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Summary 

Summary 

Obesity is defined as an excess of fat accumulation that represents a risk to health. It frequently 

occurs concurrently with other metabolic risk factors related to metabolic syndrome (MetS), such as 

dyslipidaemia, insulin resistance or non-alcoholic fatty liver disease (NAFLD). Many food bioactive 

compounds have been identified and further investigated for their ability to prevent obesity and its 

metabolic associated pathologies. Among them, conjugated linoleic acid (CLA) is one of the dietary 

bioactive compounds most investigated for weight management, although controversial metabolic 

results have been reported. However, the use of a single family of bioactive compounds could not be 

sufficient to correct multisystemic and highly regulated situations such as obesity and its associated 

metabolic pathologies. Thus, the aim of this Thesis was to evaluate whether the simultaneous co-

administration of different bioactive compounds, as a multifunctional ingredient (MIX), including CLA, 

a mixture of grape-seed proanthocyanidins and berry anthocyanins, and the protein hydrolysate from 

chicken feet Hpp11, could reduce obesity and its associated cardiometabolic risk factors in a much 

more effective way than its individual administration. Our results demonstrated that the 

administration of an equal ratio of the CLA isomers c9,t11 and t10,c12 at low doses caused a decrease 

in the body weight gain induced by a cafeteria diet, and improved other cardiometabolic risk factors, 

without presenting any CLA-related adverse effects. In addition, the body weight lowering effect of 

CLA was higher when it was co-administered with the chicken feet hydrolysate Hpp11 and a mixture 

of proanthocyanidins and anthocyanidins. This anti-obesity effect, which could be mediated by an 

improvement of hypothalamic leptin sensitivity, was also not accompanied by any adverse effect of 

weight loss. On the contrary, MIX produced an improvement on glucose and lipid metabolism and 

exhibited antihypertensive properties. Thus, MIX could be a good candidate to be used as 

nutraceutical or to be included in functional foods for the management of metabolic syndrome.  
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Resumen 

Resumen 

La obesidad se define como una acumulación anormal o excesiva de grasa que puede ser 

perjudicial para la salud. Con frecuencia aparece de forma conjunta con otros factores de 

riesgo metabólico relacionados con el síndrome metabólico, como son la dislipidemia, la 

resistencia a la insulina o el hígado graso no alcohólico. Se han identificado e investigado 

diferentes compuestos bioactivos debido a su capacidad para prevenir la obesidad y sus 

enfermedades relacionadas. Entre ellos, el ácido linoleico conjugado (CLA) es uno de los 

compuestos más investigados para el control del peso corporal, aunque se han notificado 

diferentes efectos adversos asociados a su consumo. Sin embargo, el uso de una sola familia 

de compuestos bioactivos podría no ser suficiente para corregir de forma eficaz 

enfermedades multisistémicas y altamente reguladas como la obesidad y el síndrome 

metabólico. Por ello, el objetivo de la presente Tesis ha sido evaluar si la co-administración 

simultánea (MIX) de diferentes compuestos bioactivos (incluido el CLA, una mezcla de 

proantocianidinas de pepita de uva y antocianinas de bayas, y el hidrolizado proteico de patas 

de pollo Hpp11) reduce la obesidad y/o sus factores de riesgo cardiometabólicos asociados 

de una manera mucho más eficaz que su administración individual. Nuestros resultados 

demostraron que la administración de los isómeros de CLA c9,t11 y t10,c12 en la misma 

proporción y en dosis bajas provoca una disminución de la ganancia de peso corporal inducido 

por una dieta de cafetería, y, a la vez, mejora otros factores de riesgo cardiometabólico sin 

presentar ningún efecto adverso relacionado con el propio consumo de CLA. Además, se 

observó que la reducción del peso corporal producida por el CLA fue mucho mayor cuando el 

CLA se administró conjuntamente con el hidrolizado de pata de pollo Hpp11 y la mezcla de 

proantocianidinas y antocianidinas. Este efecto sobre el peso corporal, que podría estar 

mediado por una mejora de la sensibilidad a la leptina a nivel hipotalámico, tampoco se 

acompañó de ningún efecto adverso asociado a la propia pérdida de peso. Al contrario, la co-

administración de los diferentes compuestos produjo una mejora notable en el metabolismo 

de la glucosa y de los lípidos y mostró un efecto antihipertensivo muy marcado. Por lo tanto, 

nuestro ingrediente funcional podría ser un muy buen candidato para ser utilizado como 

nutracéutico o para ser incluido en alimentos funcionales para la prevención y control del 

síndrome metabólico. 
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Resum 

Resum 

L'obesitat es defineix com una acumulació anormal o excessiva de greix que pot ser perjudicial 

per a la salut. Sovint apareix de forma conjunta amb altres factors de risc metabòlic 

relacionats amb la síndrome metabòlica, com són la dislipidèmia, la resistència a la insulina o 

el fetge gras no alcohòlic. S'han identificat i investigat diferents compostos bioactius degut a 

la seva capacitat per a prevenir l'obesitat i les seves malalties relacionades. Entre ells, l'àcid 

linoleic conjugat (CLA) és un dels compostos més investigats per al control del pes corporal, 

tot i que s'han notificat diferents efectes adversos associats al seu consum. No obstant això, 

l'ús d'una sola família de compostos bioactius podria no ser suficient per a corregir de manera 

eficaç malalties multisistèmiques i altament regulades com l'obesitat i la síndrome 

metabòlica. Per això, l'objectiu de la present Tesi ha estat avaluar si la co-administració 

simultània (MIX) de diferents compostos bioactius (inclòs el CLA, una barreja de 

proantocianidines de llavor de raïm i antocianines de baies, i l'hidrolitzat proteic de pota de 

pollastre Hpp11) redueix l'obesitat i/o factors de risc cardiometabòlics associats a l’obesitat 

d'una manera molt més eficaç que la seva administració individual. Els nostres resultats van 

demostrar que l'administració dels isòmers de CLA c9,t11 i t10,c12 a la mateixa proporció i en 

dosis baixes provoca una disminució del guany de pes corporal induït per una dieta de 

cafeteria, i, alhora, millora altres factors de risc cardiometabòlics sense presentar cap efecte 

advers notori relacionat amb el propi consum de CLA. A més, es va observar que la reducció 

del pes corporal produïda pel CLA és molt més gran quan el CLA s’administra conjuntament 

amb l'hidrolitzat de pota de pollastre Hpp11 i la barreja de proantocianidines i antocianidines. 

Aquest efecte sobre el pes corporal, que podria estar mediat per una millora de la sensibilitat 

a la leptina a nivell hipotalàmic, tampoc es va acompanyar de cap efecte advers associat a la 

pròpia pèrdua de pes. Tot just al contrari, la co-administració dels diferents compostos va 

produir una millora notable en el metabolisme de la glucosa i dels lípids i va mostrar un efecte 

antihipertensiu molt marcat. Per tant, el nostre ingredient funcional podria ser un molt bon 

candidat per a ser utilitzat com a nutracèutic o per a ser inclòs en aliments funcionals per a la 

prevenció i control de la síndrome metabòlica. 
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Abbreviations 

 
List of abbreviations  

1H-NMR: Proton nuclear magnetic resonance 

ABCA1: ATP-binding cassette transporter 1 

ABCG1: ATP-binding cassette sub-family G member 1 

AC: Adenylyl cylclase 

ACAT: Acyl-CoA:cholesterol acyltransferase 

ACC: Acetyl-CoA carboxylase family 

ACE: Angiotensin-converting enzyme 

ACE 2: Angiotensin-converting enzyme 2 

ACL: ATP-citrate lyase 

AGrP: Agouti-Related Protein 

ASBT: Apical sodium-dependent bile acid transporter 

APOA: Apolipoprotein family 

ARA: Arachidonic acid 

ATGL: Adipose triglyceride lipase 

ATP: Adenosine triphosphate 

BAT: Brown adipose tissue 

BCAA: Branched amino acid 

BCAT: Branched-chain amino acid transferase 

BCKA: Branched-chain α-keto acid 

BCKD: Branched-chain α-keto acid dehydrogenase 

BP: Blood pressure 

CAF: Cafeteria diet 

cAMP: Cyclic adenosine monophosphate 

CD11C: Integrin, alpha X 

CD163: Cluster of differentiation 163 

CD36: Cluster of differentiation 36 

ChREBP: Carbohydrate-responsive element-binding protein 

CLA: Conjugated linoleic acid 
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                Abbreviations 

 
CoA: Coenzyme A 

CREB: cAMP response element-binding 

CRP: C-reactive protein 

CVD: Cardiovascular disease 

CYP7A1: Cholesterol 7α-hydroxylase 

DAPI: 4’,6-diamidino-2-phenylindole 

DHA: Docosahexaenoic acid 

ELOV1: Elongation of very long chain fatty acids protein 1 

eNOS: Endothelial nitric oxide synthase 

EPA: Eicosapentaenoic acid 

ET-1: Endothelin-1 

eWAT: Epididymal white adipose tissue 

F6P: Fructose-6-phosphate 

FA: Fatty acids 

FABPs: Fatty-acid-binding proteins 

FAS: Fatty acid synthase 

FATP: Fatty acid transport protein family 

FGF21: Fibroblast growth factor 21 

G6P: Glucose 6-phosphate 

GCK: Glucokinase 

GKRP: Glucokinase regulatory protein 

GLUT2: Glucose transporter 2 

GLUT4: Glucose transporter 4 

GOT/AST: Glutamic oxaloacetic transaminase 

GPT/ALT: Glutamic pyruvic transaminase 

GSK-3: Glycogen synthase kinase 3 

GSPE: Grape seed proanthocyanidin extract 

HDL: High-density lipoprotein 

HFD: High fat diet 

HMGCR: 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase 
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Abbreviations 

 
HOMA-β: Homeostasis model assessment of β-cell function 

HOMA-IR: Homeostasis model assessment of insulin resistance 

Hpp11: Chicken foot protein hydrolysate 

HSD: High sucrose diet 

HSL: Hormone-sensitive lipase 

HTN: Hypertension 

IL-1β: Interleukin 1-β 

IL-6: Interleukin 6 

IL-10: Interleukin 10 

IRS-1: Insulin receptor substrate-1 

JAK-2: Janus kinase 2 

JNK: c-Jun N-terminal kinase 

LC-PUFA: Long-chain polyunsaturated fatty acids 

LCFAs: Long-chain fatty acids 

LDL: Low-density lipoprotein 

LPL: Lipoprotein lipase 

MC4R: Melanocortin receptor 4 

MCF: Mitochondrial carrier family 

MCP1/CCL2: Monocyte chemoattractant protein 1 

MetS: Metabolic syndrome 

MGL: Monoglyceride lipase 

MUFA: Monounsaturated fatty acids 

mWAT: Mesenteric white adipose tissue 

NAD+: Nicotinamide adenine dinucleotide 

NAFL: Non-alcoholic fatty liver 

NAFLD: Non-alcoholic fatty liver disease 

NASH: Non-alcoholic steatohepatitis 

NAPDH: Nicotinamide adenine dinucleotide phosphate 

NCEH: Neutral cholesteryl esterase 

NEFA: Non-esterified fatty acids 
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                Abbreviations 

 
NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells 

NO: Nitric oxide 

NOX-4: NADPH oxidase 

NPY: Neuropeptide Y 

NMR: Nuclear magnetic resonance 

OBRb: Obese gene receptor b 

PA: Proanthocyanidins 

PC: Pyruvate carboxylase 

PDC: Pyruvate dehydrogenase complex 

PDK4: Pyruvate Dehydrogenase Kinase 4 

PEPCK-C: Cytoplasmic phosphoenolpyruvate carboxylase 

PFK: 6-phosphofructo-1 kinase 

PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

PI3K: Phosphatidylinositol 3-kinase 

PK4: Protein kinase 4 

PKA: Protein kinase A 

PKCe: Protein kinase Ce 

POMC: Pro-opiomelanocortin 

PPAR: Peroxisome proliferator-activated receptors family 

PPIA: Peptidylprolyl isomerase A 

PTP1B: Protein tyrosine phosphatase 1B 

PUFA: Polyunsaturated fatty acids 

QUICKI: Quantitative insulin sensitivity check index 

RAAS: Renin-angiotensin-aldosterone system 

ROS: Reactive oxygen species 

rWAT: Retroperitoneal white adipose tissue 

SBP: Systolic blood pressure 

SCDs: Stearoyl-CoA desaturases 

SHR: Spontaneously hypertensive rat 

SIRT-1: Sirtuin-1 
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Abbreviations 

 
SOC: Suppressors of cytokine signalling family 

SREBP-1C: Sterol regulatory element-binding protein-1c 

SREBP-2: Sterol regulatory element-binding protein-2 

STAT3: Signal transducer and activator of transcription 3 

STD: Standard diet 

TCA cycle: Tricarboxylic acid cycle 

TLR4: Toll-like receptor 4 

TMAO: Trimethyl amino oxide 

TNF-α: Tumor necrosis factor α 

UCP1: Uncoupling protein 1 

UCP3: Uncoupling protein 3 

VCO2: Volume carbon dioxide production 

VEGF: Vascular Endothelial Growth Factor 

VH: Vehicle 

VLDL: Very low-density lipoprotein 

VO2: Volume oxygen consumption 

WAT: White adipose tissue 

 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    INTRODUCTION  
  

 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 17 

Introduction 

1. Definition, diagnosis and epidemiology of metabolic syndrome 

Crucial changes have taken place in nutritional habits and food intake over the last few decades 

in western countries. The means of food production have increased, making it cheaper and more 

productive, implying an easier access to food and more abundance. Besides, markets have shifted 

towards more appetizing food, aiming to reach a larger market by including fats and sugars that 

improve tastes but increase calories as well [1]. 

A tendency has recently been found in western and developing countries, as more people are 

including processed, high-calorie content and sugar-rich foods that are changing the classic intake 

patterns and resulting in a higher consumption than actually needed for pure nourishment [2]. This 

excess food intake might not be bad by itself, but these changes in habits also include social aspects, 

as modern life is becoming more sedentary which reduces the need for energy consumption. These 

two mentioned issues have become increasingly correlated in recent years which has led towards a 

yearly increase in the percentage of obese people [3]. 

Obesity can be superficially understood as a positive imbalance in the individual’s energy 

homeostasis, meaning that they are accumulating more energy than they are consuming. As 

metabolism stores energy in the form of fat, this results in an increase in fat mass. The positive 

imbalance, therefore, means an excess in food intake, or energy intake, that is not compensated by 

an equal increase in energy expenditure, being malnourishment the opposite side of the imbalance 

[4]. This simple equation explains the origin of obesity but does not take into account important facts 

that alters both energy intake and expenditure in the development of this illness as it is affected by 

genetics, other diseases and/or stress [5,6]. 

Obesity is, in fact, considered an illness by the World Health Organization and is being labelled as 

an epidemic due to the speed at which it is increasing in prevalence in western and developing 

countries [7]. An accumulation of energy reserves could not be health detrimental by itself, but it has 

been found that obesity is associated with several pathologies that greatly harm the normal 

homeostasis, known as metabolic syndrome (MetS) [8]. 

MetS is a set of symptoms that encompasses deep changes in a healthy metabolic status of an 

individual and make them prone to develop other cardiovascular diseases (CVD) besides increasing 

the risk of cancer, non-alcoholic fatty liver disease (NAFLD) and other health complications [9]. Obesity 

and the usually subsequent MetS have driven interest for a precise definition, over the concern of 

obesity’s spread in western society [10], as a necessary way to standardize international clinical 

procedures. A patient is considered to have developed MetS when at least 3 of the 5 symptoms shown 

in table 1 are present [9]. A symptom is also considered present when the patient is already under 
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                   Introduction 

drug treatment for its correction. MetS has been defined as a set of parameters and associated values, 

as a tool for easy measurement and therefore, easy prediction of health status of patients and their 

progression, thus, allowing foreseeable outcomes from treatment management and prognosis of 

recommended life changes. 

 

 

 

 

 

 

 

 

 

 

 

 

Obese individuals tend to accumulate fat ectopically, in places that is not usually present, in the 

waist, muscle and liver. Such accumulation is particularly harmful in liver, as it induces NAFLD, which 

could progress towards non-alcoholic steatohepatitis (NASH) when fibrosis and inflammation is 

developed [11]. The problem that leads to this accumulation of fat in liver comes from several sources 

as there could be an increase in the de novo production of fat in the liver itself (lipogenesis), an 

increase in the uptake of fatty acids (FA) from the bloodstream, a decrease of fatty acid oxidation or 

secretion or a combination of them [12]. This dysregulation of the normal lipid homeostasis in the liver 

is not well known but is related with a decrease in hepatic sensitivity to insulin and leptin, a common 

problem associated with obesity, which will be discussed further [12]. While fatty liver is the most 

health detrimental of the ectopic fat accumulation, is not easily ascertainable. However, waist 

accumulation is measurable, therefore, it is usually regarded when assessing the health status of 

patients and is considered one of the symptoms of the MetS. This accumulation of waist fat mass is 

mainly in the form of triglycerides, as that is the main form the body uses for the storage of energy. 

This excessive storage is also easily assessed in the bloodstream, as triglycerides levels are usually 

found elevated in patients with obesity and is considered another symptom of the MetS [13]. 

Table 1. Symptoms of Metabolic syndrome. 

 Men Woman 

Elevated waist circumference ≥ 102 cm ≥ 88 cm 

Lowered high density lipoprotein cholesterol < 40 mg/dl < 50 mg/dl 

 No gender differences 

Elevated triglycerides ≥ 150 mg/dl 

High blood glucose ≥ 100 mg/dl 

Elevated systolic blood pressure 
≥ 130 mm Hg 

(Systolic) 

≥ 85 mm Hg 

(Diastolic) 
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In addition, obesity is associated with an increase in other lipids such as cholesterol. 

Contemporarily, elevated cholesterol levels are considered a health risk, increased chances of 

coronary thrombosis and the onset of other cardiovascular complications, plus an indication of a 

dysregulation of lipid metabolism [14]. This molecule is a core component in the production of 

hormones and lack of it is detrimental in the normal regulation of their metabolism, implying that 

certain concentration levels and food supplementation must be maintained [15]. It is because of its 

importance that its regulation is key for a normal metabolism and it is indeed tightly regulated, 

therefore raising alarms as elevated concentration means either an excessive intake or the body 

having problems to regulate its levels. However, cholesterol is present in many different molecules 

depending on where it is transported to and from. 

Cholesterol absorbed from food intake is packed in chylomicrons particles in the gut to be 

absorbed and processed in the liver. Low-density lipoprotein cholesterol (LDL-C) particles are 

responsible for the transporting of cholesterol from liver to the peripheral tissues. Initially the liver 

forms very low-density lipoprotein (VLDL-C) particles, rich in triglycerides and cholesterol. 

Triglycerides will later be hydrolysed, concentrating cholesterol, and evolving the VLDL-C particles into 

intermediate-density lipoproteins (IDL-C) and, subsequently, to LDL-C that will bind cells from 

peripheral tissues and unload cholesterol [16]. High-density lipoprotein cholesterol (HDL-C) particles, 

on the other hand, are responsible for the transportation of excess cholesterol from peripheral tissues 

to the liver for the processing and removal of cholesterol in the form of bile salts [17], into what is 

known as reverse cholesterol transport. The particles conformation and synthesis are a combined 

effort between the intestines and the liver, as HDL-C particles are conformed by apolipoproteins, 

mainly apolipoprotein A-I (APOA-I) and APOA-II. APOA-I is synthesized by both liver and intestines, 

adding to up to 70% of total lipoproteins of HDL-C while APOA-II is exclusively synthesized by liver, 

conforming 20% of HDL-C [18]. The rest of the non-lipidic portion of the HDL-C is conformed by other 

proteins carrying task of cellular communication, regulation of interactions with HDL-C and 

modulation of lipid metabolism [19]. 

Low levels of HDL-C have been linked to CVD and are considered one of the symptoms of the 

MetS. Studies linking HDL-C and CVD have found that they follow an inverse correlation, showing that 

increases in HDL-C reduces the risks of developing CVD [20]. Higher levels of HDL-C help prevent CVD 

as these particles show antioxidative properties by providing protection against free radicals and the 

subsequent formation of pro-inflammatory oxidized lipids [21]. HDL-C also provides beneficial effects 

over hypertension as it has been found to increase the expression of endothelial nitric oxide synthase 

(eNOS), thus generating an increase in nitric oxide (NO), a known atheroprotective compound [22]. 
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In this regard, hypertension is another possible outcome from obesity and it is considered one 

more of the symptoms of the MetS [23]. While the progression of blood pressure (BP) has been found 

to increase with age [24], regardless of diet, obese patients tend to have a characteristically high BP. 

In addition, obese patients have a high disposition to develop insulin resistance, a key factor that it is 

believed to have major effects over BP [25]. Commonly obese patients develop high concentrations 

of insulin in blood, a hormone that will promote activation of the sympathetic nucleus system, 

inducing mechanisms to counteract the excess of energy reservoirs, among them, a rise in BP. This 

adaptive mechanism regulates the energy homeostasis but becomes an issue if the incidence of 

hyperinsulinemia persists for long periods of time [26]. A similar process is induced with 

hyperleptinemia, another common occurrence among obese people [27]. Deeper studies of insulin in 

regard to hypertension have shed light towards supplementary mechanisms for the development of 

hypertension as insulin promotes an increase of angiotensin II receptors, activating angiotensin’s role 

of vasoconstriction [28].  

