latency and ultra-high reliability, through a thorough

analysis of location-dependent and capacity-related expenses and both technical and non-

technical restrictions.

2. Rigorous definition of the ENPP through mathematical models base on linear

programming targeting relevant variations of the problem, in order to offer maximum

flexibility for its practical application in real-life scenarios.

3. An in-house developed heuristic called Hybrid Simulated Annealing (HSA), allo-

wing a flexible and cost-effective placement of an EN network under 5G service constraints

and considering both technical and non-technical restrictions as well as current IT-capable

locations (e.g., Central Offices, base stations).

4. A novel framework proposal to extend the capabilities of the proposed heuristic

in order to enhance its usability and practicality by delivering a flexible and expandable

platform for operators to adapt to their particular needs and use cases.

5. A state-of-the-art edge-based DDoS detection system deployed over the optimally

placed ENs, ensuring high-performance processing and low overhead, thus complying with

the VNF requirements for IoT devices over 5G networks.

1.5 Thesis outline

The outline of this thesis can be observed in Figure 1.2, where each chapter is described in terms

of its contribution scope and its main results.

Chapter 1 presents the motivation for this thesis, the research problem to be addressed,

the research objectives, methodology and used resources. Meanwhile, Chapter 2 presents the

literature review, focusing on ENPP closely related problems and the most widely used algorithms

used to solve placement problems. Additionally, Chapter 2 provides the theoretical background
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Figure 1.2: Thesis outline.

needed to accomplish the research goals presented in Chapter 1. Namely, an EC reference

architecture is outlined and the definition of EN is presented.

Chapter 3 introduces our first contribution by describing the proposed set of parameters to

evaluate each EN site within the optimization process.

Chapter 4 presents two network-agnostic single-objective models using a Mixed Integer

Linear Programming (MILP) mathematical formulation to optimize the EN placement. In this

chapter, key performance elements and concepts (i.e., Traffic Generators (TGs)) are defined and

tested. Furthermore, a novel placement strategy called HSA is presented, evaluated and extended

through a framework called EdgeON aiming at providing operators with an extensible platform

to solve the ENPP under custom conditions.

Chapter 5 significantly extends the results presented in Chapter 4 by providing a network-

aware multi-objective MILP model to realistically formulate the ENPP. Additionally, the frame-

work presented in Chapter 4 is significantly extended and the enhanced capabilities of the HSA

heuristic are showcased, ensuring high usability and flexibility for the future use of the findings

as operational tools.

Chapter 6 describes our contributions towards edge-based DDoS detection and UPF placement

based on optimally placed ENs. Namely, a novel DDoS detection scheme is proposed based on

cutting-edge high-performance packet processing technologies (i.e., Extended Berkeley Packet

Filter (eBPF)) and SDN. Moreover, the placement of UPFs under 5G requirements and optimal

EN locations is evaluated through a joint EN/UPF placement framework proposal.

Chapter 7 presents a summary of the core findings of this thesis and provides key directions

for future work and open research questions.
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The diagram in Figure 1.3 aims at helping the reader to follow how the chapters relate to each

objective and contribution, as well as the papers each chapter is based on (i.e., the publications

listed in Appendix A).
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BACKGROUND AND LITERATURE REVIEW

T
o optimize the placement of the service infrastructure at the network edge, an initial

analysis of related concepts/technologies and state-of-the-art literature must be per-

formed. In the sections below, a rather comprehensive study of EC and its current

implementations is presented, along with a thorough review of the latest findings and their

limitations, regarding the placement of datacenters, base stations, cache and edge servers and an

overview of the most used methods to solve placement problems.

2.1 Edge Computing

As stated in previous sections, EC brings resources to the edge of the network, where the "edge"

can be defined as an arbitrary location along the path between the service request or data source

and the service or data processing host [33, 34]. The general aim with EC is to reduce the physical

and logical distance between the service path endpoints. The advantages of moving the cloud or

more precisely, extending it to the edge, are indisputable in 5G ultra-low latency and real-time

scenarios, just to mention a few.

On the other hand, VNFs are to be placed within the service infrastructure deployed by EC at

the users’ vicinity. Is at this point where EC and NFV converge to ensure 5G services feasibility
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and performance. To detail the big picture: EC focuses on the placement of physical infrastructure

or resources near the end users, while NFV mainly deals with the service deployment through

the placement of VNFs over EC hardware.

Albeit the simplicity behind the EC definition, when revising existing literature it is easy to be

overwhelmed by confusion and, in some cases, contradicting information. From [33], [34] and [35],

EC could be seen as a paradigm including Fog Computing (FC), MEC and cloudlet computing

as its implementations or even a separate technology coexisting with these technologies. The

OpenFog consortium has stated that FC is a system-level architecture for services across networks

and between devices that reside at the “edge”, while EC is limited to place servers, applications

or small clouds at the user premises [36, 37]. What is more, for the OpenFog Consortium EC

runs primarily in isolated silos while FC has extensive peer-to-peer interconnection capabilities

between nodes.

To clarify and ease the comprehension of these concepts, this research assumes the classi-

fication proposed in [34] and [35]. Consequently, EC is assumed to be defined by the following

characteristics:

• Node infrastructure: microdatacenter-like infrastructure (i.e., Datacenter in a Box,

hyper-convergent micro-datacenter) providing storage, computing and networking resources

at the network edge.

• Proximity: deployed in the users’ premises, commonly within one network hop from

the traffic aggregation point (i.e., RAN node, Wi-Fi access point, etc.), although further

placement at multiple hops is supported (depending on the use case requirements).

• Access technology: an edge node is assumed to be commonly connected to the traffic

aggregation points through the backhaul mobile network or the Internet Service Providers

(ISP) access network, using any physical interconnection technology or network architecture

available. No limitation in this regard is enforced, thus opposing rigid access method

configurations for edge technologies presented in some studies [35, 38].

• Computation offloading model: EC supports both isolated and cooperative task execu-

tion architectures. Therefore, a given user requesting a service or information from an
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Figure 2.1: Edge Computing reference architecture.

arbitrary VNF or chain of VNFs can be served by one or more edge nodes.

• Architecture: the communication and computing model from any arbitrary pair user-

service host is considered hierarchical because a given task can be offloaded to an edge

node and further offloaded to a remote datacenter, thus implying a tiered architecture

from the data source to the actual processing host. However, the EC network can be

considered to be flat, as a sole tier of edge nodes is assumed to be placed between the traffic

aggregation points and the remote cloud infrastructure. Figure 2.1) depicts a simplified

reference architecture for EC where each EN is assumed to converge storage, networking

and computing resources.

The following sections provide a comprehensive overview of the most common EC related

technologies and implementations.
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2.1.1 Mobile/Multi-access Edge Computing

MEC was defined by the European European Telecommunications Standard Institute (ETSI)

in 2014. Mainly, it was born as a platform to provide computing capabilities within the RAN.

Therefore, when compared to FC, a key difference is that the “edge” is precisely defined as the

RAN site, while in the case of fog nodes, the “edge” could be located anywhere on the user premises

and additionally involves shared tasks by leased resources from the end-user devices [39–44]. In

September 2016, the ETSI’s Mobile Edge Computing group changed the name of this technology

to Multi-access Edge Computing after realizing that the benefits of this paradigm reached beyond

mobile networking, into Wi-Fi and fixed access technologies.

MEC core aim is to reduce network congestion and improve application performance by

executing task processing closer to the user. Furthermore, it is designed to improve content and

application delivery. Several use cases can profit from this technology: Augmented and Virtual

Reality, which benefit from ultra-low latency communications; connected cars, which also thrive

in high-bandwidth, low-latency, highly available settings; IoT applications that rely on high

performance and smart utilization of network resources [39].

MEC nodes can be implemented both indoors and outdoors depending on the access technology.

With respect to the outdoors, macro cells place computing and virtualization capabilities into

radio network elements. For indoor deployments, such as Wi-Fi and 3G/4G access points, edge

clouds can serve as gateways, running specific regional services. Examples of the latter are

Machine-to-Machine (M2M) ecosystems where MEC services can monitor weather conditions and

crowded areas (e.g., airports, where MEC applications can be used for passengers guidance).

2.1.2 Cloudlet Computing

Cloudlets are conceptually similar to MEC as they can be seen as small datacenters with Common-

Of-The-Shelf (COTS) infrastructure located at the network edge (a cloudlet could be particularly

defined as a Datacenter in a Box). The difference among them is that from a cloudlet point of

view the “edge” is just the logical end-user proximity, and not a well stated frontier (i.e., the RAN

node) as in MEC [35].

In general, cloudlets are said to have four main attributes: small, low-cost, maintenance-free

18



2.1. EDGE COMPUTING

appliance design, based on standard cloud technology; powerful, well-connected, and secure;

maintains only soft state (built for micro-services and containers); and located at the edge of the

network, close to the intelligent devices it will communicate with.

For the purpose of this research, Cloudlets are the closest conceptual “black box” we are

referring to when talking about an EN. The core difference is that an EN conceptually extends

the cloudlet computing base idea by allowing the coexistence of proprietary and commodity

hardware in a wide variety of service operation conditions and approaches while extending the

execution scheme through a collaborative approach as proposed by FC.

2.1.3 Fog Computing

From [45], FC can be defined as a scenario where computing tasks are heavily decentralized and

performed by end devices, ENs and the cloud in a cooperative way. In particular, and this is one of

the main differences with other EC implementations, the assigned tasks can be not only executed

by ENs or cloud servers, but using resources leased by the end devices.

In a more formal way, FC could be considered a system-level horizontal architecture that

distributes resources and services of computing, storage, control and networking anywhere along

the continuum from remote cloud to “things”. Basically, it supports multiple industry verticals

and application domains, delivering intelligence and services to users and business. In addition,

it enables services and applications to be distributed closer to the end devices, and anywhere

along the path between cloud and end users (or “things”, when referring to smart devices).

Overall, FC extends from the end devices, over the network edge, through the cloud, and

across multiple protocol layers. [36–38, 45, 46].

2.1.4 Other related technologies

There are other ongoing initiatives such as Central Office Re-architected as a Datacenter (CORD).

Although CORD could be placed under the EC technological umbrella, it is a complete open-

source service platform combining commodity servers, white-box switches, and segregated access

technologies to provide an extensible service delivery platform . Basically, its purpose is to

redesign the CO concept into an edge-based platform capable of allowing residential, mobile, and
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enterprise customers to configure and manage their service packages rather easily and in almost

real time. Consequently CORD, does not fall into the scope of this research. However, CORD sites

are considered as potential EN locations within our ENPP solution proposal presented in the

following chapters.

Other EC closely related technologies/concepts are Mist Computing, Mobile ad hoc Cloud

Computing, etc [33, 35]. Nevertheless, none of them brings relevant conceptual elements to the

discussion of the EC infrastructure placement problem. Therefore, no further information about

them is provided in the remaining of this document.

In conclusion, FC, MEC and Cloudlets have their similarities and differences but they all

converge in a decentralized architecture of distributed IT capabilities. This pose the question of

where to efficiently place the required computing resources.

2.1.5 Edge Node: the definition

Due to the remarkable conceptual proximity among EC implementations, a remaining open

question is whether there can be a clear and well-accepted definition of the functional and

conceptual base entity of EC: the Edge Node.

Generally speaking, an EN can be defined as “the facility or infrastructure entity placed at

the users’ premises providing computing, storage and networking resources for service execution

purposes”. However, such concept does not clarify the “edge” boundaries along the service path,

nor provides further details about the EN specifications and operation models. What is certain

is that a formal EN definition must represent the operational and functional nature of all EC

implementations. This way, from a developer’s perspective, a given service could be running either

on a Fog Node (FN), a Cloudlet or a MEC server in an isolated or cooperative manner. While

from a service provider perspective, such service would span across a set of ENs with different

characteristics, capacities and functionalities.

The wide range of features and broad operation scope to be inherited -e.g., from FC, cloudlet

computing and MEC- increase the complexity of a generic EN definition. Attempting a flexible,

yet thorough, EN definition can only be accomplished considering the broadest deployment

scenario where all EC implementations inter-operate along the user-to-cloud service path. In this
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context, the following operating schemes may occur regarding the task execution model for an

EC/Cloud ecosystem:

1. Single-node processing: ENs hosting the requested service(s) collect and individually

pre-process the input request(s) from the end devices. If further processing is required,

a request is sent to the upper layer (i.e., the remote cloud datacenter). Otherwise, the

response is sent back to the end device.

2. Multi-node processing: multiple ENs collect and cooperatively pre-process the client

request(s). If further processing is required, a request is sent to the cloud. Otherwise, the

response is sent to the request source.

3. EN-End device cooperative processing: the end devices lease computing, storage and

networking resources in order to participate in the collaboration scheme to process any

given task/request. The service execution is carried out cooperatively among ENs and the

end devices. The task offloading to the cloud is expected to occur with low probability.

These operation models are not exclusive and others may be already defined [33, 47]. From the

first two operating schemes the EN definition is straightforward as the idea of an “infrastructure

entity” is clearly defined as an arbitrary location between the Traffic Aggregation Points (TAPs)

and the remote cloud. However, the last case is rather complex. In such scenario the EN logically

comprises the infrastructure placed at the edge and the resources leased from the end devices to

execute a given task, function or service chain.

Taking this into account and considering that there is still no consensus on what or where is

the “edge”, an EN in the context of this work is defined as follows:

Definition 1. Infrastructure entity bringing computing, storage and networking resources to

the network edge. It ensures both isolated and cooperative execution capabilities for services and

applications (in the past exclusively hosted in the remote cloud). Any Edge Node may comprise

infrastructure in one or more physical locations according to the service and application

executing scheme, although viewed as a single device from a management layer perspective."
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In this definition, the “edge” is assumed to be the logical service path excluding the re-

mote cloud and geographically located at the users’ vicinity (e.g., according to a given latency

requirement).

Nevertheless, since this work is focused on the placement of the physical infrastructure entity

defined above, an EN is hereinafter assumed to be the hardware infrastructure -i.e., an isolated

silo with computing, storage and networking resources in a microdatacenter-like solution- to be

placed in order to satisfy certain pre-defined service requirements.

2.2 Placement Problems

At first glance, the ENPP described in Chapter 1 can be seen as, for instance, a traditional FLP

or server placement problem such as those found in [15–18][19]. Nevertheless, there are some

important differences that stand out after a detailed analysis of these problem types in the 5G

context, since the main goal in FLPs is to select the best facility locations (among a set of initial

potential sites) to achieve costs minimization and customer demand satisfaction [20–23, 48, 49].

When revising the literature, not only FLPs can be linked to the ENPP. There are several

studies available regarding service infrastructure placement for specific use cases: mobile base

stations and cache-enabled nodes for Content Delivery Networks (CDNs) are two examples. In

the following sections, these use cases are analyzed and the similarities and differences with the

ENPP are pointed out.

2.2.1 Facility Location Problems

FLPs deal with the placement of a facility or set of facilities (often from a list of feasible locations)

to best meet the use case constraints and requirements. These problems have been thoroughly

studied due to their utility when planning the placement of public service facilities such as

hospitals, fire fighter stations or commercial facilities such as warehouses. In [23], [20] and [50]

comprehensive surveys about this topic are presented.

Traditional FLP formulations and solutions cannot be directly applied to the ENPP because

of the following reasons:
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• Non-convergence into a particular problem type: As seen in [21], FLPs are mostly formulated

following the guidelines of a specific operational research family: Weber, median, covering,

constrained, uncapacitated, location–allocation, location-routing, dynamic, competitive,

network and undesirable location problems. Therefore, although multi-criteria FLPs have

been already tackled, they all converge into a particular problem type such as coverage

or Weber, while the ENPP is mostly a mixture among a variety of such problems. In the

particular case of interest in this research, the ENPP converges the capacitated, networked

and constrained FLPs with coverage restrictions, dynamic placement requirements, and

even a certain location-routing focus.

• Cost function complexity: The cost function on the ENPP is far more complex to obtain

than those of traditional FLPs, given the number of contradicting and dynamic trade-offs

involved. First, reducing the costs forces a reduction in the number of nodes to deploy, but

this entails a conflict with the strict requirements in place. In addition, CAPEX and OPEX

are linked to the node capacity, which has a negative relationship with the minimization

of the nodes number. Meanwhile, implicit non-specific requirements such as deployment

flexibility, pose additional challenges to be considered. Overall, the ENPP can be considered

as a multi-objective optimization problem in nature, going far beyond the revisited FLP

formulations.

• Non-technical restrictions: common FLP formulations do not deal with non-technical restric-

tions since they start from a given list of pre-selected feasible sites. Nevertheless, the need

to include non-technical restrictions on the site selection is mandatory for the ENPP mostly

due to the high density of nodes to be deployed over a relatively small area in comparison

to facility location density in FLPs, where the length of the sites set is significantly smaller.

What is more, a core difference between FLPs and the ENPP is that the former commonly

considers user demands and transportation distances or costs as main elements in order to

carry out the optimization process. However, for the ENPP the optimal node placement is tightly

coupled to the 5G requirements, mobile/fixed network traffic model, location-dependent rentals,

23



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

costs of interconnecting data sources and service hosts and the technical and non-technical

restrictions inherent to any placement location.

Considering [21], [50] and the aforementioned elements, the ENPP can be classified as a Multi-

criteria Multi-attribute FLP under the specific 5G operational environment. This classification

attempts to overcome current modeling limitations overlooking the complexities derived from:

traffic dynamics and variations expected in future 5G networks, convergence of several operators

in a presumably unique sliced/virtualized infrastructure, challenging cost-effective resource

sizing and broad range of interconnecting technologies with a direct impact on the CAPEX/OPEX

and user demand satisfaction.

2.2.2 Datacenter placement

Excellent background knowledge to solve the ENPP can be obtained from the guidelines to place

small, large and mid-range datacenters. However, the actual key steps followed by companies

like Google, Facebook and Amazon to place their datacenters remain confidential.

To the best of our knowledge, [24] and [28] are two of the few publicly available papers referred

to the datacenter placement optimization. On the former, the authors formulate the problem as a

linear programming model seeking to minimize the costs of the entire datacenters network over a

given geographical area (a set of potential locations was given as input) in order to satisfy known

demands. As a particularity of their method, they assume as inputs the maximum number of

servers to deploy and the user per server ratio. As solving strategy, the authors proposed a set

of heuristics: Simulated Annealing and Optimized Simulated Annealing, in combination with

linear programming, with promising results in cost savings.

This research allowed us to thoroughly comprehend most of the key physical aspects of

service infrastructure placement such as energy consumption, build and land costs. However, its

limitations when directly applied to our particular scenario include the exponential number of

nodes to deploy in a small to medium-sized area (when compared to the article baseline number

of datacenters), communication restrictions between users and services as result of the latency

constraints forcing the formulation of a “coverage” problem and the absence of a proper demand

characterization in order to achieve real-life optimization.
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On [28], the main goal is to obtain a placement baseline for all the components of a fog

network based on micro datacenters and a Long-Reach Passive Optical Network (LRPON). In

this case, the limited scope of the formulation is a first restriction for the ENPP solution, as the

interconnecting methods under 5G are expected to be significantly diverse, while in this case the

whole formulation depends on the particularities of the LRPON and its components.

2.2.3 Base Station placement

Mobile networks have been around for quite a long time and thus, mobile network planning and

specifically base station placement have been extensively addressed [15, 16, 51–53]. Although for

base station site selection, coverage, capacity and costs are the main concerns, exhaustive research

have been carried out in order to characterize user traffic patterns, demand geo-distribution and

other topics closely related to the ENPP.

A budget constrained method is presented in [16], where authors model the Heterogeneous

Network (HetNet) small cell deployment problem seeking to contain the overall costs to a given

limit value, while considering other requirements (transmission power limitation and rate

requirements of users). Authors in [15] propose a novel method for mobile network planning

considering a scenario based on HetNets, which is envisioned to be part of the 5G reality. The

presented idea is to firstly deploy a set of macro-cells whose coverage area is estimated based

on a simplification of the underlying demand modeled as Traffic Demand Points (TDPs). This

partition is done by a tessellation of the geographical area ensuring a fair distribution of the

demand and complete TDPs coverage. Secondly, by checking the workload data on the existing

base stations, the planning algorithm is able to propose the addition of new low-power cells in

order to return to the demand distribution status-quo and guarantee customers QoS.

In [52] the main target is to find the optimal locations to deploy temporal base stations to

cope with the special characteristics of emergency situations. A very simplified scenario was

used, in which the interest territory is divided into squared areas with a fixed arbitrary demand

value. The strategy followed was to greedily place base stations until no further areas remain

uncovered and then adjust the base station initial positions using an evolutionary algorithm to

maximize their capacity usage and thus lower the overall costs. The approach followed in this
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paper considers a HetNet scenario where high-power and low-power base stations coexist to cover

existing demand.

In both [15] and [52], the customer demand assumed as input is over simplified. As a result,

they lack the flexibility to deal with highly dynamic scenarios as those found under future

5G, where the demand continuously changes hindering the placement optimization process. In

contrast, Zhou et al. dive into the relation between base station deployment locations and the

traffic characteristics in cellular networks [51]. They present a deep mathematical study of the

relation between the base station locations and a large database of collected data from operational

mobile networks. The core finding is that the homogeneous Poison Point Process (PPP) can only

be accurately used over small areas to accurately model traffic density, while inhomogeneous

PPP can be used for this purpose regardless of the area size. The data collected about peak-hour

traffic densities, was then used to propose a useful framework for the base station operation

optimization. This research can be used as baseline for more efficient base station placement

algorithms and for the ENPP solution.

2.2.4 Generic Server placement

Further investigation in the field of mobile networking has attempted to optimize the location

selection of the remaining network components. An example can be found in [53], where new

metrics are proposed for the placement of the Serving Gateways and Packet Data Network

Gateways. In summary, the proposal adds new metrics such as the end-to-end connection and

service/application types to the process of selecting the most suitable data anchor gateway for a

given host-to-host communication.

Under the MEC paradigm umbrella, Enhanced Small Cellss (SCeNBs) and other concepts

and platforms such as the proposed in [54–56], significantly differ in their deployment location

considerations. While some solutions (Small Cell Clouds and Mobile Cell Clouds) assume to place

the computation capacities within the RAN sites, others maintain the approach of a further

away location of the resources at centralized datacenters but introducing new components and

inter-working procedures to ensure better performance.
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2.2.5 Edge Server placement

Very few articles are available about EC infrastructure placement, most likely due to the youth of

the related technologies and the lack of operational deployments. Furthermore, the papers found

throughout this research mainly cover quite specific scenarios. Thus, a broad view of the problem

with a more general solution method remains an open question.

