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Abstract

During the last decades, mobile network operators have witnessed an exponential
increase in the traffic demand, mainly due to the high request of services from a huge
amount of users. The trend is of a further increase in both the traffic demand and
the number of connected devices over the next years. The traffic load is expected
to have an annual growth rate of 53% for the mobile network alone, and the
upcoming industrial era, which will connect different types of devices to the mobile
infrastructure including human and machine type communications, will definitely
exacerbate such an increasing trend.

The current directions anticipate that future mobile networks will be composed of
ultra dense deployments of heterogeneous Base Stations (BSs), where BSs using
different transmission powers coexist. Accordingly, the traditional Macro BSs layer
will be complemented or replaced with multiple overlapping tiers of small BSs
(SBSs), which will allow extending the system capacity. However, the massive use
of Information and Communication Technology (ICT) and the dense deployment
of network elements is going to increase the level of energy consumed by the
telecommunication infrastructure and its carbon footprint on the environment.

Current estimations indicates that 10% of the worldwide electricity generation
is due to the ICT industry and this value is forecasted to reach 51% by 2030,
which imply that 23% of the carbon footprint by human activity will be due to ICT.
Environmental sustainability is thus a key requirement for designing next generation
mobile networks.

Recently, the use of Renewable Energy Sources (RESs) for supplying network ele-
ments has attracted the attention of the research community, where the interest is
driven by the increased efficiency and the reduced costs of energy harvesters and
storage devices, specially when installed to supply SBSs. Such a solution has been
demonstrated to be environmentally and economically sustainable in both rural
and urban areas. However, RESs will entail a higher management complexity. In
fact, environmental energy is inherently erratic and intermittent, which may cause a
fluctuating energy inflow and produce service outage. A proper control of how the

iii



energy is drained and balanced across network elements is therefore necessary for a
self-sustainable network design.

In this dissertation, we focus on energy harvested through solar panels that is
deemed the most appropriate due to the good efficiency of commercial photovoltaic
panels as well as the wide availability of the solar source for typical installations.
The characteristics of this energy source are analyzed in the first technical part of the
dissertation, by considering an approach based on the extraction of features from
collected data of solar energy radiation.

In the second technical part of the thesis we introduce our proposed scenario.
A federation of BSs together with the distributed harvesters and storage devices
at the SBS sites form a micro-grid, whose operations are managed by an energy
management system in charge of controlling the intermittent and erratic energy
budget from the RESs. We consider load control (i.e., enabling sleep mode in the
SBSs) as a method to properly manage energy inflow and spending, based on the
traffic demand. Moreover, in the third technical part, we introduce the possibility of
improving the network energy efficiency by sharing the exceeding energy that may
be available at some BS sites within the micro-grid.

Finally, a centralized controller based on supervised and reinforcement learning is
proposed in the last technical part of the dissertation. The controller is in charge
of opportunistically operating the network to achieve efficient utilization of the
harvested energy and prevent SBSs blackout.
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1Introduction

The research work discussed in this PhD dissertation has been carried out as part
of the SCAVENGE project, funded by the European Union in the framework of the
Horizon 2020 research and innovation programme. The project tackles sustainable
design, protocols, architectures and algorithms for next generation 5G cellular
networks. The overall purpose is to allow mobile systems and especially their
constituting base stations, mobile devices and sensors to take advantage of sources
harvesting ambient energy (such as renewable sources).

1.1 Motivation

We live in the digital era. Dematerialization is becoming a reality, humans and
machines alike are globally connected through the Internet. The International
Telecommunication Union (ITU) estimated that 750 millions households are online
and that there exist almost as many mobile subscribers as people in the world
(around 6.8 billions) [46]. The trend is of a further increase in the traffic demand,
in the number of offered and connected devices, especially mobile. The traffic load
forecast in [19] is of an annual traffic growth rate of 53%, for the mobile traffic alone.
This new industry era is undoubtedly opening up new possibilities for individuals as
well as new opportunities for businesses and organizations. However, the massive
use of Information and Communications Technology (ICT) is also increasing the level
of energy consumed by the telecommunication infrastructure and its footprint on the
environment. In a report of 2013, the Digital Power Group [69] has calculated that
10% of the worldwide electricity generation is due to the ICT industry, which is more
than twice that of the avionic sector. The report also highlights that the ICT energy
consumption Compound Annual Growth Rate is around 10%. In fact, forecasts for
2030 are that 51% of the electricity consumption and 23% of the carbon footprint
by human activity will be due to ICT [4]. Hence, any future development in the
ICT technology and in its infrastructure should be undertaken with environmental
sustainability in mind.

Besides such an increase in the demand, the ICT industry has to solve an economical
problem, since operators’ Average Revenue Per Unit (ARPU) is decreasing every year.
The case of Vodafone Germany is particularly striking: its ARPU has been shrinking
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annually by 6% on average in the period 2000-2009. One of the reasons of this is
the annual increase of the Operative Expenditure (OPEX) of its network. Energy
has been dominating these costs: it has been calculated that the energy bill equals
the cost of the personnel required to run and maintain the network for a western
Europe Mobile Network Operator (MNO) in 2007 [27]. Considering the rise in the
energy price during the last few years, we conclude that energy saving is key for the
economical sustainability of ICT.

In this thesis, we discuss the crucial role of energy in the design of future networks,
by considering mobile networks, which are growing the most among all ICT sectors
in terms of number of subscribers, traffic demand, connected devices and offered
services [19].

1.2 Reference Scenario

Current trends anticipate that 5G mobile networks will be composed of ultra dense
deployments of heterogeneous Base Stations (BSs), where BSs using different trans-
mission powers coexist to provide the 1000x network capacity increase that is
required by 2020 [62]. Accordingly, the traditional Macro Base Station (MBS)
layer will be complemented or replaced with multiple overlapping tiers of smaller
BSs, which extend the system capacity, thanks to a higher spatial reuse and to a
better spectral efficiency. Despite such benefits, researchers have already identi-
fied new issues raised by an ultra dense scenario, such as: user association and
mobility management, interference management and mitigation, MBS offloading,
and energy saving [50]. Also, 5G subscribers will be equipped with a large and
diverse set of devices and BSs may need to support high-rate mobile equipment
(such as smartphones and laptops) [5] as well as a huge number of low-rate devices
(such as environmental or wearable sensors) [34], as envisaged by the Internet of
Things (IoT) paradigm. This makes new generation networks challenging to operate,
control and monitor. Moreover, such systems are also very demanding in terms of
energy consumption from the power grid, due to their high capacity requirements.
Different architectural designs have been proposed for next generation mobile net-
works including: 1) Cloud-Radio Access Network (C-RAN) [80, 3], 2) Software
Defined Networking (SDN) [30], 3) Network Function Virtualization (NFV) [58]
and 4) Fog Computing [79, 44]. All these proposals rely on the cloud principle of
sharing storage and computing resources. Moreover, they enable control and data
plane decoupling and entail a pure software implementation of network functions,
which may be opportunistically placed in different network elements.
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Such architectural proposals offer higher flexibility and scalability to operate, control
and monitor new generation networks, however, a big effort is still necessary to
reduce their energy demand. In fact, they are not specifically designed to reduce
the energy consumption of 5G networks and to potentially make them energy self-
sufficient. Based on the literature reviewed in Chapter 2, we acknowledge that there
are studies that try to improve the energy efficiency of these designs. Nevertheless,
we have identified the following limitations of existing schemes: (i) their energy
savings are still insufficient and most of the research is still in a preliminary stage,
(ii) they do not involve energy harvesting capabilities and energy self-sustainability.
In this dissertation, we advocate gathering environmental energy through dedicated
harvesting hardware to supply BSs. This translates into OPEX savings and into a
reduction of the environmental footprint of ICT. The Capital Expense (CAPEX) can
also be reduced [82] through the adoption of BSs with a small form-factor, as these
require smaller energy amounts to be operated and this lessens the requirements in
terms of harvesting and energy storage capabilities.

5G BSs can be classified into two main groups, depending on transmission power and
coverage range. We distinguish between MBSs with a transmission power range of
20-40 W covering few kilometers and Small Base Stations (SBSs) with a transmission
power of 0.05-6 W covering from few meters to few hundred meters. More details
on the characteristics of those BS are given in Chapter 3. The power consumption at
full system load of the different types of BSs can range from about 6 W for a femto
BS to 1 kW for a MBS [6, 22, 84].

Recently, the use of sustainable energy for supplying network elements has attracted
the attention of the research community, where the interest is driven by the increased
efficiency and the reduced costs of energy harvesters and storage devices, specially
when installed to supply SBSs [39]. Such a solution has been demonstrated to be
environmentally and economically sustainable in both rural and urban areas [114].

Figure 1.1 illustrates our reference scenario, which includes BSs, mobile devices,
sensors, energy harvesters and energy storage devices. In particular, we envision a
Radio Access Network (RAN) setup in which a hierarchical cell structure is deployed
within the same geographical area with BSs of different scale factors, transmission
power, computational capabilities and coverage areas [62]. We focus on a two-tier
architecture where SBSs are in the first tier and are powered only by renewable
energy they harvest through a solar panel and store in a battery. The second tier is
composed of MBSs powered by grid energy and used for backup operations when a
SBS is switched off. In this way, SBSs are utilized to increase the system capacity
whereas energy harvesters and energy storage devices ensure energy sustainability.
Furthermore, energy cooperation and transfer are utilized to balance the energy
reserve across BSs.
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Figure 1.1: Diagram illustrating the reference scenario. SBSs are utilized to increase the
system capacity, energy harvester and energy storage devices ensure energy
sustainability. Energy cooperation and transfer are accounted to balance the
energy harvesting reserve across BSs.

Renewable Energy Sources (RESs) will entail a higher management complexity.
In fact, environmental energy, such as solar and wind, is inherently erratic and
intermittent, which may cause fluctuating energy inflow and produce service outage.
A proper control of how the energy is drained and balanced across network elements
is therefore necessary for a self-sustainable network design. The flexibility introduced
by the cloud principles into the 5G architecture will definitely support the design of
optimal strategies for network energy management. Moreover, sustainable design of
5G systems shall rely on a set of procedures enabling energy efficient communication.
While reviewing the scientific literature, it appears that the most promising approach
to reduce the energy consumption of mobile networks is to enable sleep modes in
some network elements during periods of low traffic [36].