Similarly to triglycerides, a common outcome from unhealthy feeding habits are persistent 

elevated levels of glucose in blood once a certain state of obesity has been developed [29]. Under 

normal circumstances, blood glucose levels remain fairly stable throughout the day, thanks to the 

control by insulin and the release of glucose from liver and adipose tissue. Under postprandial state, 

glucose intake from food will raise its concentration in blood, which will be dealt with by increasing 

levels of insulin, promoting lipogenesis [30] and glycogenesis in liver [31]. Under fasting conditions, 

insulin levels will diminish, causing the liver to release and produce glucose and ketone bodies to 

supply mainly the brain and other peripheral tissues [29]. Obese individuals who have developed type 

II diabetes are not capable of a fine adjust their glucose levels and they remain high. After prolonged 

times of excessive calories intake, insulin resistance might arise in peripheral organs, particularly liver 

and adipose tissue, being liver the main culprit of glucose impairment as it is the major provider. Due 

to this, parallelly to high levels of glucose, hyperinsulinemia is developed as the pancreatic β-cells 

release more insulin, trying to cope with the low insulin sensibility. In addition to the process, these 

cells, once accurate in measuring circulating glucose, lose the capacity for proper perception, hence, 

aggravating the control of glucose with impaired insulin secretion [29,32]. 
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2. Physiopathology of metabolic syndrome 

The onset of the MetS is easily preventable and can be averted without health repercussions. 

However, its study has shown that once developed, the patient’s metabolism undergoes fundamental 

changes that alters it in a permanent/semi-permanent way. This induces a propension to re-develop 

obesity and harming the functionality of some of the more important pathways of the metabolism, 

thus, generating other diseases [33,34]. Some of the symptoms of these inner changes are 

summarized as the symptoms of the MetS (Table 1) which provide an easily measurable way of 

assessing how the development of these other illnesses is going.  

 

2.1 Obesity and overweight 

The study of obesity and its development has quickly concluded that it is a multifactorial 

dysregulation of the homeostasis of a healthy individual. In fact, excessive fat accumulation alters the 

functionality of liver and white and brown adipose tissues, induces pathologies and dysregulation of 

hormone production and leads to hypertension. 

 

2.1.1 Dysregulation of body weight and food intake. Hyperleptinemia 

A hormone tightly related with obesity and fats mass homeostasis is leptin. When first discovered, 

leptin was found to control appetite, being directly but inversely correlating the lack of appetite with 

high levels of leptin [35]. In addition, later studies found that leptin’s binding to its receptor over 

nucleus of the hypothalamus not only triggered behavioural responses but induced metabolic changes 

as well, related to an overall increase in fatty acid burning and a reduction in its storage and production 

[36]. This hormone is expressed by the adipose tissue, graduating its excretion depending on its fat 

reservoirs, as the bigger the fat mass, the more it gets secreted. Its secretion is also related to food 

intake as soon after a meal leptin is secreted as adipocytes increases their reserves [37]. Leptin 

secretion is also activated by insulin, which relates with the previous, as insulin concentration rises 

after a meal. 

Its relationship with obesity is paradoxical as obese individuals are characterized by high levels of 

leptin. Given that its role is to reduce food intake, leptin do not seem to be reducing the hyperphagia 

classically associated with obese individuals, although it is being over-secreted as corresponded with 

large fat mass [38]. Adding to lack of decreased appetite, studies show that the homeostasis of the 

obese individual is not as strongly shifted towards the burning of fatty acids and falls more into its 

storage, than expected for the amount of fat mass [39]. 
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This phenomenon is known as leptin resistance and happens after obesity has been developed 

for long enough as to affect the homeostasis of the individual. Both peripheral organs and brain 

nucleus respond lightly to the same concentration of leptin and, as with insulin resistance, higher 

levels of leptin are required to achieve the same response [40]. 

Regarding leptin’s activity in the nucleus system, the main effector in the homeostasis of leptin is 

the hypothalamic arcuate nucleus, in particular, two populations of neurons sensitive to leptin of 

opposing functions: the neuropeptide Y (NPY), agouti-related protein (AGrP) and pro-

opiomelanocortin (POMC) neurons. NPY and AgrP neurons are named after their orexigenic peptides 

production which role is to induce appetite, thus, increasing food intake and accumulation of fat 

reservoirs [41]. On the other hand, POMC cells’ role is to produce the anorexigenic protein of the same 

name and induce hypophagia [42]. Their activity is of crucial importance as effectors of leptin 

functionality and are major systems for the control of energy homeostasis and fat reservoirs. At the 

molecular level, leptin promotes the STAT/JAK (Signal transducer and activator of transcription / Janus 

kinase)  pathway activation in both POMC and NPY/AGrP neuronal groups, working in a similar way 

[43]. In addition to leptin activation, the activity of these neurons might be also activated with insulin, 

showing certain overlapping of their correspondent pathways [44]. 

These populations of leptin-sensitive neurons, once leptin resistance has developed, seem to be 

less responsive to leptin, from both external-artificial or internal-natural sources, needing higher 

concentrations of circulating leptin and hardly ever quite achieving the same effect, regardless of 

concentration [45]. Several mechanisms involved with leptin have been presented as putative sources 

and aggravating factors of this problem. Leptin is imported from blood at the blood-brain barrier via 

isoforms of the leptin receptor and studies with high fat diets (HFD) mice have found a suboptimal 

transportation through the barrier, although how substantial is its real impact remains unknown [46]. 

NPY, AgRP and POMC, leptin-sensitive neurons have also been found to endocyte parts of their 

membranes, reducing the presence of leptin receptors and, consequently, the leptin pathway 

activation [47]. Besides it, concordantly with obesity, a chronic state of inflammation is developed, 

affecting among others, the brain and hypothalamus. It has been found that fatty acids binding to toll-

like receptor 4 (TLR4)  in macrophages promote inflammation and food intake [48]. 

A responsive activation of leptin sensitive neurons in the nervous system is of major importance 

as many organs normal function is directly modulated and, regarding liver, the sympathetic nervous 

system stimulates glucose production and release of fuel sources into the bloodstream for the uptake 

and utilization of other peripheral organs, in times of exercise, whilst the parasympathetic nervous 

system reverses this effect, promoting the storage of fats. 
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2.1.1.1 Leptin resistance from a molecular perspective 

The underlying process behind leptin resistance, being similar to insulin resistance it is not 

completely understood, and it happens in both the nervous system and peripheral organs [49]. 

Leptin’s receptors are present in several organs including liver, nervous system, skeletal muscle or 

adipose tissue [50] and activates an important pathway, the STAT3 phosphorylation pathway. 

Circulating leptin binds to its receptor, the obese gene receptor b (OBRb), inducing the activation via 

autophosphorylation of JAK-2, which, in turn, phosphorylates tyrosine residues of the OBRb receptor. 

This leads to the activation of STAT-3 by its phosphorylation into STAT3-P which acts as a transcription 

factor that promotes expression of anorexigenic genes, changing the energy homeostasis. In addition, 

the activation of STAT3-P activates as well the transcription of SOC-3 which, in turn, inhibits the action 

of OBRb, creating a negative feedback that attenuates and modulates the activity of leptin in liver 

[51,52]. The leptin receptor downstream signalling is shown in figure 1. 

Figure 1. Leptin receptor’s (OBR) pathway activation leads to changes in gene expression and induces different reactions 

depending on the tissue as the receptor is present in several organs. Activation of OBR activates JAK-2 (Janus kinase 2) 

which phosphorylates STAT3 (Signal transducer and activator of transcription 3), resulting in alteration of gene expression. 

This pathway is negatively regulated by SOC-3 (Suppressors of cytokine signalling 3) as it inhibits the receptor. The figure 

also explains the relationship between leptin activity and inflammatory cytokines, such as Il-6 (Interleukin 6) and TNF-α 

(Tumor necrosis factor α) as they over-activate SOC-3, reducing the sensitivity of the cell to leptin. The insulin and leptin 

signalling pathway is associated via SOC-3, also plays a role in modulating insulin response, as it alters the functionality of 

IRS (Insulin receptor substrate) and PI3K (Phosphatidylinositol 3-kinase). Figure adapted from [50]. 
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SOC-3 is considered a major figure in the development of leptin resistance as its action is highly 

modulated but other factors besides leptin. Adipocytokines such as resistin and inflammatory factors 

like IL-6 and TNF-α are capable of binding into leptin receptors and induce an amplification of the 

activity of SOC-3, leading to an inhibition of leptin signalling [53]. Insulin has also been linked to 

increased activation of SOC-3 [54]. The accumulation of these factors in a tissue leads to what is known 

as leptin resistance, defined as the low activation of leptin pathways and its inability to reduce appetite 

and promote energy expenditure. Obese individuals are characterized by having high levels of glucose 

and triglycerides in blood, promoting over secretion of leptin and insulin. Once secondary problems 

like inflammation have appeared, the efficiency of leptin gets reduced, generating a negative loop that 

fails to promote weight loss. 

 

2.1.2 Liver overview, role and association with MetS 

The liver plays a major role in the body’s homeostasis and the control of lipids and glucose 

metabolism. It is a central component of the flow of energy and it is in constant communication with 

other peripheral organs, such as skeletal muscle and adipose tissue, to better assess the needs of fuel 

according to the state of fasting or exercise [55]. The liver is also a major producer of glucose or fatty 

acids as an energy source. The liver’s prime role in glucose metabolism is the release of glucose from 

gluconeogenesis, thanks to the skeletal muscle providing substrates such as lactate or pyruvate for 

this process [56]. Besides, the liver will supply the body with fatty acids, packed into VLDL-C particles 

and ketone bodies after β – oxidation of stored fatty acids, adding support to the release of non-

esterified fatty acids (NEFA) from the white adipose tissue by lipolysis of triglycerides [57]. Given the 

importance of the liver’s role in metabolism, a dysregulation such as obesity, has major harmful 

consequences over its function and health state. 

 

2.1.2.1 Liver disease 

A predisposition of people with MetS to develop NAFLD has been extensively documented and 

seems to have originated in a combination of multiple factors [58,59]. NAFLD is a loose term to define 

a wide spectrum of phenotypic changes in the liver, from slight asymptomatic accumulation of lipids 

in the hepatocytes that could develop into higher preponderance of fats, necrosis, cirrhosis and 

carcinoma [60]. NAFLD refers to non-alcoholic fatty liver (NAFL) and NASH, being NAFL a less harmful 

state of development with more than 5% of steatosis but no signs of hepatocyte damage, nor fibrosis 

that could potentially derivate to worse scenarios but has not yet taken a large impact in the 

functionality of the organ [61]. On one hand, NASH has been associated with the development of 
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cancer, shows major signs of apoptosis and cirrhosis and has greatly compromised regular 

functionality, which hints to a deep metabolic aberration and imbalance in the homeostasis of 

carbohydrates, lipids and energy [62]. In summary, NASH is considered a worse progression of NAFL 

when apoptosis, cellular infiltrations and inflammation are present, regardless of the presence of 

fibrosis [63,64]. The progression between the two has not been yet completely clarified (tissue 

examples shown in figure 2) and neither have a clear defined line between them, although the start 

of cellular damage establishes the onset of NASH, but prognosis might still be favourable and the 

disease reversible.  

Figure 2. Progression of liver steatosis and tissue damage over increasing accumulation of lipids. Arrows show typical 

histopathological events that the liver undergoes as the disease progresses. Black arrows indicate hepatocyte cell 

ballooning (a form of apoptosis [65]) and white arrows show the collagen bands of fibrosis. NASH: Non-alcoholic 

steatohepatitis Figure obtained from [66]. 

2.1.2.2 Mechanisms of NAFLD 

NAFLD is an excessive accumulation of lipids in the hepatocytes and is considered one of the main 

harmful outcomes from excess fat content in food intake. Factors leading to hepatic lipid accumulation 

are multifactorial, involving increased fatty acid influx, increased FA synthesis, altered FA oxidation 

and insufficient triglyceride secretion to prevent lipid accumulation [67–70]. These mechanisms could 

be co-ordinating to precipitate the development and progression of NAFLD. It has also been linked 

with obesity, being a predominant disease among obese patients, with a high probability of developing 
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among type II diabetes patients, whereas the development of both obesity and type II diabetes almost 

guarantees the subsequent development of NAFLD [63].  

White adipose tissue is the main reservoir of lipids. It also greatly contributes to mobilization of 

lipids in the bloodstream by converting stored triglycerides into NEFA by lipolysis. NEFA are used in 

other organs as an energy source. However, the liver is one of the main regulators of them and they 

might become responsible for up to 60% of the lipidic content in the development of NAFLD [71]. 

Imported or synthetized lipids are stored in droplets in the form of triglycerides throughout the whole 

volume of the hepatocyte, also containing cholesterol esters. Their size and form may vary, being 

considered as macrovesicular steatosis whenever droplets are large, rounded and encompass a large 

volume of the hepatocyte, whereas, microvesicular steatosis is considered when the number of 

droplets greatly increases while their size decreases [72].  

In fact, studies have linked the adipose tissue and overweight more directly responsible for the 

development of NAFLD. After long periods of excessive food intake, white adipose tissue expands to 

accumulate extra circulating lipids coming from food absorption, lowering their concentration in 

blood. While adipose tissues expand, they are infiltrated by macrophages, secreting pro-inflammatory 

cytokines that reduces insulin sensitivity of the adipose tissue, thus, blocking insulin-mediated 

suppression of lipolysis and promoting the breakdown of triglycerides and release of NEFA that will 

be mainly absorbed by the liver [73]. Among inflammatory cytokines, tumor necrosis factor α (TNF-α) 

and interleukin 6 (IL-6) play major roles in this process and suppress the secretion of adiponectin, 

which has been strongly correlated with fatty liver [74]. 

The liver itself is another producer of inflammatory cytokines and it has been postulated that 

excessive hepatic fat accumulation induces a state of local inflammation, similarly to the adipose 

tissue. This originates in oxidative stress of endoplasmic reticulum and could further worsen the 

NAFLD [75]. In fact, obese mice are prone to develop endoplasmic reticulum stress [76]. Furthermore, 

accumulation of fatty acids inside the hepatocyte results in an increase in β–oxidation, leading to the 

production of reactive oxygen species, further worsening the oxidative stress [77]. 

Several diagnostic tools are being used to analyse NAFLD. Proton Nuclear magnetic resonance 

(1H-NMR) is being used to quantify the abundance of fatty acids, considering an accumulation of fat 

of 5.56% as the onset NAFLD [78]. Histological analyses are also performed as a cheaper and easier 

tool as NAFLD livers show macro- and micro-vesicular lipid accumulations. Histological studies also 

allow the assessment of whether NAFLD is developing into NASH and the presence and differentiation 

between micro- or macro- vesicular steatosis. This technique is of particular usefulness, as it easily 

shows the clear profile of macro-vesicles and the fuzzy presence of micro-vesicles. Quantification of 
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glutamic oxaloacetic transaminase (GOT/AST) and glutamic pyruvic transaminase (GPT/ALT) enzymes 

in serum are also been used to assess liver damage, which tends to correlate with fatty liver [79]. 

 

2.1.3 White adipose tissue and dysregulation under MetS 

White adipose tissue (WAT) has always been considered as a fat reservoir as well as a heat 

insulator. In addition, other functions have been discovered, such as appetite modulation by secretion 

of the adipokine hormone leptin [80], inflammation regulation and control of the energy homeostasis 

[80,81]. WAT is a multifunctional organ whose distribution varies from other organs as it is spread 

throughout the whole body, implying a tight hormonal control of its fat accumulation and 

functionality. While WAT deposits are capable of quick expansion and reaches to wide localizations in 

the whole body, its main distribution divides it between visceral and subcutaneous compartments 

[82,83]. These two compartments are also divided: visceral WAT encompasses tissue deposits such as 

mesenteric (mWAT), retroperitoneal (rWAT) and epididymal (eWAT), depending on their localization; 

while subcutaneous WAT is usually divided into the anterior or posterior [82].  

WAT is a diversely complex tissue as it englobes its main cell type, the adipocyte, plus others, 

such as macrophages, fibroblasts, mesenchymal and vascular cells. Adipocytes characteristic 

morphology is easily recognised as 80-90% of its cytoplasm is occupied by a big droplet of fat, mainly 

composed of triglycerides, displacing the nucleus to the side [84]. This droplet may vary greatly 

depending on physiological needs and overall fat reservoir, as WAT’s role is finding a healthy 

equilibrium between the accumulation and release of fat due to energy needs. WAT may undergo 

hyperplasia (increase on adipocyte recount) or hypertrophy (increase of droplet size and, therefore, 

triglycerides content). Hypertrophy is usually associated with an increase in diet-induced fat 

accumulation. 

The reservoir of triglycerides in the adipocytes are obtained by two ways: by de novo synthesis 

(process known as lipogenesis) or imported from the bloodstream. Triglycerides in the bloodstream 

usually come from diet, bound to proteins in lipoproteins, but mainly in the form of chylomicrons, 

secreted by the intestine after their absorption in the lumen, although they can also be absorbed from 

VLDL-C, produced by the liver or as free fatty acids bound to albumin (NEFA) [84]. Once these 

triglycerides-enriched particles reach the capillaries irrigating the WAT, their endothelial cells 

hydrolase the triglycerides, breaking them into glycerol and free fatty acids by action of the lipoprotein 

lipase (LPL). Fatty acids are then carried into the cells by transporters like cluster of differentiation 36 

(CD36) and bound to fatty-acid-binding proteins (FABPs) so that they can be taken to the acyl-CoA 

synthase and esterified with coenzyme A (CoA) into acyl-CoA [84]. Regarding synthesis de novo, 
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glucose acts as a source, undergoing a series or reactions to ultimately form acyl-CoA, ground 

molecule for the production of triglycerides that are stored in the lipid droplet of the adipocyte. 

WAT also acts as a distributor of energy whenever is needed. Since fat is in itself a reservoir of 

energy, WAT has a major role on energy homeostasis. This leads WAT to have a tight control of lipids 

released into the bloodstream. Lipids are exported in the form of NEFA, hydrolysed sequentially from 

triglycerides, first by adipose triglyceride lipase (ATGL) into diglycerides, second by hormone-sensitive 

lipase (HSL) into monoglycerides and, finally, into free fatty acids and glycerol by monoglyceride lipase 

(MGL) [85]. The release of fat from WAT occurs under fasting conditions as adipocytes are hormonally 

controlled by activation via β-adrenergic receptors (activated by norepinephrine) and glucagon 

receptors, both of them inducing the activation of the lipolysis pathway described. On the other hand, 

adipocytes are also inhibited from releasing lipids by insulin [86]. 

WAT’s hormonal control goes both ways, being highly influenced by several hormones, whereas 

WAT is itself a major hormonal producer. WAT’s other main function is the release of the adipokine 

hormone leptin into the bloodstream, whose production correlates positively with the fat body 

reserves [87]. Leptin levels are also influenced by other factors: insulin levels are increased after 

feeding triggering leptin production [88], sex hormones influence leptin secretion [89] and circulating 

fatty acids inhibit leptin production [90]. Leptin’s relationship with insulin illustrates leptin’s role as a 

modulator of energy reserves in regard to food intake, and, in fact, leptin works by modulating 

appetite [91]. Food intake increases insulin concentration, promoting leptin production; leptin reaches 

the hypothalamus where it triggers several responses, two of the main ones being a promotion of 

body energy expenditure and behavioural changes evidenced as a reduction of appetite [92]. 

However, leptin’s tight control is dysregulated in obese individuals, diminishing leptin sensitivity, 

which means that leptin, after binding to its receptor, does not activate its pathway as strongly, 

generating a weaker response. The predominant consequences are an energy expenditure decrease 

and hyperphagia. This presents a clear positive feedback that further promotes obesity. Due to this, 

obese individuals are characterised by high levels of leptin [93]. Unfortunately, leptin sensitive 

changes have not yet been fully explained and many pharmacological drugs and scientific effort is 

directed towards inducing an amelioration of the sensitivity or fixing its dysregulation. 

 

2.1.3.1 Inflammation 

Concomitant with obesity, a low chronic level of inflammations tends to be developed [94], laying 

on the relationship between macrophages and adipocytes, as an inflammation feedback is developed. 

While macrophage’s usual role is of debris cleaning and dead cells and pathogens elimination, it has 
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been shown that WAT keeps a stable population of macrophages, even in a healthy state. Healthy 

individual’s WAT promotes an anti-inflammatory environment through a particular secretory pattern, 

pattern that is altered under diet-induced obesity [95]. However, additional macrophages could be 

recruited after immunological stimulus. These two types of macrophages population have been 

described and are easily labelled and differentiated by analyses of several markers and cytokine 

production. Infiltrated M2-macrophages are associated with lean-individuals, inducing an anti-

inflammatory environment by the production of interleukin 10 (IL-10) and are recognised by an 

expression of cluster of differentiation 163 (CD163). On the other hand, M1-macrophages, marked by 

expression of integrin, alpha X (CD11C), get more predominant after diet-induction [96,97]. These 

macrophages are considered an “activated” form, associated with diet-induced obesity and elevated 

inflammation levels [98]. 

As adipocytes undergo hypertrophy, they release less anti-inflammatory (adiponectin) and more 

proinflammatory adipokines (such as TNF-α or monocyte chemoattractant protein 1 (MCP1)), 

promoting the recruitment and activation of M1-macrophages, which, in turn, further develops the 

inflammatory response. This process ends up in a low level, long-term, state of diet-induced systemic 

inflammation, WAT being its origin [99,100]. In fact, TNF-α or MCP1 are considered markers of 

inflammation and state an unhealthy metabolic state [101]. The described process is shown in figure 

3. 