Yannuzzi et al. analyze the placement of fog nodes in the specific context of a city like

Barcelona [57]. The pursued goal is to cope with the requirements of smart cities by deploying

FNs to satisfy broadly distributed use case scenarios such as event-based video and traffic

management. The general architecture and the components of the FN are explained, although

the placement strategy just suggests the use of available street cabinets in order to somehow

reduce costs. Furthermore, the QoS-aware placement of FC nodes is solved in [58] based on the

“k-means” algorithm (i.e., as detailed in [59]) to find the best network gateways to place the fog

nodes such that the overall latency is minimized. The core limitations of [58] include the rigid

uncapacitated formulation and the assumption that each node transmit data to only one fog node,

thus reducing the applicability of the solution to real-life scenarios.

IoT is another subject closely related to the ENPP, since it has become a core paradigm

driving 5G networking development [60]. The article in [18] is based on the premise that gate-

ways for an IoT network are far more expensive than IoT smart devices, and as a result their

placement optimization can help minimize CAPEX. In addition, the OPEX is reduced by mini-

mizing the number of required gateways while satisfying predefined QoS demands. The problem

is formulated as Integer Linear Programming (ILP) and the placement is based on the selection

of feasible locations among the set of Voronoi vertices and facility locations.

The study in [27] presents a framework for the placement of edge servers. A novel approach

is used to discover and evaluate unforeseen suitable sites by analyzing user behavior and by

assuming that users are close enough to edge service facilities in real-life scenarios. To simplify

the problem and find a feasible solution, the set of users is also assumed to be somehow clustered

and edge sites are proposed as near to the optimal locations for each cluster as possible. Capacity

provisioning is addressed through an ILP formulation aiming at cost minimization. User demand

variation is taken into consideration in the framework design by preparing the system to cope
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with the worst case scenarios, given a baseline data about demand patterns and user distribution.

The paper in [27] presents some limitations that should be addressed for the context specified

in this thesis. First, user clustering should be done based on the use cases and typical demands

of 5G networking, including both fixed and mobile baseline data, along with an analysis of

demand geo-distribution characterization. A main issue here is the ultra-high density of TAPs

given the presumable deployment of ultra-dense small cells over any area size, coupled with a

tight interlacing between different demand requirements (due to the broad mixture of use case

scenarios). Secondly, capacity provisioning should account for a more comprehensive set of metrics

including but not limited to: number of users, application-based requirements, high reliability and

availability margins, ultra-high bandwidth requirements. Additionally, the placement strategy

should consider cost-related issues to reach its optimal solution, for instance, location-dependent

costs and energy consumption.

Authors in [13] present two core problems: 1) the minimization of the number of access points

co-located with an arbitrary edge server to guarantee customer demand satisfaction and, 2)

the efficient task assignment to the edge servers. To solve the proposed problems, the authors

divide the Wireless Metropolitan Area Network (MAN) into clusters, where the cluster heads are

co-located with edge servers and all cluster members offload the tasks to its corresponding cluster

head. Graph theory is then used to transform the problem into the minimum dominating set

problem and a solution based on a greedy and Simulated Annealing (SA) algorithms is developed

to find the near-optimal solutions. When compared to the ENPP described in Chapter 1, the

research in [13] is limited by the translation of the delay constraint to simplistic Euclidean

distance. Furthermore, as stated above, the clustering approach used lacks the flexibility required

to deal with the EN placement under 5G requirements.

From [61], the placement of MEC servers can be studied. This paper addresses the MEC

geo-clustering problem where the main goal is to optimize the MEC server placement (while

balancing the overall workload) for the MEC clustered service areas. A graph-based algorithm is

presented to enhance the partition of the pre-defined service areas, looking to improve the task

offloading mechanisms. The limitations on this work include limiting the MEC server ability

for collaborative task execution, due to the clustering approach used on the formulation and its
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inability to consider 5G requirements (e.g., latency, reliability).

Similarly, a framework to solve the edge server placement within a geographical topology

is showcased in [26]. As in [61], this work uses a clustering approach in order to simplify the

overall problem complexity, thus incurring in the above mentioned limitations. Nonetheless, the

authors consider end-user service demands, CAPEX/OPEX on edge infrastructure operators and

end-user mobility patterns within the service area. However, assuming that areas with high

density of Wi-Fi access points are more likely to have a user-managed edge server, this article

does not take into consideration certain realities: a) the user willingness to operate and maintain

the edge infrastructure, b) the edge service provider service cost evolution that could lead to

the full externalization of the user needs (e.g., as with the Infrastructure as a Service (IaaS)

service model), c) the real savings for the users in owning an edge server instead of leasing the

resources. Finally, only the existing base stations are considered in this study as potential edge

server locations.

In [25] the edge server placement problem is tackled for mobile edge computing environments

in future smart cities. The novelty of this study lies in the multi-objective optimization model,

aiming at both delay minimization and overall workload balance. This work assumes to know in

advance the number of edge servers to be placed and uses the distance to estimate the network

delay, thus limiting the applicability of the results to 5G ultra-dense networking and delay

sensitive use cases.

The NFV middlebox placement is optimized in [62], aiming at ensuring optimal network

performance based on the efficient route of service flows and the effective placement of the

processing middleboxes. This article is heavily limited when considered for the ENPP, since it

assumes that every path for any arbitrary pair of endpoints is known beforehand, thus restricting

the model’s ability to model the realistic interactions between service requests and current

network capacities. The authors in [63] aim at optimizing the number of nodes in a fog network,

with a strong focus on the optimization and allocation of the wireless parameters. This study does

not consider the backhaul network capacities nor the possibility to place the edge infrastructure

at both existing IT-capable sites and RAN locations. Additionally, the authors addressed a single

objective ENPP variant for a scenario-specific hierarchical fog network.
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What is more, none of the available studies found on edge server placement addressed the

network-aware ENPP, where the placement of the ENs is made considering the underlying

network capacity and utilization ratio. Since a massive surge in data processing and bandwidth

usage is envisioned under 5G networks, a network-aware strategy becomes mandatory to satisfy

the required Key Performance Indicators (KPIs) and avoid performance degradation in the long

run.

2.3 Placement optimization methods

Most of the placement problems mentioned above are considered part of the NP-hard problem set

[48, 49, 64–66]. The ENPP to be solved within this research, being a Multi-criteria Multi-attribute

FLP, basically combining several FLPs problem characteristics, could be deduced to be NP-hard.

In summary, the ENPP implies the analysis of all possible EN-TG combinations and network

paths in order to find the minimum cost solution. What is more, the latency constraints and the

need to satisfy all TG demands in a capacity-dependent cost model, imply that the combinations

cannot be splited to reduce computation time. Furthermore, a simplified variant of the ENPP

(i.e., a network-agnostic formulation) has been already proven to be NP-hard in [25]. The need

to consider the underlying network topology and capacity for the ENs deployment, significantly

increases the number of feasible solutions, adding an extra layer of complexity in terms of

execution time and computing resources.

On the other hand, there is still no working knowledge and operational data regarding 5G

user behavior, future traffic patterns and service trends in an EC, NFV, 5G ecosystem. Therefore,

predicting the number of ENs for a given service area is a nearly impossible task. What is

certain, is that ultra-dense networking and 5G stringent requirements will push the amount

of ENs to thousands in just a city. Although a MILP formulation makes a variant of the ENPP

solvable by exact methods (see Chapter 4 and Chapter 5), for the 5G scalability requirements

and a network-aware ENPP model the problem difficulty increases abruptly. Taking this into

consideration, heuristic or meta-heuristic methods have to be used as placement solutions.

Since several heuristic-based strategies have been developed solving various placement
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problems [20–24, 27, 49, 50], the most used are briefly described in the following sections, along

with the main issues regarding their application to the ENPP solution.

2.3.1 Simulated Annealing

SA has been effectively used to solve FLPs [49, 67, 68]. Overall, SA has been used to solve FLPs

based on its flexibility to solve combinatorial problems when compared to other solutions such

as the Lagrangian method and Branch and Bound algorithms. In addition, SA has been already

tested and compared to other heuristics when solving FLPs, showing excellent results in both

performance and solution quality when compared to best known or heuristic-generated values

[24, 49, 67, 69, 70].

Overall, SA offers a flexible strategy to cope with the ENPP without incurring in complex

implementations. However, due to its simplicity, its basic procedure could not meet the practical

requirements of our particular context. Thus, further improvements and analysis steps are

mandatory, involving multi-objective environment consideration in search for Pareto-optimal

fronts.

2.3.2 Tabu Search

Tabu Search is a meta-heuristic that guides a local heuristic search procedure. One of its

main components is the use of adaptive memory, which creates a more flexible search behavior

allowing the algorithm to search the solution space beyond local optimality by relaxing “tabu

constraints” and visiting unexplored solutions. To achieve such behavior, Tabu Search implements

the following procedures: aspiration, diversification and intensification [71]. Since local choices

are guided by information collected during the search, Tabu Search contrasts with memoryless

designs such as SA, that heavily rely on random or semi-random processes implementing the

sampling steps.

The main challenge when adapting the Tabu Search to solve the ENPP is the solution

generation and the adaptive memory/tabu lists usage. Since the number of nodes is quite large, the

convergence of Tabu Search based on upfront feasibility calculations poses a complex challenge.
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2.3.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) consist of several heuristics commonly employed to solve optimiza-

tion tasks by imitating natural evolution [71]. EAs typically use different levels of abstraction,

working on whole populations of possible solutions for a given task. The core idea is to apply com-

binatorial processes such as crossover and mutation to the initial search space (initial population),

in order to find a near-optimal final solution through “evolution”.

A main benefit of EAs is their ability to cope with multi-criteria and multi-objective problems

in a fairly non-complex implementation [72]. When applied to the ENPP solution however,

the problem representation becomes a critical concern. Coding the EN architecture variation,

while meeting underlying requirements in a EA manner is far from trivial and could lead to

non-correctness or slow convergence of the solutions.

2.3.4 Lagrangian Relaxation

Lagrangian Relaxation is basically a method of decomposition: the constraint set of the problems

is separated into two groups, namely the “easy” or “bad” constraints and the “hard” or “good”

constraints. The main idea is to relax the problem by removing the hard constraints and putting

them into the objective function, assigned with weights (the Lagrangian multiplier) [73, 74].

Each weight represents a penalty which is added to a solution that does not satisfy the particular

constraint.

In summary, the interest of the Lagrangian relaxation is that, in some cases, the optimal

solution of the relaxed problem actually gives the optimal solution of the initial problem. When

compared to SA and Tabu Search, Lagrangian Relaxation can be assumed to be more rigid,

offering less adaptability to complex problem environments and intractable restriction sets.

Namely, the restriction reduction under the ENPP is not feasible considering the number of

parameters involved and use cases to satisfy. Furthermore, the multi-objective nature of the

problem limits or even prohibits the constraint set splitting process.
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2.4 Open Issues

Although extensive research can be found regarding topics and problems closely related to the

ENPP, certain limitations restrict their use to formalize and solve the ENPP under 5G constraints

[13, 25–27, 57, 58, 61, 62, 75]. These limitations can be grouped into the following categories:

1. Limited formulation scope: the vast majority of the placement problem models are

unable to represent the underlying complexity of a 5G/EC ecosystem due to, for instance:

a) unrealistic cost model overlooking the main costs affecting the EN placement (see Sec-

tion 4.2), b) mathematical models not tailored to 5G requirements, namely, ultra-low latency,

ultra-dense networking and ultra-high reliability, c) over-simplified delay constraints, com-

monly based on Euclidean distance, d) single objective formulation minimizing the cost, the

number of nodes or balancing the workload, thus unable to comprehensively model and

optimize the EN placement.

2. Network-agnostic placement: most edge server and other placement problem solutions

avoid considering the underlying network within their solving methods due to the signifi-

cant complexity this adds to the problem. Consequently, the applicability of the proposed

solutions is not guaranteed on real-life scenarios, where the existing network capacities

and capabilities must be considered to ensure use case demands satisfaction and flexible

management/orchestration under 5G networking.

3. Unrealistic assumptions: in order to make a certain ENPP variant solvable, several

studies assume that some critical data is known beforehand (e.g., the number of ENs or

edge servers to be deployed) or arbitrarily selected (e.g., the network path interconnecting

a given edge server and an end user/device). As a consequence, most solutions lack the

flexibility to be adapted to complex placement scenarios such as those envisioned in next

generation networks.

4. Heterogeneity and rigidness: no extensible platform or framework has been proposed,

to the best of our knowledge, to solve any ENPP related problem. Therefore, the solutions

proposed in the available literature cannot be extended or adapted to new scenarios and
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use cases without incurring in significant development and modeling efforts. Simple tasks

such as inserting new requirements or parameters into the placement strategy result in

mid to long-term software modifications.

All limitations considered, the need for a flexible, network-aware, realistic ENPP model

and solution strategy, tailored to the strict requirements and use cases of 5G networks is cer-

tain. Moreover, the proposed placement solution must be thoroughly evaluated considering the

evolution in 5G implementations and standardization.
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ENPP PLACEMENT PARAMETERS

This chapter is based on:

• A. Santoyo-González and C. Cervelló-Pastor, “Edge Nodes Infrastruc-

ture Placement Parameters for 5G Networks,” in 2018 IEEE Confer-

ence on Standards for Communications and Networking (CSCN 2018),

(Paris, France), p. 6, IEEE, 2018.

T
his chapter presents a set of placement parameters for the EN site selection, tailored to

the ENPP solution. Additionally, core placement guidelines to be take into consideration

are detailed at the end of the chapter.

3.1 Placement parameters

When solving the ENPP, a thorough study of convergent technologies, scalability issues, top-

level and low-level architectures and inter-component synergistic are significant aspects to be

considered.

When proposing a set of metrics to assess potential EN sites, certain extrapolation can be

made for the ENPP from the sets of metrics presented in recent research [24, 76]. However,
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Table 3.1: ENPP placement parameter categories

Parameter Category Parameter

Demand Latency (i.e., RTT) from an EN location to the served
TAP.
Throughput requirement imposed by the served TAP
due to the aggregated requests of the underlying users.

Location-dependent costs Costs directly linked to the site itself (i.e., Power line lay-
out, Energy source, Network line layout, Interconnection
capabilities, Land acquisition, Build costs).

Site capabilities/restrictions Site deployment capabilities (e.g., IP-capable equipment)
and non-technical restrictions (e.g., environmental, po-
litical and social limitations).

Reliability Site-dependent characteristics (natural disaster expo-
sure, site physical security) and TAP reliability require-
ments in terms of coverage redundancy.

Energy Consumption Energy consumption based on the per path power analy-
sis when interconnecting any EN-TAP pair.

Service Area Type Area classification in terms of TAP demand and density
(e.g., urban, rural).

although the placement of ENs may inherit some of these parameters, certain modifications and

additions are mandatory.

Latency, for instance, should not account for the delay caused by the wireless access layer

of mobile networks, as such value does not depend on the location of the service hosts (see

Section 3.1.1). Similarly, latency constraints should be fixed in a per service or use case fashion,

along with fault tolerance and availability, allowing certain locations to be more suitable for an

arbitrary set of use cases than others. Staff expenses should consider the ultra-high automation

levels expected in 5G and the multi-operator infrastructure management, along with recent and

future advances in management and orchestration platforms, in order to accurately determine the

related costs. In addition, land acquisition costs and other capital expenses should include VNF

hosting capabilities on available nearby locations or in-use IT-capable sites such as CDN-PoP,

ISP-PoP and Central Offices.

On the following subsections the proposed set of parameters for the EN site selection is

presented. A summary of these findings can be consulted on Table 3.1.
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3.1.1 Traffic Demands

When selecting a location to place an EN the traffic demand to be satisfied is crucial. In this

research we consider traffic demands to be mainly formed by latency and bandwidth require-

ments, since a core goal of our solution is to answer the 5G requirements for ultra-low latency

and ultra-high bandwidth scenarios.

Latency has been widely studied in the context of mobile networks and 5G use cases [7, 77].

However, under the ENPP, latency control entails certain particularities and complexities that

must be addressed. The first challenge is to define the delay values that can be reduced through

the EN placement optimization. Figure 3.1 showcases the various deployment scenarios and

delays involved when considering a communication channel from a mobile user to a service hosted

in an EN, with the top level depicting a “traditional” service path in this context. Following the

work in [78], the total unidirectional transmission time of a 5G system depends on:

• Lradio: the radio layer packet delay, it occurs between the base station and user equipment

(it includes the Transmission Time Interval which must be less than 1 ms under 5G,

propagation delay, signal processing time at the receiver, and re-transmission time due to

packet errors).

• LFronthaul : the delay between the base station front-end and the centralized Baseband

Unit (BBU), if applicable.

• LBackhaul : also called backhaul delay, it is the time taken to traverse the core network

entities and gateways.

• LCore: core network processing time.

• LTransport: communication delay between the core network and the cloud/edge service host.

For EC, the latency optimization is to be carried out from the TAPs. Therefore, the EN site

selection optimization can improve the RAN-to-EN delay (calculated as LFronthaul +LBackhaul +
LTransport) for mobile networking and the TAP-to-EN delay for other network architectures1. As a

1From this point onwards, TAPs are assumed to include RAN nodes
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Figure 3.1: EN deployment scenarios for latency optimization.

result, considering the evolution of the mobile network core towards 5G presented in [79], namely

a fully merged NFV/SDN architecture, three main scenarios could be expected (see Fig. 3.1):

• Scope A: The service hosts or the virtualized mobile core components are deployed in a

distributed manner at the EN set. Within this scope, from a functional point of view, the

User-EN communication could even occur without involving any core network entities,

thus mostly excluding current LCore delays. This way, when selecting a site to deploy an

EN and considering a management and orchestration framework able to efficiently route

traffic to the nearest core component through SDN-based mechanisms, LTransport becomes

negligible. Consequently, the delay suitable for optimization through the EN placement

strategy accounts for the sum of LFronthaul and LBackhaul . This means that only those EN

locations where (LFronthaul +LBackhaul)≤ Lmax can be selected as EN sites (where Lmax is

the maximum delay allowed between any User-EN pair including the related processing

delays).

• Scope B: The edge infrastructure comprises the service hosts, core network components

and the BBUs presumably as VNFs. Therefore, both LBackhaul and LTransport are mini-
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mized and only LFronthaul can be optimized through an efficient and accurate EN location

selection strategy. Similarly to Scope A, the service path in Scope B could exclude any

mobile core entities from being involved (as the User-EN communication may not necessa-

rily involve the network core), and the core processing delays could be avoided or reduced.

Additionally, RAN processing delays under this scenario may be minimized through the

hosting of BBUs within the edge infrastructure.

• Scope C: Each RAN site is allocated computing, storage and networking capacities (it is

upgraded to EN). As a pure co-location strategy is followed, no optimization is achieved by

solving the ENPP (i.e., more cost-effective potential sites, such as Central Offices, are not

considered).

At first glance, Scope C offers the best deployment solution as it maximizes the latency re-

duction. However, this deployment scheme is not feasible due to scalability and cost related issues.

As the number of TAPs will significantly grow in 5G networks due to ultra-dense networking,

the CAPEX and OPEX for upgrading each aggregation site to EN make this approach unfeasible.

Furthermore, non-mobile service requests would not benefit from such placing strategy and thus

5G use case demands could not be entirely satisfied. In the case of Scope A, the limitation comes

from not optimizing LBackhaul which is critical in order to achieve round-trip latency values

under 1 ms. Moreover, the scenario in Scope A does not follow current 5G deployment advances

and trends where the core components and the virtual BBUs coexist under the virtualized edge

infrastructure. Taking these elements into account, Scope B can be assumed to be the most

cost-effective EN deployment scheme, regarding latency optimization.

Overall, when placing an EN under 5G latency constraints, the maximum allowable de-

lay between any aggregation point and its serving EN is of critical importance. Assuming a

Lmax = 1 ms threshold for delay-sensitive use cases and Lradio = 0.5 ms [78], the ENPP solution

should ensure Lmax = Lradio + LFronthaul + Lprocessing ≤ 0.5 ms, considering Lprocessing to

be known in advance or accurately predicted (e.g., using machine learning techniques). This

latency constraint is quite challenging [80]. However, a joint effort mixing radio-communication

advances, EC placement optimization, service and management layer efficiency and other cutting-
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edge technologies may result in turning such latency value a reality. In fact, recent research has

set a promising starting point towards achieving this goal [25].

Further latency complexities are introduced by a federation of edge and centralized cloud

platforms under a hierarchical arrangement, where the operations with a local scope are handled

by edge platforms while broader decisions are centralized. Such architecture can be seen as an

extension of the traditional cloud, allowing flexibility in service deployment and mobility, by

enabling an elastic combination of different resources across separate platforms for particular

application types. This deployment requires an orchestration system to manage, control and

configure the corresponding services across the set of cloud platforms.

The capacity of an EN2 directly depends on the traffic density. Such metric is tightly coupled

with the 5G strict bandwidth requirements and expected ultra-dense device geo-distribution. In

order to effectively consider traffic density for site selection purposes, the network throughput

demanded by the TAPs must be considered as a placement parameter. One of the key ENPP

trade-offs rises from the interrelation between throughput and EN sizing. In principle, allocating

as much demand as possible to each EN is desirable. Following this approach, commonly used

base station placement strategies and tessellation mechanisms become suitable solutions [15, 81].

However, latency restrictions could then lead to unmet requirements, performance issues and

overlooked location-dependent costs. Furthermore, since ENs are envisioned as small-sized COTS

infrastructure nodes, as the capacity demand over an EN rises, its CAPEX/OPEX increases. In

fact, EN expenses do not follow the traditional data center cost patterns for this reason [24, 82].

As a result, maximizing performance and coverage through a higher number of ENs is desirable

in terms of overall expenses, rather than condensing the throughput demand into fewer high-

capacity nodes. This reasoning is also supported by the automation levels expected under 5G,

as less complex and capacitated ENs will reduce CAPEX/OPEX by being highly automated, self-

aware and remotely managed/maintained if needed. Nevertheless, given the trade-off regarding

EN number, capacity allocation and throughput requirements, only multi-objective/multi-criteria

optimization mechanisms can be used for this particular ecosystem.