In such a context, SBSs may transfer their energy to provide ancillary services to the
next generation electrical grid, the Smart Grid (SG). The SG is the technological
paradigm proposed to enable highly efficient energy production, transport, and
consumption along the whole chain, from the source to the user. In particular, a key
concept is the design of micro-grids, which has been defined by the US Department
of Energy as “a group of interconnected loads and distributed energy resources
(mainly renewables) within clearly defined electrical boundaries that act as a single
controllable entity with respect to the power grid”. A micro-grid can connect and
disconnect from the grid to enable it to operate in both grid connected and island
mode. Similarly, the European Union recently released the EU Winter Package,
aimed at providing guidelines for the next generation of power grids. The main idea
is to foster cooperation among local energy communities by providing them with the
infrastructure to work in island mode and with market-based retail energy prices.

In our reference scenario, the federation of BSs together with the distributed har-
vesters and storage devices at the SBS sites form a micro-grid, whose operations are
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managed by an energy management system in charge of controlling the intermittent
and erratic energy budget from the RESs. We consider load control (i.e., enabling
sleep mode in the SBSs) as a method to properly manage energy inflow and spend-
ing, based on the traffic demand. Moreover, we propose the possibility of improving
the network energy efficiency by sharing the exceeding energy that may be available
at some BS sites within the micro-grid. This combination of sleep modes and energy
sharing represents an advance with respect to state-of-the-art approaches, as will be
also discussed in Chapter 2.

1.3 Objectives and Methodology

The objective of the thesis is to investigate on the design of possible integration
architectures between the energy harvesting mobile network and the SG. In particu-
lar, the main scope is to study the capability of 5G mobile networks of intelligently
routing energy in a micro grid of interconnected conventional/renewable energy
sources and loads. This is needed to satisfy the demand of communication networks
while avoiding energy outages in zones with high user density and/or low ambient
energy availability.

In particular, the following tasks need to be performed to achieve the above-
mentioned objectives:

1. Self-sustainable mobile networks. Review of the state-of-the-art on the area
of self-sustainable mobile networks. In particular, we focus on paradigms to
control energy inflow and spending within the micro-grid. In this task, we
pose particular attention to the methodology used to solve the energy control
problem, including optimal control and machine learning.

2. Characterization of the RESs. It is fundamental to properly characterize
the RESs since a consistent part of the network, represented by the SBSs, is
supplied by them. In this dissertation, we focus on energy harvested through
solar panels that is deemed the most appropriate due to the good efficiency
of commercial photovoltaic panels as well as the wide availability of the solar
source for typical installations [60].

3. Load control algorithms. SBSs may install self-organizing agents, which
enable intelligent energy management policies, such as Direct Load Control. In
this way, the agents can dynamically turn ON and OFF the SBS to minimize the
consumption of grid energy and the system outage. In particular, the bounds
on the network performance and the monetary cost need to be estimated
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to analyze the feasibility of the proposed approach in a given geographical
location.

4. Integration with the SG. In some cases, SBSs may experience high energy
harvesting (e.g., in summer months) and this energy may not be stored into the
batteries due to their limited capacity. Therefore, we consider the possibility
of exchanging the exceeding energy available at the SBS sites with the MBS
to reduce its grid energy consumption and increase the mobile network self-
sustainability.

Much effort has been posed on the methodological part to solve the energy control
and the relevant optimization problem. In particular, we have adopted Dynamic
Programming (DP) and Machine Learning (ML) as efficient methods to deal with
our problem.

DP has been applied to implement the offline load control algorithm. DP is a method
that allow simplifying a complicated problem by breaking it down into simpler
sub-problems in a recursive manner. The use of DP is particularly helpful since it
enables solving optimization problems based on step-by-step decisions, in which
future events have an impact on the current decision. In this way, the optimal
control can be computed given the a-priori knowledge of the energy harvesting and
traffic demand processes. In particular, we formulated the classical DP problem as a
graph-theory shortest-path search problem, and we solved it by using an efficient
variant of the popular label-correcting algorithm. The graph is build in a step-by-step
fashion while discarding the nodes leading to unfeasible solutions. This method
allows to efficiently solve the complex optimal load control problem. The optimal
control solution provides a bound on the performance that can be achieved by our
proposed architecture.

ML algorithms have been used as an efficient way to characterize the solar energy
source and to perform online load control. Unsupervised learning methods have
been used to learn hidden features of the solar energy generation from a PV system.
Normally, this geographical analysis is performed using solar maps, which provide
easy-understandable information. The total annual solar electricity generation
from a PV system is used to characterize national and regional differences [115].
In this dissertation, we adopt unsupervised learning methods to extract hidden
features that may give a more accurate characterization of the process beyond that
usual metric. In particular, clustering the extracted features allows grouping the
locations according to their similar behaviors in terms of solar energy generation.
Moreover, supervised and reinforcement learning have been used to design different
implementations of a centralized energy-aware RAN controller. These methods
allow performing the energy management in an online fashion, without any prior
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knowledge of the system. In the supervised case, a learning agent implemented in
the centralized controller learns the optimal policies from labeled data collected by a
supervisor. The creation of the training set is a hard task since it relies on an expert
supervision. For this reason, supervised learning approaches are generally feasible
in scenarios with a limited number of SBSs due to complexity issues. Therefore,
we investigated solutions based on reinforcement learning as a way to deal with
the problem complexity. In details, reinforcement learning methods allows learning
from the interaction with the environment and no specific supervision is required.

1.4 Outline of the Thesis

A brief overview of the content of the following chapters is given in this section.

Chapter 2 - State of the Art

We describe the state of the art about energy efficiency in mobile networks. Moreover,
we introduce the concept of energy cooperation in a renewable powered mobile
network, and we provide a classification of the literature in this field.

The work presented in this chapter has been published in the following papers:

• N. Piovesan, A. Fernandez Gambin, M. Miozzo, M. Rossi, P. Dini, “Energy
sustainable paradigms and methods for future mobile networks: A survey”,
Computer Communications, Volume 119, 2018, Pages 101-117.

Chapter 3 - Modeling

We provide a description of the mathematical models adopted in this dissertation. In
particular, we focus on the models for the solar energy generation, the mobile traffic
demand and the BSs power consumption.

Chapter 4 - Mathematical Framework

We provide a description of the mathematical tools adopted in this dissertation. We
give an introduction on DP, focusing on finite state systems, and we describe the
shortest-path algorithm adopted to efficiently solve our DP problem. Finally, an
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introduction on ML and neural networks is presented. DP and the shortest-path
algorithm have been adopted in Chapter 6 and 7 to compute the performance bounds
of the optimal direct load control approach. Moreover, ML has been adopted in
Chapter 5 to characterize the solar energy source and in Chapter 8 to implement
different online load control algorithms.

Chapter 5 - Characterization of the Solar Energy

We discuss an unsupervised method to learn hidden features of the solar energy
generation from a photovoltaic system that may give a more accurate characteri-
zation of the energy process. In a first step, solar radiation data is converted into
instantaneous solar power through a detailed source model. Then, two different
machine learning approaches are used to extract meaningful features from the traces
of the solar energy generation.

The work presented in this chapter has been published in the following papers:

• N. Piovesan, P. Dini, “Unsupervised Learning of Representations from Solar
Energy Data”, in Proceedings of IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), 9–12 September 2018,
Bologna (Italy).

Chapter 6 - Optimal Direct Load Control

We introduce an optimal direct load control of renewable powered BSs in a two-tier
mobile network. We introduce an optimal algorithm based on DP and we analyze
the optimal policies and the achieved performance in different energy and traffic
scenarios.

The work presented in this chapter has been published in the following papers:

• N. Piovesan, P. Dini, “Optimal Direct Load Control of Renewable Powered
Small Cells: A Shortest Path Approach” in Internet Technology Letters, Wiley,
2017.

• N. Piovesan, M. Miozzo, P. Dini, “Optimal Direct Load Control of Renewable
Powered Small Cells: Performance Evaluation and Bounds”, in Proceedings of
IEEE Wireless Communications and Networking Conference (WCNC), 15-18 April
2018, Barcelona (Spain).
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Chapter 7 - Optimal Direct Load Control plus Energy Sharing

We extend our analysis in Chapter 6 by considering a scenario in which the BSs
can exchange energy through a micro-grid to further increase the mobile network
energy efficiency. Moreover, we provide an analysis on the optimal dimensions of
the harvesting devices and their influence on the performance and the monetary
cost experienced by the MNOs.

The work presented in this chapter has been published in the following papers:

• N. Piovesan, D. A. Temesgene, M. Miozzo, P. Dini, “Joint Load Control and
Energy Sharing for Autonomous Operation of 5G Mobile Networks in Micro-
Grids”, IEEE Access, Volume 7, 2019, Pages 31140-31150.

Chapter 8 - Online Direct Load Control plus Energy Sharing

We introduce a centralized controller, located at the MBS site, with knowledge of the
overall network condition. The controller is in charge of opportunistically operating
the network to achieve efficient utilization of the harvested energy and prevent
SBSs blackout during periods with low renewable energy arrivals and high traffic
demand. In particular, we provide a detailed analysis of three learning agents based
on supervised and reinforcement learning.

The work presented in this chapter is included in the following papers:

• N. Piovesan, D. López-Pérez, M. Miozzo, P. Dini, “Joint Load Control and Energy
Sharing for Renewable Powered Small Base Stations: a Machine Learning
Approach”, submitted to IEEE Transactions on Green Communications and
Networking.

• N. Piovesan, M. Miozzo, P. Dini, “Modeling the Environment in Deep Reinforce-
ment Learning: the case of Energy Harvesting Base Stations”, submitted to
International Conference on Acoustics, Speech, and Signal Processing (ICASSP).
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Chapter 9 - Conclusions

This chapter concludes the thesis. Here, we provide a discussion on the achieve-
ments accomplished through the research presented herein, the conclusions and the
perspectives for future works.
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2State of the Art

In this chapter, we review the state of the art about energy saving techniques in
mobile networks. In particular, we advocate and elaborate on the use of energy
harvesting hardware as a means to decrease the environmental footprint of future
mobile networks technology. To take full advantage of the harvested (renewable)
energy, while still meeting the quality of service required by dense mobile network
deployments, suitable management techniques are here reviewed, highlighting the
open issues that are still to be solved to provide eco-friendly and cost-effective
mobile architectures.

The chapter is organized as follows. Energy efficiency techniques are reviewed in
Section 2.1. A new network design paradigm, called energy cooperation, is described
in Sections 2.2 where it is shown that network nodes can collaborate for energy
self-sustainability. Our final remarks are given in Section 2.3.

2.1 Energy Efficiency Techniques

In this section, we concentrate on the techniques to reduce the energy consumption
of the mobile system as a whole. Energy Efficiency (EE) is the fundamental brick of
any sustainable design and defines the key methods that are to be either enhanced or
brought forward when integrating energy harvesting sources. We refer to EE as a set
of functions/methods conceived to reduce the energy requirement for a given level
of service. EE can be quantified by the ratio between the amount of data successfully
delivered (in bit/s) and the total energy spent in such transmission (in Wh or J).

