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Abstract

In many industrial applications, and especially in the automotive and aeronautical sectors,
Virtual Testing (VT) of composite structures is foreseen as one of the strategies aimed at
reducing the number of tests required to certificate new components. Conceptually, VT
consists of the simulation of experimental tests through reliable numerical methods. By
this strategy, it is intended to minimise the monetary and temporal costs associated with
the certification and design processes and, at the same time, acquire a deeper level of
understanding about the mechanical behaviour of composite structures. Thus, the VT ranges

simulation from coupon level to subcomponent and component levels.

One of the most used numerical methods to built frameworks for VT of composite struc-
tures is the Finite Element Method (FEM). In part, this is because this method provides
a versatile framework with reliable predictions in comparison with alternative modelling
methods. Although these qualities, the VT of composite materials is a complex nonlinear
numerical problem. The different damage mechanisms arising during the failure process
increase the complexity of the models involved during the simulation. Moreover, the length
scale concerning the damage phenomena imposes the use of thin meshes and refined time
discretisation. These facts increase the computational costs of the simulations. Therefore,
the VT of composite structures has usually an enormous computational cost, which, if not

appropriately managed, can even preclude the simulation.

This doctoral thesis aims at developing and implementing a computational framework for
Virtual Testing of Composite Structures in a High-Performance Computing (HPC) environ-
ment. By this objective is pretended to overcome the limitation regarding the management
of the computational costs. In this sense, this thesis presents different constitutive models,
which are based on the continuum damage mechanics theory, and their implementation in a
HPC-base FE simulation code named Alya. Regarding the intralaminar region, two models
are developed and implemented to capture the onset and progression of the damage on the
mesoscopic length scale: (i) a local damage model and (ii) a nonlocal damage model rooted
in the phase field approach. In turn, the damage occurring in the intralaminar region is
modelled employing a cohesive zone model available in the literature in conjunction with an
interface element technology. Finally, a novel formulation is presented, which couples the
nonlocal intralaminar model with the cohesive zone model formulation. As an outcome of
this thesis, it is presented a novel and complete numerical framework to simulate intralaminar
and interlaminar damage of composite structures, implemented in the Alya.

Xix
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The verification and validation of the models are performed comparing the numerical pre-
dictions with analytical and experimental data. The comparisons demonstrate not only the
reliability of models but also the potential of the usage an HPC-based FE simulation code
such, as Alya, for VT of composite structures.



Resumen

La realizacién de pruebas virtuales (VT, de las siglas en inglés de Virtual Testing) de estruc-
turas de materiales compuestos se ve como una de las posibles estrategias para reducir el
nimero de ensayos experimentales requeridos en la certificacién de nuevos componentes
en aplicaciones industriales, especialmente en los sectores automotriz y aerondutico. Con-
ceptualmente, el VT consiste en la simulacién de pruebas experimentales mediante métodos
numéricos, buscando minimizar los costos monetarios y temporales asociados con los proce-
sos de certificacion y disefio, al mismo tiempo que se adquiere un nivel de comprensién mas
profundo del comportamiento mecanico de las estructuras hechas de materiales compuestos.
En este sentido, el VT abarca desde la simulacién de pequefias probetas hasta componentes

estructurales.

Uno de los métodos numéricos mds utilizados para crear marcos numéricos para el VT de
estructuras en compuestos es el Método de los Elementos Finitos (FEM, de las siglas en
inglés de Finite Element Method). En parte, esto se debe a que, en comparacion con métodos
alternativos de modelado, éste ofrece un alto grado de versatilidad y precisién. Sin embargo,
a pesar de estas cualidades, el VT de materiales compuestos mediante FEM es un problema
numérico complejo altamente no lineal. Los diferentes mecanismos de dafio que surgen
durante el proceso de falla aumentan la complejidad de los modelos involucrados durante la
simulacién. Ademads, la escala de longitud relativa a los fendmenos de dafio impone el uso
de mallas finas y la necesidad de una discretizaciéon temporal muy refinada. Estos hechos se
traducen en un aumento significativo de los costos computacionales de las simulaciones que,

si no se administran adecuadamente, pueden incluso impedir la ejecucion de la simulacién.

El objetivo de esta tesis doctoral es desarrollar e implementar un marco computacional
para pruebas virtuales de estructuras en compuestos en un entorno de computacién de
alto rendimiento (HPC, de las siglas en inglés de High-Performance Computing). Con
el uso de un entorno HPC se pretende superar la limitacién respecto a la gestién de los
costos computacionales. En este sentido, esta tesis presenta la formulacion de diferentes
modelos constitutivos basados en la teoria de la mecanica de danos continuos, asi como su
implementacion en el cédigo de simulacién HPC denominado Alya. Con respecto a la region
dentro de la capa (zona intralaminar), se proponen dos nuevos modelos que capturan el inicio
y la progresion del dafio en la escala de longitud mesoscdpica: (i) un modelo de dano local
y (ii) un modelo de dafio no local arraigado en el enfoque de campo de fase. A su vez, el
dafio que se produce en la interfaz entre capas (zona interlaminar) se predice empleando un

XXi



modelo de zona cohesiva disponible en la literatura, junto con una tecnologia de elementos
de interfaz. Finalmente, se presenta una nueva formulacién que combina el modelo no local
para el dafio intralaminar con la formulacién del modelo de zona cohesiva para el dafio
interlaminar. Por lo tanto, en esta tesis se desarrolla un marco numérico nuevo y completo
para simular el dafio intralaminar e interlaminar de estructuras en materiales compuestos,

implementado en el cédigo de simulaciéon HPC Alya.

La verificacion y validacién de los modelos se realiza comparando las predicciones numéricas
con los datos analiticos y experimentales. La comparacién demuestra tanto la fiabilidad de
los modelos formulados, como el potencial de usar el cddigo de elementos finitos de alto
rendimiento computacional, Alya.
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Resum

En moltes aplicacions industrials, especialment en el sector de I’automocié i I’aeronautic, es
preveu que la realitzacié de proves virtuals (VT, de les sigles en angles de Virutal Testing)
d’estructures de materials composits sigui una pega clau per a reduir el nombre d’assajos
experimentals necessaris per a la certificacié de nous components. Conceptualment, el VT
consisteix en la simulacié de proves experimentals mitjancant metodes numerics fiables.
Amb aquestes simulacions es pretén minimitzar els costos monetaris i temporals associats
als processos de certificacio i disseny i, alhora, adquirir un nivell de comprensié més profund
sobre el comportament mecanic de les estructures. En aquest sentit, el VT inclou simulacions

que van des de provetes fins a components estructurals.

Un dels metodes numerics més utilitzats per crear marcs numerics per el VT d’estructures
de materials composits és el metode dels elements finits (FEM, de les sigles en angles de
Finite Element Method). Aquest fet es deu en part a que aquest metode proporciona, en
comparacié amb metodes de modelitzacié alternatius, un marc versatil amb prediccions
numeriques fiables. Tot i les qualitats d’aquest metode, el VT de materials compostos
mitjangcant FEM és un problema numeric no lineal molt complex. Per una banda, els
mecanismes de dany que poden iniciar i créixer durant el procés de fallada augmenten
la complexitat dels models constitutius implicats durant la simulacié. A més, I’escala de
longitud relativa als fenomens de dany imposa I’is de malles fines i d’una aproximacié
temporal molt fina. Aquests fets augmenten els costos computacionals de les simulacions.
Per tant, el VT d’estructures de composits sol tenir associat un enorme cost computacional,

que si no es gestiona adequadament, pot arribar a impedir la realitzacié de la simulaci6.

Aquesta tesi doctoral t€ com a objectiu desenvolupar i implementar un marc computacional
per a la realitzacié de proves virtuals d’estructures de materials compoOsits en un entorn
de computacié d’alt rendiment (HPC, de les sigles en angles de High Performance Com-
puting). Amb aquest objectiu es pretén superar la limitacié quant a la gestié dels costos
computacionals. En aquest sentit, aquesta tesi presenta la formulacié diversos models
constitutius emmarcats dintre la teoria de la mecanica de danys continus aixi com la seva
implementacié en el codi de simulaci6 HPC anomenat Alya. La regi6 dintre la lamina
(zona intralminar), es proposen dos models per capturar I’inici i la progressié del dany a
I’escala de longitud mesoscopica: (i) un model de dany local i (ii) un model de dany no local
basat en I’enfocament del camp de fase. Pel que fa a la interficie entre dues lamines (zona

interlaminar), el dany es prediu emprant un model de zona cohesiva conjuntament amb la
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tecnologia d’elements d’interficie. Finalment, aprofitant el caracter no local del segon model
de dany intralminar es proposa una nova estrateégia que te en compte 1’acoblament entre el
dany d’ambdues zones, I’intralminar i I’interlaminar. Per tant, en aquesta tesi es desenvolupa
un nou marc numeric complet per a la simulacié del dany intralaminar i interlaminar en
estructures de material composit en un entorn de computacié d’alt rendiment mitjangant el
codi Alya.

La verificaci6 i validacié dels models es realitza comparant les prediccions numeriques
amb dades analitiques i experimentals. La comparacié demostra la fiabilitat dels models
aixi com el potencial d’utilitzar un codi d’element finit d’elements finits d’alt rendiment
computacional.



Part |

Introduction and Methodology






Introduction

1.1 Contextual background and motivation

The rise of usage of Fibre-Reinforced Polymer (FRP) composites for structural applications
has increased over the last decades, especially in the aerospace, automotive, and wind turbine
industries. This increase can be partially explained by their excellent stiffness-to-weight
and strength-to-weight ratio in comparison with traditional materials, such as steel and
titanium (Barbero 2017). However, the real potential of FRP structures in terms of load-
bearing capacities has not fully exploited so far. The difficulty of predicting how damage
mechanisms develop up to structural failure, enforce engineers to use high design safety
factors and to plan extensive certification campaigns. The outcome is an increase in the
costs associated with the design and development processes, making the FRP structures less

attractive for some industrial applications.
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Figure 1.1: Schematic representation of the building block approach applied to the composite structures
of the aeronautical sector.

With the aim of reducing the number of certification tests, the scientific and industrial
communities have been intensively working towards a technology named Virtual Testing
(VT) (Cox et al. 2014). Conceptually, the VT involves the simulation of experimental tests
through reliable numerical tools. Hence, VT entails the development and implementation of
tools to model the physical behaviour of materials and structures. The aerospace industry, for
example, is highly interested in this technology to reduce the number of experimental tests to
certify generic specimens. According to the building block approach, which is summarised in
Figure 1.1, the number of tests required in the certification process is very large. For instance,
the Composite Materials Handbook (2017) lists more than 100 configurations and 700 tests
to certificate a bolted joint. Therefore, the correct implementation of this technology could



encompass a significant reduction in the costs associated with FRP structural applications.
In spite of the progress made up to now, VT of composites structures is still a developing

technology due to its complexity.

Part of the complexity faced by the VT of FRP structures stems from the morphology of
the composites materials. In particular, FRP composites have an intricate internal structure
composed of continuous fibres embedded in a polymeric matrix. Thanks to this, FRPs can
accumulate a substantial amount of damage before losing structural integrity. For instance,
the initiation of the local failure in the matrix does not necessarily lead to the loss of the
bearing capacities since the fibres can still sustain part of the load up to their breakage
(Barbero 2017). This fact implies This feature to accumulate damage before the collapse
implies that a damage initiation criterion may not be sufficient to provide accurate predictions
of the withstand capacities of an composite structure. Therefore, a Progressive Damage
Failure Analysis (PDFA) accounting for the onset and evolution of damage mechanisms is
necessary to perform reliable simulations of composite structures.

One important aspect to consider when performing PDFA of composite materials is the
length scale of the analysis. Their particular morphology makes them susceptible to be
analysed on different length scales. As illustrated in Figure 1.2, each length scale is devoted
to the study the mechanical response from a different point of view. Thus, each length
scale needs a specific kind of information as input and returns a particular aspect of the
mechanical behaviour as output. If the analysis focuses on generic specimens, i.e. coupon
and subcomponent specimens, the intermediate length scale, so-called mesoscopic, is the
most suitable to achieve a good trade-off between the local and global failure. The former is
more related to the material collapse, while the latter to the structural one.

Microscale —— > Mesoscale ——— Macroscale

homogenization homogenization
- F/IM/I behaviour

. - Ply behaviour - Laminates properties
- F/IM/I properties L - -
. - Ply properties (intra/inter-ply) - Components behaviour
- Volume fraction . .
- Stacking sequence - Components connections

- Spatial distribution
Vr o em Ve m A (m

Interface (1)

CFRP
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- Ply behaviour - Laminate behaviour - Structural behaviour
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Figure 1.2: Schematic representation of the different length scales usually considered to study the
behaviour of structural composite materials (Lopes et al. 2016; Tan et al. 2018).
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The homogenization of the intra-ply structure mainly characterises the mesoscopic length
scale. In this sense, the fibres and matrix of an FRP are considered as a homogeneous
material with equivalent properties. These equivalent material properties are related to the
fibre-matrix fraction volume, the spatial distribution, as well as other stochastic parameters
associated with the constituents (Guerrero et al. 2018; Melro et al. 2008; Tavares et al. 2019).
In turn, it is considered that the damage mechanisms that can develop on the mesoscopic
length scale of an FRP are mainly four: (i) fibre breakage and kinking, (ii) matrix cracking,
(iii) interface fibre-matrix debonding, and (iv) delamination failure between adjacent plies.
The latter occurs in the interlaminar region, whereas the others in the intralaminar one, see
Figure 1.3.

Mesoscale (sketch) Microscale (microscopy)

I

— Interlaminar m Intralaminar -~ Interlaminar Intralaminar

Figure 1.3: A schematic representation of a composite laminate from the mesoscopic length scale
point of view with an optical micrography illustrating the intralaminar and interlaminar
regions. (Micrography reproduced from Hayes and Gammon (2010))

Although the homogenisation assumptions mentioned above reduce the complexity of the
analysis, the PDFA of composite structures on the mesoscopic scale is still a challenging
problem. This is because of the four damage mechanisms previously listed can onset and
interact during the failure process. For instance, a transverse crack can initiate its propagation
in a ply cracking the matrix, then deflect across the interface provoking delamination, and
finally penetrate in the other ply, continuing its propagation breaking fibres. Consequently,
reliable physical theories and robust numerical methods are necessary to model with accuracy
the possible failure sequence. Among the approaches for tackling such complex problem, the
non-linear physical models based on solid mechanics in combination with the Finite Element
Method (FEM) seems to be one of the most optimal options for performing high-fidelity
PDFA of composite structures. The reason is that their combination conforms a numerical

framework that has enough versatility to accommodate different modelling procedures.

Focusing on the standard FEM (O. Zienkiewicz et al. 2013), the continuity condition of
the displacement field faces directly with the discontinuous nature of the principal source

1.1 Contextual background and motivation



of damage in FRP structures, namely, the cracks. This fact has resulted in a large number
of formulations to model the onset and propagation of cracks using the FEM. In general,
these formulations can be divided into continuous and discontinuous approaches (Forghani
et al. 2015). In the former, the crack is smeared over the continuum modelling its effect
through the degradation of the material properties, while in the latter, the crack is considered
a geometric entity that induces a discontinuity in the displacement field.

Regardless of the approach, both aspect ratio and the tiny fracture process zone of FRPs
imposes the use of fine meshes to reach proper levels of accuracy in the simulations. This
implies an increase of the computational costs due to the increment of degrees of freedom
which, if not managed efficiently, may hinder the simulation. One option to deal with this
issue is to reduce the computational cost of the simulation by employing simplified models
or coarse meshes. However, the accuracy of the numerical results can decrease drastically to
the point of precluding the predictive capabilities of the simulation. Another option aimed at
maintaining the level of accuracy is to increase the computational power. Even though this
choice seems more natural and straightforward, the price of the hardware and the complexity
of the programming models make it less attractive and some times prohibitive. Fortunately,
the accessibility to parallel computing facilities (such as supercomputers or cloud-based
platforms) has become nowadays more feasible and cheaper, opening a new horizon for

engineers and researches.

Beyond access to parallel computing facilities, the simulation codes need to be programmed
explicitly for exploiting the different levels of parallelism. As illustrated in Figure 1.4a, each
level of parallelism is executed into a specific part of the hardware and therefore, has its
characteristics and a particular programming model associated. In the context of FEM, a
significant part of the parallelisation is achieved through the split of the computational domain
using appropriate decomposition techniques. Generally speaking, the computational domain
defined by the FE mesh is split into several subdomains, enabling the parallel execution
of some tasks. In turn, this parallel execution increases the performance of the execution
with respect to the sequential one. At the node level, the mesh is partitioned into several
subdomains using a distributed memory programming model, such as MPI. Then, each
partition is divided again at the chip level to parallelise large loops, such as the elemental
loops. In contrast to the node level, a shared memory programming model can be used
for this purpose, such as OpenMP. Finally, at the core level, vectorisation techniques are
used to perform some tasks concurrently, either via compiler directives or programming
models for Graphical Process Units (GPUs), such as OpenACC. This parallelisation strategy
is summarized in Figure 1.4b.

In this sense, the simulation codes based on the FE method must include a High-Performance

Computing (HPC) approach to maximise the performance of the executions. In other words,
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Figure 1.4: Schematic representation of a parallel computational environment applied to the numerical
solution of the finite element problem. Part a) illustrates the hierarchy of the three levels
of parallelisms that are usually offered by modern computing platforms. The node, chip
and CPU/GPU referres to the hardware involved, while MPI, OpenMP and OpenCC the
programming model used. Part b) shows a sequential versus parallel execution of the
assembly process, relating the split of the domain with the different parallelism levels. The
pink region represents the number of elements assembled concurrently.
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the programmers of these codes should use highly efficient parallelisation techniques if
they want to exploit the capabilities of the hardware. From this fact emerges the concept of
HPC-based FE codes to designate those FE simulation codes capable of running efficiently
in parallel computing platforms.

Based on the previous observations, the primary motivation of this dissertation is to explore
what an HPC-based FE code can offer to the VT of FRP structures. Besides, the present
work aims to develop a numerical framework to perform reliable simulations of the failure
process of FRP structures in terms of the continuum damage mechanics in HPC facilities.

1.2 Objective and challenges

The principal objective of this dissertation is:

To develop and validate a high-performance computing numerical framework,
based on the finite element method, for performing virtual testing of long fibre
composite materials at a mesoscopic length scale through the use of novel frac-
ture models.

It is intended to reach the previous main objective by implementing new features in Alya
code, the Barcelona Supercomputing Center in-house HPC-based FE code (Casoni et al.
2015; Vazquez et al. 2016). Considering the characteristics of Alya code and that, on
the mesoscopic length scale, the structural failure of FRP is driven by intralaminar (fibre
breaking and matrix cracking) and interlaminar (interface debonding) damage mechanisms,
four challenges are postulated to achieve the main objective of the thesis:

1. Formulation and implementation of a local continuum damage model for cap-

turing the intralaminar failure mechanisms.

Local continuum damage models are the most conventional approach to model the
intralaminar damage. Their formulation consists of the definition of a constitutive
law to account for the degradation of the material properties ensuring a consistent
thermodynamic formulation. Hence, their implementation in a standard FEM code is
usually straightforward allowing to hold its scalability. Despite the extensive range
of options available in the literature, not all of them are suitable for scalable HPC

simulations, neither account for 3D stress states.

2. Formulation and implementation of a non-local continuum damage model for
capturing intralaminar failure mechanisms.

The key idea of the nonlocal continuum damage models is to account for the damage
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evolution in a global way by defining a new primary field. As a consequence, extra
degrees of freedom are introduced at the node level in the corresponding finite element
formulation and implementation. Furthermore, the use of these models also implies the
implementation of solution procedures to solve the coupled-field problem. Both facts
usually hind the use of nonlocal continuum damage models in commercial FE codes
because of their limited flexibility, even more, when parallel simulations are needed.
Taking advantage of the flexibility of the Alya code, both questions are addressed in
HPC simulations.

3. Implementation of a local cohesive zone model for capturing the interlaminar
failure mechanism.

The principal source of damage at the interfaces between plies is delamination. Con-
sidering that the interface is a predefined and known region, the most extended option
for accounting its debonding is the binomial: cohesive zone model and the interface
element technology. When this element technology is employed, the nodal quantities
can be naturally interpolated to the mid-plane, hence allowing the computation of the
displacement jump or crack opening needed by the cohesive zone model. Considering
the element library available in the Alya code, the implementation of the interface
element technology is also needed.

4. Formulation and implementation of a strategy for coupling the nonlocal contin-
uum damage model for the intralaminar failure and the cohesive zone model for
the interlaminar failure.

The combination of local continuum damage and cohesive zone models does not
imply an explicitly coupling between both mechanisms. The displacement field
governs the relation between both damage mechanisms, which difficult the correct
modelling of the interaction between intralaminar and interlaminar cracks. In some
specific cases, such as delamination induced by matrix cracking, a formulation consid-
ering a coupling between the damage state of the intra-ply and interface regions could
give more accurate results. Thus, a combination of nonlocal damage continuum and
cohesive zone models seems a more suitable option.

All developments and implementations derived from the previous challenges are validated by
performing VT of composites structures at coupon level. In this sense, analytical theories or
experimental results are used to compare, verify and validate the numerical predictions of
the implemented models.

1.2 Objective and challenges



10

1.3 Thesis layout

The present thesis is presented as a compendium of publications fulfilling the academic
regulation of the doctoral studies of the Universitat de Girona. Accordingly, the document
is divided into four parts. The first part consists of Chapters 2 and 3 and gives a general
overview of the methodology employed. Chapter 2 introduces the framework for the models
concerning the current state of the progressive damage modelling utilising the finite element
method, while Chapter 3 presents the simulation code setting the basis of the computational
framework. The second part describes the damage models developed and implemented in the
context of this thesis and demonstrates their reliability through several virtual tests. In this
sense, Chapter 4 describe the novelties regarding the formulation and implementation of the
models, referring to the publications that support this thesis. In turn, Chapter 5 presents and
discusses the main results concerning the numerical simulations. The third part consists of
Chapter 6 and provides the principal conclusions and perspectives for future work. Finally,
the fourth part gives the current version of the papers supporting the present thesis as a
compendium of articles.
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Progressive damage modeling
for the virtual testing of

composites

This chapter aims at providing the fundamental aspects concerning the HPC-based FE
framework developed in the present thesis. Firstly, the damage morphology of composites
at a mesoscopic length scale is described. Then, it is presented an overall classification
of the existing approaches for modelling the damage of composite structures in the field
of computational mechanics. Besides, for each of the contributions, there is a revision of
the specific state-of-the-art in the journal versions presented in the appendices. Finally, the
mathematical frameworks setting the basis for the formulation of the models is given.

2.1 Damage morphology of composite materials

Fibre-reinforced polymer composite (FRPs) are composed of at least two constituents, namely
continuous fibres and matrix. Thanks to this combination, the resultant material, the FRP,
has superior properties than those of the individual components acting independently (Daniel
and Ishai 2006; Gay and Hoa 2007). The continuous fibres, usually made of glass or carbon,
have an excellent performance for bearing tensile loads but they cannot efficiently sustain
compression and transverse loads. For this reason, they are embedded into a matrix, which is
usually made of a polymer. Besides to hold them together, the matrix also has the function
to isolate the fibres of the environment, protecting them from hygrothermal effects and

corrosion attacks (Barbero 2017).

Since the material properties of the fibres and the matrix are quite different, the mechanical
response of FRPs possesses an anisotropic character. More specifically, FRPs behave as
transversally-isotropic material on the mesoscopic level. The elastic and fracture properties
along the direction of the fibre are higher than the properties in the isotropy plane defined
by the transversal directions. As a consequence, the fibre orientation plays a crucial role
in the mechanical response of composites. For instance, the bearing capacities of FRPs
for structural applications can be improved by stacking several plies with different fibre
orientations, resulting in the so-called composite laminate. However, the process of stacking
separate plies creates interlaminar regions known as interfaces. As shown in Figure 2.1,

the interfaces are characterised for having major content of matrix than fibre, which leads

to a different elastic and failure behaviour compared to the one of the intralaminar region.
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Therefore, on the mesoscopic level, two regions can be identified in laminates made of FRP

plies: (i) intralaminar and (ii) interlaminar (interfaces).
P Ak
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Figure 2.1: Optical micrograph of a fibre-reinforced polymer composite showing that between two
intralaminar plies a region with less content of fibres is created denominated interlaminar
(or interface). (Optical micrograph reproduced from Hayes and Gammon (2010))

Regarding the failure process of FRP laminates, it can be originated either in the intralaminar
or interlaminar region. In other words, the failure can be onset in the fibres, matrix or
interfaces, i.e anywhere of the laminate. In fact, this is one of the main reason because the
prediction of the onset and damage evolution is a complicated task. In turn, the failure process
may be a consequence of different physical phenomena, such as the onset and propagation of
cracks, plasticity or creep. However, it is considered that the cracks are the primary source of
damage in FRP and therefore, the phenomenon to model.

From a physical point of view, a crack is a discontinuity in the material due to its rupture,
which tends to grow across the path that requires less energy. For instance, and in general
terms, a crack originated in the matrix will tend to grow parallel to the fibres, because
cracking matrix requires less energy than breaking or kinking fibres. Another example is
a crack impinging an interface which, depending on the material properties and loading
conditions, will penetrate the interface or deflected through it, inducing delamination (Pernice
et al. 2015). Hence, the study of the onset and growth of cracks in heterogeneous materials
with a complex microstructure, such as FRP, is complicated. Not only the material properties
of the constituents and the loading conditions influence the failure process, but also other
factors such as the statistical distribution of the fibre and the fibre-matrix volume ratio.
Therefore, the morphology of the FRP failure is a complex physical phenomenon, which
nowadays is still a topic of interest for researchers. See, for instance, the following recent
experimental studies: Borstnar et al. (2015), Bull et al. (2014, 2015), Garcia-Rodriguez et al.
(2019, 2018a,b), and Wagih et al. (2016, 2019).

As can be appreciated in the failure sequences described in the previous paragraph, four dif-
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Figure 2.2: Optical micrographs of a fibre-reinforced polymer laminate illustrating the principal failure
mechanics: fibre breaking and kinking, matrix cracking and interface debonding. Each
mechanism is associated with a schematic representation of the loading state driving it.
(Optical micrographs reproduced from the works of Camanho (1999) and Pinho (2005))

ferent damage mechanisms can lead to the failure of a composite laminate on the mesoscopic
level, namely, breaking and kinking of the fibres, cracking of the matrix and debonding of
the interface. Although all of these mechanisms provoke a rupture of the material through the
formation of cracks, their particular morphology allows its differentiation. In general terms,
each damage mechanism affects a specific constituent and tends to initiate and propagate
for a particular state of loading. Figure 2.2 shows the morphology of the four main damage
mechanisms on the microscopic level. Moreover, the same figure illustrates the loading state
usually associated with the development of each damage mechanisms.

2.2 Solid mechanics computational framework

The modelling of the progressive damage modelling of composites mostly lies within the
field of continuum solid mechanics. Hence, the conservation of the linear momentum
for a continuous medium is the main governing principle of the corresponding initial-
boundary value problem (IBVP). In the following, the equations setting the foundations of
the computational problem are presented. For more details, the reader should refer to one of
the following classical references: Hughes 2012, Belytschko et al. 2014 or O. Zienkiewicz
et al. 2013.

2.2.1 Problem statement

Let us consider an arbitrary deformable body B in a N dimensional Euclidean space RY,
which is illustrated in Figure 2.3. The position of a material point of the body at the reference

2.2 Solid mechanics computational framework
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time ¢ = 0 is described by the vector X, while its position at the current time ¢t € T = [0, T']
is given by the vector x. Formally, the current position vector is the image of the regular map
function x (X, t), which is denoted as motion. The displacement field is defined as:

u(X,t) = x(X,t) - X. @2.1)

The outer boundary of the domain is denoted as 953, whose normal outward vector is
represented by n. Henceforward, the dependency of the kinematic quantities with the time is
omitted to alleviate the formulation. We assume that the body is subjected to body forces
(bin B) as well as prescribed displacements (@ on d13,) and tractions (£ on 9;) on the
corresponding boundaries. Considering the Neumann-Dirichlet boundary conditions, 0B is
covered by two disjoint sets, B, and 01, such that:

0B, U 0B, = 0B, (2.2)
0B, N OB, = 0. (2.3)

Reference configuration Deformed configuration

Figure 2.3: The initial (reference) and deformed (current) configuration of a body subjected to body
forces b, displacements 1 and tractions £.

Assuming that the deformations in long fibre composite materials are not vey large (Reddy
2003), the infinitesimal deformation and the updated-Lagrangian description sets the basic
framework for the motion and deformation. However, the formulation presented in the fol-
lowing can be expressed according to a total-Lagrangian description by using the appropriate
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transformation operators.

The strong form (or derivative) governing the conservation of linear momentum of the solid

mechanics problem consists of finding the displacement field u at each time ¢ such that:

V-o+b=pi in B, (2.4)

subjected to the initial and boundary conditions:

;=g =uy in By, (2.5)
o = in Bo, (2.6)
o-n=t on 0B, (2.7)

u=u on JB,. (2.8)

where o is the Cauchy stress tensor, b is the body force per unit of the current volume, 11 and
1 are the velocity and acceleration field, and p is the density. Here, the subscript 0 denotes
the quantities at the reference configuration, i.e. at the beginning of the problem when ¢ = 0.
Note that the displacement field must be of the class C? continuously differentiable and must
satisfy Egs. (2.4) - (2.8) in the whole domain of the body 5. In the computational field, a
weak form of the conservation of linear momentum is formulated which, in turn, alleviates

the continuity conditions.

2.2.2 Weak form

The weak form (or integral) of the balance of linear momentum governing equation presented
in the previous section leads to the well-known principle of the virtual work for a static
systems or the virtual power for dynamic systems (Wriggers 2008). Following standard
procedures, the weak form can be obtained from the strong form by multiplying the linear
momentum governing equation by a test function and integrating over the current configura-
tion. In this process, the spatial derivative of the stress tensor is eliminated and therefore, the

continuity conditions of the displacement field are reduced.

Another way to conceive the weak form of the linear momentum problem is relating it
with the calculus of infinitesimal energy variations. In this sense, an energy functional
governing the conservation of linear momentum is stated and afterwards minimised to find
the displacement field that corresponds to the given boundary conditions. The following
presents the weak form of the solid mechanics problem through this last interpretation.

2.2 Solid mechanics computational framework
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Let us define the energy functional II of the body described in the above section, which is

related with the balance of momentum equation (Wriggers 2008):

IT(u) = e () + i (0) — Tegy (u) 2.9)

where 11;,,., I1;,,; and Il.,; are the inertial, internal and external contributions defined as:

;. () ::%/pﬁ-ﬁdv, 2.10)
B
Oint(u) := [ U(e(u)) dV, 2.11)

Moy (u) := u~pde+/u~de, (2.12)

0B

m\ W\

where W is the internal elastic energy function. The infinitesimal strain tensor € is defined as
the symmetric gradient of the displacement field (Wriggers 2008):

e:== (Vu+ V'), (2.13)

N | =

which is introduced here because of U is generally expressed respect to the strain state.
Further, the Cauchy stress tensor can be derived from the specific elastic energy and strain
tensor as (Wriggers 2008):

ov
o=

= (2.14)

Recalling the continuous Galerkin-Bubnov method of weighted residuals, the trial solution
of the displacement field u are extended with the corresponding admissible weigthening or
test functions du. Formally, the trial solution u is the set of functions living in the subspace
U C H*, which garentees the fulfilment of the Dirichlet boundary conditions on dB,,. In
turn, the tests functions du are all the kinematically admisible displacement fields living in
the subspace V C H!, which impose zero value on 8,,. Here, H' denotes the Sobolev
space vector, which ensures that these functions and their first partial derivatives are square
integrables (Debnath and Mikusinski 2005).

Applying the standard procedure (Wriggers 2008), the weak form of Eq. (2.9) is:
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0Il(u, du) = 1L (0, du) + 0114 (0, du) — 011, (u, Su) (2.15)

where each term is defined as:

0l e (u, 0u) :z/éu -pudV, (2.16)
B

0IL; e (u, o) ::/0' :0edV, 2.17)
B

eyt (u, u) :z/&u -pbdV + / Su-tds, (2.18)
B B,

where de = 0ye(du) is the variation of the strain tensor with respect to the displacement
field, so-called virtual strains.

The weak or integral form of the solid mechanics problem concerning the conservation of
the linear momentum consists of finding the displacement field u € U/ at each time ¢ such
that for all du € V:

STI(u,6u) =0 (2.19)

subjected to the initial conditions uy and 11y defined in B and the prescribed traction # defined
on JB,. In the following section is presented the discrete form resulting from the finite

element spatial approximation.