2Computing, storage and networking resources available for service execution

40



3.1. PLACEMENT PARAMETERS

3.1.2 Location-dependent costs

The list of location-dependent costs is significantly extensive, as they go from energy prices and

land acquisition to installation expenses due to distance between the closest suitable power or

networking source. Throughout this research, the following elements where identified regarding

the site selection for an EN:

• Power line layout

• Network line layout

• Energy source

• Land acquisition

• Build costs

• Interconnection capabilities

Table 3.2 describe each location-dependent cost. The power line layout parameter accounts

for the costs of bringing power to the EN site if needed. Similarly, network line layout refers

to the cost of bringing networking. These two parameters entail significant cost reductions when

selecting locations close to a power source or a network PoP.

In terms of energy, a self-sustainable location or a green-powered one (ecological energy

sources in-use) is preferable. To guarantee this, the energy source parameter is defined. This

parameter allows the placement strategy to assess each location regarding its energy capabilities.

Any site with an in-use ecological power source or capable of using “green” energy without

incurring in high extra expenses, is ranked higher than other locations with exclusive “traditional”

energy capabilities.

On the other hand, build costs and land acquisition expenses are tied to the EN capacity.

The former accounts for the cost of installing cooling and power delivery infrastructures and other

support infrastructures, while the latter sums up the costs of renting or buying the required space.

Commonly such expenses are computed in terms of the maximum power of the infrastructure

which is basically determined by the computing resources.
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Table 3.2: Location-dependent parameters

Parameter Description

Power line layout Cost of bringing energy to the location

Network line layout Cost of bringing networking to the location

Energy source Energy price according to the available power sources

Land acquisition Cost of renting/buying the required space

Build costs Cost of deploying the required infrastructure

Interconnection capabilities EN-TG and EN-EN interconnecting costs

The location-routing nature of the ENPP is taken into account through assessing the inter-

connection capabilities per site. The communication path between any EN-TG and EN-EN

pair is analyzed for each site in order to find those locations where less energy is consumed along

the service channel and the lowest capital expenses are needed to ensure interconnection. This

parameter should rank all locations according to already in-place communication infrastructure,

IP-capable equipment, radio-wave communications feasibility.

3.1.3 Site capabilities/restrictions

Not all available sites are suitable for the placement of IT infrastructure. Political, social and

environmental conditions should not be overlooked. If a set of potential locations is not identified

and the entire geographical area is considered for EN placement, a tessellation method should be

applied in order to exclude unfeasible areas and thus optimize the solution procedure. Moreover,

each location capabilities should be analyzed as it could impact the costs. For example, an ISP-PoP

location is expected to be far less expensive for deploying and EN than a base station site. This

way, the ENPP solution method must evaluate each site according to its deployment capabilities.

3.1.4 Reliability

Service availability, tightly coupled with the architecture and system-level reliability, depends on

the budget constraints and site-dependent properties (i.e., natural disaster exposure, networking

PoPs available, site physical security). Intuitively, disaster-prone areas are to be avoided, but the

trade-off on this matter must be carefully analyzed to avoid overpriced or unfeasible solutions.

Overall, these elements can be grouped into a parameter conventionally called site reliability.
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Table 3.3: Reliability parameters

Parameter Description

Site reliability Site characteristics such as natural disaster exposure
and physical security

Service reliability For some TAP and use cases, more than one EN is to
be necessarily allocated in order to meet the service
reliability requirements (i.e., mandatory backup ENs)

In certain scenarios such as mission critical systems or sensitive infrastructure communi-

cations, reliability must be ensured by guaranteeing the placement of additional or backup

ENs within the communication range allowed by the latency constraints. Such consideration

is considered in this work as a service reliability parameter. This placement criteria entails

certain particularities as it basically refers to the user demands and not to the site itself. However,

if a given set of users or demand scenario (i.e., a TAP) requires coverage from more than one EN,

the placement strategy must place additional infrastructure in a different suitable location (in

addition to the best location found). Such deployment would imply doubling the overall costs.

Therefore, in a first step the placement mechanism must analyze the already placed ENs to check

whether an existing EN can cover the “high-reliability” demand. If such EN is not found, the

placement solution must propose an additional site.

A summary of the findings regarding the reliability placement parameter is presented in

Table 3.3.

3.1.5 Energy Consumption

Power-consumption for the optimal placement of edge infrastructure has been poorly studied on

mobile networking, namely, on 5G networking. The revisited literature mainly focuses on the

access layer energy optimization -i.e., optimizing the radio resource allocation and usage [78, 83]-

thus overlooking the need to somehow evaluate how the energy consumption can be considered

when selecting where to place the edge servers. Additionally, the energy metrics related to the

radio layer fall out of the scope of the ENPP as the EN placement is abstracted from the access

layer details by the TAPs.

Datacenter placement strategies have considered energy as parameter in the past [24].

However, some core differences must be pointed out about datacenter and EN placement regarding
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energy: 1) given the expected small-sized hardware capacity on ENs, the power consumption

patterns and analyses on datacenters are inaccurate and cannot be followed, since they are

commonly based on a power-per-rack metric and designed for large computing capacities, 2) when

selecting a location for a datacenter, due to their limited number within large service areas (i.e.,

few cloud datacenters are placed even within a country-sized service area), the energy parameter

is usually linked to the site-specific energy costs3, whereas the energy price variation become

irrelevant for the EN site selection as the EC nodes are to be scattered within areas where the

energy costs are typically immutable (e.g., cities, towns) [24, 82].

In summary, a network-aware ENPP solution can take into account energy consumption as

a parameter by following the principles of energy-aware routing, commonly based on link rate

adaptation and sleeping mode [84, 85]. The reason is that the overall cost of the EC network

is directly linked to the in-use underlying network capacities and resources. Any set of EN

potential sites can be assessed and ranked considering the energy consumption on the possible

network path(s) from the EN site to the TAPs it has to serve. Namely, the network paths are to

be normalized and weighted in terms of energy usage based on the number of nodes, the in-use

capacity on the links and the additional traffic load imposed by the EN-TAP pairing.

3.1.6 Service Area Type

Partitioning and classifying the service areas into urban and rural decreases the execution times

of the proposed solving schemes while keeping accuracy, efficiency and performance. Moreover,

given the significant difference among service area type characteristics, different placement

parameters or schemes could be considered accordingly. Rural areas, for instance, are mainly

prone to a co-location solution, where ENs are to be deployed in existing communication or

computing facilities such as mobile macro cell sites. In contrast, the traffic density and use case

mixture in urban and even suburban environments forces the ENPP solver to analyze a list of

potential sites or the continuous placement space in order to propose EN optimal locations.

3Placing a datacenter in a given province or even a given country is analyzed based on the cost of the energy in
that particular area, the energy price varies among different provinces, cities
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3.2 Additional placement considerations

Capacity planning is undoubtedly a hard problem yet to be optimally solved given the numerous

parameters, constraints and scenarios to be considered. For the ENPP, capacity allocation should

consider, among others, the following elements: variable workload intensity and distribution (for

both fixed and mobile networks), inter-tier communication, service and infrastructure involved

platforms (for example FC, where some capacity could be leased from customer end devices and

thus not be required on the ENs).

In spite of the lack of research found for the ENPP solution, the VNF placement problem

has been exhaustively tackled and proved to be NP-hard [86–89, 89–94]. The VNF available

placement methods should be fully understood and carefully considered. Among the factors

taken into account for the VNF placement methods, the following directly influence the ENPP:

latency, bandwidth, resource utilization and capacity. The scope of such parameters on the

VNF placement problem differs when compared to the ENPP, as they are independent of the

infrastructure location. Nevertheless, analogies can be made without loosing generality and by

considering service chain and virtual functions placement, valuable hints on how to distribute

physical resources can be defined.

3.3 Conclusion

A lack of placement criteria completeness was found from the literature revisited regarding

the ENPP. For instance, to the best of our knowledge, Section 3.1.1 and Section 3.1.5 are the

first step into defining the delay values and energy consumption parameters, respectively, to

be considered when placing an EN. Similarly, reliability has been mainly overlooked in most

placement research, although the foreseeable EN deployment density and 5G use cases pose

complex requirements in this regard. Additionally, service area type is a novel parameter proposal

that directly affects CAPEX/OPEX.

Overall, the EC deployment for next generation 5G networks requires innovative schemes

and solutions. This chapter sets a starting point for the EN placement optimization towards

a feasible 5G-EC ecosystem. By defining a potential list of parameters to solve the ENPP, the
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groundwork for a cost-effective solution strategy has progressed further. Consequently, the

following chapters focus on a deep understanding of the EN capacity planning requirements and

placement guidelines, aiming at providing the required mathematical formulation and solution

for the EN site selection problem on 5G networks.
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SINGLE-OBJECTIVE ENPP

This chapter is based on:

• A. Santoyo González and C. Cervelló Pastor, “Edge Computing Node Placement

in 5G Networks: A Latency and Reliability Constrained Framework,” in 2019

6th IEEE CSCloud/ 2019 5th IEEE EdgeCom, (Paris, France), pp. 183–189,

IEEE, 2019.

• A. Santoyo-González and C. Cervelló-Pastor, “A Framework for Latency-

constrained Edge Nodes Placement in 5G Networks,” in XXXIII URSI 2018,

(Granada, Spain), 2018.

• A. Santoyo-González and C. Cervelló-Pastor, “Latency-aware cost optimization

of the service infrastructure placement in 5G networks,” Journal of Network

and Computer Applications, vol. 114, pp. 29–37, 2018.

• A. Santoyo-González and C. Cervelló-Pastor, “On the Optimal NFVI-PoP Place-

ment for SDN-Enabled 5G Networks,” in Trends in Cyber-Physical Multi-Agent

Systems. 15th PAAMS 2017, 2017.

T
o build the foundations towards a realistic multi-objective ENPP formulation, this

chapter dives into the single-objective formulation of the ENPP. Two mathematical
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models are presented and a novel heuristic is proposed, evaluated and extended through

a functional framework, to solve two Single-Objective ENPP (SO-ENPP) variants:

• Latency-constrained ENPP for pre-defined EN capacities.

• Latency and reliability-constrained ENPP for flexible EN capacities.

The first ENPP variant is analyzed in Section 4.1. It proposes a single-objective optimization

MILP model where the main goal is to minimize the number of nodes deployed in an EC network.

To model the computing, storage and networking capacities of the ENs, three EN sizes were

defined: small, medium and large. Furthermore, this section details a novel heuristic to solve

the ENPP called HSA, following the advantages of SA showcased in Section 2.3. This heuristic is

evaluated against the exact model and a traditional SA implementation in a controlled simulated

environment.

On the other hand, Section 4.2 thoroughly extends the problem model and heuristic solution

showcased in Section 4.1. Namely, the latency-constrained MILP formulation is enhanced aiming

at minimizing the deployment cost of the EN network: capacity-related costs, interconnecting

expenses and fixed deployment costs. Additional parameters -i.e., reliability- are inserted into the

model, adding more complexity to the problem and the HSA strategy is significantly extended

through the development of a flexible framework to ensure the usability of our results.

4.1 Latency-constrained ENPP for pre-defined EN capacities

In order to model the SO-ENPP as a latency-constrained optimization problem for pre-defined

EN capacities, we first assume that the service users distributed over a given area can be modeled

as TGs1 [15, 16]. Such simplification is made considering that the last-mile access infrastructure

is envisioned to be wireless for most 5G usage scenarios. Thus, the aggregated cell structure

composed by mobile base stations, wireless access points (macro cells, micro cells, femto cells), as

depicted in Figure 4.1, is used as base entry data and these aggregation points are then defined

as TGs.

1Hereinafter, this assumption is followed for all ENPP formulations unless stated differently

48



4.1. LATENCY-CONSTRAINED ENPP FOR PRE-DEFINED EN CAPACITIES
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Figure 4.1: Traffic aggregation points defined as TGs

This simplification allows us to effectively model the end user demands regarding latency,

reliability, throughput, without loss of generality. The reason is that the TAPs, hereinafter

defined as TGs to represent their “traffic demand point” nature, abstract the requirements of the

underlying users, acting as mandatory gateways for all data exchanged between any arbitrary

end user-service host pair.

4.1.1 Problem model

The main objective of this model is to reduce costs by minimizing the number of ENs while

considering a limited capacity for each EN. Therefore, the optimization problem is formulated as

follows (glossary of terms in Table 4.1):

Minimize:
∑

∀e∈EN
ve(4.1)

s. t.:
∑

∀e∈EN
ute ≥ 1 ∀t ∈TG(4.2)

ute = ve if loc(t) = loc(e) ∀t ∈ TG, ∀e ∈ EN(4.3)

ute ≤ ve if loc(t) 6= loc(e) ∀t ∈ TG, ∀e ∈ EN(4.4)
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Table 4.1: Glossary of symbols for the latency-constrained SO-ENPP

Symbol Parameter Variable Description

M X set of coordinate pairs forming the ter-
ritory of interest

TG X set of TG coordinates

EN X set of coordinates for EN potential sites

Dmax X maximum allowed distance between a
TG and its serving EN

tdt X total demand of TG t

ute X 1 if TG t is served by EN e, 0 otherwise

ve X 1 if EN e is deployed, 0 otherwise

loc(t) or loc(e) X location of TG t or EN e

c(e) X EN e capacity

dte X part of TG t demand served by EN e

∑
∀e∈EN

dte = tdt ∀t ∈TG(4.5)

dte ≤ tdt ·ute ∀t ∈ TG,∀e ∈ EN(4.6) ∑
∀t∈TG

dte ≤ c(e) ∀e ∈ EN(4.7)

c(e)=



0 if
∑

∀t∈TG
dte = 0

A if 0< ∑
∀t∈TG

dte < A

B if A ≤ ∑
∀t∈TG

dte < B

C if B ≤ ∑
∀t∈TG

dte ≤ C

∀e ∈ EN(4.8)

if ute = 1⇒ distance(t,e)≤ Dmax ∀e ∈ EN,∀e ∈ EN(4.9)

if ute = 0⇔ dte = 0 ∀t ∈ TG,∀e ∈ EN(4.10)

if ve = 0⇔ ∑
∀t∈TG

dte = 0 ∀e ∈ EN(4.11)

ute,ve ∈ {0, 1} ∀t ∈ TG,∀e ∈ EN(4.12)

dte ≥ 0 ∈R ∀t ∈ TG,∀e ∈ EN(4.13)

The objective function in Eq. (4.1), seeks to minimize the number of ENs (i.e., ve). The global

aim is to select “good” EN locations in terms of delay, capacity and service load. Furthermore, by

adjusting the EN capacity to the covered area demands, we also pursue a low-cost solution.

The first set of restrictions (4.2) specifies that any given TG t should be covered by one or
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more ENs. The constraint set (4.3), refers to the case of EN e co-located at TG t position, while

(4.4) ensures that no EN is placed unless there is a TG to cover. In (4.5), TG t demand is to be

entirely covered by its serving ENs e. On the other hand, (4.6) defines the interrelation between

the part of TG t demand served by EN e, in case the association between t and e exists. From

(4.7), the summation of the covered TG demands under an EN, should not exceed the EN capacity,

which is defined in (4.8). The linearization of the EN capacities as a piecewise constant function

is detailed in Section 4.1.1.1.

To achieve latency-awareness, the parameter Dmax is introduced in (4.9). This parameter

is set as the maximum distance allowed between a TG t and its serving EN, such that a given

latency value is not exceeded by the placement strategy. As a consequence, any EN location

complies with the particular latency requirements imposed to the placement algorithm. The

distance between any pair TG-EN was assumed to be the Euclidean distance, therefore, these

implications have been linearized as shown in Section 4.1.1.2.

The set of restrictions (4.10) relates the part of the TG t demand served by EN e to the binary

variable ute, which determines if this relationship indeed exists. The same idea is applied on

(4.11), guaranteeing that only deployed ENs cover the corresponding part of TG demand that is

associated to them. Both set of constraints are linearized in Section 4.1.1.3.

Finally, (4.12) and (4.13) are variable-type or domain constraints that specify the type of

values the decision variables can take.

4.1.1.1 Modeling EN capacities

The capacity of each EN is modeled as a piecewise-constant function of P pieces or sections

(with P = 4, see Fig. 4.2), as shown in (4.8). In order to linearize such function, the binary

variable δie ∀i ∈ P, e ∈ EN (a δ value per function section), is introduced to determine which

capacity should be selected depending on the sum of the demands covered by EN e. The value of

δie is 1 at the ith section and 0 otherwise. As result, the constraints (4.14)–(4.19) are added to

the model, where A, B and C are the available EN capacities, being C the maximum and A the

minimum value. To obtain the inequalities in (4.15) and (4.16), as required in the linearization

procedures, the value ε is defined as an arbitrary small value.
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Figure 4.2: Piecewise-constant function modeling the EN capacity

∑
∀t∈TG

dte ≤ C · (1−δ1e) ∀e ∈EN(4.14)

∑
∀t∈TG

dte ≤ C · (1−δ2e)+δ2e · (A−ε) ∀e ∈EN(4.15)

∑
∀t∈TG

dte ≤ C · (1−δ3e)+δ3e · (B−ε) ∀e ∈EN(4.16)

∑
∀t∈TG

dte ≥ A ·δ3e ∀e ∈EN(4.17)

∑
∀t∈TG

dte ≥ B ·δ4e ∀e ∈EN(4.18)

∑
∀t∈TG

dte ≤ C ∀e ∈EN(4.19)

Moreover, variable δie, ∀i ∈ {1, . . . ,P}, P = 4 should comply the following condition:

∑
∀i∈{1,...,P}

δie = 1 P = 4,∀e ∈EN(4.20)

Finally, the capacity of each EN is defined as:

c(e)= δ1e ·0+δ2e · A+δ3e ·B+δ4e ·C ∀e ∈EN(4.21)

Overall, restrictions (4.14) to (4.21) replace the set of constraints (4.8), used in the model to

determine the capacity value for each EN e, such that it will always be higher than the covered

demand (otherwise, another EN is selected to cover the unsatisfied service requirements).
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4.1.1.2 Linearization of the euclidean norm

In this subsection, the linearization procedure for (4.9) is shown. The proposal of [95] is followed

to linearize the computation of the Euclidean distance for continuous points in R2. The basis is to

discretize the directions of the Euclidean plane, which is characterized by the continuous domain

[0, 2π], by nd directions of size 2π
nd

. Thus, the ith discretized direction is the following unit vector

Ui:

Ui =
[

cos
(

2(i−1)π
nd

)
, sin

(
2(i−1)π

nd

)]T
∀i ∈ {1, . . . ,nd}, being ||Ui|| = 1

To verify whether two points pA = (xA, yA) and pB = (xB, yB) are closer than a given distance

dTEmax, we check that all the projections of the pA−pB vector on these directions are lower than

dTEmax · cos(θmax), being θmax = π
nd

.

(xA − xB) · cos
(

2(i−1)π
nd

)
+ (yA − yB) · sin

(
2(i−1)π

nd

)
≤ dTEmax · cos(θmax)

∀i ∈ nd,∀t ∈ TG,∀e ∈EN
(4.22)

Moreover, we have to linearize the following proposition:

(4.23) If ute = 1⇒ distance(t,e)≤ dTEmax is TRUE,

which is equivalent to:

(4.24) distance(t, e)−MaxD · (1−ute)≤ ute ·dTEmax,

being MaxD the maximum distance between two locations. Thus, from inequalities (4.22)

and (4.24), the following constraint is obtained:

(xA − xB) · cos
(

2(i−1)π
nd

)
+ (yA − yB) · sin

(
2(i−1)π

nd

)
−MaxD · (1−ute)

≤ ute ·dTEmax · cos(θmax).
(4.25)

4.1.1.3 Linearization of the TG-EN assignments

The constraint set in (4.10) relates the part of TG t demand served by a EN with the binary

variable ute, which determines if this relation really exists. Thus, (4.10) involves the following

implications:

if ute = 0⇒ dte = 0 ∀t ∈ TG,∀e ∈EN(4.26)
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if ute = 1⇒ dte > 0 ∀t ∈ TG,∀e ∈EN(4.27)

which are equivalent to the following constraints, being ε an arbitrary small value:

dte ≤ C ·ute ∀t ∈ TG,∀e ∈EN(4.28)

dte ≥ ε ·ute ∀t ∈ TG,∀e ∈EN(4.29)

Repeating the same procedure for (4.11), the following must be linearized:

if ve = 0⇒ ∑
∀t∈TG

dte = 0 ∀e ∈EN(4.30)

if ve = 1⇒ ∑
∀t∈TG

dte > 0 ∀e ∈EN(4.31)

consequently equivalent to the restrictions below:

∑
∀t∈TG

dte ≤ C ·vte ∀e ∈EN(4.32)

∑
∀t∈TG

dte ≥ ε ·ve ∀e ∈EN(4.33)

Therefore, (4.10) has to be replaced by restrictions (4.28) and (4.29), while (4.11) has to be

replaced by constraints (4.32) and (4.33).

4.1.2 Solution Proposal: Hybrid Simulated Annealing

Since any variant of the ENPP can be derived to be NP-hard (see Section 2.3), a heuristic

method based on the SA algorithm was developed in this thesis as placement solution: Hybrid

Simulated Annealing (HSA).

Overall, selecting SA as solution was a decision based on its flexibility to solve combinatorial

problems and its proven solid performance to address FLPs, as showcased in Section 2.3. In

spite of its benefits, SA showed a non-convergent behavior during our experiments. The obtained

solutions were widely diverse in terms of cost and number of ENs despite varying the cooling

parameters and iteration counters. To solve this problem and improve the obtained results, we

decide to develop an SA-based strategy leveraging some of the core ideas behind efficient methods

such as Tabu Search. The idea was to inherit the flexibility of SA and combine it with the use

of memory structures as done in Tabu Search [71], and local search techniques. The indicated
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Figure 4.3: HSA flow diagram

method allowed us to improve our experimental results when compared to the traditional SA

implementation (see Section 4.1.3).

In order to reduce the computation time without loss of generality and accuracy, the algorithm

(see Fig. 4.3) starts by finding the isolated TGs, defined as follows:

Definition 2. A TG t is said to be isolated when there is no potential EN site e within the

territory analyzed such that:

(4.34) delay(t, e)≤ Dmax

Following Definition 2, every isolated TG is to be necessarily upgraded to EN. This concept

was extended to Pre-Optimized TG Areas (PTAs) which resulted in a significant reduction of the
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search space size. A PTA is defined as follows:

Definition 3. A group of TGs is considered a PTA if regardless of the arbitrary TG upgraded

to EN within the group there is no impact on the solution quality (i.e., cost, number of ENs, etc.,

according to the objective function of the mathematical model).

