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Abstract

The contents of this thesis are divided into two main parts, each containing several
thematically related results sitting at the intersection of Combinatorics and Number
Theory. The first deals with threshold behavior in discrete random structures and
positional games. In particular, we will study the distribution of solutions to arbitrary
linear systems of equations in the binomial random sets as well as the thresholds for
Szemerédi- and Rado-type properties. We will likewise examine Maker–Breaker games
played on the hypergraph given by such solutions.

The second part of this thesis deals with the extremal behavior of additive struc-
tures, in particular with respect to their doubling and their representation function.
Here we will study a generalization of Sidon sets proposed very recently by Kohayakawa,
Lee, Moreira and Rödl. We will also obtain results in the same vein as the well-known
Frĕıman–Ruzsa Theorem for the case of particularly small doubling. Lastly, we will
study Erdős–Fuchs-type results for infinite sets with near-constant representation func-
tions.

Keywords. Additive Combinatorics, Probabilistic Combinatorics, thresholds for dis-
crete random structures, positional games, Sidon sets, inverse results for sets of small
doubling, representation functions
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Preface

Arithmetic Combinatorics, Combinatorial Number Theory, Structural Additive Theory
and Additive Number Theory are just some of the terms used to describe the vast
field that sits at the intersection of Number Theory and Combinatorics and which
will be the focus of this thesis. Its contents are divided into two main parts, each
containing several thematically related results. The first deals with the question under
what circumstances solutions to arbitrary linear systems of equations usually occur
in combinatorial structures. For this, we will establish threshold behavior in random
sets and positional games. The second deals with the extremal behavior of additive
structures. Here we will study Sidon sets, sets of small doubling and sets with near-
constant representation functions.

Randomness and Games Discrete random structures often posses seemingly con-
tradictory properties that are difficult to obtain via deterministic constructions. One
central point of study have been analogues of some well-established deterministic com-
binatorial results in sparse random structures. In particular, there is great interest in
threshold behavior, that is to decide for which values of that probability a property
does or does not hold asymptotically almost surely. The properties we will be interested
in studying in this chapter relate to the solutions to linear systems of equations.

A first question one might ask concerns the point at which sets of a given size will
typically contain a solution. In Chapter 2, we will address this question and establish
a threshold. We will also study the distribution of the number of solutions at that
threshold, showing that it converges to a Poisson distribution in certain cases. The
parameter of that distribution depends on the volumes of certain convex polytopes
arising from the linear system under study.

Van der Waerden’s Theorem, stating that every finite coloring of the integers con-
tains monochromatic arithmetic progression of arbitrary length, is by some considered
to be the first result in Ramsey Theory. Rado generalized van der Waerden’s result
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by characterizing those linear systems whose solutions satisfy a similar property and
Szemerédi strengthened it to a statement concerning density rather than colorings. In
Chapter 3 we will turn our attention towards versions of Rado’s and Szemerédi’s The-
orem in random sets, extending previous work of Friedgut, Rödl, Ruciński and Schacht
in the case of the former and of Conlon, Gowers and Schacht for the latter to include
a larger variety of systems and solutions.

Chvátal and Erdős suggested studying games in which two opponents take turns
occupying vertices of a hypergraph, with the first player winning if he occupies an
edge and the second winning if he can prevent this. To address an inherent unfairness
in these types of games, the second player is allowed to occupy several elements each
round. These games have deep connections to the theory of random structures and in
Chapter 4 we will build on work of Bednarska and Łuczak to establish the threshold
for how much a large variety of games need to be biased in favor of the second player.
These include games in which the first player wants to occupy a solution to some given
linear system, generalizing the van der Waerden games introduced by Beck.

Additive Structures The focus of the second chapter will be on extremal questions
relating to sets with interesting additive properties. In particular, we will be interested
in bounds or structural descriptions for sets exhibiting some restrictions with regards
to either their representation function or their sumset.

‘Sidon sets’ are sets of integers with pairwise unique differences. Their study also
touches upon the areas of discrete geometry and theoretical computer science and they
have had many practical applications. In Chapter 5, we will study a generalization of
Sidon sets proposed very recently by Kohayakawa, Lee, Moreira and Rödl. In these
sets the pairwise differences of its elements are not just distinct, but in fact far apart
by a certain measure. We will obtain strong lower bounds for such infinite sets using
an approach of Cilleruelo. As a consequence of these bounds, we will also obtain the
best current lower bound for Sidon sets in randomly generated infinite sets of integers
of high density.

One of the central results at the intersection of Combinatorics and Number Theory
is the Frĕıman–Ruzsa Theorem stating that any finite set of integers of given doubling
can be efficiently covered by a generalized arithmetic progression. In the case of partic-
ularly small doubling, more precise structural descriptions exist. In Chapter 6 we will
first study results going beyond Frĕıman’s well-known 3k− 4 Theorem in the integers.
We will then see an application of these results to sets of small doubling in finite cyclic
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groups.
Lastly, we will turn our attention towards sets with near-constant representation

functions. Interest in these functions is connected to Gauss’ circle problem: Hardy
and independently Landau established a lower bound on the difference between the
number of integer lattice points in a circle and the area of that circle. Erdős and
Fuchs obtained a slightly weaker bound for a much more general problem by showing
that representation functions of arbitrary sets of integers cannot be too close to being
constant. In Chapter 7 we will first extend the result of Erdős and Fuchs to ordered
representation functions. We will then address a related question of Sárközy and Sós
regarding weighted representation function.

Notation Most notation will be introduced at the appropriate parts of this thesis.
However, we will use the usual big O and little o notation to state asymptotic results
throughout. More specifically, for any two functions f and g, we will write f = O(g)
if there exists some constant C > 0 such that f ≤ Cg, f = Ω(g) if g = O(f) and
f = Θ(g) if both f = O(g) and f = Ω(g). We also write f = o(g) if f/g tends to
zero and f = ω(g) if g = o(f). We will always write N = {1, 2, 3, . . .} for the positive
integers excluding zero and N0 = N ∪ {0} for those including zero. The set of the
first n integers will be denoted by [n] = {1, . . . , n} and [a, b] = {a, a + 1, a + 2, . . . , b}
will denote the discrete interval of all integers between a and b. The space of integer-
valued matrices with r rows and m columns will be denoted by Zr×m. We will use
bold letter to denote row vectors and a multiplicative dot symbol to denote the matrix
product, occasionally also used to denote the dilate of a set. Calligraphic letters will
usually denote either a hypergraph or a subset of a finite cyclic group. 1S will refer
to the indicator function of a given set S, that is 1S(x) = 1 if x ∈ S and 1S(x) = 0
otherwise. Whenever a new definition or notion is introduced, it will be highlighted like
this throughout the thesis. Proofs of major statements will end with a filled-in black
square and proofs of minor statements in an outlined square.
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Part I

Randomness and Games
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S chur [139] proved one of the earliest results in the field that would later become
known as Ramsey Theory in 1916 by establishing that for n large enough and
any partition of the first n integers [n] = {1, . . . , n} into at most c parts, at

least one of the parts must contain a Schur triple, that is three elements x, y, z ∈ [n]
such that x+ y = z. We will refer to such a partition as a c-coloring and will say that
a triple that is contained in a single part is monochromatic.

Schur’s Theorem. For any c ∈ N there exists some n0 = n0(c) such that any c-
coloring of [n0] must contain a monochromatic Schur triple.

Van der Waerden [157] proved an analogous result for k-term arithmetic progression,
that is for sets of integers that can be written as {a, a+ d, . . . , a+ (k − 1)d} for some
a ∈ Z and d ∈ Z \ {0}.

Van der Waerden’s Theorem. For any k, c ∈ N there exists some n0 = n0(k, c)
such that any c-coloring of [n0] must contain a monochromatic k-term arithmetic pro-
gression.

Note that Schur triples can be considered as solutions to the linear homogeneous
system of equations given by A · xT = 0T where A = (1 1 − 1) ∈ Z1×3 is an integer-
valued matrix. Likewise, k-term arithmetic progression are solutions to such a system
when

A =
( 1 −2 1

1 −2 1
...
1 −2 1

)
∈ Zk−2×k.

This is the framework in which we will be interested throughout this chapter. Let us
say that a solution x = (x1, . . . , xm) to A · xT = 0T for some arbitrary A ∈ Zr×m is
proper if its entries are pairwise distinct, that is xi 6= xj if i 6= j. Using this, we state
the following definition.

Definition. An integer-valued matrix A ∈ Zr×m is partition regular if for any c ∈
N there exists some n0 = n0(A, c) such that any c-coloring of [n0] must contain a
monochromatic proper solution to the system A · xT = 0T .

Rado [112] generalized both the result of Schur and that of van der Waerden by
finding an exact characterization of matrices that are partition regular. In order to
state it, let {ci ∈ Zr : 1 ≤ i ≤ m} be the set of columns of A. We say that A satisfies
the columns condition if there exists a partition of the column indices 1, . . . ,m into sets
C1, . . . , C` such that for si = ∑

j∈Ci cj one has s1 = 0 and for any 2 ≤ i0 ≤ ` the vector
si0 is a rational linear combination of the columns in {cj : j ∈ Ci, 1 ≤ i < i0}.

Christoph Spiegel 12 Randomness and Games



Rado’s Theorem. Any matrix A ∈ Zr×m is partition regular if and only if it satisfies
the columns condition.

A natural question to ask is if the property of being partition regular is merely a
consequence of the fact that any c-coloring must contain a large color class of density
at least 1/c. For Schur triples this is easy to answer: clearly the set of odd integers
in [n] cannot contain such triples despite making up at least half of the elements of
that set. For arithmetic progressions however, the answer is different. Already in 1936
Erdős and Turán conjectured [54] that any set of positive upper density in the integers
must contain 3-term arithmetic progression. Roth proved this statement [117] and
Szemerédi famously extended it to arithmetic progressions of arbitrary length [150].

Szemerédi’s Theorem. For any k ∈ N and ε > 0 there exists some n0 = n0(k, ε) such
that any subset of [n0] of size at least εn0 must contain a k-term arithmetic progression.

We therefore also state the following definition.

Definition. An integer-valued matrix A ∈ Zr×m is density regular if for any ε > 0 there
exists some n0 = n0(A, ε) such that any subset of [n0] of size at least εn0 must contain
a proper solution to the system A · xT = 0T .

Clearly any matrix that is density regular must also be partition regular. Frankl,
Graham and Rödl [58] observed, as an easily obtained consequence of Szemerédis the-
orem, that a matrix A ∈ Zr×m is density regular if and only if it is invariant, that is
A · 1T = 0T .

Recently there has been a lot of interest in studying the ‘common’ behavior of
subsets of combinatorial structures. In our particular case, that means we are interested
in determining what combinatorial properties one can expect most subsets of the first
n integers of a given size to satisfy: do they contain solutions to some given system?
If so, do they satisfy a Rado- or even a Szemerédi-type property?

In order to study these types of questions, we will consider the binomial random set
[n]p in which each element in [n] is chosen independently with probability p. Clearly
the expected size of [n]p is np and any particular set S ⊆ [n] will be sampled by the
binomial random set with probability p|S|(1− p)n−|S|. Here p = p(n) will in fact grow
with n and we will be interested in asymptotic statements as n tends to infinity. A given
property will hold asymptotically almost surely if the probability of [n]p not satisfying it
tends to zero as n tends to infinity.

Christoph Spiegel 13 Randomness and Games



Let us also introduce the notion of thresholds that will be central throughout this
chapter. We will state it for the particular case of the binomial random set, though
analogous definitions exist of course for any parameterized probability distribution over
some combinatorial structure.

Definition. Given some combinatorial property P of the subsets of [n], we say that
p0 = p0(n) is a threshold for P if

lim
n→∞

P ([n]p satisfies P) =

 1 if p = ω(p0),
0 if p = o(p0).

We say that it is sharp if there in fact exist constants c, C > 0 such that

lim
n→∞

P ([n]p satisfies P) =

 1 if p ≥ C p0,

0 if p ≤ c p0.

Roughly speaking, when p is ‘above the threshold’ almost all sets satisfy the prop-
erty P and ‘below the threshold’ almost none of them do. We will refer to the former
as the 1-statement and the later as the 0-statement. Note that monotone properties
always have thresholds in the binomial random set [14].

The binomial random set is the natural analogue to the binomial random graph
G(n, p) on n vertices where each possible edge gets chosen independently with prob-
ability p [47]. As is the case there, results obtained for the binomial random set can
usually be transferred to the setting given by the uniform random set [n]M obtained by
simply taking the uniform distribution over all subsets of [n] of cardinality M . This
transfer will be made explicit in some cases, but in general one may expect to get
the corresponding statement in the uniform setting by simply setting M equal to the
number of expected elements in [n]p, that is M = np.

In Chapter 1 we will establish some necessary preliminaries concerning the general
framework. This means that we will first introduce the notion of abundant matrices,
an extension of the notions of partition and density regularity. We will then establish
results concerning the enumeration of solutions to some given system in the integers.
This will in fact be done not just for the homogeneous case presented in this introduc-
tion, but also for the inhomogeneous case of A · xT = bT for some b 6= 0. We will
furthermore establish a notion of symmetry between solutions as well as a notion of
non-trivial solutions, that is not necessarily proper solutions that can have repeated
entries. We will also introduce two notions of density for integer-valued matrices that
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parallel the notions of density and 2-density of graphs. Lastly, we will state some well-
established results from Probability Theory and then conclude the chapter by surveying
some results relating to the extremal question of solution-free sets.

In Chapter 2 we will establish the threshold for the property that the binomial
random set contains a solution to some arbitrary given system. This threshold will not
be sharp and we will in fact show that in particular cases the number of solutions at
the thresholds follows a Poisson distribution whose parameter depends on the volumes
of certain convex polytopes associated with the system as well as its symmetry. These
results of this chapter will be based on the paper ‘Threshold functions and Poisson
convergence for systems of equations in random sets’, which is joint work with Juanjo
Rué and Ana Zumalacárregui [122].

In Chapter 3 we turn our attention towards thresholds for the property of satisfying a
Rado- or Szemerédi-type statement. We will extend previous results of Friedgut, Rödl,
Ruciński and Schacht concerning the threshold for a Rado-type property to include
non-trivial solutions. The 1-statement of that proof will be based on a hypergraph
container approach due to Nenadov and Steger, resulting in a much shorter proof. We
will also extend results of Conlon, Gowers and Schacht concerning a Szemerédi-type
property for density regular matrices to the broadest class of matrices possible, that of
abundant matrices, again including non-trivial solutions. The results of this chapter
will be based on the paper ‘A Note on Sparse Supersaturation and Extremal Results
for Linear Homogeneous Systems’ [144].

Lastly, in Chapter 4 we have a change of pace and play some games: the notion
of biased Maker-Breaker games was introduced by Chvátal and Erdős and has since
become central to the field of positional games. As will become apparent in this chapter,
they have deep connections to the theory of random structures. The main questions
is to determine the smallest bias needed by Breaker to ensure that Maker ends up
with an independent set in a given hypergraph. Building on a result of Bednarska
and Łuczak concerning H-building games, we prove matching general winning criteria
for Maker and Breaker when the game hypergraph satisfies certain ‘container-type’
regularity conditions. This allows one to study hypergraph generalizations of the H-
building games as well as a generalization of the van der Waerden games introduced by
Beck [6]. These results will be based on the paper ‘On the optimality of the uniform
random strategy’, which is joint work with Christopher Kusch, Juanjo Rué and Tibor
Szabó [101].

Christoph Spiegel 15 Randomness and Games



Chapter 1

Preliminaries for Linear Systems

For a given integer-valued matrix A ∈ Zr×m and a given integer-valued vector b ∈ Zr,
let us denote the set of all integer-valued solutions to the A · xT = bT by

S(A,b) = {x ∈ Zm : A · xT = bT} (1.1)

and the set of all proper solutions by

S0(A,b) = {x = (x1, . . . , xm) ∈ S(A,b) : xi 6= xj for i 6= j}. (1.2)

Let us make a trivial observation: for any invertible matrix P ∈ Zr×r, we clearly
have S(P · A,P · b) = S(A,b) as well as S0(P · A,P · b) = S0(A,b). We may
therefore freely apply elementary row operations, that is multiplying a row by a non-
zero constant, adding a row to another row and switching two rows, to any given
matrix without affecting the solution space. In general, none of the properties that
we will introduce in this chapter will be affected by such operations. When it comes
to elementary column operations, this of course no longer holds. We will however
occasionally assume, without loss of generality, that the columns are ordered in an
opportune way.

1.1 The notion of abundant matrices

We have already introduced the notion of partition and density regular matrices in
the introduction of this chapter. Let us now give an even broader notion that, as we
will later show, encompasses both of the previous ones and in some sense describes the
largest class of matrices creating a solution space without ‘degenerate dependencies’.
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Chapter 1. Preliminaries for Linear Systems

In order to state it, let AQ denote the matrix obtained from A by keeping only the
columns indexed by Q ⊆ {1, . . . ,m}. Here A∅ is the empty matrix of rank 0. We also
denote the rank of A as rk(A).

Definition 1.1. An integer-valued matrix A ∈ Zr×m is

(i) positive if there are solutions whose entries lie in the positive integers, that is

S(A,0) ∩ Nm 6= ∅

and for any two distinct column indices i1, i2 ∈ {1, . . . ,m} there exists a solution
x = (x1, . . . , xm) ∈ S(A,0) satisfying xi1 6= xi2,

(ii) abundant if A has rank strictly greater than 0 and every matrix obtained from A

by deleting at most two columns must be of the same rank as A, that is

rk(AQ) = rk(A) > 0

for all Q ⊆ {1, . . . ,m} satisfying |Q| ≥ m− 2.

Note that, in order for a matrix to be abundant, we must have m ≥ 3. In fact,
the number of columns of an abundant matrix must always be at least 2 more than its
rank. In order for a matrix to be non-abundant, it must have non-zero rank.

The importance of the notion of positivity is easy to justify: firstly, if there are two
distinct column indices such that any solution must have the same entry at those two
indices, then one should instead consider the matrix obtained by contracting the two
corresponding columns. Note that this condition is sometimes stated separately from
positivity in the literature and referred to as irredundancy. Here we will consider it as
part of positivity to keep the list of matrix properties small.

Regarding the requirement that S(A,0) ∩ Nm 6= ∅: if the homogeneous solution
space is disjoint from the positive quadrant in which we are interested, then either it is
contained in a subspace of Zm or the number of solutions in [n] to the inhomogeneous
system will be finitely bounded for each b independent of n. The later case is clearly
not of interest when we let n go to infinity. In the former case there must exist at least
one i ∈ {1, . . . ,m} such that xi = bi for any x = (x1, . . . , xm) ∈ S(A,b), so that the
behavior of any random process or game is disproportionately determined by where bi
lands.

The second notion, that of abundancy might initially be somewhat obscure, but we
will see in the following sections that it is of great importance. Non-abundant systems
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Chapter 1. Preliminaries for Linear Systems

will have certain trivial behavior with regards to the properties studied here. The
following simple lemma establishes a central aspect of this.

Lemma 1.2. For any positive and non-abundant matrix A ∈ Zr×m, there exists some
invertible matrix P ∈ Zr×r and distinct column indices i1, i2 ∈ {1, . . . ,m} such that the
matrix P · A contains a row a = (a1, . . . , am) satisfying ai = 0 for all i ∈ {1, . . . ,m} \
{i1, i2} as well as ai1 , ai2 6= 0 and ai1 + ai2 6= 0.

Proof. From the non-abundancy, it follows that there exist two column indices 1 ≤
i1, i2 ≤ m such that for Q = {1, . . . ,m} \ {i1, i2} we get rk(AQ) < rk(A). It follows
that there exist a set of basic row transformations and a row a = (a1, . . . , am) in the
transformed matrix such that aQ consists only of 0 entries and a can be taken as a
basis vector of the space spanned by the rows of A. As rk(AQ) < rk(A), we cannot
have a = 0. If, without loss of generality, ai2 = 0, then any solution x = (x1, . . . , xm) ∈
S(A,b) satisfies ai1xi1 = 0, that is xi1 = 0 since ai1 6= 0, contradicting the assumption
that A is positive. If ai1 + ai2 = 0 then any solution would satisfy ai1(xi1 − xi2) = 0,
that is in particular xi1 = xi2 since ai1 , ai2 6= 0, again contradicting the assumption
that A is positive.

Partition and density regular matrices are positive by definition. The next state-
ment establishes that they are also abundant.

Lemma 1.3. Any partition regular matrix A ∈ Zr×m is abundant.

Proof. Assume that A is non-abundant. By Lemma 1.2, A can be transformed into a
matrix whose last row consists only of two non-zero entries ai1 , ai1 satisfying aii1 , aii2 6=
0 and aii1 + aii2 6= 0. We will without loss of generality assume that {i1, i2} = {1, 2}.
By Rado’s Theorem, A must fulfill the columns condition, so let {ci ∈ Zr : 1 ≤ i ≤ m}
be the set of columns of A, C1, . . . , C` the partition of the column indices 1, . . . ,m
such that for si = ∑

j∈Ci cj one has s1 = 0 and for any 2 ≤ i0 ≤ ` the vector si0 is a
rational linear combination of the columns in {cj : j ∈ Ci, 1 ≤ i < i0}. Since s1 = 0,
we may assume that the columns are arranged such that the last entry of the first
column is zero. However, since we established that a1, a2 6= 0, a1 + a2 6= 0 and that all
other entries of that row are zero, there now must exist some 2 ≤ i0 ≤ ` such that the
last entry in si0 is non-zero while the last entries in s1, . . . , si0−1 are zero, violating the
requirement that si0 is a linear combination of the previous columns. It follows that A
cannot have been partition regular.
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density regular
x+ y = 2z

partition regular
x+ y = z

positive and
abundant
x+ y = rz

Figure 1.1: Illustrating the relation of the notions of density
regularity, partition regularity, positivity and abundancy for
integer-valued matrices.

Let us consider some examples to illustrate these three categories, see Figure 1.1:
A = (1 1 − 2), that is the matrix associated with 3-term arithmetic progressions,
is density regular by Roth’s Theorem. It therefore is also partition regular, which
was previously established by van der Waerden. A = (1 1 − 1), that is the matrix
associated with Schur triples, is not density regular, but by Schur’s Theorem it is still
partition regular. Lastly, A = (1 1 − r), that is the matrix associated with r-sums,
is neither partition nor density regular when r ≥ 3, but it is clearly still abundant.

1.2 Counting solutions in the inhomogeneous case

We will establish two basic bounds for the number of proper solutions. Given any
matrix A ∈ Zr×m and vector b ∈ Zr, we have the upper bound

∣∣∣S0(A,b) ∩ [n]m
∣∣∣ ≤ ∣∣∣S(A,b) ∩ [n]m

∣∣∣ ≤ nm−rk(A). (1.3)

Indeed, taking a subset Q ⊆ {1, . . . ,m} of the column indices with rk(A) = |Q| =
rk(AQ) and setting the m − rk(A) entries in Q of a solution x ∈ S(A,b) arbitrarily,
the entries in Q are determined uniquely.

The following lemma, the proof of which is based on a construction by Janson
and Ruciński [88], establishes that Equation (1.3) is tight up to a constant factor for
positive matrices.
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Lemma 1.4. For every positive matrix A ∈ Zr×m and vector b ∈ Zr satisfying
S(A,b) 6= ∅ there exist constants c0 = c0(A,b) > 0 and n0 = n0(A,b) ∈ N such
that for every n ≥ n0

|S0(A,b) ∩ [n]m| ≥ c0 n
m−rk(A). (1.4)

Proof. We need to construct many proper solutions to A · xT = bT in [n]. First we
prove that there exists at least one to the homogenous system. Since A is positive, we
can take a solution x∗ = (x∗1, . . . , x∗m) ∈ S(A,0) ∩ Nm that minimizes the number of
pairs of equal entries. We claim that x∗ is proper.

Assume to the contrary that there are two column indices, without loss of generality
1 and 2, such that the corresponding entries of x∗ are equal, that is x∗1 = x∗2. If there
was a solution y = (y1, . . . , ym) ∈ S(A,0) ∩ Nm with y1 6= y2, then consider

w = x∗ + αy ∈ S(A,0) ∩ Nm,

where α ∈ N\{(x∗r−x∗s)/(ys− yr) : 1 ≤ r, s ≤ m, ys 6= yr} is chosen arbitrarily. By the
definition of α, for all r, s with x∗r 6= x∗s we also have wr 6= ws, furthermore w1 6= w2.
Consequently w has less pairs of equal entries than x∗, contradicting the choice of x∗.
It follows that if x∗ is not proper, then for every positive solution y ∈ S(A,0) ∩ Nm

we must have y1 = y2. This contradicts the assumption that A is positive, since there
must exist some vector z = (z1, . . . , zm) ∈ S(A,0) satisfying z1 6= z2. We may add
some positive y a sufficient number of times to z to obtain a vector x in Nm satisfying
x1 6= x2, a contradiction.

It follows that there is a proper solution x∗ ∈ S0(A,0) ∩ Nm. To construct many
proper positive solutions to the inhomogeneous system A ·xT = bT in [n], we choose a
solution x̂ = (x̂1, . . . , x̂m) ∈ S(A,b) as well as m−rk(A) linearly independent solutions
x1, . . .xm−rk(A) ∈ S(A,0). Let s∗ and ŝ be the maximum absolute value of the entries
of x∗ and x̂, respectively, and s the maximum absolute value of any entry in any of the
vectors x1, . . . ,xm−rk(A). Define a(n) = bn/(s∗ + 1)c and set

Sn =

x̂ + a(n) x∗ +
m−rk(A)∑
i=1

wi xi : wi ∈ Z, |wi| <
a(n)− 2ŝ

2s(m− rk(A))

 ⊆ Zm.
Since A · x̂T = bT and A · x∗T = A · xTi = 0T , we have Sn ⊆ S(A,b). Let x =
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(x1, . . . , xm) ∈ Sn and observe that for n large enough

xi > x̂i + a(n)x∗i − (m− rk(A)) s a(n)− 2ŝ
2s(m− rk(A)) ≥ −ŝ+ a(n)− a(n)

2 + ŝ ≥ 1

as well as

xi < x̂i + a(n)x∗i + (m− rk(A)) s a(n)− 2ŝ
2s(m− rk(A))

≤ ŝ+ n
s∗

s∗ + 1 + n
1

2(s∗ + 1) − ŝ ≤ n

for every i ∈ {1, . . . ,m}. Consequently Sn ⊆ [n]m for n large enough.
Now assume without loss of generality that x∗1 < · · · < x∗m. It follows that

xi < x̂i + a(n)x∗i + (m− rk(A)) s a(n)− 2ŝ
2s(m− rk(A))

= (x̂i − ŝ) + a(n)
(
x∗i + 1

2

)
≤ (x̂i+1 + ŝ) + a(n)

(
x∗i+1 −

1
2

)
= x̂i+1 + a(n)x∗i+1 − (m− rk(A)) s a(n)− 2ŝ

2s(m− rk(A)) < xi+1

for every 1 ≤ i ≤ m− 1, so x is proper. Therefore Sn ⊆ S0(A,b) ∩ [n]m.
Lastly observe that since x1, . . .xm−rk(A) are linearly independent, Sn contains

(
2
⌊

a(n)− 2ŝ
2s(m− rk(A))

⌋
+ 1

)m−rk(A)

≥

 1/(4s∗ + 4)
s
(
m− rk(A)

) n
m−rk(A)

elements, where the lower bound holds for n large enough. It follows that for

c0 = c0(A,b) =
 1/(4ŝ0 + 4)
s
(
m− rk(A)

)
m−rk(A)

< 1

and n0 = d4 ŝ (ŝ0 + 1)e we have |S0(A,b) ∩ [n]m| ≥ c0 n
m−rk(A) for all n ≥ n0.

1.3 Counting solutions precisely in the homogeneous case

For most of the applications in this chapter, the fact that

| S0(A,b) ∩ [n]m| = Θ(nm−rk(A)), (1.5)
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as established by Equation (1.3) and Lemma 1.4 in the previous section, will be suf-
ficient. In Chapter 2 however, we will be interested in determining the precise limit
distribution of the number of solutions in the binomial random set for certain values of
p. Here, we will restrict ourselves to the homogeneous case, that is b = 0. We face two
challenges: first, we need to determine the exact leading coefficient, that is we need to
know the limit of | S0(A,b)∩ [n]m|/nm−rk(A) as n tends to infinity. Second, we need to
establish a notion of when two solutions that are the same up to permutation of the
vector entries are in fact ‘the same’ solution. We start with the former of the two.

In the homogeneous case, one can determine the precise leading coefficient using
Ehrhart’s Theory. We will introduce the necessary essentials of this theory in order to
state our result, but a good basic reference for the theory of convex polytopes is [161].
For further results on lattice points in rational polytopes, see also [9, 38].

A convex polytope is the convex hull of a finite set of points in the d-dimensional
space Rd. It can likewise be described as the bounded intersection of a finite set of
half-spaces. We say that a convex polytope is rational (respectively integral) if its corner
points have rational (respectively integer) coordinates. Every rational polytope has a
matrix representation of the form

{x ∈ Rd : M · xT ≥ bT}, M ∈ Zm×d, b ∈ Zd (1.6)

for some m ∈ N. Note that the inequalities can be easily turned into equalities through
the use of slack variables. The relative dimension dim(P) of a polytope P is the dimen-
sion of the affine space

spanP = {x + λ(y− x) : x,y ∈ P , λ ∈ R} . (1.7)

Note that this dimension is not necessarily the same as d, but can in fact be smaller. We
let Vol (P) be the volume of P as embedded in this affine space and n·P = {np : p ∈ P}
the n-th dilate of the polytope.

Ehrhart’s Theorem [44], see also [106], gives a precise description of the number of
integer points on the n-th dilate of a rational polytope: the quantity |n · P ∩ Zn| is
given by a pseudo-polynomial in n of degree dim(P). Here a pseudo-polynomial is a
function p(n) = c0(n) + c1(n)n+ . . . ct(n)nt where the functions c0(n), c1(n), . . . , ct(n)
are periodic.

Ehrhart’s Theorem. Let P be a d-dimensional convex polytope. If P is integral, then
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∣∣∣n · P ∩ Zd∣∣∣ is a polynomial in n of degree dim(P). If P is rational, then
∣∣∣n · P ∩ Zd∣∣∣

is a pseudo-polynomial in n of degree dim(P).

One can show that the leading coefficient in both cases is equal to Vol (P). As
an immediate corollary, for a rational polytope P of dimension dim(P) embedded in
Rdim(P), we have

∣∣∣n · P ∩ Zdim(P)
∣∣∣ = Vol (P)ndim(P)(1 + o(1)). (1.8)

Observe that for any positive integer-valued matrix A ∈ Zr×m, the system of equa-
tions A · xT = 0T in Rn together with the restrictions that x ∈ [0, 1]m defines a
non-empty, convex and rational polytope of relative dimension m − rk(A). Note that
it is just the intersection of the m − rk(A)-dimensional solution space with the m-
dimensional unit hypercube in Rn. We will denote this polytope by PA.

Lemma 1.5. For any positive matrix A ∈ Zr×m we have

∣∣∣S0(A,0) ∩ [n]m
∣∣∣ = Vol (PA)nm−rk(A)(1 + o(1)). (1.9)

Proof. The number of lattice points in n ·PA is precisely the number of (not necessarily
proper) solutions x ∈ [n]m to A · xT = 0T . As the intersection of the m − rk(A)-
dimensional solution space and the m-dimensional unit hypercube, the polytope PA
has relative dimension m − rk(A). By Equation (1.8) the number of lattice points in
the dilate n · PA is simply Vol (PA)nm−rk(A)(1 + o(1)).

Let us to therefore consider the set of solutions x ∈ [n]m to A · xT = 0T with
some repeated coordinates and show that they have a negligible contribution to the
total number of solutions. These solutions belong to the intersection of PA with a
subspace defined by the repetitions of coordinates. Since A is positive and abundant,
Lemma 1.4 tells us that there exists at least one solution in the integers with no repeated
coordinates and therefore also a point in PA with no repeated entries; this implies that
there is no subspace defined by the repetition of coordinates containing all of PA.
Therefore, the polytope resulting from the intersection has dimension strictly smaller
than m− rk(A). The number of solutions with those particular repeated coordinates is
therefore O(nm−rk(A)−1) = o(nm−rk(A)). As the number of possible repeated coordinates
is bounded by the number of partitions of {1, . . . ,m}, the total number of solutions
with repeated coordinates is o(nm−rk(A)) and the statement follows.
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Let us now turn our attention to the fact that two proper solutions which are
counted as separate by Ehrhart’s Theory can be essentially the same when considering
symmetry. As an easy example for this, consider that 3-term arithmetic progressions
are given by x1 + x3 = 2x2 for which (1, 2, 3) and (3, 2, 1) both are proper solutions
that one might consider as essentially identical. However the situation is not quite as
simple as grouping solutions together if they are identical up to permutation. Consider
for example the system given by

x1 + x2 + x3 = x4 + x5 + x6 + x7 (1.10)

for which both (2, 3, 100; 1, 4, 49, 51) and (1, 4, 100; 2, 3, 49, 51) are again proper solu-
tions. In this case, one should reasonably consider them to be distinct because the
permutation did not just occur between coordinates with identical coefficients and
hence cannot be applied to all solutions. The semicolons in the vector representations
delineating the coordinates with factor −1 from those with factor 1 were added to
emphasize that fact.

In order to deal with this distinction, let Sym(m) denote the symmetric group on m
elements and xπ the vector obtained by permuting the coordinates of x ∈ Zm according
to π ∈ Sym(m). We will use the following definition when deciding if two solutions are
distinct. Note that it correctly applies to both of the previously stated examples.

Definition 1.6. The set of symmetries of a matrix A ∈ Zr×m is defined as

Σ(A) = {π ∈ Sym(m) : x ∈ S(A,0) if and only if xπ ∈ S(A,0)} (1.11)

and the cardinality of this set is its symmetry constant σ(A). We furthermore say that
two solutions x,y ∈ S(A,0) are distinct if and only if x 6= yπ for all π ∈ Σ(A).

The following establishes an easy characterization of the symmetry constant relying
solely on the matrix A without requiring an understand of its solution space. In order
to state it, let Aπ denote the matrix obtained by permuting the columns of a matrix
A ∈ Zr×m according to some π ∈ Sym(m).

Lemma 1.7. For any matrix A ∈ Zr×m we have

Σ(A) =
{
π ∈ Sym(m) : ∃ invertible P ∈ Zr×r s.t. Aπ = P · A

}
. (1.12)

Proof. The inequality Σ(A) ⊇ {π ∈ Sym(m) : Aπ = P · A} trivially holds. In order to
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show equality, note that for every permutation π ∈ Σ(A) we have ker(A) ⊆ ker(Aπ−1)
and since both kernels have dimension m − rk(A) we have equality. The kernel of a
matrix is the orthogonal of the span of its rows and therefore the rows of Aπ−1 can be
obtained by linear transformation of the rows in A.

We now have the following statement as an immediate consequence of Lemma 1.5
and the definition of the symmetry constant.

Corollary 1.8. For any positive matrix A ∈ Zr×m there are

Vol (PA)
σ(A) (1 + o(1))nm−rk(A) (1.13)

distinct proper solutions to A · xT = 0T with entries in [n].

1.4 Counting non-proper solutions

For singe-line equations, that is when r = 1, it is common to not just limit oneself to
proper solutions, but to also consider solutions which may have repeated entries. Here
one needs to be precise what type of solutions are allowed: in the case of arithmetic
progressions for example, the only non-proper solutions are those which are constant,
that is (1 1 − 2) · (c, c, c)T = 0 for any c ∈ N. Clearly those should not be permitted.
However, in the case of the obstruction that defines Sidon sets, see Section 1.7, 3-term
arithmetic progressions constitute solutions that are commonly considered to be valid,
for example (1 1 − 1 − 1) · (1, 3, 2, 2)T = 0. On the other hand, (1 1 − 1 − 1) ·
(c1, c2, c1, c2)T = 0 clearly holds for any c1, c2 ∈ N and such solutions should reasonably
be omitted.

Ruzsa [124] gave a formal definition for single line equations that covers these
examples. in this chapter we will use a natural extension of this notion for arbitrary
r. Given a vector x ∈ Zm, let

p(x) =
{
{1 ≤ j ≤ m : xi = xj} : 1 ≤ i ≤ m

}
denote the set partition of the column indices {1, . . . ,m} indicating the repeated entries
in x. Note that for x ∈ S0(A,b) we have p(x) = {{1}, . . . , {m}}. Given some set
partition p of {1, . . . ,m}, let Ap denote the matrix obtained by summing up the columns
of A according to p, that is for p = {T1, . . . , Ts} such that min(T1) < · · · < min(Ts) for
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some 1 ≤ s ≤ m and ci the i-th column vector of A for every 1 ≤ i ≤ m, we have

Ap =
( ∑

i∈T1
ci

∣∣∣∣ ∑
i∈T2

ci
∣∣∣∣ · · · ∣∣∣∣ ∑

i∈Ts
ci
)
.

Note that the assumption min(T1) < · · · < min(Ts) ensures that this notion is well-
defined and that Ap = A for p = {{1}, . . . , {m}}. Using these definitions we can now
define when a solution is considered to be non-trivial.

Definition 1.9. A solution x ∈ S(A,b) is non-trivial if rk(Ap(x)) = rk(A).

We denote the set of all non-trivial solutions by

S1(A,b) = {x ∈ S(A,b) : rk(Ap(x)) = rk(A)}, (1.14)

that is we have S(A,b) ⊇ S1(A,b) ⊇ S0(A,b). Other notions of what constitutes
a non-trivial solution are possible and make sense in particular contexts, but this
covers the widest range of applications while still extending the notion of Ruzsa and is
therefore the one we will use throughout this part of the thesis.

Now let
P(A) = {p : rk(Ap) = rk(A)} (1.15)

denote the family of all set partitions of the column indices {1, . . . ,m} that could stem
from non-trivial solution. The following lemma gives us the necessary tool to handle
non-trivial solutions with repeated entries.

Lemma 1.10. For every A ∈ Zr×m, b ∈ Zr, p ∈ P(A) and T ⊂ N we have

∣∣∣{x ∈ S1(A,b) ∩ Tm : p(x) = p}
∣∣∣ ≤ ∣∣∣S0(Ap,b) ∩ T |p|

∣∣∣. (1.16)

Proof. Write p = {T1, . . . , Ts} for some 1 ≤ s ≤ m such that min(T1) < · · · < min(Ts).
Let Q = {min(T1), . . . ,min(Ts)}. Now for every x = (x1, . . . , xm) ∈ S1(A,b) ∩ Tm

such that p(x) = p, we would have xQ = (xmin(T1), . . . , xmin(TS)) ∈ T |p| as well as
xQ ∈ S(Ap,b) as can be readily seen by the definition of Ap. Since p = p(x), the
vector xQ would furthermore be proper, so that xQ ∈ S0(Ap,b)∩T |p|. The map taking
x ∈ S1(A,b)∩Tm with p(x) = p} to xQ ∈ S0(Ap,b)∩T |p| is clearly injective by design,
proving the desired statement.

In the applications presented later on, whenever we want to prove the existence of
a non-trivial solution, we will actually always prove the existence of a proper solution.
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Whenever we want to prove the absence of a non-trivial solution, we will simply prove
the absence of proper solutions to Ap for every partition p coming from some non-trivial
solution x ∈ S1(A,b). Note that there is only a finite number of such partitions. Lastly,
let us note that if A is positive and x ∈ S(A, 0)∩Nm, then Ap[x] is clearly also positive.
However, the fact that A is abundant does not imply that Ap(x) needs to be abundant
as well, as is illustrated by the matrix A = (1 1 − 3) and the solution x = (3, 3, 2).

1.5 Two notions of density

Let us introduce two notions of density for abundant matrices that parallel those of
the maximum density and maximum 2-density of a graph. In order to state them, let
rQ = rQ(A) = rk(A) − rk(AQ) for any set of column indices Q ⊆ {1, . . . ,m} where
Q = {1, . . . ,m} \Q denotes the complement of Q in {1, . . . ,m}.

Definition 1.11. For any positive and abundant matrix A ∈ Zr×m, its maximum density
is given by

m(A) = max
Q⊆[m]
2≤|Q|

|Q|
|Q| − rQ

(1.17)

and its maximum 1-density is given by

m1(A) = max
Q⊆[m]
2≤|Q|

|Q| − 1
|Q| − rQ − 1 . (1.18)

Furthermore, we say that A is strictly balanced or strictly 1-balanced if the maximum in
m(A) or respectively m1(A) is exclusively attained by Q = {1, . . . ,m}.

The later of these two parameters was previously introduced by Rödl and Ru-
ciński [115] for partition regular matrices. The intuition behind why these parameters
are relevant is similar to that in the graph case: the probability p = n−1/m(A) roughly
describes the point where one would expect the binomial random set to go from not
containing any solutions to A · xT = 0T to containing few. In fact, this will precisely
be the point of Chapter 2. At p = n−1/m1(A), more solutions will be present, but they
will still be very isolated, that is in expectation each element in the binomial random
set should not be part of more than one solution. This parameter will be relevant in
Chapter 3 and Chapter 4.

We have not yet shown that both parameters are indeed well-defined, that is |Q| −
rQ − 1 > 0 for all Q ⊆ {1, . . . ,m} satisfying |Q| ≥ 2 if A is abundant. We also would
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like to give some intuition as to why the maximization over Q is needed. In order to
do both, we will first develop the notion of an induced submatrix through the following
lemma. It was again originally introduced (though not explicitly referred to as such)
by Rödl and Ruciński [115] for partition regular matrices. Their proofs, adapted for
the full generality of abundant matrices and the inhomogeneous case, are included here
for completeness. For any matrix A ∈ Zr×m and selection of row indices R ⊆ [r], we
let AR denote the matrix obtained by only keeping the rows indexed by R.

Proposition 1.12. For every integer-valued matrix A ∈ Zr×m, b ∈ Zr and Q ⊆
{1, . . . ,m} satisfying rQ > 0 there exists an invertible matrix P = P (A,Q) ∈ Zr×r

such that the integer-valued matrix

B = B(P,A,Q) = (P ·A)Q[rQ] ∈ Z
rQ×|Q| (1.19)

and the integer-valued vector

c = c(P,b) = (P · b)[rQ] ∈ ZrQ (1.20)

satisfy the following:

(i) We have rk(B) = rQ and rk((P · A)Q[r]\[rQ]) = rk(A)− rQ.
(ii) For x ∈ S0(A,b) we have xQ ∈ S0(B, c).
(iii) For x ∈ S1(A,b) we have xQ ∈ S1(B, c).
(iv) For Q′⊆{1, . . . , |Q|} there exists Q′′⊆Q with |Q′′|= |Q′| and rQ′′(A) = rQ′(B).
(v) If A is positive or abundant, then so is B.