2.2.3 Discrete form

The spatial discretisation of the weak form of the balance of linear momentum equation
presented before is formulated using the finite element method. The basic idea behind
this method is to approximate the infinite-dimensional function spaces, U and V), by finite-
dimensional ones, " and V", imposing the same conditions on the boundaries, but in the
approximated domain. As illustrated in Figure 2.4, this idea means that the continuous
domain B of the body is approximated by a discrete domain ", which is built by a finite

number of disjoints elements €2, such that

2.2 Solid mechanics computational framework
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B~ " =| 0., (2.20)

where 1. is the total number of elements and e is the subscript denoting the element num-
ber. Hence, the continuum quantities are approximated within each finite element and
then assembled with the so-called assembly procedure, here expressed with the operator
AZ; {o} = J.°{e}. Adopting an isoparametric formulation (Irons 1966), the continuum
variables related to kinematics are approximated within each element as:

X~ X"=N(©X, 2.21)
x~a" = N(©z(t), (2.22)
(2.23)

where h is the superscript denoting the discretised quantity, X and & are the vectors arranging
the nodal positions at the reference and spatial configurations, and ¢ is the vector of natural
coordinates. Similarly, the continuum displacement and admissible displacement field are
approximated as:

u~u"(& 1) = N(©d(), (2.24)
du = su(€) = N (&), (2.25)
(2.26)

where d and ¢ are the vectors arranging the nodal and weighted displacements, respectively.
Further, NV is the interpolation operator, which is a matrix arranging the C°-continuous shape
functions associated with the nodes supporting the element. Using the above approximations,
the virtual strain is computed as e = Bdd, where B is the strain-displacement compatibility
operator (Wriggers 2008). Finally, it is worth noting that the velocities and accelerations, 01
and i are approximated using the same procedure, which defines d and d.

Following the continuous Galerkin-Bubnov method of weighted residuals and considering
the arbitrariness of the test functions, the discrete form of the conservation of the linear
momentum problem consist on finding the nodal values of the displacement field u” € U" at
each time ¢ such that:
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Figure 2.4: The deformed configuration of a body discretized using a FE mesh, which is subjected to
displacements 1 and tractions ¢.

o

ane(d) + ant(d) - Fezt (d) =0 (227)

subjected to the initial and boundary conditions on the approximated domain Q". In the
above expression, F,,,., F;,; and F.,; are respectively the vectors defining the counterparts
of Egs. (2.16) - (2.18):

Fine(d) =A< / pNTNAAV } (2.28)
QE!

Fine(d) :=A / BTodvV §, (2.29)
Qe

Feor(d) i=A.", / pNTbdV + / NtdS }, (2.30)
Q. GIo T

where fQ p./\/'T N AV defines the so-called elemental mass matrix. Finally, the volume and
interface integrals can be computed exactly in the integration points using numerical methods
such as the Newton-Cotes or the Gauss-quadrature (O. Zienkiewicz et al. 2013).

Note that the discrete form of the balance of momentum results in a system of ordinary

differential equations of second order in time, which can be solved employing a temporal
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integration scheme. Accordingly, the unknown of the displacement field (d) and its temporal
derivatives (d and d) must be computed at each time step. Thus, depending on the temporal

integration scheme, the set of solutions (d, d, d) is obtained explicitly or implicitly.

In the field of solid mechanics, a common choice is to use a scheme of the Newmark’s family
(Katona and OC Zienkiewicz 1985). For example, following the 5-Newmark scheme, the
solution at a specific time step of the simulation is obtained by solving the following system
of equations (Belytschko et al. 2014):

n+41

Fine(d ) =Fep(d™h) — Fipp(@a™th), (2.31)

A"t =@+ Atd” + (At K; - ﬁ) d" + ﬂii"+1] ; (2.32)

: ""“] (2.33)

dn+1 :(.ln—i-At |:(1_,y)dn+’yd

where superscripts 7 and n + 1 denotes that the variables are evaluated at time ¢" and ¢"*1,
while 8 and -y are numerical parameters associated with the temporal integration. For 8 = 0
the scheme is explicit, whereas for 0 < 3 < 0.5 the scheme is implicit. In turn, for y = 0.5
no artificial damping is added, whereas v > 0.5 artificial damping proportional to v — 0.5 is
added by the Newmark integrator (Belytschko et al. 2014). When dealing with an implicit
scheme, a full Newton-Raphson method is usually employed to compute the displacement at
t"+1 Thus, a sequence of linear models is constructed and solved iteratively to approximate
the solution until achieving the desired tolerance. This procedure can be generally expressed
as:

K®AQ® — —R(’“), (2.34)
a®+h) — q® 1 Aq® (2.35)

where the superscript k indicates the inner iteration of the Newton-Rhapson loop. Here, K
and R are respectively the matrix and right-hand side vector resulting from the linearization
process of Eq. (2.27) (Belytschko et al. 2014). In the field of solid mechanics, K is commonly
known as the stiffness matrix, while R is the residual force vector. Finally, it is worth
mentioning that the algebraic system of equations given in Eq. (2.34) can be solved employing
direct or iterative solvers (Langer and Neumiiller 2018).
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2.3 Progressive damage modelling

The principal reason because the modelling of progressive failure analysis of composites is a
challenging computational problem stems from the previous two sections. The discretisation
of the balance of linear momentum in terms of the FEM requires continuity on the displace-
ment field, whereas the physical mechanisms driving the failure of FRP mainly violates
the continuity of the displacement field. To overcome this issue, a huge number of models,
approaches and techniques has been proposed in the context of the FEM (Tay et al. 2008;
Van der Meer et al. 2012). In the following, the most suitable methods for the aims of this
thesis are presented and contextualised between the other techniques. For this purpose, firstly
is presented those models to lying in the so-called continuous approach and then, those in
the discontinuous one.

2.3.1 Continuous approach

The continuous approach models the structural failure provoked by cracks without con-
sidering strong discontinuities in the displacement field. For this purpose, it is employed
constitutive relationships formulated within the thermodynamic principles of the continuum

damage mechanics theory (CDM), which is also known as damage mechanics.

The CDM, initiated by L.M. Kachanov and Y.N. Rabotnov, aims the modelling of failure
mechanisms by making assumptions about its morphology and how it affects the mechanical
response (Murakami 2012). In this sense, the models within the CDM formulate hypotheses
about the nature of the failure and define its influence within the different length scales.
For instance, the progressive degradation of the material properties occurring before the
macroscopic initiation of a crack can be understood as the loss of active area due to the
nucleation of micro-cracks along the fracture process zone (FPZ). In the context of CDM,
the degradation phenomenon of the material properties is the so-called damage (Murakami
2012).

The concept of the damage permits the modelisation of the rupture of the continuum through
the stress-strain law by assuming how it affects the loading capacities. This methodology
leads to a smeared representation of the crack. Accordingly, the stress-strain law has a
softening part that describes the loss of the rigidity of a material point due to the nucleation
of a crack. This softening part is not only governed by the strain state but also by a set of
internal state variables, which accounts for the thermodynamic history state. Therefore, CDM
formulations employ the internal state variable theory for describing the state of damage of a

material point (Coleman and Gurtin 1967; Horstemeyer and Bammann 2010).

The main drawback of the CDM models is the dependency of the predictions with the spatial
discretisation, i.e. the results depends on the characteristics of the FE mesh. The reasons for
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this dependency principally arise from the loss of the positive-definiteness of the material
tangent tensor in the softening part of the stress-strain law (Bazant and Cedolin 1979, 1983;
Crisfield 1988). This loss induces material instabilities that may provoke the loss of ellipticity
of the equations that govern the IBVP (De Borst et al. 1993; Peerlings et al. 2002). As a
consequence, the solution is no longer unique, and therefore, the IBVP may admit multiple
correct solutions (Benallal et al. 2001). In addition, the loss of positive-definiteness also
provokes the localisation of the damage into a finite band with the minimum possible width.
Commonly, these numerical problems are denominated localisation issues because they
are triggered after the localisation of the strains, i.e. when the damage initiates at the very
beginning of the softening region starts.

The damage localisation issue results in a wrong prediction of the strain energy that is
dissipated during the nucleation of a crack. From a physical point of view, the strain energy
consumed by the nucleation is expected to be equal to the fracture toughness of the material
multiplied by the cracked surface area. However, since the fracture toughness is a material
property independent of the spatial discretisation, the energy dissipated during the formation
of a crack decreases as finner is the mesh. In the limit case of infinitesimal element size, this
energy tends to zero leading to non-consistent physical solution (Pineda et al. 2012). Besides
this inconsistency, the localisation of the damage into a finite band also induces the alignment
of the failure pattern with the mesh orientation (De Borst et al. 1993). Depending on the
failure mechanism, a wrong representation of the failure pattern could have associated an
incorrect prediction of the ultimate failure. For instance, this issue can be especially critical
in failure scenarios dominated by matrix splits.

During the last three decades, the mitigation of mesh dependency of the continuous damage
models has been an extense topic of research. These investigations have resulted in a large
variety of continuous models, which can be mainly classified into two types: local and
nonlocal damage models. However, other approaches have also been proposed to alleviate
the mesh dependency, such as the meshless methods or the viscous regularisation techniques
(Needleman 1988; Rabczuk 2013). According to the objectives of the present thesis, the

following sections briefly presents the local and nonlocal damage models.

2.3.1.1 Local damage models

Local damage models describe the mechanical response of a material point employing only
its thermodynamic state. In other words, the local damage models assume that the constitutive
behaviour of a material point solely depends on its loading state and the history of its internal
state variables. This hypothesis simplifies their formulation and implementation, giving one
of their principal advantages, namely: the straightforward use in a standard finite element

code. Local damage models are, in essence, stress-strain constitutive relationships acting at
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the integration point level. Hence, these models do not require any significant modification of
the formulation presented in Section 2.2. However, to achieve good accuracy in the numerical
predictions, the usage of local damage models requires very thin meshes in conjunction with
energy regularisation techniques. Otherwise, the results have a mesh dependency induced
by the localisation issues mentioned previously. It is worth mentioning that, besides those
issues, the damage representation in the local damage models is not strictly continuous due
to the strain localisation in a band of elements. Then, the damage is continuous inside the

element, but not between elements.

The crack band theory is one of the most extended methodologies to mitigate the localisation
issues. Hence, it does not attempt to solve the issues related to the alignment of the failure
pattern with the mesh orientation. Specifically, this theory aims to guarantee the correct
amount of energy dissipated during the nucleation of a crack with independency of the mesh
size. Firstly proposed by Bazant and Oh (1983), the crack band theory modifies the energy
consumed through the dissipation process as a function of the initial characteristic length of
the element. Here, it is worth to remember that the energy consumed in the softening part of
the stress-strain law, i.e. after the strain localisation, is related to the fracture toughness of
the material, in a similar way to the fictitious crack theory of Hillerborg et al. (1976) (Maim{
2007). Despite the implementation of a local damage model using the crack band theory is
straightforward, the evaluation of the characteristic element length can be challenging, or
even not clear. The reason is that the length required by the crack band theory depends on
several aspects: element type, element shape, and the orientation of the fracture plane (BaZant
and Cedolin 1983; Maimi et al. 2007b). For these reasons, the crack band models usually
proportionate more accurate results when the mesh is structured and oriented according to
the expected damage pattern.

2.3.1.2 Nonlocal damage models

Nonlocal damage models describe the mechanical response of a material point utilising not
only its thermodynamical state but also the state of the points in the surrounding region. For
this purpose, nonlocal damage models incorporate procedures in the formulation of the IBVP
that average or regularise the internal variables that govern the damage evolution. These
procedures, known as localisation limiters, are in charge of accounting the thermodynamical
state of the surrounding region, giving the nonlocal character of the formulation. In general
terms, the localisations limiters enforce the localisation of the strain in a finite region
independently of the spatial discretisation, preventing its localisation into an arbitrarily
small volume. This enforcement mitigates the dependency of the solution with the size

and alignment of the mesh (Azinpour et al. 2018; Forghani et al. 2015; Mediavilla et al.

2006; Rodriguez-Ferran et al. 2004). In addition, the variation of the damage state inside the
regularisation zone is smooth, recovering the continuity hypothesis stated in the continuum
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damage mechanics theory (Peerlings et al. 2002). Regarding their implementation, nonlocal
damage models require substantial modifications of the standard FE formulation presented
in Section 2.2. For instance, the localisation limiters usually calculate some variables in a
nonlocal sense and need to manage with extra degrees of freedom.

Most of the nonlocal damage models can be classified into two types: integrative and
enhanced-gradient formulations. The former type uses integrals for averaging the nonlocal
variables to represent the spatial interaction between the material points of the domain,
whereas the latter one incorporates spatial gradients of the nonlocal variables for modelling
the interaction (Jirdsek 2007). Further, the enhanced-gradient models can be classified
according to the method used to computed the nonlocal strain variable driving the damage
growth, namely: implicit and explicit gradient formulations. The implicit formulations
compute the nonlocal variable by solving the differential equation that results from the
incorporation of the spatial gradients in the formulation. In turn, the explicit formulations
obtain the nonlocal variable by adding the spatial information giving by the derivatives in its
local counterpart. A detailed and comprehensive comparison between both types of nonlocal

damage models can be found in the study carried by Peerlings et al. (2001).

Beyond the models lying in the previous classification, a new type of nonlocal damage
model known as Phase Field (PF) has been recently established as a reliable alternative for
modelling brittle fracture problems. Seminally proposed by (Bourdin et al. 2000, 2008),
the PF is a regularisation technique for the variational fracture problem formulated by
Francfort and Marigo (1998). This technique consists of smearing the discrete representation
of a crack within the continuum, maintaining the spirit of Griffith regarding the brittle
fracture problem. For this purpose, Bourdin and co-workers employed the work in image-
segmentation performed by Mumford and Shah to regularise the discrete internal boundary
associated with a crack, exploiting the I'-convergence concept (Ambrosio and Tortorelli
1990). Thanks to this, the PF approach preserves the continuity of the displacement field and
precludes the necessity of algorithms for tracking the crack evolution. After their pioneering
work, Miehe et al. (2010b) presented a thermodynamically consistent formulation based on
the PF approach, which emphasises the differences between the energetic and dissipative
mechanisms as well as accounts for the irreversibility condition of the damage.

2.3.2 Discontinuous approach

The discontinuous approach models the structural failure provoked by cracks through the
modelling of the strong discontinuities in the displacement field, known as displacement
jumps. This displacement jump governs the softening region of the constitutive model
through a definition of a traction-separation law or cohesive law. Hence, the discontinuous
approach has to deal with the constitutive modelling and the kinematics of the displacement

jump.
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The constitutive basis of the discontinuous models is the cohesive zone model (CZM)
stemming from the early work of Dugdale (1960) and Barenblatt (1962) for elastic-plastic
materials, and Hillerborg et al. (1976) for quasi-brittle materials. From their studies, it is
postulated the existence of a fracture process zone (FPZ) that extends from the crack tip.
Along the FPZ, the rupture of the material is considered as a gradual phenomenon resisted
by cohesive tractions. In this sense, the CZM models the nucleation and propagation of
cracks by lumping their effect into a discrete plane (or fictitious crack), which extension
and orientation are associated with the FPZ (Soto et al. 2016). Accordingly, the constitutive
response of the material is governed by the cohesive law that relates the displacement jump
across the fictitious crack with the cohesive tractions (Ortiz and Pandolfi 1999). Further, this

law can be formulated within plasticity or damage mechanics theories (Van der Meer 2010).

Regarding the evaluation of the displacement jump across the FPZ, there are different
methodologies in the context of an FE spatial discretisation. Essentially, these methodologies
are aimed at describing the displacement jump induced by a crack. On the one hand, some
of these methodologies act at the element level. The most widely used are: (i) the Interface
Element Method (IEM) (Alfano and Crisfield 2001; De Borst 2003; Goyal et al. 2004), (ii) the
eXtended Finite Element Method (X-FEM) (Fries and Belytschko 2010; Mogs et al. 1999),
which is based on the partition-of-unity property stated by Melenk and Babuska (1996),
and (iii) the Phantom Node Method (PNM) (Mergheim et al. 2005; Song et al. 2006), the
Floating Point Method (FPM) (Chen et al. 2014) and the Augmented Finite Element Method
(A-FEM) (Ling et al. 2009), all based on the Hansbo and Hansbo approach (A. Hansbo and
P. Hansbo 2004). On the other hand, other interesting techniques enabling the modelling
of strong discontinuities are based, for instance, in re-meshing procedures (Bouchard et al.
2000).

Excepting the IEM, the previously mentioned technologies acting at the elemental level
(X-FEM, PNM, FPM, and A-FEM) enrich the displacement field with extra degrees of
freedom. Furthermore, these technologies usually require algorithms for computing and
tracking the orientation of the crack propagation. Therefore, the complexity of their im-
plementation and the computational costs of the simulation are generally higher than the
models of the continuous approach. On the contrary, the IEM does not require tracking
algorithms, and its implementation in the standard formulation presented in Section 2.2 is
straightforward.Specifically, IEM defines a new type of element, called interface element,
that enables a simple evaluation of the displacement jumps across a virtual interface assumed
in its mid-plane. When modelling fracture processes, this virtual interface is associated with
the mid-plane of a fictitious crack. Hence, the interface elements must be defined along
the expected crack path with the correct orientation, which reduces the performance of the
technique for unknown failure patterns. Otherwise, IEM is especially suited for modelling

the debonding of an interface because the potential crack path is well-defined from the very
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beginning of the analysis.

2.4 Frameworks for the applied methods

This final section is devoted to present the basic principles of the frameworks used to formu-
late the damage models concerning this thesis. Specifically, it is intended to highlight how
each framework modifies or not the finite element formulation of the balance of momentum
law governing the solid mechanics problem stated in Section 2.2. Firstly, it is summarised
the thermodynamical bases of the continuum damage mechanics theory, which are basically
used in the formulation of the local damage model for the intralaminar region. Then, the
phase field approach, which set the bases for the nonlocal damage model also formulated for
the intralaminar material, are presented. Finally, the cohesive zone model concept applied to

the intralaminar region is described.

In the following, the internal energy functional for the uncracked homogeneous body, which
is described in Section 2.2 and illustrated in Figure 2.3, is herein employed to show the
implications of each technique in the standard finite element formulation. For this purposes,
let us recall the energy functional Eq. (2.9) that governs the deformation problem, which for
a quasi-static condition reads as:

II(u) = pe () — Mepe(w), (2.36)

where the internal energy contribution is defined in Eq. (2.11), while the external energy
contribution in Eq. (2.12).

2.4.1 Continuum Damage Mechanics

The continuum damage mechanics (CDM) sets the principles for modelling the progressive
failure of materials within the continuum mechanics theory (Lemaitre and Chaboche 1990;
Murakami 2012). According to CDM, nucleation and propagation of cracks and voids can
be interpreted as a deteriorating process of the material properties. In turn, this damaging
process is governed by the thermodynamical state of a material point through a set of internal
state variables, denoted in the following as D. Hence, the CDM postulates that the damage
induced by cracks can be modelled in the continuum by assuming how it affects the material
properties. The following gives the basic thermodynamic principles establishing the basis for
the damage models formulated and implemented in the context of this thesis.

Let us assume that, during the failure process of the body described in Section 2.2.1, the
variation of density is negligible and the evolution of damage occurs in an adiabatic manner.

Considering those assumptions, the Clasius-Duhem inequality for the balance of momentum
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and energy postulates that the process is thermodynamical consistent if the mechanical energy
dissipation is positive, i.e. = > 0. For a system only subjected to mechanical loads, it can be

expressed as:

E=0:e-U >0 (2.37)

where o : € is the mechanical power supplied by external agents and U is the rate of change
of the internal elastic energy of the system. In turn, o is the stress tensor, € is the strain
or deformation tensor, and W is the Helmholtz energy. By definition, ¥ represents the free
elastic energy available for the solid to undergo the deformation process. Hence, according
to CDM, the damage state of the solid must directly affect its value. Accordingly, the rate of
change of the Helmholtz for a constant absolute tempreature can be expressed as:

. 8\11 ov .
U(e,D —: D, 2.38
By substituting Eq. (2.38) into Eq. (2.37) and operating, the Clausius-Duhem inequality

reads as:

v, .0V

where —0p W =Y are the thermodynamical forces, which define the variation of the internal
free energy when the internal state variables evolve. Taking into account that the strain tensor
can vary freely, the expression inside the parenthesis must be equal to zero leading to the
definition given in Eq. (2.14). Therefore, the thermodynamic consistency is ensured when:

Y :D>0. (2.40)

At this point, considering positive thermodynamical forces, the consistency of the damage
falls on a positive evolution of the damage variable. For this purpose, the framework
of Maimi et al. (2007a,b) can be employed to define damage evolution laws fulfilling
the thermodynamical consistency. Accordingly, a variable change is performed, and a
historical damage threshold variable r is defined, which governs the damage evolution
law and considers the past states. Then, the onset and growth of the damage state can be
associated with a failure criterion F', such that:
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F=¢-—1r<0 (2.41)

where ¢ is the loading function defining the shape of the failure surface. On one hand, ¢ is
computed through the independent variable (¢ or o) and some constant parameters, which
are usually related to the material properties. On the other hand, r can be explicitly integrated
over the time as:

= 1,¢° 242
r=max(1,¢°) (2.42)
where s € T = [0, T represents the full history process. Then, the material response state

is determined by means of the appropriate form of the Kuhn-Tucker conditions (Simo and
Hugues 2003):

>0, F<0, 7#F=0. (2.43)

If F' < 0 the material is in the elastic regime, the damage criterion is not satisfied and 7 = 0.
Otherwise, if F' = 0 the damage criterion is satisfied and the material response state is
determined from the loading function gradient b as:

$<0 — unloading, (2.44)
$=0 — neutral loading, (2.45)
$»>0 — loading. (2.46)

Under loading state, further damage takes place and the damage threshold r must be updated.
Taken into account Eq. (2.41) and (2.43),

FE=0=¢—7=0=¢=r. (2.47)

Here, it is worth remembering that r is used to computed the current state of the internal
damage variable representing the damage, i.e. D(r).

According to the above formulation, the local continuum damage model should define a
suitable expression for the free energy density and a set of damage state variables degrading
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the elastic properties, d := D(r,...). Further, these damage state variables should be
computed through the damage evolution law depending on a set of damage threshold variables
r. In turn, these threshold variables must be defined as monotonic growing continuous
variables associated with the loading functions ¢. Hence, the local model should also
propose the loading functions setting the limit between the elastic and inelastic regimes.

Therefore, the implementation of the continuum damage mechanics based consititutive mod-
els does not require any substantial modification of the standard finite element approximation
of the balance of momentum problem. It only needs the definition and management of the
state variables at the integration points. In this sense, the counterpart of the internal energy
contribution stated previously is:

i (u, D) := / U (e(u), D) dV. (2.48)
B

Therefore, the implementation of a local continuum damage model in a standard FE-code
should be straightforward because only the computation of the stress tensor defined in
Eq. (2.14) is modified. The expressions for the discrete problem are also the same presented
before. More details about the CDM theory and its implementation in a IBVP can be found
in the works of Camanho et al. (2007), Maimi (2007), Murakami (2012), and Van der Meer
(2010).

2.4.2 Phase field approach to brittle fracture

The phase field (PF) approach is a regularisation technique of the variational problem of
brittle fracture proposed in the sense of the Griffith theory by Marigo et al. (2016). Following
the PF, the discrete representation of a crack is smeared within the continuum by the definition
of a functional representing the crack energy density (Bourdin et al. 2000, 2008; Miehe et al.
2010a,b). In turn, the crack energy density functional depends on the PF represented by a
scalar variable and its spatial gradient, in line of the enhanced-gradient models. Therefore,
the PF approach is a nonlocal approach that requires the solution of a coupled-field problem,
namely: the displacement and phase fields. In the following, the basic principles fo the PF

approach to brittle fracture are presented.

Let us postulate that the body described in Section 2.2.1 has an interior boundary [ that
represents a fully developed crack, see Figure 2.5. Further, let us remark the body forces b
and external boundary conditions, ¢ and u, are the ones prescribed for the uncracked body.
According to the Griffith theory of fracture and assuming static crack growth conditions, the

internal energy functional governing the solution of the problem is:
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Discrete representation Diffuse representation

B(X) Pp(X) 41

Figure 2.5: A cracked body subjected to body forces b, displacements i and tractions %, illustrating
the discrete and diffuse (according to the phase field) representation of the crack.

0 (u, I4) = / W, (e(w)) dV + / G. ds, (2.49)
I

B\T:

where U, is the free elastic energy available in the solid, € is the infinitessimal strain tensor
defined in Eq. (2.13), and G, is the critical energy release rate. Recalling the phase field
approach, the crack boundary I is approximated over B through a functional representing
the crack surface density v(¢, V), such that:

/ G, dS ~ / Gry(6, V) dV. (2.50)
I B

The arguments of the crack surface density functional are the phase field variable ¢ and
its spatial gradient V¢. By definition, the phase field is a scalar field describing for the
amount of equivalent crack surface at a material point and therefore, it can be related to
the damaged state of the material point. Moreover, note that the later argument endows the
aforementioned nonlocal character in the spirit of gradient enhanced models (Marigo et al.
2016). Here, following the notation used by Miehe et al. (2010b), the crack surface density
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defined through the Ambrosio-Tortorelli functional (Ambrosio and Tortorelli 1990) is given
by:

16, V9) = o7 (6 + 86 Vo), @s

where £ is the so-called length scale parameter, which controls the size of the damage
diffusion around the process region as depicted in Figure 2.5. Using Eq. (2.51) and (2.50),
the internal energy contribution defined in Eq. (2.49) is approximated as:

Wine(u, 1) & i (u, ¢), (2.52)

where the rigth hand term is defined as:

i (1, @) == / T (e(u), ) dV + 5—2(¢2+£2V¢-V¢) dv. (2.53)
B B

In the previous expression, ¥ is the free energy functional modelling the degradation of
elastic energy within the smearing transition zone that is characterised by /, i.e. between
a pristine (¢ = 0) and a fully-damaged (¢ = 1) state. Note that such representation is
related to the CDM, where the internal state variables describe the thermodynamic state of a
material point due to the development of micro-cracks and micro-voids. Let us assume in the
following the most simple expression for the free energy density:

V() = (1 - ¢)*Te(e(u)) (2.54)

Next, recalling the standard Galerkin-Bubnov method for the approximation of the two
primary field variables (u and ¢) and their spatial gradients, the semi-discrete form of the
internal force vector of the stress equilibrium problem, which is the counterpart of Eq. (2.29),

is given by:

Fiod0) =A", / (1-2)’BlodV ;, (2.55)

Qe

where 0 is the vector arranging the nodal values of the phase field. In turn, the residual

2.4 Frameworks for the applied methods
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corresponding to the evolution of the crack evolution problem governed by the PF is given
by:

F?

int

@) =A", / [(0—2(1 —0)H) N + *BIVa] AV (2.56)

Qe

where N/ is the interpolation operator for the relative displacements and By is the kinematic
operator that approximates the spatial gradient of the phase field. Their specific expressions
can be found in the works of Carollo et al. (2018), Molnar and Gravouil (2017), and Msekh
et al. (2015). In turn, H is a field variable that accounts for the historical value of the crack
driving state function D by setting:

_ S . S __ e
H = max (D ) with D* = o= (2.57)

where s € T = [0, T represents the full history process. Thus, this history field ensures
two conconditions required to correctly model the evolution of a crack: (z) the irreversible
condition preventing healing effects and (i¢) the positiveness of the crack driving force

enforcing for fracture growth.

Note that the phase field approach leads to a coupled-field problem in which the displacement
field governs the balance of momentum and the phase field governs the evolution of the crack
(or damage). Therefore, the solution of the two primary fields (u, ¢) must be computed at each
time step. In the literature different approaches has been used for this purpose, monolithic,
alternte minimization and staggered schemes. More details about the implementation of PF
approach in the IBVP can be found, for instance, in Molnar and Gravouil (2017) and Msekh
etal. (2015).

2.4.3 Cohesive zone model

The cohesive zone model (CZM) is a framework conceived to analyse the onset and propa-
gation of cracks when the fracture process zone is non-negligible. Even though CZMs can
be used to model the intralaminar failure, they are well suited to describe the interlaminar
failure affecting laminated composites. The delamination is essentially a crack propagating
within the region confined between two adjacent plies known as the interface. Therefore, the
potential crack path where the delamination can occurs is known a priori. This fact brings the
perfect scenario for a discontinuous modelling strategy using the interface element method
(IEM) in conjunction with a CZM. The following describes the basis of the IEM - CZM
strategy, emphasising how it can be justified in the balance of momentum equation.

Chapter 2 Progressive damage modelling
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Figure 2.6: A body with a damaged interface subjected to prescribed body forces b, displacements @
and tractions ¢, showing the kinematic representation of the displacement jump across the
interface.

Let us postulate that the body described in Section 2.2.1 has an interface represented by an
interior boundary I3, as illustrated in Figure 2.6. Let us, for convenience, postulate that the

displacement jumps field across the interface describes the configuration of the system at

the interface itself. These jumps represent the crack opening and sliding of the interface.

Mathematically, they are computed as the projection of the relative displacement of two
homologous points, X € I'" and X~ € I}, onto the mid-plane defined by the unit

vectors n; and t;, such that:

A(u)=R [u(X*, t) —u(X™, t)} , (2.58)
where R is the rotation operator from the global to the mid-plane coordinate system. Formally,
it depends on the displacement field (Reinoso and Paggi 2014); however, for an infinitesimal
rotation case, this dependency can be neglected. Finally, let us remark that the body forces b
and external boundary conditions,  and u, are the ones prescribed for the uncracked body.
Considering those modifications, the internal energy functional governing the deformation of
the solid can be expressed as:

II(u, I}) = Ug(a) + I (13), (2.59)

where Il and II 1, are the energy contributions associated with the deformation process of

2.4 Frameworks for the applied methods

33



34

bulk (intralmainar) and interface (interlaminar) regions, respectively. On the one hand, 11z is
the same expression used for a body without an interface, i.e. Eq. (2.11). On the other hand,
assuming that the interface has a negligible thickness and the unique dissipative mechanism
is the debonding induced by cracks, Il is:

() ~ p (v, D) = / T;(A(u), D) dS, (2.60)
I

where W; is the specific energy functional of the interface. As can be appreciated, ¥; not only
depends on the displacement jump but also to a set of internal state variables D in the sense
of a damage mechanics framework. Accordingly, the work-conjugated variable stemming
from the specific energy of the interface and the relative displacement jumps are cohesive

tractions, which are defined as:

oy
T oA

T (2.61)
At this point, the counterpart of the internal energy contribution of a body with interfaces
considering a CZM is:

M (u,D) = [ Te(u)dV + [ Ui(A(u),D)dS. (2.62)
[y

Next, recalling the standard Galerkin-Bubnov method and considering an interface element
formulation for the interface region, the semi-discrete form of the internal force vector, which
is the counterpart of Eq. (2.29), reads:

Fin(d) =A.° / B'o dV + / Bhrds b, (2.63)

Qe Tie

where BA = RN AL is the kinematic jump-displacement operator that approximates the
nodal dispacement jump into the integration points of the middle plane of the interface. Here,
N A is the interpolation operator for the relative displacements and L provides the difference
between the displacements of the upper and the lower interface points. The specific form of
these operators can be found in the works of Paggi and Reinoso (2015), Reinoso and Paggi
(2014), and Reinoso et al. (2017b). Further, to alleviate the notation, the dependency with
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the internal state variables is omitted in the previous expression.

As can be appreciated through the formulation presented above, CZM requires a new typology
of elements to capture the displacement jump across the interface. Therefore, the main
modification in the standard finite element approximation of the deformation problem is
the definition of the so-called interface element technology. Besides this modification,
the management of the internal state variables is also required. However, the flow of the
numerical scheme is the same as the standard formulation. Finally, note in Eq. (2.62) that the
bulk region can be modelled using different approaches, even the local or nonlocal continuum
damage model. More details about the modelling using CZM and its implementation in the
IBVP can be found in the works of Camanho et al. (2003), Goyal et al. (2004), and Turon
et al. (2006).

2.4 Frameworks for the applied methods
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Computational framework:
Alya High-Performance

simulation code

This chapter presents Alya, a simulation code designed to solve complex multi-physical
problems in large-scale supercomputing facilities. A key aspect of Alya is that it is not a
sequential simulation code, afterwards parallelised. It was conceived from scratch as a parallel
code aimed to exploit the features of parallel programming models and the characteristics
of the hardware to run with the highest efficiency standards. For instance, Alya has been

used to perform large numerical simulations related to non-linear solid mechanics (Casoni

et al. 2015; Vigueras et al. 2015), compressible and incompressible flow (Eguzkitza et al.

2013; G. Houzeaux et al. 2009; Guillaume Houzeaux et al. 2014), heat transfer (Govert
et al. 2018; Rodriguez et al. 2019), turbulence modelling (Lehmkubhl et al. 2019; Pastrana
et al. 2018), electrical propagation (Santiago et al. 2018; Vazquez et al. 2011), particle

transport (Calmet et al. 2018a,b) and chemistry (Mira et al. 2016), among other (Cajas et al.