The reason why no optimization can be made within PTAs is that every TG in a PTA is

within the coverage area of every other TG while remaining isolated to any TG outside the PTA.

Since our deployment strategy was thought for the ENs to be placed in both rural (where the TG

density is expected to be lower) and urban areas, dealing with isolated TGs and PTAs in advance

improves the overall performance of the proposed heuristic.

The flow diagram of the in-house developed algorithm is showed in Fig. 4.3 and detailed as

pseudo-code in Algorithm 1. The first critical step is to create a good enough initial solution.

For this purpose we develop a greedy strategy where random TGs are upgraded to ENs taking

into account capacity and latency limitations and ensuring that no EN is assigned unneeded

resources. Secondly, a set of neighbor solutions (called individuals) based on this initial step is

obtained. The neighbor set contains a predefined number of individuals and is divided in a subset

of solutions based on good, bad and randomly generated solutions. The overall idea was to widely

explore the search space in each iteration.

Generating new solutions based on good previous individuals ensures the convergence of

the algorithm into the best placement locations found (in terms of overall cost and number of

ENs). For this purpose, it is crucial to ensure that a new individual resembles the previous

obtained one. This is performed by selecting the TGs to be upgraded to ENs within the vicinity

of the old selected ENs. Additionally, as a “diversification” strategy (based on Tabu Search

techniques), random and bad solutions are generated to visit unexplored areas of the solution

space. As the system “cools down”, the number of neighbors generated in each iteration changes

as part of the “intensification” process. As a result, less bad and random solutions are created

while the number of good solutions is increased as long as there are cost improvements. If after

an iteration cycle for a given temperature, the cost is better than the best cost ever recorded

(short-term memory structure part of the “intensification” process), a penalty function based
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Algorithm 1: Hybrid Simulated Annealing
Input: M, EN, TG, tdt, Dmax, A, B, C, T maximum temperature, Tmin minimum

temperature, I counter, ns number of neighbor solutions, α f fast T
decrease factor, αs slow T decrease factor

Output: bse
1

2 is ← gen_sol() // generate initial placement solution

3 bs ← is // save best solution so far

4 bse ← is // save overall best solution

5 ws ←∅ // no bad solution at start

6

7 i ← 0
8 while T > Tmin do
9 while i < I do

10 ns ← num_neig(T,Tmin, i) // num. bad, random and good neighbor solutions

11 N ← neig_set(bs,ws,ns) // generate neighbor solution set

12 S ← score(N) // score neighbor set

13

14 if score(S[0])< score(bs) then
15 bs ← S[0] // update best solution

16 else
17 p ← ap(T, score(S[0]), score(bs)) // acceptance probability

18 if p > random_probability() then
// accept solution if p is greater than a random probability

19 bs ← S[0] // update best solution

20 ws ← rand_sol(S) // random solution from S selected as bad solution

21 i ← i+1 // increase iterator counter

22 if score(bs)< score(bse) then
23 T ← T ∗α f // cost improvement, therefore, FAST temperature decrease

// decrease number of neighbors with HIGH probability as T decreases

24 p ← 1− ap(T, score(bs), score(bse)) // acceptance probability

25 if p > random_probability() then
26 ns ← decrease(ns,α f ) // update best solution

27 else
28 T ← T ∗αs // NO cost improvement, therefore, SLOW temperature decrease

29 p ← ap(T, score(bs), score(bse)) // acceptance probability

30 if p > random_probability() then
// decrease number of neighbors with LOW probability as T decreases

31 ns ← decrease(ns,α f ) // update num. neighbors

32 return bse
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on a random probability decreases the number of neighbors, and the speed of temperature

reduction. The function probability gets higher as the temperature declines. Consequently, the

system “cools down” quickly when there are continuous cost improvements and convergence to

the global optima, while, otherwise, it slowly changes the temperature and aggressively finds

more solutions.

The acceptance probability was obtained through e
∆
T , with ∆= s1 − s2 (s1: old solution score,

s2: new candidate solution score) [71]. To evaluate each solution, a scoring method was developed.

Both the cost and the number of ENs had to be taken into account, but their values were in

different orders of magnitudes. The solution was to normalize the values using logarithms and

then estimate the Euclidean distance from both values, as a coordinate pair, to the coordinate

origin o= (0,0) as follows:

score(n)= distance(n,o) ∀n ∈ N(4.35)

Where

• n: vector for the cost and number of ENs per solution such that n= (c,u), with c = log(n.cost)

(normalized solution cost), u = log(n.num_ens) (normalized solution number of ENs)

• N: neighbor solution set

This scoring method was inspired by the Hypervolume calculations used in multi-objective

optimization [96]. The obtained score value was then used to evaluate the solutions found in each

iteration and to score them accordingly.

To reduce computation times, facility locations are assumed to be co-locations of existing TGs.

This approach offers a near-optimal solution in acceptable running times without extreme usage

of computing resources for a fairly large number of TGs. Such assumption is supported by two

main facts: capital and operational investments could be minimized by reusing already existing

infrastructure and site conditions (e.g., space, networking and powering lines) on the high service

demand locations. Additionally, placing the infrastructure as close as possible to the aggregation

points on the service access layer significantly decreases end-to-end latency.
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4.1.2.1 Complexity analysis

Since the core of our heuristic is the SA method, the traditional implementation goes through t

temperature steps where the related complexity is O(log(t)). For each t the search is executed

a fixed number of iterations and generates O(n) neighbor solutions. The solution generation

method populates the neighbor set. For this function the worst case are the “solution-based

individuals”, as they loop through previous generated solutions, EN by EN (i.e., O(e), being e the

number of ENs in the baseline solution), in search for random candidates (i.e., TGs suitable to

be upgraded to ENs) within each EN coverage area. This iterative process is directly linked to

the maximum number of TGs, conventionally called M, to be found under the most populated

coverage area. M is determined by running a greedy algorithm (see Section 4.1.3) while assigning

the maximum available capacity to each EN. It is straightforward to conclude that M cannot

be found beforehand and that the overall algorithm complexity must be formulated based on it.

Based on this analysis the complexity can be specified as O(n e M log(t)). The initial value of

the number of neighbor solutions is relatively small and it is reduced as the system converges.

Therefore, the overall algorithm complexity can be defined as O(e M log(t)).

4.1.3 Evaluation and results

In order to compare the performance of the placement strategy proposed, a traditional SA

implementation, the HSA approach and the MILP were run for three latency values: 1 ms, 3 ms

and 5 ms. These delay values were selected because they comply with the 5G latency requirements

for a wide variety of use case scenarios. For the case study of mobile RANs and a Cloud-RAN

(C-RAN) architecture, virtualized BBUs [97], are to be placed at the ENs. Consequently, from

[75, 98] a backhaul transmission delay for Long-Term Evolution (LTE) networks is known to be

around 250 µs. Therefore, for 5G networks and the proposed latency values, Dmax was estimated

to be 3 km,9 km,15 km (for transmission times of 31 µs,93 µs,156 µs). The input list can be

observed in Table 4.2.

A map grid of 100 km x 100 km was used with a set of TG ranging from 100 to 500 TGs (with

a 100 TGs increase step in each simulation). Figure 4.4 illustrates the simulated territory of

interest. TGs are distributed in three cities and randomly in rural areas, consequently emulating

59



CHAPTER 4. SINGLE-OBJECTIVE ENPP

Figure 4.4: TGs randomly distributed in three cities

Table 4.2: Input parameter values

Dmax (km) TG number Cap. L-EN Cap. M-EN Cap. S-EN

3 100 40 30 21
200 59 41 32
300 80 51 40
400 105 74 58
500 150 101 78

9 100 74 51 38
200 138 94 71
300 209 146 102
400 291 205 153
500 348 238 179

15 100 75 52 41
200 154 101 79
300 240 157 119
400 326 214 160
500 392 268 193

a reasonably realistic distribution of demand points, where urban areas present higher traffic

density.

For the heuristic, the temperature ranged from 1.0 to 0.001 with a step size for the fast
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Figure 4.5: Solution obtained after running the algorithm

temperature reduction of α = 0.8 and α = 0.9 for the lower stepping process. The number of

iterations per temperature was set to 10 for the HSA as several solutions are created and

evaluated in each iteration (the number of neighbor individuals in each iteration was set to

8). The iteration counter for the traditional SA was set to 100. This value was empirically

determined, aiming to ensure a fairly similar number of iterations when compared to the HSA

proposed (in fact 100 is a bit higher to compensate SA lack of accuracy). All simulations were run

in a computer with a 2.60 Hz 8-core CPU (x64 architecture) and 32 GB RAM. Pyomo [30, 31]

was the python-based package selected to solve the optimization model proposed in Section 4.1.1,

with GLPK as underlying solver.

To obtain the EN capacities showed in Table 4.2, an additional greedy algorithm was develo-

ped. It iteratively upgrades to EN the TG with the most populated coverage area (given Dmax),

and keeps on until no TG remains uncovered. As a result, the allowed EN capacities are found for

any particular solution. Such greedy algorithm was run several times for each simulation setting
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Figure 4.6: Execution times for the SA, HSA and MILP.
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Figure 4.7: Number of ENs deployed the SA, HSA and MILP.

described above. Consequently, the final capacity values for the heuristics and the mathematical

model were obtained through the statistical analysis of the results.

Figure 4.5 displays a final solution after running the heuristic. It can be observed how every

TG is covered (ENs are depicted as × and the surrounding circles are the coverage area of Dmax

radius).

To validate the results both the HSA and the SA were run ten times for every Dmax and TG

combination. Meanwhile, for each Dmax value the number of TGs was increased as mentioned

above, aiming to calculate the execution time and the number of ENs of the optimal solution

found. The findings are presented in Fig. 4.6 and Fig. 4.7.

A Significant difference in the running times for both heuristics and the MILP model can be

noticed in Fig. 4.6. Despite the steady surge in the first stages for all cases, the mathematical

model has a nearly impossible task in obtaining the optimal solution for Dmax = {9,15} km and
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TG = 500 (see Fig. 4.6). Therefore, the experimental results are just shown from 100 TGs to

400 TGs in both Fig. 4.6 and Fig. 4.7. In fact, the heuristics are able to find a near-optimal

solution in significantly less time and with a maximum of a few ENs gap as shown in Fig. 4.7.

The MILP model execution time rapidly steeps to huge values after reaching 400 TGs, due

to the exponential growth in the number of feasible solutions. In contrast, the running delay of

both heuristics climbed regularly throughout the TG experimentation set. Due to the latency

constraint variation, the number of EN decreases as Dmax rises. The reason is that the EN

coverage area becomes larger, thus less ENs are required to cover the existing TGs.

Regarding the performance of both heuristics compared to the exact model when minimizing

the number of ENs, the HSA shows clear improvements at the cost of an increase in the execution

time. Since the goal is to place physical infrastructure, the placement strategy is to be run during

the planning phase of the deployment and thus this is not considered an issue.

The HSA performance regarding the number of EN deployed is quite promising. From Fig. 4.7,

the difference between the number of ENs placed by the MILP and the HSA approach never

surpassed a threshold of even less than 5 ENs.

Based on these results, the following sections adopt HSA as core solution for the ENPP in

either variant. In this regard, HSA is thoroughly assessed throughout the remaining of this

thesis, demonstrating the suitability of our algorithm to solve complex combinatorial problems

such as the ENPP.

4.2 Latency and reliability-constrained ENPP for flexible EN

capacities

The scope of the formulation and solution approach proposed in the previous section is not

applicable to a real-life EN deployment. The primary reason for this is the simplicity of the

mathematical model, where core CAPEX/OPEX sources -e.g., fixed and interconnection costs-

were not considered. Moreover, the capacity allocation model lacked accuracy for next generation

network deployments, where a more flexible strategy is required to avoid critical capacity issues.

On the other hand, Chapter 1 showcased that both reliability and latency-aware planning
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Table 4.3: Glossary of symbols for the latency, reliability-constrained SO-ENPP

Symbol Parameter Variable Description
EN X Set of EN potential locations (where e ∈EN)
TG X Set of TG locations (where t ∈TG)
C X EN maximum allowable capacity

LM X Maximum allowed latency between any TG and
its serving EN

Lm X Maximum allowed latency between a TG with
ultra-low latency requirements and its serving
EN

Fe X Fixed cost of deploying an EN at e
tdt X Total demand of a TG at t
ω X Cost per capacity unit
ce X Capacity of an EN placed at e
ve X 1 if an EN at e is placed, 0 otherwise
Let X Cost of interconnecting an EN at e and a TG at t
uet X 1 if a TG at t is covered by an EN at e, 0 other-

wise
det X Fraction of demand from a TG at t covered by an

EN at e
l(e, t) X Latency between an EN and TG at e and t re-

spectively
xt X 1 if TG at t requires ultra-low latency, 0 other-

wise
yt X 1 if TG at t requires ultra-high reliability and

availability, 0 otherwise

are crucial for the EN efficient deployment and user requirement satisfaction in 5G scenarios

and that reducing the EN network cost is directly linked to the EN deployed capacity. Taking

this into account, this section significantly extends the results obtained in the previous one by

proposing a framework for a cost-effective EN placement in 5G environments.

In summary, the main contribution of this section is to present a real-life cost optimization

model based on: a) accurate capacity allocation, b) efficient site selection considering under-

lying fixed/interconnection costs and, c) an extended mathematical model through additional

constraints considering both reliability and latency requirements.

4.2.1 Problem model

In order to formulate the problem (glossary of symbols available in Table 4.3), the assumptions

made in Section 4.1.1 were followed, i.e., latency was translated into the Euclidean distance by

assuming such delay to be the transmission latency between any EN-TG pair (the specific latency-

distance equivalents are specified in Section 4.2.3); the demand aggregation points were modeled

as TGs. The initial EN location set assumed to be known in order to reduce the computation time
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and make the MILP formulation solvable comprised the following potential locations: ISP-PoPs,

CDN-PoPs and TGs. Finally, a 10 ms delay was selected as the maximum EN coverage range

(i.e., LM = 10 ms) in order to satisfy most identified 5G use cases. The model is presented below:

Minimize:
∑
∀e
ω · ce ·ve +

∑
∀e, t

Let ·uet +
∑
∀e

Fe ·ve(4.36)

s. t.:
∑

∀t∈TG
uet ≥ ve ∀e ∈ EN(4.37)

∑
∀e∈EN

det = tdt ∀t ∈ TG(4.38)

∑
∀t∈TG

det ≤ ce ∀e ∈ EN(4.39)

det ≤ tdt ·uet ∀e ∈ EN, t ∈ TG(4.40)

if uet = 1⇔ det > 0 ∀e ∈ EN, t ∈ TG(4.41)

if ve = 0⇔ ∑
∀t∈TG

det = 0 ∀e ∈ EN(4.42)

∑
∀e∈EN

uet ≥ 1+ yt ∀t ∈ TG(4.43)

if l(e, t)> LM ⇒ uet = 0 ∀e ∈ EN, t ∈ TG(4.44)

if xt = 1⇒

 uet = 0 if l(e, t)> Lm

uet ≤ 1 if l(e, t)≤ Lm

∀e ∈ EN, t ∈ TG(4.45)

uet,ve, xt, yt ∈ {0, 1} ∀e ∈ EN, t ∈ TG(4.46)

ce,Let,Fe,det ≥ 0 ∈R ∀e ∈ EN, t ∈ TG(4.47)

The objective function in (4.1) represents the costs involved in the EN deployment following

the findings in Chapter 3. The first addend accounts for the capacity related costs mainly

determined by the capacity assigned to each EN (i.e., ce). The second term represents the cost of

interconnecting each TG with its serving EN, while the third addend accounts for the location-

dependent costs. The constraints in (4.37) allows an EN to be deployed at location e only if

there is at least one TG within its coverage range (determined by the latency constraints). The

restrictions from (4.38) to (4.42) characterize the TG demand, as any TG can be fully or partially

covered by one or more ENs. From (4.38) the total covered demand of a TG -i.e., the sum of all
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the covered demand fractions- must be equal to the total demand of that TG. Additionally, each

EN capacity to serve TG demands is limited in (4.39). The interrelation between each covered

demand fraction and the existence of a TG at t to be covered by an EN at e is described in (4.40)

and limited by tdt. Moreover, (4.41) forces to zero any fraction of TG demand covered by an EN

(at e) in case the TG (at t) is not covered by the EN at e. From (4.42) if an EN is not placed at e,

there must be no demand fraction covered from this site.

Each TG can be covered by one or more ENs (see Eq. (4.43)) considering the reliability

requirements of each TG. This way, if an arbitrary TG requires ultra-high reliability (yt = 1) our

model ensures that it is covered by at least two ENs. Latency requirements are constrained in

(4.44) and (4.45). The former ensures that any TG is only considered to be within the coverage

range of an EN if the latency between locations e and t is less than a predefined threshold (see

Section 4.2.3 for a case study analysis).

On the other hand, ultra-low latency is satisfied through (4.45). From this constraint if a TG

has ultra-low latency requirements, the transmission delay between such TG and its covering

EN should be less or equal than 1 ms (i.e., the following is assumed: Lm = 10 ms, given the 5G

latency requirements according to [4]), while forcing any TG beyond 10 ms from an EN to be

outside its coverage range. In case all latency constraints are satisfied, a TG at t could be covered

or not by an EN at e by setting the uet value. Within the uet and ve value definition is where

the optimization process takes place by deciding where to deploy an EN (according not only to

the TG requirements but to the interconnection and location-dependent costs). The variable and

remaining term domains are specified in (4.46) and (4.47).

The constraints in (4.44) and (4.45) can be implemented without additional linearization

procedures. This is possible because the l(e, t) value for each EN-TG pair can be estimated

beforehand and easily called as a constant value during execution. However, (4.36) requires

further transformation in order to be linearized. Thus, making ze = ce ·ve the following restrictions

are added to the model (where C is the maximum EN capacity value):

ze ≤ C ·ve(4.48)

ze ≤ ce(4.49)
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Figure 4.8: EdgeON framework architecture.

ze ≥ ce −C · (1−ve)(4.50)

ze ≥ 0(4.51)

4.2.2 Solution Proposal: EdgeON Framework

The framework proposal called EdgeON aiming at solving the modeled ENPP variant is outlined

in Fig. 4.8. Overall, the goal is to output a ranking of potential EN sites such that the EN network

cost is minimized by selecting the best deployment locations. To tailor EdgeON to 5G needs, the

technical requirements (e.g., in terms of latency) identified for most 5G use cases were assumed,

along with the benefits of current identified enabling technologies (e.g., NFV).

EdgeON goes through four main stages. The Data Collection analyzes and normalizes the

input data to comply with the processing needs (e.g., data structure normalization, unit system
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equivalencies). From this point on, the Scenario Analysis module checks the map grid and

demand distribution, to divide the territory of interest and to classify the service areas as urban

or rural. This stage allows us to simplify the problem in low populated areas where the ENs

are arbitrarily co-located at the TG locations. Such approach reduces CAPEX and OPEX as the

demand is primarily scattered over large underpopulated territories. Within this stage, further

optimization is carried through the Isolation and Pre-Optimization phases. The former checks

each service area for isolated TGs (see Section 4.1.2). The latter seeks for PTAs, according to

Definition 3. Consequently, in each PTA a random EN site is selected. In addition, the Solving

Stage runs at least one of its underlying placement strategies to solve the placement problem for

the remaining uncovered TGs. After the problem is solved, the framework outputs a ranked set of

restriction-free locations where the ENs should be placed, along with the allocated capacities, the

demand covered per EN and additional relevant data regarding the performance of the executed

solution methods.

The input data required by EdgeON is showed in Table 4.4. Each location is assumed to

have known fixed deployment costs, while each TG has a known service demand value, latency

and reliability requirements. Likewise, the cost of interconnecting any EN-TG pair is assumed

to be known beforehand and estimated assuming a direct physical link. The PoP set added

to the suitable EN locations (initially the set of TGs) was built with real data collected from

Telegeography GlobalComms database2 about ISP-PoPs operating in Spain and extrapolated to

estimate the number of PoPs in an arbitrary-sized city.

The maximum capacity to be assigned to an EN was determined experimentally. By running

a greedy algorithm selecting random locations as ENs and greedily assigning TGs to it the

ENs typical capacity values were found. From this baseline data and attempting to represent a

realistic scenario (where capacity has to be shared and coverage overlapping exists), the statistical

mean of the capacity for a medium sized EN was selected. This approach ensures a thorough

evaluation of our algorithm as it implies the worst deployment case where TG demands are

usually split among several ENs.

2https://www2.telegeography.com/globalcomms-database-service
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Table 4.4: Input parameters for the framework placement algorithm

Parameter Meaning

MapGrid Territory where the TGs are located
C EN maximum allowable capacity
Let Cost of interconnecting an EN at e and a TG at t
LM Maximum allowed latency between any TG and its serving EN
Lm Maximum allowed latency between a TG with ultra-low latency

requirements and its serving EN
TGdemand Set of TG coordinates (including data about fixed deployment

costs and latency/reliability requirements)
PoPs Set of existing potential EN locations (includes data about fixed

deployment costs)
Site_Restrictions EN feasible location set of restrictions

As in Section 4.1, the ENPP tackled in this section could be derived to be NP-hard. Therefore,

the HSA heuristic proposed in Section 4.1.2 was used as solution strategy. Although the inherited

HSA core and behavior remained mostly unchanged, the solution generation method had to

be significantly modified. The reason was the introduction of a new critical constraint (i.e.,

reliability), the enhanced problem model aiming at a more comprehensive cost function and the

need to check whether each location was suitable for deployment (i.e., restriction checking per

site). Additionally, the analysis of non-TG locations introduced additional complexities to the

solving scheme.

While an initial solution is randomly generated by assigning each TG to randomly selected

ENs, to find a new solution based on a previous one, the modified solution generator iterates

over each coverage area3. For each coverage area a new EN is selected (e2 in Fig. 4.9) among the

covered TGs or the available PoPs within the coverage area following the algorithm in Fig. 4.10.

The idea behind this strategy is to minimize the “dominoes effect” that occurs when generating

a neighbor solution by randomly selecting new ENs. Such randomized method entails a wide

reallocation of the surrounding TGs resulting in higher execution times and solution evaluation

inaccuracies.