Several surveys have been written to discuss on the energy efficiency of the mobile
system. Sources of inefficiencies in the network are described in [20], where
some potential improvements are also suggested. The authors of [64] provide an
extensive description of energy-aware mechanisms at each protocol layer of the
communication stack, including energy efficient hardware design principles. In
this section, instead, we only concentrate on the energy efficient techniques at the
network and side, which can enable an intelligent use of the harvested ambient
energy and support the system self-sustainability.
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The EE techniques that are exploited to decrease the energy footprint of BSs fall
under two categories: 1) sleep modes, to selectively switch off some of the radio
units (according to the traffic profile) and 2) cell zooming, to adapt the coverage
range of BSs to cover areas where BSs are asleep and perform load balancing. These
techniques are analyzed in the following.

1) Sleep modes: cellular networks are dimensioned to support traffic peaks, i.e.,
the number of BSs deployed in a given area should be able to provide the required
Quality of Service (QoS) to the mobile subscribers during the highest load conditions.
However, during off-peak periods the network may be underutilized, which leads to
an inefficient use of spectrum resources and to an excessive energy consumption. For
these reasons, sleep modes have been proposed to dynamically turn off some of the
BSs when the traffic load is low. This has been extensively studied in the literature,
considering different problem formulations [36]. As BSs cannot serve any traffic
when asleep, it is important to properly tune the enter/exit time of sleep modes to
avoid service outage. Moreover, when a BS is switched ON/OFF, there is an incurred
energy cost that should not be ignored. This is tackled in [107] by considering BSs
state transitions over time in the optimization problem, such that the overall BSs
switching energy cost is minimized.

The authors of [109] propose centralized and distributed clustering algorithms to
cluster those BSs exhibiting similar traffic profiles over time. Upon forming the
clusters, an optimization problem is formulated to minimize their power consump-
tion. Optimal strategies are found by brute force, since the solution space is rather
small and its complete exploration is still doable. A similar approach is presented
in [85] where a dynamic switching ON/OFF mechanism locally groups BSs into
clusters based on location and traffic load. The optimization problem is formulated
as a non-cooperative game aiming at minimizing the BS energy consumption and
the time required to serve their traffic load. Simulation results show energy costs
and load reductions while also provide insights of when and how the cluster-based
coordination is beneficial.

User QoS is added to the optimization problem in [15]. In this case, as the problem
to solve is NP-hard, the authors propose a sub-optimal, iterative and low-complexity
solution. The same approach is used in [111, 94, 14, 32], playing with the trade-off
between energy consumption and QoS. The Quality of Experience (QoE) is included
in [108], where a DP switching algorithm is put forward. The user QoE is utilized in
place of standard network measures such as delay and throughput. Other parameters
that have been considered are the channel outage probability (also referred to as
coverage probability), i.e., the probability of guaranteeing the service to the users
located in the worst positions (e.g., at the cell edge) and the BS state stability
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parameter, i.e., the number of ON/OFF state transitions. For instance, a set of
BS switching patterns engineered to provide full network coverage at all times,
while avoiding channel outage, is presented in [37]. The coverage probability,
along with power consumption and energy efficiency metrics, are derived using
stochastic geometry in [98, 42, 90]. A similar approach is considered in [48],
where closed-form expressions of coverage probability and average user load are
attained through stochastic geometry. Optimal resource allocation schemes are
proposed to minimize power consumption and maximize coverage probability in a
Heterogeneous Network (HetNet), and are validated numerically. According to the
BS state stability concept, a bi-objective optimization problem is formulated in [61]
and solved with two algorithms: (i) near optimal but not scalable, and (i) with low
complexity, based on particle swarm optimization. The QoE is also affected by the
User Equipment (UE) positions according to the channel propagation phenomena.
To this respect, in [12] the BSs to be switched off are selected so as to minimize the
impact on the UEs’ QoE, according to their location and distance from the BSs.

In order to support sleep modes, neighboring cells must be capable of serving
the traffic in areas where BSs are temporarily sleeping. To achieve this, proper
user association strategies are required. In a scenario where sleeping techniques
are not applied, each user is associated with the BS that provides the best Signal
to Interference plus Noise Ratio (SINR). However, when BSs can go to sleep,
user association is more complex and requires traffic prediction as well as very
fast decision-making. Otherwise, users may suffer a deterioration of their QoS.
A framework to characterize the performance (outage probability and spectral
efficiency) of cellular systems with sleeping techniques and user association rules is
proposed in [93]. In this paper, the authors devise a user association scheme where
a user selects its serving BS considering the maximum expected channel access
probability. This strategy is compared against the traditional maximum SINR-based
user association approach and is found superior in terms of spectral efficiency when
the traffic load is inhomogeneous. User association mechanisms that maximize
energy efficiency in the presence of sleep modes are addressed in [112]. There, a
downlink HetNet scenario is considered, where the energy efficiency is defined as
the ratio between the network throughput and the total energy consumption. Since
this leads to a highly complex integer optimization problem, the authors propose a
Quantum particle swarm optimization algorithm to obtain a sub-optimal solution.
Moreover, a problem that jointly considers energy cost and flow-level performance,
such as file transfer delay, is formulated in [91]. This formulation is decomposed
into two subproblems: user association and BS operation. For the user association,
an optimal policy is derived, also devising a distributed implementation. For the BS
operation, some low-complexity algorithms are proposed.
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MNOs cooperation is exploited in [77] where a switching off strategy is implemented
through a roaming cost based on user association to offload traffic and eventually
defines the operational state of the BSs. Similarly, in [11] the switch ON/OFF
problem for clusters of BSs has been modeled with a non-cooperative game with
complete information algorithm. The game is played by the MNOs for estimating the
switching-off probabilities that reduce their expected financial cost when roaming
the traffic. The proposed scheme improves both the network energy efficiency and
the cost. Results also provide understandings on the MNOs behavior as function
of the roaming cost. An auction-based switching off solution has been proposed
in [13] where MBSs owned by different MNOs can offload traffic to third party SBSs.
A multi-objective auction framework has been used to opportunistically utilize the
small BSs. The proposed solution considers different bidding strategies representing
different levels of tolerance respect to the QoE that the MNOs want to provide to
their UEs. Simulation results show improvements for throughput, energy efficiency
and cost savings, providing also guidelines concerning the behaviors that the MNOs
should follow in the auction. Finally, cooperation between MNOs in a C-RAN
architecture is analyzed in [97]. The authors propose a novel scheme based on
coalitional game theory to identify the potential room for cooperation among MNOs
that provide service to the same area. Simulation results show that for the operators
it is always more convenient collaborating, with profit gains ranging above 98%
when compared to the stand-alone case.

2) Cell zooming: this method is also known as cell breathing, it is complementary
to the above user association techniques and has been introduced to fill the coverage
gaps that may occur as BSs go to sleep. It amounts to adjusting the cell size according
to traffic conditions, leading to several benefits: (i) load balancing is achieved by
transferring traffic from highly to lightly congested BSs, (ii) energy saving through
sleeping strategies, (iii) user battery life and throughput enhancements [47]. To
compute the right cell size, cell zooming adaptively adjust the transmitted powers,
antenna tilt angles, or height of active BSs. There exists a large number of works
that apply this approach to achieve energy savings in cellular networks. For instance,
a cell zooming scheme, to be used in two-tier cellular networks with MBSs and
SBSs, is put forward in [17]. The considered formulation entails a Capacitated
Facility Location Problem (CFLP), which is known to be NP-hard. Hence, the authors
provide a practical implementation allowing BSs to be smartly switched ON/OFF
and filling coverage holes zooming in and out the active BSs. Further, centralized
and distributed cell zooming algorithms are proposed in [75], where a cell zooming
server, which can be either implemented in a centralized or distributed fashion,
controls the zooming procedure by setting its parameters based on traffic load
distribution, user requirements, and Channel State Information (CSI). The same
server-based solution can be found in [47]. A different approach is proposed in [55],
where the authors design a BS switching mechanism based on a power control
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algorithm that is built upon non-cooperative game theory. A closed-form expression
cell zooming factor is defined in [105], where an adaptive cell zooming scheme is
devised to achieve the optimal user association. Then, a cell sleeping strategy is
further applied to turn off light traffic load cells for energy saving. In general, most
zooming scenarios entail a computationally intractable formulation, so affordable
solutions based on iterative algorithms or heuristics abound in the literature, see,
e.g., [43, 113].

Remarkably, cell zooming entails an increase in the transmitted power of the active
BSs, which leads to a higher energy expenditure for the BSs that are on. However,
when used in combination with sleeping strategies, this leads to additional energy
savings. Some researchers are oriented towards the study of sleeping schemes in
conjunction with cooperative communication strategies for distributed antennas,
also referred to as Coordinated Multi Point (CoMP). This technique increases spectral
efficiency and cell coverage without entailing a higher BS transmitted power and
reducing the co-channel interference. The authors of [18] prove the effectiveness
of this approach in terms of energy and capacity efficiency when sleep modes are
combined with downlink CoMP. Despite these advantages, their results also reveal
that imperfect downlink channel estimations and an incorrect CoMP setup can lead
to energy inefficiency. A stochastic geometry analysis is presented in [42] to evaluate
the energy efficiency performance of joint sleeping and CoMP in HetNets. The
authors of this paper compare the coverage probability and the energy efficiency in
scenarios with and without CoMP. Their results demonstrate that the combined use
of CoMP and BS sleeping techniques can improve the energy efficiency and increase
the coverage probability when compared with the sole use of sleep modes.

2.1.1 Main Outcomes

The main findings are the following:

1. Grouping BSs with similar traffic patters through clustering techniques provide
valuable results when applied to BS sleep modes.

2. Stochastic geometry has been vastly used to analyze the EE performance in
switching ON/OFF strategies.

3. BS sleeping solutions shall be combined with other techniques such as user as-
sociation, cell zooming and CoMP to ensure satisfactory network performance.

4. MNOs cooperation has been exploited through game theory and auction-based
approaches with promising outcomes.
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Sleeping techniques have been widely investigated for cellular networks, but there
are still some open problems to be solved. In the review of the literature we noticed
that the traffic models are usually over-simplified, considering uniform traffic distri-
butions and arrival patterns in all cells at all times. However, actual network traffic is
dynamic and undergoes spatial and temporal fluctuations [6] due to the movement
of UEs. Hence, accurate mobility models should be inferred from real data, and
used to investigate the performance of sleep modes and cell zooming. Moreover, BS
switching operations are usually modeled without considering activation frequency
and time. Although the most recent BSs have been conceived for frequently entering
sleep modes, most of the BSs that are still in use today were designed foreseeing
only occasional switch ON/OFF operations, as otherwise the failure rate of some of
their parts would be too high [101]. Besides, fast switching operations can lead to
a ping-pong effect, which occurs when the service is handed over from one cell to
another, but is quickly handed back to the original cell increasing control messages
to the core network, leading to an increased energy consumption and to a decreased
user QoS [88]. This is more severe when there is a non-negligible BS activation
time, as resources may be deactivated due to a temporary decrease in the load, and
cannot be rapidly reactivated in response to a sudden increase of the same [25].
These aspects are to be taken into account to avoid service outage in real world
scenarios.