2018). Concerning the development and maintenance of Alya, it is principally done by at the
Department of Computer Applications for Science and Engineering (CASE) of the Barcelona
Supercomputing Center — Centro Nacional de Supercomputacién (BSC - CNS).

The following gives the main features of Alya, highlighting the most relevant for the context
of the current thesis, namely: (i) structure of the code, (ii) parallel hierarchy, and (iii) parallel
performance.

3.1 Code structure

The architecture of Alya is composed of several parts grouped in three blocks according
to the performed task: kernel, modules and services. The kernel controls de work-flow of
the execution including the reading of the input files and the writing of the solution, the
management of the data structures related to the mesh and geometry, and the resolution of
the algebraic system managing the linear and nonlinear solvers. Further, it is responsible

of the communication between the other blocks and itself through well-defined interfaces.

In turn, the modules are responsible of the solution of a particular physics and therefore,
they contain the workflow and the information necessary to solve a set of partial differential
equations, including the constitutive mathematical models and boundary conditions. Finally,
the services are third-party libraries and tools related with code optimization (Garcia-Gasulla
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et al. 2019), parallel performance (G. Houzeaux et al. 2010), mesh divisors (G. Houzeaux
et al. 2013) and format writers (Artigues et al. 2017).

The solid mechanics constitutive equations are implemented in Alya using a discretiza-
tion with the standard Galerkin method for a finite strain framework, considering a total-
Lagrangian formulation (Casoni et al. 2015). Push-forward and pull-back relations between
the different configurations are used for the stress measures conveniently depending on the
material model selected. Regarding the nonlinearities arising from the governing equations
(balance of linear momentum), explicit and implicit solution schemes can be used indistinctly
within the solid mechanics’ module by means of the generalised S-Newmark scheme. For
the implicit scheme, a full Newton-Raphson method is used.

3.2 Parallel hierarchy

Alya exploits the three levels of parallelism mainly offer by modern supercomputers. At the
node and chip levels, Alya splits the computational problem between different processes using
a Master-Slave strategy (Vazquez et al. 2016). Firstly, the Master reads the information about
the problem and divides it among the Slaves. In the context of the finite element problem,
this division is the so-called domain decomposition which, in Alya, can be performed in
sequential using the METIS (Karypis and Kumar 2009) or in parallel using a novel built-in
method based on space-filling curves (Borrell et al. 2018). Once the partitioning finishes,
each Slave stores all the necessary data to operate over the assigned subdomain. Afterwards,
during the execution of the simulation, the Master executes and controls the global operations
associated with the flow of the solution process, while the Slaves perform the local ones
related to the subdomains. For instance, the Master is in charge of executing the algebraic
solver, whereas the Slaves performs the assembly of the linearised system of equations,
i.e. the construction of the local Jacobian matrix and the local right-hand side vector. This
process is illsutrated in Figure 3.1.

The principal characteristic of the Master-Slave strategy in the context of the FEM is the com-
munication between the different computational processes. The assembly procedure requires
a few numbers of communications, whereas the algebraic solver usually requires a more
significant quantity. This is because of the matrix-vector and vector-vector (dot) products
operations, which are graphically represented in Figure 3.2 (Casoni et al. 2015; Eguzkitza
et al. 2013). In Alya, this communication is performed using the programming model for
distributed memories denominated message passing. Thus, each processor performs the
assigned task assuming a local and private memory that can only be accessed by itself. Then,
the processors communicate between them by sending and receiving messages with data.
Due to these characteristics, this programming model is well-suited for parallelism at the

node level. However, it can be also used at the chip level. In Alya, the communication uses
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END Alya solid module

Services (METIS, MPI)

Figure 3.1: Work-flow of the parallel execution of a finite element simulation in Alya according to the
master-slave strategy (Redrawn from (G. Houzeaux et al. 2009)).

the data types and functions defined in the standardized Message-Passing Interface (MPI)
library (Gropp et al. 1999).

Beyond the Master-Slave strategy, Alya also considers other programming models, which
exploits the second and third levels of parallelism. On the one hand, Alya offers the option
to parallelise the most expensive nodal and elemental loops by opening threads. This
parallelisation at the chip level makes use of of the directives defined in the OpenMP library
(Dagum and Menon 1998). Contrary to the MPI, OpenMP is a multiprocessing programming
model, which divides the work in different threads and assumes a shared memory among
them. Hence, communication between processes is implicit by accessing the same data
structure.

3.2 Parallel hierarchy
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Matrix-vector product in parallel Vector-Vector (dot) prod. in parallel

i. Local matrix-vector product: i. Local vector-vector product:
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ii. Communicate information ii. Communicate information
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send/receive reauce
iii. Local assembly: slave (1)

slave (1) = +

| 2
slave(2):+ Save”

Figure 3.2: Matrix-Vector and Vector-Vector (dot) product in parallel according to the message pass
programming model. The squares represent an item of the matrix or vector. The white
ones are those having the final value, whereas the grey ones are those items having a partial
value and therefore, are the ones that communicate. (Casoni et al. 2015; Eguzkitza et al.
2013).

On the other hand, Alya includes vectorisation techniques in some functions of the kernel
exploiting the concurrency capacities of the third level of parallelism (Garcia-Rodriguez
et al. 2018b). These techniques accelerate the execution of the processes by maximising the
potential of the hardware guiding the compiler with some specific directives. Finally, the
third level of parallelism is used to accelerate some algebraic solvers. Thus, Alya has some
built-in solvers programmed to run in Graphical Processing Units (GPU), using for instance
the capabilities given by the OpenACC (Wienke et al. 2012).

3.3 Parallel performance

The parallel performance of a simulation code is obtained by performing some benchmark
tests. In these tests, the same computational problem with a different number of processors
(np) is executed to obtain quantitative values of efficiency in terms of the execution time.
Formally, the parallel efficiency (E,,,) is the ratio between the achievable (S,,;,) and the
maximum (S,,4.) speedups of the parallelisation (Magoules et al. 2016). Considering that
the ideal speed up is the number of processors, i.e. S;,qx = np, it is postulated that:
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Shp

S (3.1)

Enp =
where Sy, is defined as the ratio between the execution time on one processor (71") and on np

processors (15,p):

Top

T (3.2)

Spp =
Concerning the parallel performance of Alya, it has been demonstrated their efficiency
and scalability up to several thousands of processors for different physical problems and
different hardware architectures, see previous references and Figure 3.3. It is noteworthy
the parallel performance obtained in the Blue Waters supercomputer hosted in the National
Center for Supercomputing Applications (NCSA), located at the University of Illinois at
Urbana-Champaign (Vazquez et al. 2016). In this case, Alya achieved a parallel efficiency of
85% running into 100,000 cores using a mesh of 3.416B of elements.

Seep up
Seep up

a) b)

Seep up
Seep up

c) d)

Figure 3.3: Speed-up of Alya code in different supercomputers: a) Jugene - Blue Gene/P (Germany),
b) Lindgren - Cray XE6 (Sweden), ¢) Curie - BullX (France), and d) Blue Waters - Cray
XE6 (USA).

3.3 Parallel performance
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A high-performance
computational framework for
virtual testing of composite
structures (ALYA-VITECOST)

This chapter highlights the novelties of the models developed and used in the context of this
thesis. In this sense, the following sections address the main characteristics of the models,
whereas the specific details can be found in the articles supporting this thesis. Regarding
the structure of this chapter, the first and second sections present, respectively, the local
and nonlocal continuum damage models, both aimed for modelling the intralaminar failure.
Then, the third section describes the cohesive zone model used to model the interlaminar
failure. Finally, the fourth section presents the formulation proposed for coupling between

the nonlocal continuum damage model and the cohesive zone model.

4.1 Local continuum damage model for the
intralaminar failure

A local continuum damage model formulated and implemented in the context of the current
dissertation has been published in the paper entitled ’3D transversally isotropic consti-
tutive model for advanced composites implemented in a high-performance computing

code” (Quintanas-Corominas et al. 2018). Paper A presents its manuscript version.

The formulation of the local damage model is rooted in the continuum damage mechanics
and follows the framework used by Maimi et al. (2007a,b). It has a novel formulation
conceived for modelling the onset and evolution of the intralaminar damage mechanisms
arising from a 3-dimensional stress state, especially the mechanisms related to the matrix
failure. In this sense, three loading functions are defined to predict the breakage and kinking
of the fibres and the cracking of the matrix. As illustrated in Figure 4.1, the proposed loading
functions match the uniaxial strengths, but at the same time, proportionate enough flexibility
to describe a wide range of FRP. Regarding the degradation of the elastic properties, five laws
are defined to govern the evolution of the damage state variables. Each law is formulated as
a piecewise linear function aimed at representing the arbitrary shape of the uniaxial cohesive

law. Hence, the proposed formulation assumes that the cohesive law is a physical property
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of the material, which can be obtained experimentally (Ortega et al. 2016). In addition, the
expressions of the damage evolution laws make use of the crack band theory proposed by
Bazant and Oh (1983), intending to ensure the energy objectivity with regards to the mesh

size.
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Figure 4.1: Influence of the shape parameters on the loading functions concerning the local continuum
damage model at the onset of damage (Quintanas-Corominas et al. 2018).

4.2 Nonlocal continuum damage model for intralminar
failure

The nonlocal continuum damage model formulated and implemented in the context of
this thesis has been published in the paper entitled A phase field approach to simulate
intralaminar and translaminar fracture in long fiber composite materials” (Quintanas-
Corominas et al. 2019a). In Paper B can be found its manuscript version.

The formulation of the nonlocal continuum damage model is rooted in the phase field
approach to the brittle fracture problem presented by (Bourdin et al. 2000), whose basics
principles are presented in Section 2.4.2. The novelty of the presented formulation is the
capability to model the anisotropic response that characterises FRP composites. For this
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purpose, the functionals defining the elastic energy density and the crack surface density are
modified. It is proposed to use the expression of the free energy density of the local continuum
damage model presented in Paper A as the functional of elastic energy density. In turn, a
structural tensor is introduced in the definition of the crack surface density functional in order
to account for different regularisation lengths (Giiltekin et al. 2018, 2016). Besides these
modifications, the energetic force that drives the phase field evolution is divided into several
contributions, one for each damage mechanism. This strategy enables to model independently
the initiation of each damage mechanisms but not their growth. The fact of using only one
phase field and therefore a single damage-like variable imposes a simultaneous degradation
of the elastic properties. For this reason, it is considered that the proposed formulation is

between the mesoscopic and macroscopic modelling assumptions.

The numerical scheme implemented to solve the coupled-field problem is a modified version
of the alternate minimisation scheme used by Bourdin et al. (2008). The principal objective of
this modified version is to preclude the necessity of using a bound-constrained optimisation
solver. This necessity is, in part, imposed by the irreversibility evolution condition of the
damage represented by the phase field. On the one hand, it is used the strategy based on the
posterior projection of the solution, which was proposed by Lancioni and Royer-Carfagni

(2009). On the other hand, the phase field value is fixed when its value is close to one, i.e.

when the material points are almost completely damaged. Thanks to this strategy, a standard

Netwon Raphson method can be used to obtain the solution of the phase field problem.

4.3 Cohesive zone model for interlaminar failure

The cohesive zone model implemented in the context of this thesis is the recent formulation
presented by Turon et al. (2018). In turn, the formulation implemented for the interface
element techonology is the one presented by Reinoso and Paggi (2014).

The new formulation implemented improves the accuracy of the original one (Turon et al.

2006, 2007) with regards the behaviour under mixed-mode loading conditions. For this
purpose, the expression for the penalty stiffness is modified to make it dependent on the
current mixed-mode ratio. Regarding the constitutive law, a bi-linear traction-separation law
governs the response of the interface as in the original formulation, see Figure 4.2. The first
part of the law models a fictitious elastic response ensuring the connection between the crack
flanks before the onset of the damage, while the second part models the linear softening up to
the propagation of the delamination. The onset and propagation criterion are those proposed
by Benzeggagh and Kenane (1996) and Gonzalez et al. (2014), respectively. Further, the
formulation ensures the thermodynamic consistency of the debonding process, even under a
variation of the mixed-mode ratio.

4.3 Cohesive zone model for interlaminar failure
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Figure 4.2: Schematic representation of the equivalent cohesive law for given local mode mix ratio B
according to the (Turon et al. 2018).

Although the formulation of the cohesive zone model and the interface element technology
are not new, some of the aspects of their implementation are novel. In this sense, their
implementation is aimed to run efficiently in a high-performance computing environment.
For instance, the computation of the material tangent tensor is performed using a different
method to the one used by Turon et al. (2018). In their work, they use a numerical method
based on small perturbations of the displacement jump to approximate the material tangent
tensor as done by Martinez et al. (2008). On the contrary, the implementation in the
context of this thesis evaluates the material tangent tensor using the complex step derivative
approximation (CSDA) (Martins et al. 2003).

4.4 Strategy for coupling the intralaminar and
interlaminar failure

The strategy for coupling the nonlocal damage model for the intralminar failure and the
cohesive zone model for the interlaminar one is presented in the paper entitled ”A phase field
approach enhanced with a cohesive zone model for modelling delamination induced
by matrix cracking” (Quintanas-Corominas et al. 2019b). In Paper C can be found the
submitted version of the article.

The strategy for coupling the intralaminar and interlaminar failure is based on the framework
presented by Paggi and Reinoso (Paggi et al. 2018; Paggi and Reinoso 2017). According to
their framework, the cracking of a body with interfaces can be modelled using a nonlocal
damage model based on the phase field approach for the bulk region and a cohesive zone
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model for the interface region. The novelty of the proposed formulation is in both the
constitutive models and how the coupling strategy. On the one hand, the constitutive models
are the nonlocal damage model and cohesive zone model presented in Sections 4.2 and 4.3,
respectively. On the other hand, the strategy to couple both models exploits the physical
meaning of the damage and phase field variables. In general terms, both variables represent
the ratio of the cracked area of a material point. Based on this interpretation, the damage
evolution law of the cohesive zone model is redefined to include not only the dependence with
the displacement jump but also with the phase field. Hence, the intralaminar and interlaminar
failures are coupled through the phase field variable. The traction-separation law of the
cohesive zone model resulting from this coupling strategy is illustrated in Figure 4.3. Finally,
it is worth mentioning that the proposed approach retains the qualities of both models, such

as the accuracy of the mixed-mode loading of the cohesive zone model.
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Figure 4.3: Cohesive law response according to the coupling strategy proposed in Quintanas-
Corominas et al. 2019b. Rainbow coloured map represents the cohesive law for a fixed
initial phase field value, while the black line illustrates a loading cycle combining phase
field and equivalent opening.
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Results and discussion

This chapter presents and discusses the main results, showing the capabilities of the models
developed and demonstrating the fulfilment of the objective of the present thesis, namely, the
implementation of a framework for performing virtual testing of composites structures on
the mesoscopic length scale. The results are grouped according to the virtual test to facilitate
the discussion. The acronyms used through this chapter to refer the models are listed in
Table 5.1, while the numerical tests herein presented are summarised in Table 5.2.

Acronym Description Section
CDM Local continuum damage model 4.1
PFM Phase field model (nonlocal model) 4.2
CZM Cohesive zone model 43
PFM-CZM Coupling model between PFM and CZM 44

Table 5.1: Acronyms used for referring the damage models implemented in the context of the thesis.

Virtual Test Failure mode Model Section
Open hole Intralaminar CDM 5.1
Transverse cracking Intralaminar CDM / PEM 5.2
Out-off-axis Intralaminar PFM 5.3
Mode-I/IT delamination Interlaminar CZM 5.4
4-point bending Egi;‘ﬁﬁ:; & CZM-PF 5.5
Compact tension Translaminar PFM / PFM 5.6

Table 5.2: Virtual tests simulated in the context of the thesis.
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5.1 Open hole

The virtual test consists of an open hole specimen subjected to tensile loads. The principal
objective is to demonstrate that the formulation of the CDM predicts both the ultimate
strength and failure pattern with reasonable accuracy. In this sense, it is intended to examine
whether the use of very refined meshes reduces the dependency of the failure pattern with
the orientation of mesh. The following presents the main results and discussions regarding
the numerical predictions, while more specific details can be found in Paper A.

The open hole specimen is a laminate of IM7/8552 unidirectional plies stacked according to
the following sequence: [90/0/ + 45/ — 45]3,. Figure 5.1 shows a sketch of the geometry
and loading conditions. Regarding the computational model, three meshes with different
levels of refinement are considered, namely: n = 1, 2 and 4. Here, n indicates the number of
elements defined per ply in the direction of the thickness. More specific details regarding

material properties, mesh characteristics, and boundary conditions are given in Paper A.
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Figure 5.1: Sketch of the open hole specimen loaded in tension, illustrating the boundary conditions
and a detail of the FE mesh.

The numerical predictions of the stress-strain curve are shown in Figure 5.2. The curves
demonstrate that the model predicts with reasonable accuracy the experimental strength when

the level of refinement is n = 2 or n = 4. Moreover, for these levels of discretisation, the results
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also demonstrate that the model captures the initiation of the damage correctly. The initiation
of the damage occurs around the 200 MPa as can be identified by the change of the slope in
the stress-strain curve (Reinoso et al. 2017a). On the other hand, the underestimation of the
ultimate strength predicted by the coarse refinement level, n = 1, is because, after the damage
localisation, the kinematics of the deformation is not described with enough precision. As
a consequence, the stress field is overestimated, which accelerates the localisation of the

damage and provokes a premature collapse of the specimen.
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Figure 5.2: Mechanical response numerically predicted using the local continuum damage model
(CDM) for the open hole test considering three levels of discretisation.

The failure pattern just before the ultima strength is illustrated for the level of refinement
n =4 in Figure 5.3. Considering that the predicted failure pattern is almost symmetric, the
figure only shows the plies of the top half part of the specimen grouped according to the
ply orientation. A global perspective of the results indicates that the failure pattern is in
agreement with the expected failure mode observed in experiments: (i) 90° plies mostly have
matrix failure under tension (d), (ii) + 45° plies have matrix failure under shear (d¢) as the
most predominant, and (iii) 0° plies have fibre failure (d;). However, a closer look reveals
that, despite using a fine mesh, the damage localises in a band of elements aligned along
with the mesh. This is a well-known issue of the local continuum damage models. This
alignment is partly caused because the information regarding the damage state is local. When
the damage initiates in one material point, the surrounding ones do not notice the damage
because, in a standard FE formulation, the unique information shared between two elements
is the displacement field on the nodes that they have in common. Then, the usage of thin
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meshes only alleviate the issue related to the localisation but does not solve it completely.
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Figure 5.3: View of the damage pattern predicted by the local continuum damage model (CDM) for
the open hole test.
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5.2 Transverse cracking

The virtual test consists of a cross-ply laminate subjected to tensile loads. The main objective
of this test is to demonstrate the reliability of the PFM for modelling the intralaminar
failure. For this purpose, the results concerning the cracking of the central plies and ultimate
strength predicted by the PFM are compared with the predictions of the CDM. The following
presents the principal results and discussion supporting the comparison. Further details of
the comparison can be found in Paper B, while specific information of the simulations using
the CDM are given in Paper A.

The specimen used for the comparison is a cross-ply laminate made of IM7/8552 unidirec-
tional plies with the following stacking sequence: [02/90,,]s. The comparison is performed
for two different number of central plies: n = 1 and n = 4. Figure 5.4 shows a sketch of the
geometry and loading conditions. The figure also illustrates the strategy used for defining
an initial defect in the computational models that employ the PFM. The specific details
regarding material properties, mesh characteristics, and boundary conditions can be found
in the corresponding articles, Paper A and Paper B. Finally, it is worth mentioning that an

implicit scheme considering quasi-static conditions are used to run the simulations.
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Figure 5.4: Sketch of the transverse cracking specimen loaded in tension, illustrating the boundary
conditions and a detail of the FE mesh around the initial defect.

The stress-strain responses predicted by both approaches are depicted in Figure 5.5. A
comparison of the curves shows that the predictions regarding the mechanical response of the
specimen until the ultimate failure are very similar. Further, the failure stress is in reasonable
agreement with the one predicted by the maximum stress criterion of the fibre (Maimi et al.
2011, 2008). In the current configuration, this criterion gives consistent predictions because
of the 0° plies are supporting almost all the load. Despite this good agreement between both
methods, the PFM predicts a more substantial loss of longitudinal stiffness after the onset of
the first transverse crack. This is because the damage field in the PFM extends through the
interfaces between the 0° and 90° plies, damaging the 0° plies and inducing a significant loss
of their bearing capacities. Note that, for the simulated configuration, this issue is magnified
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due to the 0° plies are bearing almost all the load. Otherwise, the loss of bearing capacities
would be less relevant.
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Figure 5.5: Comparison of the mechanical response numerically predicted using the local and nonlocal
continuum damage model (CDM and PFM) for the transverse cracking test considering
two different thickness.

The failure patterns at 1% of longitudinal strain predicted by the PFM and CDM are shown
in Figure 5.6. The crack density increases as the thickness of the 90° plies decreases, which
is consistent with the experimental observations reported in literature (Varna and Berglund
1991). Further, for n = 4, both models predict similar crack density, whereas, for n = 1,
the crack density is higher in the CDM. Considering that the stress relaxation precludes the
localisation of new crack inside the regularisation zone of the PF, the crack density of the
simulation using the PFM seems to be ruled by the regularisation length. Therefore, the crack
density should increase by reducing the PF length. Then, it would be possible to have similar
predictions to the ones of the CDM. However, it would not be useful for the comparison
objective of this test. In that case, the PFM would impose a finer mesh, and therefore, both
models would not use a similar mesh size.
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Figure 5.6: Comparative view of the failure pattern predicted using the local and nonlocal continuum
damage model (CDM and PFM) for the transverse cracking test.

5.3 Out-off-axis

The virtual test consists of a unidirectional specimen subjected to tensile loads, whose fibres
are oriented 10° respect to the direction of the loading. This type of specimen is so-called out-
off-axis tests, and here it is used to demonstrate one of the virtues of the nonlocal formulation
of the PFM. That is the capacity of predicting the failure pattern in a case which the crack
path is governed by the fibre orientation governs rather than the stress field. According to Van
der Meer and Sluys (2009), in such situations, the homogenization of the internal structure
assumed on the mesoscopic and macroscopic scale precludes the capacity of the continuum
damage for providing accurate prediction regarding the crack path. The reason is that the
constraining effect of the fibres, which guides the orientation of the crack propagation, is
not modelled. However, the nonlocal formulation proposed for the PFM can deal with this
situation. The following presents the results concerning this virtual test, while more specific

details can be found in Paper B.

The out-off-axis specimen is a unidirectional tape made of a generic glass/epoxy material
with the fibres oriented 10° respect to the longitudinal axis. Figure 5.7 depicts the sketch and
loading conditions of the test, and shows a detail of the FE mesh. Following the experimental
setup, the specimen has oblique ends with an angle of 54° respect to the loading direction in

5.3 Out-off-axis
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Figure 5.7: Sketch of the out-off-axis specimen loaded in tension, illustrating the boundary conditions
and a detail of the FE mesh.

order to generate an homogeneous in-plane shear stress state. For this test, the PEM uses the
elastic threshold in the whole model, except for a zone in the centre of the specimen. This
strategy is used to define an area containing a defect that, from a numerical point of view, is
something required by the numerical problem due to the homogeneous stress state. Without
this defect, the localisation of the damage would be erroneous. More specific details about
the material properties and computational model can be found in the Paper B.

The numerical prediction regarding the mechanical response is depicted in Figure 5.8. The
ultimate in-plane shear stress predicted by the PFM is in close agreement with the shear
strength obtained experimentally. Moreover, no significant loss of the stiffness priory to the
catastrophic failure is observed in the mechanical response, which is thanks to the definition
of the elastic threshold.

Figure 5.9 illustrates the failure pattern at the end of the simulation, i.e. after the catastrophic
collapse. The numerical crack path is in agreement with the experimental observation. Thus,
the direction of the crack predicted by the PFM is reasonably close to the orientation of
the fibres, i.e. 10°. Note that, close to the free edge, the path is slightly curved due to the
normality condition, V¢ - n = 0, which is a natural condition stemming from the phase field
formulation (Molnar and Gravouil 2017). Despite this misprediction, the accuracy of the
crack direction is significantly better to the one predicted using a local continuum damage
model, see the simulations reported by Van der Meer and Sluys (2009). Hence, this test
demonstrates not only that the PFM is not dependent on the mesh orientation but also the
potential of the formulation in problems governed by the fibre orientation instead of the
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Figure 5.8: Mechanical response numerically predicted using the nonlocal continuum damage model
(PFM) for the out-off-axis tensile test.
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Figure 5.9: View of the final patterns predicted by the nonlocal continuum damage model (PFM) for
the out-off-axis tensile test: a) displacement field and b) phase field (damage).
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5.4 Mode-I1/1l delamination

This simulations concerns the virtual tests of two standardized mode delamination tests, which
are typically utilised to characterise the interface mode-I and mode-II fracture toughness,
namely Double Cantilever Beam (DCB) and End-Notched Flexural Test (ENF). The objective
of these simulations is twofold. On the one hand, it is intended to validate the correct
implementation of the CZM and interface elements in Alya. On the other hand, these tests
are also used to show that the coupling strategy proposed for the PFM-CZM retains the
qualities of the original formulation concerning the modelling of pure delamination failure.

In the following, the numerical predictions presented in Paper C are summarized.

The geometry and loading conditions of the specimen considered in each configuration
(DCB and ENF) are shown in Figure 5.10. In both cases, the laminate of the specimen is
made of unidirectional carbon fibre reinforced plies, which material properties are given
by Turon et al. 2018. Regarding the numerical model, a structured mesh conformed of
4-node quadrilateral elements is used, whereas the boundary conditions are those illustrated
in Figure 5.10. Finally, the PFM is used for the bulk region.
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Figure 5.10: Sketch of the specimen representing the boundary conditions corresponding to a Double
Cantilever (DCB) and End-Notched Flexural (ENF) tests.

The load versus displacement curve for the DCB and ENF predicted by the current framework,
and the Linear Elastic Fracture Mechanics (LEFM) curves (Gonzalez 2011) are shown in
Figure 5.11. As can be appreciated, the predictions display an excellent agreement with
respect LEFM results in both cases. As expected, in this analysis the bulk region is not
affected by the opening of the interface thanks to in the proposed formulation the driving
force that governs the increase of the PF is not affected when the failure is driven purely by a
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delamination mechanism. For this reason, it is expected that the current framework can be
used in those cases previously analysed with the cohesive zone model.
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Figure 5.11: Mechanical response numerically predicted using the cohesive zone model (CZM) and
the enhanced formulation with the nonlocal continuum damage model (PFM-CZM)

concerning: a) Double Cantilever Beam (DCB) and b) End-Notched Flexural (ENF)
configurations.
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5.5 4-points bending

The virtual test consists of a specimen subjected to a 4-point bending loading configuration.
The principal objective of this test is to show the capabilities of PEFM-CZM for predicting the
behaviour of delamination induced by matrix cracking correctly. The more representative
results are summarised in the following, while specific details of the study can be found in

Paper C.
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Figure 5.12: Sketch of the 4-point bending test showing the boundary conditions and a detail of the
laminate as well as the random distribution applied to the strengths at the mesh level.

The simulated specimen is a cross-ply laminate made of HTA/6376 unidirectional plies,
which stacking sequence is [904/07/904]. The sketch of the specimen with the dimensions
and loading conditions is depicted in Figure 5.12. As shown in the same figure, a random
field for the transverse strength value is defined to mitigate the issues related to the correct
localisation of the damage in the zone of constant bending, i.e. the region between the
loading pins. More details about the material properties, mesh characteristics, and loading

conditions are given in Paper C.

Observation Exp. PFM-CZM Units
Onset transverse cracks 62 67.5 MPa
Crack saturation 0.7 0.5 cr/mm
Total number of cracks 15 14 -
Average space between cracks 2 2.25 mm

Table 5.3: Comparison of the experimental and numerical observations concerning the 4-point bending
test (Mortell et al. 2014).

Chapter 5 Results and discussion



The experimental observations reported by Mortell et al. (2014) and the ones predicted by
the simulation are listed in Table 5.3. Direct comparison of both observations reveals that the
predictions of PFM-CZM are in close agreement with the experimental findings. Despite the
good results, it seems that the size effect reported by Mortell and coworkers is not captured
correctly. They reported that as thicker is the outer ply clustering, lower is the stress level at
which the first transverse crack appears. In turn, the stress level predicted by the PFM-CZM
is close to the nominal transverse strength and therefore, slightly higher than the experimental
stress. This overestimation of the onset stress can in part be attributed by an unfit definition
of the random field.
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Figure 5.13: View of the fracture pattern of the bottom 90 plies in the span-length region of the 4-point
bending test for different applied vertical displacements numerically predicted using
cohesive zone model enhanced with the nonlocal model (PFM-CZM). The grey-scale
colour palette illustrates the crack driving force of the transverse cracks, the purple colour
represents the interface debonding, and the red colour represents the transverse cracks
(warping scale = 0).

Figure 5.13 shows the failure sequence numerical predicted by PFM-CZM. Compared to the
findings reported by Mortell and coworkers, the failure sequence obtained numerically is
in perfect agreement to the experimental one. Three phases composes the failure sequence.
The elastic loading of the specimen governs the first phase. Then, the second phase is
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characterised by the onset of transverse cracks along the span length of the bottom clustering
of 90° plies. These crack growth from the bottommost edge to the 90/0 interface, inducing a
micro-delamination at the intersection point. Finally, the third phase begins after reaching the
crack saturation in the bottom clustering of 90° plies. This last phase is characterised by the
debonding of the 90/0 interface, which is initiates from the micro-delaminations provoked by
the transverse cracks in the previous stage.

B Crack driving force ( DY)
@ Transverse crack (¢=0.95)
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/
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Figure 5.14: A view of the fracture pattern in the span-length region at the final applied vertical
displacements numerically predicted using cohesive zone model enhanced with the
nonlocal model (PFM-CZM). The grey-scale colour palette illustrates the crack driving
force of the transverse cracks, the purple colour represents the interface debonding, and
the red colour represents the transverse cracks (warping scale = 1).

Related to the third phase previously described, Mortell and coworkers observed an asym-
metrical growth of the delamination. They reported that the debonding initiated in transverse
cracks that are far from the centre of the specimen is more asymmetrical than those close
to it. Further, they observed that the direction of the propagation is moving away from the
centre of the specimen. Figure 5.14 shows the failure pattern at the end of the simulation,
which in turn demonstrates that the PFM-CZM captures the asymmetrical growth correctly.
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5.6 Compact tension

The virtual test consists of two compact tension specimens subjected to tensile loads. The
specimens herein simulated were previously studied by Gonzélez et al. (2014) and Ortega
et al. (2017, 2016). The main objective of this test is to demonstrate that the translaminar
failure of quasi-isotropic laminates can be numerically predicted using the PFM. For this
purpose, the numerical predictions regarding the mechanical response are compared with:
(i) experimental data, (ii) analytical curves (LEFM), and (iii) numerical predictions using
a cohesive zone model (CZM). The following presents the principal results supporting the

comparison, while the details can be found in Paper B.
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Figure 5.15: Sketch of the compact tension test, showing the boundary conditions and a detail of the
2D and 3D FE meshes.

The two simulated specimens have the same geometry and loading conditions, which are
shown in Figure 5.15. The main difference between them stems from the material and
laminate. Although both have a quasi-isotropic laminate, the first specimen labelled as LCG
is made of carbon/glass woven fabric plies, while the second one labelled as LG is made of
glass woven fabric plies. Regarding the computational model, it is worth mentioning that
each specimen is discretised with a different mesh, see Figure 5.15. More details about the
material properties and the computational models are given in the corresponding article.

The load-displacement curves for both specimens are plotted in Figure 5.16. The mechanical
responses predicted by both numerical models, PFM and CZM, are in good agreement with
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Figure 5.16: Mechanical response numerically predicted using the nonlocal continuum damage model
(PFM) and the cohesive zone model (CZM) for the compact tension test.
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Figure 5.17: A comparative view of the fracture pattern numerically predicted using the nonlocal
continuum damage model (PFM) and the cohesive zone model (PFM) for the compact
tension test at the end of the simulation.
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the experimental and analytical curve. The comparison of the peak forces reveals that the
PFM slightly overestimates the experimental values, whereas the CZM underestimates them.
However, the relative error for both models is quite similar and below 5%. A closer look
into the results shows that the PFM predicts of a sharp fall just before the softening region,
which coincides with the moment identified in the experimental curves as the initiation of
the crack propagation. Considering the numerical study done by Mesgarnejad et al. (2015),
a feasible explanation for the overestimation of the energy and force previous to the force
drop is because of the solution found for the phase field problem is a local minimiser instead
of the global one. To mitigate this kind of issues, they propose the usage of backtracking
techniques. However, the implementation and usage of this kind of methods are out of the
scope of the current investigation.