In a nutshell, the TG-EN allocation is made considering the new latency-reliability constraint

pair, the underlying TG demands, the maximum EN capacity and the PoPs available in the

coverage area. As a result, each TG is covered by more than one EN if its reliability requirements

3Coverage Area: tuple formed by [EN, covered_TGs]. Depicted as a red circle in Fig. 4.9.
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Figure 4.10: TG-EN allocation per CA after a new EN is selected

are high and similarly the TG-EN distance is ensured to comply with the delay demands of

each TG. Namely, no coverage association is made if l(e, t)> LM for a given EN-TG pair. When a

partial coverage is made (i.e., a TG is partially covered by the EN selected), the TG is queued

for a Delayed Analysis phase, in case another TG is selected as EN. If the latter does not occur,

the TG is either upgraded to EN or allocated to the nearest EN from another coverage area if

possible and if this approach reduces the overall costs.
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4.2.2.1 Complexity

The iterative process is directly linked to the number of EN locations available to be found under

the most populated coverage area (as TG locations will always be higher than service providers

PoPs and any other available sites), arbitrarily called M. To determine the M value, a greedy

algorithm is run (see Section 4.2.3). The value of M cannot be found without generating at least

an initial solution. What is more, it is certain that the heuristic complexity is directly impacted

by this parameter. Since the placement heuristic is an extension of the algorithm presented in

Section 4.1.2, the complexity is fairly similar.

Given the reliability constraint, a set of TGs must be covered by more than one EN (such

TG set size is denoted as R). An additional component of the solution generator performs the

covering steps for these particular TGs. This section of the code adds a complexity of O(R N), as

each TG demanding ultra-high reliability has to be assigned to an available EN by searching the

EN location set (of length N).

Globally, the complexity can be specified as O((G E M + R N ) log(T)), where M is the number

of EN locations available to be found under the most populated coverage area (as TG locations

will always be higher than existing PoPs and any other available sites). The number of neighbor

solutions is relatively small at first and it is substantially decreased periodically if there are

solution improvements, thus G becomes negligible. Although R ·N is comparatively small when

compared to E ·M, a significant number of rejections and recursive steps are made due to the

strict latency constraints. Therefore, the overall algorithm complexity can be defined as O((E M +

R N) log(T)).

4.2.3 Evaluation and Results

The framework proposal described in Section 4.2.2 aims at ensuring the applicability and usability

of the HSA in real-life scenarios. To assess the performance of this approach in terms of overall

expenses and number of ENs deployed, a traditional SA and MILP model were implemented and

ran as in Section 4.1.3.

The latency parameters on the mathematical formulation (i.e., l(e, t), Lm and LM), were

estimated based on the Euclidian distance. Therefore, for the proposed latency values in 5G
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networks (1 ms for ultra-low latency and 10 ms for other scenarios), Lm was estimated to be

3 km and 15 km was found for LM (assuming: transmission times of 31 µs, 300 µs, processing

time of 200 µs due to routing/switching for long-distance links) extrapolated for a mobile scenario

as in [75, 98]. The simulations varied the number of TGs from 50 to 300 TGs (with a 50 TGs

increase step in each simulation).

Regarding the algorithms, the minimum temperature value was set to 0.001 (the initial

temperature selected was 1.0). Meanwhile, the temperature reduction for the fast stepping

process was 0.7, while 0.9 was selected as slow α for the HSA. For the traditional SA, the value

was α= 0.95. Each temperature cycle executed only 10 iterations for the HSA, since the neighbor

set comprised a wide range of solutions to be assessed per iteration (the length of the neighbor

set was 8). For the traditional HSA, 100 iterations were made for each temperature step, to

guarantee a fairly similar number of iterations for the two placement methods. For the calculation

of the solution expenses, the cost parameters were analyzed based on a generic measurement

unit such that an arbitrary number of cost-units were assumed to be equivalent to a capacity unit

(a conversion made through ω in the first addend of (4.36)). Consequently, the results presented

below lack a specific currency, although this does not imply any loss of generality during the

analysis.

All simulations were ran in a computer with a 3.30 GHz 10-core CPU (x64 architecture)

and 64 GB RAM. As in Section 4.1.3, Pyomo [30, 31] was the python-based package selected to

implement the optimization model proposed in Section 4.2.1, along with Gurobi [32] as underlying

solver. The numerical results were validated by running several times each heuristic and the

MILP model for each parameter setting. Additionally, the TG count was periodically increased

to estimate the solution costs, the running time and the number of ENs of the optimal solution

found by each method. The findings are presented from Fig. 4.11 to Fig. 4.14.

Overall, the HSA clearly outperformed the traditional SA regarding the reduction of the

ENs number and showed a very small gap when compared to the MILP model. The leftmost

figure on Fig. 4.11 evidences an average gap of less than 5 nodes between the HSA and the exact

method. In contrast, the traditional SA poorly performed when compared to the HSA and the

MILP, resulting in an average of 15 and 22 additional ENs in each case, due to its inaccuracy
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Figure 4.11: Number of ENs and deployment cost obtained by SA, HSA and MILP.
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Figure 4.12: HSA performance under temperature variation.
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Figure 4.13: HSA performance under slow/ fast α variation.

and non-convergent behavior. The HSA significantly improves the traditional SA solution costs,

while approaching the MILP.

From the rightmost image on Fig. 4.11, nearly 20% in average cost savings was achieved
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through the HSA instead of the SA (when compared to the MILP results). On the other hand, the

MILP cost values were only a 5% lower than the HSA. These cost reductions are mainly targeting

the deployment expenses (as the location selection strategy considers location-dependent costs).

Nevertheless, since the number of ENs and the capacity allocation is optimized, a substantial

operational cost reduction is ensured.

Although the obtained results are promising, it is reasonable to argue that the variation of the

internal heuristic parameters -i.e., temperature and slow/fast alpha- could significantly affect the

performance values. Therefore, further simulations were conducted by changing the minimum

temperature and α values (see Fig. 4.12 to Fig. 4.13) to analyze their impact on the solution. It is

worth noticing that modifying these parameters leads to a higher number of iterations. Thus,

considering that the SA core relies on the iteration count, relevant solution improvements were

expected. Despite these intuitive assumptions, neither the temperature nor the slow/fast alpha

variation significantly impacted the HSA outcome.

From Fig. 4.12 the HSA obtained better solutions for a minimum temperature under 10−4,

although the difference was not significantly high in most cases, with the exception of the 10−2

series. Similar findings arose from varying the slow/fast α pair. In spite of speeding up the

heuristic by reducing the fast α value, the performance variation was mainly negligible. However,

the highest gap for both the ENs number and the solution cost was obtained for slow/fast

α= 0.9/0.5.

In Fig. 4.14 the computation times for all solving methods are depicted. Despite the regular

surge throughout the first stages, the MILP was unable to find a solution for any TG value

above 300 nodes after more than a week running. When compared to the results obtained in

Section 4.1.3, Fig. 4.14 evidences the impact of the reliability and latency modification parameters

regarding the algorithm complexity.

Nevertheless, the significant increase in the HSA execution time is still not considered an

issue due to the offline nature of the proposed method. In fact, a more important conclusion is that

the execution time behavior remained consistent in spite of the objective function enhancement

and the increased difficulty added by the stringent latency and reliability parameters.

What can be concluded from these analyses, is that the HSA conducts a thorough exploration
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of the search space based on the baseline minimum temperature (10−3) and alpha values (slow/fast

α= 0.9/0.7) selected. Finally, from these experiments and towards further efficient analysis, an α

combination of 0.9/0.7 and a temperature of 10−4 are recommended.

4.3 Conclusion

This chapter presented an in-house heuristic and framework to solve the SO-ENPP for strict 5G

technical requirements.

The heuristic proposed in Section 4.1.2 was evaluated in order to determine its suitability

to solve the ENPP. Overall, HSA showed promising results when compared to other heuristics

and exact methods, thus encouraging its use to address complex multi-objective ENPP models.

Consequently, this heuristic can be considered a core contribution of this thesis towards the

solution of the ENPP and other complex combinatorial problems.

From this starting point and in order to build the foundations for a practical tool (i.e., for

Telcos and operators) to solve real-life ENPP models, the problem presented in Section 4.1.1 was

extended and a framework implementing several solving methods (for evaluation purposes) was

designed to tackle the latency and reliability-constrained SO-ENPP. The proposed framework

was tested showing the benefits of the in-house heuristic when compared to an approximation

algorithm and an exact model.
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5
MULTI-OBJECTIVE ENPP

This chapter is based on:

• A. Santoyo-González and C. Cervelló-Pastor, “Network-aware Placement Opti-

mization for Edge Computing Infrastructure under 5G,” in IEEE Access, 2020.

I
n the previous chapters the foundations to address a real-life modeled ENPP were es-

tablished. The core limitations of the mathematical formulations and solution strategies

presented so far are mainly twofold: 1) the network-agnostic approach overlooking the

underlying network capacities and capabilities when interconnecting TGs and ENs and, 2) the

need to consider additional parameters of critical importance for 5G networking (e.g., energy

consumption).

In this regard, this chapter presents a network-aware ENPP model and solution approach

based on a re-design and improvement of the framework proposed in Section 4.2.2.

5.1 Network-aware Multi-Objective ENPP

Since a massive surge in data processing and bandwidth usage is envisioned under 5G networks,

a network-aware strategy is mandatory to satisfy the required KPIs and avoid performance
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Table 5.1: Complete glossary of symbols for the problem formulation

Symbol Params.Vars. Description

αt
i X 1 if a TG at t is served by an EN at i, 0 otherwise

υi X 1 if an EN is placed at i, 0 otherwise
γte

i j X fraction of the network demand of TG t served by EN e routed
through link (i, j)

ψte
i j X 1 if link (i, j) is active and routing demand (i.e., γte

i j > 0 ∀(i, j) ∈
L, e ∈ E, t ∈ T), 0 otherwise

χi X ratio of in-use EN capacity such that χi ∈ (0,2]
µt

i X fraction of the compute demand of TG t served by an EN at i
κt

i X fraction of the network demand of TG t served by an EN at i
Fi X upfront costs of deploying an EN at i
ιti X cost of interconnecting an EN at i with a TG at t
θi X cost of an EN with capacity (Cci,Cni) at i
τ X cost per compute capacity unit
σ X cost per network capacity unit

Mt X computing demand of TG at t
K t X network demand of TG at t
At X 1 if a TG at t aggregates ultra-low latency services, 0 otherwise
Rt X 1 if a TG at t requires at least two serving ENs (i.e., main and

backup) due to the reliability requirements of the aggregated
services, 0 otherwise

Cci X maximum compute capacity assigned to the EN at i
Cni X maximum networking capacity assigned to (or available at)

the EN at i
Bi j X link bandwidth (∀(i, j) ∈ L)
D i j X link delay (∀(i, j) ∈ L)
Pi X processing delay on node i ∈ N

DM X maximum delay allowed between a TG an its serving EN
DU X maximum delay allowed between a TG with ultra-low latency

requirements an its serving EN

degradation in the long run. To address this open research question and achieve a core goal of

this thesis, the following sections present a network-aware Multi-Objective ENPP (MO-ENPP)

model and solution strategy tailored to 5G scenarios.

5.1.1 Problem Model

The MO-ENPP aims at reducing the cost of deploying an EC network while ensuring that the

capacity usage ratio per EN is maximized and the number of deployed ENs is minimized. We

assume that the underlying network topology (i.e., assumed to be a fully connected undirected

graph) is composed by the set of nodes N and the set of links L. The set N is formed by the set

of TGs, denoted as T, the nodes from the ISP backhaul network, existing Central Offices and

ISP-PoPs amongst other suitable locations. Table 5.1 summarizes the variables and parameters

used for the problem formulation.
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Considering that any i ∈ N is a potential EN site, the objective functions for the network-

aware ENPP can be defined as follows:

Min
∑

∀i∈N
θi ·υi +

∑
∀i∈N

∑
∀t∈T

ιti ·αt
i +

∑
∀i∈N

Fi ·υi(5.1)

Min
∑

∀i∈N
υi(5.2)

Max
∑

∀i∈N
χi ·υi(5.3)

where,

θi = τ·(Cci −
∑

∀t∈T
µt

i)+σ·(Cni −
∑

∀t∈T
κt

i) ∀i ∈ N(5.4)

ιti =
∑

∀(i, j)∈L
σ ·γte

i j ∀e, t ∈ N,T(5.5)

χi =
∑

∀t∈T
µt

i

Cci
+

∑
∀t∈T

κt
i

Cni
∀i ∈ N(5.6)

αt
i,υi,ψte

i j ∈ {0, 1} ∀i, e ∈ N, t ∈ T, (i, j) ∈ L(5.7)

θi, ιti,χi,βi j ≥ 0 ∀i ∈ N, t ∈ T, (i, j) ∈ L(5.8)

κt
i,µ

t
i,γ

te
i j ∈ [0,1] ∀i, e ∈ N, t ∈ T, (i, j) ∈ L(5.9)

Cci,Cni ≥ 0 ∀i ∈ N(5.10)

Equation (5.1) minimizes the overall cost of deployment. The first addend accounts for the

operating costs of deploying an EN at i. These expenses are found through (5.4) based on two

elements: 1) the processing capacity deployed at i, calculated by subtracting the maximum

allowable processing capacity (Cci) and the capacity required to satisfy the processing demands

of the TGs served by the EN at i and, 2) the networking capacity deployed, calculated following

the same approach but considering the maximum allowable networking capacity (Cni) and the

TG networking demands routed through the EN at i. Each addend in (5.4) is multiplied by a

capacity-to-cost conversion factor to return a valid cost. The second addend in (5.1) comprises the

cost of interconnecting an EN at i with a TG at t, calculated using (5.5) based on the bandwidth

of the active links. The third addend in (5.1) represents all upfront deployment costs. These

fixed expenses are estimated for each potential EN site selected as EN and it is calculated

based on its interconnecting and operational costs when serving a TG (hence, Fi is defined as a
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variable in Table 5.1). The objective function in (5.2) aims at minimizing the number of deployed

ENs while (5.3) seeks to maximize the EN capacity usage ratio with χi calculated through (5.6).

Restrictions (5.7) to (5.10) defining the variables and parameters on the model.

In order to solve the multi-objective optimization model, equations (5.1), (5.2) and (5.3) are

linearly combined using a “weighted sum” approach to obtain a single objective function [99]:

Min ω1 ·TC+ω2 ·NE−ω3 ·UR(5.11)

where TC is the total cost of the EC network, calculated through (5.1), NE is the total amount of

ENs deployed estimated using (5.2), UR is the capacity usage ratio of the ENs obtained through

(5.3) and ω1,ω2,ω3 ≥ 0.

The set of restrictions from (5.12) to (5.15) define how the model manages the TG demand

and EN capacity interrelation. Both (5.12) and (5.13) ensure that the amount of demand of a

TG served by one or more already selected ENs, does not exceed the TG total demand. Likewise,

constraints (5.14) and (5.15) guarantee that the amount of demand served by an EN does not

exceed the EN maximum capacity. The ve variable ensure that restrictions from (5.12) to (5.15)

are enforced for the locations where an EN has been already placed.

∑
∀e∈N

µt
e ·ve = 1 ∀t ∈ T(5.12)

∑
∀e∈n

κt
e ·ve = 1 ∀t ∈ T(5.13)

∑
∀t∈T

µt
e ·ve ·Mt ≤ Cce ∀e ∈ N(5.14)

∑
∀t∈T

κt
e ·ve ·K t ≤ Cne ∀e ∈ N(5.15)

The restrictions required to define the behavior and interrelation among a selected EN at

e (i.e., where ve = 1), serving a TG at t (i.e., where αt
e = 1) and their capacities and demands,

respectively, is regulated by the constraints from (5.16) to (5.18). Both (5.16) and (5.17) imply

that if a TG is served by a given EN, that EN will serve a fraction of the TG demand higher than

zero. Meanwhile, (5.18) forces to zero the compute demand served by any EN potential location

where an EN is not placed.

if αt
e = 1⇔µt

e > 0 ∀e, t ∈ N,T(5.16)

if αt
e = 1⇔ κt

e > 0 ∀e, t ∈ N,T(5.17)

if υe = 0⇔ ∑
∀t∈T

µt
e = 0 ∀e ∈ N(5.18)
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Modeling the network-aware nature of the MO-ENPP under strict latency constraints was

challenging. Our approach, showcased from (5.19) to (5.21), models the EN-TG interconnection

using “flow conservation” conditions. Such strategy allowed us to significantly simplify the

problem definition when compared to a traditional path-based analysis, while reducing the

overall computation time. Through (5.19) and (5.20) the demand entering and exiting both source

and destination nodes must be equal to the total demand of the source, considering the reliability

requirements of the TGs. Similarly, (5.21) forces the amount of demand entering and exiting any

node in between source and destination to be zero.

∑
∀e∈N|e 6=t

( ∑
( j,i)∈L
|i=t

γte
i j −

∑
( j,i)∈L
|i=t

γte
ji

)
≥1+Rt ∀t ∈ T(5.19)

∑
∀e∈N|e 6=t

( ∑
( j,i)∈L
| j=e

γte
i j −

∑
( j,i)∈L
| j=e

γte
ji

)
≥1+Rt ∀t ∈ T(5.20)

∑
(i, j)∈L| i 6=t

j 6=e

γte
i j −

∑
( j,i)∈L| j 6=t

i 6=e

γte
ji = 0 ∀e, t ∈ N,T | e 6= t,

n ∈ N \ {e, t}(5.21)

Since the amount of capacity for each link is limited, (5.22) guarantees that this capacity is

not exceeded for any link in the EN-TG path selected. Restriction (5.23) defines a link as “active”

(i.e., ψte
i j = 1) whenever it is used to route any amount of existing TG demands (i.e., γte

i j > 0). The

constraint in (5.24) showcases the case where a TG is to be selected as EN in order to serve itself

(in case it is required) and no “active” network link/path is therefore required. In the event of a

TG at t being served by an EN at e (i.e., αt
e = 1,ve = 1), (5.25) and (5.26) force the routed demand

to be greater than zero and viceversa.

∑
∀e∈N

∑
∀t∈T

γte
i j ·K t ≤ Bi j ∀(i, j) ∈ L(5.22)

if γte
i j > 0⇔ψte

i j = 1 ∀e, t, (i, j)∈N,T,L(5.23)

if e = t ⇒ ∑
∀(i, j)∈L

ψte
i j = 0 ∀e, t ∈ N,T(5.24)

if
∑

∀(i, j)∈L
γte

i j > 0⇔αt
e = 1 ∀e, t ∈ N,T(5.25)

if
∑

∀(i, j)∈L
γte

i j > 0⇔ ve = 1 ∀e, t ∈ N,T(5.26)

The 5G latency requirements are comprehensively modeled through (5.27) and (5.28). A

maximum latency is assumed in constraint (5.27) for any EN-TG assignment, such that most

of the 5G use cases are met for every TG. In addition, (5.28) was defined to guarantee ultra-low
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latency requirement satisfaction.

∑
∀(i, j)∈L

(D i j +Pi) ·ψte
i j +ve ·Pe ≤ DM ∀e, t ∈ N,T(5.27)

if At = 1⇒ ∑
∀(i, j)∈L

(D i j +Pi) ·ψte
i j +ve ·Pe ≤ DU ∀e, t ∈ N,T(5.28)

The core aim with (5.27) and (5.28) is to ensure latency demand satisfaction for a compre-

hensive set of 5G use cases. For instance, setting DU = 1 ms and forcing the RTT on the EN-TG

service path -i.e., for TGs aggregating traffic from ultra-low latency 5G use cases- to be lower

than DU , enforces strict compliance of 5G requirements as presented in [4].

The propagation and processing delays for any path selected to interconnect e and t were

considered in both (5.27) and (5.28) (further details on how the path delays are calculated are

provided in Section 5.1.2.2).

5.1.2 Solution Proposal: extending EdgeON

By extending the framework presented in Section 4.2.2 to solve the ENPP we aim at providing a

useful tool (fully adaptable and extensible) for operators to use when planning the deployment of

an EC network.

The extended version of EdgeOn comprises a main (i.e., vertical) module containing all

the base models used to ensure modularity and extensibility, three core processing stages, and

an output/visualization phase (see Fig. 5.1). As in Section 4.2.2, the Input Processing stage

takes as input and normalizes the 5G use case requirements data (e.g., latency, reliability, etc.)

in order to tailor the EN ranked locations to pre-defined 5G demand values. Furthermore, a

given territory of interest, network topology (see Fig. 5.2), EN maximum networking/computing

capacity and aggregated traffic demands (i.e., TG demands) are assumed to be inputted. In

addition to accepting real network topology data as input, the Scenario Generation stage of

EdgeOn implements a network emulator based on the Python library Networkx1, to provide

test scenarios accepting as input an arbitrary number of TGs and network nodes, distributed

1https://networkx.github.io/
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Figure 5.2: Network-aware solution process executed by EdgeON. Logical network diagram on
the leftmost image, geographical node distribution on the center and rightmost images (the latter
showing an example optimal EN site set).

over a given number of cities (i.e., the topology generator returns an arbitrary number of Wide

Area Network (WAN) networks interconnected by a high-speed backbone, thus emulating a

country-sized network).
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In case a real-life topology is inputted, the Scenario Generation stage is bypassed and the

framework moves on to the Placement Optimization phase. The key modules of EdgeOn -i.e.,

Placement Strategy and Solution Space Exploration- are executed within this stage. These

two steps are tightly coupled, since any method on the Solution Space Exploration can use

one or more algorithms from the Placement Strategy module to generate feasible placement

solutions (i.e., TG-EN pairings considering all the underlying restrictions). The current version

of EdgeON implements four placement algorithms and five solution space exploration methods.

Finally, the framework returns an optimized placement solution within the final Output stage.

All phases of the framework are detailed further in the following subsections.

5.1.2.1 Pre-Optimization Module

The Pre-Optimization module within this stage, aiming at reducing the overall problem com-

plexity (as the number of TGs and potential ENs is decreased), seeks for “isolated” TGs and

divides the territory of interest into Service Areas. A TG is said to be “isolated” according to Defi-

nition 2, where Dmax can be either DM or DU according to the latency requirements of the TG).