Note that, for any A and Q, there can of course exist multiple P satisfying these
properties. We will simply fix an arbitrary such P = P (A,Q) and denote B(P,A,Q)
by B(A,Q) as well as c(P,b) by c(A,Q,b). The following block decomposition demon-
strates the situation for Q = {1, . . . , |Q|}.

P · A =
 B 0
X Y

 ]
rQ
∣∣∣]

r − rQ
∣∣∣ (1.21)

It will in general be helpful to keep Equation (1.21) in mind.

Proof of Proposition 1.12. We construct P through a standard Gaussian elimination,
using elementary row operations. We denote the rows of A by a1, . . . , ar. Among
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the rows aQ1 , . . . , aQr of AQ we choose rk(AQ) linearly independent vectors and express
each of the remaining r− rk(AQ) vectors as a rational linear combination of this basis.
Multiplying with the denominators we create integer linear combinations for each of
these rows and then we perform the corresponding elementary row operations for each
row in A. This turns each entry in the Q-columns of these r − rk(AQ) rows into a
0. Hence the dimension of these rows must be rk(A) − rk(AQ) = rQ. We identify a
set of rQ linearly independent rows and permute them to the top of the matrix, hence
obtaining the promised block decomposition in Equation (1.21).

To prove (i), write Y = (P · A)Q[r]\[rQ] as in the block decomposition and note that the
rank of B is rQ by construction and that

rk(Y ) = rk((P · A)Q) = rk(AQ) = rk(A)− rQ (1.22)

by definition of rQ.

To prove both (ii) and (iii), note that from the block decomposition it easy to see that
for any solution x ∈ S(A,b) = S(P · A,P · b) we have

(P · A)[rQ] · xT = (P · bT )[rQ] = cT (1.23)

and since (P · A)Q[rQ] is the zero-matrix, it follows that xQ ∈ S(B, c), establishing (ii).
Again referring to the block decomposition, it is easy to see that if rk(Bp(xQ)) < rk(B),
then we must in fact also have rk(Ap(x)) < rk(A), establishing (iii).

To prove (iv), let us assume without loss of generality that the columns are permuted
such that Q = {1, . . . , |Q|} so that we may simply choose Q′′ = Q′. From (i) we
know that we can choose a basis of the vectors space generated by the rows of A that
consists of rQ rows a1, . . . , arQ from (P ·A)[rQ] and rk(AQ) rows arQ+1, . . . , ark(A) from
(P · A)[r]\[rQ]. By construction the vectors aQrQ+1, . . . , a

Q
rk(A) are linearly independent

from each other, so since Q′′ ⊆ Q the vectors aQ′′rQ+1, . . . , a
Q′′

rk(A) are as well, implying
rk((P · A)Q′′[r]\[rQ]) = rk((P · A)Q). Note that again by construction any linear combi-
nation of the vectors aQ′′1 , ..., aQ′′rQ

has the last |Q| entries equal to zero and hence
cannot be expressed as a linear combination of aQ′′rQ+1, ..., aQ′′rk(A), as aQrQ+1, ..., aQrk(A)

were linearly independent. It follows that we can add rk((P · A)Q′′[rQ]) = rk(BQ′) linearly
independent vectors from aQ′′1 , . . . , aQ′′rQ

to the rk((P · A)Q) = rk(AQ) linearly indepen-
dent vectors aQ′′rQ+1, . . . , a

Q′′

rk(A) to form a basis of the row space of rk(AQ′′). This implies
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that rk(AQ′′) = rk(AQ) + rk(BQ′) from which we can conclude that

rQ′′(A) = rk(A)− rk(AQ′′) = rQ + rk(AQ)− rk(AQ′′)

= rk(B)− rk(BQ′) = rQ′(B)

as desired.

Lastly, to prove (v) we note that the aspect of positivity immediately follows from
(ii). Regarding abundancy, we again invoke the block composition to see that if there
is some set of column indices Q′ ⊆ Q, where without loss of generality we assume
that Q = {1, . . . , |Q|}, satisfying |Q′| ≥ |Q| − 2 as well as rk(BQ) < rk(B), then
Q′′ = Q′ ∪ {|Q|+ 1, . . . ,m} must satisfy both |Q′′| ≥ m− 2 and rk(AQ′′) < rk(A).

The following corollary to this lemma will now allow us to handle the case when
a given matrix is, depending on the context, not strictly balanced or not strictly 1-
balanced.

Corollary 1.13. For every positive and abundant A ∈ Zr×m there exist Q,Q1 ⊆
{1, . . . ,m} such that for B = B(A,Q), B1 = (A,Q1), c = c(A,Q,b) and c1 =
c(A,Q1,b) as given by Proposition 1.12 and for any subset T ⊆ N we have

(1) B and B1 are abundant and positive,
(2) B is strictly balanced and satisfies m(B) = m(A),
(3) B1 is strictly 1-balanced and satisfies m1(B1) = m1(A),
(4) if S0(B, c) ∩ Tm = ∅ or S0(B1, c1) ∩ Tm = ∅ then S0(A,b) ∩ Tm = ∅ and
(5) if S1(B, c) ∩ Tm = ∅ or S1(B1, c1) ∩ Tm = ∅ then also S1(A,b) ∩ Tm = ∅.

Proof. We start with the case of strictly balanced. Choose Q ⊆ {1, . . . ,m} such that
|Q|/(|Q| − rQ) = m(A) and |Q| is minimal with this property. By (v) we know that
B is positive and abundant. Assume that there exists Q′ ( {1, . . . , |Q|} such that
|Q′|/(|Q′|−rQ′(B)) ≥ |Q|/(|Q|−rQ−1). By (iv) there must exist Q′′ ⊆ {1, . . . ,m} with
|Q′′| = |Q′| < |Q| such that rQ′′(A) = rQ′(B). It follows that |Q′′|/(|Q′′| − rQ′′(A)) ≥
m1(A), giving us a contradiction to our choice of Q. For the case of strictly 1-balanced,
we simply choose Q ⊆ {1, . . . ,m} such that (|Q| − 1)/(|Q| − rQ − 1) = m1(A) and |Q|
is again minimal with this property and proceed exactly the same way as before. From
this (1), (2) and (3) immediately follow. Finally, (4) readily follows from (ii) and (5)
from (iii).
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The following lemma now establishes some results regarding the rank of induced
submatrices of abundant matrices. It also verifies that the two notions of density are
indeed well-defined for abundant matrices.

Lemma 1.14. For any abundant matrix A ∈ Zr×m and Q ⊆ {1, . . . ,m} the following
holds: if |Q| ≥ 3 then |Q| − rQ − 1 ≥ 1 and if |Q| ≤ 2 then rQ = 0.

Proof. If |Q| ≤ 2 then, since A is abundant, deleting the columns in Q does not reduce
the rank of A. Hence rk(AQ) = rk(A) and therefore rQ = 0. Now if |Q| ≥ 3 and
rQ = 0, then trivially |Q|−rQ−1 ≥ 2. If |Q| ≥ 3 and rQ ≥ 1, then by Proposition 1.12
B(A,Q) is abundant, has rank rQ and the number of its columns is |Q|. Since for any
abundant matrix the number of columns must be at least two more than its rank, it
follows that rQ ≤ |Q|+ 2 and therefore |Q| − rQ − 1 ≥ 1.

1.6 Tools from Probability Theory

Let us briefly survey some well established tools from Probability Theory that will be
used throughout this chapter. Given a random variable X, we denote its expected
value by E(X) and its variance by Var(X).

Markov’s Inequality states that for any X satisfying P (X ≥ 0) = 1 we have

P (X ≥ t) ≤ E(X)
t

(1.24)

for any t > 0. A straight forward consequence of Markov’s Inequality is that if a
sequence of random variable (Xn)n∈N satisfies P (Xn > 0) = o(1), then it must also
satisfy E(Xn) = o(1).

Chebyshev’s Inequality allows one to establish concentration of a random variable
around its expected value. It states that, for any random variable X with finite ex-
pected value and non-zero variance, we have

P (|X − E(X) | ≥ t) ≤ Var(X)
t2

(1.25)

for any t > 0.

The Second Moment Method is an easy application of Chebyshev’s Inequality
will be used in the version given by Corollary 4.3.4 of Alon and Spencer [2]. Let
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Xn = 11 + · · ·+ 1n be the sum of n indicator random variables of some events Ei. We
write i ∼ j if i 6= j and the events Ei and Ej are not independent. Define

∆ =
∑
i∼j
P (Ei ∧ Ej) . (1.26)

If E(Xn) = ω(1) and ∆ = o
(
E(Xn)2

)
, then Xn = E(Xn) (1 + o(1)) asymptotically

almost surely and in particular Xn > 0 asymptotically almost surely.

We will state Brun’s Sieve as given by Theorem 8.3.1 of Alon and Spencer [2]. Let
Xn = 11 + · · ·+ 1n be the sum of n indicator random variables of some events Ei. Let

S(t) =
∑

{i1,...,it}∈([n]
t )
P (Ei1 ∧ E12 ∧ · · · ∧ Eit) , (1.27)

for any t ∈ N where the sum is taken over all subsets {i1, . . . , it} ⊆ [n] of size t. From
the Inclusion-Exclusion Principle it follows that

P (Xn = 0) = P
(
E1 ∧ · · · ∧ Es

)
= 1− S(1) + S(2) − · · ·+ (−1)tS(t) + · · · .

Suppose now there is a constant µ satisfying E(X) = S(1) = µ(1 + o(1)) and that for
every fixed t ∈ N we have S(t) → µt/t! as n goes to infinity. Then we have

P (Xn = t)→ µt

t! e
−µ. (1.28)

for every fixed t ∈ N.

Lastly, there are many results know asChernoff Bounds that give exponential bounds
on the tail distribution of sums of independent random variables. We will just be
interested in the case for the binomial distribution B(n, p) on n elements with parameter
p, where we have

P
(
B(n, p) < np

2

)
≤ exp

(
− n

2p (p− 1/2)2
)
. (1.29)
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1.7 A short survey of extremal results

Let us briefly survey the vast area of explicit quantitive bounds regarding the extremal
question of how large a set can be without containing solutions to a given system. For
some general results, see Ruzsa [124, 126] as well as Shapira [141].

In the particular case of Szemerédi’s Theorem, we note that for k = 3 the upper
bounds obtained by Roth were refined by Heath-Brown [83], Szémeredi [151], Bour-
gain [15, 16], Sanders [130] and Bloom [13] to its current best of O(n log4 log n/ log n).
On the other hand, Behrend [11] gave a construction of a set free of 3-term arithmetic
progressions, that was later slightly improved upon by Elkin [45], see also Green and
Wolf [73] and O’Bryant [111], to give a set of size n log1/4 n/2

√
8 logn. Concerning the

case of general k, the best current upper bounds are due to Gowers [69] and, more
recently, dense constructions that lead to lower bounds for this problem were estab-
lished by O’Bryant [111], building on the previous work of Behrend, Rankin [113],
Elkin [45, 73] as well as Łaba and Lacey [102]. Notable progress has also been made
in the study of arithmetic progressions in Fnq , see the recent breakthrough of Ellenberg
and Gijswijt [46] and the paper of Croot, Lev and Pach [35] on which it is based.

lower bound upper bound

3-AP n log1/4 n/2
√

8 logn O(n log4 log n/ log n)

k-AP Ω
(

n exp((log logn)/(2dlog ke))
exp(dlog ke2(dlog ke−1)/2 log1/dlog ken))

)
n/(log log n)2−2k+9

Sidon ––– (1 + o(1))n1/2 –––

Bh[g] (1 + o(1))n1/h gh h!n1/h

3-cube Ω(n2/3) 2n3/4

k-cube n1−k/(2k−1) 2n1−1/2k−1

sum-free ––– dn/2e –––

3-sum-free ––– dn/2e –––

k-sum-free –––
(
k(k−2)
k2−2 + 8(k−2)

k(k2−2)(k4−2k2−4)

)
(1 + o(1))n –––

Table 1.2: Extremal bounds for common linear systems.

Regarding structures other than that of arithmetic progressions, the most notable
example is perhaps that of Sidon sets, also known as Golomb rulers to other parts of the
Discrete Mathematics world. A set of integers S ⊂ N is called a Sidon set if all pairwise
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sums of its elements are distinct, that is if x+w 6= y+z for any x, y, z, w ∈ S satisfying
x < y ≤ z < w. This can be considered as sets excluding solutions associated with the
matrix A = (1 1 − 1 − 1). Results of Chowla [25], Erdős [48], Erdős and Turán [55]
and Singer [143] established that the maximum cardinality of a Sidon set contained in
[n] = {1, 2, . . . , n} is (1 + o(1))n1/2. Sidon sets have also been generalized to Bh sets,
that is sets where all h-fold sums of its elements are unique, and even more broadly
to Bh[g] sets, that is sets where every integer has at most g representations as a sum
of h of the elements of the set. It is known that a maximum Bh[g] set in [n] is of size
Θ(n1/h) but precise constants are not know in general for the problem, see [32, 31].
Note that we will consider a question dealing with Sidon sets of infinite cardinality in
Chapter 5 as well as a problem tangentially related to Bh[g] sets in Chapter 7.

Another possible generalization of Sidon sets are sets free of k-dimensional Hilbert
cubes, or just k-cube for short, that is configurations of the shape

{
h0 +

k∑
i=1

εihi : εi ∈ {0, 1}
}

(1.30)

for some positive and distinct integers h0, h1, . . . , hk ∈ N. Sidon sets are sets free of
2-dimensional Hilbert cubes. Hilbert [84], in a Ramsey-type result predating even that
of Schur, originally proved that any finite coloring of the positive integers contains
a monochromatic k-cube. The density version of this result is known as Szemerédi’s
Cube Lemma and is a key ingredient in his re-proof of Roth’s Theorem. Gunderson and
Rödl [75] proved that any set in [n] of size 2n1−1/2k−1 contains a k-cube for sufficiently
large n. On the other side, a probabilistic argument proves the existence of a set of size
n1−k/(2k−1) avoiding k-cubes. For the particular case of k = 3, Cilleruelo and Tesoro [33]
obtained an algebraic construction of a set of size Ω(n2/3).

Finally, the maximum size of sets containing no solutions associated with matrices
that are not density regular has also been studied. In particular, a set of integers is a
k-sum-free set if it contains no solution to x + y = kz. The case of k = 1 corresponds
to Schur triples and we have already seen the extremal construction: one cannot select
more than dn/2e integers in [n] without selecting all elements of a Schur triple. The
case k = 2 corresponds to 3-term arithmetic progressions. Chung and Goldwasser [26]
solved the case of k = 3 by getting the same estimates as for k = 1. The case k ≥ 4 was
also studied by Chung and Goldwasser [27] and then settled by Baltz, Hegarty, Knape,
Larsson and Schoen [5]. Finally, Hancock and Treglown [79, 80] also studied the case
of sets excluding solutions to more general three-variable equations a1x + a2y = a3z

Christoph Spiegel 34 Randomness and Games



Chapter 1. Preliminaries for Linear Systems

where a1 ≥ a2 ≥ a3 and gcd(a1, a2, a3) = 1.
We observe that results dealing with the extremal question often rely on smart

ad-hoc arguments that strongly depend on the specific structures being considered.
Answers regarding the typical behavior, as we will study in the remainder of this
chapter, can often cover large groups of structures in a unified statement.
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Chapter 2

The Appearance Threshold

In this chapter, we will be interested in counting the number of proper and non-trivial
solutions to a linear system A ·xT = bT in the binomial random set [n]p given by some
arbitrary positive matrices A ∈ Zr×m and vectors b ∈ Zr. As a first result, let us
establish the threshold for the property that [n]p contains a non-trivial solution when
A is abundant.

Theorem 2.1. For any positive and abundant A ∈ Zr×m and b ∈ Zr satisfying
S(A,b) 6= ∅, the function p0(n) = n−1/m(A) is a threshold for the property that [n]p
contains a non-trivial solution to A · xT = bT .

In other words, almost all subsets of [n] that are of size o(n1−1/m(A)) contain no non-
trivial solution and almost all that are of size ω(n1−1/m(A)) do. Note that m(A) refers
to the maximum density of A as defined in Section 1.5. The proof of Theorem 2.1 will
be given in Section 2.1. When establishing the 1-statement, we will in fact prove the
existence of a proper solution in the set, that is p0(n) = n−1/m(A) is also a threshold for
the property that [n]p contains a proper solution. In Section 2.1 we will also establish
a statement regarding non-abundant matrices.

Note that the case of Bh[1] sets was previously studied in detail by Godbole, Janson,
Loncatore and Rapoport in [68] who showed that almost no set of size ω(n1/2h) is Bh[1].
Their proof is based on a tailor-made analysis on the particular shape of the equations
defining Bh[1] sets.

The threshold given in Theorem 2.1 is not sharp, so let us study the distribution
of the number of non-trivial solutions when p asymptotically grows like the threshold.
Here, we will restrict ourselves to the particular case of homogeneous systems coming
from strictly balanced matrices. We will show that if p(n) = Cn−1/m(A) for some fixed
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C > 0, then the number of solutions converges to a Poisson distribution. Furthermore,
the parameter of that Poisson distribution only depends, besides the constant C, on
the volume of the polytope PA and the inherent symmetry of the system σ(A), as
defined in Section 1.3.

Theorem 2.2. For any positive and abundant matrix A ∈ Zr×m and p(n) = Cn−1/m(A)

for some fixed C > 0, the number of distinct, non-trivial solutions to A · xT = 0T in
[n]p converges in distribution to a Poisson distributed random variable with parameter

λ = λ(A,C) = Vol (PA)Cm/σ(A) (2.1)

if and only if A is strictly balanced.

Note that this means that, for every non-negative integer t, we have

lim
n→∞

P
(∣∣∣[n]mp ∩ S1(A,0)

∣∣∣ = t
)

= λt

t! e
−λ.

In particular, we have

lim
n→∞

P
(∣∣∣[n]mp ∩ S1(A,0)

∣∣∣ > 0
)

= 1− e−λ, (2.2)

that is the probability of [n]p containing a non-trivial solution tends to 1 with an
exponential decay in C. We will prove Theorem 2.2 in Section 2.2. As previously for
Theorem 2.1, the statement of Theorem 2.2 likewise holds when one restricts oneself
to proper solutions.

In a direction similar to this result, Warnke [160] studied the upper tail of the num-
ber of k-term arithmetic progressions and Schur triples in random subsets, establishing
exponential bounds. Let us also mention that Kohayakawa, Lee, Rödl and Samotij [96]
studied the number of Sidon sets and the maximum size of Sidon set contained in a
sparse random set of integers. In particular, they analyze the number of solutions
to the Sidon equation when the probability lies above the threshold by means of the
Kim-Vu polynomial concentration inequality [92].

The computation of the constant Vol (PA) for arbitrary A ∈ Zr×m is an algorith-
mically involved problem. One could compute this volume by means of triangulations
of the polytope [39], but in dimensions greater than 3 the problem is in general NP-
complete [18]. Some concrete values for specific matrices will be provided in Section 2.3.
The results of Theorem 2.1, Theorem 2.2 and that section are summarized in Figure 2.1
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for some of the examples previously introduced in Section 1.7. Note that all of these
examples are strictly balanced.

r ×m np0 Vol (PA) σ(A)
k-AP k − 2× k n1−2/k 1/(k − 1) 2
Sidon 1× 4 n1/4 2/3 8
Bh[g] g × h(g + 1) n

g
h(g+1) Section 2.3 (g + 1)!(h!)g+1

k-cube 2k − (k + 1)× 2k n1− k+1
2k 22k−1/(k + 1)!k! 22k−1

sum-free 1× 3 n1/3 1/2 2
k-sum-free 1× 3 n1/3 1/k 2

Table 2.1: Results of this chapter for common systems.

Lastly, let us compare the results of Theorem 2.1 to the extremal case summarized in
Section 1.7: almost all sets with size ω(n1−2/k) contain k-term arithmetic progressions.
This means that for k = 3 the gap between the usual and the extremal situation is very
large. Most sets with size ω(n1/3) contain 3-term arithmetic progressions but there are
examples of almost linear size avoiding this structure. Nevertheless, as k grows, the
gap between the exponents tends to 0. For Sidon sets, the gap between the exponents
in the extremal and usual situation is likewise very big. However, almost all sets in
[n] of size o(n1/h−1/h(g+1)) are Bh[g] sets, so if we fix h and let g grow to infinity, both
situations once again approach each other. Lastly, the maximal size of a k-sum-free
set is linear in n, but Theorem 2.1 asserts that almost all sets of size ω(n1/3) contain
at least one solution to x + y = kz, for every k. In this family the parameter k does
not play a role in the position of the threshold.

2.1 Proof of Theorem 2.1 – When do solutions appear?

Before proving Theorem 2.1, let us briefly establish a result concerning the case when
A is non-abundant. Note that a corresponding 1-statement does not hold in general.

Proposition 2.3. For any positive but non-abundant matrix A ∈ Zr×m and b ∈ Zr

satisfying S(A,b) 6= ∅, [n]p asymptotically almost surely does not contain any solution
to A · xT = bT when p = o(n−1/2).

Proof. By Lemma 1.2 we may, without loss of generality, assume that the first row of
A is of the shape a = (a1, . . . , am) where ai = 0 for all i ∈ {3, . . . ,m} and a1, a2 6= 0 as
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well as a1+a2 6= 0. Writing b1 for the first entry of b, it follows that any x(x1, . . . , xn) ∈
S(A,b) ∩ [n]m must satisfy

a1x1 + a2x2 = b1. (2.3)

The probability of [n]p containing any solution to A · xT = bT is therefore bounded
from above by the probability of [n]p containing two elements x1 and x2 satisfying
Equation (2.3).

Since a1 + a2 6= 0 either x1 and x2 are distinct or x1 = x2 = b1/(a1 + a2). The later
case trivially occurs with probability exactly p = o(1), so let us focus on the former.
The number of such distinct pairs (x1, x2) in [n] is bounded by n and the probability
that both elements of a pair lie in [n]p is p2. It follows by linearity of expectation that
the probability of [n]p containing such a suitable pair is bounded by np2 = o(1). The
desired statement therefore follows by Markov’s Inequality.

Let us now establish Theorem 2.1.

Proof of Theorem 2.1. We split the proof up into two separate arguments for the
0- and the 1-statement. The former will follow from Markov’s Inequality and the later
from the Second Moment Method, both introduced in Section 1.6.

The 0-statement. One may assume that A is strictly balanced as otherwise we
can replace A and b with B and c as given by Corollary 1.13. Let us apply Markov’s
Inequality, that is we will show that the expected number of non-trivial solutions to
A · xT = bT goes to zero if p = o(n−1/m1(A)), in order to show that the probability of
[n]p containing a non-trivial solutions goes to zero as well.

We will write Sn = S1(A,b)∩ [n]m and for every x ∈ Sn we let 1x be the indicator
variable for the event that x ∈ [n]mp . It follows that

Xn =
∑

x∈Sn
1x (2.4)

is the random variable counting the number of non-trivial solutions to A · xT = bT in
[n]p. Using linearity of expectation and Lemma 1.10, it follows that

E(Xn) =
∑

x∈Sn
P
(
x ∈ [n]mp

)
=

m∑
s=rk(A)

∑
p∈P(A)
|p|=s

∑
x∈Sn
p(x)=p

ps

≤
m∑

s=rk(A)

∑
p∈P(A)
|p|=s

|S0(Ap,b) ∩ [n]s| ps.
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Applying Equation (1.3) as well as the fact that rk(Ap) = rk(A) for any p ∈ P(A), we
get that

E(Xn) ≤
m∑

s=rk(A)

∑
p∈P(A)
|p|=s

ns−rk(A) ps =
m∑

s=rk(A)

∑
p∈P(A)
|p|=s

(n1−rk(A)/s p)s.

Since we are assuming that A is strictly balanced, we have that 1−rk(A)/m = 1/m(A).
Since |p| ≤ m, it therefore follows that

E(Xn) ≤
m∑

s=rk(A)

∑
p∈P(A)
|p|=s

(
p

n−1/m(A)

)s
=

m∑
s=rk(A)

O
(

p

n−1/m(A)

)s
= o(1).

Here we have used the obvious fact that |P(A)| as well as m − rk(A) + 1 are finite,
that is they do not grow with n.

The 1-statement. Let us show that [n]p not only contains a non-trivial solution
asymptotically almost surely, but that it in fact contains a proper solution. We there-
fore write Sn = S0(A,b) ∩ [n]m and for every x ∈ Sn we let 1x again be the indicator
variable for the event that x ∈ [n]mp . It follows that Xn = ∑

x∈Sn 1x is now the random
variable counting the number of proper solutions to A ·x = b in [n]p. We first establish
that that the expected value of Xn tends to infinity. By Lemma 1.4, there exists some
c0 = c0(A,b) such that

E(Xn) =
∑

x∈Sn
pm ≥ c0n

m−rk(A)pm = c0

(
p

n−(m−rk(A))/m

)m
.

Since p = ω(n−1/m(A)) and by definition 1− rk(A)/m ≥ 1/m(A), it follows that E(Xn)
tends to infinity.

Let us now study the variance of Xn in order to apply the Second Moment Method.
We know that, for x = (x1, . . . , xm) ∈ Sn and y = (y1, . . . , ym) ∈ Sn, the two events
x ∈ [n]mp and y ∈ [n]mp are dependent if and only if {x1, . . . , xm} ∩ {y1, . . . , ym} 6= ∅.
Let us write x ∼ y if this is the case. Following the notation in Equation (1.26), we
need to establish that the quantity

∆n =
∑

x,y∈Sn
x∼y

P
(
x ∈ [n]mp ∧ y ∈ [n]mp

)
(2.5)
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is asymptotically dominated by E(Xn)2.
Let x ∈ Sn now be arbitrary but fixed and M = (V,E) a graph that defines a non-

empty, directed matching between two copies of of the column indices {1, . . . ,m} where
all edges are directed towards the same part. Note that this obviously implies that
1 ≤ |E| ≤ m. Let us establish an upper bound for the number of solutions y ∈ Sn whose
‘intersections’ with x are indicated by M , that is yj = xi if and only if ij ∈ E. Writing
E = {i1j1, . . . , i|E|j|E|} such that j1 ≤ . . . ≤ jt as well as Q = Q(M) = {j1, . . . , j|E|},
it is clear that the number of such solutions is bounded from above by the number of
solutions to

AQ · z = bT − AQ · (xi1 , . . . , xi|E|)
T . (2.6)

Since rk(AQ) = r − rQ, it follows by Equation (1.3) that there are at most

n|Q|−r+rQ = nm−|Q|−r+rQ (2.7)

such solutions. WritingM for the family of such matchings and x ∼M y if x ∼ y and
the intersections of x and y are indicated by some M ∈M, we therefore have that

∆n =
∑

x,y∈Sn
x∼y

P
(
x ∈ [n]mp ∧ y ∈ [n]mp

)

=
∑

x∈Sn

∑
∅6=Q([m]

∑
M∈M
Q(M)=Q

∑
y∈Sn
x∼My

p2m−|Q|

≤
∑

x∈Sn

∑
∅6=Q([m]

∑
M∈M
Q(M)=Q

nm−|Q|−rk(A)+rQ p2m−|Q|

=
∑

∅6=Q([m]
O
(
n2m−2rk(A)−|Q|+rQ p2m−|Q|

)

= O
(
nm−rk(A)pm

)2 ∑
∅6=Q([m]

(
n−(|Q|−rQ)/|Q|

p

)|Q|
= o

(
E(Xn)2

)
.

Here we have again used that (|Q| − rQ)/|Q| ≥ 1/m(A) so that p = ω(n−1/m(A)) also
implies that p = ω(n−(|Q|−rQ)/|Q|) for any non-empty Q ⊆ {1, . . . ,m}. By the Second
Moment Method, it follows that Xn > 0 asymptotically almost surely. �
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2.2 Proof of Theorem 2.2 – Distribution at the threshold

Sufficiency. Lust us write Sn for the set of distinct non-trivial solutions to A ·
xT = 0T . Here we will simply assume that for each equivalence class of solutions in
S1(A,0) whose elements are pairwise non-distinct, that is they are the same up to
some permutation in Σ(A), we have only one arbitrary representative in Sn. Let Xn

now denote the random variable counting the number of solutions from Sn in [n]p. We
can easily develop the expected value of Xn using Corollary 1.8, Equation (1.3) and
Lemma 1.4, that is

E(Xn) =
∑

x∈Sn
P
(
x ∈ [n]mp

)
=

m∑
s=rk(A)

∑
p∈P(A)
|p|=s

∑
x∈Sn
p(x)=p

ps

=
∑

x∈Sn
|p(x)|=m

pm +
m−1∑

s=rk(A)

∑
p∈P(A)
|p|=s

Θ(ns−rk(A))ps

= Vol (PA) /σ(A)(1 + o(1))nm−rk(A) pm + Θ
(
n1−rk(A)/sp

)s
= µ(1 + o(1))

where we have set µ = CmVol (PA) /σ(A). Here we have also used the fact that A is
strictly balanced, so that 1− rk(A)/s < 1/m(A) if s < m, and that p = Cn−1/m(A), so
that O

(
n1−rk(A)/sp

)
= o(1).

For t ≥ 2, let Xt,n now denote the number of ordered t-tuples of distinct non-trivial
solutions in [n]p. We split it up into three parts

Xt,n = X ′t,n +X ′′t,n +X ′′′t,n. (2.8)

The first part X ′t,n refers to t-tuples of pairwise disjoint distinct proper solutions, X ′′t,n
refers to t-tuples of pairwise disjoint distinct non-trivial solutions of which at least one
is not proper and X ′′′t,n refers to t-tuples of distinct non-trivial solutions in which at
least two share a coordinate. We will compute the expected value of each of the parts
in order to show that E(Xt,n) = µt(1 + o(1)), so that the desired statement follows by
Brun’s Sieve.

In order to compute the expected number of ordered t-tuples of solutions, we need
to introduce some additional notation. Consider two matrices A ∈ ZrA×mA and B ∈
ZrB×mB as well as an incomplete and directed matching M = (V,E) where V consists
of disjoint copies of {1, . . . ,mA} and {1, . . . ,mB} and E =

{
i1j1, . . . , i|E|j|E|

}
where
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|E| < min(mA,mB). Note the similarity to the proof of the 1-statement of Theorem 2.1.
Denote the columns of A and B by {ai : 1 ≤ i ≤ mA} and {bj : 1 ≤ j ≤ mB}
respectively. The compounded matrix of A, B and M is now defined as

A×M B =
 A[mA]\{i1,...,i|E|} ai1 . . . ai|E| 0

0 bj1 . . . bj|E| B[mB ]\{j1,...,j|E|}

 . (2.9)

There is a clear bijection between proper solutions to the system given by (A×M B) ·
xT = 0T and to 2-tuples of proper solutions to A · xT = 0T and B · xT = 0T whose
coincidences are indicated by M .

For our application the actual matching and hence the concrete type of overlap
will be irrelevant. What matters is whether the systems are disjoint or not, that
is if the bipartite graph is empty or if there is some actual overlap. We therefore
simply omit the graph in our notation and write A × B when compounding matrices
and A ×̇B to specify when they are being compounded without overlap, that is the
implied M is empty. Note that this operator is not commutative or associative (and
in fact strongly depends on the size of the respective matrices) and we will write
A×B × C = (A×B)× C.

Using this notation, we observe that finding t-tuples of pairwise disjoint distinct and
proper solutions to A · xT = 0T is equivalent to finding proper solutions to the system
given by some compounded matrix A×̇ t. . .×̇A. Note that A×̇ t. . .×̇A is trivially positive,
abundant and of rank t rk(A). One can also easily verify that σ(A×̇ t. . .×̇A) = σ(A)t

and Vol
(
PA×̇ t...×̇A

)
= Vol (PA)t. By Corollary 1.8, it therefore follows that

E
(
X ′t,n

)
=

Vol
(
PA×̇ t...×̇A

)
σ(A×̇ t. . .×̇A) ntm−trk(A)ptm (1 + o(1)) = µt (1 + o(1)) . (2.10)

Next, let us consider t-tuples of pairwise disjoint distinct and non-trivial solutions
of which at least one is not proper, that is X ′′t,n. This means we are considering all
compounded matrices of the form Ap1×̇ . . . ×̇Apt where pi ∈ P(A) and at least one of
them is not equal to {1, . . . ,m}. Such a compounded matrix has |p1| + . . . |pt| < tm

columns and is of rank t rk(A). It follows by Equation (1.3) that

E
(
X ′′t,n

)
= O

(
max
p1,...,pt

n
∑t

i=1(|pi|−rk(A)) p
∑t

i=1 |pi|
)

= O
(

max
p1,...,pt

n
rk(A)

(∑t

i=1 |pi|/m−t
))
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= O(n−rk(A)/m) = o(1).

Here we have used the fact that |p1| + . . . + |pt| ≤ tm − 1 since one of the partitions
does not come from a proper solution, that is there exists a partition |pi| which satisfies
|pi| < m.

Let us now consider t-tuples of distinct and non-trivial solution in which at least
two solutions share elements. This means we are considering compounded matrices
of the form Ap1 × . . . × Apt where pi ∈ P(A) for all 1 ≤ i ≤ t and for at least
one of the compound operators the implied matching is non-empty. We consider in
general terms what happens when we compound two admissible systems A ∈ ZrA×mA

and B ∈ ZrB×mB : as previously established, A×̇B has mA + mB columns and rank
rk(A) + rk(B). Now let us assume there is some ‘overlap’, that is some columns
∅ 6= Q ( [mB] of B are matched to columns of A in the implied bipartite matching.
The compounded matrix therefore has mA +mB − |Q| columns and is of rank at least
rk(A) + rk(B) − rQ(B) where rQ(B) = rk(B) − rk(BQ). This follows easily since if
some rows in the compounded system stemming from B are linearly dependent, then
first their coordinates in Q have to be linearly dependent on other rows stemming from
B. Using the above notation gives the upper bound rQ(B) for the number of rows that
can become linearly dependent by compounding the two matrices.

We know that Ap1 × . . .×Apt is a matrix with tm− β columns of rank t rk(A)− α
for some α, β ∈ N0, where β > 0. We will induce over 1 ≤ i ≤ t to show that
β rk(A)/m > α. Assume without loss of generality that the first two matrices Ap1

and Ap2 overlap in some columns ∅ 6= Q ( [|p2|] of Ap2 . It follows that Ap1 × Ap2

has |p1| + |p2| − |Q| columns and, by the previous observation, is of rank at least
2rk(A) − rQ(Ap2). Since A is assumed to be strictly balanced, we have by (iii) in
Proposition 1.12 that

|Q|
|Q| − rQ(Ap2) = |Q|

|Q| − rQ
<

m

m− rk(A) (2.11)

so that rQ(Ap2) < rk(A)|Q|/m. It follows that

rk(Ap1 × Ap2) > 2rk(A)− |Q| rk(A)/m (2.12)

and the first step of the induction is complete. Assume therefore that Ap1×. . .×Apk has
km− β variables and is of rank k rk(A)−α where 1 < k < t as well as β rk(A)/m > α
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and β > 0. We compound Apk+1 with Ap1×. . .×Apk where the overlap is again indicated
by Q ( [|pk+1|] though now Q = ∅ is possible. It follows by the same arguments as
before that Ap1 × . . .×Apk+1 has (k + 1)m− (β + |Q|) columns and is of rank strictly
greater than

k rk(A)− α + rk(A)− rQ(Apk+1) ≥ (k + 1) rk(A)− (α + rk(A)|Q|/m). (2.13)

Here we have used that pk+1 comes from a non-trivial solution. Obviously we still have

rk(A)(β + |Q|)/m > α + rk(A)|Q|/m (2.14)

and therefore the induction is complete.
Now using the fact that β rk(A)/m > α as well as p = Cn−(m−rk(A))/m, we can

apply Equation (1.3) to obtain that

E
(
X ′′′t,n

)
= O

(
n(tm−β)−(t rk(A)−α)ptm−β

)
= O

(
nα−rk(A)β/m

)
= o(1).

Taken together it follows that

E(Xt,n) = E
(
X ′t,n

)
+ E

(
X ′′t,n

)
+ E

(
X ′′′t,n

)
= µt(1 + o(1)). (2.15)

Since S(t) = E(Xt,n) /t!, we can apply Brun’s Sieve to deduce the desired statement.

Necessity. It remains to show that the requirement that A is strictly balanced is
in fact necessary. If the system is balanced, but not strictly balanced, that is m(A) =
m/(m − rk(A)) but there exists some induced submatrix also attaining this value,
we again split Xt,n into three parts X ′t,n + X ′′t,n + X ′′′t,n as previously. Observe that
E
(
X ′t,n

)
= µt(1 + o(1)) and E

(
X ′′t,n

)
= o(1) as before since we did not rely on the fact

that the matrix is strictly balanced. Further continuing the notation from before, we
know that the compounded matrices Ap1× . . .×Apt considered in E

(
X ′′′t,n

)
have tm−β

variables and are of rank tr−α for some α, β ∈ N0 where β > 0. We can again show by
induction that β r/m ≥ α since the system is balanced. Note that previously we had a
strict inequality. Since by assumption our system is balanced but not strictly balanced,
there are compounded matrices for which β r/m = α. Each of these contributes a term
of constant order, since

Θ
(
n(tm−β)−(t rk(A)−α)ptm−β

)
= Θ

(
nα−rk(A)β/m

)
= Θ(1). (2.16)
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Combining these observations, it follows that

E(Xt,n) = E
(
X ′t,n

)
+ E

(
X ′′t,n

)
+ E

(
X ′′′t,n

)
= µt (1 + o(1)) + ct (2.17)

for some appropriate constants ct > 0. For each n > 0, fixed s and 0 ≤ t ≤ s the
values E(Xt,n) are moments of a random variable that satisfy Stieltjes condition [114].
Consequently, for each t the sequence µt (1 + o(1)) + ct converges to the t-th moment
of a certain random variable. Due to Carleman’s condition, this random variable is
indeed uniquely determined. Finally, the limit of the sequence Xn is determined by its
moments which differ from those of a Poisson distribution. We conclude that we cannot
have convergence in distribution towards a Poisson distributed random variable.

To conclude the analysis, the unbalanced case can be deduced by using a similar
argument to that just developed for the balanced case by conveniently rescaling the
random variable and showing that it does not converge in distribution to a Poisson
random variable. The details are the same as in the proof of Theorem 5 in [119]. �

2.3 The computation of Vol(PA)

As mentioned in the introduction of this section, computing Vol (PA) is in general
an algorithmically involved problem. Let us determine some concrete values for the
examples introduced in Section 1.7.

k-sums. We start with the easy example of determining the volume of the polytope
associated with sum-free sets, that is k = 1 and we are interested in Vol (PA1) where
A1 = (1 1 − 1). In this case, the polytope can be described as

PA1 = {(x1, x3) ∈ R2 : 0 ≤ x1 ≤ x3 ≤ 1}. (2.18)

Clearly PA1 is integral, since it is in fact the triangle given by the vertices (0, 0),
(0, 1) and (1, 1), and trivially the volume is equal to 1/2. Let us however obtain
this value through an interpolation argument: it follows from Ehrhart’s Theorem that
p(n) = |n · PA1 ∩ Z2| is a polynomial of degree 2 with leading coefficient Vol (PA1),
that is p(n) = Vol (PA1)n2 + bn + c. Clearly p(0) = |{(0, 0)}| = 1, so that c = 1 and
p(1) = p(0) + |{(0, 1), (1, 1)}| = 3, so that b = 2− Vol (PA1). It follows that

p(n) = Vol (PA1) (n2 − n) + 2n+ 1. (2.19)
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Finally, since p(2) = p(1) + |{(0, 2), (1, 2), (2, 2)}| = 6, it follows that Vol (PA1) = 1/2,
as we wanted to show.

The case of k-sum free sets when k > 1 is slightly different. Here the matrix is
given by Ak = (1 1 − k) and its associated polytope can be described as

PAk = {(x1, x3) ∈ R2 : 0 ≤ kx3 − x1 ≤ 1, 0 ≤ x1, x3 ≤ 1}, (2.20)

which is a parallelogram of area 1/k. The main difference is that in this case the
polytope is not integral, so by Erhart’s Theorem we will obtain a pseudo-polynomial.

k-term arithmetic progressions. Let us determine the volume in the case of k-
term arithmetic progressions, where we can obtain a closed expression for the volume
through elementary means. This family has been studied widely and the following
results are also implicitly stated in [131].

Lemma 2.4. For any integer k ≥ 3 the number of k-term arithmetic progressions in
{0, 1, 2, . . . , n}, including trivial ones, is given by

(n+ 1)
(⌊

n

k − 1

⌋
+ 1

)
− k − 1

2

(⌊
n

k − 1

⌋2
+
⌊

n

k − 1

⌋)
= 1

2(k − 1)n
2 +O(n).

Proof. Observe that any k-term arithmetic progression is of the form {a, a+d, . . . , a+
(k − 1)d} where a ∈ {0, 1, 2, . . . , n} and d ∈ {0, 1, 2, . . . , bn/(k − 1)c}. Additionally,
for a given d, we know that {0, d, . . . , (k − 1)d)}, {1, 1 + d, . . . , 1 + (k − 1)d)}, {n −
(k− 1)d, n− (k− 2)d . . . , n} are the only k-term arithmetic progression with common
difference d. The total number of k-term arithmetic progression is therefore simply
given by ∑bn/(k−1)c

d=0 n+ 1− (k − 1)d, which evaluates to the desired formula.

As we have previously seen, the matrix associated with k-term arithmetic progres-
sions is given by

Ak =
( 1 −2 1

1 −2 1
...
1 −2 1

)
∈ Zk−2×k. (2.21)

As an immediate corollary to the previous lemma, we get that Vol (PAk) = 1/(k − 1),
where we have made use of the fact that the lemma already eliminated the symmetry
constant σ(A) = 2.

Sidon and Bh[g] sets. We start by noting that the matrix associated with Bh[g] sets
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is given by

Ah,g =

 1
h
··· 1 −1

h
··· −1

1
h
··· 1 −1

h
··· −1

···
1
h
··· 1 −1

h
··· −1

 ∈ Zg×h(g+1). (2.22)

Let us prove that the polytope associated with Ah,g is integral, so that we may apply
the interpolation technique we previously demonstrated for sum-free sets.

Proposition 2.5. The polytope PAh,g is integral.