Figure 3. Aggravation of the inflammatory status on the adipose tissue after its hypertrophy. The recruitment of 

macrophages by the release of inflammatory cytokines such as TNF-α (Tumor necrosis factor alpha), IL-6 (interleukin 6) and 

MCP1 (Monocyte chemoattractant protein-1) leads to further release of cytokines and recruitment of macrophages. 

Hypertrophy also promotes angiogenesis via VEGF (Vascular Endothelial Growth Factor). This feedback might ultimately 

induce insulin resistance, which have been linked with c-Jun N-terminal kinase (JNK) and NF-κB (Nuclear factor kappa-light-

chain-enhancer of activated B cells) activation. Figure obtained from [32]. 
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The formation and its lasting persistent state follows a different mechanism of classic 

inflammation as there is no tissue damage, no reported infection and the intensity of the inflammatory 

response is much lower than the standard infection response [99,102]. Correlation between MetS and 

inflammation is not yet fully understood. With the abnormal increase in adipose tissue, a proportional 

increase of cytokines is released from the tissue, promoting the production of C-reactive protein (CRP) 

from liver into the bloodstream [103]. High levels of circulatory CRP have been associated with 

aggravation of coronary vessels and endothelial function [104] and is, in fact, used as predictive 

marker for NAFLD and CVD [105]. Another major marker is TNF-α, which is overexpressed in obese 

people [106], and has been associated with worsened insulin resistance in the adipose tissue [107]. 

The increase of circulatory cytokines might be an effect of the increased size of the tissue, the 

insulin resistance [108,109] or the local inflammatory state, promoted by the infiltration of 

macrophages [110], which develops when the adipose tissue increases its size quickly due to diet. It 

has also been postulated that with the hypertrophy, and the hypoxia that comes with lack of proper 

angiogenesis and cell failure leads to apoptosis which elevates the recruitment of macrophages, 

promoting local inflammation [111]. Under a healthy and low growth of the adipose tissue, additional 

vessels are formed. However, impaired adipocyte growth leads to the under-formation of surrounding 

vascular tissue, which induces hypoxia, release of cytokines and inflammation. The fast growth of the 

tissue has been directly linked to the development of insulin resistance [112]. 

 

2.1.4 Brown adipose tissue, energy expenditure and functionality 

Brown adipose tissue’s (BAT) role on the overall control of the energy homeostasis has recently 

been given a more prominent place of importance. Until a few years ago, its existence was not 

acknowledged in adults, as it was believed that remnant patches of BAT in new-borns were reabsorbed 

after the first few months. BAT’s presence in new-borns allows a fine tuning of the infant’s body 

temperature, this being its main role, achieved through the release of energy in the form of heat in 

the mitochondria. It is in the more recent years that the presence of BAT has been found in human 

adults, although it degenerates with age [113]. 

BAT is a specialised tissue that, similarly to WAT, stores lipids but whose morphology is greatly 

different. BAT’s accumulation of lipids evidences a different functionality as their fatty acids are easier 

to access and mobilize, thanks to a conformation of smaller and more numerous lipid droplets. 

Moreover, BAT is characterised by a high number of mitochondria and vascularization, responsible for 

its brown colour [114,115]. 
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High irrigation providing elevated oxygen concentration, plus the mitochondrial recount, points 

to an elevated metabolic activity and the need of energy consumption. However, given a similar 

context that of muscle, BAT does not store as much energy in the form of adenosine triphosphate 

(ATP). The energy homeostasis of BAT is geared towards the generation of a mitochondrial 

transmembrane potential that gets released, uncoupled form ATP production, in the form of heat 

[116]. Because of the mentioned high vascularization of the tissue, this heat is quickly distributed 

throughout the whole body, contributing to the maintenance of body temperature, as an alternative 

source of heat production, being shivering thermoregulation the main and more effective one against 

low temperature exposures [117].  

The function of BAT is mainly performed by the uncoupling protein 1 (UCP1). This protein is 

located in the inner membrane of the mitochondria in contact with the highly concentrated proton 

accumulation of the interior of the organelle. The release of the electrochemical potential through the 

inner membrane into the mitochondrial matrix, by UCP1, dissociates the mitochondrial respiration 

from the ATP production, resulting in the dissipation of energy, exclusively in the form of heat [118]. 

The mitochondrial gradient is achieved by burning fatty acids and glucose and the process of burning 

them to produce heat is known as thermogenesis. 

The discovery of UCP1 has been of great importance in scientific research as increased RNA 

expression or protein concentration correlates with increased thermogenesis, being used as a marker 

of the process [119]. As energy comes from the burn of fatty acids and glucose, their carriers are 

deeply studied and tightly regulated [120]. Glucose is imported by glucose transporters (GLUT family, 

specifically GLUT4 in BAT), which are moved from intracellular locations into the cell surfaces by 

stimulation with insulin [121] and, also, activated by norepinephrine secretion from the sympathetic 

nervous system after cold exposure [122,123]. Free fatty acids are absorbed by the CD36 carrier [124], 

by to the hydrolyzation of triglycerides from lipoproteins by LPL [121]. Once fatty acids have been 

imported, they are used as fuel and lipolysis starts. Genes such as ATGL, HSL or MGL are involved in 

this process [125]. 

The main activator of thermogenesis is the sympathetic nervous system via release of 

catecholamines that will bind to adrenergic receptors. This will lead to the activation of the adenylyl 

cyclase (AC) which will raise levels of cyclic adenosine monophosphate (cAMP), activating PKA (protein 

kinase A). PKA will phosphorylate HSL, inducing lipolysis, cleaving triglycerides and releasing free fatty 

acids, which are used as a primary source for the production of ATP, thus, providing energy for the 

electrochemical potential in the mitochondria [126]. Other regulators and activators of thermogenesis 

are fibroblast growth factor 21 (FGF21), an adipokine whose production is induced after cold-exposure 
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[127,128] and thyroid hormones [129]. A summary of the mentioned pathways and fuel sources is 

shown in figure 4.  

Figure 4. A schematic representation of a cell from the brown adipose tissue showing the activation of AC, by an adrenergic 

receptor, which would in turn activate PKA via the production of cAMP. PKA increases the expression of UCP1 and activates 

HSL via phosphorylation. This enzyme activates lipolysis, providing fuel for UCP1 and, thus, inducing thermogenesis. AC: 

Adenylyl cyclase; cAMP: Cyclic adenosine monophosphate; PKA: Protein kinase A; HSL: Hormone sensitive lipase; FFA: free 

fatty acids; UCP1: Uncoupling protein 1. Image adapted from [126]. 

 

The described mechanism of thermogenesis has a secondary importance, which has grown in 

interest as a drug target. BAT has an indirect control over fat accumulation given that fatty acids are 

extensively burned to produce heat and BAT is a reservoir of them. It has been reported that BAT is 

related to obesity and its control. BAT has been shown to help remove triglycerides content from the 

bloodstream after cold exposure [124], body fat has been diminished after BAT activation [130] and 

its deficiency has led to obesity [131]. Besides, BAT has been shown to contribute to metabolic 

efficiency and energy expenditure [132] and BAT mass increases after loss of fat mass [133], all of 

which indicates a relationship between BAT and obesity. 

From another point of view, BAT, therefore, is in direct control of part of the body’s energy 

expenditure, as a controlled but wasteful burning of fatty acids reduces the overall quantity of energy 

reservoirs. While, when needed, heat production is not wasteful, it has been proved that obese 

rodents have an increased activated thermogenesis as a tool for excess fat disposal [134]. Its discovery 
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has shifted part of the scientific effort in obesity control towards the search for BAT activating drugs 

that could activate thermogenesis. Increased thermogenesis leads to increase the energy output and 

acceleration of fat mass loss [135]. 

 

2.2 Glucose homeostasis and insulin dysregulation  

Food intake supplies the metabolism with energy sources. On the other hand, fasting conditions 

prompts the body to release glucose to maintain the energy needs. The liver is the main organ that 

releases glucose in fasting state. The body’s main source of glucose will be glycogen, a polymeric 

molecule used as storage of glucose. However, eventually glycogen reserves are depleted, only to be 

replenished by food intake, and alternative sources are used to maintain the flow of glucose from the 

liver. 

Likewise, the liver is also responsible for the uptake of glucose from blood to lower is content. 

Glucose is primarily subtracted from the bloodstream in the liver by the channel glucose transporter 

2 (GLUT2), which also mediates its release from the liver [136]. The absorption is regulated by the 

content of glucose itself inside the hepatocyte. Once glucose passes into the cytoplasm it is 

phosphorylated into glucose 6-phosphate (G6P) by the glucokinase (GCK), reducing the level of 

glucose, which when perceived, promotes further uptake of glucose [137]. G6P remains inside the 

hepatocyte, as there are no channels for its release, and will ultimately be converted into pyruvate via 

glycolysis, after which, pyruvate will enter the tricarboxylic acid (TCA) cycle (Figure 5), serving for the 

production of ATP in the mitochondria. G6P will also be metabolized in the pentose phosphate 

pathway to produce NADPH (Nicotinamide adenine dinucleotide phosphate). G6P is reverted into 

glucose, in fasted state, in the endoplasmic reticulum for its release from liver [138]. 

 

2.2.1 Gluconeogenesis 

Due to the muscle-exported metabolites such as lactate and amino acids, and liver’s reservoirs of 

glycerol or pyruvate, liver is capable of glucose production via gluconeogenesis. Lactate is converted 

into pyruvate by the lactate dehydrogenase. Pyruvate is then converted into oxaloacetate with the 

pyruvate carboxylase (PC), exported into the cytoplasm and converted into phosphoenolpyruvate with 

the cytoplasmic phosphoenolpyruvate carboxylase (PEPCK-C) [139]. Pyruvate formation is also 

achieved from amino acids [140]. Phosphoenolpyruvate undergoes several enzymatic conversions 

until the formation of fructose-6-phosphate (F6P), which is converted into G6P and transported into 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 
 34 

                   Introduction 

the endoplasmic reticulum where it is dephosphorylated with G6Pase, generating free glucose to be 

exported from the hepatocyte into the bloodstream [141]. 

Figure 5. The citric acid cycle (TCA) and glycolysis, including relevant enzymes and metabolites. GCK: glucokinase; GAP: 

glyceraldehyde 3-phosphate; GP: glycogen phosphorylase; G6Pase: glucose-6-phosphatase; L-PK: liver pyruvate kinase; 

G6P: glucose 1-phosphate; PC: pyruvate carboxylase; GS: glycogen synthase; PFK: 6-phosphofructo-1 kinase; FBPase: 

fructose 1,6 bisphosphatase; F-1,6-P: Fructose 1,6-bisphosphate; G1P: glucose 1-phosphate; DHAP: dihydroxyacetone 

phosphate; PDC: pyruvate dehydrogenase complex; PDKs: pyruvate dehydrogenase kinases. Figure obtained from [138]. 

Due to the importance of glucose homeostasis, gluconeogenesis is a tightly controlled process. 

Pyruvate from skeletal muscle is converted with the pyruvate dehydrogenase complex (PDC) into 

acetyl-CoA and used in the TCA cycle to obtain energy but it can also be converted into lactate, 

exported and used by the liver for gluconeogenesis [142]. The activity of the PDC can be inhibited via 

phosphorylation by the pyruvate Dehydrogenase Kinase 4 (PDK4), in fasting conditions or exercise, 

forcing the conversion of pyruvate into acetyl-CoA and, thus, retaining energy sources for skeletal 

muscle. This restricts the liver from a major source material for gluconeogenesis, gravely diminishing 

gluconeogenesis [143]. Glycerol is an indirect regulator as well. Obtained from β – oxidation and 
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exported from the white adipose tissue, is key in the production of ATP, needed for the 

gluconeogenesis. 

Insulin is another key regulator and potent suppressor of gluconeogenesis in the liver. Insulin 

resistance hinders its efficiency, inducing a permanent activation of gluconeogenesis and release of 

glucose into the bloodstream, which also increases the adiposity of the hepatic tissue and the 

appearance of NAFLD [144]. Glucagon, secreted by the pancreatic α cells, is mostly present in fasting 

state or exercise, promoting the release of glucose from the liver to provide fuel for the skeletal muscle 

[145]. Glucagon exerts its functionality via a G-protein receptor, which activates the Gα-cAMP/PKA 

pathway, phosphorylating and activating cAMP response element-binding (CREB) which promotes 

gluconeogenesis [146]. 

 

2.2.2 Glycolysis 

The process of glucose breakdown, known as glycolysis, is mainly used during feeding (fed) states 

to obtain ATP and materials for amino acid production and lipids formation. Several enzymes are 

involved in the process and remain less active under fasting conditions [147]. Phosphatidylcholine 

molecules activate GCK, which under low levels of glucose remains inactivated by binding to 

glucokinase regulatory protein (GKRP). GCK unbinds with glucose, which converts glucose into G6P 

[137]. As mentioned, insulin also plays a role in suppressing protein kinase 4 (PK4) which allows the 

activation of PDC and the use of the glucose glycolysis product, pyruvate, for its conversion into acetyl-

CoA and its integration in the TCA cycle to obtain ATP [142]. 

 

2.2.3 Glycogen genesis and its regulation 

G6P is the precursor of glycogen. Two enzymes are involved in the elongation or hydrolysis of 

glycogen: glycogen synthase and glycogen phosphorylase, respectively. G6P by itself is, a promoter of 

glycogen formation as it acts as an activator of the glycogen synthase and inhibitor of glycogen 

phosphorylase, creating a positive loop to deplete and store the glucose inside the hepatocyte. 

However, the functionality of both enzymes is regulated by phosphorylation via glycogen synthase 

kinase 3 (GSK-3), inhibiting glycogen synthase and increasing the activity of glycogen phosphorylase. 

The opposite effect is achieved through dephosphorylation by protein phosphatase 1 [137]. 

The whole process is influenced by insulin, allowing the hormone to regulate the reserves and 

mobility of glucose. Glycogenolysis is suppressed with insulin as the signalling that generates upon 

binding to its receptor in the hepatocyte promotes the dephosphorylation of glycogen phosphorylase 
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with protein phosphatase 1 [148]. Insulin also promotes uptake of glucose as it upregulates the 

expression of GCK, converting glucose to G6P, thus, also promoting glucose uptake. 

Glucagon, the opposing insulin hormone, and the adrenergic innervation of liver by the nervous 

system via release of catecholamines, promote the opposing effect on liver. Catecholamines bind with 

their correspondent receptor activates PKA which phosphorylates glycogen phosphorylase, increasing 

its activity, while inhibiting the acetylation, and thus, recruitment, of glycogen synthase [148,149].  

 

2.2.4 Branched amino acid metabolism 

Leucine, isoleucine and valine are known as branched amino acids (BCAA), essential amino acids 

that must be obtained via food intake [150]. BCAA have been associated with multiple roles such as 

glucose metabolism, lipid metabolism, immunity or intestinal barrier function, among others [151–

153]. BCCA supplementation in diet has shown reductions in fat mass, correlating with increases of 

uncoupling protein 3 (UCP3) in muscle and higher levels of CD36 in liver [152]. This effect has been 

further corroborate by studies showing increments of lipolysis in white adipose tissue and suppression 

of lipogenesis in liver [154,155]. BCAA by themselves directly increase levels of acetyl-CoA which 

promotes the burning of fatty acids [156]. Furthermore, glucose metabolism is also affected by BCAA, 

as leucine upregulates the activity if GLUT4 in 

muscle [157], which lowers glucose levels 

[158].  

BCAA are absorbed via the “L” 

transporter system [159] for their 

catabolism, shown in Figure 6. BCAA enter 

the mitochondria via the mitochondrial 

carrier family (MCF) where the branched-

chain amino acid transferase 2 (BCAT-2) 

converts them into branched-chain α-keto 

acid (BCKA), reverted in the cytosol by the 

BCAT-1. BCKA are later decarboxylated with 

the branched-chain α-keto acid 

dehydrogenase (BCKD). The final product of 

these reactions is further metabolised into 

acetyl-CoA and succinyl-CoA, which will 

enter the TCA cycle [156]. 

 

Figure 6. Pathways for the catabolism of BCAA (Branched amino acids) 

into the TCA (Tricarboxylic acid cycle) cycle. MCF: Mitochondrial carrier 

family; BCAT: Branched-chain amino acid transferase; BCKA: Branched-

chain α-keto acid; BCKD: Branched-chain α-keto acid dehydrogenase  

Image adapted from [456]. 
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2.2.5 Type II diabetes and insulin resistance 

As mentioned, associated with obesity is usually an increase in glucose blood level. This 

parameter is of importance as elevated levels are the first step and onsets type II diabetes. This disease 

has been strongly correlated with obesity and both get aggravated when correlated with each other 

[160], while type II diabetes improves after body weight loss [161]. The relationship between the two 

has been established and the development of obesity usually promotes type II diabetes. 

The core of the disease is the lack of production of enough insulin to perform its function, as 

tissues have developed resistance to the hormone, primarily in liver, adipose tissue and muscle. Insulin 

normally binds to its receptor and restrains the tissue from the excretion of glucose into the 

bloodstream, whereas when the tissue has some degree of insulin resistance, insulin does not avoid 

this release and the organ liberates glucose abnormally, at higher levels than required. Several factors 

might be involved in this problem such as low efficiency of insulin secretion by the β-cells, low glucose 

sensitivity of those cells and insulin resistance in peripheral organs like adipose tissue, liver or skeletal 

muscle [162,163]. A detailed depiction of the dysregulations developed under type II diabetes is 

shown in figure 7. 

As glucose levels are strictly restricted, pancreatic beta cells release more insulin, trying to cope 

with the high levels of glucose This is known as hyperinsulinemia as insulin concentration in the 

bloodstream rises outside of normal levels. High levels of insulin and fasting glucose are used to assess 

the development of insulin resistance in obese individuals. Besides, glucose tolerance tests and insulin 

resistance tests are performed to check whether an individual is capable of managing glucose intake 

and has developed insulin resistance, respectively, and it has been shown that obese individuals tend 

to develop both symptoms. 

Insulin resistance and type II diabetes, both usually concomitant with obesity, are partly 

consequences of liver malfunction. Regarding insulin resistance, it is also considered to play a major 

role in the development of MetS [164], leading to a reduced uptake from organs such as liver or WAT 

and over production and release of glucose from liver, promoting the accumulation of glucose in 

blood, known as hyperglycaemia. One of the factors leading to this is the inhibition of the activity of 

key enzymes in the glycolysis such us GCK, that occur in obese rats [165], which is usually followed by 

elevated circulatory concentration of insulin in an attempt to counteract it. Further development of 

inflammation and NAFLD exacerbates insulin resistance in liver, as inflammatory cytokines promote 

gluconeogenesis via glucagon, thus increasing a positive feedback and leading to more aggravated 

states of type II diabetes [166]. Molecular studies about insulin resistance [167] point towards 

dysregulations in the functionality of pathway’s enzymes such as insulin receptor substrate-1 (IRS-1) 
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[168], suppressors of cytokine signalling (SOC) family [169] and protein tyrosine phosphatase 1B 

(PTP1B) [170]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The origin of insulin resistance has been pinpointed to the abdominal white adipose tissue, thus, 

allowing some ability to predict the development of insulin resistance by the waist circumference 

[171]. Several molecular processes have been associated with the development of insulin resistance. 

For instance, the excessive release of NEFA by the adipose tissue, in an attempt to deliver them for 

their burning, will reach the liver, promoting the formation of triglycerides and diglycerides that will 

disrupt insulin’s receptor pathway activation, thus, lowering the organ sensitivity to insulin [172–174]. 

Patients with ectopic abdominal fat accumulation tend to have an excess of diglycerides as pathways 

for their catabolization into triglycerides cannot cope with their elevated concentration, thus altering 

the regular signalling in adipose tissue [175]. Other lipids like ceramides, important components of 

the cellular membrane, have also been linked with insulin resistance. Experiments with rats have 

found a correlation with insulin resistance and increments in ceramides and diglycerides in liver and 

skeletal muscle [176]. Adding to this, the low chronic inflammatory state of obese individuals and 

Figure 7. Figure shows the difference in 

metabolism under fed and fasting conditions. 

Food intake triggers the release of insulin 

from pancreas which promotes the increase 

in the reservoirs of energy by the liver, via 

lipogenesis and glycogen synthesis, the WAT, 

via reduction of lipolysis, and the skeletal 

muscle, which also increases its glycogen 

content. In fasting conditions, the WAT will 

release triglycerides from its reservoirs and 

the liver will produce glucose from its 

glycogen. In type II diabetes, the insulin 

release does not promote the same effect as 

tissues have grown resistant to the hormone 

which leads to accumulation of fat in liver as 

the organ does not reduce its lipogenesis and 

gets overloaded with fatty acids released 

from the WAT. CHO: carbohydrates; TG: 

triglycerides; FA: fatty acids; T2DM: type II 

diabetes mellitus; ICML: Intramyocellular 

lipids. Figure obtained from [457]. 
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lowered adiponectin release from the adipose tissue, adds suppression to the insulin functionality in 

the liver [171]. 

 

2.3 Lipid homeostasis 

In addition to liver’s role in glucose metabolism, it is also an important regulator of lipids. The 

liver is an active figure in its storage and regulator of the lipid content of the bloodstream. It is 

considered the main organ to produce the conversion of glucose into fatty acids, and as such, it is also 

the first one to store and distribute them to other peripheral organs. Distribution of fatty acids occurs 

via packing into VLDL-C particles and release them into the bloodstream. 