The crack path for the LCG laminate predicted by both PFM and CZM at the end of the
simulation is shown in Figure 5.17. In both cases, the crack extends from the tip of the
pre-crack along a plane that is perpendicular to the loading direction. Moreover, it can be
observed that the path predicted by the PFM is independent of the mesh orientation. However,
compared to the crack path of the CZM, the damage extends perpendicularly to the growth
direction due to the nonlocal formulation. As a consequence, the softening part of the curve
predicted by PFM is slightly under to the one of the CZM.
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Concluding remarks

This chapter presents the main conclusions of the work carried out in this thesis and proposes
some topics that should be subject to further development to understand the true potential of
the high-performance computing concerning the virtual testing of composite materials.

6.1 Conclusions

This thesis has been focused on the formulation, implementation and validation of several
progressive damage models for virtual testing of composites structures in a high-performance
computing finite element code. Two novel formulations within the continuum damage
mechanics theory aiming at modelling the intralaminar failure have been formulated and
implemented. The former one is a local damage model specially conceived for complex
three-dimensional loading cases (Paper A, Quintanas-Corominas et al. (2018)), while the
latter one is a nonlocal damage model based on the phase field approach for brittle fracture
(Paper B, Quintanas-Corominas et al. (2019a)). In turn, the cohesive zone model proposed
by Turon et al. (2018), aimed at modelling the interlaminar failure, has been implemented,
employing the complex step derivation approximation for the evaluation of the material
tangent tensor. Finally, a new coupling strategy between the nonlocal damage model and the
cohesive zone model has been developed to simulate the interaction between the intralaminar
and interlaminar failures (Paper C, Quintanas-Corominas et al. (2019b)). The accuracy of
the models and their proper implementation in the Alya code have been demonstrated by
performing virtual testing of different specimens at coupon level. Therefore, the principal
objective of the thesis, i.e. the implementation of a HPC-based FE simulation framework for
virtual testing of unidirectional fibre-reinforced polymer composites, has been satisfactorily
achieved. Hence, the principal output of this thesis is not only the novel formulation of the
models, but also the virtual testing framework so-called Alya-VITECOST.

For each of the models conforming Alya-VITECOST, the following conclusions are drawn:

* The fully three-dimensional formulation of the local continuum damage model pro-
vides reliable numerical predictions concerning the onset and progression of the
intralaminar damage. The virtual tests performed using a very fine spatial discreti-
sation through the ply thickness has revealed that a proper definition of the loading
functions precludes the necessity of defining in-situ properties for predicting the ul-
timate strength of the laminate. Also, the simulations have demonstrated that it is
possible to capture the free-edge effect, opening the possibility of modelling damage
near the interface employing the same continuum damage model. Regarding the failure
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pattern, the results have shown that the use of thin meshes mitigates the dependency

with the mesh orientation, but not entirely resolves it.

The nonlocal continuum damage model based on the phase field approach provides
reliable predictions of the intralaminar failure. The virtual tests have demonstrated that
the proposed formulation is not only capable of predicting the onset of different damage
mechanisms but also the failure pattern. Further, the simulations have shown that the
failure pattern is predicted with a minimum dependency on the mesh characteristics.
Despite these excellent features, the results have revealed that special care must
be taken when modelling systems with material discontinuities, such as composite
laminates. The nonlocal nature of the phase field formulation may provoke that the
damage field extends through several plies with independency of the interfaces. As
a consequence, the prediction of the bearing capacity of the structure can be wrong
in some configurations due to a premature loss of stiffness. In addition, it must be
mentioned that the formulation herein proposed assumes simultaneously degradation
of the material properties. For complex loading scenarios, the approach from Bleyer
and Alessi (2018), which considers two phase field variables, one for the fibre breaking
and other for a matrix cracking, may be more appropriate. It is worth mentioning that
their strategy can be used in conjunction with the formulation herein proposed. Finally,
the numerical tests have illustrated that the power offered by the HPC environment is
essential for dealing with the strict mesh requirements imposed by the regularisation

parameter.

The virtual tests concerning the onset and propagation of the interlaminar damage have
verified not only the implementation of the cohesive zone model but also the robustness
of the complex-step derivative approximation. Thanks to the efficient management
of the computational resource provided by the HPC environment, a noticeable loss of
performance due to the use of complex-type variables has not been detected.

The coupling strategy between the nonlocal damage model and the cohesive zone
model provides a reliable framework for modelling the interaction between the in-
tralaminar and interlaminar failure mechanisms. The virtual tests have illustrated
the necessity of a coupling strategy to correctly model the delamination induced by
transverse cracking. In addition, the numerical predictions have demonstrated that,
with a statistically random strength distribution, it is possible to predict the onset of
the transverse cracks without defining initial flaws. Finally, the simulations have also
shown that the proposed framework provides a correct prediction of the mechanisms
that initiate the delamination as well as the direction along the delamination propagates.

The nonlocal damage model requires the use of a numerical strategy to deal with the
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coupled field problem. The virtual tests presented in the context of this thesis have been
performed using a modified alternate minimisation scheme. The simulations revealed
that a large number of iterations is necessary when the damage field is growing,
especially if the crack growth is unstable. Hence, the HPC environment is necessary
for dealing with both the costs associated with the mesh size and the ones related to
the solution scheme.

Beyond the previous conclusions, the implementation of the constitutive models has shown
the flexibility of the Alya code to be updated with state of the art of the progressive damage
modelling. For instance, the development of the Alya-VITECOST framework has not
exclusively faced with the implementation of the material models but also with several
auxiliary aspects: element technologies, material coordinate systems, internal state variables,
solution procedures, pre- and post-processing, among others. Thanks to the structure and
work-flow of Alya code, these features have been implemented for both sequential and

parallel executions, without a substantial additional effort.

Finally, a general conclusion can be stated answering the main research question of this
thesis: what an HPC-based FE code can offer to the virtual testing of composite structures?
That is the efficient management of the computational resources enables the use of very
spatial and temporal discretisation. Thus, the computational power permits to exploit the
maximum potential of the constitutive formulations, illustrating their virtues and flaws. In
addition, this power also allows the possibility of dealing with the costs associated with the
nonlinearities that stem from complex problems. In that sense, despite many solvers are
adapted and designed to be run in parallel executions, there is still a lot of investigation to be

done in this direction.

6.2 Perspectives and future work

The potential of Alya-VTIECOST framework can be extended with the objective of perform-
ing virtual testing of more complex specimens. In terms of the building block approach, the
next level of complexity regards to detail and sub-component specimens. For this purpose,
different technologies and techniques, which were out of the scope of this thesis, need to
be considered for their implementation. The two features considered mandatory are the
implementation of (i) shell elements and (ii) contact formulations. Despite the computational
power offered by the HPC environment, the combination of the small fracture zone and tiny
aspect ratio of the composite laminate structure makes necessary the use of shell elements for
simulating medium and large size structural components. Regarding the contact formulation,
Rivero (2018) has recently presented a novel algorithm suitable for HPC simulations using
Alya. Thanks to Rivero’s algorithm, Alya-VITECOST can be used to simulate, for instance,
impact and compression after impact tests. For such virtual tests, the local damage model for
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the intralaminar failure and the cohesive zone model for the interlaminar seems a suitable
modelling strategy to explore more deeply the potential of Alya-VITECOST.

Another immediate work is related to the improvement of not only the formulation of
nonlocal damage model but also the scheme to solve the resulting coupled-field problem.
Regarding the model formulation, more numerical tests are necessary to understand the
influence of the nonlocal character in the numerical predictions. For instance, the influence of
the crack density with the regularisation length should be more studied. Moreover, it is also
essential to search for a strategy to mitigate the numerical issue related to the extension of
the damage field through the different plies. Apart from this issue, one possibility to extend
the formulation is the definition of a physically-based criterion for modelling the initiation of
the damage under a complex stress state. In turn, the numerical scheme aimed to solve the
coupled-field problem may be improved. Two promising alternatives for its improvement
are (i) the use of local re-meshing algorithms in line with the methodology presented by
Areias et al. (2016) and (ii) the use of Schur complements to increase the performance of the

solution scheme as done by G. Houzeaux et al. (2011).

Besides the aspects regarding the formulation, the implementation of the models in Alya-
VITECOST can be refactored to maximise the performance of the HPC technology. For
example, large loops can be optimised using OpenMP and some functions can be vectorised.
After the refactoring, the numerical efficiency in terms of scalability and computational time
should be explored by making, for instance, a comparison between the local and nonlocal
damage models. This future work is in line with the exploration of the other capability offered
by the high-performance computing environment, namely: the reduction of the simulation
times. It is worth remembering that this thesis has focused only on the exploration of what
the HPC-based simulation codes can offer in terms of the management of a large number of

degrees of freedom, not in terms of efficiency.

Finally, the combination of reliable progressive damage models and efficient scalability opens
the possibility of using Alya-VITECOST in optimisation processes, opening a vast topic
for future research. For example, thanks to the power of the high-performance computing,
it would be feasible to use Alya-VITECOST to create a set of reliable numerical results
for training a neural network using a supervised learning algorithm.Another example could
be the usage of Alya-VITECOST in numerical laminate design techniques with the aim to

improve the damage tolerance as presented by Sasikumar (2019).

Chapter 6 Concluding remarks
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A 3D constitutive damage model is proposed for predicting the progressive failure of laminated composite
materials at mesoscopic length scale. The damage initiation and growth functions are based on the experimental
phenomenology. The damage evolution laws are defined ensuring the energy regularization thanks to the crack
band model. The crack closure effect under load reversal is also considered. The model is specifically formulated
to be implemented in a high-performance computing platform, Alya, that enables the use of very fine meshes,
ensuring an accurate prediction of the onset and propagation of damage. The reliability and the performance of

the proposed formulation are examined simulating a cross-ply laminate and open hole tests under tensile

loading.

1. Introduction

One of the main difficulties that prevail the use of laminated com-
posite materials in structural applications is the inability to predict
accurately their strength and damage tolerance. Its heterogeneous
nature accounts for the structural failure to be driven by several da-
mage mechanisms. These damage mechanisms can be studied from
different length scales including the multi-scale point of view.
Moreover, laminated composite materials have the capacity to accu-
mulate damage before the structural collapse, which means that the
initial local failure does not necessarily lead to the loss of its structural
integrity. As a consequence, the prediction of the onset of the failure
process is not enough and a Progressive Damage Failure Analysis
(PDFA) is necessary to predict accurately their strength and damage
tolerance.

PDFA of composite laminates can be performed at different length
scales, considering that the mesoscopic length scale is the most suitable
to predict the material degradation and the structural behaviour. Even
in this length scale, PDFA is a complex problem due to the interaction of
several damage mechanisms that may occur during the failure process.
For this reason, the use of numerical methods is necessary, with the
Finite Element Method (FEM) being the most extended option.

When the FEM is used to perform computational failure analysis,
modelling the cracks is the key-point as they are the principal source of
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damage in laminated composite structures. The different available
methods can be divided in two main approaches: continuous and dis-
continuous (Van Der Meer et al., 2012). In the continuous approaches,
the damage is modelled as a material constitutive relation that de-
scribes the degradation of the elastic properties. In discontinuous ones,
the damage is modelled by inserting discontinuities in the displacement
field with the aim of describing the kinematics of the interior bound-
aries accurately. Regarding their implementation, the continuous ap-
proach is suitable to be implemented in a standard FEM code without
modifying its structure, whereas the discontinuous one usually requires
a modification of the standard FEM code structure. For this reason, the
continuous approach should be a priori less computationally expensive.

Regardless of the approach adopted, it is necessary to formulate a
material model to describe the constitutive relationships. A good
practice is to formulate the model within the framework of thermo-
dynamics of irreversible process (Lemaitre and Chaboche, 1990; Hill,
1998). Early works in the context of laminated composite materials was
performed by Ladevéze and Dantec (1992), Matzenmiller et al. (1995),
and Sun and Chen (1989). After their pioneering works, several models
have been formulated considering separately the continuous damage
mechanics theory (see e.g. (Barbero and de Vivo, 2001; Williams et al.,
2003; Maimi et al., 2007a, 2008; Martin-Santos et al., 2014; Reinoso
et al.,, 2017)) and the plasticity theory (see e.g. (Oller et al., 1995;
Weeks and Sun, 1998; Tsai and Sun, 2002; Yokozeki et al., 2007; Van
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Der Meer, 2016)), but also some works that coupled both theories (see
e.g. (Maimi et al., 2011; Vasiukov et al., 2015)).

Although the continuous approach has in general a good compu-
tational performance, the aspect ratio of the structures made of lami-
nated composites, together with the small fracture process zone, in-
volves the necessity of using fine meshes. One option to alleviate the
mesh requirements is the use of continuum shells elements. This ele-
ments, which are intermediate elements between conventional shells
and solid elements, are formulated to circumvent the different locking
pathologies and also to avoid the use of simplificated hypothesis for the
out-of-plane stress state, see Reinoso and Blazquez (2016). However,
despite the use of continuum shell elements, the computational re-
quirements in large models can increase up to the point that can pre-
clude the simulation, if they are not managed efficiently. Thus high-
lighting the necessity of an efficient parallel computational code and
constitutive models suitable for large simulations.

With the increasing necessity of High Performance Computing
(HPC) resources for doing reliable simulations of laminated composite
materials, several 3D continuum damage models may be adapted.
Abisset et al. (2011) proposed a smeared crack model that considers
distributed transversal damage depending on the crack density and the
ply thickness. Despite the obtained results being in good agreement
with the experimental data, their approach lacks consistency when a
sufficient refined mesh is used. Later, Vogler et al. (2013) and Camanho
et al. (2013) proposed another smeared crack model that includes
plasticity and softening behaviour. Their model is formulated in a
modular way, which makes it suitable for being adapted to new tech-
nologies and codes. However, their formulation uses an iterative pro-
cedure to find internal equilibrium at each integration point compro-
mising the computational performance in large simulations. Finally,
Cho et al. (2013) presented an improved version of the smeared crack
model formulated by Pinho et al. (2006). They observed that without a
correct modelling of the inter-ply damage an over-prediction of the
ultimate strength is obtained. In order to overcome this undesirable
mesh-dependence, they introduced the cohesive elements to account for
the inter-ply damage, which increased the computational resources, but
with good numerical predictions of the laminate strength. However, it
should be pointed out that the use of cohesive elements may not be
necessary if a proper definition of the matrix damage is combined with
the accurate description of the complex stress states at the interface,
using for instance, several elements through the ply thickness.

Based on the previous observations, a new continuum damage
model for progressive damage failure analysis of composite structures
at mesoscopic length scale is presented. The model is implemented in
the Alya high performance computational code (Casoni et al., 2014)
with the aim to perform large scale simulations.

The proposed model is an extension of the continuum damage
model formulated by Maimi et al. (2007a, b) to a 3D space in order to
capture the damage state arising from complex stress states. The current
formulation improves the description of the transversal shear strength
presented in (Maimi et al., 2008) with the aim to better capture the
matrix damage. Thereby, the model is formulated by means of stress
invariants with respect to the rotations in the transversal plane.
Moreover, three new loading functions are presented in a closed form
allowing to model the onset of failure for a wide range of materials.
Each loading function is related to one of the three damage mechanisms
considered: breakage and kinking of the fibers and cracking of the
matrix. The damage laws are defined as piecewise functions composed
by n-segments. The energy objectivity has been ensured through the
crack band model proposed by Bazant and Oh (1983). Finally, the
majority of model inputs are material properties of a unidirectional ply,
whose can be obtained experimentally with standard and non-standard
experimental procedures (Ortega et al., 2016, 2017).

In turn, Alya is a multi-physics parallel code developed at Barcelona
Supercomputing Center aimed at solving partial differential equations
in non-structured meshes (Casoni et al., 2014). On contrary to other
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codes, Alya has been conceived from the beginning for running in
parallel with the highest efficiency for any physic and multi-physic
application and is designed in a modular way (Vazquez et al., 2016).
Therefore, it is easier to then enhance the code with new features. This
will allow to use not only explicit time integration schemes, but also
implicit ones with iterative solvers. Moreover, the parallelization is
hidden behind a common solver that assembles matrices and residuals
as well as carries out the solution scheme (Houzeaux et al., 2009,
2013). Finally, the material models can be implemented so as to con-
serve the extreme scalability while ensuring an accurate physical de-
scription of the material deformation and the onset and propagation of
the damage up to failure. For this reason, the constitutive model pre-
sented in this work has an explicit form, which makes it computa-
tionally efficient and suitable to be used in large scale computations.

This paper is organized as follows: a full description of the model is
presented in Section 2, describing the damage activation functions and
the damage evolution laws. The numerical implementation is given in
Section 3 and two demonstration cases in Section 4. Finally, the con-
clusions are presented in Section 5.

2. Constitutive model

It is assumed that, at mesoscopic scale and under small strains, a
fibrous polymer composite material behaves as a homogeneous elastic
transversely-isotropic material up to the onset of damage (Maimi et al.,
2007a; b). Following the continuum damage mechanics framework, the
first and second principle of thermodynamics must be fulfilled in order
to ensure a consistent material response when a dissipative process
occurs. Considering a constant density, an isothermal state and that the
damage evolves in an adiabatic manner, the Clasius-Duhem inequality
can be postulated such that the externally supplied mechanical power,
o: ¢, minus the rate of change of the Helmholtz free-energy, ¥, must be
positive, i.e.

g é—¥>0 @

where o and ¢ are the stress and strain tensor, respectively. The dot
notation for differentiation is adopted. Then, following the Coleman's
method and the Legendre transformation rules (Houlsby and Puzrin,
2000), the rate of mechanical energy dissipation, &, can be expressed in
terms of the complementary Gibbs free-energy per unit of volume, W,

E:W—d:s:(a—w—a):&+a—wzd20
oo od (2)
from which it is possible to define the deformation tensor as:
ow
e=—
dc 3)

where d is a set of damage state variables.
The thermodynamic irreversibility of the damage process is ensured
if the rate of dissipation is positive, i.e.

Y:d>0 @
where Y are the conjugated thermodynamic forces defined as:

ow
Y=

od (5)

In turn, a damage evolution law, which describes the onset and
growth of a damage state variables, can be associated to a failure cri-
terion, F. Following Maimi et al. (2007a), this criterion can be ex-
pressed as:

F=¢-r<0 6)

where ¢ is the loading function that defines the shape of the failure
surface and r is the damage threshold variable that accounts for the past
history of the damage process, also called the internal state variable. At
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this point, the material response state is determined by means of the
appropriate form of the complementary Kuhn-Tucker relations (Simo
and Ju, 1987):

>0, F<0, FF=0 ()]

If F < 0 the material is in the elastic regime, i.e. the damage cri-
terion is not satisfied and therefore, 7 = 0. On contrary, if F = 0 the
damage criterion is fulfilled and the material response state is de-
termined through the loading function gradient, ¢, as:

¢ < 0 © Unloading 8
¢ = 0 © Neutral loading 9)
¢ > 0 © Loading (10)

Under loading state, further damage takes place and the damage
threshold, r, must be updated. Considering Eq. (6) and Eq. (7), it is
possible to relate the rate of change of the loading state and the internal
damage variable through the consistency condition as:
iF=0=>¢=r 11)

Hence, the damage threshold variable is computed by integrating
the loading function along its history. If ¢ depends exclusively on the
strain tensor, Eq. (11) can be integrated explicitly as:

r= max(l, ¢*)
se[0,t]

12)

where t is the current time. It is worth mentioning that when the ma-
terial is undamaged, ¢ < 1, the internal state variable is equal to one,
r=1.

2.1. Complementary Gibbs free-energy

The complementary Gibbs free-energy, W, which defines the total
stored energy function per unit volume of material, is formulated by
means of four stress measures: op, 71, pr and 7, which have rotational
invariance with respect to the longitudinal axis, i.e. the fiber direction.
On one hand, o;, describes the longitudinal stress and 7r describes the
shear stress between the longitudinal and transversal directions, while
on the other hand p; and 7 account for the transverse hydrostatic
pressure and transverse shear stress, respectively. These two transverse
invariants, p; and 7, are inspired by the elasto-plasticity models for
metals in which the strain tensor is additive split into the hydrostatic
and the deviatoric contribution, as done by Simo and Ju (1987). Thanks
to this invariant formulation, it is easier to define the damage modes
associated to the matrix as well as the crack closure effect under re-
versal loading.

In the current formulation, it is considered that the stored energy
function is a composition of the purely mechanical, W™ and the
hygrothermal, W™, energy such that:

W= Wmcch + Whygr (13)
with:
wmeeh _ @ 2v10upy (pr)? (7r)?
2(1 = di)En En 2(1 —dg)Er  2(1 — dg)Gr
(zr)?

2(1 = dg)Grz 14
W = (.01, + arpp) AT + (BLo1, + frpr) AM 15)
where the aforementioned stress invariants are defined as:
oL = o1 ae)

_ Opn+ 033

pr = 5 a17)
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V(02 — 033)* + 4(023)?

2 (18)
T = \/(012)2 + (013)? 19

and where AT and AM defines the increment of temperature and
moisture contents with respect to the reference values, respectively. In
turn, dyy (where M =1, G, K, and 6) is a set of scalar variables that
describe the damage state: for dy = 0 the material is undamaged, for
0 < dy < 1litis damaged and for dy = 1 it is fully damaged. It should be
pointed out that, regardless of the damage state, the original material
symmetry planes are ensured. Then, Er and Gt are, respectively, the
bulk and shear stiffness in the transverse isotropy plane, which are
defined as:

o Bn

2(1 — vy3) (20)
Gy = Ex»n

2(1 + vy3) 21)

At this point, it is worth mentioning that rest of material properties
are the elastic modulus and coefficients, which are: the longitudinal Ej;
and transversal E», Young's modulus, the longitudinal v,, and trans-
versal vy; Poisson's ratios, the longitudinal shear moduli G;,, the long-
itudinal a;, and transversal cr thermal expansion coefficients, and the
longitudinal 8, and transversal 8, moisture expansion coefficients.

2.2. Conjugated thermodynamic forces

The conjugated thermodynamic forces, Y, relate the variation of
stored energy with respect to the damage state variables. Using Egs. (5)
and (13), they are defined as:

¥ = ow _ (o)
YT 8d, T 200 - dEn (22)
oW (pr)?
Yy=—=—+1°
ddg 2(1 — dg)’Er (23)
_ow _ (7)?
ddg  2(1 — dg)*Gr 24
_aw _ ()
°7 4ds  2(1 - do)’Gy (25)

It should be pointed out that Y are always positive and therefore,
the rate of dissipation energy, Eq. (4), is ensured if d > 0. In turn, it also
denotes that the irreversibility of the degradation process is not pos-
sible, i.e. when a damage state is reached it cannot be healed.

2.3. Strain-stress relationship

The strain—stress relationship is the core part of a material model. In
the current model, it is obtained by means of the variation of the stored
energy with respect to the mechanical stresses, Eq. (3), as:

_ow

£= —

=H: o + aAT + BAM
o4

(26)
where H is the compliance tensor, and « and g are the thermal and the
moisture dilatations tensors, respectively. Due to the major symmetries
of the material, the above tensors can be expressed using the standard
Voigt notation as:

[@]" = [o, ar, ar, 0,0,0] 27)

[BI" = B, Br» Br» 0,0,0] (28)
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Hy, H, H, 0 0 O
Hy, Hy, Hyz 0 0 0
Hy, Hy; Hyp O 0 0
Hl=)o 0o 0 Hs 0 o
0 0 0 0 Hs 0
0 0 0 0 0 Hss (29)
with:
1
Hy=—++
(1 - d)En
Hj, = ——2
T B
1 1
Hy = +
27 40 - dg)BEr | 4(1 — dg)Gr
1 1
Hy; = -
41 — dg)Er  4(1 — dg)Gr
1
Hy=———
(1 - dg)Gr
1
Hss = —————
(1 - d6)Grz

At this point, it is important to define the crack closure effect under
reversal loads, which can has an important role in those structures
subjected to multi-axial loading. In the proposed formulation, it is as-
sumed that the crack closure effect on the longitudinal direction is in-
duced by the longitudinal stress, o1, whereas on the transverse direction
by the transverse pressure, p;. On the contrary, it is considered that
shear stresses, 7v and 7r, do not have any contribution (Maimi et al.,
2007a). Taking advantage of the proposed invariant formulation, the
aforementioned assumptions are accounted tracking the tensile, d.,, and
compressive, d_, damage state variables of the longitudinal, 1, and
transversal, K, cases separately, i.e.:

(ov) (=oa.)

d=d d_

S T e 30)
(pr)

de = dg, P1)

RPN 3D

where (+) is an operator defined as (x) = (x + |x])/2. Note that de-
pending on the sign of stress invariant, a damage variable can be either
active or passive.

2.4. Loading functions

Three loading functions are considered, one for each damage me-
chanism. These independent damage mechanisms, which are denoted
with N, are: the longitudinal tensile fibre failure, L+; the longitudinal
compressive failure, L-, that is related to the formation of the kink-band;
and the transverse failure, T, is related to the formation of cracks in the
matrix. The proposed definitions for the loading functions associated to
the above mechanisms are:

6 = 0L — 2Vi2py is
L+ = - 11
X X (32)
1 =5 —~ — N -
= —|J@? + 0@ + ndGr)? + + 5%
[ Xc (\/( L) Nr (PT) UN (@r) NrPr + 7Ns LT] 33)
¢ = I(YT+YC)2(fT)2+;4T(ﬁT)2 + (uLTﬂ,T)Z
T YrYe 1+pup St
Yo— Y1~ LT
+ S Pr + (L= pn) g (34)

where X7 and X are the longitudinal tensile and compressive strengths;
Yr and Yc are the transverse tensile and compressive strengths; Sy, is the
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in-plane shear strength; 7, and 7g are the curvature parameters that
govern the influence of the longitudinal shear stress, whereas 7 and 7,
the influence of the transverse pressure; u; is either related to the
transverse shear strength, S, or to the biaxial compression strength,
Ysc, through the following expressions:

Sp(Ye + YT))2
s =" 5| -1
(5D ( o 35
Yac(Ye — Yr) + Ye¥r i
Ys =
ur(Yac) (YCYT(ZYBC — Yo)(2Yac + YT)) 36)

uyr is a parameter related to the slope 7, at ordinate axis in the o, — o,
stress space through:

1 Su(Ye— Y
by = ,(2 + g(u))
4 n\ YeYr

and, finally, py, 7 and 7 are the effective invariants that are computed
using the effective stresses, &, that are obtained as & = Hy': ¢ in where
H, is the undamaged compliance tensor defined by Eq. (29) with
dy = 0.

The envelopes of the loading functions in different stress spaces at
the onset of damage, i.e. when ¢, = 1, are shown in Fig. 1. They are
obtained considering the material properties of a E-Glass/LY556 uni-
directional ply, which are listed in Table 1. It is worth mentioning that a
validation of the loading functions is performed in Section 4.1.

The model intrinsically accounts for the kink-band formation by
means of the modification of Xc. Two main hypotheses are usually
considered to define the kink-band formation: Rosen (1965) assumes
that the kink-band is triggered by a local micro-buckling of the fibres,
whereas Argon (1972) assumes that the kink-band is promoted by the
failure of the matrix due to small misalignment of the fibre. Following
the above hypotheses, it is feasible to consider the following assump-
tions regarding longitudinal compressive strength. On one hand, X¢ is
reduced when longitudinal shear stresses (o1, or 0y3) and tensile trans-
verse stresses (0, > 0 or g3; > 0) are applied as they promote the in-
itiation of the micro-buckling. On the other hand, X is increased when
compressive transverse stresses (0, < 0 or g3; < 0) are applied due to
the fibre confinement effect that prevents the micro-buckling. As can be
appreciated in Fig. 1a and b, both hypotheses are correctly captured by
the proposed loading functions. In addition, the X¢ behaviour is driven
by two shape parameters 75 and 7g (or 7, and ;) which control the
slope and curvature, respectively.

As can be appreciated in Fig. lc, the model is also capable of ac-
counting for the failure under high values of hydrostatic compressive
pressure. It should be pointed out that the apparent transverse strength
is governed by the parameter u,. If u > %, the envelope of the
loading function is closed under biaxial transverse compression.

Finally, the combination of longitudinal shear stresses (o1, or oi3)
and compressive transverse stresses (0, or o3;3) influence the onset of
transversal damage. This influence is governed by means of the para-
meter u;; as depicted in Fig. 1d. When ;. > 0, low values of trans-
verse stresses increase the onset stress for transversal damage.

37)

2.5. Damage threshold variables

The damage threshold variables, ry, are those variables that set the
deformation necessary for a damage mechanism to grow. In the current
formulation, the damage variables related to cracks parallel to the fi-
bers, rr, and the ones related with the normal degradation modes to the
fibers, n.+ and r., are uncoupled. However, it is assumed that, in the
longitudinal direction, the tensile damage state is influenced by the
compressive damage state. These hypotheses are considered in the
temporal integration of the damage threshold variables, which are de-
fined using Eq. (12) as:
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Fig. 1. Loading functions for the material E-Glass/LY556 at different stress space: (a) &, - 5, with different values of 7g and 5g; (b) &y, - 3, with different values of 7,
and 7; () &, - G3; for different values of u; and (d) &, - 61, with different values of y, .

Table 1
E-Glass/LY556 material properties used for the contour plots.
Prop. Value Units Source
G2 5830 MPa Soden et al. (1998)
Xt 1266.7 MPa Soden et al. (2002)
Xc 783.3 MPa Soden et al. (2002)
Yr 40 MPa Soden et al. (2002)
Yar 25.6 MPa Camanho et al. (2015)
Yo 130 MPa Catalanotti et al. (2013)
Yac 860 MPa Soden et al. (2002)
Sr 72 MPa Catalanotti et al. (2013)

ny = max(1, ¢’ , ¢°
= max (L, ¢, 91)

(38)
= xrélli.)fj(l’ o) (39
= e e “0)

2.6. Damage evolution laws

The damage evolution law, dy, relates the degradation of the elastic
properties, i.e. the loss of stiffness, with the damage mechanisms. In the
current formulation, five laws are defined: d;, (1) and d;_(r..) that
relate the breaking and kinking of the fibers with the degradation of the
stiffness associated to the longitudinal stress, o1,; dk (rr) that relates the
mode-I matrix cracking associated with the transverse stresses, o, and
033; dg (rr) that relates the mode-II matrix cracking with the transverse
shear stress, 0,3; and dg (rr, 11.4) that relates the longitudinal tensile and
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matrix damage mechanism, rr and 1.4, with the longitudinal shears, o,
and oy3.

The current formulation considers the distributed damage negligible
up to the onset of the nucleation (or localization) of a crack. This hy-
pothesis is suitable for most of industrial applications with laminated
composites materials, where the stacking sequences usually contain not
only + 45° plies, but also 0° and 90°. As consequence, the development
of large non-linearities in the shear direction due to the plastic beha-
viour of the matrix is limited. However, the above hypothesis may not
be valid in such cases where the compressive failure plays a dominant
role (Ahn and Waas, 2002). In those cases, the shear non-linearities
should be included (see for example Pineda and Waas (2013); Joseph
et al. (2015); Camanho et al. (2013); Pineda and Waas (2013) and
Joseph et al. (2015) or Camanho et al. (2013)).

Once the localization takes place, the strains are not defined in the
continuum due to the formation of a crack at the corresponding failure
plane. Therefore, the material constitutive relationship must be ex-
pressed with respect to crack openings, known as cohesive law. It is
assumed that the cohesive law is a material property that can be ob-
tained experimentally (Ortega et al., 2016, 2017). As shown in Fig. 2a,
each cohesive law is defined as a C°-piecewise linear function of the
form:

om(wy) = —ag/[WM + b]f,[ vVie{l,..n} 41)

where wy is the crack opening. Hence, wi; = (bif! — bi)/(aif' — aiy)
defines the intersection point between two consecutive segments of the
cohesive law (Fig. 2a). Furthermore, the area under the cohesive law is
equal to the fracture toughness (%) associated to a particular failure
mode M and the traction when wy = 0 is equal to the material strength.

Considering the crack band model (Bazant and Oh, 1983), it is
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Fig. 2. Cohesive law: (a) cohesive traction-crack opening and (b) stress-strain.

Table 2a
Coefficients and expressions of the damage laws for each uni-axial case.