Proof. We recall Equation (1.6) and note that the polytope PAh,g can be written as

PAh,g = {x : Ah,g · xT ≤ 0T} ∩ {x : −Ah,g · xT ≤ 0T} ∩ [0, 1]m ⊂ Rm.

so that it is represented by {x ∈ Rk : P · x ≥ b} where

P =


A

−A
Ih(g+1)

−Ih(g+1)

 and b = (0, 2g. . ., 0, 0, h(g+1). . . , 0,−1, h(g+1). . . ,−1). (2.23)

here Ih(g+1) is the unit matrix of size h(g + 1). Note that a polytope associated with a
unimodular matrix, that is a matrix where each quadrangular submatrix has determi-
nant either 0 or ±1, is integral [138]. It follows that we only need to prove that P is
unimodular. Observe that we can reduce our argument to minors with entries in the
topmost part of the matrix, that is A. We argue by induction on the size of the minor:
the result is clear for minors of size 1, as the entries of the matrix belong to {0,±1}.
Assume that the result is true for every minor of size at most k, and let us show that
the result is also true for k. We will use the fact that every column of A has at most
two elements different from 0.

Consider the first row of the minor under study. If all elements are equal to 0,
the minor is equal to 0. If there exists a unique element different from 0, we apply
induction by developing the determinant along the row. Finally, let us assume that
there exist at least two elements different from 0 in the first row. If these two elements
are equal, then the corresponding columns are linearly dependent, and the determinant
is equal to 0. If these two elements are different, the column containing the 1 otherwise
only contains zeros. It follows that we can develop the determinant from this point
and apply induction.
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Let us determine the number of solutions in {0, 1, 2, . . . , n} through the inclusion-
exclusion method. Given any k ∈ N0, write k = k1n+ k2 where either 0 ≤ k1 ≤ h− 1
and 1 ≤ k2 ≤ n or k1 = 0 and k2 = 0. The number of solutions of the equation
x1 + . . .+ xh = k with xi ∈ {0, . . . , n} is equal to

a(k1) =
k1∑
j=0

(−1)j
(
h

j

)(
(k1 − j)n+ k2 − j + h− 1

h− 1

)
. (2.24)

Here we have used that the number of solutions of x1 + . . . + xh = k where at least j
of the xis are strictly greater than n is equal to

(
k − (n+ 1)j + h− 1

h− 1

)
. (2.25)

Since k is at most hn, the total number of integer points in n · PAh,g is given by the
polynomial

ph,g(n) = 1 +
h−1∑
k1=0

n∑
k2=1

(a(k1))g+1 , (2.26)

where we have used the falling factorial

(a(k1))g+1 = a(k1) (a(k1)− 1) · · · (a(k1)− g) . (2.27)

The argument we previously used in the case of k-term arithmetic progression does not
work here, as the expressions are too involved. However, we can apply an interpolation
argument to obtain the dominant term of ph,g(n) as we did for the case of 1-sums:
by Proposition 2.5 and Ehrhart’s Theorem, ph,g(n) is a polynomial of degree d =
(h − 1)(g + 1) + 1 with coefficients a0, a1, . . . , ad. The values ph,g(0), ph,g(1),... ,
ph,g(d− 1) therefore determine ph,g(n) through the Vandermonde-matrix



1 0 · · · 0
1 1 · · · 1
1 2 · · · 2d−1

...
... · · ·

...

1 d− 1 · · · (d− 1)d−1


·



a0

a1

a2
...

ad


=



ph,g(0)
ph,g(1)
ph,g(2)
...

ph,g(d− 1)


. (2.28)

By Equation (1.8) we have Vol
(
PAh,g

)
= ad. These coefficients can be easily de-

termined, using for example Cramer’s rule, and some concrete values are shown in
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Figure 2.2.

h�g 1 2 3 4 5
2 2

3
1
2

2
5

1
3

2
7

3 11
20

12
35

379
1680

565
3696

6759
64064

4 151
315

1979
7560

40853
270270

200267
2223936

825643615
15084957888

Table 2.2: Volumes of polytopes associated with Bh[g] sets.

Recall that a detailed study for Bh[1] sets was done by Godbole et al. [68] by means
of trigonometric sums and Fourier analytic methods. Their result implies that

Vol
(
PAh,1

)
= 2(h!)2κh =

∑h−1
j=0 (−1)j

(
2h
j

)
(h− j)2h−1

(2h− 1)! . (2.29)

Closed formulas for bigger values of g seem to be much more involved.

2.4 Further remarks

The problem considered in this chapter can be rephrased in a more general setting:
instead of studying vectors x satisfying A · xT = 0T , one could study those for which
A ·xT ∈ Qr for some given (possibly infinite) sequence of integers Q. The homogeneous
case is that of Q = {0}. When A = (1 − 1), Sárközy [132] showed that every set with
positive upper density contains at least two elements whose difference is a square, see
also [105]. It is conjectured that for every ε > 0 there exists a subset of [n] of size
n1−ε whose differences are never a square. Ruzsa [123] proved this conjecture for every
ε ≥ 0.267.

Some things can be said for the case of this particular matrix that go in the direction
of the questions studied in this chapter: if Q is the sequence of k-th powers, that is
Q = {xk : x ∈ N}, then if we denote the set of solutions by SQ(n) = {x = (x1, x2) ∈
[n]2 : x1 − x2 ∈ Q}, we have

|SQ(n)| =
∑

q∈Q(n)
(n− q) = n|Q ∩ [n]| −

∑
q∈Q∩[n]

q

=
∫ n

0
x1/kdx = k

k + 1n
1+1/k(1 + o(1))

by Abel’s summation formula. Following the ideas of the proof of Theorem 2.1, one
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can easily verify that p = n−(k+1)/(2k) is a threshold for the property that [n]p contains
some x1, x2 with x1 − x2 ∈ Q.
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Chapter 3

The Resilience Threshold

Given a matrix A ∈ Zr×m, a set of integers T ⊂ N and some c ∈ N, we write

T →c A (3.1)

if any c-coloring of T contains a monochromatic proper solution to A · xT = 0T ,
that is if for every finite partition T1, . . . , Tc of T there exists 1 ≤ i ≤ c such that
Tmi ∩ S0(A,0) 6= ∅. Rödl and Ruciński [115] established the threshold for a version of
Rado’s Theorem in the binomial random set that was later completed by Friedgut, Rödl
and Schacht [66]. Combined, their results state that the function p0(n) = n−1/m1(A)

is a sharp threshold for the property that [n]p →c A for any partition regular matrix
A ∈ Zr×m. Here m1(A) is the maximum 1-density introduced in Section 1.5.

The first result of this chapter extends this result to include non-trivial solutions
as described in Section 1.4. Let us extend the notation: given a set of integers T and
some integer c ∈ N, we write

T →?
c A (3.2)

if for every finite partition T1, . . . , Tc of T there exists 1 ≤ i ≤ c such that Tmi ∩
S1(A,0) 6= ∅, that is any c-coloring of T must contain a monochromatic non-trivial
solution to A · xT = 0T . The following result establishes that the threshold for the
property that [n]p →?

c A is of the same order as the threshold for the property that
[n]p →c A.

Theorem 3.1. For every partition regular matrix A ∈ Zr×m and c ∈ N the function
p0(n) = n−1/m1(A) is a sharp threshold for the property that [n]p →?

c A.

Note that the 1-statement in Theorem 3.1 already follows from the previously men-
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tioned results. However, as this proof is quite involved, we will re-prove it here using
an alternative approach based on the ideas behind Nenadov and Steger’s short proof
of a sparse random Ramsey’s Theorem [110]. This approach combines the recently
developed hypergraph container framework by Balogh, Morris and Samotij [3] as well
as Saxton and Thomason [135] with a supersaturation result of Frankl, Graham and
Rödl [58]. The proof of Theorem 3.1 is stated in Section 3.3.

Schacht [136] as well as independently Conlon and Gowers [34] also stated a version
of Szémeredi’s Theorem in sparse random sets. Schacht also extended it to density
regular systems as well as sum-free sets. Given a set of integers T and ε > 0, we write

T →ε A (3.3)

if every subset S for which |S|/|T | ≥ ε satisfies Sm ∩ S0(A) 6= ∅, that is any subset
of T of density at least ε contains a proper solution to A · xT = 0T . The second
goal of this note is to extend Schacht’s statement to the broadest sensible group of
matrices, that is that of abundant matrices. We will again include non-trivial solutions
in this consideration. Before we can state it, we will need to introduce some additional
notation.

Given some matrix A ∈ Zr×m, let ex(n,A) be the size of the largest subset of [n]
not containing a proper solution and define π(A) = lim supn→∞ ex(n,A)/n. Observe
the clear parallels to the Turán number of a graph. Clearly density regular systems
satisfy π(A) = 0 and for other systems systems we have π(A) > 0. One can easily
bound this value away from 1, as we will later see in Lemma 3.3. Now, given a set of
integers T and some ε > 0, we write

T →?
ε A (3.4)

if every subset S for which |S|/|T | ≥ ε also satisfies Sm ∩ S1(A,0) 6= ∅, that is any
subset of T of density at least ε contains a non-trivial solution to A · xT = 0T . These
definitions and observations allow us to state the following result.

Theorem 3.2. For every positive and abundant matrix A ∈ Zr×m and ε > π(A) the
function p0(n) = n−1/m1(A) is a sharp threshold for the property that [n]p →?

ε A.

To prove the 1-statement in Theorem 3.2, we will derive a supersaturation result
from a removal lemma due to Král’, Serra and Vena [98] and combine it with a corol-
lary of the hypergraph containers due to Balogh, Morris and Samotij [3]. We will in

Christoph Spiegel 53 Randomness and Games



Chapter 3. The Resilience Threshold

fact prove the existence of a proper solution above the threshold, so the statement of
Theorem 3.2 does not change if one instead considers the property that [n]p →ε A. The
0-statement will be established through the usual approach. The proof of Theorem 3.2
is given in Section 3.2.

Let us make a remark regarding the notion of resilience, see also [148]: a set of inte-
gers or a graph resiliently posses some property, if even after removing a certain number
of elements or edges, the property still holds. Szemerédi’s Theorem can therefore be
interpreted as a statement about how resiliently [n] has the property of containing
arithmetic progressions. Theorem 3.2 can likewise be considered as a statement about
how resiliently a typical subset of [n] of density p has the property of containing a
solution to A · xT = 0T . Hancock, Staden and Treglown [78], in simultaneous and
independent work, not only also obtained Theorem 3.2, but in fact a broader state-
ment that can be considered as a resilience version of Theorem 3.1, though in both
cases their results are restricted to proper solutions. Their approach likewise consists
of combining hypergraph containers with supersaturation results.

3.1 Preliminaries

Given some matrix A ∈ Zr×m, we have previously defined ex(n,A) to be the size of
the largest subset of [n] not containing a proper solution and

π(A) = lim sup
n→∞

ex(n,A)/n.

Unfortunately, unlike the Erdős–Stone–Simonovits Theorem [53, 52] in the graph case,
no good characterization of π(A) is known for arbitrary matrices A, see also Section 1.7.
However, the following lemma shows that one can still easily bound this value away
from 1 for every positive matrix.

Lemma 3.3 (Folklore). Every positive matrix A ∈ Zr×m satisfies π(A) < 1.

Proof. By Lemma 1.4, there exists some x = (x1, . . . , xm) ∈ S0(A,0)∩Nm. Clearly we
also have j ·x = (jx1, . . . , jxm) ∈ S0(A,0)∩Nm for any j ≥ 1. Now for n ≥ mmaxi(xi)
we observe that every i ∈ [n] can appear in at most m of the J = dn/maxi(xi)e
solutions x, 2·x, . . . , J ·x ∈ [n]m, so every subset of [n] that avoids S0(A,0) is missing at
least J/m elements. It follows that π(A) ≤ (n−J/m)/n ≤ 1−1/(mmaxi(xi)) < 1.
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3.1.1 Removal Lemma and Supersaturation Results

A common ingredient to proving results in the sparse random setting are robust versions
of the deterministic statement, referred to as supersaturation results. In the graph
setting such a result is folklore and easy to prove. A counterpart in our setting is for
example Varnavides’ robust version of Szemerédi’s Theorem [158], which states that a
set of positive density contains not just one, but a positive proportion of all k–term
arithmetic progressions. Frankl, Graham and Rödl [58] formulated such results both
for partition and density regular systems.

Lemma 3.4 (Theorem 1 in [58]). For a given partition regular matrix A ∈ Zr×m and
s ∈ N there exists ζ = ζ(A, s) > 0 such that for n large enough and for any partition
T1, . . . , Ts of [n], we have

|S0(A,0) ∩ Tm1 |+ · · ·+ |S0(A,0) ∩ Tms | ≥ ζ |S0(A,0) ∩ [n]m|. (3.5)

Lemma 3.5 (Theorem 2 in [58]). For a given density regular matrix A ∈ Zr×m and
δ > 0 there exists ζ = ζ(A, δ) > 0 such that, for n large enough, any subset T ⊆ [n]
satisfying |T | ≥ δn also satisfies

|S0(A,0) ∩ Tm| ≥ ζ |S0(A,0) ∩ [n]m|. (3.6)

We will extend Lemma 3.5 to cover the scope of this note by using an Arithmetic
Removal Lemma. Green [70] first formulated such a statement for linear equations
in an abelian group. Later Shapira [142] as well as independently Král’, Serra and
Vena [98] proved a removal lemma for linear maps in finite fields. We will state it here
in a simplified version.

Theorem 3.6. Let Fq be the finite field of order q. Let X be a subset of Fq and
A ∈ Fr×mq a matrix of full rank. For S = {x ∈ Fmq : A ·xT = 0T} and every ε > 0 there
exists an η = η(ε, r,m) such that if |S ∩ Xm| < η |S| then there exists a set X ′ ⊂ X

with |X ′| < εq and S ∩ (X \X ′)m = ∅.

Applying this result, we formulate the following extension of Lemma 3.5. Note that
one could also obtain this result through a direct application of a removal lemma for
colored hypergraphs as for example Theorem 2 in [98].

Lemma 3.7. For any positive matrix A ∈ Zr×m and δ > π(A) there exists ζ =
ζ(δ, A) > 0 and n0 = n0(δ, A) such that, for n ≥ n0, any subset T ⊆ [n] satisfying
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|T | ≥ δn also satisfies

|S0(A,0) ∩ Tm| ≥ ζ |S0(A,0) ∩ [n]m|. (3.7)

Proof. Let p = p(A, n) be a prime number between 2mnmax(|A|) and 4mnmax(|A|)
and Fp the finite field with p elements. Here max(|A|) refers to the maximal absolute
entry in A. Note that such a prime number exists for example because of the Bertrand–
Chebyshev Theorem. We have Fp ∼= Zp and we can identify the integers with their
corresponding residue classes in Fp. The matrix A now defines a map from Fmp to Frp. A
solution in S(A,0) clearly lies in S and, as we have chosen p large enough, all canonical
representatives from S ∩ [n]m also lie in S(A,0) ∩ [n]m for n ≥ max |A|.

Next, set δ′ = (δ + π(A))/2 and let n be large enough such that any subset of
density at least δ′ in [n] contains a proper solution. Note that δ > δ′ > π(A). Given a
subset T ⊆ [n] satisfying |T | ≥ δn consider the corresponding set X of residue classes
in Fp. One needs to remove at least (δ− δ′)n elements from T in order for Tm to avoid
S0(A,0) in [n], so one needs to remove at least an

ε = (δ − δ′)n
q

≥ (δ − δ′)
4mmax(|A|) > 0

proportion of elements in Fp from X so that Xm avoids S in Fp. It follows from
Theorem 3.6 that |S ∩ Xm| ≥ η|S| for some η = η(ε, r,m). Since we have chosen p

large enough, it follows that T contains at least an η proportion of S(A,0) ∩ [n]m.
An easy consequence of Equation (1.3) and Lemma 1.4 is that limn→∞ |S0(A,0) ∩
[n]m|/|S(A,0) ∩ [n]m| ≥ c0 for c0 = c0(A) > 0 as given by Lemma 1.4. It follows that
the result holds for n large enough and ζ = ζ(δ, A) = (c0 η)/2.

3.1.2 Hypergraph Containers

The development of hypergraph containers by Balogh, Morris and Samotij [3] as well
as independently Thomason and Saxton [135] has opened a new, easy and unified
framework to proving results in the sparse random setting. Let us start by stating the
Hypergraph Container Theorem as given by Balogh, Morris and Samotij.

Given a hypergraph H we denote its vertex set by V (H) and its set of hyperedges
by E(H). The cardinality of these sets will be respectively denoted by v(H) and e(H).
Given some subset of vertices A ⊆ V (H), we denote the subgraph it induces in H
by H[A] and its degree by degH(A) = |{e ∈ E(H) : A ⊆ e}|. For ` ∈ N we denote
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the maximum `-degree by ∆`(H) = max{degH(A) : A ⊆ V (H) and |A| = `}. Let the
set of independent vertex sets in H be denoted by I(H). Lastly, let H be a uniform
hypergraph, F an increasing family of subsets of V (H) and ε > 0. We say that H is
(F , ε)-dense if e(H[A]) ≥ ε e(H) for every A ∈ F .

Theorem 3.8 (Theorem 2.2 in [3]). For every m ∈ N, c > 0 and ε > 0, there exists
a constant C = C(m, c, ε) > 0 such that the following holds. Let H be an m-uniform
hypergraph and let F ⊆ 2V (H) be an increasing family of sets such that |A| ≥ εv(H) for
all A ∈ F . Suppose that H is (F , ε)-dense and p ∈ (0, 1) is such that

∆`(H) ≤ c p`−1 e(H)
v(H) . (3.8)

for every ` ∈ {1, . . . , k}. Then there exists a family T ⊆
(

V (H)
≤Cp v(H)

)
and functions

f : T → F and g : I(H)→ T such that for every I ∈ I(H),

g(I) ⊆ I and I \ g(I) ⊆ f(g(I)). (3.9)

The statement gives the existence of a small number of containers F and some
fingerprints T so that every independent set I in H is identified with a fingerprint g(I)
that determines a container f(g(I)) which contains I \ g(I).

Next, let H = (Hn)n∈N be a sequence of m-uniform hypergraphs and let α ∈ [0, 1).
We say that H is α-dense if for every δ > 0, there exist some ε > 0 such that for
U ⊆ V (Hn) which satisfies |U | > (α + δ) v(Hn) we have e(Hn[U ]) > ε e(Hn) for n
large enough. Balogh, Morris and Samotij proved the following consequence of their
container statement.

Theorem 3.9 (Theorem 5.2 in [3]). Let H = (Hn)n∈N be a sequence of m-uniform hy-
pergraphs, α ∈ [0, 1) and let C > 0. Suppose that q = q(n) is a sequence of probabilities
such that for all sufficiently large n and for every ` ∈ {1, . . . ,m} we have

∆`(Hn) ≤ Cq(n)`−1 e(Hn)
v(Hn) . (3.10)

If H is α-dense, then for every δ > 0, there exists a constant c = c(C, α,m) > 0 such
that if p(n) > c q(n) and p(n)v(Hn) = ω(1) as n tends to infinity, then asymptotically
almost surely

α
(
Hn[V (Hn)p(n)]

)
≤ (α + δ)p(n)v(Hn). (3.11)
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We will make use of this statement in order to obtain a proof for the 1-statement
of Theorem 3.2. For a proof of the 1-statement of Theorem 3.1 such a ready-made
statement does not exist and we will follow Nenadov and Steger’s [110] short proof of
a sparse Ramsey statement by applying Theorem 3.8.

3.2 Proof of Theorem 3.2 – Sparse density regularity

We split the proof up into two separate arguments for the 0- and the 1-statement.
The former follows through an alteration argument using some elementary tools form
Probability Theory established in Section 1.6 and the later follows from Theorem 3.9.

0-statement. By Corollary 1.13 we may assume that A is strictly 1-balanced, as we
can otherwise replace it with B1 as given by the corollary. Due to Lemma 1.10, we
again know that

P ([n]p →?
ε A) ≤ P

 ⋃
p∈P(A)

(
[n]p →ε Ap

) ≤ ∑
p∈P(A)

P ([n]p →ε Ap) . (3.12)

We will therefore analyze the individual probabilities P ([n]p →ε Ap) for each p ∈ P(A).
The constant c = c(A, ε) will be define later in Equation (3.13). We start by first stating
the following two propositions. The first deals with non-abundant matrices and the
second restricts the statement of Theorem 3.2 to proper solutions. Before we state their
proofs, we will show that the 0-statement of Theorem 3.2 follows easily from them.

Proposition 3.10. For every positive and non-abundant matrix A ∈ Zr×m and ε > 0
we have P ([n]p →?

ε A) = o(1) for any p(n) = o(1).

Proposition 3.11. For every positive and abundant matrix A ∈ Zr×m and ε > π(A)
there exists c = c(A, ε) such that P ([n]p →ε A) = o(1) if p(n) ≤ c n−1/m1(A).

For |p| < m we note that Ap clearly is positive. If Ap is non-abundant, then
Proposition 3.10 states that P ([n]p →ε Ap) = o(1) for p = p(n) ≤ c n−1/m1(A) = o(1)
independent of the constant c. If Ap is abundant, then we can apply Proposition 3.11
to it. We have n−1/m1(A) = o

(
n−1/m1(Ap)

)
and therefore P ([n]p →s Ap) = o(1) for

p = p(n) ≤ c n−1/m1(A) independent of c. Lastly, let |p| = m, that is p = {{1}, . . . , {m}}
and therefore Ap = A. Proposition 3.11 applies to A and therefore we obtain the desired
statement with c = c(A, ε) as given by Proposition 3.11.
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Proof of Proposition 3.10. Since A is non-abundant but positive, Lemma 1.2 estab-
lishes that we may, without loss of generality, assume that the first row of A is of the
shape a = (a1, . . . , am) where ai = 0 for all i ∈ {3, . . . ,m} and a1, a2 6= 0 as well as
a1 + a2 6= 0. Any solution x = (x1, . . . , xm) ∈ S(A,0) ∩ [n]mp therefore has to satisfy
a1x1 + a2x2 = 0. It follows that we can upper bound the likelihood that P ([n]p →?

ε A)
from above by the probability that any subsets of [n]p of density at least ε contains two
elements x1 and x2 satisfying a1x1+a2x2 = 0. By Equation (1.3) as well as the linearity
of expectation, the expected number of such tuples is at most np2 while E(|[n]p|) = np.
If np = O(1) then the expected number of such tuples goes to zero, so that the result
trivially holds by Markov’s Inequality. If np = ω(1) then by Chernoff’s Bound we have
|[n]p| ≥ np/2 asymptotically almost surely. Since p = o(1), the expected number of
such tuples is o(np/2) and therefore, by Markov’s Inequality, for any given set of pos-
itive density we can remove one element per solution and still asymptotically almost
surely have a solution-free set of that same density. This proves the desired result.

Proof of Proposition 3.11. Following the alteration method as used for example by
Schacht [136], we make three case distinctions. Note that we need to cover the whole
range of 0 ≤ p(n) ≤ c n−1/m1(A) since we are not dealing with a monotone property.

Case 1. Assume that p = o(n−1/m(A)). By Corollary 1.13, we may assume that A is
strictly balanced (but not necessarily strictly 1-balanced), as we can otherwise replace
it with B as given by the corollary. By Equation (1.3) we have

E
(
|S0(A,0) ∩ [n]mp |

)
≤ nm−rk(A) pm = o(1).

Here we have used the assumption that A is strictly balanced. Markov’s Inequality
therefore implies that P

(
|S0(A,0) ∩ [n]mp | 6= 0

)
= o(1), see also Chapter 2. It clearly

follows that we also have P ([n]p →ε A) = o(1) for any ε > 0.

Case 2. Assume that p = o(n−1/m1(A)) but also p = ω(n−1). By Corollary 1.13, we may
assume that A is strictly 1-balanced, as we can otherwise replace it with B1 as given by
the corollary. Since np = ω(1), we have |[n]p| ≥ np/2 asymptotically almost surely due
to Chernoff’s Bound. The expected number of solutions in [n]p now is asymptotically
smaller than the number of elements, since by Equation (1.3) we have

E
(
|S0(A,0) ∩ [n]mp |

)
≤ nm−rk(A) pm = np

(
n1/m1(A) p

)m−1
= o(np/2).

Here we have used the assumption that A is strictly 1-balanced. It follows by Markov’s
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Inequality that for any subset of [n]p of positive density ε > 0 we can remove one
element per solution contained in this subset, so that the resulting set is free of solutions
while asymptotically almost surely still having positive density ε in [n]p. It follows that
P ([n]p →ε A) = o(1).

Case 3. Lastly, assume that p ≤ cn−1/m1(A) but also p = ω(n−1/m(A)), where c =
c(A, ε) will be given in Equation (3.13). By Corollary 1.13, we may again assume
that A is strictly 1-balanced, as we can otherwise replace it with B1 as given by the
corollary. Due to Chernoff’s Bound, we again have |[n]p| ≥ np/2 asymptotically almost
surely. Let Xn denote the random variable counting the number of proper solutions in
[n]p, that is Xn = |S0(A,0) ∩ [n]mp | for n ∈ N. For

c = c(A, ε) =
(1− ε

4

)1/(m−1)
(3.13)

it follows by Equation (1.3) that

E(Xn) ≤ nm−rk(A) pm ≤ np
(
n1/m1(A) p

)m−1
≤ (1− ε)np/4.

Here we have used the assumption that A is strictly 1-balanced. By Lemma 1.4, there
also exists some c0 > 0 such that

E(Xn) ≥ c0 n
m−rk(A) pm.

Following exactly the same ideas as in the proof of the 1-statement of Theorem 2.1, we
can in fact show that Xn is concentrated around its expected value. As it was shown
there, we have

∆n = O
(
nm−rk(A)pm

)2 ∑
∅6=Q([m]

(
n−(|Q|−rQ)/|Q|

p

)|Q|
= o

(
E(Xn)2

)

where we have used that (|Q|−rQ)/|Q| ≥ 1/m(A) so that p = ω(n−1/m(A)) also implies
that p = ω(n−(|Q|−rQ)/|Q|) for any non-empty Q ⊆ {1, . . . ,m}. Chebyshev’s Inequality
therefore gives us P (|Xn − E(Xn) | ≥ E(Xn)) = o(1), so that

∣∣∣S0(A,0) ∩ [n]mp
∣∣∣ ≤ 2E(X) ≤ (1− ε)np/2

asymptotically almost surely. It follows that, given a set of density ε, we can remove
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one element from [n]p for each solution in S0(A,0) ∩ [n]mp and asymptotically almost
surely still be left with a set of density ε, so that P ([n]p →ε A) = o(1).

1-statement. Let Hn be the hypergraph with vertex set V (Hn) = [n] and edge
multiset

E(Hn) =
{{
{x1, . . . , xm} : (x1, . . . , xm) ∈ S0(A,0) ∩ [n]m

}}
. (3.14)

Observe that Hn can be a multigraph, that is multiple edges are allowed, but the
multiplicity of each edge is clearly bounded by the factorial of m. We do this to
simplify counting, since this way we have |E(Hn)| = |S0(A,0) ∩ [n]m|. Note that in
Lemma 3.7 we are intentionally ignoring the symmetry constant σ(A) introduced in
Section 1.3 as it is not of relevance in this context. We observe that we can limit
ourselves to proper solutions when proving the 1-statement.

Lemma 3.7 now states that H = (Hn)n∈N is π(A)-dense. The statement of The-
orem 3.2 follows if Theorem 3.9 can be applied. In order to apply Theorem 3.9, it
remains to determine a sequence q = q(n) satisfying the required condition. The
following lemma gives us upper bounds for the maximum `-degrees in Hn.

Lemma 3.12. For any 1 ≤ ` ≤ m we have

∆`(Hn) ≤ `!m` max
Q⊆[m]
|Q|=`

n(m−rk(A))−(|Q|−rQ). (3.15)

Proof. For H = (Hn) as defined above and ` ∈ {1, . . . ,m} we have

∆`(Hn) ≤ max
x1,...,x`∈[n]

∣∣∣{x ∈ S0(A,0) ∩ [n]m : ∃Q, π s.t. xQ = (xπ(1), . . . , xπ(`))}
∣∣∣

≤ `!
(
m

`

)
max

(x1,...,x`)∈[n]`
Q⊆[m],|Q|=`

∣∣∣{x ∈ [n]m−` | AQ · xT = −AQ · (x1, . . . , x`)T}
∣∣∣

≤ `!m` max
Q⊆[m]
|Q|=`

max
b∈Zr

∣∣∣S(AQ,b) ∩ [n]m
∣∣∣ ≤ `!m` max

Q⊆[m]
|Q|=l

n|Q|−rk(AQ)

= `!m` max
Q⊆[m]
|Q|=`

n(m−rk(A))−(|Q|−rQ).

In the first inequality we have Q ⊆ [m] and π ∈ Sym(`). We have also made extensive
use of the notation defined in Section 1.5 as well as as the trivial upper bound for the
number of solutions stated in Equation (1.3).
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Note that rQ = 0 for any Q ⊆ {1, . . . ,m} satisfying |Q| = 1 due to Lemma 1.14.
There also exists c0 = c0(A) > 0 such that e(Hn) ≥ c0 n

m−rk(A) due to Lemma 1.4.
Using Lemma 3.12, we therefore observe that

∆1(Hn) ≤ mnm−rk(A)−1 ≤ m/c0
e(Hn)
v(Hn) .

For ` ∈ {2, . . . ,m} we again apply Lemma 3.12 to see that

∆`(Hn) ≤ `!m` max
Q⊆[m], |Q|=`

n(m−rk(A))−(|Q|−rQ)

= `!m`
(

max
Q⊆[m], |Q|=`

n−
|Q|−rQ−1
|Q|−1

)`−1
nm−rk(A)−1

≤ `!m`
(
n−1/m1(A)

)`−1
nm−rk(A)−1

≤ (`!m`)/c0
(
n−1/m1(A)

)`−1 e(Hn)
v(Hn) .

Lastly we observe that n−1/m1(A) v(Hn) = n1−1/m1(A) tends to infinity since m1(A) > 1.
It follows that the prerequisites for Theorem 3.9 hold for C = (m!mm)/c0, q = q(n) =
n−1/m1(A) and we can choose the c = c(A, ε) in Theorem 3.2 to be equal to the c =
c(C, π(A),m) as given by Theorem 3.9. �

3.3 Proof of Theorem 3.1 – Sparse partition regularity

We split the proof up into two separate arguments for the 0- and the 1-statement. The
former will follow from the result of Rödl and Ruciński and the later will be established
along the ideas of Nenadov and Steger.

0-statement. By Corollary 1.13 we may assume that A is strictly 1-balanced, as we
can otherwise replace it with B1 as given by the corollary. Due to Lemma 1.10, we
know that

P ([n]p →?
s A) ≤ P

 ⋃
p∈P(A)

(
[n]p →s Ap

) ≤ ∑
p∈P(A)

P ([n]p →s Ap) . (3.16)

Let us bound the individual probabilities P ([n]p →s Ap) for each p ∈ P(A). For
|p| = m, that is p = {{1}, . . . , {m}}, we know due to Rödl and Ruciński that there
exists a c = c(A, s) such that P ([n]p →s A) = o(1) when p = p(n) ≤ c n−1/m1(A). For
|p| < m we consider two separate cases: if Ap is not partition regular, then [n] 6→s A
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and therefore trivially P ([n]p →s Ap) = 0. If Ap is partition regular, then

m1(Ap) ≥
|p| − 1

|p| − rk(Ap)− 1 >
m− 1

m− rk(A)− 1 = m1(A)

so that n−1/m1(A) = o
(
n−1/m1(Ap)

)
and therefore again due to Rödl and Ruciński for p =

p(n) ≤ c n−1/m1(A) we have P ([n]p →s Ap) = o(1). Here we have used the assumption
that A is strictly 1-balanced. The desired statement follows due to Equation (3.16).

1-statement. As stated in the introduction, this result was previously proved by
Friedgut, Rödl and Schacht [66] as well as independently Conlon and Gowers [34]. The
proof presented here serves as a short version that follows the short proof of a sparse
Ramsey result due to Nenadov and Steger [110].

We will need two ingredients in order to prove the 1-statement of Theorem 3.1. The
first will be the following easy corollary to Lemma 3.4.

Corollary 3.13. For a given partition regular matrix A ∈ Zr×m and s ∈ N there
exist ε = ε(A, s) and δ = δ(A, s) > 0 such that for any T1, . . . , Ts ⊆ [n] satisfying
|S0(A,0) ∩ Tmi | ≤ ε |S0(A,0) ∩ [n]m| for 1 ≤ i ≤ s we have

∣∣∣[n] \ (T1 ∪ · · · ∪ Ts)
∣∣∣ ≥ δn

for n large enough.

Proof. Let ζ = ζ(A, s + 1) be as in Lemma 3.4 and ε = ε(A, s) = ζ/2s. Set
T̃i = Ti \

⋃i−1
j=1 Tj for 1 ≤ i ≤ s and T̃s+1 = [n] \ ⋃rj=1 Tj and consider the partition

[n] = T̃1 ∪̇ . . . ∪̇ T̃s ∪̇ T̃s+1. By Lemma 3.4 we have |S0(A,0) ∩ T̃m1 | + · · · + |S0(A,0) ∩
T̃ms+1| ≥ ζ |S0(A,0)∩ [n]m| and since by assumption |S0(A,0)∩ T̃mi | ≤ |S0(A,0)∩Tmi | ≤
ζ/2s |S0(A,0)∩[n]m| for all i ∈ {1, . . . , s}, we have |S0(A,0)∩([n] \ (T1 ∪ · · · ∪ Ts))m | ≥
ζ/2 |S0(A,0) ∩ [n]m|. Observe that by Lemma 3.12 every element in [n] is contained
in at most mnm−rk(A)−1 solutions and by Lemma 1.4 there exists c0 = c0(A) > 0 such
that |S0(A,0)∩ [n]m| ≥ c0 n

m−rk(A) for n large enough. The result therefore follows for
δ = ζc0/2.

The second ingredient is stated in the following corollary that is obtained by ap-
plying the Hypergraph Container Theorem to the hyperpgraph of solutions.

Corollary 3.14. For a given partition regular matrix A ∈ Zr×m and ε > 0 there exist
t = t(n) sets T1, . . . , Tt ∈

(
[n]

≤c0 n1−1/m1(A)

)
for some c0 > 0 as well as sets C1, . . . , Ct ⊆ [n]

such that
|S0(A,0) ∩ Cm

i | ≤ ε |S0(A,0) ∩ [n]m|. (3.17)
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Furthermore, for every set T ⊆ [n] satisfying S0(A,0) ∩ Tm = ∅ there exists 1 ≤ i ≤ t

such that
Ti ⊆ T ⊆ Ci. (3.18)

Proof. Let Hn again be the hypergraph with vertex set V (Hn) = [n] and edge multiset

E(Hn) =
{{
{x1, . . . , xm} : (x1, . . . , xm) ∈ S0(A,0) ∩ [n]m

}}
.

We have previously observed that there exists a c > 0 such that for 1 ≤ ` ≤ m we
have ∆`(Hn) ≤ c p(n)`−1 e(Hn)/v(Hn) for p = p(n) = n−1/m1(A). We observe that Hn

is trivially (F , ε)-dense for F = {T ⊆ [n] : |S0(A,0) ∩ Tm| ≥ ε |S0(A,0) ∩ [n]m|}.
Applying Theorem 3.8 gives the desired statement.

We are now ready to give a short proof of the 1-statement in Theorem 3.1. Let
ε, δ > 0 be as in Corollary 3.13 and let t = t(n), c0, S1, . . . , St and C1, . . . , Ct be as in
Corollary 3.14. Let C = C(A, s) be large enough such that

(
1 + ln

( 2s
sc0

)
+ ln(C)

)
sc0

C
<

1
2 .

Observe now that for a partition of the random set T1∪̇ . . . ∪̇Ts = [n]p satisfying
S0(A,0) ∩ Tmi = ∅ for all i ∈ {1, . . . , s} there exist j1, . . . , js ∈ {1, . . . , t} so that
Sji ⊆ Ti ⊆ Cji for all i ∈ {1, . . . , s}. Since Ti ⊆ [n]p for 1 ≤ i ≤ s and [n] \ (C1 ∪ · · · ∪
Cs)∩ [n]p = ∅ we can bound the probability of [n]p not fulfilling the partition property
by

P ([n]p 6→s A) ≤
∑

j1,...,js∈{1,...,t}
P (Sj1 , . . . , Sjs ⊆ [n]p ∧ [n] \ (Cj1 , . . . , Cjs) ∩ [n]p = ∅) .

Observe that the two events Sj1 , . . . , Sjs ⊆ [n]p and [n] \ (Cj1 , . . . , Cjs) ∩ [n]p = ∅ are
independent, so that we have

P ([n]p 6→s A) ≤
∑

j1,...,js∈{1,...,t}
p

∣∣∣⋃s

j=1 Sj

∣∣∣ (1− p) |[n]\(Cj1 ,...,Cjs )|.

We bound this by choosing k = |⋃sj=1 Sj| ≤ sc0n
1−1/m1(A), then picking k elements and

lastly deciding for each element in this selection in which of the Si it is contained, so
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that we have

P ([n]p 6→s A) ≤ (1− p)δn
sc0n1−1/m1(A)∑

k=0

(
n

k

)
(2s)k pk

≤ e−δnp

1 +
sc0C−1 np∑

k=1

(
e2s np
k

)k .
Lastly, we note that for c > 0 the function f(x) = (c/x)x is increasing for 0 < x ≤ c/e

since d/dx f(x) = (c/x)x (log(c/x)− 1). We have chosen C large enough so that

P ([n]p 6→s A) ≤ e−δnp

1 + (sc0C
−1 np)

(
e2s np

sc0C−1 np

)sc0C−1 np


≤ e−δnp eδnp/2 = o(1).

for n large enough and therefore [n]p →s A asymptotically almost surely. �
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The Breaker Threshold

Motivated by van der Waerden’s Theorem, Beck [6] introduced k-term van der Waerden
games as the positional games played on the set [n] by two players, Maker and Breaker,
who take turns occupying integers that have previously not been occupied by either of
them. We will always assume that Maker goes first. Maker wins the game if he manages
to occupy a k-term arithmetic progression. Breaker wins if he can keep Maker from
achieving his goal, that is if he occupies at least one integer in every k-term arithmetic
progression in [n]. There is no draw in this game.

If we denote the 2-color van der Waerden number by W (k), that is smallest integer
n such that any 2-coloring of [n] must contain a k-term arithmetic progression, then
Breaker cannot win the game on [W (k)] without occupying a k-term arithmetic pro-
gression himself. A standard strategy stealing argument, see for example [8], implies
that Breaker therefore cannot have a winning strategy on [W (k)] and consequently
Maker has to have one. Beck therefore defined W ?(k) to be the smallest integer n
for which Maker has a winning strategy in the k-term van der Waerden game played
on [n]. Clearly one has the trivial upper bound W ?(k) ≤ W (k) for every k ∈ N, but
Beck actually established that the van der Waerden game number is single exponen-
tial, namely that W ?(k) = 2k(1+o(1)). This is in strong contrast to the enormous gap
between the known upper and lower bounds for W (k): there are several lower bounds
of the form 2k(1+o(1)) [12, 149], while the best known upper bound is a tower function
of height five [69].

One common way to even out the odds in games that disadvantage one player, is
to allow the disadvantaged person to take multiple elements each round. Such biased
games represent a central direction in the field of positional games, with deep connec-
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tions to the theory of random structures. The notion was first suggested by Chvá-
tal and Erdős [28] while investigating the connectivity game, hamiltonicity game and
triangle-building game played on the edges of the complete graph. Given a hypergraph
H = (V (H), E(H)) and a positive integer bias q, we define the q-biased Maker-Breaker
game G(H; q) as follows: Maker and Breaker take turns occupying previously unoc-
cupied vertices from V (H), with Maker going first and occupying one vertex in each
round and Breaker occupying up to q. Maker wins if his selection completely covers an
edge from H and Breaker wins otherwise. In other words, Breaker wins if and only if
the vertices of Maker form an independent set in H. Note that, by definition, the game
again cannot end in a draw. Given a hypergraph H, one is interested in determining
the threshold bias q0(H), defined to be the smallest integer q ∈ N for which Breaker has
a winning strategy in the game G(H; q).

The relationship of biased games to random discrete structures originates from the
simple observation that if both Maker and Breaker occupy their vertices uniformly at
random from the remaining free vertices, then Maker ends up occupying a uniform
random set of size at least |V (H)|/(q + 1). For exactly what size a uniform random
subset will likely be independent, is a central line of research in the study of random
discrete structures. We previously considered it for the hypergraph of integer solutions
to linear systems in Chapter 2.

Chvátal and Erdős [28] were mostly concerned about graph games where the vertex
set of the game hypergraph H is the edge set E(Kn) of the complete graph on n

vertices and H represents a graph property. For the connectivity game, they proved
the surprising phenomenon that the threshold bias for the game with ‘clever’ players
is of the same order as the ‘likely’ threshold bias in the game with random players. In
other words the result of the clever game and the random game are likely to be the
same for almost all biases except an interval of length of smaller order than the value
of the threshold bias. This result was later strengthened to establish the equality of
the constant factors of the threshold biases and also extended to the Hamiltonicity
game [67, 99].

Given some fixed graph H, the H-building game is the Maker-Breaker game where
the vertex set of the game hypergraph is again the edge set E(Kn) and the edges of
the hypergraph correspond to all copies of H in Kn. Here it is import that, unlike
in the previously mentioned graph games, H is a fixed small graph rather that does
not grow with n. Chvátal and Erdős resolved the issue of the threshold bias for the
triangle-building via ad-hoc strategies. They found that here the previously described
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phenomenon does not hold: their clever ad-hoc Breaker-strategy wins with a bias much
smaller than is needed for a random Breaker playing against a random Maker. The
real reason for this and the question for H-building games remained a mystery until
its spectacular resolution by Bednarska and Łuczak [10]. Writing

m2(H) = max
F⊂H
v(F )≥3

e(H)− 1
v(H)− 2 ,

for the 2-density of the graph H as well as B(H,n) for the e(H)-uniform hypergraph
of all copies of H in Kn, their result can be stated as follows.