 

2.3.1 Lipid transport into liver 

Following the natural flow of energy in the body, the first role of liver regarding lipids is their 

uptake from the bloodstream after food consumption. Fats from food are digested and broken down 

into free fatty acids that will be re-assembled into triglycerides in the enterocytes of the small 

intestine. Triglycerides will later reach the liver after the enterocytes pack them in chylomicrons that 

are released and reach the liver via the bloodstream. Once the chylomicrons reach the liver, 

triglycerides will be removed by the lipoprotein lipase (LPL), which breaks them down into single fatty 

acids, NEFA, to be absorbed into the liver, thus, lowering the lipid content of the bloodstream. NEFA 

are uptaked by specialized transporter proteins, such as CD36 or fatty acid transport protein 2, 4 and 

5 (FATP2, 4, 5). This process is tightly controlled, and it has been found that dysregulations led to 

drastic changes in the lipid content of the liver. Over expression of CD36 increases fatty acid uptake 

resulting in hepatic steatosis [177] and depletions of FATP5 led to improvements in fatty liver as less 

NEFA are absorbed [178]. 

 

2.3.2 Lipid catabolism 

The liver is a prime modulator of lipid metabolism while WAT represents the body’s reservoirs of 

lipids. Once fatty acids reach the organ, either coming from food intake or released by the WAT, 

depending of liver lipid content and fasting state they might be oxidised by β – oxidation, stored or 

released from the organ for storage and future use in adipose tissues. Lipid catabolism, β – oxidation, 

of stored lipids is highly dependent on the fasting state, being promoted in fasting state and lowered 

in fed state. Thus, one of the main purposes of β – oxidation is supplying energy for other peripheral 

organs in the form of ketone bodies (β-hydroxybutyrate, acetone and acetoacetate). These molecules 
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are exported into the bloodstream as a substitute and additional fuel when glucose levels are lowered 

after many hours without food intake. 

Long chain fatty acids are transported into the mitochondria to undergo β – oxidation. The main 

limiting factor in the pathway of β – oxidation is the enzyme carnitine palmitoyltransferase 1, tasked 

with their translocation. The enzyme’s activity is modulated by local increases in the concentration  of 

malonyl-CoA (induced by acetyl-CoA carboxylase 2 (ACC2) in the mitochondria) which inhibits its 

activity [179]. Another important regulator is peroxisome proliferator-activated receptors α (PPARα), 

a key gene, promoter of β – oxidation in fasted state [180]. This nuclear receptor is activated by long 

chain fatty acids, phosphatidylcholines and several other coactivators like peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC-1α) [181]. The depletion of PPARα greatly impacts 

β–oxidation, reducing circulating ketonic bodies, glycaemia and promoting hepatic steatosis [182]. 

PPARα is tightly regulated according to fasting state. Due to this, glucagon plays a major role in 

its activation. Glucagon increases expression and secretion of FGF21, stimulating in turn the 

expression of PGC-1α, therefore activating PPARα and β – oxidation [183]. The increment in circulating 

glucagon during exercise has been linked to a decrease in hepatic steatosis as it promotes burning of 

fats in liver [184]. 

 

2.3.3 Lipogenesis 

De novo lipogenesis is the process of synthesizing fatty acids. The main initial molecule required 

is pyruvate, which origin comes from glucose but can be synthesized from amino acids, lactate or other 

molecules. Pyruvate will enter the TCA cycle to be metabolized into acetyl-CoA by the PDC, which is 

combined with oxaloacetate by the citrate synthase, forming citrate. Citrate is exported into the 

cytoplasm and split back into oxaloacetate and acetyl-CoA by the ATP-citrate lyase (ACL) [138]. 

Acetyl-CoA becomes the first step in a series of molecules to form a fatty acid. First, Acetyl-CoA 

is carboxylated into malonyl-CoA by the ACC (Acetyl-CoA carboxylase). Two versions of the enzyme, 

encoded by the genes ACC1 and ACC2, one cytoplasmic and the other situated in the outer layer of 

the mitochondria, respectively, are key in the formation of fatty acids [185] and their malfunction is 

usually deleterious, although their down-regulation proves helpful to reduce hepatic steatosis, as the 

synthesis of lipids gets seriously hindered [186]. Malonyl-CoA and nicotinamide adenine dinucleotide 

phosphate (NADPH) are later converted into palmitic acid by fatty acid synthase (FAS). 

Palmitic acid is the main molecular structure for the formation of fatty acids. Palmitic acid will be 

transported into the endoplasmic reticulum to be elongated into long-chain fatty acids (LCFAs) by 

enzymes like elongation of very long chain fatty acids protein 1 (ELOV1) [187]. LCFAs could be 
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desaturated by stearoyl-CoA desaturases (SCDs) into unsaturated fatty acids [188]. Saturated and 

unsaturated acids can be converted into triglycerides. The mentioned pathways are summarized in 

figure 8. 

Figure 8. Summary of enzymes and metabolites involved in the synthesis of fatty acids. LCFAs: Long-chain fatty acids; ACC: 

acetyl-CoA carboxylase; ACL: ATP-citrate lyase; Elovls: fatty acyl-CoA elongases; TAG: triacylglycerol; FAS: fatty acid 

synthase; SCDs: stearoyl-CoA desaturases; NADPH: Nicotinamide adenine dinucleotide phosphate; GCK: Glucokinase; PDC: 

Pyruvate dehydrogenase complex; PC: Pyruvate carboxylase; PFK: 6-phosphofructo-1 kinase; L-PK: ; G6P: Glucose 6-

phosphate; F6P: Fructose-6-phosphate. Figure obtained from [138]. 

As with other metabolic processes, lipogenesis is influenced by many factors. Limitations on the 

key components set up the rate at which fatty acids are generated. Relative amounts of pyruvate and 

the activity of PDC, PDKs and GCK define whether there is going to be a prevalence of lipogenesis or 

glycolysis [189].  The activity of the malic enzyme that forms NADPH from malate, the rate of formation 

of NADPH from the pentose phosphate pathway and the general availability of NADPH, will limit the 

amount of fatty acids that can be generated. Fasting state is also a modulator. Fed state inhibits 

lipogenesis by activating sirtuin-1 (SIRT-1) which will deacetylate and inhibit sterol regulatory element-

binding protein-1c (SREBP-1C) [190]. SREBP-1C is the master key to activate genes involved in the 

control of triglycerides and fatty acid synthesis [191]. Finally, oxidative stress in the endoplasmic 

reticulum also influences the activation of lipogenesis and induces hepatic steatosis [192]. 
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2.3.4 Cholesterol metabolism in liver 

Cholesterol undergoes in liver both catabolic and anabolic processes, being the organ charged 

with its release to other organs, its secretion in the form of bile salts for its elimination and its 

synthesis. 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) is the key enzyme limiting 

step on the cholesterol catabolism pathway and its usually considered that its increment on gene 

expression promotes the synthesis of cholesterol and its suppression limits it [193]. SREBP-2 is another 

key factor that activates the set of genes involved in the synthesis of cholesterol [191]. 

Liver also uptakes cholesterol from other peripheral organs via HDL-C particles for its 

metabolization and releases it via LDL-C particles to be used in those same organs [194]. Releasing of 

cholesterol has the LDL-receptor as the main key step [195] and is usually analysed to assess the rate 

of cholesterol release into the bloodstream. In turn, excess cholesterol inside the liver might be 

excreted in the form of bile acids. Cholesterol’s conversion relies on the cholesterol 7α-hydroxylase 

(CYP7A1) as the rate limiting enzyme [196]. Excretion of bile acids is mediated by apical sodium-

dependent bile acid transporter (ASBT) carriers [197]. 

Both, lacking or excessive cholesterol in a cell is cytotoxic, as cholesterol plays a role in the 

structure and adequate fluidity of the membranes [198]. Moreover, excess cholesterol in peripheral 

organs will imply its prolonged state in the bloodstream, which has been associated with CVD [199]. 

Due to this, cholesterol concentration is tightly controlled. Uptake of cholesterol tends to repress its 

synthesis to prevent over-load [200]. Free cholesterol absorbed is quickly esterified by the acyl-

CoA:cholesterol acyltransferase (ACAT), to prevent toxicity as free cholesterol would bind to any cell 

membrane, altering its functionality [201]. The esterification is reversed by the neutral cholesteryl 

esterase (NCEH) [200]. 

Several mechanisms have been found responsible for the accumulation of free cholesterol inside 

a cell. Release of cholesterol is a vesicle-mediated process, reliant on energy expenditure by the cell. 

ATP depletion could hinder the efflux, leading to free cholesterol accumulation [202]. Sphingomyelin 

binds cholesterol, modulation its distribution [203,204]. Under pathological circumstances, the 

sphingomyelinase, responsible for the sphingomyelin breakdown into ceramide and phosphocholine 

[205,206], might not function properly, leading to sphingomyelin accumulation and blocking of 

cholesterol mobilization [207]. Furthermore, accumulation of free cholesterol might be due to an 

excessive intake ACAT cannot compensate and convert into esterified-cholesterol, thus accumulating 

it [208]. 
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2.3.5 Lipidic metabolism dysregulation in obesity and MetS 

As previously mentioned, two of the symptoms of the MetS are directly related with management 

and mobilization of lipids, particularly the elevated triglycerides and lowered HDL-C particles in blood. 

What is otherwise a controlled regulatory mechanism, under MetS several key factors and genes 

involved in this process do not work as intended. 

WAT shows reduced activity of LPL [209] and the skeletal muscle sees a reduction on LPL activity 

as well [210], although LPL expression in WAT might be increased [211,212]. The malfunction of this 

enzyme leads to an overload of fatty acids in liver, as they are hydrolysed and absorbed there for their 

metabolization, and an over-translocation of triglycerides from VLDL-C particles creating highly 

concentrated and dense LDL-C particles that are slowly metabolized [213], increasing the chances of 

atheroma development [214]. Besides it, the binding of LDL-C by the LDL-C receptor is reduced in 

adiposity, further hindering the clearance of this particles [215]. 

The increase in circulating triglycerides is partly due to an elevated release of fatty acids from the 

WAT and a lack of proper uptake by other peripheral organs [216]. High fatty acids in blood, NEFA, 

have been extensively proved to lead towards insulin resistance, which will further exacerbate the 

problem as a less insulin sensitive WAT will keep secreting more lipids and be less likely to uptake 

them [217]. However, this is yet to be clarified because, even though extensive studies have found a 

relationship between high NEFA and obesity, more recent analyses show that the metabolic state 

should be analysed individually for each patient. Obese patients sometimes show normalization of 

NEFA levels and gravely insulin resistant patients might also have low NEFA release [218]. The WAT 

also shows reduced expression of ATGL and HSL. ATGL reduced activity leads to less responsiveness 

of the tissue over adrenergic stimulation, leading to reduced hydrolysis of triglycerides from the fat 

droplets [219,220]. HSL dysfunction implies less release of fatty acids into the bloodstream, leading to 

a reduction of circulatory NEFA. However, the overall result tends to be the opposite as this is not 

enough to compensate for the insensibility to insulin or the over-stimulation by the nervous system 

for the increment in lipolysis [221]. In addition, channels in the WAT like FATPs that would otherwise 

be activated with insulin, functions poorly in obesity, reducing the uptake of fatty acids from the 

bloodstream [222]. Finally, a key factor in the regulation of lipogenesis in WAT, that shows diminished 

expression in obesity, are SREBPs. Normally over-expressed with insulin and down-regulated with 

excessive adiposity, under dysregulating obesity, reduces its expression and, thus, lipogenesis, 

promoting an over-secretion of fatty acids into the bloodstream [223]. 

As it has been hinted, the dysregulation of WAT is highly dependent on the tissue responsiveness 

to insulin, which forces careful evaluation of the patient’s metabolic state for the treatment of obesity. 
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It is of notice in this regard the existence of metabolically healthy obese people [224], characterized 

by better insulin sensitivity and reduced accumulation of fats in liver. It is possible that these 

individuals will not report an appearance of the mentioned dysregulations and have lower risk of 

developing CVD [225]. 

 

2.4 Hypertension 

Hypertension (HTN), commonly concomitant with obesity, and one of the symptoms of the MetS, 

creates a high risk of developing CVD. HTN is characterized by a high and chronic BP due to a 

dysfunction in the endothelium-dependent dilatation [226]. Several factors have been associated with 

HTN and could be considered responsible for its development, such as elevated inflammation secreted 

by an over-grown WAT [227] or oxidative stress [228], although the origins of the disease are not yet 

fully understood. HTN is usually associated with obesity but it might also be present in lean patients. 

The control and modulation of BP relies on the compression and relaxation of blood vessels by 

muscle cells in the walls of the vessel [229]. The activity of these cells is directly controlled by the 

sympathetic nervous system, vasodilator molecules like NO or vasoconstrictor like endothelin-1 (ET-

1) or angiotensin II [230]. 

An important factor involved in the modulation of BP is the renin-angiotensin-aldosterone system 

(RAAS), which directly controls vascular contraction and renal reabsorption [231]. Renin is secreted 

into the bloodstream, by the juxtaglomerular cells in the kidneys, after stimulation by the sympathetic 

nervous system or changes in circulatory sodium [232]. The N-terminal portion of angiotensin is 

cleavage by renin, forming angiotensin I, the rate-limiting step in the RAAS, which in turn is hydrolysed 

by the angiotensin-converting enzyme (ACE). ACE will convert angiotensin I into angiotensin II, the key 

step in the process, as angiotensin II is now active and a powerful vasoconstrictor  [231]. ACE is mainly 

located in lungs but has also been found in kidneys, heart and adipose tissue [233]. Modulating this 

conversion relies on angiotensin-converting enzyme 2 (ACE 2), which converts angiotensin II back into 

angiotensin, down regulating its production and levels in blood [234]. Angiotensin II regulates 

contraction of the muscle cells in the blood vessels and indirectly modulates BP by inducing the 

production of aldosterone in the adrenal glands. Aldosterone regulates the amount of sodium and its 

reabsorption in the kidneys [235]. 

Another important vasoconstrictor, ET-1, is produced by the endothelin converting enzyme in the 

endothelial cells after stimulation with TNF-α or interleukins, or decreased after release of NO [236]. 

ET-1 will bind to channels receptors in the muscle cells of blood vessels and induce the entrance of 

extracellular calcium which forces constriction of the myofibrils and vasoconstriction [237]. 
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NO is a vasodilator, that upon release into the bloodstream will activate a signalling pathway, 

resulting in the dephosphorylation of myosin in the muscle cells of blood vessels, promoting 

relaxation, and, thus, dilatation. NO is generated by the NO synthase, localized in brain and 

endothelium (eNOS). eNOS can be activated by increases in circulatory calcium, stress or NO agonists 

such as ATP or acetylcholine [238]. 

High food intake promotes the activity of the RAAS, increasing the production of Angiotensin II, 

which will promote the reabsorption of salts in the kidneys and enhance sympathetic activity, among 

other functions [239]. The sympathetic nervous system tends to be more activated as a compensation 

for the excessive adiposity, promoting is burning and use [240]. However, as mentioned, the 

sympathetic nervous system is also activated by the renin-angiotensin-aldosterone system, in a 

positive feedback that further promotes the elevation of BP and worsening of hypertension [241].  

Several other factors could also lead to hypertension such as inflammatory cytokines like TNF-α 

or IL-6 which directly influence and increase the activity of ET-1 [242], which itself, is a promoter for 

the release of these cytokines [243,244]. As mentioned, oxidative stress is strongly linked to MetS 

[245] and renal sodium reabsorption, which directly increases BP [246]. HTN might also be developed 

as a consequence of insulin resistance in the endothelium which reduces the functionality of 

phosphatidylinositol 3-kinase (PI3K), altering the ratio of NO production and ET-1 [247], by reducing 

NO, which leads to a raise in BP [248]. Related to this, hyperinsulinemia has been associated with an 

elevated release of ET-1, as insulin induces its production and release, promoting vasoconstriction 

[249]. In addition, associated with obesity, elevated NEFA content have also been associated with 

elevated BP [250] and endothelial tissue damage [251]. 
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3. Study of metabolic syndrome with metabolomics 

The metabolism is a complex network of inter-related metabolites that are usually 

compartmentalized into separated pathways. However, most of the metabolites are present in 

multiple of these pathways, rendering them not very useful when trying to study metabolism from a 

holistic point of view. However, the study of individual metabolic pathways is particularly useful to 

understand the role of enzyme-coding genes and the ramifications that a particular enzymatic process 

and the abundance or lack of a metabolite, might generate over the whole metabolism, as their 

interactions with every other metabolite are easy to follow and there has been extensive research, 

allowing the creation of detailed metabolic maps and providing extensive bibliography. 

Different techniques have been developed for the quantification of metabolites and analysis of 

metabolic pathways. The main tool for the analysis of metabolism used in this thesis was 1H-NMR. The 

1H-NMR functionality is based on the magnetic properties of certain nuclei of molecules [252] and 

allows precise measurements of concentration of molecules. In scientific research with in vivo 

procedures, organs or blood from the animals are extracted, from which their content is divided 

between lipophilic and hydrophilic metabolites. These two extracts are later analysed by 1H-NMR, 

obtaining a list of metabolites and their corresponding concentrations. Results obtained may vary 

greatly depending on how concentrated samples are and how overlapping certain metabolites are, 

which might be concealing others from being measured [253]. 

Analysis of the large amounts of data that 1H-NMR provides are analysed by individualistic 

comparison of metabolites or from a holistic approach. Initial study of metabolites in experiments 

such as those performed in this thesis, require the use of statistical tools to compare differences 

among treatment groups, via ANOVAs or Student’s t-test as 1H-NMR provides dozens of metabolites. 

Univariate analyses help to build metabolic pathways and to define changes in the relative amounts 

of metabolites among experimental groups. They also allow an easy comparison among the 

highlighted metabolites that could be interesting for the particular effect to which treatment is aiming 

for, like triglycerides, glucose and pyruvate, among other key metabolites. On the other hand, holistic 

analysis allows the study of changes in the metabolic profile, as a whole. Multivariate statistical 

analysis such as PCAs, PLS-DAs, comparison of spectral patterns or heat maps give information on 

whether treatments are inducing overall changes in the metabolism of animals, instead of over 

particular pathways. Furthermore, this approach grants the ability to study the totality of the 

metabolites in a single result, simplifying the postulation of conclusions [254]. 

The analysis of the metabolome in obesity has found profound changes in several metabolic 

routes. The metabolism of branched amino acids is altered in obesity, increasing the concentration of 
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valine, isoleucine and leucine and their downstream metabolites in their catabolism [255]. The effect 

of obesity also induces an effect on other amino acids, such as cysteine, glutamate, phenylalanine or 

tyrosine, among others, increasing their concentration [256–258]. On the other hand, amino acids 

such as glycine and its derivative, dimethylglycine, have been found lowered in obesity [259]. 

Glutamine [260] and methionine [261] are found reduced in obesity as well. 

Besides, as expected, obesity induces major changes in the lipid profile and metabolism. Fatty 

acids are incremented in serum, as the adipose tissue sends them for their burn in liver and muscle 

[262]. Carnitine, metabolite responsible for the transportation of fatty acids into the mitochondria for 

β-oxidation [263], has also been found incremented in tissues, as a compensatory mechanism for the 

elevated concentration of lipids inside the cell [264]. Other lipids such as oleic acid and palmitic acid 

are increased in obesity [256]. However, several lipid metabolism-related metabolites, such as 

ceramides, sphingomyelins or phosphatidylcholines are more controversial as some authors found 

them incremented, whereas others did not [264]. Obesity has also been linked with increased 

thermogenesis, which upon metabolomic study has revealed alterations of the energy homeostasis, 

as several metabolites of the TCA cycle are affected, increasing their concentration after cold 

exposure; metabolites such as fumarate, succinate and malate [265].  

The study of diabetes, insulin resistance and the general dysregulation of the glucose 

homeostasis in MetS, with metabolomic techniques has also been linked with changes in the amino 

acids profile. Cysteine, creatine or acetyl carnitine are increased [266,267], whereas glycine, arginine, 

betaine and methionine are lowered in diabetes [256,268]. Despite diabetes being predominantly an 

alteration of the glucose metabolism, dysregulations in the homeostasis of lipids have also been 

found. This is partly due to the alteration of insulin concentration that in turn, alter the production of 

lipoproteins and LPL and directly alters the internal modulation of the adipose tissue [269]. Several 

lipid metabolites in diabetes increase their concentration, correlating with findings in obesity, such as 

ceramides, linoleic acid, oleic acid or palmitic acid, among others [270,271]. Diglycerides tend to 

increase as well, correlating positively with insulin resistance [272]. In addition, both diabetes and 

obesity are directly responsible for the increase of metabolites such as glucose, insulin, fumarate, 

fructose, isopropanol, lactate or glycerol [257,258,273,274]. On the other hand, pyruvate is decreased, 

as it is mainly converted into lactate, instead of entering the TCA cycle [264]. 
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4. Experimental models of metabolic syndrome in rats 

Obesity and the associated pathologies that fall within the scope of the MetS are currently being 

extensively studied in humans. However, human studies involve major challenges as they pose 

technical and ethical difficulties, imply the need for patient volunteers, lack the possibility of study 

molecular mechanisms and are severely restricted in the extent of the amount of data that can be 

extracted with non-invasive procedures [275]. 

On the other hand, rodents present the opposite side of the spectrum of the mentioned traits. 

They have faster life cycles, faster metabolism that accelerates metabolic changes and is similar to 

human’s [276] and working with them in terms of equipment and techniques is cheaper and easier 

and require less space [277]. Their metabolic pathways have been studied even more than human’s 

which provides a more desirable platform from where to study the effect of compounds, treatments 

and diet, studies that are more constrained and limited in humans [278].  