- a1 >0 011 <0 23 o1z (or 013)
M: 1+ 1- G 6*

N: L+ L- T T

Ewm: En En G23 Giz

by Xr Xc St S

diy: Exp. A Exp. B Exp. A Exp. A

? I\l/( 1 Exp. C 1 1

possible to consider the cohesive law in a continuum manner ensuring a
correct dissipation of the energy. The crack band model assumes that
the crack opening is distributed in a finite band that, in the finite ele-
ment framework, corresponds to the characteristic element length, &.
Hence, the stress-strain constitutive relationship for each of the uni-
axial load cases can be written as (see Table 2a):

om(em) = (1 — dw)Emem (42)

where Ey is the undamaged slope related the uni-axial load case M and
dy is the damage state variable (see Table 2b and Fig. 2b). Finally,
according to the crack band model, the mean strain &y in the element

and the crack opening wy can be related through
Wy = dybvém (43)

At this point, it is possible to determine dy (ey) using Egs. 41 and 42
and &y (ry) using Egs. 32-34 and Egs. 38-40. In this way, the damage
laws with respect to the damage threshold variables, dy(ry), can be

Table 2b

defined as:

0
dy = qdi; if ni' <<y
1 if mi<my

if w<my
Vie{l,..,n}
(44)

where the expression dj; for rif! < iy < riy is defined in Table 2b. Fi-
nally, in order to determine which is the active segment i, the value of
the damage threshold variable in an inflection point, ri;, has to be de-
termined as:

1 if i=0
(bi —b‘+1)EM+(ai pitl _ gitlpi Yem s .
i MM MM M M oy if 1€{l,.., n-1}
ny = (a; - althemby
bl Em P
M if i=n
apiemby (45)

where ¢}‘A is also defined in Table 2b.
Notice that in Table 2b it is defined d¢ instead of dg. Then, con-
sidering the aforementioned hypothesis, the latter law is defined as

ds=1-(1—-de)(1 - dpy) (46)

where dg-(ry) is related with the longitudinal shear stresses, 0j, and o3.

Finally, the damage laws for tensile transverse stress, g, > 0 or
033 > 0, are computed considering that both transverse damages laws,
dg+ and dg, are linked. It is assumed that the matrix, when it is fully
damaged, is not able to support transverse tensile pressure and trans-
verse shear stresses. As a consequence, both transverse damages have to
initiate and finalize at the same moment. Under this hypothesis, the

Coefficients and expressions of the damage laws for each uni-axial case.
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Table 3
IM7/8552 material properties for the current model and the Camanho's et al.
failure criteria.

Prop. Camanho Current Units Source

G2 5290 - MPa Camanho and Lambert (2006)
V12 - 0.32 -

Xr 2323.5 2323.5 MPa Catalanotti et al. (2013)

Xc 1017.5 1017.5 MPa Catalanotti et al. (2013)

Yr 62.3 62.3 MPa Camanho and Lambert (2006)
Yar 38.7 - MPa Vogler et al. (2013)

Yo 253.7 253.7 MPa Koerber et al. (2010)

Yac 600.0 - MPa Vogler et al. (2013)

Si 89.6 89.6 MPa Catalanotti et al. (2013)

St 62.3 - MPa Camanho et al. (2015)

B 0.0 - MPa 3 Camanho et al. (2015)

My - 0.904 - Eq. (36) *

e - 1.0 - Eq. (37) "

nr - 12.0 - Adjusted

e - 385.0 - Adjusted

g - 9.5 - Adjusted

nd - 0.0 - Adjusted

@ Assuming Ysc = 600.0 MPa.
b Assuming 7, = 0.5 Catalanotti et al. (2013).

following expression for dy, is proposed:

1+ k+ (rr — 1)G1/Er

dgy =1-(1-dg) P
T

(47)

Where k is a parameter that depends on the material properties and the
characteristic element length. In Algorithm 1, a numerical procedure to
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compute this parameter is presented. It is worth mentioning that this
procedure has to be done just once at the beginning of the analysis.

Algorithm 1. Adjust k parameter

Let gg = %/ be the mode-I transverse energy that an element of
length ¢ must dissipate, ag and b be the softening parameters re-
lated with the mode-II transverse energy, and E(k, &) = f Zdt be
computed by means of numerical quadrature, such that standard
Simpson's rule.
1: Evaluate the transversal threshold variable when the element has
been dissipated the mode-II transverse energy %;, in other words,
compute rr when dg = 1.
2: Compute the admissible range of mode-I transverse energy:

Emin = 2(0, &) and  Epu = E(oo, &)
3:if Enin < g1 < Emax then
4: Bracket the solution between k and k.
5: Find k by means of the Ridder's method (Ralston and
Rabinowitz, 2001).
6: else
7: The parameter k cannot be adjusted for the current %k and &.
Modify the element size or modify the relation between dg and di.
8: end if

3. Model algorithm

In this section the main features related to the implementation of
the present damage model into the Alya system (Casoni et al., 2014) are
briefly outlined.

Discretization method: The numerical model for solving the equations
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Fig. 3. a: Proposed loading functions vs failure criteria (Camanho et al., 2015) for the IM7/8552 material at different stress spaces: (a) &y, - 822, (b) &1 - G12, (¢) Gi; - o3,
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Fig. 3. (continued)

is based on a total Lagrangian formulation. In this approach, the dis-
crete equations are formulated with respect to the reference config-
uration, hence using the Second Piola Kirchoff stress and Green
Lagrangian strain measures.

Focusing on the Alya implementation, the damage model is im-
plemented as a constitutive model within the framework of the non-
linear finite element method, with the continuous loading process re-
placed by incremental time steps. Thanks to the modular architecture of
the Alya system, it does not present any limitation for running either in
explicit or implicit time integration scheme. For the implicit case, in
each step the boundary value problem is solved using an incremental-
iterative solution strategy, the standard Newton-Raphson iteration.

The current formulation is implemented as an independent material
model, which work-flow is summarized in Algorithm 2. The integration
of the constitutive law is performed at the gauss point level, where the
contribution of each element to the model during the analysis is to
provide the stresses and the external load vector at each node.

Algorithm 2. Material model work-flow

Input: strains ¢ and internal variables ry

Output: nominal stress tensor ¢ and internal variables ry

1: Compute the effective stresses: & = Hy': ¢ Eq. (29)

2: Compute the effective invariants: &, pr, %, Zr Egs. 16-19

3: Evaluate the loading failure functions: ¢, ,, ¢, , ¢, Egs. 32-34
4: Integrate the internal variables: 14, 1., rr Egs. 38-40

5: Evaluate the damage state variables: d., di., dk4, dg, de+ Egs.
44-47

6: Evaluate the active damage state variables: d;, di, d¢ Egs. (30),
(31) and (46)

7: Compute the nominal stress tensor: ¢ = H™!: ¢ Eq. (29)
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Parallelization: The Alya code is written in Fortran 90/95 and par-
allelized with an hybrid OpenMP/MPI. The partition of the mesh is
carried out on-the-fly with the METIS library (Casoni et al., 2014). The
time for the partition is only a few seconds. The mechanical solver
consists mainly of two basic steps, the assembly of the matrix and the
right hand side of the system, and the solution of this system using
iterative solvers. The assembly step does not require any communica-
tion during the matrix-vector products. However, the parallelization of
the solver is based on MPI gather functions, as described by Léhner
et al. (2011).

4. Demonstration cases

This section presents two examples that demonstrate the capabilities
of the model to capture the onset and propagation of the damage in-
duced by complex 3D stress states. The first example consists of a cross-
ply laminate in which the central ply clustering thickness is increased,
whereas the second one is an open-hole specimen under tensile loading.
In both cases, the laminate is made of IM7/8552 CFRP unidirectional
tape with a nominal thickness of 0.125 mm. The loading functions at
the onset of failure are validated in Section 4.1. The validation is per-
formed through the physically based failure criteria proposed by
Camanho et al. (2015). The input parameters required by the model are
summarized in Section 4.2. Finally, the numerical setup and simulation
results are presented and discussed in Section 4.3 and Section 4.4, re-
spectively. All the simulations are performed using the Alya FE code run
in the Marenostrum IV supercomputer (Casoni et al., 2014).
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Table 4
Model input parameters for an IM7/8552 unidirectional ply.
Prop. Value Units Source
Elastic En 171420 MPa Camanho et al. (2007)
Exn 9080 MPa Camanho et al. (2007)
G2 5290 MPa Camanho et al. (2007)
V12 0.32 - Camanho et al. (2007)
V23 0.45 - Camanho et al. (2007)
Strength Xt 2323.5 MPa Catalanotti et al. (2013)
Xc 1017.5 MPa Catalanotti et al. (2013)
Yr 62.3 MPa Camanho and Lambert (2006)
Yo 253.7 MPa Koerber et al. (2010)
St 89.6 MPa Catalanotti et al. (2013)
K 0.904 - Section 4.1
Mo 1.0 - Section 4.1
nr 12.0 - Section 4.1
e 350.0 - Section 4.1
s 9.5 - Section 4.1
nd 0.0 - Section 4.1
Softening 1+ gf, 55200.94 mm*N~' -
afy 2123.11 mm*N"' -
b11+ 2323.5 MPa -
b, 536.19 MPa -
- gl 19478.95 mm®N"' -
al 256.3 mm®N"' -
bl 10175 MPa -
b 214.21 MPa -
K k 111.5 - -
G al 216515 Mm®*N~' -
b 69.02 MPa -
6 al 5094.01 mm® N -
be 89.6 MPa -
Table 5
Cohesive material properties of the IM7/8552 material.
Prop. Value Units Source
1+ (2, 97.8 kJ/m? Gutkin and Pinho (2011)
ffi’u 05 B
X 2323.5 MPa Catalanotti et al. (2013)
f)l(T 0.2 -
1- G 106.3 kJ/m? Camanho et al. (2007)
L 0.25 -
Xc 1017.5 MPa Catalanotti et al. (2013)
f)l(C 0.2 -
K Gx 0.277 kJ/m? Camanho et al. (2007)
G 78 1.1 kJ/m? Estimated
St 69.01 MPa Estimated
6 % 0.788 kJ/m? Camanho et al. (2007)
SL 89.6 MPa Catalanotti et al. (2013)
Clamped end

ux=uy=uz=0 N

Loading end
(applied displacement)
ux =0

Fig. 4. Geometric definition for the matrix cracking tests.
4.1. Loading functions validation

In this section, the failure criteria proposed by Camanho et al.
(2015) are used to adjust and to validate the loading functions at the
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onset of failure. Their criteria are based on a 3D physically invariant
formulation that is capable to accurately predict the onset of failure in a
single unidirectional ply of a fibre reinforced polymer under a complex
loading state. As demonstrated in their work, the numerical predictions
of the failure criteria are in good agreement with the data available in
the literature and with the numerical predictions computed using the
micro-mechanical approach developed by Melro et al. (2013a, b) and
Arteiro et al. (2014).

The material properties and parameters for the IM7/8552 that are
required for the failure criteria and the loading functions are listed in
Table 3. The ones referring to the loading functions are adjusted as
following: u; is computed by means of the biaxial compression
strength, Ygc, using Eq. (36) in order to accurately describe the closed
surface in 35, — 333 stress space; u;; is computed through Eq. (37)
considering 7, = 0.5, which is the longitudinal slope used by Catalanotti
et al. (2013); and 7, 74, 75 and ¢ are adjusted through a least squares
method.

The surfaces representing the different stress spaces at the onset of
damage are depicted in Fig. 3a-h. A very good agreement between the
failure criteria and the loading functions is obtained. The differences
that can be observed in Fig. 3c, e, h for the transversal shear strength,
Srt, are due to the adjustment of 1. As aforementioned, it is adjusted in
the current work by means of Y;c instead of St and therefore, using Eq.
(35) it is obtained that St = 69.0 MPa, whereas in the failure criteria it
is St = 62.3 MPa. However, it must be pointed out that it is possible to
match the transversal shear strength, but at cost of the biaxial com-
pression strength. Additionally, it can be observed in Fig. 3c that the
influence of transversal shear stress on the longitudinal compression
strength is not accounted in the proposed loading functions.

4.2. Model input parameters

The model input parameters for an IM7/8552 unidirectional ply are
listed in Table 4. The softening parameters are obtained by means of the
cohesive properties summarized in Table 5, following the relations
explained in Section 2. The cohesive laws along the longitudinal di-
rection are assumed bilinear laws, whereas linear along the transverse
and shear directions. The slope, ay;, and the ordinate, by, are computed
by means of the fracture toughness, %y, and the uniaxial strength, Xy.
Note that, in the first segment, by = Xy. Moreover, in order to com-
pletely describe the longitudinal cohesive law, two extra properties are
required: the strength at inflection point, f)l(MXM, and the energy under
the first part of the cohesive law, fiM Yy, see Fig. 2. It is worth men-
tioning that 41, and %;_ are the fracture toughness associated with the
breaking and kinking of the fiber, %x and %; with the cracking of the
matrix in mode-I and mode-II, and % with the formation of in-plane
shear cracks. Finally, the parameter k in Eq. (47) is constant for all the
elements thanks to the definition of a structured mesh with a constant
characteristic element size.

4.3. Matrix cracking test

The matrix cracking test consist on three cross-ply laminates sub-
jected to tensile loading, whose stacking sequence consist of: [0,/90,];
with n = 1,2,4. The geometric definition is shown in Fig. 4 and the
nominal dimensions are: length L = 20 mm, width W = 20 mm, and
thickness T = 0.125(n + 4) mm. Each model is discretized with a
structured mesh conformed by eight-node cubic elements with full in-
tegration and an approximated aspect ratio of 1. The element size is set
to 4, = 0.05 mm that corresponds to five elements per each two plies, e.
g for n =1 there are 6 plies and therefore, 15 elements through the
specimen thickness. This discretization results in meshes of 2.4, 3.2 and
4.8 million elements, for n =1, 2, and 4, respectively. Finally, the
loading of the specimen is performed by means of a monotonically
increasing displacement applied at one end, whereas it is prohibited at
the opposite end, see Fig. 4.



A. Quintanas-Corominas et al.

1600

European Journal of Mechanics / A Solids 71 (2018) 278-291

1400

1200

1000

Longitudinal stress [MPa]

0.6
Longitudinal strain [%]

0.8 1

(a)

4 14 | b
4 X h
- 12 4
4 ©
b=
%
1 = 1k i
c
£
1 2
© 08 E
1 o
3
e
7 0.6 |- onset damage -
) final collapse - -- -
1.4 1 2 3 4

(b)

Fig. 5. (a) Longitudinal stress - strain response and (b) Longitudinal strain at the onset of the damage and at the final collapse of the specimen for the matrix cracking

tests.

Fig. 6. Matrix damage, d, at e, = 1.0% for [0,/90,];.

Fig. 7. Matrix damage, dx, at & = 0.9% for [0, 90,];, where n = 1,2,4.

The simulations are performed under a quasi-static regime using the
B-Newmark temporal integration scheme (Newmark, 1959). The ma-
terial tangent stiffness is approximated by the secant matrix computed
as the inverse of the compliance matrix, defined in Eq. (29). It is well
known that standard solution techniques lead to instabilities near dis-
continuity threshold, thus precluding the convergence of the algebraic
solver. In the present work, it has been observed that at the beginning
of the damage, the secant matrix increases the robustness of the alge-
braic solver, which in turn helps to find the solution of the Newton-
Raphson, i.e. the equilibrium state. Taking benefit of the wide range of
options that the Alya code offers, several combinations of algebraic
solvers and preconditioners have been tested. It has been observed that,
for the current case, a GMRES solver with a diagonal preconditioning
gives a good compromise between efficiency and robustness (Magoules
et al., 2016).

The overall behaviour of a cross-ply laminate under tensile loading
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Fig. 8. Matrix damage, di, at the free-edge at ¢, = 0.9% for [0,/90,];, where
n = 1,2,4. The solid line is an isoline corresponding to dx = 0.3.

Table 6
Computation time of the matrix cracking cases.

n #Elements #CPUs CPU time [hh:mm]
1 2,400,000 312 00: 58
2 3,200,000 416 00: 59
4 4,800,000 624 01: 13
Averaged no. of elements per core
102K 25K 13K 6K 3K
32— T T T T
30+
28l
26}
24
221
a 20
5 18f
3 160
314
12+
10+
8+
6
ar % % Ideal Linear Scalability
21 »— ALYA Current Scalability
0 4‘8‘ 1§2 354 768 1535
No. of cores

Fig. 9. Strong scalability curve for the matrix cracking test with 4.8 million of
elements.
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Hole detail mesh (n = 4)

Loading end
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ux =0

Fig. 10. Geometric definition and mesh detail for the open hole test.

Table 7
Mesh and computational time summary for the open hole test, where n in-
dicates the number of elements per ply.

n #Elements #CPUs CPU time [hh:mm]
1 258,000 48 2:43
2 515,472 96 3: 06
4,123,776 624 18: 01
600
< ¥
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©
o
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«» 400 - T
w
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Fig. 11. Longitudinal stress - strain response for the open hole test.

Table 8
Experimental and numerical ultimate strength of the laminate for the open hole
test.

Case Laminate strength [MPa] Error [%]
Exp. 555.70 -

n=1 480.78 13.48
n=2 541.89 2.49
n=4 545.64 1.81

conditions is correctly captured by the proposed model. The matrix
cracks appear in the inner plies of 90° up to the final collapse of the
specimen, which is triggered by fibre tensile fracture of the adjoining
plies (Maimi et al., 2008; Meyer and Waas, 2016).

The longitudinal stress-strain response for the different layups is
shown in Fig. 5a. The onset of damage occurs at a similar strain level,
whereas the final collapse occurs at a lower strain level as thicker is the
central ply clustering, see 5b. This is because the failure in the outer
plies is initiated where there is a matrix crack in the central plies.
Therefore, if the central ply is thicker, the stress intensity factor is
higher, which leads to a premature initiation of the failure.

In Fig. 6, the transversal matrix damage, di, for the [0,/90,]; spe-
cimen at g, = 1.0% is depicted for two different views. It should be
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noted that the matrix damage is extended along the elements that
surround the interface, whereas it is located around the cracks in the
rest of the laminate thickness. This is in agreement with the experi-
mental observations, which indicate that the nucleation of a matrix
crack is followed by its propagation up to the interface triggering a
delamination (Thorsson et al., 2016).

As can be appreciated in Fig. 7, the obtained crack pattern is dif-
ferent as a function of the central ply clustering. The crack density in-
creases as the thickness of 90° plies cluster decreases.

Another interesting phenomena that can be observed in the simu-
lation results is the effect of the free-edge at the interface. According to
the experimental observations (Guillamet et al., 2016), the high normal
and shear interlaminar stresses in addition to the lower in-situ strengths
in the thicker laminates involve a premature development of the matrix
damage at the free-edge. Fig. 8 depicts the matrix damage developed
between the 0° and 90° plies at the free-edge for e, = 0.9%. It can be
appreciated that the thicker the 90° ply clustering is, the larger the
damaged area close to the free-edge is. Moreover, the damaged area
between two neighbouring cracks follows the same trend. It is larger as
thicker the 90° ply clustering is.

With regards to the computational performance, the number of
CPUs used in each simulation as well as the total elapsed computational
time are listed in Table 6. It is worth mentioning that the simulation
time for all cases is less than 1 h and 15 min. In Fig. 9, it is shown the
strong scalability curve for the largest specimen with 4.8 million of
elements, i.e. n = 4. The scalability is measured based on the total time
of the solver computation as it runs in an increasing number of pro-
cessors. The straight line shows the ideal scalability, which indicates
that if the number of processors is multiplied by a factor, the speed-up
of the simulation should be increased proportionally. It can be seen that
the current implementation maintains the excellent performance of the
Alya code (Casoni et al., 2014; Vazquez et al., 2016), with an efficiency
higher than 80% up to 1,535 cores, i.e. 3,000 elements per CPU.

4.4. Open hole test

An open-hole test tension subjected to tensile loading is presented
here in order to strengthen the validation of the proposed damage
formulation. The stacking sequence of the specimen under considera-
tion is [90/0/+45/—45];. The geometric configuration under con-
sideration was previously studied by Camanho et al. (2007), Gutkin and
Pinho (2011) and more recently by Reinoso et al. (2017). The nominal
dimensions of the model are: length L = 100 mm, width W = 12 mm
and thickness T = 3.144 mm with a hole diameter of d = 2 mm. The
model is discretized with a structured mesh conformed by eight-node
cubic elements with full integration. Two regions with different mesh
sizes are distinguished: a refined mesh region defined in a 12x12 mm
central square and a coarse mesh region that extends in the remaining
part, see Fig. 10. Three meshes with different number of elements
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Fig. 12. Damage pattern at the different plies for the open hole test with four elements per ply, n = 4, just before the failure: (a) 90° plies - matrix damage, dx, (b) 0°
plies - fiber damage, dy4, (¢) +45° plies - matrix damage, dg, (d) -45° plies - matrix damage, dg.
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Fig. 13. Strong scalability curve for the open hole test with 30 million of ele-
ments.
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through the thickness (denoted by n) are analysed in order to demon-
strate the proper regularization of the current formulation at coupon
level. Table 7 summarizes the computational resources and time for
each discretization.

The simulations are performed using a central-difference temporal
integration scheme, i. e an explicit scheme. The initial stable time in-
crement used is At ~ 7.45-1077s, which guarantees the stability of the
scheme (Belytschko et al., 2013). In addition, a displacement control
loading with smooth step is applied in order to vanish the initial ve-
locities and accelerations. Thus minimizing the inertial forces at the
beginning of the simulation.

The longitudinal stress-strain response for the different element
sizes is shown in Fig. 11. A good correlation between numerical pre-
dictions and experimental data for those models with more than one
element through the ply thickness can be observed in Table 8. It is
worth mentioning that the nominal strengths given in Table 4 have
been used in the simulations, instead of modifying some properties
according to the ply thickness, as it is usually done in the literature, and
referred as in-situ strengths (Dvorak and Laws, 1987; Camanho et al.,
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2007). This have some implications if the discretization of the plies in
the thickness direction is not refined enough. It can be appreciated with
the numerical prediction for one element per ply, n = 1, which has an
error of 13.5%. In contrast, when more than one element through the
thickness is used, n > 1, the current formulation captures the in-situ
effect as demonstrate with an error below 3%.

As shown in Fig. 11, the stress-strain curve has an inflection point
~ 200MPa, which is in agreement with the experimental results re-
ported by Reinoso et al. (2017). According to their work, this inflection
point marks the transition between a first stage without damage and a
second stage with interlaminar and intralaminar damage evolution. The
current simulations do not include cohesive elements, so interlaminar
damage is captured by the 3D nature of the intralaminar model and
cannot be precisely separated from intra-laminar damage. This is in
concordance with the results shown in the matrix cracking tests, see
Fig. 6. It must be pointed that in problems where the matrix rich layer
plays an important role, such as those involving bolted joints (Joseph
et al., 2017, 2018) or stiffeners (Krueger et al., 2002; Psarras et al.,
2011), the interlaminar damage should be explicitly modelled using, for
instance, a cohesive zone model (Turon et al., 2006, 2018).

The damage pattern for the open hole test using the mesh with four
elements per ply, n = 4, is represented in Fig. 12 at a load level close to
the maximum load, o, = 542 MPa. Due to symmetry, only top-half of
the stacking sequence is represented. In this figure, the most relevant
damage mechanisms are represented for each orientation: plies at 90°
mostly have matrix failure under tension (dg); plies at =+ 45° have
matrix failure under shear (dg) as the most predominant; and plies
oriented at 0° show fiber failure (d,). The first ply failure occurs at the
90° outer ply and it is concentrated around the hole, approximately at
& = 0.3%, in agreement with Reinoso et al. (2017). This ply exhibits
tensile matrix cracking failure (dx) in two locations: around the hole
and at the free-edge, the former in agreement also with the results
predicted by Gutkin and Pinho (2011). With regard to the + 45° plies a
similar damage pattern is obtained, as shown in Fig. 12c and d. In these
cases, matrix failure under shear (dg) is the most predominant damage
mechanism. Damage is initiated at the hole and propagates perpendi-
cularly to the loading direction, in accordance with the failure mode
observed in the experiments (Camanho et al., 2007). Finally, the pro-
gression of the matrix failure around the hole leaves the 0° plies sus-
taining the major part of the load and leads to a net-fiber failure da-
mage (d;) just before the total failure of the specimen, see Fig. 12b.

The computational times are listed in Table 7. Fig. 13 shows a
scalability analysis for a mesh of 30 million elements. In this case, the
scalability is measured excluding pre- and post-process tasks and in-
creasing the number of processors from 144 to 2,304. From this figure, it
can be conclude that the current case scales well until 2,304 cores with
an efficiency close to 80%. For this case the sweet spot is around 14,000
element per core.

5. Conclusions

A 3D continuum damage model able to predict the progressive
failure of laminated composite materials under complex stress states
has been proposed. The formulation of the model is based on the con-
tinuum damage mechanics framework in order to ensure its thermo-
dynamic consistence. The loading functions have been defined to de-
scribe a large number of materials. The envelope of the load functions
proposed have been compared with the envelopes obtained using a
physically based failure criteria, showing a good agreement. The da-
mage laws are piecewise functions of n linear segments that have been
formulated using the crack band model in order to ensure the energy
mesh-independent prediction.

The model has been implemented in the Alya code, a high perfor-
mance computing based finite element software. The simulated loading
cases demonstrate the capability of the model to capture the kinematics
of the propagation of transverse matrix cracks for cross-plies and the
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damage pattern developed in the open hole tensile test. The model
correctly captures the complex phenomena associated with these spe-
cimens, such as the in-situ effect and the complex stress state at the free-
edges due to the mismatch of the Poisson ratios of adjacent layers. In
addition, the matrix damage arising at the interfaces between two plies
is also captured if more than one element through the thickness is used.
This damage can be identified as delamination damage showing the
potential of the current formulation. Finally, the scalability curves are
shown for meshes of 4.8 and 30 million elements, showing the good
scalability and efficiency of Alya code up to thousands of cores.
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ABSTRACT

The development of predictive numerical methods, which accurately represent the progressive failure of long
fiber composite materials, is nowadays required for the achievement of optimized mechanical responses in terms
of load bearing capacities of modern composite structures. In this investigation, two characteristic failure me-
chanisms of long fiber composites, denominated as intralaminar and translaminar fracture, are simulated by
means of a novel version of the phase field (PF) approach of fracture. This numerical strategy encompasses a sort
of gradient-enhanced damage formulation rooted in the Griffith theory of fracture, which is herewith extended
for its use in composite laminates applications. In order to assess its verification and validation, the predictions
obtained using the present formulation are compared against experimental results and two well-established
alternative computational methods, which correspond to an anisotropic local-based continuum damage model
and a cohesive zone model. The comparisons demonstrate that the PF approach with the proposed formulation
provides reliable and robust predictions under quasi-static loading, but with a higher versatility regarding the

potential of triggering arbitrarily complex crack paths with intricate topology over alternative techniques.

1. Introduction

The production of highly efficient structures made from Long Fiber
Reinforced Composites (LFRCs) has been a recurrent objective during
the last decades. Current production demands aim to obtain optimized
designs with higher damage tolerance, which intrinsically imply a
comprehensive understanding of the mechanisms involved during the
failure processes. At mesoscopic length scale, the typical failure me-
chanisms in LFRCs can be classified as: (i) intralaminar failure, which
includes breaking and kinking of the fibers and cracking of the matrix,
(i) interlaminar failure that is the delamination between plies, and (iii)
translaminar failure, which is a fracture event within the laminate
thickness involving different plies. These different mechanisms in
conjunction with the orthotropic mechanical response at the lamina
level generally induce to the occurrence of complex mechanical re-
sponses that are difficult to predict in a faithful manner. For this reason,
the development of robust and reliable simulations methods is nowa-
days mandatory in order to achieve an improved level of exploitation of
the load-bearing capacities of modern composite structures.

In the context of Finite Element Method (FEM) based tools, sa-
tisfactory results have been achieved through the exploitation of

* Corresponding author.
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Cohesive Zone Models (CZM) [1-3] and local-based anisotropic Con-
tinuum Damage Models (CDM) [4-9]. However, one of the main
drawbacks of these techniques is the necessity of aligning the mesh with
the fiber direction [10], which leads to difficult mesh generations and
reduces the predictive capabilities. To overcome this issue, different
enriched FE-based formulations have been proposed in the related lit-
erature so far, such as the eXtended FEM (X-FEM) [11], the Enhanced
FEM (E-FEM) [12], the Floating Point Method (also denominated as the
Phantom Node Method) [13]. Despite their effectiveness, the afore-
mentioned techniques can suffer from tracking the actual crack path
topology, especially in 3D applications, whereby intricate crack coa-
lescence and branching scenarios may potentially occur. In addition,
their implementation can be especially challenging and problematic in
parallel environments and High Performance Computing (HPC) plat-
forms.

A promising alternative for modeling the progressive failure is the
recent Phase Field (PF) approach for fracture, which has gained a no-
table relevance during the last years in the scientific community
[14,15]. In particular, this approach allows the accurate simulation of
complex crack paths, including crack branching and coalescence,
without the need of cumbersome crack tracking algorithms. The PF
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approach is rooted in the seminal work developed by Francfort and
Marigo [16], who proposed a modified variational approach to brittle
fracture exploiting the classical Griffith fracture theory [17]. In parti-
cular, this technique has been successfully applied to brittle, cohesive
and ductile fracture in 2D and 3D analyses [18-21], shells [22,23],
heterogeneous media in combination with the CZM [24,25], and multi-
physics environments [26,27]. The results presented in these studies
showed that the strain localization path has a reduced mesh de-
pendency when the spatial discretization (mesh size) is small enough to
resolve the fracture process zone.

However, at present, the use of the PF to perform progressive da-
mage analysis of long fiber composite materials has received very
limited attention, see [28,29]. Regarding the modeling of anisotropic
behavior in the context of the PF approach, there are recent in-
vestigations that modeled the anisotropy using structural tensors, see
for instance [30-34]. The main drawback of this strategy is that it ac-
counts only for a unique critical energy release rate. This limitation is
not in line with the actual nature of composite materials, in which each
failure mechanisms have associated a different critical energy. Bleyer
and Alessi [35] proposed a pioneering incursion on this matter via the
definition of several PF variables, one for each intralaminar failure
mechanism, i.e. fiber and matrix failures. Despite the promising results,
their strategy increases the computational efforts (since a set of phase
field variables with their corresponding evolution equations are con-
sidered [35]), and therefore this fact can potentially complicate the
numerical solution scheme.

Based on the previous arguments, the purpose of the current re-
search is the development, assessment and application of the PF ap-
proach to model the progressive failure of long fiber reinforced com-
posites subjected to quasi-static tensile conditions. A salient aspect of
the current study regards the development of a new PF formulation
suitable for modeling damage events in composite laminates from dif-
ferent signature, specifically for the treatment of intralaminar and
translaminar failure. In this concern, differing from previous methods,
the strategy herein adopted combines the structural tensor with an
additive split of crack driving forces, requiring a single damage-like
variable that encompasses the contribution of each failure mode. In this
sense, the developed formulation can be conceived as an approach
falling between the mesoscopic and macroscopic modeling assump-
tions. Correspondingly, from an operative standpoint, the complete set
of elastic properties are degraded at the same rate but taking into ac-
count the anisotropic response and different damage mechanisms as
those specified above. A similar strategy has been recently adopted by
Giiltekin et al. [36,37] for biomechanics systems. Recalling thermo-
dynamic arguments, the fundamental ingredients of the underlying
theoretical and numerical implementation are herein outlined. More-
over, in order to perform high-fidelity massive composite simulations,
this strategy is implemented into the FE-code Alya, which is a multi-
physics parallel software developed at Barcelona Supercomputing
Center [38]. Finally, the potential and accuracy of the proposed PF

Discrete crack problem
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approach is demonstrated by comparing the current numerical predic-
tions for intralaminar and translaminar failure with available experi-
mental data and with alternative computational results using an ani-
sotropic CDM [9] and CZM [39].

The manuscript is organized as follows. Section 2 briefly introduces
the fundamental theoretical and numerical aspects of the PF method for
fracture. The constitutive assumptions regarding the long fiber com-
posite materials are presented in Section 3. In Section 4, current pre-
dictions regarding intralaminar and translaminar failure with two al-
ternative predictive techniques are presented. Moreover, current results
associated with translaminar failure are correlated with experimental
and linear elastic fracture mechanics (LEFM) results, showing a very
satisfactory agreement. Finally, the main conclusions are summarized
in Section 5.

2. Phase field approach to fracture

In this section, the fundamental aspects of the current PF formula-
tion are presented. Firstly, the PF approach for brittle fracture are
briefly revisited in Section 2.1. For a more comprehensive derivation,
the readers are referred to the seminal works of Miehe et al. [18] and
Bourdin et al. [40]. Subsequently, in Section 2.2, it is outlined the
numerical strategy developed in the current study, pinpointing the
novel aspects herewith addressed. Finally, the role of the length scale
parameter ¢ and the effective energy release rate %, are briefly discussed
in Section 2.3.

2.1. Fundamentals of the PF approach

The PF approach to brittle fracture is conceived as a regularized
version of the evolutionary problem of crack propagation under quasi-
static conditions. Therefore, the crack evolution is studied by the
minimization of the functional that describes the potential energy of the
body under consideration in the spirit of the Griffith’s theory of frac-
ture. For the current investigation concerning fiber reinforced compo-
sites, we focus our attention on a body subjected to infinitesimal de-
formation in the general Euclidean space of dimension N. In this sense,
let Z € RN be an arbitrary body with an existing crack network re-
presented by the boundary I' as illustrated in Fig. 1. Moreover, let 0%
be the exterior boundary of the body, whose outward normal unit
vector is represented by n. The material points within the body are
identified by the position vector x € #, whereas its displacement field
is identified by the vector field u(x, t). Finally, we assume that Z is
subjected to body forces b as well as boundary conditions in form of
prescribed displacements (& on .%,) and prescribed tractions (f on8.%,).
These boundary conditions are subjected to the Neumann-Dirichlet
conditions, i.e. 84, U 84, = 0# and 6%, N 64, = @.