Theorem 4.1 (Bednarska–Łuczak). For every graph H with at least three non-isolated
vertices, the threshold bias of the H-building game on Kn satisfies

q0
(
B(H,n)

)
= Θ(n1/m2(H)). (4.1)

To gain an intuition for this result, it is worthwhile to investigate the general lower
bound on q0(H), which is delivered by the uniform random strategy of Maker. Namely,
if Maker occupies a free element of V (H) uniformly at random in each round and
wins with non-zero probability against a Breaker playing optimally with bias q, then
clearly q0(H) ≥ q. It is important to note that in this ‘half-random’ scenario Maker’s
random set of size |V (H)|/(b + 1) is no longer chosen uniformly at random, since it
depends very much on Breaker’s strategy. It turns out however that the success of
the uniform random strategy of Maker can be salvaged if, for some constant ε > 0, a
uniform random set of size ε |V (H)|/(b+1) not only is expected to contain a hyperedge,
but more resiliently, that every δ-fraction of it is expected to contain a hyperedge, for
some δ < 1. Note that we previously studied resilience results in Chapter 3. If Maker
actually occupies at least a δ-fraction of some uniform random subset of that size, he
wins. Bednarska and Łuczak [10] managed to implement this plan and couple it with
an appropriate Breaker strategy.

Building on these ideas, let us extend the results of Bednarska and Łuczak to a whole
range of other hypergraphs. All results will follow from two general winning criteria, one
for Maker and one for Breaker, which can be applied to hypergraphs possessing certain
‘container-type’ regularity conditions that properly separate the maximum degree of
`-element vertex sets from the average degree. These hypergraphs in particular include
the ones corresponding to Beck’s van der Waerden games. More generally, one can
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also obtain tight results for a much broader class of games, which will be called Rado
games and in which Maker’s goal is to occupy a solution to an arbitrary given linear
system of equations. One can also extend the result of Bednarska and Łuczak to
hypergraph-building games for arbitrary fixed uniformity. It is worthwhile to note that
the analogous extension from graphs to hypergraphs represented a significant jump in
difficulty for the analogous sparse random problem [34, 136], while here one obtains it
for a wider classes of hypergraphs, using a deterministic Breaker strategy. Furthermore,
the container method, so effective there, only provides a Maker winning strategy with
a log-factor below the optimal bias.

Let us now first give a formal statement of the two winning criteria. This will be
followed by the statement of the results regarding Rado games, that is the generaliza-
tion of Beck’s van der Waerden games for linear systems. Lastly, we will describe the
results regarding hypergraph-building games.

General Winning Criteria

In order to simplify notation, we often identify the hypergraph H with its edge set
E(H). We denote the number of vertices of a hypergraph H by v(H), the number of
edges by e(H) and its density by d(H) = e(H)/v(H). Given a subset S ⊆ V (H) of
vertices, let deg(S) = |{e ∈ H : S ⊂ e}|. For any integer ` ∈ N the maximum `-degree
is given by ∆`(H) = max{deg(S) : S ⊆ V (H), |S| = `}. Note that if H is simple
and k-uniform, then ∆k(H) = 1 and ∆`(H) = 0 for all integers ` > k. Given some
sequence of hypergraphs H = (Hn)n∈N, the first statement now gives a criterion for a
lower bound of the threshold biases of G(Hn; q).

Theorem 4.2. If k ≥ 2 and H = (Hn)n∈N is a sequence of k-uniform hypergraphs that
satisfies

(M1) ∆1(Hn) = O
(
d(Hn)

)
,

(M2) ∆2(Hn) = o
(
d(Hn)

)
and

(M3) d(Hn) = o
(
v(Hn)k−1),

then the threshold bias of the game played on Hn satisfies

q0(Hn) = Ω
 min

2≤`≤k

(
d(H)

∆`(H)

) 1
`−1
 .

The proof of Theorem 4.2 is based on a random strategy for Maker and will be
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given in Section 4.1. The second statement now gives a criterion for an upper bound
on the threshold.

Theorem 4.3. If k ≥ 2 and H = (Hn)n∈N is a sequence of k-uniform hypergraphs such
that v(Hn) tends to infinity and there exists an ε > 0 so that

∆`(Hn)
1
k−` v(Hn)ε = O

(
∆1(Hn)

1
k−1
)

for every 2 ≤ ` ≤ k − 1, then the threshold bias of the game played on Hn satisfies

q0(Hn) = O
(
∆1(Hn)

1
k−1
)
.

The proof of Theorem 4.3 will be given in Section 4.2 and constructs an explicit win-
ning strategy for Breaker through multiple applications of the biased Erdős–Selfridge
Criterion of Beck together with a bias-doubling strategy that mimics a common alter-
ation approach of the Probabilistic Method. The approach used both for the proof of
Maker’s criterion, as well as to devise Breaker’s optimal strategy and prove its validity,
follows the general lines of the proofs from [10].

Rado Games

Given some matrix A ∈ Zr×m and vector b ∈ Zr, let us write

S0(A,b, n) =
{
{x1, . . . , xm} : (x1, . . . , xm) ∈ S0(A,b) ∩ [n]m

}
.

for the m-uniform hypergraph given by the proper solutions in [n] to the linear system
A · xT = bT . We will assume that S0(A,b, n) is simple, that is every edge occurs only
once even though it may come from multiple solutions. We also denote by S1(A,b, n)
the hypergraph containing all non-trivial solutions in [n], that is

S1(A,b, n) =
{
{x1, . . . , xm} : (x1, . . . , xm) ∈ S1(A,b) ∩ [n]m

}
,

and likewise assume that it is simple. Note that S1(A,b, n), in contrast to S0(A,b, n),
is not necessarily uniform.

We refer to the biased Maker-Breaker game played on the hypergraph S1(A,b, n) as
the Maker-Breaker (A,b)-game on [n]. This game is played on the set [n] and Maker’s
goal is to occupy a non-trivial solution to A · xT = bT . This notion extends van
der Waerden games introduced by Beck [6] and we will therefore also call them Rado
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games motivated by Rado’s Theorem. The main result regarding Rado games states
the asymptotic behavior of the threshold bias of these games when A is abundant.

Theorem 4.4. For every positive and abundant matrix A ∈ Zr×m and vector b ∈ Zr

such that S(A,b) 6= ∅, the threshold bias of the Maker-Breaker (A,b)-game on [n]
satisfies

q0
(
S1(A,b, n)

)
= Θ

(
n1/m1(A)

)
. (4.2)

We note that Maker’s strategy will in fact result in occupying a proper instead of
just a non-trivial solution. It follows that the bias threshold of the game player on
S0(A,b, n) is of the same order as that played on S1(A,b, n). We will prove Theo-
rem 4.4 in Section 4.3.

Small Hypergraph Games

As previously mentioned, Bednarska and Łuczak [10] showed that the threshold bias
of the G-building game satisfies q0(B(G, n)) = Θ(n1/m2(G)). We consider the following
generalization: given some r-uniform hypergraph G on at least r + 1 non-isolated
vertices, we define the r-density of G to be

mr(G) = max
F⊆G

v(F)≥r+1

e(F)− 1
v(F)− r .

Note that this is an obvious generalization of the 2-density of a graph. Furthermore,
we call G strictly r-balanced, if mr(G) > (e(F)−1)/(v(F)− r) for every subhypergraph
F of G on at least r + 1 vertices.

Let B(G, n) denote the |G|-uniform hypergraph of all copies of G in the complete
r-uniform hypergraph K(r)

n . Using the general winning criteria, we generalize the result
of Bednarska and Łuczak to the Maker-Breaker G-building game on K(r)

n , that is the
game in which Maker tries to occupy a copy of G in K(r)

n .

Theorem 4.5. For any r-uniform hypergraph G on at least r+ 1 non-isolated vertices,
the threshold bias of the Maker-Breaker G-building game on K(r)

n satisfies

q0
(
B(G, n)

)
= Θ

(
n1/mr(G)

)
. (4.3)

We will prove Theorem 4.5 in Section 4.4.
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4.1 Proof of Theorem 4.2 – Maker’s strategy

We start by stating a strengthening of Theorem 4.2 that we will actually prove. In
order to do so, we introduce the function

f(H) = min
2≤`≤k

(
d(H)

∆`(H)

) 1
`−1

for any given k-uniform hypergraph H and note that

1/f(H) = max
2≤`≤k

(∆`(H)/d(H))1/(`−1) . (4.4)

The combinatorial winning criterion for Maker now can be stated as follows. We will
see how to derive Theorem 4.2 from it immediately afterwards.

Theorem 4.6. For every k ≥ 2 and every positive c1 ≥ k there exists c = c(k, c1) > 0
and c̄ = c̄(k, c1) > 0 such that the following holds: if H is a k-uniform hypergraph
satisfying

(Mi) ∆1(H) ≤ c1 d(H) , (Mii) f(H) > 1, (Miii) v(H)
f(H)

(
1− 1

f(H)

)
≥ c̄,

then Maker has a winning strategy in G(H; q) provided that q ≤ cf(H)− 1.

We start by showing that Theorem 4.2 is a consequence of this result.

Proof of Theorem 4.2 from Theorem 4.6. We see that (M1) implies (Mi) for n large
enough. Now (M2) implies d(Hn) /∆2(Hn) = ω(1). As ∆`(Hn) ≤ ∆2(Hn) for 3 ≤ ` ≤ k

this gives us f(Hn) = ω(1), implying (Mii) for n large enough. As f(Hn) = ω(1) we
also know that 1 − 1/f(Hn) → 1. Now by definition of f we have v(Hn)/f(Hn) ≥
v(Hn)/d(Hn)1/(k−1) which by (M3) goes to infinity. This gives (Miii) for n large enough
and the desired result follows.

The following notion plays a crucial role in the proof of Theorem 4.6 and is a
natural generalization of the notion that a set is (δ, k)-Szeméredi as defined by Conlon
and Gowers [34], see also Section 3.1.

Definition 4.7. Let F be a hypergraph and 0 < δ < 1. We say that a subset T ⊆ V (F)
of the vertices is δ-stable if every subset of S ⊆ T of size |S| ≥ δ|T | contains an edge
of F .
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Equivalently, T is called δ-stable, if the subhypergraph of F induced by T has
independence number less than δ |T |.

Maker’s strategy will now consist of picking (but not necessarily occupying) ele-
ments uniformly at random from among all elements he has not previously picked.
With this rule it is guaranteed that the set of elements Maker picks is uniformly ran-
dom. Then, if possible, Maker occupies that picked element in the game, otherwise he
occupies an arbitrary free element. We will prove that with positive probability Maker
wins using this strategy by showing that a δ-fraction of the elements Maker picked
he was also able to occupy. If we ensure that the set of vertices occupied by Maker
is δ-stable, it then follows that Maker’s set of vertices contain an edge with positive
probability.

Let us extend the notation previously introduced for the binomial and uniform
random set of integers: given any finite set S and 0 < p < 1, the notation Sp to
will refer to the binomial random set that is obtained by picking each element of S
independently with probability p. On the other hand, given 0 ≤ M ≤ n, we let SM
denote the uniform random set that is obtained by sampling uniformly at random
over all subsets of S of size M . The key ingredient to prove the existence of a winning
strategy for Maker is the following statement saying that V (H)M is δ-stable for suitable
M and δ if H satisfies the requirements of Theorem 4.6.

Theorem 4.8. For every k ≥ 2 and for every constant c1 ≥ k there exist constants
δ = δ(k, c1) < 1 and c̃ = c̃(k, c1) > 0 such that the following holds: if H is a k-uniform
hypergraph satisfying

(Mi) ∆1(H) ≤ c1 d(H) , (Mii) f(H) > 1, (Miii) v(H)
f(H)

(
1− 1

f(H)

)
≥ c̃

then
P (V (H)M is not δ-stable) < 3 exp

(
− M

c1 2k+2

)
,

for every M ≥ 2 bv(H)/f(H)c.

We start by showing how to deduce Theorem 4.6 assuming the statement of Theo-
rem 4.8. The proof of Theorem 4.8 will be given immediately afterwards.

Proof of Theorem 4.6 from Theorem 4.8. Fix an arbitrary strategy for Breaker. We
will study the following random strategy for Maker: in each round he picks an element
uniformly at random from among all elements of V (H) that he has not previously
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picked. If this element was not already occupied by either Maker or Breaker, then
Maker occupies it. Otherwise he occupies an arbitrary free vertex and ‘forgets’ about
it for the rest of the game, i.e. he doesn’t consider it as picked and can potentially
pick it at a later point. Note the subtle difference between picking and occupying a
vertex: occupying is the act of actually choosing a vertex in the process of the game and
picking can, depending on whether the vertex was already occupied by either player,
be merely in the mind of Maker. We label an element picked by Maker as a failure, if
that element was already occupied by Breaker. We will show that this random strategy
succeeds with positive probability against Breaker’s arbitrary strategy, implying that
Breaker does not have a winning strategy and therefore Maker must have one.

Let δ = δ(k, c1) < 1 be chosen according to Theorem 4.8 and q ≤ cf(H)− 1 where
c = (1− δ)/4 > 0. We will consider the first

M = 2
⌊
v(H)
f(H)

⌋
≤ 1− δ

2
v(H)
q + 1 (4.5)

rounds of the game. We may consider the set of elements that Maker picked in these
M rounds as the uniform random set V (H)M . Note that some of his elements may
be failures. We will now upper bound the probability that Maker’s i-th move, which
we refer to as mi, was a failure. Clearly this probability is upper bounded by the
probability that his M -th move is a failure since in every round the number of poten-
tial failures does not decrease and the number of vertices Maker picks from strictly
decreases. Note that in the first M − 1 rounds, Maker picked exactly M − 1 vertices.
So, in round M , there are v(H)−M + 1 available vertices to pick from. The potential
failures are among the vertices occupied by Breaker and hence their number is at most
q (M − 1). Using Equation (4.5) it follows that

P (mi a failure) ≤ P (mM a failure) ≤ q (M − 1)
v(H)− (M − 1) ≤

q M

v(H)−M ≤ 1− δ
2

for every i ∈ {1, . . . ,M}. The probability that Maker has more than (1− δ)M failures
is now at most the probability that among M independent Bernoulli trials with failure
probability (1 − δ)/2 there exist more than (1 − δ)M failures, which is less than 1/2
by Markov’s Inequality. In other words, with probability at least 1/2, at least δM
elements picked by Maker are not failures.

By Theorem 4.8 the probability that V (H)M is not δ-stable is strictly less than
3 exp

(
−M(c1 2k+2)−1

)
. Setting c̄ to be the maximum of c12k+1(log(3)+log(4))+1 and
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the according value of c̃ in Theorem 4.8, and using that f(H) ≤ c̄−1v(H) by (Miii),
one can verify that the probability that the uniform random set V (H)M is not δ-stable
is at most 1/4. Consequently, with probability at least 1/4, the at least δM vertices
occupied by Maker contain an edge of H.

Proof of Theorem 4.8. The heart of the proof of Theorem 4.8 is the following state-
ment due to Janson, Łuczak and Ruciński [86], see also the Second Moment Method
in Section 1.6.

Theorem 4.9 (Theorem 2.18, (ii) in [87]). Let S be a finite set, 0 < p < 1 and 1T the
indicator random variable of the event that T ⊆ Sp for a given T ⊆ S. If S ⊂ P(S) is
a family of subsets of S and X = ∑

T∈S
1T , then

P (X = 0) ≤ exp
− E(X)2∑

(T,T ′)∈S2

T∩T ′ 6=∅

E(1T1T ′)

.

We want to apply Theorem 4.9 with S = V (H), S = E(H) and p = 1/f(H). Note
that p < 1 due to (Mii). For X = ∑

e∈H 1e we have, by linearity of expectation, that
E(X) = e(H) pk. Note that E(1e1e′) = p2k−|e∩e′| for e, e′ ∈ H and therefore

∑
(e,e′)∈H2

e∩e′ 6=∅

E(1e1e′) =
∑
e∈H

∑
∅6=T⊆e

∑
e′∈H
e∩e′=T

p2k−|T | ≤
∑
e∈H

∑
∅6=T⊆e

deg(T ) p2k−|T |

≤ e(H)
(
2k − 1

)
max

∅6=T⊆V (H)

(
deg(T ) p2k−|T |

)
≤ 2k e(H) max

1≤`≤k

(
∆`(H) p2k−`

)
= 2k e(H) p2k−1 max

(
max
2≤`≤k

(
∆`(H)
p`−1

)
, ∆1(H)

)

= 2k E(X)2

p v(H) d(H) max
(

max
2≤`≤k

(
∆`(H)
p`−1

)
, ∆1(H)

)
.

Using (Mi) we now get

∑
(e,e′)∈H2

e∩e′ 6=∅

E(1e1e′) ≤ 2k E(X)2

p v(H) max
(

max
2≤`≤k

(
∆`(H)

d(H) p`−1

)
, c1

)

≤ 2k E(X)2

p v(H) max
(

max
2≤`≤k

(
1

(f(H) p)`−1

)
, c1

)
= c1 2k E(X)2

p v(H) .
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where the last inequality follows from the definition of f(H) and the last equality
follows from the fact that f(H) p = 1 and c1 ≥ k. Now, using the estimate from
Theorem 4.9, we get

P (V (H)p contains no edge of H) = P (X = 0) ≤ exp(−c′ v(H) p) (4.6)

where c′ = 1/(c1 2k). The following lemma will now allow us to bound the probabil-
ity of a uniform random set fulfilling our desired property by the probability that a
corresponding binomial random set fulfills it.

Lemma 4.10. Let X ∼ B(n, p) and let P be a monotone decreasing family of sub-
sets of [n].Then there exists a constant C > 0 such that if

√
np(1− p) > C, then

P
(
[n]bnpc ∈ P

)
≤ 3P ([n]p ∈ P).

Proof. Note that since P is monotone decreasing, we have P ([n]K ∈ P) is greater than
P ([n]L ∈ P) whenever K ≤ L. Thus

P ([n]p ∈ P) =
n∑

M=0
P ([n]p ∈ P | |[n]p| = M) P (|[n]p| = M)

=
n∑

M=0
P ([n]M ∈ P) P (|[n]p| = M)

≥
bnpc∑
M=0

P ([n]M ∈ P) P (|[n]p| = M)

≥ P
(
[n]bnpc ∈ P

) bnpc∑
M=0

P (|[n]p| = M) .

Note that ∑bnpcM=0 P (|[n]p| = M) = P (X ≤ bnpc). Let µ1/2 be the median of X and
assume first that bnpc ≤ µ1/2 < dnpe. Then P (X ≤ bnpc) = P

(
X ≤ µ1/2

)
≥ 1

2 and
hence

P([n]bnpc ∈ P) ≤ 2P ([n]p ∈ P) .

It remains to be shown that the assertion follows as well if µ1/2 = dnpe. Note that

P (X ≤ bnpc) = P (X ≤ dnpe)− P (X = dnpe) ≥ 1
2 − P (X = dnpe) .

We will show that P (X = dnpe) ≤ 1/6 which then implies that P
(
[n]bnpc ∈ P

)
is

smaller than 3P ([n]p ∈ P). To do so, we will upper bound the probability that X =
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dnpe and use the inequalities
√

2πn
(
n
e

)n
≤ n! ≤

√
2πn

(
n
e

)n
e as follows:

P (X = dnpe) =
(

n

dnpe

)
pdnpe (1− p)n−dnpe = n! pdnpe (1− p)n−dnpe

dnpe!(n− dnpe)!

≤
√
n nn e pdnpe (1− p)n−dnpe√

2πdnpe (dnpe)dnpe
√
n− dnpe (n− dnpe)n−dnpe

=
√
n√

n− dnpe
(np)dnpe
dnpednpe

(n− np)n−dnpe
(n− dnpe)n−dnpe

e√
2πdnpe

,

Clearly we have (np)dnpe/dnpednpe ≤ 1 as well as (n − np)n−dnpe/(n − dnpe)n−dnpe ≤ e.
Hence we get

P (X = dnpe) ≤ e2
√

2π

√
n

n− np− 1
1
np
≤ 3√

(1− p)np− p
<

3√
C2 − 1

.

Choosing C > 0 large enough such that P (X = dnpe) ≤ 1/6 gives the desired property.

Since the property of ‘not containing an edge of H’ is monotone decreasing, we can
choose c̃ such that we can apply Lemma 4.10 to restate Equation (4.6) for the uniform
random set model as follows:

P (V (H)M̄ contains no edge of H)

≤ 3P (V (H)p contains no edge of H)

≤ 3 exp(−c′M̄) (4.7)

for any M̄ ≥ bv(H)/f(H)c.

We are now ready to finish the proof. LetM ≥ 2 bv(H)/f(H)c and let δ = δ(k, c1) ∈
(1/2, 1) be such that (1− δ)(1− ln(1− δ)) < c′/4. To see that this is indeed possible,
note that for x ∈ (0, 1) the function g(x) = (1 − x)(1 − ln(1 − x)) satisfies g(x) → 0
as x → 1. Consider pairs (T, T ′) where T ⊂ V (H) with |T | = M and T ′ ⊆ T is such
that |T ′| = δM and T ′ does not contain an edge of H. Using Equation (4.7) with
δM > bv(H)/f(H)c, we can estimate the number of choices for a set T ′ of size δM
that contains no edge of H by

3 exp(−c′δM)
(
v(H)
δM

)
≤ 3 exp

(
− c′M2

)(
v(H)
δM

)
.
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Hence, we can upper bound the number of pairs (T, T ′) as described above by

3 exp
(
− c′M2

)(
v(H)
δM

)(
v(H)− δM
(1− δ)M

)
= 3 exp

(
− c′M2

)(
M

(1− δ)M

)(
v(H)
M

)
.

We can therefore upper bound the number of choices for a set T of size M containing
a subset of size δM that does not contain an edge of H by

3 exp
(
− c′M2

)(
M

(1− δ)M

)(
v(H)
M

)

≤ 3 exp
(
M
(
− c′/2 + (1− δ)(1− ln(1− δ))

))(v(H)
M

)
.

Hence we get

P (V (H)M is not δ-stable )

≤ 3 exp (M(−c′/2 + (1− δ)(1− ln(1− δ))))

≤ 3 exp
(
−Mc′

4

)
,

where the last inequality follows by choice of δ = δ(k, c1). �

4.2 Proof of Theorem 4.3 – Breaker’s strategy

We will derive Theorem 4.3 from the following stronger combinatorial statement.

Theorem 4.11. For every k ≥ 2 and t > (2k)k the following holds: if H is a k-uniform
hypergraph, then Breaker has a winning strategy in G(H; q) provided that

q > 4
(
(2 v(H))1/t ∆1(H) ke

) 1
k−1

as well as

q > 8k2t3

 max
2≤`≤k−1

(
∆`(H)

(
(tk)tk kt v(H)2

) k

t1/k
) 1
k−`

+ 2
 .

Note that here e denotes the base of the natural logarithm and should not be con-
fused with the number of edges. We start by giving a proof of Theorem 4.3 using
Theorem 4.11. Then we define the necessary concepts for the remainder of the sec-

Christoph Spiegel 78 Randomness and Games



Chapter 4. The Breaker Threshold

tion. Following this, we present the two main strategies for Breaker and prove their
correctness. Finally we prove Theorem 4.11 using these ingredients.

Proof of Theorem 4.3 from Theorem 4.11. Let k ≥ 2 and ε > 0 be given and set t =
log v(H). Assume that v(H) is large enough such that log v(H) > (2k)k. Using e =
v(H)1/ log v(H), it is straightforward to check that

(
(2n)1/t∆1(H) ke

) 1
k−1 ≤ C ′1 ∆1(H)

1
k−1

for some constant C ′1 = C ′1(k) > 0. Similarly for v(H) sufficiently large we can upper
bound the term

2k2t3

 max
2≤`≤k−1

(
2k ∆`(H)

(
v(H)2 (tk)tk

) k

t1/k
) 1
k−`

+ 2


≤C ′2 v(H)C
′
3

log log v(H)
log1/k v(H) max

2≤`≤k−1
(∆`(H))

1
k−`

for some constants C ′2 = C ′2(k) > 0 and C ′3 = C ′3(k) > 0. Note that

log log v(H)/ log1/k v(H) = o(1)

and so for v(H) large enough this will be at most v(H)ε max2≤`≤k−1
(
∆`(H)

1
k−`
)
.

Choose C1 = C1(k) ≥ max(C ′1, C ′2, 4) and v0 = v0(k) large enough, giving us the
statement that Breaker has a winning strategy if

q ≥ C1 max
(

∆1(H)
1

k−1 , max
2≤`≤k−1

(
∆`(H)

1
k−`
)
v(H)ε

)
. (4.8)

From this, the statement of Theorem 4.3 immediately follows.

4.2.1 Preliminaries for the proof of Theorem 4.11

One of the most important results in the area of positional games is the Erdős–Selfridge
Theorem [51], the biased version of which is due to Beck [7]. It ensures that Breaker
can do at least as well as the expected outcome when both players act randomly. We
will use the following consequence of it heavily in the proof of Theorem 4.11.

Biased Erdős–Selfridge Theorem [7]. For every hypergraph H and integer q ≥ 1
the following holds. If Breaker plays as the second player, he can keep Maker from

Christoph Spiegel 79 Randomness and Games



Chapter 4. The Breaker Threshold

covering more than

(q + 1)
∑
H∈H

(
1

q + 1

)|H|
(4.9)

winning sets in G(H; q). If he plays as the first player, then one can omit the first
(q + 1) factor.

We will also need the following simple yet powerful remark.

Remark 4.12. If Breaker has a winning strategy for some positional game G(H; q)
where he is allowed to make at most q moves each round, then he also wins if he has
to make exactly q moves each round. It follows that if he has a winning strategy for
some game G(H1; q1) and a winning strategy for another game G(H2; q2), then he can
combine these two strategies to define a winning strategy in G(H1 ∪H2; q1 + q2).

This remark will be used extensively throughout the proof. Furthermore, we will need
the following definitions, which are based on those developed in [10].

Definition 4.13 (Set-Theoretic definitions). Given some hypergraph H, we define the
following notions:

1. a t-cluster is a set of distinct edges {H1, . . . , Ht} ⊂ H satisfying |⋂ti=1Hi| ≥ 2,
2. an almost complete solution (H◦, h) is a tuple consisting of a set H◦ ⊆ V (H) as

well as an element h /∈ H◦ so that H = H◦ ∪ {h} is an edge in H,
3. a t-fan is a family of distinct almost complete solutions {(H◦1 , h1), . . . , (H◦t , ht)}

in H satisfying |⋂ti=1H
◦
i | ≥ 1,

4. a t-fan is is called simple if |H◦i ∩H◦j | = 1 for all 1 ≤ i < j ≤ t,
5. a t-flower is a t-fan satisfying |⋂ti=1H

◦
i | ≥ 2.

For each t-fan in H we call the hi the open elements, the H◦i the major parts and the
elements of the intersection ⋂ti=1H

◦
i the common elements.

Definition 4.14 (Game-Theoretic Definitions). At any given point in a positional
game on a given hypergraph H, we call an almost complete solution (H◦, h) dangerous
if all elements of H◦ have been picked by Maker and h has not yet been picked by either
player. A fan or flower is dangerous if their respective almost complete solutions are.

Observe that for a dangerous t-fan or t-flower we must have hi /∈ H◦j for all 1 ≤
i, j ≤ t. In the following we will always assume that Breaker plays as second player. We
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say that a player occupies a given t-fan or t-flower (H◦1 , h1), . . . , (H◦t , ht) if his selection
of vertices contains ⋃ti=1H

◦
i . Similarly a player occupies a t-cluster H1, . . . , Ht if his

selection of vertices contains ⋃ti=1Hi.

4.2.2 Two important strategies for Breaker

The following two lemmata give us strategies that we will use to construct a larger
strategy in the proof of Theorem 4.11. Note that in the statement of the lemma we do
not care about which player covers the open elements of a fan.

Lemma 4.15. For every integer k ≥ 2 and t ≥ 1 the following holds. If H is a
k-uniform hypergraph, then Breaker with a bias of

q >
(
(2 v(H))1/t ∆1(H) ke

)1/(k−1)

can prevent Maker from occupying
(
q
t

)
/2 simple t-fans in the game G(H; q).

Proof. Let F =
{⋃t

i=1H
◦
i | {(H◦1 , h1), . . . , (H◦t , ht)} simple t-fan in H

}
be the hyper-

graph of all simple t-fans in H. We want to apply the Biased Erdős–Selfridge Theorem,
so we estimate

(q + 1)
∑
F∈F

(
1

q + 1

)|F |
≤ (q + 1)

(
v(H) ∆1(H)t (k − 1)t

t!

)(
1

q + 1

)t(k−2)+1

.

This inequality holds because there are v(H) ways to fix the common element of a
simple t-fan, ∆1(H)t is an upper bound on the number of t-tuples of edges containing
the fixed common element and there are (k − 1)t ways of fixing the corresponding
open elements. Note that an open element is never a common element by definition.
Furthermore, t! takes care of the symmetry and each simple t-fan is of size t(k−2) + 1.
We therefore get

(q + 1)
∑
F∈F

(
1

q + 1

)|F |
≤ v(H)

(
∆1(H) ke
t qk−2

)t
= v(H)

(
∆1(H) ke
qk−1

)t (
q

t

)t

< v(H) 1
2 v(H)

(
q

t

)t
≤ 1

2

(
q

t

)
.

The claim now follows by applying the Biased Erdős–Selfridge Theorem.
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Lemma 4.16. For every integer k ≥ 2 and t > (2k)k the following holds: if H is a
k-uniform hypergraph, then Breaker with a bias of

q > max
2≤`≤k−1

(
∆`(H) ((tk)tk kt v(H)2)

k

t1/k

) 1
k−`

(4.10)

has a strategy that prevents dangerous t(q + 1)-flowers in G(H; q)

Proof. Let F =
{⋃t

i=1Hi | {H1, . . . , Ht} t-cluster in H
}
be the hypergraph of all t-

clusters in H. First we will show that Breaker can prevent t-clusters. Given some
t-cluster H1, . . . , Ht let `i = |Hi ∩

⋃i−1
j=1Hj| for all 2 ≤ i ≤ t. We call (2, `2, . . . , `t) its

intersection characteristic and observe that 2 ≤ `i ≤ k for 2 ≤ i ≤ t. We will set `1 = 2
for notational convenience. For any ` = (`1, . . . , `t) ∈ {2}× [2, k]t−1 let F(`) denote the
set of edges in F which come from some t-cluster with the intersection characteristic `

and observe that it is v(`)-uniform where

v(`) = 2 +
t∑
i=1

(k − `i) = k +
t∑
i=2

(k − `i). (4.11)

This follows since given any clusterH1, . . . , Ht with intersection characteristic ` we have
|⋃ti=1Hi| = v(`). There is the trivial upper bound v(`) ≤ tk for all ` ∈ {2} × [2, k]t−1.
Let L = {` : F(`) 6= ∅} ⊆ {2} × [2, k]t−1 be the set of all intersection characteristics
that actually occur in H. Now for any ` ∈ L we trivially have t ≤

(
v(`)−2
k−2

)
, which we

restate as the lower bound

v(`) ≥ t1/k for all ` ∈ L. (4.12)

Now for ` = (`1, . . . , `t) ∈ L observe that

|F(`)| ≤
(
v(H)

2

)
∆2(H)

t∏
i=2

(
k +∑i−1

j=2(k − `i)− 2
`i − 2

)
∆`i(H)

≤
(
v(H)

2

) (
v(`)− 2
k − 2

)t−1

∆2(H)
t∏
i=2

∆`i(H) ≤ v(H)2 (tk)tk
t∏
i=1

∆`i(H).

Here, the first inequality is justified by observing that there are
(
v(H)

2

)
ways to fix two

common elements and at most ∆2(H) ways to choose the first edge H1 of a t-cluster.
The product counts ways to add the i-th additional edge Hi for 2 ≤ i ≤ t by first
fixing the intersection with the already established parts ⋃i−1

j=1Hj and then adding one
of the at most ∆`i possible ways of picking Hi. The second inequality follows since by
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assumption t > (2k)k so that Equation (4.12) gives us v(`) ≥ 2k from which it follows
that for all 2 ≤ i ≤ t we have(

k +∑i−1
j=2(k − `i)− 2
`i − 2

)
≤
(
v(`)− 2
k − 2

)
.

We now want to apply the Biased Erdős–Selfridge Theorem, so we estimate

(q + 1)
∑
F∈F

(
1

q + 1

)|F |
≤ (q + 1)

∑
`2∈[2,k]

· · ·
∑

`t∈[2,k]
|F(`)|

(
1

q + 1

)v(`)

≤ (tk)tk v(H)2 (q + 1)
∑
`∈L

t∏
i=1

∆`i(H)
(

1
q + 1

)v(`)

.

where we have just inserted the previously stated upper bound on |F(`)|. We now split
up the factor (1/(q + 1))v(`) using Equation (4.11) to obtain

(q + 1)
∑
F∈F

(
1

q + 1

)|F |
≤ (tk)tk v(H)2 1

q + 1
∑
`∈L

t∏
i=1

∆`i(H)
(

1
q + 1

)k−`i .
Note that we have ∆`(H) (1/(q + 1))k−` = 1 for ` = k and ∆`(H) (1/(q + 1))k−` < 1
for 2 ≤ ` < k due to the lower bound on q. Furthermore, since ` ∈ L is the intersection
characteristic of a t-cluster in H, the number of indices 1 ≤ i ≤ t for which `i < k must
be at least dv(`)/ke ≥

⌈
t1/k/k

⌉
. Now, due to Equation (4.10) it follows that

(q + 1)
∑
F∈F

(
1

q + 1

)|F |
≤ (tk)tk v(H)2 kt

 max
2≤`≤k−1

∆`(H)
(

1
q

)k−` t1/k
k

< 1.

It follows, by applying the Biased Erdős–Selfridge Theorem, that using a bias of q,
Breaker has a strategy to keep Maker from fully covering any t-cluster. Following this
strategy, it is easy to see that Breaker will also keep Maker from creating a dangerous
t(q + 1)-flower at any point in the game. To see this, suppose that this is not the case
and that Maker succeeds in creating such a dangerous flower. By repeatedly claiming
the open element of this dangerous flower which has not yet been claimed and is the
open element of the most almost complete solutions in the flower, Maker would be able
to cover a t-cluster, as t(q + 1)/(q + 1) = t, which is a contradiction.
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4.2.3 Proof of Theorem 4.11

In order to join the previous two strategies together, we will need the following simple
auxiliary statement. We include its proof for the convenience of the reader.

Lemma 4.17. For every q ≥ 2 and t ≥ 2 the following holds: if F is a graph on q

vertices with e(F ) < q2/2t2 then it has at least
(
q
t

)
/2 independent sets of size t.

Proof. The number of subsets of V (F ) of size t that are not independent is upper
bounded by

e(F )
(
q − 2
t− 2

)
≤ e(F )

(
t2

q2

)(
q

t

)
<

1
2

(
q

t

)

since e(F ) < q2/2t2.

We are now ready to prove Theorem 4.11.

Proof of Theorem 4.11. Let k ≥ 2 and t > (2k)k be given and let

q > 4
(
(2 v(H))1/t∆1(H) ke

) 1
k−1

as well as
q > 8k2t3

(
max

2≤`≤k−1

(
∆`(H)((tk)tk kt v(H)2)

k

t1/k

) 1
k−`

+ 2
)
.

Breaker will play according to the following three strategies, splitting his bias as q =
q/2+q/4+q/4. Note that in case Breaker does not need all his moves to play according
to one of the strategies, he plays them arbitrarily, which cannot hurt him.

SB1: Using q/4 moves, he will play according to Lemma 4.15 and thus preventing
Maker from occupying

(
q/4
t

)
/2 simple t-fans.

SB2: Using

q = max
2≤`≤k−1

(
∆`(H)

(
(tk)tkkt v(H)2

)k/t1/k )1/(k−`)
+ 1 < q/4

moves, he will play according to Lemma 4.16 and hence preventing dangerous
t(q + 1)-flowers from appearing.

SB3: Using q/2 moves, he will occupy all open elements of any dangerous almost
complete solution.

First of all, note that Maker can play according to SB1 and SB2 since

q/4 >
(

(2 v(H))1/t∆1(H) ke
)1/(k−1)
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and
q > max

2≤`≤k−1

(
2k ∆`(H)

(
v(H)2 (tk)tk

) k

t1/k
)1/(k−`)

.

We can combine these strategies due to Remark 4.12 and will now prove by induc-
tion, that after each of Breaker’s moves there is no dangerous almost complete solution.
Clearly this implies that Breaker’s strategy is indeed a winning strategy. Initially there
is obviously no dangerous almost complete solution. So suppose the result is true in
round r − 1. In round r Maker claims some element w. Then every new dangerous
almost complete solution must contain w. Therefore they all belong to the same dan-
gerous fan with common element w. In order to complete the inductive step, we have
to show that the size of this dangerous fan is not more than q/2 as Breaker can then
occupy all open elements in this dangerous fan using SB3, which completes the induc-
tive step. Indeed, using a bias of q/2 Breaker has a strategy that avoids dangerous
q/2-fans at any point in the game.

Suppose Maker succeeds in occupying a dangerous (q/2)-fan

(H◦1 , h1), . . . , (H◦q/2, hq/2)

Construct an auxiliary graph F whose vertices are the almost complete solutions of
this fan and an edge between (H◦i , hi) and (H◦j , hj) indicates that |H◦i ∩H◦j | ≥ 2 where
1 ≤ i < j ≤ q/2. Recall that using q moves according to SB2, Breaker prevents
dangerous t(q + 1)-flowers from appearing. Therefore the maximum degree in F is
bounded by ∆(F ) ≤ (t(q + 1)− 2)

(
k−1

2

)
≤ t(q + 1)k2 and hence

e(F ) ≤ 1
2
q

2t(q + 1)k2 <
1
2

(q/2)2

t2

by choice of q. Therefore, by Lemma 4.17, F has at least
(
q/4
t

)
/2 independent sets of

size t. But that means that Maker occupied
(
q/4
t

)
/2 simple t-fans contradicting SB1.

This establishes the claim that Breaker has a strategy that avoids dangerous q/2-fans
and completes the proof. �

4.3 Proof of Theorem 4.4 – Rado games

The goal of this chapter is to prove the statement in Theorem 4.4, that is to show that
the threshold bias of the Maker-Breaker (A,b)-game on [n] satisfies q(S1(A,b, n)) =
Θ
(
n1/m1(A)

)
for a given positive and abundant matrix A ∈ Zr×m and vector b ∈ Zr.
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Before we do so, let us first prove a result regarding positive matrices not covered by
the previous result. This will be much easier to prove and one can see that the simple
structure of non-abundant matrices strongly favors Breaker compared to the abundant
case.

Proposition 4.18. For a positive but non-abundant matrix A ∈ Zr×m and vector
b ∈ Zr, the threshold bias of the Maker-Breaker (A,b)-game on [n] satisfies

q0
(
S0(A,b, n)

)
≤ 2. (4.13)

Proof of Proposition 4.18. Let us start by noting that if S(A,b) = ∅, then the game
hypergraph S0(A,b, n) is empty and the game trivially is an immediate win for Breaker.
We therefore assume thate S(A,b) 6= ∅. By Lemma 1.2 we may, without loss of
generality, assume that the first row of A is of the shape a = (a1, . . . , am) where ai = 0
for all i ∈ {3, . . . ,m} and a1, a2 6= 0 as well as a1 +a2 6= 0. Writing b1 for the first entry
of b, it follows that whenever Maker occupies some i ∈ [n], Breaker can simply pick
(b1−a1 i)/a2 and (b1−a2 i)/a1, if these are indeed integer values in [n], and thus block
Maker’s ability to cover any solution. It follows that Breaker has a winning strategy
with a bias of at most 2.

Proof of Rado Games statements

We will obtain Maker’s strategy through an application of Theorem 4.2 and Breaker’s
strategy through an application of Theorem 4.3. In order to do so, let us first state some
general observations regarding the distribution of edges in the hypergraph S0(A,b, n)
that will be needed when applying both Maker’s and Breaker’s criterion. Note that
we previously studied essentially the same hypergraph in Chapter 3, obtaining similar
results.

Lemma 4.19. For every positive matrix A ∈ Zr×m and vector b ∈ Zr such that
S(A,b) 6= ∅, the average degree of S0(A,b, n) satisfies

d(S0(A,b, n)) = Θ
(
nm−rk(A)−1

)
.

Proof. We observe that each edge in S0(A,b, n) can stem from at most m! solutions
in S0(A,b) ∩ [n]m, so that we have

|S0(A,b) ∩ [n]m|/m! ≤ e(S0(A,b, n)) ≤ |S0(A,b) ∩ [n]m|.
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Using Equation (1.3) and Lemma 1.4 there therefore exists a constant c0 = c0(A,b) > 0
so that

c0/m! nm−rk(A)−1 ≤ d(S0(A,b, n)) ≤ nm−rk(A)−1,

proving the statement.

Lemma 4.20. For every positive matrix A ∈ Zr×m, vector b ∈ Zr and 1 ≤ ` ≤ m the
maximum `-degrees in S0(A,b, n) satisfy

∆`(S0(A,b, n)) = O
(

max
Q⊆[m],|Q|=`

n(m−rk(A))−(|Q|−rQ)
)
.

Proof. We have

∆`(S0(A,b, n))

≤ max
(x1,...,x`)∈[n]`

∣∣∣{x ∈ S0(A,b) ∩ [n]m : ∃Q ⊆ [m] s.t. xQ = (x1, . . . , x`)}
∣∣∣

≤
(
m

`

)
max

(x1,...,x`)∈[n]`
Q⊆[m],|Q|=`

∣∣∣{x ∈ [n]m−` : AQ · xT = b− AQ · (x1, . . . , x`)T}
∣∣∣

≤m` max
Q⊆[m]
|Q|=`

max
b′∈Zr

∣∣∣S(AQ,b′) ∩ [n]m−`
∣∣∣.

Using Equation (1.3) as well as the fact that |Q| = m− |Q| and rQ = rk(A)− rk(AQ),
it follows that

∆`(S0(A,b, n)) ≤ m` max
Q⊆[m]
|Q|=`

n|Q|−rk(AQ) = m` max
Q⊆[m]
|Q|=`

n(m−rk(A))−(|Q|−rQ)

giving us the desired statement.

Using these results, we are now ready to provide a proof of Theorem 4.4.

