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Abstract

In supervised symbolic learning, examples are related to signs through strict associations. These
associations, given by a third party, are considered as fixed by intelligent systems that received
them. Agent systems with learning capabilities inherit this strict assumption on their example-sign
associations. This thesis presents a different approach to example-sign associations for multiagent
learning systems, where the example-sign associations are instead fluid and adaptive, being able
to evolve during communication between two agents. We believe, in fact, that having strong
assumptions about the signs associated with examples prevents agents to effectively communicate
in situations of semantic heterogeneity. Our approach models elements from the fields of semiotics
and anthropology in order to allow the agents of a multiagent system to dynamically change their
example-sign associations, and therefore, when they observe disagreements in situations of semantic
heterogeneity be able to resolve them and reach mutual intelligibility.

This research work is presented into five stages. First, we introduce the problem of reaching mutual
intelligibility in scenarios where disagreements are observed. The second stage is introducing a
semiotic viewpoint that characterizes our approach and allows agents to communicate on their
example-sign associations. The third stage is the presentation of an argumentation model that
assumes error-free concept learning. The fourth stage is extending this model to an error-tolerant
argumentation model, which can reach mutual intelligibility while assuming a certain degree of error
in concept learning. The fifth stage is the presentation of two strategies adopting our approach
and our argumentation model: the systematic and the lazy strategy. The systematic strategy
is one where agents, upon meeting, start arguing about their concepts, in order to resolve their
disagreements all at once. The lazy strategy considers two agents resolving disagreements one
by one, as they arise in their interaction. We experimentally evaluate the performances of our
error-tolerant argumentation model, using both argumentation strategies, and show that agents
using our approach can resolve any disagreement, or combinations of them, while increasing their
mutual intelligibility. Moreover, we show that the agents are able to resolve their disagreements
and improve their mutual intelligibility in several application domains. Finally, we show that our
argumentation model does not require extensive amount of information exchange between agents
to attain the state of mutual intelligibility.
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Chapter 1

Introduction

This thesis presents an argumentation model of argumentation that allows two agents to to reach
mutual intelligibility in situations of semantic heterogeneity. We have based our model on a semiotic
approach to meaning, where the agents can question the relation of particular symbols with both
their intensional definitions and their extensional definitions, in order infer relations between their
concepts which help them to create a new vocabulary that improves mutual intelligibility. This
approach differs in several interesting ways from the traditional approach of symbolic machine
learning, in which examples from classes and generalizations learned open these classes are given
a particular sign as a label that cannot be modified. Our argumentation model aims to take the
possibility of loose example-sign relations that can be changed in order to understand certain types
of disagreements during communications in multiagent systems. Moreover, our argumentation
model aims at creating a contextual meaning of concepts between two agents of a system, that
is able to reach the mutual intelligibility between both agents within the context of their current
domain of interaction. Indeed, we believe that in a large number of situation, requiring agents
to have a predefined consensual meaning on the whole system is too strong and sometimes not
achievable, while we claim that addressing contextual meaning, we can reach consensual or mutually
agreed meaning over the specific interactions that they have with a restricted set of interlocutors. Of
the general model drawn from this approach, we propose two different strategies of argumentation
to reach mutual intelligibility. The first strategy is a systematic strategy, in which the agents
perform an argumentation process over the meaning of all their contextually relevant concepts as
soon as they meet, in order to guarantee mutual intelligibility in future communications. The lazy
strategy is a second strategy that works on demand and is problem-centered: when a disagreement
arises between two agents the engage in an argumentation process until that disagreement is
resolved and (partial) mutual intelligibility is reached.

1.1 Motivation

In supervised symbolic learning, examples are tied to signs through a strict association that is
considered as given by an oracle and cannot be revised. In approaches combining multiagent
systems where agents have symbolic learning capabilities, the agents inherit the strict constraint
in the assumptions taken about the example-sign relation from the symbolic learning paradigm.
This thesis present a different approach to example-sign relations in learning multiagent systems,
where these relations are instead fluid, adaptive and evolving during the communication process
of two agents. We believe that having strong assumptions on the sign that should be given to an
example can, in certain scenario, prevent the agents to effectively communicate. Our approach
provides a model that allows the agents to modify their example-sign relations in order to reach
a state of disagreement-free communication, called mutual intelligibility, in scenarios where, with

1
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strict example sign relations, these problems could not solved by the agents themselves. Mutual
intelligibility can be regarded as agreement over the meaning of concepts. The definition of what
is “meaning” has been and continues to be debated in many fields, from philosophy of language,
to linguistics and natural language processing. We do not intend to give a resolution to these
debates, instead we will take a specific viewpoint on the notion of meaning and we will show how
it can be useful to the main goal of our work. In order to stay consistent with our scope to reach
mutual intelligibility through the modification of example-sign relations, we present the meaning of
a concept as the different solutions available to an agent in order to associate a particular example
with a particular sign in a manner that can be mutually consensual with another agent —within
the specific context that they share.

This approach is consistent with the work done in linguistics and language philosophy to understand
how disagreeing speakers of a same natural language often do not disagree on the content (examples
or generalizations of these examples), but on the words (signs) used to express that content. In
computer science, this phenomenon is often referred as semantic heterogeneity when two different
parties create data-sets for the same domain that have differences in meaning and interpretation of
data content. The privileged domain to study the relation between an sign and its meaning is the
field of semiotics. In semiotics, the relation between symbols and the objects they represent are
figured as a triangle, also known as the semiotic triangle, first proposed by by Odgen and Richard
in 1923 (Ogden and Richards, 1923). This triangle is represented in Figure 1.1 (left). The semiotic
triangle figures three elements; as we mentioned, the first two are a symbol and the object that this
symbol is referring to (called referent). The third element is the reference, which is the meaning
that a speaker associates a given object to a given symbol. These three elements are represented
as the three vertexes of the semiotic triangle.

The first step taken by our computational approach is to associate each of the three elements
from the semiotic triangle to a corresponding element of machine learning, in order to create a
computational semiotic model also represented as a triangle. First, our approach uses the term
sign instead of symbol, sign being a more generic term also used in semiotics. Then, our approach
does not have objects but examples. These examples are regrouped in extensional definitions, that
are the elements corresponding to the referent in our model. The extensional definition of a term
is commonly understood as a listing of every object represented by that term. In our approach,
the extensional definition of a triangle is the set of examples that are currently associated with the
sign of that triangle. Finally, our approach considers the reference as an intensional definition. An
intensional definition is a set of generalizations that can, with the use of a relation of subsumption,
determine whether or not an example should be part of a specific triangle. Together, the sign,
extensional and intensional definition form a computational model of semiotic triangle similar to
the model introduced by Manzano et al. (Manzano et al., 2012). An intuitive way to present
the sign, intensional and extensional definitions of a concept is to think about even numbers.
The whole concept of even numbers can be seen as the relation between its name (sign) even,
its intensional definition that could be formulated as: for all natural x in Z, x is even if x is a
multiple of two, and its extensional definition: the set of naturals . . . ,−2, 0, 2, 4, . . . that verify the
intensional definition.

An explanation to why speakers use different meanings has been given in anthropology by Frake
(Frake, 1962), that proposes the notion of contrast set to designate a set of concepts used by
a speaker in a particular context or task. Frake introduces the notion of contrast set with the
idea that meaning is deeply contextual. This echos the late position of Wittgenstein on meaning
(Wittgenstein, 2009), where meaning can only be understood in the context of a specific interaction.
Our model starts from this explanation to give concepts a meaning that does not only depend on
the elements of their associated triangles, but also from the relation that their semiotic triangle
has with the semiotic triangles —and therefore the meanings— of neighbouring concepts.

We see every day real word instances explaining the usefulness of contrast sets. For instance, a
buyer can enter an eatery and ask “What kind of sandwiches ya got besides hamburgers and hot
dogs?”, to which the seller responds “How about a ham ’n cheese sandwich?”. Here the collection
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Figure 1.1: Original semiotic triangle from the work of Odgen and Richards (Ogden and Richards,
1923) (left) compared to our model of concepts represented as a triangle (right).

of words describing the different kinds of products one can eat are the contrasts set: hamburgers,
hot dog, ham ’n cheese sandwich, etc. However, the way one person segregates and the word or
sign used to reference them is contextual, which can lead to misunderstandings that will require,
to be resolved, some adaptation of the intended meaning. An example of misunderstanding from
(Frake, 1962) is the client complaining with a sentence like this: “Hey, that’s no hamburger; that’s
a cheeseburger!”. The origin of the misunderstanding is that the client, with his own customer
experience in other eateries, is considering hamburger and cheeseburger as two different segments
in the contrast set he is using to conceptualize the eating options, while the seller uses common
culinary meanings where the extensional definition of “cheeseburger” is a subset the extensional
definition of “hamburger”.

As a running example of context-dependent meaning we will use the common sense domain of
Furniture Shopping. Let’s assume they have some default meaning of some concepts (often called
Ontologies in Artificial Intelligence), for instance about furniture. If we ask the agents before they
interact if an armchair is a chair they would probably answer affirmatively. For our purposes, we
can set that armchair is a sub-concept of the chair concept. Now, imagine the buyer enters the shop
and tells the seller this: “I wan to buy one armchair and four chairs”. If the seller understands the
meaning intended by the buyer no misunderstanding arises, and the will keep talking about “chairs”
and referring to particular objects in the shop that are “chairs” without any disagreement on any
specific object. And, nevertheless, they are not using “chair” as the same concept as before: now
the concept chair in fact means “chairs without arms”. This so because the buyer has created the
contrast set {armchair, chair}, and by doing so he has (implicitly) decided to use the word “chair”
with a new intended meaning. If the two agents consistently use the term “chair” to refer only to
objects in the shop that are chairs and are not armchairs, we say they have achieved an agreement
on meaning. This “shift” in the meaning of a term or word is so pervasive that we humans are
hardly aware of it, but we would consider very wrong if the seller tried to sell three armchairs
and two chairs without arms (which is consistent with the default meaning of chair and armchair).
Our goal is to develop an argumentation model that allows this sort of fluid and evolving naming
of concepts and objects (or situations) in agent-based systems, and that the agents by themselves
would be capable of recognizing and resolving the disagreements on meaning that may arise.

Now, the issue we need to address is how to represent concept meaning in a way that allows us
to have an argumentation model in which this “shift” in the meaning by creating contrast sets.
The approach is semiotic, in which a concept is represented by a semiotic triangle 〈S, I, E〉 with
three components: a sign S, a meaning (or intensional definition), and an object or reference
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Figure 1.2: Creation of a new contrast set from two contrast sets causing disagreements.

(or extensional definition). In this view, a sign like “chair” can have two different meanings in
the Furniture shopping scenario by being in two different semantic triangles. What we called the
default meaning is that often found in dictionaries and ontologies, that specifies the typical or more
frequent sense of a sign like “chair”, and could be expressed in a semiotic triangle 〈“chair”, I, E〉
where I is the default meaning of chairs (including armchairs and other sorts of chairs), and E
is the objects that can be referred to by that sign. However, after the buyer introduces the new
contrast set {armchair,chair}, the meaning of the sign “chair” needs to change. In the Furniture
Shopping scenario, the agreed meaning of that sign can be expressed in a new semiotic triangle
〈“chair”, I ′, E′〉, where now the agreed meaning I ′ is that of chairs without arms (because when
referring to those the agents would use the “armchair” sign); moreover, the set of objects that are
reference of the sign is also changed, since E′ is about objects that are chairs but not armchairs.

Our approach generalizes these real word instances of interactions as naming games. Naming
games are conceptual tools of language philosophy, introduced by Wittgenstein (Wittgenstein,
2009), to illustrate how meanings can emerge from the interactions of speakers. More specifically,
we will present an model of two agents playing a naming game and resolving any disagreements
that would occur during that game by arguing with each other and changing their example-sign
relations. Specifically, our argumentation model will assume two agents with possibly different
contrast sets, and we assume that each segment in a contrast set corresponds to a concept, with
a semiotic triangle incorporating a sign S1, and with the objects in a segregate corresponding
to the extensional definition E1 of that concept. Moreover, disagreements and negotiation of an
agreement over meaning will be performed by an argumentation-based communication between
two agents, explained in Chapter 4.

This model allows two agents in a situation of semantic heterogeneity to reach a contextual mutual
intelligibility by exchanging information about their concepts in their contrast sets (and therefore
their example-sign associations) in an iterative fashion that gradually increases the mutual agree-
ment on meanings of the agents, until another contrast set that satisfies both agents is found.
This process is illustrated in Figure 1.2, where two agents with concepts represented as colored
triangles have initially their contrast sets K1 and K2 segregating different colors. The agents reach
mutual intelligibility by creating a new concept in their contrast sets; adding this new concept their
contrast sets become K ′1 and K ′2, that now segregates the objects according to their colors in a
mutually agreed way. The agents, by creating a new concept and therefore changing example-sign
associations, have reached mutual intelligibility through the reorganization of these associations.
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1.2 Argumentation Model

This section presents the main aspects of the argumentation model that we developed in our thesis,
and the approach to mutual intelligibility that this argumentation model makes of semiotics in the
context of semantic heterogeneity.

Multiagent System First of all, our model is a model for multiagent systems with two agents.
Agents are working by pair in order to reach a mutual intelligibility. The agents can interact with
the part of their overall context that they have access to and exchange different types of messages
in order to reach mutual intelligibility. Moreover, the agents can identify situations where mutual
intelligibility seems to be compromised and share the information with each other. The multiagent
system communication protocol is turn based, with every action of an agent being completed during
a turn, and the other agent having the next turn. Only one agent can act at a given time. The
actions taken by an agent during its turn depend on the messages that this agent has received,
and its internal state.

Contextual Meaning In our model, the meaning is contextual. This means that our agents
do not try to create concepts with a general meaning that can apply to every situation or to
the classification of every possible example. Instead, the agents use their meaning to classify the
examples from a particular part of their overall context that they have access to, called their
context. When the agents start interacting, they are interested in extending the set of examples
that they can satisfyingly classify to the context of the other agents, in order to reach mutual
intelligibility. This means that rather than having an objective notion of truthfulness in their
evaluation of concepts, the agents have an agreement based approach. A given concept C is
satisfactory if both agents agree that C gives an individual accurate classification.

Argumentation Model We just stated that a concept is satisfactory to an agent according to
individual consideration, and that the agents needed to have a mutual agreement that a concept
is satisfactory. Since this satisfaction is subjective, and since an agent does not have access to the
information that can allow it to represent the subjectivity of the other agent, the agents will have
an argumentation in order to decide which part of a concept can be agreed on by both agents and
which part needs modifications in order to reach mutual intelligibility. This expression of mutual
intelligibility in terms of agreement allows to express the absence of mutual intelligibility in terms
of disagreement. The disagreements are the elements that prevent at least one agent to give its
agreement on a concept. The interesting thing about disagreements is that they can be listed and
individually addressed to be resolved. Once all the disagreements of the two agents have been
resolved, the agents will have reached mutual intelligibility.

Contrast Sets Mapping Disagreements are expressed as the result of a particular relation
between two concepts. In order to characterize these disagreements, we introduce a typology of
relations between pairs of concepts, called pairing relations (e.g. two concepts can be overlapping,
or one can be a sub-concept of another). In order to identify the disagreements, we will use
the pairing relations between the concepts of both contrast sets. A set of these pairing relations
constitutes a mapping between the two contrast sets. Since the disagreements depend on the
subjective knowledge of an agent, the pairing relations also depends on it. Therefore, each agent
has an individual contrast set mapping. Since we have different pairing relations between the
agents, their disagreements are characterized individually. We will present a protocol to infer
overall pairing relations from the individual pairing relations.
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1.3 Goals and Contributions

1.3.1 Goals of our Approach

Our aim is to provide an approach that can effectively represent new strategies for learning agents
to associate their examples with their signs, allowing these agents to dynamically change their
meanings when they identify disagreements in their communication. Moreover, our approach aims
to provide strategies for the agents to understand which changes should be made locally, with
minimal knowledge over each other’s associations. Our approach is explained in several chapters,
from Chapter 3 to Chapter 6.

1.3.2 Goals of our Model

The goals of our argumentation model are centered around reaching mutual intelligibility within
between two agents. The goals can be listed in six main propositions. The experimental evaluation
of each proposition phrased as a hypothesis is presented in Chapter 10, while an exemplification
of our model (that illustrates in detail how our model manages to satisfy these hypotheses) is
presented in Chapter 9.

Generality There can be an huge number of scenarios in which two agents face semantic hetero-
geneity and do not have mutual intelligibility. Our first goal is to develop a notation that allows
to build a taxonomy over these scenarios, identifying which kinds of disagreements between the
agents may prevent mutual intelligibility. Then, we aim at developing an argumentation model
that can correctly address any arrangement or combination of disagreement and reach mutual in-
telligibility. Moreover, we aim at developing an argumentation model that refines concepts, that
is to say: for every pair of examples that were differentiated in the initial contrast sets (i.e. they
were in different concepts), at the end this pair of examples will not be conflated into one concept,
but will still be differentiated into different concepts.

Domain Independence The agents can interact within different domains. A domain repre-
sents a set of examples that the agents can classify, and from which the agents expect a similar
classification from other agents. Domains vary ontologically, and examples from different domains
can have very different properties. The domain affects the ease with which the agents can classify
it, as is well known from Machine Learning. In some domains, generalizations can be learned over
samples that correctly classify the entire data. In some other domains, generalizations learned over
some examples have difficulty in accurately classifying correctly some new unseen examples, and
some degree of error is unavoidable. Our second goal is to develop an argumentation model that
acknowledges the difficulties that machine learning will encounter over complex domains and will
still be able to allow agents interacting in these domains to reach mutual intelligibility.

Coverage Preservation Our model uses inductive learning to classify a domain. This means
that a set of generalization is found for each class of the domain, where each example of the class
has an is-a relation with one of the generalization of the corresponding set. This means that if our
learning is not perfectly accurate, some examples might be not related to any generalizations. These
examples become uncovered. Our third goal is to develop an argumentation model that does not
cause covered examples to become, after argumentation, no longer covered by some concept. When
an agent changes its classification by learning a new set of generalizations, the agents should make
sure that the new classifications cover at least the same examples than the previous one. Ideally,
the final classification of our agents, after mutual intelligibility is achieved, should encompass more
examples than the initial one.
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Efficiency The agents have access to different subsets of their overall context. While these two
subsets can overlap, it should not be taken for granted that our agents know anything about each
other’s context. We can we measure the ratio of the overlap between the two local contexts relative
to the overall context. Our fourth goal is to keep the information exchange low, even in the worst
cases where the overlap is low or zero.

Simplicity Our agents classify their domains in different concepts. Since disagreement on the
meaning of concepts can be interpreted as differences in the classification of a domain, reaching a
mutual intelligibility requires from our agents to change the classification of their domain. Since the
domain is classified into different domains, changing the classification of the domain is tantamount
to creating new concepts. Our goal is to allow the agents to change their classifications in order to
reach mutual intelligibility by creating new concepts but not creating unnecessary concepts. Our
fifth goal is to limit the number of concepts that are incorporated in the final classification of our
agents once mutual intelligibility has been reached.

Scalability Our sixth goal is to develop an argumentation model of argumentation where the
amount of information exchanged by the agents does not hugely increases with the size of their
domain. If the information exchanged by the agents would increase disproportionately with the size
of the domain, there would be a theoretical size of domain for which the agents would exchange as
much information as there actually is in the domain. Since our fourth goal is to limit the exchange
of information between the agents, it is important to verify that this exchange stays limited even
when the amount of information not shared by the agents is significant.

1.3.3 Contributions

By developing an approach that combines symbolic concept learning and multiagent systems,
extended with a semiotic approach which allows example-sign revisions during communication,
our contribution is related to three main fields in artificial intelligence. Concerning the symbolic
concept learning, we contribute by removing the common assumption that examples have to be
definitively associated to the sign that labels them. Concerning agent-based argumentation, we
contribute by providing a model of argumentation for agents that can handle semantic heterogeneity
and allows two agents to achieve mutual intelligibility. Concerning semantic alignment, we propose
both a model and an approach that do not need fixed meaning in order to allow mutual intelligibility
between the agents, and can address semantic heterogeneity problems in runtime. Therefore, this
reduces the need of a previous phase that tries to resolve all semantic heterogeneity problems before
the runtime of open multiagent systems.

By developing a model that can satisfy the hypotheses listed in the previous section, we contribute
to the field of multiagent systems with a model that is able to work on different situations of
semantic heterogeneity and performs well in effectively reaching mutual intelligibility, while having
a relatively low cost in terms of information exchanged within the system.

1.4 The Thesis

This monograph begins with a presentation of the related work in Chapter 2, starting with an
overview of the ESSENCE Network, in which this thesis was commenced and integrated. We
present the relation of our work in the field of machine learning symbolic learning, and give an
overview of the coordinated inductive learning, an approach to symbolic learning on which we draw
similarities with our thesis. The relevance of the ontology alignment field to the creation of our
map of relations between concepts is also presented, along with researches in ontology alignment
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that also consider a dynamic and interactive approach to concept mapping. Finally, we discuss the
field of computational semantics, another field in artificial intelligence that uses semiotic elements
to improve the knowledge representations of intelligent systems.

After the presentation of the related work, we give an in-depth description of the problematic issues
involved in reaching mutual intelligibility in situations of semantic heterogeneity in Chapter 3. We
address this problematic under the general angle of classification in multiagent systems, and give
elements of notation to define the goals of our model.

The presentation of our approach is in Chapter 4, where we explain how to dealing with a lack of
mutual intelligibility between two agents. Chapter 4 presents the general elements of our model.
This chapter uses a notation inspired by semiotics. The field of semiotics deals with the relation
of signs and their meaning, and the semiotic elements defined in Chapter 4 are useful during the
argumentation over concept meaning, as they allow the agents to make explicit the relationships
between their vocabulary and the partitions that they make of their contextual domain. Further-
more, Chapter formalizes the notion of pairing relation between concepts, allowing the expression
of mutual intelligibility as a specific state of pairing relations between the concepts of two contrast
sets. The formal definition of mutual intelligibility is followed by a formal definition of the notion of
disagreement. These definitions are expressed as a combination of pairing relations between pairs
of concepts and their signs. Moreover, we define a typology of these disagreements that facilitates
later the phases of agreement identification and agreement resolution, that are at the core of our
model. Chapter 4 introduces the notion of r-triplets, that contains the relevant information about
pairs of concepts to infer their pairing relations. We also present how, by exchanging r-triplets,
the agents can infer the pairing relation of their concepts in the overall context.

Our argumentation model is presented in Chapter 5. We start with the description of the different
capabilities that our agents can use to interact, and how these capabilities are used by the agents
to reach mutual intelligibility. We also explain how agents can create new concepts, when needed to
resolve complicated disagreements, using a specific argumentation model in order to reach mutual
intelligibility. This model, presented in assumes that the elements of symbolic learning used in our
model can learn concepts that classify with a perfect accuracy (we call this the error-free model).

Chapter 6 introduces the notion of degree of error, that reflects the possibility for symbolic learning
algorithms to classify with some error degree. We explain the impact of classification error in on
our approach, presented in Chapter 4, and in different parts of our model, presented in Chapter
5, that assume error-free learning. Chapter 6 then introduces the enhancements needed to obtain
an error-tolerant model, able to reach mutual intelligibility.

Chapter 7 and Chapter 8 detail the two different strategies of our argumentation model that our
agents can adopt. Chapter 7 details the systematic strategy, a strategy in which the agents,
immediately after meeting, engage in resolving their disagreements over the meaning of their
concepts. Chapter 8 details the lazy strategy, where the agents play a naming game and resolve
disagreements over the meaning on-demand, when a disagreement occurs during the the naming
game.

These two strategies are then exemplified in Section 9, in order to the details of the strategies
when applied to specific disagreements in a specific domain, and explaining the steps taken from
disagreement identification to resolution. The exemplification of these problems and their process
of resolution also clarifies how each of our two strategies workand also highlight the differences and
similarities between the two strategies.

Chapter 10 presents an experimental evaluation of both strategies. In this chapter, the six hypothe-
ses about our model presented in Section 1.3.2 are detailed and experimentally evaluated, both on
the systematic and lazy strategies. First and foremost, the experiments shows the efficacy of our
approach, in both strategies, since disagreements of all types (and their combinations thereof) are
resolved and mutual intelligibility is achieved.
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Moreover,the experiments prove that both strategies can allow agents to achieve mutual intelligi-
bility over in different of application domains. The results also show that the mutual intelligibility
is not reached at the cost of an extensive exchange of information between the agents. Chapter
10 also investigates how the lazy approach can be preferred to the systematic approach when the
agents have a large set of concepts but only use a few of them during their interactions. The
monograph is concluded with Chapter 11, that offers a discussion over the contributions of our
argumentation model and the empirical results achieved. The chapter closes with a discussion of
the future research work on semantic heterogeneity that can follow.

This monograph has two appendices. Appendix A offers a general presentation of the three parame-
ters of our model. These three parameters are used as independent variables in simple experiments,
in order to justify our choices of parameters in Chapter 10. Appendix B gives a list of all the types
of messages that can be used in our model along with their and the type of elements that they can
carry.





Chapter 2

Related Work

2.1 Introduction

This chapter describes the relation of our work with several fields of artificial intelligence: symbolic
concept learning, agent-based argumentation, ontology alignment and computational semiotics.
However, since the topic of this Ph.D was engendered inside an International Training Network
focused on the "Evolution of Shared Semantics in Computational Environments", we will start
by describing the ESSENCE Network and its relationship with the research presented in this
monograph.

2.2 The ESSENCE Network

ESSENCE was a European research training network that conducted world-leading research into
the evolution and negotiation of meaning among human and artificial agents. ESSENCE investi-
gated semantic technologies, language games, multiagent communication, ontology learning, and
human dialogue, which all contribute to a broader research vision of diversity-aware AI. This vision
emphasises creating next-generation AI technologies that can be used to bridge the gap between
heterogeneous agents by exploring how representation, reasoning, and interaction can be used to
allow diverse collectives of agents to share information and knowledge, coordinate their activities,
and combine their individual capabilities.

The work of ESSENCE was divided in four thematic areas, each addressing core research ques-
tions: Rational Action and Communication, Data and Communication, Human Communication
and Representation and Reasoning. This thesis is part of the work done by the group working
on Representation and Reasoning. The other member of this group was Paula Chocron, who re-
searched solutions to semantic heterogeneity for ontology alignment in the context of two agents
having similar concepts but no shared correspondences between their meanings, nor assumption
on a particular set of properties over the examples considered as shared knowledge (Chocron and
Schorlemmer, 2017). Instead, the agents use expectations from their interactions to align each
other’s concepts. A given example involves one person ordering a beer in a foreign country, and
obtaining two interrogative words as an answer. While this person does not speak the language to
which these words belong, this person can use its prior knowledge on ordering beers to understand
that these two words probably corresponds to the main colors for beers, blonde or dark. Continuing
the interaction, this person becomes more on more certain about the meaning of each word used
by the foreign barman.

11
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On the contrary, our approach focuses on agents that already share a common description language,
but struggle to identify which specific relations of their described examples with a dynamic set of
signs can reduce errors in communication. Our approaches does not assume prior knowledge over
a certain set of expectations that they should respect in their interactions other than the protocol
they use to argue over the meaning of their concepts.

2.3 Relation to Symbolic Concept Learning

The problem of symbolic concept learning, formalized as the creation of a generalization of a class
from a set of examples and given a classification of these examples divided in positive examples
(examples) and negative examples (counter-examples), has been expressed as a search problem
(Mitchell, 1982). Therefore, a multiagent system regrouping a large set of examples should be
able to have different agents searching different parts of the space of generalizations, starting from
the generalization of their own examples, and communicating to coordinate the learning process
while one agent can prevent another agent to search in sub-spaces that it has already explored
unsuccessfully.

Therefore, the idea to use multiagent learning has been extensively studied from different perspec-
tives (Stone and Veloso, 2000). The predominant approach in multiagent settings has been the
reinforcement machine learning (Littman, 1994). Our work, however, is more related to classi-
fication in MAS (Modi and Shen, 2001). Moreover, our approach is collaborative instead of an
adversarial (Stone and Veloso, 1998), and we focus on learning from explicit rather than implicit
communication (Aras et al., 2004). Research work in Case-Based Reasoning is also based on the
idea of agents being able to exchange cases – which we call examples – in order to retrieve helpful
cases from other agents in order to solve new solutions (Prasad et al., 1996). Our approach, how-
ever, is more similar to AMAIL (Ontañón and Plaza, 2015) in the sense that it does not only apply
to case retrieval. Moreover, the items corresponding to cases in our approach are examples and
the solutions are arbitrary symbols, which brings an additional difficulty to the argumentation.

Our approach is using symbolic inductive learning of concepts, which is a type of machine learning
that has already been used in multiagent learning. The MALE (Sian, 1991) and the DRL (Provost
and Hennessy, 1996) algorithms are both inductive-learning algorithms that rely on a multiagent
system to build a set of rules that applies to all their distributed knowledge. However, each of these
algorithms works as a single algorithm working on all data, parallelized among different agents.
Therefore, these algorithms assume that the different parts of the data-set distributed among the
agents are coherent, and semantic heterogeneity cannot addressed in these approaches.

2.4 Relation to Agent-based Argumentation

Argumentation has been presented as a promising approach to create generalizations on incon-
sistent knowledge, based on the construction and the comparison of arguments. Argumentation
on MAS is in fact a topic that has been broadly studied in terms of logics, protocols and lan-
guages that support argumentation, argument selection and argument interpretation (Rahwan
and Simari, 2009)(Gómez and Chesnevar, 2003). These arguments constrain the search among
possible hypotheses between agents, and can also direct the search towards hypotheses that are
more comprehensible in the light of expert’s background knowledge (Možina et al., 2007). For
instance, some approaches specific to case-base reasoning allow agents to gauge the strengths and
weaknesses of other agents, such that the agents retain only certain cases provided by other agents
that are able to improve their individual performance (Ontañón and Plaza, 2007a).

Advantages of argumentation-based approach includes, for the purpose of classification, identifying
the reasons that led to the classification, classifying examples even when the set of training examples
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is inconsistent, and considering more general preference relations between hypotheses while the
results obtained from centralized approach of symbolic can be retrieved (Amgoud and Serrurier,
2007).

Previous systems have used voting methods or theory refinement techniques to integrate "local
concepts", concepts that are only valid on a portion of the agents’ overall context. These techniques
carry the risk of bypassed parts of the hypothesis that are correct. Argumentation models always
have to be careful to not bypass those parts and propose specific strategies to overcome this issue
(Davies and Edwards, 1996).

The closest argumentation-based model to ours is AMAIL (Ontañón and Plaza, 2015), argumen-
tation approach for agents to argue about concepts learnt by induction. AMAIL proposes a model
of argumentation where multiple agents learn separately some concepts by inductive learning, over
N different sets of examples. Then, the agents propose an intensional definition for each concept,
and argue over each other’s intensional definitions, they exchange arguments to improve their
local and/or global accuracy until they have no more useful information to exchange: no more
g-arguments can be generated, because their classifications are very similar. In this approach, the
intensional definitions made by the agents start being different but gradually cover more and more
common examples, until the agents achieve a very similar classification. While this is not the
only approach that uses incremental changes to create equivalent but not equal concepts (Bourgne
et al., 2007, 2010), the model of AMAIL can use arguments that are not only examples or counter-
examples, but also generalizations over examples, which decreases the volume of information that
needs to be exchanged in order to share the knowledge of the agents. An arguments that uses
generalizations attacks another argument when the first is subsumed by the second but predicts a
different class. The attack success or failure depend on the relative support given by the number
of examples covered by those generalizations.

In order to generate such arguments and counter arguments, AMAIL uses the ABUI algorithm. The
ABUI algorithm is an inductive algorithm that, for a given set of positive and negative examples,
a set of accepted arguments and an argument to defeat, generates a counter-argument against the
argument to defeat.

Our approach differs with AMAIL on the assumption that example-signs associations are fixed
when received. This also defines the difference in domain of experiments between the two ap-
proaches. While AMAIL focuses on agents learning over different partition of a same context, the
agents of our approach do not necessarily work with local contexts from the agents that could be
regrouped without having two examples labelled differently. However, the ABUI algorithm is a cen-
tral element of a disagreement resolution strategy, namely the creation of new concepts through
argumentation and we will use it in our research for inductive generalization and for argument
generation.

Another component of the AMAIL platform that is used in our model is a similarity measure
based on anti-unification (Ontañón and Plaza, 2012). The anti-unification similarity measure,
used in refinement graphs and inductive learning, determines how close two generalizations or
examples are from each others by counting the steps necessary to reach their anti-unification in the
generalization space. In the context of our approach where signs and examples are not associated,
the anti-unification distance can be useful to classify an example that is not covered by any concept.

While the AMAIL approach is the closest from ours, two other approaches to argumentation-
based concept creation in MAS are the argumentation frameworks AMAL (Ontañón and Plaza,
2007b) and PADUA (Wardeh et al., 2009). While the AMAL framework also focuses on the
idea of learning from argumentation, the goal of AMAL is to argue on the classification of certain
examples and does not concern rules learned through inductive learning. The PADUA framework is
an argumentation that allows two agents to discuss association rules. This framework is interesting,
as it gives precedence to the association rules of the agents over the initial class of the examples.
In the terms used in this thesis, the left-path associations are also favored over the right-path
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associations. However, the agents of PADUA work with both strict and defeasible rules, while our
agents do not rely on strict rules at all. Another interesting framework is SMILE (Bourgne et al.,
2007, 2010), which is somewhat similar to AMAL but only allows the exchange of examples, and
not the exchange of rules.

2.5 Relation to Ontology Alignment

Mapping and refining concepts is also a domain of interest of Ontology Engineering. In partic-
ular, changing the underlying semantics of an ontology by allowing artificial intelligence systems
to manipulate their own internal representations automatically has been considered of a great
significance for artificial intelligence (Bundy and McNeill, 2006).

If we focus on the use of ontologies concerning agent systems, some research has been done in order
to repair ontology alignments that appear to be inaccurate by using contextual interactions between
agents (Chocron and Schorlemmer, 2017; Euzenat, 2017). These approaches focus on systems where
each agent has a different ontology that cannot be accessed by other agents. Correspondences are
then found by assuming alignment, testing the assumption with the classification of an example
by both agents, and revising the alignment according to the results of the classification. On the
contrary, our model assumes a certain degree of correspondence between the agents ontologies, in
particular on the matter of the concepts used in the description of examples. Moreover, concept
alignment is not an end in itself, but a step in the creation of a collection of concepts shared by the
agents (including the creation of new concepts). Trojahn & al. have extensively investigated the
utility of different variations of value-based argumentation frameworks (Isaac et al., 2008; Trojahn
et al., 2008a,b, 2012) in order to match ontologies. Their research focuses on how preferences over
values in different audiences give different acceptability degrees to arguments, and how this can
impact the outcome of argumentation. In our model, the agents do not take into account audiences
or values since their goal is to develop a shared semantic field between the two agents, even creating
new concepts when necessary to surmount specific disagreements.

Another recurrent problem addressed in formal ontologies is the fact that in the case of data created
by heterogeneous sources, those sources will use specific terminology over their own data, meaning
that data from one source will be incompatible with data from another source. Ontology therefore
shares the problem of extracting meaningful information from large data sets with coordinated
machine learning, adding an element of semantic heterogeneity. A solution to this problem is to
access dynamically the information (Halpin and McNeill, 2013), meeting here the idea of contex-
tual meaning. In the case of agents having two different ontologies, this translates into aligning
dynamically the concepts from their ontologies without requiring full access to the ontologies of
other agents and works entirely automatically and dynamically (McNeill and Bundy, 2007).

In this perspective, argumentation has also be seen as a solution to semantic heterogeneity with
agents using ontologies being able to change their choices of vocabulary used to represent concepts
through the creation or exchange of generated arguments, that support or reject possible corre-
spondences (Laera et al., 2007). In order to evaluate this support, measures of agreement and
disagreement based on the search of logical inconsistencies have been proposed (d’Aquin, 2009).
This measure of agreement and disagreement differs from our approach, where disagreements are
qualitative and therefore not measured but counted, with respect to some expected degree of error.

On a more general note, cognitive science is helpful to understand the duality of our approach
and the importance of machine learning and formal ontologies in the two resulting elements of our
approach. Goldstone et al. (Goldstone and Rogosky, 2002), for instance, differentiates between
“external grounding” theories of meaning (where concepts depends on their connections to the
external world), and “conceptual web” theories of meaning (where a concept’s meaning depends
on its relations to other concepts within the same system). While the fact that the former theory
relates more to machine learning and the latter to formal ontologies is far from being a universal
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truth, this differentiation illustrates how concepts modeled as semiotic triangles relates to an
external grounding approach more present in machine learning, and how grouping these concepts
in contrast sets and making them interdependent with pairing relations introduce notions usually
found in ontologies.

2.6 Relation to Computational Semiotics

Computational semiotics is a field that focus on describing how notions of semiotics, which is a field
of human sciences, interconnects with the study of intelligent systems. In particular, computational
semiotics aims to provide a set of methodologies that use concepts and terminology of semiotics
to design frameworks suitable for artificial agents (Gudwin and Gomide, 1997; Gudwin, 1999).
Computational semiotics, as our approach also does, focus on the necessary representations that
intelligent agents need in order to understand their own language, and propose specific approaches
to their modelling (Doeben-Henisch, 2009; Guerrero et al., 1999; Rieger, 1997). Semiotic linguistics,
however, generally put more emphasis on agents using natural languages (Rieger, 1997).

2.7 Conclusion

Our approach relates mainly to the intersection of three fields of artificial intelligence, namely
symbolic concept learning, agent-based argumentation and ontology engineering. More specifically,
the work in the field of cooperative learning agents is the more relevant to our thesis, as shown
in the reuse of some algorithms from AMAIL (Ontañón and Plaza, 2015) in our implementation.
Loosening the relation between signs and examples in our approach, however, places us in a really
different paradigm where initial example-sign relations cannot be accounted as a universal truth by
our agents in order to build and argue about their concepts. Relations between concepts therefore
become as relevant as the extensions of these same concepts in the modification and creation of
concepts, an element that is particularly present in the field of ontology alignment. The scope of our
approach meets the current necessity in ontology alignment to develop new models to dynamically
and contextually change concepts’ meanings. However, our main goal stays mainly focused on the
cooperative learning goal of creating new meanings through agent interactions. While our approach
focuses on the computational resolution of disagreements occurring during coordinated learning,
the semiotic dimension of our model that mirrors some aspects of human concept representations
also makes our work related to computational semiotics.





Chapter 3

Classification in Multi-Agent
Systems

3.1 Main Problem

The issue addressed in the present thesis is not argumentation on meaning per se, an argumentation
being always a mean to attain a goal. And in this thesis, the goal that needs to be reached —
through an argumentation — is the attainment of a contextual mutual intelligibility. A good
illustration of what a contextual mutual intelligibility means can be given through the example of
a naming game between two agents. If two agents receive a same set of examples, that we will call
their context U , we want those two agents to be able to agree, for each example e that belongs to
U , on a single sign s to name e. If these agents are able to perform this task, we say that they
have reach a contextual mutual intelligibility over the context U .

Therefore, the goal of our argumentation process is to provide two agents with the capability to
classify in a mutually consistent way a set of examples (that we call a context U), and by mutually
consistency we mean that both agents classify each example in U with a same label (that we will
call a sign). Since we said that these agents agree on a certain sign for each example, we also call
this situation of mutual intelligibility an overall agreement on the example-sign associations in the
context U . On the contrary, if the two agents associate a given example e with two different signs,
we say that the agents disagree on their example-sign associations. In this chapter, we will present
an approach for learning agents to play the naming game in general terms, before introducing the
more specific lexicon to our approach in Chapter 4. We are going to present the notion of mutual
intelligibility in terms of example signs associations, and define the space of experiments that our
argumentation model can tackle.

3.2 Notation

3.2.1 Sets of associations

In the naming game, the classifier agents are presented one example e at a time and each agent
associates this example e with a sign. If both agents have associated the example e with the same
sign, the agents have agreed on the sign of e and scored a success. Therefore, the basic action that
an agent should be able to do in order to play the naming game is to associate an example with a
sign.

17
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Definition 1 (Example-sign association). The association between an example e and a sign s by
an agent Ak is written eAk 7→s.

We can generalize the notion of association to not only one example, but an entire a set of examples
U , that we will call a context. An agent Ak associates signs from a lexicon (a set of signs) S to the
examples of the context U . This results in a set of example-sign associations.

Definition 2 (Set of associations). A set of associations between the examples of U = {e1, . . . , en}
and the signs of S = {s1, . . . , sm} is written as: U k 7→S = {e1 7→ si, . . . , en 7→ sj}.

Classes

Example-sign associations can be grouped in classes. Classes are sets of examples that are related
by their signs among a specific set of example-sign associations. Usually, classes group examples
that are associated with the same sign.

Definition 3 (Class). A class U( 7→ s) is a subset of examples from U such that U(7→ s) = {e ∈
U |e 7→ s}. A consequence of this is that the agents cannot associate zero or more than one sign(s)
to an example from U .

However, there are more complex situation where some examples are associated with multiple
signs. A set of examples that are associated with a unique set of signs can be grouped in what we
call a polylexematic class.

Definition 4 (Polylexematic class). A polylexematic class U( 7→ {s1, . . . , sn}) is a subset of exam-
ples from U such that U( 7→ s) = {e ∈ U |e 7→ s1 ∨ . . . ∨ e 7→ sn}.

In our presentation of mutual intelligibility, we explained that the agents should be able to associate
a same sign –singular– to a same example. Since the polylexematic classes are associating more than
one sign to an example, they cannot allow the agents to reach mutual intelligibility by our terms.
Since we presented the mutual intelligibility in term of agreements, we can relate polylexematic to
a factor of disagreements in our approach.

Properties of sets of associations

Before continuing with the presentation of our model, we present some useful properties of sets of
associations that will help us to define both the criteria that are required from learning agents in
order to consider that they have reached mutual intelligibility, and the space of the experiments
that our model can tackle.

Consistency An important notion linked to the sets of associations in the notion of consistency.
A set of associations U 7→ S is said to be consistent if it maps each example from U to exactly
one sign from S. In term of classes, it means that for any pair of classes U(7→ si) and U(7→ sj) in
U 7→ S we have U( 7→ si) ∩ U(7→ sj) = ∅ if and only if U 7→ S is consistent.

Property 1 (Consistency). A set of associations U 7→ S is consistent if and only if, for each
example e ∈ U , there is no pair of associations e 7→ s, e 7→ s′ in U 7→ S such that s 6= s′.

Property 2 (Classes in Consistent Association Sets). In a set of associations U 7→ S, each pair
of classes U( 7→ si), U(7→ sj) in U 7→ S verify that U(7→ si) ∩ U(7→ sj) = ∅ if and only if U 7→ S
is consistent.

Property 3 (Polylexematic Classes in Consistent Sets). If a set of associations U 7→ S is consistent
there are no polylexematic classes in U 7→ S.
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Figure 3.1: Representation of the notion of concepts in our model as a semiotic triangle.

3.2.2 Example-Sign Associations from Learning Agents

The central element of the naming game and by extension of mutual intelligibility are the example-
sign associations. While there are multiple ways to associate signs with examples, the agents from
this thesis are learning agents, able to learn concepts through supervised learning and to use these
concepts to classify examples. Our learning agents have two main strategies to make example-sign
associations, and we will now present the notation for these strategies in order to make explicit
which strategies the agents use, and which problem each strategy can pose to mutual intelligibility.

In supervised learning, an agent Ak receives a consistent set of example-sign associations U o 7→S
from the experimenter. These associations are memorized by Ak in a set of example-sign associa-
tions U k 7→S. For the moment, the examples U are the only examples the agent Ak has knowledge
of, and are called the local context of the agent. Comparably, the signs S that an agent has knowl-
edge over is the local lexicon of this agent. Prior to having any supervised learning, the agent can
already make example sign associations over the examples U by looking up its set of example-sign
associations U k 7→S which constitutes an index of received example-sign associations. However,
Ak cannot make example-sign associations for new examples.

The supervised learning we are interested in is symbolic concept learning using inductive techniques
that create generalization from the training examples. Supervised learning takes place by using
each example e from a class U( 7→ s) as an input and the sign s as an expected output. Once
the supervised learning is done, the agent should have learned a set of generalizations such that,
provided any example e and any generalization g, any agent could say if e can be associated to g.
Each of the generalizations that are learned are associated to the sign s. In this thesis, the agents
are inductive learners that use the feature-term formalism presented in Section 4.1.1 to represent
examples and generalizations. The association between an example e and a generalization g can
be tested through the relation of subsumption g v e. After the learning of a set of generalizations
I = g1, . . . , gn over a set of example signs E = U( 7→ s), the agents have learned a new concept
C. A concept regroup three elements: the sign s, the set of generalizations I, and the set of
examples E. The set of generalizations of C is called the intensional definition of C, while the set
of examples of E is called the extensional definition of the concept C. These three elements, called
the semiotic elements, will be defined more thoughtfully in Chapter 4. We can envision the three
semiotic elements of a concept in a semiotic triangle(Ogden and Richards, 1923) similar to Figure
3.1, that is a representation of a concept in our approach. For any giver concept C, we use the
following notation: s(C) is its sign, E(C) is its extensional definition, and I(C) is its intensional
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Figure 3.2: Paths of example-sign associations offered to the agents. The right path is considered
as the "objective truth" as it has been received by the experimenter, while the left path is an
inference made through learning that can be used in a more diverse set of scenarios to make new
associations.

definition.

After having learned a set of concepts C1, . . . , Cn learned through supervised learning, the agent
Ak can associate any example e with a sign s from the lexicon s(C1), . . . , s(Cn) by using the gen-
eralizations from I(C1), . . . , I(Cn). First, the agents looks at which generalization g ∈ ⋃ni=1 I(Ci)
subsumes the example e. Then, the agent looks at which concept C the generalization g is belonging
to, and associates e with s(C). Ak ends up with a new example-sign association e 7→ s(C). Multi-
ple generalizations can subsume a same example e, and these generalizations can be from different
concepts Ca, . . . , Cn. In that case, the agent creates n new associations e 7→ s(Ca), . . . , e 7→ s(Cn).

In this section, we described two strategies, for a learning agent Ak that has received a set of
associations U k 7→S, to associate an example e with a sign:

• looking into U k 7→S for an already existing example-sign association involving e.

• looking into Ak’s set of generalizations to find a generalization g that subsumes e, and use
the sign of g’s concept.

We call these two way of associating example with signs the left-path and the right-path associa-
tions, in reference to the path that they follow in our model of a concept represented as a semiotic
triangle. The two paths are shown in Figure 3.2. We incorporate this distinction in the notation
of example-sign association by adding the letter l or r for left path or right path the the usual
notation e k 7→s. If the example e is associated to the sign s through the left path by agent Ak,
we write e lk 7→s, while, if the example e is associated to the sign s through the right path by agent
Ak, we write e rk 7→s. The consistent set received for the learning phase of training by Ak is always
written U o 7→S. An accurate supervised learning from the agent Ak results in:

U l
k 7→S = U r

k 7→S = U o 7→S.
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3.2.3 Selecting Paths in Naming Games

The agents have two methods, expressed as left and right paths, to associate one example e to a
sign s in the naming game. We already mentioned that a perfectly accurate supervised learning
process would result in equivalent associations made by both paths. However, perfectly accurate
learning process is not always possible. In this situation, an agent Ak that is presented an example
e during the naming game, has to decide whether to use e rk 7→s or e lk 7→s′ if the signs s and s′ are
different.

The agents always use their left-path associations to play the naming game for a simple reason. An
example e that is presented to the agents in the naming game might not be in any of the examples
Uk that the agent Ak has received from the experimenter. In this case, the agent Ak cannot use
its right-path associations to name e. Since only one path should be chosen to name examples, the
left path is therefore privileged over the right path. This has a direct consequence on our model: if
the agents encounter disagreements during the naming game, it is their left-path associations that
should be changed in order to allow the agents to reach mutual intelligibility. While the agents
also change their right path associations, this is only to make the right path consistent with the
left path but this is not a necessary step in our model.