Rodent models have been designed, through many generational inbreds, to be as genetically 

similar as possible, thus, reducing the effect of differential genetic background. Going one step further, 

many gene knock-outs, overexpression or ectopic expression of genes have been designed into 

models, mimicking a particular illness. Among them, several have been designed to model obesity and 

symptoms of the MetS. The ob/ob mouse strain with deficiency of the leptin receptor is a classic model 

that develops hyperphagia, insulin resistance and obesity as leptin is not able to develop its function 

[279]. Zucker rats mimic the previous model in this rodent, with a mutation in the leptin receptor 

leading to dysregulated glucose homeostasis and obesity [280]. Closely related, the Zucker Diabetic 

Fatty Rats is a strain that besides the described symptomatology of the Zucker rats, has an early 

development of impaired glucose metabolism and diabetes due to an altered expression of Glut4 

[281]. In addition, the spontaneously hypertensive rat (SHR) rat model has been largely used to mimic 

hypertension as these rats develop the illness without need for diets [282]. Despite the advantages of 

genetic models and being widely used in scientific research, they also have considerable problems 

when trying to study obesity. They do not precisely represent the illness in the way it develops in 

humans as genetically originated symptoms of the MetS in humans are less pominent than diet-

induced [283]. 

Due to this, another approach has focused on producing phenotypes for the study of obesity and 

CVD, rather than particular genotypes. These models have tendencies to develop diet-induced obesity 

[284]. An example of this, the main model in this thesis, the Wistar rats, animals prone to develop 

diet-induced obesity or the Long-Evans and Sprague-Dawley rat strains [276,284]. In this regard, 

research of obesity and MetS is developed via supplementation of compounds, designed diets or 
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environmental changes. Regarding diet-induced obesity, many approaches are being used to resemble 

it in rodents. High-caloric diets are provided to fatten obesity prone rats, such as HFD or high-sucrose 

diet (HSD), which consist in foods saturated in fats or carbohydrates, respectively, or a combination 

of both. However, considerable variability is found in the precise description of diets in scientific 

publications as many different food formulas are labelled as HFD or HSD, which, in turn, leads to 

variability of results as well [285]. HFD diets are considered as harmful for the metabolic status when 

they are based on saturated fats, which better induces obesity [286]. On the other hand, HSD are also 

used to develop type II diabetes and obesity, although it is unclear if this diet-induced insulin 

resistance is directly associated with obesity [287]. 

The work developed in this thesis follows a different approach by feeding rats with what is known 

as the cafeteria diet (CAF. This model, the combination of CAF diet in Wistar rats, provides a close 

modelling of obesity in humans, as it not only fattens them, but also induced the development of 

MetS, a circumstance that better resembles the health status of these individuals [288–293]. 

The CAF diet is a combination of typical fat-rich high-caloric food that are classically accessible in 

every CAF, hence, the name. As humans in western society tend to develop obesity by eating highly 

processed, calories-enriches foods, these obesogenic diets have a similar effect in rodents. The exact 

composition of the CAF diet might vary between studies but the reasoning behind is always to have a 

diverse selection of food enriched in fat and sugar, so that the animals can eat a variety of foods and 

choose as they desire. The reason behind it is that diversification of the food intake, and, hence, of 

source of nutrients and calories, varies daily and poses a bigger metabolic challenge that accelerates 

the development of obesity. CAF diet is characterised by being highly-palatable foods enriched in 

unsaturated fats and high content of sugar, like sausages, condensed milk, cheese and cookies, among 

others. It has been proved in previous studies that CAF diet indeed induces obesity and hyperphagia; 

plus several of the symptoms of the MetS such as hypertension and high waist circumference; and 

alters the metabolism of glucose and fatty acids [288,294]. 
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5. Treatment and management of metabolic syndrome 

Early treatment and diagnosis of the metabolic syndrome is highly recommended to reduce the 

chances of further developing other diseases like type II diabetes or NAFLD [295]. Different treatments 

have been tested and are recommended depending on the gravity of the disease or the symptom to 

be treated. 

 

5.1 Lifestyle modifications and pharmacological interventions 

Obesity and the abnormal, excessive abdominal accumulation of fat are usually the main target 

when treating MetS, as it tends to be the first symptom to appear and the most exacerbated. Initial 

recommendations come from lifestyle changes to reducing sedentary life and increasing exercise 

[296]. These lifestyle modifications and lowering of body weight have been found to ameliorate 

glucose impairment and decrease the chances of developing type II diabetes [297–299]. However, 

lifestyle modifications are meant to be a steady and regular approach to improve overweight in 

patients who are still in the early stages of the disease [300]. These changes must be maintained over 

long term periods as, otherwise, a relapse and increase in body weight is likely [301]. 

In addition, diet modifications represent the other important change required to ameliorate 

symptoms of the MetS [302]. Lowered caloric intake, added to exercise, might be enough to reduce 

the energy balance to negative numbers, thus reducing fat reservoirs [303]. Special diets have been 

designed to optimise the food intake for body weight loss, as a decline in obesity tends to improve the 

other symptoms of the MetS [300]. Low-carbohydrates diets have been used to reduce glucose intake 

[304], forcing the metabolism to use fat reservoirs as a source of energy. However, detrimental long 

term results have been found, as the elevated content of proteins and fat on the diet promote damage 

on kidneys and coronary atherosclerosis [305]. Other diets focus on lowering the content of fat 

[306,307], but studies have found that the effectiveness of low-fat diets might not be significantly 

different than high-fat diets for lowering body weight [308]. On the other hand, the Mediterranean 

diet, a pattern of food consisting of mostly vegetable, fruit, nuts, moderate and low quantities of fish 

and red meat, respectively, has shown positive effects on the MetS [309]. Regardless of the specific 

diet, the importance of long term consistency tends to be overlooked and studies have found little 

difference when comparing both diets after one year, as they were not properly followed [310,311]. 

As mentioned, diets are usually designed to reduce obesity and improve glucose levels. In 

addition, drugs have also been used to improve the rest of the symptoms of the MetS (High 

triglycerides and low HDL-C concentration in blood and hypertension), although treatments are 

usually recommended to be combined with lifestyle modifications. 
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Statins have been able to slightly reduce triglycerides and increase HDL-C [312]. These drugs have 

a direct impact on the synthesis of cholesterol, inhibiting HMGCR, thus reducing cholesterol in liver 

[313]. This in turn, promotes the expression of LDL-C receptors in liver, which removes cholesterol 

from blood and slightly reduces triglycerides and increases HDL-C [314]. Fibrates are also showing 

amelioration on the levels of triglycerides and HDL-C [315]. Several fibrate-base compounds are 

currently being marketed, and are being primarily used to raise HDL-C and lower triglycerides, with 

minor improvements over LDL-C [314,316]. However, some authors have reported opposite results 

where fibrates reduce HDL-C [317]. Nicotinic acid is a controversial drug that has shown major 

improvements in the lipidic profile, lowering triglycerides and LDL-C  and increasing HDL-C, although 

detrimental side effects have been reported [314].  

Regarding hypertension, several pharmaceutical drugs have been tested such as ACE inhibitors, 

beta-blockers or diuretics [318]. Diuretic drugs reduce the absorption of sodium in the kidneys, 

lowering blood volume and vascular resistance [319]. ACE inhibitors, such as captopril or enalapril, 

block the activity of ACE, reducing the concentration and the vasoconstrictor activity of angiotensin II 

[320,321]. Regarding beta-blockers, these competitive agonists of the catecholamines receptors 

would inhibit the sympathetic nervous system from increasing the BP [322]. Unfortunately, dosage 

and correct administration of antihypertensive drugs is an important, but difficult to achieve, key 

factor for normalizing BP, which failing hinders their efficacy [323]. In addition, administration might 

induce detrimental effects on glucose homeostasis, as certain drugs have also been linked with higher 

risks of developing diabetes [324]. 

 

5.2 Dietary approaches to prevent metabolic syndrome 

Considering the predominance of obesity in western society, both scientists and the general 

public are interested in finding approaches for its treatment. Among the many alternatives being 

discussed, nutritional supplements are considered for the treatment of obesity and MetS. 

Nutritional supplements are bioactive compounds, usually considered as soft treatment and 

developed from natural sources such as food or extracts from plants [325]. Their aim is to ameliorate 

symptoms and to be safely supplement as part of the normal diet [326]. 
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5.2.1 Conjugated linoleic acid 

Conjugated linoleic acid (CLA) is a fatty acid produced by a fermentative bacteria, Butyrivibrio 

fibrisolvens, commonly found in the rumen of ruminant animals, which isomerizes linoleic acid into 

conjugated linoleic acid [327]. Due to this, the main natural source of dietary CLA comes from 

ruminant meat like lamb or beef, or milk [328]. 

Linoleic acid (Figure 9), of c9,c12 conformation, according to the configuration (cis: c or trans: t) 

of its ninth and twelfth carbon, can be isomerized into several conformations, being c9,t11 and t10,c12 

the most commonly studied as they are the most bioactive [329]. However, is the c9,t11 the most 

common to be naturally found in diet [327]. The isomer c9,t11 tends to accumulate in milk and the 

animal’s tissue, reaching a presence of up to 75-80% [330] of all present CLA, whereas t10,c12 only 

counts to a 1% of CLA in milk [161]. 

 

 

 

 

 

 

 

Figure 9. Linoleic acid and the c9-t11 and t10-c12 conjugated conformations (CLA). Image obtained from [331]. 

CLA has been associated for some time with reductions of fat mass, which has driven the interest 

of the pharmacological industry and research efforts to develop CLA as a food supplement that could 

help obese individuals to lose body weight. The isomer t10,c12 has been the one mostly associated 

with changes in body weight due to a loss of fat mass [332]. This has been reported in several animal 

species with doses ranging from 0.5 to 1.5% of CLA in diet [333–336]. In addition, associated with this, 

studies performed in rodents with the isomer t10,c12 have found reductions in body weight in mice 

[337] and rats [338], although results in rats are not as consistent as with mice [339]. These reductions 

in body weight with t10,c12 CLA have been linked with loss of body fat [340], which has shown t10,c12 

as a promising dietary supplement to combat obesity. On the other hand, c9,t11 have not been 

associated with changes in body composition, showing striking differences between the two isomers 

in their bioactivity in regards to body weight [341]. 
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These results have been replicated in humans, although with less consistency. Some reports with 

t10,c12 CLA supplementation in humans have been favourable and show reductions of fat mass [342–

344], although others suggest that CLA might not have an effect on body composition [345,346]. 

Overall, CLA is still considered for human supplementation as some meta-analysis indeed prove a 

beneficial effect on obesity and fat loss with doses of 3.2 g per day [347]. Regarding c9,t11, it has not 

been reported to have major effects on adiposity [341], as with rodents. 

Anti-obesity properties of the isomer t10,c12 have been studied, aiming to understand the 

molecular mechanism that promotes fat mass loss. One of the proposed mechanisms of CLA to reduce 

adiposity relies on the activation of thermogenesis [348,349]. Increased basal metabolism has been 

reported in mice [350,351]. The increase in energy expenditure has been mostly associated with 

changes in the lipid metabolism as t10-c12 seems to activate lipolysis and β–oxidation, which disrupts 

the storage of triglycerides in the adipose tissue [352]. Besides promoting the adipose tissue to release 

and burn its reservoirs of fat, t10-c12 also inhibits the tissue from further replenishing its storage of 

energy as this isomer has also been found to reduce the uptake of glucose, by reducing the expression 

of GLUT4, and triglycerides by also reducing the expression of LPL [353,354]. The effect of CLA on body 

fat results in the expected decline in leptin. CLA has been found to decrease its concentration in the 

bloodstream [344,355], which is suggested to be a consequence of reductions in fat mass, although 

this statement is controversial because CLA could also be inhibiting leptin production as cultivation of 

t10-c12 CLA with 3T3-L1 adipocytes have proved [356]. 

Besides these mechanisms, t10-c12 also impacts the adiposity by reducing late adipogenesis (the 

process of differentiation of adipocytes from pre-adipocytes) in mature cultures adipocytes, whereas 

both t10-c12 and t9-c11 promote adipogenesis in early-stage immature adipocytes [357]. Other 

authors have also proposed an induction of apoptosis as a way to diminish WAT [358]. 

However, the isomer t10-c12 has also been associated with detrimental effects. Studies in 

cultured rat adipocytes have found a decrease in the production of adiponectin, which usually onsets 

the development of type II diabetes and hyperinsulinemia [328]. This has been also corroborated with 

studies in humans that found t10-c12 to be promoting insulin resistance [359]. On the other hand, 

reports with t9-c11 in rats indicate an amelioration in insulin sensitivity, along with markers of 

inflammation [360]. Paradoxically, supplementation with equal doses of both isomers have shown 

improvements in glucose tolerance, but not with just t9-c11 [361], which suggested that the 

detrimental effects of t10-c12 could be counteracted with t9-c11 supplementation. 

Under certain circumstances such as dose or species, the problematic with t10-c12 

supplementation also affects the lipid metabolism in liver. Some authors have shown that t10-c12 
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induces inflammation and insulin resistance in human adipocytes [362]. However, more concern is 

raised with the association between t10-c12 and hepatic lipid accumulation [363]. In particular, t10-

c12 has been shown to promote the uptake of triglycerides by the liver in mice, via activation of PPAR-

γ. Besides, channels like Cd36, whose role is the absorption of NEFA, are overexpressed, further 

increasing the lipid content and hepatic steatosis [364]. Furthermore, other studies with t10-c12 in 

mice have found the isomer to induce de novo lipogenesis [67] by promoting the expression of the 

transcription factor Srebp-1c and its regulated genes [69,365].  

The link between fatty liver and t10-c12 has been studied in human cell cultures as well. It has 

been reported that the secretion of fatty acids via VLDL-C is diminished in HepG2 cells, hindering 

improvements in NAFLD [366], although results are not consistent with studies on mice [367]. On the 

other hand t10-c12 mostly enhances β–oxidation [68,368], although results are still controversial as 

some authors found from no effect [369] to actual reduction in fatty acid burning [370]. 

Despite some ameliorating effects on β–oxidation with the t10-c12 isomer, the effect does not 

seem to compensate the high lipogenesis and increased influx of fatty acids into the liver, plus the 

insulin resistance, further worsening the energy metabolism, as shown in figure 10, hence, some 

studies on CLA report an aggravation on NAFLD [363]. 

Figure 10. Effect of conjugated linoleic acid (CLA) on liver and adipose tissue. Some studies have reported that CLA promotes a release 

of fatty acids (FFA) in blood which will be absorbed by the liver. Besides the increase of fatty acids uptake, CLA has also been found to 

be able to regulates lipid metabolism-related gene in liver, altering the hepatic metabolism and inducing hepatic steatosis, which might 

be exacerbated by insulin resistance that also elevates glucose. PPAR: Peroxisome proliferator-activated receptors family; SREBP: 

Sterol regulatory element-binding protein; ChREBP: Carbohydrate-responsive element-binding protein; PEPCK: Cytoplasmic 

phosphoenolpyruvate carboxylase; G6P: Glucose 6-phosphate; LC-PUFA: Long-chain polyunsaturated fatty acids Image adapted from 

[363]. 
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However, the adverse effects seem to vary greatly depending on the dose [363] and species, as 

rats do not seem to upregulate Srebp-1c under the effect of CLA but due to hyperinsulinemia [371]. 

Besides, detrimental results in the administration of CLA in animal models might not be easily 

comparable with humans as human trials have been performed with higher doses than those used in 

animal studies, finding no hepatic damage or aggravation of NAFLD, with supplementation of equal 

amounts of both isomers [372]. 

In addition, CLA effect has striking differences depending on metabolic status, sex of the animals, 

species and isomer of administration. Metabolic status is of major importance. For instance, Zucker 

rats (model of type II diabetes) fed with both isomers improved their glucose metabolism by 

ameliorating insulin sensitivity and reducing levels of circulating insulin and glucose [373], while non-

obese mice, also treated with both isomers promoted insulin resistance [374]. Species are also of 

capital importance. Most experiments with CLA have been performed with mice, but rats seem to be 

more resilient to its detrimental effects [363]. CLA’s effect, besides the previously described 

conditions, might be highly dependent on dose. Most studies in mice are designed using from 0,5% of 

CLA in diet [349,375], to 1% [376], or higher.  

Finally, it is important to consider that the undesired effects of t10-c12 supplementation have 

been reported to be palliated by the anti-inflammatory properties of t9-c11 supplementation. Studies 

in mice have found a reduction in the release of nuclear factor kappa-light-chain-enhancer of activated 

B cells (NF-κB) by c9-t11 [377], an important improvement in the development of MetS. Other studies 

have also reported reductions of inflammatory cytokines and NAFLD [378] and oxidative stress [379]. 

 

5.2.2 Polyphenols 

Polyphenol compounds are secondary metabolites from plants. They are not required for the 

plant growth and essential life functions but are important for other functions such as ultraviolet 

protection, chemical-signalling for the correct growth of root nodes and attractors for pollination 

animals, among others [380,381]. The name encompasses a wide variety of different molecules, all of 

them having at least one aromatic ring and one or more hydroxyl groups attached. Combinations of 

attached groups and different conformations create more than 8000 unique compounds, spread 

throughout the plant kingdom [382]. 

These compounds have driven scientific interest as they have been linked with health 

improvements [380] such as cardiovascular risk, BP [383] or as treatments for obesity [384]. Their 

exact mechanism of action depends on the compound as each molecule might interact differently 

with each part of the metabolism [385]. Besides, it should also be noticed that the source of the 
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polyphenols and their bioavailability, which tends to be low, also play a role in their health effects 

[386]. However, upon their absorption in the enterocytes, they will undergo several enzymatic 

modifications [380,387], that will increase their life expectancy [388] allowing them to reach and 

effect their action in a diversity of organs such as liver, brain, skeletal muscle or adipose tissue 

[389,390]. In addition, some polyphenols that the enterocytes will not directly absorb, will receive 

structural modifications by the microbiota in the gut, which would allow their additional distribution 

in the body [391].  

Polyphenols are classically divided into flavonoids and non-flavonoids. Among the flavonoids 

(Figure 11), several other classifications are made according to slight differences in the main molecular 

conformation of the flavonoid: flavonol, flavone, isoflavone, anthocyanidin, flavanone and flavan-3-ol 

(or flavanols). Flavonoids are the most common polyphenols to be found in diet and their study has 

shown amelioration in risks of CVD, inflammation, cancer [392,393] and diabetes [394]. 

 

Figure 11. Flavonoids main molecular structure (centre) and derived subclasses. Figure obtained from [380]. 
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5.2.2.1 Grape seed proanthocyanidins extract 

Proanthocyanidins (PA) are conformed by oligomers and polymers of flavanols [395].They are 

abundant in fruits, cereals and legumes and prominent in diet via teas, wine and other beverages 

derived from fruits like grapes [396]. These bioactive compounds have been associated with 

improvements in a wide variety of health conditions and some of the main factors involved in obesity 

and MetS, which make them interesting candidates for nutritional supplementation. For instance, PA 

have been found to ameliorate oxidative stress and inflammation [397] by lowering the circulatory 

concentration of inflammatory cytokines such as interleukins, TNF-α or NF-κB [398]. 

Many studies have been performed using extracts from tea and grape seeds, which have further 

elucidated their beneficial effects on lipid homeostasis [399], in particular, against enzymes like the 

LPL [400]. PA are also capable of partially disrupting the absorption of lipids in the gut [399] by 

inhibiting digestive enzymes [401]. However, results with PA in lipid metabolism and dyslipidaemia 

amelioration have been inconsistent as some meta-analysis have found no differences in HDL-C or 

triglycerides [402] while other studies did found improvements in cholesterol [403]. They have also 

been associated with improvements in the endothelial functions, BP and insulin sensitivity [404] and 

high levels of glucose [405].  

Grape seed proanthocyanidins extract (GSPE) is a product rich in polyphenols, particularly PA. PA 

have been found to have a wide variety of health effects, but particularly GSPE have been mostly 

studied as a nutritional supplement against dyslipidaemia, glucose homeostasis and hypertension. 

The study of lipid metabolism with GSPE has found ameliorating effects in rodents, improving 

MetS-dyslipidaemia. GSPE administration has an effect against cholesterol dysregulation, as it 

increases HDL-C, while reducing LDL-C [406]. This is achieved by increasing the expression of the ATP-

binding cassette transporter 1 gene (Abca1), in liver via a repression of miR-33, which ultimately 

increases the flux of cholesterol towards the formation of HDL-C particles [407]. 

Other studies in rats have also found a decrease in circulatory triglycerides after an acute dose of 

GSPE [408] and an amelioration in their mobility and modulation in a lipid tolerance test [409]. This 

reduction in triglycerides have also been found in livers of HFD diet fed rats, after chronic 

administration, improving hepatic steatosis [410]. The reduction of both, hepatic and serum 

triglycerides have been associated with activation of the expression of Sirt-1, promotion of 

nicotinamide adenine dinucleotide (NAD+) production and a repression of Srebp1 in liver, which would 

in turn activate fatty acid oxidation and reduce lipogenesis, shifting hepatic lipid metabolism towards 

lowering lipid content [411–413]. Similar results are obtained in WAT as GSPE improves mobility and 
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oxidation of lipids in obese rats [414], adiposity in obese hamsters [415] and activates lipolysis in 

cultured adipocytes [416]. 

In addition, GSPE is also involved in the homeostasis of glucose. GSPE have been found to directly 

reduce circulatory glucose in rat models of diabetes with acute doses of 250 mg/kg [417]. This has 

been associated with studies where GSPE administration in obese rats was found to increase the 

expression of Glut4 and Irs-1 in adipose tissue, which also ameliorates the insulin resistance of the 

tissue [418]. However, the role of GSPE in glucose homeostasis is still controversial as some studies 

have found no improvements in animal models [419] while others have reported body symptoms 

associated with diabetes like body weight gain [420]. 