Proof of Theorem 4.4. We will prove that the threshold bias satisfies

q0(S1(A,b, n)) = Θ(n1/m1(A)) (4.14)

by first showing that the criteria of Theorem 4.2 are met by S0(A,b, n). We will then
use Remark 4.12 and show that, for B1 and c1 are as given by Corollary 1.13, for
any p ∈ P(B1) either S0(B1,p, c1, n) meets the criteria of Theorem 4.3 or B1,p is non-
abundant, in which case we can apply Proposition 4.18. In fact, since we are applying
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Theorem 4.2 to S0(A,b, n) so that Maker is guaranteed to actually win with a proper
solution, this also establishes that

q0(S0(A,b, n)) = Θ(n1/m1(A)). (4.15)

Maker’s Strategy. Since A is abundant, we know by Lemma 1.14 that rQ = 0 for
any Q ⊆ {1, . . . ,m} satisfying |Q| ≤ 2. By Lemma 4.20, it therefore follows that
∆1(S0(A,b, n)) = O(nm−rk(A)−1) and ∆2(S0(A,b, n)) = O(nm−rk(A)−2). Lemma 4.19
therefore immediately implies that both (M1) and (M2) hold. As v(S0(A,b, n)) = n

and rk(A) ≥ 1, Lemma 4.19 implies that d(S0(A,b, n)) = o(nm−1), so that (M3) holds
as well. It follows that Theorem 4.2 applies and establishes the desired lower bound
on the threshold bias since

min
2≤`≤m

(
d(S0(A,b, n))

∆`(S0(A,b, n))

) 1
`−1

= min
2≤`≤m

 Θ
(
nm−rk(A)−1

)
O
(

maxQ⊆[m]
|Q|= `

n(m−rk(A))−(|Q|−rQ)
)


1
`−1

= min
Q⊆[m]
|Q|≥2

Ω
(
n
|Q|−rQ−1
|Q|−1

)
= Ω

(
n1/m1(A)

)
.

Breaker’s Strategy. One may assume that A is strictly 1-balanced as otherwise we
can replace A and b with B1 and c1 as given by Corollary 1.13. We will now show
that for any p ∈ P(A) either Ap is non-abundant, in which case we simply apply
Proposition 4.18 to establish that Breaker can take care of solutions of that type, or
Ap is again abundant, in which case we show that S0(Ap,b, n) meets the criteria of
Theorem 4.3 so that by Lemma 1.10 Breaker can take care of solutions of that type.
By Remark 4.12 it follows that we can combine all of these individual strategies to
establish that breaker wins with a bias of size O(n1/m1(A)).

Let us therefore show that S0(Ap,b, n) meets the criteria of Theorem 4.3 for any
p ∈ P(A) assuming that Ap is abundant. Note that v(S0(Ap,b, n)) = n so that we
clearly have v(S0(Ap,b, n)) = ω(1). Since Ap is abundant, we know by Lemma 1.14
that rQ = 0 for any Q ⊆ {1, . . . ,m} satisfying |Q| = 1. Lemma 4.20 combined with
the fact that ∆1(S0(Ap,b, n)) ≥ d(S0(Ap,b, n)) therefore implies that

∆1(S0(Ap,b, n))
1
|p|−1 = Θ

(
n
|p|−rk(Ap)−1
|p|−1

)
. (4.16)
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We note that, as rk(Ap) = rk(A) and |p| ≤ m, we have

|p| − rk(Ap)− 1
|p| − 1 ≤ m− rk(A)− 1

m− 1 = 1
m1(A) . (4.17)

In the last step we have used the assumption that A is strictly 1-balanced. It fol-
lows that if we can show that if Ap satisfies main condition of Theorem 4.3, we have
established the desired bias threshold.

Since A is strictly 1-balanced, we also know that for all Q ⊆ {1, . . . ,m} satisfying
2 ≤ |Q| < m we have (|Q| − 1)/(|Q| − rQ − 1) < m1(A) so that

(m− rk(A))− (|Q| − rQ)
m− |Q|

= (m− rk(A)− 1)− (|Q| − rQ − 1)
(m− 1)− (|Q| − 1)

<
(m− rk(A)− 1)− (|Q| − 1)/m1(A)

(m− 1)− (|Q| − 1)

= 1
m1(A)

1− (|Q| − 1)/(m− 1)
1− (|Q| − 1)(m− 1) = 1

m1(A) .

It follows that there exists some ε = ε(A) > 0 so that for any 2 ≤ ` ≤ m we have by
Lemma 4.20 that

∆`(S0(A,b, n))
1

m−` nε = O
(

max
Q⊆[m], |Q|= `

n(m−rk(A))−(|Q|−rQ)
) 1
m−`

nε

= O
(

max
Q⊆[m], |Q|= `

n
(m−rk(A))−(|Q|−rQ)

m−|Q| +ε
)

= O
(
n1/m1(A)

)
= O

(
∆1(S0(A,b, n))

1
m−1

)
.

Theorem 4.3 therefore applies, concluding the proof. �

4.4 Proof of Theorem 4.5 – Small hypergraph games

Using Theorem 4.2 and Theorem 4.3 we can easily establish Theorem 4.5.

Proof of Theorem 4.5. First, observe that if G is a collection of e(G) independent
edges, then Maker has a winning strategy if q <

(
n−r(e(G)−1)

r

)
/(e(G) − 1). We may

therefore assume that this is not the case. We recall that H(G, n) was the hypergraph
of all copies of G in K(r)

n . We observe that H(G, n) is e(G)-uniform and clearly satisfies

v(H(G, n)) =
(
n

r

)
= Θ(nr) (4.18)
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as well as e(H(G, n)) =
(

n
v(G)

)
v(G)! / aut(G) = Θ(nv(G)). In particular, it follows that

d(H(G, n)) = Θ(nv(G)−r). (4.19)

Lastly observe that for 1 ≤ ` ≤ e(G) we have

∆`(H(G, n)) = Θ
(

max
F⊆G, e(F)=`

nv(G)−v(F)
)
. (4.20)

We will now prove that the threshold bias satisfies q(H(G, n)) = Θ(n1/mr(G)) by
showing that the criteria of Theorem 4.2 are met by H(G, n) and that the criteria of
Theorem 4.3 are met by H(F , n) where F will be some appropriate dense subgraph
of G. The bounds on the threshold bias obtained this way will asymptotically be the
same, giving the desired statement.

Maker’s Strategy. Equation (4.20) implies that ∆1(H(G, n)) = Θ(nv(G)−r) as well as
∆2(H(G, n)) = O(nv(G)−(r+1)) so that (M1) and (M2) follow due to Equation (4.19).
Now, as we have already excluded the case that G is a collection of e(G) independent
edges, we have v(G)/e(G) < r so that v(G) − r < r (e(G) − 1) and hence (M3) is
satisfied by Equation (4.18) and Equation (4.19). It follows that Theorem 4.2 applies
and establishes the desired lower bound on the threshold bias since

min
2≤`≤e(G)

(
d(H(G, n))

∆`(H(G, n))

) 1
`−1

= min
2≤`≤e(G)

 Θ
(
nv(G)−r

)
Θ
(

maxF⊆G, e(F)=` nv(G)−v(F)
)


1
`−1

= min
F⊆G, e(F)≥2

Θ
(
n
v(F)−r
e(F)−1

)
= Θ

(
n1/mr(G)

)
.

Breaker’s Strategy. Note that we can restrict our attention to the case in which G is
strictly r-balanced, as otherwise we can replace G with a strictly r-balanced subhyper-
graph F ⊂ G. Indeed, if Breaker can keep Maker from occupying F , then he clearly
also succeeds in keeping Maker from occupying a copy of G. So we may assume that
mr(G) = (e(G)− 1)/(v(G)− r) and that mr(F) = (e(F)− 1)/(v(F)− r) < mr(G) for
all subgraphs F ( G on at least r + 1 vertices.

Clearly v(H(G, n)) = ω(1) by Equation (4.18). We note that by Equation (4.20) as
well as the assumption that G is strictly r-balanced we have

∆1(H(G, n))
1

e(G)−1 = Θ
(
n
v(G)−r
e(G)−1

)
= Θ

(
n1/mr(G)

)
. (4.21)
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Since G is strictly r-balanced, we also have that for every 2 ≤ ` ≤ e(G) and every
subhypergraph F ⊂ G with e(F) = ` edges

v(G)− v(F)
e(G)− ` = (v(G)− r)− (v(F)− r)

(e(G)− 1)− (e(F − 1)) = 1
mr(F)

1− v(F)−r
v(G)−r

1− e(F)−1
e(G)−1

<
1

mr(G) .

It follows that there exists a sufficiently small ε = ε(r,G) such that for any 2 ≤ ` ≤ e(G)
we have by Equation (4.18), Equation (4.20) and Equation (4.21) that

∆`(H(G, n))
1

e(G)−` v(H(G, n))ε = Θ

max
F⊆G
e(F)=`

n
v(G)−v(F)
e(G)−` +rε


= O

(
n

1
mr(G)

)
= O

(
∆1(H(G, n))

1
e(G)−1

)
.

We can therefore apply Theorem 4.3 and due to Equation (4.21) this establishes the
desired upper bound on the threshold bias. �

4.5 Further remarks

in this chapter, we have established general criteria for hypergraphsH, which guarantee
that the uniformly random Maker-strategy is essentially optimal in the biased Maker-
Breaker game on H, and applied the, to two natural games: Rado games as well as
G-building games. Let us state some further remarks regarding these two criteria.

4.5.1 Combining the Criteria for Maker and Breaker

We note that one can easily combine Theorem 4.2 and Theorem 4.3 to form the follow-
ing statement giving the exact asymptotic behavior of the threshold bias for games with
a hypergraph that is not dense, roughly regular, and has an appropriate separation of
the `-degrees from the degrees.

Corollary 4.21. For every k ≥ 2 the following holds. If H = (Hn)n∈N is a sequence
of k-uniform hypergraphs for which there exists an ε > 0 so that we have

(I) d(Hn) = o
(
v(Hn)k−1

)
,

(II) ∆1(Hn) = O
(
d(Hn)

)
,

(III) ∆`(Hn)
1
k−` v(Hn)ε = O

(
∆1(Hn)

1
k−1
)
for every 2 ≤ ` ≤ k − 1,
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then the threshold biases of the games played on Hn satisfy

q(Hn) = Θ
(
d(Hn)

1
k−1
)
. (4.22)

As the reader of the proofs of Theorem 4.4 and Theorem 4.5 will have noticed, this
would only be applicable in the special case where the matrix or the hypergraph to be
built is strictly 1- or r-balanced. For the proof of the full statement of these results,
we needed the two separate statements as well as the argument that without loss of
generality one can replace the matrix or the hypergraph with a denser substructure
when determining a strategy for Breaker.

4.5.2 Obtaining constants

One might rightfully be interested in obtaining more precise statements involving the
constant factors for the games studied in this chapter. For the triangle-building, game
Chvátal and Erdős [28] established upper and lower bounds that are tight up to a con-
stant factor of

√
2. Their upper bound was slightly improved by Balogh and Samotij [4],

however the value of the right constant factor is still unknown.
Let us state some bounds for the 3-term arithmetic progression game, where we

already established that the threshold bias is of the order
√
n.

Proposition 4.22. For the threshold bias q0(n) of the 3-term arithmetic progression
game played on [n] we have

√
n

12 −
1
6 ≤ q0(n) ≤

√
3n.

Proof. Let us first prove the upper bound by providing a winning strategy for Breaker
if he is given a bias of q ≥

√
3n. The strategy will simply consist of blocking all possible

3-term arithmetic progressions containing Maker’s last choice and one of its previous
choices. As for each fixed pair of integers there are at most three 3-term arithmetic
progressions containing them and Maker occupies at most M = dn/(q + 1)e integers
during the course of the whole game, the number of 3-term arithmetic progressions to
be blocked is never more than 3 (M − 1). Since

3 (M − 1) ≤ q

for q ≥
√

3n, Breaker has enough moves in each round to occupy the (at most) one
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unoccupied element in each of the dangerous 3-term arithmetic progressions.
For the lower bound we use the generalization of a criterion that was developed by

Beck for Maker’s win in the unbiased van der Waerden game [6]. He later stated a
biased version [8] and this is what we will apply here.

Theorem 4.23 (Biased Maker’s Win Criterion [8]). Let H be a hypergraph and q ∈ N.
Maker has a winning strategy as the first player in the q-biased game on H if

∑
H∈H

(
1

1 + q

)|H|
>

q2

(1 + q)3 ∆2(H) v(H). (4.23)

For the hypergraph Hn of 3-term arithmetic progressions in [n] we observe that
v(Hn) = n, e(Hn) ≥ n2/4 − n/2, and ∆2(Hn) ≤ 3. Consequently with a bias of
q <

√
n/12− 1/6 Equation (4.23) holds for Hn and Theorem 4.23 provides the winning

strategy for Maker.

Observe that the constants
√

1/12 and
√

3 are only a factor 6 apart. It would be
interesting to close this gap. It should be noted that one may also apply Theorem 4.23
to the k-term van der Waerden game and obtain a lower bound of the right order
of magnitude on the the threshold bias for every k ≥ 3. The ad-hoc argument for
Breaker’s win does not seem to generalize immediately. The analogous question for
graph-building games has been posed by Bednarska and Łuczak [10]. For hypergraph-
building games, the same question can of course also be asked.
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T wo related notions capturing the additive structure of a set will be the central
focus of this part. Given a set of non-negative integers A, its representation
function is given by

r(A, n) = #
{

(a1, a2) ∈ A2 : a1 + a2 = n
}
, (4.24)

that is it counts the number of ways to express some integer n ∈ N0 as a sum of two
elements in A. Note that these elements are not necessarily distinct and that they are
counted as tuples, that is any two distinct elements contribute to the function twice.

Now let G be some additively written abelian group. The Minkowski sumset of finite
subset A,B ⊂ G is defined as

A+B = {a+ b : a ∈ A, b ∈ B}, (4.25)

that is it is the set containing all sums of two elements, one from A and one from B.
When B = A we will often denote it by 2A, which should not be confused with the
dilate 2 · A = {2a : a ∈ A}. Note that 2A consists exactly of those elements for which
the representation function is non-zero. We will also write A + x = A + {x} for any
x ∈ G.

As an example of how both of these concepts can be used to obtain structural
information about a set, consider Sidon sets: a set is commonly defined to be a Sidon
set if all pairwise sums of its elements are distinct. One can likewise require that all
pairwise differences of its elements are distinct. Note that we have previously already
introduced Sidon sets in Section 1.7. We observe that one can also characterize them
either as sets whose representation function has range {0, 1} or as sets whose sumset
is as large as possible for sets of fixed cardinality.

In Chapter 5 we will study a generalization of Sidon sets due to Kohayakawa, Lee,
Moreira and Rödl, in which the pairwise sums of elements are required to not only
be distinct but in fact far apart by a certain measure depending on some parameter.
This notion is motivated by a strong connection to the density of the largest Sidon
set contained in a random infinite subset of the integers. We will present new lower
bounds that improve on previous results and which as a corollary give the best current
bounds for Sidon sets in infinite random sets of certain density. The results of this
chapter will be based on the paper ‘On strong infinite Sidon and Bh sets and random
sets of integers’, which is joint work with David Fabian and Juanjo Rué [56].
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In Chapter 6 we will turn our attention to sets of small doubling. A conjecture of
Frĕıman gives an exact formula for the largest volume of a set of integers in terms of
its cardinality and the cardinality of its sumset. After a survey of some of the results
working towards this conjecture, we will verify an additional case. We will then use
these results to improve the bounds on another well-known conjecture regarding sets
of small doubling in cyclic groups of prime order. The results of this chapter will be
based on the papers ‘Additive volume of sets contained in few arithmetic progressions’,
which is joint work with Gregory A. Frĕıman and Oriol Serra [65], and ‘A step beyond
Frĕıman’s theorem for set addition modulo a prime’, which is joint work with Pablo
Candela and Oriol Serra [21].

Lastly, in Chapter 7 we will examine how close certain generalizations of the rep-
resentation function of an infinite set of integers can come to being constant. A first
result extends a result of Erdős and Fuchs to ordered representation functions, show-
ing that for any infinite set of integers they do in fact have to be far from being
constant. Then we take another step towards answering a question of Sárközy and Sós
by classifying most weights for which the multivariate weighted representation function
cannot become constant. The results of this chapter will be based on the papers ‘An
Erdős–Fuchs theorem for ordered representation functions’, which is joint work with
Gonzalo Cao-Labora and Juanjo Rué [22], and ‘On a problem of Sárközy and Sós for
multivariate linear forms’, which is joint work with Juanjo Rué [121].
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Chapter 5

Stronger Sidon Sets

We previously already surveyed extremal results for finite Sidon sets in Section 1.7,
establishing that they are of size (1 + o(1))n1/2. in this chapter however, we will be
interested in studying the much less understood behavior of infinite Sidon sets.

Given some set S ⊂ N, let us write S(n) =
∣∣∣S ∩ [n]

∣∣∣ for its counting function. Sidon
himself found an infinite Sidon set satisfying S(n) = Ω(n1/4) and Erdős [49] as well
as previously Chowla and Mian [107] observed that the greedy approach yields a set
satisfying S(n) = Ω(n1/3). Ajtai, Komlós and Szemerédi [1] improved that bound by
a factor of log1/3(n) and Ruzsa [128] finally overcame the exponent of 1/3 by proving
the existence (through probabilistic arguments) of an infinite Sidon sequence with
counting function S(n) = n

√
2−1+o(1). Cilleruelo [29] later gave an explicit construction

of an infinite Sidon set with the same exponent as Ruzsa.
Regarding an upper bound, Erdős showed that any infinite Sidon set satisfies

lim infn→∞ S(n)/
√
n = 0, see [147]. Note that lim supn→∞ S(n)/

√
n ≤ 1 trivially fol-

lows from the finite case, while Erdős also proved the existence of an infinite Sidon set
satisfying lim supn→∞ S(n)/

√
n ≥ 1/2 which was later improved to 1/

√
2 by Krücke-

berg [100].

Strong Sidon sets

Kohayakawa, Lee, Moreira and Rödl introduced a generalization of infinite Sidon sets
in [94] and further studied it in [95]. Given some fixed 0 ≤ α < 1 and γ ≥ 1, they
define an (α, γ)-strong Sidon set to be an infinite set of integers S ⊂ N for which the
pairwise sums of its elements are not just distinct, but in fact far apart by a certain
measure depending on α and γ.
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Definition 5.1. Let 0 ≤ α < 1 and γ ≥ 1 be given. A set of integers S ⊂ N is called
an (α,γ)-strong Sidon set if we have

∣∣∣(x+ w)− (y + z)
∣∣∣ ≥ γmax{xα, yα, zα, wα} (5.1)

for every x, y, z, w ∈ S satisfying {x,w} ∩ {y, z} = ∅.

Note that for α = 0 and γ = 1 one recovers the traditional notion of an infinite Sidon
set. Also note that this definition is particular to infinite sets and that Kohayakawa
et al. also proposed and studied finite (α,γ)-strong Sidon sets where Equation (5.1) is
modified accordingly.

Regarding an upper bound, Kohayakawa et al. [95] used the bounds that they
obtained for the finite case to show that any (α, 1)-strong Sidon set S satisfies S(n) ≤
c n(1−α)/2 for some constant c = c(α). Regarding a lower bound, they proved the
existence of an (α, 1)-strong Sidon set S that satisfies

S(n) ≥ n(
√

2−1+o(1))/(1+32
√
α) (5.2)

as long as 0 ≤ α ≤ 10−4. They furthermore noted that a simple greedy argument gives
a construction satisfying

S(n) ≥ n(1−α)/3 (5.3)

for any 0 ≤ α < 1, so that the previous bound only constitutes an improvement when
α ≤ 5.75 · 10−5. The following is the main result of this chapter, establishing a marked
improvement over either of those two lower bounds.

Theorem 5.2. For every 0 ≤ α < 1 and γ ≥ 1 there exists an (α, γ)-strong Sidon set
S ⊂ N satisfying

S(n) ≥ n
√

2+(α/2)2−(1+α/2)+o(1). (5.4)

The approach taken here to prove this bound is different from that in [95], where the
existence of infinite Sidon sets S with density S(n) ≥ n

√
2−1+o(1), as originally proved

by Ruzsa, is used as a black box. Instead, it is based on Cilleruelo’s constructive proof
of that same bound, making use of some particular properties of the family of sets
defined by him.
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Sidon sets in random sets

While strong Sidon sets are interesting in their own right, Kohayakawa et al. originally
introduced them to study the maximum density of Sidon sets contained in randomly
generated infinite sets of integers. For a fixed constant 0 < δ ≤ 1, let Rδ denote the
random subset of N obtained by picking each m ∈ N independently with probability

pm = 1/m1−δ. (5.5)

Note that R(n) = nδ+o(1) with probability 1. Kohayakawa et al. were interested in
finding

(a) the largest possible constant f(δ) such that, with probability 1, there is a Sidon
set S ⊂ Rδ satisfying S(n) ≥ nf(δ)+o(1) and

(b) the smallest possible constant g(δ) such that, with probability 1, every Sidon set
S ⊂ Rδ satisfies S(n) ≤ ng(δ)+o(1).

It is shown in [94] that the behavior of f(δ) and g(δ) markedly depends on whether
δ falls into the first, second or last third of the interval (0, 1]. More precisely, they
showed that

(i) if 0 < δ ≤ 1/3 then f(δ) = g(δ) = δ,
(ii) if 1/3 ≤ δ ≤ 2/3 then f(δ) = g(δ) = 1/3 and
(ii) if 2/3 ≤ δ ≤ 1 then f(δ) ≥ max{1/3,

√
2− 1− (1− δ)} and g(δ) ≤ δ/2.

It follows that there is only a gap between the current bounds for f and g in the last
third where 2/3 ≤ δ ≤ 1.

In [95] Kohayakawa et al. established a connection between (α, 16)-strong Sidon
sets and Sidon sets in the infinite random set R1−α by proving the following statement.

Theorem 5.3 (Theorem 12 in [95]). Let 1/2 ≤ δ ≤ 1. If there exists an (1 − δ, 16)-
strong Sidon set S ⊂ N satisfying

S(n) ≥ nu(δ)+o(1) (5.6)

then, with probability 1, the random set Rδ contains a Sidon set S∗ satisfying

S∗(n) ≥ nu(δ)+o(1). (5.7)
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The following is an immediate corollary to Theorem 5.2 using this result. It estab-
lishes a strong improvement over the previously known lower bound for f when the
parameter of the random set satisfies 5/6 < δ < 1.

Corollary 5.4. For any 1/2 ≤ δ ≤ 1 there exists, with probability 1, a Sidon set S in
the infinite random set Rδ satisfying

S(n) ≥ n
√

(3−δ)2/4+δ−(3−δ)/2+o(1) (5.8)

5.1 Proof of Theorem 5.2 – A lower bound

Ruzsa [128] and Cilleruelo [29] both based their approach on the observation that the
set of primes P forms a multiplicative Sidon set, so that the set {log p : p ∈ P} is a
Sidon set in the reals. Both therefore considered sets of integers whose elements are
indexed by the primes and which, through the removal of few elements, can be turned
into a Sidon set. In Ruzsa’s approach that removal happens through a probabilistic
argument and in Cilleruelo’s it is explicit.

Our starting point for proving Theorem 5.2 is the same family of infinite sets of
integers {Ac : 0 < c ≤ 1} constructed by Cilleruelo. For completeness and clarity of
the exposition, let us briefly recall its definition.

5.1.1 The construction

We start by fixing 0 < c ≤ 1, which, roughly speaking, determines both the growth
and the ’Sidon-ness’ of the set we are going to construct in a negatively correlated way.
Next, we will fix an ordered set of non-zero integers q̄ = (q1, q2, q3, ...), which we will
refer to as the generalized basis. Observe that, for any such sequence, one can uniquely
express any given non-negative integer a in the form

a = x1 + x2 q1 + x3 q1q2 + x4 q1q2q3 + · · ·+ xk q1 · · · qk−1, (5.9)

where 0 ≤ xi < qi−1 for any 1 ≤ i ≤ k, xk 6= 0. We will refer to the numbers xi(a)
as the digits of a in base q̄ and we also write len(a) = k = k(a) for its length. For
notational convenience, we also let xi(a) = 0 for any a when i > len(a).

The particular basis q̄ that will be fixed throughout the rest of this chapter for the
construction of the Sidon set is any arbitrary sequence of the form

q̄ = (4q′1, 4q′2, 4q′3, . . . ), (5.10)
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where each q′i is a prime number satisfying the condition

22i−1 < q′i ≤ 22i+1. (5.11)

Observe that we can always find prime numbers satisfying this condition by Bertrand’s
Postulate.

Next, we will use P to denote the set of prime numbers. Writing f(c, k) =
ck2/(log k)1/2, we partition the set of primes into disjoint parts P = ⋃

k≥3Pk,c, where
for any k ≥ 3

Pk,c =
{
p ∈ P : 2c(k−1)2−f(c,k−1) < p ≤ 2ck2−f(c,k)

}
. (5.12)

The decisive property of f that will be used later is that f(c, k) = o(k2) but f(c, k) =
ω(k). Note that, depending on the value of c, some of the initial parts may be empty.
Finally, for the given generalized basis q̄ = (4q′1, 4q′2, 4q′3, . . . ) and for each i ≥ 1, we
also fix some primitive root

gi = gi(q′i) ∈ F∗q′i . (5.13)

We are now ready to define the set Ac. Its elements will be indexed by the set of
primes, that is Ac = {ap : p ∈ P}, and each element ap is constructed as follows: we
first consider the unique subset Pk,c such that p ∈ Pk,c. We set len(ap) = k and let the
digit xi(ap) be given as the unique solution to the equation

g
xi(ap)
i ≡ p mod q′i, q′i + 1 ≤ xi(ap) ≤ 2q′i − 1 (5.14)

for each 0 ≤ i ≤ k. As previously already noted, we set xi(ap) = 0 for any i > k. Note
that by construction the elements ap are all distinct, that is ap 6= ap′ if p 6= p′.

5.1.2 Some auxiliary statements

Three important properties follow immediately from the definition of the sets Ac. The
first one states that the length of any element ap is determined by the part its indexing
prime falls in.

Remark 5.5. For any ap ∈ Ac we have len(ap) = k if and only if p ∈ Pk,c.

The second important observation is that, due to the second condition in Equa-
tion (5.14) and the constant 4 in the construction of the generalized basis, one can sum
up any two numbers in Ac without having to carry digits.
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Remark 5.6. We have

xi(ap1 + ap2) = xi(p1) + xi(p2) (5.15)

for any p1, p2 ∈ P and i ≥ 1 and therefore also

len(ap1 + ap2) = max{len(ap1), len(ap2)}. (5.16)

Lastly, we note that for any ap1 , ap2 ∈ Ac and i ≥ 1, one can distinguish the number
of non-zero i-th digits of the summands in ap1 +ap2 simply by considering the i-th digit
of ap1 + ap2 .

Remark 5.7. For any i ≥ 1 and ap1 , ap2 ∈ Ac with len(ap1) ≥ len(ap2) we have

xi(ap1 + ap2) ∈


{0} if i > len(ap1) ≥ len(ap2),
{q′i + 1, . . . , 2q′i − 1} if len(ap1) ≥ i > len(ap2),
{2q′i + 2, . . . , 4q′i − 2} if len(ap1) ≥ len(ap2) ≥ i.

(5.17)

Observe that the sets in the three cases are clearly disjoint. It follows that xi(ap1 +ap2)
determines the relation of len(ap1) and len(ap2) to i.

Let us show some additional auxiliary results regarding the basis q̄.

Lemma 5.8. For any a ∈ N with k = len(a) we have

2k2−1 < a < 2k2+4k. (5.18)

Proof. By nature of the generalized basis, we have

4q′1 · · · 4q′k−1 ≤ a < 4q′1 · · · 4q′k

and therefore by Equation (5.11) we have

a < 22k
k∏
i=1

22i+1 = 2k2+4k

as well as
a > 22k−2

k−1∏
i=1

22i−1 = 2k2−1,

proving the statement.
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Lemma 5.9. For any γ ≥ 1, 0 ≤ α < 1 and a ∈ N with k = len(a) we have

len
(
bγaαc

)
≤
(
αk2 + 4αk + log2 γ

)1/2
. (5.19)

Proof. We have
γaα < γ

(
4q′1 · · · 4q′k

)α
≤ γ 2α(k2+4k)

so that the statement follows by the lower bound in Lemma 5.8.

We conclude this part by stating the asymptotic growth of the set Ac, which was
already observed and proved in [29].

Proposition 5.10. For any 0 < c ≤ 1 we have Ac(n) = nc+o(1).

Proof. Let π(n) denote the prime counting function, which by the Prime Number
Theorem satisfies π(n) = n/ log n (1 + o(1)). Lemma 5.8 and the definition of Pk,c in
Equation (5.11) therefore imply that for k0 = b(log2(n+ 4))1/2c we have

Ac(n) ≥ |P3,c|+ · · ·+ |Pk0,c| ≥ π
(
2c(k0−1)2(1+o(1))

)
= nc+o(1)

and for k1 = d(log2 n)1/2e − 2 we have

Ac(n) ≤ |P3,c|+ · · ·+ |Pk1,c| ≤ π
(
2ck2

1(1+o(1))
)

= nc+o(1),

giving the desired statement.

5.1.3 Proof of Theorem 5.2

The following statement is central to the proof of Theorem 5.2. It is reminiscent of
Proposition 3 in [29].

Proposition 5.11. Let 0 ≤ α < 1, γ ≥ 1 and 0 < c < 1 − α. Assume that there are
elements ap1 , ap′1 , ap2 , ap′2 ∈ Ac satisfying ap1 ≥ ap2, ap′1 ≥ ap′2, ap1 > ap′1 and ap2 6= ap′2
as well as ∣∣∣(ap1 + ap2)− (ap′1 + ap′2)

∣∣∣ < γ aαp1 . (5.20)

Writing ki = len(api) and k′i = len(ap′i) for i ∈ {1, 2} as well as

` = max
{
i ∈ N : xi(p1) + xi(p2) 6= xi(p′1) + xi(p′2)

}
,

there exists some k0 = k0(c, α, γ) such that either k1 < k0 or
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(i) `2 ≤ αk2
1 + 9k1 + log2 γ,

(ii) k1 = k′1 ≥ k2 = k′2 ≥ `,
(iii) q′k2+1 · · · q′k1 | (p1 − p1) and k2

2 ≥ (1− c)k2
1 as well as

(iv) q′`+1 · · · q′k2 | (p1p2 − p′1p′2) (p1 − p′1) and `2 ≥ (1− c)k2
2 − ck2

1.

Proof. Since 0 < c < 1− α, we can choose k0 = k0(c, α, γ) large enough such that

αk2
0 + 9k0 + log2 γ < (1− c) k2

0. (5.21)

Let ap1 , ap′1 , ap2 , ap′2 ∈ Ac now be some elements satisfying the requirements of the
proposition as well as k1 ≥ k0. By definition of ` we have

`− 1 ≤ len
(
|(ap1 + ap2)− (ap′1 + ap′2)|

)
.

By assumption of the proposition, by the fact that len(n) is an increasing function in
n and by Lemma 5.9, we therefore have

` ≤ len
(
bγaαp1c

)
+ 1 ≤ (αk2

1 + 4αk1 + log2 γ)1/2 + 1,

which implies part (i). To see that part (ii) holds, we note that by Remark 5.7 we
must have ki = k′i if ` < max{ki, k′i} for i ∈ {1, 2}. By part (i), our choice of k0 and
the assumption that k1 ≥ k0, it follows that k1 = k′1 > `. In order to prove that
` < max{k2, k

′
2} to conclude part (ii), we first note that by choice of `, we have

g
xi(p1)
i ≡ g

xi(p′1)
i mod q′i

for any max{`, k2} < i ≤ k1. By the construction of the digits of the elements in our
set and by the previous observation, we therefore get

p1 ≡ p′1 mod q′i

for any max{`, k2} < i ≤ k1. Since the q′i are distinct primes, it follows that

p1 ≡ p′1 mod q′max{`,k2}+1 · · · q′k1 . (5.22)

By Equation (5.11) and Equation (5.12) it follows that

2ck2
1 ≥ |p1 − p′1| ≥ q′max{`,k2}+1 · · · q′k1 > 2k2

1−max{`,k2}2
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and hence
max{`, k2}2 ≥ (1− c)k2

1. (5.23)

By part (i), our choice of k0 and the assumption that k1 ≥ k0, it follows that k2 > `.
From this we cannot only conclude part (ii) as previously observed, but also obtain
part (iii) from Equation (5.22) and Equation (5.23).

Following the same arguments as just laid out to prove part (iii), we also have

g
xi(p1)+xi(p2)
i ≡ g

xi(p′1)+xi(p′2)
i mod q′i

and therefore
p1p2 ≡ p′1p

′
2 mod q′i

for any ` < i ≤ k2. It follows that

p1p2 ≡ p′1p
′
2 mod q′`+1 · · · q′k2 . (5.24)

Again by Equation (5.11) and Equation (5.12) it follows that

2c(k2
1+k2

2) ≥ |p1p2 − p′1p′2| ≥ q′`+1 · · · q′k2 > 2k2
2−`

2

and hence
`2 ≥ ck2

1 + (1− c)k2
2. (5.25)

We obtain part (iv) from Equation (5.24) and Equation (5.25).

Using this proposition, we are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Choosing

c =
√

2 + (α/2)2 − (1 + α/2), (5.26)

the set Ac satisfies the growth stated in Theorem 5.2 by Proposition 5.10. However, it is
unfortunately not guaranteed to be an (α, γ)-strong Sidon set. The plan is to therefore
remove ap1 for every ap1 , ap′1 , ap2 , ap′2 ∈ Ac satisfying {ap1 ≥ ap2} ∩ {ap′1 ≥ ap′2} = ∅
and ap1 > ap′1 which violate the condition in Equation (5.1). This removal turns the
initial set into an (α, γ)-strong Sidon set. Using Proposition 5.11, we will show that
this alteration does not impact the asymptotic growth of the infinite set. Note that
we can in fact apply Proposition 5.11, since 0 < c < 1 − α when c is as given by
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Equation (5.26).
First, let k0 be as in Proposition 5.11 and choose k′0 large enough such that k′0 ≥ k0

and
2(1− c)(k′0 − 1)2 > (1 + α)k2

0 + 9k0 + log2 γ. (5.27)

Note that this is possible since 2(1− c) > 1 +α when c is as given by Equation (5.26).
Now for k1 ≥ k′0, let Bk1 denote the set of all prime numbers p1 ∈ Pk1,c for which there
exist ap1 , ap′1 , ap2 , ap′2 ∈ Ac such that {ap1 ≥ ap2} ∩ {ap′1 ≥ ap′2} = ∅, ap1 > ap′1 and

∣∣∣(ap1 + ap2)− (ap′1 + ap′2)
∣∣∣ < γ aαp1 . (5.28)

Clearly for
P∗ =

⋃
k1≥k′0

(
Pk1,c \ Bk1

)
the set S = {ap : p ∈ P∗} is an (α, γ)-strong Sidon set. If we can show that

∣∣∣Bk1

∣∣∣ = o(|Pk1,c|) (5.29)

as k1 tends to infinity, then S(n) = nc+o(1) follows as desired, proving the statement.
Writing Q1 = Q1(`, k2) = q′`+1 · · · q′k2 and Q2 = Q2(k2, k1) = q′k2+1 · · · q′k1 , we note

that
p1(p1 − p′2) = p1p2 − p′1p′2

Q1
Q1 + (p′1 − p1)p′2

Q2
Q2 = s1Q1 + s2Q2 (5.30)

where s1 = s1(p1, p2, p
′
1, p
′
2) = (p1p2 − p′1p

′
2)/Q1 and s2 = s2(p1, p2, p

′
1, p
′
2) = (p′1 −

p1)p′2/Q2 are integers due to the divisibility statements in parts (iii) and (iv) of Propo-
sition 5.11. They furthermore satisfy

1 ≤ |si| ≤ 2c(k2
1+k2

2)−f(c,k1)/Qi (5.31)

for i ∈ {1, 2} by Equation (5.12). Writing

Sk1,k2,` =
{
s1Q1 + s2Q2 : 1 ≤ |si| ≤ 2c(k2

1+k2
2)−f(c,k1)/Qi for i ∈ {1, 2}

}
\ {0} (5.32)

as well as

Tk1 =
{

(k2, `) ∈ N2
0 : (1− c)k2

2 − ck2
1 ≤ `2 ≤ αk2

1 + 9k1 + log2 γ
}
, (5.33)
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then by Equation (5.30) as well as parts (i), (iii) and (iv) of Proposition 5.11 we have

Bk1 ⊆ {p1 ∈ Pk1,c : ∃(k2, `) ∈ Tk1 , s ∈ Sk1,k2,` such that p1 | s}. (5.34)

We note that no integer s ∈ Sk1,k2,` can be divided by two distinct primes p′, p′′ ∈ Pk1,c

if (k2, `) ∈ Tk1 as otherwise

22c(k1−1)2−2f(c,k1−1) ≤ p′p′′ ≤ |s| ≤ 2c(k2
1+k2

2)−2f(c,k1)+1

so that
2c(k1 − 1)2 ≤ c

1− c((1 + α)k2
1 + 9k1 + log2 γ)

contradicting Equation (5.27) since k1 ≥ k′0. Using the estimate

Q1Q2 = q′`+1 · · · q′k1 > 2k2
1−`

2
,

we can therefore bound the size of Bk1 by

|Bk1| ≤
∑

(k2,`)∈Tk1

|Sk1,k2,`| ≤
∑

(k2,`)∈Tk1

22c(k2
1+k2

2)−2f(c,k1)+2

Q1Q2

≤ 2(2c−1)k2
1−2f(c,k1)+2 ∑

(k2,`)∈Tk1

22ck2
2+`2

= 2
3c−1+(1+c)α

1−c k2
1+ 1+c

1−c (9k1+log2 γ)−2f(c,k1)+O(log k1)+2.

By the Prime Number Theorem, we can estimate the size of Pk1,c by

|Pk1,c| = π
(
2ck2

1−f(c,k1)
)
− π

(
2c(k1−1)2−f(c,k1−1)

)
= Θ

(
2ck2

1−f(c,k1)−log2(ck2
1−f(c,k1))

)
.

Since (1− c)c = 3c− 1 + (1 + c)α when c satisfies Equation (5.26) and since f(c, k1) =
ω(k1), we get that Bk1 = o(Pk1,c), concluding the proof. �

5.2 Further remarks

The lower bound obtained in Theorem 5.2 appears to be a natural extension of the
results of Ruzsa and Cilleruelo. Consequently, any advance in improving upon the
lower bound for strong infinite Sidon sets would probably have to come as a result of
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an improvement on the bound in the case of normal ‘non-strong’ Sidon sets. Unfortu-
nately, this problem has proved surprisingly defiant despite a fair amount of attention.
Regarding the upper bound, Kohayakawa et al. [95] also asked if it can be strengthened
for (α, γ)-strong Sidon sets along the lines of the results of Erdős and Turán as well as
Stöhr [147] mentioned in the introduction.

It should be noted that in [56] an extension of Theorem 5.2 to Bh sets is also
obtained. Here one considers h-fold sums, rather than just two-fold as is the case for
Sidon sets. An equivalent statement to Corollary 5.4 can be made for Bh sets as well,
though in this case no other bounds are known. However, it is reasonable to believe
that using results of Dellamonica et al. [40, 41] for the case of finite random sets, one
can establish exact exponents whenever 0 < δ < h/(2h − 1). Note that Kohayakawa
et al. [94] also made use of the case of finite random sets established in [96].
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Structure Through Small Doubling

The doubling of A is given by the quotient of the cardinalities of the sumset and the
set itself, that is

σ(A) = |2A|/|A|. (6.1)

We observe that the cardinality of the sumset of any finite set of integers A ⊂ Z satisfies

2|A| − 1 ≤ |2A| ≤
(
|A|
2

)
+ |A|, (6.2)

so that the doubling satisfies 2 − o(1) ≤ σ(A) ≤ |A|/2 + o(1). Both of the bounds in
Equation (6.2) are tight: it is an easy exercise to verify that sets attaining the lower
bound have to be arithmetic progressions, while sets attaining the upper bound are
the Sidon sets discussed in Chapter 5.

In his original 1964 monograph [60], later translated into English in 1973 [61],
Frĕıman proved what is now one of the central results in Additive Combinatorics. It
states that any set of integers A ⊆ Z with doubling K can be efficiently covered by a
generalized arithmetic progression, that is a set of the form

{a0 + `1a1 + . . .+ `dad : 0 ≤ `i < Li}. (6.3)

for some d ∈ N0, a0, a1 . . . , ad ∈ Z and L1, . . . , Ld ∈ N \ {1}. Here d is the dimension
of the progression and L1L2 · · ·Ld its size. Note that the cardinality of a generalized
arithmetic progression does not have to align with its size, but we say that it is proper
if it does.

Frĕıman’s Theorem. For any K > 1 there are d = d(K) and f = f(K) such that
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any set A ⊆ Z with doubling σ(A) = K is contained in some d-dimensional arithmetic
progression of size at most f |A|.

Ruzsa [125] later obtained what is now considered to be the canonical proof of this
result. He also obtained the first usable bounds for d(K) and f(K), which were then
improved by Chang [24], Sanders [129] and Schoen [137], resulting in the current best
bounds of d(K) ≤ K1+C(logK)−1/2 and f(K) ≤ exp(K1+C(logK)−1/2) for some absolute
constant C > 0. Frĕıman’s theorem was also generalized to arbitrary abelian groups
in [72], where generalized arithmetic progressions are replaced with coset progressions,
and to solvable groups of bounded derived length [153], where coset progressions are
replaced with coset nilprogressions. For arbitrary non-abelian groups, the problem of
establishing a complete Frĕıman–type result is still very much open, see for example [17,
155, 156].

A conjecture of Frĕıman concerning the additive volume

At a conference in Toronto in 2008, Frĕıman proposed a precise formula for describing
the largest possible volume of a set of integers A ⊂ Z in terms of a very specific
parameterisation of the cardinality of its sumset [63]. In order to properly state this
conjecture as well as its notion of volume and to contrast it with Frĕıman’s Theorem,
we need to introduce some common definitions.

Given abelian groups G and G′, two sets A ⊂ G and B ⊂ G′ are F2-isomorphic if
there is a bijection φ : A→ B such that

x+ y = z + t ⇔ φ(x) + φ(y) = φ(z) + φ(t) (6.4)

for every x, y, z, t ∈ A. One can think of this as a generalization of a group isomorphism
for which only operations of depth at most 2 are required to be preserved. The additive
dimension dim(A) of a set of integers A ⊂ Z is defined to be the largest d ∈ N such
that there exists some F2-isomorphic B ⊂ Zd which is not contained in a hyperplane.
Consider the following examples: the set A = {0, 1, . . . , k − 2} ∪ {x} ⊂ Z is F2-
isomorphic to {(0, 0), (0, 1), . . . , (0, k − 1), (1, 0)} ⊂ Z2 as long as x ≥ 2k − 3. In
particular, the set is 2-dimensional when x ≥ 2k−3 and 1-dimensional when x < 2k−3.
One can also consider subsets of groups with torsion. The set A = {0, 1, . . . , k−1} ⊆ Zn
is F2-isomorphic to any k-term arithmetic progression in Z if n ≥ 2k− 1. It is not F2-
isomorphic to any subsets of a torsion-free group if n < 2k−1. Note that the concept of
additive dimension can also be extended to arbitrary abelian groups, though it requires
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the introduction of the concept of Universal Ambient Groups, see for example Section
5.5 in [154].