3.3 Disagreements in the Naming Game

There can be two factors that cause disagreements during a two learning agents naming game.
The first is the presence of differences between the set of example-sign associations received by the
agents. The second is the presence of errors during the agents’ learning of concepts. The objective
of our thesis is two explore a model that can achieve mutual intelligibility in scenarios that combine
both factors.

3.3.1 Differences in Received Sets of Associations

In a naming game involving two learning agents, an experimenter can give different sets of example-
signs associations to the agents. From now on, we will consider that the general case is indeed
an agent A1 receiving a set of associations U1 o 7→S1 and a second agent A2 receiving a set of
associations U2 o 7→S2 from the experimenter, such that:

U1 o 7→S1 6= U2 o 7→S2.

The first factor that can cause disagreements during the naming game is the inconsistency of
U1 o 7→S1∪U2 o 7→S2. In this case, the differences between U1 o 7→S1 and U2 o 7→S2 will be responsible
of disagreements during a naming game. Let e be an example that belongs to both U1 and U2,
but is associated to s in U1 o 7→S1 while it is associated to s′ in U2 o 7→S2. If the agents are using
their right path associations to name e, the agents A1 will use s to name e in the naming game
while the agent A2 will use s′. Moreover, we mentioned in the previous section that an accurate
supervised learning from the agents results in:

U l
1 7→S = U r

1 7→S and U l
2 7→S = U r

2 7→S.

Therefore, even if the agents use their left-path associations, they are expected to have a disagree-
ment over the example sign association of e.
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3.3.2 Differences in Learning

The agents can make different types of errors when they learn concepts. The two types of error
that we will now detail are different from the first and second type error often encountered in
classification. Let Ak be an agent that is tasked to learn a concept C which corresponds to a class
U(7→ s), from the set of associations U 7→ S. The first type of error that Ak can do, is to create C
as a classification of U(7→ s) with errors. In this case, generalizations of I(C) either subsume some
examples that are not in U( 7→ s) or do not subsume some examples that are in U(7→ s). This type
of error is common in supervised learning, but this is not the type of error we are interested in at
the moment (but we address it later in Chapter 6).

The second type of error that the agent Ak can make is to learn concepts are two specific. Let U ,
U1 and U2 be three contexts, s1 and s2 be two signs, and S be a lexicon such that S = {s1, s2}.
Let U 7→ S, U1 7→ S and U2 7→ S be three consistent sets of example-sign associations such that:

• U 7→ S = U1 7→ S ∪ U2 7→ S,

• U1 7→ S ∩ U2 7→ S = ∅.

The agent Ak is this time tasked to learn a concept C that generalizes the class U1(7→ s1), using
only the sets of associations U1( 7→ S) to learn C. This time, the agent Ak achieve a successful
learning in the context of U1 and can correctly classify all the examples from U1(7→ s1). In a
second time, Ak is tasked to use its concept C in the context U2 to classify the examples from
U2 7→ s1. The classification of U2 7→ s1 by C is unsuccessful, the concept C either generalizing
some examples from U2(7→ s2) or not generalizing some examples from U2(7→ s1). The agents
Ak has still successfully learn the classification that Ak was tasked with, but Ak cannot transfer
the knowledge that it learned with C to other contexts than U1. This type of error is called
overgeneralizing when C fails to generalise examples from U2(7→ s1), and undergeneralizing when
C generalises examples from U2(7→ s2). This type of error is also common in supervised learning.
Under/overgeneralizing is the type of error we are now interested in.

In Section 3.3.1, we saw that two agents could be sent different sets of associations to learn on, and
that this would result in disagreements during the naming game. The two sets off associations sent
in Section 3.3.1 had an union that was inconsistent, resulting in disagreements during the naming
game. In the present case, however, we can imagine two agents A1 and A2, A1 receiving a set of
associations U1 o 7→S and agent A2 receiving a set of associations U2 o 7→S from the experimenter,
such that U1 o 7→S ∪ U2 o 7→S is consistent. Let e and e′ be two examples such that:

• e 7→ s ∈ U1 o 7→S and e 7→ s ∈ U2 o 7→S, and

• e′ 7→ s ∈ U1 o 7→S and e′ 6∈ U2.

In this situation, if the agent A2 has learned overgeneralized concepts that still classify correctly
the classes of U2 o 7→S, then A2 will associate the example e with the same sign s as the agent A1

during the naming game. However, as the example e′ is not in U2, the agent A2 might associate e′
to a different sign than s during the naming game, or even no sign at all. The agent Ak, if it has
learned correctly to classify the classes of U1 o 7→S, will certainly associate e with s.

In supervised learning, whether or not an agent will under-generalize or overgeneralize its concepts
depends on the sets of associations used to learn those concepts with regard to the sets of associ-
ations used to evaluate the learning of those concepts. We can therefore see the proportion of two
agents learning concepts on a context Uk to be undergeneralizing or overgeneralizing in a more
general context UO partially as a property of Uk and UO, not only as a property of the agents.
We cannot measure how the degree of under/overgeneralizing of the concepts of two agents before
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knowing the context in which the naming game is taking place. We can consider that, by default,
the naming game takes place in an overall context U1 ∪U2 that encompasses the examples known
by at least one agent —i.e. the union of both sets of examples. In this situation, we can introduce
the notion of homogeneity to represent how well a context allows two agents to not undergeneralize
or overgeneralize their concepts.

Definition 5 (Homogeneity). Let A1 and A2 be two agents. A set of example-sign associations
U 7→ S is homogeneous if, for any pair of its subsets U1 7→ S and U2 7→ S such that (U1 7→
S) ∪ (U2 7→ S), we have Uk l

A1 7→S = Uk
l

A2 7→S.

As we mentioned, the inductive learning of a concept can be not perfectly accurate. This is why
we introduce the notion of a degree of homogeneity.

Definition 6 (Degree of homogeneity). Let A1 and A2 be two agents. The degree of homogeneity
dh of two sets of example-sign associations U1 7→ S and U2 7→ S is given by the formula:

dh =
1

2

2∑
k=1

|Uk l
A1 7→S ∩ Uk l

A2 7→S|
|Uk 7→ S|

3.4 Experimental Domain of our Model

We presented the notion of mutual intelligibility in terms of agreements in naming games, and we
described how two learning agents could play a naming game. We also presented how disagreements
can arise in naming games when two agents are learning their concepts. We will now define the
space of the experiments in which the agents will encounter disagreements during their naming
game, and for which our model will provide solutions to reach mutual intelligibility. In order to
do so, we will endorse the role of an experimenter that sets up these experiments, and present the
set of actions that we can take in order to create disagreements in the argumentation game. We
consider that, in order to set up an experiment, we always start with a associations U 7→ S that
is both consistent, and homogeneous. Notice that this describe the ML data-set from the Irvine
repository that we will be using in the experimental evaluation of our approach.

As experimenters, we will give a set of associations U1 o 7→S1 to an agent A1 and a set of associations
U2 o 7→S2 to an agent A2 such that:

• U ⊇ (U1 ∪ U2), and

• U1 o 7→S1 6= U2 o 7→S2.

Since the set of associations U 7→ S is both consistent and homogeneous, if U1 o 7→S1 and o 7→S2

were both subsets of U 7→ S, their union would also be consistent and homogeneous. This means
that any example from U1 or U2 would be associated to exactly one sign s by A1, and exactly
one sign s′ by A2. The homogeneity of the two sets implies that A1 and A2 will learn the same
classifications, therefore it also means that, under the condition that S1 = S2, the sign s and s′

used to name e are the same sign. Therefore, if U1 o 7→S1 and o 7→S2 were both subsets of U 7→ S,
the union of these two sets of associations would not (under the condition that S1 = S2) result in
any disagreement between the agents in a naming game that takes place over a subset of U1 ∪U2.
We call this setup the Homogeneity setup. We will now see how we can alter the Homogeneity
setup such that the two sets of associations U1 o 7→S1 and U2 o 7→ are transformed into two new sets
U1 o′

7→S′1 and U2 o′
7→S′2 that will be distributed to the agents and will cause disagreements during

the naming game over U1 ∪ U2.
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Figure 3.3: This figure illustrate how subsets of a same context can lead to different situations.
Each example is represented by its sign (s1 or s2), and can have two features (color and boldness).
In the overall set of associations, the blue examples are labeled s1 while the red examples are
labeled s2. Actions that affect the labels of the examples are represented by red arrows.

3.4.1 Experimental Setups Explored

We are now going to explore the different experimental setups for a naming game between the
agents A1 and A2. As an experimenter, we have the ability to alter all the aspects of the consistent
and homogeneous set of associations U o 7→S before distributing its examples and signs among the
agents, including:

• creating new signs,

• altering the homogeneity of subsets of U 7→ S, and even

• choosing which signs are associated to which examples.

Figure 3.3 represents the four different setups that our model is covering, and that are presented
in the rest of the section is this order: Homogeneity setup, Heterogeneity setup, Different signs
setup, and Different classifications setup. The first one, the Homogeneity setup, has already been
presented at the beginning of this Section. The three other setups are setups that will cause
disagreements during the naming game.

Homogeneity Setup The situation is homogeneous when we distribute the consistent set of
associations U o 7→S by giving to A1 and A2 different subsets of U o 7→S which share the same
lexicon. While it is hard to guarantee that a set is homogeneous, concrete implementations of
this setup can involve the two subsets receiving associations from each class of U o 7→S in similar
proportions, which helps to obtain a high degree of homogeneity. The generalizations that will be
learned over sets of examples of similar sizes are likely to be similar themselves, and we can expect
to have U l

A1 7→S ≈ U l
A2 7→S.
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Heterogeneity Setup The setup is heterogeneous when we distribute the set of associations
U o 7→S by giving to A1 and A2 different subsets of U o 7→S, while ensuring that the degree of
heterogeneity between the two sets increases. Concrete implementations of this setup would for
instance see the classes of U o 7→S being distributed in different proportions among the sets given
to the agents. In this setup, the generalizations are likely to be different from one agent to another,
even for a same class, due to the agents learning with some degree of error concerning the accuracy
of the concept descriptions and therefore likely to cause a situation where U l

A1 7→S 6= U l
A2 7→S

(some disagreements occur).

Different Signs Setup In the Different Signs setup, we do not alter the homogeneity of the sets
of associations received by the agents, but instead we alter their lexicon. We start by distributing
the associations of the consistent set of associations U o 7→S among two sets of associations, U1 o 7→S
and U2 o 7→S. However this time, before giving these sets of associations to the two agents directly
—as it was the case in the Homogeneity setup–, the experimenter will replace the lexicon S of these
sets by two new separate lexicons S1 and S2. In this situation, the classes are not modified: if the
sign s ∈ S has been replaced by the sign sk ∈ Sk, then the equality U(o 7→s) = U(o 7→sk) holds.
The fact that U1(o 7→s1) 6= U2(o 7→s2) is due to U1 6= U2, not to S1 6= S2. In this situation, the set
of all associations (U1 o 7→S1) ∪ (U2 o 7→S2) is not consistent, but each of its examples is associated
with exactly one pair of signs: one sign from S1 and one sign for S2. Moreover, if an example from
the set (U1 o 7→S1) ∪ (U2 o 7→S2) is associated with two signs si ∈ Sk and sj ∈ S−k, then there will
not be any another example e′ from the same set associated to a pair of signs si ∈ Sk and s′l ∈ S−k
such that sj 6= sl.

Different Classifications Setup In the situation of Different Classifications, we start again by
separating the set of associations U o 7→S in two different subsets U1 o 7→S1 and U2 o 7→S2 and then we
alter the associations each of these subsets individually. While this was also the case in the Different
Signs setup, this time the modification is done in such a way that there is no relation of equivalence
between the classes of U1 o 7→S1 and U2 o 7→S2. In this setup, the set (U1 o 7→S1)∪ (U2 o 7→S2) would
remain inconsistent for any modification of the lexicons S1 and S2. In concrete implementations
of this setup, a set of associations Q = Uk o 7→Sk from an agent Ak is chosen, and two sets of
associations Ua 7→ s and Ub 7→ s′ are selected from Q. From there, we group the examples from
Ua( 7→ s) and Ub(7→ s′) in one set of examples Uc = Ua(7→ s) ∪ Ub( 7→ s′). A sign s′′ ∈ {s, s′} is
selected, and used to create a new set of associations Uc 7→ s′′. Then, we replace the two sets of
associations Ua( 7→ s) and Ub(7→ s′) by the set of associations Uc 7→ s′′ in Q. This process creates
two polylexematic classes in the overall set of associations U1 o 7→S1 ∪ U2 o 7→S2, which will then
cause disagreements. This change implies the disappearance of either s or s′ from Sk, but the
lexicons S1 and S2 still remain fairly similar.

Then, the resulting sets of associations are given to the agents as U1 o 7→S1 and U2 o 7→S2. In this
setup, the fact that (U1 o 7→S1)∪(U2 o 7→S2) is inconsistent is enough to secure disagreements during
the naming game, even if the lexicons S1 and S2 are similar.

3.5 Reaching Mutual Intelligibility

We have now presented the different types of scenarios that our learning agents are expected to
encounter during our experiments. The details of our approach to reach mutual intelligibility in
scenarios where they encounter disagreements is addressed in Chapter 4, and a model that uses our
approach is proposed in Chapter 5. This model is later exemplified in Chapter 9 and experimentally
evaluated in Chapter 10. However, we can already discuss generalities of our approach on how
two agents can modify their concepts in order to reach mutual intelligibility. Our approach is
the following: when confronted to a setup where they find disagreements, the agents aim is to
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change this setup to reach a Homogeneity setup, where no disagreement arise. As mentioned
in introduction of this chapter, no disagreement means overall agreement in the naming game,
and overall agreement means mutual intelligibility. We mentioned in the Section on Homogeneity
Setups that it had to take steps toward creating a homogeneous set. In the rest of this chapter,
however, we will still consider that a perfect homogeneity can be attained for the purpose of our
explanations.

3.5.1 Reaching mutual intelligibility according to the situation

We will now address how the agents, with a limited set of actions at their disposal, can modify the
three problematic setups into a Homogeneity setup. Intuitively, the agents can do three kinds of
actions: create new signs, change which signs are associated to which examples in their individual
sets of associations only, and communicate with each other exchanging relevant information.

Heterogeneity

The heterogeneity setup is caused by a lack of homogeneity. The setup of heterogeneity induces
overlaps between the left-path associations of the two agents. Overlaps are another name for
sets of examples that are generalized by concepts with different signs. These overlaps are due
to undergeneralizing (with respect to the set of all examples) during learning using the individual
agents examples. In this setup, the agents could just exchange all of their example-sign associations
to recreate the original set of associations U o 7→S, which is the union of their two local sets. Since
U o 7→S is consistent, the agents could learn new concepts thatwould classify accurately since the
context U1 ∪ U2 is consistent and now shared by both agents. Indeed, here the set of associations
U1

l
1 7→S and U2

l
2 7→S would be both equal to U o 7→S, U1

l
1 7→S and U2

l
2 7→S.

Of course, transferring all the examples from one agent to another is costly in terms of information
(exchanging all examples). The agents have no control over the homogeneity degree of their sets of
associations other than by exchanging examples, and if they want to limit the number of examples
that they exchange they would need methods (such as AMAIL’s argument exchange) to summarize
the information of chosen subsets of their local sets of associations, expressed as arguments, and
exchange them —additionally to exchanging (a much lower quantity of) example-sign associations.

Different signs

The Different Signs Setup is radically different the Homogeneity and Heterogeneity setups. If
the agents were to exchange their example-signs associations in order to regroup their local sets of
associations, they would obtain a set of associations with polylexematic classes that cannot be used
for supervised learning. This time, the agents cannot simply use the AMAIL approach, since using
AMAIL as a substitute to example-sign associations transfer would convey the same conflicting
information between the agents as the example-sign associations transfer would.

A new approach is required. Thus, the agents can find which of their concepts are equivalent
while having different signs, and change these signs for a same new sign. Since the agents receive
different examples from the experimenter, the agents also have different classes, but they can still
find equivalences between them through simple communication, as we will see later in Chapter 5.
Communicating with each others, the agents can understand which concepts generalize the same
examples from the context U1∪U2, and group pairs of concepts (U1∪U2) l

A1si, (U1∪U2) l
A2sj that

are considered equivalent. We call this process a mapping of the classes of the two agents.

Once the concepts are mapped, the agents can change the signs of each pair of concepts so they
both generate the same left-path associations. Once this is done, the agents are finally using the
same lexicon. Upon aligning their right-path associations on their left-path associations, the union
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of the two agents’ sets of associations will become a consistent set, and the agents will be in a
Homogeneity setup and mutual intelligibility.

Different classifications

The Different Classifications setup is comparable to the Different Signs setup in the sense that the
union of the two local set of associations of the agents cannot make a consistent set of associations
in both setups. However, unlike the Different Signs setup, there is no possible one-to-one mapping
that can draw equivalences between concepts of the agents and no substitution of a lexicon to
another that can result in a Homogeneity setup.

According to Section 3.4, this situation is the result of a two-steps setup: first, the experimenter
distributes the associations of a consistent set of associations U o 7→S among two subsets U1 o 7→S
and U2 o 7→S, creating a Homogeneity setup. Then, the experimenter groups different classes in
each of these two sets in order to obtain two new sets U1 o′

7→S′1 and U2 o′
7→S2′ with different

classes. In Different Classifications setups, the agents reach homogeneity by doing the opposite as
the latter step of the setup. Instead of grouping sets of associations to create polylexematic classes,
they will separate the polylexematic classes of the sets of associations U1 o 7→S1 and U2 o 7→S2 and
achieve a Homogeneity setup. In order to separate the polylexematic classes of U1 o 7→S1 and
U2 o 7→S2, the agents will create the Cardinal product S1 × S2 of their lexicons. Then, the agents
can again communicate to determine, for each pair of signs s, s′ in S1 × S2, if the polylexematic
class (U1 ∪ U2)(7→ {s, s′}) is empty. Once the non-empty polylexematic classes are identified, the
agents are able to create a concept for each of them.

Next, the agents will split the classes of their sets of associations in order to reach a state of
homogeneity. Their new classes should now match the classes of the sets of associations U1 o 7→S1

and U2 o 7→S2. The agents can then learn new concepts for these split classes, but they will not
have yet achieved a Homogeneity setup: they still have different lexicons. However, the agents
have reached a situation of the type we called Different Signs setup. From then on, the agents can
achieve a homogeneous setup using the method described in Section 3.5.1. Once the agents have
returned to a Homogeneity setup, they can learn new concepts from their classes and reach mutual
intelligibility.

Setup Hybridisation

Of course, nothing limits the experimenter to the use of a pure type of setups. The setups can be
hybridised in order to create more complex scenarios for the agents to reach mutual intelligibility.
For instance, the experimenters can reduce the homogeneity of the agents’ sets of associations
before changing their lexicons, creating a hybrid scenario between a Different Sign setup and
a Heterogeneity setup. Different classifications and Different Signs setup cannot coexist —one
requires the existence of a one-to-one mapping between concepts while the other requires that
their are none—, and therefore hybrid setups can only involve a heterogeneity setup and either a
Different Classifications or a Different Signs setup. In order to present how the agents can resolve
hybrid setups, we are going to illustrate how the agents can deal with the most complex scenario,
which is the hybridisation of a heterogeneity setup with a Different Classifications setup. In this
situation, the agents will adopt a strategy that consists into reaching mutual intelligibility over
small parts of their overall context once at a time. They do so by moving a part of the hybrid
setup to a Different Classifications setup, where they can therefore reach a contextual agreement
by using the method described in Section 3.5.1.

First, the agents will realise the Cartesian product of their lexicons in order to identify the polylex-
ematic classes, which are overlaps, and determine which new concepts need to be created. We give
more details on this task in hybrid setups in Section 3.5.1. Next, since the agents cannot create
satisfying concepts in heterogeneous setups, the agents will isolate two concepts that are causing
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Figure 3.4: The strategy is moving from each situation to a simpler situation; the arrows name
the method used.

an overlap and exchange enough information for the set of examples generalized by either concepts
—we will call it U ′— to be regarded as a homogeneous context. In the context U ′, the agents are in
a different classification setup. The agents therefore create new concepts for each overlap (finding
generalization using inductive learning), as explained in Section 3.5.1, and reach a Different Signs
setup over U ′ before finally reaching a Homogeneous setup, again only in the context U ′. The
agents have now reached (partial) mutual intelligibility over U ′. This whole process is illustrated
in Figure 3.4. I need to change the figure by permuting some steps, it was badly explained before.

The Issue of Heterogeneity

In order to reach a Homogeneous setup, the agents need to know which strategy to use and therefore
to understand in which setup or hybridisation of setups they are. For the moment, let’s consider
that there are no hybrid setups. The agents can now easily spot the Different Signs setup. Indeed,
since each concept of an agent founds an equivalent concept in the other agent, the agents will
notice that there are as many polylexematic classes as there are concepts. Heterogeneous setups are
also easy to spot, as the agents will find polylexematic classes while using a same lexicon. Finally,
if the agents are in neither of these two situations and still find disagreements, they know that
they are in a Different Classification situation. Introducing the hybrid setups greatly complicates
the task of identifying which type of situation is the case, mostly because of heterogeneity setups.
Indeed, Different Classifications and Different Signs setup cannot coexist, therefore hybrid setups
always involve heterogeneity.
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Figure 3.5: Graphic representation of the differences between the heterogeneous situation and the
different classes situation. In each situation, two sets of right-path associations are resulting in two
incoherent sets of left-path associations.

To illustrate the complexity that two agents faces when they need to identify situations while
knowing that hybrid setups exist, let’s take two concepts C1 and C2, the former created by an
agent A1 and the latter created by an agent A2. While playing the naming game, the agents notice
that there is a set of examples U1, 2 that are associated to the sign s = s(C1) by A1 and to another
sign sa, a set of examples U1,2 that are associated to the sign s by A1 and to the sign s′ = s(C2)
by A2, and a third set of examples U 1,2 that are associated to the sign sa, and to another sign sb
by A1. The first thing that the agents can observe, is that they are not using the same lexicon.
Therefore, they are not in a pure Different Signs setup or in a pure Heterogeneity setup. They
might be, however, in a Different Classification setup. The sets U1, 2, U1,2 and U 1,2 are overlaps.
They may have been caused by either:

• an over-generalization of C1 and C2 to the sets of examples U1(o 7→s) and U2(o 7→s) in a
heterogeneous setup, that was then hybridised with a Different Signs setup by changing the
sign s for s′ in U2(o 7→s), or

• a different classification setup in which there were three sets of associations Ux( 7→ x), Uy(7→ y)
and Uz(7→ z) that have been regrouped; Ux( 7→ x) and Uy(7→ y) regrouped into U1(o 7→s), and
Uy( 7→ y) and Uz(7→ z) being regrouped into U2(o 7→s′).

In the former case, the agents should change the sign of one of the two concepts for the sign of
the other, and then exchange information about their contexts in order to be able to learn new
concepts to replace C1 and C2 once the agents are in a Homogeneity setup. In the latter case
however, the agents cannot reach a Homogeneity setup by exchanging information as they are in
a Different Classification setup. As shown in Figure 3.5, in order to identify a situation type, the
agents need to decide of an fixed threshold value for the sizes of U1, 2, U1,2 and U 1,2, in such a way
that above this value these three overlaps are not seen as the results of under-generalized concept
learning but as three separated concepts that should be individually created.
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3.6 Conclusion

The first requirement for an agent in our approach is to have a concept representation that makes
a clear distinction between the left and right path associations. In both cases, the generalizations
and examples should be represented separately from the signs they are associated with. Therefore,
our first step in the definition of our approach will be the presentation of a semiotic model of
concept representation, which is done in Section 4.2.1. The organization of these semiotic model of
concepts into collection of concepts that partition a context is the next logical step, that is detailed
in Section 4.2.2.

Once the concept collections of our agents has been established, arises the issue of finding a
mapping between the two partitions they induce in the two individual agents. Our method to link
two different concepts with each others is presented in Section 4.4.1. Mapping the relations between
concepts is however not enough to reach mutual intelligibility. The agents need a clear protocol that
specifies, for each type of mapping, in which situation the agents are. These situations are detailed
in Section 4.5. As we mentioned in the previous subsection, the two agents cannot differentiate a
situation of Heterogeneity from a situation of Different Classifications. For clarity’s sake, we will
first present a simplified model of argumentation that does not consider Heterogeneous situations,
in Chapter 5.

Taking into account the possibility of heterogeneous situations is the same as taking into account
a degree of type-one and type-two errors in the creation of the generalizations through inductive
learning. Acknowledging the existence of errors during the inductive learning in our model, and
how to address it, is explained in the Chapter 6. After that, the model will be ready for testing
and evaluation on all scenarios involving both artificial and real data sets.



Chapter 4

An Approach to Mutual
Intelligibility

4.1 A Semiotic Approach of Agents and Communication

4.1.1 An Overview of Feature Terms

Our protocol of argumentation is based on the capacity of agents to associate a semiotic elements
from any type with a given set of examples – the adjunct set. While this capacity can be granted
by various approaches in machine learning – as long as they can be interpreted as generalizing over
and classifying examples, we will mostly focus on the use of feature terms to associate the semiotic
elements with their adjunct sets.

Feature terms, also called feature structures or ψ-terms, are a generalization of first-order terms
that have been introduced in theoretical computer science in order to formalize object-oriented
capabilities of declarative languages (Aıt-Kaci, 2007) (Carpenter, 2005). Feature terms correspond
to a different subset of firs-order logic than description logic, but have the same expressive power
(Ait-Kaci and Podelski, 1993).

The example of feature terms presented bellow is taken from the journal paper Similarity Measures
over Refinement Graphs (Ontañón and Plaza, 2012). Consider the apparently simple Trains data
set shown in Figure 4.1, introduced by Michalski (Larson and Michalski, 1977): the original task
is to learn the rule that discriminates east-bound from west-bound trains. If we were to represent
such data set using a feature vector, we would need to define features for each one of the cars of a
train (size, shape, load, and number of wheels), and determine beforehand a maximum number of
cars per train (since feature vector representations have a fixed number of features).

Notice, however, that not all the trains have the same number of cars, and that, in principle, a
train may have an unbounded number of cars. Thus, it is difficult to represent this data using a
feature vector without losing information. Using a relational representation, we can just represent
each car as a term, and define that a train is a set of cars, without restricting the number of cars
of the train or the load each train is carrying.

On the other hand, Figure 4.2 represents the first west-bound train from Figure 4.1 using the
feature term notation. We can see that the term is composed of 14 variables. The term contains
two set- valued features (indicated by a curly bracket): in the feature cars of variable X1, and in
the feature lcont of variable X3. Finally, we can also see that there are several variable equalities
in this term. Since the value of the feature infront of variable X2 is the already defined variable
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Figure 4.1: Graphic representation of a sample from the Trains data set introduced by Michalski.
Each instance (train) has a different set of wagons, that display each a different set of properties.

Figure 4.2: First west-bound train from Figure 4.1 represented in feature-term notation.
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X3, we note X2.infront
.
= X3, and also X3.infront

.
= X4. Additionally, the number of wheels

in all the cars is the same, and the length of the first two cars is also the same.

The basic operation between feature terms is subsumption: we will use ψ1 v ψ2 to express that a
term ψ1 subsumes another term ψ2 – that is to say ψ1 is more general (or equal) than ψ2. Another
interpretation of subsumption is that of an “informational content” order: ψ1 v ψ2 means that all
the information in ψ1 (all that is true for ψ1) is also contained in ψ2 (is also true for ψ2)1.

4.2 Concepts and Contrast Sets

4.2.1 Semiotic Elements

The semiotic element are the components of concepts and containers. The different elements that
an agent has perceived in its environment are called examples. For example, a specific bird is an
example of birds or animals. Birds and animals are two domains in which we find birds. Domain
is used here as a short for application domain. Each example is identified by an index i and noted
ei. Unless specified otherwise, agents are representing examples using a feature-term. A subset of
a domain is a context, the examples from the domain that a given agent has knowledge of, which
we define in Definition 7.

Definition 7 (Context). A context U = {e1 . . . en} is a set of examples that covers a large part of
a domain.

A context needs to have enough examples to be partitioned into several non-empty sets.

An agent can classify the examples of a context into sets of examples called extensional definitions.
An extensional definition is associated to a specific category of the domain: for instance, the set
of all birds of pray in a zoo can be an extensional definition for bird of prey in the context of the
zoo’s aviary, for the domain of birds. Definition 8 formalizes this.

Definition 8 (Extensional Definition). An extensional definition is a non-empty subset of a con-
text: Ei ⊂ U and Ei 6= ∅. Extensional definitions are semiotic elements.

Some examples share similar features, and therefore can be generalized. A set of generalizations
that generalize all the examples from an extensional definition is called an intensional definition
(see Def.9). When the examples are represented as feature terms, the generalizations are also
represented as feature terms that subsume sets of examples.

Definition 9 (Intensional Definition). Let X ⊂ U be a subset of examples of a context U , an
intensional definition of X is a set of generalizations Ii = {g1, . . . , gn} such that ∀e ∈ X,∃g ∈ Ii
such that g v e, ∀g ∈ Ii,∃e ∈ X such that g v e, and ∀e′ ∈ U −X,@g ∈ Ii such that g v e′. If an
example e is subsumed by a generalization from Ii, we note Ii v e. If E is a set of examples such
that, for each e ∈ E, I v e, we note I v E. Finally, we define as Xi = {e ∈ U |I v e} the set of
examples from U that are subsumed by I.

When two agents are communicating, they are using signs (see Def.10). Signs are used to represent
the labels of classes of examples. The knowledge representations that the agents use when they
exchange examples or generalizations, feature terms for instance, are considered as represented by
a system of signs – even if it is not explicitly detailed. Notice that there is no constraint on the
sign, therefore the choice of a sign for a concept is arbitrary. The arbitrariness of the sign means
that all of those signs are symbols from a semiotic point of view.

1In our work, we use the definition of subsumption introduced in (Arcos, 1997) which has a slightly different
definition than the traditional θ-subsumption. Specifically, the difference is that we introduce the constraint that
all the elements in a set have to be different.
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Definition 10 (Sign). A sign si is a string of characters. Signs are semiotic elements.

The intensional, extensional definitions and the sign are the three primary semiotic elements. The
relation between one sign, one intensional definition and one extensional definition is a concept.
The concepts bind the ability to partition a context (extensional and intensional definitions) to
the ability to express this partition through communication (intensional definitions and signs).
Concepts are also the last type of semiotic elements. The notion of concept is defined in Definition
11.

Definition 11 (Concept). A concept Ci = (si, Ii, Ei) is a triadic relation between a sign, an
intensional definition and an extensional definition. Given a context U and Xi = {e ∈ U |Ii v e},
the relation should verify that Ei = Xi. We note Ii v Ei the fact that ∀e ∈ Ei, Ii v e. If the
concept Ci belongs to an Agent Ak, we note it Cki . Given an example e, if Ii v e, we note Ci v e.
Concepts are semiotic elements.

When the context allows no confusion, we may simply write si, Ii, Ei with the sub-index i indicating
the concept Ci to which they belong. Otherwise, we will use the notation presented in Definition
12 to refer to the specific constituents of a concept Ci.

Definition 12 (Concept Constituents). For any concept Ci = (si, Ii, Ei)

1. s(Ci) = si

2. I(Ci) = Ii

3. E(Ci) = Ei

A same concept can be instantiated multiple times. For this reason, each concept Ci has an
identifier idi. Two instances of concepts that share their identifier are supposed to be instances of
a same concept. The identifier of a concept C can also be noted id(Ci). One agent is not suppose
to have more than one instance of a concept, and therefore cannot have two concepts sharing the
same identifier.

4.2.2 Containers And Contrast Sets

The agents are classifying the examples of their context. Each concept of an agent corresponds to
a class, and the entire classification corresponds to a container. A container is the relation between
a set of concepts and the context that this set of concepts is aiming to classify on, relation defined
in Definition 13. There are two types of container: hypotheses (see Def.15) and contrast sets (see
Def.14). Hypotheses are not partitioning their context, while Contrast sets do.

Definition 13 (Container). A container Q = (UQ, SQ) is a pair composed of a context UQ and a
set of concepts SQ = {C1, . . . , Cn}. The notation Ci ∈ Q means that the concept Ci belongs to the
set of concepts SQ, implying that ∀Ci ∈ SQ, E(Ci) ⊂ UQ.

Contrast sets are a type of container where the extensional definitions of the concepts are a partition
of the context. Contrast sets are defined as follow:

Definition 14 (Contrast Set). A contrast set K = (UK , {C1, . . . , Cn}) is a container where the set
of the extensional definitions {E(C1), ..., E(Cn)} is a partition of the context UK . This is noted as
Π(UK) = E(C1), . . . , E(Cn). Moreover, the signs of the concepts must be different: ∀Ci, Cj ∈ K,
i 6= j ⇒ s(Ci) 6= s(Cj).
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Recall that a partition of a set S is a set of nonempty subsets of S such that every element e ∈ S
is in exactly one of these subsets.

Hypotheses, as contrast sets, do not have more than one concept with the same size. However,
unlike contrast sets, the extensional definitions of their concepts can have any relations as long as
they remain compliant with the definition of containers.

Definition 15 (Hypothesis). A hypothesis H = (UH , {C1, . . . , Cn}) is a container where the signs
of the concepts are different: ∀Ci, Cj ∈ H, i 6= j ⇒ s(Ci) 6= s(Cj).

The agents are using contrast sets to know which sign to use in order to refer to one example from
a domain. Hypotheses are used by agents to build a copy of other agents contrast sets with their
own context in order to try to understand the point of view of other agents.

Concepts can be noted alternatively by using their signs or their identifiers. A concept from a
contrast set or a hypothesis can be noted by using its sign and container, as two concepts from
a same contrast set or hypothesis cannot share the same sign. Identifiers can be used to find
a concept from any container of an agent, as an agent cannot have two concepts with the same
identifier. This notation is useful to refer to a concept as a container’s constituent, and is presented
in Definition 16 below:

Definition 16 (Container Constituent). Let A1 be an agent with n containers Q1 = (S1, U1), . . . ,
Qn = (Sn, Un) and Ci a concept such that Ci ∈ Si. If s = s(Ci) and id = id(Ci), therefore:

Ci = C(s,Qi) = C(id, A1).

4.3 Agents

Knowledge Our approach focuses on pairs of agents that communicate together. Each agent is
able to represent its knowledge with semiotic elements arranged in concepts, which are themselves
arranged in containers. This allows the agents to have a partition of their contexts (the extensional
definitions), a set of symbols to communicate over the examples of this partition (the signs) and
generalizations to either incorporate new examples to their partition or access the reflexive function
of language and address the meaning of their concepts in their communications with the other agent.

The two agents are numbered, called A1 and A2. Any agent can be referred as Ak, and in this case
the other agent is referred as A−k. An agent Ak has knowledge over three containers: two contrast
sets and one hypothesis. Among these two contrast sets, we distinguish the initial contrast set
K0
k of an agent from the contrast set in use to communicate with the other agent Kk, called the

current contrast set. When an agent Ak has a concept C in its current contrast set, we say that
Ak knows C.

The hypothesis Hk of Ak shares its context with K. Hk is used to store the information that Ak
has on the other agent’s concepts. As mentioned in Section 4.2.2, hypotheses are used by agents
to build a copy of other agents contrast sets with their own context in order to try to understand
the point of view of other agents.

In general, any container Q attached to an agent Ak will be noted Qk while its context will be
noted Uk (see Section 4.2.1). A semiotic element x attached to Ak will be noted xk.

Messages An agent can exchange information with the other agent using messages. A message
M(x1, . . . , xn) contains n semiotic elements. The letter M is a place-holder for a performative,
that helps the agent that receives the message to understand what it is supposed to do with it.
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For instance, an agent receiving a message Examples(e1, e2, e3) knows that the other agent wants
it to add the examples e1, e2 and e3 to its contrast set’s context.

By convention, when an agent Ak wants to refer to two concepts in a message, one concept Ci from
its contrast set Kk and another concept Cj from the other agent’s contrast set A−k, Ak starts its
message with two signs: s(Ci) first and s(Cj) in second.

Functions The central function of an agent is to name an example when one is presented to
it. In order to name an example e, an agent Ak searches in its current (not initial) contrast set
Kk = {Uk, Sk} for the set of signs N(Ak, e) = {s(C)|C ∈ Sk ∧ I(C) v e} from the concepts of Sk
that are subsuming e. Ak names the example e with Nk(e).

An agent has also access to various other functions that allow it to organize its contrast set and
argue about it with another agent. These functions are presented later in detail in 5.1.

Synchronization In order to have a synchronized communication, two agents are using a token
when they communicate together. There is only one token in a communication between two agents.
When an agent receives the token, the agent can act, using one or more of its functions. Once it is
done with its actions, the agent passes the token to the other agent and waits until it receives the
token back. The time lapse between the moment one agent receives the token and gives it back is
called a turn. The time lapse between two consecutive moments when one agent gets the token is
called a round.

States An agent’s state determines which actions the agent will use during its turn. The next
action that an agent takes during its turn is to pass the token to the other agent, regardless of
the state, at the exception of the state where the agent stops the conversation. The second to
last action that an agent takes during its turn is to select the state of its next turn. States are
described later in Section 5.3.3.

4.4 Relations between Concepts

4.4.1 Adjunct Sets and Relations

Adjunct Sets

We saw in Section 4.3 how the agents can name examples. For a given concept C and a given
example e we can tell if an agent Ak, that has C in the set of concepts of its current contrast set,
has s(C) in the set of signs Nk(e) used to name e. In order to do so, we just need to verify that
I(C) v e: if this is the case, then e ∈ Nk(e). Otherwise, e 6∈ Nk(e). If an agent Ak returns Nk(e)
with a sign s ∈ Nk(e) while naming an example e, we say that Ak named e with s.

We want to represent, for a given context U and a given concept C, which examples from U would
be named s(C) by an agent that has C in its current contrast set. This brings us the notion of
adjunct set defined below:

Definition 17 (Adjunct Set of a Concept). The adjunct set of a concept C in the context U is
Adj(C,U) = {e ∈ U |C v e}.

As we can see in Definition 17, the adjunct set of a concept is independent of the sign or extensional
definition of this concept. Indeed, only the intensional definition is needed to compute the adjunct
set. Therefore, we can define the adjunct set of any set of generalizations as:
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Definition 18 (Adjunct Set of an Intensional Definition). The adjunct set of an intensional
definition I in the context U is Adj(I, U) = {e ∈ U |I v e}.

Both adjunct sets and extensional definitions are sets of examples and subsets of contexts. However,
they are different because extensional definitions are conceived as semiotic elements, while adjunct
sets are an auxiliary notion conceived to compare concepts. An important property of adjunct set
is that they are possible to link them to extensional definitions through the use of Property 4.

Property 4 (Extensional Definitions and Adjunct Set). Let C be a concept in the context U , such
that C = (s, I, J). If C = (s, I, E) is a concept in the context U , therefore E = Adj(C,U).

Proof. Let C be a concept in the context U , such that C = (s, I, J). According to Definition
11, E = {e ∈ U |I v e}. According to Definition 17, Adj(C,U) = {e ∈ U |I v e}. Therefore,
E = Adj(C,U).

Pairing Partial Sets

The notion of adjunct set allows us to compare concepts. With the adjunct sets of any pair of
concepts Ci and Cj , it is possible to say for a given context U which examples from U would
be named s(Ci) and not s(Cj), which examples from U would be named s(Cj) and not s(Ci),
and which examples from U would be named both s(Ci) and s(Cj) by an agent that knows both
concepts. In order to do so, we introduce the notion of pairing partial set. the three pairing partial
sets represent the set relation between two adjunct sets from a same context. The notion of partial
set is defined below:

Definition 19 (Pairing Partial Sets). We define three sets that characterize any pair of concepts
Ci and Cj: Ui, j, Ui,j and U i,j. Theses three sets, called the pairing pairing partial sets, are defined
as follows:

1. Ui, j = Adj(Ci, U)−Adj(Cj , U)

2. Ui,j = Adj(Ci, U) ∩Adj(Cj , U)

3. U i,j = Adj(Ci, U)−Adj(Cj , U)

Let Ak be an agent that knows both Ci and Cj : while Ak would name s(Ci) but not s(Cj)
the examples from Ui, j , s(Cj) but not s(Ci) the examples from Ui, j and both s(Ci) and Cj the
examples from Ui,j .

Pairing Relations

In order to represent the information that is given by one pairing partial set, we introduce the
notion of evaluation function that is defined in Definition 20 below.

Definition 20 (Evaluation Function). Let ? be the token for an unknown value, I the index set
{−1, 0, 1}, X the set of all possible concepts, U the set of all possible contexts and F the set of
functions U→ N∪ {? }. The evaluation function ev : I ×X×X×U×F→ N∪ {? } is the function
that for each pair of concepts Ci, Cj, for a given index x ∈ I, a given context U and a given
function f ∈ F yields:

ev(x,Ci, Cj , U, f) =


f(UCi, Cj

), if x = −1.

f(UCi,Cj ), if x = 0.

f(UCi,Cj
), if x = 1.

(4.1)
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In order to aggregate the information that is given by all the partial sets, we now introduce the
notion of r-triplet. A r-triplet is a mathematical representation of the three partial sets of a given
pair of concepts for a given context. This mathematical representation is a triplet of bits, each bit
representing whether or not a given pairing partial set is empty.

Definition 21 (R-Triplet Function). Let f(Ux) be the function that, for every pairing partial set
Ux yields:

f(Ux) =

{
1, if |Ux|≥ 1.
0, otherwise.

(4.2)

Let ev be the function defined in Definition 20. The r-triplet function r : X×X×U→ {0, 1}3, with
X the domain of semiotic elements and U the domain of all possible contexts, is a function that for
each pair of concepts Ci,Cj and for a given context U yields a triplet r(Ci, Cj , U) = (b−1, b0, b1),
called r-triplet, such that for x ∈ {−1, 0, 1}:

bx = ev(x,Ci, Cj , U, f).

There are therefore 23 = 8 possible r-triplets between two concepts Ci and Cj in the context U .
The r-triplet gives the pairing relation of Ci and Cj in U accordingly to Definition 22:

Definition 22 (Pairing Relations). The pairing relations between a pair concepts Ci and Cj in a
context U , represented with the operator CirUCj where r ∈ {≡,�,�,⊗, †,�}, are the following:

• if r(Ci, Cj , U) = (0, 1, 0) they are in an equivalence relation, noted Ci ≡U Cj

• if r(Ci, Cj , U) = (1, 0, 1) they are in is a disjunction relation, noted Ci �U Cj
• if r(Ci, Cj , U) = (1, 1, 1) they are in is an overlap relation, noted Ci ⊗U Cj
• if r(Ci, Cj , U) = (1, 1, 0) or r(Ci, Cj , U) = (0, 1, 1) they are in an inclusion relation, noted
Ci �U Cj
• if r(Ci, Cj , U) = (1, 0, 0) or r(Ci, Cj , U) = (0, 0, 1) they are in a one-sided relation, noted
Ci †U Cj.

Whenever r(Ci, Cj , U) = (0, 0, 0), there is no pairing relation between the semiotic elements, which
is noted Ci �U Cj.

According to Definition 22, there is no pairing relation when the adjunct sets of both Ci and Cj
are empty. The pairing relation is one-sided when only one of the adjunct set is empty.

Each r-triplet has a corresponding reverse. Let the reverse of a r-triplet be defined as follows:

Definition 23 (R-Triplet Symmetry). Let the matrix J be the exchange matrix of size 3× 3:

J =

0 0 1
0 1 0
1 0 0


The reverse of a r-triplet R is the matrix product RJ .

Let Ci and Cj be two concepts, and let CirUCj be the pairing relation of Ci with Cj in U . Let
r(Ci, Cj , U) = R and r(Cj , Ci, U) = R′. Since Definition 19 shows that R = R′J and R′ = RJ ,
R and R′ are the reverse of each other and therefore it is easy to see that each r-triplet gives the
same pairing relation as its reverse r-triplet, CirUCj = CjrUCi, therefore the operator rU from
Definition 22 is commutative.
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4.4.2 R-Triplets and Associated Pairing Partial Sets

Let Ci and Cj be two concepts and U a context. The three pairing partial sets of Ci and Cj in U
can alternatively noted U(x,Ci, Cj) with x ∈ {−1, 0, 1} such that:

• U(−1, Ci, Cj) = UCi, Cj
,

• U(0, Ci, Cj) = UCi,Cj
and

• U(1, Ci, Cj) = UCi,Cj
.

The elements a, b and c of a r-triplet r = r(Ci, Cj , U) = (a, b, c) can also be alternatively noted
r[x] with x ∈ {−1, 0, 1} such that r[−1] = a, r[0] = b, and r[1] = c. According to Definition 21,
the element r[x] or the r-triplet r is equal to ev(x,Ci, Cj , U, f). Moreover, according to Definition
20, we have:

ev(x,Ci, Cj , U, f) = f(U(x,Ci, Cj)).

Therefore, it is possible to express the value r[x] of a r-triplet according to a pairing partial set
U(x,Ci, Cj). We say that r[x] is the associated value of U(x,Ci, Cj), and that U(x,Ci, Cj) is the
associated pairing partial set of r[x].

4.4.3 Overall Pairing Relations

Let A1 and A2 be two agents, A1 partitioning the context U1 in the contrast set K1 = {U1, S1} and
A2 partitioning the context U2 in the contrast set K2 = {U2, S2}. If the agents want to compare
two concepts Ci ∈ S1 and Cj ∈ S2, they can find the adjunct sets of both concepts, compute the
corresponding pairing partial sets, use the function r to find the r-triplet and deduce the pairing
relation. However, the first element in the chain that allows the deduction of the pairing relation
is the adjunct set. Since adjunct sets are context-dependent, the agents need to decide in which
context they want to compare Ci and Cj .

In an experimental set-up, there are three main contexts that are of interest. The two first context
are U1 and U2, that are referred as the local contexts, and the last one is the overall context
U1 ∪ U2 presented in Definition 24. Since two pairing relations in different local contexts might
be different, and since the overall context includes both U1 and U2, the agents can agree that the
overall r-triplet r(Ci, Cj , UO) is obtained from more information than they currently dispose to
compute their local r-triplets and therefore should supplant their local r-triplets. Ci and Cj in the
overall context.

Definition 24 (Overall Context). The overall context UO = U1 ∪ U2 of two containers Q1 =
(U1, S1) and Q2 = (U2, S2) is the union of their contexts U1 and U2.

In order to find an adjunct set Adj(C,UO), the agents can exchange their respective adjunct sets
Adj(C,U1) and Adj(C,U2) since Adj(C,UO) = Adj(C,U1) ∪ Adj(C,U2). However, this solution
requires for the agents to exchange the adjunct sets. Since the adjunct sets can contain many
examples, this represents a heavy transfer and is not the privileged solution. Moreover, according
to Conjecture 1, an overall pairing partial set is the union of its two local pairing partial sets. The
agents can therefore directly find an overall pairing partial set by exchanging their local pairing
partial set.
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Conjecture 1 (Overall Pairing Partial Sets). Let A1 and A2 be two agents, A1 partitioning the
context U1 in the contrast set K1 = (U1, S1) and A2 partitioning the context U2 in the contrast set
K2 = (U2, S2). Let C1 and C2 two concepts such that C1 ∈ S1 and C2 ∈ S2. For any x ∈ {−1, 0, 1},
we have:

UO(x,C1, C2) = U1(x,C1, C2) ∪ U2(x,C1, C2).

We have not finalized the formal proof of this conjecture, but will explain the main ideas behind it.
The schema of the proof would be the following: we show that each pairing partial set Uk(x,C1, C2)
of a local context Uk is the subset of examples from Uk that verifies one of the following:

• Φ−1(e) = C1 v e ∧ C2 6v e, if x = −1

• Φ0(e) = C1 v e ∧ C2 v e, if x = 0

• Φ1(e) = C1 6v e ∧ C2 v e, if x = 1

We show that the union of the set of examples from local context U1 that verify a predicate Φx(e)
with the set of examples from the local context U2 that verify the same predicate Φx(e) is also the
set of examples from the union U1 ∪ U2 that verify the predicate Φx(e). We recall that according
to Definition 24, the union U1 ∪ U2 is the overall context UO. Therefore, we may prove that the
overall pairing relation UO(x,C1, C2), which is the set of examples from the overall context UO
that verify the predicate Φx, is equal to the union of the two local pairing partial sets U1(x,C1, C2)
and U2(x,C1, C2). �

The agents have another solution, that allows them to find the pairing relation between Ci and
Cj with far less data exchanged. Computing the local r-triplet r(Ci, Cj , U1) and r(Ci, Cj , U2) only
requires from the agents to transfer the intensional definitions Ii and Ij , since with these two
intensional definitions any agent Ak can compute the adjunct set Adj(Ci, Cj , Uk) (see Definition
17). By exchanging their local r-triplets, the agents can finally infer the overall pairing relation
using Conjecture 2.