Recalling the variational approach to brittle fracture [40], the en-
ergy functional governing a cracked body subjected to external me-
chanical loadings, such as the one defined previously, reads:

Diffuse crack problem

Vo-n=0

phase field regularization

Fig. 1. Schematic representation of an arbitrary body with a discrete or a diffuse crack regularized by means of the phase field variable.
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M(u, T) = Mine(u, T) + Hext () 1)
where ITi,; and Il account for the internal and the external (which is
associated with the external mechanical loadings) counterparts, re-
spectively. Here, the internal energy density functional I, can be de-
fined as the sum of the elastic energy stored in the body IL, and the
energy dissipated through different mechanisms IT;. Then, considering
only dissipative mechanisms stemming from the formation and propa-
gation of a cracks network, it is postulated through Griffith’s theory
[17] that:

Mine(u, T) = I (w) + IIp(T) = j‘ Y(w)dv + f 4dA

AT T )
where ¥ is the specific elastic bulk energy, % is the critical energy re-
lease rate and u is the displacement vector field. Here, the Griffith
criterion is used to evaluate the fracture energy dissipated during the
formation of I' through the initiation and propagation of the crack
network. Note that in the context of a minimization energy problem,
the previous expression defines a direct competition between the elastic
energy stored in the body and the fracture energy dissipated in the
cracks network.

The evaluation of Eq. (2) can become a complex and computa-
tionally intensive task when numerical methods based on space dis-
cretization are used (FEM, mesh-less methods, among others). The
difficulty arises from the evolution of the discrete boundary re-
presenting the crack path I', which is necessary to evaluate both (vo-
lume and surface) integrals expressions concomitantly. Taking into
account that cracks generally propagate along the most favorable en-
ergetic path, which can exhibit bifurcation and coalescence phe-
nomena, the resulting path can be arbitrarily complex. This aspect leads
to the use of tracking algorithms, which increases the costs of im-
plementation and computation, especially in 3D analysis. In order to
circumvent the use of tracking algorithms, there exists the possibility to
use non-local damage approaches. In particular, the current work is
focused on the PF approach, which was seminally conceived by Bourdin
et al. [40] as a regularization technique that smears the discrete
boundary of a crack over the entire domain of the body. Concretely, it is
rooted in the framework developed by Francfort and Marigo [16],
which exploits the I'-convergence concept to approximate an internal
boundary avoiding its explicit representation [41]. In other words, the
PF approach is a regularized version of the variational problem of
brittle fracture, in the same line that gradient damage formulations
[42].

Correspondingly, within the context of the PF approach, the surface
integral in the dissipated energy can be approximated by a volume
integral:

Zda~ [ 2y, V)V
[ ens ] ®

where y (¢, V@) is a functional representing the crack surface density
and ¢(x) is a continuous scalar field representing the amount of surface
crack created at a material point. In turn, V¢ (x) is the spatial gradient
of the PF. Thanks to these new variables, the discrete boundary of a
crack y is regularized over the body domain inducing the diffuse re-
presentation illustrated in Fig. 1. Note that this approach can be in-
terpreted as a smooth representation of the Griffith fracture criterion.
Moreover, the PF can be related to the damage state of a material point,
similarly to the state variable used in the continuum damage models
[18]. Henceforth, ¢ = 0 represents a virgin state, whereas ¢ = 1 iden-
tifies a fully damaged one. The dependency of ¢ on the material co-
ordinates vector x is avoided in the sequel in order to alleviate the
formulation.

Next, the crack surface density functional introduced in the previous
expression is herein defined using a modified version of the Ambrosio-
Tortorelli functional [37]:
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1

7 (@, V¢) = E(w@) + V¢ LV¢) @
where w(¢) is a function such that w(0) = 0 and w(1) = 1;¢ is the length
scale parameter that controls the transition between a virgin and a
damage state, see Fig. 1; and £ is a structural tensor that aligns the PF
with a preferred direction. In the case of an isotropic surface density, it
is defined as £ = ¢%I. A comprehensive description of the ¢ role is
explained in Section 2.3.

Furthermore, in the PF approach, ¥ is redefined to include the in-
fluence of the PF variable, i.e. ¥(u) ~ ¥(u, ¢). This modification is
motivated by the fact that, to ensure the thermodynamic equilibrium,
the elastic energy density in the transition zone has to decrease as the
dissipated energy increases due to the crack formation. Moreover, in
the current approach, the elastic energy density is energetically split
into active W, and passive W, contributions as proposed by Miehe
et al. [43]. This split allows the possibility to affect with the PF only the
active contribution endowing the modeling of asymmetric damage be-
haviors. Under reversal loading, the closing of the crack flanks pre-
cludes the damage evolution and provokes a stiffness recovery. Based
on the aforementioned observations, ¥ is defined as:

Y(u, ¢) = (a(p) + ﬂg)‘yact(u) + ll}pa\s(u) 5)

where a(¢) is a monotonic function that models the degradation of
energy as the crack density increases, fulfilling that a(0) =1 and
a(l) =0, and 7, = ¢(¢) is a numerical parameter associated with a
residual elastic energy that is defined to mitigate instabilities during the
solution process.

Taking into account Egs. (3)-(5), the regularized version of the in-
ternal energy density functional defined in Eq. (2) is given by:

inc(u, T) = Mine(u, ¢) = Ms(u, ¢) + Ir($) (6)

with:

Ly, ¢) = [ [(( = P + 7,)%hae(®) + Bpus(w) 1AV 7a)
Z.

M) = 35 [, @) + Vé-LVglav .

where ¢, = fol \/Tqﬁ)dqﬁ is a normalization parameter [44].

As can be appreciated, the formulation presented up to this point is
applicable to a wide range of materials and damage models by the
proper choice of W, ¥, (¢) and w(¢). The specific expressions of the
active and passive specific elastic bulk energy, which models the ani-
sotropic nature of long fiber composite materials, are detailed in
Section 3.2. Regarding the degradation functions, the quadratic for-
mulation proposed by Bourdin et al. [45] is used, which reads:

a@=Q0-¢r @) =¢ @®

Finally, the regularized version of the internal energy considering the
quadratic formulation is given by:

i (, §) = [ [((1 = $)> + 1,)Wier (1) + Bpos(w) 1AV
2

and w.=1/2.

A
Z [ 42 + Vo LVSldV
2 { O)

+

It should be pointed out that an explicit definition of an elastic
threshold for the damage activation is not considered in the previous
expression and therefore, the PF monotonically grows from the very
beginning of the simulation [46]. Another aspect to note here is that
using the quadratic formulation, the width of the damaged band ex-
tends over all the domain, which can lead to numerical issues in ana-
lysis where the PF length scale ¢ is close to the domain size [47,44].
Under such conditions, the linear crack density functional proposed by
Pham et al. [14] and the degradation functions presented by Sagrado
et al. [48] can be plausible methods in order to mitigate the previous
issues.
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2.2. Numerical strategy

The numerical strategy used in the current investigation relies on
the use of the standard Finite Element (FE) method for the spatial ap-
proximation. In turn, no temporal integration scheme is required since
the scope of the current formulation is restricted to quasi-static analysis.
Therefore, the numerical strategy adopted in the present study leads to
an equilibrium problem at each pseudo-time step.

In the two following subsections, the finite element approximation
and the solution scheme used for the demonstration cases are briefly
presented. Specific details regarding the FE discretization are omitted
here for the sake of brevity. For more details, the reader should refer to
Msekh et al. [49] and Molnédr and Gravouil [50] for standard linear
elements and Reinoso et al. [23,28] for continuum shells and thin-ply
laminates, respectively. In addition, an alternative time evolution
scheme for dynamical problems can be found in Borden et al. [51].

2.2.1. Finite element formulation

According to Eq. (6), the regularization of the energy density
functional given in Eq. (1) results in a coupled displacement-phase field
problem. Recalling a standard Galerkin procedure, the two primary
fields, u and ¢, are extended with the corresponding admissible test
function, du and J&¢, which are respectively subjected to
7 = {6u € Hl6u = 0ond#,} and 74 = {6¢ € H'I5¢ = 0ond4}. Thus,
the weak form of the coupled problem is constructed as follows:

OM(u, du, ¢, 6¢) = Tlin(u, Su, ¢, 6¢) + Sllex(u)

=0, VYduer, Vépe 7 (10)

where 61T, (u, du, ¢, ¢) and 611y (u) identify the internal and external
variation terms, respectively. Taking into account the expression given
in Eq. (9), the internal variation term can be split as:

Olline(u, Su, ¢, 64) = OILYy, (u, ¢, Su) + OIT%, (u, ¢, 54) an

Then, if the infinitesimal strain regime as the modeling framework, the
variations with respect to primary fields according to the quadratic
formulation given in Eq. (8) results in:

81l (u, Su, ¢) = f de: odV

2 (12a)

8IS, (u, ¢, 6¢) = [ (¢ — 21 — $).#)5¢ + V(6p) LV$AV

% (12b)
where o = 3,%(e (u), $) is the nominal stress tensor and &(u) = Viu is
the infinitesimal strain tensor, which variation with respect to the
displacement field is 8¢ = d,e(du). In turn, .# is the history field that
enforces the irreversibly condition and prevents healing effects. Fol-
lowing Miehe et al. [26], this historical variable can be defined by
means of the crack driving state function Z as:

g

act
%1€

A = max (Z°) with
se[0,t]

75 =
13)
where s represents the fully story process and t is the current time step.

The linearized expressions of the weak form are herewith presented
here because they are required in order to solve the nonlinear set of
equation that appears in the Newton-Raphson method as a consequence
of Taylor’s expansion around the solution of the primary fields [52].
This consistent linearization can be obtained through the Gateaux de-
rivative, resulting in:

26118, (u, u, iau) = [ VE(Bu): C: VS(aw)av + f Vi(6u)
A 23
: Vi(Au)odVv (14a)
ASTIE, (u, ¢, ¢irg) = [ 861+ 2)A¢dV + [ V(5¢)-LV (a$)dV
A #

(14b)
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where the nominal tangent material operator is defined as:

_ @), ¢)

9 ® Oc (15)

The spatial discretization of the decoupled weak forms in Eq. (12) is
performed considering first-order elements. Complying with the iso-
parametric approach, the displacement and phase fields (u, ¢) as well
as, their variations (du, 6¢), increments (Au, Ag) and gradients
(Vu, V¢) are discretized by means of the #° continuous shape functions
4T where the super-script I indicates the nodal support. Arranging
them into the operator N, the spatial discretization of the continuum
quantities at the element level are given by:

u~ Ngd, Su~ Nyd, Au= N4jAd, Vu ~ Byd (16a)

b~ N, Op~ NoBD, A~ NoAD, Ve ~ Byd (16b)

where d and 9 are the vectors arranging the nodal values of the dis-
placement and phase fields, respectively. In turn, By and B, are the
kinematic compatibility operators arranging the partial derivatives of
the shape functions with respect to the spatial coordinate V, N, which
specific expressions can be found in Msekh et al. [49] and Reinoso et al.
[23]. At this point, the insertion of Eq. (16) into Eq. (12) and Eq. (14)
leads to the semi-discrete form of the residual vectors:

Re= [ Blodv
‘[1‘ (17a)
R, = f [(®@ — 2(1 — 0).#) Ny + BT LV0]dV,
# (17b)
and the corresponding stiffness matrices:
K = f [BICBy + V! Naa Ve Nyl dV
% (18a)
Ko = j‘ [( + 20)#)NIN, + BILB,]dV
2 (18b)

where C is the nominal tangent material operator expressed in compact
form according to Eq. (15).

2.2.2. Solution scheme

According to the spatial discretization outlined above, the PF ap-
proach yields to a multi-field finite element problem. The global solu-
tion is composed of two fields, whose respective solutions can be ob-
tained using either a monolithic or an alternate minimization
numerical scheme.

Monolithic scheme On the one hand, the monolithic solution
scheme solves the following linearized system of equations in order to
find the incremental solution of both fields at time ¢, as follows:

[d] _ [d] i [Kdd Kdo]_l[ ]
L Pt o Ko Koo It
where Ry and R, are the right hand side vectors for the displacement
and phase fields, respectively; Kgq4, Kap, Kog and Ky, are the tangent
matrices after the consistent linearisation of the residual vectors.

Alternate minimization. On the other hand, in an alternate mini-
mization scheme, the solution is obtained by solving alternately the
displacement field and the phase field sub-problems. From a mathe-
matical point of view, this alternate minimization algorithm is prefer-
able due to the non-convexity of the regularized energy functional. It
means that Eq. (9) admits many local minimizers that might lead to
erroneous solutions, see [45,53]. Furthermore, this strategy allows the
use of different algebraic solvers, which can considerably increase the
numerical performance.

In light of the previous arguments and based on operative im-
plementation aspects, the solution strategy herein adopted is the al-
ternate minimization scheme proposed by [45]. Hence, the global
minimization problem is solved by alternately fixing either d or ? and

Ry

R, 19
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solving the sub-problem for the corresponding free variable. The pro-
cess is performed iteratively until the difference in the PF variable be-
tween two consecutive iterations fulfill the desired tolerance.

2.3. Role of the length scale parameter

According to the I'-convergence concept, the regularized solution
stemming from the variational formalism of the PF method approx-
imates to the original (sharp) crack representation as the length scale
parameter ¢ tends to zero [45]. Therefore, it seems logical that setting
lower values for the length scale would produce more accurate results.
However, Borden et al. [51] indicate that if an infinitesimal length scale
is used, the crack nucleation stress becomes infinite, which can induce a
non-physical behavior. For this reason, they propose that the length
scale not only should be considered as a numerical parameter to ensure
the convergence, but also as a material property since it influences the
critical stress. An extensive discussion on this matter can be found in
[54].

In line with this discussion, some studies analyzed the homogeneous
analytical solution for a one-dimensional quasi-static problem finding
that the length scale parameter can be related to the material char-
acteristic length ¢. = % E/o? where E is the Young modulus and o is the
nominal strength of the material under study [51,55]. Thus, the var-
iational PF models are uniquely characterized by physical parameters
since the internal length ¢ is now linked to the material strength o.
Particularizing the analysis to the quadratic form of the crack density
functional given in [45], the length scale parameter can be expressed
as:

_ 2 4E
256 o

(20)

In addition to the previous considerations, through the conduction
of different numerical experiments, Bourdin et al. [40] showed that, in
the current modeling framework, the fracture energy is slightly over-
estimated due to the space approximation of the domain. As a con-
sequence, an effective energy release rate % should be defined as
function of the discretization parameter ¢, in order to compensate this
amplification. In the current work, we propose a modification of the
relation between the effective % and the critical ¢ energy release rates
according to the following expression:

2
-7

where in a finite element space approximation ¢, is the characteristic
element length. It should be noted that this relationship has only been
used with linear isoparametric elements and its particular expression
stems from numerical experiments. A more careful discussion about the
current proposal falls beyond the scope of the present investigation and
it will be treated in future contributions. The sensibility of the numer-
ical predictions for different PF length scale values ¢ as well as the
necessity of correcting the fracture toughness % are illustrated in
Appendix A.

9 =

(21)

3. Constitutive assumptions

One of the main aspects of the long fiber composite materials is the
anisotropic behavior of the mechanical response due to the elastic
properties and failure mechanisms. For instance, the cracks tend to be
aligned with the fiber direction because the energy required for
cracking the matrix is lower than that corresponding to fibers rupture.
Hence, the general formulation presented in Section 2.1 is extended in
the sequel for long fiber composite materials. In Section 3.1the strategy
used to model the different failure modes is described, whereas the
specific bulk energy for transversal isotropic materials in Section 3.2. It
is worth mentioning that the framework presented in the following
subsections is valid for 2D and 3D cases through plane-stress or plane-
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strain modeling conditions [56].
3.1. Specific crack density

Motivated by the works of Miehe et al. [46] and Zhang et al. [57],
the anisotropic behavior of the fracture process is modeled by splitting
the crack driving function 2 into several contributions. This split al-
lows the association of a different critical energy release rate to each of
the contributions and therefore, the modeling of different failure me-
chanism. Considering that the PF approach is rooted in the minimiza-
tion of the internal potential energy, the crack network will tend to
grow along the most energetically favorable path. This trend is in line
with the actual response of long fiber composite materials. In practice,
Z is additively decomposed into M contributions such that Eq. (13) is
defined as:

i‘:i

i=1

¥
Gl &

©

(22)

where the subscript i indicates a different damage mode, e.g. fiber
breaking and matrix cracking. It is worth mentioning that the isotropic
behavior can be recovered by simply setting %; and ¢ as constant va-
lues. Furthermore, an elastic threshold can be defined to prevent the
stiffness loss before the localization of the crack, which is necessary for
applications where the distributed damage is negligible. Following
Miehe et al. [46], this threshold is defined in Eq. (13) leading to:

el el
i=1 "\ W + =1 "\ \au + (23)

where (¢), is the Macauly operator defined as (x). = (x + IxI)/2. In
turn, W, is the critical fracture energy per unit volume and ¢ is a di-
mensionless parameter that governs the post-peak behavior. It should
be noted that the right-hand-side of Eq. (23) is obtained through the
advocation of Eq. (20). At this point, and following Giiltekin et al.
[36,37], the structural tensor £ in Eq. (4) is modified to account for
different regularization lengths, which in turn aligns the PF with the
preferred direction. Because the nature of long fiber composite mate-
rials, two lengths are considered: ¢; for the fiber and ¢, for the matrix.
Thus, the structural tensor can be defined as:
L= €§-(nf ® n;+ BT —-n; ® ny)), where n; is the fiber direction
vector with respect to the global directions and § = ¢,/ 6}.

3.2. Specific elastic bulk energy

The constitutive modeling of anisotropic composite materials at the
macroscopic scale is generally expressed in terms of the specific elastic
bulk energy through the Helmholtz free energy W(¢). Alternatively, the
complementary Gibbs free energy ¥*, which is the dual form of the
Helmbholtz free energy, can be used to describe the mechanical response
using the Legendre-Fenchel transformation. Exploiting this concept, the
free energy density proposed in Quintanas-Corominas et al. [9] for long
fiber composite material is herein employed as the specific bulk energy:

(61)* — 4v16.P7 + 1) + (@? + @)?

1
W) = PH(F) = =
2 En Er Gr = Gn

) 24)
where G, Py, 7. and % are the effective stress quantities that have ro-
tational invariance with respect to the longitudinal axis. These quan-
tities are defined as:

~ Oy + 033

0L =01, DPr= #’ 7= \/(512)2 + (613> and %

l =3~
= =@ — F53)% + 4(5)*.
2\/( 22 33) (@) (25)
The elastic material properties required in Eq. (24) are: Ej; is the
longitudinal Young’s modulus; v, is the longitudinal Poisson’s coeffi-
cient; Gy, is the longitudinal shear modulus; and Er and Gr are the
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transversal and shear modulus of the transverse isotropy plane, which

are given by:

- EZZ
2(1 = vz3)

EZZ

Er __En
2(1 + vy3)

and Gr =
(26)
where Ej, is the transversal Young’s modulus and v,; is the transversal
Poisson’s coefficient.

Moreover, crack closure effects under reversal loading is modeled
assuming that it is only induced by &; and p;, whereas 7, and % do not
have any influence [6,9]. Invoking this assumption, the degradation of
the specific bulk energy for fiber reinforced composites within the
context of the PF approach, Eq. (5), finally leads to:

V(F, $) = (1 — $)° + 1) W (8) + Vi@ @7
with the active and passive contributions defined as:
v (3 = L[(@OF —Pbiby). | Brk  GP @Y
2 Eyy Er Gr Gz (28)
F)2 — v, 5 B, = \2
W@ = 1 (@) V12017 )- " (Pr)°
2 En Er 29)

Using the appropriate thermodynamic arguments, the effective com-
pliance tensor in compact notation H (vector form) is defined as:

1 v12 vi2

o ~ R 00

1,1 1 1,1 1
dEGre) G- 0 00
N G2y WGt 00 0

H=|—| =
05 ® o5 1 0 o
Gr
1

sym. o 0
1
L G2

(30)
The conjugate effective stress tensor in compacted form can be obtained
through {&} = [H]|{¢} where {¢} is the strain tensor in compacted form.
Taking into account the formulation presented here and the framework
described in Section 3.1, four damage modes can be captured, one for
each material directions: (11) fiber, (22/33) matrix, (12/13) shear in-
plane and (23) transversal shear. Correspondingly, each failure mode is,
in turn, related to one of the stress invariants leading to the following
expressions:

5\ )2 =2 >\2

g, = 16 W= 1{(Pr)x . W= 1(3) , and W= 1)
2 En 2 Ep 2 Gz 2 Gr

31

which are the energetic contributions used in the evaluation of the
crack driving force, Z, in Eq. (22). Another option is to use directly the
energy associated to each material direction. The implications of both
options are currently under investigation. Thus, the failure modes
under consideration in the present model can be associated with the
corresponding uniaxial strengths: oy;, for the fiber under tensile
loading, oy, for the matrix under mode-1, 0,3, for the matrix under
mode-II, and oy, for the in-plane shear.

It is worth mentioning that the formulation herewith outlined pro-
vides a general numerical framework for modeling damage events in
long fiber composites, which can be accordingly modified to consider
further capabilities. Therefore, a particular stress-based criterion can be
incorporated into the formulation by means of a simple manipulation of
the expressions given in Eq. (23). In addition, the current formulation
only uses a single damage variable assuming that all the elastic prop-
erties start the degradation at the same moment. This simplification can
lead to a premature triggering of the failure in full laminate analysis.
For those cases, the herein formulation could be combined with the
Bleyer and Alessi [35] strategy, which defines a PF for the fiber and
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other one for the matrix.

4. Applications

This section presents the predictive capabilities of the PF approach
regarding the initiation and propagation of damage events in long fiber
composite laminates. Firstly, the anisotropic failure behavior of the
current approach is shown through a demonstration problem in Section
4.1. Then, two intralaminar failure tests are presented in Section 4.2
and Section 4.3. The first one compares the current numerical results of
cross-ply test subjected to tensile loading against those predicted with a
continuum damage model. The second example shows the capabilities
for capturing the strength and crack orientation in an off-axis tensile
test. Finally, the capabilities to simulate translaminar failure are ana-
lyzed in Section 4.4 by means of a compact tension test. In this case, the
numerical predictions are compared with experimental data and the
linear elastic fracture mechanics (LEFM) and cohesive zone model
(CZM) predictions. Current simulations are performed using the parallel
FE-code Alya [58].

4.1. Demonstration problem

The first test herein proposed is a demonstration problem to de-
monstrate the potential of the current formulation to capture the ani-
sotropic behavior. For this purpose, the properties of a unidirectional
IM7/8552 CFRP tape are used, which are listed in Table 1. The geo-
metry of the specimen and the boundary conditions applied onto the
two vertical edges are illustrated in Fig. 2. As can be appreciated, the
problem consists of a square plate of size 1 x 1 mm? with an initial
notch, which is divided into four zones, allowing a different fiber or-
ientation in each one. Two configurations are simulated, where fiber
orientation in the different zones is: {0°/—22.5°/0°/22.5°} and {0°/0°/
—22.5°/ 22.5°}. Regarding the boundary conditions, the specimen is
subjected to an uniform prescribed displacement i onto the leftmost
vertical edges, whereas the rightmost edge is fully clamped. The ap-
plication of the external loading is performed under displacement
control with monotonic increments of Ad=5-10"*mm until
@ = 1-10~2 mm. The domain is discretized using 104, 013 isoparametric
triangular elements, whose maximum characteristic element size is
0.0025 mm. Finally, plane stress conditions are considered with a
thickness of 0.125 mm.

Analyzing the results shown in Fig. 3, it is observable that the crack
is predicted to grow parallel to the fibers. As was previously discussed,
this crack pattern can be considered as an expected behavior because
the energy that is required to crack the matrix is lower than that cor-
responding to fiber failure. Moreover, it can be seen in Fig. 3b that, in
advanced stages of the simulation, the crack path within the matrix is

Table 1
Material properties for an IM7/8552 unidirectional ply [9].
Prop. Value Unit
Elastic E;y 171,000 MPa
Ex 9,080 MPa
Gz 5,290 MPa
vy 0.32 -
V33 0.45 -
Strength Ge11 2325 MPa
Oc22 62.3 MPa
Te12 89.6 MPa
Oc23 63.7 MPa
Fracture 20 97.8 N/mm?
25 0.277 N/mm?
D3 1.1 N/mm?
¥ 0.788 N/mm?
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Fig. 2. Demonstration problem: specimen geometry and boundary conditions.

¢

Fig. 3. Demonstration problem: failure pattern for a) {0°/—22.5°/0°/22.5°} and
b) {0°/0°/—22.5°/22.5°} configurations (& = 0.05 mm).
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Fig. 4. Matrix cracking test specimen geometry subjected to tensile loading.
Detail of the mesh with the initial notch.

divided in two branches, showing the capabilities of the current ap-
proach to trigger crack branching in a consistent and efficient manner.
In particular, one path follows the direction parallel to the fibers,
whereas the second crack path is aligned with the existing interface
between the two regions (note that this interface is not specifically
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modeled in the current study, being a matter of future investigations).
This fact can be explained by the abrupt change of the material or-
ientation between adjacent regions.

4.2. Matrix cracking tensile test

Two configurations of a cross-ply [0,/90,] laminate subjected to
tensile loading are examined to show the predictive capabilities of the
current approach for intralaminar failure. The laminate of both con-
figurations is made from unidirectional IM7/8552 CFRP plies with a
nominal thickness of 0.125mm, whose properties are reported in
Table 1. The unique difference between the present laminate config-
urations is the number of the central plies, which are n = 1 and n = 4.
Hence, the length and boundary conditions are the same for both cases,
while the thickness depends on the particular configuration, see Fig. 4.

Regarding the loading conditions, Dirichlet boundary conditions are
prescribed at both ends of the specimen (Fig. 4). The specimen is loaded
under displacement control with constant increments of
At = 1-1073 mm until the final collapse of the laminate. For this pro-
blem, quadrilateral isoparametric elements with a characteristic length
of 0.025mm are used to approximate the domain under study, which
results in a FE-mesh of 24, 000 elements for n = 1 case and 48, 000
elements for n = 4. It is worth mentioning that the characteristic ele-
ment size is defined in such a way that at least five elements through
the thickness per each ply are considered. Moreover, an initial notch is
modeled at the centre of the specimen, whose size corresponds to a
column of five elements as illustrated in Fig. 4. Finally, the simulations
are performed assuming plane stress conditions with a thickness equal
to 20 mm.

The longitudinal stress-strain response and the crack path at dif-
ferent strain levels for n = 4 are depicted in Fig. 5. The response curve
has multiple drops that correspond to the formation of matrix cracks in
the inner plies along the transverse direction, i.e. through the ply-
thickness. Moreover, the occurrence of such matrix cracking events
follow the expected sequence as was described in [59]. Subsequently,
the matrix cracks that are formed just before the final collapse are in-
itiated along the interface between the 0° and 90° plies instead of the
center of the ply clustering. Finally, it is possible to see that laminate
collapse is caused by the fiber breaking of the outer plies, which in turn
is triggered by the transverse cracks of the inner plies. These numerical
predictions in terms of failure sequence and qualitative results are in
good agreement with the behavior reported in [60].

A comparison between the numerical predictions of the current
approach and the anisotropic CDM formulated by Quintanas and

(b)

Fig. 5. Matrix cracking test: a) longitudinal stress-strain curve for the laminate [0,/90,]; and b) crack pattern at different strain levels.
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(c)

Fig. 6. Matrix cracking test. Comparison between the numerical predictions obtained using the current approach (PF), the Continuum Damage Model (CDM) of
Quintanas-Corominas et al. [9] and a Maximum Stress Criteria for the fiber (MSC): a) longitudinal stress-strain curve, b) crack pattern for the laminate [0,/90,]; (1% of
longitudinal strain) and c) failure pattern for the laminate [0,/904]; (1% of longitudinal strain).

Table 2
Off-axis tensile test: material properties (taken from [61]) and phase field
properties.

Prop. Value Unit

Elastic Ej 38,900 MPa
Ep 13,380 MPa
12 0.26 -

Strength Ge11 901 MPa
22 36.5 MPa
Ge12 52 MPa

Phase-field & 1.00 mm? Assumed
B 5.00 - Assumed
& 0.01 N/mm? Assumed
&, 0.50 N/mm?* Assumed
&, 1.00 N/mm? Assumed

coauthors [9] can be found in Fig. 6. It can be seen in Fig. 6a that both
approaches, i.e the current PF formulation and the previous CDM,
predict similar longitudinal stress-strain response. Moreover, the max-
imum longitudinal stress predicted for both approaches is very similar
to each other and in satisfactory agreement with the maximum stress
criterion for the fiber [6]. The slight under-prediction of the current
method can be attributed to the stress concentration induced by inner
matrix cracks. It is also worth mentioning that the PF approach has a
more pronounced stiffness loss in comparison with the CDM because
the damage extends through the 0/90 interface. This in turn reduces the
rigidity of the 0 plies which are the main load bearing plies. In addition,

for n = 4 the crack density is very similar in both approaches, whereas
for n = 1 is higher in the CDM, see Fig. 6b—c. In turn, from the depicted
results it can be observed that the crack density increases as the
thickness of 90° ply cluster decreases, which is consistent with the ex-
perimental observations.

4.3. Off-axis tensile test

In the present Section, an off-axis tensile test on a 10° unidirectional
laminate is used to simulate a case in which the orientation of the crack
propagation is governed by the fiber direction rather than an existing
stress intensity region. For this purpose, the configuration studied by
Van der Meer and Sluys [61] is herewith reproduced. The material is
representative of glass/epoxy, which properties are listed in Table 2.

The specimen geometry, boundary conditions and mesh details are
given in Fig. 7. As can be appreciated, the specimen is a plate of size
80 x 8mm? (length X width) and 3mm in thickness, with oblique
edges with an angle of 54° at both ends to suppress the edge effect,
which outcome a homogeneous stress state. Regarding the boundary
condition, the left edge of the specimen is restrained to horizontal
displacements, whereas the right one is loaded under displacement
control (A, = 0.1 mm until 0.7 mm and At, = 0.001 mm until its final
collapse). The FE-mesh is created using 73, 347 isoparametric elements
divided into two zones: (i) a central region which is discretized with
quadrilateral elements, and (ii) two secondary regions close to the ob-
lique ends with triangular elements. The characteristic element size in
both zones is 0.1 mm. Finally, a weak zone of 0.3 X 0.3 mm? is defined
in the center of the specimen using the PF formulation without the
elastic threshold and setting a % = 0.3 N/mm for all the directions.

Fig. 7. Off-axis tensile test: specimen geometry and boundary conditions, including details of the mesh and the weak zone.
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Fig. 8. Off-axis tensile test: a) average in-plane shear stress with respect to the applied displacement, b) longitudinal displacement field and c) phase field

(@ = 0.7 mm).

- 1.25W .
-« W >
A
LA
AN
v
Pin )
S
2
A
5
]
z \ s

-
«

ap

0.25W
< »<

>

Detail A’ - LG mesh

Detail A’ - LCG mesh

Fig. 9. Compact tension test: geometry, loading conditions and details of the mesh around the crack tip.

Table 3
Compact tensions. Laminate thickness, elastic and fracture properties [62],
phase field parameters and mesh information.

Prop. LG LCG Unit
Thickness h 4.58 4.31 mm
Elastic E 19, 050 34, 000 MPa
Strength A 5212 469.5 MPa
Fracture A 75 105 N/mm
Phase Field o' 0.5 1.709 mm
Mesh Adim 2D 3D -

be 0.055 0.189 mm

type” TRI HEX -

size® 600K 27M -

1 Computed using Eq. (20).

2 Isoparametric linear elements: 3-nodes (triangles) and 8-nodes (hexahe-
dral).

3 Number of elements: K10* and M = 10°.

The corresponding results using the present PF method are shown in
Fig. 8. In this plot, it can be seen in the curve of Fig. 8.a that the spe-
cimen response features a linear elastic evolution up to an abrupt col-
lapse which occurs reasonably close to the in-plane shear strength of the
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laminate (50 MPa vs 52 MPa). Furthermore, the orientation of the crack
path at the central region is also very close to the expected one, see
Fig. 8b and.c.

However, it should be pointed out that, close to the horizontal free
edges (topmost and bottommost regions) of the specimen, present pre-
dictions gradually loss the correct orientation due to the normality
condition V¢-n = 0, which is a natural condition of PF formulations.
Despite this limitation, the current results show better accuracy re-
garding the orientation of the crack path in comparison with the results
presented in [61] using a continuum damage model. Taking into account
that the current approach also homogenize the material structure, similar
to most of the existing CDMs, the better accuracy regarding the or-
ientation is attributed to the non-local character of the PF method.