We note that for any d-dimensional set A ⊆ Z we have, by results of Frĕıman [61]
as well as Konyagin and Lev [97], that

(d+ 1)|A| −
(
d+ 1

2

)
≤ |2A| ≤

(
|A|
2

)
+ d+ 1. (6.5)

We observe that the bounds in Equation (6.2) are implied by this since in general
1 ≤ dim(A) ≤ |A| − 1.

Definition 6.1. The additive volume vol(A) of a d-dimensional set A is the minimum
number of lattice points contained in the convex hull among all sets in Zd that are
F2-isomorphic to A.

Note that for any 1-dimensional set of integers A ⊂ Z satisfying min(A) = 0 as
well as gcd(A) = 1, we have vol(A) = max(A) + 1. It is clear that any set of integers
A ⊂ Z can be F2-isomorphically be mapped to a set satisfying these conditions, so we
may often assume them without loss of generality. In this case, we will say that the
set is in normal form. This also implies that the additive volume of a 1-dimensional set
is the same as its minimal covering by a (non-generalized) arithmetic progression.

We are interested in obtaining an upper bound for the additive volume of a set
A ⊂ Z in terms of its cardinality |A|, the cardinality of its sumset |2A| and its dimension
dim(A). A set A is said to be extremal if its additive volume is as large as possible for a
set of that cardinality, dimension and cardinality of the sumset. The following is a more
general and slightly reformulated version of the previously mentioned conjecture of
Frĕıman. Its notable addition is that it takes the dimension of a set into consideration.

Conjecture 6.2. Any d-dimensional set A ⊂ Z satisfies

vol(A) ≤ 2c−1 (|A| − c+ b) + 1, (6.6)

where c = c(|A|, |2A|, d) and b = b(|A|, |2A|, d) are the unique integers satisfying

|2A| = (c+ d)|A| −
(
c+ d+ 1

2

)
+ b+ d+ 1 (6.7)

as well as 1 ≤ c ≤ |A| − d− 1 and 0 ≤ b ≤ |A| − d− c− 1.
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We note that both this conjecture and Frĕıman’s Theorem are concerned with
finding an efficient covering of sets with given doubling. Where they differ, besides
their specificity, is firstly that the notion of covering used in the conjecture is decidedly
more geometric than that of a generalized arithmetic progression. To illustrate this
difference, observe that the previously mentioned 2-dimensional set A = {0, 1, . . . , k −
2} ∪ {x} ⊂ Z with x ≥ 2k − 3 has additive volume k = |A| but cannot be contained
in a 2-dimensional generalized arithmetic progression of size smaller than 2|A| − 2.
Secondly, in the updated version of the conjecture presented here, the dimension of
the covering structure precisely aligns with that of the set, whereas in the Frĕıman’s
Theorem a set might be covered by an arithmetic progression of vastly bigger dimension
than the set itself. For example, the set A = {0, 1, 2, 4, . . . , 2k−2} has doubling σ(A) =
(k−1)/2+o(1), that is as large as possible for a 1-dimensional set. Both Conjecture 6.2
and Frĕıman’s Theorem with Schoen’s bounds give a covering structure for A whose size
is exponential in k = |A| (as is clearly necessary) but while the generalized arithmetic
progression may have dimension around |A|/2, the conjecture correctly states that the
covering structure should be of the same dimension as the set it is covering.

There are examples showing that the bounds Conjecture 6.2 would be tight if the
statement is true.

Example 6.3. Consider the set

Ak,c,b,1 = {0, 1, . . . , k − c− 1} ∪ {2i(k − c+ b) : 0 ≤ i < c} ⊂ Z

of cardinality k ≥ 3 where 1 ≤ c ≤ k − 2 and 0 ≤ b ≤ k − c − 2. This example has
additive dimension 1 and additive volume 2c−1(k − c + b) + 1 while the cardinality of
its sumset matches Equation (6.7). Regarding an examples for higher dimensions, let
d ≥ 1 and consider the set

Ak,c,b,d = {(a, 0, . . . , 0) : a ∈ Ak−d+1,c,b,1} ∪ {ei : 2 ≤ i ≤ d} ⊂ Zd

of cardinality k ≥ d + 2 where where ei is the i-the standard basis vector in Zd and
1 ≤ c ≤ k − d − 1 as well as 0 ≤ b ≤ k − c − d − 1. The set has additive dimension
d and additive volume 2c−1 (|A| − c + b) + 1 while the cardinality of its sumset again
matches Equation (6.7).

Furthermore, the veracity of the conjecture has been established in a few cases,
most notably by Frĕıman [61] for one–dimensional sets satisfying T ≤ 3k − 4, that is
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either, c = 1 and any admissible b or c = 2 and b = 0. This is commonly referred to as
Frĕıman’s 3k − 4 theorem.

Theorem 6.4 (Theorem 1.9 in [61]). Any A ⊆ Z satisfying |2A| ≤ 3|A|−4 is contained
in an arithmetic progression P ⊆ Z of size at most |2A| − |A|+ 1.

Note that any 2-dimensional set A ⊆ Z satisfies |2A| ≥ 3|A| − 3, which is why this
statement did not have to take the dimension of the set into account. A more precise
structural description of extremal sets satisfying the conditions of Theorem 6.4 was
given in [62]. Further particular cases for which Conjecture 6.2 has been verified are
the following:

1. by Frĕıman [61] as well as by Hamidoune and Plagne [76] for 1-dimensional sets if
T = 3k− 3, that is c = 2 and b = 1, with a structural description of the extremal
case due to Jin [90],

2. by Frĕıman [61] for 2-dimensional sets satisfying k ≥ 10 and T ≤ 10/3 k−6, that
is c = 1 and 0 ≤ b ≤ k/3− 2, with a structural description,

3. by Jin [89] in the case of large 1-dimensional sets satisfying T ≤ (3 + ε)k, that is
c = 2 and 0 ≤ b ≤ εk, for some ε > 0 using tools from non-standard analysis,

4. by Stanchescu [145, 146] for any d-dimensional set satisfying c = 1 and b = 0,
5. by Frĕıman and Serra [64] for a class of 1-dimensional sets called chains, which

can be seen as extremal sets build by a greedy algorithm.

A step beyond the 3k − 4 theorem in the integers

As previously mentioned, Conjecture 6.2 has been proved for sets A with doubling
|2A| ≤ 3|A| − 3 and the structure of extremal sets in this range is well understood.
In spite of many efforts, not much is known about the exact maximum volume of sets
with doubling at least 3|A| − 2. In particular, the following describes the next ‘regime’
for 1-dimensional sets in Conjecture 6.2 after that described by Theorem 6.4.

Conjecture 6.5. For any 1-dimensional set A ⊆ Z satisfying |2A| = 3|A| − 4 + b for
some 0 ≤ b ≤ |A| − 4 there exists an arithmetic progression P ⊆ Z of size at most
2(|A| − 2 + b) + 1 containing A.

In order to give further evidence towards the validity of this conjecture, let us
consider sets A ⊆ Z that are the union of three segments, that is A = P1 ∪ P2 ∪ P3

where Pi = [ai, bi] for i ∈ {1, 2, 3} for some a1 ≤ b1 < a2− 1 ≤ b2− 1 < a3− 2 ≤ b3− 2.
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We note that in this case |2A| ≤ 4|A| − 6 where equality holds if and only if the sums
of the segments pairwise distinct, in which case the set A is 3-dimensional. The case of
dimension 2 is likewise easy to describe, so let us turn our attention towards verifying
Conjecture 6.5 for the particular case of 1-dimensional sets consisting of three segments
and satisfying |2A| ≤ 4|A|−8, also giving a structural description of the extremal cases.

Theorem 6.6. Let A ⊆ Z consisting of three segments and satisfying |A| ≥ 8 as well
as |2A| > 3|A|−4. If A is 1-dimensional, then for b = |2A|−(3|A|−4) it is isomorphic
to either

(i) ([0, |A|+ b− 2] \ [1, b]) ∪ {2(|A|+ b− 2)} or
(ii) ([0, |A|+ b+ i− 3] \ [|A| − i− 1, |A|+ b− 3]) ∪ {2(|A|+ b− 2)}

where 1 ≤ i ≤ max{|A|/3, (|A| − 1 − b)/2}. If A is 2-dimensional, then for b =
|2A| − (3|A| − 3) it is isomorphic to

(iii) ([0, |A|+ b− 2] \ [1, b])× {0} ∪ {(0, 1)} ⊂ Z2

and if A is 3-dimensional, then |2A| = 4|A| − 6 and it is isomorphic to

(iv) ([0, k1 − 1]× {(0, 0)}) ∪ ([0, k2 − 1]× {(0, 1)}) ∪ ([0, k2 − 1]× {(1, 0)}) ⊂ Z3

where k1, k2, k3 ≥ 1 and k1 + k2 + k3 = |A|.

Observe that the 1-dimensional examples given in Example 6.3 for c = 2, as well as
most other constructions one would naturally come up with, are in fact F2-isomorphic
to sets consisting of exactly three segments, lending some motivation to this result. The
extremal sets described in Theorem 6.6 are illustrated for |A| = 11 and |2A| = 3|A|−1
in Figure 6.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 6.1: All extremal 1-dimensional sets satisfying |A| =
11 and |2A| = 3|A| − 1.
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Unfortunately, not all extremal sets satisfying |2A| ≤ 4|A| − 8 will be the disjoint
union of three segment. As an example, consider the 1-dimensional set given by

A = {0, 1, 2, 3, 5, 10, 11, 20} (6.8)

which fits the parameters k = 8, c = 2 and b = 4. Let us therefore also state the
following partial step towards Conjecture 6.5 that will be derived from a statement of
Deshouiller and Frĕıman [42].

Proposition 6.7. Any 1-dimensional set A ⊂ Z satisfying |2A| ≤ 3.04|A| − 3 can be
covered by an arithmetic progression of length at most 109 |A|.

Of course, both Theorem 6.6 and Proposition 6.7 are unfortunately far removed
from answering Conjecture 6.5. However, let us now turn our attention towards cov-
ering statement for sets of small doubling in groups of prime order (rather than in the
integers), which will lend some additional motivation as to why one might be interested
in even partial answers to Conjecture 6.5.

A step beyond the 2.4k − 8 theorem in groups of prime order

Statements regarding the structure of subsets A of the cyclic group Zp, where p is a
prime, in the spirit of Conjecture 6.2 and Theorem 6.4 have proved to be significantly
harder to obtain than their corresponding integer counterparts. Even the most basic
of statements in the integers, namely that |2A| ≥ 2|A| − 1 with equality if and only if
A is an arithmetic progression, requires a non-trivial amount of effort to establish in
Zp. The lower bound was established by Davenport [37], though it was later discovered
that the statement hat previously been proved in 1813 by Cauchy [23]. The structural
description of sets where equality holds is due to Vosper [159].

Vosper’s Theorem. Any set A ⊆ Zp satisfies |2A| ≥ min{2|A| − 1, p} and we have
|2A| = 2|A| − 1 ≤ p− 2 if and only if A is an arithmetic progression.

Note that the fact that p is prime here is crucial. Comparable statements in cyclic
groups of arbitrary order have for example been made by Kneser [93] and Kemper-
man [91].

An equivalent statement to that of Theorem 6.4 for subsets of the cyclic group
A ⊆ Zp, where p is a prime, is widely believed to hold as well, assuming certain
modest restrictions regarding the cardinality of A with respect to p [77, 74, 19, 140].
There are examples showing that the following conjecture, if true, would be tight.
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Conjecture 6.8. Let a set A ⊂ Zp be given. If either

(i) 0 ≤ |2A| −
(
2|A| − 1

)
≤ min(|A| − 4, p− |2A| − 2) or

(ii) 0 ≤ |2A| −
(
2|A| − 1

)
= |A| − 3 ≤ p− |2A| − 3

then A can be covered by an arithmetic progression of length at most |2A| − |A|+ 1.

However, such a statement has turned out to be significantly more difficult to prove.
It was Frĕıman himself who first made progress towards this conjecture, by showing
that the covering property holds for any set A ⊂ Zp satisfying |2A| ≤ 2.4|A| − 3 and
|A| < p/35, see [59]. Rødseth [116] later showed that the density requirement can be
weakened to p/10.7.

A more general result of Green and Ruzsa [71] immediately gives the same conclu-
sion for all sets satisfying |2A| ≤ 3|A|− 4 as long as they also satisfy the rather strong
density requirement |A| < p/10215. Serra and Zémor [140] obtained a result with the
same covering conclusion and no restrictions regarding the size of |A| itself, but assum-
ing that |2A| ≤ (2 + ε)|A| with ε < 10−4. The latter bound was relaxed to ε < 0.1368,
under the mild additional assumption |2A| ≤ 3p/4 by Candela, González-Sanchez and
Grynkiewicz [20].

Here we will present a result in the spirit of those of Frĕıman, Rødseth as well as Lev
and Shkredov: similar to all of these statements, it will make uses a Fourier-analytic
rectification argument that allows one to transplant a significant part of the set into
the integers, where Theorem 6.4 is applied. The resulting structure of that significant
part of A in fact allows one to argue that the whole set has to behave as if it were in
the integers. Where this result differs however, is that we will allow the cardinality of
the sumset of that significant part to go past the 3|A|−4 barrier in the integers, where
we make us of Proposition 6.7. This also implies that, unlike in the original approach,
we have to take the dimension of our sets into consideration.

Theorem 6.9. If a set A ⊆ Zp satisfies |2A| ≤ 2.48|A| − 7 and |A| < p/1010, then
there exists an arithmetic progression P ⊆ Zp of size at most |2A|− |A|+ 1 containing
A.

Very recently, Lev and Shkredov improved the requirements to |2A| < 2.59|A| − 3
and |A| < 0.0045p using the properties of higher energies. However, it should be noted
that their approach can very be combined with the one we will take to establish Theo-
rem 6.9 to get a statement with the requirements |2A| < 2.62|A|−3 and |A| < p/1010.
Furthermore, Theorem 6.9 is very much conditional on progress towards Conjecture 6.5.
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Any improvement on Proposition 6.7 that gets closer towards Conjecture 6.5, either
in the size of the covering or the doubling, would yield a proportional improvement
towards Conjecture 6.8 using the proof methodology behind Theorem 6.9.

6.1 Proof of Theorem 6.6 – Sets on few intervals

Konyagin and Lev [97] established a formula for the dimension of a given set A ⊂ Zm

of cardinality k. For 1 ≤ i ≤ k, let ei denote the vector in Rk that has a one at
coordinate i and zero everywhere else. We denote by MA the integer–valued matrix
with k columns obtained by listing as its rows all vectors ei1 + ei2 − ei3 − ei4 for which
ai1 + ai2 = ai3 + ai4 holds and for which we do not have i1 = i2 = i3 = i4. The result of
Konyagin and Lev that derives the dimension of A from the rank of MA can be stated
as follows.

Theorem 6.10 (Theorem 4 in [97]). For any set A ⊆ Zm we have

dim(A) = |A| − 1− rk(MA). (6.9)

Now let A ⊂ Z be a set which is the union of s disjoint segments P1, . . . , Ps. Given
such a set A, we denote by SA the integer–valued matrix with s columns obtained by
listing in its rows all vectors ej1 + ej2 − ej3 − ej4 for which (Pj1 +Pj2)∩ (Pj3 +Pj4) 6= ∅
and for which we do not have j1 = j2 = j3 = j4. We derive the following result from
Theorem 6.10.

Proposition 6.11. Any A ⊂ Z that is the union of 1 ≤ s ≤ |A| − 1 disjoint segments
satisfies

dim(A) = s− rk(SA). (6.10)

Proof. Every row in MA is associated with up to four (not all equal) elements ai1 ,
ai2 , ai3 and ai4 such that ai1 + ai2 = ai3 + ai4 . Let ai1 ∈ Pj1 , ai2 ∈ Pj2 , ai3 ∈ Pj3 and
ai4 ∈ Pj4 where we may assume j1 ≤ j2 and j3 ≤ j4 as well as min{j1, j2} ≤ min{j3, j4}.
Furthermore, let 0 ≤ y = #{j : |Pj| = 1} < s denote the number of segments that are
singletons. We distinguish the following cases.

Case 1. #{j1, j2, j3, j4} = 1, that is, j1 = j2 = j3 = j4 = j for some 1 ≤ j ≤ s. Since
Pj is one dimensional, by Theorem 6.10 there are a total of max{|Pj| − 2, 0} linearly
independent equations of this type for each Pj. As these equations only involve elements
in Pj and the segments are disjoint, it is clear that each equation is linearly independent
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from those of other segments, so we get a total of |A| − 2s + y linearly independent
equations of this type in MA. On the other hand this case does not contribute to the
rank of SA

Case 2. #{j1, j2, j3, j4} = 2. We distinguish two further cases.

Case 2.1. j1 = j3 < j4 = j2. Segments of length one can only give trivial equations
of this type not contributing to the rank of MA. If Pi0 < Pi1 < · · · < Pis−y are the
s − y segments which are not singletons, then equations of this type give us a total
of s − y − 1 new linear independent ones on top of the ones given by Case 1, one for
each pair Pi0 , Pij and j = 2, . . . s−y, the remaining ones being linearly dependent with
these. Moreover, this case does not contribute to the rank of SA.

Case 2.2. j1 < j2 = j3 = j4 or j1 = j2 = j3 < j4. Each pair Pj, Pj′ with j 6= j′ for
which an equation of this type exists implies that Pj ∩Pj′ intersects either 2Pj or 2Pj′ ,
contributes one additional linear independent equation in MA on top of the above ones
and contributes to one additional linear equation in SA as well.

Case 3. #{j1, j2, j3, j4} ≥ 3, that is, j1 < j3 ≤ j4 < j2. This implies that Pj1 + Pj2

intersects Pj3 + Pj4 . Each such intersection contributes with one additional linear
independent equation in MA and also on SA on top of the above ones.

Taken together, it follows that rk(MA) = (|A| − 2s+ y) + (s− y − 1) + rk(SA) and
therefore, by Theorem 6.10, dim(A) = s− rk(SA).

We note that for s ≥ 6 there are sets for which s = |A|, that is all segments consist
of a single element, which are not covered by Proposition 6.11. We will also need
a generalization of Theorem 6.4 due to Lev and Smeliansky [104], that handles the
sumset of two distinct sets, as well as another result by Frĕıman [61].

Theorem 6.12 (Theorem 2 in [104]). Any two finite sets A,B ⊂ Z in normal form
for which max(A) > max(B) satisfy

|A+B| ≥ min{|A|+ 2|B| − 2,max(A) + |B|}. (6.11)

Theorem 6.13 (Lemma 1.15 in [61]). Let A be a 2-dimensional set of cardinality
|A| > 6 with |2A| = 3|A| − 3 + b. If A can not be covered by a set consisting of two
lines with volume at most |A|+ b then b ≥ |A|/3− 2.

We will also use the following Lemma which handles the case of two segments.

Christoph Spiegel 118 Additive Structures



Chapter 6. Structure Through Small Doubling

Lemma 6.14. Let A be an extremal set that is the union of two segments. If A is
1-dimensional and |2A| = 2|A| − 1 + b for some 1 ≤ b ≤ |A| − 3, then vol(A) = |A|+ b

and A is in fact F2-isomorphic to

[0, |A|+ b− 1] \ [1, b]. (6.12)

If A is 2-dimensional and |2A| = 3|A| − 3, then vol(A) = k and it is in fact F2-
isomorphic to some

(
[0, k1 − 1]× {0}

)
∪
(
[0, k2 − 1]× {1}

)
(6.13)

where k1 + k2 = |A| and k1, k2 ≥ 1.

Proof. If dim(A) = 2, then there must be no relation in the matrix SA in Proposi-
tion 6.11 and we are done. Suppose therefore that dim(A) = 1 and A = P1 ∪ P2, say
P1 = [0, k1−1] and P2 = [k1 +`1, k1 +`1 +k2−1] for some k1, k2 ≥ 1, where k = k1 +k2

and `1 ≥ 1. Since dim(A) = 1, we may also assume that (P1 + P2) ∩ 2P2 6= ∅, so that
2A consists of the interval [0, 2(k + `1 − 1)] with a hole of some length h ≥ 0. Since A
is extremal and has volume vol(A) = k+ `1 we have |2A| = 2k− 1 + `1, so that h = `1.
Therefore

`1 = min(P1 + P2)−max(2P1)− 1 = `1 + 1− k1,

which implies k1 = 1.

We are now ready to prove Theorem 6.6.

Proof of Theorem 6.6. Let A consist of three segments P1, P2, and P3 where Pi =
[0, k1−1], P2 = [k1+`1, k1+k2+`1−1] and P3 = [k1+k2+`1+`2, k1+k2+k3+`1+`2−1],
so that ki = |Pi| for i ∈ {1, 2, 3} and the intervals are separated by intervals of holes
L1 = [k1, k1 + `1 − 1] and L2 = [k1 + k2 + `1, k1 + k2 + `1 + `2 − 1] of size `i = |Li| for
i ∈ {1, 2}. Lastly, we also write a = max(A) = k+ `− 1, where k = k1 + k2 + k3 = |A|
and ` = `1 + `2. We now consider three cases according to the dimension of A.

Case 1. dim(A) = 3. By Proposition 6.11 we must have rank(SA) = 0, that is, all
Pi + Pj are disjoint for 1 ≤ i, j ≤ 3, and we are led to (iv).

Case 2. dim(A) = 2. It follows from Proposition 6.11 that the matrix SA has
rank(SA) = 1. Up to isomorphisms, we have two possibilities for the only independent
relation in SA.
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Case 2.1: If (P1 + P3) ∩ 2P2 6= ∅, then we may assume that

P1 = {(0, 0), . . . , (0, k1 − 1)},

P2 = {(1, 0), . . . , (1, k2 − 1)} and

P3 = {(2, `), . . . , (2, `+ k3 − 1)}

for some ` ∈ N0. We know that |2A| = 4k−6−|(P1+P3)∩2P2| so that b = k−3−|(P1+
P3)∩2P2|. We also have vol(A) = k+max(b(k1 + `+k3)/2c−k2, 0). Since dim(A) = 2
we must have |(P1+P3)∩2P2| > 0 and therefore ` ≤ 2k2−2. Now if 0 ≤ ` ≤ 2k2−k1−k3

then b = k − 3− (k1 + k3 − 1) = k2 − 2 and vol(A) = k. If A is extremal, we therefore
have k2 = 2 so that k1 +k3 ≤ 4 and hence k ≤ 6. If max(2k2−k1−k3, 0) < ` ≤ 2k2−2
then b = k − 3− (2k2 − 2− `+ 1) = k − 2 + 2k2 − ` > max(b(k1 + `+ k3)/2c − k2, 0)
so the set cannot be extremal.

Case 2.2: If 2P1 ∩ (P1 + P2) 6= ∅, or likewise (P1 + P2)∩ 2P2 6= ∅, we may assume that

P1 = {(0, 0), (0, 1), · · · , (0, k1 − 1)},

P2 = {(0, k1 + `1), (0, k1 + `1 + 1), . . . , (0, k1 + `1 + k2 − 1)} and

P3 = {(1, 0), . . . , (1, k3 − 1)}

where k1 ≥ `1 + 2. Let A0 = P0 ∪ P1 and A1 = P2, so that

2A = 2A0 ∪ (A0 + A1) ∪ 2A1,

the union being disjoint. We have |2A1| = 2k3 − 1 and, by Theorem 6.4, we also have
|2A0| ≥ 2(k1 + k2)− 1 + `1. Moreover, it can be readily checked that

|A0 + A1| =

k1 + `1 + k2 + (k3 − 1) = k + `1 − 1, if k3 > `1 + 1,

(k1 + k3 − 1) + (k2 + k3 − 1) = k + k3 − 2, otherwise.

It follows that
|2A| ≥ 3k − 3 + `1 + min{k3 − 1, `1}. (6.14)

As vol(A) = k + `1, the set can only be extremal if min(k3 − 1, `1) = 0, which implies
k3 = 1 (as `1 ≥ 1) and there is equality in Equation (6.14), namely, if |2A0| = 2(k1 +
k2)− 1 + `1. Applying Lemma 6.14 to A0 leads to (iii).
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Case 3. dim(A) = 1. The following are the six segments in 2A:

2P1 = [0, 2k1 − 2],

P1 + P2 = (k1 + `1) + [0, k1 + k2 − 2],

2P2 = 2(k1 + `1) + [0, 2k2 − 2],

P1 + P3 = k1 + `1 + k2 + `2 + [0, k1 + k3 − 2],

P2 + P3 = 2(k1 + `1) + (k2 + `2) + [0, k2 + k3 − 2],

2P3 = 2(k1 + `1 + k2 + `2) + [0, 2k3 − 2].

Since A is extremal, we have
a ≥ 2(k + b− 2), (6.15)

so that
` ≥ k + 2b− 3. (6.16)

We will use the following facts.

Claim 6.15. If max(k1, k2) < `1 + 2 then 2P1, P1 + P2 and 2P2 are pairwise disjoint.
If max(k1, k2) ≥ `1 + 2 then P1 ∪P2 is 1-dimensional and 2(P1 ∪P2) is a segment with
a hole of length

h = max
{
`1 −min(k1, k2) + 1, 0

}
.

Proof. We note that 2P1 does not intersect P1 +P2 if and only if max(2P1) < min(P1 +
P2), which is equivalent to k1 < `1 + 2. Likewise, P1 +P2 does not intersect 2P2 if and
only if k2 < `1 + 2, establishing the first part of the claim.

Assume without loss of generality that k1 ≤ k2 and k2 ≥ `1+2. Then (P1+P2)∪2P2

is a segment since the two parts intersect. In particular, P1 ∪ P2 is 1-dimensional.
Moreover, either 2P1 ∪ (P1 +P2)∪ 2P2 is a segment or a segment with a hole of length
h = min(P1 + P2) − max(2P1) − 1 = `1 − k1 + 1, establishing the second part of the
claim.

By the above Claim, if both max(k1, k2) < `1 + 2 and max(k2, k3) < `2 + 2, then
the five segments in

2P1 ∪ (P1 + P2) ∪ 2P2 ∪ (P2 + P3) ∪ 2P3

are pairwise disjoint. Using Proposition 6.11 it follows that rank(SA) ≤ 1 and hence
dim(A) ≥ 2, contradicting the assumption of this case.
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We will therefore without loss of generality assume that max(k1, k2) ≥ `1 + 2. In
this case we have the following.

Claim 6.16. max{k2, k3} < `2 + 2.

Proof. Suppose on the contrary that max{k2, k3} ≥ `2+2. Then, using Equation (6.16),

k + 2b− 3 ≤ ` ≤ max{k1, k2}+ max{k2, k3} − 4

which implies max{k1, k2} = max{k2, k3} = k2. It follows that max(2P2) = 2(k1 + l1 +
k2−1) ≥ 2(k1 + `1) +k2 + `2 = min(P2 +P3). Hence, the sets 2(P1∪P2) and 2(P2∪P3)
overlap and, by Claim 6.15, 2A consists of the interval [0, 2a] with two holes of total
length at most

max{`1 − k1 + 1, 0}+ max{`2 − k3 + 1, 0} ≤ `.

Therefore, by using a = k + `− 1 and Equation (6.16), we obtain |2A| ≥ 2a− `+ 1 ≥
3k + 2b− 4 and therefore A is not extremal.

It follows from Claim 6.15 and Claim 6.16 that the three segments 2P2, P2 +P3, 2P3

are pairwise disjoint. Since A is one–dimensional, 2(P1 ∪ P2) must intersect P1 + P3.
In particular, max(2P2) ≥ min(P1 + P3) which yields

k1 + `1 + k2 ≥ `2 + 2. (6.17)

Claim 6.17. k3 = 1.

Proof. Suppose on the contrary that k3 > 1. We then have `1 > 1, since otherwise
Equation (6.17) and Equation (6.16) give k1 + k2 ≥ `2 + 1 ≥ k + 2b − 3 and we get
k3 ≤ 1.

Let B = 2(P1 ∪ P2) ∪ (P1 + P3) ∪ (P2 + P3). We can write 2A as the disjoint union

2A = B ∪ 2P3.

Consider now the set A′ obtained from A by replacing min(P3) with max(P1) + 1 if
k1 ≥ k2 and with min(P2) − 1 otherwise. The resulting set is still composed of three
disjoint segments, A′ = P ′1 ∪ P ′2 ∪ P ′3 with `′1 = `1 − 1, `′2 = `2 + 1 and min{k′1, k′2} =
min{k1, k2}. We can write 2A′ as the disjoint union

2A′ = B′ ∪ 2P ′3,
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where B′ = 2(P ′1 ∪P ′2)∪ (P ′1 +P ′3)∪ (P ′2 +P ′3). We have |2P ′3| = |2P3| − 2. Let us show
that |B′| ≤ |B|+ 1.

By Claim 6.15, |2(P ′1 ∪ P ′2)| ≤ |2(P1 ∪ P2)| + 1. If k1 ≥ k2 then P ′2 = P2 and
|P ′2 + P ′3| = |P2 + P3| − 1, while P ′1 + P ′3 = (P1 + P3) + 1. If P1 + P3 and P2 + P3 are
disjoint, then the two last modifications compensate each other, while if they intersect
then there is no change in the cardinality of their union. Similarly, if k1 < k2 then
P ′1 = P1 and we loose one unit in P ′1 + P ′3 while P ′2 + P ′3 is translated one unit to the
right from P2 +P3, and again there is no change in the cardinality of the union of these
two segments.

In either case, we get |2A′| < |2A| so that, if A′ is one–dimensional it would have
the same volume as A, contradicting that A is extremal. It follows that A′ must be 2-
dimensional. This implies max(2P ′2) < min(P ′1 +P ′3). Since max(2P2) ≥ min(P1 +P3),
we have equality in the last inequality. Therefore,

|2A| = |2(P1 ∪ P2)|+ |P3 + A| − 1. (6.18)

By Theorem 6.12 we have

|P3 + A| ≥ |A|+ 2|P3| − 2 = k + 2k3 − 2 (6.19)

and therefore

|2A| = |2(P1 ∪ P2)|+ |P3 + A|

≥ (max(2P2) + 1− `1) + (k + 2k3 − 2)

= 2(k − k3 + `1 − 1)− `1 + k + 2k3 − 2

= 3k + `1 − 4,

so that `1 ≤ b. But then, by Equation (6.17), we have

` = `1 + `2 ≤ b+ (k − k3 + b− 2) = k − k3 + 2b− 2, (6.20)

contradicting Equation (6.16). It follows that A could not have been extremal.

We can therefore assume P3 = {a}. It follows that

2A = 2(P1 ∪ P2) ∪ (a+ A).
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Moreover,

min(P2 + P3)−max(P1 + P3) = `1 − k3 + 2 = `1 + 1 > 1.

We next consider two cases.

Case 3.1: If k1 ≤ k2, then the sumset 2A can be written as the disjoint union

2A = B ∪ (P2 + P3) ∪ 2P3,

where B = 2(P1∪P2)∪ (P1 +P3) is an interval with a hole of length h = max{`1−k1 +
1, 0}. Such a 1-dimensional set with k1 > 1 cannot be extremal since, by exchanging
max(P1) by min(P2)− 1 we get a 1-dimensional set with the same volume and smaller
doubling. It follows that k1 = 1. By using Equation (6.17), we get max(2P2)−max(P1+
P3) = `1+k2−`2−1 ≥ 0. In this case 2(k+`1−2) = max(2P2) ≥ a = max(P1+P3) and,
again by extremality, equality holds. We thus have |2A| = (a− `1 + 1) + (k− 2) + 1 =
3k + `1 − 4, leading to (i).

Case 3.2: If k1 > k2, then from

3k − 4 + b = |2A| = |2(P1 ∪ P2)|+ |a+ A| − |2(P1 ∪ P2) ∩ (a+ A)|

= 2(k − 1 + `1)− 1−max{`1 − k2 + 1, 0}+ k

− |2(P1 ∪ P2) ∩ (a+ A)|,

we obtain

|2(P1 ∪ P2) ∩ (a+ A)| = 2`1 + 1−max{`1 − k2 + 1, 0} − b. (6.21)

For this equality to hold, a necessary condition is

max(2P2)− a+ 1 ≥ 2`1 + 1−max{`1 − k2 + 1, 0} − b. (6.22)

By using max(2P2) = 2(k − 1) + 2`1 − 2 and a = k + `− 1 in Equation (6.22), we
obtain

` ≤ k + b+ max{`1 − k2 + 1, 0} − 3. (6.23)

By Equation (6.16) we have `1 ≥ k2 + b − 1. On the other hand, since |2(P1 ∪ P2) ∩
(a+A)| ≤ |2P2| = 2k2− 1, it follows from Equation (6.21) that `1 ≤ b+ k2− 1. Hence
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`1 = b+k2−1, there is equality in Equation (6.23) and 2P2 must be included in P1 +P3,
so that 2k2 − 1 = |2P2| ≤ |P1 + P3| = k1. This gives (ii). �

6.2 Proof of Proposition 6.7 – A partial 4k − 8 Theorem

In what follows we will usually use the notation A to refer to sets in some cyclic group
Zm and the notation A to refer to sets in the integers. Often A will refer to the
canonical projection from Z to some Zm of some A ⊂ Z. We will also say that a subset
A of an arbitrary abelian group is said to be rectifiable if it is F2-isomorphic to a set
of integers. As an example, we previously saw in the introduction of this section, that
A = {0, 1, . . . , k − 1} ⊆ Zn is rectifiable if and only if n ≥ 2k − 1.

Deshouillers and Frĕıman stated the following result regarding covering properties
of subsets of Zm with very small sumset. Note that – unlike Conjecture 6.8 – this result
concerns arbitrary Zm, that is the integer m does not have to be prime. This explains
the weaker bounds and more complex statement.

Theorem 6.18 (Theorem 1 in [42]). For any set A ⊂ Zm satisfying |2A| ≤ 2.04|A|
and |A| ≤ n/109 there exists a proper subgroup H < Zm such that the following holds:

1. If A is included in one coset of H then |A| > |H|/109.
2. If A meets exactly 2 or at least 4 cosets of H then it is included in an `-term

arithmetic progression of cosets of H where

(`− 1)|H| ≤ |2A| − |A|. (6.24)

3. If A meets exactly three cosets of H then it is included in an `-term arithmetic
progression of cosets of H where

(min(`, 4)− 1)|H| ≤ |2A| − |A|. (6.25)

Furthermore, if ` ≥ 2 then there exists a coset of H containing at least 2/3 |H| elements
from A.

Note that if m is prime, then the subgroup H in the statement has to be the
trivial group {0} and A clearly meets exactly |A| cosets of it, so we are in case 2 of
the statement as long as |A| ≥ 4. The conclusion in this case is the same as that of
Theorem 6.9. We will also need the following straightforward observation in order to
distinguish between integer sets of different additive dimension.
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Lemma 6.19. Let A ⊂ Z be given in normal form with |A| ≥ 3 and m > 1 such that
m | max(A). If the canonical projection of A into Zm is rectifiable, then dim(A) ≥ 2.

Proof. Let ϕ : Z→ Zm denote the canonical projection. Note that

{(a, ϕ(a)) : a ∈ A} ⊂ Z× Zm

is F2-isomorphic to A, since for any a1, a2, a3, a4 ∈ A we have a1 + a2 = a3 + a4

if and only if (a1, ϕ(a1)) + (a2, ϕ(a2)) = (a3, ϕ(a3)) + (a4, ϕ(a4)). As A = ϕ(A) is
rectifiable, there exists some F2-isomorphism f mapping A into the integers. By the
same argument as before, it follows that {(a, ϕ(a)) : a ∈ A} and hence also A is
F2-isomorphic to {(a, f(ϕ(a))) : a ∈ A} ⊂ Z2. We may without loss of generality
assume that f(0) = 0 and note that since A is in normal form and |A| ≥ 3, there
must exist some a′ ∈ A such that ϕ(a′) 6= 0 and hence also f(ϕ(a′)) 6= 0. Using
the requirement that m | max(A), we observe that the three points (0, f(ϕ(0))) =
(0, 0), (max(A), f(ϕ(max(A))) = (max(A), 0) and (a′, f(ϕ(a′))) 6= (a′, 0) do not lie in
a hyperplane of Z2 and therefore dim(A) ≥ 2 as desired.

We can now state and prove Proposition 6.7. It should be noted that the proof has
some slight similarities with the proof of Frĕıman’s 3|A| − 4 Theorem in the integers
by modular reduction, see [104]. However, there is a new component in the argument
here, consisting of taking into account the Frĕıman dimension of the set.

Proof of Proposition 6.7. Let A ⊂ Z satisfy |2A| ≤ 3.04|A|−3 as well as max(A) ≥
109|A|, and assume without loss of generality that A is in normal form. We will
show that we must have dim(A) ≥ 2, which contradicts the assumption that A is 1-
dimensional. Let ϕ : Z → Zmax(A) denote the canonical projection and observe that
A = ϕ(A) satisfies |A| = |A| − 1 < max(A)/109. Let B denote the set of elements
x ∈ 2A such that x+ max(A) is also in 2A. Since 0 and max(A) are both in A we have
B ⊃ A, whence |2A| = |2A|+ |B| ≥ |2A|+ |A|, and so

|2A| ≤ |2A| − |A| ≤ 2.04|A| − 3 ≤ 2.04|A|.

We can therefore apply Theorem 6.18, obtaining that A is covered by some small
arithmetic progression of cosets of some proper subgroup H < Zmax(A). Let us go
through the cases given by this theorem. In the following 1C will denote the indicator
function of some given set C.
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1. As A is in normal form, A cannot be contained in a single coset of H.
2. If A meets exactly 2 or at least 4 cosets of H then it is included in an `-term

arithmetic progression of cosets of H, where by Equation (6.24) we have ` ≤
1.04|A|/|H| + 1 ≤ (1.04 + 3/2)|A|/|H|, the last equality following from the last
sentence in Theorem 6.18. Using that |A| < 10−9 max(A) we deduce that

` ≤ 3|A|/|H| < 1
2

∣∣∣Zmax(A)/|H|

∣∣∣ . (6.26)

Letting m = max(A)/|H| we now observe that, since A is in normal form, its
canonical projection into Zm cannot be contained in a proper subgroup of Zm. It
follows that the common difference of the `-term arithmetic progression covering
this projection of A does not divide m, whence we can dilate by the inverse
mod m of this common difference, and it follows that the projection of A is F2-
isomorphic to some subset of an interval of size m/2 in Zm. This projection is
therefore rectifiable, so by Lemma 6.19 we have dim(A) ≥ 2.

3. If A meets exactly 3 cosets of H, then we argue in a way similar to case 2,
considering the projection of A to Zm where m = max(A)/|H|. Here, however,
we distinguish two cases, according to whether the 3 cosets are in arithmetic
progression or not.
Assume that these cosets are in arithmetic progression with difference d. If we
can rectify the 3-term progression formed by the cosets’ representatives, then we
can rectify the projection of A into Zm. By applying Lemma 6.19 as in case 2,
we again obtain the contradiction dim(A) ≥ 2. If we cannot rectify the 3-term
progression, then we must have either m < 6, d = m/3 or d = m/4. We certainly
have m ≥ 6 since by Equation (6.25) we have |H| ≤ (|2A| − |A|)/2 ≤ 0.52|A|,
and as noted above we also have max(A) ≥ 109|A|, so m ≥ 109. Furthermore, if
d = m/3 or d = m/4 then m is multiple of d and clearly A cannot have been in
normal form.
If the cosets do not form an arithmetic progression, then we have A ⊆ H ∪
(H + c1) ∪ (H + c2) for some c1, c2 ∈ Zmax(A) satisfying c2 6≡ 2c1, c1 6≡ 2c2 and
c1+c2 6≡ 0 in Zmax(A)/H. Moreover, we may assume that either 2c1 6≡ 0 or 2c2 6≡ 0
in Zmax(A)/H as otherwise A would only meet 2 cosets of H. We therefore assume
without loss of generality that 2c2 6≡ 0 in Zmax(A)/H. If furthermore 2c2 6≡ 2c1 in
Zmax(A)/H, then {1H+c2(ϕ(a)) : a ∈ A} is F2-homomorphic to A and therefore
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dim(A) ≥ 2 as A is F2-isomorphic to

{
(1H+c2(ϕ(a)), a) : a ∈ A

}
⊂ Z2 (6.27)

which is not contained in some hyperplane of Z2 as ϕ(0) = ϕ(max(A)) ∈ H but
ϕ(a′) ∈ H + c2 for some a′ ∈ A. If however 2c1 ≡ 2c2 6≡ 0 in Zmax(A)/H, then
likewise we can argue that dim(A) ≥ 2 as A now is F2-isomorphic to

{
(1H(ϕ(a)), a) : a ∈ A

}
⊂ Z2 (6.28)

which for the same reason is also not contained in any hyperplane of Z2.

It follows that dim(A) ≥ 2, contradicting the assumption that dim(A) = 1. �

6.3 Proof of Theorem 6.9 – The cyclic setting

Let us state the following result of Frĕıman [61] regarding 2-dimensional sets of very
small doubling.

Theorem 6.20 (Theorem 1.17 in [61]). Let A ⊂ Z2 be a 2-dimensional set that cannot
be embedded in any straight line and that satisfies |2A| < 10/3 |A| − 5 and |A| ≥ 11.
Then A is contained in a set which is isomorphic to

{(0, 0), (0, 1), (0, 2), . . . , (0, k1 − 1), (1, 0), (2, 0), . . . , (1, k2 − 1)} (6.29)

where k1, k2 ≥ 1 and k1 + k2 ≤ |2A| − 2|A|+ 3.

We shall use the following consequence.

Corollary 6.21. Any 2-dimensional set A ⊂ Z satisfying |2A| ≤ 10/3 |A| − 5 is con-
tained in the union of two arithmetic progressions P1 and P2 with the same common
difference such that |P1∪P2| ≤ |2A|− 2|A|+ 3. Furthermore, the sumsets 2P1, P1 +P2

and 2P2 are disjoint.

A proof of this can be immediately derived from the following statement.