Conjecture 2 (Expression of Overall Pairing Relation). Let A1 and A2 be two agents, A1 parti-
tioning the context U1 in the contrast set K1 = (U1, S1) and A2 partitioning the context U2 in the
contrast set K2 = (U2, S2). Let Ci ∈ S1 and Cj ∈ S2 be two concepts, and

• let r(C1, C2, U1) = (b−1, b0, b1) be the local triplet of A1

• let r(C1, C2, U2) = (b′−1, b
′
0, b
′
1) be the local triplet of A2

• let r(C1, C2, UO) = (b′′−1, b
′′
0 , b
′′
1) be the overall triplet

then, for all n ∈ {−1, 0, 1}, the element of the overall triplet b′′n = 0 ⇔ bn = 0 ∧ b′n = 0, and
otherwise b′′n = 1.

We have not finalized the formal proof of this conjecture, but will explain the main ideas behind
it. The schema of the proof would be the following: We show that the overall pairing partial set
UO(x,C1, C2) is empty if and only if both local pairing partial sets U1(x,C1, C2) and U2(x,C1, C2)
are empty. We show that if the pairing partial set U(x,C1, C2) is empty, then the element with
the sub-index x from its r-triplet is 0 according to Definition 21. Therefore, we may prove that an
element b′′x of the overall r-triplet is equal to zero if and only if the elements bx and b′x of the local
r-triplet are also equal to zero. �

Conjecture 2 results in four common and remarkable cases of local pairing relations for which the
overall relation can be inferred just by transferring the two local pairing relations an not the local
r-triplets. These four cases are listed below in Conjecture 3:
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Figure 4.3: Venn diagrams illustrating of the four cases where it is possible to infer an overall
relations’ type from its two corresponding local relations’ types.

Conjecture 3 (Overall Pairing Relation of Different Local Relations). Let A1 and A2 be two
agents, A1 partitioning the context U1 in the contrast set K1 = (U1, S1) and A2 partitioning the
context U2 in the contrast set K2 = (U2, S2). Let Ci and Cj be two concepts such that Ci ∈ S1 and
Cj ∈ S2. Let CirU1Cj be the local pairing relation of the agent A1 and CirU2Cj the local pairing
relation of the agent A2, if CirOCj is the overall pairing relation of A1 and A2 between Ci and Cj,
then the following holds:

1. if Ci ≡U1 Cj and Ci �U2 Cj, then Ci ⊗O Cj

2. if Ci �U1 Cj and Ci �U2 Cj, then Ci ⊗O Cj

3. if Ci ≡U1 Cj and Ci �U2 Cj, then Ci �O Cj

4. if Ci ≡U1 Cj, Ci �U2 Cj or Ci �U1 Cj and Ci ⊗U2 Cj, then Ci ⊗O Cj

We have not finalized the formal proof of this conjecture, but the proof would be a direct application
of Conjecture 2 to the four listed scenarios. �

At last, since the r-triplets of the pairing relations of equivalence, disjunction and overlap are
symmetrical (let R be a r-triplet that corresponds to a relation equivalence, disjunction or overlap.
We can observe in Definition 22 that in these three cases, R = RJ), if two local pairing relations
are both equivalences, disjunctions or overlaps then the overall pairing relation will be from the
same type. For the remaining cases, the agents have no choice but to exchange their local r-triplets
instead of their local pairing relations in order to infer the overall pairing relation.
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4.5 Agreement and Disagreement

4.5.1 Mutual Intelligibility and Monotonicity

The argumentation on meaning revolves around mutual intelligibility. Mutual intelligibility is
context dependent, and refers to a state of the multi-agent system where both agents are able to
name every example from a given context with the same sign. Since the agents are not meant to
go through an extensive naming game over an entire context outside of the experimental context
of our thesis, mutual intelligibility refers also to a state where both agents agree that there is no
example from a given context that they would – to their knowledge – name differently than the
other agent.

The notion of mutual intelligibility is attached to two properties. First, both agents should partition
the context of their mutual intelligibility into the same segregates, at least theoretically. Then,
both agents should map these segregates to the same signs. Having these two properties, equal
partition and equal sign-mapping for both agents, guarantees the mutual intelligibility between
the agents over a given context. This notion of mutual intelligibility is formalized in Definition 25.

Definition 25 (Mutual Intelligibility). Let A1 and A2 be two agents that have for respective
contrast sets K1 = (U1, S1) and K2 = (U2, S2). A1 and A2 have reached mutual intelligibility
under the limits of a context U whenever ∀e ∈ U , !∃Ci ∈ S1 and !∃Cj ∈ S2 such that Ci v e and
Cj v e and s(Ci) = s(Cj).

Now that we stated multiple times that the ultimate goal of our agents is to reach mutual intelligi-
bility and that we have formally defined this mutual intelligibility, we need to address the question
of the mutual intelligibility’s context. Since the mutual intelligibility is context dependant, the
agents need know over which context they are trying to reach it in order to coordinate. We will
assume that this context has examples from both agents, that are however not in both current
contrast sets’ context, which is the most complex possible scenario. In this scenario, each agent Ak
could send to the other agent A−k the set of the examples from Uk that are not in U−k. However,
this requires for each agent Ak to know which are these examples and thus have knowledge over
U−k.

Another solution that does not necessitate for Ak to have knowledge over U−k is to know the
pairing relations between the concepts that have examples in the context U over which the mutual
intelligibility is wished. Conjecture 4 draws a direct correspondence between the definition of a
mutual intelligibility over the context U and the pairing relations between concepts in U .

Conjecture 4 (Constraints on Relations for Mutual Intelligibility). Let A1 and A2 be two agents
with contrast sets K1 = (U1, S1) and K2 = (U2, S2). Let U be a context such that U ⊆ UO where
all concepts of S1 and S2 subsume at least one example. We say that A1 and A2 have reached
mutual intelligibility within the context U according to Definition 25 if for each concept Ci ∈ Sk
(for k ∈ {0, 1}) when the following holds:

a. !∃Cj ∈ S−k such that Ci ≡U Cj

b. and ∀Cm ∈ S−k, one of the two following holds:

b1. Ci ≡U Cm

b2. Ci �U Cm
c. and ∀Cm ∈ S−k:

c1. if Ci ≡U Cm then s(Ci) = s(Cm)

c2. if Ci �U Cm then s(Ci) 6= s(Cm)
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We have not finalized the formal proof of this conjecture, but will explain the main ideas behind
it. The schema of the proof would be the following: We prove that each concept Ci in the set
of concept Sk having only one equivalent concept Cj in S−k such that Ci ≡U Cj is equivalent
to Adj(Ci, U) being equal to Adj(Cj , U). We prove that Adj(Ci, U) being equal to Adj(Cj , U)
is equivalent to each example e of U being covered by the concept Ci if and only if the concept
Cj also covers e. Therefore, we prove that each concept Ci in the set of concepts Sk having only
one equivalent concept Cj in S−k such that Ci ≡U Cj is equivalent to each example of U being
subsumed by a unique pair of concepts (Ci, Cj) belonging to different contrast sets.

We prove that the adjunct set Adj(Ci, U) being equal to the adjunct set Adj(Cj , U) and Cj being
unique is equivalent to each example e of U not being covered by any concept Cm ∈ S−k different
from Cj . We prove that each example e of U not being covered by any concept Cm in S−k different
from Cj added to the fact that Cm cannot be empty is equivalent to Ci and Cm having the pairing
relation Ci �U Cm. Therefore, we prove that each concept Ci in the set of concept Sk having only
one equivalent concept Cj in S−k such that Ci ≡U Cj is equivalent to Ci having either a pairing
relation Ci ≡U Cm or a pairing relation Ci �U Cm, for all concepts Cm in S−k.

We prove that having, for all concepts Cm in S−k, either a pairing relation Ci ≡U Cm and the signs
s(Ci) and s(Cj) being equal, or a pairing relation Ci �U Cm such that the signs s(Ci) and s(Cm)
are different, is equivalent to each example of U being subsumed by each concept in a unique pair
of concepts (Ci, Cj) belonging to different contrast sets with the sign s(Ci) = s(Cj).

Therefore we prove that each example of U being subsumed by a unique pair of concepts Ci, Cj
belonging to different contrast sets and si 6= sj is equivalent to each concept Ci in the set of
concepts Sk having only one equivalent concept Cj in S−k such that Ci ≡U Cj and having for all
concepts Cm in S−k, either a pairing relation Ci ≡U Cm and the sign s(Ci) = s(Cj), or a pairing
relation Ci �U Cm and the signs s(Ci) 6= s(Cm). �

With Conjecture 4 the agents can now infer a mutual intelligibility over the context U from the
overall pairing relations of the concepts involved in the context U . The agents can figure the
overall pairing relations between concepts by exchanging r-triplets as explained in Section 4.4.3.
Therefore, the agents do not need to exchange examples in order to know if they have reached
a mutual intelligibility over a context – even if examples of this context are not shared by both
agents.

While we repeatedly asserted that the aim of the argumentation between our two agents is to reach
mutual intelligibility, the mutual intelligibility itself cannot be the only goal. We can intuitively
think of two unsatisfying solutions that always guarantee a mutual intelligibility; the first one is
having both agents’ current contrast sets K1 = (U1, S1) and K2 = (U2, S2) with S1 = {Ci} and
S2 = {Cj} such that Ci and Cj both have the same sign sall and an intensional definition that
subsumes all possible examples. In a such scenario, any example would be immediately be named
sall by both agents which is, by definition, a mutual intelligibility. The second scenario would
be one agent A1 copying the current contrast set K2 = (U2, S2) of the other agent A2. In this
situation, the agents have the same contrast set (K1 = K2) and therefore have reached mutual
intelligibility over any context that is a subset of U2.

These in these two scenarios, mutual intelligibility has been reached over large contexts. However,
if we assume that the initial contrast sets of the agents are a classification that had a purpose, we
wish to have any current contrast set also able to fit this purpose no matter no matter what it
is. For this reason, the agents only have current contrast sets that are refinement of their initial
contrast set. By making sure that its new contrast sets are refinements of its initial one, an agent
has the guarantee that two examples initially classified in different concept remains labelled as
belonging to different classes. This monotonic evolution of contrast sets is formalized in Definition
26.

Definition 26 (Monotonicity). Let A be an agent that has an initial contrast set K0 = (U0, S0).
If A creates a new contrast set K1 = (U1, S1) as its current contrast set, A’s contrast sets are
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monotone if U0 ⊆ U1, and if for all pairs of examples e1, e2 ∈ U0 and for every concept C1 ∈ S1,
there exists C0 ∈ S0:

e1, e2 ∈ E(C1)⇒ e1, e2 ∈ E(C0)

4.5.2 Agreement over Meaning

The mutual intelligibility and the monotonicity are the formalization of the agents goal during
the argumentation. In order to reach this goal, the agents need to be able to evaluate them and
identify any eventual problem that would prevent the goal’s realisation.

Synchronic Agreement

The synchronic agreement is a state of one agent where this agent cannot find any overall pair-
ing relation that would contradict the mutual intelligibility as defined in Conjecture 4. When
both agents are in a state of synchronic agreement, we say that the agents have reached mutual
intelligibility.

Unlike the mutual intelligibility, the synchronic agreement can be unilateral. This occurs when one
agent has access to more overall relations than the other. In this case, the former agent can know
about the situation of a pair of concepts that does not satisfy the criteria listed in Definition 25 as
presented in Conjecture 4, while the latter agent ignores the situation of this pair of concepts.

Diachronic Agreement

The diachronic agreement is a state of one agent where this agent current contrast set is a refinement
of this agent initial contrast set as defined in Definition 26. Unlike the synchronic agreement, the
diachronic agreement is always verified. Since the monotonicity is a constraint put on the creation
of new contrast sets, no current contrast set can be created in a non-monotonic way.

4.5.3 Types of Disagreements

Synchronic Disagreements

The Conjecture 4 gives, for a list of pairs of concepts and a context, the pairing relations and the
relations between the signs that the two concept of each pair should observe in order to have a
mutual intelligibility between the agents. If one pair of concept does not observe these properties in
the context of the expected mutual intelligibility, the agents do not have the mutual intelligibility.
We call such a pair a synchronic disagreement. The notion of synchronic disagreement is defined
below:

Definition 27 (Synchronic Disagreement). Let A1 and A2 be two agents that have for respective
contrast sets K1 = (U1, S1) and K2 = (U2, S2). Let U be a context such that U ⊆ U1 ∪ U2. Let C1

and C2 be two concepts such that C1 ∈ S1 and C2 ∈ S2. A1 and A2 have a synchronic disagreement
over C1 and C2 within context U whenever one of the following conditions holds:

1. Ci �U Cj
2. Ci ⊗U Cj
3. Ci †U Cj
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4. Ci ≡U Cj and si 6= sj

5. Ci �U Cj and si = sj

or if there exists a concept Ck ∈ Sk while there is no concept C−k ∈ S−k such that CkrUC−k.

These six conditions give rise to 6 types of disagreement, defined as follows:

Hypo-hypernymy Disagreement If Ci �U Cj , then one concept is the hyponym of the other
(and the second concept is the hypernym of the first). More specifically, if r(Ci, Cj , U) = (1, 1, 0)
then Ci is the hypernym of Cj , while if r(Ci, Cj , U) = (0, 1, 1) Ci is the hyponym of Cj . A
hypo-hypernymy disagreement is expressed as (si, sj , Ci �U Cj).

Overlap Disagreement If Ci⊗U Cj , the two concepts are said to overlap. An overlap disagree-
ment is expressed as (si, sj , Ci ⊗U Cj).

Synonymy Disagreement If Ci ≡U Cj and si 6= sj , we have two concepts that are equivalent
but their corresponding signs are different (therefore they are synonyms). A synonymy disagree-
ment is expressed as (si, sj , Ci ≡U Cj).

Homonymy Disagreement If Ci�U Cj and si = sj , we have two concepts that are disjoint but
their corresponding signs are equal (therefore they are homonyms). A homonymy disagreement is
expressed as (si, sj , Ci �U Cj).

Untranslatability Disagreement If Ci 6≡U •, we have a concept Ci that cannot found a
concept Cj such that Ci ≡U Cj . The symbol “ 6≡” does not refer to a paring relation here, but to
the absence of a pairing relation of equivalence. Moreover, the symbol “•” does not represent a
specific concept, but any concept from S2.

Each of the five first disagreement types can be represented as a triplet (s1, s2, rU ) where s1 and
s2 are the signs of the first and second concepts, and where rU their relation in the context of the
expected mutual intelligibility. Since one type of disagreement corresponds to exactly one type
of pairing relation, r qualifies the type of disagreement as it already qualifies the type of pairing
relation. The untranslatability disagreement is a special case, noted (s1, •, 6≡U ).

Indistinguishable Disagreement If Ci †U Cj , or if Ci and Cj do not have a pairing relation,
the two concepts are said to be indistinguishable. While this disagreement cannot appear with
regular (Boolean) r-triplets, it appears the error-tolerant model that requires integer r-triplets in
Section 6.1.

Classification of Synchronic Disagreements

Other than according to their types, the synchronic disagreements can be regrouped by families.
Synchronic disagreements are regrouped in main families that will later determine the approach
that our agents will display to solve them. There are four families of synchronic disagreements: self -
disagreements, semantic disagreement, lexical disagreements and untranslatable disagreements.
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Semantic Disagreement The semantic disagreements are hypo/hypernymy, overlap and indis-
tinguishable disagreements involving two concepts from different agents, that require the refinement
of one or two of the agents’ concept(s) in order to be solved. Semantic disagreements require either
a specific argumentation on meaning in order to create new concepts that are hyponyms of the
older ones that cause the disagreement, or the deletion of one of the two concepts in the case of
the indistinguishable type of disagreements.

Lexical Disagreement The lexical disagreements are synonymy and homonymy disagreements
involving two concepts from different agents, that require a sign change for one or more of the
agents’ concepts. Lexical disagreements are solved through the creation of new signs, without
modifying any other type of semiotic elements.

Self-Disagreement The self-disagreements can be any type of disagreements. However, unlike
other families, the self-disagreements involve two concepts that are from the same agent. Due to
the fact that the two concepts belong to the same initial contrast-set, which is a partition of the
agent’s context, a self-disagreement cannot be anything else than an overlap disagreement. Unlike
overlaps that belong to the semantic disagreements, the self-disagreements are solved through a
process named "border-alignment" instead of creating a new concept.

Untranslatable Disagreements The untranslatable disagreements regroup the disagreements
of the eponymous type. With the self-disagreement, this is the only family that does not involve
two concepts from different agents, although it is because it only involves one concept. An un-
translatable disagreement is solved by creating an equivalent concept to the one involve in the
disagreement, and adding it to the contrast-set that misses it.

Diachronic Disagreements

As explained in Section 4.5.2, there is no diachronic disagreement. The fact that an agent A has
knowledge over its initial contrast set allows A to create new concepts for its current contrast set
that are not violating the diachronic agreement. The fact that the monotonicity is defined on the
context of the initial contrast set, that does not change through the argumentation, ensures that
no diachronic disagreement can appear following the addition of a new example to the current
contrast set’s context.

4.5.4 Connected Sets of Disagreements

Our approach is centered on the ability to simplify a communication issue between two agents,
involving multiple concepts, into a list of smaller disagreements that each involves only two con-
cepts. At an intermediary level between the interconnected graph of pairing relations and the pairs
of disagreement, we have connected sets of disagreements.

Definition 28 (Connected Sets of Disagreements). Let D = d1, . . . , dn be a set of synchronic
disagreements in a context U . Let D1 be a set of disagreement such that D1 ⊆ D. D1 is a
connected set of disagreement from D if:

• ∀dx ∈ D1 such that dx = (s1, s2, C1rUC2), ∃dy ∈ D1 such that dy = (s′1, s
′
2, C

′
1rUC

′
2) and

C1 = C ′1, C1 = C ′2, C2 = C ′1 or C2 = C ′2

• ∀dx ∈ D1 such that dx = (s1, s2, C1rUC2), @dz ∈ {D −D1} such that dz = (s′′1 , s
′′
2 , C

′′
1 rUC

′′
2 )

and C1 = C ′′1 , C1 = C ′′2 , C2 = C ′′1 or C2 = C ′′2
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Intuitively, connected sets of disagreements are disjoint subsets of a general set of disagreements
– usually the set of all the synchronic disagreements between two agents – that are clustered
according to the concepts that are causing the disagreements within them.

4.6 Complement to the Notation

4.6.1 On Concepts Sharing Signs

The protocol that we presented in the past sections has been tested in experimental scenarios of
increasing complexity. All the scenarios are based on a data set that has been modified in order to
create controlled instances of disagreements. Since sometimes the concepts Cki from the contrast
set Kk of an agent Ak and C−kj from the contrast set K−k of an agent A−k will be in a situation
where i = j. In this situation, the concept Ci from KK and the concept Cj from the hypothesis
Hk of Ak can be both noted Cki or Ckj . In order to remove this ambiguity, we will note Ckj′ the
concept that belongs to Hk. This way, the apostrophe marks the belonging to a hypothesis. In
the situation where i 6= j, the absence of ambiguity allows us to not put the apostrophe.

4.6.2 On Hyponyms and Hypernyms

During the previous sections, four notions from linguistics (hyponymy, hypernymy, synonymy and
homonymy) have been used to characterize the relation between two concepts. We add now a fifth
notion, the co-hyponymy. A set of concepts Ch1 , . . . , Chn are co-hyponyms of a common hypernym
CH if the co-hyponyms’ extensional definitions Eh1 , . . . , Ehn are a partition of the hypernym’s
extensional definition EH . The correct syntax to express co-hyponymy is: Ch1

is co-hyponym of
CH with Ch2

, . . . , Chn
.

Definition 29 (Co-Hyponyms). Let CH be a concept, C1, . . . , Cn be n concepts with n > 2, and
U a context such that:

1. ∀x ∈ {1, . . . , n}, Adj(Cx, U) ⊂ Adj(CH , U)

2. ∀x, y ∈ {1, . . . , n}, Cx �U Cy
3. Adj(C1, U) ∪ . . . ∪Adj(Cn, U) = Adj(CH , U)

then C1, . . . , Cn are co-hyponyms of CH

4.6.3 Computing Multiple R-Triplets and Pairing Relations

When an agent computes multiple r-triplet or pairing relations, we simplify the notation of the set
of elements computed. Given two sets of concepts S1 = {C1,1, . . . , C1,m} and S2 = {C2,1, . . . , C2,n},
the set of R-Triplets T (S1 × S2, U) is equal to:

{r(C1,1, C2,1, U), . . ., r(C1,1, C2,n, U),
. . .

r(C1,m, C2,1, U), . . ., r(C1,m, C2,n, U)}

and the set of pairing relations R(S1 × S2, U) is equal to:

{C1,1ruC2,1, . . ., C1,1ruC2,n,
. . .

C1,mruC2,1, . . ., C1,mruC2,n}
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4.7 Conclusion

The formalism presented in this section gives an argumentation model of concepts based on the
semiotic triangle. We model the idea of a contrast set as a partition of a context where each part
is associated to a specific concept. We introduce the notion of adjunct sets as the relation between
the intensional definition of a concept and a particular context. Moreover, we define containers
incorporating contrast sets and hypotheses which allows an agent to compare and analyse its
contrast set with intensional definitions of the other agent. From here, we defined a typology of
pairing relations that characterizes how pairs of concepts relate to each other. We then define r-
triplets as the relevant information to characterize a pairing relation between two concepts. Local
r-triplets, relating to the context of one agent, are exchanged and the agents can infer the overall
pairing relations that hold. This inference holds in the error-free model presented in this chapter;
the error-tolerant model, that is built upon this one, is explained in Chapter 6. Finally, we defined
mutual intelligibility from the notion of agreement (absence of disagreements).



Chapter 5

Agent Argumentation Model

5.1 A Two Agents Model

All the models and strategies that we explore later in the experiments show similar features. This is
due to the fact that each of these models and strategies derives from a unique model that features
two agents. These two agents are defined by a set of functions that they both share, by some
knowledge that they only partially share and by a set of states which they can go in, each state
deciding the agents’ actions during the argumentation.

The different models of argumentation on the meaning varies by the error management of the
model’s machine learning component. On the other hand, the different strategies of argumentation
on the meaning varies by the set of states in which the agents can go in.

We qualify our model as symmetrical, since for a given model and strategy the set of functions of
the agents is identical, the set of states of the agents is identical, and the knowledge shared by one
agent is also shared by the other.

5.1.1 Agent Knowledge

While we are in the position of an oracle and have access to the entire knowledge of both agents,
each agent has itself limited knowledge over the elements that are belonging to the other agent.

In order to clarify to which knowledge which agent has access to, we are classifying the agents’
knowledge in three categories: personal knowledge, overall knowledge and inferred knowledge.

The personal knowledge is only accessible to one agent Ak. The overall knowledge is accessible
to both agents Ak and A−k. The inferred knowledge is a knowledge accessible to Ak that is
mirroring, with a varying degree of accuracy, a knowledge either only accessible to A−k or a
knowledge accessible neither to Ak or A−k.

Personal Knowledge

An agent Ak has access to a contrast set, called the initial contrast set K0
k , and all the elements

from this contrast set – the contrast set’s concepts and the semiotic elements from these concepts.
Agents can also create new contrast sets. If an agent comes to create a new contrast set, called
the current contrast set Kk by opposition to the initial one, this agent has also access to this
contrast set. When we mention a contrast set without precision on whether it is the initial or
current contrast set, it is by default the current contrast set.

49
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Overall Knowledge

The overall knowledge is the knowledge that one agent shares, at least partially, with the other
agent. This category of knowledge can be divided in two categories: the shared knowledge that is
directly shared with the other agent through messages, and the inferred knowledge that is deduced
from the other agent’s knowledge without being directly exchanged by messages.

Shared Knowledge The shared knowledge is transmitted through messages. Since a message
can only contain either semiotic elements or triplets, the shared knowledge is limited to some
semiotic elements from both agents and their relations. Since exchanging messages has a cost, the
agents try to reduce the amount of shared knowledge during an argumentation. The examples
that an agent has sent or received are recalled in a specific set, written Uex. This set of example
helps the agent to not exchange an example twice, and is used to infer additional knowledge. The
generalizations, always exchanged by sets corresponding to intensional definitions, can be stored
in an agent Ak’s hypothesis Hk when they are received. The intensional definitions are always
received with an associated sign. While the hypothesis of an agent contains concepts and not
intensional definitions alone, only the intensional definitions of the hypotheses’ concepts and their
signs are shared by both agents. The extensional definitions from the hypotheses’ concepts are
only inferred by the agent. The triplets received are used to infer overall triplets and overall pairing
relations, which is discussed in the inferred knowledge paragraph.

Inferred Knowledge From the intensional definitions received by an agent, the other agent can
infer an approximation of the other agent’s concept associated extensional definition (see Section
5.1.3) by using its own adjunct set instead. This allows the agent to create a new concept that can
be stored in its hypothesis, which represents the agent’s guess on the concepts of the other agent.
An agent can infer the overall relation between one of its concept and one of the other agent’s
concept as described in Section 4.4.3. Once an overall pairing relation has been inferred, this agent
can identify if this pairing relation induces a disagreement. If the paring relation is causing a
disagreement, this disagreement is formalized into a triplet (see Section 4.5.3) and recalled in a set
of active disagreements D.

The distinction between personal knowledge and inferred knowledge is perfectly illustrated in the
Section 5.2 with the beliefs and arguments. While an e-argument represents a knowledge that is
known as a fact by an agent, a belief represents a knowledge that the agent has inferred but is
partially unsure of. Personal knowledge is exchanged by an agent to attack the inaccurate parts
of the inferred knowledge of another agent. On the other hand, shared knowledge is supposed to
be known by both agents and therefore should not be exchanged at all.

5.1.2 Agent Modus Operandi

The argumentation takes place turn by turn, with one agent receiving a token at the beginning of
the argumentation, taking a set of actions, then passing the token to the other agent. An agent
can take actions only when it has the token, and the last action that it takes is always to pass the
token to the other agent. The token is exchanged until termination is detected. The actions taken
by an agent while it has the token are decided by the agent’s inputs and its current state. The two
variables that impact the behaviour of one agent at a given turn are the agent’s state (a qualitative
variable) and the messages that this agent has received from the other agent. Each agent has the
same set of possible states, making our argumentation model symmetric.

The argumentation model is also synchronized, meaning that if an agent A1 is in a state #1 during
the turn t, the agent A2 was either in the state #1 during the previous turn t−1 or will be in the
state #1 during the next turn t+1.
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5.1.3 Agent Functions

Inductive Learning

The agents are inductive learners. Being able to use inductive learning over a set of examples in
order to obtain a set of generalizations that subsume these examples without subsuming the rest
of the subset is the most fundamental function of our agents. Each agent use the ABUI algorithm
in order to achieve inductive learning. An agent A with a local context Uk needs to split its
context in two subsets E and E′ such that E ∪ E′ = Uk and E ∩ E′ = ∅. Once these two sets of
examples have been created and passed as inputs of ABUI, ABUI returns an intensional definition
I = {g1, . . . , gn} such that:

• ∀e ∈ E,∃g ∈ I such that g v e

• ∀e ∈ E′,@g ∈ I such that g v e

The ABUI algorithm cannot always guarantee that the intensional definition returned verifies these
two properties, but it approaches them as much as it can by minimizing the number of examples
from E′ that are subsumed by I, and the number of examples from E that are not subsumed by
I. While the rest of this section does not take into account these errors of first and second order,
their impact is discussed later in Section 6.1.

Naming Examples

The agents can name the examples presented to them. When an agent names an example e, it
always uses a left-path associations to find e’s associated sign. The container used by the agent to
name e is its current contrast set K, or the initial contrast set if no current contrast set had been
created by the agent. When naming an example e with its contrast set K, an agent returns the
set of signs {s1, ..., sn} such that e l

K 7→{s1, ..., sn}.

Sending and Receiving Messages

An agent can send a message to another agent. A message has two parts: a performative and a
content. The performative of the message indicates to the other agent the intent of the message,
while the content vehicles a knowledge that the sender has. The different types of messages are
presented in Appendix B along with their associated performatives and contents.

When an agent sends a message, it arrives in the mailbox of the other agent. The message stays
in the mailbox until the other agent removes it. In Section 5.1.2, we mentioned that agents were
taking actions turn by turn. These actions are mostly determined by the state of an agent during
its turn, but also by the messages that are in the mailbox. It can happen that a message from an
agent A1 is not supposed to be read by an agent A2 before A2 is a certain state. For this reason,
each message is timed for a defined state written #State. The message will only be delivered to
the other agent when this agent enters the timed state for the next time.

For instance, in our model, the agents A1 and A2 goes through two states #1 and #2 where
they respectively evaluate the local r-triplets of each other, and the overall r-triplets of each other.
Let’s assume that A1 enters State #1 first. It is supposed to have received (local) r-triplets from
Evaluation messages sent by A2, and to compare these r-triplets with its own local r-triplets. Doing
so allows A1 to find the overall r-triplets, as explained in 4.4.3. After this, A1 sends the overall
r-triplets that it just found to A2 with an Evaluation message, and passes the token to A2. Upon
receiving the token, A2 enters State #1 and follows the same instructions as A1 did during the
previous turn. However, additionally to the Evaluation messages containing the local r-triplets
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from A1 that any agent is supposed to have received at the beginning of State #1, A2 has also
received the overall r-triplets sent by A1 during the previous turn, and that are not needed until
State #2. Since both sets of messages carry the same performative and the same type of content,
A2 does not know which r-triplet it is supposed to consider as local r-triplets to compute the overall
r-triplets, and which r-triplets it is supposed to ignored. Timing the Evaluation messages sent by
A1 during State #1 in order for them to be received by A2 only when A2 enters State #2 solves
this issue.

The notation of a message is the following; a message with:

• a performative Performative,

• a content T = {T1, . . . , Tn} were each Ti is a different type of content, and

• timed for the agent state #State

is written Performative#State(T1, . . ., Tn). Certain elements of a message have identifiers. If an
agent A1 is about to send an element that has an identifier, and knows that the other agent A2

already has access to an element with the same identifier, the agent A1 automatically substitutes
this element by its identifier.

Computing Adjunct Sets

After naming examples, the most basic function that an agent should have is to compute adjunct
sets of concepts. This function links the left-path and the right-path associations by retrieving
the set of examples subsumed by the intensional definition of a concept. By default, the adjunct
set is computed using the current contrast set of the agent. The notion of adjunct set is defined
in Definition 17. An agent Ak computes the adjunct set of a concept C = 〈s, I, E〉 such that
I = {g1, . . . , gn} by directly creating the set of examples Adj(C,Uk) = {e ∈ Uk|∃g ∈ I ∧ g v e}.

Computing Local R-Triplet and Pairing Relation

Using its adjunct sets, an agent Ak can find the local pairing relation between two concepts Ci
and Cj as explained in Section 4.4.1. First, Ak builds the local r-triplet r(Ci, Cj , Uk), and then
computes the local pairing relation rUk using Definition 22. The computation of a local R-Triplet
and the computation of its associated relation has already been detailed in Figure 5.1. In this
figure, two adjunct sets are isolated from one context Q which contains eight examples. The two
adjunct sets are used to compute three partial sets a, b and c. The size of these pairing partial
sets are used to determine the local r-triplet of the relation, which is then translated as a pairing
relation type.

Inferring Overall Pairing Relation from Received Triplets

Using the composition law presented in Conjecture 2, an agent can infer an overall pairing relation
between two concepts Ci and Cj from a local pairing relation received from another agent and its
own corresponding local pairing relation. However, the two agents need the intensional definitions
of both Ci and Cj in order to compute their local r-triplets and infer the overall pairing relation.
Once the overall relation of two concepts is obtained, the agents know if these two concepts are
causing a semantic or lexical disagreement.

In an error-free model, having both local triplets is enough to find the overall relation between
two concepts from different agents. However, in an error-tolerant model, the agents might need to
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Figure 5.1: Relation between the context, concepts’ adjunct sets, pairing partial sets, r-triplets and
pairing relations. The left-path (intensional definitions) partitions a context into adjunct sets. Two
adjunct sets create three theoretical pairing partial sets. The count of examples in each pairing
partial sets gives the r-triplet of the relation between the two adjunct sets. The r-triplet gives the
quality of the pairing relation of the concepts from with the left-paths have been borrowed to make
adjunct sets.

exchange more knowledge. This problem is discussed in Section 6.1. The computation of the overall
pairing relation from two local ones is represented in Figure 5.2. In this figure, the agents compute
different local r-triplets that are conflicting with each others, one resulting in a disjunction pairing
relation and the other in an inclusion pairing relation. However, combining them with Conjecture
2 results in an overall r-triplet corresponding to the overall r-triplet of the two Concepts C1 and
C2.

Disagreement Listing

Finding and listing the disagreements in order to resolve them is one of the main functions of
the agents. In order to resolve a disagreement, both agents should be aware of its existence and
have characterized it: they should know which signs and pairing relation (or absence of relation) is
behind it. That is why the disagreements are always characterized in the overall context. Before
starting to resolve their disagreements, the agents should exchange enough knowledge to be certain
of the nature of the eventual overall relations that cause these disagreements.

As soon as two local relations involving the two same concepts are exchanged, the agents can
categorize and list the semantic, lexical or self disagreements depending on the inferred overall
relation and origin of the two concepts. An untranslatable disagreement, on the other hand can
only be listed after an extensive transfer of the agents’ intensional definitions and the inference of
all the overall pairing relations, as it is characterized by the absence of a pairing relation.

In the case of the lazy strategy presented in Chapter 8, the agents do not exchange all their
intensional definitions at the start of the argumentation, and therefore have to be vigilant on the
fact that each concept belonging to a same system of disagreement should have an equivalent in
another contrast-set.
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Figure 5.2: Example of overall pairing relation computation.

Creating New Signs

Each agent can create a sign. The creation of a new sign is simple, as the signs are in an arbitrary
relation with the two other semiotic elements. The created signs are ensured to be all different
by keeping track of the previously created signs, and by choosing a specific structure for the new
signs that differentiates them from the signs that are already existing in the agents’ contrast sets.
For instance, in our implementation, all the new signs start with the radical newSign_, followed
by a unique number that is incremented each time that a sign is created.

The sign created by an agent can also be used by another agent, as long as this sign has been sent
to the other agent along with the semiotic element to which it is associated.

Creating New Concepts from Right-Path Associations

An agent can learn a new concept if it received a set of examples associated to one sign. If the
agent receives the class U(7→ s), it can learn by inductive learning a new intensional definition
I = {g1, . . . , gn} such that I subsumes U . Other classes can be involved in the learning as negative
examples: for instance, if an agent receives two classes U+(7→ +) and U−(7→ −) and wishes to
create a concept that corresponds to the first class, it can learn an intensional definition I+ that
covers the examples U+ without covering the examples U−.

In our model, these intensional definitions are learned through inductive learning, using the ABUI
algorithm. Any machine learning technique can be used to create a set of generalizations that
respect these properties (only subsuming the examples from the designed class). However, in the
case where an absolutely accurate learning is not guaranteed or possible, the model needs to be
adapted to account a certain degree of error. The aforementioned adaptations are presented in
Section 6.1.
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Figure 5.3: The creation of a concept C = 〈s, I, E〉 from a right-path association (left) and a
left-path association (right), by respectively retrieving the intensional definition through inductive
learning and retrieving the extensional definition through the computation of the adjunct set.

Once the agent has created an intensional definition I, it creates the new concept C = 〈s, I, U+〉
as the association of the three semiotic elements. Agents mostly create concepts in this fashion to
create their initial contrast sets, when they receive their initial sets of right-path associations. They
also use this method to generate new beliefs, when they need to cooperatively create new concepts
with other agents without having an intensional definition upon which to base this creation.

Creating New Concepts from Left-Path Associations

When an agent does not directly have access to the right-path associations, it can still create a
concept from an intensional definition I and a sign s by creating the adjunct set of the concept
from which I and s originates, as the adjunct set only requires an intensional definition to be
computed. By doing so, the agent obtains a set of left-path associations. If an agent Ak receives
an association I = {g1, . . . , gn} 7→ s, it can directly create the concept C = 〈s, I, Adj(I, Uk)〉.

Creating New Concepts through Argumentation

Creating a new concept Cn = 〈sn, In, En〉 using either left or right-path associations requires for
the agent to have at least two of Cn’s semiotic elements – its sign and either its extensional or
intensional definition. However, our model requires the agents to create new concepts which they
have no semiotic element of, in order to resolve several types of disagreements. In situations like
these, the agents can only create a new concept by arguing with each others.

First, the two agents need to determine which subset of the overall context will be the extensional
definition of a new concept. This set is written U+

n = Adj(Cn, UO), as the extensional definition of
our new concept Cn should ideally be Cn’s adjunct set according to Definition 17. In the context of
a disagreement which involves two concepts C1 and C2, U+

n is determined to be one of the overall
pairing partial sets UO,1, 2, UO,1,2, UO, 1,2 of C1 and C2. The choice of a particular set depends on
the type disagreement that the agents are resolving, which we discuss later in Section 5.5.

The relative complement of U+
n with respect to UO is written U−n . Together, U+

n and U−n partition
the overall context UO. Even if it has determined which overall pairing partial set of the pair of
concept C1, C2 is U+

n , Ak cannot directly access the sets U+
n and U−n as it might contains examples

from U−k. Ak can only access its local examples of U+
n , the set U+

n,k = U+
n ∩ Uk.
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Figure 5.4: The creation of a new concept through the use of argumentation. The main steps
are: determining an overall pairing partial sets from two intensional definitions, creating the cor-
responding local partial sets, arguing on the adequacy of proposed intensional definitions for the
overall pairing partial set, and creating an arbitrary sign.

The next step for the agents is to create an arbitrary sign sn that each agent Ak will associate
with its set of examples U+

n,k. Since sn only has the requirement of not belonging to the agents’
joint vocabulary, any agent can create sn and send it to the other agent. Once both agents
have associated their sets of examples U+

n,k with the sign sn, they each have a set of association
U+
n,k

r
k 7→sn. One agent A1 is then chosen to create a new intensional definition from this set of

right-path associations, using the same method as for the creation of new concepts using right-path
associations detailed in Section 5.1.3. A1 is chosen accordingly to the type of disagreement that
Cn is supposed to help resolving, which we discuss later in Section 5.5.

Since U+
n,1 is only a subset of U+

n , there is an important risk that the intensional definition It11 which
is learned over U+

n,1 subsumes examples subsumes examples that belong to the set U−n,2 = U−n ∩U2,
or on the contrary does not subsume examples from U+

n,2. Since U+
n,2 and U−n,2 are also subsets

of respectively U+
n and U−n , a such scenario would imply that Itn is not fit to be the extensional

definition of U+
n . In order to help A1 to create a suitable intensional definition for U+

n , the agent
A2 can argue about the fitness of It1n over U+

n so A1 can create a more fitting intensional definition
It2n . This argumentation can be done over any intensional definition Itxn until a final intensional
definition ItFn that is suitable for U+

n is found. The argumentation model used to find ItFn is
discussed in Section 5.1.3. Once the intensional definition is found, each agent Ak creates its own
version of the new concept Ckn = 〈sn, ItFn , U+

n,k〉. Then, A1 adds C1
n to its contrast set while A2

adds C2
n to its hypothesis.

Managing the Creation of a New Intensional Definition

As mentioned in the previous section, only one agent is in charge of a new concept’s creation
through argumentation while the other agent is helping by arguing over the correctness of the
relation between the new concept’s extensional and intensional definitions. When an agent learns
that it will have to create a new concept through argumentation, it decides whether or not to
take the lead according to the following rules. The agent decides to take the lead according to the
protocol described in Section 5.5.5.
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5.2 Argumentation in Concept Creation

5.2.1 Intensional Definitions as Binary Classifications

Before arguing in the process of a new concept Cn’s creation, the agents have already determined
the extensional definition and the sign of the new concept. The agents are however missing the
intensional definition I(Cn), and the argumentation is what will help them to find it. As we
mentioned in Section 5.1.3, the main issue with finding I(Cn) is that the agents need to ensure
that I(Cn) is subsuming every elements of U+

n without subsuming any element of U−n . This requires
to test all the elements of the overall context, which cannot be done by one agent individually as
none of the agents is supposed to have access to the overall context.

The agents can however overcome this issue by cooperating in the creation of I(Cn). In order to
explain how, let’s consider the creation of I(Cn) as a binary classification over UO. The agents
want I(Cn) to subsume the examples of the extensional definition U+

n without subsuming the other
examples from UO, U+

n is similar to a set of positive elements. Likewise, the set of examples U−n is
similar to a set of negative elements since it is the relative complement of U+

n with regard to the
entire population of our test UO. By subsuming or not the examples of UO, I(Cn) creates another
partition of UO into positive and negative assignments. The positive assignments of I(Cn) are the
examples {e ∈ UO|I(Cn) v e}, which according to Definition 18 is the adjunct set of I(Cn). The
set of negative assignments of I(Cn) is {e ∈ UO|I(Cn) 6v e}, equivalent UO − Adj(I(Cn), UO). In
order to be an intensional definition for Cn.

According to Definition 11, I(Cn)’s set of positive assignments should be equivalent to the set of
positive elements in order for I(Cn) to be an adequate intensional definition for Cn. Representing
I(Cn) as a binary classification allows us to measure the adequacy of any intensional definition I
to the role of intensional definition of Cn in terms of true positives, true negatives, false positives
and false negatives. These four sets are defined as:

• The set of true positives of I is TP (I) = {e ∈ U+
n |I v e}

• The set of true negatives of I is TN(I) = {e ∈ U−n |I 6v e}

• The set of false positives of I is FP (I) = {e ∈ U−n |I v e}

• The set of false negatives of I is FN(I) = {e ∈ U+
n |I 6v e}

If the intensional definition has I no false positives or false negatives, therefore the set of I’s positive
assignments is equivalent to the set of positive elements and I is suitable to be the intensional
definition I(Cn) of the new concept Cn. Therefore, in order to be sure that I = I(Cn), the agents
should agree that both FP (I) and FN(I) are empty. However, as we mentioned, no agent has
individually entirely access to U+

n or U−n . But since the overall context is the union of the two
local contexts, we know that:

• (FP (I) ∩ U1 = ∅) ∧ (FP (I) ∩ U2 = ∅)⇔ FP (I) = ∅

• (FN(I) ∩ U1 = ∅) ∧ (FN(I) ∩ U2 = ∅)⇔ FN(I) = ∅

While the agents cannot directly access U+
n and U−n , they can both locally verify that they have

no knowledge of false positives or negatives and share this information in order to know if an
intensional definition is suitable to be the intensional definition of Cn. Exchanging false positives
and negatives is akin to an argumentation process.
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5.2.2 Argumentation Model

In formal argumentation theory, an abstract argumentation framework consists of a combination
of a set of abstract elements A = {α1, . . . , αn} called arguments, and a binary relation R on A2

called attack relation. A specificity of our model is that an attack relation is always univalent.
An argument α attacking another argument α′ is written α � α′. In our argumentation model,
an argument α represents a binary classification of a context U , partitioning U into positive and
negative assignments.

In our argumentation model, each argument can be related to one of the two agents A1 and A2

that are arguing, to a set of examples called its extension, to a sign called its label, and to an
intensional definition called its intension. An argument can also be marked by a marking function.

Definition 30 (Belonging of Argument). Let Ag = {A1, A2} be a set of two agents, and A =
{α1, . . . , αn} a set of arguments. A belongs to relation is a univalent binary relation over A and
Ag that can relate an argument α ∈ A to exactly one agent Ak ∈ Ag.

Definition 31 (Label of Argument). Let S = {s1, s2} be a set of two signs, and A = {α1, . . . , αn}
a set of arguments. A labels relation is an injective binary relation over S and A that can relate
exactly one sign s ∈ S to an argument α ∈ A.

Definition 32 (Extension of Argument). Let U be the set of all possible sets of examples, and
A = {α1, . . . , αn} a set of arguments. The relation is extension of is an injective binary relation
over U and A that can relate exactly one set of examples U ∈ U to an argument α ∈ A.

Definition 33 (Intension of Argument). Let I be the set of all possible sets of generalizations, and
A = {α1, . . . , αn} a set of arguments. The relation is intension of is an injective binary relation
over I and A that can relate exactly one intensional I ∈ I definition to an argument α ∈ A.

Definition 34 (Marking Function). Let A = {α1, . . . , αn} be a set of arguments and R an attack
relation on A2. The marking function m : A × R → {accepted, rejected} is a function such that
for every argument α ∈ A:

m(α,R) =

{
rejected, if there exists α′ � α in R, and if m(α′, R) = accepted.
accepted, otherwise.

(5.1)

In our model, the agents use arguments to cooperatively create new intensional definitions. In
order to do so, they have one argumentation tree in their argumentation. An argumentation tree is
a tuple of sets of agents, signs, arguments and relations, written Γ = 〈Ag, S,A,A′, R,B, L,E, F 〉,
that is defined in Definition 35. The argumentation trees of our model need to respect some
properties. An argumentation schema is a step in the process of the creation of a new intensional
definition in the context of concept creation through argumentation.

Definition 35 (Argumentation Tree). Let Ag = {A1 and A2} be a set of two agents, and S the
set of signs {+,−}. Let A = {α1, . . . , αn} be a set of arguments called set of active arguments and
A′ a subset of A called set of accepted arguments, R an attack relation over A2, B a belongs to
relation over Ag and A, L a labels relation over A and S, E an is extension of relation over A and
the set of all possible sets of examples U and F an is intension of relation over the set of all possible
sets of generalizations I and A. The tuple Γ = 〈Ag, S,A,A′, R,B, L,E, F 〉 is an argumentation
tree if:

• there is exactly one argument α in A such that α attacks no other argument from A, called
root of Γ.



5.2. ARGUMENTATION IN CONCEPT CREATION 59

• for each agent Ak in Ag, there are no arguments α, α′ such that (α,A1) and (α′, A2) exists
in B, and α� α′ exists in R.

With the notion of argumentation tree, we can now formally define an argumentation schema.
This definition holds in the context of the creation of a new concept, and does not cover a general
strategy of argumentation, presented in this thesis.

Definition 36 (Argumentation Schema). Let A1 and A2 be two agents that have UO for overall
context, Γ an argumentation tree that a set of agents {A1, A2}, U+ a set of examples such that
U+ ⊂ UO. The tuple ∆ = 〈A1, A2,Γ, U

+〉 is an argumentation schema. We say that ∆ is an
argumentation schema between A1 and A2, that ∆ is an argumentation schema over UO, and that
U+ is the set of positive examples of ∆.

We use the notation presented in Definition 38 to refer to the specific constituents of an argu-
mentation schema ∆, and the notation presented in 37 to refer to the specific constituents of an
argumentation tree Γ.

Definition 37 (Argumentation Tree Constituents). For any argumentation tree Γ such that Γ =
〈Ag, S,A,A′, R,B, L,E, F 〉, Ag(Γ) is the set of agents Ag, S(Γ) is the set of signs S, A(Γ) is the
set of active arguments A, A′(Γ) is the set of accepted arguments A′, R(Γ) is the attack relation
R, B(Γ) is the belongs to relation B, L(Γ) is the labels relation L, E(Γ) is the is extension of
relation E and F (Γ) is the is intension of relation F .

Definition 38 (Argumentation Schema Constituents). For any argumentation schema ∆ equals
to 〈A1, A2,Γ, U

+〉, Ag(∆) is the set of agents {A1, A2}, U+(∆) is the set of examples U+, UO(∆)
is the overall context of A1 and A2 and Γ(∆) is the argumentation tree Γ.