2.2 Energy Cooperation

We now consider a scenario where the BSs are supplied by energy harvesters and
storage devices (rechargeable batteries) and may be disconnected from the power
grid (off-grid). There, cooperation strategies can be conceived to make them quasi
self-sustainable, i.e., to operate mostly relying on the harvested (and stored) en-
ergy.

In this context, geographical diversity shall be exploited to mitigate the well-known
temporal and spatial variability in the energy harvesting process, especially when
using renewable sources such as the wind. This aspect is partially investigated
in [16], where a network made of two BSs equipped with energy harvesters and
some limited energy storage capability is considered. The authors propose an offline
linear programming algorithm, which limits the power drained from the power grid
when the energy profiles are deterministic. Furthermore, an online algorithm is
put forward for a more realistic scenario where they are stochastic and not known
a priori. As expected, the best results are achieved when the harvested energy
profiles at the two BSs are sufficiently uncorrelated. In fact, if the amount of energy
harvested is highly correlated, we have a problem when the energy inflow is little,
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Figure 2.1: Energy sharing scenarios.

as this concurrently occurs at both BSs. When the correlation is low, it is instead
very likely that one BS will experience an abundant energy inflow when the other
one is in a low energy state. The former BS could then transfer some of its energy
to the latter. The performance gap between the two algorithms in [16] is small,
reaching the minimum value for anti-correlated energy profiles. We observe that a
low correlation in the energy profiles can be more easily reached by using different
renewable types, for example solar and wind, where the latter may be very useful to
mitigate the shortage of energy from solar panels during the night. In the following,
two cooperation types are considered:

1) Energy sharing: in this case, BSs are interconnected with electric wires, form-
ing a sort of microgrid that provides mechanisms to exchange the harvested
energy among the BSs. In Figure 2.1 two deployment scenarios are depicted:
direct connections among BSs (Figure 2.1a) and BSs connected through an
aggregator (Figure 2.1b).

2) Communication cooperation: BSs are not interconnected via electric cables
and their cooperation involves mechanisms to support the radio communi-
cation such as power control, bandwidth control, sleep modes and traffic
offloading. In this case, high-capacity mmWave backhaul connections [45]
can be exploited to facilitate the deployment of drop-and-play devices, such as
SBSs. The scenario is depicted in Figure 2.2.
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Figure 2.2: Communication cooperation scenario.

2.2.1 Energy Sharing

Energy sharing among BSs is investigated in [35] through the analysis of several
basic multiuser network structures, namely, (i) an additive Gaussian two-hop relay
channel with one-way energy transfer from the source to the relay node, (ii) a
Gaussian two-way channel with one-way energy transfer and (iii) a two-user Gaus-
sian multiple access channel with one-way energy transfer. A two-dimensional and
directional water-filling algorithm is devised to control the harvested energy flows
in both time and space (among users), with the objective of maximizing the system
throughput for all the considered network configurations. The allocation algorithm
is offline, relies on a priori information, i.e., the amount of energy harvested by
sources and relays, and assumes unlimited data and energy buffers. However, these
assumptions are unrealistic.

A very interesting energy sharing framework is presented in [31], where the concept
of the Energy Packet Network (EPN) is introduced. In an EPN, discrete units
of energy, termed energy packets, can be exchanged among network elements or
acquired from the environment through harvesting hardware. Accordingly, the
harvested energy can be modeled as a packet arrival process, the energy storage as
a packet queue and the energy consumption process as a queue of loads, i.e., one
or more servers. These three components of the EPN are interconnected thanks to
power switches. Electronic systems of this type, named power packet systems, have
been recently experimented with. In some approaches [54] the packet takes the
form of a pulse of current with fixed voltage and duration. Each energy packet is
equipped with an encoded header, containing the information about the destination
identity (i.e., its address), which is used to route the energy packet through the
EPN.

The cost of deploying the micro-grid infrastructure that would be required by an
EPN can be high. In [35, 110], the use of wireless energy transfer is considered as a
means to avoid the installation cost of electric cables. However, such technology has
a low energy transfer efficiency nowadays, see [96, 10].
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A solution to reduce the costs of deploying electrical connections between BSs is
presented in [104], where a new entity named aggregator is introduced, as shown in
Figure 2.1(b). The aggregator is in charge of mediating between the grid operator
and a group of BSs to redistribute the energy flows. In [103], the authors propose
an algorithm that tries to jointly optimize the transmit power allocations and the
transferred energy, so as to maximize the sum-rate throughput for all the users.
This joint communication and energy cooperation problem is proven to be convex.
Numerical simulation shows that this approach achieves better performance than no
cooperation or cooperation through communication in terms of average sum-rate.

Infrastructure sharing may be exploited to reduce power consumption by fairly
distributing the harvested energy by the MNOs [76]. The problem to capture the
energy interactions among MNOs is stated as a bankruptcy game. The authors focus
on the fairness among operators to further motivate cooperation. The results show
that all cooperative MNOs could be provided with 6 - 7 hours of operation during
non-solar hours, regardless the traffic demand. Furthermore, MNOs buy grid energy
at similar percentages when no green energy is available.

2.2.2 Communication Cooperation

The micro-grid deployment cost (i.e., the EPN installation cost) is one of the main
aspects that motivate the introduction of this second cooperation mode. In this case,
each BS has an energy harvester and may have a storage unit (battery), but it is
not connected with the other BSs via electric cables and, in turn, cannot directly
exchange energy with them, as shown in Figure 2.2. This approach eliminates
the CAPEX related to the deployment of the micro-grid infrastructure (e.g., wires,
converters and controllers). However, it may require harvesters and storage units
with higher capacity, to achieve a certain QoS. Ongoing research aims at finding
the optimal size of harvesting devices and batteries to sustain the traffic demand
through the available energy budget. In particular, methods that allow the BSs to
cooperatively optimize the network energy usage are proposed.

In [114], the fraction of time during which a BS cannot satisfy the traffic demand,
due to energy scarcity is defined as outage. The authors compute the size of har-
vesters and batteries as a function of the outage probability. A photovoltaic panel
is considered as the harvester and the size-outage region is obtained for different
geographical locations. The authors conclude that full network self-sustainability
may be feasible in locations with high solar irradiation, considering the cost and
dimension of the energy harvesting hardware (panels and batteries). In [23], the
authors define a system model of a K-tier heterogeneous cellular network, where
BSs independently switch off when their energy reserve is insufficient. The authors
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determine the availability region, i.e., the uncertainty in BS availability due to the
finite battery capacity and to the inherent randomness in the energy harvesting
process. This provides a fundamental characterization of the conditions under which
standalone BSs provide the same performance as BSs relying on traditional energy
sources. The introduction of sleeping capabilities in some BSs in order to reduce the
size of their harvesting and storage devices is explored in [66]. In this paper, sleep
modes are enabled for 50% of the BSs, when the traffic is below 50% of its peak.
Although simple, this scheme allows reductions in the power consumption from
10% to 40%, depending on the sleep policy, and to reduction in the size of batteries
and photovoltaic panels. However, the impact of sleep modes on the user QoS is
not assessed. In [57], an optimization problem that seeks to minimize delay and
power consumption by turning off small BSs is investigated. The proposed algorithm
is online and is based on the so called ski rental framework. Each agent operates
autonomously at each SBS and without having any a priori information about future
energy arrivals. The algorithm is compared against a greedy scheme that uses
sleep modes when the battery level is below a fixed threshold. It is shown that the
proposed solution outperforms the greedy approach in terms of power consumption
and network cost. The performance is evaluated assuming that energy arrivals are
Poisson. This assumption is however unrealistic in most energy harvesting scenarios,
as demonstrated in [72], where a stochastic Markov process has been derived for
solar energy harvesting systems.

Approaches based on ML have been recently proposed as a way to schedule the
switch ON/OFF of the BSs without any prior knowledge of the system and to man-
age the algorithm complexity. A two-tier urban cellular network is considered
in [71], where MBSs are powered by the power grid and energy harvesting SBSs
are deployed for capacity extension. The authors propose an algorithm based on
multi-agent reinforcement learning that controls the energy spent according to the
energy harvesting inflow and the traffic demand. Each node independently decides
whether entering a sleep mode or serving the users within coverage. This algorithm
is also shown to outperform a greedy scheme. The adoption of a distributed archi-
tecture allows to reduce the complexity of the algorithm. However, this approach
suffers from a lack of coordination. In [70], this problem has been addressed by
considering a layered learning algorithm based on the decomposition of the problem
into two layers. The first layer is based on reinforcement learning and in charge
of local control at each SBS, whereas the second layer is based on artificial neural
networks and manages the network wide coordination among the SBSs.

2.2.3 Main Outcomes

The main findings of this section are described as follows:
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1. Energy cooperation between BSs give better results when exploiting different
types of RESs and geographical diversity.

2. Energy sharing possibilities are limited by the cost of deploying a microgrid of
BSs. Some architectural solutions have been provided. In particular, the most
feasible is represented by the use of an aggregator. However, EPNs represent
an interesting challenge for future energy sharing deployments.

3. Cooperation between BSs avoids the deployment of a microgrid. The dimen-
sion of energy harvesting and storage devices depends on the system outage
constraints and on the deployment site.

4. BSs sleeping represents one of the most promising cooperation strategies.

Energy cooperation is a recent and open field of research. Moreover, the definition
of cooperation methods is crucial in case of energy self-sustainability. A key aspect
is the characterization of the network load that is still not precisely captured by
current analysis as already described in Section 2.1.1. We also underline the lack of
performance assessments for the user perceived quality in the presence of energy
cooperation mechanisms.

The harvesting process is usually characterized by very intensive power generation
periods, interleaved with periods where the energy harvested is scarce of even absent.
In the case of solar energy, for example, the generated power depends (among other
things) on the season of the year. Since the system is designed for the worst case
(e.g., winter months), the imbalance in the power generation across a full year may
lead to an excess of energy during high power periods, which may be poorly handled.
Investigations on an efficient use of the energy surplus shall be carried out to avoid
this. The impact of energy storage devices still has to be investigated. In such a case,
the adoption of energy storage leads to a higher CAPEX and the trade-off between
installation cost and network performance would also have to be assessed, taking
into consideration the payback period.