Checking the territory of interest in search for isolated TGs is done through Algorithm 2, where

delay(t, e) is calculated using the Networkx embedded shortest_path()2 function to estimate the

shortest path delay between an EN at e and TG at t. Namely, after the shortest path between e

and t is found, the path delay is calculated considering the sum of the processing and propagation

delays of the links and nodes in the path (i.e., the former is assumed to be a fixed known value,

the latter is calculated for each link based on the distance and assuming direct fiber connections,

Section 5.1.3 specifies the values selected or each parameter). The directly connected nodes or

“neighbors” for each TG -i.e., obtained by calling t.neighbors in the pseudo-codes shown later in

this section- are assumed to be known in advance based on the inputted (or generated) topology,

although they can be easily found using Networkx available tools in case a generated topology is

used. By determining the “isolated” TGs, the resources and execution time required to solve the

problem can be effectively reduced as these nodes are immediately upgraded to ENs without loss

2https://networkx.github.io/documentation/stable/reference/algorithms/shortest_paths.html.
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Algorithm 2: Isolated TG Check
Input: DM , DU
Output: Ts

1

2 for t ∈ T do
3 for e ∈ t.neighbors do
4 if At = 1∧delay(t, e)< DU then

/* Save e as EN candidate for t */

5 t.candidates ← e

6 else if At = 0∧delay(t, e)< DM then
/* Save e as EN candidate for t */

7 t.candidates ← e

8 if t.candidates =∅ then
9 Ts ← t

10

11 return Ts

of generality and accuracy.

On the other hand, the Service Area Classification method within the Pre-Optimization

module aims at a further reduction of the ENPP difficulty. We argue that in rural areas where

the user density is typically low and thus TGs are scattered over large geographical areas, a

co-location strategy can be used to deploy the ENs. This co-location approach reduces overall

costs by minimizing CAPEX, as the required EN capacity is low with high probability and, for

instance, a co-located cabinet-based EN-RAN solution, based on wireless connectivity, can be

used.

After completing the pre-optimization phase, EdgeON is able to execute the core modules of

the ENPP solution.

5.1.2.2 Placement Strategies

Although EdgeON only requires one placement strategy to solve the ENPP, the reasons to

implement several in this thesis were twofold: a) to comprehensively evaluate different solving

approaches in order to find the most suitable one for the ENPP as formulated in Section 5.1.1

and, b) to provide potential users of EdgeON with a flexible platform and set of methods to

easily adapt to their needs and use cases. For this reason, two algorithm types (i.e., EN-TG
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pairing methods) and two different implementations for each type were developed as placement

strategies: “greedy” and “scored”. The former greedily pairs TGs and ENs considering the TG

requirements, available EN capacities, network usage. The latter enhances the greedy strategy

by scoring either the TGs or ENs in order to consider the impact of the ENs selected so far over

the new EN selection. The placement strategies developed are: Greedy EN (EN-G), Greedy TG

(TG-G), Scored EN (EN-SG) and Scored TG (TG-SG).

The pseudo-code for the implementations of the“greedy” and “scored” strategies are showcased

in Algorithm 3 and Algorithm 4. Both methods start by sorting the TG set T such that the more

demanding TGs (e.g., At = 1 or Rt = 1) are processed first (Lines 2 and 3 in Algorithm 3 and

Algorithm 4). From Line 5 to Line 19 in both placement strategies, each TG t is then analyzed

and paired to any EN e to which a feasible path is found through best_path(e, t). This function

is based on a modified version of the Depth-First Search algorithm implemented by Networkx

and explained in [100]. It searches and scores all simple paths from e to t (i.e., simple paths

with enough network capacity on nodes and links to route t demands) and returns the best

path. The path scoring is executed considering three path attributes: total delay from source

to target, number of hops, cost (i.e., according to the cost of the active links and the capacity

required in the routing nodes), energy consumption (i.e., according to the number of hops, link

usage, interconnection technology). In case a valid path is found and the EN at e has enough

capacity to serve t (Lines 7-9 and 15 in Algorithm 3 and Lines 7-9 and 17 in Algorithm 4), the

EN-TG pairing occurs. The reliability requirement satisfaction is checked in Lines 10-11 and

11-12 for Algorithm 3 and Algorithm 4 respectively. From Lines 13-17 and 15-19, for Algorithm 3

and Algorithm 4 respectively, the TGs with high reliability requirements not yet satisfied are

served by greedily choosing suitable ENs. It is worth noticing that a feasibility check looking for

non-technical limitations is performed for each e to guarantee that only restriction-free sites are

evaluated. In summary, Algorithm 3 greedily selects a feasible EN site to serve each TG, while

Algorithm 4 does the opposite process by greedily assigning TGs to each EN.

In order to enhance the TG-EN pairing, both the Greedy EN and Greedy TG algorithms were

modified resulting in the Scored EN and Scored TG algorithms (see the Placement Strategy in

Fig. 4.8). These strategies rely on enhanced pairing methods scoring each EN potential site -i.e.,

86



5.1. NETWORK-AWARE MULTI-OBJECTIVE ENPP

Algorithm 3: Greedy EN (EN-G)
Input: N, L, DM , DU
Output: E

1

2 Thr = {t | At = 1 ∀t ∈ T}
3 sort(T)
4

5 for t ∈ T do
6 randomize(t.candidates) for e ∈ t.candidates do
7 if is_f easible(e)= True then
8 pet = best_path(e, t) if pet 6=∅∧ e.avail_capacity> 0 then
9 E ← e

10 if K t = 1∧ len(t ∈ [T e, ∀e ∈ E])≥ 1+Rt then
11 Remove t from Thr

12

13 for t ∈ Thr do
14 for e ∈ N do
15 if is_f easible(e)= True then
16 pet = best_path(e, t) if pet 6=∅∧ e.avail_capacity> 0 then
17 E ← e

18

19 return E

based on its current usage ratio, capacity cost and non-technical limitations3- and each TG to

be served, i.e, based on its demand (processing, networking, latency, reliability), impact on the

EN capacity usage ratio and number of serving ENs. The path delay calculation includes the

transmission and propagation delays corresponding to the links and network nodes traversed

from source to target.

5.1.2.3 Solution Space Exploration

Given the strictly constrained and multi-objective nature of the ENPP, the key optimization

procedure to be executed goes beyond the TG-EN pairing. Namely, the critical mechanism when

solving the ENPP is the exploration of the solution space in order to determine the Pareto front.

3If the EN potential site is a PoP -e.g., a Central Office, a ISP-PoP- a score bonus is added to enforce using PoPs as
ENs given their potential lower CAPEX/OPEX when compared to, for instance, deploying ENs at TG sites.
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Algorithm 4: Greedy TG (TG-G)
Input: N, L, DM , DU
Output: E

1

2 Thr = {t | At = 1 ∀t ∈ T}
3 sort(T)
4

5 while T 6=∅ do
6 Select random EN site e
7 if is_f easible(e)= True then
8 for t ∈ T do
9 pet = best_path(e, t) if pet 6=∅∧ e.avail_capacity> 0 then

10 E ← e

11 if K t = 1∧ len(t ∈ [T e, ∀e ∈ E])≥ 1+Rt then
12 Remove t from Thr

13 Remove fully served t from T

14

15 for t ∈ Thr do
16 for e ∈ N do
17 if is_f easible(e)= True then
18 pet = best_path(e, t) if pet 6=∅∧ e.avail_capacity> 0 then
19 E ← e

20

21 return E

However, as mentioned before (see Section 2.3) the MO-ENPP defined in this research can be

derived to be NP-hard due to its Multi-criteria Multi-attribute FLP nature. All this considered,

although exact methods were discarded to solve any variant of the ENPP for mid to large amounts

of nodes (cf. Fig. 5.3, showcasing the exponential growth in runtime for the MO-ENPP exact

model), the MILP formulation presented in Section 5.1.1 is still included within EdgeON for

evaluation purposes on small-sized and controlled testing scenarios.

Currently, EdgeON implements four solution space analysis methods (i.e., Traditional Simu-

lated Annealing (TSA), HSA and, EA) and a widely used approach for EN placement (i.e., MEC,

where the ENs are co-located with the RAN nodes). These algorithms are among the most used

to solve complex placement problems and were selected based on their flexibility to be adapted to

the particularities of the ENPP, namely, its non-convergent nature within the FLP problem set
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Figure 5.3: Runtime for the MILP model.

and the added difficulties of a network-aware formulation. Nevertheless, due to the promising

results of the HSA placement solution this is the default ENPP mechanism used by EdgeON. As

explained in Section 4.1.2, the key elements in HSA are the memory structures, “intensification”

and “diversification” mechanisms, which combined with the SA core provide HSA with a strong

ability to escape local optima and thoroughly explore the problem solution space.

5.1.2.4 Output

The last stage of the framework returns the best solution obtained containing the set of EN

locations to place the service infrastructure at the edge of the 5G network and the network paths,

link and node usage regarding the TG-EN interconnection. Additionally, EdgeON optionally

provides both static and interactive charts depicting the deployment details and the performance

of the selected placement solutions.

5.1.3 Evaluation and Results

To evaluate EdgeON’s suitability to solve the proposed MO-ENPP we conducted several experi-

ments on emulated network topologies varying the number of TGs, the placement strategies and

the solution space exploration mechanisms.

The testbed used was developed using the Scenario Generation tool embedded within Ed-

geON. Namely, we emulated a geographical area (i.e., a 2D map grid formed by (x, y) coordinate

pairs with a 1 m separation step) and, in each experiment, we varied the network topology placed

within this area. Each topology generated was formed by a scattered set of TGs and network
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nodes (i.e., interconnecting the TGs) randomly scattered resembling a WAN network surrounded

by rural territory (i.e., where TGs are separated by a higher distance). All network topologies

were generated through the Python library Networkx (i.e., as mentioned in Section 4.2.2) as fully

connected undirected graphs with all edges assumed to be fiber optic links. Overall, 9 topologies

were tested, with the number of TGs ranging from 20 to 100 nodes (with an increase step of 10

nodes) and the number of network nodes assumed to be half the amount of the TGs within each

topology.

The link delay was assumed to be calculated based on the distance between the vertices

and each link was assigned either 1 or 10 Gbps capacity based on the link type, i.e., lower

bandwidth for the links connecting the TGs to the core network nodes (i.e., access links) and

higher bandwidth for the backbone network links (i.e., links where no vertex is a TG). In addition,

each routing node within the network was assumed to have a typipcal processing delay of 0.05 ms

(i.e., for IP forwarding) [101]. The maximum networking and processing capacities were set to

300 units (i.e., generic units were used to model the bandwidth/processing capacities for the

ENs and network nodes) for each EN, while the same network capacity value was assigned to

each network node. To obtain this capacity value we ran EdgeON 10 times for each topology

with randomly selected capacity values. The goal was to find an arbitrary capacity value forcing

the worst placement conditions for most of the topologies -i.e., when the majority of the TGs

must be served by more than one EN, thus resulting in drastic capacity imbalance and complex

EN-TG pairing. Moreover, each TG within each topology was assigned a random processing and

networking demand ranging from 20 to 100 units, along with random latency and reliability

requirements. The conversion factors τ and σ were set to 10000 $/unit and 700 $/unit to model

the general operating costs of deploying an EN considering a realistic scenario [102]. Table 5.2

summarizes the parameter values used of the scenario generation, while Table 5.3 to Table 5.5

present the input parameter values used for the solution space exploration algorithms.

To simulate 5G heavily constrained use cases regarding, for instance, latency and reliability,

we assumed a RTT of 1 ms for ultra-low delay requirements and 10 ms for the remaining 5G

scenarios (i.e., DU = 0.5 ms and DM = 5 ms). The 1 ms RTT ensures compliance with the identified

demands for 5G ultra-low latency use cases [4][7]. Meanwhile, the maximum RTT allowed of
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Table 5.2: Parameter values

Model Param. Unit Value Details

Network Cni - 300 Generic capacity units were used
Bi j Gbps 1 - 10 Lower bandwidth for access links, higher band-

width for core network links
D i j ms - Estimated based on the distance between

nodes assuming a direct fiber link and a propa-
gation delay of 5 µs/km [103]

Pi ms 0.05 Typical processing delay for IP forwarding

EN Cci - 300 Generic capacity units were used

TG Mt - 20 - 100 A random processing demand is assigned to
each TG

K t - 20 - 100 A random networking demand is assigned to
each TG

At - 0 - 1 Randomly set to 1 (ultra-low latency) or 0 for
each TG

Rt - 0 - 1 Randomly set to 1 (ultra-high reliability) or 0
for each TG

Cost τ $/unit 10000 Cost per generic capacity unit
σ $/unit 700 Cost per generic capacity unit

Table 5.3: Input parameters
for the EA.

Parameter Value

Num. Generations 100.00
Num. Individuals 100.00
Mutation rate 0.01

Table 5.4: Input parameters
for the HSA.

Parameter Value

Minimum Temperature 0.0001
Maximum Temperature 1.0000
Temperature Iterations 10.000
Fast Alpha 0.8000
Slow Alpha 0.9500
Num. Neighbors 10.000

Table 5.5: Input parameters
for the TSA.

Parameter Value

Minimum Temperature 0.0001
Maximum Temperature 1.0000
Temperature Iterations 10.000
Alpha 0.9500
Num. Neighbors 10.000

10 ms, for any EN-TG pairing, guarantees that most 5G use cases can be met for any TG and its

serving ENs [4].

For the objective function we arbitrarily selected the normalized weights ω1 = 0.35, ω2 = 0.33,

ω3 = 0.32. Similarly, arbitrary values were selected for the weights in the best_path(e, t) function.

The first step towards a comprehensive evaluation of EdgeON’s capabilities was to determine

the best placement strategy to solve the ENPP, due to the critical impact of the EN-TG pairing

on the overall performance of the solution. To this aim, we repeatedly ran the TSA, HSA and EA

algorithms for all placement strategies and topologies. The results are showcased in Fig. 5.4.

Taking into account that the lower the score the better the performance, for all the topologies
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Figure 5.4: Evaluation of the placement strategies for all solution space exploration algorithms
and network topologies with TG values ranging from 20 to 100 TGs. The naming convention is
as follows: Greedy EN → EN-G, Greedy TG → TG-G, Scored EN → EN-SG and, Scored TG →
TG-SG.
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analyzed (i.e., named after the number of TGs on the topology), the Greedy EN (EN-G) and Scored

EN (EN-SG) were significantly outperformed by both the Greedy TG (TG-G) and Scored TG

(TG-SG). The reason is that greedily assigning feasible ENs to each TG results in a poor usage

ratio balance and higher number of ENs when compared to selecting random ENs and greedily

pairing them with suitable TGs, considering the underlying capacities and TG requirements.

Consequently, we discarded EN-G and EN-SG as placement strategies in favor of TG-G and

TG-SG for the remaining of our experiments.

A different perspective to further analyze the placement strategies performance is shown in

Fig. 5.5. Crosschecking the charts in Fig. 5.4 and Fig. 5.5 evidences the superiority of TG-G and

TG-SG for any solution space exploration mechanism. For all topologies analyzed, both TG-G

and TG-SG outperformed the remaining placement strategies, resulting in significantly lower
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Figure 5.7: HSA results for Num. ENs and Usage Ratio compared to TSA and EA (using TG-G in
all cases). The HSA improvement percentage is depicted.
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costs and number of deployed ENs and in higher average usage ratio, thus lowering the overall

score. In addition, this figure evidences how TG-G performed slightly better than TG-SG for all

algorithms and the majority of topologies analyzed. Consequently, we set TG-G as the default

placement strategy to solve the ENPP using EdgeON.

The second step on EdgeON’s analysis was to thoroughly assess the solution space exploration

strategies. The idea within this step was to evaluate EdgeON’s ability to find the best near-

optimal solution using our in-house heuristic (i.e., HSA) tested against the exact method, in

a controlled test scenario -i.e., reduce number of nodes- and against widely used heuristics

commonly applied to other placement problems. The findings of these tests are depicted in

Fig. 5.6 and Fig. 5.7. The former showcases the superiority of HSA when compared to the other
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heuristics, with an average score offset of around 1.5% compared to the MILP model4, i.e., with

EA and TSA achieving a score offset of 6% and 8% respectively. The significantly better score

offset obtained by HSA when compared to TSA and EA, showcased in Fig. 5.7, resulted from its

performance improvements in terms of number of ENs and average capacity usage ratio. Overall,

Fig. 5.7 illustrates that HSA deployed an average of nearly 40% less ENs than TSA and 20% less

than EA. Moreover, HSA achieved a 30% and 20% better usage ratio when compared to TSA and

EA respectively.

Finally, to further validate HSA’s suitability for EN deployment within 5G networking, we

tested it against a commonly preferred strategy to locate ENs: the MEC approach, where as

mentioned above, the service infrastructure (i.e., the EN) is arbitrarily co-located with the RAN

nodes. As expected, Fig. 5.8 evidences how using MEC can lead to a rather inefficient EC network

deployment when compared to HSA, since it results in lower usage ratio, higher number of

deployed ENs and performance degradation due to overlooking the in-place backhaul network

capacity. In summary, the MEC approach placed an average of 71% more ENs than HSA (using

TG-G as placement strategy) and resulted in 50% less average usage ratio for the vast majority

of the analyzed scenarios (cf. Fig. 5.9).

The aforementioned results encourage the evaluation and test of EdgeON on real-life scenar-

ios and network topologies. Furthermore, its modular implementation ensures an easy-to-use

and extensible platform for operators to adapt to their requirements and use cases.

5.2 Conclusion

This chapter rigorously defines the network-aware ENPP under heavily constrained 5G scenarios

and significantly extends EdgeON in order to solve the presented problem.

In Section 5.1.1 the mathematical definition and MILP model for the network-aware ENPP

was presented, considering a 5G strictly constrained ecosystem. Flow conservation conditions

were used to deal with the challenges derived from interconnecting ENs and TGs through

4Results shown for topologies with less than 50 TGs due to the exponential increase in runtime for the MILP
model when applied to topologies with more than 50 nodes
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a realistic network topology. In addition, a multi-objective model was developed to ensure a

comprehensive optimization of the EN placement, addressing not only the overall expenses

minimization, but the optimization of the number of EN and their capacity balance across the

EC network.

Aiming at achieving a key goal of this thesis (i.e., to provide a useful tool for the deployment

of an EC network), the EdgeON framework was redesigned and extended in Section 5.1.2. The

new version of EdgeON was developed focusing on flexibility and extensibility, while comprising

a thorough analysis of the technical and non-technical aspects and costs of the network-aware

EN placement.

To validate the capabilities of this new version of the framework, the performance of its core

placement optimization solution (i.e., based on HSA), was thoroughly assessed using several

strategies as core placement methods. The promising results obtained encourage the use of

EdgeON to solve the network-aware ENPP under strict 5G use case requirements. Namely,

significant improvements were achieved regarding the number of ENs deployed and average

usage ratio (i.e., around 30% and 25% on average, respectively, compared to the remaining tested

heuristics). Moreover, an average score offset of just 2% was obtained when testing our heuristic

against an exact method (i.e., MILP model).
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VNFS OVER OPTIMALLY PLACED ENS: CASE STUDIES

This chapter is based on:
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tems,” 2019 IEEE 44th Conference on Local Computer Networks
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• A. Santoyo-González and C. Cervelló-Pastor, “A Framework for
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T
his chapter extends the evaluation and validation of the proposed solution to optimally

place the ENs under 5G requirements. To achieve this goal, in the following sections

two 5G scenarios are presented where core VNFs are placed over ENs.

In Section 6.1, a DDoS edge-based detection solution is presented for an IoT ecosystem, aiming
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at line-rate processing, platform-independent and lightweight execution, taking advantage of the

service infrastructure assumed to be optimally located at the users’ premises, thus extending the

work presented in the previous chapters.

Similarly, Section 6.2 showcases a solution to optimize the placement of UPFs through a

modified version of EdgeON solving the joint placement of 5G UPFs and ENs. Namely, EdgeON

is extended to integrate a novel solution for UPF placement over EC infrastructure under 5G

latency and reliability requirements, with additional mobility constraints.

6.1 Case Study 1: High-performance, platform-independent

IoT-DDoS edge-based detection

Given the nature of IoT deployments where millions of end devices acquire networking capa-

bilities, IoT-DDoS attacks (i.e., IoT devices forming botnets) have emerged as a challenge due

to the number of forecasted devices in 5G networks and their inability to be easily patched

[104]. So far, solutions against DDoS attacks in this context have been implemented through

complex, centralized software and hardware-based mechanisms [105]. Distributed detection and

mitigation techniques have been studied, aiming at offering more efficient ways of dealing with

scenarios such as IoT-DDoS attacks [106–108].

The vast majority of these approaches assume the use of purpose-built middleboxes deployed

in the network, close to the victim, in order to be able to detect the attack through analyzing

aggregated traffic features [104][107][109–111]. However, in an IoT environment, the cost of a

purpose-built ecosystem to detect and mitigate DDoS poses complex deployment and operational

challenges, for instance, if early detection and high-speed processing is to be achieved.

What is more, most current DDoS detection schemes rely on traffic redirection methods or ag-

gregated flow statistics collection. These mechanisms introduce additional costs and performance

issues into the network (e.g., longer flow completion times, bandwidth overhaul), degrading the

system’s effectiveness due to longer timeframes between detection and mitigation phases [112].

To partially overcome such problems, multi-stage distributed systems can be used to detect and

mitigate the attacks. In these approaches, coarse-grained detection is to be executed upstream in
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the network, closer to the attackers.

However, this leads to the use of dedicated middleboxes scattered across the network for

scrubbing purposes [110][107]. For an IoT-DDoS detection solution (i.e., protecting the network

against DDoS originated on IoT devices) to solve the above mentioned problem, it has to ensure: a)

lightweight processing, by relying on traffic features and analysis methods targeting overhead

minimization and coarse-grained anomaly detection; b) platform-independence, to minimize

the need for purpose-built devices and the use of traffic redirection-based approaches; and c)

high-performance, in order to achieve fast reaction through early detection while avoiding

performance degradation.

The advent of paradigms such as EC and SDN can help overcome the aforementioned issues

for DDoS detection and mitigation. Through EC and SDN dataplane programmability principles,

lightweight functions can be placed at the edge, resulting in enhanced network capabilities.