Lemma 6.22. Given a finite d-dimensional set A ⊂ Zd not contained in a hyperplane,
we can extend any Frĕıman-isomorphism ϕ mapping A to some A′ ⊂ Z to an affine
linear map.
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Proof. Assume to the contrary that ϕ is not affine linear. As dim(A) = d, there exist
d elements a1, . . . , ad ∈ A spanning Zd. Let ϕe denote the affine linear map Zd → Z
determined by a1, . . . , ad ∈ Zd as well as 0, that is ϕe(ai) = ϕ(ai) for i = 1, . . . , d
and ϕe(0) = ϕ(0). As ϕ is not affine linear, we must have ϕe(x) 6= ϕ(x) for some
x ∈ A \ {a1, . . . , ad, 0}. It follows that A′′ = {(a, ϕe(a)−ϕ(a)) : a ∈ A} ⊂ Zd+1 cannot
be contained in a hyperplane, that is dim(A′′) ≥ d+ 1. However, one can easily verify
that A′′ is Frĕıman-isomorphic to A′, giving us a contradiction.

Proof of Corollary 6.21. Let A′ ⊂ Z2 denote a set that is F2-isomorphic to A and not
contained in a line. By Theorem 6.20 we can assume that A′ is contained in two lines of
combined size less than |2A|−2|A|+3. By Lemma 6.22 the F2-isomorphism ϕ mapping
A′ to A can be extended to an affine linear map, implying the desired statement.

The Fourier-analytic Rectification

It is obvious that at least half of any set A ⊂ Zp can be rectified. It is reasonable
to expect that if A is ‘concentrated’ in some sense, then one should be able to rectify
significantly more than just half of the set. Frĕıman stated such a result using the
language of large Fourier coefficients. In the following 1̂A(x) = ∑

a∈A e
2πiax/p will

denote the Fourier transform of the indicator function of some set A ⊂ Zp.

Theorem 6.23 (Section 2.1 in [61]). For any A ⊂ Zp and d ∈ Z?p there exists u ∈ Zp
such that ∣∣∣[u, u+ p/2) ∩ d · A

∣∣∣ ≥ |A|+ |1̂A(d)|
2 . (6.30)

It should be noted that an improved version of this result can be obtained using
a result of Lev [103]. However, we will stick to using Theorem 6.23 when proving
our main statement, as the improvement that would follow from using Lev’s result
is negligible in our case. Lastly, it was also Frĕıman who noted that a small sumset
implies the existence of a large Fourier coefficient and hence a certain ‘concentration’
of the set. We state this observation in the following form. The proof follows by a
standard application of the Cauchy-Schwarz inequality.

Lemma 6.24 (Section 2.1 in [61]). For any A ⊂ Zp there exists d ∈ Z?p such that

∣∣∣1̂A(d)
∣∣∣ ≥ (p/|2A| − 1

p/|A| − 1

)1/2

|A|. (6.31)
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Proof. We start by observing that

p−1∑
a=0

1̂A(a)2 1̂2A(a) =
p−1∑
a=0

∑
x1,x2∈A

∑
x3∈2A

e2πia(x1+x2−x3)/p = |A|2p.

Now if |1̂A(a)| ≤ θ |A| for all a 6= 0 mod p and

θ <

(
p/|2A| − 1
p/|A| − 1

)1/2

then using Cauchy-Schwarz one would get the contradiction

p−1∑
a=0

1̂A(a)2 1̂2A(a) = |A|2 |2A|+
p−1∑
a=1

1̂A(a)2 1̂2A(a)

≤ |A|2 |2A|+ θ|A|

p−1∑
a=1
|1̂A(a)|2

1/2p−1∑
a=1
|1̂2A(a)|2

1/2

= |A|2 |2A|+ θ|A|
(
|A|p− |A|2

)1/2 (
|2A|p− |2A|2

)1/2
< |A|2p.

The desired statement follows.

Proof of Theorem 6.9. Note that throughout the proof we will simplify notation by
just writing p/2 and p/3 rather than the correct rounded version. In all cases there
will be an appropriate amount of slack that justifies this simplification.

Let d ∈ Z?p and u ∈ Zp be such that A1 = [u, u+ p/2) ∩ d · A satisfies

|A1| = max
u′,d′
|[u′, u′ + p/2) ∩ d′ · A|. (6.32)

We assume without loss of generality that d = 1 and u = 0. By Theorem 6.23 and
Lemma 6.24 we have that

|A1| ≥

1 +
(
p/|2A| − 1
p/|A| − 1

)1/2
 |A|

2 > 0.8175 |A|. (6.33)

We note that A1 satisfies |2A1| ≤ 3.04|A1| − 7 as otherwise we would get the contra-
diction

2.48 |A| − 7 ≥ |2A| ≥ |2A1| > 3.04|A1| − 7 > 2.484 |A| − 7. (6.34)
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As A1 is contained in an interval of size less than p/2, it is rectifiable and hence there
exists some F2-isomorphic set A1 ⊂ Z. We note that due to Equation (6.5) we have
dim(A1) ∈ {1, 2}. Let us distinguish between these two cases.

Case 1. If dim(A1) = 1, then by Proposition 6.7 it is contained in an arithmetic
progression of size less than 109|A1|. If the common difference r of this progression is
not 1, we may dilate by r−1 mod p and translate once more, so that we may assume
that A1 ⊂ [0, 109|A1|]. Since |A1| is by assumption the most elements any p/2-segment
can contain of any dilate of A, it follows that A ⊂ [0, 109|A1|] ∪ [p/2, p/2 + 109|A1|].
Therefore

(
2 · A

)
⊂ [0, 2 · 109 |A1|] ⊂ [0, p/2). Hence all of A can be rectified, so the

3|A| − 4 statement in the integers gives the desired covering.

Case 2. If dim(A1) = 2 then we apply Corollary 6.21, obtaining progressions P1, P2

with union covering A1, with same common difference r. We claim that we can assume
without loss of generality that A1 ⊂ [0, 3|A|) ∪ [c, c + 3|A|) ⊂ [0, p/2) with 0, c +
3|A| − 1 ∈ A for some c ∈ Zp and |A1 ∩ [0, 3|A|)| ≥ |A1|/2. Indeed, if r 6= 1, then
we can dilate by r−1 mod p so as to ensure that r−1 · A1 ⊆ [0, 3|A|) ∪ [c, c + 3|A|)
with 0, c + 3|A| − 1 ∈ r−1 · A. If c + 3|A| < p/2, then the first two requirements are
met and we can ensure that |r−1 · A1 ∩ [0, 3|A|)| ≥ |A1|/2 by multiplying the set with
−1 and translating if necessary. If p/2 − 3|A| ≤ c ≤ p/2 + 3|A|, then 2 · r−1 · A1

must lie in [−6|A|, 6|A|] and arguing as in case 1 we conclude that 2 · r−1 · A ⊂
{0, p/2} + [−6|A|, 6|A|], so 4 · r−1 · A ⊂ [−12|A|, 12|A|] and again we can rectify all
of A and complete the argument this way. Lastly, if p/2 + 3|A| < c then we simply
translate the set by −c to meet the first two requirements and again multiply by −1 if
necessary. This proves our claim.

Now, let S ′ = [0, 3|A|), S ′′ = [c, c+ 3|A|), A′1 = A1 ∩S ′ and A′′1 = A1 ∩S ′′. By the
claim above we have |A′1| ≥ |A1|/2 and S ′ ∪ S ′′ ⊂ [0, p/2). We now show that

R = A \ A1 = A \ (S ′ ∪ S ′′) ⊂ [2c− 3|A|, 2c+ 6|A|) = 2S ′′ + [−3|A|, 0]. (6.35)

We start by observing that by assumption A1 = A ∩ (S ′ ∪ S ′′) was the most of A
we could rectify. It follows that [0, p/2) \ (S ′ ∪ S ′′) does not contain any elements
of A. Next, let us assume that there exists a ∈ A satisfying a ∈ [−3|A|, 0). Since
A1 ∪ {a} cannot be rectified, we must have c + 3|A| > p/2 − 3|A|. This implies that
[c, c+ 3|A|) ⊂ [p/2− 6|A|, p/2), whence

2 · (A1 ∪ {a}) ⊂ [−12|A|, 6|A|) ⊂ [0, p/2)− 12|A|,
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which contradicts our maximality assumption about A1. It follows that we must have
A∩ [−3|A|, 0) = ∅. Arguing similarly, we see that A∩ [c+3|A|, c+6|A|) = ∅: certainly
A ∩ [c + 3|A|, p/2) = ∅, and if there is a ∈ A ∩ [p/2, c + 6|A|) ⊂ [p/2, p/2 + 3|A|)
then [c, c + 3|A|) ⊂ [p/2 − 6|A|, p/2), and so 2 · (A1 ∪ {a}) ⊂ [−12|A|, 12|A|), again
contradicting our maximality assumption.

Next, we note that

2A1 ⊂ [0, 6|A|) ∪ [c, c+ 6|A|) ∪ [2c, 2c+ 6|A|).

It follows that if there exists a ∈ A satisfying

a ∈ [p/2, 0) \
(
[−3|A|, 6|A|) ∪ [c− 3|A|, c+ 6|A|) ∪ [2c− 3|A|, 2c+ 6|A|)

)
,

then a+A′1 does not intersect 2A1 and we get the contradiction

|2A| ≥ |2A1|+ |a+A′1|

≥ (2|A′1| − 1) + (2|A′′1| − 1) + (|A′1|+ |A′′1| − 1) + |A′1|

≥ 3.5|A1| − 3 > 2.48|A| − 7.

Note that we have used that 2A′1∩(A′1+A′′1) = ∅ as well as 2A′′1∩(A′1+A′′1) = ∅ as given
by Corollary 6.21. Using the previous observations, it follows that Equation (6.35) is
established and we have A = A′1 ∪ A′′1 ∪ R where R = A ∩ [2c − 3|A|, 2c + 6|A|).
Note that we may assume that |R| ≥ 0.17|A| as otherwise |A1| ≥ 0.83|A| and in
crefeq:A1sumset we would in fact get |2A1| ≤ 3|A| − 4, which due to Equation (6.5)
would contradict our assumption that A1 is 2-dimensional.

We note that 2A ⊇ 2A1 ∪ (A′′1 +R) and that trivially |A′′1 +R| ≥ |R|. It follows
that A′′1 +R must intersect 2A1 since otherwise we would get the contradiction

|2A| ≥ |2A1|+ |R| ≥ 3.17|A1| − 2 > 2.48|A| − 7.

It follows that one of the following must hold:

(i) If (A′′1 +R) ∩ 2A′′1 6= ∅, then we must have

3c+ 9|A| − p ≥ 2c and 3c− 3|A| − p ≤ 2c+ 6|A|,

and therefore c ∈ [p−9|A|, p+9|A|]. However, we know that c ≤ p/2 and that the
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cardinality of A is sufficiently small with respect to p, so we get a contradiction.
(ii) If (A′′1 +R) ∩ (A′1 +A′′1) 6= ∅, then we must have

3c+ 9|A| − p ≥ c and 3c− 3|A| − p ≤ c+ 6|A|,

and therefore c ∈ [p/2− 9/2 |A|, p/2 + 9/2 |A|]. Consequently, in this case A′1 and
R are focused around 0 and A′′1 is focused around p/2. It follows that a dilation
by a factor of 2 focuses all parts of A around 0, that is

2 · A ⊂ [−24|A|, 30|A|) ⊂ −24|A|+ [0, p/2).

This means that all of A can be rectified and we can just apply the 3|A| − 4
statement in the integers to get the desired covering property.

0

p/2

A′1

A′′1R

0

p/2

2A′1

A′1 +A′′1

2A′′1

R+A′′1

2R

R+A′1

Figure 6.2: Distribution of A and 2A in Zp in case (iii).

(iii) If (A′′1 +R) ∩ 2A′1 6= ∅, then we must have

3c+ 9|A| − p ≥ 0 and 3c− 3|A| − p ≤ 6|A|,

and therefore c ∈ [p/3− 3|A|, p/3 + 3|A|]. Consequently, in this case A′1,A′′1 and
R (or rather the intervals containing them) are roughly ‘equally distributed’ in
Zp, that is they are respectively focused around 0, p/3 and 2p/3 as illustrated in
Figure 6.2. It follows that a dilation by a factor of 3 focuses all parts of A around
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0, that is
3 · A ⊂ [−27|A|, 54|A|) ⊂ −27|A|+ [0, p/2).

This again means that all of A can be rectified and we can just apply the 3|A|−4
statement in the integers to get the desired covering property.

It follows that we have proved the statement of Theorem 6.9. �

6.4 Further remarks

It is probably unreasonable to expect that the rectification methodology used to prove
Theorem 6.9 will lead to a proof of Conjecture 6.8. Even if all other ingredients existed
in their ideal form, the rectification argument through a large Fourier coefficient appears
to imply an inherent loss in the density. This is a problem concerning not only Frĕıman’s
original approach and the result presented in this chapter, but also the broader result
of Green and Ruzsa.

In fact, the more natural direction seems to be to apply covering results in the
cyclic group in order to prove covering statements in the integers. Both Lev and
Smeliansky’s proof of Frĕıman’s 3|A| − 4 statement in the integers as well as the proof
of Proposition 6.7 fall into that category. To further strengthen this argument, let us
show that Conjecture 6.8 would also imply Conjecture 6.5 for the, admittedly rather
odd, assumption that the maximum element of the normalization of the set in the
integers is prime.

Corollary 6.25. Assume that Conjecture 6.8 holds and let A ⊂ Z be a 1-dimensional
set in normal form for which max(A) is prime. If |2A| = 3|A| − 4 + b ≤ 4|A| − 8, then
A can be covered by an arithmetic progression of length at most 2(|A| + b− 2) + 1. If
|2A| = 4|A| − 7, then A can be covered by an arithmetic progression of length at most
4|A| − 8.

Proof. Let A denote the canonical embedding of A into Zmax(A). We start with the
case |2A| ≤ 4|A| − 8 and note as in the proof of Proposition 6.7 that

|2A| ≤ |2A| − |A| ≤ 2|A| − 1 + (b− 1) ≤ 3|A| − 5.

Setting x = |2A| − (2|A| − 1) ≤ b − 1 ≤ |A| − 4 it would follow from case (i) of
Conjecture 6.8 that either |2A| > max(A) − (x + 2) and therefore we get the desired
covering property for A, or that A can be contained in an arithmetic progression of
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length at most |A|+ x ≤ (max(A) + 1)/2, implying that A is rectifiable and therefore
by Lemma 6.19 contradicting the requirement that A is 1-dimensional.

Now if |2A| = 4|A| − 7 then x = |2A| − (2|A| − 1) ≤ |A| − 3 and we again either
get the desired covering property from Conjecture 6.8, or we get a contradiction to the
requirement that A is 1-dimensional.

Note that this proof is essentially the same as that of Proposition 6.7. To prove
such a statement without the primality requirement, one would need an analogue of
Conjecture 6.8 in general Zm, that is a strengthening of the results of Kemperman [91]
or Deshouillers and Frĕıman [42]. Such a conjecture has not been explicitly formulated
and might in fact be very intricate to state.
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Near-Constant Representation
Functions

One of the most prominent conjectures in the theory of representation functions is that
of Erdős and Turán for additive bases [55].

Erdős–Turán Conjecture on Additive Bases. If for a given set A ⊆ N0 the
representation function satisfies r(A, n) > 0 for n large enough, then

lim sup
n→∞

r(A, n) =∞. (7.1)

This conjecture remains unsolved, though some related statements are known about
the behavior of r(A, n): a classical result of Erdős and Fuchs [50] establishes that
r(A, n) cannot be ‘focused’ around some constant c > 0.

Erdős–Fuchs Theorem. For any c > 0 there does not exist any set A ⊆ N0 satisfying

n∑
j=0

(r(A, j)− c) = o
(
n1/4 log−1/2n

)
. (7.2)

Jurkat (seemingly unpublished) and later Montgomery and Vaughan [108] improved
upon the result of Erdős and Fuchs by replacing the right-hand term with o(n1/4). On
the other hand, Ruzsa [127] showed that a sequence satisfying

n∑
j=0

(
r(A, j)− c

)
= O

(
n1/4 log n

)
(7.3)

does in fact exist through a probabilistic argument.
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It should be noted that these statements are connected to Gauss’ well-known circle
problem, in which one is interested in determining the asymptotic behavior of the
difference between the number of integer lattice points in a circle of radius r and the
area of that circle. Hardy [81] and independently Landau proved that it cannot be
of the order o(r1/2 log1/4 r). By choosing the set A to be all squares of integers, the
result of Erdős and Fuchs and the subsequent improvement due to Jurkat as well as
Montgomery and Vaughan result in an only slightly weaker bound than that of Hardy
and Landau while dealing with a much more general problem.

There have been several generalizations of the result of Erdős and Fuchs, for ex-
ample to the case of more than two summands, see [82, 118, 152], and also to the case
where the summands come from different sequences, see [36, 85, 133]. In the remainder
of this section, we will be interested in studying two specific variants of representation
functions: the first are ordered representation functions with multiple summands. For
these we will establish an Erdős–Fuchs-type result. The second are the much more in-
volved weighted representation functions, again with multiple summands. The problem
here, as stated by Sárközy and Sós [134], is to characterize the weights for which the
representation function cannot become constant. However, before stating the results
regarding these two variants, let us first introduce the language in which one usually
approaches these types of problems, which goes back to Dirac [43].

Rephrasing the problems through generating functions

The generating function of a set A ⊆ N0 is the formal power series

fA(z) =
∑
a∈A

za. (7.4)

Writing [zk]f(z) for the coefficient ck of a given formal power series f(z) = ∑
k≥0 ckz

k,
we note that [zk]fA(z) is the indicator function 1A(k) of A. We also observe that fA(z)
is analytic in the open disc D and that it is a strictly increasing in the real interval
[0, 1).

Let us make some light use of the Symbolic Method, a common technique for
counting combinatorial objects. A more detailed introduction to this can be found in
the book of Flajolet and Sedgewick [57]. For the particular case of the representation
function r(A, n), one would first define the combinatorial class (A, | · |) where the size of
an element a ∈ A is simply |a| = a. The ordinary generating function of this class is just
the previously introduced generating function fA(z) of A. The combinatorial class we
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are then interested in enumerating is that of (A2, | · |) where the size of an element in
A2 is simply |(a1, a2)| = |a1|+ |a2| = a1 + a2. The ordinary generating function of this
class is therefore ∑∞n=0 r(A, n)zn. Since (A2, | · |) is the two-fold cartesian product of
(A, | · |), it follows that

∞∑
n=0

r(A, n) zn = fA(z)2. (7.5)

This observation has been the basis of many proofs regarding the representation func-
tion r(A, n) and its generalizations and variants. Of course, in this particular case one
can easily convince oneself of the veracity of Equation (7.5) without using the Symbolic
Method. However, especially when dealing with the ordered representation function,
this will be an important framework to keep in mind. Let us now introduce the main
results of this section.

Ordered representation functions

For a fixed k ≥ 2, we define the ordered representation functions of a set A ⊆ N0 as

r≤k (A, n) = #
{

(a1, . . . , ak) ∈ Ak : a1 ≤ · · · ≤ ak, a1 + · · ·+ ak = n
}

(7.6)

as well as

r<k (A, n) = #
{

(a1, . . . , ak) ∈ Ak : a1 < · · · < ak, a1 + · · ·+ ak = n
}
. (7.7)

They both count the number of ways to express some integer n ∈ N0 as a sum of k
elements inA sorted in increasing order, which is equivalent to counting sets of elements
rather than tuples. The former of the two functions allows for repetition whereas the
later requires the elements to be distinct.

In order to place these functions in some context to the representation function
defined at the beginning of this section, we note that clearly

(
r(A, n)− 1

)
/2 ≤ r<2 (A, n) ≤ r≤2 (A, n) ≤ r(A, n) (7.8)

holds for any n ∈ N0. The following result now establishes that the ordered represen-
tation functions also satisfy an Erdős–Fuchs-type result.

Theorem 7.1. Let k ≥ 2, c > 0 and ? ∈ {≤, <}. There does not exist any set A ⊆ N0
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satisfying
n∑
j=0

(r?k(A, j)− c) = o
(
n1/4 log−1/2n

)
.

The proof of this result is distinct in two ways: first, as already mentioned, one
needs to use some additional tools from the Symbolic Method in order to obtain an
expression of ∑∞n=0 r

?
k(A, n) zn in terms of the generating function of A along the lines

of Equation (7.5). Second, while the proof of Erdős and Fuchs is based on integrating
Equation (7.5) along a small arc, the proof of Theorem 7.1 uses an integration with
a smoothing function around the whole circle, which is reminiscent of the techniques
used in [133].

The tools developed to prove Theorem 7.1 also allow one to prove an equivalent
statement to another result of Erdős and Fuchs, namely Theorem 2 in [50]. For any
c ≥ 0 and A ⊆ N0, let

E?
k,c(A, n) = 1

n

n∑
j=0

(r?k(A, j)− c)
2

denote the mean squared error. The following statement is in to spirit of that lesser
known result of Erdős and Fuchs.

Theorem 7.2. Let k ≥ 2, c ≥ 0, ? ∈ {≤, <} and A = {a1 < a2 < a3 < . . .} ⊆ N0. If
either c > 0 or the set {as/sk}s∈N is bounded, then lim supn→∞E?

k,c(A, n) > 0.

Weighted representation functions

For some fixed integer d ≥ 2 and a vector of weights k = (k1, . . . , kd) ∈ Nd, we now
define the weighted representation function of a set A ⊆ N0 as

rk(A, n) = r(A, n; k1, . . . , kd) = #
{

(a1, . . . , ad) ∈ Ad : k1a1 + · · ·+ kdad = n
}
.

Note that clearly r(A, n; 1, 1) = r(A, n). Studying these functions is much more
involved than those previously introduced and they display a much larger range of
behavior depending on the weights. Consequently, Sárközy and Sós asked a much
simpler question regarding the weighted representation functions [134, Problem 7.1.]:
for which values of k1, . . . , kd can one find an infinite set A such that the function
r(A, n; k1, . . . , kd) becomes constant for n large enough?

The result of Erdős and Fuchs establishes that r(A, n) not only cannot become
constant but is in fact very far from it. However, there is a much easier way to answer
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the particular question we are interested in for weighted representation functions in
the case of r(A, n): the function is odd whenever n = 2a for some a ∈ A and even
otherwise and therefore cannot become constant. For k ≥ 2, Moser [109] constructed
a set A such that r(A, n; 1, k) = 1 for all n ∈ N0. The study of bivariate linear forms,
that is the case of d = 2, was finally completely settled by Cilleruelo and Rué [30] by
showing that the only cases in which r(A, n; k1, k2) may become constant are those
considered by Moser.

The multivariate case where d > 2 is less well studied. If gcd(k1, . . . , kd) > 1,
then one trivially observes that r(n; k1, . . . , kd) cannot become constant. The only
non-trivial case so far was studied by the Rué [120], showing that if in the d-tuple of
coefficients (k1, . . . , kd) each element is repeated exactly m times, then there cannot
exist an infinite set A such that r(A, n; k1, . . . , kd) becomes constant for n large enough.
This for example covers the case (k1, k2, k3, k4, k5, k6) = (2, 4, 6, 2, 4, 6). Observe that
each coefficient in this example is repeated twice, that is m = 2.

Here we will go a step beyond this result and show that whenever the set of co-
efficients is pairwise co-prime, then there does not exist any infinite set A for which
r(n; k1, . . . , kd) is constant for n large enough. In fact, the following statement covers
an even wider range of weights than those that are pairwise co-prime.

Theorem 7.3. Let q1, . . . , qm ≥ 2 be pairwise co-prime integers and b(i, j) ∈ {0, 1},
so that for each 1 ≤ i ≤ d there exists some 1 ≤ j ≤ m such that b(i, j) = 1. If
ki = q

b(i,1)
1 · · · qb(i,m)

m for 1 ≤ i ≤ d, then for every infinite set A ⊆ N0 the function
r(A, n; k1, . . . , kd) cannot become constant.

In particular, if m = d and b(i, j) = 1 if and only if i = j, then this represents
the case where k1, . . . , kd ≥ 2 are pairwise co-prime numbers. Other new cases covered
by this result are for instance (k1, k2, k3) = (2, 3, 2 · 3) as well as (k1, k2, k3, k4) =
(22 ·3, 22 ·5, 3 ·5, 22 ·3 ·5). The proof of this result starts with some ideas introduced in
[30] dealing with generating functions and cyclotomic polynomials. The main new idea
is to use an inductive argument in order to be able to show that a certain multivariate
recurrence relation is not possible to be satisfied unless some initial condition is trivial.

7.1 Preliminaries for Theorem 7.1 and Theorem 7.2

In this part we will establish some common preliminaries that will be required for the
proofs of Theorem 7.1 and Theorem 7.2. The first is the previously already mentioned
issue of finding a way to encode the problem using the generating functions of the
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sets. Once we have established an equivalent to Equation (7.5) for ordered representa-
tion functions, we will turn our attention to obtaining a bound when integrating that
encoding.

7.1.1 Encoding the ordered representation functions

Expressing ∑∞n=0 r
?
k(A, n) zn in terms of fA(z) for ? ∈ {≤, <} is slightly more involved

than it is for ∑∞n=0 r(A, n) zn, since we can no longer use the Cartesian product con-
struction. For r≤k (A, n) we are instead interested in enumerating the combinatorial
class given by the multiset construction of (A, | · |). Here we will need another variable
u to keep track of the size of each set. Adapting Theorem I.3. in [57] to our setting
therefore gives the expressions

∞∑
n=0

r≤k (A, n) zn = [uk] exp
( ∞∑
i=1

1
i
uifA(zi)

)
. (7.9)

For r<k (A, n) on the other hand we need the powerset construction of (A, | · |), where
we also use an additional variable u to keep track of the size of the sequences. Again
adapting Theorem I.3. in [57] to our setting gives us the expressions

∞∑
n=0

r<k (A, n) zn = [uk] exp
( ∞∑
i=1

(−1)i+1

i
uifA(zi)

)
. (7.10)

Writing

S(k) =
{
i = (i1, . . . , im) ∈ Nm : 1 ≤ m ≤ k and i1 + · · ·+ im = k

}
and expanding the Taylor series of expressions Equation (7.9) and Equation (7.10), we
get that

∞∑
n=0

r≤k (A, n) zn =
∑

i∈S(k)

fA(zi1) · · · fA(zim)
i1 · · · im ·m! (7.11)

as well as ∞∑
n=0

r<k (A, n) zn =
∑

i∈S(k)
(−1)m+k fA(zi1) · · · fA(zim)

i1 · · · im ·m! . (7.12)

Let us generalize our notation and write ε≤(i) = 1/(i1 · · · im ·m!) as well as ε<(i) =
(−1)m+k/(i1 · · · im ·m!) for any i = (i1, . . . , im) ∈ S(k), so that Equation (7.11) and
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Equation (7.12) both become

∞∑
n=0

r?k(A, n) zn =
∑

i∈S(k)
ε?(i) fA(zi1) · · · fA(zim) (7.13)

for ? ∈ {≤, <}. We have therefore found our equivalent to Equation (7.5) for ordered
representation functions. Finally, in both of the proofs of Theorem 7.1 and Theorem 7.2
we will argue that the term coming from the k-tuple 1 = (1, 1, . . . , 1) ∈ S(k) will
asymptotically be dominant and we therefore let

S0(k) =
{
i = (i1, . . . , im) ∈ Nm : 1 ≤ m < k and i1 + · · ·+ im = k

}
denote the set of all remaining terms. Also note that ε≤(1) = ε<(1) = 1/k!.

7.1.2 The dominant term under integration

We start by noting that the variable with respect to which any asymptotic statements
are made will either be n ∈ N tending to infinity or r ∈ (1/2, 1) tending to 1. It will
always specified with respect to which of the two any asymptotic statements are made
through an indexed n or r. We will also assume that r > 1/2 simply to avoid any
unimportant behavior that occurs when r is close to 0. The variable z will always lie
in

D = {z ∈ C : |z| < 1}, (7.14)

the open disk of radius 1. Integrals along

Sr = {z ∈ C : |z| = r}, (7.15)

that is the circle of radius r, will be taken with respect to the measure

dµ = |dz|/(2πr) = dθ/(2π)

where z = reiθ. In particular, this implies that
∫
Sr dµ = 1. We will also use the

smoothing function

hM(z) = 1 + z + . . .+ zM−1 = 1− zM
1− z (7.16)

where M ∈ N. We will furthermore write h0(z) = 1 in order to simplify notation.
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The goal of this part is to formalise the fact that, when integrating the right-hand
side of Equation (7.13) over Sr, the dominant term as r tends to 1 will come from
the k-tuple 1 ∈ S(k) whereas all terms coming from S0(k) will be negligible. We first
prove the following lemma which establishes an application of Parseval’s identity as
well as Hölder’s inequality that will be used throughout the rest of this section. It is
this technique that allows us to extend previously established Erdős–Fuchs-type results
to the case of k > 2.

Lemma 7.4. If g(z) = ∑∞
n=0 bnzn has non-negative integer coefficients and is analytic

in D, then ∫
Sr
|g(z)|2dµ =

∞∑
n=0
|bn|2r2n (7.17)

and if k ≥ 2, then ∫
Sr
|g(z)|kdµ ≥ g(r2)k/2. (7.18)

Proof. For k = 2, Parseval’s identity gives us
∫
Sr
|g(z)|2dµ =

∫
Sr
g(z)g(z)dµ =

∑
n,m≥0

bnbm

∫
Sr
znzmdµ

=
∞∑
n=0
|bn|2 r2n ≥

∞∑
n=0

bn
(
r2
)n

= g
(
r2
)
.

When k > 2, then Hölder’s inequality and the observation for k = 2 establish that

(∫
Sr
|g(z)|kdµ

)2/k (∫
Sr
dµ
)(k−2)/k

≥
∫
Sr
|g(z)|2dµ ≥ g

(
r2
)
.

Noting that
∫
Sr dµ = 1 and raising the previous inequality to the k/2-th power gives

us the result.

We are now ready to prove the main auxiliary statement of this part in three steps.
We start with the following lemma.

Lemma 7.5. For any M,k,m ∈ N satisfying m ≤ k and any A ⊆ N0 we have

∫
Sr
|fA(z)k hM(z)2|dµ ≥

( ∫
Sr
|fA(z)m hM(z)2|dµ

)( ∫
Sr
|fA(z)2|dµ

)(k−m)/2
.

Proof. We start by considering three different cases concerning k and m.
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Case 1. If k = m+ 2 and k is even (and therefore m is even), then let

aM,m
n = [zn]fA(z)m/2 hM(z),

that is fA(z)m/2 hM(z) = ∑∞
n=0 a

M,m
n zn. Note that

fA(z)k/2 hM(z) =
(
fA(z)m/2 hM(z)

)
fA(z)

and therefore

aM,k
n = [zn]

(
fA(z)m/2 hM(z)

)
fA(z)

=
∑
i+j=n

[zi]fA(z)m/2 hM(z) [zj]fA(z) =
∑
i+j=n

aM,m
i 1A(j)

for any n ≥ 0. It follows that

∣∣∣aM,k
n

∣∣∣2 ≥ ∑
i+j=n

∣∣∣aM,m
i

∣∣∣2 |1A(j)|2.

Using this inequality as well as Equation (7.17) in Lemma 7.4, we conclude that

∫
Sr
|fA(z)k hM(z)2|dµ =

∞∑
n=0
|aM,k
n |2 r2n ≥

∞∑
n=0

∑
i+j=n

|aM,m
i |2 |1A(j)|2 r2i+2j

=
( ∞∑
i=0
|aM,m
i |2 r2i

)( ∞∑
j=0
|1A(j)|2 r2j

)

=
∫
Sr
|fA(z)m hM(z)2|dµ

∫
Sr
|fA(z)2|dµ.

Case 2. If k = m + 1 and k is even, then applying Cauchy–Schwarz and Case 1, we
get that

∫
Sr
|fA(z)m hM(z)2|dµ

≤
( ∫

Sr
|fA(z)m+1hM(z)2|dµ

)1/2( ∫
Sr
|fA(z)m−1hM(z)2|dµ

)1/2

≤
∫
Sr
|fA(z)k hM(z)2|dµ

( ∫
Sr
|fA(z)2|dµ

)−1/2
.

Passing the last integral to the left-hand side establishes the statement in this case.

Case 3. If k = m + 1 and k is odd, then applying Cauchy–Schwarz and Case 2, we
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get that
∫
Sr
|fA(z)m hM(z)2|dµ

≤
( ∫

Sr
|fA(z)m+1hM(z)2|dµ

)1/2( ∫
Sr
|fA(z)m−1hM(z)2|dµ

)1/2

≤
( ∫

Sr
|fA(z)khM(z)2|dµ

)1/2( ∫
Sr
|fA(z)m hM(z)2|dµ

)1/2( ∫
Sr
|fA(z)|2dµ

)−1/4
.

Passing the last two integrals to the left-hand side and squaring establishes the state-
ment in this case.

Having established these three cases, the statement of the lemma now follows
through an induction on k. Clearly the statement holds for m = k = 1. Assume
now that it holds for k − 1 and let us show that it then must also hold for k. The
statement trivially holds for m = k and Cases 2 and 3 establish that it also holds for
m = k − 1. For any 1 ≤ m < k − 1 we can simply use the inductive assumption, since

∫
Sr
|fA(z)k hM(z)2|dµ

≥
( ∫

Sr
|fA(z)k−1 hM(z)2|dµ

)( ∫
Sr
|fA(z)2|dµ

)1/2

≥
( ∫

Sr
|fA(z)m hM(z)2|dµ

)( ∫
Sr
|fA(z)2|dµ

)(k−1−m)/2( ∫
Sr
|fA(z)2|dµ

)1/2

=
( ∫

Sr
|fA(z)m hM(z)2|dµ

)( ∫
Sr
|fA(z)2|dµ

)(k−m)/2
.

This proves the desired result.

The following is a slight generalization of the previous lemma, allowing us to con-
sider exponents in the arguments.

Lemma 7.6. For any M,k,m, i ∈ N satisfying i |M and m ≤ k, and for any A ⊆ N0,
we have

∫
Sr
|fA(zi)m hM(z)2|dµ ≤

( ∫
Sr
|fA(z)k hM(z)2|dµ

)
i2
( ∫

Sr
|fA(z)|2dµ

)−(k−m)/2
.

Proof. Let
aM,m
n = [zn]fA(z)m/2hM(z),

that is fA(z)m/2hM(z) = ∑∞
n=0 a

M,m
n zn. SinceM is a multiple of i, we can set N = M/i
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and note that

hM(z) = hN(z)hi(zN) = hN(z)(1 + zN + . . .+ z(i−1)N),

so that fA(z)m/2 hM(z) = fA(z)m/2hN(z) (1+zN+. . .+z(i−1)N). In terms of coefficients,
this implies that

aM,m
n = aN,mn + aN,mn−N + aN,mn−2N + . . .+ aN,mn−(i−1)N ≥ aN,mn ,

where we let aN,mn = 0 for n < 0 and use the fact that all the coefficients are non-
negative as both the coefficients of f and hN are non-negative.

Using that hM(z) = hN(z)hi(zN), |hi(z)| ≤ i, Equation (7.17) in Lemma 7.4 and
Section 7.1.2, we get

∫
Sr
|fA(zi)m hM(z)2|dµ =

∫
Sr
|fA(zi)mhN(zi)2| |hi(z)2|dµ ≤ i2

∞∑
n=0
|aN,mn |2 r2in

≤ i2
∞∑
n=0
|aM,m
n |2 r2n = i2

∫
Sr
|fA(z)m hM(z)2|dµ.

We conclude the statement by applying Lemma 7.5 to this inequality.

We can now establish the main statement of this part, which is written in ready-
to-use form for the proof of both Theorem 7.1 and Theorem 7.2.

Proposition 7.7. For any M ∈ N0, k,m, i ∈ N satisfying i | M and m < k, and for
any infinite set A ⊆ N0, we have

∫
Sr
|fA(zi)m hM(z)2|dµ = or

(∫
Sr
|fA(z)k hM(z)2|dµ

)
.

Proof. We will distinguish based on whether M ≥ 1 or M = 0. The former of these is
a consequence of Lemma 7.6 whereas the latter is established using only Lemma 7.4.

Case 1. If M ≥ 1, then by Equation (7.17) in Lemma 7.4 we have
∫
Sr |fA(z)|2dµ =∑

a∈A r
2a which tends to infinity as r tends to 1 since A is infinite. Therefore, the result

directly follows from Lemma 7.6.

Case 2. If M = 0, then let us first assume that m is even. Let fA(z)m/2 = ∑∞
n=0 bnz

n

and note that bn ≥ 0 for all n ∈ N0. Using Equation (7.17) in Lemma 7.4 and Hölder’s
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inequality, we obtain

∫
Sr
|fA(zi)m|dµ =

∞∑
n=0

b2
nr

2ni ≤
∞∑
n=0

b2
nr

2n

=
∫
Sr
|fA(z)m|dµ ≤

(∫
Sr
|fA(z)k|dµ

)m/k
.

Again by Hölder’s inequality we know that
∫
Sr |fA(z)|kdµ ≥

( ∫
Sr |fA(z)|2dµ

)k/2
=

ωr(1), so that the statement follows for even m since k < m.
Now assume that m is odd. Let fA(z)(m+1)/2(z) = ∑∞

n=0 b
′
nz

n and again note that
b′n ≥ 0 for all N0. Applying Equation (7.17) in Lemma 7.4, we get

∫
Sr
|fA(zi)m+1|dµ =

∞∑
n=0

b′2n r
2ni ≤

∞∑
n=0

b′2n r
2n

=
∫
Sr
|fA(z)m+1|dµ = Or

(∫
Sr
|fA(z)k|dµ

)
. (7.19)

The last equality is trivial if m + 1 = k and follows from the even case if m + 1 < k.
Using Cauchy-Schwarz, the even case for m− 1 as well as Equation (7.19), we obtain

∫
Sr
|fA(zi)m|dµ ≤

(∫
Sr
|fA(zi)m−1|dµ

)1/2 (∫
Sr
|fA(zi)m+1|dµ

)1/2

= or

(∫
Sr
|fA(z)k|dµ

)1/2
Or

(∫
Sr
|fA(z)k|dµ

)1/2
,

proving the statement for m odd.

7.2 Proof of Theorem 7.1 – An Erdős–Fuchs-type result

Let us establish three general asymptotic bounds that will be needed in the proof of
Theorem 7.1.

Lemma 7.8. Let i ∈ N and suppose that g(z) = ∑∞
n=0 bnz

n has non-negative coeffi-
cients and is analytic in D. If ∑∞n=0 bn =∞, then

g(ri) = Or

(
g(r)i

)
.

Proof. Since g(z) has non-negative coefficients, g(r) is monotone increasing in r and
tends to infinity as r tends to 1. Let (rn)n≥1 be an arbitrary increasing sequence tending
to 1 in (1/2, 1). Since rin < rn, we have g(rin) < g(rn) = o

(
g(rn)i

)
for all n due to the
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monotonicity of g.

Lemma 7.9. We have
∫
Sr

dµ

|1− z| = Or

(
− log(1− r)

)
.

Proof. Let z = reiθ. Using the fact that | sin θ| ≥ |θ|/2 for any θ ∈ [−π/2, π/2], we can
bound the integral as

∫
Sr

dµ

|1− z| = 1
2πr

∫ 3π/2

−π/2

dθ√
(1− r cos θ)2 + (r sin θ)2

≤ 1
2πr

∫ π/2

−π/2

dθ√
(1− r)2 + (r sin θ)2

+ 1
2πr

∫ 3π/2

π/2

dθ√
1 + r2

≤ 1
2πr

∫ π/2

−π/2

dθ√
(1− r)2 + r2θ2/4

+ 1 ≤
√

2
πr

∫ π/2

0

dθ(
1− r + rθ/2

) + 1

≤ 2
√

2
πr2 log

(
π/4

1− r + 1
)

+ 1 = Or

(
− log(1− r)

)
,

where we have used the inequality of the root-mean square and the arithmetic mean.

Lemma 7.10. For any sequence of real numbers en satisfying

en = on
(
n1/4 log−1/2 n

)
,

we have ∞∑
n=0

e2
n r

2n = or

(
−1

(1− r)3/2 log (1− r)

)
.

Proof. We start by showing that that there exists some C0 > 0 such that

∞∑
n=2

(
rn log−1/2(n)n1/4

)2
≤ C0

−1
(1− r)3/2 log (1− r) . (7.20)

Let
N0 = N0(r) =

⌊
(1− r)−1/2

⌋
= ωr(1).

Since r < 1 and log−1/2(n) is decreasing, we can see that

N0∑
n=2

(
rn log−1/2(n)n1/4

)2
≤ log−1(2)

N0∑
n=2

n1/2 ≤ 2N0
3/2 ≤ 2 (1− r)−3/4
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= or

(
−1

(1− r)3/2 log (1− r)

)
. (7.21)

In order to deal with the remainder of the sum, we start by noting that for any δ > 1
we have

(1− x)−δ =
∞∑
n=0

cnx
n =

∞∑
n=0

(−1)n−δ (−δ − 1) · · · (−δ − n+ 1)
n! xn

=
∞∑
n=0

δ (δ + 1) · · · (δ + n− 1)
n! xn.

The asymptotic behavior of the logarithm of the coefficients of the Taylor expansion
of (1− x)−δ is therefore given by

log cn =
n∑
i=1

log
(
δ + i− 1

i

)
≥
∫ n+1

1
log

(
δ + x− 1

x

)
dx

where we have used that that 1 + (δ − 1)/i is decreasing in i since δ > 1. Using that

∫
log

(
δ − 1
x

+ 1
)
dx = (δ − 1) log(δ − 1 + x) + x log

(
δ − 1
x

+ 1
)

and x log
(
1 + (δ − 1)/x

)
> 0 for any x > 0, it follows that

log cn ≥ (δ − 1) log n− (δ − 1) log δ − log δ.

We therefore have for some appropriate constant C1 = C1(δ) such that

nδ−1 ≤ C1cn

for any n ≥ 1. Using this estimate with δ = 3/2, we get

∞∑
n=N0+1

(
rn log−1/2(n)n1/4

)2
≤ log−1(N0)C1

∞∑
n=1

cnr
2n

= C1
1

(1− r2)3/2 log(N0)

= Or

(
−1

(1− r)3/2 log(1− r)

)
. (7.22)

Collecting the estimate for 2 ≤ n ≤ N0 in Equation (7.21) and the estimate for
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n ≥ N0 + 1 in Equation (7.22) establishes Equation (7.20). Now let ε > 0 and choose
N1 ≥ 2 large enough such that

en ≤
ε1/2

C
1/2
0

n1/4 log−1/2(n)

for all n ≥ N1. From Equation (7.20) it follows that

∞∑
n=N

e2
n r

2n ≤ −ε
(1− r)3/2 log(1− r) . (7.23)

On the other hand, there exists r0 = r0(N1) close enough to 1 so that for any r ≥ r0

N−1∑
n=0

e2
nr

2n ≤
N−1∑
n=0

e2
n ≤

−ε
(1− r)3/2 log(1− r) (7.24)

since the right-hand side tends to ∞ as r tends to 1 while the left-hand side remains
constant. Combining Equation (7.23) and Equation (7.24) and letting ε tend to 0 as r
tends to 1, the statement of the lemma follows.