Most of the work cited in this section solves offline optimization problems assuming
a full knowledge of energy and load patterns. This is useful as a feasibility study and
to obtain performance bounds, but it is still far from the design of a practical solution.
In the literature, we see an increasing interest in learning and distributed approaches
for the design of online algorithms. However, these control methods are not yet
mapped into the proposed 5G architecture. Concepts like network softwarization
and virtualization should be included in their design and their performance should
be evaluated considering real traffic (user demand) and energy harvesting traces.
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Moreover, all the algorithms that have been published so far entail a zero delay
when a BS transitions between active and sleep states.

Finally, a new research field addresses the design of EPNs. There, energy packets
would represent a flexible and convenient method to route energy when and where
needed. However, the design of power switches, as well as the definition of proper
energy routing protocols, are still open research directions.

2.3 Conclusions

In this chapter, we have elaborated on the use of energy harvesting hardware as
a means to decrease the environmental footprint of 5G technology. To take full
advantage of the harvested (renewable) energy, while still meeting the quality of
service required by dense 5G deployments, suitable management techniques have
been reviewed, highlighting the open issues that are still to be solved to provide
eco-friendly and cost-effective mobile networks.

While several techniques have recently been proposed to tackle capacity, coverage
and efficiency problems we believe that none of these comprehensively addresses
and solves the energy efficiency problem, especially in the presence of energy
harvesting devices/hardware. In fact, current studies do not generally consider
network elements with energy harvesting capabilities. From the analysis that we
have carried out in this chapter, we have identified several open issues that range
from the need for accurate energy, transmission and consumption models, to the
lack of accurate data traffic profiles (from real mobility traces), to the use of energy
cooperation techniques.

Specifically, energy cooperation techniques look very promising and should be better
addressed, including energy harvesting and traffic dynamics. In this respect, energy
packet networks are envisaged to be an interesting solution to be further explored
for energy transfer among network nodes.
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3Modeling

In this chapter, we provide a description of the mathematical models adopted in
this dissertation. In details, the chapter is structured as follows. In Section 3.1, we
introduce the model used to convert the solar radiation into solar energy generation.
In particular, we describe an astronomical model, a solar panel model and a power
processor model. In Section 3.2, we describe a model for the traffic demand experi-
enced by the network. In Section 3.3, we analyze the BS consuming components,
and we introduce the adopted model. Finally, Section 3.4 concludes the chapter.

3.1 Solar Energy Harvesting Devices

Among the RESs, solar is the most popular one and is today exploited in numerous
applications. Figure 3.1 shows the distribution of irradiation and thus the availability
of solar power across the globe. The amount of solar energy that can be harvested
mainly depends on the geographical location, the time of the day, the season, the
position of the deployment and the weather. The stochastic nature of the latter and
thus uncertainty of available energy is a major obstacle to the large-scale use of
solar energy in many regions. An example of temporal behavior of the solar energy
process is depicted in Figure 3.2 for a week of December and July.

A solar Photovoltatic (PV) array consists of one or more electrically connected
PV modules, where each module contains many individual cells. When exposed to
sunlight, a solar cell connected to an external circuit generates a Direct Current (DC),
and using adequate components (combiners, inverters, and transformers), this
current can be converted into grid-compatible Alternating Current (AC), if needed.
Meanwhile, charge controllers and batteries could be also used to store energy
during the day and provide on-demand power during the night.

When modeling the harvestable solar power, a good metric is the average solar
radiation arriving at the surface. The radiation must then be multiplied with the
solar panel size to get the received radiation. However, only a fraction of the solar
radiation can be converted into electrical power for the following reasons:
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Figure 3.1: Map of average solar irradiation across the globe (©2017 The World Bank,
Solar resource data: Solargis)
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Figure 3.2: Example of temporal variation of the energy harvesting process in a week of
December and July
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Figure 3.3: Source model used to characterize the solar energy generation process.

• each solar panel features a specific efficiency, and a reduction factor must be
introduced.

• the radiation angle reduces the harvested energy: while the standard test
conditions assume that the solar radiation hits the panel orthogonally, this
is unrealistic for real deployments as the sun moves over the day as well as
over the year. Hence, the factor that considers the angular deviation from
orthogonal radiation must be included.

• if the harvested electric power is passed through a voltage regulator or used
for charging a battery, losses will occur here as well.

Many models are used in the literature to describe the solar energy. The most
common ones are based on linear and nonlinear models. These models give a
correlation between the solar energy on a horizontal surface and some meteorological
parameters such as shining hours, ambient temperature and relative humidity.
The linear models use simple linear functions while the nonlinear models employ
polynomial functions of higher order [52].

In the following, we describe the source model adopted in this dissertation to
characterize the electricity generated by a PV panel. The key building blocks of the
model are illustrated in Figure 3.3 and they are the solar source, the PV panel and
the DC/DC power processor.

Astronomical Model

We define the effective solar irradiance that hits a PV panel as Ieff . This term depends
on several factors, e.g., the inclination of the panel, the geographical location, the
hour of the day and season.

In order to translate the solar irradiance, Isun, into effective solar irradiance, Ieff , we
consider the following astronomical model. According to [21], the effective solar
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irradiance, Ieff is proportional to cos Θ, where Θ ∈ [0, 90◦] is the angle between
the sunlight and the normal to the solar module surface. It can be computed as a
function of time t by considering the following formula:

Ieff (t,N) = Isun (t,N) max (0, cos Θ (t,N)) , (3.1)

where N is the day number in a year. We consider N = 1 for January 1st and
N = 365 for December 31st (or N = 366 in leap years).

The value of cos Θ is calculated as:

cos Θ(t,N) = sin γ(N) · sinLa · cosβ− (3.2)

− sin γ(N) · cosLa · sin β · cosα+

+ cos γ(N) · cosLa · cosβ · cosω(t,N)+

+ cos γ(N) · sinLa · sin β · cosα · cosω(t,N)+

+ cos γ(N) · sin β · sinα · sinω(t,N)

where:

• La ∈ [0, 90◦] is the location latitude;

• Lo is the location longitude;

• γ is the declination angle;

• ω (t,N) ∈ [0, 360◦] is the hour angle;

• β is the inclination of the solar panel towards the sun on the horizon;

• α is the azimuthal displacement, which takes values different from zero if
the normal to the plane of the solar panel is not aligned with the plane of
the corresponding meridian i.e., the solar panel faces East (α < 0) or West
(α > 0).

The declination angle γ is due to the elliptic orbit of the Earth around the sun and
the fact the Earth is tilted on itself at an angle of 23.45◦. It is defined as the angular
distance North or South of the Earth’s equator and it can be calculated as:

γ (N) ' sin−1 [sin (23.45◦) sin (D (N))] (3.3)

where D (N) = 360 (N − 81) /365◦.
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The hour angle ω is defined as the azimuth’s angle of the sun’s rays due to the Earth’s
rotation and it can be calculated as

ω(t,N) = 15 (AST (t,N)− 12)◦ (3.4)

where AST(t,N) ∈ [0, 24] hour is the apparent solar time. We can calculate it as:

AST(t,N) = t′ + ∆t+ ET(N) (3.5)

where t′ is the local standard time adjusted to account for the daylight saving time.
Moreover, ∆t is the time displacement between the selected time zone and the time
at the reference Greenwich meridian. It is computed as ∆t = (Lo − GMA)/15◦

where GMA = UTCoff × 15◦ is the Greenwich meridian angle and corresponds
to the angle between the Greenwich meridian and the meridian of the selected
time zone. Finally, UTCoff is the time offset between Greenwich and the time zone
whereas 15 is the rotation angle of the Earth per hour. The function ET(N) is known
as the equation of time and is defined as:

ET (N) ' 9.87 sin (2D (N))− 7.53 cos (D (N))− 1.5 sin (D (N))
60 (3.6)

Solar Panel Model

We consider a solar panel composed of nsc solar cells connected together. A number
np of them are connected in parallel, whereas ns are connected in series. Thus,
nsc = npns.

The composition of the I-V curves of the solar cells allows obtaining the I-V curve
used to characterize the solar panel. The I-V curve of a solar cell is given by the
superposition of the current generated by the solar cell diode in the dark with the
current due to the sunlight hitting the cell, defined as light-generated current il. We
can approximate this curve as:

iout ' il − io
[
exp

(
qv

nkT

)
− 1

]
(3.7)

where q is the elementary charge, v is the cell voltage, k is the Boltzmann’s constant,
T is the temperature in Kelvin degrees, n ≥ 1 is the diode ideal factor. Finally, io
is the dark saturation current and corresponds to the diode leakage current when
there is not light. It depends on the area and the technology of the solar cell.

We define isc as the short circuit current, which corresponds to the maximum current
for the cell, which occurs when the voltage across the cell is zero. We also define voc
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as the open circuit voltage, which corresponds to the maximum voltage for the cell,
which occurs when the net current through the device is zero.

We can normalize the effective irradiance, Ieff with respect to the maximum radiation
of 1 kW/m2, obtaining the radiation rate F (t,N) = 0.001 · Ieff(t,N). Then, we can
compute the light-generated current for a single solar cells as il(t,N) = iscF (t,N)
and obtain iout(t,N) for a single solar cells using equation (3.7). Finally, the total
current generated by the solar module is iMout(t,N) = npiout(t,N).

Power Processor Model

Every voltage or current source has a maximum power point, at which the average
power delivered to its load is maximized. In general, the load of a device does
not match the optimal one, required to extract the maximum power from the solar
source. To solve this problem, a power processor is used to emulate the optimal load
by adjusting the source voltage until the power extracted from it is maximized.

In order to account for the DC/DC power processor, we have computed the operating
point (iMout, v

M) for which the extracted power P = iMoutv
M is maximized.

In this phase, we have considered the parameters described in the astronomical
model (e.g., solar irradiance, Earth rotation, etc.) and the fact that isc and voc

depends also on the environmental temperature. Then, we have obtained the
maximum power PMP as

PMP = ηmax
v

{
iMout, v

M
}

= η · npns max
v
{ioutv} (3.8)

where iout is given by equation (3.7) and η ∈ (0, 1) is the power processor conversion
efficiency.

3.2 Traffic Demand

In order to provide a realistic analysis of the energy efficiency of a mobile network,
it is essential to properly model the traffic demand that should be served by the
network. In particular, it is fundamental to model how the demand of traffic varies
during the day.
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(b) Office area
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(c) Transportation area

Figure 3.4: Example of temporal variation of the traffic process in different areas.
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According to the analysis done in [6], the daily variation of the number of active users
in analogous to the daily variation of the traffic and 16% of the data subscribers are
active during the busy/peak hours. Moreover, significant differences are observed
between users when comparing their traffic demand. The users are therefore
classified in two types, ordinary and heavy, according to their demand of traffic.
Ordinary users demand for 112.5 MB/h, whereas heavy users demand for 900
MB/h.