Namely, a programmable dataplane improves the network’s agility and flexibility by allowing

dynamic high-speed edge function allocation/deallocation. Thus, providing early detection capa-

bilities and more efficient resource usage at the edge nodes. Additionally, edge network functions

deliver the elasticity and scalability required to efficiently handle vast amounts of traffic in a

distributed manner. IoT can directly benefit from the joint work of data-plane programmability

and edge network functions. By placing the detection at the attackers’ vicinity (see Fig. 6.1), fast

reactive procedures can effectively isolate the IoT malicious devices while reducing bandwidth

consumption typically produced by DDoS attack traffic, and avoiding the processing overhead of

current remote centralized detection approaches.

In the following sections, we present a lightweight, platform-independent anomaly detection

mechanism to be deployed at the edge of the network. To achieve true platform independence

while ensuring high-performance levels, our proposal is based on BPFabric, a data-plane pro-

grammability architecture presented in [113]. In a nutshell, the BPFabric platform allows to

program the data-plane of SDN network nodes and therefore, it can be partially considered

complementary to other solutions, e.g., P41. Unlike the latter, however, BPFabric focuses on

1https://p4.org/
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Figure 6.1: Centralised Cloud vs. Edge Functions-based Detection

high-speed processing and, for that reason, it is based on the eBPF [114] instruction set, rather

than a higher-level Domain Specific Language (DSL).

Previous work has successfully tested the line-rate capabilities of eBPF [113–115]. Namely,

it has been demonstrated that eBPF-based packet processing, by acting at the socket level,

significantly improves both throughput and latency, while still offering the advantages of ker-

nel integration (i.e., full network stack processing) when required. BPFabric provides true

platform-independent execution on account of eBPF, avoiding the Protocol Independent Switch

Architecture (PISA)-based device restriction imposed by P4. Furthermore, BPFabric goes beyond

the data-plane programming capabilities of P4 by defining a fully developed architecture specify-

ing: the SDN controller and remote agent behaviors, the controller-agent interactions, mandatory

core packet processing functionalities and message exchange procedures. The framework hence

allows to define and deploy diverse network functions as part of the forwarding behavior of each

switching element, from a remote centralized location.

Overall, the main contributions presented in the following sections are: 1) the design and

implementation of a lightweight, platform-independent anomaly detection mechanism based on

edge functions defined as part of the BPFabric architecture, exploiting SDN-based data-plane

programmability, 2) the implementation of an eBPF-based detection method using Shannon’s

Entropy and Exponentially Weighted Moving Averages (EWMA) and, 3) the evaluation of our
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edge-based anomaly detection scheme against a fully centralised cloud-based approach consider-

ing carefully selected traffic features (see Section 6.1.1) matching the particularities of traffic

anomalies in IoT ecosystems.

6.1.1 Solution proposal

Typical DDoS attacks are said to be characterized by high frequency of incoming packets, endpoint

communications asymmetry, and high number of source Internet Protocol (IP) addresses [107,

110]. However, such characteristics are directly linked to a close-to-target detection approach and

fail to describe IoT-DDoS if they are to be detected at the attackers’ vicinity [116]. For instance,

by pushing the detection mechanism to the network edge, the benefits from traffic aggregation

are lost and hence, outliers such as high packet rate/volume and source IP diversity cannot be

considered. For a joint scenario mixing IoT and upstream attack identification, a tailored set of

metrics is required. The works in [110, 111, 116, 117] provide a solid baseline for a set of metrics

in order to identify anomalous traffic in IoT environments. Based on these findings, the set of

IoT-DDoS detection parameters used in this work is summarized below:

Destination/Source IP Address Distribution: given their reduced functionality scope, IoT

devices usually communicate with a small set of endpoints. Therefore, anomalous traffic can be

identified by analyzing the destination IP address distribution [110, 111]. Furthermore, DDoS

attacks usually employ forged source IPs to communicate with a victim host. Therefore, to

effectively identify abnormal traffic, the destination/source address space entropy can be used.

According to the findings from [111], IoT devices should mostly have an overall low entropy. As a

consequence, any change in the entropy value over a given timeframe can be considered a sign

for an ongoing attack.

Flow Asymmetry: during a DDoS attack, the interaction between the attacker and the

target has been found to be asymmetrical [110]. Under a DDoS attack from an IoT botnet, the

underlying IoT devices send a high number of requests to the victim. Eventually, the target

capacity is exceeded and the symmetry of outgoing requests and incoming responses is affected,

a situation that can be identified by detection methods placed at the attacker’s vicinity. To use

traffic asymmetry as a detection feature, the method presented in [110] is adapted and used in
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this paper (see Section 6.1.2).

Inter-packet Interval: within the time domain, the traffic patterns of IoT devices are often

quite stable with each device sending information to, for example, remote control systems at

clearly pre-defined, arbitrary, and immutable time intervals. In contrast to regular IoT traffic,

DDoS attack incoming traffic from an IoT device is often characterized by high burstiness in

short and periodic timeframes [109, 111, 116].

Packet Size: under a DDoS attack, the packet size distribution for IoT devices varies greatly

over time. Typically, malicious traffic comprises bursts or steady flows of incoming small packets

around 100 bytes, while normal traffic packet sizes are unevenly distributed from 100 to more

than 1000 bytes [111]. This behavior allows us to detect anomalous traffic by analyzing the packet

size variation -i.e., number of packets with length under 100 bytes- over arbitrary controlled

timeframes.

Packet Volume: the transferred data volume is a key parameter when detecting volumetric

DDoS [111]. Given the reduced and typically fixed amount of traffic periodically sent by IoT

devices, analyzing the packet volume at the network edge can effectively lead to detect an ongoing

attack.

6.1.1.1 Edge-based detection

Leveraging SDN data-plane programmability and EC principles, coarse-grained detection mecha-

nisms can be deployed at the network edge close to potential attackers (i.e., IoT devices). This can

be achieved through in-line edge functions and technologies tailored to the edge node resources

and characteristics. BPFabric allows functions to be implemented at the network edge, encoded

as part of the data-plane behavior of the device (e.g., a switch). Therefore, BPFabric provides the

added flexibility of being able to deploy the system on a wide variety of devices already in use at

the user’s vicinity (e.g., home gateways, access routers).

When selecting the anomaly detection mechanism, the inherent limitations of the edge nodes

(e.g., limited resources, rigid programmability), the goal of achieving line-rate performance to

avoid throughput or latency degradation, for instance, and the need for fast detection, significantly

reduce the list of mechanisms that can be used. For instance, complex detection techniques based
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on machine learning require high processing capabilities unavailable on the data path of an edge

node. Moreover, the use of BPFabric, based on the eBPF instruction set, introduces additional

particularities (e.g., limited program size) that should be taken into account in order to achieve

high-speed and bound execution time. Taking the above into consideration, the coarse-grained

detection running at the edge is forced to be fairly simple, while still ensuring an adequate level

of accuracy.

In an IoT context, we believe such tradeoff can be sorted out through adequate traffic statistics

collection combined with multi-feature analysis. Such an idea is supported by the nature of the

attack traffic characteristics identified above (see Section 6.1.1). For example, let us consider a

DDoS Transmission Control Protocol (TCP) SYN flood attack with variable packet burstiness and

overall low packet volume. Through a joint evaluation of the volume, destination IP addresses

and inter-packet intervals, the attacker could be pinpointed. This is possible because the anomaly

detection system is able to conclude that, for instance, for a certain target IP, the traffic burstiness

and packet volume (e.g., average packet size under 100 bytes) do not follow the expected behavior.

Nevertheless, as the detection method is forced to be simple and even following the above

multi-feature analysis approach, the detection accuracy will highly depend on the attack complex-

ity and the dynamic adjustment of the mechanisms (e.g., thresholds) used to detect a suspicious

event. To overcome these limitations and based on the promising results found on previous work

[106–108], we envision a multi-stage detection architecture where the coarse-grained detection

is carried out close to the attackers, and the upper and more advance analysis layers can be

executed in more powerful edge nodes scattered within the service provider network (either in a

centralized or distributed fashion).

Overall, the idea behind such scheme is to periodically collect traffic information through

eBPF filtering rules on the IoT network gateways (see Fig. 6.1). The detection analysis is carried

out through a pipeline of condition evaluation steps injected into the IoT gateway running

BPFabric (the data collection is also part of the eBPF program inserted). If any anomalous

behavior is found, an alarm is then sent to the upper detection layers on the architecture via

the controller (assuming an SDN implementation). In case an anomaly is found, the upper layer

executes further processing (after requesting additional information if required) and confirms
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if an attack has been made. In the event of a false positive, the detection parameters on the

coarse-grained mechanism are to be adjusted to increase its accuracy.

In order to comply with the above mentioned system limitations, we decided to use Exponen-

tial Weighted Moving Average (EWMA) and Shannon’s Entropy for outlier detection. After the

data collection interval finishes, the EWMA (according to Eq. 6.1) is calculated for the following

features: packet count, rate, volume, and size distribution. Flow completion (for the traffic asym-

metry feature) is determined through source/destination IP address pairs, keeping track of the

number of outgoing communications and the associated responses. Finally, the endpoint/source

variation over time is checked based on the source/destination IP entropy (referred to as H(X ))

calculated using Eq. 6.2 [107].

EWMA =α ·value+ (1−α) · last_prediction(6.1)

H(X )=−
N∑

i=1
pi log2 (pi)(6.2)

6.1.2 Evaluation and Results

We conducted experiments to evaluate the suitability of the proposed EWMA and Shannon’s

Entropy-based detection within BPFabric architecture (for convenience this method is hereinafter

referred to as “ESE-Detection”) to effectively detect IoT-DDoS.

The testbed used in our experiments is shown in Fig. 6.2. A set of IoT networks is emulated,

connected through access routers to the WAN/MAN, and finally to the remote cloud where the

attack targets are located. The metrics for the scenario analysis are presented in Table 6.1. They

are selected in order to thoroughly assess the behavior of our solution and its overall performance.

The detection pipeline collecting traffic data and executing EWMA and Shannon’s Entropy-

based detection is run in node GW1 (i.e., the IoT gateway). The cloud-based detection is executed

within the emulated remote cloud collecting traffic data from node R1. Two additional detection

methods were implemented for evaluation purposes: Cosine Similarity [109] and Shannon’s

Entropy [107, 118]. Both detection strategies were adapted to use the metrics presented in

Section 6.1.1, and were selected considering their previous use in coarse-grained DDoS detection

[107, 109]. Since a thresholding approach was adopted for all detection strategies, the methodology
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Figure 6.2: Testbed architecture used for edge-based IoT-DDoS detection

Table 6.1: Evaluation Parameters

Parameter Description
Bandwidth Bandwidth overhaul caused by traffic redirection or data collection in

centralized cloud-based approaches.
Detection

time
Time elapsed between the anomaly occurrence until an alarm is raised.

Attack
penetration

Amount of anomalous traffic (attack packets) inserted into the network
until an alarm is raised.

Accuracy The false positive and false negative ratio achieved.
Cost Overall expenses based on [119]: cost of information gathering, data

processing and detection implementation.

presented in [118] was used to optimize the threshold selection process and enhance the overall

accuracy. To emulate an attack, we developed a Python script using the Scapy library2 to generate

spoofed source address and destination ports, targeting an arbitrary server within the remote

cloud in Fig. 6.2 simulating a TCP SYN flood attack.

To generate the IoT traffic for the experiments, the tool “Distributed Internet Traffic Generator”

[120] was selected due to its flexibility and granularity in controlling the traffic characteristics.

Furthermore, the findings presented in [121] and [122] allowed us to model IoT traffic of a

home network, assuming each setup comprises the following elements: 3 smart appliances (e.g.,

2https://scapy.net/
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Table 6.2: IoT traffic simulation details

Feature Smart Appliance Climate & Lighting
Control

Dst. IPs 2∼ 10 2∼ 5

Num. Dst. Ports 2∼ 5 2∼ 5

Avg. Load (Kbps) 5∼ 25 5∼ 15

Packet Size (bytes) 100∼ 600 100∼ 200

Act./Idle intervals (s) 2∼ 10 / 80∼ 100 2∼ 5 / 10∼ 20

refrigerators, washers), 4 climate control sensors and 6 lighting control devices.

The values in Table 6.2 were assumed to generate the device data flows and model the device

normal behavior. Mininet3 was employed to emulate the IoT network due to its simplicity and

flexibility. Overall, a round-trip delay of 100 ms was assumed for the end-to-end communica-

tion from the IoT networks to the servers in the remote cloud, accounting for the processing,

routing/switching, and propagation delays involved.

Estimating the entropy of the IP distribution was quite challenging considering the limitations

of the envisioned underlying hardware (e.g., no support for float point operations) and the eBPF

instruction set characteristics. Consequently, Eq. 6.2 was adapted to overcome these restrictions.

To efficiently find the base 2 logarithm we adapted the Taylor Series expansion method described

in [123], hence approximating the base 2 logarithm through Eq. 6.3. The K constant value defined

in Eq. 6.4 was calculated beforehand and predefined in the eBPF program.

log2(
x
y

)= K · (− log(
x
y

)) K ∈R, x, y ∈Z(6.3) (6.4) K = −1.0
log(2.0)

Eq. 6.5 allowed us to effectively approximate the logarithm of x/y (e.g., x: destination IP count,

y: total destination IPs).

log(
x
y

) = a + a2

2
+ a3

3
+ .. + an

n
a ∈R, n ∈Z(6.5) a = (y− x)

y
(6.6)

(6.7)
yN−1 · (2 ·3 ·4 · ... ·N) · (y− x)+ yN−2 · (1 ·3 ·4 · ... ·N) · (y− x)2 + ...

yN · (1 ·2 ·3 · .. ·N)

3http://mininet.org/
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Figure 6.4: Bandwidth consumption with and
without detection processing.

Unrolling and computing Eq. 6.5 as a running product allowed us to handle all operations

using integers and comply with the unbounded loop restrictions in eBPF. As a result, - log(x/y)

was implemented as shown in Eq. 6.7. Where N is an arbitrarily chosen integer (N = 2 was

empirically selected, the estimation error analysis is shown in Fig. 6.3) providing the desired

precision. Finally, to compute the entropy for the destination IP variation, for instance, fast map

iteration through eBPF bpf_map_get_next_key4 was employed and eBPF maps were used as

immutable global counters when needed.

To enhance the accuracy while avoiding register overflow (i.e., likely to occur for large N

values), we decided to multiply the numerator by 1000. Consequently, the entropy estimation

resulted in an integer comprising up to three of the decimal values of the real result (e.g., for an

entropy equal to 1.123, the estimated entropy found was 1120). The performance and resource

overhead is minimized by removing user-kernel space interactions, as all computations on the

detection pipeline are executed within kernel space. The bandwidth analysis depicted in Fig. 6.4

shows the minimum performance impact of ESE-Detection processing, causing a bandwidth

reduction of around 1%.

Although the estimation error is thoroughly described in [123], we decided to conduct experi-

ments to determine the impact of the entropy estimation over the detection accuracy. The findings

can be observed in Fig. 6.3 where the cumulative step histogram for the estimated entropy error

4http://man7.org/linux/man-pages/man2/bpf.2.html
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is shown. Overall, the estimation error fell most of the times within 1% to 3% for typical IoT

traffic and within 6% to 11% in the event of an attack. This precision level gave us sufficient

margin to effectively determine an anomaly was occurring. The estimation error was significantly

lower than the error required to incur in a miss-detection, represented by the right-most dashed

lines in Fig. 6.3, for both regular and attack traffic. In order to result in a false positive/negative,

our estimation error should have been at least 60% higher in any case.

6.1.2.1 Results

Fig. 6.5 shows the cumulative step histogram for the detection delay for each of the implemented

schemes. As expected, the performance of the BPFabric approach is significantly better due to the

low processing delay introduced by the enhanced data plane pipeline. The eBPF-based detection

engine is able to reduce over 80% of the anomaly identification time when compared to both

Entropy and Cosine Similarity, lowering the detection delay to an average of less than 5ms. Such

results show the potential of BPFabric for early anomaly detection. Powered by its high-speed

and lightweight processing potential, BPFabric-based detection is capable of greatly reduce the

data processing overhead, thus resulting in significantly lower detection timescales. Since the

BPFabric detection is running in kernel space, an inherent limitation is the lack of access to

a proper timer due to the absence of an eBPF in-kernel function for this purpose (within the

scope of the eBPF program type we are running). As a solution, the timing is followed using the

incoming packet timestamps provided by BPFabric.

The accuracy of the detection methods was measured using the typical False Positive Ratio

(FPR) and False Negative Ratio (FNR) definitions, as shown in Equation 6.8 and Equation 6.9.

Maintaining per-flow data statistics using in-kernel processing on an resource-constrained IoT

gateway is unfeasible due to: memory requirements to hold the generated data in the event of an

attack, eBPF map limitations and performance degradation due to longer processing timeframes.

Consequently, the detection analysis was not performed considering the benign/malicious flow

count. Instead, we decided to run several experiments executed at both fixed and random time

intervals, in order to emulate a more realistic botnet scenario, while measuring the accuracy

through the number of attacks detected by the implemented methods. The results are presented
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Figure 6.5: Detection delay analysis for
the proposed methods: ESE-Detection,
Entropy and Cosine Similarity.
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in Fig. 6.7 and Fig. 6.8, where the number of executed attacks is depicted, alongside the attacks

detected by each algorithm.

(6.8) FPR= FP
(FP +TN)

(6.9) FNR= FN
(FN +TP)

Where:

• FP: Number of false alarms

• FN: Number of undetected attacks
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• TN: True benign traffic

• TP: Number of detected attacks

Throughout our experiments, ESE-Detection had an average accuracy of around 95%, superior

to the entropy and cosine similarity strategies (93% and 83%, respectively) for the experiments

where the attacks were executed at fixed intervals (see Fig. 6.7). For the randomly timed SYN

flood attacks, ESE-Detection outperformed again the remaining methods, achieving an average

of 93% versus 88% and 86% of entropy and cosine similarity respectively (see Fig. 6.8). Overall,

ESE-Detection superior accuracy can be expected for this ecosystem given its segregated view of

the traffic (i.e., detection executed closer to the attackers). Conversely, the typical traffic patterns

of IoT devices cannot be effectively analyzed through cloud-based scrubbing due to the traffic

convergence.

Some interesting facts were found when estimating FNR/FPR. The ESE-Detection engine

was able to ensure less than 20% FNR for both fixed and randomly timed attacks in the worst

case scenario, surpassing the maximum of 50% found for cosine similarity and entropy. On the

contrary, both these methods performed slightly better, overall, than ESE-Detection regarding the

FPR. ESE-Detection reached a maximum of 33%, equaling the cosine similarity results and below

the 25% reached by the entropy method. However, ESE-Detection showed higher FPR values in

more experiments when compared to the tested strategies. This is actually expected, because

of the EWMA limitations, i.e., the time it takes for the moving average to adapt to significant

changes in the input data. A solution to this problem is to force the upper layers of the detection

architecture to continuously monitor and update the analysis thresholds.

The attack penetration was tested to determine how much malicious traffic could be injected

into the network before an alarm was raised by the detection engine. In Fig. 6.6, the results show

that the BPFabric edge-based approach performed better than both cloud-based methods. Less

attack packets were inserted into the network, due to the lower detection delays of BPFabric

detection. Moreover, attack penetration values are directly linked to the in-place mitigation

strategies. Consequently, BPFabric-based early detection provides the network with enhanced

flexibility and efficiency in reducing the amount of attack traffic, by allowing upstream mitigation

procedures to be executed in a fast and reactive manner.
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Similar results were obtained when evaluating the bandwidth consumption, i.e., the network

capacity required by the detection method to collect and analyze the data. This metric was

measured checking the data message size sent to the detection algorithms by the collecting device

(R1 and GW1 in Fig. 6.2). For a detection interval of 30s, the entropy mechanism employed an

average of 3.3 MB of data while the cosine similarity was fed with around 1 MB. Conversely,

BPFabric underlying ESE-Detection collected all required traffic statistics at line-rate on the

IoT network gateway. Overall, BPFabric edge-based detection avoids the need to continuously

poll traffic counters from the network nodes, thus preventing unnecessary bandwidth usage and

enhancing scalability.

From the aforementioned results, the BPFabric edge-based detection approach stands out as

the less costly solution to implement and deploy, when compared to adding a dedicated detection

server/middlebox at the remote cloud or even paying for anomaly detection as a service. In a

nutshell, BPFabric significantly decreases core operational/capital costs (e.g., power, cooling,

processing/networking hardware), and allows an administrator or orchestration entity to easily

and remotely control upstream packet processing and detection mechanisms for a significantly

large number of nodes with minimum effort and low error rate. Regarding the monitoring and

analysis expenses, the edge-based detection through BPFabric clearly outperforms the cloud-

based scheme, as it introduces almost null overhead into the network while ensuring line-rate

performance even for demanding scenarios and infrastructures.

6.2 Case Study 2: Optimal 5G User Plane Functions and EN

placement

The need for ultra-low latency and ultra-high reliability for several 5G use cases, can only be

satisfied (in terms of UPF response time) by placing UPFs closer to the users and assigning redun-

dant UPFs to the access nodes placed on the service path. As a consequence, the number of UPFs

required to satisfy existing service demands rapidly increases, thus rising the CAPEX/OPEX

of the entire network. Moreover, a higher number of UPFs results in a significant increase in

the number of UPF relocations mainly enforced by user mobility and handover. The amount of
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relocations directly impacts the users’ QoE by introducing additional delays during handover and

signaling overhead for bearer establishment [124]. In this context, a significant reduction in the

overall network costs can be achieved through an optimized placement strategy for the UPFs.

The UPF placement under 5G can significantly benefit from the deployed EC service in-

frastructure, since the ENs reduce the round trip delay while enhancing infrastructure-level

reliability [125]. For these reasons, we argue that the placement of these VNFs over previously

optimally placed ENs can guarantee the satisfaction of the network and computing infrastructure

capacity requirements. Furthermore, the joint solution to both EN and UPF placement prob-

lems can significantly increase CAPEX/OPEX savings, while effectively achieving 5G demands.

Such joint optimization is possible due to the null inter-dependence among the parameters and

variables required by the placement of the physical infrastructure (i.e., ENs) and the UPFs.

In this context, we present in the following sections an adapted version of EdgeON to

cost-effectively place ENs and UPFs, aiming at reducing overall network expenses and achieve

end-user demand satisfaction (for 5G envisioned use cases). In summary, our main contribution is

a framework proposal designed to jointly solve the EN and UPF placement optimization problems,

considering user mobility, latency and reliability requirements.