Let A1 and A2 be two agents, and U+ and U− two sets partitioning the overall context UO =
U1 ∪ U2 of A1 and A2. The two agents A1 and A2 aim to create a new concept C through
argumentation, such that C has for adjunct set the set of examples U+ in the overall context.
The agents will create a new argumentation schema ∆0 = 〈A1, A2,Γ0, U

+〉 with an argumentation
tree Γo = 〈{A1, A2}, {+,−}, A0, A

′
0, R0, B0, L0, E0, F0〉, such that A0 = A′0 = ∅, and the binary

relations R0, B0, E0, F0 do not contain any pair. The agents will then, turn by turn, add new
arguments in the argumentation schema ∆0 that will change both ∆0 and its argumentation tree,
until the agents find after n turns an argumentation schema ∆n = 〈A1, A2,Γn, U

+〉 such that the
root of Γn represents an acceptable binary classification for U+.

5.2.3 Argument Types and their Insertion and Deletion

There are three different types of arguments that can be added to an argumentation schema: the
root-arguments, the g-arguments and the e-arguments, and the agents need to follow certain rules
specific to each type when inserting or deleting an argument to the argumentation schema. An
argument added to an argumentation schema is directly added to its argumentation tree.

Definition 39 (Root-Argument). Let Ak be an agent, s a sign and U a set of examples and I a
set of generalizations. The tuple α = 〈s,Ak, I〉 is a root-argument.

Definition 40 (E-Argument). Let Ak be an agent, α′ an argument, s a sign and U a sets of
examples. The tuple α = 〈α′, s, Ak, U〉 is an e-argument.

Definition 41 (G-Argument). Let Ak be an agent, α′ an argument, s a sign, and I a set of
generalizations. The tuple α = 〈α′, s, Ak, I〉 is a g-argument.
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Let Γt = 〈Ag, S,At, A′, Rt, Bt, Lt, Et, Ft〉 be an argumentation schema. In order to insert a new
root-argument α = 〈s,Ak, I〉 in Γt, an agent Ak ∈ Ag must replace Γt by a new argumentation
tree Γt+1 such that the set of active arguments At+1 is equal to At, the set of accepted arguments
A′t+1 is equal to A′t, the attack relation Rt+1 is equal to Rt ∪ α� α′, the belongs to relation Bt+1

is equal to Bt ∪ (α,Ak) the labels relation Lt+1 is equal to Lt ∪ (s, α), the is extension of relation
Et+1 is equal to Et, and the
emphis intension of relation Ft+1 is equal to Ft ∪ (α, I).

In order to insert a g-argument α = 〈α′, s, Ak, I〉 to Γt, the agent Ak replaces Γt with the same
new argumentation tree Γt+1 than it would have for a root-argument 〈s,Ak, U, U ′〉, except for the
relation At+1 which is then equal to At ∪ α� α′.

In order to insert a e-argument α = 〈α′, s, Ak, U〉 to Γt, the agent Ak replaces Γt with the same
new argumentation tree Γt+1 that it would have for a root-argument 〈α′, s, Ak, U, U ′〉, except for
the relation Et+1 which is then equal to Et ∪ (U ′, α), and the relation Ft+1 which is then equal to
Ft.

An argument can only be inserted once, which means that Rt+1, Bt+1 and It+1 always remain
univalent while Lt+1 and Et+1 always remain injective.

An agent can also delete an argument α from an argumentation schema that has an argumentation
tree Γt. It does so by replacing Γt with another tree Γt+1 where α has been removed from the
set of active arguments of Γt, and where all pairs from all the relations of Γt that contains α have
been removed from their corresponding relations in Γt.

5.2.4 Classification and Agreement upon Arguments

An agent Ak either agrees or disagrees upon all arguments α of an argumentation schema ∆. Let
Γt be the argumentation tree of ∆ where α belongs to the set of active arguments. In order to
determine if it agrees upon α, Ak needs to determine two other elements: the coverage V (α,∆)
of the argument α is assimilated to the set of examples that are positive assignments of α, and
the target T (α,∆) of α which is assimilated to the set of examples that are positive values in
the classification attempt that α makes. — classifications have positive and negative values and
assignments that happens here to be examples. I added that they were examples to make it more
intuitive.

Definition 42 (Coverage). Let U be the set of all possible sets of examples and G the set of
all possible argumentation schemas. Let V : A(Γ(G)) × G → U be a function that, for every
argumentation schema ∆ ∈ G and every argument α in A(Γ(∆)), yields a set of examples defined
as follows: :

V (α,∆) =

{
Adj(I, UO(∆)), if (I, α) ∈ F (Γ(∆)).

U, if (U,α) ∈ E(Γ(∆)).
(5.2)

We call the set of examples V (α,∆) the coverage of α in ∆.

Definition 43 (Target). Let U be the set of all possible sets of examples and G the set of all
possible argumentation schemas. The target function T : A(Γ(G))×G→ U is a function such that
for every argument α in A(Γ(∆)) and every argumentation schema ∆ ∈ G :
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T (α,∆) =



U+(∆), (α� α) 6∈ R(Γ(∆)).

V (α′,∆)− U+(∆), (α� α′) ∈ R(Γ(∆)), and (s, α) and (s′, α′) both exists
in S(Γ(∆)) such that s 6= s′.

U+(∆)− V (α′,∆), (α� α′) ∈ R(Γ(∆)), and (s, α) and (s, α′) both exists
in S(Γ(∆)).

(5.3)

We use the notation FP (α,∆) = V (α,∆) − T (α,∆) for the examples that are the false positives
of the argument α in the argumentation schema ∆, and FN(α,∆) = T (α,∆) − V (α,∆) for the
examples that are the false negatives of the argument α in the argumentation schema ∆.

In the context of binary classifications, the coverage of an argument α can be seen as a classification
that α does of its target in the argumentation schema’s context. The target of an argument can
then be seen as either the set of positive examples of its argumentation schema in the case of a
root-argument, or the set of either false positives or false negatives for the classification done by
an argument α′ attacked by α otherwise. An agent Ak will agree upon the argument α if, to its
knowledge, the coverage and the target of α are equal. The agreement function is formally defined
below.

Definition 44 (Argument Agree Function). Let G be the set of all possible argumentation schemas.
Then agree: Ag(G)×A(Γ(G))×G→ {true, false} is a function such that, for every argumentation
schema ∆ ∈ G, every agent Ak ∈ Ag(G) and every argument α in A(Γ(∆)) yields a Boolean value:

agree(Ak, α,∆) =

{
true, if FP (α,∆) ∩ Uk = ∅ and FN(α,∆) ∩ Uk = ∅.
false, otherwise.

(5.4)

In our argumentation model, we impose as an additional rule that an agent Ak can insert an
argument α in an argumentation schema ∆ only if agree(Ak, α,∆) = true.

5.2.5 Generating Counter-Arguments

In an argumentation schema ∆ between two agents A1 and A2, if an argument α such that (α
belongs to Ak) ∈ B(Γ(∆)) subsumes a set err ∈ {FP (α,∆), FN(α,∆)}, then since α can only have
been inserted in ∆ if agree(Ak, α,∆) = true, the intersection err ∩Uk is always empty. According
to Definition 36, we know that UO(∆) is the overall context of A1 and A2. According to Definition
43, we also know that FP (α,∆) and FN(α,∆) are subsets of UO(∆). This means that the true
and false positives —and therefore the examples of err— are in the overall context of the agents.
Moreover, according to Definition 24 that the overall context of our agents is the union of their
two sets. Therefore, we know that if err is not empty, then err ∈ U−k.
If an agent Ak does not agree upon an argument α, it can create an other argument α′ to attack α
in order to notify A−k that the set err ∈ {FP (α,∆), FN(α,∆)} is non-empty. We say that α′ is a
counter-argument of α. A counter-argument is an argument that targets either the false positives
or negatives of the argument it attacks. We will now see how Ak can create a counter-argument
α′ such that T (α,∆) = err. Once inserted in the argumentation schema, the argument α′ will
cause α to be marked as rejected by the marking function m defined in Definition 34. In order to
create α′, the agent will used either a set of examples or an intensional definition learned through
the ABUI algorithm, introduced in Chapter 1 and presented below.

ABUI is an inductive learning algorithm that has two modes. Its intension generation mode is a
mode that, for a set of generalizations AA called set of accepted arguments and two sets of positive
and negative examples U+ and U−, will try to find an intensional definition I such that:



62 CHAPTER 5. AGENT ARGUMENTATION MODEL

• I v U+ and I 6v U−, and
• For each each generalization g ∈ I and each generalization g′ ∈ AA, g 6v g′.

The second mode of ABUI, called the argument generation mode, is a mode that for a generalization
g, a set of generalizations AA called set of accepted arguments and two sets of positive and negative
examples U+ and U−, will try to find a generalization g′ such that:

• g v g′, and
• g′ v U+ and g′ 6v U−, and
• For each generalization g′′ ∈ AA, g′ 6v g′′.

Definition 45 (ABUI Function). Let I be the set of all possible sets of generalizations, U the
set of all possible examples and G the set of all possible argumentation schemas. Then ABUI:
A(Γ(G)) × S(Γ(G)) × U × G → I is a function such that for an argumentation schema ∆, an
argument α ∈ A(Γ(∆)), a set of examples U and a sign s ∈ S(Γ(∆)), ABUI(α, s, U,∆) yields:

• I = g1 ∪ . . . ∪ gn, if I ′ = {g′1, . . . , g′n} is intension of α exists F (Γ(∆)) and if the argument
generation mode of the ABUI algorithm can create a generalization gi for each g′i ∈ I ′, such
that:

• gi v g′i, and
• for each g′′ ∈ {I ′′ ∈ A′(Γ(∆))|(I ′′, α) ∈ F (Γ(∆)) ∧ (s′, α) ∈ L(Γ(∆))}, gi 6v g′′, and
• for each example e ∈ U , gi v e and for each example e′ ∈ (UO(∆) − {e ∈ U |gi v e}),
gi 6v e′.

• I = ∅, otherwise.

The ABUI algorithm is useful to create an intensional definition that subsumes the false positives
or false negatives made by an argument through inductive learning. With the ABUI algorithm, an
agent can create a counter argument for any argument by using the attack function defined below.

Definition 46 (Attack Generation). Let I be the set of all possible sets of generalizations, U the
set of all possible sets of examples, A the set of all possible sets of arguments and G the set of
all possible argumentation schemas. Then attack: Ag(G) × A(Γ(G)) × G → A is a function such
that, for an argumentation schema ∆, an agent Ak ∈ Ag(∆), and an argument α in A(Γ(∆)),
attack(Ak, α,∆) yields a set of arguments (P ∪N), where P and N are defined as follows:

1. P is the a of arguments such that:

• P = ∅ if FP (α,Γ) = ∅, and
• otherwise:

– P = {〈α, s′, Ak, I〉} if ABUI(α, s′, FP (α,∆)∩Uk,∆) yields a non-empty intensional
definition I, and

– P = {〈α, s′, Ak, FP (α,∆) ∩ Uk〉} otherwise.
2. N is a set of arguments such that:

• N = ∅ if FN(α,Γ) = ∅, and
• otherwise:

– N = {〈α, s,Ak, I〉} if ABUI(α, s, FN(α,∆)∩Uk,∆) yields a non-empty intensional
definition I, and

– N = {〈α, s,Ak, FN(α,∆) ∩ Uk〉} otherwise.
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5.2.6 Argumentation Schema Integration

Argumentation for Concept Creation Setup

An argumentation in the context of concept creation takes place during one step of the global
argumentation over the meaning that our agents have in our model. Once having decided how to
determine if an example e should belong to the adjunct set U+ of the new concept’s intensional
definition I or not as explained in the beginning of this section, two agents A1 and A2 can create
a new argumentation schema ∆0 = 〈A1, A2,Γ0, U

+〉 with an argumentation tree Γo = 〈Ag =
{A1, A2}, S = {+,−}, A0, A

′
0, R0, B0, L0, E0, F0〉, such that all sets in Γ0 are empty. We will

now explain how the agents can, turn by turn, add new arguments in the argumentation schema
∆0 that will change both ∆0 and its argumentation tree, until the agents find after n turns an
argumentation schema ∆n = 〈A1, A2,Γn, U

+〉 such that the root-argument αr of Γn represents an
acceptable binary classification for U+, such that I is intension of αr in ∆. At the beginning of
the argumentation in the context of concept creation, the agents should have decided which one
of them will lead the argumentation, according to the protocol described in Section 5.5.5. We will
consider A1 to be the lead for the rest of the section. A1 will be in charge of the creation of the
root-argument αr, while A2 will support A1 during the argumentation.

The general idea remains the same as for the rest of the general argumentation. The agent with
the token inserts or deletes arguments in the argumentation schema, send messages and passes the
token. The agents exchange their arguments through messages. Each agent Ak keeps an instance
of their current argumentation schema ∆t in memory, and sends a message Insert-Argument(α)
or Delete-Argument(α) when it inserts or deletes an argument from ∆t. This allows the agents
to create ∆t+1 in parallel. When new examples are added to the argumentation schema, the
agents add them to their contexts: for any argument α, if an agent Ak notices upon creating the
argumentation schema ∆t+1 that there exists a set of examples U such that (U,α) 6∈ E(Γ(∆t))
and (U,α) ∈ E(Γ(∆t+1)), then Ak adds the examples from U to its context Uk.

First Turn of Argumentation for Concept Creation

During its first turn, the agent A1 attempts to create a new root argument αr = root(∆0) using
the function root defined below.

Definition 47 (Root Creation Function). Let G be the set of all possible argumentation schemas,
A the set of all possible root-arguments and ABUI the algorithm presented in Definition 45. The
function root: Ag(G) × G → A is a function that, for each argumentation schema ∆ and each
agent Ak of ∆, root(Ak,∆) yields:

• 〈+, Ak, I〉, if the intension generation mode of ABUI algorithm can create an intensional
definition I such that for each generalization g ∈ I:

• for each g′ ∈ {I ′ ∈ A′(Γ(∆))|(I, α) ∈ F (Γ(∆)) ∧ (− labels α) ∈ L(Γ(∆))}, g 6v g′, and
• for each example e ∈ (U+(∆)∩Uk), I v e and for each example e′ ∈ ((UO(∆)−U+(∆))∩
Uk), I 6v e′.

• 〈+, Ak, ∅〉, otherwise.

If A1 succeeds to create a root-argument αr with a non-empty intensional definition, A1 inserts
αr in the argumentation schema ∆0 that becomes ∆1. If A1 does not succeed to create a root-
argument with a non-empty intensional definition, the argumentation for concept creation stops.
During its first turn the agent A2 does nothing.
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Second Turn of Argumentation for Concept Creation

During its second turn, the agent A2 verifies whether or not it agrees with the root αr of ∆1

by checking the value of agree(A2, αr,∆1). If agree(A2, αr,∆1) = true, the argumentation for
concept creation stops on a success as the intension of αr, being agreed upon by both agents, is an
intensional definition that classifies the examples U+ without any false positives or false negatives
in the overall context UO. If agree(A2, αr,∆1) = false, A2 inserts the counter arguments from
attack(A2, αr,∆1) in the argumentation schema ∆1.

Tth Turn of Argumentation for Concept Creation

If A2 agrees upon the root αr,t of ∆t during its tth turn, then the argumentation for concept creation
stops on a success. Each agent agent Ak starts its tth turn by creating two sets of arguments: agreed
and disagreed. Then, Ak searches for the leaves of ∆t, defined in Definition 48.

Definition 48 (Leaves). For any argumentation schema ∆, the leaves of ∆ are the arguments
from the set:

leaves(∆) = {α ∈ Γ(∆)|(α′ � α) 6∈ R(Γ(∆))}.

For each argument α ∈ leaves(∆t), the agent Ak creates a set of arguments obsoleteα. Then, if
agree(Ak, α,∆t) yields true, the agents Ak adds the argument α to the set agreed since both agents
have agreed upon α, and every argument α′′ such that (α� α′′) ∈ R(Γ(∆)) to the set obsolete since
both agents have agreed upon an argument that defeats α′′. On the contrary, if agree(Ak, α,∆t)
yields false, the agent Ak adds the argument α to the set disagreed since α classifies its target with
either false negatives or positives. Once all the leaves of ∆t have been either agreed or disagreed
upon, the agent Ak deletes the arguments of each set obsoleteα from the argumentation schema
∆t, which becomes the argumentation schema ∆1

t . Then, Ak repeats the same process with the
leaves of ∆1

t , and continues until it reaches an argumentation schema ∆n
t = ∆n−1

t .

Once the argumentation schema ∆n
t has been reached, the agent Ak adds all the arguments from

agreed to the set of accepted arguments A′(Γ(∆n
t )) since they have all been agreed upon by

both agents. Then, for each argument α in disagreed, Ak inserts the counter arguments from
attack(Ak, α,∆n

t ) in the argumentation schema ∆n
t , which becomes the argumentation schema

∆t+1. If the agent A1 notices that ∆t+1 has no root during its tth turn, A1 attempts to create
a new root-argument root(∆t+1) and to insert it in the argumentation schema. If A1 does not
succeed to create a root with a non-empty intensional definition, the argumentation schema for
concept creation stops.

5.3 General Structure of Argumentation

5.3.1 Argumentation Goal

When two agents meet, they are prepared to face a situation where they do not understand each
other. In order to be ready for argumentation, they both create a copy of their initial contrast set.
This copy of their initial contrast set becomes their current contrast set. These current contrast
sets might be modified later if the agents start an argumentation. The goal of an argumentation is
always to make two agents reach mutual intelligibility without changing their contrast sets in a non-
monotonic way. While the agents can chose different strategies to reach the mutual intelligibility
with this constraint, all strategies have the same final goal and also share similar intermediary
goals.
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While Section 4.5 presents the characteristic of mutual intelligibility, this section will focus on its
achievement from a point where our system of two agents is unable to guarantee it. In this section,
we stated that while the synchronic agreement was probably not initially reached by the agents,
the diachronic agreement is initially always found. The diachronic agreement being always initially
found is due to the fact that this agreement symbolize the similarity between the initial and the
current contrast set. Since the current contrast set is initially a copy of the initial contrast set, there
is initially no difference between the two contrast sets and therefore no diachronic disagreement.

5.3.2 Argumentation Turns

Our argumentation model is a turn-by-turn model, meaning that only one agent can take take
actions at a given time. In order to synchronize the turns, the agents have a token. When an agent
gets the token, it takes as many actions as it needs to, and then passes the token to the other
agent which does the same. The beginning of an argumentation on meaning always starts with
the experimenter giving the token to a random agent. The duration which goes from an agent
receiving the token and passing it is called the turn of this agent.

A turn is always organized following the same structure: first the agent receives the token, then
the agent reads its messages, then the agent updates its knowledge according to the new elements
received in the messages, then the agent take the actions that are dictated by its current state and
its current knowledge, then the agent eventually sends messages to the other agent, then the agent
sets its next step, and finally the agent passes the token to the other agent.

5.3.3 Argumentation Steps

An argumentation between two agents is always cyclic. At each iteration of the cycle, the agents are
closer from the mutual intelligibility than they were during the last iteration – even if sometime they
have more synchronic disagreements than during the last iteration. Each cycle of the argumentation
can be divided in steps. In each step, the agents pass by a number of states that determine the
agents’ actions. Once an agent has taken all the actions that are determined by its current state,
it might changes its state and let the other agent take actions. In order to keep track of which
agent should take action, the agents have one token. An agent can act only if it has the token.
The last action of an agent before an action of the other agent is always passing the token, and if
an agent should change its state it always does so as the last action before passing the token.

Each argumentation strategy can be split into four main steps. The first step is to compute some
overall pairing relations between concept(s) from different agents. The second step is to infer
disagreements from the pairing relations computed during the first step, and to list them. The
third step is to pick one disagreement to resolve, and the fourth step is to resolve the disagreement
picked during the third step. Once the fourth step is over, the argumentation goes back to the first
step in a new iteration of its cycle.

5.4 Argumentation Strategies

The different strategies on argumentation over the meaning diverge by their approach to disagree-
ment identification. The first strategy, called the systematic strategy requires from the agents
to exchange all of their intensional definitions when they meet each others. This ensures that
two agents using the systematic strategy start their argumentation with knowledge over all the
synchronic disagreements between the two agents’ initial contrast sets.

The second approach is called the lazy approach. In this approach, the agents are starting their
communication with a naming game: an example is presented to them and the agents name this
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Figure 5.5: Resolution of synonymy and homonymy disagreements by sign replacement.

examples. By comparing the sets of signs used by the agent to name the example, the two agents
can infer if there is a synchronic disagreement between them.

5.5 Resolution of Disagreements

A disagreement can involve a maximum of two concepts. A disagreement might be partially caused
by the signs of these two concepts, as it is the case for the lexical disagreements, however all types
of disagreements are based on the pairing relation between the two concepts. Since removing one
of the concepts from its contrast set removes the pairing relation between them at the same time,
removing a concept involved in a disagreement resolves the disagreement.

However, the examples that were covered by a concept that has been removed would not be covered
anymore. For this reason, a concept that is removed in order to resolve a disagreement should be
replaced by a set of concepts that are not causing synchronic or diachronic disagreements. These
new concepts should, as much as they can, cover the examples that were covered by the concepts
they are replacing. In this section, we present how our model replaces concepts in disagreements
by concepts that are not.

5.5.1 Resolving Lexical Disagreements

In the case of a lexical disagreement, the partition made by the two concepts involved in the
disagreement are not at fault. The two concepts have a pairing relation of equivalence (homonymy)
or are disjoint (synonymy), and the only thing leading them to cause a disagreement is their signs.
Therefore, a concept involved in a lexical disagreement is replaced by a concept that share the
same intensional and extensional definition, but that has a different sign.

Resolving Synonymy Disagreements

Let C1 and C2 be two concepts from two agents A1 and A2, such that their pairing relation in
the overall context UO is Ci ≡UO Cj and their signs are different: s(Ci) 6= s(Cj). According to
Section 4.5.3, Ci and Cj are causing a synonymy disagreement ds. In order to resolve ds, each
agent Ak replaces its concept Ck = 〈sk, Ik, Ek〉 by a new concept C ′k = 〈s, Ik, Ek〉. This process is
represented in Figure 5.5 (left), where two concepts having different signs s0 and s1 are replaced
by two concepts having the same sign s2. The resulting concepts C ′1 and C ′2 are still in a relation
of equivalence, since their intensional and extensional definitions remained the same as C1 and
C2, and their signs are now the same. Therefore, according to Section 4.5.2, the pair of concepts
C ′1, C

′
2 is not causing a disagreement. As mentioned in Section, 5.1.3, the new sign is different

from the signs of the overall vocabulary. Therefore, the new concepts cannot cause a homonymy
disagreement.
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Figure 5.6: Resolution of an untranslatable disagreement by creating a copy C4 of the concept C2

in the bottom contrast set, where C2 had previously no equivalent.

Resolving Homonymy Disagreements

Let C1 and C2 be two concepts from two agents A1 and A2, such that their pairing relation in
the overall context UO is Ci �UO Cj and they share the same sign: s(Ci) = s(Cj). According to
Section 4.5.3, Ci and Cj are causing a homonymy disagreement ds. In order to resolve dh, each
agent Ak replaces its concept Ck = 〈s, Ik, Ek〉 by a new concept C ′k = 〈sk, Ik, Ek〉. This process is
represented in Figure 5.5 (right), where two concepts having the same sign s1are replaced by two
concepts having different signs s3 and s4. The resulting concepts C ′1 and C ′2 are still in a relation
of disjunction, since their intensional and extensional definitions remained the same as C1 and C2,
and their signs are now different. Therefore, according to Section 4.5.2, the pair of concepts C ′1, C ′2
is not causing a disagreement. As mentioned in Section, 5.1.3, the two new signs are different
from the signs of the overall vocabulary. Therefore, the new concepts cannot cause a synonymy
disagreement.

5.5.2 Resolving Untranslatable Disagreements

The untranslatable disagreements are a special scenario, as they are not involving two concepts, but
one concept and the absence of its equivalent in the other contrast-set. Therefore, an untranslatable
disagreement is not resolved by removing a concept but by creating a new one, equivalent to the
concept that has no equivalent. Let C = 〈s, I, E〉 a concept of the agent A1, such that the agent
A2 has no concept C ′ in its contrast set such that C ≡UO C ′. According to Section 4.5.3, this
situation results in an untranslatable disagreement du. In order to resolve du, the agent A2 creates
a new concept C ′ = 〈s, I, Adj(I, U2)〉. Since the two concepts C and C ′ share their intensional
definition – and thus their adjunct set, they are equivalents according to Definition 22. Now that
there exists a concept C ′ in the contrast-set of A2 such that C ≡UO C ′, the situation does not
cause an untranslatable disagreement anymore. Since the sign of the concepts C and C ′ are the
same, the two equivalent concepts are not causing a synonymy disagreement.

5.5.3 Resolving Self-Disagreements

Let C1 and C2 two concepts from an agent A1 such that C1 ⊗UO C2. It is important here to note
a few things. First of all, since C1 and C2 belong to a same contrast set, the agent A1 cannot see
their local pairing relation as C1⊗U1C2, but only as C1�U1C2. This means that A1 has interacted
with another agent A2, such that A2 has in its local context U2 some examples subsumed by both
I(C1) and I(C2). Moreover, the only pairing relation that can be involved in a self-disagreement is
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Figure 5.7: Resolution of a self-disagreement in two steps. First, the examples from the overlap
of the two concepts are re-distributes according to their anti-unification distance to each concept’s
intensional definition, and then inductive learning is used to create a new pair of concepts that
respects the new example distribution.

an overlap. Indeed, if A1 sees the relation between its two concepts as C1�U1 C2, this means that
there are examples both subsumed by I(C1) and not I(C2), and examples subsumed by I(C2) and
not I(C1) – in the local and the overall context. Therefore, the overall pairing relation between C1

and C2 is either an overlap or a disjunction. Since the signs of the concepts from a same contrast set
are all different, the only possible pairing relation causing a disagreement is the overlap. Therefore,
a self-disagreement always involves two overlapping concepts.

An important specificity of the self-disagreement, is that the examples that are in the overlap of
the two concepts have no particular reason to belong to one concept or another. Indeed, the agent
A1 does not know about these examples, therefore their classification cannot affect its synchronic
or diachronic agreement. Moreover, while the agent A2 might classify these examples in two
or more different concepts, the resulting disagreements should be handled as separate semantic
disagreements, not as self-disagreements. For this reason, the two concepts C1 and C2 should be
replaced by a new pair of concepts C ′1, C ′2 such that C ′1 �UO C ′2 and Adj(C ′1, UO)∪Adj(C ′2, UO) =
Adj(C1, UO) ∪Adj(C2, UO).

The two new concepts will be created through argumentation, one after the other. But the first
step for the two agents, is to decide of which sign should be associated to each of the elements
from the intersection of Adj(C1, UO) and Adj(C2, UO). For now, these examples are associated to
both s(C1) and s(C2), which prevents the creation of a new concept through argumentation. Each
agent starts by creating the sets of examples:

• Uk,C1, C2 = Adj(C1, Uk)−Adj(C2, Uk)

• Uk,C1,C2 = Adj(C1, Uk) ∩Adj(C2, Uk)

• Uk, C1,C2 = Adj(C2, Uk)−Adj(C1, Uk)

In order to choose, for each example from U1,2,k, which sign of s(C1) or s(C2) is better suited,
each agent uses the anti-unification similarity measure, written AU similarity measure. The AU
similarity measure is based on the anti-unification distance measure (Ontañón and Plaza, 2012),
which measures the number of steps needed to find the anti-unification of two feature terms. in
our model, the AU measure is used to quantify the similarity between an intensional definition g
and an example e, written dAU(g, e). Let I1 = {g1,1, . . . , g1,m} the intensional definition of C1 and



5.5. RESOLUTION OF DISAGREEMENTS 69

I2 = {g2,1, . . . , g2,n} the intensional definition of C2; For each example e ∈ U1,2,k, Ak calculates
the average similarities:

D1 =
1

|I1|
×

m∑
i=1

dAU(g1,i, e) and D2 =
1

|I2|
×

n∑
i=1

dAU(g2,i, e)

Then, Ak creates a set of examples E1,k = {e ∈ U1,2,k|D1 ≥ D2} and a set of examples E2,k =
{e ∈ U1,2,k|D2 > D1}. Ak then adds the examples from U1, 2,k to E1,k and the examples from
U 1,2,k to E2,k. Finally, Ak associates all the examples of E1,k with s(C1) and all the examples
of E2,k with s(C2). Since the examples of U1,2,k have been re-distributed, the set of associations
E1,k 7→ s(C1) ∪ E2,k 7→ s(C2) is coherent. Moreover, since the agents have both access to the
intentional definitions I1 and I2, an example e that is present in both U1,2,1 and U1,2,2 will have
the same associated distances D1 and D2 independently of the agent that measures them. For
this reason, if the example e is put in the set E1,x by A1, it will be put in the set E2,x by A2 and
therefore associated to a same sign. For this reason, the set of associations E1,1 7→ s(C1)∪E1,2 7→
s(C1)∪E2,1 7→ s(C2)∪E2,2 7→ s(C2) is also coherent, authorizing the agents to learn new concepts
through argumentation.

The new concepts C ′1 and C ′2 are created through argumentation, sequentially. The agents will start
by creating the new concept C ′1 that will replace C1. Following the protocol described in Section
5.1.3 will lead to the agent A1 supervising the creation of C ′1. A1 will therefore create a new belief
α1 using the set of examples E1,1 as a set of positive examples. A2 will evaluate this belief using
E2,1 as the set of positive examples, and eventually argue with A1 until it eventually accepts a belief
α′ = 〈+, I ′1, A1〉. Once the belief is accepted, A1 creates the new concept C1′

1 = 〈s(C1), I ′1, E1,1〉 and
replaces C1

1 with it in its contrast set. Similarly, A2 creates a new concept C2′

1 = 〈s(C1), I ′1, E2,1〉
and replace C2

1 with it in its hypothesis. Adopting the same strategy for the creation of C ′2, the
agent A1 now has a pair of concepts C ′1, C ′2 that are not overlapping in its contrast set.

Of course, the re-distribution of the examples that are belonging to both of the two adjunct sets
Adj(C1, UO) and Adj(C2, UO) could be different. Each example e could be randomly assigned to
one of the two new concepts C ′1 and C ′2, however this would force the agent Ak associating e with
the sign s(Ck) to send the association e 7→ s(Ck) to the other agent, thus increasing the number
of examples exchanged. Without exchanging e, the two agents would risk that A−k also has the
example e in its contrast-set, and associates it with another sign s(C−k). This would result into
an non-consistent set of associations on which to build the new intensional definitions upon, which
is not possible according to Section 5.1.3.

5.5.4 Resolving Semantic Disagreements

Semiotic disagreements are resolved through the refinement of pre-existing concepts, which means
that the concepts involved in a semantic disagreements will either be removed from the contrast
set or replaced by a set of co-hyponyms that are partitioning the examples of the concepts involved
in the disagreement.

Resolving Indistinguishable disagreements

The indistinguishable disagreement is a particular type of example that can only appear if the
model admits an error threshold τE . The notion of error threshold is presented later in Chapter 6.
An error threshold changes the pairing function of our model to neglect non-empty partial sets of
comparatively small sizes during the computation of r-triplets. If two newly created concepts C1

and C2 both have adjunct sets such that Adj(C1, UO) ≥ τE and Adj(C2), UO ≥ τE but:
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Figure 5.8: Resolution of an overlap into two hypo/hypernyms. The overlap between the two
concepts is used to create the extensional definition of a new concept, hyponym of both overlapping
concepts.

• UO,C1,C2
< τE and

• UO,C1,C2
< τE and

• UO,C1, C2
< τE

then, the two concepts are considered to be too close from equivalence and one should be removed.
The agents resolve the indistinguishable disagreement by removing the concept C ∈ {C1, C2} with
the smallest adjunct set Adj(C,UO) from the concerned contrast sets. Since C is removed from
the argumentation, the disagreement caused by the relation between C1 and C2 is resolved. This
resolution causes a loss in the example coverage of the final contrast set.

Resolving Overlap disagreements

Let C2 and C3 be two concepts from two agents A1 and A2, such that their pairing relation in the
overall context UO is C2 ⊗UO C3. According to Section 4.5.3, C2 and C3 are causing an overlap
disagreement do. The transformation of the overlap disagreement do into two hypo/hypernymy
disagreements is represented in Figure 5.8, and the further resolution of all three semantic dis-
agreements is represented in Figure 5.9.

In order to resolve do, A1 and A2 will create a concept C5 that is the hyponym of both C2 and
C3. The adjunct set of the concept C5 will be the set of examples from the overall context that
are subsumed by I(C2) and I(C3). The agents use argumentation in order to create I(C5), as
described in Section 5.1.3. Since neither C2 nor C3 is removed from the agents contrast sets, the
disagreement do is not resolved. Moreover, at least two new disagreements appeared. Since the
adjunct set of C5 is a subset of the adjunct sets of C2 and C3, we have:

• C1 �UO C5, and

• C2 �UO C5.

According to Section 4.5.3, this situation causes two hypo/hypernymy disagreement dh2 where C2

is the hypernym, and dh3 where C3 is the hypernym. However, it is explained in Section 5.5.4 below
that resolving a hypo/hypernymy disagreement involves the removal of the hypernym. Therefore,
resolving either dh2 or d3 will also resolve the disagreement do.
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Figure 5.9: Resolution of two hypo/hypernymies resulting from the resolution of the overlap pre-
sented in Figure 5.8. The agents are creating the co-hyponyms of the concept created to resolve the
overlap. The removal of the hypernyms resolves both the two hypo/hypernymies disagreements
and the overlap disagreement.

Resolving Hypo/Hypernymy disagreements

Let C1 ∈ S1 and C3 ∈ S2 be two concepts from two agents A1 and A2, such that their pairing
relation in the overall context UO is C1 �UO C3, and let C3 be the hypernym of C1. According
to Section 4.5.3, C1 and C2 are causing a hypo/hypernymy disagreement dh. The resolution of
the hypo/hypernym dh is represented in Figure 5.9(A). In order to resolve dh, A2 replaces the
hyponym C3 with two co-hyponyms C5 and C6 in its contrast set. The first co-hyponym, C6, is a
copy of the hyponym C1 where the sign s(C1) has been substituted for a new sign s6 such that:

C6 = 〈s6, I(C1), Adj(C1, U2)〉.

The second co-hyponym, C5, is created through argumentation in order to that its adjunct set
contains all the examples of Adj(C3, UO) that are not in the adjunct set Adj(C6, UO). Once the
two co-hyponyms are created, they come to replace C3 in the contrast set K2. The removal of C3

from K2 resolves immediately the disagreement dh.

5.5.5 Choosing Lead of Argumentation

In cases where the agents A1 and A2 needs to create a new concept through argumentation in
order to resolve a disagreement, one of the two agents will take the lead of the argumentation in
the context of concept creation. When an agent Ak is the first to enter a state where in has to
decide whether of not it should take the lead, it takes the lead the agent A−k has not already taken
the lead, and if:

• the disagreement to resolve is a self-disagreement of Ak, or if

• the disagreement is an untranslatable disagreement, where the untranslatable concept belongs
to Ak’s contrast set, or if:
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– Ak is the only one that have examples that will belong to the concept to create, or
(exclusive or), if the disagreement is a hypo/hypernymy,

– the hypernym belongs to Ak’s contrast set.

This order insures that Ak is the best suited to create root-arguments during the argumentation
in the context of concept creation.

5.5.6 Order of Resolution

Types of disagreements are resolved in order, as certain types of disagreements should only be
resolved once there are no disagreements from other types in the argumentation anymore. Self-
disagreements should always be resolved first, as they are preventing contrast sets to comply
with Definition 14 by putting two concepts from a same contrast set in a relation that is not
a relation of disjunction. Since our model has been designed to allow two agents to align two
contrast sets, ensuring that the containers Kk and K−k are indeed partitions and therefore valid
contrast sets, is the first priority of our agents. If there are not self-disagreement to resolve, the
agents should resolve indistinguishable disagreements in priority. Indistinguishable disagreements
are disagreements that are resolved by directly removing one of the two concepts involved: if a
concept Ci is involved in an indistinguishable disagreement d, it would not be optimal for the agents
to resolve a disagreement d′ caused by two concepts Ci and Cj , eventually creating a new concept
in the process, when d′ is automatically resolved when Ci is removed during the resolution of d.
If there are no indistinguishable disagreement to resolve, the agents should resolve the semantic
disagreements. Since semantic disagreements involve the creation of new concepts and the removal
of old ones, there is no point of resolving lexical or untranslatable disagreements involving the same
concepts, when these concepts will be removed during the resolution of a semantic disagreement.
Finally, untranslatable disagreements are resolved before lexical disagreements. Untranslatable
disagreements still modify the set of concepts of the agents contrast sets, and for this reason,
they need to be addressed before the agents change the sign of their concepts. Once the agents
contrast sets make identical partitions of the overall context, the agents can address the lexical
disagreements and change their signs.

5.6 Conclusion

This chapter uses the formalism defined in Chapter 4 to build our argumentation model. This model
introduces our agents and their capabilities, and specifically how agents can create new concepts
through a specific process. The structure of our argumentation is also presented and detailed, and
the different strategies at the disposal of our agents to resolve encountered disagreements are listed
and detailed.

The ideas presented in this chapter are valid for an error-free learning model. Later modifications
that will in fact allow our argumentation model to assume an error degree in inductive learning.
These modifications will be presented in Chapter 6.



Chapter 6

Inductive Learning Error
Management

6.1 General Idea

Among the three semiotic elements of the concept, the intensional definition stands aside. Unlike
the two other semiotic elements — the sign and the extensional definition — the intensional
definition is not initially present in the data used by the agents to create concepts: it is the element
that has to be learned. The intensional definition is created by the agent through inductive learning,
which means that it can suffer from some of the limitations that are frequently encountered in
symbolic machine learning. Each intensional definition is an attempt at a binary classification (see
Section 5.1.3), and this classification suffers from two limitations associated with every machine
learning classifiers:

1. it requires a certain number of positive and negative examples to be able to learn, and

2. it is likely to produce false positives and negatives (some degree of error is unavoidable)

More generally, we discussed in Section 5.1.3 that when an agent creates a concept C from right-
path associations, it needs a class U( 7→ s) and its associated sign s. In order to be able to use
inductive learning, the number of examples in the class U(7→ s) should be above a certain threshold.
We will call this threshold τ1. Upon learning the new concept C from the right-path associations
U 7→ s, the set of examples U(7→ s) should become the extensional definition of C, admitting
that the classification ended with an accuracy of 1. Therefore, since U(7→ s) ≥ τ1, the extensional
definition E(C) is expected to have at least τ1 examples. Therefore, during their argumentation,
the agents should not consider possible to have concepts that are expected to have less than τ1
examples —and moreover they should never try to create a such concept. This issue is at odds with
the fact that, until now, agents can consider pairing partial sets with a minimum of one example
as non empty —which can cause them to try to create concepts for these partial sets. This can for
instance be the case during the resolution of a semantic disagreement, as we discussed in Section
5.5.

The situation described in the paragraph above assumes that the inductive learning can be achieved
with a perfect accuracy (a zero error degree), which is, as we mentioned earlier, unlikely to happen
– especially because one agent is expected to have access to only roughly half of the examples of
the overall contrast set during the right-path association learning of one of its initial concepts,
which cannot guarantee a good accuracy over the other half of the overall context.

73
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Let A1 and A2 be two agents. Each agent receives an equal and homogeneous partition of a
set of left-path associations U 7→ S = {s . . . sn}. Each agent Ak tries to learn a new concept
Ck = 〈s, Ik, Ek〉. The intensional definition I1 learned by the agent A1 is likely to either not
subsume examples of A2’s context that A2 associates with s (first-type error), or to subsume
examples from A2’s context that A2 does not associate with s (second-type error). That’s why
upon receiving I1 and building a copy of C1 in its hypothesis, A2 cannot assume that the examples
of U2,C1, C2 and U2, C1,C2 are examples from a non-equivalent concept of A1 as it should be the
case with the pairing function presented in Section 4.4.1. The agents need to decide of a threshold
τ2 for the first-type error, and a threshold τ3 for the second-type error, under which the agents
assume that the size of a pairing partial set is not indicative of some hidden concept, but of a
degree of error in the accuracy of the inductive learning method.

Instead of having three different thresholds, we chose to consolidate them in a single error threshold,
since they all aim to change the same thing: the minimal amount of examples in a pairing partial
set for it to not be considered as empty. This single threshold τ is the highest from the minimal
concept size expected τ1, and the maximal error tolerated from our classifications τ2 + τ3. In
our scenarios and experiments, this threshold τ is given as a parameter to both agents before the
communication starts. While it is probably possible to grant the multi-agent system the ability
to find the optimal value for τ by itself, this is not part of our current research goals and we will
not address it. In the general case where concepts from a same contrast set have roughly the same
number of examples, τ2 + τ3 is expected to be inferior to τ1 —the size of a concept should be
greater than the typical classification error, otherwise the classifier’s performances are so poor that
it should not be use in the first place— and therefore we can consider that our threshold can be
τ = τ1 in most practical cases.

There are two aspects to be noticed concerning the error threshold. The first is that the error
threshold cannot be less than one, as an error threshold of zero or less would imply that pairing
partial sets considered as empty have a negative cardinality, which is strictly impossible in our
model. The second is that with an error threshold τ = 1, our model remains as it was before the
introduction of the error threshold. An empty set is a set with no examples, an any number of
example above one results in the set being considered as non-empty.

At this point, it is important to emphasis the fact that we consider the pairing partial sets to be
empty if their cardinality is below the threshold τ purely from the point of view of our pairing
function. The empty set ∅ still remains a set with a 0 cardinality.

However, for two concepts C1 and C2 such that:

• UO,C1,C2 < τ

• UO,C1,C2 < τ

• UO,C1, C2 ≥ τ

they will now be considered as equivalent, C1 ≡UO C2, as if UO,C1,C2 and UO,C1, C2 were empty
while using our initial error-free pairing function.

The introduction of the error threshold, and the transformation that it induces in the notion of
equivalence between concepts, requires the modifications of several definitions. An implementation
of our model with the definitions below and an error threshold τ > 1 is referred as an error-tolerant
model, where the r-triplets will now store the cardinality of the pairing partial sets instead of "0"
for empty and "1" for non-empty. On the other hand, an implementation of our model with the
definitions presented in Chapter 4 is referred as a error-free model, where the r-triplets store "1"
and "0" as Boolean variables for the truth value of the proposition: my corresponding pairing
partial set is non-empty.
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6.2 Effect on Semiotic Elements and Containers

Definition 11 stated that, for any concept Ci, we should have the equality E(Ci) = X(Ci) where
X(Ci) = {e ∈ U |I(Ci) v e}. If the concept Ci has been created from left-path associations, this
definition is not problematic since:

E(Ci)⇔ Adj(Ci, U)⇔ {e ∈ U |I(Ci) v e} ⇔ X(Ci)

The equality E(Ci) = X(Ci) is maintained and our definition still stands. However, if the concept
is created from right-path associations or through argumentation, the situation is different. In
each of these two situations, the extensional definition E(Ci) of the created concept is the subset
U+ ⊂ U that served as positive examples during inductive learning. As we now admit a certain
degree of error during our inductive learning, the introduction of τ should be reflected in the
relation between E(Ci) and U+ that can no longer be considered an equality relation.

A solution would be to modify the equality E(Ci) = X(Ci) in the definition of concepts, but
we prefer to actually modify the creation process of our concepts, in order to keep the equality
E(Ci) = X(Ci) and prioritize the left-path associations over the right-path associations in our
model. If the model admits an error threshold τ > 1, any concept created in a context U should
have its extensional definition E(Ci) to be E(Ci) = Adj(Ci, U).

However, the decision to keep E(Ci) = X(Ci) impacts directly the contrast sets, that cannot be
longer strict partitions. Given the consistent set of right-path associations U 7→ S, such that
S = {s1, . . . , sn}; if an agent A learns a concept Ci for each class U( 7→ si) with si ∈ S, then we
can now tolerate that 1) I(Ci) subsumes up to τE examples that are in the set U − (U(7→ sj))
and 2) I(Ci) does not subsume τ examples that are in U(7→ si). While the fact that U 7→ S is
consistent means that (U, {C(si)|si ∈ S}) should be a contrast set if the inductive learning takes
place with a perfect accuracy during the creation of each Ci, this is not the case if the learning
admits a degree of error τE . Actually, if both Ci and Cj have bean created with a first-type error
of τ , the overlap Ei ∩ Ej can reach 2 × τ , but we cap the maximum size of the intersection to τ
for the sake of simplicity. The container (U, {C(si)|si ∈ S}) is not a contrast set anymore, as it is
not a proper partition. We must change our definition of a contrast set such that:

• regarding the first point, the intersection between two extensional definitions of two different
concepts can be non-empty as long as it is not above the threshold τ , and

• regarding the second point, we cannot longer guarantee that E1 ∪ . . . ∪ En = U .

Taking these two limitations into account, we can now give a new definition to contrast sets,
Definition 49 below. This definition applies, instead of Definition 14, in implementations that use
an error-tolerant model.

Definition 49 (Contrast Set With Degree of Error). A contrast set K = (UK , SK = {C1, . . . , Cn})
is a container, such that: 1) for each pair of concepts Ci, Cj ∈ SK , the property |E(Ci)∩E(Cj)|< τ
holds; and 2) the signs of the concepts must be all pairwise different: ∀Ci, Cj ∈ K, i 6= j ⇒ s(Ci) 6=
s(Cj).

Since no relation between sets of examples were required in the hypothesis, the modification to
the definition of concept does not affect the definition of hypotheses. Therefore, the definition of
a hypothesis is still Definition 15.
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Figure 6.1: Computing the secured r-triplets of two concepts I1 and I2 in the context Q, while
admitting a degree of error τ = 3. This picture can be compared to Figure 5.1, which illustrated
the same computation in an error-free.

6.3 Effect on Relations Between Concepts

The relations among concepts are extensively affected by the introduction of an error degree. We
will move from the idea that τ as an element of a binary classification to an idea of error tolerance
in order for two concepts to remain equivalents in a context. We move from a model where the
equivalence between two concepts C1 and C2 in a context U is defined by Adj(C1, U) = Adj(C2, U)
and thus |Adj(C1, U)4Adj(C2, U)|= 0, to a model where the equivalence between A and B is
defined by |Adj(C1, U)4Adj(C2, U)|< τE .

6.3.1 Assuming a Degree of Error in R-Triplets

The first step to evaluate the relation between two concepts Ci and Cj in a context U was to find
their pairing partial sets, as presented in Section 4.4.1. These pairing partial sets allowed us to
find the r-triplet of Ci and Cj in U , but the definition of r-triplets was based on whether or not
the partial sets were empty. Replacing the notion of set emptiness with the notion of set cardinal
inferior to a threshold, we substitute Definition 4.4.1 by Definition 50 below:

Definition 50 (R-Triplet Function with Degree of Error). Let ev be the function defined in Defi-
nition 20 and g(Ux) be the function that, for every pairing partial set Ux, yields:

• 1 if |Ux|≥ τ , and

• 0 otherwise.

The function r : X×X×U→ N3, with X the domain of concepts and U the domain of all possible
contexts, is a function that for each pair of concepts Ci,Cj and for a given context U yields a triplet
r(Ci, Cj , U) = (b−1, b0, b1) called r-triplet, such that for x ∈ {−1, 0, 1}:
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bx = ev(x,Ci, Cj , U, g)

Using the r-triplet function defined in Definition 50 with the Definition 22 to find pairing relations
between concepts results in more indulgent pairing relations. Small overlaps between concepts do
not necessarily results into concepts not being equivalent. In this configuration, we say that our
pairing relations are assuming a degree of error τ . However, Conjecture 2 does not hold after this
substitution. Since Conjecture 2 was used to compute overall r-triplets from local r-triplets, the
agents need to find another way to obtain their overall pairing r-triplet if they admit a degree of
error τ in their argumentation.

6.3.2 Finding Overall R-Triplets in Error-Tolerant Models

In order to adapt our approach to incorporate degrees of error, we need to differentiate the aim
of local r-triplets and overall r-triplets. While computing pairing partial sets and r-triplets, the
agents’ final goal is to find the overall r-triplet of a pair of concepts that will identify the overall
pairing relation between these two concepts. The local r-triplets are just an intermediate step to
help the agents finding the overall r-triplets without having to exchange their whole contexts.