The variation of both the number of active users and the traffic per active user is
modeled by the traffic profile function ϑ(t). Therefore, the average amount of traffic
requested to a BSs at time t is defined as:

TBS(t) = NUE · ϑ(t) · [(1− rh) · 112.5 MB/h + rh · 900 MB/h] , (3.9)

where NUE is the number of users positioned in the BS coverage area and rh is the
ratio of heavy users.

Different scenarios can be constructed by adjusting the ratio of the heavy users. A
scenario with rh = 20% of heavy users was the most relevant European scenario for
2015 according to [28]. A scenario with rh = 50% is adopted for the current days,
whereas rh = 100% is considered as an extremity for very high data rates in future
networks.

The traffic profile function ϑ(t) has been designed by considering real traffic profiles
described in [102], which are derived combining time, location and frequency
information of thousands of cellular towers. Moreover, traffic variability is added
following a normal distribution with zero mean and standard deviation derived
from the measurements of real mobile traffic traces [95]. The analysis provided
in [102] demonstrates that the urban mobile traffic usage can be described by five
basic time domain patterns that corresponds to functional regions, i.e., residential,
office, transportation, entertainment and comprehensive. In this dissertation, we
mainly focus on residential, office and transportation profiles, being them the most
traffic intensive in metropolitan areas. An example of their traffic profiles is shown
in Figure 3.4. We can notice that both profiles present a high activity during the
day and lower during night. However, the highest amount of traffic is concentrated
in daylight hours (i.e., from 10 am to 6 pm) for the office profile, whereas the
residential profile has a peak during the evening hours (i.e., from 6 pm to 12 pm).
The transportation profile has two peaks during the weekdays, at 8 am and 6 pm,
whereas on the weekends it has a single peak at 5 pm.
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3.3 Energy Consumption

BSs can be classified into two main groups, depending on transmission power and
coverage range.

1) Macro BS (MBS): with transmission power of about 40 W for devices with
bandwidth of 20 MHz and 80 W for LTE-A devices with 40 MHz [1]. Their
communication range reaches up to a few kilometers and they are usually
installed on building rooftops.

2) Small BS (SBS): with transmission power ranging between 0.05 W and 6 W.
They can be further classified into micro, pico and femto BSs. Micro and pico
BSs cover small to medium areas with dense traffic (hotspots) such as shopping
malls, residential areas, such as hotels or train stations. The typical range
of a micro/pico BS spans from a few hundred meters up to one kilometer.
Femto cells are designed to serve smaller areas such as private homes or indoor
spaces. The range of femto cells is typically only a few meters, and they are
generally wired to a private cable broadband connection or to a home digital
subscriber line [38]. SBSs can be installed in street furniture like lampposts or
traffic lights due to their small form factor.

The power consumption at full system load of the different types of BSs can range
from about 6 W for a femto BS to 1 kW for a MBS [6, 22, 84]. Typically, this
power consumption is modeled as the sum of a static value and a dynamic and
load-dependent value [7, 63]:

PBS =

NTRX · (P0 + αPout), 0 < Pout ≤ Pmax

NTRX · Psleep, Pout = 0
(3.10)

where NTRX is the number of transmit/receive chains, P0 is the BS power consump-
tion at zero Radio Frequency (RF) output power, α is the slope of the load dependent
power consumption curve, Pout is the load-dependent part of the RF output power
and Pmax is the value of Pout at maximum load.

Table 3.1 specifies the load dependencies of the different BS types [6]. The power
consumed by a MBS increases much more with the traffic load than that of a SBS.
This is due to the high consuming power amplifier that MBSs use to cover wide areas,
whereas SBSs need amplifier designs for much lower coverage and, consequently,
lower energy consumption figures. Remarkably, P0 represents a significant part of
the total energy consumed by any BS and, due to this, researchers have investigated
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Table 3.1: Power model parameters for different types of BS (from [6])

BS type NTRX Pmax[W] P0[W] α Psleep[W]

Macro 6 40.0 130.0 4.7 75.0
RRH 6 20.0 84.0 2.8 56.0
Micro 2 6.3 56.0 2.6 39.0
Pico 2 0.13 6.8 4.0 4.3
Femto 2 0.05 4.8 8.0 2.9

the use of sleep modes during low traffic periods. Moreover, it is expected that P0

and Psleep of new sites will be reduced by about 8% on average thanks to recent
technological advances [84], thus further decreasing the BS energy cost during low
traffic periods.

In Figure 3.5, we compare the energy drained by the various parts of MBSs and
SBSs. According to [6], the power amplifier of a MBS dominates the total power
consumption. For SBSs, the baseband processor has a higher impact. Gathering the
baseband units of different BSs in a centralized pool, as done in C-RAN systems,
may reduce the network energy consumption.

3.4 Conclusions

In this chapter, we have introduced the system models adopted in this dissertation.
Astronomical, photovoltaic and power processor models allows to compute the
solar energy generation in a given location starting from collected measurements of
the solar radiation. Moreover, a model of the traffic demand has been introduced.
This models takes into consideration the different kind of users served by a mobile
network and their hourly traffic generation. Different traffic areas are taken into
account, making this model very useful for understanding how the approaches
discussed in this dissertation react to different types of traffic. Finally, the power
consumption of the BSs has been described and a state-of-the-art model has been
introduced.
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4Mathematical Framework

In this chapter, we provide an introduction on the mathematical framework adopted
in this dissertation.

DP has been adopted as an efficient mathematical tool to solve complicated problems
by recursively breaking them down into simpler sub-problems. In particular, we
consider the case of deterministic finite state system which can be represented by
graphs. Therefore, the optimal control problem can be translated into a shortest-path
search and solved by using graph theory.

ML has been considered as an efficient mathematical tool for solving complex prob-
lems. Supervised learning has been used to perform data classification, unsupervised
learning to extract features from data, and Reinforcement Learning (RL) for imple-
menting agents able to learn by interacting with the environment. In particular,
we analyze classic RL algorithms based on tabular methods, in which the discrete
learning space is small enough to be represented as a table, and Deep RL methods
which adopt Artificial Neural Network (ANN) as function approximation to deal with
bigger learning spaces.

The chapter is organized as follows. In Section 4.1, we introduce DP and the
shortest-path algorithm. In Section 4.2, we discuss ML methods, by focusing on
ANNs, dimensionality reduction algorithms and RL. Finally, Section 4.3 concludes
the chapter.

4.1 Dynamic Programming

DP is a mathematical optimization method developed mainly by Richard Bellman
in the 1950s, based on the simplification of complicated problems by recursively
breaking them down into simpler sub-problems.

We consider situations in which decisions are taken in stages and the output of a
decision can be anticipated before the next decision is made. The objective is to
minimize a cost. The key aspect of this situation is that the decisions cannot be
isolated since we want to balance the desire for low present cost with undesired
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future high costs. The trade-off between those two aspect is captured by the DP
algorithm. At each stage, it ranks decisions based on the sum of the present cost
and the expected future ones, assuming optimal decision-making for the subsequent
stages. The considered model has two main features: (i) a discrete-time dynamic
system, and (ii) a cost function that is additive over time. The dynamic system
expresses the evolution of some variables (i.e., the state of the system) under the
influence of the decisions that are made at discrete instances of time.

The system is defined as:

xt+1 = ft (xt, ut, wt) , t = 0, 1, . . . , N − 1 (4.1)

where t is the discrete time index, xt ∈ St is the state of the system, ut ∈ Ct is the
control decision variable selected at time t, wt ∈ Dt is a random parameter (often
defined as noise or disturbance), N is the horizon (i.e., the number of times the
control is applied). Finally, ft is a function that describe the system and in particular
how the states are updated, whereas the cost incurred at time t is denoted by the
function gt (xt, ut, wt).

The control ut is constrained to take values in a given non-empty subset U(xt) ⊂ Ct,
that depends on the current state xt; that is ut ∈ Ut(xt), ∀xt ∈ St, ∀t. The random
disturbance wt has a probability distribution Pt(·|Xt, ut) that does not depend on
values of prior disturbances wt−1, . . . , w0. We consider the class of policies consisting
of a sequence of functions

π = {µ0, . . . , µN−1} (4.2)

where µt maps states xt into controls µt (xt) and is such that µt (xt) ∈ Ut (xt) ,∀xt ∈
St. Those policies are defined as admissible.

Given the initial state x0 and the admissible policy π, the states xt and disturbance
wt are random variables with distributions defined trough the system of equations
xt+1 = ft (xt, µt (xt) , wt) , t = 0, 1, . . . , N − 1.

Therefore, for given cost functions gt, t = 0, 1, ..., N , the expected cost of π starting
at x0 is

Jπ(x0) = E
{
gN (xN ) +

N−1∑
t=0

gt (xt, ut(xt), wt)
}

(4.3)

where the expectation is taken over wt and xt. We define the optimal policy π∗ as
the one that minimize this cost, that is

Jπ∗(x0) = min
π∈Π

Jπ(x0) (4.4)
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where Π is the set of admissible policies. We highlight that the optimal policy π∗

depends on the fixed initial state x0. However, it is typically possible to find a policy
π that is optimal for all the initial states. We define the optimal cost function as

J∗(x0) = min
π∈Π

Jπ(x0) (4.5)

4.1.1 The Dynamic Programming Algorithm

Let’s now consider the problem introduced in the previous section. For every initial
state x0, the optimal cost J∗(x0) of the problem is equal to J0(x0), given by the last
step of the following algorithm, which proceeds backward in time from stage N − 1
to stage 0:

JN (xN ) = gN (xN ) ,

Jt (xt) = min
ut∈Ut(xt)

E [gt (xt, ut, wt) + Jt+1 (ft (xt, ut, wt))] , t = 0, 1, . . . , N − 1 (4.6)

where the expectation is taken with respect to the probability distribution of the
disturbance wt, which depends on xt and ut. Moreover, if the control u∗t = µ∗t (xt)
minimizes the right side of the second equation in (4.6) for each state xt and stage t,
then the policy π∗ =

{
µ∗0, . . . , µ

∗
N−1

}
is optimal. A proof of this is reported in [9].

4.1.2 Finite State Systems and Shortest Paths

In this section, we consider a deterministic problem where each disturbance wt
can take only one value and where the state space St is a finite space for each t.
At any state xt, a control ut can be associated with a transition from the state xt
to the state ft(xt, ut) at a cost gt(xt, ut). A finite-state deterministic problem can
be represented by a graph such as the one in Figure 4.1. Specifically, each arc
correspond to transitions between states at successive stages and each arc as an
associated cost.