4.4. Compact tension test

Two Compact Tension (CT) specimens subjected to tensile loading
studied by Ortega et al. [62] and Gonzélez et al.[63] are simulated to
examine the capabilities of the current approach regarding the mod-
eling of translaminar failure. The geometric description and boundary
conditions are shown in Fig. 9. In both cases the nominal dimensions
are: W = 51 mm, d = 8 mm and a, = 25 mm. In relation to the laminate



A. Quintanas-Corominas, et al.

4500 T T

T T

Experimental
LEFM

4000 Phase Field ——

3500 [ a .
3000 | .
2500 | i

2000 ]

Force (P) [N]

1500 | 4

1000 | ]

500 | b

0 L L L L L
0 1 2 3 4 5

Displacement (u) [mm]

(a)

Table 4
Compact tension peak force comparison between the experimental and the
numerical predictions.

Config. Approach Predicted Exper. Unit Rel. Err.
LG PF 3.79 3.69 kN 2.71 %
LCG PF 5.05 4.82 kN 4.77 %

CZM 4.61 4.82 kN 4.36 %

disposals, the stacking sequence of the first specimen (LCG) is
[(0¢/45%),/05/606/—60C];, wherein C stands for carbon fabric woven
plies and G for glass fabric woven plies. Differing from the previous
case, the stacking sequence of the second specimen (LG) is [(09/45%)s];.
As can be appreciated, equivalent homogeneous material properties can
be used due to the fact that both laminates are quasi-isotropic in-plane,
leading to the equivalent material properties summarized in Table 3.
In contrast to the previous applications, a PF formulation without
elastic threshold is used for this problem. Here, Eq. (20) is used to
compute the length scale parameter, which complies with the

(a)
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Fig. 10. Compact tension experimental [62], analytical and numerical load-displacement curves for: (a) LG and (b) LCG configurations.
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Fig. 12. Crack path for CT test (LCG): cohesive prediction.
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Fig. 11. Compact tension failure patterns for the LCG configuration at the end of the simulation predicted by: (a) PF and (b) CZM approach.
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Fig. 13. Normal stress and phase field along the crack path for the LG configuration.

recommended mesh size according to the guidelines discussed in [43].
In this sense, the current PF parameters and the FE-mesh information
are also listed in Table 3.

Regarding the boundary conditions, the specimens are loaded under
displacement control with constant displacement increments of
A = 1-107> mm (Fig. 9a). Finally, it must be pointed out that the da-
mage events are precluded in the pins, which are considered to be made
from steel (E = 210 GPa and v = 0.3).

The load-displacement curves for both laminates are plotted together
with the PF and LEFM in Fig. 10. In addition, the CZM prediction using
the formulation proposed by Turon et al. [39] is also plotted for the LCG
laminate. As can be appreciated, the predictions of the present PF for-
mulation are in very good agreement with the experimental data and the
LEFM and CZM results. On one hand, the loss of stiffness during the
formation of the fracture process zone (from [] to v) in the PF response is
not so pronounced as the CZM one, which results in a response closer to
the experimental data. From a quantitative point of view, on the other
hand, the PF method slightly overestimates the experimental peak force,
whereas the CZM underestimates it. However, the relative error for both
numerical approaches is below 5%, see Table 4). It is worth mentioning
that the scatter of the peak load value obtained during the experimental
campaign may induces deviations which precludes the accurate cali-
bration of the critical stress and fracture toughness.

Fig. 11 depicts the damage pattern predicted by the PF and CZM
approaches for the LCG laminate at the end of the simulation. As ex-
pected, the estimated crack path in both cases extends from the initial
crack tip along a fracture plane perpendicular to the loading direction,
which maximizes the mode-I stress intensity factor K;. Notice that in the
PF approach the damage is not only extended along the crack path, but
also perpendicular to it, whereas in CZM the damage is confined to the
interface elements. This can explain the small offset in the load-dis-
placement curves. Finally, it is worth mentioning that the PF approach
follows the expected path independent of the mesh orientation.

Continuing the comparison of the current method with respect to
the CZM, the crack tip evolution as a function of the displacement is
shown in Fig. 12. Numerically, the crack tip is identified as the last
element along the crack path that is almost fully damaged, i.e. the PF
variable is close to 1. It can be seen that in both methods the crack
propagates at the same rate, inducing a similar slope in both curves.
However, there is an offset between both methods of approximately
1 mm, which is a consequence of the failure initiation. As expected, due
to the localization of the PF approach, the crack initiates with a small
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delay with respect to the CZM.

In order to understand the overestimation of the peak load and the
delay at the crack localization, the normal stress field and ¢ along the
expected crack path of the LG configuration is depicted at four inter-
mediate stages in Fig. 13. In this graph, it can be seen that at stage (D),
which corresponds to the localization of ¢, the normal stress field in the
vicinity of the crack tip has a singular behaviour that provokes the
overestimation of the maximum load. Considering the results presented
by Mesgarnejad et al. [47], a possible explanation of this overshoot is
that the solution induced by the singularity is not the global minimizer,
which in turn overestimates the total energy and the peak force. Con-
tinuing with the analysis, after the localization of ¢, stage (II), the
normal stress field no longer presents the asymptotic trend. After this
stage, the normal stress field around the crack tip is constant denoting
that the crack is growing self-similarly during the propagation, see
stages (II, III and IV). Furthermore, it is worth mentioning that the
localization of the PF corresponds to the moment when the fracture
process zone is fully developed, marked with (v) in the experimental
curve [62]. Finally, it is also noticeable that the PF variable ¢ remains
null in the compression region of the specimen, hence demonstrating
the unilateral damage growth.

5. Concluding remarks

In this study, a novel phase field approach for triggering failure
events in long fiber reinforced composite materials has been presented
and implemented into a massively parallel simulation framework Alya.
The potential of the approach for modeling anisotropic failure events
has been shown for quasi-static loading problems by means of several
representative applications. Firstly, a demonstration problem has been
presented demonstrating the anisotropic behavior of the formulation.
Then, the capability for modeling the intralaminar failure has been
examined through a matrix crack test and off-axis test, both subjected to
tensile loading. Finally, a compact tension has been simulated to ex-
plore the capability to capture translaminar failure. Moreover, the
performance of the current approach has been contrasted with different
modeling techniques, continuum damage models and cohesive zone
models, showing excellent accuracy.

Considering the results obtained, it can be concluded that the pro-
posed formulation based on the PF approach of fracture provides a
competitive alternative to the classical approaches for modeling failure
events in long fiber composite materials. From different perspectives,
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the most appealing aspects are:

e The formulation captures responses with a soft evolution (quasi-
brittle) or with abrupt jumps (perfect-brittle).
e The formulation models correctly anisotropic behaviors.
e The input parameters rely on measurable physical properties of the
material.
e The non-local character minimizes the reliance of the crack path on
the mesh topology.From the last point, it can be concluded that the
PF approach precludes the use of adaptive tearing of the spatial mesh as
the crack propagates. Nevertheless, for large structures with complex
crack propagation paths, a combination of the PF approach with re-
meshing algorithms are worth to be exploited in line with the metho-
dology presented in [22].

Correspondingly, the PF method will be a matter of future in-

Composite Structures 220 (2019) 899-911

vestigations in order to tackle some open issues such as the use of
phenomenological damage initiation criteria, the extension of dynamic
fracture in composites or the calibration of an equivalent cohesive law
stemming from the PF data. These activities are beyond the scope of the
present study and will be addressed in forthcoming studies.

Acknowledgements

The first author would like to thank the Spanish Government
(Ministerio de Educacién, Cultura y Deporte) for the pre-doctoral grant
FPU 15/06287. This works has been partially funded by the Spanish
Government (Ministerio de Economia y Competitividad) under con-
tracts TRA2015-71491-R and MAT2015-71036-P. The authors grate-
fully acknowledge Prof. Marco Paggi (IMT Lucca, Italy) for many
fruitful discussions, which have undoubtedly contributed for the sub-
stantial improvement of the present investigation.

Appendix A. Sensitivity of the PF model

In this appendix, two basic aspects of the PF method are discussed: (i) the sensibility of the numerical predictions with respect to the PF length
parameter ¢, and (ii) the necessity of correcting the fracture toughness .

The sensitivity of the model to the PF length scale parameter ¢ is analyzed. The load-displacement curve of the LCG configuration of the CT
specimen described in Section 4.4 is obtained for three different length scales: ¢ = 1.7, 3.4 and 5.1 mm, see Fig. A.la. Using Eq. (20), the corre-
sponding nominal strength is: o, = 469.4, 331.9 and 271.0 MPa. The behavior predicted is similar in all cases: the initial stiffness is gradually decreases
up to a critical point in which the crack propagation starts. As ¢ increases, the rate of growth of ¢ decreases. In turn, crack localization and initiation
of crack growth is delayed. In addition, an abrupt jump in the load-displacement curve as well as an small offset in the softening part is obtained. This
behavior not only highlights the sensibility of the PF approach with ¢, but also the necessity of a correct experimentally estimation of o, to obtain
reliable numerical predictions.

The importance of using an effective fracture toughness %, is demonstrated by means of Fig. A.1b. In this figure, the load-displacement curve of
the CT specimen obeying a LCG configuration is shown for the corrected (effective) and the non-corrected fracture toughness . Despite the similar
behavior in both curves, the non-corrected value has an offset with respect to the corrected one. In this particular case, this results in an increase of
approximately 10% of the peak load and fracture toughness, 5.35 KN and 115.5 N/mm, respectively. It should be pointed out that the increase of % is
computed using the LEFM curves.
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Fig. A.1. Load-displacement curve of the LCG configuration considering: a) three different phase field length, ¢ = 1.7, 3.4 and 5.1 mm and b) corrected and non-
corrected %.
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Abstract

The progressive damage analysis of fiber-reinforced composite materials is a challenging task, especially when complicated
cracking scenarios arise due to the onset and progression of several damage mechanisms. From a modeling point of view, a
particularly complex failure scenario is the interaction between intralaminar and interlaminar cracks. This work proposes a novel
framework accounting for this interaction through the coupling of a nonlocal damage model based on the phase field approach
for the intralaminar failure with a cohesive zone model for the interlaminar one. The modular variational formalism of the
method presented leads to a very compact and efficient numerical strategy, which endows the fulfillment of the thermodynamic
consistency restrictions and provides a relatively simple basis for its finite element implementation due to the preclusion of
complex crack tracking procedures with standard element architectures. After addressing its implementation in the context
of the finite element method in a high performance computing environment, the capabilities of the proposed formulation are
explored through a numerical investigation of a cross-ply laminate subjected to a 4-point bending configuration. The comparison
of the numerical predictions against the experimental observations demonstrates the reliability of the proposed framework for
capturing the delamination induced by matrix cracking failure scenario.
© 2019 Elsevier B.V. Allrights reserved.

Keywords: Composite materials; FE-modeling; Damage modeling; Fracture; Interlaminar

1. Introduction

Long Fiber-Reinforced Composites (LFRC) laminates proportionate a well-suited option for light-weight ap-
plications thanks to their excellent specific strength and stiffness ratios. The intricate and heterogeneous internal
arrangement of these materials not only provides their strengths but also hints the prediction of their bearing
capacities. The principal reason that makes difficult the estimation of the bearing capacities is the failure process
of a LFRC laminates can be driven by several damage mechanisms which, moreover, can interact between them.
For this reason, a Progressive Damage Analysis (PDA) is normally necessary to predict under arbitrary loading
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conditions the bearing capacities of a LFRC structure. At the mesoscopic level, a PDA of LFRC laminates needs
to model the mechanical response of two clearly differentiated regions: the intralaminar that refers to the region
inside a ply and the interlaminar that refers to the region between two adjacent plies, which is named interface.

In the context of Finite Element Method (FEM), a commonly-adopted strategy for performing PDFA of LFRC
on the mesoscopic level is to model the intralaminar and interlaminar regions independently. Hence, different
models are employed without a direct coupling between the failure events occurring in both regions. Following
this strategy, local Continuum Damage Models (CDMs) have been extensively used for capturing the intralaminar
damage mechanisms, namely: breaking and kinking of the fibers and cracking of the matrix [1-4]. In turn, Cohesive
Zone Models (CZMs) have been successfully employed for describing the main interlaminar damage, the so-called
interface debonding or delamination [5—8]. Despite the excellent results [9-12], this strategy has some flaws that
arise from the local character of the models. On the one hand, the local CDMs suffer from localization problems
due to the loss of the ellipticity of the governing equations, which leads to mesh-dependent results [13]. On the
other hand, the local character of formulations makes difficult the interchanges of information regarding the damage
state between both regions. This interchange can be essential to model complex failure scenarios, such as the case
of delamination induced by transverse cracks.

In the last decades, the Phase Field (PF) approach to brittle fracture has emerged as a reliable alternative
beyond the classical nonlocal CDMs for modeling progressive failure events without the aforementioned localization
issue. The PF approach, in essence, is a regularization strategy of the variational problem for the brittle fracture
proposed by Francfort and Marigo [14]. After the pioneering work of Bourdin et al. [15,16] and later of Miehe
et al. [17], the PF approach has been used to model the onset and progression of different types of fractures:
(1) brittle [18-21], (ii) ductile [22-25], (iii) hydraulic and hydrogen driven [26,27], (v) thermo-elastic—plastic
[28-30], and (v) anisotropic behaviors [31-37].

Despite the potential of PF approach, few works have addressed their application for modeling the failure of
composite materials. For instance, Reinoso et al. [38] successfully predicted the failure of thin-ply laminates by
combining the PF with a continuum shell theory. Later, Alessi and Fredi [25] proposed a one-dimensional PF
model to predict the failure of unidirectional hybrid laminates under uniaxial loading conditions. Subsequently,
Bleyer and Alessi [39] extended their approach to a multi-dimensional model that employs several PFs to account
for the failure induced by the fiber breaking and matrix cracking separately. In line with the previous approach,
Quintanas-Corominas et al. [40] presented a formulation to model the anisotropic mechanical response of LFRC
using a single damage-type variable. In this last study, they demonstrated the capabilities of their formulation by
making a comparison of the intralaminar and translaminar failure predictions against the Linear Elastic Fracture
Mechanics (LEFM) and the most common modeling approaches: CDM and CZM.

The existence of interfaces make difficult the employment of the PF approach via a physically sound variational
formalism. To overcome this issue, Paggi and Reinoso [41] recently presented an approach that combines the
PF approach for the bulk region with a CZM for the interface one. In this sense, they proposed a physically
consistent strategy to couple via the PF variable a tension cut-off interface behavior with the damage state of the
surrounding bulk region by reducing the apparent stiffness of the interface as the PF increases. This hypothesis is
suitable for relatively brittle interface behavior as they demonstrated in several studies: (i) layered ceramics [42,43],
(i1) micro-mechanics of poly-crystalline [44], and (iii) micro-mechanics of FRC [45].

This work aims to present a PF-CZM approach for modeling the interaction between the intralaminar and
interlaminar damage mechanisms, constituting an alternative to the classical CDM—CZM approaches [46]. The main
innovative aspects herein presented are: (i) the usage of the PF model proposed by Quintanas-Corominas et al. [40]
for the intralaminar failure events and the CZM proposed by Turon et al. [47] for the interlaminar one, (ii) the
coupling strategy between both constitutive models via the PF variable, and (iii) the numerical implementation in a
High Performance Computing (HPC) simulation code. Indeed, it is presented a new interface model that attempts
to provide a more general scenario for progressive damage model of solids with internal interfaces suitable for
brittle and cohesive responses. After addressing the verification of the numerical implementation through mode-I
and mode-II delamination tests, a thorough analysis of a cross-ply LFRC laminate subjected to a 4-Point Bending
Test (4PBT) configuration is performed. The comparison between the numerical predictions and experimental
observations demonstrate the capabilities of the presented PF-CZM approach to capture the main behavior on such
complex failure scenario as the delamination induced by matrix cracking.

The manuscript is organized as follows. Section 2 briefly outlines the fundamental theoretical and numerical
aspects of the PF-CZM approach. The constitutive assumptions regarding the bulk and interface regions are
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Fig. 1. Schematic representation of an arbitrary body with a discontinuity in the domain and an interface.

presented in Section 3. Section 4 introduces the implementation and applicability of the proposed formulation.
In particular, the HPC environment employed is outlined in Section 4.1, while, in Section 4.3, the numerical study
of the 4PBT is conducted, demonstrating predictive capabilities in very satisfactory agreement with the experimental
observations. Finally, the main conclusions are summarized in Section 5.

2. Phase field approach to fracture

This section outlines the fundamental aspects of the current modeling framework, In particular, the present
methodology is derived by taking the formulation of Paggi and Reinoso [41] as the fundamental result, which
sets the basis for the combination of the PF approach for bulk fracture with a consistent interface formulation
relying on the cohesive-like approach. Along these lines, the variational form of the internal energy functional of a
general cracked body with internal interfaces is described in Section 2.1, while the weak and discrete forms of the
energy functional are summarized in Sections 2.2 and 2.3, respectively.

2.1. Modeling hypotheses and variational formalism

As stated above, combining the PF and CZM methods for fracture in heterogeneous media was intuitively
motivated in different investigations [41,48,49]. Complying with this idea, we consider an arbitrary body in the
general Euclidean space of dimension N € [2, 3]. Restricting the analysis to the infinitesimal deformation setting,
the body occupies the domain B C RY with the external boundary denoted as 38 C RV~!, whose outward normal
unit vector is represented by n. As illustrated in Fig. 1, we postulate the existence of an internal interface [} in
the system, and a discrete cracks network [ in the bulk. The material points within the body are identified by
the individual position vectors x € B, whereas the displacement field is identified by u(x, 7). For convenience,
we define the displacement jump at the interface as the relative displacement between two homologous points,
ie. A = ul — uj, denoting the difference between the kinematic field along the interface flanks I';" and I}~
(Fig. 1). Finally, we assume that B is subjected to body forces b as well as to boundary conditions in the form of
prescribed displacements (@ on 3/3,) and prescribed tractions (f on 3/3,). These boundary conditions are subjected
to the Neumann—Dirichlet conditions, i.e. d5B; UdB, = B and 95, N B, = 0.
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By establishing the variational approach to fracture as the point of departure of the current formulation, it is
postulated that the energy functional governing the fracture process of the system is given by

1w, I') = ipe(u, I') — ex, () (1

Following Bourdin et al. [15] and [41], the internal energy density functional II;,,(u, I") of the system under
consideration can be defined as the sum of elastic energy stored in the body Il and the energy dissipated through
the different potential mechanisms of fracture /I, i.e. bulk and interface fracture processes in the current analysis.
Based on these modeling assumptions, II;,,(u, I") takes the particular form:

I (0, I') = IIp(w) + (1), 2

where [ is the union between the bulk and interface cracks that are associated with the respectively fracture events,
such that I' = I, U I3. Accordingly, the fracture energy of the system can be accounted for by adding the split of
the two corresponding counterparts:

I, I') = I (u, I, Ti) = Hg(w) + 1 (Ie) + (1) (3)

where Iy, and IIr, are the dissipated energies that stem from the cracking events within the bulk and the
debonding effects along the interfaces, respectively. Note that to evaluate the above expression, the topology of
the cracks network is required. This evaluation can be very challenging due to the complex crack paths arising
from the branching and coalescence phenomena, as well as the interaction with the cracks which induces the
debonding processes along the existing interfaces. As proposed in [41], evaluating such complex crack patterns in
heterogeneous media can be done by combining the PF approach within the bulk region and the interface elements,
relying on the concept of the cohesive zone at the prescribed interfaces. In the continuation, the particular expression
of the internal energy density is consistently derived but also including two new features: (i) the use of the recent
anisotropic PF method for bulk fracture proposed in [40], and (ii) the consideration of cohesive-like interface crack
obeying the bilinear Traction—Separation Law (TSL) [47].

2.1.1. Bulk region

The energy density of the bulk region I, includes the elastic energy stored for the body and the energy required
to create and propagate the bulk cracks. Within the context of LFRCs, these events are also known as intralaminar
damage mechanisms [1,4]. Considering the energetic criterion proposed by Griffith [50], 11, can be defined as [15]:

Iy(u, I) = Hp(w) + I (I2) = / Ve(e(m)dV + [ G.dS (C))
B\ Ie

where ¥, is the specific elastic energy function and G, is the critical energy release rate of the bulk material. The

infinitesimal strain tensor & is the symmetric gradient of the displacement field (¢ := V*u), which is introduced

here because ¥, is generally expressed with respect to the strain state.

The PF approach postulates that the discrete boundary representing a crack network I'c can be smeared over the
domain B through the exploitation of the I'-convergence concept [51], allowing the definition of the crack surface
density functional y (¢, V@) to be defined [17]. This new functional is governed by the phase field variable ¢ and
its spatial gradient V¢, endowing the current approach with non-local character in the spirit of gradient enhanced
models [52]. Formally, the phase field variable ¢ accounts for the amount of equivalent crack surface at a material
point. Therefore, in line with CDM models, ¢ can be interpreted as the damage state of the material point tracking
the stiffness degradation. Following the notation introduced by Miehe et al. [17], II, reads:

1y(u, It) ~ 1I(u, ¢)=/B Wb(s(u),dJ)deL/BQc)/(d),V@ av (&)

where ¥, is the bulk free energy functional that takes into account the degradation of elastic energy within the
smearing transition zone that is characterized by ¢, i.e. between a pristine (¢ = 0) and a fully-damaged (¢ = 1)
state. It is worth mentioning that the expression of ¥, depends on the material model, which is presented in
Section 3.1. Note that fracture toughness in Eq. (5) requires a simple modification following [16] in order to prevent
the overestimation of the released energy. This modification is performed via the use of an effective energy release
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rate G that depends on the spatial discretization parameter (finite element size) £, and the phase field length scale
¢, according to the expression: G = G, (1 — &).

Regarding the specialization of crack density functional for intralaminar failure in LFRCs, the modified version
of the Ambrosio—Tortorelli functional [51] encompassing the anisotropic character at lamina level proposed in [40]
is herewith recalled:

1
v, V9) = (¢* + Vo - LV) ©6)

where L is a structural tensor that aligns the phase field with a preferred direction and ¢ is the so-called length
scale parameter of the PF method that controls the damage diffusion around the process region [32]. In the
case of isotropic surface density, it is defined as £ = ¢°I, whereas for an anisotropic surface this yields to
L= Zf,(np ®n, + (I —n, ®n,)), where n,, is the principal direction vector (coinciding with the fiber direction
in this work), and g is a factor governing the anisotropy [40]. As can be seen, the fracture energy contribution in
Eq. (5) is integrated over B instead of I, eliminating the explicit need to compute the crack surface topology.

2.1.2. Interface region

The energy density of the interface II; accounts for the debonding process along the prescribed interfaces of
the system under study. This phenomenon is denominated as interlaminar damage in composite materials, which
is induced by micro-cracks at the fracture process zone [53]. Differing from the previous investigations [41-43],
which employed a relatively simple tension cut-off interface formulation and whose coupling with the PF method
for bulk fracture regarded the modification of the interface apparent stiffness, the current method encompasses the
consideration of a bilinear TSL to account for the interface debonding according to [53]. This interface model allows
interlaminar failure to be triggered through a gradual stiffness reduction upon failure initiation up to the complete
decohesion. Therefore, the crack opening governs the damage state at the interface, requiring the definition of an
internal variable to ensure the irreversible condition of the process. In this sense, II; can be defined as:

() ~ AW, 6) = [ BAW. 9. ) ds )
I

where ¥; is the specific interface energy function. The CZM is formulated according to the continuum damage

theory and, therefore, ¥; depends on a set of historical variables k. Finally, ¥; incorporates the PF variable of the

bulk as an additional argument, which is introduced in order to model the interaction between the bulk and interface

cracks. Both ¥; and interaction process are presented in Section 3.2.

2.1.3. Final variational form
Relying on the previous considerations in Eqgs. (5) and (7), the internal energy functional of a cracked body with
interfaces is herein approximated as:

Ty (u, T) 2 I (0, ¢) = /B [%(e(u), ) + % (¢*+ V- st)] v + fp U(A). ¢, h)dS ®)

1
Moreover, in the current framework, the active—passive decomposition of the bulk free energy density function is
used to account for a fracture-induced stress degradation via the volumetric—deviatoric decomposition [54]:

Ty(e, ¢) = ((1 — ) + 0¢) Vaes (&) + Ppus(e) ©)

where ¥, ,; and Y, ,. are the active and passive parts, respectively, of the elastic free energy density; and n,
stands for the residual stiffness parameter to prevent numerical issues. In line with [40], we herewith adopt the
previous decomposition in order to activate the driving forces for cracking evolution in the bulk under tensile load
conditions (Section 3.1). Thus, through the use of this decomposition, the phase field only affects the so-called
active term, allowing the crack closure under loading reversal to be modeled.

2.2. Weak form

Recalling the standard continuous Bubnov—Galerkin method [55], the two primary fields, u and ¢, are extended
with the corresponding admissible test function, du and §¢. Thus, the weak form of the governing functional can
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be constructed by its first variation with respect to the primary fields mentioned above:
811(u, 6w, ¢, 6¢) = 81ljn(u, 80, ¢, 6¢) — 81l (w), VoueV,, Vipel, (10)

where §11;,, and 611, are respectively the internal and external variations. Here, V, = {6u € H'|6u = 0 on 38,}
and V, = {8¢ € H'|8¢ =0 on I} are the functional spaces of the admissible test functions [21,42].

Focusing on the internal energy variation, this term can be split according to the variation of the primary fields
as:

811 (0, Su, ¢, 8¢) = 811, (u, Su, ¢) + SITi‘fl,(u, ¢,8¢), VYéueV,, VipelVy. (11)

Complying with the infinitesimal strain setting as the modeling framework, the weak form of the variation of the
internal energy with respect to the displacement field reads as:

811 .(u, 8u, @) = f o(¢p):6edV +/ T(¢p): A dS, VéueV, (12)
B r

where o(¢) = 0. ¥, is the stress tensor which depends on the phase field variable via the so-called degradation
function g(¢) = (1 — ¢)? and 8& = d,&(Su) is the variation of the strain tensor &; both are associated to the bulk
region. Similarly, T(¢) = da ¥; is the cohesive tractions and §A = 3,A(du) is the variation of the displacement
jumps; both are associated with the interface region. It is worth noting that both stress tensors, o and t, formally
depend on the displacement and phase fields as is denoted in the corresponding terms.

In a similar way, the weak form resulting from the variation of the internal energy with respect to the phase field
renders

SITY (u, ¢, 8¢) = / [f,,5¢> + % (P8¢ + V(5¢) - £v¢>)} av +f FidpdS, Vo¢ eV, (13)
B r

where F), = 95 ¥, = —2(1 — ¢) Wt and F; = 94 ¥; stand for the bulk and the interface contributions to the
energetic force that drives the phase field evolution, respectively. Note that F;, is obtained assuming the active—
passive energy decomposition defined in Eq. (9). After some algebraic manipulations, the variation of the coupled
functional associated with the phase field contribution can be rewritten as:

SIT? (u, ¢, ) = % f [(§ — 21 — §YH) 3¢ + V(39) - LV$] AV + f Fispds. Vg eV, (14)
B I

For isotropic crack density surfaces, the fracture toughness G, is a constant value, and therefore the corresponding
expression can be evaluated without any further assumptions. Otherwise, for anisotropic crack density surfaces,
G. represents the nominal fracture toughness accounting for the current local mixed-mode opening. At present,
a particular expression for the evaluation of G. for mixed-mode fracture conditions is not available and requires
further research, which is a matter beyond the scope of the current study. In addition, although this is still an open
issue within the context of the PF method, assuming a constant value of G, yields to predictions with very good
accuracy in comparison with the experimental data as will be reported in forthcoming sections.

In Eq. (14), H is a field variable that accounts for the historical value of the crack driving state function D by
setting:

. . WS
- D) with D = et 1
H fé’f&’f]( ) wit G./t as

where s represents the fully story process and ¢ is the current time step. Thus, this history field ensures two
conditions required to correctly model the evolution of a crack: (i) the irreversible condition preventing healing
effects and (ii) the positiveness of the crack driving force enforcing for fracture growth. In addition, following
Miehe et al. [29], the dimensionless character of the crack driving force allows an elastic behavior up to the onset
of the failure to be included by setting a threshold D° = (ws8/Ge — 1) »

Finally, the external energy variation can be written, in its most general form, as:

811, (u, Su) = / b-dudV + f t-éuds (16)
B By
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2.3. Discrete form

The FEM is used in the current work to solve the displacement-phase coupled field problem. The interpolation of
the continuum variables at the element level is performed in the isoparametric space using the first-order Lagrangian
shape functions. In this sense, the interpolation operator A is defined as a matrix arranging the C°-continuous shape
functions, N giving the required support to the node I of the element. It must be pointed out that this operator
can have a different expression depending on the region and primary field.

In accordance with the isoparametric concept within FEM, firstly introduced by Irons [56], the spatial approx-
imation and the semi-discrete version of the residual vectors and consistent tangent matrices of the two primary
fields (u, ¢) are presented in the following.

2.3.1. Bulk region
The displacement and phase fields (u, ¢), as well as their variations (Su, 8¢) and their spatial gradients
(Vu, V¢) are approximated at the element level as follows:

ur~ANd, Sux~Néd, Vu~=Bgd (17)
o~ N, S~ NSO, Vo~ Byd (18)

where d and 0 are the vectors arranging the nodal values of the displacement and phase fields, respectively. In turn,
B4 is the strain—displacement kinematic operator and B, is the compatibility operator with the spatial derivatives
of the shape functions corresponding to the phase field variable. As the particular expressions of these operators
can be found in Msekh et al. [57], they are omitted here for the sake of brevity.

2.3.2. Interface region

Complying with the formulation of an interface element, the displacement jumps vector (A) is expressed in the
local frame across the interface [6,53,58]. Therefore, the interpolation of A and its variation with respect to the
displacement field (§A) can be expressed at the element level as:

A ~Bad, SA~Basd (19)

where B, = R(d)N AL is the kinematic jump-displacement operator that approximates the nodal displacement
jump into the integration points of the middle plane of the interface. Here, L provides the difference between the
displacements of the upper and the lower interface points and R(d) rotates the integration point value from the global
to the local frame. Since R depends on d, this aspect induces a geometric contribution in both the residual vector
of the internal forces and the consistent tangent matrix, those cases with large displacements should be accounted
for [58]. Taking into account that for a small displacement regime the geometric contribution can be neglected,
in the current investigation, this effect has not been considered to approximate the variation of the displacement
jumps.

The phase field across the interface is defined as the averaged value between the two homologous points of the
upper and bottom interface boundaries, i.e. ¢3 = (¢ +¢7)/2 [41]. Hence, the approximation of the phase field (¢)
and its variation (8¢) at the element level is given by

d ~Byo, 8¢~ Bys0 (20)

where l% =N sM is a compatibility operator of the averaged phase field in which M is the average operator.
More details about the geometrical contribution as well as the particular form of the above operators can be found
in [58,59].

2.3.3. FE residual vectors
The discrete version of the residual vectors of the displacement and phase fields are defined as:

RQ”f:fBga(deJr/ Bl 7(¢)dS @1
B I

R, = % / [@—2(1 = )H) N, +BILVD] AV + / B, F; ds (22)
B I
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In the first expression, Rfi’” stands for the contribution of the internal forces in the out-of-balance force residual of
the displacement field. The complete expression including the contribution of body forces and external traction, is
given by

Rq = R}" —/Aﬂde— NTEds (23)
B

By

2.3.4. FE consistent tangent matrices
The consistent tangent matrices can be obtained by differentiating the residual vectors with respect to the
increment of the primary fields:

Kaa = / BC(¢)Bq dV + / B, D(¢)B A dS (24)
B Iy
Kop = % f [(1 4+ 20H) NGN, +BILB, | dV + f B,FB, ds (25)
B I

where C = 9.0 and D = da 7 are the nominal tangent operators of the bulk material and cohesive zone model,
respectively. In turn, F = 94F; is the tangent operator of the phase field driving force across the interface with
respect to the average phase field. Finally, the coupling matrices Kyq and Kg, are not derived here because they
are not necessary for the staggered solution scheme used in the numerical examples. It is worth mentioning that the
adoption of a staggered incremental-iterative scheme in conjunction with the Newton—Raphson method is herewith
adopted due to its robustness, being of especial interest in the current investigation where several energy dissipation
mechanisms can evolve simultaneously.

Remark 1. In the current approach the nominal tangent operators (C, D and F) are computed using the
Complex-Step Derivative Approximation (CSDA) [60], which is briefly summarized in Appendix B. This approach
is used with the aim of increasing the robustness in the face of the perturbation parameter, not the accuracy of
the approximation. In this sense, CSDA approximates the derivate at O(x?) like the classical perturbation step
approximation which is used, for instance, in [47,61].