When the model admits a degree of error, the agents will need more intermediate steps to determine
their overall pairing relations. This will be reflected by new types of r-triplet that represent new
steps of the transition between local pairing partial sets and overall pairing relations. The last
type of r-triplet should be the same as the input of the pairing function presented in 4.4.1, that
associates each possible Boolean triplet to a type of pairing relation.

Local R-Triplets

Let A1 and A2 be two agents, A1 partitioning the context U1 in the contrast set K1 = (U1, S1)
and A2 partitioning the context U2 in the contrast set K2 = (U2, S2). Let Ci ∈ S1 and Cj ∈ S2

be two concepts. In order to find the pairing relation between two concepts Ci and Cj , the first
step that the two agents can take is to find their local r-triplets. However, the local r-triplets now
need to carry more information than what is defined in Definition 50. For this reason, the local
r-triplets are now using integers. These integer values represent the size of their associated pairing
partial sets, and will help the agents to determine the sizes of the different overall pairing partial
sets. Once the sizes of the different overall pairing partial sets have been determined, the agents
can find which overall pairing partial set contains τ examples or more, and therefore associate an
overall pairing relation to Ci and Cj which acknowledge an error degree τ . These local r-triplets
of our error-tolerant model are presented in Definition 51 below:

Definition 51 (Local R-Triplet). Let ev be the function defined in Definition 20 and h(Ux) the
function that, for every pairing partial set Ux, yields:

h(Ux) =

{
τ, if|Ux|≥ τ .
|Ux|, otherwise.

(6.1)

The function rl : X × X × U → N3, with X the domain of concepts and U the domain of all local
contexts, is a function that for each pair of concepts Ci,Cj and for a given context U yields a triplet
rl(Ci, Cj , U) = (i−1, i0, i1), called local r-triplet, such that for x ∈ {−1, 0, 1}:

ix = ev(x,Ci, Cj , U, h)
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Loose R-Triplets

In the error-free model, the agents could combine their local r-triplets to find an overall r-triplet.
From the overall r-triplet, the agents could know which overall pairing partial sets were empty and
which were not. In a model that assumes a degree of error, the agents do not aim to find which
overall pairing partial sets are empty but which overall pairing partial sets contain less than τ
examples. From their two local r-triplets, the agents can infer some values of the overall r-triplet,
but some other values will remain unknown for the moment. An overall r-triplet that contains
unknown values is an overall loose r-triplet. Loose r-triplets cannot be used to find the overall
pairing relation between Ci and Cj directly, but remains a good starting point. The overall loose
r-triplets of two local r-triplets is defined below:

Definition 52 (Loose R-Triplet). The function rol : N3 × N3 → (N ∪ {? })3 is a function that for
each pair of local r-triplet r1, r2 yields a triplet rol(r1, r2) = (i−1, i0, i1) called loose r-triplet, such
that for x ∈ {−1, 0, 1}:

ix =


τ, if r1[x] = τ or r2[x] = τ .
0, if r1[x] + r2[x] < τ .
? otherwise.

(6.2)

Given two concepts C1 and C2, and two local contexts U1 and U2, the notation rol(C1, C2, UO)
refers to the loose r-triplet rol(rl(C1, C2, U1), rl(C1, C2, U2)).

Loose r-triplets are a good intermediate step to find the overall r-triplet because a loose r-triplet
already gives some partial information on which overall pairing partial sets contain more than τ
examples.

Conjecture 5 (Loose R-Triplet Usefulness). Let A1 and A2 be two agents, A1 partitioning the
context U1 in the contrast set K1 = (U1, S1) and A2 partitioning the context U2 in the contrast
set K2 = (U2, S2). Let Ci ∈ S1 and Cj ∈ S2 be two concepts, and r = rol(Ci, Cj , UO) their loose
r-triplet in the overall context. Let ev be the function defined in 20. For x ∈ {−1, 0, 1}:

• r[x] = 0 =⇒ |UO(x,Ci, Cj)|< τ

• r[x] = τ =⇒ |UO(x,Ci, Cj)|≥ τ

We have not finalized the formal proof of this conjecture, but will explain the main ideas behind
it. The schema of the proof would be the following: we prove that if an element r[x] of the loose
r-triplet is equal to zero, then the corresponding values r1[x] and r2[x] have, according to Definition
52, a sum that is lower than τ . We prove that if the sum of r1[x] and r2[x] is lower than τ then
the number of examples in the union of their corresponding pairing partial sets U1(x,Ci, Cj) and
U2(x,Ci, Cj) is less than τ . Applying Conjecture 2, we may prove that if r[x] is equal to zero, then
its corresponding overall partial set UO(x,Ci, Cj) contains less than τ examples.

We also prove that if r[x] is equal to τ then, according to Definition 52, one of the two values
r1[x] or r2[x] is higher than τ . We prove that if r1[x] or r2[x] is higher than τ , then one of their
corresponding pairing partial sets U1(x,Ci, Cj) or U2(x,Ci, Cj) contains at least τ examples and
therefore their union also contains at least τ examples. Applying Conjecture 2, we prove that if r[x]
is equal to τ , then its corresponding overall partial set UO(x,Ci, Cj) contains at least τ examples.

Therefore, we may prove that if r[x] is equal to zero then the corresponding overall pairing partial
set UO(x,Ci, Cj) contains less than τ examples, and that if r[x] is equal to τ then the corresponding
overall pairing partial set UO(x,Ci, Cj) contains at least τ examples. �
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Secured R-Triplets

Once the agents have computed the loose r-triplets, they need to attribute an integer to the
elements of unknown values. The next step for the agent is to produce a r-triplet similar to a loose
r-triplet, but with each unknown value replaced by 0 if its corresponding overall pairing partial
set contains less than τ examples and replaced by τ otherwise. A such triplet is called an overall
secured r-triplet.

Definition 53 (Secured R-Triplet). Let ev be the function defined in Definition 20 and p(Ux) the
function that, for each pairing partial set Ux, yields the value:

p(Ux) =

{
τ, if|Ux|≥ τ .
0, otherwise.

(6.3)

The function ros : X× X× U→ N3, with X the domain of concepts and U the domain of all local
contexts, is a function that for each pair of concepts Ci,Cj and for a given context U yields a triplet
ros(Ci, Cj , U) = (i−1, i0, i1) called secured r-triplet, such that for x ∈ {−1, 0, 1}:

ix = ev(x,Ci, Cj , U, p)

Finding the overall r-triplet of two concepts Ci and Cj with Definition 53 alone would be compli-
cated, as the agents would need to have access to the three overall pairing partial sets of Ci and Cj .
However, it is possible to obtain the overall secured r-triplet of Ci and Cj with potentially much
less information exchanged by using the overall loose r-triplet of rl(Ci, Cj , U1) and rl(Ci, Cj , U2).
This is due to the fact that, according to Conjecture 5, given:

• the loose r-triplet r = rol(Ci, Cj , UO) and

• the secured r-triplet r′ = ros(Ci, Cj , UO),

the known value (value different from ?) r[x] of the loose r-triplet r is equal to the value r′[x]
of r′, as these two values have the same definition. Since computing an overall loose r-triplet is
not costly for the agents (they only to exchange three integers each), the agents can look for the
overall loose r-triplet of two concepts and then replace each of its unknown values by the value of
same index from the overall secured r-triplet. If the agents follow this method, they do not have
to compute the whole secured r-triplet but only some of its values.

Tight R-Triplets

According to Definition 53, the agents can find each unknown value r[x] from the loose r-triplet
r = rol(Ci, Cj , UO) by accessing the corresponding pairing partial set UO(x,Ci, Cj). According to
Conjecture 1:

UO(x,Ci, Cj) = U1(x,Ci, Cj) ∪ U2(x,Ci, Cj).

The issue is that each local pairing partial set Uk(x,Ci, Cj) is a subset of the local context Uk of
the agent Ak, and Uk is supposed to be accessed only by Ak. However, we saw in Section 5.1.3
that an agent can choose to share examples with the other, by sending a message Examples(). It is
therefore possible for an agent Ak to access an overall pairing partial set UO(x,Ci, Cj), as long as
the other agent A−k sends the examples U−k(x,Ci, Cj) to Ak. Since our agents are cooperating,
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A−k will even take the initiative to send these examples to Ak if it realizes that Ak needs them as
we will later see in Section 7.4.1.

Upon receiving complementary information on the overall context from the other agent, represented
by an extended local context U ′k containing new examples, an agent Ak can try to replace the
unknown values r[a] =? , . . . , r[c] =? of the loose r-triplet r by new known values. The resulting
triplet is called a tight r-triplet of r. The notion of tight r-triplet is defined below in Definition 54.
Under the right circumstances, tightening the loose triplet rol(Ci, Cj , UO) can make it equivalent
to the secured r-triplet ros(Ci, Cj , UO).

Definition 54 (Tight R-Triplet). The function ros : N3×U→ N3, with U being the domain of all
sets of examples, is a function that, for a r-triplet r and a given set of example U , yields a triplet
rot(r, U) = (i−1, i0, i1) called tight r-triplet, such that for x ∈ {−1, 0, 1}:

ix =


r[x], if r[x] 6=?.

τ, if r[x] =? and U(x,Ci, Cj) ≥ τ .
0, if r[x] =? and U(x,Ci, Cj) < τ.

(6.4)

Given two concepts C1 and C2, we also use the alternative notation:

rot(C1, C2, Uk ∪ U) = rot(rol(C1, C2, UO), U).

Conjecture 6 below gives an idea of how the agents can select which local pairing partial sets to
exchange in order to secure a specific value r[x] of an overall loose r-triplet r. Ideally, the agent
Ak with the less examples in its pairing partial set Uk(x,Ci, Cj) sends it to A−k in order for A−k
to tighten r with an extended context U−k ∪ Uk(x,Ci, Cj) which is equivalent to UO(x,Ci, Cj),
therefore securing the value r[x] in the resulting tight triplet. The agents can determine which of
the two of them has the least examples in its local pairing partial set by checking the two local
r-triplets r1 and r2 that were used to compute r = rol(r1, r2). In the situation where r1[x] = r2[x]
and the two local pairing partial sets have the same size, the agents randomly choose which of the
two of them will send its local pairing partial set, and which one will receive it to tighten the loose
r-triplet.

Conjecture 6 (Tight R-Triplet Usefulness). Let A1 and A2 be two agents, A1 partitioning the
context U1 in the contrast set K1 = (U1, S1) and A2 partitioning the context U2 in the contrast set
K2 = (U2, S2). Let Ci ∈ S1 and Cj ∈ S2 be two concepts, x and integer from {−1, 0, 1}. Let U∗ be
a context such that U∗ ⊇ U1(x,Ci, Cj) ∪ U2(x,Ci, Cj). Let:

• r be the loose r-triplet rol(Ci, Cj , UO),

• r′ be the tight r-triplet rot(r, U∗), and

• r′′ be the secured r-triplet ros(Ci, Cj , UO).

In these conditions, r′[x] = r′′[x] holds.

We have not finalized the formal proof of this conjecture, but will explain the main ideas behind
it. The schema of the proof would be the following: Conjecture 5 states that if the element r[x]
of the loose r-triplet is known and equal to zero, then its corresponding overall pairing partial
set UO(x,Ci, Cj) contains less than τ elements. We prove that according to Definition 53, if the
overall pairing partial set UO(x,Ci, Cj) contains less than τ examples, then the element r′′[x] of
the secured r-triplet is equal to zero. We prove that, according to Definition 54, if r[x] is equal to
zero then so is r′[x]. Therefore, we may prove that r[x] being equal to zero means that r′[x] and
r′′[x] are both equals.
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Conjecture 5 also states that if the element r[x] of the loose r-triplet is known and equal to τ ,
then its corresponding overall pairing partial set UO(x,Ci, Cj) contains at least τ elements. We
prove that, according to Definition 53, if the pairing partial set UO(x,Ci, Cj) contains at least τ
examples, then the element r′′[x] of the secured r-triplet is equal to τ . We prove that according to
Definition 54, if r[x] is equal to τ then so is r′[x]. Therefore, we may prove that r[x] being equal
to τ means that r′[x] and r′′[x] are both equals.

We recall, from the proof schema of Conjecture 1, that each pairing partial set Uk(x,Ci, Cj) of a
local context Uk is the set of examples from Uk that verifies a certain predicate Φx. We should
also recall that the examples from the union of U1(x,Ci, Cj) and U2(x,Ci, Cj) are the examples
that verify a same predicate Φ. Next we would prove the following equality:

U∗(x,Ci, Cj) = {e ∈ {e′ ∈ (U1(x,Ci, Cj) ∪ U2(x,Ci, Cj))|Φx(e)}|Φx(e)}

Then we would prove the following equality:

U∗(x,Ci, Cj) = {e ∈ (U1(x,Ci, Cj) ∪ U2(x,Ci, Cj))|Φx(e)}

Applying Conjecture 1, we prove that the set of the examples from the union of the pairing partial
sets U1(x,Ci, Cj) and U2(x,Ci, Cj) that verify Φ is the overall pairing partial set UO(x,Ci, Cj),
and therefore that UO(x,Ci, Cj) = U∗(x,Ci, Cj). We prove that according to Definition 53, r”[x]
is equal to 0 if U∗(x,Ci, Cj) contains less than τ examples and r”[x] is equal to τ if U∗(x,Ci, Cj)
contains at least τ examples. We may prove that, according to Definition 54, r′[x] is equal to 0 if
U∗(x,Ci, Cj) contains less than τ examples and r′[x] is equal to τ if U∗(x,Ci, Cj) contains at least
τ examples. Therefore, we may prove that r′[x] = r′′[x]. �

We presented how to find the secure r-triplet r′ = ros(Ci, Cj , UO) from a loose r-triplet r =
rol(Ci, Cj , UO) if one of the values from r is unknown. However, this method cannot be applied to
the situations where two values or more from r are unknown values. For instance, let’s consider
these two local r-triplets:

• r1 = rl(Ci, Cj , U1) = (9, 8, 10), and

• r2 = rl(Ci, Cj , U2) = (8, 9, 10).

Let’s now assume that τ = 10. From the two triplets r1 and r2, A1 and A2 can both compute
the loose r-triplet r′ = rol(Ci, Cj , UO) = (? , ? , τ). In this situation, A1 will send its local pairing
partial set U1(0, Ci, Cj) to A2 and A2 will send its local paring partial set U2(−1, Ci, Cj) to A1

because:

1. |U1(0, Ci, Cj)|< |U2(0, Ci, Cj)|, and

2. |U1(−1, Ci, Cj)|> |U2(−1, Ci, Cj)|.

Now, if the overall pairing partial sets have the following sizes:

• |UO(−1, Ci, Cj)|= 11, and

• |UO(0, Ci, Cj)|= 9,

then, the tight r-triplets that the agents compute will be:

• r′′1 = rot(Ci, Cj , U1 ∪ U2(−1, Ci, Cj)) = (τ, 0, τ) for A1, and
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• r′′2 = rot(Ci, Cj , U2 ∪ U1(0, Ci, Cj)) = (0, 0, τ) for A2.

The agent A2 has correctly secured the value i0 of r′ in r′′2 , but failed to correctly secure the value
i−1 of the same loose r-triplet. The tight r-triplet r′′2 is different from the overall secured r-triplet
ros = (τ, 0, τ). If there can be more than one unknown value in a loose r-triplet r, the agents
should use another method than only computing a tight r-triplet of r if they want to find the
overall secured r-triplet. By using Conjecture 7 presented below, the agents can combine two tight
r-triplets in order to find an overall secure r-triplet.

Conjecture 7 (Combining Tight R-Triplets). Let A1 and A2 be two agents, A1 partitioning the
context U1 in the contrast set K1 = (U1, S1) and A2 partitioning the context U2 in the contrast
set K2 = (U2, S2). Let Ci ∈ S1 and Cj ∈ S2 be two concepts. Let r = rol(Ci, Cj , UO) be a loose
r-triplet and A,B ⊆ {−1, 0, 1}. Let r1 and r2 be two tight r-triplets such that:

• r1 = rot(r, U1 ∪ (
⋃
x∈A U2(x,Ci, Cj))), and

• r2 = rot(r, U2 ∪ (
⋃
x∈B U1(x,Ci, Cj))).

Then, let r′ = (i−1, i0, i1) be the triplet that, for all x ∈ {−1, 0, 1}, carries the value:

ix =

{
τ if r1[x] = τ or r2[x] = τ
0 otherwise

and r′′ be the secured r-triplet ros(C1, C2, UO). In these conditions, the following holds:

A ∪B = {x ∈ {−1, 0, 1}|r[x] =? } ⇔ (r′ = r′′).

We have not finalized the formal proof of this conjecture, but will explain the main ideas behind
it. We prove that x belongs to either the set A or the set B. We prove that x belonging to A
is equivalent to the pairing partial sets U1(x,Ci, Cj) and U2(x,Ci, Cj) being subsets of the set
U1 ∪ (

⋃
x∈A U2(x,Ci, Cj))), that we will write UA. We will prove that the union of U1(x,Ci, Cj)

and U2(x,Ci, Cj) is also a subset of UA. We will prove that, according to Conjecture 6, the union
of the pairing partial sets U1(x,Ci, Cj) and U2(x,Ci, Cj) being a subset of UA is equivalent to
r1[x] = r′′[x]. Therefore, we prove that x belonging to A is equivalent to r1[x] = r′′[x]. We would
use the same reasoning to prove that x belonging to B is equivalent to r2[x] = r′′[x].

We will prove that x belonging to A or B is equivalent to either r1[x] or r2[x] being equal to r′′[x].
We will prove that x belonging to A ∪ B is equivalent to r′′[x] = τ if and only if r1[x] = τ or
r2[x] = τ . By definition, x belonging to A ∪ B and the value of either r1[x] or r2[x] being equal
to τ , is equivalent to r′[x] = τ . Therefore, since r1, r2 and r′ can only take values from {0, τ}, we
may prove that x ∈ A ∪B is equivalent to r′[x] = r′′[x]. �

In these conditions, if one agent Ak makes sure, for each unknown value r[x] of a loose r-triplet
r, to send its pairing partial set Uk(x,Ci, Cj) to A−k if Uk(x,Ci, Cj) contains less examples than
U−k(x,Ci, Cj), and if the other agent A−k makes sure to send its pairing partial set U−k(x,Ci, Cj)
to A−k if U−k(x,Ci, Cj) contains at most the same number of examples as Uk(x,Ci, Cj), then
according to Conjecture 7 the two agents Ak and A−k can each compute a tight r-triplet that can
be combined into the corresponding overall secured r-triplet.
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Binarized R-Triplet

Once an agent has found the overall secured r-triplet r for the pair of concepts Ci, Cj , it still needs
to transform this triplet of integers into a triplet of Boolean values, as a pairing relation is defined
in Definition 22 by a triplet of Boolean values and not a triplet of integers. We call this final triplet
of Boolean values the overall binarized r-triplet.

Definition 55 (Binarized Overall R-Triplet). The function rob : N3 → N3 is a function that, for
a triplet (i′−1, i

′
0, i
′
1), yields a binarized triplet (i−1, i0, i1) defined as follows:

ix =

{
0, if i′x < τ
1, otherwise

The binarized triplet of a secured r-triplet ros(Ci, Cj , UO) can be used together with the pair-
ing function presented in Definition 22 to find the overall pairing relation CirUOCj between two
concepts Ci and Cj .

6.4 Effect on Concept Creation through Argumentation

In Section 5.1.3, we explained that the creation of a new concept Ci always start with the choice of
a subset U+

i of the overall context. Until now, when the agents are trying to learn an intensional
definition Ii to subsume U+

i , they were not expected to make any type-one or type-two error. This
means that Ii was supposed to subsume all the elements of U+

i , and none from the rest of the
overall context of the two agents. However, with the introduction of an error degree, the agents
are now allowed to have Ii subsuming some examples that are not from U+

i , and to not subsume
some other examples that are not from U+

i . We write:

• FP the examples from the set U+
i that are subsumed by Ii, as they are false positives.

• FN the examples from the set U−i that are not subsumed by Ii, as they are false negatives.

Assuming a degree of error τ means that we are expecting the number of false positives and
negatives to be less than τ in total. Since the set of false positives and the set of false negatives
are disjoint, their union verifies |FP ∪ FN |= |FP |+|FN |. Therefore, FP and FN should verify:

|FP |+|FN |< τE .

The agents should therefore ensure that the sum of the false positives and the false negatives is
less than τ by only accepting intensional definitions that have their false positives and negatives
verifying:

(1) |FP |< τ/2, and |FN |< 2/τ .

In these circumstances, the sum of the false positives and negatives will always be less than τ .
However, an agent Ak which has a context Uk cannot access FP or FN —that have elements in
both contexts– and therefore cannot verify (1). However, Ak can verify that:

(2) |FP ∩ Uk|< 4/τ , and |FN ∩ Uk|< 4/τ .
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If both A1 and A2 verify that (2) is true, then A1 and A2 have verified that |(FP∩U1)∪(FP∩U2)|<
τ/2 and |(FN ∩ U1) ∪ (FN ∩ U2)|< τ/2. According to Definition 24, the overall context is the
union of the two local contexts. Therefore:

• (FP ∩ U1) ∪ (FP ∩ U2) = FP , and

• (FP ∩ U1) ∪ (FP ∩ U2) = FN .

This means that if each agent Ak only accept a set of generalizations Ii as the intensional definition
of the new concept Ci if Ii has less than τ/4 false positives and τ/4 false negatives in Uk, the two
agents A1 and A2 can be sure that the intensional definition Ii commits less than τ classification
error over UO.

The agents also need to make sure that there are at least τ examples in the adjunct set Adj(Ii, UO).
Since Ii subsumes the set of positive examples plus the false positives and minus the false negatives,
in order to have at least τ examples in Adj(Ii, UO) the intensional definition Ii should verify:

|U+
i |+FP − FN > τ

This means that the number of false negatives FN should verify |U+
i |+FP − τ > FN . In the

worst case scenario, there are no false positives and the set of positive examples minus the error
threshold should be more than the false negatives. This means that the intensional definition Ii
should never have more than |U+

i |−τ false negatives (3). The agents have not access to either U+
i

or FN and therefore cannot verify (3) individually. However, each agent Ak can verify that:

(4) |FN ∩ Uk|< |U+
i ∩ Uk|−τ/2.

If both A1 and A2 verify (4), then the two agents can be sure that |FN |< |U+
i |−τ and therefore

that the adjunct set Adj(Ii, UO) has enough examples to allow Ci to be a concept.

6.5 Effect on the Transitivity of the Equivalence Pairing Re-
lation

In a model that assumes a degree of error, the pairing relation of equivalence is not transitive
anymore. Figure 6.2 illustrates a situation where, for τ = 4, two concepts C1 and C2 share more
than τ examples, with C1 − C2 and C2 − C1 having both less than τ examples, meaning that C1

and C2 are equivalent in U . The remark is the same for C2 and the third concept C3. However,
C1 and C3 share less than τ examples and therefore are not equivalent. This means that while
C1 ≡ C2 and C2 ≡ C3, C1 6≡ C3. Clearly, the pairing relation ≡ is not transitive in {C1, C2, C3}.
However, the transitivity of the equivalence relation is needed in our model. For instance, two
disjoint concepts C1 and C2 from a same contrast set that are both equivalent to a third concept
C3 from another contrast set can cause a dead loop in the argumentation. If C1 and C2 share the
same sign, they are homonyms and cause a homonymy disagreement. If C1 and C2 have different
signs, then at least one of them has a different sign than C3 and therefore cause a synonymy
disagreement. Therefore C1 and C2 would need to have the same sign and different signs at
the same time, making the mutual intelligibility impossible to reach. The only solution to this
problem is to have the transitivity of the equivalence relation enforced by the agents. When the
agents detect two non-equivalent concepts that are both equivalent to a third concept, the agents
remove one of the two non-equivalent concepts from the argumentation.
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Figure 6.2: An example of transitivity violation. In this figure, twelve examples e1, . . . , e12 of a
are placed in a Venn diagram representing three concepts. The examples subsumed by a concept
are placed within its circle.

6.6 Conclusion

This Chapter presents how the approach presented in Chapter 4, and the model presented in Chap-
ter 5, can be adapted to an error-tolerant model. The adaptation is based on the introduction
of local r-triplets, loose r-triplets, tight r-triplets and secured r-triplets. We present how theses
triplets can be used to infer the overall pairing relations in an error tolerant model. This inference
is based on the three conjectures presented in this chapter and Conjectures 1 and 4. Since this in-
ference method is incorporated in our implementation, and our experimental evaluation in Chapter
10 shows that the agents exchanging the r-triplets achieve the desired resolution of disagreements,
we can conclude that the conjectures usefulness is supported empirically.





Chapter 7

Systematic Strategy to Mutual
Intelligibility

7.1 Introduction

The systematic strategy is our first approach to reach mutual intelligibility, using the model pre-
sented in the precedent chapters. The systematic strategy consists into systematically searching
for synchronic disagreements between the two agents, and resolve these disagreements once they
are all listed. The disagreements are resolved according to the methods presented in Section 5.5
of Chapter 5. As we mentioned in Section 5.5, resolving a semantic disagreement can sometimes
create new synchronic disagreements. For this reason, the systematic strategy also look for new
disagreements each time that a disagreement has been resolved. Once the systematic strategy
has brought the agents into mutual intelligibility, the systematic strategy finishes by changing the
vocabulary of the two agents, reusing the past vocabulary of their initial contrast sets. This ad-
ditional but optional phase is cosmetic, allowing the new contrast sets to use real signs instead
of generated ones. The strategy that is described below works for models that admit a degree of
error τ .

7.2 Structure of an Argumentation Adopting a Systematic
Strategy

The systematic strategy is characterized by its linear structure. While its structure includes a
loop, the strategy has a clear beginning and an end point, which differs from the "on-demand"
design of the lazy strategy. The argumentation strategy is structure in four main phases: Start,
Evaluation, Resolve Disagreements and the optional Update Vocabulary. The agents follow these
phases, cycling between Phase 2 and Phase 3 until reaching mutual intelligibility. Each phase is
divided into main steps. A step corresponds to a short term objective in term of argumentation
for the agents. For instance, the Evaluation Phase contains the step Identify Pairing Relations.
Figure 7.1 represents the four different phases and their respective steps. Each step is also divided
into states. The states, already mentioned in Section 5.1.2, are the different algorithms that an
agent can follow during one of its turns. This algorithm always end by sending back the token to
the other agent, so this action is not written in the state presentations listed in the sections below.
If one state #A has only one possible next state #B, the second-to-last action that an agent takes
in the state #A is to set up its next state to #B. Before selecting its next state, an agent always
empty its mailbox unless specified otherwise.
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Figure 7.1: Diagram of the four main phases of the systematic strategy for argumentation (bold
rectangles), with their respective steps (thin rectangles). Each step is linked to its possible next
steps by an arrow. The dashed-line arrow symbolizes the main loop of our argumentation strategy,
between the phases 2 and 3.

7.3 Phase 1: Start

The start of our argumentation strategy is an introduction of the agents in the cycle that will
later take place between Phases 2 and 3. In this phase, the agents exchange all their intensional
definitions and prepare for argumentation v. The State 1 Send Intensional Definition is the initial
state of the agents, and defines the first actions that the agents will take during their first turn.

7.3.1 Step 1: Exchange Intensional Definitions

This step is the unique step of Phase 1. During its first state, the agents exchange all their inten-
sional definitions. During the second state, each agent creates a hypothesis using the intensional
definitions that it received from the other agent. At the end of this state, each agent has a hypoth-
esis emulating all the concepts from their interlocutor’s contrast set. They can start identifying
disagreements.

State 1: Send Intensional Definition

• Input Messages: Since the agent will only be in this state during its first turn, no message
is expected at the beginning of this turn.

• Output Messages: Assert, Check-Self
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• Next Possible State(s): State 2

Upon receiving the token the agent Ak creates a new contrast set K = {SK,k, Uk}, copy of Ak’s
initial contrast set Ki. For each concept Ci ∈ SK,k, Ak:

1. adds Ci to its list of newly created concepts Addk,

2. creates a message m = Assert#2(s(Ci), id(Ci), I(Ci)),

3. sends m to the other agent

Additionally, Ak sends a Self-Check#3() message to A−k as a reminder that the first time the
agents go through Phase 2 they should also evaluate the pairing relations R(AddK × AddK , UO)
and R(AddH ×AddH , UO), in order to look for Self-Disagreements.

State 2: Receive Intensional Definition

• Input Messages: Assert

• Next Possible State(s): State 3

The agent Ak creates a new hypothesis H = {S′H,k =, Uk}. For each message Assert(s, id, I)) in
its mailbox, Ak adds a new concept C ′i = 〈s, I, Adj(I, Uk)〉 to SH,k such that id(C ′i) = id and adds
C ′i to its list AddH of concepts that have been newly created by A−k.

7.4 Phase 2: Evaluation

During the last phase – either phase 1 or 3, the contrast sets of the agents have been modified.
Concepts might have been added or deleted. For this reason, the agents need to update their
hypotheses and to (re-)evaluate the pairing relations between each of their concepts, then detect
the eventual disagreements, and list these disagreements. Additionally, the agents need to check
that the transitivity of the equivalence relation is still respected within both contrast sets, and
take measures if this is not the case. Once the evaluations are done and the containers updated,
the agents are ready to resolve a new disagreement if there is any left.

7.4.1 Step 2: Identify Pairing Relations

This step is the first of Phase 2. During this step, the agents determine the pairing relation
between each of their concepts. Since we determined that the synchronic disagreements are caused
by specific pairing relations in Section 4.5.3, knowing the overall pairing relations of each pair
of concepts allows the agent to list their disagreements. Without listing their disagreements, the
agents logically cannot resolve them. Multiple things are listed during this step: overall r-triplets,
overall pairing relations, and hierarchies (which concept from a hypo/hypernymy relation is the
hyponym and which is the hypernym). If this is the first time that the agents enter Phase 2, all
their concepts should be in there respective lists AddK and AddH , allowing the agents to check all
the initial pairing relations in the argumentation.
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State 3: Send Local R-Triplets

• Input Messages: Self-Check

• Output Messages: Evaluation

• Next Possible State(s): State 4

Upon receiving the token, Ak checks whether or not it received a Self-Check message. Then, Ak
computes the set of local r-triplets T that is equal to:

• T (AddK × SH,k, Uk) ∪ T (SK,k ×AddH , Uk) ∪ T (AddK ×AddH , Uk),

• and additionally T (AddK ×AddK , Uk) ∪ T (AddH ×AddH , Uk) if a Self-Check message has
been received.

For each local r-triplet rl = r(Ci, Cj , Uk) ∈ T , Ak sends a message Evaluation#4(id(Ci), id(Cj),
rl) to A−k. Then, Ak adds to its containers the concepts that have been eventually created during
the previous phase, and that are stored in the lists AddK and AddH : for each concept C in the
list AddK , Ak adds C to SK,k, then for each concept C ′ in the list AddH , Ak adds C ′ to SH,k.

State 4: Send Loose R-Triplets

• Input Messages: Evaluation, Seize

• Output Messages: Evaluation, Examples

• Next Possible State(s): State 5

The agent Ak check if it has received a Seize message, indicating that the other agent will be
in charge of sending the same-size pairing partial sets associated to unknown values in the loose
r-triplets. Then, for each message Evaluation(id(Ci), id(Cj), r) in its mailbox, Ak computes the
loose r-triplet r′ = rol(Ci, Cj , UO) using the method described in Section 6.3.2. For each value
r′[x] of the r-triplet r′, if r′[x] is unknown and either:

1. |Uk(x,Ci, Cj)|< |U−k(x,Ci, Cj)|, or
2. |Uk(x,Ci, Cj)|= |U−k(x,Ci, Cj)|, without the other agent having seized the computation of

the overall r-triplet yet,

Ak sends the set of examples U = Uk(x,Ci, Cj) to the other agent through a message Exam-
ples#5(U). Doing so, Ak allows the other agent A−k to secure the value r′[x] by making possible
for A−k to build a super-set of the overall pairing partial set UO(x,Ci, Cj) and computing a tight
r-triplet. Ak knows that this option is better than A−k sending U−k(x,Ci, Cj) to Ak, since there
are more examples in U−k(x,Ci, Cj). If Uk(x,Ci, Cj) and U−k(x,Ci, Cj) have the same size, the
first agent Al to enter State 4 will send the examples Ul(x,Ci, Cj) to the other agent A−l, along
with a message Seize#() to A−l in order to prevent A−l to do the same. Indeed, since A−l will be
able to secure r′[x], sending U−l(x,Ci, Cj) to Al for Al to secure r′[x] too would be redundant.

This method allows the agents to only exchange the smallest of their pairing partial sets, and to
deal with situations where both pairing partial sets have the same size. Thanks to the integer-
triplets, the agents can know how many examples there are in the other agent’s pairing partial
sets, as the undefined values can only appear if there are less than τ examples in both pairing
partial sets. Exchanging these examples is necessary to compute the undefined values, as ex-
plained in Section 6.3.2. After sending all the necessary pairing partial sets, the agent Ak sends
an Evaluation#5(id(Ci), id(Cj), r′) to the other agent.
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State 5: Send Tight R-Triplets

• Input Messages: Evaluation, Examples

• Output Messages: Evaluation

• Next Possible State(s): State 6

During this state, the agents will each secure one split the unknown values from each loose triplet
that has been computed during State 4. The arrangements made in State 4 ensures that the values
that will not be secured by one agent will be secured by the other during this state, and that
each unknown value is secured by only one agent. The agent Ak starts its turn by adding all
the examples that it has received from the Example messages in its mailbox, to all of its currents
contexts – which means both UK,k and UH,k. Once the examples have been added, Ak computes
the tight r-triplet r′ = rot(Ci, Cj , Uk) for each message Evaluation(id(Ci), id(Cj), r) that it has
received in its mailbox, and sends r′ to A−k through a message Evaluation#6(id(Ci), id(Cj), r′).

State 6: Compute Secured R-Triplets

• Input Messages: Evaluation

• Output Messages: Relation

• Next Possible State(s): State 7

For each message Evaluation(id(Ci), id(Cj), r′) in its mailbox, the agent Ak combines r′ with
the tight r-triplet r = rot(Ci, Cj , Uk). Since for each unknown value in of the loose r-triplet from
which r and r′ are derived, the associated pairing partial set UO(in, r) is now a subset of one
of the two local contexts U1 or U2, then combining the two r-triplets r and r′ according to the
method described in Section 6.3.2 produces a new r-triplet r′′ = ros(Ci, Cj , UO). Ak memorizes the
binarized r-triplet rb(r′′) in a list RT , and uses rb(r′′) to find the overall pairing relation between
Ci and Cj using Definition 22. If the overall pairing relation that Ak finds is a hypo/hyperonymy,
Ak also keeps in memory which concept is the hyponym and which is the hypernym in the list
Hh. Then, Ak sends a message Relation#7(id(Ci),id(Cj),CirUOCj) to A−k, so A−k can list the
disagreements during the next turn.

7.4.2 Step 3: Search for Disagreements

The third step of Phase 2 has only one state. After having determined the overall r-triplets and
overall pairing relations between all the concepts newly involved in the argumentation, the agents
can check whether each overall pairing relation is causing a disagreement. Such overall pairing
relations need to be listed in order for their associated synchronic disagreements to be resolved
later during the third Phase.

State 7: Find Disagreements

• Input Messages: Relation

• Next Possible State(s): State 8

For each message Relation(id(Ci),id(Cj),CirUOCj) in its mailbox, the agent Ak check whether are
not the relation r = CirUOCj is causing a synchronic disagreement, as explained in Section 4.5.3.
If the relation is causing a disagreement, Ak memorizes the disagreement d = (si, sj , r) in the list
D. At this point, however, Untranslatability disagreements cannot be listed as they are not the
result of a pairing relation between two concepts, but rather due to an absence of pairing relation.
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7.4.3 Step 4: Search for Equivalences

At this point of Phase 2, both agents have a good representation of the relations between every
concepts involved in the argumentation. However, before starting to resolve the disagreements,
the agents need to fix two last issues, both related the the relations of equivalences present in the
argumentation. First, the agents need to verify if one of the concepts that they recently added is a
synonym of an already existing concept of their contrast set. If this is the case, the newest concept
comes to replace the oldest one. Moreover, we mentioned in Section 6.5 that the agents need
to ensure that no triadic relation comes as an infringement of the transitivity of our equivalence
pairing relation. For these two reasons, the agents inspect closely the equivalence relations among
their concepts before leaving Phase 2.

State 8: Send Own Local Internal Equivalences

• Output Messages: Evaluation

• Next Possible State(s): State 9

For each concept Ci ∈ SK,k and Cj ∈ AddK such that Ci 6= Cj , Ak computes the local pairing
relation CirUkCj to check if:

• Ci ≡k Cj , or

• Ci †k Cj , or

• Ci �k Cj .

If this is the case, Ak might have to get rid of the old concept Ci, that is either redundant with
Cj or even makes Cj indistinguishable as a concept (see indistinguishable disagreement in Section
4.5.3). In order to be sure, Ak will compute the overall pairing relation between Ci and Cj with
the help of A−k. This will be done similarly to how Ak and A−k determined the overall pairing
relations during Step 3. This means that Ak starts the process by sending the local r-triplet
r = rl(Ci, Cj , Uk) to A−k with a message Evaluation#9(id(Ci), id(Cj), r).

State 9: Verify Other’s Local Internal Relations

• Input Messages: Evaluation

• Output Messages: Evaluation, Examples

• Next Possible State(s): State 10

During this state, Ak will compute the loose r-triplets of each pairing relation that A−k suspects to
be problematic. In doing so, Ak helps A−k to ensure that old concepts which are suspected to be
either in a pairing relation of equivalence, one-sided or in no pairing relation with a new concept,
are indeed in that relation and need to be removed. For each message Evaluation(id(Ci), id(Cj),
r) in its mailbox, Ak computes the loose r-triplet r′ = rol(Ci, Cj , UO). Then, Ak sends a message
Evaluation#10(id(Ci), id(Cj), r′) to A−k.

For each unknown value r′[x] from the r-triplet r′, Ak sends the pairing partial set U = Uk(x,Ci, Cj)
to A−k if |Uk(x,Ci, Cj)|≤ |U−k(x,Ci, Cj)| through a message Examples#10(U). With r and the
local pairing partial sets, Ak will be able to tighten r and find one of the two necessary tight
r-triplet that are needed to find the overall secured r-triplet.
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State 10: Secure Own Overall Internal Relations

• Input Messages: Evaluation, Examples

• Output Messages: Evaluation, Examples

• Next Possible State(s): State 11

Ak starts its turn by adding all the examples received in its mailbox to its current contrast set
and hypothesis contexts. Doing so, Ak will build a context that can be used to secure the loose
r-triplets that it has also received from A−k. For each message Evaluation(id(Ci),id(Cj),r) that
Ak has in its mailbox, Ak computes the tight r-triplet r′ = rot(r, Uk). This triplet r′ is the first of
the two necessary tight r-triplet that are needed to find the overall secured r-triplet according to
the method described in Section 6.3.2. Then, Ak sends a message Evaluation#11(id(Ci), id(Cj),
r′) to A−k so A−k can find the overall secured r-triplet once it has computed the second tight
r-triplet.

Then, for each unknown value r[x] from the loose r-triplet r, Ak sends the pairing partial set
U = Uk(x,Ci, Cj) to A−k if |Uk(x,Ci, Cj)|< |U−k(x,Ci, Cj)| through a message Examples#11(U).
Once again, Ak does so to allow A−k to find the second tight r-triplet needed to compute the
secured r-triplet that Ak needs.

State 11: Secure Other’s Overall Internal Relations

• Input Messages: Evaluation, Examples

• Output Messages: Remove

• Next Possible State(s): State 12

In this state, the agent Ak has finally gather enough information to compute the pairing relation
that A−k wanted to verify in State 8. Ak will be able to directly tell A−k which old concepts
it should remove and which one it should keep. Ak starts its turn by adding all the examples
that it has received in its mailbox to both of its current contexts UK,k and UH,k. Then, for each
message Evaluation(id(Ci),id(Cj),r′) that Ak has in its mailbox, Ak computes the tight r-triplet
r′′ = rot(r, Uk), where r is the loose r-triplet rol(Ci, Cj , UO) computed by Ak during its last turn
in state 9. With r′ and r′′, the agent Ak can compute the secured r-triplet r∗ = ros(Ci, Cj , UO) by
using Conjecture 7.

With the binarized r-triplet rb(r∗), the agent Ak can check if:

• Ci ≡O Cj , or

• Ci †O Cj , or

• Ci �O Cj .

If this is the case, Ak sends a message Remove#13(id(Cj)) to A−k, in order to notify A−k that
the concept Cj is indeed compatible with the new concept Ci and therefore should be taken out
of K−k.
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State 12: Send External Equivalences

• Output Messages: Intransitive

• Next Possible State(s): State 13

The agents are left with one task to finish in Step 4: verifying that the transitivity of the equivalence
relation is kept in the argumentation, as explained in Section 6.5. During this state, the agent Ak
intends to warn A−k if A−k has more than one concept that are equivalent to one concept of Ak.
For each concept Ci in its contrast set, the agent Ak looks for the set of concepts Int = {Cj ∈
SK,−k|∃(Ci ≡O Cj) ∈ RT}. Ak sends a message Intransitive#13({id(Cj)|Cj ∈ Int}) to A−k in
order for A−k to choose which of the concepts that are breaking the transitivity rule should be
kept.

7.4.4 Step 5: Update Containers

In the previous steps of this phase, the agents have listed their pairing relations but have also
identified and listed which concepts could not coexist within a same contrast set. During Step 5,
the concepts that are either redundant with newer ones, or that break the transitivity rule of the
equivalence pairing relation, are going to be removed by their agent. Once the contrast sets are
finally compliant to Definition 49, the agents will be able to list the last type of disagreements that
they were unable to identify during state 7: the untranslatable disagreements.

State 13: Update Contrast Set

• Input Messages: Remove, Intransitive

• Output Messages: Remove

• Next Possible State(s): State 14

For each message Remove(id(Ci)) in its mailbox, Ak deletes the concept Ci from its contrast set as
A−k identified this concept as redundant in Step 4. Ak notifies A−k that it has deleted Ci by sending
back a message Remove#14(id(Ci)) to A−k. Then, for each message Intransitive({id1, . . . , idn})
in its mailbox, the agent Ak search for the concept Cj from Int = C(id1, Ak), . . . , C(idn, Ak)
which has the largest adjunct set in Uk. Then, the agent Ak removes all the concepts from
C(id1, Ak), . . . , C(idn, Ak) except for Cj . Doing this, Ak makes sure that there are no more multiple
concepts from its contrast set that are equivalent to one same concept from the other agent’s
contrast set. At the same time, selecting the concept with the more examples in its adjunct set
limits the number of examples that will not be a part of a concept’s extensional definition anymore,
therefore maximizing the coverage of Uk by the new contrast set. Ak notifies A−k that it has deleted
Cj by sending back a message Remove#14(id(Cj)) to A−k. For each concept C removed from its
contrast set, Ak removes any disagreement involving C from D.

State 14: Update Hypothesis

• Input Messages: Remove

• Next Possible State(s): State 15
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While in state 13, A−k has removed some concepts from its contrast set. Ak has to mirror this in
its hypothesis, in order to keep Hk as close as possible from K−k. For each message Remove(idi) in
its mailbox, the agent Ak removes the concept C(idi, A−k) from its hypothesis. For each concept
C removed from its hypothesis, Ak removes any disagreement involving C from D.

Now, the agents have hypotheses that match each others contrast sets, with each concept of a
contrast set equivalent to a maximum of one other concept from another contrast set. All the
pairing relations are are listed, along with the disagreements to resolve. The agents are ready to
move to the next phase.

7.5 Phase 3: Resolve Disagreements

7.5.1 Step 6: Choose Disagreement

Step 6 is a one-state step that allows the agents to pick a disagreement to resolve during the
rest of Phase 3. Before selecting the disagreement, the agents will sort their set of unresolved
disagreements in order to optimize the disagreements resolution. If the agents do not have any
disagreement left to resolve, they can end their argumentation and eventually move to the optional
Phase 4 to clarify their vocabularies.

State 15: Choose Disagreement

• Output Messages: Debate

• Next Possible State(s): State 16, 17, 22, 23 or 24

Before picking a disagreement to resolve, Ak needs to make sure of two things:

• to list the untranslatable disagreements that Ak could not list during Step 3, and

• to check that A−k has not already gone through state 15 during this phase, and has not
already picked a disagreement to resolve.

First, Ak looks for each concept Ci ∈ SK,k that is not in an equivalence relation with a concept
from SK,−k. Recall that Ak kept track of the overall relations between all the concepts in its
list RT . Then, Ak adds the disagreement d = (s(Ci), •, Ci 6≡O •) to the list of disagreements D.
After adding all the untranslatable disagreements to D, the agent Ak has listed all the overall
disagreements that are currently present in the argumentation. Ak is now ready to either pick a
disagreement to resolve, or to accept a new proposition for a disagreement to discuss from A−k.

If Ak has a Debate(d) message in its mailbox, it sets up its current disagreement dc as d. If Ak has
not received a Debate message, it is the first agent to enter state 15: Ak picks a disagreement d
from D, sets it as its current contrast set dc and sends a message Debate(d) to A−k. Disagreements
are picked in the order presented in Section 5.5. Ak sets its next state as:

• 16 if dc is a self-disagreement,

• 17 if dc is a semantic or untranslatable disagreement,

• 25 if dc is an indistinguishable disagreement,

• 26 if dc is a lexical disagreement and

• 27 if there are no disagreement in D to address anymore.
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7.5.2 Step 7: Build Extensional Definition

The agents enter Step 7 when the creation of a new concept is necessary to the resolution of the
ongoing disagreement. The creation of the desired extensional definition for the new concept is
the first step to every concept creation. While the standard procedure is to create one concept at
a time, the agents that are resolving a self-disagreements will need to create two concepts at the
same time. In this case, two extensional definitions are created at the same time.

State 16: Fix Boundaries

• Output Messages: Size

• Next Possible State(s): State 19

The procedure to resolve a self-disagreement is detailed in Section 5.5. Since resolving a self-
disagreement dc = Ci ⊗O Cj implies to replace the two concepts Ci and Cj involved in the dis-
agreement by two new concepts C ′i and C ′j through argumentation. The first step in the creation of
a new concept through argumentation is the creation of the set of positive and negative examples
that will be used to generate the new intensional definition by inductive learning. The agent Ak will
therefore create two sets of positive examples U+

i and U+
j , and two sets of negative examples U−i

and U−j . Once these four sets have been created, the agent Ak will decide if it takes the leadership
of the concept creation as explained in Section 5.1.3. Then, Ak sends two messages Size#19(|U+

i |)
and Size#19(|U+

j |) to A−k, in order to help A−k to determine the maximal number of positive
and negative examples that it should allow during the creation of the intensional definition.

State 17: Build Extensional Definition

• Output Messages: Size

• Next Possible State(s): State 18

The procedure to resolve semantic and untranslatable disagreements is detailed in Section 5.5.
In the case of an overlap disagreement the agent Ak creates a set of positive examples U+

i that
corresponds to the overlap between the two involved concepts. In the case of a hypo/hypernymy
disagreement, Ak creates a set of positive examples U+

i that corresponds to the co-hyponym of
the two concept’s hyponym. In the case of an untranslatable disagreement, Ak creates a set of
positive examples U+

i that corresponds to the untranslatable concept’s adjunct set. Then, Ak
sends a message Size#19(|U+

i |) to A−k, in order to help A−k to determine the maximal number of
positive and negative examples that it should allow during the creation of the intensional definition.

State 18: Determine Leadership

• Next Possible State(s): State 19

The current disagreement dc involves a pairing relation between two concepts, and the agents going
through state 18 means that this relation will push them to create one or two new concept(s). Before
creating the new concept, the agents need to decide which one of them will, for each concept to
create, lead the argumentation. This choice is detailed in Section 5.1.3. According to the method
described in Section 5.5.5, the agent Ak has access to all the resources that it needs to know if it
should be in charge of the argumentation of not. If Ak observes that it should be in charge of the
argumentation, it notifies A−k by sending a message Seize#19().
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7.5.3 Step 8: Build Intensional Definition

• Next Possible State(s): State 17

Once the extensional definition(s) of the concept(s) that will be created have been defined, the
agents will use them to create the intensional definition of the new concept(s). The process has
already been detailed in Section 5.1.3, and will not be presented again in this Chapter.