A single terminal node as been added at time T = N + 1 to handle the final stage.
Every state xN at stage N is connected to the terminal node T with an arc of cost
gN (xN ). The control sequences are represented by paths going from the initial
state s at stage 0 to one of the final states at stage N . If we view the cost of an
arc as its length, the deterministic finite-state problem is equivalent to finding the
shortest path from the initial node s to the terminal node T . We define a path as
a sequence of arcs of the form (j1, j2), (j2, j3), . . . , (jt−1, jt) whereas the length of a
path corresponds to the sum of the lengths of its constituting arcs.
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Figure 4.1: Transition graph for a deterministic finite-state system. The states are repre-
sented by the nodes, whereas the transitions between states are represented by
the arcs.

We define atij as the cost of the transition from the state i ∈ St to the state j ∈ St+1

at stage t, whereas aNiT is the terminal cost of state i ∈ SN . Moreover, if there is not a
control that moves the state from state i to state j at stage t we adopt the convention
atij =∞ (i.e., infinite arc length).

The dynamic programming algorithm has the following formulation:

JN (i) = aiT , i ∈ SN

Jt(i) = min
j∈St+1

[
atij + Jt+1(j)

]
, i ∈ St, t = 0, 1, . . . , N − 1

(4.7)

The shortest path from s to T and therefore the optimal cost is J0 (s).

4.1.3 Shortest Path Algorithms

We have seen that deterministic finite-state optimal control problems and shortest
path problems are equivalent. This fact have two implications:

1. DP can be used to solve shortest path problems. In practice, it is preferred
when dealing with acyclic graph structures and also when parallel computation
is available;

2. shortest path methods can be used to solve deterministic finite-state problems.

We focus on shortest path problems with a large number of nodes and a single initial
and terminal node (as the ones arising from deterministic optimal control). Since
the graph contains a large number of nodes, it is often true that most of them are
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unlikely candidates for inclusion in the shortest path between origin and destination.
However, in the DP algorithm every node and arc participate in the computation.
This fact enables the possibility of looking to more efficient methods, based on the
shortest path algorithm, that allow finding the solution by discarding portions of the
graph.

In the following, w¨e define the origin node of the path as s and the destination
node as T . We assume the destination to be unique. A node j is called child of the
node i if there is an arc (i, j) connecting i to j. The length of the arc (i, j) is aij with
aij ≥ 0.

Label Correcting Methods

The idea at the base of label correcting methods is to progressively discover shortest
paths from the origin node s to every node i. The length of the shortest path to node
i found so far is stored in a variable di named label of i.

The label of the origin node s is set and maintained to ds = 0 whereas the labels
of the other nodes are initialized to∞ (i.e., di =∞, i 6= s). Moreover, the label of
the destination node T is stored in a variable named UPPER. The value of UPPER
is equal to∞ if no paths to T have been discovered so far, otherwise the value of
UPPER corresponds to the length of some path from s to T . Consequently, the value
of UPPER represents an upper bound on the shortest distance from s to T . The nodes
candidate for further examination by the algorithm to be included in the shortest
path, are maintained in the list OPEN. That list initially contains only the node s and
other nodes are included while the graph is explored.

When a shortest path to node i is found, the variable di is reduced and the algorithm
checks if the labels dj of the children j of i can be corrected by setting them to di+aij

(i.e., the length of the updated shortest path from s to i plus the length of the arc
(i, j)). Furthermore, the node j enters the OPEN list. In this way, the paths passing
through j and reaching the children of j can be taken in account in the following
iterations of the algorithm. In particular, this is done only when the considered path
has a chance of leading to a path from s to T which is shorter than the actual upper
bound UPPER. Since the arcs only have non-negative lengths, this is true only if
di + aij < UPPER.

The label of j is equal to ∞ if the node has not yet entered the OPEN list, or else
it is equal to the length of some path from s to j consisting of the nodes that have
already entered the list. The path can be constructed by tracing backward the parent
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nodes starting from the node j. In particular, when the algorithm terminates, the
shortest path can be obtained by tracing back the parent nodes from node T towards
node s.

It is proved that if there exists at least one path from the origin to the destination, the
label correcting algorithm terminates with UPPER equal to the shortest path from the
origin to the destination. Otherwise, the algorithm terminates with UPPER=∞ [9].
The steps of the label correcting method are detailed in Algorithm 1.

Algorithm 1 Label Correcting Algorithm

Place s in OPEN
while OPEN is not empty do

Remove a node i from OPEN
for each child j of i do

if di + aij < min(dj , UPPER) then
set dj = di + aij
set i to be parent of j
if j 6= T and j not in OPEN then

place j in OPEN
end if
if j = T then

set UPPER = di + aiT
end if

end if
end for

end while

Regarding the examination of the nodes in the OPEN list, there is not a specific
rule to be followed when deciding which node to extract. This gives rise to several
methods. In particular, the principals are:

1. Breadth-first search: it adopts a first-in-first-out policy, as shown in Fig-
ure 4.2(a). The node is removed from the top of the list and each node
entering the list is placed at the bottom.

2. Depth-first search: it adopts a last-in-first-out policy, as shown in Figure 4.2(b).
The node is removed from the top of the list and each node entering the list
is placed at the top. This method requires little memory and allows to have
an initial estimate of UPPER than can be used to cut some of the paths, often
enabling a faster convergence to the shortest path.

3. Best-first search: at each iteration removes from OPEN a node with minimum
value of label, i.e., the node i with di = minj∈OPEN dj . Following this method,
a node will enter the list at most once. However, the overhead required to
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(a) Breath first search (b) Depth-first search

Figure 4.2: Searching a tree in breath-first (a) and depth-first (b) fashion. The numbers
inside the nodes indicate the order in which nodes are extracted from the OPEN
list.

find at each iteration the node with minimum label represents a significant
drawback to its application.

4.2 Machine Learning

ML is a computer science field that evolved from the study of pattern recognition
and computational learning in artificial intelligence. The goal of ML is to study
algorithms that operates by building a model from the input data in order to execute
data-driven tasks (e.g., prediction, classification, clustering or decision) instead of
following static program instructions.

The tasks of ML algorithms can be classified into three main categories, depending
on the nature of the learning signal available to the learning system:

• Supervised learning: the learning agent is trained with example inputs and
their desired outputs. The goal is to learn a general rule to map the inputs to
the outputs.

• Unsupervised learning: the learning agent is trained with inputs and no
information about the output is given. In this way, the agent goal is to find
structures in the input data. This type of learning can be a goal in itself
(discovering hidden patterns) or a means towards an end.

• Reinforcement learning: the learning agent interacts with a dynamic envi-
ronment in which it must perform a certain goal without having a teacher
telling it whether it has come close or not to its goal.
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Figure 4.3: Architectural graph of an ANN with two hidden layers

Another classification of ML methods can be provided by considering the output of
the learning agent.

• Classification: the inputs are divided into classes and the agent must learn
a model that assigns unseen inputs to one or more of those classes. This is
typically a supervised problem.

• Regression: it is a supervised problem. The outputs are continuous rather
than discrete.

• Clustering: the inputs are divided into groups. Unlike in classification, the
groups are not known in advance, making it an unsupervised problem.

• Density estimation: the problem consists on finding the distribution of the
inputs in some space.

• Dimensionality reduction: the inputs are simplified by mapping them into a
lower dimensional space.

All of the three main categories of ML algorithms are involved within this thesis
work. Supervised learning have been used in Section 8.2.1 to develop a learning
agent based on the imitation of an expert behavior. Unsupervised learning have
been used in Chapter 5 to perform dimensionality reduction and clustering. Finally,
reinforcement learning has been used in Section 8.2.2 to design agents able to learn
operative policies to reduce the network energy consumption by interacting with it.
In the following sections we describe some of these ML models, by focusing on those
that have been applied to this thesis work.
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4.2.1 Artificial Neural Networks

ANNs are a family of statistical learning models inspired by biological neural net-
works. These models are typically used to estimate or approximate functions that
can depend on a large number of inputs. ANNs are typically represented as a system
of interconnected neurons that exchange messages each other. The connections
between neurons have numeric weights that are tuned based on experience, enabling
the ANN to adapt to the inputs and learn. The interconnection between the artificial
nodes forms a network that mimics a biological neural network. However, there
is not a single formal definition of what a ANN is. A class of statistical models is
commonly called "neural" if it has the following characteristics:

1. adaptive weights, i.e., numerical parameters tuned by the learning algorithm;

2. capability of approximating non-linear functions of the ANN inputs.

An example of ANN is depicted in Figure 4.3. The ANN is composed of three
layers on neurons. The first layer has input neurons which send data via synapses
to the second layer of neurons, and then via more synapses to the third layer of
output neurons. More complex networks have increased number of neurons and
layers. The synapses store parameters named weights that manipulate the data in
the calculations.

In the following, we consider feed-forward ANNs, wherein connections between
nodes do not form cycles. The information moves from the input nodes, through
the hidden nodes and finally to the output nodes. In particular, we consider the
multylayer perceptron model, which is characterized by three main aspects:

• Activation function. Each neuron model includes a non-linear activation
function. The non-linearity of this function allows the ANN to learn non-linear
models. A commonly used activation function is the sigmoid function, defined
as f(vj) = 1

1+e−vj
, where vj is the induced local field of neuron j (i.e., the sum

of all the synaptic inputs plus the bias).

• Hidden neurons. The ANN includes layers of hidden neurons that allows
the ANN to extract meaningful features from the input vectors and solve
complicated tasks.

• Connectivity. The ANN has a high degree of connectivity expressed by the
synapses.
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The Back-propagation Algorithm

The back-propagation learning consists on two passes through the layers of the ANN.
In the forward pass, the input vector is applied to the input neurons and its effect
propagates through the ANN, layer by layer, until a set of output is produced. During
the forward pass the weights of the ANN synaptic are fixed. The output of the ANN is
compared with the target output and an error is computed. In the backward pass, the
synaptic weights are adjusted in accordance with an error-correction rule. The error
is propagated backward in the ANN and the weights of the synaptic are adjusted to
make the actual output move closer to the target output.

The set containing N examples is shown to the ANN during the training phase. This
set is named training set and it is defined as {x(n), d(n}Nn=1, where d(n) is the target
output associated to the input x(n). During iteration n, the n-th training example is
presented to the network. We refer to the i-th element of the input vector as xi(n),
whereas we define the k-th element of the overall output vector as ok(n). Moreover,
the bias applied to neuron j is denoted by bj . The effect of the bias is represented by
a synapse of weight wj0 = bj connected to a fixed input equal to 1.

We define the instantaneous value of the total error energy at iteration n (i.e.,
presentation of the n-th example) as

E(n) = 1
2
∑
j∈C

e2
j (n) (4.8)

where C is the set of the neurons in the output layer and ej is the error at the output
neuron j, computed as

ej(n) = dj(n)− yj(n) (4.9)

where dj(n) is the target output of neuron j and yj(n) is the actual output of neuron
j.