PA have also been largely associated with the amelioration of hypertension, not only from grape 

seed sources but extracted from several others such as cocoa or green teas, in both short [421–423] 

and long-term [424,425] effects upon administration. The anti-hypertensive effect of GSPE on BP has 

been corroborated in SHR models [426] and CAF diet-fed rats [410]. Concretely, GSPE at low 

physiological doses of just 25 mg/kg is capable of long-term reduction of BP in CAF diet-fed rats, 

showing an anti-hypertensive effect in models of MetS [290]. 

Finally, GSPE has also been related with modulation of leptin functionality. GSPE has been found 

to improve leptin sensitivity in leptin resistant hypothalamus of CAF diet-fed rats as levels of STA3-P 

and the expression of Soc3 and Ptp1b were normalized with long-term supplementation with GSPE 

[427]. These results have also been associated with amelioration on hypothalamic inflammation, 

which could be partly mediating the modulation of leptin resistance [427]. This has been corroborated 

in studies showing GSPE to reduce food intake [428]. 

 

5.2.2.2 Anthocyanidins extract 

As mentioned, anthocyanidins is a sub-group of flavonoids, which includes several molecules, the 

most common in diet being peonidin, petunidin, malvidin, pelargonidin, delphinidin and cyanidin, 

usually found in fruits like berries [429]. Similar to proanthocyanidins, anthocyanidins have been 

associated with amelioration of symptoms of the MetS. Supplementation of a dose 200 mg/kg of 

anthocyanidins in mice have been shown to reduce obesity and adipocyte size [430]. Other studies 

with anthocyanidins have corroborated a reduction in obesity and improvements in triglycerides, 

glucose and cholesterol [431]. 

Medox is an extract of bilberries and blackcurrant, optimized for the extraction of certain 

anthocyanins. The product was developed as a nutritional supplement that could combat symptoms 

of the MetS via a highly concentrated dose of anthocyanins that would have a high representation of 
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Cyanidin-3G and Delphinidin-3G. Medox have been studied extensively studied in humans and 

reported to improve inflammation and oxidative stress [432,433]. In particular, a decrease of NF-κB 

and other circulatory inflammatory cytokines like TNF-α [432,434] and CRP [435]. Related to this, 

Medox has also been found to ameliorate NAFLD in patients that have already developed the illness: 

levels of GOT/GPT were decreased and improvements of glucose homeostasis and insulin resistance 

were found [436]. Other authors have reported similar findings as diabetic patients also showed 

improvements in insulin resistance and fasting glucose, besides improvements of the lipid metabolism 

by increasing HDL-C and decreasing triglycerides and LDL-C [437]. 

Medox has also been reported to ameliorate dyslipidaemia. Administration of Medox was found 

to increase HDL-C and reduce LDL-C concentration while also promoting the release of cholesterol 

from peripheral organs, possibly to be metabolized by the liver [438,439]. In a similar approach, 

another study with hypercholesterolemic patients has found similar increments on circulatory HDL-C 

and amelioration in vascular dilatation [440]. Medox’s amelioration of cholesterol management and 

endothelial function have also been found in mice and linked with a reduction of the ATP-binding 

cassette sub-family G member 1 (ABCG1) pathway. This study also reported a correlation with a 

reduction of NO and oxidative stress after promoting eNOS activity [441]. 

 

5.2.3 Anti-hypertensive hydrolysate 

The Chicken foot protein hydrolysate (Hpp11) is a hydrolysate of chicken foot, a patented product 

developed in our laboratory [442], with the aim of obtaining a nutritional supplement that could lower 

BP. Hpp11 is a mix of bioactive peptides with antihypertensive properties [443]. Bioactive peptides 

are considered as such when the peptides, besides their natural nutritional value, have additional 

health properties and alter body functions [444]. However, for a peptide to be considered bioactive, 

it must be able to produce an effect in physiological doses, meaning, a dose that is not considered too 

high or unrealistic. In addition, the effect they exert on the metabolism must be beneficial [445].  

Bioactive peptides are obtained as fragments from original proteins. They are sequences of amino 

acids of variable length and sequence (137) that are easily metabolized, limiting their effect, compared 

with pharmacological drugs, while also ensuring that they are less likely to accumulate in tissues, 

which reduces the chances of developing side effects (136). Among the use of bioactive peptides as 

health ameliorating supplements, many reports have found improvements in a wide variety of health 

issues and they are being used as anti-oxidative, osteoprotective or anti-lipidemic supplements, 

among others [325,446,447]. 
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Besides the mentioned properties, many bioactive peptides have been found to have anti-

hypertensive properties [448]. An initial report found peptides with ACE inhibitory properties after 

protein hydrolysis with casein [449]. This started the study of the potential anti-hypertensive effect 

that bioactive peptides could perform and showed that these peptides could be obtained from many 

food sources [450,451]. Of particular interest have been the development of bioactive peptides from 

by-products of the food industry, which grants cheap source material [452]. In particular, chicken feet 

are a waste product that would be otherwise discarded and have been issued as the protein source 

for their hydrolysation in the development of Hpp11 [442]. 

Several studies have already been performed involving Hpp11. Initial studies in vivo have found 

the hydrolysate to have anti-hypertensive properties, reducing BP after an acute administration of 55 

mg/kg in hypertensive rats [443]. In addition, Hpp11 has been tested in long-term administration, 

showing that it also promotes long-term lowering of BP in diet-induced hypertensive rats [453], 

particularly interesting as HTN requires chronic treatment [454]. 

The molecular mechanisms by which Hpp11 reduces BP are starting to be elucidated. The 

hydrolysate has ACE inhibitory activity, which prevents the cleavage of angiotensin I into angiotensin 

II and the release of this vasoconstrictor [442]. Moreover, Hpp11 also promotes an effect on the 

release of NO by enhancing the expression of the aortic genes Sirt-1 and NADPH oxidase (Nox-4) and 

lowering of Et-1, which would induce a higher release of the vasodilator NO [453]. In addition to its 

properties to reduce HTN, Hpp11 has been associated with reductions of oxidative stress as it 

promotes an increase in the production hepatic reduced glutathione [453], a known antioxidant that 

removes reactive oxygen species [455].  

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 61 

Introduction 

References 

1.  Chandon, P.; Wansink, B. Does food marketing need to make us fat? A review and solutions. Nutr. Rev. 
2012, 70, 571–593. 

2.  Agha, M.; Agha, R. The rising prevalence of obesity. Int. J. Surg. Oncol. 2017, 2, e19. 

3.  Whitaker, R.C.; Wright, J.A.; Pepe, M.S.; Seidel, K.D.; Dietz, W.H. Predicting Obesity in Young Adulthood 
from Childhood and Parental Obesity. N. Engl. J. Med. 1997, 337, 869–873. 

4.  Saunders, J.; Smith, T. Malnutrition: Causes and consequences. Clin. Med. J. R. Coll. Physicians London 
2010, 10, 624–627. 

5.  Hruby, A.; Manson, J.A.E.; Qi, L.; Malik, V.S.; Rimm, E.B.; Sun, Q.; Willett, W.C.; Hu, F.B. Determinants 
and consequences of obesity. Am. J. Public Health 2016, 106, 1656–1662. 

6.  Reddon, H.; Gerstein, H.C.; Engert, J.C.; Mohan, V.; Bosch, J.; Desai, D.; Bailey, S.D.; Diaz, R.; Yusuf, S.; 
Anand, S.S.; et al. Physical activity and genetic predisposition to obesity in a multiethnic longitudinal 
study. Sci. Rep. 2016, 6, 18672. 

7.  James, W.P.T. WHO recognition of the global obesity epidemic. Int. J. Obes. 2008, 32, S120–S126. 

8.  Cornier, M.-A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; 
Wang, H.; Eckel, R.H. The Metabolic Syndrome. Endocr. Rev. 2008, 29, 777–822. 

9.  American, A.; Association, H.; Heart, N.; Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, 
R.H.; Franklin, B.A.; Gordon, D.J.; et al. Diagnosis and managment of the metabolic syndrome AHA / 
NHLBI Scientific Statement. 2006, 2735–2752. 

10.  Ng, M.; Fleming, T.; Robinson, M. Global, regional, and national prevalence of overweight and obesity 
in children and adults during 1980-2013: A systematic analysis. Lancet 2014, 384, 746. 

11.  Hashimoto, E.; Taniai, M.; Tokushige, K. Characteristics and diagnosis of NAFLD/NASH. J. Gastroenterol. 
Hepatol. 2013, 28, 64–70. 

12.  Kawano, Y.; Cohen, D.E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver 
disease. J. Gastroenterol. 2013, 48, 434–441. 

13.  Koyama, K.; Chen, G.; Lee, Y.; Unger, R.H. Tissue triglycerides, insulin resistance, and insulin  
production: implications for hyperinsulinemia of obesity. Am. J. Physiol. Metab. 1997, 273, E708–E713. 

14.  Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual 
data from 61 prospective studies with 55 000 vascular deaths. Lancet 2007, 370, 1829–1839. 

15.  Manolio, T.A.; Ettinger, W.H.; Tracy, R.P.; Kuller, L.H.; Borhani, N.O.; Lynch, J.C.; Fried, L.P. 
Epidemiology of low cholesterol levels in older adults. The Cardiovascular Health Study. Circulation 
1993, 87, 728–737. 

16.  Chen, S.Y.; Li, N.; Jin, T.L.; Gou, L.; Hao, D.X.; Tian, Z.Q.; Zhang, S.L.; Zhang, L. Lipoprotein in cholesterol 
transport: Highlights and recent insights into its structural basis and functional mechanism. Chinese 
Phys. B 2018, 27. 

17.  Toth, P.P. Reverse cholesterol transport: High-density lipoprotein’s magnificent mile. Curr. Atheroscler. 
Rep. 2003, 5, 386–393. 

18.  Rader, D.J.; Rader, D.J. Molecular regulation of HDL metabolism and function : implications for novel 
therapies Find the latest version : Science in medicine Molecular regulation of HDL metabolism and 
function : implications for novel therapies. 2006, 116, 3090–3100. 

19.  Vaisar, T.; Pennathur, S.; Green, P.S.; Gharib, S.A.; Hoofnagle, A.N.; Cheung, M.C.; Byun, J.; Vuletic, S.; 
Kassim, S.; Singh, P.; et al. Shotgun proteomics implicates protease inhibition and complement 
activation in the antiinflammatory properties of HDL. J. Clin. Invest. 2007, 117, 746–756. 

20.  Gordon, D.J.; Probstfield, J.L.; Garrison, R.J.; Neaton, J.D.; Castelli, W.P.; Knoke, J.D.; Jacobs, D.R.; 
Bangdiwala, S.; Tyroler, H.A. High-density lipoprotein cholesterol and cardiovascular disease. Four 
prospective American studies. Circulation 1989, 79, 8–15. 

21.  Kontush, A.; Chapman, M.J. Antiatherogenic function of HDL particle subpopulations: Focus on 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 
 62 

                   Introduction 

antioxidative activities. Curr. Opin. Lipidol. 2010, 21, 312–318. 

22.  Mineo, C.; Deguchi, H.; Griffin, J.H.; Shaul, P.W. Endothelial and antithrombotic actions of HDL. Circ. 
Res. 2006, 98, 1352–1364. 

23.  Mulè, G. Metabolic syndrome in hypertensive patients: An unholy alliance. World J. Cardiol. 2014, 6, 
890. 

24.  Mule, G.; Cottone, S.; Nardi, E.; Andronico, G.; Cerasola, G. Metabolic syndrome in subjects with 
essential hypertension: relationships with subclinical cardiovascular and renal damage. Minerva 
Cardioangiol. 2006, 54, 173–194. 

25.  Ferrannini, E.; Buzzigoli, G.; Bonadonna, R.; Giorico, M.A.; Oleggini, M.; Graziadei, L.; Pedrinelli, R.; 
Brandi, L.; Bevilacqua, S. Insulin Resistance in Essential Hypertension. N. Engl. J. Med. 1987, 317, 350–
357. 

26.  Reaven, G.M.; Lithell, H.; Landsberg, L. Hypertension and Associated Metabolic Abnormalities — The 
Role of Insulin Resistance and the Sympathoadrenal System. N. Engl. J. Med. 1996, 334, 374–382. 

27.  Hall, J. Obesity hypertension: role of leptin and sympathetic nervous system. Am. J. Hypertens. 2001, 
14, S103–S115. 

28.  Nickenig, G.; Röling, J.; Strehlow, K.; Schnabel, P.; Böhm, M. Insulin induces upregulation of vascular 
receptor gene expression by posttranscriptional mechanisms. Circulation 1998, 98, 2453–2460. 

29.  Porte, D. Mechanisms for Hyperglycemia in the Metabolic Syndrome. The Key Role of β-Cell 
Dysfunction. 73–83. 

30.  Lee, S.J.; Heinrich, G.; Fedorova, L.; Al-Share, Q.Y.; Ledford, K.J.; Fernstrom, M.A.; McInerney, M.F.; 
Erickson, S.K.; Gatto-Weis, C.; Najjar, S.M. Development of nonalcoholic steatohepatitis in insulin-
resistant liver-specific S503A carcinoembryonic antigen-related cell adhesion molecule 1 mutant mice. 
Gastroenterology 2008, 135, 2084–2095. 

31.  Xu, A.; Wang, Y.; Keshaw, H.; Xu, L.Y.; Lam, K.S.L.; Cooper, G.J.S. The fat-derived hormone adiponectin 
alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. Invest. 2003, 112, 91–100. 

32.  Roberts, C.K.; Hevener, A.L.; Barnard, R.J. Metabolic syndrome and insulin resistance: underlying 
causes and modification by  exercise training. Compr. Physiol. 2013, 3, 1–58. 

33.  Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015, 33, 673–689. 

34.  Blomain, E.S.; Dirhan, D.A.; Valentino, M.A.; Kim, G.W.; Waldman, S.A. Mechanisms of Weight Regain 
following Weight Loss. ISRN Obes. 2013, 2013, 210524. 

35.  Harris, R.B.S.; Kasser, T.R.; Martin, R.J. Dynamics of recovery of body composition after overfeeding, 
food restriction or starvation of mature female rats. J. Nutr. 1986, 116, 2536–2546. 

36.  Campfield, L.A.; Smith, F.J.; Guisez, Y.; Devos, R.; Burn, P. Recombinant mouse OB protein: evidence for 
a peripheral signal linking adiposity and central neural networks. Science (80-. ). 1995, 269, 546–549. 

37.  Sims, E.A.H.; Danforth, E. Expenditure and storage of energy in man. J. Clin. Invest. 1987, 79, 1019–
1025. 

38.  Considine, R. V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, 
J.P.; Marco, C.C.; Mckee, L.J.; Bauer, T.L.; et al. Serum immunoreactive-leptin concentrations in normal-
weight and obese humans. N. Engl. J. Med. 1996, 334, 292–295. 

39.  Ostlund  Jr, R.E.; Yang, J.W.; Klein, S.; Gingerich, R. Relation between plasma leptin concentration and 
body fat, gender, diet, age, and metabolic covariates. J. Clin. Endocrinol. Metab. 1996, 81, 3909–3913. 

40.  Morrison, C.D. Leptin signaling in brain: A link between nutrition and cognition? Biochim. Biophys. Acta 
- Mol. Basis Dis. 2009, 1792, 401–408. 

41.  Luquet, S.; Perez, F.A.; Hnasko, T.S.; Palmiter, R.D. NPY/AgRP Neurons Are Essential for Feeding in 
Adult Mice but Can Be Ablated in Neonates. Science (80-. ). 2005, 310, 683–685. 

42.  Balthasar, N.; Coppari, R.; McMinn, J.; Liu, S.M.; Lee, C.E.; Tang, V.; Kenny, C.D.; McGovern, R.A.; Chua, 
S.C.; Elmquist, J.K.; et al. Leptin receptor signaling in POMC neurons is required for normal body weight 
homeostasis. Neuron 2004, 42, 983–991. 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 63 

Introduction 

43.  Håkansson, M.L.; Meister, B. Transcription factor STAT3 in leptin target neurons of the rat 
hypothalamus. Neuroendocrinology 1998, 68, 420–427. 

44.  Plum, L.; Belgardt, B.F.; Brüning, J.C. Central insulin action in energy and glucose homeostasis. J. Clin. 
Invest. 2006, 116, 1761–1766. 

45.  El-Haschimi, K.; Pierroz, D.D.; Hileman, S.M.; Bjørbæk, C.; Flier, J.S. Two defects contribute to 
hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Invest. 2000, 105, 1827–1832. 

46.  Banks, W.A.; DiPalma, C.R.; Farrell, C.L. Impaired transport of leptin across the blood-brain barrier in 
obesity. Peptides 1999, 20, 1341–1345. 

47.  Belouzard, S.; Delcroix, D.; Rouillé, Y. Low levels of expression of leptin receptor at the cell surface 
result from constitutive endocytosis and intracellular retention in the biosynthetic pathway. J. Biol. 
Chem. 2004, 279, 28499–28508. 

48.  Shi, H.; Kokoeva, M. V; Inouye, K.; Tzameli, I.; Yin, H.; Flier, J.S. TLR4 links innate immunity and fatty 
acid–induced insulin resistance. J. Clin. Invest. 2006, 116, 3015–3025. 

49.  Buettner, C.; Pocai, A.; Muse, E.D.; Etgen, A.M.; Myers, M.G.; Rossetti, L. Critical role of STAT3 in 
leptin’s metabolic actions. Cell Metab. 2006, 4, 49–60. 

50.  Polyzos, S.A.; Kountouras, J.; Zavos, C.; Deretzi, G. The potential adverse role of leptin resistance in 
nonalcoholic fatty liver disease: A hypothesis based on critical review of the literature. J. Clin. 
Gastroenterol. 2011, 45, 50–54. 

51.  Howard, J.K.; Flier, J.S. Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol. 
Metab. 2006, 17, 365–371. 

52.  Robertson, S.A.; Leinninger, G.M.; Myers, M.G. Molecular and neural mediators of leptin action. 
Physiol. Behav. 2008, 94, 637–642. 

53.  Myers, M.G.; Cowley, M.A.; Münzberg, H. Mechanisms of Leptin Action and Leptin Resistance. Annu. 
Rev. Physiol. 2008, 70, 537–556. 

54.  Emanuelli, B.; Peraldi, P.; Filloux, C.; Sawka-Verhelle, D.; Hilton, D.; Van Obberghen, E. SOCS-3 is an 
insulin-induced negative regulator of insulin signaling. J. Biol. Chem. 2000, 275, 15985–15991. 

55.  Han, H.-S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.-H. Regulation of glucose metabolism from a liver-
centric perspective. Exp. Mol. Med. 2016, 48, e218–e218. 

56.  Hu, C.; Hoene, M.; Plomgaard, P.; Hansen, J.S.; Zhao, X.; Li, J.; Wang, X.; Clemmesen, J.O.; Secher, N.H.; 
Häring, H.U.; et al. Muscle-liver substrate fluxes in exercising humans and potential effects on hepatic 
metabolism. J. Clin. Endocrinol. Metab. 2019. 

57.  Towle, H.C.; Kaytor, E.N.; Shih, H.-M. Regulation of the expression of lipogenic enzyme genes by 
carbohydrate. Annu. Rev. Nutr. 1997, 17, 405–433. 

58.  Benedict, M.; Zhang, X. Non-alcoholic fatty liver disease: An expanded review. World J. Hepatol. 2017, 
9, 715–732. 

59.  Calzadilla Bertot, L.; Adams, L.A. The Natural Course of Non-Alcoholic Fatty Liver Disease. Int. J. Mol. 
Sci. 2016, 17. 

60.  Sayiner, M.; Koenig, A.; Henry, L.; Younossi, Z.M. Epidemiology of Nonalcoholic Fatty Liver Disease and 
Nonalcoholic Steatohepatitis in the United States and the Rest of the World. Clin. Liver Dis. 2016, 20, 
205–214. 

61.  Kanwar, P.; Kowdley, K. V The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis. 
Clin. Liver Dis. 2016, 20, 225–243. 

62.  Caldwell, S.H.; Oelsner, D.H.; Iezzoni, J.C.; Hespenheide, E.E.; Battle, E.H.; Driscoll, C.J. Cryptogenic 
cirrhosis: Clinical characterization and risk factors for underlying disease. Hepatology 1999, 29, 664–
669. 

63.  Stefan, N.; Kantartzis, K.; Häring, H.U. Causes and metabolic consequences of fatty liver. Endocr. Rev. 
2008, 29, 939–960. 

64.  Bechmann, L.P.; Hannivoort, R.A.; Gerken, G.; Hotamisligil, G.S.; Trauner, M.; Canbay, A. The 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 
 64 

                   Introduction 

interaction of hepatic lipid and glucose metabolism in liver diseases. J. Hepatol. 2012, 56, 952–964. 

65.  Yip, W.W.; Burt, A.D. Alcoholic liver disease. Semin. Diagn. Pathol. 2006, 23, 149–160. 

66.  Arab, J.P.; Arrese, M.; Trauner, M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver 
Disease. Annu. Rev. Pathol. Mech. Dis. 2018, 13, 321–350. 

67.  Clément, L.; Poirier, H.; Niot, I.; Bocher, V.; Guerre-Millo, M.; Krief, S.; Staels, B.; Besnard, P.  Dietary 
trans-10,cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse . J. Lipid 
Res. 2002, 43, 1400–1409. 