State 19: Build Intensional Definition

• Next Possible State(s): State 20, 22.

Now that the agents each built positive and negative sets of examples, chose a leader for the
argumentation and determined which were the maximum acceptable false positive and negatives
during the argumentation, they can go through the creation of the intensional definition(s) of
the new concept(s), as explained in Section 5.2. If the creation of the intensional definition(s)
is successful, Ak continues to state 20 in order to create the remaining elements of their new
concept(s). If the agents could not generate a satisfying intensional definition through inductive
learning, Ak moves to state 24 in order to remove the concepts involved in the disagreement.

7.5.4 Step 9: Build New Concept

Once the agents have the extensional definition(s) and the intensional definition(s) of the new
concept(s), they can finish to create it by adding it a sign and an identifier. Once all the elements
of the new concept(s) has been assembled, the agents can move to the beginning of Phase 2 in
order to add them to their contrast sets and evaluate their impact on the argumentation.

State 20: Build Sign and Identifier

• Output Messages: Baptize

• Next Possible State(s): State 21

If the agent Ak has not received a message Seize() in its mailbox, it knows that it is the first agent
to go through state 20 during this phase. Therefore, Ak creates a new sign si , as explained in
Section 5.1.3, and a new identifier idi for each concept Ci that is being created. Ak shares each
created sign and identifier with A−k through a message Baptize#21(si, idi). Then, Ak sends a
message Seize#20() to A−k in order to let him know that it has created the new signs. In the case
where multiple concepts are being created, an element is added to each Baptize message in order
to determine which sign and identifier should be assigned to which new concept.

State 21: Build Concept

• Input Messages: Baptize

• Next Possible State(s): State 2

For each concept Ci that is created, the agent Ak gets:

• the extensional definition Ei = U+
i created in state 16 or 17,
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• the intensional definition Ii from the accepted root-argument found in state 19

• the sign si and idi either determined in state 20 or received through a Baptize() message,

and creates the new concept Ci = 〈si, Ii, Ei〉 with the identifier idi. Depending to the type of
the current disagreement dc, the new concept Ci will go to a different container, according to the
protocol specified in Section 5.5. In the case of a self-disagreement, Ak will add Ci to Kk if dc
involved concepts from its contrast set, and to Hk otherwise. If dc was an overlap disagreement,
Ak adds Ci to both Kk and Hk. If dc was a hypo/hypernymy disagreement, Ak adds Ci and a copy
of its co-hyponym to Kk if Ak if the hypernym of the disagreement belonged to Ak, or adds them
to Hk otherwise. If dc was an untranslatable disagreement, Ak adds Ci to Kk if Ak was the agent
missing a concept in its contrast set, and to Hk otherwise. Moreover, according to Section 5.5,
if dc was a hypo/hypernymy disagreement Ak needs to remove the hypernym CH from whichever
container it is in. The disagreements that involved CH are therefore removed from D, as they are
now resolved. Each concept added to Kk or Hk is added respectively to AddK or AddH . Finally,
Ak removes the disagreement dc from D if it was not already done.

7.5.5 Step 10: Delete Concept

Sometimes, the agents cannot resolve a disagreement – either because they are blind to this dis-
agreement or because their inductive learning performances do not allow them to achieve the
generalizations they aimed for – and are forced to delete concepts from their contrast sets without
replacing them. This deletion will leave a blank in the agents’ contrast sets, but allows them to
move toward a synchronic agreement at the cost of their context coverage.

State 22: Delete Involved Concept

• Input Messages: Remove

• Output Messages: Remove

• Next Possible State(s): State 15

If the creation of the new concept(s) through argumentation has not been successful, the only
option left to the agents is to delete one of the concepts that were involved in dc = C1rOC2, in
order to resolve the disagreement at the cost of a loss of context coverage for the current contrast
sets. The agent Ak checks whether or not it received a message Remove(id(Ci)) in its mailbox.
If it did, Ak removes the concept Ci from whichever container it is in. If Ak did not receive a
message, it selects the concept Ci from C1 and C2 that has the smallest adjunct set, or randomly
select one if their adjunct sets have the same size. Then, Ak sends a message Remove#(Ci) to
A−k in order to make A−k delete the same concept. At the end of its turn, the agent Ak removes
the disagreements involving Ci from D as they are now resolved.

7.5.6 Step 11: Change Signs

Some disagreements require the creation of new concepts, but some others can be resolved simply
by changing the signs of some concepts. Changing the signs of the concepts is often done when
the agents have resolved all the disagreements that requested a concept creation, as changing the
sign of a concept before the same concept being deleted is a waste of resources.



7.6. PHASE 4 (OPTIONAL): UPDATE VOCABULARY 99

State 23: Update Sign(s)

• Input Messages: Replace

• Output Messages: Replace

• Next Possible State(s): State 15

If dc = CirOCj is a lexical disagreements, the agent will have to substitute the signs of some of their
concepts, according to the protocol described in Section 5.5. If dc is a synonymy and Ak received
a message Replace(s′, Ci), Ak changes the signs of both Ci and Cj by s′. If dc is a synonymy but
Ak did not receive such message, Ak creates a new sign s′, sends a message Replace#23(s′, id(Ci))
to A−k, and then changes the sign of both Ci and Cj to s′. If dc is a homonymy and Ak received
two messages Replace(s1, Ci) and Replace(s2, Ci), Ak changes the signs of Ci to s1 and the sign of
Cj to s2. If dc is a homonymy but Ak did not receive such messages, Ak creates two new signs s1
and s2, sends two messages Replace#23(s1, id(Ci)) and Replace#23(s2, id(Cj)) to A−k, and then
changes the sign of Ci to s1 and Cj to s2. Then, Ak deletes the disagreement dc from R.

7.6 Phase 4 (Optional): Update Vocabulary

Phase 4 is optional, meaning that going through it or not will not impact the performances of the
multi-agent system during a test – unless, of course, for the time of completion that will be slightly
higher. However, Phase 4 has a cosmetic aspects in the sense that replaces the automatically
generated signs created during the different states of the argumentation, by the original signs of
the initial contrast sets. This allows the final contrast sets to have signs similar to Chair or Bird
instead of sign-0 or label-1.

7.6.1 Step 12: Update Vocabulary

During the unique step of Phase 4, the agents will try to replace the sign of each of their final
concepts by the sign of their initial concept that was the closest to it, without assigning the same
sign twice to a same final concept. The agents will send to each other, for every concept Ci in their
initial contrast set and each concept Cj in their final contrast set, how confident they are that the
concept Cj is similar enough to Ci for substituting s(Cj) with s(Ci).

State 24: Vote for Signs

• Output Messages: Vote

• Next Possible State(s): state 25

Ak sends a message Vote#25(si, sj , n) to A−k for every sign si currently used in Kk and every
sign sj that was used in the initial contrast set Ki,k. The number n is the number of examples
from the concept Ci ∈ Kk that were initially in the concept Cj ∈ Ki,k.

State 25: Elect Signs

• Input Messages: Vote
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Ak creates the set of signs used in the old contrast sets Sold by adding to Sold, for each message
vote(sj , si, n

′) that Ak has received and each message Vote(si, sj , n) that Ak sent in the last state,
the sign sj . Ak also creates a set of signs from the new contrast sets Snew and adds to Snew, for
each message sent in the last state and each message received, the sign si.

Then, Ak will choose which sign si ∈ Snew should be replaced by which sign sj ∈ Sold. Starting
with a random sign sj ∈ Sold, Ak looks for each sign si ∈ Snew, and calculates a numerical value
vsi equals to:

• n+ n′ if Vote(si, sj , n) has been sent and if vote(sj , si, n′) has been received.

• n if no message Vote(sj , si, n′) has been received.

• n′ if no message Vote(si, sj , n) has been sent.

Then, Ak takes the sign smax associated to the highest of these numerical values vsmax
and then

replaces smax by sj in all its concepts. Then, Ak removes sj from Sold and smax from Snew.

Ak picks another random sign sk from Sold and repeats this procedure until either Sold or Snew
becomes empty.

7.7 Conclusion

We presented the systematic strategy, a strategy of argumentation in which the agents verify each
other’s meaning before entering the naming game. In this approach, the agents systematically
exchange their concepts upon meeting and identify at once all the disagreements present between
their contrast sets. Once identified, all the examples are resolved by the agents in order for them
to attain a mutual intelligibility on the full extent of their overall context. The proposed model is
an error-tolerant model that will not consider small overlaps between concepts as disagreements.
This model is separated in four main phases that characterize the progression of the argumentation
between our agents, from their meeting to reaching mutual intelligibility. The first phase is the
initial transfer of intensional definitions made by the agents upon meaning. The second phase is
the identification of disagreements trough the exchange of r-triplets and inference of overall pairing
relations. The third phase is the resolution of each type of disagreement. The fourth optional
phase is the creation of an intelligible vocabulary.



Chapter 8

Lazy Strategy to Mutual
Intelligibility

8.1 Introduction

The lazy strategy is our second approach to reach mutual ineligibility. As the systematic strategy, it
is based on the model presented in Chapters 4 and 5. The lazy strategy consists of playing a naming
game where examples are presented to the agents, until the two agents name an example differently.
The agents then identify the disagreement d responsible for this difference, and identify d’s set of
connected disagreements D. The concepts involved in this set of disagreements are extracted
from the contrast sets of our agents K1 and K2, and isolated in a new pair of containers Q1 and
Q2. Using phases similar to Phase 2, Phase 3 and Phase 4 in the systematic strategy, the agents
address the disagreements of D one by one until D becomes empty. The concepts of Q1 and Q2,
which are now causing no disagreements, are reinserted in K1 and K2 so the agents reach a partial
mutual intelligibility concerning the original disagreement. After the argumentation, the agents
can continue to play the naming game until another disagreement is found. The lazy strategy is
described below takes into consideration a degree of error τ .

8.2 Structure of Argumentation in the Lazy Strategy

While the systematic strategy described in Chapter 7 that was characterized by its linear structure
that was bearing only one loop, the lazy strategy is organized as a loop that encompasses several
other loops. The main loop is a continuous naming game, starting at the presentation of a new
example and exiting when no disagreement between the agents can be suspected. The loop is di-
vided in five main Phases: Monitoring Loop, Connected Set of Disagreement Retrieval, Evaluation,
Resolve Disagreements, the optional phase Update Vocabulary, and Knowledge Integration. The
entry point of the lazy strategy is the Monitoring Loop, within which the agents cycle until they
receive a new example that sheds light upon a disagreement. Since the naming game is open-ended,
in the sense that there can always be a new example presented to the agents for them to name,
there is no predefined end to the lazy strategy —except the lack of new examples.

Each phase is divided in main steps, that identify clear goals to walk toward the objective of
each phase. For instance, Monitoring Loop is divided in three main Steps that each deal with a
particular aspect of the naming of a new example in the context of naming game: the step Naming
a New Example watches for new a example to name, the step Name New Example associates names
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to a new example, which the agents share them with one another, and the step Compare Naming
identifies a success (agreement) or a failure (disagreement) within the naming game.

The phases and steps of the lazy approach are represented in Figure 8.1. Each step is divided in
states, as before. States are include a decision procedure followed during the turn of an agent.
Each state starts with receiving a token and ends by passing this token to the other agent. The last
actions defined in a state are some of the following: to send a messages to the other agent, to chose
the next state in which the agent should be next turn, to remove messages from its mailbox, and
to pass the token. The phases, steps and states of the lazy strategy are described in the following
sections of this chapter. The lazy strategy is described from the point of view of an agent Ak (the
one holding the token) that is arguing with the other agent A−k —where k ∈ {1, 2}.

8.3 Phase 1.a: Monitoring Loop

During this phase, the agents wait for a new example to be presented to them. Once the example
is presented, the agents are naming it and exchanged the sign they used so each of them can judge
of the success of this round of the naming game. At the end of the monitoring loop, the agents
move toward an argumentation of the signs they used to name the example were different or go
back to wait for a new example otherwise.

8.3.1 Step 1: Naming a New Example

The agents entry point in the argumentation is a stand-by state where they wait for an example
to be presented to them. They exit this state by receiving an example that initiates the naming
game. When the experimenter wants to start a round of naming game, it presents an example e
to both agents A1 and A2 through a message Examples#1(e) sent in both agents’ mailboxes.

State 1: Stand-by

• Input Messages: Examples

• Next Possible State(s): State 1, 2

If the agent Ak has not received a new example to name, Ak stays in the same state next turn
waiting for an example to play the naming game. Therefore, if Ak’s mailbox is empty, Ak sets
its next state as State #1 and passes the token to A−k. Otherwise, if Ak has received a message
Examples(e) in its mailbox, Ak can start the naming game. Ak sets its next step as state 2 to
continue the naming game.

8.3.2 Step 2: Name a New Example

Once the naming game has started, the first thing that the agents have to do is to name the
example that has been presented to them. The agents name this example with the signs of the
concepts that subsume it and share these signs with each others.

State 2: Name

• Output Messages: Self-Check, Name

• Next Possible State(s): State 3
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Figure 8.1: Diagram of the five main phases of the lazy strategy for argumentation (bold rectan-
gles), with their respective steps (thin rectangles). Each step is linked to its possible next steps
by an arrow. The dashed-line arrow symbolizes the loops of our argumentation strategy in Phase
1.a, Phase 1.b and between the phases 2 and 3.
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During the last state, Ak defined the example ec as the example to be named during this current
round of the naming game. Ak searches in its current contrast set Kc = (Sc, Uc) for the set
of concepts Sec = {C ∈ Sc|C v ec} that subsume the example ec. Then, Ak sends a message
Name#2(s(Ci), ec) to A−k for each concept Ci in Se. Additionally, Ak sends a message Self-
Check#7() to A−k, in order to remind A−k to look for the pairing relations between its own
concepts, as the agents are now entering a new round of the naming game. As in the systematic
strategy, the agents need to search for the pairing relations of all their concepts the first time they
start to investigate the disagreements between two sets of concepts. Later on, the agents will just
have to update some targeted relations when some concepts change.

8.3.3 Step 3: Compare Naming

Once both agents have named the example ec, they can compare the signs that have been used to
name it. In the naming game, only one sign is acceptable to name ec. For this reason, if even one
agent uses multiple signs to name ec, the agents are going to move forward an argumentation.

State 3: Compare

• Input Messages: Name

• Output Messages: Assert

• Next Possible State(s): State 1, 4

The naming game is considered as a success if both A1 and A2 used the same identical sign to
name the example ec. In order to evaluate the success of this round of the naming game, the agent
Ak creates a set of signs S = {si, . . . , sm} with the signs that Ak sent to A−k during the last state
2. Then, Ak searches its mailbox for the messages Name(sn, ec), ..., Name(sp, ec) sent by A−k
and creates the set of signs S′ = {sn, . . . , sp}.
If both sets of signs contain only one sign such that S = {s} and S′ = {s}, then the two agents have
succeeded in the naming game and can stop the argumentation. The agent Ak sets its next state
to state 1 and passes the token to A−k. Otherwise, the agents know that there are at least two
concepts with different signs that are subsuming one same example. While one example subsumed
by both concepts is not enough to cause a disagreement if τ > 1, the agents will still investigate
the concepts for disagreements.

The first thing that Ak does is to check if disagreements caused by the same concepts have not
been looked for or resolved before. Ak keeps a list of concepts that have been investigated for
disagreements in two lists: a list Checkedk for its concepts and a list Checked−k for A−k’s concepts.
Before starting an argumentation, the agent Ak verifies that it has not already been though that
process by checking, for each sign s ∈ S, if there is a concept C ∈ SK,k such that s(C) = s and
C ∈ Checkedk. Ak also verifies the concepts of the other agent by checking, for each sign s′ ∈ S′,
if there is a concept C ′ ∈ SK,−k such that s(C ′) = s′ and C ′ ∈ Checked−k. If all the concepts of
both agents have already been investigated for disagreements, the differences in signs during the
naming game are considered as an acceptable error under τ and the agent Ak does not pursue the
argumentation. The agent Ak sets its next state to state 1 and passes the token to A−k.

If at least some concepts have not been investigated, the agents look for disagreements caused
by them. In order to find disagreements, the agents need to be aware of the overall pairing
relations between their concepts and in order to be aware of the overall pairing relations between
their concepts, the agents need the intensional definitions of their concepts. For this reason, the
agents start to exchange the intensional definitions of the concepts involved in the disagreement.
For each sign s in S = {si, . . . , sm}, the agent Ak sends an assert message to A−k. If the set
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Checkedk contains a concept C such that s(C) = s, the concept C has already been investigated
for disagreements meaning that Ak has already sent the intensional definition I(C) to A−k. In order
to limit the number of generalizations exchanged by the agents, the agent A−k send a message
Assert#4(s(C), id(C)) to A−k. Otherwise, if there is no such concept C in Checkedk, Ak has
to send the intensional definition of of its concept C ∈ SK,k that has a sign s(C) = s to A−k.
Therefore, Ak sends a message Assert#4(s(C), id(C), I(C)) to A−k and ends its turn. Since it
will now be investigated for disagreements, the concept C is added to Checkedk before Ak ends
its turn.

8.4 Phase 1.b: Connected Set of Disagreements

In the lazy strategy, an argumentation targets a specific set of connected disagreements D. In order
to argue on the disagreements from D with our model, the agents need to both have access to the
intensional definitions of every concept that causes a disagreement in D. Unlike the systematic
strategy, where the agents would have already exchanged all their intensional definitions with each
other, the agents have no a priori knowledge on each other’s contrast set in the lazy strategy. The
agents do not need to exchange all their intensional definitions, as their argumentation is concerned
only with the concepts from D. During this phase, the agents look for concepts that belong to D,
exchange the intensional definitions of these concepts, and update their hypotheses.

Moreover, the agents keep a clear separation between the concepts that are not yet suspected to be
in a disagreement and the concepts that are part of the argued connected set of disagreements. In
order to keep that clear separation, the agents use new contrast sets called the temporary contrast
sets, noted Kt, where they put the concepts involved in the set of connected disagreement that is
currently argued. The agent A1 has a temporary contrast set Kt1 and the agent A2 a temporary
contrast set Kt2. Since the agents are going to use these contrast sets as the base container for
their argumentation, they also need corresponding hypotheses. The agent A1 has a temporary
hypothesis Ht1 that mirrors the concepts of Kt2, while the agents A2 has a temporary hypothesis
Ht2 that mirrors the concepts of Kt1.

8.4.1 Step 4: Exchanging Related Concepts

The agents maintain a list of the concepts involved in the set of connected disagreement that is
currently argued. During this step, the agents update this list, in an iterative process where each
agent looks for concepts of its contrast set that are not in the list but that cause local disagreements
with concepts from the list. Indeed, two concepts can have a local pairing relations does not cause
a disagreement while their overall pairing does. This means that if the agents were to look for
all the concepts causing overall disagreements, they would have to exchange all their intensional
definitions with each other. For this reason, the agents cannot be sure that they have listed all the
disagreements from the connected set that they target in the lazy strategy. The first time that the
agents arrive in that step after step 3, the list is empty. The agents seed the list with the concepts
that have been suspected of causing a disagreement in step 3, the intensional definitions of which
have been exchanged at the end of state 3.

State 4: Concepts Listing and Sharing

• Input Messages: Assert

• Output Messages: Assert,Seize

• Next Possible State(s): State 5
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The agent Ak creates a local copy of the concept C for each message Assert(s(C), id(C), I(C))
that Ak has received, using the method described in 5.1.3. When a message Assert(s(C), id(C))
has been received, the agent Ak has already a local copy of the concept C in its list Checkedk,
and can therefore retrieve I(C) using the concept C’s identifier, id(C).

Ak then adds the concept C to its list AddH , as C will join the argumentation. Once every message
Assert has been read, the agent Ak has a list of concepts L that A−k has requested to add to the
argumentation. If the last state of Ak was State 3, these concepts are the two concepts that were
suspected to cause a disagreement during Phase 1.a and that now seed the search for the rest of
their connected set of disagreements.

For each pair of concepts C,C ′ such that C ∈ L and C ′ ∈ Kc,k, the agent Ak evaluates if C and
C ′ are causing a local disagreement in Uk. If C ′ causes a disagreement, the agent Ak sends an
Assert message to A−k in order to add C ′ to the argumentation. In order to limit the number of
augmentations exchanged, Ak send a message Assert#4(s(C ′), id(C ′)) if C ′ is already in Checkedk,
which means that A−k had already received the intensional definition I(C ′). Otherwise, the agent
Ak sends a message Assert#4(s(C ′), id(C ′), I(C ′)) to A−k. The concept C ′ joins the argumentation
and is therefore added to the list AddK . If no concept of Kc,k was causing disagreements a concept
of L, the agent Ak advises A−k that it does not wish to add more concepts to the argumentation
by sending a message Seize#5() to A−k.

8.4.2 Step 5: Evaluate Readiness

Since the agents list the concepts to add to the list of concepts involved in the connected set of
disagreements D based on their local pairing relations, one agent can list a concept that is ignored
by the other. Because of this, each agent needs to re-evaluate which concepts should be added
to the list of concepts involved in D’s disagreements every time that the other agent has added
new concepts to the list. For this reason, the argumentation can continue only once both agents
consider that there are no more concepts to add to the list. During this step, the agents check
with each other whether the argumentation should go back to step 4 or continue to the next step.

State 5: Conciliation on Pursuing Argumentation

• Input Messages: Assert, Seize

• Next Possible State(s): State 4, State 6

If Ak has not received any Seize message in its mailbox, Ak is informed that the agent A−k does
not wish to add more concepts to the list of concepts causing disagreements and has not send
additional Assert messages that Ak needs to examine in State 4. If Ak did not find any new
concepts to add to the argumentation during the previous step 4, Ak is also ready to continue
the argumentation. Ak sets its next state to State 6 and ends its turn. However, if either Ak or
A−k had added new concepts to the argumentation during the previous step 4, the agents need
to go back to step 4 in order to evaluate whether or not new concepts need to be added to the
argumentation. The agent Ak sets its next state to State 4 and ends its turn.

8.4.3 Step 6: Crop Concepts

Once the concepts involved in the connected set of disagreement D are listed, the agents move
all of them from their current contrast sets and current hypotheses to their temporary containers.
This isolates the disagreements in separate containers and help to evaluate whether or not the
expected partial mutual intelligibility has been reached. During this step, the concepts that are
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suspected to cause a disagreement are listed for transfer. Once the concepts have been listed for
transfer, the agents can move to the next step to effectively transfer their concepts.

State 6: Concept Transfer to Temporary Containers

• Next Possible State(s): State 7

The agent Ak moves the concepts that have been listed as suspected of causing disagreements,
from the current containers to the temporary ones. Ak removes each concept C from the contrast
set Kc,k and adds C to a list transferK to remember that C has been removed from Kc,k and
should be transferred to Kt,k. Then, Ak removes each concept C ′ from the hypothesis Hc,k and
adds C to a list transferH , to remember that C ′ has been removed from Hc,k.

8.5 Phase 2, Phase 3, and Phase 4

For the lazy strategy Phases 2, 3 and 4 are the same as Phases 2, 3 and 4 in the systematic strategy
except in four aspects. First, since the number of steps and states now Phase 1.a and 1.b is larger
than in Phase 1 in the systematic strategy. Therefore, the step 7 of the lazy strategy corresponds
to the step 2 of the systematic strategy, and state 7 of the lazy strategy corresponds to the state
3 of the systematic strategy. This offset in the numbering of the states and steps is maintained
during all of Phases 2, 3 and 4. Tables 8.1, 8.2 and 8.3 summarize the offset and recalls the different
steps and state of the Phases 2, 3 and 4.

The second difference with the systematic strategy regards the containers involved during the
argumentation. In the systematic strategy, the agents argue about the concepts of their current
contrast sets (K1 and K2), that are mirrored by the hypotheses (H2 and H1). In the lazy strategy,
the argumentation does not take place with the concepts of the current containers but is restricted
ot the concepts of the temporary containers comprising the two contrast sets Kt,1 and Kt,2 and
the two hypotheses Ht,1 and Ht,2. Therefore Phases 2, 3 and 4 are now like those of the systematic
strategy where current containers are substituted by temporary containers. However, the context
of these containers are shared: for any agent Ak, the containers Kc,k, Kt,k, Hc,k and Ht,k all share
the same context Uk. Any example added to the context of Kt,k or Ht,k during the phases 2, 3 or
4 is also added to the context of Kc,k and Hc,k.

The third difference with the systematic strategy regards the end of phase 3. Instead of looping
directly back to phase 2 after the states 23, 26 and 27 (previously numbered 19, 22 and 23), the
agents are looping back to the state 7, at the beginning of step 7. This forces the agents to look
for new disagreements that should be integrated to the connected set of disagreements currently
under investigation every time that a modification has been made to the temporary contrast sets.

The last difference with the systematic strategy regards the signs that are used during the optional
Phase 4. Instead of using the signs of their initial vocabulary, as it was the case in the systematic
strategy, the agents only use the signs from the concepts that have been transferred from their
current contrast sets to their temporary contrast sets. The agents do so in order to avoid using
a sign that is still used by a concept of the current contrast set, in a concept of their temporary
contrast set.

8.6 Phase 5: Knowledge Integration

In Phase 1.b, the agents have progressively isolated a set of concepts from their current contrast
sets in temporary containers. The concepts from this set were causing synchronic disagreements
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Lazy Strategy Systematic Strategy Note

Step 7 Step 2 Identifying the pairing relations of the
concepts added to the argumentation.

state 7 state 3 Computing and sending the local
R-Triplets.

state 8 state 4 Computing and sending the loose
R-Triplets.

state 9 state 5 Computing and sending the tight
R-Triplets.

state 10 state 6 Computing the secured R-Triplets.
Step 8 Step 3 Search for Disagreements.
state 11 state 7 Find disagreements.
Step 9 Step 4 Search for Equivalences.

state 12 state 8 Look for locally equivalent concepts in own
contrast set.

state 13 state 9 Look for locally equivalent concepts in
other agent’s contrast set.

state 14 state 10
Secure the R-Triplets of pairing relations
suspected to be equivalences in own
contrast set.

state 15 state 11
Secure the R-Triplets of pairing relations
suspected to be equivalences in other
agent’s contrast set.

state 16 state 12 Verify the transitivity of the equivalence
pairing relation.

Step 10 Step 5 Update Containers.

state 17 state 13 Removing duplicated concepts from
contrast set.

state 18 state 14 Removing duplicated concepts from
hypotheses.

Table 8.1: Correspondences between the steps and states of the lazy and systematic strategies
during Phase 2. The different steps are separated by a double line.
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Lazy Strategy Systematic Strategy Note
Step 11 Step 6 Choose Disagreement.

state 19 state 15 Select disagreement to be resolved in the
rest of the phase.

Step 12 Step 7 Build Extensional Definition.

state 20 state 16 Distribute the examples from a
self-disagreement’s overlap.

state 21 state 17 Isolate the examples that the new concept
is supposed to subsume.

state 22 state 18 Determine which agent will lead the
creation of the new concept.

Step 13 Step 8 Build Intensional Definition.

state 23 state 19 Create the concept’s new intensional
definition through argumentation.

Step 14 Step 9 Build New Concept.

state 24 state 20 Create the sign and the identifier of the
new concept.

state 25 state 21

Create a new concept with the semiotic
elements generated in the previous states,
in order to resolve a self-disagreement, an
overlap of a hypo/hypernymy disagreement.
Remove the hypernym of this concept if
there is one.

Step 15 Step 10 Delete Concept.

state 26 state 22
Delete one of the concepts involved in a
disagreement in order to resolve that
disagreement.

Step 16 Step 11 Change Signs.

state 27 state 23
Replace the signs of some concepts by new
signs in order to resolve homonymy and
synonymy disagreement.

Table 8.2: Correspondences between the steps and states of the lazy and systematic strategies
during Phase 3. The different steps are separated by a double line.

Lazy Strategy Systematic Strategy Note
Step 17 Step 12 Update Vocabulary.

state 28 state 24
Vote to replace the signs of the agents
current vocabulary with signs from their
initial contrast sets vocabulary.

state 29 state 25
Update the vocabulary of the agents with
the vocabulary of their initial contrast sets
according to the votes.

Table 8.3: Correspondences between the steps and states of the lazy and systematic strategies
during Phase 4. The different steps are separated by a double line.
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that have later been resolved during Phases 2 and 3. Their resolution resulted in another set of
concepts free of disagreements, which are the current concepts of the temporary containers. and
that the agents reinserts in their current contrast sets in order to replace the concepts that had
been removed during Phase 1.b.

8.6.1 Step 18: Reinsert Concepts

After creating new concepts or substituting signs during Phase 3, and after updating their vocab-
ulary during Phase 4, the agents are always passing through Phase 2 where they verify that there
are no disagreements between the concepts of the temporary contrast sets and the concepts of
the current contrast sets. Therefore, the agents can just insert the concepts from their temporary
contrast sets in their current contrast sets without creating any new disagreements. Once the
concepts from the temporary contrast sets have been transferred back to the current contrast sets,
the agents have reach partial mutual intelligibility over the part of their context that is subsumed
by concepts from the temporary contrast sets. This part of mutual intelligibility adds itself to any
previous partial mutual intelligibility that the agents had already reached.

State 30: Concept Transfer to Current Containers

• Next Possible State(s): State 1

The agent Ak updates the list of concepts that have been investigated for disagreements. Ak
starts by removing the concepts of transferK from checkedK and the concepts of transferH from
checkedH . Then, Ak replaces the removed concepts by the concepts of the temporary containers.
Ak places the concepts of Kt,k in Kc,k and the concepts of Ht,k in Hc,k. Now that the partial
mutual intelligibility has been reached over the portion of the overall context that was concerned
by the investigated connected sets of disagreements, the agent Ak prepares to potential future
augmentations. Ak empties the lists transferK and transferH , and AddK and AddH . Then, Ak
removes every concepts from Kt,k and Ht,k. The argumentation over the meaning is over and the
agents go back to state 1, waiting to test another example for possible disagreements.

8.7 Chapter Conclusion

We have presented the lazy strategy, a strategy that does not assume the systematic exchange
of intentional definitions between the agents before the play of the naming game. During the
naming game, the agents will be able to identify communication failures and spot disagreements.
In this approach, the resolution of disagreement is operated when disagreements are detect. The
proposed model is an error-tolerant model that will not consider small overlaps between concepts
as disagreements. This model is separated in five main phases that characterize the progression
of the interactions during the naming game, including argumentation between our agents when
they arise, from the presentation of an example to reaching mutual intelligibility over a part of
the overall context. The first phase is the naming of an example and determining naming success.
The second phase is the identification of the connected set of disagreement to which an identified
disagreement belong. The third phase is the identification of disagreements trough the exchange
of r-triplets and inference of overall pairing relations. The fourth phase is the resolution of each
type of disagreement. The fifth optional phase is the creation of an intelligible vocabulary.
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An Exemplification of the Approach

9.1 General Setup

In order to illustrate the different mechanisms presented in our approach, we propose an exempli-
fication of the process of argumentation over the meaning, described step by step from the set-up
of the first encounter of the two agents to the attainment of mutual intelligibility. Before entering
the details of the argumentation, we will briefly introduce the set-up of our example. This example
follows an error-free model, with which both augmentation strategies are exemplified. In this exem-
plification, two agents A1 and A2 will exchange arguments in order to reach mutual intelligibility
over the domain of animals.

9.1.1 Data-Set

The domain of argumentation is Zoology. in this domain, different species (examples) are regrouped
in different classes that share similar properties. However, while the two agents are classifiers over
the same domain, they do not have knowledge over the same species, and they do not regroup
them in similar classes. Each specie ex is represented by an array of 12 attribute/value pairs
ex = {a1 = v1, . . . , a12 = v12} where each attribute is a Boolean variable, informing if the species
displays this attribute (value = 1) or not (value = 0). The domain has a total of twelve attributes:
6_legs, vertebra, eggs, warm_blood, fly, carnivorous, terrestrial, social, 4_legs, nocturnal, tail,
brown, gray, transparent, small.

Each class of species is associated to a particular set of attribute values. This set will later be the
intensional definition of this class associated concept. The species of the overall context are listed
in Table 9.1, and are regrouped by shared attributes in Figure 9.1.

The agents do not have access to the overall context UO, but to two subsets of UO —the local
contexts U1 and U2. These two sets contain the examples:

• U1 = {e1, . . . , e8, e13, . . . , e16, e21, . . . , e24}

• U2 = {e5, . . . , e24}

Before starting the argumentation, the agents already have initial contrast sets that partition
their local contexts. A1 partitions the context U1 with the contrast set Ki,1 = (Si,1, U1) and
A2 partitions the context U2 with the contrast set Ki,2 = (Si,2, U2). In the sets S1 and S2,
the agents have different concepts. Each concept has a sign, an extensional definition that is a
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Figure 9.1: The examples of the overall context. The diagram represents which examples display
each attribute. The circles are labeled with attributes, and contains the examples that display
their labeled attribute. The species corresponding to each example is detailed in Table 9.1.

e1 = stick e5 = lobster e9 = gecko e13 = tit e17 = brown-bat e21 = tiger
e2 = ant e6 = crab e10 = snake e14 = eagle e18 = pipistrelle e22 = dog
e3 = louse e7 = shrimp e11 = turtle e15 = owl e19 = hoary bat e23 = whale
e4 = flea e8 = crayfish e12 = iguana e16 = crane e20 = myotis e24 = horse

Table 9.1: The 24 examples representing the overall context of our exemplification. They are
divided into six classes that the agents are unaware of; from left to right: crustaceans, insects,
lizards, birds, bats and non-flying mammals.

subset of examples from UO, and an intensional definition. The intensional definition contains one
or more generalization(s) over the examples of the extensional definition, and are represented as
one or multiple set(s) of attribute/value pairs {ai = vi, . . . , an = vn} where n ≤ 5. With this
notation, we consider that a generalization g = {a1 = v1, . . . , an = vn} subsumes an examples
e = {a1 = v′1, . . . , a12 = v′12} if, for all x ∈ {i, . . . , n}, vx = v′x.

The agent A1 has four concepts in its initial contrast set:

• C1 = 〈arthropod, {6_legs=1, eggs=1, vertebra=0}, {e1, . . . , e4}〉,
• C2 = 〈crustacean, {6_legs=0, eggs=1, vertebra=0}, {e5, . . . , e8}〉,
• C3 = 〈bird, {vertebra=1, fly=1} ∨ {eggs=1, vertebra=1}, {e13, . . . , e16}〉,
• C4 = 〈mammal, {vertebra=1, fly=0, warm_blood=1}, {e21, . . . , e24}〉,

while the agent A2 has three concepts in its initial contrast set:

• C5 = 〈arthropod, {6_legs=0, eggs=1, vertebra=0}, {e5, . . . , e8}〉,
• C6 = 〈reptile, {eggs=1, vertebra=1, fly=0}, {e9, . . . , e12}〉,
• C7 = 〈warm_blood, {vertebra=1, warm_blood=1}, {e13, . . . , e24}〉.
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9.2 Systematic Strategy

In this section, we will present how the agents would reach mutual intelligibility on the present
scenario by following a systematic strategy. The different phases, steps and states followed by the
agents are the same as the ones presented in Chapter 7.

9.2.1 Starting the argumentation

Phase 1

The first action that the agents take upon starting the argumentation is the creation of a new
contrast set. The agent A1 builds a new contrast set K1 which is a copy of Ki,1, while the agents
A2 builds a new contrast set K2 which is a copy of Ki,2. Then, as they are in a systematic
strategy, the agents look for all the pairing relations of the argumentation. In order to find the
pairing relations between the concepts that are not from the same contrast set, the agents are
sending to each others the sign and the intensional definition of each of their concepts. A1 sends
the pairs of semiotic elements s(C1), I(C1), . . . , s(C4), I(C4) to A2 while A2 sends the pairs of
semiotic elements s(C5), I(C5), . . . , s(C7), I(C7) to A1.

The agents will create their own representations of each others contrast set by building hypotheses.
The agent A1 builds a hypothesis H1 that will contain a set of concepts C1

5 , . . . , C
1
7 , that will share

the same signs and intensional definitions as C2
5 , . . . , C

2
7 but with extensional definitions replaced

by adjunct sets based on U1, A1’s local context. In a similar fashion, A2 builds a hypothesis H2

that will contain a set of concepts C2
1 , . . . , C

2
4 .

Phase 2

Using their contrast sets and hypotheses, the agents are computing the local pairing relations. Since
this is the first time they are computing pairing relations, they also consider the pairing relations
between their own concepts. The two agents have access to the same sign and same intensional
definitions; however, the fact that they have different contexts makes their local pairing relations
sometimes different. These differences are illustrated in Figure 9.2. In order to settle on a pairing
relation for each pair of concepts, the agents are going to replace their local relations by overall
pairing relations.

The overall pairing relations are the same for each agent, and unify the perspectives that the agents
have on the current situation of the argumentation. The overall pairing relations are represented
in Figure 9.3. We can see that several pairing relations are causing disagreements. The agents will
list these disagreements: since they see the same overall pairing relations, they will list the same
disagreements. They identify the following:

• one self-disagreement between two concepts of A1 (C3 and C4),

• three semantic disagreements (one overlap between C4 and C7, plus two hypo/hypernymies
between C3 and C6, and C4 and C7), and

• one lexical disagreement between C2 and C5.

As an experimenter, we can already notice that there is an unlisted disagreement: the concept C2

does not find an equivalent in A2’s concepts, and therefore causes an untranslatable disagreement.
However, the untranslatable disagreements will be addressed later, once the agents are sure that
their partitions do not need to be changed anymore. Indeed, the creation – and deletion – of
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Figure 9.2: Part A represents the local pairing relations of agent A1 while Part B represents the
local pairing relations of agent A2. The different types of pairing relations are represented by
different arrows, presented below the figure.

some concepts caused by changes in the agents’ partitions can incidentally resolve some of the
untranslatability disagreements.

The agents end the second phase of the strategy by ensuring that there is no loss of transitivity.
As we can observe in Figure 9.3, there is no concept in either contrast set that is in a relation
of equivalence with two nonequivalent concepts. Therefore, the relation of equivalence is still
transitive and our agents can proceed to the next phase of the argumentation.

9.2.2 Resolving the Self-Disagreement

Phase 3

The agents start to look for untranslatable disagreements. Since the argumentation just started,
the agents have a lot of concepts without equivalent in the other agent’s contrast set. For this
reason, the concepts C1, C3, C4, C6 and C7 are all involved in untranslatable disagreements that
is added to the list of disagreements D of the agents.

The first disagreement that the agents will attempt to resolve is, as explained in Section 5.5, the
self-disagreement between C3 and C4. Before starting to engage the disagreement that occurs
between concepts of two different contrast sets, the agents need to make sure that the starting
point of the argumentation is indeed a situation with two contrast sets, and at the moment K1 is
not a contrast set as two of its concepts are overlapping.
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Figure 9.3: Overall pairing relations between the agents before disagreement resolutions. The
legend of this figure is the same as for 9.2.

AU distance {vertebra=1, fly=1} {eggs=1, vertebra=1} average I(C3) I(C4)
{e17, . . . , e20} 0.684 0.737 0.711 0.650

Table 9.2: Anti-unification distances between each examples from the set {e17, . . . , e20} and the
generalizations (isolated and average) of the intensional definitions I(C3) and I(C4).

The agent A1 will need to clarify the border between the concepts C3 and C4. A1 does not
have examples to redistribute as Adj(C3, U1)∩Adj(C4, U1) is empty; however, the agent A2 splits
the set of examples Adj(C3, U2) ∩ Adj(C4, U2) into two groups. We can see in Table 9.2 the
similarity between each of these examples and the two intensional definitions I(C3) and I(C4).
These similarity will decide to which concept should belong each example in the overlap. After
this, A1 will create, helped by A2, two new intensional definitions I ′3 and I ′4 such that:

• I ′3 = {eggs=1, vertebra=1, fly=1} subsumes both Adj(C3, UO)−Adj(C4, UO) and {}, and

• I ′4 = {eggs=0, vertebra=1} subsumes both Adj(C4, UO)−Adj(C3, UO) and {}.

Once this is done, A1 builds two new concepts:

• C8 = {s(C3), I ′3, Adj(I
′
3, U1)} and

• C9 = {s(C4), I ′4, Adj(I
′
4, U1)}.

The concepts C8 and C9 come in replacement of C3 and C4, C3 and C4 are removed from K1. In
order to keep its hypothesis up to date, A2 removes C2

3 and C2
4 from H2 while adding C2

8 and C2
9 .

Both agents can now remove the disagreements that involved C3 and C4. These disagreements are
the self-disagreement involving both C3 and C4, but also the three semantic disagreements and the
untranslatable disagreements cause by C3 and C4.

Phase 2

Since the disagreement was a self-disagreement located in A1, the agent A1 is adding the concepts
C8 and C9 to K1 while the agent A2 adds its own versions C2

8 and C2
9 to K2. The agents will

compute the pairing relations involving the new created concepts, C3 and C4. Figure 9.4 represents
the point of view of both agents after finding the overall pairing relations. The resolution of
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Figure 9.4: Overall pairing relations after the resolution of the self-disagreements.

the self-disagreement caused new disagreements: while removing C3 and C4 resolved the overlap
disagreement that C3 had with C7 and the hypo/hypernymy disagreements that C4 had with C7

and C3 had with C6, the concept C8 is now overlapping with C7 and is a hypernym of C6, while
C9 is now a hyponym of C7.

Regarding the transitivity loss, we can observe in Figure 9.4 that once again the agents preserved
the transitivity of the equivalence pairing relation. The agents can safely move to the resolution
of another disagreement.

9.2.3 Resolving the Overlap Disagreement

Phase 3

The agents add the two new untranslatable disagreements caused by C8 and C9 and move to the
selection of a new disagreement. In the absence of self-disagreement, the agents look for a semantic
disagreement and find the overlap caused by C7 and C8. In order to resolve this disagreement, the
agents create a new concept C10 that subsumes the intersection of Adj(C7, UO) and Adj(C8, UO).
The creation of C10 is done through argumentation such that I(C10) = {eggs=1, vertebra=1,
fly=1}. Since the disagreement is an overlap, the new concept is added to both contrast sets
—while no existing concept is removed.

Phase 2

The agent A1 adds C1
10 toK1 andH1, and the agent A2 adds C2

10 toK2 andH2. Upon computation
of the overall pairing relations, the agents observe the situation reported in Figure 9.5. We can
see that the addition of C10 to K1 and K2 causes two new disagreements: the concept C1

10 is a
hyponym of C7, while the concept C2

10 is a hyponym of C8. The two new hypo/hypernymies are
added to the list of disagreements D. After validating the transitivity of the equivalence pairing
relation, the agents move to their next disagreement.

9.2.4 Resolving the Hypo/Hypernymy Disagreements

Phase 3

Since a version of C10, either C1
10 or C2

10, is added to each contrast set, no new untranslatable
disagreement is added to D as the two versions of C10 are in an equivalent pairing relation from
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Figure 9.5: Overall Pairing Relations of the two new concepts C10, created through argumentation
to resolve an overlap disagreement.

their shared intensional definition. The agents move directly to the next semantic disagreement.
With no more overlap disagreements, the agents are looking for a hypo/hypernymy to resolve.
There are four hypo/hypernymy disagreements in the current argumentation, and the agents select
one randomly, say they select d = (s(C10), s(C8), C2

10 �O C8).

In the disagreement d, the concept C10 is the hyponym and the concept C8 the hypernym. The
agents will therefore create a new concept C11 that will be the co-hyponym of C10 with regard
to C8. The agents create the new concept C11 through argumentation, such that its intensional
definition I(C11) is equal {eggs=1, vertebra=1, fly=0}. After the creation of the new concept, the
hypernym C8 is removed from the argumentation. The agent A1 removes C8 from its contrast set
K1, while the agent A2 removes C8 from its hypothesis H2. The removal of C8 resolves the related
untranslatability disagreements, and also the hypo/hypernymy disagreement between C8 and C6

in addition to d.

Phase 2

Since A1 has removed the hypernym of d from its contrast set, A1 replaces it by adding the two
co-hyponyms C10 and C11 to K1. The other agent A2 adds C10 and C11 to its hypothesis H2.
Since the disagreement resolution is compartmentalized, neither A1 nor A2 reacts to the fact that
C10 was already in their contrast set and hypothesis. The agent A1 has therefore the concept C10

twice in its contrast set, while the agent A2 has C10 twice in its hypothesis.

Once the new concepts have been added, the two agents proceed to find their overall pairing
relations with the old concepts. The new overall pairing relations are represented in Figure 9.6.
The creation of the new concepts caused two new disagreements. The new concept C10 added
to the contrast set K1 is in a hypo/hypernymy disagreement with C7. The second disagreements
comes from the concept C11 that is in an equivalence pairing relation with C6 while not sharing
the same sign, therefore causing a synonymy which is immediately added to D.

While the transitivity of the equivalence relation is still respected in our argumentation, the agents
have multiple equivalent concepts in their containers. Since the two versions of C10 in K1 share
their signs, their intensional and their extensional definitions, they are also equivalent and the
agent A1 removes the oldest version of C10 from K1. The agent A2 aligns on that decision and
remove the oldest concept C10 from H2. The hypo/hypernymy disagreement involving the oldest
C10 is removed from D.
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Figure 9.6: Overall Pairing Relations of the two new concepts C10 and C11, created through
argumentation to resolve a hypo/hypernymy disagreement.

Phase 3

Before choosing a new disagreement to resolve, the agents check the overall pairing relations com-
puted in Phase 2 for untranslatability disagreements, but this time both C10 and C11 have equiv-
alents in the other contrast set. The agents are left with two hypo/hypernymy disagreements to
pick from, and randomly select the disagreement d′ = (s(C7), s(C9), C7 �O C9).

In the disagreement d′, the concept C9 is the hyponym and the concept C7 is the hypernym. The
agents will therefore create a new concept C12 that will be the co-hyponym of C9 with regard to C7.
The agents create the new concept C12 through argumentation, such that its intensional definition
I(C12) is equal {eggs=1, vertebra=1, warm_blood=1}. After the creation of the new concept, the
hypernym C7 is removed from the argumentation. The agent A2 removes C7 from its contrast set
K2, while the agent A1 removes C7 from its hypothesis H1. The removal of C7 resolves the related
untranslatability disagreements, and also the hypo/hypernymy disagreement between C7 and C10

in addition to d′.

Phase 2

The agent A2 has removed the hypernym of d′ from its contrast set and replaces it by adding
the two co-hyponyms C9 and C12 in K2. The other agent A1 adds C9 and C12 to its hypothesis
H1. Once the new concepts have been added, the two agents proceed to find their overall pairing
relations with the old concepts. The new overall pairing relations are represented in Figure 9.7.
The creation of the new concepts caused a new disagreement: C12 is in an equivalence pairing
relation with C1

10 while not sharing the same sign, therefore causing another synonymy which is
immediately added to D.

The transitivity of the equivalence relation continues to be respected in our argumentation, but the
agents have multiple equivalent concepts in their containers. Since the concepts C12 and C2

10 are
equivalent and in a same container, the agent A2 removes C10 from K2 as it is the oldest concept.
The agent A1 aligns on that decision and removes C12 from H1.
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Figure 9.7: Overall Pairing Relations of the two new concepts C9 and C12, created through argu-
mentation to resolve a hypo/hypernymy disagreement.

9.2.5 Resolving the Untranslatable Disagreement

Phase 3

This time, the agents do not have new untranslatable disagreements to resolve. The agents proceed
with the argumentation by looking for a new disagreement. All the semantic disagreements being
resolved, the agents are looking for untranslatable disagreements. While the agents originally
listed multiple untranslatable disagreements, most of the concepts now have another concept in
the contrast set of the other agent with which they have an equivalence pairing relation. The only
remaining untranslatable disagreement is caused by the concept C1 not having an equivalent in
K2. In order to resolve the untranslatable disagreement, the agent A2 creates a concept C13 =
〈s(C1), I(C1), Adj(C1, U2)〉.