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Throughout this proof k ≥ 2, c > 0, ? ∈ {≤, <} and A ⊆ N0

are fixed. Furthermore, z will always lie in D and r in the open interval (1/2, 1). We
write

en =
n∑
j=0

(
r?k(A, j)− c

)
(7.25)

for n ≥ 0 and assume that, counter to the statement of Theorem 7.1, we have en =
On

(
n1/4 log−1/2 n

)
. Multiplying Equation (7.25) by zn and summing over n ≥ 0 gives

us ∞∑
n=0

enz
n + c

(1− z)2 =
∞∑
n=0

n∑
j=0

r?k(A, j) zn = 1
1− z

∞∑
n=0

r?k(A, n) zn

where we have used the fact that∑∞n=0(n+1) zn = 1/(1−z)2. Applying Equation (7.13),
it follows that

(1− z)
∞∑
n=0

en z
n + c

1− z =
∑

i∈S(k)
ε?(i) fA(zi1) · · · fA(zim). (7.26)

Multiplying by the smoothing function hM(z)2, for some M = M(r) to be determined
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later, taking absolute values and integrating along Sr, we obtain

∫
Sr

∣∣∣(1− z)hM(z)2
∞∑
n=0

enz
n
∣∣∣dµ+

∫
Sr

∣∣∣∣c hM(z)2

1− z

∣∣∣∣dµ
≥
∫
Sr

∣∣∣hM(z)2 ∑
S(k)

ε?(i) fA(zi1) · · · fA(zik)
∣∣∣dµ. (7.27)

Bounding the left-hand side. We note that (1 − z)hM(z)2 = (1 − zM)hM(z) as
well as |hM(z)| ≤ M and |1 − zM | ≤ 2. Applying Cauchy–Schwarz, we therefore get
that the left-hand side of Equation (7.27) is at most

2
(∫

Sr
|hM(z)|2dµ

)1/2
(∫

Sr

∣∣∣∣ ∞∑
n=0

en z
n

∣∣∣∣2dµ
)1/2

+
∫
Sr

cM2

|1− z|dµ.

Applying Equation (7.17) in Lemma 7.4 and then Lemma 7.10 to the first term as
well as Lemma 7.9 to the second term, we can further bound the left-hand side of
Equation (7.27) by

2
(
M−1∑
n=0

r2n
)1/2 ( ∞∑

n=0
|en|2 r2n

)1/2

+M2Or

(
− log(1− r)

)
≤M1/2 or

(
−1

(1− r)3/4 log1/2(1− r)

)
+M2Or

(
− log(1− r)

)
. (7.28)

Bounding the right-hand side. Let us now observe that the right-hand side of Equa-
tion (7.27) is at least

1
k!

∫
Sr

∣∣∣hM(z)2fkA(z)
∣∣∣dµ− ∑

i∈S0(k)

∫
Sr

∣∣∣hM(z)2ε?(i) fA(zi1) · · · fA(zim)
∣∣∣dµ.

If M is a multiple of lcm{1, 2, . . . , k}, then we can use Cauchy–Schwarz and Proposi-
tion 7.7 to upper bound the individual summands of the second term (where m < k)
by

|ε?(i)|
(∫

Sr
hM(z)2fA(zi1)mdµ

)1/m
· · ·

(∫
Sr
hM(z)2fA(zim)mdµ

)1/m

= or

(∫
Sr

∣∣∣hM(z)2fA(z)k
∣∣∣dµ)

as r tends to 1. It follows that the term with m = k is the dominant one and the terms
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coming from S0(k) are negligible. Using Equation (7.18) in Lemma 7.4, we therefore
know that the right-hand side of Equation (7.27) is at least

( 1
k! + or(1)

) ∫
Sr

∣∣∣hM(z)2fA(z)k
∣∣∣dµ ≥ ( 1

k! + or(1)
)
fA
(
r2
)k/2

hM
(
r2
)
.

In order to estimate fA(r2)k/2, we first note that by Lemma 7.8 we have

∑
i∈S(k)

ε?(i)fA(r2i1) · · · fA(r2im) = fA(r2)k +
∑

i∈S0(k)
Or

(
fA(r2)m

)
= (1 + o(1)) fA(r2)k.

We secondly note, using Lemma 7.10, that

∞∑
n=0

enr
2n ≤

∞∑
n=0

(1 + e2
n)r2n ≤ 1

1− r2 + or

(
−1

(1− r)3/2 log(1− r)

)
.

Substituting z = r2 in Equation (7.26), noting that (1− r2) = (2 + or(1)) (1− r) and
using the two previous equations, it follows that

fA(r2)k = (k! + or(1))
(

c

2(1− r) + or

(
−1

(1− r)1/2 log(1− r)

))

= (k! + or(1)) c

2(1− r) .

Let us now choose
M = k!

⌈
ε
− log−1(1− r)

(1− r)1/2

⌉
(7.29)

for some fixed ε > 0. This choice satisfies both M(r) = ωr(1) and rM(r) = Ωr(1). Note
also that lcm{1, 2, . . . k} divides M as previously required. It follows that hM(r2) ≥
M/C2 for some C2 > 1 and therefore the right-hand side of Equation (7.27) is at least

(
M
√
c√

2k!C2
+ or(1)

)
(1− r)−1/2 = M Ωr

(
(1− r)−1/2

)
. (7.30)

Obtaining the contradiction. Combining our bounds for the left- and right-hand
sides of Equation (7.27), that is Equation (7.28) and Equation (7.30), we obtain

M Ωr

(
(1− r)−1/2

)
≤M1/2 or

(
− log−1/2(1− r)

(1− r)3/4

)
+M2Or

(
− log(1− r)

)
.
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Inserting Equation (7.29), we therefore have

εΩr

(
− log−1(1− r)

1− r

)
≤ ε1/2or

(
− log−1(1− r)

1− r

)
+ ε2Or

(
− log−1(1− r)

1− r

)
,

with the constants in Ωr, or and Or independent of ε > 0. Therefore, we have that
C3ε ≤ or(1) + C4ε

2, for some C3, C4 > 0. This leads a contradiction taking any
ε < C3/C4, so the assumption en = on

(
n1/4 log−1/2(n)

)
was not possible. �

7.3 Proof of Theorem 7.2 – The mean squared error

We will again need some general asymptotic bounds in order to prove Theorem 7.2.
The first is Lemma 7.9, which we repeat here for the readers convenience.

Lemma 7.9. We have
∫
Sr

dµ

|1− z| = Or

(
− log(1− r)

)
.

Lemma 7.11. For any D > 0 and k ≥ 1, we have

∞∑
s=1

rDs
k = Ωr

(
(1− r)−1/k

)
.

Proof. Since 0 < r < 1, we note that the function f(x) = rDx
k is strictly decreasing in

[0,∞). It follows, that we may lower bound the series ∑∞s=1 r
Dsk by its corresponding

integral, that is

∞∑
s=1

rDs
k ≥

∫ ∞
1

rDx
k

dx =
∫ ∞

1
e−D| log r|xkdx =

∫∞
1 e−y

k
dy

D1/k| log r|1/k = Ωr

(
(1− r)−1/k

)
,

where we have used that
∫∞

1 e−y
k
dy <∞.

We are now ready to prove Theorem 7.2.

Proof of Theorem 7.2. Throughout this proof k ≥ 2, c ≥ 0, ? ∈ {≤, <} and A ⊆ N0

are fixed. Furthermore, z will always lie in D and r in the open interval (1/2, 1). We
start by noting that if c is not an integer, then the statement immediately follows since

(
r?k(A, n)− c

)2
≥ max{

(
c−

⌊
c
⌋)2

,
(⌈
c
⌉
− c

)2
} > 0.
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We can therefore assume that c ∈ N0. We now prove that we can assume that there
exist D > 0 such that as < Dsk. If c = 0 this is given by the statement of the theorem,
so let us consider c ≥ 1. Using the fact that c and r?k(A, n) are integers, we have

nE?
k,c(A, n) =

n∑
j=0

(
r?k(A, j)− c

)2

≥
n∑
j=0
|r?k(A, j)− c| ≥

∣∣∣∣c(n+ 1)−
n∑
j=0

r?k(A, j)
∣∣∣∣. (7.31)

Since ai1 + ai2 + . . . + aik ≤ as trivially implies that every ij is at most s for any
s, i1, . . . , ik ∈ N, it follows that

∑as
j=0 r

?
k(A, j) ≤ sk. Taking n = as in Equation (7.31),

we therefore obtain

E?
k,c(A, as) ≥

1
as

(
cas + c− sk

)
= c+ c

as
− sk

as
.

Either the desired statement holds, or lim sups→∞E?
k,c(A, as) = 0 implying that

lim sup
s→∞

(
c− sk

as

)
≤ 0.

It follows that we can assume as ≤ Dsk for some appropriate D > 0. By Equa-
tion (7.17) in Lemma 7.4 as well as Equation (7.13), we now have

( ∞∑
n=0

(
r?k(A, n)− c

)2
r2n
)1/2

=
(∫

Sr

∣∣∣∣ ∞∑
n=0

r?k(A, n) zn − c

1− z

∣∣∣∣2dµ
)1/2

≥
∫
Sr

∣∣∣ ∑
i∈S(k)

ε∗(i)fA(zi1) · · · fA(zim)− c

1− z
∣∣∣dµ.

Note that the terms with i ∈ S0(k) are negligible. Using Cauchy-Schwarz and Propo-
sition 7.7, we have that

∫
Sr

∣∣∣ ∑
i∈S0(k)

ε∗(i)fA(zi1) · · · fA(zim)
∣∣∣dµ

≤
∑

i∈S0(k)

(∫
Sr

∣∣∣fA(zi1)
∣∣∣m)1/m

· · ·
(∫

Sr

∣∣∣fA(zim)
∣∣∣m)1/m

= or

(∫
Sr

∣∣∣fA(z)k
∣∣∣dµ) .
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Now, Equation (7.18) in Lemma 7.4, gives us
∫
Sr

∣∣∣ ∑
i∈S(k)

ε∗(i)fA(zi1) · · · fA(zim)
∣∣∣dµ ≥ ( 1

k! + or(1)
) ∫

Sr

∣∣∣fA(z)k
∣∣∣dµ

≥
( 1
k! + or(1)

)
fA(r2)k/2,

so that by Lemma 7.9
∫
Sr

∣∣∣ ∑
i∈S(k)

ε∗(i)fA(zi1) · · · fA(zim)− c

1− z
∣∣∣dµ

≥
( 1
k! + or(1)

)
fA
(
r2
)k/2
−Or

(
− log(1− r)

)
.

Now, taking into account that as ≤ Dsk and using Lemma 7.11, we have

fA(r2)k/2 =
( ∞∑
s=1

r2as
)k/2

≥
( ∞∑
s=1

r2Dsk
)k/2

= Ωr

(
(1− r)−1/2

)
.

Collecting all the bounds, it follows that

∞∑
n=0

(
r?k(A, n)− c

)2
r2n = Ωr

(
(1− r)−1/2

)
.

Therefore,

∞∑
n=0

nE?
k,c(A, n)r2n = 1

1− r2

∞∑
n=0

(
r?k(A, n)− c

)2
r2n

= 1
1− r2 Ωr

( 1
1− r2

)
≥ C

∞∑
n=0

nr2n

for some appropriate constant C > 0. It follows that infinitely many of the coefficients
nE?

k,c(A, n) must be greater than Cn/2 and hence lim supn→∞E?
k,c(A, n) ≥ C/2 > 0

as desired. �

7.4 Preliminaries for Theorem 7.3

In this part we will establish some preliminaries that will be required for the proof of
Theorem 7.3. The first will again be the issue of encoding the problem using the gen-
erating functions of the sets. Once we have established an equivalent to Equation (7.5)
for weighted representation functions, we will then introduce cyclotomic polynomials,
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which will play an essential role in the proof of Theorem 7.3.

7.4.1 Encoding the weighted representation functions

For each 1 ≤ i ≤ d, we define the combinatorial class (A, | · |i) where the size is
simply |a|i = kia. Note that ordinary generating function of this class is fA(zki). The
combinatorial class we are then interested in enumerating is that of (Ad, | · |) where the
size of an element in Ad is |(a1, . . . , ad)| = |a1|1 + . . . + |ad|d = k1a1 + . . . + kdad. The
ordinary generating function of this class is therefore ∑∞n=0 r(A, n; k1, . . . , kd)zn. Since
(Ad, | · |) is the cartesian product of (A, | · |1), ..., (A, | · |d), it follows that

∞∑
n=0

r(A, n; k1, . . . , kd) zn = fA(zk1) · · · fA(zkd). (7.32)

This is the equivalent to Equation (7.5) for weighted representation functions. If
r(A, n; k1, . . . , kd) becomes constant for n large enough, that is r(A, n; k1, . . . , kd) = c

for any n ≥ n0 for some n0 ∈ N0 and c > 0, then

∞∑
n=0

r(A, n; k1, . . . , kd) zn =
n0−1∑
n=0

r(A, n; k1, . . . , kd) zn + czn0

1− z . (7.33)

Writing P (z) = (1− z)∑n0−1
n=0 r(A, n; k1, . . . , kd) zn + czn0 , this would imply that

fA(zk1) · · · fA(zkd) = P (z)
1− z . (7.34)

To simplify notation, we will generally consider the d-th power of this equation, that
is for FA(z) = fdA(z) we have

FA(zk1) · · ·FA(zkd) = P d(z)
(1− z)d . (7.35)

This is the starting point of the proof of Theorem 7.3. We note that, since fA(z) is a
formal power series with coefficients in {0, 1} that is analytic in the open complex disc

D = {z ∈ C : |z| < 1}, (7.36)

FA(z) is likewise a formal power series with positive coefficients that is analytic in D.
We also note that P is a polynomial with integer coefficients satisfying P (1) = c 6= 0.
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7.4.2 Cyclotomic polynomials

The proof of Theorem 7.3 relies on studying the behavior of either side of Equa-
tion (7.35) when factoring out certain functions, called cyclotomic polynomials. The
cyclotomic polynomial of order n is defined as

Φn(z) =
∏
ξ∈φn

(z − ξ) ∈ Z[z] (7.37)

where

φn =
{
e

2πi`
n : 0 ≤ ` < n satisfying (`, n) = 1

}
=
{
ξ ∈ C : ξk = 1 iff k ≡ 0 mod n

}
(7.38)

denotes the set of primitive roots of unity of order n ∈ N. It is well known that Φn(z) ∈
Z[z], that is it has integer coefficients. Cyclotomic polynomials have the property of
being irreducible over Z[z] and therefore it follows that for any polynomial P (z) ∈ Z[z]
and n ∈ N there exists an integer sn ∈ N0 such that

Pn(z) = P (z) Φ−snn (z) (7.39)

is a polynomial in Z[z] satisfying Pn(ξ) 6= 0 for all ξ ∈ φn. We will say that we have
factored Φn(z) out of P (z) with multiplicity sn. Note that the multiplicity is trivially
unique. The following lemma illustrates this concept and will be needed in the next
section.

Lemma 7.12. Given k, n ∈ N such that k | n, we have φn/k = {ξk : ξ ∈ φn}.
Furthermore, we can factor Φn(z) out of Φn/k(zk) with multiplicity 1.

Proof. To see equality between the two sets, observe that

{
ξk : ξ ∈ φn

}
=
{
ξk : ξ` = 1 iff ` ≡ 0 mod n

}
=
{
ξk : (ξk)`/k = 1 iff ` ≡ 0 mod n

}
=
{
ξk : (ξk)` = 1 iff ` ≡ 0 mod n/k

}
= φn/k.

As Φn/k(zk) is a polynomial in Z[z] and Φn/k(ξk) = 0 for any ξ ∈ φn via the previous
observation, it follows that we can factor out Φn(z). The multiplicity is equal to 1 since
all roots of Φn/k(zk) are simple.
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Unfortunately, we are not guaranteed to be able to factor cyclotomic polynomials
out of arbitrary non-polynomial functions. In particular, our function FA(z) is not
even analytic at roots of unity and it can also be shown that even the radial limit of
FA(z), where z approaches some root of unit ξ radially from within D, may not exist
in general. However, we can extend this notion in a natural way that will be applicable
to our function FA(z).

Definition 7.13. We say that a function g : [0, 1)→ [0,∞) is restricted if

lim sup
z→1−

g(z) 6=∞ and lim inf
z→1−

g(z) 6= 0. (7.40)

Given n ∈ N and some function F (z) analytic in D, we say that we can factor Φn(z)
out of F (z) with multiplicity rn if |F (z ξ) Φ−rnn (z ξ)| is restricted for any ξ ∈ φn.

Here lim supz→1− and lim infz→1− refer to the left-hand limits. In fact, throughout
the rest of this chapter we will always assume that z ∈ [0, 1). Note that, by continuity,
this notion is a true extension of the previous one for polynomials. It is also again easy
to verify that the multiplicity, if it exists, is uniquely determined.

Lemma 7.14. If we can factor Φn(z) out of F (z), then the multiplicity is uniquely
determined.

Proof. Assume that we can factor Φn(z) out of F (z) with multiplicity rn. For z ∈ [0, 1),
ξ ∈ φn and α 6= 0 we have

|F (z ξ) Φ−rn+α
n (z ξ)| = |F (z ξ) Φ−rnn (z ξ)| |Φα

n(z ξ)|. (7.41)

As Φn(ξ) = 0, lim supz→1− |F (z ξ) Φ−rnn (z ξ)| 6= ∞ and lim infz→1− |F (z ξ) Φ−rnn (z ξ)|
6= 0, the lim sup of the right-hand side of Equation (7.41) must tend to ∞ if α < 0
and the lim inf to 0 if α > 0. It follows we cannot also factor Φn(z) out of F (z) with
multiplicity rn + α if α 6= 0, so the multiplicity is uniquely determined.

Note that, when dealing with lim sup or lim inf, we are not guaranteed to have a
product rule. However, the following lemma will establish a version of such a rule for
the specific case and particular type of function that will be needed for the proof of
Theorem 7.3. Here it is crucial that the functions we are studying are formal power
series with positive coefficients.
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Lemma 7.15. Let k1, . . . , kd be positive integers and F a formal power series with
positive coefficients that is analytic in D. Writing F0(z) = F (z)(1 − z), if |F0(z)| is
not restricted, then neither is |F0(zk1)| · · · |F0(zkd)|.

Proof. We note that for α > 1 and z ∈ [0, 1) we have

∣∣∣F0(z)− F0(zα)
∣∣∣ =

∣∣∣∣∣∑
n

an z
n (1− z) −

∑
n

an z
n (1− zα)

∣∣∣∣∣
≤
∑
n

∣∣∣an zn (1− z)
∣∣∣ ∣∣∣∣1− z(α−1)n 1− zα

1− z

∣∣∣∣ ≤ α |F0(z)| (7.42)

where we have used that 0 ≤ z(α−1)n < 1 and 0 ≤ (1− zα)/(1− z) ≤ α since 0 ≤ z < 1
and α > 1.

If there exists a sequence (zk)k∈N tending to 1 such that limk→∞ |F0(zk)| = 0,
then by Equation (7.42) it would follow that limk→∞ |F0(zkik )| = 0 for any 1 ≤ i ≤
d and hence |F0(zk1)| · · · |F0(zkd)| would not be restricted. Assume therefore that
there exists some sequence (zk)k∈N tending to 1 such that limk→∞ |F0(zk)| = ∞, but
that lim infz→1− |F0(z)| 6= 0 and |F0(zk1)| · · · |F0(zkd)| is still restricted. Consider-
ing the sequence given by yk = z

1/k1
k for k ∈ N, it follows that limk→∞ |F0(yk1

k )| =
limk→∞ |F0(zk)| =∞. Since we are assuming that |F0(zk1)| · · · |F0(zkd)| is restricted, it
follows that we must have that limk→∞ |F0(ykik )| = 0 for some 2 ≤ i ≤ d, contradicting
the fact that lim infz→1− |F0(z)| 6= 0.

7.5 Proof of Theorem 7.3 – A question of Sárközy and Sós

Let us introduce some short-hand notation that will be needed in this part. If q1, . . . , qm

are fixed co-prime integers as given by Theorem 7.3 and j = (j1, . . . , jm) ∈ Nm0 , then
we write

Φj(z) = Φ
q
j1
1 ···q

jm
m

(z), φj = φ
q
j1
1 ···q

jm
m
, sj = s

q
j1
1 ···q

jm
m

and rj = r
q
j1
1 ···q

jm
m
.

The main strategy of the proof will be to show that for any j ∈ Nm0 we can factor Φj(z)
out of our hypothetical function FA(z) = fdA(z) satisfying Equation (7.35) and that
the multiplicities rj have to fulfill certain relations between themselves. The goal will
be to find a contradiction in these relations, negating the possibility of such a function
and therefore such a set A existing in the first place.
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7.5.1 The recurrence relations

We can now give the statement and proof establishing that we can factor any Φj(z)
out of FA(z) and that the multiplicities satisfy certain relations. We will in fact state
this for any k1, . . . , kd ≥ 2 and later derive a contradiction from these relations in the
specific case stated in Theorem 7.3.

For any a, b ∈ N0, j = (j1, . . . , jm) ∈ Nm0 and b = (b1, . . . , bm) ∈ Nm0 , we will use the
notation

a	 b = max{a− b, 0} and j	 b = (j1 	 b1, . . . , jm 	 bm).

Let us state the central proposition of this section.

Proposition 7.16. Let q1, . . . , qm ≥ 2 be pairwise co-prime integers and

ki = q
b(i,1)
1 · · · qb(i,m)

m

for 1 ≤ i ≤ d where b(i, j) ∈ N0. Furthermore, let P (z) ∈ Z[z] be a polynomial
satisfying P (1) 6= 0 and F (z) a formal power series with positive coefficients that is
analytic in D such that

F (zk1) · · ·F (zkd) = P d(z)
(1− z)d . (7.43)

Then for all j ∈ Nm0 there exist rj ∈ N0 so that we can factor Φj out of F with
multiplicity rj. Moreover, writing bi = (b(i, 1), . . . , b(i,m)) for 1 ≤ i ≤ m as well as
sj ∈ N0 for the integer satisfying P (ξ) Φ−sj

j (ξ) 6= 0 for any ξ ∈ φj, these multiplicities
satisfy the relations

r0 = −1 and rj	b1 + · · ·+ rj	bd = dsj for all j ∈ Nm0 \ {0} (7.44)

and we have ri ≡ −1 mod d for all i ∈ Nm0 .

Proof. We start by assuming that the set of multiplicities {rj : j ∈ Nm0 } exists and
show that the relations given by Equation (7.44) must be satisfied. After this, we will
show that there is a way to recursively determine the values {rj : j ∈ Nm0 }, proving
their existence.

Let us start with r0 = −1. For F0(z) = F (z)(1−z) we wish to show that |F0(z)|, as
a function with domain [0, 1), is restricted. Inserting the equality F (z) = (1−z)−1F0(z)
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into Equation (7.43), we get that F0(z) satisfies

d∏
`=1

F0(zk`) (1− zk`)−1 = P d(z)
(1− z)d .

Taking absolut values and observing that (1 − zk`)/(1 − z) = (1 + z + · · · + zk`−1), it
follows that

|F0(zk1)| · |F0(zk2)| · · · |F0(zkd)| = |P d(z)| ·
d∏
`=1
|(1 + z + · · ·+ zk`−1)| .

Since P d(1) 6= 0 as well as (1 + 1 + · · ·+ 1k`−1) = k` 6= 0 for 1 ≤ ` ≤ d, it follows that

lim sup
z→1−

|F0(zk1)| · · · |F0(zkd)| 6=∞

and lim infz→1− |F0(zk1)| · · · |F0(zkd)| 6= 0 and hence by Lemma 7.15 it follows that
|F0(z)| must be restricted.

Next, let us show that if for a given j ∈ Nm0 \ {0} the values rj	b1 , . . . , rj	bd exist,
then they must satisfy the relation given by Equation (7.44). For 1 ≤ i ≤ d let

Fj	bi = F (z) Φ−rj	bi
j	bi

and rewrite Equation (7.43) as

Φrj	b1
j	b1

(zk1)Fj	b1(zk1) · · · Φrj	bd
j	bd (zkd)Fj	bd(zkd) =

Φdsj
j (z)P d

j (z)
(1− z)d . (7.45)

Writing Rj,i(z) = Φj	bi(zki) Φ−1
j (z) and taking absolute values, it follows that

∣∣∣Φrj	b1+···+rj	bd−dsj
j (z)

∣∣∣
=
|P d

j (z)|
|(1− z)d|

(
|Rrj	b1

j,1 (z)| |Fj	b1(zk1)| · · · |Rrj	bd
j,d (z)| |Fj	bd(zkd)|

)
. (7.46)

We observe that, by assumption as well as Lemma 7.12, if we substitute z ξ into Equa-
tion (7.46) where ξ ∈ φj and z ∈ [0, 1), then the involved factors on the right-hand
side are restricted by assumption. As Φj(ξ) = 0, it follows that the exponent on the
left-hand side must be 0, that is the desired relation must hold.

It remains to be shown that the values rj actually exist for any j ∈ N0. We will do
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1
r(0,0)

2
r(1,0)

2r(0,1) 5
r(1,1)
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4
r(3,0)

4r(0,3) 7
r(1,3)

7
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8
r(2,2)

9
r(3,2)

9
r(2,3)

10

r(3,3)
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2

2

4
4

4
3

3

3

(a) b1 = (1, 0) and b2 = (0, 1). (b) b1 = (1, 0, 0), b2 = (0, 1, 0) and b3 = (0, 0, 1).

Figure 7.1: Illustrating how the values rj recursively define
each other through Equation (7.47). The numbers indicate the
order in which the illustrated points are established.

so recursively with the base case of r0 = −1 already having been established. From
now on, let us – for simplicities sake – redefine the value s0 (which previously was 0
as P (0) 6= 0) to be s0 = −1, so that the initial relation r0 = −1 is now included in
the general relation for the case j = 0. Assume that for some 1 ≤ ` ≤ d all values
rj	b1 , . . . , rj	bd except for rj	b` have already been shown to exist. Then, through the
already established Equation (7.46), it is clear that setting

rj	b` = dsj −
∑
i 6=`

rj	bi (7.47)

would give the desired property, that is |F (z ξ) Φ−rj	b`
j	b` (z ξ)| is restricted for any ξ ∈

φj	b` . We therefore wish to show inductively that for all i ∈ Nm0 there exists j ∈ Nm0
and 1 ≤ ` ≤ d such that i = j	b` and all other involved values j	b1, . . . , j	b`−1, j	
b`+1, . . . , j	 bd have already been determined by the inductive hypothesis.

For this we will give the indices j ∈ Nm0 inducing these relations an appropriate
ordering. More precisely, for each j = (j1, . . . , jm) ∈ Nm0 let j≤ = (j≤1 , . . . , j≤m) denote
the ordered version, that is j≤1 ≤ j≤2 ≤ · · · ≤ j≤m and there exists some permutation σ on
m letters such that j =

(
j≤σ(1), . . . , j

≤
σ(m)

)
. Consider the ordering on Nm0 given by j ≺ j′

if j≤ lexicographically comes before j′≤. In this situation, ties are broken arbitrarily.
We want to show that going through the indices j in that order and considering the
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relation rj	b1 + · · · + rj	bd = dsj, at most one of the rj	b` will not have occurred in
any of the previous relations given by some j′ ≺ j. This is illustrated for some initial
values of two different structures in Figure 7.1.

Assume to the contrary that there exist i 6= i′ ∈ Nm0 such that, for both of them,
j ∈ Nm0 is the first index for which there exist 1 ≤ `, `′ ≤ d satisfying i = j 	 b`
and i′ = j 	 b`′ . Note that b` 6= b`′ and therefore at least one of the two statements
j	 (b`− b`′) ≺ j and j	 (b`′ − b`) ≺ j must hold. To see this, assume without loss of
generality that j = (j1, . . . , jm) is already in ordered form. Note that b` − b`′ 6= 0 as
i 6= i′. Writing b` = (b1, . . . , bm) and b`′ = (b′1, . . . , b′m), and letting 1 ≤ i ≤ m be the
first index such that bi 6= b′i and ji > 0, then we clearly have that either

ji 	 (bi − bi′) = max{ji − (bi − bi′), 0} < ji

or
ji 	 (bi′ − bi) = max{ji + (bi − bi′), 0} < ji,

meaning that at least one of the two values j 	 (b` − b`′) and j 	 (b`′ − b`) must
lexicographically come before j. Note that such index i must exist since if ji = 0
whenever bi − b′i 6= 0 then we would have had i = j	 b` = b`′ = i′ in contradiction to
our assumption that i 6= i′.

Assume now without loss of generality that j	 (b` − b`′) ≺ j. Since for a, b, c ≥ 0
we trivially have that max{max{a − b + c, 0} − c, 0} = max{max{a − b,−c}, 0} =
max{a− b, 0}, it follows that

(
j	 (b` − b`′)

)
	 b`′ = j	 b` = i.

This is however in contradiction to the requirement that j was the smallest index with
respect to the ordering ≺ for which the relation given by Equation (7.44) involves ri,
giving us the desired result.

Finally, note that from the previous argument it also inductively follows that ri ≡
−1 mod d for all i ∈ Nm0 as in the base case we have that r0 = −1.

7.5.2 The contradiction

We will now use the proposition established in the previous section to prove Theo-
rem 7.3 by contradiction. We start by introducing some necessary notation and defi-
nitions. For 1 ≤ i ≤ d we write ci = (c(i, 1), . . . , c(i,m)) ∈ Nm0 and for any 1 ≤ ` ≤ m
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we use the notation

S` = {1 ≤ i ≤ d : c(i, `) = 0} and S ′` = {1, . . . , d} \ S`.

We will also use the following notation: for any i = (i1, . . . , im−1) ∈ Nm−1
0 and 1 ≤ ` ≤

m let
∆i,` = v(i1,...,i`−1,1,i`,...,im−1) − v(i1,...,i`−1,0,i`,...,im−1).

Finally, for 1 ≤ ` ≤ m, we write 1` ∈ Nm0 for the vector whose entries are all equal to
0 except for the `-th entry, which is equal to 1. using this notation we can define the
notion of an m-structure, which will be illustrated in Figure 7.2.

u(1,0)

u(0,1)
u(1,1)

u(2,0)

0

0

0

u(3,2)

0

0

0

0

v(0,0) v(1,0)

v(0,1)

v(1,1)

v(2,0)

v(0,2)

v(1,2)

v(2,1)

v(3,0)

v(0,3)

v(i	1,j) + v(i,j	1) = u(i,j)

u(1,0)

u(0,1)
u(1,1)

u(2,0)

0

0

0

u(3,2)

0

0

0

0

v(0,0) v(1,0)

v(0,1)

v(1,1)

v(2,0)

v(0,2)

v(1,2)

v(2,1)

v(3,0)

v(0,3)

v(i	1,j) + v(i,j	1) + v(i,j) = u(i,j)

(a) c1 = (1, 0) and c2 = (0, 1). (b) c1 = (1, 0), c2 = (0, 1) and c3 = (0, 0).

Figure 7.2: Illustrating the relations of type Equation (7.48)
in two different 2-structures, both homogenous outside t =
(2, 1) but only the one on the left is regular.

Definition 7.17. For m ≥ 1, we define an m-structure to be any set of values {vj ∈
Q : j ∈ Nm0 } for which there exist c1, . . . , cd ∈ Nm0 and {uj ∈ Z : j ∈ Nm0 \ {0}} so that
the values satisfy the relation

vj	c1 + · · ·+ vj	cd = uj for all j ∈ Nm0 \ {0}. (7.48)

Additionally, we define the following:

1. An m-structure is regular if c1, . . . , cd ∈ {0, 1}m \ {0}.
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2. An m-structure is homogeneous outside t = (t1, . . . , tm) ∈ Nm0 if uj = 0 for all
j ∈ Nm0 \ [0, t1]× · · · × [0, tm].

Note that by Equation (7.44), the values rj together with dsj and the vectors bi
form an m-structure. Furthermore, the restrictions stated in Theorem 7.3 imply that
this structure is regular. Lastly, since P is a polynomial, only a finite number of the
values sj are non-zero, so the structure is homogeneous outside some appropriate t.

Before we can apply these observations to prove Theorem 7.3, let us establish two
more crucial lemmas regardingm-structures. The first enables us to follow an inductive
approach by giving us the tool needed reduce the value of m. The second applies this
tool and establishes that in any regular and homogeneous m-structure, the values in
the homogeneous part must be zero, that is vi = 0 for i ∈ Nm0 \[0, t1−1]×· · ·×[0, tm−1].

Lemma 7.18. For any regular m-structure {vj ∈ Q : j ∈ Nm0 } with

{ci = (c(i, 1), . . . , c(i,m)) : 1 ≤ i ≤ d} (7.49)

that is homogeneous outside t = (t1, . . . , tm) ∈ Nm0 and any 1 ≤ ` ≤ d, the values

{
∆i,` : i ∈ Nm−1

0

}
define a regular (m− 1)-structure with

{c′i = (c(i, 1), . . . , c(i, `− 1), c(i, `+ 1), . . . , c(i,m)) : i ∈ S`} (7.50)

that is homogeneous outside t` = (t1, . . . , t`−1, t`+1, . . . , tm).

Proof. For j′ = (j1, . . . , jm−1) ∈ Nm−1
0 let j = (j1, . . . , j`−1, 0, j`, . . . , jm−1). Using this

notation, we set
{uj′ = uj+1` − uj : j′ ∈ Nm−1

0 }

where {uj ∈ Z : j ∈ Nm0 \ {0}} refers to the values of the m-structure. It follows that

∑
i∈S`

∆j′	c′i,` =
∑
i∈S`

v(j+1`)	ci −
∑
i∈S`

vj	ci

=
(
uj+1` −

∑
i∈S′

`

v(j+1`)	ci

)
−
(
uj −

∑
i∈S′

`

vj	ci

)
= uj+1` − uj = uj′ .
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r(1,0,0)

r(0,1,0)

r(0,0,1)

r(0,0,0)

r(1,1,0)

r(0,1,1)

r(1,0,1)

r(2,0,0)

r(0,2,0)

−→

∆(1,0),3

∆(0,1),3

∆(0,0),3

∆(1,1),3

∆(2,0),3

∆(0,2),3

u(1,1,1)
−u(1,1,0)

(a) c1 = (1, 0, 0), c2 = (0, 1, 0) and c3 = (0, 0, 1). (b) c1 = (1, 0) and c2 = (0, 1).

Figure 7.3: Illustrating the reduction from a 3-structure to
a 2-structure, both of them regular.

Here we have used the fact that ∆j′	c′i,` = v(j+1`)	ci − vj	ci since c(i, `) = 0 for i ∈ S`
and that (j + 1`)	 ci = j	 ci since c(i, `) 6= 0 for i ∈ S ′`.

It follows that the values
{

∆i,` : i ∈ Nm−1
0

}
form an (m−1)-structure with {c′i : i ∈

S`} and {uj′ : j′ ∈ Nm−1
0 \ {0}}. As uj′ = uj+1` − uj = 0 for j′ ∈ Nm−1

0 \ [0, t1] × · · · ×
[0, tm−1], it follows that the (m− 1)-structure is homogeneous outside t`. Lastly, note
that since the m-structure was regular, we have c′i ∈ {0, 1}m−1 as well as c′i 6= 0 since
ci 6= 0 and c(i, `) = 0 for i ∈ S`. It follows that the (m − 1)-structure is regular as
well.

Lemma 7.19. A regular m-structure {vj ∈ Q : j ∈ Nm0 } that is homogeneous outside
t = (t1, . . . , tm) ∈ Nm0 and for which S` 6= ∅ for any 1 ≤ ` ≤ m satisfies vi = 0 for all
i ∈ Nm0 \ [0, t1 − 1]× · · · × [0, tm − 1].

Proof. We will prove the statement by induction on m. Let us start by showing the
statement for m = 1. In this case, c1, . . . , cd are non-zero, positive integers satisfying
c1 = · · · = cd = 1 as the structure is regular. Note that d ≥ 1 as S1 6= ∅. It follows
that the relations defining the structure are of the type d vj	1 = uj for all j ∈ N. Since
uj = 0 for j > t = t1, we have vi = 0 for all i ∈ N0 \ [0, t1 − 1] as desired.

Now assume that the statement is true for all regular (m − 1)-structures and let
us show that then it must also hold for any regular m-structure. Lemma 7.18 shows
that {∆i,` : i ∈ Nm−1

0 } is an (m− 1)-structure that is homogeneous outside t` for any
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v(0,0) v(1,0)

v(0,1)

v(1,1)

v(2,0)

v(0,2)

v(1,2)

v(2,1)

v(3,0)

v(0,3)

v(3,1)

v(2,3)

v(3,2)

v(1,3) v(3,3)

v(2,2)

Figure 7.4: Illustrating the equalities established by Equa-
tion (7.53) in Lemma 7.19 in a regular 2-structure given by
c1 = (1, 0) and c2 = (0, 1) and homogenous outside (2, 1).

1 ≤ ` ≤ m. By the inductive assumption it follows that

∆i,` = 0 (7.51)

for all i ∈ Nm−1
0 \ [0, t1− 1]×· · ·× [0, t`− 1]× [0, t`− 1]×· · ·× [0, tm− 1]. Furthermore,

{v′i = vi+1` : i ∈ Nm0 } forms an m-structure where the corresponding {u′j : j ∈ Nm0 }
satisfy

u′j =

uj+1` for j = (j1, . . . , jm) s.t. j` 6= 0,

uj+1` +∑
i∈S′

`
∆j	ci,` for j = (j1, . . . , jm) s.t. j` = 0.

(7.52)

Note that this structure is again homogeneous outside t, or in fact even homogenous
outside (t1, . . . , tm−1) if tm > 0. Repeated application of this principle on the resulting
m-structure gives us that that for any 1 ≤ ` ≤ m we have

vi = vi+1` for all i = (i1, . . . , im) ∈ Nm0 satisfying ij ≥ tj for some j 6= `. (7.53)

These relations are illustrated in Figure 7.4.
Now let c = max{c(i, j) : 1 ≤ i ≤ d, 1 ≤ j ≤ m} and j = (t1 + c, . . . , tm + c).

By Equation (7.53) we have vj = vj	ci for any 1 ≤ i ≤ d and j ∈ N0. Considering the
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Equation (7.48) given by j, we therefore have

d vj = vj	c1 + · · ·+ vj	cd = uj = 0.

It follows that vj = 0 and hence, again by Equation (7.53), it follows that vi = 0 for all
i ∈ Nm0 \ [0, t1 − 1]× · · · × [0, tm − 1] as desired.

We are now ready to prove Theorem 7.3.

Proof of Theorem 7.3. Recall that FA(z) = fA(z)d and that the existence of a set
A for which r(A, n; k1, . . . , kd) is a constant function for n large enough would imply
the existence of some polynomial P (z) ∈ Z[z] satisfying P (1) 6= 0 such that

FA(zk1) · · ·FA(zkd) = P d(z)
(1− z)d .

Using Proposition 7.16 we see that if a such a function FA(z) were to exist, then the
values {ri : i ∈ Nm0 } together with b1, . . . ,bm and {sj : j ∈ Nm0 \ {0}} would define
an m-structure. By the requirements of the theorem we have bi ∈ {0, 1}m and since
k1, . . . , kd ≥ 2 we have bi 6= 0. We may also assume that S` 6= ∅ for all 1 ≤ ` ≤ d

as otherwise there exists some `′ such that q`′ | ki for all 1 ≤ i ≤ d, in which case
the representation function clearly cannot become constant, so that this m-structure
would be regular. It would also be homogeneous outside some appropriate t ∈ Nm0 as
P (z) is a polynomial and hence sj 6= 0 only for finitely many j ∈ Nm0 . Finally, since
ri ≡ −1 mod d for all i ∈ Nm0 , this would contradict the statement of Lemma 7.19,
proving Theorem 7.3. �

7.6 Further remarks

With Theorem 7.1 we have established an Erdős–Fuchs-type result for ordered rep-
resentation functions, showing that an error term of the form o(n1/4 log−1/2 n) is not
possible. It would be of interest to adapt the techniques in [108], see also [82], in
order to rule out an error term of the form o(n1/4). However, the fact that one has to
introduce several extra terms in the encoding of r?k(A, n) complicates this approach.

In a different direction, writing

rk(A, n) = #
{

(a1, . . . , ad) ∈ Ad : a1 + . . .+ ad = n
}
,
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the work of [118], building on a previous construction [127, 36], shows that for any k ≥ 2
there exists a set Ak and a constant c > 0 such that∑n

j=0(rk(Ak, n)−c) = O(n1−3/(2k)),
leaving a gap for k ≥ 3. It would be very interesting to try to improve this bound for
k ≥ 3, both in the ordered and in the unordered case.

In Theorem 7.3 we have shown that under very general conditions for the coefficients
k1, . . . , kd the weighted representation function cannot become constant. However,
there are cases that are not covered by this result, including those where at least one
of the ki is equal to 1.

On the other side, let us point out that Moser’s construction [109] can be trivially
generalized to the case where ki = ki−1 for some integer value k ≥ 2. In view of this
construction and the results of this section, the following conjecture seems reasonable.

Conjecture 7.20. There exists some infinite set of positive integers A such that
rA(n; k1, . . . , kd) is constant for n large enough if and only if, up to permutation of
the indices, (k1, . . . , kd) = (1, k, k2, . . . , kd−1), for some k ≥ 2.

The most likely candidates for a possible counterexample to this conjecture might be
those where (k1, k2, k3) is either (1, 2, 6) or (1, 2, 8). One could possibly try to generalize
Moser’s approach to these scenarios, e.g. by using generalized bases. Understanding
these cases would most likely indicate a path towards completely settling the question
of Sárközy and Sós.

Lastly, it would be of great interest to obtain an Erdős–Fuchs-type result for
weighted representation functions in at least some of the cases covered by Theorem 7.3.
See also [120], where some Erdős–Fuchs-type results were obtained in this setting for
certain types of weights.
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