It is worth clarifying that the work developed in this section was carried out as a collaboration

amongst several authors and can be fully consulted in [126]. Furthermore, although the findings

presented in Section 6.2.2.2 are included in this manuscript to demonstrate the use and benefits

of the optimized EN placement for 5G VNF placement, these results are the exclusive work of

the other author in [126] and they were included and properly referenced here with express

authorization.

6.2.1 Solution proposal

In order to solve the aforementioned problem certain assumptions were made. Namely, the UPFs

are said to be placed at previously optimally placed ENs. The extended version of EdgeON

proposed is depicted in Figure 6.9, while Figure 6.10, depicts a sample diagram showcasing

a possible outcome of the framework, where both ENs and UPFs have been effectively placed

within the available sites.
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Figure 6.9: EdgeON extended version for the joint EN and UPF placement problem.

The first stage of the framework ensures data collection and normalization according to each

underlying problem requirements: non-technical site restrictions, 5G use case requirements,

territory to be analyzed, infrastructure capacities (i.e., EN and UPF maximum allowed capacities),

current network topology and traffic demand model. Within the next step, the ENPP is solved

using the model and placement strategy detailed in Section 4.2. Meanwhile, the UPF placement

problems is addressed in the last two phases.

The UPF placement consists of two main stages: Placement Analysis and UPF VNF Place-

ment. The Placement Analysis phase processes the data regarding the UPF placement through

three main sub-stages: Service Classification, Placement Criteria and Candidate Placement Selec-

tion. The former clusters the services with similar placement demands into categories for further
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Figure 6.10: Outcome after placing both the ENs and UPFs

processing (thresholds levels for each parameter involved -i.e., mobility, latency, reliability- are set

up). From the defined categories, the Placement Criteria stage determines the criteria to consider

within the optimization strategy (e.g., number of backup UPFs for each service category according

to its reliability level). The Candidate Placement Selection stage selects the ENs to place the

UPFs according to the EN available capacities, UPF maximum allowed capacity and latency

demands. Finally, the UPF VNFs Placement stage deals with the UPF placement problem

taking into account underlying service and placement requirements, candidate sites and UPF

capacity (for details about the optimization procedure to place the UPFs, please refer to [126]).

To optimize the UPF placement we developed two core strategies detailed in [126]: an exact

mathematical model named “Optimal UPF Placement (OUP)” and a heuristic named “Near-

Optimal UPF Placement (NOUP)”. The former mathematically formulates the UPF placement

problem focusing on minimizing the overall deployment expenses, UPF number and UPF re-

locations, considering users with and without mobility requirements. However, since the UPF

placement problem is inherently NP-hard [126] and its complexity grows under 5G ultra-dense

networking, a heuristic-based solution was devised (i.e., NOUP).
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Table 6.3: 5G service requirements.

Service Latency Data Rate Density Reliability ma

(ms) (Mb/s) (users/km2) (%)

Automated Factories ≤1 1 104 (Rb), 0 (Uc) 99.999 0
mIoT ≤ 1 1 103 (R), 104 (U) 99.999 0/1
Cooperative Sensing ≤1 5 10 (R), 100 (U) 99.999 1
Home & Office ≤10 50 (R), 300 (U) 100 (R), 103 (U) 90 0
Traffic Efficiency ≤5 25 5 (R), 50 (U) 90 1
50 Mb/s everywhere ≤10 50 50 (R), 400 (U) 90 1

aMobility requirement such that m = 0: no mobility, m = 1: mobility
bRural
cUrban

6.2.2 Evaluation and Results

For evaluation pruposes, a 10000 km2 map grid was employed, with a randomly placed set of TGs

(i.e., fixed/radio access nodes with bandwidth demands ranging from 0 to 1 terabit per second)

emulating both rural and urban areas. For urban areas, the radio access nodes were assumed

to be BBUs with a maximum 3 km coverage area radius. For rural scenarios the BBUs were

distributed with a coverage area radius ranging from 10 to 20 km. Six different services with

arbitrary bandwidth, reliability, and latency requirements were used[127, 128] to generate the

underlying TG demands. Table 6.3 summarizes the use cases and requirements analyzed.

The model in Section 4.2 was followed to solve the ENPP in this context. The latency con-

straints were translated into Euclidean distances considering the propagation times of a direct

link between any TG-EN pair. Namely, for ultra-low latency requirements, a lower bound was

fixed in 2 km while the upper bound was set to 6 km (considering an approximate propaga-

tion time of 5 µs/km [129]), for ultra-low latency requirements under 1 ms and low latency

requirements around 5 ms.

6.2.2.1 EN placement evaluation

The results for the conducted experiments are shown in Figure 6.11 and Figure 6.12. Both the

EA and the HSA (see Section 5.1.2.3) were tested for an arbitrary range of TGs varying between

200 and 400 (considering a representative number of nodes for envisioned 5G networks in mid to

large city deployments). The hardware used to run the experiments has a 3.30 GHz CPU, x64

architecture (with 10 physical cores and 2 threads per core) and 64 GB RAM. The set of input
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Figure 6.11: Evolutionary Algorithm performance on the joint UPF/EN placement problem.
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Figure 6.12: HSA performance on the joint UPF/EN placement problem.

parameters used for each algorithm is presented in Tables 6.4 and 6.5.

Figure 6.11 and Figure 6.12 showcase the score, cost and number of ENs deployed by each

placement strategy for all input TG values. To estimate the score, the procedure in Section 4.1.2

was followed. In summary, the Score plots (leftmost plots in both Figure 6.11 and Figure 6.12)

demonstrate that HSA outperformed EA significantly (considering that a logarithmic scale was

used to normalize the score estimation values). Namely, HSA achieved cost savings over 15%

when compared to EA in every case, reaching around 20%–30% for more than 300 TGs. Similar

values can be observed for the number of ENs deployed by each mechanism (rightmost plots

in both Figure 6.11 and Figure 6.12), where the HSA reached a maximum of over 30% less

ENs deployed.

Based on the work carried out in this section and in Section 5.1.2.3 we found that when

applying EA to the ENPP, the coverage nature of the problem forces a high probability of

occurrence for a “dominoes effect”, where a continuous EN-TG re-arrange is caused after changing

a previously selected EN-TG pairing solution. Since the node density is significantly high (as

expected in 5G ultra-dense networks), changing a valid EN-TG assignment, i.e., through the

mutation and crossover techniques applied by evolutionary techniques, commonly results in a

large chain of EN-TG reassignments throughout the complete service area. As a consequence,

invalid solutions are typically generated and “repair” procedures have to be executed. This
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Table 6.4: Input parameters for the EA.

Parameter Value

Num. Generations 100.00
Num. Individuals 100.00
Mutation rate 0.0100

Table 6.5: Input parameters for the HSA.

Parameter Value

Minimum Temperature 0.0001
Maximum Temperature 1.0000
Temperature Iterations 10.000
Fast Alpha 0.8000
Slow Alpha 0.9500
Num. Neighbors 10.000

situation leads to a lower probability of a child solution enhancing a parent valid EN placement.

The cost savings achieved by the placement strategies, in particular by the HSA, are directly

linked to the EN network deployment costs. Nevertheless, the problem formulation and solving

scheme used ensure a significant reduction in the operating expenses as well, due to the capacity

assignment optimization and the reduction in the total number of ENs deployed.

6.2.2.2 UPF placement evaluation

After optimizing the EN placement the UPF placement problem had to be solved. This section

presents a brief summary of the findings regarding the UPF placement stage of the proposal. As

mentioned before, a comprehensive evaluation and detailed analysis of the results can be found

in [126].

In summary, an arbitrary EC network -i.e., selected amongst the ones used in the previous

section- was used as baseline for the evaluation of the UPF placement optimization strategies.

Namely, a map grid with 100 TGs (i.e., access nodes in this context) and its corresponding

EN sites (selected by HSA) was employed. The services presented in Table 6.3 were classified

according to latency and reliability demands, in order to ensure similar placement conditions

when evaluating the performance of the placement solutions under user mobility requirements.

After executing the Placement Analysis phase two main service classifications were obtained:

high-demand services (i.e., automated factories, Mobile IoT (mIoT) and cooperative sensing),

low-demand services (comprising the remaining services). Both categories exhibiting various

levels of mobility requirements.

When analyzing the UPF placement for high-demand services we arbitrarily fixed 1 ms

user-plane delay and 1 backup UPF. Furthermore, 5 ms latency was assumed for the low-demand
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Table 6.6: Network nodes distribution.

Region Candidate Nodes Access Nodes Total Demand (Tb/s)

EN PoP Radio Fixed Group 1 Group 2

City_1 13 12 10 22 2.67 17.93
City_2 12 12 11 21 2.34 14.62
Rural 33 0 16 20 6.34 15.66

service category with no backup UPF. Equation 6.10 was used to determine the number of UPFs

to which any given access node must be assigned (Ku), with pr representing the access node

failure probability and pu the failure probability for UPFs.

R[r]= (1−pr)
[
1−∏
∀u∈Ku[r]

[
1−(1− pu)

]]
(6.10)

In our experiments, pr = 10−6 and pu = 10−3 were arbitrarily chosen (thus ensuring over

99.999% reliability). Moreover, to avoid exceeding a 0.5 ms end-to-end delay (required for 1 ms

delay demand satisfaction)[7], a processing time of 0.3 ms was assumed for the co-located UPFs

and application servers and 0.2 ms total delay between access nodes and UPFs was defined. For

low-demand service the delay requirement was extended to 1 ms.

Three main scenarios, characterized in Table 6.6, were analyzed to place the UPFs. For

each scenario all ENs and PoPs were revisited to optimally place the UPFs, although the latter

were only considered whenever the existing ENs could not satisfy the service requirements.

The proposed solutions -i.e., OUP_M1, OUP_M0, NOUP_M1 and NOUP_M05-, were evaluated

considering both mobility and no-mobility requirements and compared regarding four metrics6:

number of UPFs, execution time, UPF utilization and, UPF relocations.

The number of UPFs for every scenario and service category is depicted in Figures 6.13

and 6.14. The proposed placement method performed significantly close to the exact model for all

mobility requirements. Overall, the same number of main and backup UPFs were placed for both

low and high-demand services, regardless of the capacity variation and the service area type.

5Optimal and Non-Optimal placement, where M0: no mobility requirements and M1: mobility requirements are
present, please refer to [126].

6The exact models were implemented using Pyomo and Gurobi as solver, with zero optimality gap.
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Figure 6.13: Number of UPFs vs. capacity for high-demand services.
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Figure 6.14: Number of UPFs vs. capacity for low-demand services.

Some variation was obtained only in rural areas (where the number of main UPFs was always

higher than the amount of backup UPFs due to existing isolated nodes [126]) for high-demand

services, although a maximum of 1 extra UPF was required.

Throughout the above results, a clear trend can be observed: a rise in the UPF capacities and

the opposite effect regarding the number of UPFs deployed. Such positive outcome is significantly

higher for those services with relaxed latency demands, in any case showcasing the effectiveness

of the proposed placement mechanisms.

Table 6.7 showcases our results regarding the analysis of the execution times for the proposed

solutions. When compared to OUP, NOUP significantly reduces the processing times. By reaching

a runtime reduction of over 80% and 30% (for urban and rural areas, respectively), our heuristic

is able to outperform OUP, forcing the latter to be discarded for online placement purposes. What

is more, NOUP showed a considerably lower computation time variation, ranging from 0.08

seconds to a maximum of 0.56 seconds. In comparison, OUP was quite sparse, ranging from 0.32

seconds to even 30058 seconds. Finally, it can be noticed that the computing times are mainly not

significantly affected by the introduction of mobility requirements for the case of the non-optimal
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Table 6.7: Execution Time.

Scenario Model Execution Time (s)
Cu for Group 1 Cu for Group 2

1.0 1.5 2.0 2.5 1.5 2.0 2.5

City_1 OUP_M0 3.41 0.37 0.43 0.45 1.11 1.18 0.47
OUP_M1 10,428 8352 537 2378 244 190 121
NOUP_M0 0.11 0.11 0.11 0.12 0.17 0.17 0.10
NOUP_M1 0.16 0.14 0.15 0.13 0.21 0.16 0.13

City_2 OUP_M0 3.16 0.43 0.45 0.38 0.56 0.52 0.48
OUP_M1 36,065 17192 4757 5.73 1420 176 30,058
NOUP_M0 0.10 0.12 0.14 0.08 0.17 0.11 0.09
NOUP_M1 0.12 0.14 0.14 0.14 0.16 0.14 0.12

Rural OUP_M0 0.61 0.59 0.52 0.57 0.58 0.51 0.32
OUP_M1 13.30 13.15 13.04 13.13 20,440 182,811 526
NOUP_M0 0.37 0.36 0.33 0.29 0.33 0.25 0.09
NOUP_M1 0.40 0.29 0.33 0.31 0.56 0.43 0.18

placement methods, although the optimal models were heavily impacted as expected (i.e., due to

the model complexity).

As mentioned before, a detailed analysis of the results regarding the remaining two metrics

analyzed -i.e., UPF utilization and relocations- can be consulted in [126].

6.3 Conclusion

This chapter presented two case studies as a final evaluation of the ENPP solution methods

proposed in the previous chapters of this thesis.

In Section 6.1 a lightweight, platform-independent and high-performance DDoS detection

architecture for IoT ecosystems was proposed, based on the BPFabric programmable data plane.

This case study showed how DDoS detection in IoT can benefit from upstream executed mecha-

nisms. The use of BPFabric and eBPF-based detection proved to effectively minimize the overall

network overhead and provide early detection capabilities. The results obtained showed that

the proposed solution introduced a bandwidth reduction of less than 1% and reduced several

times the detection delay when compared to other methods. Moreover, the overall accuracy of our

strategy was at least 5% higher than the other evaluated mechanisms.

The case study of Section 6.2.2.1 provided a framework to optimize the UPFs placement

based on a previous optimal EC network site selection. The developed placement solutions
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were thoroughly evaluated, with the EN placement method outperforming by over 20% in cost

savings, mainly due to its adaptability to the problem and its better exploration of the solution

space. These expense savings, enhanced the UPF placement by reducing their deployment costs

and improving QoS, since the UPF candidate locations (i.e., ENs) were optimally determined

according to users’ traffic demands. Regarding the UPF placement itself, the devised solutions

minimized not only the running time and computing resources required to solve the problem and

the UPF deployment costs (measured in terms of the number of UPFs) but also the operational

costs related to UPF relocations. Concretely, up to 55% and 70% in reductions were achieved for

the UPF relocation rate of high and low-demand services respectively.
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FINAL REMARKS

Placing service infrastructure at the network edge has become a key enabler for 5G use cases

requiring millisecond latency, highly reliable and flexible infrastructure and secure distributed

service platforms at the users’ vicinity. Although some CDN providers have been leveraging edge

infrastructure for years (e.g., AWS CloudFront service), their edge locations can be considered

as remote sites for the ultra-dense scenarios and ultra-high latency needs envisioned in future

5G networks. Cost-effective scalability is another key advantage of EC over the traditional

remote datacenter model. Since expanding the capacities of dedicated datacenters is quite an

expensive endeavor, computing/storage/networking resources bundled into devices with smaller

footprints that can be placed at the network edge allow companies to leverage these ENs to

expand their business reach and capabilities avoiding critical up-front construction costs and

cyclic maintenance expenses.

In spite of the benefits, deploying and managing a 5G-EC ecosystem is extremely challenging

and involves critical tradeoffs regarding CAPEX, OPEX, QoS, QoE and directly depends on the

placement of the underlying physical infrastructure. This thesis focused on solving the above

mentioned issues by providing a practical tool to optimize the placement of ENs for heavily

constrained 5G use cases ensuring cost minimization and service requirement satisfaction. To

this aim, both theoretical and practical (i.e., simulated) work were carried out in a bottom-up
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approach, seeking to iteratively model and solve the EN placement problem, increasing the

complexity and scope of the formulation and solution throughout the research process.

The core contributions of the solution proposed in this work to address the identified research

questions are threefold: 1) a rigorous definition of the ENPP in a wide variety of scenarios lever-

aging a proposed set of parameters tailored to a 5G-EC ecosystem under ultra-dense networking

conditions, 2) a novel heuristic based on SA to deal with the complexity of the ENPP variants (i.e.,

NP-hard for both problem types: network-agnostic and network-aware) and, 3) a framework called

EdgeON implementing a set of algorithms and placement strategies offering an easy-to-use

extensible platform to solve the ENPP. The next section briefly examines how these contributions

answer the proposed research goals for this thesis and the key results obtained.

7.1 Research Contributions

The need for an adequate set of parameters to consider when solving the ENPP for 5G use cases

is a key issue targeted in this thesis. For instance, most papers found during our literature

review lacked a detailed analysis of the network delays involved in the placement of service

infrastructure at the network edge for upcoming 5G networks (e.g., for a Cloud RAN (C-RAN)

architecture). Chapter 3 presented a tailored set of optimization parameters in order to accurately

evaluate any EN potential site aiming at reducing the overall deployment and even operational

costs of the EC network. A key benefit of our set of parameter definition is its flexibility to be

adapted to several ENPP core problem type (e.g., coveraqe, Weber), thus avoiding the rigidness of

other proposals found in current literature.

Based on the findings in Chapter 3, Chapter 4 presented two solution approaches for the

network-agnostic ENPP building the foundations for a real-life problem formulation and solution.

The proposed approaches targeted the limited formulation scopes of the placement problem

models found in the revisited literature, avoiding unrealistic assumptions, simplistic problem

definitions and rigid solution algorithms. The first solution presented targeted a coverage-based

ENPP formulation where the EN capacities were assumed to be divided in three sizes (i.e.,

small, mid and large-sized nodes) to emulate a latency-constrained scenario where predefined
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bundled resources (i.e., computing, storage and networking) packaged as an EN were to be

used to satisfy user demands. A key finding in this proposal was to abstract the EN placement

from the underlying user distribution, mobility characteristics, through the construct of TGs

referred to the existing traffic aggregation points. In the subsequent formulation of the problem a

thorough evaluation of the costs involved in the deployment of an EN was developed, alongside

the analysis of the reliability requirements of the TGs and a segregated schema to model the

latency restrictions, seeking to answer the needs of 5G delay-sensitive and location-aware use

cases.

Chapter 5 dove deeper into the ENPP complexities by formulating a real-life network-aware

problem variant. Within this chapter, the framework proposed in Chapter 4 was significantly

extended and re-architected to thoroughly assess each EN location in a self-aware manner,

where the placement of each EN directly depended on the EN sites already selected to serve the

underlying TGs. The problem definition and solution described in Chapter 5 ensures a flexible

solution scheme based on a fully extensible framework, avoids rigid initial assumptions such as

knowing the number of servers to be deployed in advance and, presents a novel network-aware

platform to reduce the overall costs of deploying and operating an EC network, considering both

technical and non-technical requirements.

Finally, Chapter 6 leveraged the findings presented in prior chapters of this thesis and

presented two core case studies where the optimized placed infrastructure (i.e., the ENs) was

used to deploy edge-based services. Namely, a novel DDoS detection solution was described, to be

placed at the attacker’s vicinity and using eBPF as packet processing engine in order to achieve

high-performance and platform independence. In addition, a solution based on EdgeON aiming

at jointly optimizing the placement of both ENs and UPFs was showcased. With these case studies,

the benefits of placing service infrastructure at the network edge following our optimization

strategy were assessed. Moreover, due to the cost savings derived from a cost-effective EC network

these analyses can be used as foundations for new service and infrastructure business models.

125



CHAPTER 7. FINAL REMARKS

7.2 Future Work

In spite of the promising results obtained in this thesis, there are some open research ques-

tions that encourage further research and development tasks. These open questions may be

summarized in four categories:

• Non-discrete locations set analysis

• Placement execution mode

• EC architecture model

• Framework functionality

Non-discrete locations set analysis

To deal with the NP-hard nature of the edge server placement problem, the revisited literature

and this thesis both start by assuming that a list of potential EN sites is known beforehand.

Therefore, a discrete analysis is performed aiming at selecting the near-optimal locations among

the potential sites set.

However, in upcoming 5G scenarios such approach may lead to inaccurate near-optimal

results. There are several reasons this situation may occur: 1) there may be suitable sites -i.e.,

with in-place IT or even IP infrastructure- that may not be operating as TG and thus end up being

overlooked and, 2) non-suitable locations -i.e., no in-place IT or IP infrastructure- may result in

lower overall expenses if considered, depending on the problem model and the location-dependent

costs.

Therefore, a remaining open research question is to design a non-discrete approach to avoid

overlooking IT-capable unforeseen location and other feasible sites (i.e., physically suitable non-

IT-capable locations such as businesses, buildings, street cabinets). A suggestion to solve this

challenge is to extend the Input Processing or Pre-Optimization phases of EdgeON to include

the analysis of both fixed and mobile network traffic models in order to find non-TG feasible

sites that may reduce the overall expenses, according to certain parameters and a pre-defined

probability.
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7.2. FUTURE WORK

Placement execution mode

The ENPP considered in this research is modeled to be solved offline, i.e., EdgeON is to be

executed during the planning phase for the EC network deployment. However, considering that

mobile base stations (e.g., drone-based base stations) are already being used for emergency

situations, an online placement solution -i.e., continuously running to dynamically select the

optimal locations- would allow a mobile EN optimized placement. Additionally, such strategy

should aim at merging current VNF placement research and edge server placement methods into

a joint optimization solution, thus leading to an end-to-end deployment/operation optimization

scheme.

EC architecture model

There is still room for improvement regarding the problem modeling. The ENPP modeled in

this thesis assumed a flat EC architecture with a unique layer of ENs deployed in between the

traffic aggregation points and the remote cloud datacenter. Nevertheless, upcoming ultra-dense

networking scenarios may result in extreme networking and processing demands requiring a

multi-layered hierarchical EC architecture to avoid performance degradation and ensure top-

level QoS and QoE. Taking this into consideration, further work could be made to improve the

problem modeling and placement strategies used by EdgeON in order to adapt the framework to

a hierarchical ecosystem with multi-level task offloading demands.

Framework functionality

Regarding the functionalities provided by EdgeON, developing a fully functional web/desktop

application is a first step towards improving the framework’s applicability. Namely, a web/desktop

application will definitely set up a turning point in the decision making process based on the

framework’s output, by enhancing output visualization, portability and the overall business

impact of the optimized results. Moreover, adding new features such as the processing of lay-

ered maps, including network topology information, could lead to a more accurate and flexible

placement outcome.
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