Phase 2

The agent A2 adds the concept C13 to its contrast set K2 while the agent A2 adds the concept C1
13

to its hypothesis. While computing the overall pairing relations of the new concept C13, the agents
notice that C13 is equivalent to C1 (they share the same intensional definition), but has a different
sign. The agents add the synonymy disagreement caused by C1 and C13 to the list of disagreements
D. The argumentation kept the transitivity of the equivalence relation and there are no equivalent
concepts within a same container, therefore the agents continue their argumentation.

9.2.6 Resolving the Homonymy

Phase 3

The agents do not find new untranslatable disagreements, and therefore move to the resolution of
lexical disagreements. There are four synonymies and one homonymy disagreement listed in D,
and represented in Figure 9.8. The agents randomly select the homonymy disagreement between
C1 and C5 as the first lexical disagreement to resolve. The agents create two new signs s14 and
s15, replace the sign of C1 by s14 and the sign of C5 by s15 in all containers. This operation creates
two new concepts:

• C1
14 = 〈s14, I(C1), Adj(C1, U1)〉, and
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Figure 9.8: Five lexical disagreements – four synonymy disagreements and one homonymy dis-
agreement.

• C2
15 = 〈s15, I(C5), Adj(C5, U1)〉,

and removes the two concepts C1 and C5 from the containers. Removing C1 and C5 resolves the
homonymy disagreement, which is removed from D. The two synonymies that involved C1 or C15

are also removed from D, but C14 is in a relation of equivalence with C13 and C15 is in a relation
of equivalence with C2. None of these concepts are sharing their signs, so two new synonymy
disagreements are added to D.

Phase 2

Since the signs have been substituted, the agents do not need to add or remove any concepts.
As there are no concepts added to AddK and AddH , the agents do not need to investigate any
new overall pairing relations and do not need to look for new disagreements, nor do they need to
check the validity of the transitivity of their equivalence pairing relation or check if an equivalence
pairing relation appeared within a same contrast set. The agents can directly move forward to the
next disagreement resolution.

9.2.7 Resolving the Synonymies

Phase 3-2 (x4)

The agents are left with five synonymies to resolve. The agents randomly select the synonymy
disagreement between C14 and C13 as the first synonymy to resolve. The agents create a new sign
s16 and replaces the signs of C14 and C13 by s14. This operation creates a new concept in each
contrast set: C1

16 in K1 and C2
16 in K2. Since the new concepts are the same as the older except

from their signs, they keep their pairing relations and therefore the agents do not check for new
disagreements. Since the two concepts that were synonyms have been replaced, the disagreement
caused by C1 and C13 is removed from D.

The agents repeat this operation for the disagreements:

• ds1 = C2 ≡O C15, resulting in the creation of C17

• ds2 = C6 ≡O C11, resulting in the creation of C18

• ds4 = C10 ≡O C12, resulting in the creation of C19.
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arthropod crustacean bird mammal reptile warm_blood
C16 1 0 0 0 0 0
C17 1 1 0 0 0 0
C18 0 0 0 0 1 0
C19 0 0 1 0 0 0.33
C9 0 0 0 1 0 0.66

Table 9.3: Election of a new vocabulary.

Once all of these synonymy disagreements have been resolved, the agents do not have any remaining
disagreements. The agents verify one last time that the transitivity of their equivalence relations
holds, since there are no pairs of concepts from a same contrast set that are both in an equivalence
relation with one concept of another contrast set. Furthermore, in both contrast sets, the agents
observe that there are no pairs of equivalent concepts. Therefore, in the absence of synchronic
disagreements, the agents conclude that they have reached mutual intelligibility.

9.2.8 Updating the Vocabulary

Phase 3

Since the set of disagreements D is now empty, the agents move directly to the fourth phase, where
they will try to reuse their old vocabulary on the new contrast sets.

Phase 4

In the fourth phase, the agents create a vote for each of the signs in their old contrast set vo-
cabularies. These votes are represented in Table 9.3. Once the votes have been exchanged and
aggregated, the agents are electing the new concept that will receive each old sign. We can observe
in Table 9.3 the aggregated votes and the winner concepts. After updating the signs, the agents
have two contrast sets with the following concepts:

• C16 (s(C16) = arthropod)

• C17 (s(C17) = crustacean)

• C18 (s(C18) = reptile)

• C19 (s(C19) = bird)

• C9 (s(C9) = mammal)

which grant A1 and A2 mutual intelligibility, reuse A1 and A2’s old vocabulary, and are able to
discriminate the same groups of examples as well as any of the initial contrast sets did.

9.3 Lazy Strategy

The initial concepts of our agents can be divided in two sets, where the concepts of one set are
involved in a different set of connected disagreements than the concepts of the other set. These
two sets are {C1, C2, C5} and {C3, C4, C6, C7}. If the agents are only using one of these two sets
in there communication, they should not need to seek mutual intelligibility over the other set. We
will see that the lazy strategy will allow them to only selectively align their concepts over one set
of concepts in the same scenario.
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9.3.1 Before the Naming game

Before starting the naming game, each agent create a new contrast set. The agent A1 builds a
new contrast set Kc,1 which is a copy of Ki,1, while the agents A2 builds a new contrast set Kc,2

which is a copy of Ki,2. These two contrast sets are used to play the naming game. The two agents
also create two temporary contrast sets, in order to argue over the meaning of their own concepts:
A1 creates the temporary contrast set Kt,1 while the agent A2 creates the temporary contrast set
Kt,2. In order to create local copies of the concepts of other agents during the argumentation,
the agents also create two hypotheses: A1 creates the current hypothesis Ht,1 while the agent A2

creates the current hypothesis Ht,2. All the temporary containers have the local context of their
agent, and do not contain any concept for the moment.

9.3.2 Starting the Naming Game

Phase 1.a

The argumentation starts with a single example presented to the two agents. In this exempli-
fication, the first example presented to the agents is the example e22, which describes the dog
species. The agent A1 looks for concepts in its current contrast set that subsumes the example e22,
and only finds the concept C4. The agent A1 therefore names e22 with the sign s(C4), which is
mammal. The other agent A2, has also one concept in its contrast set that subsumes the example
e22, concept C7, and therefore the agent A2 names the example e22 with the sign s(C7), which
is warm_blooded. Upon exchanging the signs that they chose to name the example e22, the two
agents both notice that mammal and warm_blooded are two different signs.

The agents verify that neither C4 nor C7 have been investigated for disagreements before, which is
the case. This means that the agents cannot conclude that their different naming of the example
e22 falls under the acceptable degree of error τ that has been fixed. They will have to proceed
to an argumentation involving C4 and C7 in order to sort out if these two concepts are causing
one or more disagreements. In order to determine if the two concepts C4 and C7 are causing a
disagreement, the agents need to find their pairing relation, which requires both agents to have
access to their intensional definitions. Since the agents have not exchanged intensional definitions
yet, the agent A1 sends the pair of semiotic elements s(C4), I(C4) to A2, while A2 sends the pair
of semiotic elements s(C7), I(C7) to A1.

9.3.3 Searching the Connected Set of Disagreements

Phase 1.b – First time

The agents have now received the pairs of semiotic elements that have been exchanged at the end
of Phase 1.a. Using the method described in Section 5.1.3, the agent A1 creates a local copy of
the concept C7 while the agent A2 creates the local copy of the concept C4. These two concepts
are the first to be listed for argumentation. The agents do not stop there, and now look for other
disagreements that would be caused by C4 and C7. Since the two agents do not have copies of all
of each other concepts, they search for these new disagreements separately in their local contexts.
The agent A1 determines that C7 causes two disagreements in the local context U1:

• d1 = 〈bird, warm_blood, C3 ⊗U1 C7〉, and

• d2 = 〈mammal, warm_blood, C4 �U1 C7〉.
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The two concepts C4 and C7 were already listed for argumentation. Their overlap disagreement
caused the example e22 to be named differently by A1 and A2. However, the concept C3 has
not been listed yet. Therefore, A1 lists C3 for argumentation and sends the pair of semiotic
elements s(C3), I(C3) to the agent A2. The agent A1 will also ask A2 to verify if C3 does not cause
disagreements in A2’s local context.

On its turn, the agent A2 has not yet received the semiotic elements s(C3) and I(C3). The agent
A2 only examines the concepts C4 and C7, but only finds the disagreement d1. Since both concepts
causing the disagreement d1 are already listed for argumentation, the agent A2 wishes to move
to the next step of the argumentation. The agent A1, however, requested that A2 examines the
concept C3. Therefore, the agents stay in Phase 1.b for the moment and look for new disagreements
again.

Phase 1.b – Second time

The agent A2 has not added new concepts to the argumentation. Therefore, the agent A1 has
nothing to verify and is ready to move to the next step of the argumentation. The agent A1,
however, has added the concept C3 to the argumentation and asked to the agent A2 to determine
if the concept C3 causes disagreements in its context U2. With the pair of semiotic elements
s(C3), I(C3) that A2 has received, A2 creates a local copy of C3 and computes the local pairing
relations of C3 with all the concepts in its current contrast set. This time, the agent A2 identifies
two local disagreements:

• d′1 = 〈bird, warm_blood, C3 ⊗U2 C7〉, and

• d3 = 〈bird, reptile, C3 �U2 C6〉.

The two concepts causing the disagreement d′1 are already listed for argumentation, but the concept
C6 that is involved in d3 has not been listed yet. Therefore, A2 enlists C6 for argumentation and
sends the sign s(C6) and the intensional definition I(C6) to the agent A1. This time, it is the agent
A2 that asks the agent A1 to verify if C6 does not cause any disagreement in A1’s local context.
While the agent A1 now wishes to move to the next step of the argumentation, the agent A2 has
required A1 to search for new disagreements caused by C6. The agents are therefore staying in
Phase 1.b in order to look for new disagreements.

Phase 1.b – Third time

The agent A1 receives the pair of semiotic elements s(C6), I(C6) and uses it to create a local copy
of C6. With this local copy, the agent A1 searches for disagreements caused by C6 and any other
concept from Kc,1. A1 finds the disagreement d′3 = 〈bird, reptile, C3 �U2 C6〉, which involves the
concepts C3 and C6 that are both already listed for argumentation. Therefore, the agent A1 agrees
to move forward in the argumentation. The agent A2 has not been aware of any new concept listed
for argumentation, and therefore also agrees to take the argumentation to the next step. Since
both agents agree to proceed forward in the argumentation, the argumentation can be taken to
its next step. The agents now start the transfer of the concepts listed for argumentation, namely
C3, C4, C6 and C7, from their current containers to their temporary containers. Both A1 and A2

end Phase 1.b by removing these four concepts from their current containers.

9.3.4 Resolving the Disagreements

After going through Phase 1.b, the agents will loop through Phases 2 and 3. In our exemplification,
the resolution of the disagreements will be achieved in the same order as in the exemplification
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of the systematic strategy. Since Phase 2 and Phase 3 are almost identical in both strategies, we
will not go as much into details as for the systematic strategy in order to keep the exemplification
synoptic.

Phases 2-3

During Phase 2, the agents finish the transfer of the concepts C3, C4, C6 and C7 to the temporary
containers. Upon the completion of this transfer, the agents proceed to identify the disagreements
that are present in these containers. The agents identify the following disagreements:

• one self-disagreement d4 between two concepts of A1: 〈bird, mammal, C3 ⊗O C4〉, and

• three semantic disagreements:

– d5 = 〈bird, warm_blood, C3 ⊗O C7〉
– d6 = 〈bird, reptile, C3 �O C6〉
– d7 = 〈mammal, warm_blood, C4 �O C7〉

After listing these disagreements, the agents do not identify equivalent concepts in a same tempo-
rary contrast set, or concepts that are breaking the transitivity of the equivalence overall pairing
relation. Therefore, the agents start resolving the identified disagreements. The agents address first
the self-disagreement d4. They redistribute the examples of the concepts C3 and C4 as explained in
Section 5.5 and create two new concepts, C8 and C9. The agents then remove the concepts C3 and
C4 that were causing the self-disagreement from their current containers. The self-disagreement
d4 is therefore resolved, along with the other disagreements d5, d6 and d7 that each involved either
C3 or C4.

Phases 1.b to 3

The agents return to Phase 1.b in order to look for new concepts from Kc,1 and Kc,2 that would
be causing disagreements with the two new concepts C8 and C9. Since no such concept exist, the
agents return directly to Phase 2.

The agents start Phase 2 by adding the concepts C8 and C9 to their temporary containers in order
to replace the concepts C3 and C4, deleted during the last Phase. After this, the agents search
for new disagreements caused by either C8 or C9 with the other concepts of the current contrast
sets. After computing the missing overall pairing relations, the agents find three new semantic
disagreements:

• d8 = 〈s(C8),warm_blood , C8 ⊗O C7〉

• d9 = 〈s(C8),reptile, C8 �O C6〉

• d10 = 〈s(C9),warm_blood , C9 �O C7〉

All the previous disagreements have been resolved at the end of the last Phase 3, and therefore the
three disagreements d8, d9 and d10 are the only listed disagreements. Since there are no concepts
that are equivalent in the same contrast set, and since the equivalence pairing relation is still
transitive, the agents move toward the resolution of the next disagreement.

After resolving the unique self-disagreement, the agents move forward to the resolution of semantic
disagreements. The semantic disagreement that the agents select to be resolved first is the overlap
disagreement d8 between C8 and C7. In order to solve this overlap disagreement, the agents create
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a new concept C10. The concept C10 has as adjunct set the overlapping examples between C8 and
C7, as explained in 5.5. Since the disagreement d8 is an overlap disagreement, the agents are not
removing any concept yet. However, the disagreement d8 is still removed from the list of active
disagreements.

Phases 1.b to 3

The agents return in Phase 1.b, but the concept C10 does not cause any disagreement with the
concepts C1, C2 or C5 that stayed in the current contrast sets. Therefore, the agents return once
again directly to Phase 2.

The agents start Phase 2 by adding the concept C10 to their temporary containers. This time, both
agents add a copy of C10 to their contrast sets. After computing the new overall pairing relations,
the agents search for disagreements caused by C10. They identify two new semantic disagreements
caused by concept C10:

• d11 = 〈s(C10), C8, C10 �O C8〉

• d12 = 〈s(C10),warm_blood , C10 �O C7〉

The two disagreements d11 and d12 are added to d9 and d10 in the list of active disagreements.
Since there are no concepts that are equivalent in the same contrast set, and since the equivalence
pairing relation is still transitive, the agents move toward the resolution of the next disagreement.

The semantic disagreement that the agents select to be resolved next is the hypo/hypernymy
disagreement d11 between C8 and C2

10. As explained in Section 5.5, the agent A1 creates a concept
C11 which is the co-hyponym of C2

10 with regard to the hypernym C8. The agent A1 also creates
a sign s12 and a concept C12, which copies the concept C10 of the agent A2 such that:

C12 = 〈s12, I(C10), Adj(C10, U1)〉

The concept C8 being the hypernym in the disagreement d11, the agents remove it from their
temporary containers where C11 and C12 will replace it. Removing the concept C8 from the
containers immediately resolves the disagreements d9 and d11, leaving only the disagreement d10
and d12 as active disagreements.

Phases 1.b to 3

The agents return in Phase 1.b, but neither the concept C11 nor the concept C12 cause any
disagreement with the concepts of the current contrast sets. Therefore, the agents return directly
to Phase 2. The two concepts C11 and C12 are then added to the temporary contrast set of A1,
in order to replace the removed hypernym C8. The agents then look for disagreements caused by
C11 or C12, and find three new disagreements:

• d13 = 〈s(C6), s(C11), C6 ≡O C11〉

• d14 = 〈s(C12),warm_blood , C12 �O C7〉

• d15 = 〈s(C12), s(C10), C12 ≡O C10〉



126 CHAPTER 9. AN EXEMPLIFICATION OF THE APPROACH

The active disagreements are now d10, d12, d13, d14 and d15. The agents look for pairs of concepts
that are equivalent within a same contrast set, and they find that concepts C10 and C12 in Kt,1

are equivalents. The agents remove the oldest of these two concepts, the concept C10, from the
contrast set Kt,1. This automatically resolves the disagreements d12. The equivalence pairing
relation is still transitive, and the agents move toward the resolution of the next disagreement.

The semantic disagreements that remain to be addressed are the two hypo/hypernymy disagree-
ments d10 and d14. The semantic disagreement that the agents select to be resolved next is the
disagreement d10, between the concepts C7 and C9. The agent A2 creates a new concept C13,
co-hyponym of C9 with respect to C7. Along with the concept C13, A2 creates a new sign s14 and
a new concept C14 such that:

C14 = 〈s14, I(C9), Adj(C9, U2)〉

as a local copy of the concept C9 with a substituted name. The agents then remove the hypernym
C7 from their temporary containers, which resolves the two remaining semantic disagreements d10
and d14.

Phases 1.b to 3

Neither the concept C13 nor the concept C14 cause any disagreement with the concepts of the
current contrast sets. Therefore, the agents return directly to Phase 2. The agent A2 adds the two
concepts C13 and C14 to its temporary contrast set. The two new concepts cause two new lexical
disagreements:

• d16 = 〈s(C12), s(C13), C12 ≡O C13〉
• d17 = 〈s(C9), s(C14), C9 ≡O C14〉

The two disagreements d16 and d17 are added to the list of active disagreements along d13. The
concept C13 is equivalent to the concept C10, which is also in the contrast set Kt,2. Since C13 is
more recent than C10, the concept C10 is removed from the temporary contrast set of A2. Removing
the concept C10 immediately resolves the disagreement d15. The equivalence pairing relation is
still transitive, and the agents move toward the resolution of the next disagreement.

The last listed disagreements are the lexical disagreement d13, d16 and d17, which are all synonymy
disagreements. The agents create three new signs s15, s16 and s17, which are then assigned as
follow:

• s15 is substituted to the signs of both C6 and C11.

• s16 is substituted to the signs of both C12 and C13.

• s17 is substituted to the signs of both C9 and C14.

The concepts C11 and C6 become the concepts C1
15 and C2

15, that now have an equivalent overall
pairing relation and share the same sign. The synonymy disagreement d13 is resolved. Following
the same reasoning, the disagreements d16 and d17 are also resolved through the creation of the
concepts C16 and C17. The concepts C15, C17 and C17 are not causing any disagreement with the
concepts of the current contrast sets, and therefore the agents immediately go back to Phase 2.
The concept C15, C16 and C17 are also not causing any disagreement with other concepts from the
temporary contrast sets. Since there is also no equivalences between concepts from a same contrast
set, and since the equivalence pairing relation is still transitive in the temporary containers, the
agents look for a new disagreement to resolve. Since there are no more disagreement to resolve,
the agents consider that they have reached mutual intelligibility.
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bird mammal reptile warm_blooded
C15 0 0 1 0
C16 1 0 0 0.33
C17 0 1 0 0.66

Table 9.4: Election of a new vocabulary after an argumentation within the lazy strategy.

9.3.5 Updating the Vocabulary

Phase 4

The agents have reached mutual intelligibility, but the concepts C now use a vocabulary different
from the initial vocabulary. While the agents cannot reuse the signs s(C1), s(C2) and s(C5) that
are still used in their current contrast sets, the agents can still try to reuse the signs the concepts
C3, C4, C6 and C7. They have a vote that results in the score presented in Table 9.4. After
updating the signs according to their vote, the agents have two contrast sets with the following
concepts:

• C15 : (s(C15) =reptile)

• C16 : (s(C16) =bird)

• C17 : (s(C17) =mammal)

which grant A1 and A2 mutual intelligibility over a part of the overall context while reusing the
elements of their initial contrast sets’ vocabulary. This new contrast sets are able to discriminate
the same groups of examples as the concepts C3, C4, C6 and C7 did.

9.3.6 Transferring Knowledge

Phase 5

The agents have obtained two temporary contrast sets that are free of disagreements. However,
they agents still have to integrate their temporary contrast sets in their current contrast sets. The
agents simply transfer all the concepts from their temporary contrast sets to their current ones.
Since the agents have thoughtfully ensured that the concepts from the temporary contrast sets
were not causing disagreements with the ones from the current contrast sets, the transfer is safe.
The agents can now continue to play the naming game, awaiting new examples, with the assurance
that examples of the overall context subsumed by either C15, C16 or C17 will be successfully named.

9.4 Conclusion

The systematic and the lazy strategies have a same approach to reaching mutual intelligibility
—identifying relations between concepts, translating them in disagreement, and resolving the dis-
agreements found, but they both use different path to do so. The systematic approach is frontal,
exchanging all information before the start of the naming game and resolving potential causes of
disagreements upfront at the cost of risking to exchange some information that would not have
been used in the naming game. The lazy strategy starts the naming game and only resolve dis-
agreements when they are causing naming differences. While this strategy can reduce by a lot the
information between the agents if the naming game takes place on a limited subset of the overall
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context of the agents, it comes at the risk that agents might stop their naming game often to check
whether or not a difference in naming is caused by a disagreement, or by a learning error within
the limits of what is accepted by the agents.



Chapter 10

Experimental Evaluation

10.1 Presentation of the Experiments

10.1.1 Parameters

Before introducing the variables (dependent and independent) of our experiments, we will discuss
its parameters. The parameters are not tested individually for each scenario, instead they are
pre-selected. There are three parameters in our model:

1. the error threshold τE

2. the argument acceptability aa of the ABUI algorithm that generates the generalizations

3. the redundancy r between the two initial contexts of the agents.

Error threshold: the error threshold is the parameter τE already presented in Chapter 6. Re-
ferred as “the degree of error tolerated” in the figures, it gives the number of examples that is
required by the agents for overall pairing partial sets to be taken into account in the definition of
overall pairing relations. A different error threshold is linked to every data-set, as the value of the
error threshold affects the number of classes available to set up disagreements.

Argument Acceptability: the argument acceptability is a parameter of the ABUI algorithm
that determines weather or not a generalization generated by ABUI is considered satisfactory. For
instance, during the construction of a counter-argument α, an agent builds a set of positive and
negative examples that α should and should not cover. In this situation, the argument acceptability
is the accuracy of α over the sets of positive and negative examples above which the ABUI algorithm
considers that α is satisfactory enough to endorse the role of a counter-argument. By default, the
argument acceptability is 0.75 in our experiments, as it is the default value used in the AMAIL
argumentation framework.

Redundancy: the redundancy is the percentage of each agent’s initial context that is shared
among them. If the agents receive 60 labeled examples at the beginning of the experiment, 30
of which are in both initial context, the redundancy is 50%. If the same 60 examples are the
initial contexts of both agents, the redundancy is 100%. The redundancy is defined by the ratio of
shared examples, the label of these examples are not taken into account and two agents might have
r = 100% although they do not share a single right-path association. By default, the redundancy
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is zero in our experiments, as it is the most complex scenario four our agents to reach mutual
intelligibility over. Indeed, a redundancy of 0 indicates that no information is initially shared by
the agents in the form of examples.

10.1.2 Variables

This section presents the variables that will be found in our experiments. They are presented in two
distinct categories: independent variables (IV) and dependent variables (DV). We have four inde-
pendent variables: domain, strategy, setup disagreements and number of initial concepts. There is
a total of four dependent variables: the Synchronic Agreement Ratio(SAR), the Diachronic Agree-
ment Ratio(DAR), the Exchanged Examples Ratio(EER), the Number of Expected Concepts(NEC)
and the Number of Final Concepts (NFC).

Independent Variables (IV)

Domain Each domain corresponds to a different data-set. The first two domains correspond to
two of the three data-sets already presented in Chapter 9: Zoology and Sponges. The remaining
domain Soybean correspond to the eponymous data-set. The Soybean data-set has 307 instances
of soybean observations spread among 19 classes of soybean diseases. There are 35 categorical
attributes, some nominal and some ordered. While the experiments always use a redundancy of
0% and an argument acceptability of 0.75, each domain has its associated error threshold.

Strategy Our model is divided in two strategies: the systematic and the lazy. The systematic
strategy is presented in Chapter 7 and is a strategy that focuses on preventing any disagreement
that could occur on the overall context of the two agents. The lazy strategy is presented in
Chapter 8 and unlike the systematic strategy, it focuses on solving disagreements on connected
sets of disagreements once the agents encounter an error in their naming game.

Setup Disagreements (SDC) While the actual number of disagreements that the two agents
will encounter depends on the learning of their initial contrast sets, the disagreements that we
expect the agents to solve are experimentally set up. The set up of these disagreements has already
been discussed in Chapter 9. This set up takes two parameters: the type of disagreements (overlap,
hypo/hypernymy, synonymy or homonymy) that are set up, and for each type, the number of these
disagreements.

Number of Initial Concepts (OCC) The number of initial concepts is the number of cate-
gories that are present in the data-set related to the experiment’s domain. For the lowest possible
error threshold, one, we have 3 concepts in the Sponges domain, 7 concepts in the Zoology domain,
and 19 concepts in the Soybean domain. However, increasing the error threshold τE decreases
the number of initial concepts that can be used, as the initial concepts should contain at least τE
examples.

Dependent Variables (DV)

Count of Disagreements(C:type,context) The first measure of an experiment success is the
count of each type of disagreement that exist between the two agent at the beginning and at the
end of an argumentation. We therefore have an initial and a final count of disagreements, for each
type of disagreement: self-disagreements, overlap disagreements, hypo/hypernymy disagreements,
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synonymy disagreements, homonymy disagreements, indistinguishable disagreements and untrans-
latable disagreements. Since there is a distinction between the local and the overall disagreements,
the count can be local (as one agent sees it) or overall (as the experimenter sees it). Our model
stops when there is no overall disagreement detected by the agents anymore. For this reason, we
always expect the final overall count for each type of disagreement, to be equal to zero. Other
variables will give a more nuanced measure of our model success.

Synchronic Agreement Ratio (SAR) The Synchronic Agreement Ration, or SAR, is the ratio
between the of examples from the overall context that are named through a left path association
with the same unique sign by both agents when presented to them, over the total number of
examples in the overall context. The SAR measures how well the agents have reached mutual
intelligibility.

Definition 56 (SAR). Let A1 and A2 be two agents, and K1 and K2 be their contrast sets. The
Synchronic Agreement Ratio of the two agents is:

SAR(A1, A2) =
|{e ∈ UO|e l

K1 7→s ∧ e l
K2 7→s}|

|UO|

Diachronic Agreement Ratio (DAR) The Diachronic Agreement Ratio in an agent is the
additive inverse of the ratio between (1) the number of pairs of examples from an agent’s initial
context that were in two different concepts in the initial contrast set that later are in the same
concept in the final contrast set, and (2) the number of pairs of examples that were in two different
concepts in the initial contrast set. The DAR is a measure of refinement that shows how well the
monotonic evolution of the contrast sets have been respected through the argumentation.

Definition 57 (DAR). Let A be an agent that has K = (U,Q) for initial contrast set and K ′ =
(U ′, Q′) for final contrast set. The Diachronic Agreement Ratio of A is:

DAR(A) = 1− |{e1, e2 ∈ U |e1
l
K 7→s ∧ e2 l

K 7→s ∧ e1 l
K′ 7→s ∧ e2 l

K′ 7→s′ ∧ s 6= s′}|
|{e1, e2 ∈ U |e1 l

K′ 7→s ∧ e2 l
K′ 7→s′ ∧ s 6= s′}|

Exchanged Examples Ratios (EER) The exchanged examples ratio (EER) corresponds to
the number of examples that have been sent from one agent to the other through messages, divided
by the number of examples in the overall context.

Coverage Ratio (CR) The coverage ratio (CR) corresponds to the number of examples from
the overall context that can be associated with a sign by an agent through left-path associations,
divided by the number of examples in the overall context.

Observed Disagreements Count (ODC) Unlike the set-up disagreements (SD), the observed
disagreements (OD) are disagreements stricto sensus. They are the disagreements that are observed
between the agents after they learned their initial contrast sets. Similarly to the set-up disagree-
ments, we measure their types and number. The setup disagreements are unlikely to be the only
disagreements found between our two agents once they learn they initial contrast sets, as they
built their knowledge upon partial information on the overall context. ODs can be counted before
or after the argumentation, and using either the local context of one agent or the overall context.
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Final Disagreements Count (FDC) The final disagreements are the disagreements found at
the end of the argumentation. While their count is interesting, a number of final disagreement
equals to zero is synonymous of full synchronic agreement between the agents only in scenarios
where we are not accounting a degree of error. When accounting a degree of error, there can be
no disagreement between the agents while the agents still associate some examples with different
signs (in a proportion indexed on the error threshold that is therefore fixed).

Number of Expected Concepts (NEC) The number of expected concepts represents the
total number of concepts that should be expected in a contrast set that has a concept for each
polylexematic class in the combined left-path associations of both agents —which corresponds to
the result of a brute force approach to the problem addressed in this thesis. Given two agents A1

and A2 that have respectively m and n concepts in their contrast sets, their maximum number of
expected concept is 2m+n− 1 concepts, which corresponds to the number of possible combinations
between the agents’ adjunct sets minus the empty set.

Number of Final Concepts (NFC) The number of final concepts, or NFC, is the number of
concepts in the final contrast set of one agent. For an agent A with a final contrast set K = (U,Q),
the NFC is equal to |Q|. The NFC can be measured in any of the two agents, as our protocol
ensures that both agents end the argumentation with the same number of concepts in their contrast
sets.

10.1.3 Tested Hypotheses

Our model is evaluated through an array of hypotheses that are tested. There is a total of six
tested hypotheses, each one corresponding to different combinations of experiments and testing a
specific property of our model.

1. H1: Generality Our model allows two agents to reach mutual intelligibility without creating
diachronic disagreements regardless of the type or combinations of types of disagreements
between these two agents.

2. H2: Domain Independence: Our model allows two agents to reach mutual intelligibility
without creating diachronic disagreements regardless of the domain of their overall context.

3. H3: Coverage Preservation Our model allows two agents to reach mutual intelligibility
without restraining the context of the agents, as the overall context of the agents should not
lose examples through the argumentation.

4. H4: Efficiency Our model allows two agents to reach mutual intelligibility without ex-
changing any significant portion of their contexts.

5. H5: Scalability A linear increase of size of the overall context does not exponentially
increase the number of generalizations that need to be exchanged in order for the agent to
reach mutual intelligibility.

6. H6: Simplicity The number of concepts in each contrast-set after that the agents have
reached mutual intelligibility is the number of expected concepts NEC that can be computed
before the argumentation.
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10.2 Disagreement Experiment Setup

The main goal of our model is to achieve mutual intelligibility. The notion of mutual intelligibility
has been conveniently translated as an absence of disagreement, and as we mentioned in the
previous section it is this absence of disagreements that constitutes the stop condition of our
argumentation model. In order to evaluate our model, it is imperative to setup disagreements
before the agents enter their argumentation. However, setting up disagreements is non-trivial. A
disagreement is based on a pairing relation, pairing relation that is based on three pairing partial
sets, partial sets that are based on as many adjunct sets, adjunct sets that are based on intensional
definitions. In order to generate a certain type of disagreement, we need generate a certain set of
intensional definitions for the initial concepts of our agents. These concepts —and their intensional
definitions— are learned over sets of right-path associations, as explained in Section 5.1.3.

We cannot talk about disagreements at the level of the right-path association sets, as disagreements
are located at the intensional level and therefore appear after the creation of left-path associations
during the concept creation. However, we can purely conceptually imagine that the adjunct sets of
the agents are replaced by the classes of the same agents initial sets of right-path associations, which
allows us to define disagreement precursors. The intersection and set differences of two classes are
used to compute pairing partial sets precursors, used themselves to compute a r-triplet precursor
which gives a pairing relation precursor that indicates —or not, depending on the r-triplet and the
classes signs— a disagreement type.

Setting up disagreement precursors is straightforward. Instead of having two different data-sets
as the initial sets of right-path associations on which our agents learn their first contrast sets, the
agents can use two copies of a same data-set U 7→ S that are slightly modify in order to have
disagreement precursors. Once a desired disagreement precursor p = (s1, s2, U(7→ s1)rUU(7→ s2))
is designated, the right-path associations of each copy can be modified in order to produce two
classes U( 7→ s1) and U(7→ s2)) that have the right signs and intersection in order to cause p. This
process is detailed at the end of the paragraph for four different types of disagreement precursors.

Translating disagreement precursors into proper disagreements is however complex. In order to
move from the extensional to the intensional level, the agents need to learn generalizations over
their right-path associations. This is normally done during the creation of each contrast-set, using
the method described in Section 5.1.3. If the inductive learning responsible for the creation of a new
concept Ci manages to reach the maximal accuracy, the examples subsumed by the new concept
are the same as the examples of the class U( 7→ si) on which the new concept is based. In other
words, the adjunct set Adj(Ci, U) corresponds to the class U( 7→ si). Therefore the pairing partial
sets and their corresponding precursors are identical, the r-triplets are identical to the r-triplet
precursors, and Ci’s pairing relations cause disagreements that are similar to the disagreement
precursors that we set up. However, we are assuming here an accuracy that is not guaranteed
during the inductive learning. For this reason, the disagreements in which Ci is involved might be
different from the disagreement precursors that we set up.

Another issue with this method is that our agents are indeed having different right-path associations
as a result of the disagreement precursors setup, but since we are not adding or removing examples
from their two copies of the set U 7→ S, both agents remain with the same context U . This issue is
easily overcome by removing different right-path associations from each local sets of associations.
The proportion of right-path associations left in both contexts defines the redundancy of our initial
contexts that has already been discussed in Section 10.1.1. During the deletion of the associations,
a particular attention should be put toward having the same number of remaining examples for
each initial class of U 7→ S in both agents. Unbalancing the number of examples in two copies of a
class would lead to more difficulties for the inductive learning that takes place during the concepts
creation. These difficulties are likely to decrease the accuracy of the inductive learning, increasing
the difference between the adjunct sets of the new concepts and their corresponding classes. As we
discussed in the previous paragraph, this would increase the difference between the disagreements
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appearing in our augmentations and their precursors.

The general idea behind disagreement setup is therefore to first set up disagreement precursors
by duplicating a data-set, rearranging the classes and the signs differently in each instance of the
data-set in a fashion that forces the concepts created through right-path associations to cause
disagreements. Then, removing one instance of an example from one of the two contrast set
obtained results in having different contexts for each agent, finalizes the disagreement setup. The
following sections explains how manipulating the associations of two copies of a same set of right-
path associations can set up disagreement precursors. For the rest of this section, we consider that
the disagreements are setup with two sets of right-path associations U1 7→ S1 and U2 7→ S2, such
that initially U1 7→ S1 = U2 7→ S2.

Hypo/Hypernymy disagreements In order to setup a hypo/hypernymy disagreement with
the two sets of associations U1 7→ S1 and U2 7→ S2, one class of U1 7→ S1 should contain all of
the examples of more than one another class of U2 7→ S2. This is done through selecting two
classes U1(7→ s1) and U1(7→ s2) and merging them into a class U1(7→ s3) = U1(7→ s1) ∪ U1(7→ s2).
Then, the sets of associations U1(7→ s1) 7→ {s1} and U1(7→ s2) 7→ {s2} are removed from U1 7→ S1

and replaced by U1( 7→ s3) 7→ {s3}. This procedure, illustrated in Figure 10.1.A, sets up two
hypo/hypernymy disagreements.

Overlap Disagreements In order two setup an overlap disagreement with the two sets of associ-
ations U1 7→ S1 and U2 7→ S2, one class of U1 7→ S1 should share only some of its examples with only
some examples of another class from U2 7→ S2. This is done through selecting two classes U1( 7→ s1)
and U1( 7→ s2) and merging them into a class U1(7→ s3) = U1(7→ s1) ∪ U1(7→ s2). Then, the sets of
associations U1( 7→ s1) 7→ {s1} and U1( 7→ s2) 7→ {s2} are removed from U1 7→ S1 and replaced by
U1(7→ s3) 7→ {s3}. This first step is similar to the setup of a hypo/hypernymy disagreement. The
second step is to select the class U2( 7→ s2) and to merge it with another class U2( 7→ s4) in order to
obtain the class U2(7→ s5) = U2(7→ s2)∪U2(7→ s4). Then, the sets of associations U2(7→ s2) 7→ {s2}
and U2(7→ s4) 7→ {s4} are removed from U2 7→ S2 and replaced by U2(7→ s5). This procedure,
illustrated in Figure 10.1.B, sets up one overlap and two hypo/hypernymy disagreements.

Synonymy Disagreements In order to setup a synonymy disagreement with the two sets of
associations U1 7→ S1 and U2 7→ S2, one class of U1 7→ S1 should share all of its examples with
another class from U2 7→ S2, but not its sign. This is done through selecting a class U1(7→ s1) and
using it to create a set of right-path associations U1(7→ s1) 7→ {s2}. Then, the set of associations
U1(7→ s1) 7→ {s1} is removed from U1 7→ S1 and replaced by U1( 7→ s1) 7→ {s2}. This procedure,
illustrated in Figure 10.1.C, sets up one synonymy disagreement.

Homonymy Disagreements In order to setup a homonymy disagreement with the two sets of
associations U1 7→ S1 and U2 7→ S2, one class of U1 7→ S1 should share no example with another
class from U2 7→ S2, while sharing its sign. This is done through selecting two classes U1( 7→ s1)
and U2( 7→ s2), using them to create two sets of right-path associations:

• U1(7→ s1) 7→ {s3}, and

• U2(7→ s2) 7→ {s3}.

Then, the set of associations U1(7→ s1) 7→ {s1} is removed from U1 7→ S1 and the set U2( 7→ s2)
is removed from U2 7→ S2. The set U1(7→ s1) 7→ {s3} is then added to U1 7→ S1, while the set
U2( 7→ s2) 7→ {s3} is added to U2(7→ s2). This procedure, illustrated in Figure 10.1.D, sets up one
homonymy and two synonymy disagreements.
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Figure 10.1: Setup of four types of disagreements. The continuous lines represent the classes from
two equivalent sets of associations, while the doted lines regroup the classes before and after the
setup of the disagreements. Group A shows the setup of a hypo/hypernymy disagreement, group
B shows the setup of an overlap disagreement, C shows the setup of a synonymy disagreement and
group D the setup of a homonymy disagreement.

10.3 Generality

The hypothesis of generality postulates that both approaches of our model can resolve each possible
combination of disagreements between two agents’ contrast sets, increasing their SAR while keeping
their perspective DAR at one. In order to test this hypothesis, we used the Soybean data-set to
setup variable disagreements between two agents. We counted the number of disagreements before
and after argumentation, along with the SAR and the DAR. In order to evaluate this hypothesis on
a great number of disagreements and combinations of disagreements, we have run this experiment
200 times with different arrangements.

Four types of disagreements are being setup in each run: overlap, hypo/hypernymies, synonymies
and homonymies. These four types are randomly ordered for each experiment run, and a random
number of each disagreement type is selected and then setup, one type after the other. For instance,
if the overlap type has been ordered first, we select a random number between 0 and the number
of classes of Soybean with more than τE examples divided by three (the number of classes required
to setup an overlap disagreement) and we merge as many time three random classes in order to
obtain as many overlap disagreements. For each of the 200 runs of the experiment, we setup a new
random arrangement of disagreements.

The independent variables of this experiment are the types of disagreements that have been setup
and their number (SDC). The experiment is always using the Soybean data-set, an error threshold
of τE = 5 and an argument acceptability of 0.75. The main dependent variables are the SAR
and the DAR, in order to measure to which extend our model reached a mutual intelligibility in a
monotonic way. These variables are completed by the different example counts (ODC, FDC) and
the coverage ratio (CR).

The setup disagreements are unlikely to be the only disagreements found between our two agents
once they learn they initial contrast sets, as they built their knowledge upon partial information
on the overall context. For this reason, we also count the number of observed disagreements. The
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Figure 10.2: Disagreement count in a systematic argumentation with random disagreements. The
left plot presents the total count of disagreements, for all their types. On the right plot, the
y-axis shows the disagreement count for the types of disagreement displayed in the x-axis: 1.Self-
Disagreement, 2.Overlap, 3. Hypo/hypernym, 4. Synonym, 5.Homonym, 6.Indistinguishable dis-
agreement, 7.Untranslatable disagreement.

number of observed disagreements can be counted before or after the argumentation, and using
either the local context of one agent or the overall context. The number of observed disagreements
is an additional dependent variable.

10.3.1 Systematic Strategy

The results of this experimental evaluation are shown in Figures 10.2, 10.3 and 10.4 below. Figure
10.2 displays the average count of disagreements over our collection of experiments. The left figure
represents the average counts of overall disagreements, while the right picture separates the average
counts of disagreements according to their types. The counts are done at three different moments of
the argumentation: the set up disagreements are counted before the argumentation, as they are the
arguments that we set up in the agents learning data-sets prior to the construction of their initial
contrast sets. The observed disagreements are counted at the beginning of the argumentation,
once the initial contrast sets have been learned. The final disagreements are counted after the
argumentation, and should therefore always be equal to 0.

In the left part of Figure 10.2, we can observe that the number of observed disagreements is more
than twice the number of disagreements that have been set up. While disagreements spontaneously
arise between two agents once they learned their first contrast sets over two different contexts, set-
ting up disagreements increases the heterogeneity between the two agents’ representations and
causes a higher number of disagreements. The set up disagreements can be seen as “stems” for
the observed disagreements. The final number of disagreements, which is counted after each argu-
mentation, is always zero. This is not surprising, as an absence of disagreement is not necessarily
equivalent to a full mutual agreement if the model admits a positive error threshold. The absence
of overall disagreements is in fact the condition that tests the end of the argumentation between
the agents in the systematic strategy, and therefore an equal-to-zero number of disagreements after
the argumentation was expected.

The right part of Figure 10.2 breaks down the count of disagreements for each different types of
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Figure 10.3: Disagreement count in a systematic argumentation with random disagreements. The
y-axis displays the count of each of the types of disagreement displayed in the x-axis: 1.Self-
Disagreements, 2.Overlaps, 3. Hypo/hypernymies, 4. Synonymies, 5.Homonymies, 6.Indistin-
guishable disagreements, 7.Untranslatable disagreements

disagreements. As mentioned before, the only set up disagreement types that have a positive count
are following: overlap, hypo/hypernym, synonym and the homonym. The distribution of the set
up disagreements is directed by the cost of setting up each type: for instance, setting up an overlap
requires three classes from the initial data-set. On the other hand, setting up a synonymy only
requires one class. Moreover, certain disagreements are causing other type of disagreements: for
instance, setting up an overlap also sets up two hypo/hypernym disagreements.

The distribution of the observed disagreements is very different from the distribution of the setup
disagreements. For instance, the most observed type of disagreement from the four types that are
setup is the overlap disagreement, which was also the least set up type of disagreement. Indeed,
since setting up an overlap requires to use 3 classes versus two at most for the other three types, they
are expected to be less. The high incidence of overlap disagreements in the observed disagreements
is an indicator that the overlap disagreement is the most likely to appear spontaneously when two
agents learn their concepts over different contexts. Moreover, we can see that the most observed
type of disagreements is the untranslatable disagreement. Since our error threshold is low (τE = 5),
and since the Soybean data-set has many small classes having about this number of examples, this
is due to the agents over-fitting their intensional definitions because of the scarcity of examples in
their initial data-sets.

Figure 10.3 shows the count of each type of disagreements before and after the argumentation.
The top figures represent the overall disagreements, while the bottom figures represent the local
disagreements of one of the agent. Since the argumentation model is symmetrical and the dis-
agreements are set up randomly, the other agent’s counts follow a similar profile. On horizontal
axis, the leftmost figures display the ODC, the disagreement count at the beginning of the argu-
mentation, while the rightmost figures display the FDC, the disagreement count at the end of the
argumentation. We can observe that while their are never overall disagreements after an argu-
mentation, there are still local disagreements. While or model focuses on resolving every overall
disagreements, it does not aim to resolve the local disagreements. Indeed, local disagreements do
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Figure 10.4: Evolution of SAR, DAR, EER and CR before and after a systematic argumentation
where the disagreements are randomly selected (left). A local version (taking only the examples of
local contexts) of these five variables is implemented and the the euclidean distance between the
two agent’s variable is measured (right).

not necessarily stop the mutual intelligibility between the agents. Moreover, once there are no
more overall disagreement between the agents anymore, eliminating the remaining local disagree-
ments would require to exchange examples. While this would give more information to the agents,
allowing them to observe directly that they have reached mutual intelligibility with their contexts,
it would also go against our goal to keep the transfer of examples between the agents at the lowest
possible amount.

Figure 10.4 presents all the ratio that have been measured, before and after the argumentation.
The most important are the SAR and the DAR, as the EER and the CR will be explored with more
details in future hypothesis tests. The leftmost figure presents the overall measures. The DAR, that
is in essence a local measure which compares two contrast sets of a same agent, is here presented
as the average of two DARs of the agents, averaged again over the 200 experiments. The rightmost
figure presents the average difference between the local measures of a same experiment. Since the
SAR, EER and CR are global measures, we propose a formulation for their local counterparts. The
local SAR of an agent A is computed by using the local context of A instead of the overall context
as the denominator of the ratio. The local EER of A is computed by using the number of examples
sent by A as the numerator of the ratio, instead of using the number of examples exchanged by
the two agents which would also include the number of examples received by A. Finally, the local
CR of A is computed by dividing the number of examples from A’s context that are covered by
one of its current contrast set’s concept, by the number of examples in A’s context.

We can see on the leftmost figure that the DAR of both agents is one both before and after
the argumentation, meaning that the agents refined their respective contrast sets in a monotonic
way, without compromising their original classifications. Moreover, the SAR significantly increases
after the argumentation. The agents are therefore able to reach mutual intelligibility while refining
their contrast sets in a monotonic way with our model. The EER stays around 0.1 with a low
variance, meaning that the agents do not need to exchange more than 10% of their examples
to reach mutual intelligibility for any type of disagreement combination encountered. The CR
decreases after the argumentation, meaning that less examples are covered after the argumentation.
This is coherent with the fact that our model has been design to chose refinement over coverage.
However, the difference between the CR before and after the argumentation is small, with a CR
after argumentation well above 0.5, which indicates that the refinement does not cause an over-
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Figure 10.5: Disagreement count in a lazy argumentation with random disagreements. The left plot
presents the total count of disagreements, for all their types. On the right plot, the y-axis shows
the disagreement count for the types of disagreement displayed in the x-axis: 1.Self-Disagreement,
2.Overlap, 3. Hypo/hypernym, 4. Synonym, 5.Homonym, 6.Indistinguishable disagreement, 7.Un-
translatable disagreement.

fitting.

The scale on the rightmost figure ranges from 0 to 0.08. This means that the difference between
the local measures on the two agents ranges on a tenth of the global measures. From this, we
can conclude that there is no asymmetry between the knowledge of our agents before or after the
argumentation.

10.3.2 Lazy Strategy

The results of this experimental evaluation on the lazy strategy are shown in Figures 10.5, 10.6 and
10.7. Figure 10.5 displays the average count of disagreements over our collection of experiments.
The left-hand plot represents the average counts of overall disagreements, while the right-hand
plot separates the average counts of disagreements according to their types. The counts are done
at three different moments of the argumentation: the set up disagreements are counted before
the argumentation, as they are the arguments that we set up in the agents learning data-sets
prior to the construction of their initial contrast sets. The observed disagreements are counted
at the beginning of the argumentation, once the initial contrast sets have been learned. The final
disagreements are counted after the argumentation, and should be equal to 0 if the process is
successful.

We observe that the counted disagreements before and at the beginning of the argumentation
presented in Figure 10.5 are similar to the corresponding counts presented in Figure 10.2. A
similar count in setup and observed disagreements and a similar distribution of the types of these
disagreements in the evaluations of both systematic and lazy strategies, illustrates the fact that
200 experimental runs are enough to explore the space of random setups. The conclusions that
we draw from the fact that there are no final disagreements, of any type, are the same as for
the evaluation of the generality of the systematic approach: our model can correctly address and
resolve any combination of disagreement types and resolve all of them.



140 CHAPTER 10. EXPERIMENTAL EVALUATION

Figure 10.6: Disagreement count in a lazy argumentation with random disagreements. The y-axis
displays the count of each of the types of disagreement displayed in the x-axis: 1.Self-Disagreements,
2.Overlaps, 3. Hypo/hypernymies, 4. Synonymies, 5.Homonymies, 6.Indistinguishable disagree-
ments, 7.Untranslatable disagreements

Figure 10.6 shows the count of each type of disagreement before and after the argumentation.
The upper plots display the overall disagreements, while the bottom plots display the local dis-
agreements on a individual agent. Here again, we observe results similar to the ones presented
in Figure 10.3 which gives us an additional confirmation that similar setups are found in both
experiments. The local disagreements found after the argumentation are as well synonymies and
indistinguishable disagreements, in similar proportions as in the systematic strategy, which means
that the explanation given during the analysis of the systematic strategy results holds here as well.