68.  Ide, T. Interaction of fish oil and conjugated linoleic acid in affecting hepatic activity of lipogenic 
enzymes and gene expression in liver and adipose tissue. Diabetes 2005, 54, 412–423. 

69.  Takahashi, Y.; Kushiro, M.; Shinohara, K.; Ide, T. Activity and mRNA levels of enzymes involved in 
hepatic fatty acid synthesis and oxidation in mice fed conjugated linoleic acid. Biochim. Biophys. Acta - 
Mol. Cell Biol. Lipids 2003, 1631, 265–273. 

70.  Javadi, M.; Beynen, A.C.; Hovenier, R.; Lankhorst, Æ.; Lemmens, A.G.; Terpstra, A.H.M.; Geelen, M.J.H. 
Prolonged feeding of mice with conjugated linoleic acid increases hepatic fatty acid synthesis relative 
to oxidation. J. Nutr. Biochem. 2004, 15, 680–687. 

71.  Long, Y.C.; White, M.F. IRS-1 and IRS-2 Signaling Is Essential for Skeletal Muscle Growth and Protein 
Homeostasis. Diabetes 2009, 58, A392–A392. 

72.  Tandra, S.; Yeh, M.M.; Brunt, E.M.; Vuppalanchi, R.; Cummings, O.W.; Ünalp-Arida, A.; Wilson, L.A.; 
Chalasani, N. Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J. 
Hepatol. 2011, 55, 654–659. 

73.  Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; 
et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin 
resistance. J. Clin. Invest. 2003, 112, 1821–1830. 

74.  Bugianesi, E.; Pagotto, U.; Manini, R.; Vanni, E.; Gastaldelli, A.; De Iasio, R.; Gentilcore, E.; Natale, S.; 
Cassader, M.; Rizzetto, M.; et al. Plasma Adiponectin in nonalcoholic fatty liver is related to hepatic 
insulin resistance and hepatic fat content, not to liver disease severity. J. Clin. Endocrinol. Metab. 2005, 
90, 3498–3504. 

75.  Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. Diabetes 2006, 116, 1793–
1801. 

76.  Özcan, U.; Cao, Q.; Yilmaz, E.; Lee, A.H.; Iwakoshi, N.N.; Özdelen, E.; Tuncman, G.; Görgün, C.; Glimcher, 
L.H.; Hotamisligil, G.S. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. 
Science (80-. ). 2004, 306, 457–461. 

77.  Yang, S.; Zhu, H.; Li, Y.; Lin, H.; Gabrielson, K.; Trush, M.A.; Diehl, A.M. Mitochondrial adaptations to 
obesity-related oxidant stress. Arch. Biochem. Biophys. 2000, 378, 259–268. 

78.  Szczepaniak, L.S.; Nurenberg, P.; Leonard, D.; Browning, J.D.; Reingold, J.S.; Grundy, S.; Hobbs, H.H.; 
Dobbins, R.L. Magnetic resonance spectroscopy to measure hepatic triglyceride content: Prevalence of 
hepatic steatosis in the general population. Am. J. Physiol. - Endocrinol. Metab. 2005, 288, 462–468. 

79.  Kotronen, A.; Westerbacka, J.; Bergholm, R.; Pietiläinen, K.H.; Yki-Järvinen, H. Liver fat in the metabolic 
syndrome. J. Clin. Endocrinol. Metab. 2007, 92, 3490–3497. 

80.  Flier, J.S. Obesity Wars: Molecular Progress Confronts an Expanding Epidemic. Cell 2004, 116, 337–350. 

81.  Juge-Aubry, C.E.; Henrichot, E.; Meier, C.A. Adipose tissue: a regulator of inflammation. Best Pract. Res. 
Clin. Endocrinol. Metab. 2005, 19, 547–566. 

82.  Cinti, S. The Adipose Organ BT  - Adipose Tissue and Adipokines in Health and Disease. In; Fantuzzi, G., 
Mazzone, T., Eds.; Humana Press: Totowa, NJ, 2007; pp. 3–19 ISBN 978-1-59745-370-7. 

83.  Sanchez-Gurmaches, J.; Guertin, D.A. Adipocyte lineages: Tracing back the origins of fat. Biochim. 
Biophys. Acta - Mol. Basis Dis. 2014, 1842, 340–351. 

84.  Proença, A.R.G.; Sertié, R.A.L.; Oliveira, A.C.; Campaña, A.B.; Caminhotto, R.O.; Chimin, P.; Lima, F.B. 
New concepts in white adipose tissue physiology. Brazilian J. Med. Biol. Res. = Rev. Bras. Pesqui. 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 65 

Introduction 

medicas e Biol. 2014, 47, 192–205. 

85.  Vázquez-Vela, M.E.F.; Torres, N.; Tovar, A.R. White Adipose Tissue as Endocrine Organ and Its Role in 
Obesity. Arch. Med. Res. 2008, 39, 715–728. 

86.  Thompson, B.R.; Lobo, S.; Bernlohr, D.A. Fatty acid flux in adipocytes: The in’s and out’s of fat cell lipid 
trafficking. Mol. Cell. Endocrinol. 2010, 318, 24–33. 

87.  Cammisotto, P.G.; Bukowiecki, L.J. Mechanisms of leptin secretion from white adipocytes. Am. J. 
Physiol. Physiol. 2002, 283, C244–C250. 

88.  Tsai, M.; Asakawa, A.; Amitani, H.; Inui, A. Stimulation of leptin secretion by insulin. Indian J. 
Endocrinol. Metab. 2012, 16, S543–S548. 
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417.  Pinent, M.; Blay, M.; Bladé, M.C.; Salvadó, M.J.; Arola, L.; Ardévol, A. Grape Seed-Derived Procyanidins 
Have an Antihyperglycemic Effect in Streptozotocin-Induced Diabetic Rats and Insulinomimetic Activity 
in Insulin-Sensitive Cell Lines. Endocrinology 2004, 145, 4985–4990. 

418.  Ardévol, A.; Motilva, M.J.; Serra, A.; Blay, M.; Pinent, M. Procyanidins target mesenteric adipose tissue 
in Wistar lean rats and subcutaneous adipose tissue in Zucker obese rat. Food Chem. 2013, 141, 160–
166. 

419.  Gonzalez-Abuin, N.; Pinent, M.; Casanova-Marti, A.; Arola, L.; Blay, M.; Ardevol, A. Procyanidins and 
their healthy protective effects against type 2 diabetes. Curr. Med. Chem. 2015, 22, 39–50. 

420.  Li, B.-Y.; Cheng, M.; Gao, H.-Q.; Ma, Y.-B.; Xu, L.; Li, X.-H.; Li, X.-L.; You, B.-A. Back-regulation of six 
oxidative stress proteins with grape seed proanthocyanidin extracts in rat diabetic nephropathy. J. Cell. 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 
 82 

                   Introduction 

Biochem. 2008, 104, 668–679. 

421.  Cienfuegos-Jovellanos, E.; Quiñones, M. del M.; Muguerza, B.; Moulay, L.; Miguel, M.; Aleixandre, A. 
Antihypertensive Effect of a Polyphenol-Rich Cocoa Powder Industrially Processed To Preserve the 
Original Flavonoids of the Cocoa Beans. J. Agric. Food Chem. 2009, 57, 6156–6162. 

422.  Negishi, H.; Xu, J.-W.; Ikeda, K.; Njelekela, M.; Nara, Y.; Yamori, Y. Black and Green Tea Polyphenols 
Attenuate Blood Pressure Increases in Stroke-Prone Spontaneously Hypertensive Rats. J. Nutr. 2004, 
134, 38–42. 

423.  Quiñones, M.; Miguel, M.; Muguerza, B.; Aleixandre, A. Effect of a cocoa polyphenol extract in 
spontaneously hypertensive rats. Food Funct. 2011, 2, 649–653. 

424.  Thandapilly, S.J.; LeMaistre, J.L.; Louis, X.L.; Anderson, C.M.; Netticadan, T.; Anderson, H.D. Vascular 
and Cardiac Effects of Grape Powder in the Spontaneously Hypertensive Rat. Am. J. Hypertens. 2012, 
25, 1070–1076. 

425.  Quiñones, M.; Sánchez, D.; Muguerza, B.; Moulay, L.; Laghi, S.; Miguel, M.; Aleixandre, A. Long-term 
intake of CocoanOX attenuates the development of hypertension in spontaneously hypertensive rats. 
Food Chem. 2010, 122, 1013–1019. 

426.  Quiñones, M.; Guerrero, L.; Suarez, M.; Pons, Z.; Aleixandre, A.; Arola, L.; Muguerza, B. Low-molecular 
procyanidin rich grape seed extract exerts antihypertensive effect in males spontaneously 
hypertensive rats. Food Res. Int. 2013, 51, 587–595. 

427.  Ibars, M.; Ardid-Ruiz, A.; Suárez, M.; Muguerza, B.; Bladé, C.; Aragonès, G. Proanthocyanidins 
potentiate hypothalamic leptin/STAT3 signalling and Pomc gene expression in rats with diet-induced 
obesity. Int. J. Obes. 2017, 41, 129–136. 

428.  Serrano, J.; Casanova-Martí, À.; Gil-Cardoso, K.; Blay, M.T.; Terra, X.; Pinent, M.; Ardévol, A. Acutely 
administered grape-seed proanthocyanidin extract acts as a satiating agent. Food Funct. 2016, 7, 483–
490. 

429.  Wallace, T.C.; Giusti, M.M. Anthocyanins. Adv. Nutr. 2015, 6, 620–622. 

430.  Wu, T.; Jiang, Z.; Yin, J.; Long, H.; Zheng, X. Anti-obesity effects of artificial planting blueberry 
(Vaccinium ashei) anthocyanin in high-fat diet-treated mice. Int. J. Food Sci. Nutr. 2016, 67, 257–264. 

431.  Wu, T.; Tang, Q.; Yu, Z.; Gao, Z.; Hu, H.; Chen, W.; Zheng, X.; Yu, T. Inhibitory effects of sweet cherry 
anthocyanins on the obesity development in C57BL/6 mice. Int. J. Food Sci. Nutr. 2014, 65, 351–359. 

432.  Karlsen, A.; Retterstøl, L.; Laake, P.; Paur, I.; Kjølsrud-Bøhn, S.; Sandvik, L.; Blomhoff, R. Anthocyanins 
Inhibit Nuclear Factor-κB Activation in Monocytes and Reduce Plasma Concentrations of Pro-
Inflammatory Mediators in Healthy Adults. J. Nutr. 2007, 137, 1951–1954. 

433.  Cimino, F.; Speciale, A.; Anwar, S.; Canali, R.; Ricciardi, E.; Virgili, F.; Trombetta, D.; Saija, A. 
Anthocyanins protect human endothelial cells from mild hyperoxia damage through modulation of 
Nrf2 pathway. Genes Nutr. 2013, 8, 391–399. 

434.  Luo, X.; Fang, S.; Xiao, Y.; Song, F.; Zou, T.; Wang, M.; Xia, M.; Ling, W. Cyanidin-3-glucoside suppresses 
TNF-α-induced cell proliferation through the repression of Nox activator 1 in mouse vascular smooth 
muscle cells: involvement of the STAT3 signaling. Mol. Cell. Biochem. 2012, 362, 211–218. 

435.  Zhu, Y.; Ling, W.; Guo, H.; Song, F.; Ye, Q.; Zou, T.; Li, D.; Zhang, Y.; Li, G.; Xiao, Y.; et al. Anti-
inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomized 
controlled trial. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 843–849. 

436.  Zhang, P.-W.; Chen, F.-X.; Li, D.; Ling, W.-H.; Guo, H.-H. A CONSORT-compliant, randomized, double-
blind, placebo-controlled pilot trial of purified anthocyanin in patients with nonalcoholic fatty liver 
disease. Medicine (Baltimore). 2015, 94, e758. 

437.  Li, D.; Zhang, Y.; Liu, Y.; Sun, R.; Xia, M. Purified Anthocyanin Supplementation Reduces Dyslipidemia, 
Enhances Antioxidant Capacity, and Prevents Insulin Resistance in Diabetic Patients. J. Nutr. 2015, 145, 
742–748. 

438.  Qin, Y.; Xia, M.; Ma, J.; Hao, Y.; Liu, J.; Mou, H.; Cao, L.; Ling, W. Anthocyanin supplementation 
improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 83 

Introduction 

ester transfer protein in dyslipidemic subjects. Am. J. Clin. Nutr. 2009, 90, 485–492. 

439.  Zhu, Y.; Huang, X.; Zhang, Y.; Wang, Y.; Liu, Y.; Sun, R.; Xia, M. Anthocyanin Supplementation Improves 
HDL-Associated Paraoxonase 1 Activity and Enhances Cholesterol Efflux Capacity in Subjects With 
Hypercholesterolemia. J. Clin. Endocrinol. Metab. 2014, 99, 561–569. 

440.  Zhu, Y.; Xia, M.; Yang, Y.; Liu, F.; Li, Z.; Hao, Y.; Mi, M.; Jin, T.; Ling, W. Purified Anthocyanin 
Supplementation Improves Endothelial Function via NO-cGMP Activation in Hypercholesterolemic 
Individuals. Clin. Chem. 2011, 57, 1524–1533. 

441.  Wang, Y.; Zhang, Y.; Wang, X.; Liu, Y.; Xia, M. Supplementation with Cyanidin-3-O-β-Glucoside Protects 
against Hypercholesterolemia-Mediated Endothelial Dysfunction and Attenuates Atherosclerosis in 
Apolipoprotein E–Deficient Mice. J. Nutr. 2012, 142, 1033–1037. 

442.  Bravo, F.I.; Mas-Capdevila, A.; Margalef, M.; Arola-Arnal, A.; Muguerza, B. Novel Antihypertensive 
Peptides Derived from Chicken Foot Proteins. Mol. Nutr. Food Res. 2019, 63, 1801176. 

443.  Mas-Capdevila, A.; Pons, Z.; Aleixandre, A.; Bravo, F.I.; Muguerza, B. Dose-Related Antihypertensive 
Properties and the Corresponding Mechanisms of a Chicken Foot Hydrolysate in Hypertensive Rats. 
Nutrients 2018, 10, 1295. 

444.  Daliri, E.B.-M.; Oh, D.H.; Lee, B.H. Bioactive Peptides. Foods (Basel, Switzerland) 2017, 6, 32. 

445.  Biesalski, H.-K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.; Schrenk, D.; Walter, P.; Weber, P. 
Bioactive compounds: Definition and assessment of activity. Nutrition 2009, 25, 1202–1205. 

446.  Korhonen, H.; Pihlanto, A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16, 945–
960. 

447.  Li-Chan, E.C.Y. Bioactive peptides and protein hydrolysates: research trends and challenges for 
application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 2015, 1, 28–37. 

448.  Miralles, B.; Amigo, L.; Recio, I. Critical Review and Perspectives on Food-Derived Antihypertensive 
Peptides. J. Agric. Food Chem. 2018, 66, 9384–9390. 

449.  Maruyama, S.; Suzuki, H. A Peptide Inhibitor of Angiotensin I Converting Enzyme in the Tryptic 
Hydrolysate of Casein. Agric. Biol. Chem. 1982, 46, 1393–1394. 

450.  Bhat, Z.F.; Kumar, S.; Bhat, H.F. Bioactive peptides of animal origin: a review. J. Food Sci. Technol. 2015, 
52, 5377–5392. 

451.  Ryan, J.T.; Ross, R.P.; Bolton, D.; Fitzgerald, G.F.; Stanton, C. Bioactive peptides from muscle sources: 
meat and fish. Nutrients 2011, 3, 765–791. 

452.  Lemes, A.C.; Sala, L.; Ores, J. da C.; Braga, A.R.C.; Egea, M.B.; Fernandes, K.F. A Review of the Latest 
Advances in Encrypted Bioactive Peptides from Protein-Rich Waste. Int. J. Mol. Sci. 2016, 17. 

453.  Mas-Capdevila, A.; Iglesias-Carres, L.; Arola-Arnal, A.; Suarez, M.; Muguerza, B.; Bravo, F.I. Long-term 
administration of protein hydrolysate from chicken feet induces antihypertensive effect and confers 
vasoprotective pattern in diet-induced hypertensive rats. J. Funct. Foods 2019, 55, 28–35. 

454.  Miguel, M.; Muguerza, B.; Sánchez, E.; Delgado, M.A.; Recio, I.; Ramos, M.; Aleixandre, M.A. Changes in 
arterial blood pressure in hypertensive rats caused by long-term intake of milk fermented by 
Enterococcus faecalis CECT 5728. Br. J. Nutr. 2005, 94, 36–43. 

455.  Quiñones, M.; Muguerza, B.; Miguel, M.; Aleixandre, A. Evidence that nitric oxide mediates the blood 
pressure lowering effect of a polyphenol-rich cocoa powder in spontaneously hypertensive rats. 
Pharmacol. Res. 2011, 64, 478–481. 

456.  Wu, J.-Y.; Kao, H.-J.; Li, S.-C.; Stevens, R.; Hillman, S.; Millington, D.; Chen, Y.-T. ENU mutagenesis 
identifies mice with mitochondrial branched-chain aminotransferase deficiency resembling human 
maple syrup urine disease. J. Clin. Invest. 2004, 113, 434–440. 

457.  Samuel, V.T.; Shulman, G.I. Mechanisms for insulin resistance: common threads and missing links. Cell 
2012, 148, 852–871. 

 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HYPOTHESIS AND 

OBJECTIVES  
  

 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  



 

 

 89 

Hypothesis and objectives 

Hypothesis and objectives 

Obesity is defined as an excess of fat accumulation that presents a risk to health. It frequently 

occurs concurrently with other metabolic risk factors related to lifestyle, such as dyslipidemia, 

impaired glucose tolerance or non-alcoholic fatty liver disease (NAFLD), resulting in metabolic 

syndrome (MetS). 

Many bioactive compounds have been studied as strategies to prevent obesity and associated 

pathologies. Conjugated linoleic acid (CLA) is one of the most investigated for weight loss, although 

controversial metabolic effects after its administration have been reported. However, the results in 

animal studies might not be comparable with those obtained in human studies, since much higher CLA 

doses are used in preclinical trials than the doses in clinical trials. Beneficial effects of the flavonoids 

proanthocyanidins and anthocyanidins in the control of metabolic disturbances related to MetS have 

also been reported. In this sense, the grape seed extract GSPE, rich in proanthocyanidins and the 

berry-derived supplement Medox, rich in anthocyanidins, has been shown to improve metabolic risk 

factors associated with obesity such as blood lipid profile and glucose homeostasis. In addition, the 

blood pressure lowering effect of some bioactive peptides are well known. In this sense, Hpp11 is a 

chicken feet hydrolysate whose antihypertensive activity has been demonstrated after its acute and 

chronic administration. 

However, nowadays the use of a single family of bioactive compounds seems not to be sufficient 

to correct complex, multisystemic and very well regulated situations such as body weight and 

associated pathologies. Therefore, we hypothesize that the co-administration of different bioactive 

compounds, including CLA, the flavonoids proanthocyanidins and anthocyanidins and the 

antihypertensive hydrolysate Hpp11, could reduce body weight and associated pathologies, 

improving the metabolic profile of obese animals with MetS.  

Therefore, the aim of this thesis is to elucidate whether the administration of a multifunctional 

ingredient can be useful to correct the set of metabolic risk factors associated with obesity in rats fed 

cafeteria diet as an animal model of human MetS . 

In order to assess the established assumption, specific objectives were proposed: 

1. To evaluate the effects of low doses of CLA administration on obesity and associated 

pathologies. 

CLA has been reported to exhibit effects on body weight in different animal models, but some 

studies have also associated its consumption with liver impairment and insulin resistance. 

Nevertheless, these studies have mainly been carried out with diets supplemented with high doses of 
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  Hypothesis and objectives 

 
CLA. Therefore, it was considered the need to prove the efficacy of minor doses of CLA on body weight 

and rule out any detrimental effects associated with its consumption to these lower doses. 

In order to assess this objective the following goal was proposed: 

a) To evaluate the effect of low doses of CLA intake on body weight and other main 

cardiometabolic risk factors associated with obesity in cafeteria-diet fed rats [Manuscript 

1]. 

2. To establish the effects on obesity and related pathologies of a multifunctional ingredient 

based on CLA at low doses, the flavonoids proanthocyanidins and anthocyanidins and the 

chicken feet hydrolysate Hpp11. 

Beneficial properties of individual dietary complements on body weight and other 

cardiometabolic risk factors have been reported, but the consumption of a single family of bioactive 

compounds seems not to be sufficient to improve the obesity and associated pathologies. Therefore, 

the study of the co-administration of different bioactive compounds as a multifunctional ingredient 

was considered of interest, since these components could both produce a synergetic effect on body 

weight and act simultaneously on other pathologies associated with obesity. 

In order to assess this objective two goals were proposed: 

a) To determinate the effect of a multifunctional ingredient on obesity and establish the 

mechanisms operating in its body weight lowering effects in a model of diet-induced obesity 

[Manuscript 2] and [Patent] (see in Annexes). 

b) To investigate the effects of the multifunctional ingredient on other cardiometabolic risk 

factors associated with MetS in cafeteria-diet fed rats [Manuscript 3].  
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General discussion 

The current spread of obesity in western countries has raised alarms and led to its classification 

as an epidemic by the World Health Organization [1]. While obesity is usually seen as a sole pathology, 

in reality, the excess of body weight correlates with other diseases such as type 2 diabetes, 

inflammation, MetS or NAFLD [2]. Regarding obesity, concretely, the abnormal growth of the 

abdominal WAT is considered a symptom of what is known as MetS, another disease of widespread 

and increasing occurrence [3]. Other components related to this disease are hypertriglyceridemia, 

reduced HDL-C, hyperglycemia and hypertension. MetS is considered when at least three of these 

symptoms  are present [4]. 