3. Constitutive material models

3.1. Bulk model

The constitutive model used to model the anisotropic behavior characteristic of LFRCs reproduces the formu-
lation proposed by Quintanas-Corominas et al. [40], and which is summarized in the sequel. Accordingly, the
complementary Gibbs free energy ¥*, which is the dual form of the Helmholtz free energy, for long fiber composite
material can be expressed as (see [2,28] for a more comprehensive treatment):

.16 —4vpoLpr | (pr)? | (T | (L)’
e) = V5) = © ( p o GOy 26)
2 Eq Er Gr G
where 61, pr, 7L and 7t identify the effective stress quantities, whose definitions are given by
- - - on+o - = = - 1~ = =
oL=01, pr= %, L =V(612)? +(613)* and Tr = E\/(Uzz —633)? + 4(623)%, 27

where E); is the Young’s modulus along the fiber direction, v, stands for the longitudinal Poisson’s coefficient,
G, is the shear modulus and Er and Gr are the transverse and the shear modulus:
- _En and Gr = L’

2(1 = vp3) 2(1 +vp3)
where E»; is the Young’s modulus in-plane transverse to the fiber direction and v,3 denotes the transverse Poisson’s
coefficient.

Recalling the modeling hypotheses of [40], the degradation of the specific bulk energy for fiber-reinforced
composites within the context of the PF approach is given by

VA6, ) = ((1 = ¢)* + ne) Voey(6) + U (6) (29

Er (28)
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being
(6 —dvedipr),  (pr)l 0P G
vr(6) == o + 30
) 2 ( Ey Er Gr G2 G0
1 ((GL? —4viéipr) (pr)?
Ut (6)= = = - 31
Pas(o) 2 ( Ev11 + ET ( )
Then, the effective compliance tensor in compact notation H (vector form) reads
ML b2 _ 2 B
Eyy . Eqy | o Eyy . 0 0 0
iz tap) ?(é - GI—T 0 0 0
2 o* Ly —_
H = 7? v — | = 4(ET+GT) (1) 0 0 (32)
90 ® 90 Gr 0 0
sym. G%z 0
1
L G |

Based on the previous definitions, it is worth mentioning that the crack driving state function can be associated with
four different material directions that are in turn related to the following intralaminar damage mechanisms: (11) fiber
failure, (22/33) matrix failure, (12/13) shear in-plane and (23) transversal shear failures. See Quintanas-Corominas
et al. [40] for further details.

3.2. Interface model

The constitutive model herein envisaged for the interface region is based on the formulation proposed by Turon
et al. (TM) [8,47,53]. The principal differences of this interface formulation with respect to that proposed by Paggi
and Reinoso (PRM) [41] are: (i) the post-peak behavior, (i) the mixed-mode interaction, and (iii) the initiation
criteria. Thus, while a cut-off upon failure is defined in the PRM, the TM sets a softening law after reaching the
maximum strength of the interface. Therefore, the PRM can be conceived as a more suitable model for interfaces
with moderately low fracture process zones, whereas the TM is inherently formulated to capture the response of
cohesive interfaces. Regarding the propagation criterion under mixed-mode interaction, on the one hand, PRM used
a standard quadratic one whereas, on the other hand, TM employed the Benzeggagh and Kenane criterion [62].

Taking into account the aforementioned characteristics of the TM formulation, the coupling strategy between the
PF and CZM proposed herein differs from the one in the PRM. The current strategy assumes that the damage state
in the fracture process zone of a crack originated in the bulk region can induce damage in the interface resulting
in a loss of stiffness. Considering that the PF variable and the damage state of the TM formulation represent the
ratio of a cracked area at a material point, the coupling between both approaches is performed through the integrity
function m(A, ¢). In particular, this coupling function has to be a continuous monotonically decreasing function
defined between 1 (pristine material) and O (fully damaged material). In a general manner, the coupling strategy
herein proposed is expressed in terms of the integrity functions associated with the displacement jump and PF fields,
i.e. ma(A) and my(¢), respectively. Assuming a complementary effect in the stiffness loss, the coupling function
proposed for the current framework is:

m (A, ¢) =m (ma, mg) =mamg (33)

where m 4 is computed according to the TM formulation (see Algorithm 1) and m to the following evolution law:
2

my = (1 — r¢) (34)

where 7, is the PF damage threshold that is integrated over the time ¢ satisfying Kuhn-Tucker conditions as:

Activation function : Fg=Hy —r14 35)
0 if ¢ =< ¢min

Loading function : Hy = % if Pmin < ¢ < i (36)
1 if ¢ > Pmax
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Table 1
4PBT material properties and input parameters [63,64].
Eq 140 GPa Young’s modulus (fiber dir.)
Ex» 10 GPa Young’s modulus (matrix dir.)
G2 5.2 GPa Shear modulus
Vi2 0.3 Poisson ratio
Bulk region Vi3 0.42 Poisson ratio (isotropy plane)
Yr 70 MPa Tensile transverse strength
£ 1 PF post-peak control parameter
Lt 1.5 PF length scale (fiber dir.)
- 0.1 PF length scale (matrix dir.)
7t 70 MPa Cohesive strength: mode-I
Tt 110 MPa Cohesive strength: mode-II
G 0.432 kJ/m? Fracture toughness: mode-I
. G 1.002 kJ/m? Fracture toughness: mode-II
Interface region . .
1.75 BK interpolation parameter
K; 1.5-10° kN/mm>  Penalty stiffness: mode-I
Gmin" 0.1 PF-CZM coupling limits: min.
Pmax® 0.5 PF-CZM coupling limits: max.
2Assumed values.
Temporal integration:  ry = m{gx) [H;ﬁ] (37
se{0,r

where ¢ is the averaged PF value at the integration point according to the interface element formulation presented
in Section 2.3.

As can be appreciated in the previous expression, two limits, ¢mi, and @nax, control the initiation and finalization
of the coupling. By setting ¢nin > 0, the degradation of the interface properties due to the cracking of the bulk
region is delayed which, in turn, precludes the driving of the PF from the very beginning of the analysis. On the
other hand, an upper limit for the coupling is established by setting ¢nmax < 1. Moreover, it is also possible to model
a brittle behavior of the interface due to the stiffness loss in the bulk region by setting @min ~ Pmax-

Remark 2. As described in Section 2.3, the quantities of the primary fields are extrapolated into the mid-plane
of the interface region through an interface element technology. Hence, in the current approach, ¢ governing the
interface constitutive model is the averaged quantity at the mid-plane of the interface region.

To illustrate the behavior associated to the proposed coupling, the equivalent cohesive traction is shown in Fig. 2
for an interface with the properties listed in Table 1 and @pin = 0.2 and @min = 0.8 as coupling limits. The colored
lines in Fig. 2b—c illustrate the degradation of the stiffness as the PF increases, whereas the black line corresponds to
the loading cycle depicted in Fig. 2a. This cycle combines steps in which the opening of the interface increases and
the PF is kept fixed (A, C, and E), with others in which the opening is kept fixed and the PF increases (B and D).
In the following, the black curve behavior is analyzed in terms of the cohesive traction t, mixed-mode equivalent
opening A and PF ¢. In step A, the cohesive traction increases according to the effective penalty stiffness due to the
opening of the interface. Then, in step B, the traction remains constant until the PF reaches the bottom limit ¢y,
after which the cohesive traction decreases as a consequence of the damage growth. Note that, from the point of
view of the traction — opening law, this behavior is similar to a relaxation of the interface. In step C, the cohesive
traction increases according to the nominal penalty stiffness until reaching the corresponding critical opening. After
this point, the cohesive traction decreases due to the opening of the interface according to a nominal cohesive law
which has less available free energy density as consequence of the bulk damage. Moving to step D, the cohesive
traction decreases due to the increase of the PF up to the rupture of the interface, which happens when the ¢ > @pax.
Finally, in step E, the equivalent opening is increased without any effect on the cohesive tractions, demonstrating
the complete rupture of the interface.

The work-flow of the interface model accounting for the coupling between TM and PF is presented in Algorithm
1. Nevertheless, it is worth mentioning that through the coupling herein proposed, the fundamental hypotheses of
TM are preserved. Therefore, for situations in which failure processes are confined to the interface, we retrieved
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Fig. 2. Cohesive traction (7) behavior for a loading cycle combining equivalent displacement jumps (1) and phase field (¢): (a) loading
cycle representation (b) T — A — ¢ curves, (c) T — A and (d) v — ¢. The labels A, B, C and D denote the time interval (step), whereas I,
II, IIT, IV and V a particular instant of time. The black curve in b-d illustrates the response of the loading cycle defined in a. Finally, the
rainbow-colored map illustrates the response of the cohesive law for an initial and fixed value of ¢.

previous results obtained with such an interface model. To illustrate this claim, we examine the accuracy of the TM
for pure interface failure under mixed-mode fracture conditions in Section 4.2. Moreover, for the sake of brevity,
the specific details of the TM are herewith omitted and interested readers are referred to [8,47,53].

3.2.1. PF driving force and thermodynamic consistency

In this section, we outline the derivations of the PF driving force and the examination of the thermodynamic
consistency of the model in the following paragraphs. Recalling the coupling function herein derived, the cohesive
interface free energy density function of the TM model can be rewritten as:

Vi(A, ¢) = m(A, ¢) ¥eia (38)

where Vi, = (A)TKA is the elastic energy stored in the interface. Here, K is the elastic stiffness matrix. Note that
the dependency of the integrity function with respect to the displacement jumps and PF is here explicitly represented
here to emphasize the coupling strategy. Then, considering the previous expression and the coupling functions given
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in Egs. (33)—(37), the contribution of the interface to the driving force of the PF is defined as:

0
L)
0 otherwise

Uiela if O0<ry <1
ela [} (39)

where m 4 is the integrity function defined in the original TM formulation (see step 9 in Algorithm 1), whereas the

partial derivatives accounting for the coupling herein proposed are given by:

‘Zﬂ = —2(1 —ry) (40)
)

1
o 1 1)

a¢ B (¢max - ¢min)

It should be noted that for a fixed displacement jump and, therefore, a fixed m o and ¥i.,, the dissipated energy
by PF will be the free energy available because of — fol Fidp = ma Yig.

Algorithm 1 Work-flow for the interface model: cohesive zone model coupled with the phase field approach.

The input material properties are the mode-I and mode-II initial and final jumps (Aj,, Apo, Al and Ajye) as well as the mode-I and mode-1I

penalty stiffness (K7 and Kp). In addition, the Benzeggagh and Kenane parameter 7 is also given as an input property. It is worth mentioning
that A, and A, can be defined using the fracture toughness and cohesive strength [9]. Here, rhA and r£ are the maximum historical values
of the damage threshold variable. Finally, the compact notation is herein used, which means that for a 3D case {A} = {4}, A, Az)T is the
displacement jump, {t} = {11, 72, r3}T is the tractions and [K] = [I]{K1, K11, K1} is the penalty stiffness matrix, where [I] is the identity
matrix.
Input: {A}, ¢, rhA, rg, material properties
Output: {t}, 7, ra, ry

Compute mixed-mode dependent quantities:

1:  Effective cohesive tractions: 7 = \/KIZI A2 + KEAZ 4+ K7 (A3)2
2:  Mixed-mode ratio: B = (KuA? + KnA3)/(%)?
3:  Equivalent penalty stiffness: Kp = (1 — B)K; + BKn
4:  Equivalent onset jump: A, = \/(K[AIZO + (KIIAIZIO — KIAIZO)B”)KEI
5:  Equivalent critical jump: A, = (KA Are + (K11 Ao Anie — K1A10 A1) BT (K pho) ™!
6:  Equivalent jump: A = (KuA? + KuA2 + K1 (A3)2)(F) ™!
Compute the integrity function associated to the equivalent jump:
7:  Activation function: Hao = min [1, max [0, :‘C jfo

8:  Historical threshold: ro = max [rhA, HA]

rake
rare+H(1=ra)ko

Compute the integrity function associated to the phase field:
10:  Activation function: Hy = min [l, max [0, m]]

'max ~@min

©°

Integrity function: mpa =1 —

11:  Historical threshold: ry = max [rg, H¢]
12: Integrity function: my = (1 — r¢)2
Compute the integrity function according to the coupling function:

3:  Integrity function: m = min[ma, my]
Compute cohesive tractions:

14:  Cohesive tractions: {t} = m[K]{A}
Compute phase field driving force:

15:  Elastic energy: Wic, = %{A}T[K]{A}

—2(1-rg) )
mAﬁlpi.ela if 0<ry<l1

16:  Phase field driving force: F; =
0 otherwise
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4. Numerical treatment and applications

This section briefly introduces the implementation of the proposed formulation in High Performance Computing
(HPC) environments, and demonstrates the predictive capabilities in a coupon-based composite specimen.

4.1. HPC implementation and solution scheme

4.1.1. Basic architecture

The proposed model is programmed in the Alya system, which is a multi-physics code conceived for HPC
environments, see for instance [4,65,66]. This code is written in Fortran 90/95 using a hybrid OpenMP/MPI strategy
for efficient parallelization. Thus, the assembly procedure of the right-hand side and the Jacobian matrix do not
require communication between nodes. Otherwise, the solution of the algebraic system is performed using built-in
iterative solvers and pre-conditioners, which need several communications during the matrix—vector products. In
this last case, the MPI gather functions are used, as described by Lohner et al. [67].

4.1.2. Solution scheme

The solution scheme used to compute the numerical predictions of the current coupled displacement-phase
field problem is summarized in Algorithm 2. Specifically, the global solution of the coupled problem is obtained
via a modified iterative procedure based on the alternate minimization of the two primary fields. The particular
modifications from standard staggered solution processes are introduced in the minimization of the PF in order to
preclude the necessity of using a bound-constrained optimization solver, which greatly increases the computational
costs of the solution procedure.

Moreover, it is worth remarking that the requirement of using these type of solvers arises from the irreversibly
condition of the damage evolution imposed in the minimization of the PF in the bulk. Specifically, the strategy herein
used is a combination of a posterior projection of the solution used by Lancioni and Royer-Carfagni [68] with a
fixation of the solution for values close to 1, which is similar to that employed by Bourdin et al. [15]. In this sense,
the solution of PF at the current time step is firstly obtained by solving the unconstrained minimization problem,
(step 6). Then, it is imposed that the current solution cannot be smaller than the one at the beginning of the current
time step (step 7). Finally, the projected solution of PF is set to 1 wherever it is greater than a threshold value close
to 1 (step 8). For the current work, this threshold is considered as 0.95. As pointed out by Amor et al. [54], the
posterior projection performed in (step 7) ensures the irreversibly condition of the damage evolution, but it cannot
guarantee that the solution found is the global minimum of the constrained problem. However, according to their
numerical experiments, there is no significant difference between the results obtained using a bound-constrained
optimization solver and the posteriori strategy. Finally, it is worth mentioning that in the related literature, at present,
there are alternative solution schemes, such as the so-called over-relaxed alternate minimization proposed by Farrel
and Maurini [69] or the primal-dual active set method and predictor—corrector mesh adaptivity used by Heister and
coworkers [70], among many others. The numerical performance of these solution schemes with respect to that
proposed here, will be a matter of future investigations.

4.2. Verification examples: Mode I and 1I delamination tests

In this section, two simple simulations are performed to demonstrate that the proposed formulation preserves
the original qualities of the cohesive zone model to capture those failure cases driven purely by delamination. The
purpose of these tests also encompasses the assessment of the implementation of the cohesive model proposed
in [47] in HPC environments. In this sense, the specimen depicted in Fig. 3 is simulated considering a Double
Cantilever Beam (DCB) configuration as well as an End-Notched Flexural (ENF) one.

Regarding the material, the specimen consists of unidirectional carbon fiber reinforced plies, whose material
properties can be found in [47]. The specimen is discretized using a 2D structured mesh conformed by 4-node
isoparametric finite elements, whose characteristic element size is 0.15 x 0.13 mm? at the bulk region and
0.15 x 0.001 mm? at the interface region. This leads to a domain formed by a mesh of 17,350 elements. Finally,
the boundary conditions corresponding to each configuration are also illustrated in Fig. 3.
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Algorithm 2 Solution scheme: quasi-alternate minimization with posteriori projection.

Let the subscript ¢ and  — 1 denote the quantities at the current and previous pseudo-time steps along the simulation, respectively. Hence,
(u—1, ¢;—1) is the initial solution of the displacement and the phase field at the beginning of the current time step before applying the
Dirichlet-Neumann boundary conditions. Then, (u;, ¢,) is the solution of the primary fields at the current time step, which is evaluated for
a fixed tolerance smax and phase field threshold @ihreshola With the following iterative procedure:
Input: w1, ¢—1, Pthreshold> Smax
Output: u,;, ¢,

1: Initialize (e, p) = (1,0)

2: Set (0@, ¢©) = (w1, ¢r-1)

3: While s > spax do

4:  Increase iteration counter: p = p + 1.

5:  Compute u'” by the minimization of IT(u?~Y, ¢P=D) subjected to boundary conditions at fixed ¢ .
6:  Compute ¢P) by the minimization of IT(u”, $?~V) at fixed u.

7:  Impose irreversibly condition by setting ¢” = ¢©@ wherever ¢”) < (.

8:  Impose fully damage condition by setting P’ = 1 wherever ¢” > Pureshold-

9:  Compute current residual: s = ”qj(l’) _ ¢(n*””m4

10: Set (u;, ¢r) = (u(l’)’(ﬁ(p))

Width = 25.4 mm --—Interface § Pre-crack length
a
| e
y 30§
| X 102 (mm)
Double Cantilever Beam configuration End-Notched Flexural configuration
Uy =0 Uy = U A o
: Uy = 1U
uy =0 lui/ =0
uy =ay uy =0 uy =0

Fig. 3. Pure delamination tests: Geometry and boundary conditions for the DCB and ENF configurations.

The load versus displacement curve for the DCB and ENF predicted by the current framework and the
Linear Elastic Fracture Mechanics (LEFM) theory are shown in Fig. 4. As can be appreciated, both predictions
display an excellent agreement with respect to LEFM results. It should be pointed that for this investigation
several configurations with different (¢min, dmax) have been investigated without any noticeable differences in the
corresponding response. In this analysis, the bulk region is not affected by the opening of the interface thanks to
the driving force that governs the increase of the PF in the proposed formulation is not affected when the failure is
driven purely by a delamination mechanism. Thus, it is expected that the current framework can be used in those
cases that have previously been analyzed with the original CZM.

4.3. Representative application: 4-points bending test

In this section, a four-point bending test is investigated to show the capabilities of the current framework to
model the delamination induced by the cracking of the matrix. The specimen considered is a [904/07/904] cross-
ply laminate made from HTA/6376 carbon fiber-reinforced plies, which was experimentally studied by Mortell
et al. [63]. The description of the geometric disposals and dimensions are depicted in Fig. 5, while the mechanical
properties of the unidirectional ply and interface are listed in Table 1.
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Linear Elastic Fracture Mechanics Numerical predictions
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Fig. 4. Pure delamination response curves: (a) DCB and (b) ENF configurations.
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Fig. 5. 4PBT scheme: Geometry, boundary conditions and details of the FE mesh with the random distribution. The nominal strength at the
elemental level is defined as Y7 = KyYy 7.

Regarding the computational method, the domain is approximated using a 2D structured mesh conformed by
4-node isoparametrical finite elements whose characteristic element size is 0.05 x 0.05 mm? at the bulk region and
0.05 x 0.001 mm? at the interface. This leads to a mesh of 124,800 elements and 374,400 degrees of freedom.
According to the experimental setup, the loading and support conditions can be applied by modeling the contact
between the specimen and steel pins as performed by Reiner et al. [64]. However, in the current application, the
boundary conditions are applied as point displacements at the positions illustrated in Fig. 5. The loading is smoothly
applied until a total vertical displacement of # = 6 mm is reached.

In addition to the aforementioned numerical setup, two more aspects, which are related to the material properties,
must be considered:

e The first issue concerns the uniformity of the stress field that takes place along the length between loading pins

(span length) due to a constant moment region [63,64]. From a numerical point of view, this situation provokes
the failure onset being able to initiated at any arbitrary location along the span length because the PF will
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Table 2
4PBT: FE models considered to justify the coupling strategy.
Label Bulk Interface Coupling
ELASTIC Elastic Elastic -
CZM Elastic CZM -
PF-CZM PF CZM Off
PF-CZM (COU) PF CZM On
— ELASTIC Crack driving force (D*) v ‘if
oM . i ) ‘ s —
PE - CZM @ Matrix cracking (¢ > 0.95)
—l- PF - CZM (COU) Interface debonding
debonded m bonded
0 0.2 0.4 0.6 0.8 1
600 - ! T
Ist ! 2nd !
1 1
500 i i =
= ! !
o 1 1 ([j
© 400 i i
£ i i
5 i 1
S 300 ! ! s
i i S
= 200 4 ' !
g i i >
5 i i
> 100 : E 5
i ©o
0 T T T T T T T o 2
0 1 2 3 4 5 6 7 A
Vertical displacement [mm] (u, =2.76 mm)
a) b)

Fig. 6. 4PBT results: (a) vertical reaction—displacement curve predicted four approaches: (i) elastic, (ii) CZM, (iii) CZM and PF without
coupling and (iv) CZM and PF with coupling, (b) fracture pattern around a transverse crack for approaches (ii)-(iv). The gray-scale color
map illustrates the crack driving force of the transverse cracks, the red color represents fully damaged elements (i.e. wherever ¢ > 0.95) and
in the blue-to-yellow colored map the interface debonding in accordance with the integrity function m. Warping scale = 0. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

tend to simultaneous and homogeneous growth, only affected by the round-off errors. In turn, this precludes
the correct localization of the strain affecting the reliability of the predictions. In this work, this limitation is
originally overcome by defining a random field in the finite element mesh affecting only the transverse strength.
The correct application of any alternative statistically-based distribution of the corresponding material strength
can be considered in forthcoming investigations. Nevertheless, to illustrate this issue of random field by
accounting for and complying with the objectives of the current work, a normal distribution with a coefficient
of variance of 10% is applied, see Fig. 5.

e The second aspect concerns the sensitivity of the delamination onset close to the free-edges. It is well known
that the mismatch between the Poisson ratios of the plies infers a stress concentration at the interfaces triggering
delamination [71]. This issue can be prevented by increasing the fracture toughness of the interface at the
regions close to the free-edges as illustrated in Fig. 5.

As a starting point of the analysis, the need for a coupling strategy between the PF and CZM approaches to
capture the delamination induced by matrix cracking is justified. For this purpose, the 4PBT is simulated considering
four different FE models, which are listed in Table 2. The fully elastic case is considered here as a reference case,
whereas the CZM one is used to illustrate that the delamination is only induced by the transverse cracks. Fig. 6a
shows the reaction force at the supports as a function of the applied displacement. From this figure, it can be
seen that the curve predicted by the FEM model using only CZM case does not differ from the fully elastic one.
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Otherwise, a change of slope is predicted by those FE models that use the PF in the bulk region, indicating the
onset of transverse cracks.

Focusing on the interaction of a transverse crack when it impinges the interface, it is observed that the
delamination onset only occurs in the FE model using the coupling strategy between the PF and CZM, see Fig. 6b.
In the FE model without the coupling strategy, the PF grows parallel to the interface because of the difference in the
elastic properties between the 90 and O plies. In fact, this mismatch combined with the impossibility of the stresses
to relax induces an increase of the PF driving force close to the interface. Moreover, it is noted that without the
coupling strategy the crack density is lower than that corresponding to the experimental observations. Therefore,
based on this discussion, the coupling strategy becomes a required feature in order to capture the experimental
evidence which is characterized by a very complex failure scenario combining intralaminar and interlaminar failure
events.

Next, the influence of the G./¢ in Eq. (14) is examined by comparing the stiffness loss in the load direction as
a function of the applied displacement for G./¢ = 0.5, 1, 5, 10, 100. The normalized curves are plotted in Fig. 7a.
Low values of G./¢ induce a more pronounced stiffness loss. This trend is because of the contribution of interface
in the driving force of the PF increases as G./¢ decreases affecting the O plies. In this sense, if G./¢ is fixed, it plays
a role as a scale factor between both contributions: the bulk and interface. To illustrate the affectation of the central
plies, the PF across specimen thickness at the location of the first transverse crack is plotted in Fig. 7b. Notice
that the PF value in the O plies is lower as increases Gc/¢. Another observation associated with this parameter is
related to the onset of the delamination and the crack density. It is observed that the interface debonding takes place
prematurely for low values of G./£. In turn, a relaxation of the stress occurs precluding the onset of new transverse
cracks. This observation is shown in Fig. 7c. As can be appreciated, no significant differences regarding the fracture
pattern take places for G./¢ > 5. Accordingly, in the following, the G./¢ = 10 case is analyzed by comparing the
numerical predictions against the experimental data.

Compared with the experimental observations the failure sequence predicted is in agreement with the one reported
by Mortell et al. [63]. In the following, the curve predicted by the FE model with the coupling strategy depicted
in Fig. 6 is taken as guideline with which to compare the results. In the first stage, the curve displays a quasi-
elastic evolution up to the onset of the cracking of the bottom plies. The average stress level at the span length
of the outermost ply at first transverse crack initiation predicted (67.5 MPa), which is in close agreement with the
experimental findings. Analyzing the failure sequence, the transverse cracking is provoked by a macro-crack that
rapidly grows from the bottom edge of the 90 to the O plies impinging the 0/90 interface with a micro-delamination,
but not reaching the intralaminar region of the central O plies. After that, in the second stage, the slope of the curve
decreases gradually due to the onset of several transverse cracks across the span length. As expected, the new cracks
are predicted to be initiated at the center of the span between existing cracks. This is a direct consequence of the
fact that it corresponds to the location where the maximum stress occurs since it is outside the free-stress region,
see Fig. 8. Note also that this relaxed zone is confined in the typical triangular zone [72,73].

In line with the previous discussion, the number of transverse cracks in which the crack length saturates (6
cracks) and the total number of transverse cracks between the supporting pins at the end before the final collapse
(14 cracks) are in reasonable agreement with the experimental observations. In addition, the average space between
cracks at the end of the simulation (2.25 mm) is close to that recorded in the experiments.

Finally, the third stage commences with the coalescence of the micro-delaminations that debounds the interface
which, in turn, triggers the catastrophic collapse of the specimen. Table 3 lists the correlation between the
experimental values and the numerical predictions using the proposed PF-CZM coupling method.

Another interesting phenomenon observed in the experiments is with regard to delamination growth as a function
of the horizontal location of the transverse crack associated with its triggering. Mortell et al. [63] found that the
delamination grows more asymmetrically with respect to the transverse crack far from the center of the specimen
than close to it. Moreover, they observed that the preferred direction for the growth is away from the center of
the span length. As can be appreciated in Figs. 8 and 9, this behavior has been correctly captured by the current
simulations.

Finally, it should be pointed that Mortell et al. [63] also observed that not all the transverse cracks initiate
micro-delamination. With the current numerical setup, this behavior is not captured because all transverse cracks
damage the interface when they impinge on it. This phenomenon could be modeled by defining a random field for
the PF couplings parameters. However, this is not a critical point in the current study.
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5. Conclusions

In the present work, a novel PF-CZM numerical method has been developed to model the delamination induced
by matrix cracks in long fiber composite materials.

The current method is characterized by considering the anisotropic PF formulation for the intralaminar damage
proposed by Quintanas-Corominas et al. [40], which has been coupled with the cohesive zone model formulation
developed by Turon et al. [47]. For this purpose, an alternative coupling strategy between the PF method and
the CZM for heterogeneous media with respect to that outlined in [41] has been formulated according to the
fundamental aspects of both approaches. In particular, the integrity function of the CZM, which defines the loss of
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(i.e. wherever m < 0.05) and the red color represents the transverse cracks (i.e. wherever ¢ > 0.95). Warping scale = 0. (For interpretation
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Table 3
4PBT results: Quantitative comparison of the numerical predictions and the
experimental observations found by Mortell and co-workers [63,64].

Observation Experimental Numerical Units
Onset of the first transverse crack® 62 67.5 MPa
Transverse cracks saturation® 0.7 0.5 crack/mm
Total number of cracks” 15 14 -
Average space between cracks” 2 2.25 mm

#Between the loading pins (span length).
PBetween the supporting pins.

interface rigidity, has been modified, considering the role of the bulk PF variable in the interface response through
the definition of a suitable coupling function. The proposed framework has been implemented in the Alya FE
code [66].

The capabilities of the proposed formulation have been demonstrated by means of several examples which
included the verification of the current interface model in HPC environments and the simulation of a 4-Points
Bending Test. The obtained numerical predictions showed that the general trend regarding the failure sequence was
correctly captured by the proposed modeling method. Moreover, a direct comparison with experimental observations
demonstrated that the proposed framework was also capable of capturing the onset and number of transverse cracks.
Finally, the need for a coupling strategy between the CZM and the PF approach to correctly capture the delamination
induced by transverse cracking has been shown.
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In light of the previous arguments, the formulation herein presented is expected to provide a suitable modeling
framework for other engineering problems concerning progressive failure analysis in long fiber composite materials.
Future developments might regard the extension of the current framework for performing 3-dimensional simulations
of more complex loading scenarios, such as Double-Notched or Open Hole under tensile loading, in conjunction
with the incorporation of mesh-adaptive schemes as those proposed in [74,75] among others, in order to preserve
the computational efficiency. In those cases, the approach here presented could be combined with the proposal of
Belyer and Alessi [39] to include several phase field variables, achieving a better representation of the different
failure mechanisms.
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Appendix A. Thermodynamic consistency

The thermodynamic consistency of the coupling proposed here is ensured by means of the Clausius—Duhem
inequality. Thus, the thermodynamic irreversible condition of the damage process holds if the rate of energy
dissipation is positive, i.e.

Y- D>0 (A.D

where Y is the thermodynamic forces vector conjugated to a set of internal damage variables D accounting for
the dissipative mechanisms. Considering the formulation herein proposed, two internal state variables are defined
to measure the damage threshold associated to the displacement and phase fields, which are denoted by r and ry,
respectively. It is worth mentioning that the mixed-mode ratio does not affect the damage state as demonstrated
by [47] and therefore, it is not considered in the following derivations. Then, the previous inequality can be expressed
as:

Y = [0, G — O, Bi1" (A2)

ng
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D =[ia, s (A3)
which, after some algebraic manipulations, is reduced to
dma dmy .
— Wi,ela (m¢mrA +ma Wj'b) > 0 (A4)

Recalling the demonstration presented by Turon et al. [47] and considering that ms > 0, the first term in the

parenthesis is always less than or equal to zero. Hence, the second term should be also less than or equal to zero
in order to ensure a positive rate of energy dissipation, i.e.

3Wl¢ .
ma ore Ty < (A5)
where, in light of the expressions summarized in Algorithm 1, it is postulated that
rDAC
mao=1———>0 (A.6)
rphe + (1 —rp)ho

a

mg = 21— ) <0 (A.7)
8r¢

At this point, the thermodynamic consistency of the proposed formulation holds thanks to the irreversibly conditions
imposed on the damage threshold associated to the phase field variable Eq. (37), i.e. stating that 7y > 0.

Appendix B. Complex-step derivative approximation

The Complex-Step Derivative Approximation (CSDA) is used in the current framework to obtain the tangent
operator of the material models [60]. When compared to the classical difference approximation, CSDA is more
robust than the perturbation parameter 4, but it is also more expensive computationally.

Outlining the concept of CSDA, the derivative of a scalar function f can be approximated by perturbing its
argument x along the imaginary axis. Thus, the Taylor series expansion of the function around the perturbation is
expressed as:

fa+ih) = f@)+ihf'(x) + O (B.1)
where 4 is the perturbation and i2 = —1 is the imaginary unit number. Then, discarding the high order terms O(x?),
the first derivative can be approximated as:

, Im[f (x +ih)]
fix) = — (B.2)

where Im[e] is an operator that takes only the imaginary part of the argument. Note that, unlike the traditional
method, / can be very small thanks to the above operation is not being subjected to subtractive cancellation [76].
However, the order of the approximation is the same, i.e. O(x2).

According to Tanaka and coworkers [77], this concept of CSDA can be extended to directional derivatives of
vector fields which, in turn, allows the method for the approximation of the tangent derivative of a material model to
be applied. For instance, considering a 2-dimensional analysis and adopting the Voigt notation, the material tangent
operator for the bulk region can be explicitly represented as:

Im[a”(e + ihg‘(ll))] Im[U“(e + ihé(zz))] Im[o“(s + ihg‘(lz))]

Im[oxn(e +iheqr)] Iml[oxn(e +ih&p)] Iml[oxn(e + ih&(2)] (B.3)
Im[oi2(e +ihéuy)] Imlon(e +ihépy)] Imlor(e + ihéy)]

D
® | Q
S =

where &5y = {81101y  S2y2(jy  S1(yS2¢j)}T is the directional perturbation vectors and §;; is the Kronecker delta.

In turn, the material operator for the cohesive zone model reads as:

it 1 [Im[TI(A+ihg(ll))] Im[Tl(A-th(zz))]]

= — X — . R B.4
oA " 7 |Imln(A + ihgar)] Im[oa(A + ihgon)] (B4)

where gij) = {8181y 8220y} -
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