Figure 10.7 presents the ratio that have been measured, before and after the argumentation. The
leftmost plot presents the overall measures. The DAR, that is in essence a local measure which
compares two contrast sets of a same agent, is here presented as the average of two DARs of the
agents, averaged again over the 200 experiments. The rightmost plot presents the average difference
between the local measures of a same experiment. We can observe a noticeable difference between
the SAR of the systematic and the lazy strategy, the SAR being on average more than 0.8 in the
systematic strategy while also being less than 0.8 in average in the lazy strategy. The DAR is not
affected by the argumentation in the lazy strategy, as it was the case for the systematic strategy.
However, the exchange ratio is lower in the lazy strategy than it is in the systematic strategy,
which gives an explanation to the higher coverage ratio at the end of the systematic strategy. This
difference in exchange ratio is explained by the different approaches to the naming game in both
strategies. In the systematic approach, the argumentation takes place before the naming game.
Since the setup has a 0% redundancy, the agents do not know any example of each other’s context
when they start to resolve their first disagreement. On the contrary, the lazy approach can see the
first argumentation on meaning take place after the presentation of several examples, allowing the
agents to have a certain knowledge of the overall context before the argumentation. However, we
can observe that this additional knowledge does not translate in a drastic decrease of the exchange
ratio, that was already low in the systematic strategy. Finally, the difference between the local
measures on the two agents ranges again on a tenth of the global measures. From this, we can
conclude that there is again no asymmetry between the agents after the argumentation and thus
the symmetry that existed before is preserved.
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Figure 10.7: Evolution of SAR, DAR, EER and CR before and after a lazy argumentation where
the disagreements are randomly selected (left). A local version (taking only the examples of local
contexts) of these five variables is implemented and the the euclidean distance between the two
agent’s variable is measured (right).

10.3.3 Conclusion of the Generality Hypothesis

Both the systematic and lazy strategies display an increase in their average synchronic agreement
while keeping a high diachronic agreement and coverage, and without exchanging many examples.
This means that both strategies satisfy the generality hypothesis.

10.4 Domain Independence

The domain independence hypothesis postulates that both approaches of our model can resolve
a disagreement between two agents that occurs on any domain, increasing the SAR of the agents
while keeping their respective DAR at one. In order to test this hypothesis, we used with four
different domains, and set up exactly one overlap disagreement between two agents on each of
them. Moreover, the examples that have not been used in the set up of the overlap are removed
from the data-set of the agents before the beginning of the argumentation, in order to ensure that
we do not have more concepts that are not used in a set up in some domains than in others. We
tested this experiment 100 times on and averaged the measures in order to present the results
below.

In each of the 100 experiments, the SAR, DAR, EEC and CR of the agents are measured in each of
the four argumentation occurring on the different domains. The four domains are the independent
variables our our experiment, while the SAR, DAR, EEC and CR are the dependent variables.
The argument acceptability is 0.75, its standard value, and the redundancy is set at 0% as usual.
However, the error threshold is different for each data-set. The error threshold is set in order to
ensure that at least 3 classes from a set of classes of comparable sizes are available to set up the
overlap in each data-set. We decided on τE = 1 for the Seat domain, τE = 6 for the Zoology
domain, τE = 10 for the Sponges domain and τE = 11 on the Soybean domain.
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(a) Ratios measured before and after a systematic argumentation, over the four different domains
Seat, Zoology, Sponges and Soybean.

(b) Ratios measured before and after a lazy argumentation, over the four different domains Seat,
Zoology, Sponges and Soybean.
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10.4.1 Systematic Strategy

The results of this experiment are shown in Figure 10.8a. Each of the four sub-figures represents
the four ratios measured on a specific domain, before and after the argumentation. We can observe
a generalized increase of the SAR for all domains. The SAR before argumentation is on average
at a predictable 0.33 for all domains, with a low variability except for the Zoology domain which
is the domain where the distribution of the examples among the classes over 2 × τE elements is
the most irregular. The average SAR after argumentation can vary from 0.83 to 1.0, depending on
the domain. The systematic strategy achieves the highest increase of the SAR, with a final SAR
of 1.0, meaning that the synchronic agreement is fully reached. The systematic strategy obtains
a final SAR of 0.95 on average on the Zoology domain, and around 0.85 on the Sponges (0.85)
and Soybean (0.87) domains. These results correlate with the complexity, in terms of different
attributes, of the different domains. The DAR is maintained at 1 in every domain, with a standard
deviation always close to 0. There is always a full diachronic agreement for both agents.

There are logically no example exchanged before the argumentation. The augmentations on the
Seat domain are done without example exchanges, as the EER stays at 0 with a low standard
deviation. On the other domains, the EER increases with the complexity of the domain expressed
in terms of different attributes. Zoology accounts for the lowest non-zero EER, followed by Sponges
and finally Soybean. The EER evolution is evaluated more in detail with the test of the preservation
hypothesis.

The CRs before argumentation correlates on the complexity of the domain. The Seat domain has
a CR at 1 with low standard deviation before the argumentation, the Zoology domain has a CR
at 0.96, the Sponges has a CR at 0.92 and the Soybean has a CR at 0.97. The CR stays constant
for the Seat and the Zoology domain. However, it decreases significantly for the Sponges add the
Soybean domains, the decrease being more pronounced in the case of the Soybean domain. The
decreases are again correlated to the complexity of the domains, however the final CR always stay
close to the value it had before the argumentation. Even after the argumentation, every CR stays
above 0.9, leaving the agents with less than 10% of their overall context unclassified on average.

Overall, the performances of our model are high for every domain. The SAR is the most impacted
measure by increments in the domain’s complexity, with a lowest final SAR at 0.85 in the case of
the Sponges domain and a highest final SAR at 1. The average final SAR being at 0.87 for the
Soybean domain in this experiment, while it was at 0.83 in the last experiment, leads us to think
that the average SAR measured in a situation of set up overlap is a good indicator of the SAR that
should be expected for a combination of set up disagreements. The DAR remains at 1, proving
once again to be the most stable measure.

10.4.2 Lazy Strategy

The results of this experiment are shown in Figure 10.8b. Each of the four sub-figures represents the
four ratios measured on a specific domain, before and after the argumentation. On the contrary of
the experiment on generality, the SARs of the two approaches are now comparable in each domain.
Since the experiment on domain independence involves one overlap disagreement per experimental
run while the experiments on generality involved multiple disagreements of multiple types in each
experimental run, this is indicative that the difficulties of the lazy approach to reach the level of
synchronic agreement of the systematic strategy, comes from the diversity and simultaneity of the
disagreements in the generality evaluation. The DAR is maintained at 1 in every domain, with a
standard deviation always close to 0. There is always a full diachronic agreement for both agents.
This does not change from the evaluation of the systematic strategy. The average EER and the
average CR are comparable to the average EER and CR obtained with the systematic approach
in each domain, with a more important standard deviation however in the case of the the CR.
The EER and the CR continues to correlate with the complexity of the domain. Overall, the
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performance of our approach remains high for every domain and the same conclusions as before
can be drawn for the evaluation of the domain independence hypothesis now for the lazy strategy.

10.4.3 Conclusion of the Domain Independence Hypothesis

Both the systematic and lazy strategies display on average a net increase of their overall measure
of synchronic agreement, while not displaying a decrease in the measure of diachronic agreement,
for all domains. Moreover, the coverage of the overall context is preserved for all domains and
the proportion of examples from the overall context exchanged by the agents stays low for every
domain. Good performance on all domains, regardless of the strategy used, means that both
strategies satisfy the domain independence hypothesis.

10.5 Coverage Preservation

The preservation hypothesis postulates that most of the examples that were covered by a concept
will continue to be covered by some concept in the refined contrast set. While a diachronic agree-
ment ensures that no pair of examples from the same extensional definition of the new context was
separated in the initial contrast set, the diachronic agreement does not constraint the new context
to be a super-set of the initial context. Therefore, as our model often refines concepts, we can
expect that a context after an argumentation is a subset of itself before the argumentation. In
this sense, the hypothesis of preservation is complementary with respect to the diachronic agree-
ment in making sure that, after an argumentation, an agent can make over the overall context
classifications that are equivalent to the ones that it did before classifications.

The preservation hypothesis has already been partially explored during the experiments over the
Generality and Domain Independence hypotheses. However, the measures were approximated.
Indeed, the overall CR computed was each time obtained as the average between both local CRs.
This approximation is only accurate if one local set of covered examples is a subset of the other. In
this section, the preservation hypothesis will be specifically investigated by searching for the subset
of examples from the overall context that are not covered by both agents. In order to evaluate
this hypothesis over different contexts, we repeated this experiment 100 times on each domain
over which we observed a final CR value lower than 1 during the test of the domain independence
hypothesis: Zoology, Sponges and Soybean.

The independent variables of each experiment and their overall setup are similar to the independent
variables and setup of the domain independence hypothesis test. One experiment run is set up using
three random classes of the selected domain. The domain is the only independent variable. The
parameters are the same as for the domain independence hypothesis test. The dependent variables
are however different: the overall CR value is observed before and after the argumentation —this
time measuring the examples covered by an intensional definition from both agents, and is presented
with the difference between each local CR value, this time again measured before and after the
argumentation.

10.5.1 Systematic Strategy

The results of this experiment are shown in Figure 10.9 (left). The leftmost bars represent the
average coverage before the argumentation, while the rightmost bars represent the average coverage
after the argumentation. As in precedent figures, we also present the average difference between
the average coverage of the agents A1 and A2. As we can see, the coverage increases after the
argumentation, unlike what we observed in the test of the domain independence hypothesis. This
can be explained by the fact that while each agent initially covers most examples, the examples
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Figure 10.9: Measures of Coverage Ratio (left), Examples Exchanged Ratio (middle) and final
Concept Count (right) after a systematic argumentation.

that initially stay uncovered are different from one agent to another. In these situations, the overall
disagreements are different from the local ones, and we already know that these situations appear
as the setup disagreement are different from the observed ones. At the end of the argumentation,
the agents have more concepts that share their intensional definitions, and therefore the agents took
advantage of each other’s coverage. This is reflected in the difference between the final covering of
our two agents, which is a smaller difference than the difference between the initial covering of our
two agents.

10.5.2 Lazy Strategy

The results of this experiment are shown in Figure 10.10 (left), with the same template as in Figure
10.9. We can observe that the coverage ratios are similar in both strategies. In conjunction with
the results of the experiment on generality and domain independence hypotheses, this illustrates
that the lazy strategy, as the systematic strategy, reduces the proportion of examples covered by
either agents’ contrast set but increases the proportion of examples covered by both.

10.5.3 Conclusion of the Coverage Preservation Hypothesis

Both the systematic and lazy strategies display an increase in the average proportion examples
covered by the contrast sets of both agents after argumentation. This means that both strategies
satisfy the coverage preservation hypothesis.

10.6 Efficiency

In order to reach an agreement, the agents could transfer their entire contexts to each other. The
issues of finding the overall pairing relations from the local ones and of creating new concepts
through argumentation would disappear. The remaining tasks for our agents would only be to
define new extensional definitions, learn satisfying intensional definitions for them and elect a new
lexicon for the resulting contrast set. An important part of our model is dedicated to circumvent the
problems arising when we want to avoid transferring all the examples. The efficiency hypothesis
proposes that the mutual intelligibility may be reached by the agents without exchanging their
contexts so extensively. In order to test this hypothesis over different contexts, we repeated this
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experiment 100 times on each domain over which we observed a non-zero EER value during the
test of the domain independence hypothesis, namely Zoology, Sponges and Soybean domains.

The independent variables of this experiment, its overall set up and its parameters are the same
as for the test of the domain independence hypothesis. The dependent variables measured are the
final overall EER value and the difference between the two final local EER values.

10.6.1 Systematic Strategy

The results of this experiment are shown in Figure 10.9 (middle). The leftmost bar represents the
average total example exchange ratio, while the right bar represents the average difference between
the EER of A1 and A2. As we can observe, the difference between the EER of A1 and A2 is close
to the total EER which means that one agent is often in charge of sending the examples to the
other. This is in fact due to the nature of the experiment: as we only setup one overlap, there is
only one new intensional definition that needs to be created (as the intensional definitions of the
two co-hyponyms created during the resolution of the two hypo/hypernymy disagreements can be
reused from already existing concepts). Therefore, only one agent needs to send examples to the
other (possibly during the creation of the new intensional definition, but most likely during the
computation of the overall definition). Figure 10.4 was displaying a smaller difference, which tends
to confirm that hypothesis: if one agent is mostly in charge of the examples sent for the resolution
of a disagreement, the fact that we are setting up more disagreements allows both agents to send
examples and levels the difference.

The example exchange ratio itself is low compared to the gain in term of synchronic agreement.
In Figure 10.8a, we can see that the gain of SAR after the argumentation is always more than 0.4.
An example exchange ratio of lesser than 0.1 confirms that the gain of SAR is not only due to the
gained similarity of the two agents’ contexts.

10.6.2 Lazy Strategy

The results of this experiment are shown in Figure 10.10 (middle). The leftmost bar represents
the average total example exchange ratio, while the right bar represents the average difference
between the EER of A1 and A2. We can observe that less examples are exchanged during an
argumentation using the lazy strategy, observation that goes in the direction of other observations
in the test of the generality and domain independence hypothesis. As for the systematic strategy,
the difference in examples sent between the two agents is on average comparable to the number
of examples exchanged by the agents, meaning that an agent is often sending all the examples
exchanged to the other agent during an experimental run. This fact is again explained by the fact
that this experiment sets up a unique disagreement, and therefore only one disagreement needs to
be identified which is therefore done by only one agent.

10.6.3 Conclusion of the Efficiency Experiment

Both the systematic and lazy strategies display a small portion of the overall context of the agents
exchanged during the argumentation. This means that both strategies satisfy the efficiency hy-
pothesis. Moreover, we observe that more examples exchanged, on average, with the systematic
strategy than with the lazy strategy.
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Figure 10.10: Measures of Coverage Ratio (left), Examples Exchanged Ratio (middle) and final
Concept Count (right) after a lazy argumentation.

10.7 Simplicity

In Chapter 3, we explained the difficulty to differentiate between overlap disagreements which
should lead to the creation of a new concept, and small overlaps caused by the agent’s underfitting
initial learning. An underfitting initial learning creates concepts that are subsuming more exam-
ples than they should in the overall context, resulting in overlap or self-disagreements when two
unrelated concepts are subsuming parts of each others examples. However, while setting up the
experiments, the number of concepts in the initial data-set is known with certainty. Comparing
this initial number with the final number of concepts present in the contrast sets after the argu-
mentation on meaning allows us to see how many additional concepts have been created during the
argumentation. However, this measure would be imperfect in the sense that it would penalize our
model for something it is not directly aiming to solve: the accuracy of the agent’s initial learning.

As the argumentation on meaning takes place after the initial learning, the measure of simplicity
should take into account all the overlaps between the two contrast sets’ concepts, which corresponds
to the polylexematic classes of the union of the two agents’ left-paths associations. By counting
these polylexematic classes that contain more examples than the error threshold, we obtain the
number of expected concepts (NEC). Comparing the NEC with the number of final concepts (NFC)
gives us a measure of the simplicity of our model.

Our hypothesis of simplicity is that the average difference between the NEC and the NFC is close
to 0. A difference significantly above 0 would mean that our model converges by creating more
concepts than necessary, which should increase the costs of our argumentation model in terms of
example and generalization exchanges. A difference significantly below 0 would mean that our
model creates less concepts than necessary, which should decrease either the synchronic agreement
ratio or the coverage ratio. In order to evaluate this hypothesis over different contexts, we repeated
the Domain Independence experiment 100 times on each domain over which we observed a final
CR inferior to 1 during the test of the domain independence hypothesis: Zoology, Sponges and
Soybean. Each time, we calculated the NEC and the NFC, subtracting the former to the latter.

10.7.1 Systematic Strategy

The results of this experiment are shown in Figure 10.9 (right). The leftmost bar represents
the average number of expected concept while the middle bar represents the average number of
observed concept. These two values being close to each other is not enough to conclude that the
final number of concepts is the expected number of concept. Indeed, the NEC and NFC being
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Figure 10.11: Variations of the number of generalizations exchanged during a systematic argumen-
tation according to the size of the overall context.

averaged over a hundred of experiments does not prove that in a same experiment, the two values
are always close. However, the rightmost bar represents the average distance between the NEC and
the NFC. The euclidean distance between the NEC and the NFC is calculated for each experiment
and then averaged. The low result, lesser that one, shows that on average the NEC and NFC are
the same, and that our model is correctly replicating the complexity that could have been obtained
by a brute-force approach. Our model is therefore not creating additional concepts that are not
necessary to reach mutual intelligibility.

10.7.2 Lazy Strategy

The results of this experiment are shown in Figure 10.10 (right). The leftmost bar represents
the average number of expected concept while the middle bar represents the average number of
observed concept. The values are here lower than for the experiment on the systematic strategy,
which just means that the agents are on average initially better at learning concepts close from
the three expected ones in their initial overlap setups. This does not affect in any way the results
of the experiment. However, the observation that the average NEC and NFC are really close to
each other, conjugated with the observation that the average difference between the NEC and the
NFC in a run is close to 0, allows us to draw the same conclusion as for the same experiment on
systematic strategy: the agents are not creating more concepts than needed.

10.7.3 Conclusion of the Simplicity Experiment

Both the systematic and lazy strategies display on average the same number of expected and
observed concepts, with almost no difference between numbers of expected and observed concepts
in each experimental run. This means that the simplicity hypothesis is validated for both strategies.
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10.8 Scalability

The efficiency hypothesis questioned the ability of our model to reach mutual intelligibility while
exchanging a reasonable amount of examples. The scalability hypothesis is the same notion applied
to the exchange of generalizations. While we expect our model to exchange a number of gener-
alizations significantly higher than the number of examples exchanged, the scalability hypothesis
investigates the correlation between the number of generalizations exchanged and the size of the
overall context. Our hypothesis is that if the number of generalizations exchanged increases poly-
nomially with the size of the overall context, then our model should be computationally efficient
once the size of the overall context reaches a certain threshold.

In order to test this hypothesis, we created a set of 10 artificial data-sets that have larger classes
than the data-sets used in the other hypotheses evaluations. All the data-sets have 600 examples
divided in three classes of 200 examples each, allowing us to test the cost of our argumentation
protocol for different sizes of context. Each time, we set up an overlap disagreement with the
three classes. The examples from the artificial data-sets are a vector of a attributes-value pairs.
Each attribute can take a value from a set of l values. The artificial data-sets are generated with
predefined rules. The rules are three sets of m subsets of n attribute-value pairs. For each rule
r, there is exactly one hundred examples that share n attribute-value pairs with r. Each of these
examples only shares n attribute-value pairs with r. Each data-set has a different combination of
parameters l, m and n:

• l varies from 6 to 10,

• m varies from 1 to 4,

• n varies from 2 to 6.

There is therefore a total of 100 different artificial data-sets, each having 600 examples. The
scalability hypothesis is tested by measuring first the effect of context size on the number of
generalizations exchanged between the agents, testing how many generalizations are exchanged in
our model on an average of ten runs for each size of context ranging from 200 to 600 examples, with
an increment of 50 examples. The artificial data-set used for the test uses the parameters l = 6,
m = 4, n = 2. Moreover, in order to observe how the different parameters influence the number
of generalizations exchanged, we measured in a second time the average number of generalizations
exchanged in our protocol over ten runs for each possible combination of the parameters l, m and
n. In this second part of our experiment, only the first 200 examples of the artificial data-sets are
kept as the overall context of our agents.

10.8.1 Systematic Strategy

Figure 10.11 represents the average number of generalizations exchanged for each size of overall
context ranging from 200 to 600. We can observe that there is no positive correlation between the
number of examples in the overall contrast set and the number of generalizations exchanged by the
agents. Since the rules that were used to build the contexts, and that should correspond to the final
intensional definitions of the agents’ contrast sets after reaching mutual intelligibility, are the same
for each context size, it was expected that the generalizations exchanged are the same and should
not have an impact on our result. Moreover, an increased number of examples in the contexts
means that the agents have more examples from which to learn their generalizations. Therefore,
the agents are expected to classify more accurately during the creation of their concepts and
their counter arguments. This is reflected by a progressive drop of the number of generalizations
exchanged past 150 examples in the overall contrast set, going along with a decreasing variability
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Figure 10.12: Variations of the number of generalizations exchanged (color) according to the
parameters of the data-set.

in the result: the inductive learning being more accurate, the chances of having disagreements that
were not set up, and the chances of having arguments with false positives or negatives, decrease.

The results presented in Figure 10.11 are obtained for a fixed set of parameters (l = 6, m = 4,
n = 2). We can observe in Figure 10.12 that this set of parameters is in fact the one of the config-
urations for which the agents exchanged the most generalizations. The number of generalizations
exchanged tends to increase with the size of the expected intensional definitions, and to decrease
with the number of possible values for each attribute and the number of attributes in each of the
generalizations from the expected intensional definitions. According to these results, the configu-
ration of the data seems to impact the argumentation more than the number of examples involved
in the argumentation.

10.8.2 Lazy Strategy

Figure 10.13 represents the average number of generalizations exchanged for each size of overall
context ranging from 200 to 600. We can observe that there is no positive correlation between
the number of examples in the overall contrast set and the number of generalizations exchanged
by the agents. We can observe that the average number of generalizations exchanged on contexts
having 200 examples is higher than for the systematic strategy, but with a variance that makes
this result inconclusive. However, we can observe that the plot shown in Figure 10.13 has the
same shape as the plot shown in Figure 10.11, the average number of generalizations exchanged
and their standard deviation being inversely proportional to the size of the context. We can also
observe that for a size of context over 400 every argumentation run exchanges an average of around
40 generalizations. Overall, we observe that on average an argumentation using the lazy strategy
performs more exchanges of generalizations than an argumentation using the systematic strategy
with an equally sized overall context. This is explained by the fact that agents in the lazy strategy
are creating new concepts in the restricted context of their currently investigated connected sets of
disagreements. While the agents can create satisfying meanings for their new concepts within the
limit of their current connected set of disagreements, errors in generalization during the concept
creation —even errors within the limits of our the assumed degree of error τ— can result in the new
concept causing disagreements with other concepts that are not included in the set of disagreements.
The late inclusion of these concepts in the set of connected disagreements can result in an order of
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Figure 10.13: Variations of the number of generalizations exchanged during a lazy argumentation
according to the size of the overall context.

resolution of the disagreements that is different from the optimal order presented in Section 5.5.6,
which is the order that is always followed in the systematic strategy. This means that the agents
will go through more concept creations before resolving all disagreements.

10.8.3 Conclusion of the Scalability Experiment

Both the systematic and lazy strategies do not display any polynomial increase of their number of
generalizations exchanged when the size of their context increases. This means that both strategies
satisfy the scalability hypothesis. Moreover, we observe more generalizations exchanged on average
with the lazy strategy than with the systematic strategy.

10.9 Conclusion

Each of our six hypotheses have been experimentally tested and validated with both strategies.
Our model, overall, is general in terms of disagreements resolution, independent of its domain of
application, preserving the coverage of the overall context by both agents, efficient in example
exchanges, simple in the set of concepts that it yields, and the number of generalizations that
it exchanges scales well with the size of its domain of application. The systematic and the lazy
strategies, while being different in their approaches to the naming game, do not produce greatly
different results, except for the type of elements exchanged with the highest count. We observed
that the systematic strategy privileges the exchange of examples, as the lack of interaction between
the agents before the resolution of disagreements forces them to exchange some parts of their
context that the lazy strategy would already have explored during the early turns of the naming
game, while the lazy strategy privileges the exchange of generalizations as it does not research all
the pairing relations between every concept at once and therefore can go through the sequential
resolution of disagreements in a less optimal order than the systematic strategy.





Chapter 11

Conclusions

11.1 Contributions

The contributions of this thesis concern the innovations that we introduced in order to integrate
three Artificial Intelligence fields that are, in practice, distant from one another: 1) symbolic
concept learning; 2) coordination and argumentation in agent systems; and 3) semantic alignment.

Concerning Symbolic Concept Learning

Concerning symbolic concept learning, we keep the assumption that all examples are represented
in a common representation formalism and a common vocabulary —what is classically known as
the representation bias in ML systems. However we change two important issues: how labels apply
to examples, and dealing with collections of concepts in learning as a whole.

In symbolic concept learning, labels apply to classes as a simple assignment relation that is fixed,
and cannot be changed or enlarged. In our approach, labels are conceptualised as signs included
in a semantic triangle model of concepts, and this is integrated in the concept learning process.
The assignment becomes an association of signs to examples and generalizations, constituting the
semiotic triangle, and different semiotic triangles associating different generalization sets (inten-
sional definitions), different example sets (extensional definitions), and different signs are possible.
Our approach, in fact, is based on this multiplicity of concepts to explore possible transformations
of the initial concepts of two agents, in order to reach a common agreement over those concepts.
These transformations include the creation of new concepts.

Concerning the notion of contrast sets, the introduction of this notion allows us to deal with
collections of concepts in learning as a whole. Recall that symbolic concept learning in ML addresses
only learning one individual concept. In a standard classification task, concept learning is applied
individually to each class to learn its "concept" (set of generalizations). This standard approach
considers examples in other classes as simple counter-examples —regardless of which class they
belong to. Our approach, however, considers and addresses directly the fact that the class to
which a such counter-example belongs (in the contrast set) is highly relevant. We need to consider
the importance of counter-example classes, as classes and concepts can be changed from the initial
setup. Therefore, by using a contrast set, with concepts represented in their triangular form during
both the learning process and the argumentation process, our approach deals with collections of
concepts in learning as a whole. In our approach, what is usually called “contextual meaning” is
modelled by the relation of a concept with its “neighbouring concepts” that are relevant together
because they constitute a contrast set, which is a segmentation of the world that is meaningful for
a particular situation or task.
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Thus, the semiotic view of concepts via the triangle model (with the distinction of left and and right
path) and the characterisation of classification tasks as contrast sets that meaningfully segregate
the world and categorize its elements, are both contributions to the general area of symbolic concept
learning.

Concerning Argumentation Between Two Agents

Concerning argumentation between two agents in multiagent systems (MAS), we want first to
remark that argumentation is classically conceived as taking place between two individuals —
including human individuals. When a larger number of individuals are involved, such as in parlia-
ments or commissions or committees, they need to be addressed as deliberative bodies that require
institutional norms and procedures to achieve collective actions and agreements. When a number of
individuals is small, or at least the number of other individuals with which one individual interacts
is small, it can be practical to model their interaction as a collection of two-agent argumentation
processes.

Our approach combines agents that learn and agents that argue, and it builds upon this combina-
tion to generalise the multiagent learning approach proposed in the AMAIL framework (Ontañón
and Plaza, 2015). However, the goal of the AMAIL framework was only to provide learning capa-
bilities to agent systems, and as such the restrictions and assumptions of classical symbolic learning
were maintained. Our approach here is capable of performing argumentation about classification
tasks where the two agents have different number of classes and/or different names (signs) for their
classes, which was impossible in AMAIL. The new representation model of concepts — the semiotic
triangle— allows our model to deal with the differences in number of classes, sign associations,
and intensional definition covering, including the creation of new classes and the negotiation of an
agreement on classes, signs, and their associations. In contrast, AMAIL was only capable of argue
about the details of the shape of borders by modifying intensional definitions of a pre-established
set of concepts. Moreover, a typology of disagreements and a method to derive an overall model of
disagreements from individual agents’ viewpoint on disagreements is what provides our approach
with the knowledge to decide the individual actions of the two agents in the process of resolving
disagreements over meaning and reaching mutual intelligibility.

Finally, notice there is an argumentation/learning continuum that is covered in our approach.
Although the strategy we present uses argumentation to decrease the amount of information ex-
changed, our model also covers scenarios that could be conceptualised as mostly learning. For
instance teacher/apprentice scenarios, where agents are asymmetrical, such that a teacher agent
has much more examples tan the apprentice, the “correct” number of classes, and the correct signs
naming them. Such scenario is also amenable to be covered in our model, since the outcome would
be that one agent provides a lot of examples unknown to the apprentice agent, and the apprentice
would have less content from which to extract examples or generate arguments. Nevertheless, the
apprentice also being able to argue would mean that the information coming from the teacher
would not be more than what needed to reach a state of mutual intelligibility, instead of just
sending all the examples from the teacher to the apprentice. The experiments we used in our eval-
uation were however all symmetrical, because they represent the set up that is the most complex
for argumentation while we wanted to evaluate our approach in the most exacting circumstances.

Concerning Semantic Alignment and Evolution

Coordination —and even communication— in multiagent systems often assume that the agents
share an ontology, or at least some kind of knowledge that kind be represented under an ontological
form. In this view, before a multiagent system (MAS) can interact, it is assumed there is a previ-
ous step by which a shared ontology is defined by some authority, or is achieved by some means:
by ontology engineering using ontology alignment or mapping, for instance. In other words, this
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problem is of a purely technical nature, and can be solved by an independent discipline outside
MAS. This assumption, of course, can have practical value for certain MAS applications. However,
this assumption is too restrictive for open multiagent systems since it assumes no misunderstand-
ing/disagreement on meaning need to be addressed during the actual operation of a multiagent
system.

Our viewpoint is that this “fixed meaning” precondition can be too strong in certain scenarios,
and we show that this is not always a necessary precondition, as there are ways to deal with dis-
agreements/misunderstandings and to reach agreements —albeit contextually bounded to certain
agents cooperating in a shared environment. We call our approach mutual intelligibility, for this
reason: we do not see this as a technical problem that has an engineering solution —ontology
alignment is defined as a process to help “interoperability” of systems—, but as a a problem that
involves semiotics, meaning how and when a sign is associated to an entity as being a member of a
concept or category, and a contextual view of meaning, modelled by the notion of contrast set. In
this approach, misunderstandings and failures in communication are viewed as disagreements over
meaning — and we have characterised how differences in the associations used to relate signs to
elements, or signs to intensional definitions can be identified and disagreements can be resolved.

Certainly, a necessary property of our agents is that they are capable of learning: our approach
would not work on agents that are programmed as a fixed algorithm to decide their actions —such
agents indeed need an ontology engineering process that insures no communication failure can
occur. This final consideration remarks how crucial is the integration of the three AI fields not
apply only to our approach, but to the general problem of MAS concerning open systems, semantic
alignment and evolution, capability to adapt to new agents or new vocabulary, etc.

Specific contributions

In addition to this general contributions, there are specific and novel ideas, definitions, models
and methods that are presented in the thesis and that are needed for sustaining the general
contributions.

In presentation order, the first specific contribution of our approach was to find a use to the semiotic
triangle to define the notions of left-path and right-path associations. These two notions that we
are introducing are useful to explicit the preference of a system for one type of association in a
particular paradigm and to integrate the learning capabilities and argumentation capabilities of
agents from a semiotic perspective.

We then proposed the notion of adjunct sets of concepts to represent the contextual meaning of a
concept in another context than the one in which it has been learned. Doing so, we were able to
define a set of pairing relations for concepts, that connect pairs of concepts with a new typology of
disagreements. Finally, we proposed a strategy for agents to figure out what the relations between
any pair of concepts is in the agents’ overall context, without having to have direct knowledge
about these examples.

The contributions introduced in the Approach chapter are used to design our computational model
of argumentation. This new model contributes to the field of multiagent systems with the devel-
opment of two strategies of argumentation that are error tolerant and able to resolve any type or
combination of types of disagreements, increasing the level of mutual intelligibility between two
agents. The efficacy of both strategies in resolving all and any disagreements (and their combina-
tions thereof) is a main contribution for runtime autonomy and capabilities for agents addressing
semantic heterogeneity.

The remaining contributions of our argumentation model correspond to satisfying the six hypothe-
ses we presented as valuable. According to the results of our experiments, our model is:
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1. Assessing and validating the identification and resolution of all disagreements, from all types
and in every domain, while using any argumentation strategy (efficacy).

2. Assessing and validating relative efficiency of our approach on several dimensions

3. Assessing and validating that our approach is successful in reaching mutual intelligibility for
all the disagreement types we have identified (generality)

4. Assessing and validating that our approach is successful in reaching mutual intelligibility for
a number of multiple combinations of the disagreement types (generality)

5. Assessing and validating that our approach is successful in reaching mutual intelligibility in
several domains of different kind and with different bias and properties (domain indepen-
dence)

6. Assessing and validating the ability of our approach to preserve the context in which the
agents are able to interact through the argumentation (coverage preservation)

7. Assessing and validating the relatively low cost of our approach in example exchanges (effi-
ciency)

8. Assessing and validating that our approach does not create more concepts that are not needed
in order to reach mutual intelligibility (simplicity)

9. Assessing and validating that our approach can work on large contexts without exchanging
more generalizations (scalability).

Scope of contributions

Notice that our approach, in the abstract, is quite general, although some limitations exist due
to our two basic assumptions. One limitation is due to our commitment to symbolic learning,
so other forms of learning are, in principle, not claimed by us as compatible with this approach.
One clear assumption is the ML representation bias, which for our research aims means that we
assume the representation and terminology used in example description is known and shared by
both agents. Recall, however, that Machine Leaning has very different techniques but they assume
“data” (examples) has a specific, given format —achieving that is called data wrangling in data
science. We discuss relaxing this restriction in the next section.

A second limitation is related to the representation formalism. In this respect, our approach
requires a very limited assumption: any representation formalism that includes the subsumption
relation v is compatible with our approach. Thus, although our implementation is based on feature
terms, representation formalisms used in symbolic machine learning like Horn clauses inductive
logic programming, and description logics (where more recently some inductive learning techniques
are being developed) are compatible with our approach.

11.2 Future Work

Larger Multiagent Systems

Our model is now applicable to two-agents systems. In future work, we plan to study how our
model can be applied to larger systems where each agent has a limited number of agents it interacts
with. Doing so requires to present the larger system as a collection of pairs of agents with restricted
contexts. In a first time, each pair of the larger system would use our model to perform a specific
task that requires both cooperation and contextual mutual intelligibility from the agents in order to
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be achieved. In a second time, we will present how the different pairs of agents can autonomously
separate an overall task into contextual tasks that each pair can help to resolve partially, in order
to achieve the overall task in a decentralized manner without requiring an overall consensus on the
agents’ meanings.

Recursive Argumentation over Concept Attributes

Our model is now applicable to a unique contrast set, meaning that two discuss more concepts
the agents need to increase the size of their contrast set and possibly address a geometrically
increasing number of disagreements between these concepts. In order to overcome this issue, we
will implement the notion of conceptual web in future work. By having concepts in conceptual
web, we will not assume shared representations over the properties of examples and intensional
definitions anymore but instead represent each of these properties as a concept in its own contrast
set. Typically, each property will be understood in an attribute-values perspective, where a certain
attribute will be assimilated as a contrast set that has its values for concepts. Doing so would allow
us to partially order every contrast set, and to propose a model where two agents can identify for
any disagreement which contrast sets are problematic to find a mutual agreement. From then, the
agents would be able to resolve disagreements in contrast sets of a lower order first — as their own
properties can then be assumed to be shared representations— and continue to higher order, until
mutual intelligibility has been reached in for problematic contrast sets.

This model would still require a lower level of properties that are considered as shared representa-
tions. Future work will also include developing a model where agents can detect situations when
no shared level of properties, and use an extensional-only argumentation protocol to create this
layer, in a manner similar to language acquisition.
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Appendix A

Evaluation of the Parameters

In Chapter 10, we briefly presented three parameters along with the usual independent and depen-
dent variables. These three parameters of our model, redundancy, error threshold and argument
acceptability are not tested as variables for two reasons: they are expected to impact the results in
a predictable way, and they are two costly to test in terms of computation time to be extensively
testes. However, the first of these two reasons is a hypothesis and, while we are not able to test
it properly, we can give an overview of the reasons that led us to think that the redundancy, the
error threshold and the argument acceptability have expected impacts on the results and which
are these impacts. This is why the effects that variations of these parameters have on our model
are tested below.

Instead of testing these parameters as variables during different augmentations, which would take
a prohibitive amount of time, they are tested as variables over several different data sets in the
creation of initial contrast sets. After the creation of the initial contrast sets, we can count the
number of examples of each of the 2m+n adjunct sets’ intersections Adj(i, UO) ∪ Adj(j, UO) for
each pair of concepts Ci ∈ K,Cj ∈ K ′ with K having m concepts and K ′ having n concepts. The
number of intersections that have at least τE examples is the number of concepts that we should
expect from a brute-force approach of the argumentation over the meaning.

The number of expected concepts is a good indicator of how the inductive learning of ABUI is
going to perform over a given set of data, for a given degree of error and redundancy. The degree
of error tolerated gives additional information on the values of τE that should be chosen in order
to find a final number of concepts close to the number of categories of the data set used in the
experiment.

We are testing these three parameters as variables over three different data sets: the zoology data
set, the soybean data set and the sponges data set. We test the argument acceptability going from
0 to 1., with an increasing step of 0.05. The redundancy is tested on a range from 0% to 100%,
but with an increasing step of 50%. However, we chose to let the number of examples in the initial
contexts be the same regardless of the redundancy, for a given data set. In order to do so, the
number of examples of each category Ca in each agent’s initial context is |Ca|/2. For instance, the
category astrophorida has 40 instances in the Sponges data set. Each agent will receive 20 examples
from this category. If the redundancy is 100%, they will receive the same subset of 20 astrophorida
examples – which still might be labeled differently. If we had distributed 21 examples, we could
have still generated two different subsets of 21 examples that are 100% redundant; however, it
would have been impossible to find two disjoint subsets of 21 astrophorida examples that are 0%
redundant (there is less than 21× 2 astrophorida examples in the Sponges data set).

The value of τE , however, is not tested on the same range for all data sets. This is due to the fact
that τE should be smaller than half of the examples of a certain amount of categories in order to
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allow the agents to find overall relations between their resulting concepts. For instance, if we set
a τE = 20 in an experiment that uses a data set where the largest category has 30 examples, each
agents will receive a set of 30/2 = 15 examples of this category. Since 15 < τE , the pairing partial
sets between the agents will always have a cardinal lower than τE and the agents will remain blind
to the pairing relations between their concepts, thus forbidding an argumentation. For this reason,
τE ranges from 0 to 5 for the Zoo data set, allowing to use the examples from 4 categories; τE
ranges from 0 to 10 for the Soybean data set, allowing to use the examples from 6 categories and
finally, τE ranges from 0 to 15 for the Sponges data set, allowing to use the examples from the 3
categories of the data set. On each of the data set, we test τE over the aforementioned range with
an increasing step of 1.

A.1 Impact of the parameters over inductive learning

The experimental set-up of each instance of our three parameters’ test is realized through the
random selection of three different categories in the tested data set, that are merged differently for
each agent in order to produce a scenario of expected overlap as it has been already presented in
Chapter 9. Therefore, the number of expected concepts that we observe should always be compared
to the three initial categories that have been used to set up the experiment. In an ideal case, we
should observe three expected concepts: one for each involve category from the data set.

The overlap disagreement has the advantage to also produce two hypo-hypernymy disagreements,
allowing us to have an expected initial situation with both types of semantic disagreements. We
tested 10 times each combination of redundancy and argument acceptability for each of the three
data sets, and presented the average number of expected concepts according to τE in Figure A.1.
The results show that increasing the redundancy has a high impact on the number of expected
concepts, which is easily understandable: by sharing more examples the agents can create general-
izations that are as relevant in both contexts, thus explaining why the number of expected concepts
converges to three - the number of involved categories from the data set - when the redundancy
reaches 100%. The results are presented in Figure A.1

The first thing to observe is that a low percentage of redundancy produces a number of expected
concepts closer to three. If the agents start with the same examples in their contexts, they create
generalizations that are more likely to correspond to the canonical cases already described in the
Chapter 9. While this eases the argumentation, we want to test our argumentation protocol in the
worst case of redundancy scenario and therefore, the redundancy parameter will always be set to
100% in our experiments

With a redundancy set at 100%, we observe that the number of expected concepts depends mostly
on the degree of error tolerated, regardless of the data set. With a low degree of error tolerated, we
obtain too much concepts as the agents learn over-fit intensional definitions for their concepts. We
clearly see that this issue peaks with the Sponges data set, where the number of expected concepts
peaks over 9 for an error degree of 1. The lowest degree of error that provides consistently a
number of expected concepts close to 3 depends on the data set observed: while τE = 5 is already
satisfying for the Zoology and the Soybean data set, τE = 8 is a minimum for the Soybean data
set.

Finally, the argument acceptability does not seems to impact the number of expected concepts,
at the exception of its highest values. For each combination of data set, redundancy and degree
of error, we can observe a constant number of expected concept until the argument acceptability
reaches 0.95, where the number of expected concepts drops drastically, often to 0. The Figure
A.2 presents the variation of the number of expected concepts with the sponges data set, for a
redundancy of 100% and argument acceptability values close to 0.95. We can see that the argument
acceptability does not influence the number of expected concepts under the value of 0.94. In our
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Figure A.1: Number of expected concepts for each combination of degree of error tolerated τE ,
redundancy r and argument acceptability, within the data sets Zoology (ZOO), Soybean (SOY-
BEAN) and Sponges (SPONGES).

experiment, we chose an argument acceptability of 0.75 commonly encountered in publications
using AMAIL, which is below this threshold.

A.2 Impact of the error threshold over argumentation on
meaning

After analyzing the different parameters of our experiments, we observed that the parameter which
impacts the most the results of inductive learning is the error threshold. In order to evaluate the
impact of the error threshold not only on inductive learning, but on a full argumentation, we
are setting up a second experiment in which we measure three dependent variables: the initial
synchronic agreement, the final synchronic agreement and the number of exchanged examples.
The initial and final synchronic agreement are respectively measured at the beginning and the end
of an experiment, using the Synchronic Agreement Ratio or SAR. The SAR is detailed in Section
10.1.2, and corresponds to the number of examples from the overall context that are named with
the same unique sign by both agents divided by the total number of examples in the overall context.
The number of exchanged examples is also measured as a ratio, corresponding to the number of
examples that have been sent through messages by both agents divided by the total number of
examples in the overall context.

The impact of error threshold is tested on two different data-sets: Sponges and Soybeans. For
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Figure A.2: Impact of argument acceptability on the number of expected concepts on the Sponges
data set and for a redundancy of 100% between the two agents’ data sets.

each data-set, we set the argument-acceptability to 0.75 and the redundancy to 0%. The error
degrees tested vary from one to ten for the Sponges data-set, and from one to fifteen for the
Soybean data-set. This difference is based on the comparative sizes of each data-set categories.
The argumentation follows a systematic strategy over a setup of as many overlap as the threshold
allows.Recall that in order to setup one overlap we need three categories of the data-set, and that
in order to use a category of the data-set the number of examples in that category should not be
lesser than twice the error threshold. This results in a major difference between the experiments on
the two data-sets: while the Sponges data-set is limited to one overlap using any combination of its
three 40-examples concepts regardless of the error threshold, the number of overlap increases as the
error threshold decreases with the Soybeans data-set since the 19 categories have different numbers
of concepts. The systematic strategy and the overlap setup are privileged as they correspond to
a baseline setup: the lazy strategy is an adaptation of the systematic strategy, while the overlap
setup creates two hypo/hypernymies and a synonymy as well, covering most of the disagreement
cases.

For each data-set, we test the argumentation 500 times with a threshold randomly selected from
the data-set dependent range presented in the previous paragraph. Figures A.3 and show, for each
error threshold in absciss, the average initial and final synchronic agreement ratios and the average
ratio of exchanged examples in ordinate, along with their standard deviations.

We observe that in both cases, the final synchronic agreement follows a same pattern: initially
starting low with a great standard error, it stabilizes above 0.8 once the threshold reaches 5.
However, the initial synchronic agreement has a significantly different profile for the two data-sets.
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Figure A.3: Impact of the error threshold on synchronic agreement and examples exchanged, over
an argumentation on overlaps in the Sponges data-set.

With the sponges data-set, we observe an initial SAR that stays at stable to 0.3 regardless of the
threshold with the Sponges data-set – which is expected in a scenario of three concepts of the
same size set up in an overlap, as it corresponds to one of the three initial concepts being the
intersection of the two overlapping synonyms. On the contrary, the initial SAR in the Soybeans
data-set displays multiple increasing and decreasing phases while the threshold varies, as the the
threshold allows more or less classes of the data-set in the setup. For instance while we observe an
initial SAR at 0.3 for a threshold ranging from 6 to 10, which corresponds to six usable concepts
and therefore all of them involved in an overlap, the initial SAR rises at 0.4 above a threshold of
10 as only four concepts remains available for the overlap setup, three of them being used and the
last one not causing significant disagreements to impact the initial SAR.

Finally, the number of examples exchanged is also impacted by the choice of the data-set. While the
number of exchanged concepts decreases with the error threshold increasing in the Sponges data-set,
it increases in the Soybean data-set – although not by a lot, and mostly when the threshold increases
from one to five. A good explanation for this are the poor performances of the argumentation for
thresholds ranging on the same values: on that range, the final SAR is significantly below what
it is for the same thresholds in the case of Sponges. The inability to generalize, thus not creating
good intensional definitions for small concepts and stopping the argumentation early limits the
exchange of examples.
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Figure A.4: Impact of the error threshold on synchronic agreement and examples exchanged, over
an argumentation on overlaps in the Soybean data-set.



Appendix B

Messages

This appendix lists the different types of content (Table B.1) and performatives (Table B.2) that
can be put in a message.

Class Types Notations
Elementary Values Boolean, Integer, Double b, i, d
Semiotic Components Examples, Generalizations e, g

Semiotic Elements Extensional Definition, Sign,
Intensional Definition s, E, I, s(C), E(C), I(C)

Arguments Root-Arguments,
G-Arguments, E-Arguments α

Identifiers Concept Identifiers,
Argument Identifiers i, i(C), i(α)

Evaluations R-Triplets, Pairing Relations r(Ci, Cj , U), (i−1, i0, i1),
CirUCj , ≡, �, �, ⊗

Table B.1: Different types of content available for messages. The different types are regrouped
by classes in the left column. The right column gives some examples of content in their canonical
notation.
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Performative Content Description
Insert-Argument,
Delete-Argument α

Tells A−k that the argument α has been
inserted in/deleted from the argumentation.

Assert s(C), id(C,Ak), I(C)
Informs the agent A−k that Ak has a
concept C, and shares its sign and
intensional definition with A−k.

Baptize s, id(Ci)
Attributes a new sign s and a new id(Ci) to
the concept that is currently being created.

Debate id(Ci), id(Cj)
Proposes to resolve the disagreement
caused by the relation between Ci and Cj .

Examples E
Contains a set of examples E for A−k to
expends its local context.

Evaluation id(Ci), id(Cj),
r(Ci, Cj , U)

Shares the r-triplet of Ci and Cj with A−k.

Intransitive id(C1), . . . , id(Cn)

Informs the agent A−k that from the point
of view of Ak, C1 . . . Cn are breaking the
transitivity rule of the equivalence pairing
relation.

Name s, e Tells A−k that Ak associates the example e
with the sign s.

Relation id(Ci), id(Cj), r
Shares the pairing relation between Ci and
Cj with A−k.

Remove id(C1), . . ., id(Cn)
Tells A−k that all instances of the concepts
i(C1), . . ., i(Cn) should be removed from
the argumentation.

Replace s, id(C)
Tells A−k that the sign of concept C is now
s.

Root-Argument,
Counter-Argument α Sends an argument α to A−k.

Seize
Notifies A−k that Ak will take care of an
asymmetrical aspect of the argumentation
during the next turn(s).

Self-Check Asks A−k to look for the pairing relations
R(SK,−k, SH,−k, UO).

Size i

Contains the size of a set of examples. Used
to determine if a new concept has
potentially enough examples to deserved to
be created.

Vote s, id(C), d Gives a support of value d to the fact that
the concept C should have s for sign.

Table B.2: The different performatives available for messages. Each performative (left column) is
presented with the type of content that is expected to be found in its instances (middle column).
The role of each performative is presented in the right column.
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