The origins and development of obesity can be understood as an imbalance between energy 

intake and energy expenditure, being fat, the main form the body has to store this excess of energy, 

but this pathology has a more complex basis. The ectopic accumulation of fat, once the disease of 

obesity starts, predominantly occurs in the abdominal WAT, thus, why waist circumference is 

measured to assess the significance of its development [5]. Excess of energy in the WAT is mainly 

stored in the form of triglycerides, which, correlating with the hypertrophy the tissue develops, tend 

to be raised in the bloodstream [6]. This hypertriglyceridemia has also been linked with ectopic fat 

accumulations in other organs such as liver, which might promote the development of NAFLD and 

further worsening with inflammation or fibrosis [7]. Furthermore, obesity-induce dyslipidaemia alters 

the modulation of a wide set of metabolites [8]. Among the alterations, HDL-C concentration is 

lowered in MetS [9]. HDL-C is responsible for the transportation of cholesterol, from peripheral 

organs, to the liver for its removal and metabolization. HDL-C dysregulated concentration in the MetS 

has been reported to be positively correlated with the incidence of CVD and endothelial dysfunction 

[10,11]. In turn, the impaired endothelial function is closely related to HTN, which,  although also can 

be present in lean individuals, has been correlated with elevated waist WAT and the chronic low-level 

state of inflammation that tends to be present in obesity [12]. The study of HTN in the MetS has found 

that the hyperphagia associated with obesity over-activates the RAAS, an important regulator of BP 

[13]. Besides, chronic inflammation, frequent in MetS and, thus, elevated circulatory concentration of 

inflammatory cytokines such as TNF-α or IL-6, has also been associated with an increment in the 

production of vasoconstrictor factors [14]. Finally, elevated glucose in MetS has also been associated 

with type II diabetes and insulin resistance [15]. The development of insulin resistance is reported to 

be closely related with elevated waist circumference as WAT will release NEFA, which promotes the 

formation of diglycerides in organs such as liver or skeletal muscle [16]. In turn, diglycerides 

accumulation have been reported to disrupt an adequate insulin signalling, inducing insulin resistance 

[17]. 
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        General discussion 

Lifestyle modifications and improvements in healthier food consumption are considered the first 

and most needed step to combat obesity and MetS [18]. Studies in humans have shown the 

importance of an adequate diet showing improvements with diets low on carbohydrates or lipids [19]. 

However, persistence in the long-term is key for amelioration of obesity and patients tend to not 

follow procedures for long [20]. Of particular success is the Mediterranean diet that has shown to 

improve factors of the MetS [21]. In addition, several pharmacological approaches and bioactive 

compounds have been investigated to address MetS, all of them aimed to tackle specific symptoms of 

this disease. Flavonoids anthocyanidins and proanthocyanidins, protein hydrolysates and CLA are 

some of the bioactive compounds that have shown beneficial effects in some of the components 

associated with MetS. 

Medox is a berry-derived supplement rich in anthocyanidins, which has been demonstrated to 

modulate different symptoms related to MetS, increasing the HDL-C levels and improving 

inflammation [22,23]. Several other beneficial properties have also been associated with Medox. 

Studies with diabetic patients have related this extract to a reduction of insulin resistance and fasting 

glucose [24]. In addition, other studies have found reductions in markers of NAFLD and confirmed 

improvements of glucose homeostasis [25]. 

The grape seed extract GSPE is rich in proanthocyanidins, which has been reported to reduce 

serum and hepatic triglyceride levels [26] and to module other of the cardiometabolic risk factors 

related to MetS.  Specifically, the grape seed extract improves the lipid metabolism by promoting 

hepatic fatty acid oxidation and reducing lipogenesis [27], while also inducing lipolysis in WAT [28]. 

GSPE is also known to improve other symptoms of the MetS such as reduced HDL-C concentration, 

elevated circulatory glucose and hypertension. HDL-C has been found to increase after GSPE 

administration, via increasing the expression of Abca1 [29]. In addition, GSPE was found to lower 

glucose in acute studies with diabetic rats [30] and to increase the expression of Glut4 in obese rats 

with chronic supplementation [31]. Finally, GSPE has been proven to exhibit antihypertensive activity 

in short and long-term administration in both SHR and CAF-induced hypertensive rats [32–34]. In this 

regard, the chicken feet hydrolysate Hpp11 has also been reported as a potent vasodilator and 

effective to combat hypertension [35]. In this sense, Hpp11 has been demonstrated to display ACE 

inhibitory activity, [36] and to increase the release of the vasodilator factor NO [37]. 

CLA is a dietary supplement of proven efficacy to combat obesity and lower fat mass, although 

its effects vary depending on species [38,39]. However, a meta-analysis of human trials concluded that 

at an average dose of 3.2 g per day of CLA reduces body fat mass [40]. The CLA effect on body weight 

has been mostly linked with the isomer t10,c12 [41], whereas c9,t11 have shown to ameliorate insulin 

sensitivity and inflammation [42]. Several molecular mechanisms have been associated with the 
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reduction of fat mass. An activation of basal metabolism via an increase of thermogenesis has been 

reported with t10,c12 supplementation [43]. This has also been linked with modulation of the lipid 

metabolism by activation fatty acid oxidation and promoting the release of lipids from WAT [44]. 

However, some studies have linked CLA supplementation with an increase in the incidence of 

developing NAFLD [45]. This adverse effect of CLA has been associated with the isomer t10,c12, which 

have been found to increase the expression of channels like Cd36 in mice [46] and promote lipogenesis 

[47]. Nevertheless, most animal studies have been performed with high doses of approximately 1% 

CLA in the diet [48]. Consequently, the results in animal studies might not be comparable with those 

obtained in human studies since much higher CLA doses are used in preclinical trials than the doses in 

clinical trials [49]. Then, a study with low doses of an equal ratio of both t10,c12 and c9,t11 CLA 

isomers was performed to assess their effect on body weight reduction and rule out any potential 

adverse effect. Rats fed CAF were used as an experimental model of human MetS. The results 

indicated that the lowest dose of 100 mg/kg was able to achieve a reduction on body weight gain 

[Manuscript 1]. In addition, other serum and liver metabolites related to the glucose homeostasis 

were found improved in the CLA treated group. In this sense, insulin levels were reduced, reaching the 

values of STD rats. The metabolomics analysis of liver and serum by 1H-NMR revealed also a 

normalization of the serum and hepatic glucose levels. Hepatic alanine and lactate were reduced to 

the STD levels as well, suggesting a reduction of gluconeogenesis [50]. In addition, lower levels of 

diglycerides in liver, which have been associated with improvements in insulin resistance, were found 

in the animals treated with CLA, compared with those administered VH [51]. 

Besides, the lipid metabolism of the animals treated showed an improvement of lipid 

homeostasis. The study of serum by 1H-NMR found reductions of various serum lipids such as 

triglycerides, diglycerides, total phospholipid and oleic acid, among others, agreeing with previous 

studies with using higher CLA doses [52]. Remarkably, although enhanced hepatic cholesterol 

accumulation was also observed in CLA treated group, metabolomics and histopathological studies of 

liver showed no worsening of hepatic steatosis. In fact, hepatic triglycerides levels were not increased 

in these animals and histologically hepatic steatosis were equivalent to the CAF group. In addition, 

quantification of GOT and GPT showed a normalization of the values found in the CLA treated rats 

with respect to STD animals, indicating there was no increased hepatic damage with CLA 

supplementation. Thus, the administration of low doses of a mixture of CLA isomers for 3 weeks 

produced a decrease in the body weight gain in animals fed a CAF diet. In addition, an improvement 

in glucose and lipid metabolisms were found. 

As mentioned, many dietary supplements have been investigated as strategies to prevent the 

development and onset of obesity and MetS. These compounds have gained interest in recent years 
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because, given their natural food origins, they are usually considered as harmless and are safer in their 

supplementation than classical pharmaceutical compounds [53–55]. This has prompted scientific 

interest as an alternative medicinal approach to prevent or ameliorate some of the cardiometabolic 

risk factors related to MetS [56,57]. However, several studies have evidenced that the use of a single 

family of bioactive compounds is usually not sufficient to correct complex, multisystemic and highly 

regulated processes such as body weight and all its metabolic associated pathologies. Thus, it is 

plausible to hypothesize that the simultaneous administration of different bioactive compounds could 

promote the management of body weight and other cardiometabolic risk factors of MetS in a much 

more effective way than its individual administration.  

In this context, we developed a multifunctional ingredient or MIX consisting in different natural 

dietary bioactive compounds that have individually shown to exert certain beneficial effects against 

different targets associated with MetS. In particular, MIX was based on the co-administration of the 

same low dose of CLA that we had previously studied (100 mg/Kg), together with the protein 

hydrolysate from chicken feet Hpp11 (55 mg/Kg) [37], and the flavonoids proanthocyanidins extracted 

from grape seeds (25 mg/Kg) [58,59] and anthocyanins from berries (100 mg/Kg) [60,61]. Thus, the 

purpose of our next study was to determine whether the co-administration of this dietary 

multifunctional ingredient was able to greater manage the body weight in animals fed a CAF diet. The 

results showed that the co-administration of different bioactive compounds in a single multifunctional 

ingredient promoted a much more effective body weight management than the individual 

administration of CLA at the same dose than the used in the MIX [Manuscript 2] and [Patent 1]. In 

particular, the administration of the MIX for three weeks resulted in a marked reduction in both body 

weight and fat mass without any impact on lean body mass. This protection against lean body mass 

loss, is of great value since several studies reported that loss in lean body mass could have multiple 

negative health implications [62]. The results also showed that the administration of the MIX did not 

exacerbate the liver injury and hepatic triglycerides accumulation of CAF diet fed rats, although some 

hepatic lipid concentrations were affected by MIX administration, most notably total and esterified 

cholesterol concentrations. However, the hepatic histopathological analyses confirmed no signs of 

liver damage aggravation in animals supplemented with the MIX, and even a lower serum 

transaminases activity was observed with respect to non-supplemented animals.  

The results also showed an increase in energy expenditure and fat utilization as energetic 

substrate in animals administered MIX, resulting in a reduced energy balance compared to the control 

animals. Remarkably, food intake and intestinal lipid absorption were not affected by the 

administration of the MIX. Supporting these results, different studies with CLA, anthocyanins and GSPE 

demonstrated the ability of these bioactive compounds in inducing fat oxidation in obese animals [63–
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65]. Conversely, only CLA supplementation showed an increased energy expenditure in these animals 

[65,66]. Thus, it is plausible to mainly attribute the observed differences in energy expenditure to the 

CLA although the effects on fat oxidation could be probably caused by a synergic effect of the co-

administration of CLA with the other functional ingredients.  

Finally, the impact of MIX administration on leptin system was also examined since this hormone 

is reported to maintain energy balance in mammals. Our results showed that MIX administration 

restored serum leptin values and increased the leptin sensitivity of the first-order neurons in the 

hypothalamus of CAF fed animals. This improvement of central leptin sensitivity could be behind the 

decreased body weight and fat mass as well as the increased energy expenditure observed in animals 

supplemented with the MIX. The induction of central leptin resistance in diet-induced obesity has 

been mainly attributed to hypothalamic inflammation as a result of the induction of pro-inflammatory 

signalling molecules such as JNK, NF-κB [67,68]. Remarkably, previous results demonstrated that GSPE 

supplementation reduced the hypothalamic inflammation [69], suggesting that this local anti-

inflammatory activity of proanthocyanidins in this tissue could be one of the mechanisms by which 

MIX administration could restore hypothalamic leptin signalling.  In addition, Sirtuin-1 activity has 

been also highlighted as mediator of hypothalamic leptin action [70,71], thus, the up-regulation of the 

of Sirtuin-1 activity reported for GSPE supplementation at 25 mg/Kg [27] could be another mechanism 

by which MIX administration reduced hypothalamic leptin resistance. However, further studies are 

needed in order to elucidate the molecular mechanism by which MIX administration re-establishes 

central leptin sensitivity in CAF diet fed animals.  

Besides obesity, the effect of MIX over other cardiometabolic risk factors related to MetS were 

investigated. The results showed beneficial effects of MIX administration on glucose and lipid 

metabolisms. In addition, MIX exhibited BP lowering properties [Manuscript 3]. The oral lipid 

tolerance test carried out 16 days after starting MIX administration showed that the animals 

presented lower initial triglycerides levels. In addition, MIX treated rats displayed an increase of 

triglycerides in the bloodstream smoother after lard administration. These findings, were in 

accordance with the results reported by previous studies administrating GSPE to animals [72] and 

humans [73]. The MIX triglycerides lowering effect is also in accordance with the presence of 

anthocyanidins in the MIX, since Medox supplementation to subjects with type 2 diabetes caused a 

23 percent reduction of this lipid in serum [24]. The metabolomics study carried out in serum and liver 

also showed differences between animals administered VH and MIX. The animals MIX treated showed 

a decrease in many metabolites such as serum PUFAs, oleic acid and phosphatidylcholine and iWAT 

levels of triglycerides, oleic and linoleic acids and total fatty acids, among others, suggesting an 

improvement in lipid management. Serum total and free cholesterol measured by metabolomics were 
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also found decreased in the MIX group. However, no changes were observed in HDL-C or LDL-C at the 

end of the experimental period, although an increase in serum HDL-C was expected in the MIX treated 

rats, since high levels of HDL-C has been reported after Medox and GSPE administration [24,74]. A 

short fasting time of the animals before their sacrifice could explain these findings, since no changes 

were also found in triglycerides at the end of the experiment. Further analysis of the aqueous phase 

of serum provided us with a stronger picture of the changes MIX administration produced as statistical 

analysis by PLS-DA showed that MIX was significantly changing the overall profile of serum, hence, 

putatively inducing major changes and corrections on the whole-body metabolism.  

The study of the glucose metabolism showed that MIX administration did not alter fasting glucose 

concentration, but insulin levels were significantly reduced and the insulin resistance indices HOMA-

IR, HOMA-β and QUICKI were also lower, showing that MIX administration was improving insulin 

sensitivity [75,76]. In addition, to the observed effect on lipid and glucose metabolisms, MIX exhibited 

a clear antihypertensive effect, achieving the treated rats normotensive values of BP. These results 

are in accordance with the BP lowering properties of CLA, GSPE and Hpp11 [34,37,77], and the 

improvement of endothelial function reported by anthocyanidins [60,78]. 

Therefore, the results of this Thesis demonstrated that the administration of an equal ratio of the 

CLA isomers c9,t11 and t10,c12 at low doses decreased the body weight gain, induced by a cafeteria 

diet, and improved other cardiometabolic risk factors, without presenting any CLA-related detrimental 

effects. Moreover, the body weight lowering effect of CLA was higher when it was co-administered 

with the chicken feet hydrolysate Hpp11 and the flavonoids proanthocyanidins and anthocyanidins as 

a multifunctional ingredient. In addition, this body weight lowering effect on body weight, which could 

be mediated by an improvement of hypothalamic leptin sensitivity, was accompanied by an 

improvement on glucose and lipid metabolism and antihypertensive activity. Thus, MIX could be a 

good candidate to be used as nutraceutical or to be included in functional foods for the management 

of metabolic syndrome 
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Conclusions 

Conclusions 

The main conclusions of the present Doctoral Thesis are: 

1. A low dose of 100 mg/kg of CLA, but not 200 and 300 mg/kg, promoted a decrease in body 

weight gain in animals fed a cafeteria diet. The most effective dose of CLA corresponds to 

approximately 0.036% of CLA in the diet. This dose is significantly lower than those previously 

used in preclinical studies (0.5-1.5%) and that the maximum dose recommended for humans.  

2. This low dose of CLA did not result in any metabolic adverse effect. The daily administration 

of 100 mg/kg of CLA did not cause a reduction of lean mass, insulin sensitivity or liver 

functionality, which are the major adverse effects reported for CLA consumption. The use of an 

equal ratio of the CLA isomers c9-t11 and t10-c12 used in this study could also be decisive. 

3. This low dose of CLA improved other important cardiometabolic risk factors associated with 

obesity. The increase in serum concentrations of glucose, insulin, cholesterol, triglyceride, 

diglyceride and total phospholipid induced by cafeteria diet were reverted by the 

administration of this dose of CLA.  

4. The co-administration of different bioactive compounds in a single multifunctional ingredient 

(MIX) promoted a much more effective body weight management than the individual 

administration of CLA. The co-administration of a low dose of CLA (100 mg/Kg)  with the protein 

hydrolysate from chicken feet Hpp11 (55 mg/Kg) and of the flavonoid grape-seed 

proanthocyanidins (25 mg/Kg) and berry anthocyanidins (100 mg/Kg) resulted in a marked 

decrease of body weight and fat mass in cafeteria diet fed rats. 

5. MIX did not cause liver injury and hepatic fat accumulation. This marked decrease in body 

weight did not increase the hepatic fatty acid and triglyceride content, which is one of the major 

observed undesirable effects of fat-burning strategies for weight loss. However, a note of 

caution should be sounded concerning the increased values of esterified cholesterol observed 

in the liver. Although biomarkers of hepatic damage were not affected. 

6. MIX restored serum leptin values and increased the sensitivity of the first-order neurons to 

leptin. This improvement of central leptin sensitivity could be behind the decreased body 

weight and fat mass as well as the increased energy expenditure observed in cafeteria diet fed 

rats supplemented with the MIX. Remarkably, energy intake and intestinal lipid absorption were 

not affected by the dietary incorporation of the MIX. 
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                   Conclusions 

7. MIX changed the metabolic profile of serum. A PLS-DA analysis of serum aqueous and lipid 

phase confirmed changes in the metabolic profile of serum between the animals administered 

vehicle and the rats treated with MIX. 

8. MIX administration produced an improvement of carbohydrates and lipids homeostasis. 

Insulin sensibility improved in the treated animals. Besides, triglycerides, total and free 

cholesterol, oleic acid and polyunsaturated fatty acids in serum and triglycerides, diglycerides, 

linoleic acid and total fatty acid in inguinal adipose tissue were found decreased after MIX 

administration. All these results suggest an improvement in carbohydrates and lipid 

management in the animals administered MIX. 

9. MIX administration exhibited a marked antihypertensive effect. The administration of MIX for 

3 weeks to the animals fed cafeteria diet counteracted the cafeteria hypertensive effect since 

the MIX treated animals showed normotensive values of blood pressure. 

 

 

 

The administration of an equal ratio of the CLA isomers c9-t11 and t10-c12 at low doses to 

cafeteria diet fed rats caused a decrease in body weight gain and improved other 

cardiometabolic risk factors, without presenting any CLA related adverse effects. The body 

weight lowering effect of CLA was higher when it was co-administered with the chicken feet 

hydrolysate Hpp11 and a mixture of grape-seed proanthocyanidins and berry anthocyanidins. 

The effect of MIX on body weight, which could be mediated by an improvement of leptin 

sensitivity, was also not accompanied by any adverse effect. On the contrary, MIX produced an 

improvement on carbohydrate and lipid metabolism and exhibited antihypertensive properties. 

Thus, MIX could be a good candidate to be used as nutraceutical or to be included in functional 

foods for the management of metabolic syndrome.   
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Obesity is defined as an excess of fat accumulation that represents a risk to 

health. It frequently occurs concurrently with other metabolic risk factors 

related to metabolic syndrome (MetS), such as dyslipidaemia, insulin 

resistance or non-alcoholic fatty liver disease (NAFLD). Many food bioactive 

compounds have been identified and further investigated for their ability to 

prevent obesity and its metabolic associated pathologies. Among them, 

conjugated linoleic acid (CLA) is one of the dietary bioactive compounds 

most investigated for weight management, although controversial metabolic 

results have been reported. However, the use of a single family of bioactive 

compounds could not be sufficient to correct multisystemic and highly 

regulated situations such as obesity and its associated metabolic 

pathologies. Thus, the aim of this Thesis was to evaluate whether the 

simultaneous co-administration of different bioactive compounds, as a 

multifunctional ingredient (MIX), including CLA, a mixture of grape-seed 

proanthocyanidins and berry anthocyanins, and the protein hydrolysate 

from chicken feet Hpp11, could reduce obesity and its associated 

cardiometabolic risk factors in a much more effective way than its individual 

administration. Our results demonstrated that the administration of an equal 

ratio of the CLA isomers c9,t11 and t10,c12 at low doses caused a decrease 

in the body weight gain induced by a cafeteria diet, and improved other 

cardiometabolic risk factors, without presenting any CLA-related adverse 

effects. In addition, the body weight lowering effect of CLA was higher when 

it was co-administered with the chicken feet hydrolysate Hpp11 and a 

mixture of proanthocyanidins and anthocyanidins. This anti-obesity effect, 

which could be mediated by an improvement of hypothalamic leptin 

sensitivity, was also not accompanied by any adverse effect of weight loss. 

On the contrary, MIX produced an improvement on glucose and lipid 

metabolism and exhibited antihypertensive properties. Thus, MIX could be a 

good candidate to be used as nutraceutical or to be included in functional 

foods for the management of metabolic syndrome. 

UNIVERSITAT ROVIRA I VIRGILI 
A MULTIFUNCTIONAL INGREDIENT FOR THE MANAGEMENT OF OBESITY AND OTHER CARDIOVASCULAR RISK FACTOR RELATED 
TO METABOLIC SYNDROME 
Miguel Martin González  