The overall goal of the training process is to minimize the average errors computed
in the training set by adjusting the values of the synaptic weights. The adjustment is
made with respect to the errors computed for every input pattern presented to the
network.

Forward pass. The induced local field vj(n) produced at the input of the neuron j
is computed as

vj(n) =
m∑
i=0

wij(n)yi(n) (4.10)
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where m is the total number of inputs to the node j. Moreover, for the ease of
presentation, we define wj0 = bj . Therefore, the output of the neuron j can be
calculated as

yj = fj(vj(n)) (4.11)

where fj(·) is the activation function adopted at neuron j.

If the node j is in the first hidden layer then the index i refers to the i-th input of
the neural network so we write yi(n) = xi(n) where xi(n) is the i-th element of
the input vector. On the contrary, if the index j is in the output layer of the neural
network then the index j refers to the j-th output neuron of the network, thus it
is yj(n) = oj(n) where oj(n) is the j-th element of the output vector. This value is
then compared with the target output dj(n) to compute the error ej(n).

Backward pass. At this point, it is fundamental to know how the adjustment of the
weights affect the error. To compute the partial derivative ∂E(n)/∂wij we apply the
chain rule of calculus

∂E(n)
∂wij(n) = ∂E(n)

∂ej(n)
∂ej(n)
∂yj(n)

∂yj(n)
∂vj(n)

∂vj(n)
∂wij(n) = −ej(n)f ′j(vj(n))yi(n) (4.12)

where the result is easily obtained by applying the partial derivatives to Equations
(4.8)-(4.11).

The value of wij is adjusted by a correction ∆wij(n) according to the delta rule

∆wij(n) = −α ∂E(n)
∂wij(n) = ασj(n)yi(n) (4.13)

where α is the learning rate and the local gradient σj(n) is defined as

σj(n) = −∂E(n)
∂vj(n) = −∂E(n)

∂ej(n)
∂ej(n)
∂yj(n)

∂yj(n)
∂vj(n) = ej(n)f ′j(vj(n)) (4.14)

We highlight here that the delta rule has a very intuitive rationale. If the error
goes down when the weight increases (∂E(n)

∂wij
< 0) then it makes sense to continue

increasing it. Otherwise, if the error increases (∂E(n)
∂wij

> 0) then the weight value
must be decreased.

The delta rule equation indicates that the error ej(n) at every node j needs to be
known to calculate the weight adjustment ∆wij . At this point we need to distinguish
between two cases. If the neuron is located in the output layer, the error ej(n) can be
simply computed by using Equation (4.9) since both the target output and the actual
output are known. On the contrary, if the node j is located in a hidden layer, there
is not a specified target output for that neuron. Therefore, the error for a hidden
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neuron needs to be determined recursively in terms of errors of all the neurons to
which that hidden neuron is connected.

In the following, for ease of presentation, we use j to refer to a hidden node and
k for an output node (or a hidden neuron in the immediate right of j). The local
gradient σj(n) for a hidden neuron j can be rewritten as

σj(n) = −∂E(n)
∂yj(n)

∂yj(n)
∂vj(n) = −∂E(n)

∂yj(n)f
′
j(vj(n)) (4.15)

The computation begins from the total error introduced in Equation (4.8). We
rewrite it by substituting the index with k in order to avoid confusion with the index
adopted for hidden neurons. Therefore, we have

E(n) = 1
2
∑
k∈C

e2
k(n) (4.16)

By differentiating the total error with respect to the neuron output yj(n) we obtain

∂E(n)
∂yj(n) =

∑
k∈C

ek
∂ek(n)
∂yj(n) =

∑
k∈C

ek(n)∂ek(n)
∂vk(n)

∂vk(n)
∂yj(n) = −

∑
k∈C

ek(n)f ′k(vk(n))wjk(n)

(4.17)
where the last step is computed by considering the definition of error in Equa-
tion (4.9) and the definition of local field given in Equation (4.10). The back-
propagation formula for the local gradient σj(n) is then obtained by substituting
Equation (4.17) in Equation (4.15):

σj(n) = f ′j(vj(n))
∑
k∈C

σk(n)wjk(n) (4.18)

Therefore, when computing the weight adjustment ∆wij (as defined in Equa-
tion (4.13)) we apply the following rule: if neuron j is an output node, σj(n)
is computed as in Equation (4.14) whereas if the node j is a hidden node, σj(n) is
computed as in Equation (4.18).

4.2.2 Dimensionality Reduction

The original data dimensionality corresponds to the number of variables that are mea-
sured on each observation. In many cases, when dealing with high-dimensional data,
the observation variables are redundant and correlated. Therefore, it may be that
only a small subspace of the original data space is populated by the sample [86].
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Dimensionality reduction is the process of reducing the number of variables repre-
senting the observations (i.e., representations or features) with a minimal informa-
tion loss. This process allows removing irrelevant and redundant data, increasing
learning accuracy, and improving the comprehensibility of the results [51].

The reduction of the data dimensionality can be achieved in two ways:

• Features selection: the relevant variables are selected from the original data;

• Features extraction: the data redundancy is exploited to find a smaller set of
new variables which are a linear combination of the representations variables.
These new variables contain basically the same information of the original
variables.

Recently, feature extraction has received significant attention as a highly effective
alternative to conventional feature sets handcrafted by a domain expert [8]. These
techniques have been shown to be superior to feature engineering for a plethora of
tasks, including speech recognition, music transcription, audio and video recogni-
tion [8, 29].

In the following sections, we discuss two techniques to perform dimensionality
reduction through feature extraction. The first is based on Principal Component
Analysis (PCA) whereas the second is based on a specific ANN architecture named
Autoencoder.

Principal Component Analysis (PCA)

PCA is a non-parametric technique for extracting relevant features from a dataset
of representations. The purpose is to reduce the dimensionality of the dataset by
finding a new set of variables, smaller than the original, that retains most of the
original information. Those new variables are called Principal Components (PCs).
They are uncorrelated and they are ordered by the fraction of the total information
each retains [49].

Given n observations of the vector x = (x1, . . . , xn), the first PC is computed as:

z1 ≡ aT1 x =
n∑
i=1

ai1xi (4.19)

where a1 = (a1,1, a2,1, . . . , an,1) is the vector that maximize the variance of z1.
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In a similar way, the kth PC (with k = 1, . . . , n) is computed as:

zk ≡ aTk x (4.20)

where the vector ak is chosen such that the variance of zk is maximum, subject to
cov[zk, zl] = 0 for k > l ≥ 1 and aTk ak = 1.

The generic observation xi can be written as the sum of its PCs:

xi =
n∑
k=1

zikak (4.21)

According to the given definitions, it can easily be proved that the first PC retains
the greatest amount of variation in the sample, whereas the kth PC, zk, retains the
greatest kth fraction of the variation in the sample. This fact allow us to approximate
each observation by truncating the sum at the first m < n PCs:

xi ' xmi =
m∑
k=1

zikak (4.22)

Under-complete Autoencoder (UAE)

An Under-complete Autoencoder (UAE) is an ANN used for unsupervised learning of
representations from a set of data, for the purpose of dimensionality reduction [33].
It learns to compress data from the input layer into a short code, and then uncom-
press that code into something that closely matches the original data (output layer).
The set of hidden layers with decreasing number of neurons till reaching the central
layer is called encoder. Another set of hidden layers from the central layer to the
output layer is for the reconstruction of the original data and named decoder.

Figure 4.4 shows an example of UAE. The input and output layers are composed
of n neurons. The single hidden layer, named feature layer, is composed of m < n

neurons. In this way, the original observation of size n is coded into a feature of
dimension m.

The dataset D is split into two portions: the training set T and the validation set V.
The first set is used for the training of the UAE. During this phase, the backpropaga-
tion algorithm iteratively updates the weights of the connections between neurons
to minimize the reconstruction loss (training loss). At the same time, the UAE is
used to reconstruct the input data contained in the validation set. The validation
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Figure 4.4: Architecture example of an autoencoder with a single hidden layer.
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Figure 4.5: Scheme of the agent-environment interaction in reinforcement learning.

set provides an unbiased evaluation of the model fit on the training set (validation
loss).

4.2.3 Reinforcement Learning

In RL, the learning process is represented by the interaction between a learner and
decision maker, named agent, and the environment. The agent selects actions and the
environment responds to those actions by returning new states of the environment.
The environment also returns a numerical value named reward that the agent tries
to maximize over time.

The agent and the environment interact at every time step. In particular, at each
time step t, the agent receives a representation of the state of the environment,
x(t) ∈ X , where X is the set of all the possible states. The agent selects an action
a(t) ∈ A(x(t)), where A(x(t)) is the set of actions available in state x(t). After one
step, the agent receives a reward, r(t+1) ∈ R and finds itself in the new state x(t+1).
A scheme representing the interaction between agent and environment is depicted
in Figure 4.5.
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The objective of RL is to learn how to map experienced situation (i.e., the state
of the system) into action to take so as to maximise a numerical reward. In more
details, the learning agent must discover which actions yield the highest reward by
trying them. This is a challenging goal because the taken action affects not only the
immediate reward but also the next situations, though, all the subsequent rewards.

Basically all the RL algorithms are based on the estimation of value functions [92].
The argument of these functions can be a state or a state-action pair. In the first case
the value function indicates how good is for an agent to be in a given state, whereas
in the latter the value function indicates how good it is to perform a given action in
a given state.

The quality of a state or state-action pair is measured in terms expected future
reward, which depends on the policies being followed, π.

The value of a state x when the agent is following a policy π corresponds to the
expected return when starting in state x and following the policy π thereafter. It
corresponds to

vπ(x) = Eπ

[ ∞∑
k=0

γkr(t+k+1)|X(t) = x

]
(4.23)

where Eπ represents the expectation of a random variable considering that the agent
is following a policy π, t is the time step and γ ∈ [0, 1] is the discount factor, which
represents how much a future reward is affecting the current agent decision.

We define value of taking an action a in state x under the policy π, as qπ(x, a). The
action-value function for policy π is defined as the expected return starting from
state x, taking action a and therefore following the policy π. We can write it as

qπ(x, a) = Eπ

[ ∞∑
k=0

γkr(t+k+1)|X(t) = x,A(t) = a

]
(4.24)

The objective of RL is to obtain the highest return in the long run. We define as
optimal policy, π∗, the policy that allows reaching this goal. According to [92], this
policy is proved to be unique. The optimal value of state x is defined as

v∗(x) = max
π

vπ(x),∀x ∈ X (4.25)

whereas the optimal action-value function is defined as

q∗(x, a) = max
π

qπ(x, a),∀x ∈ X ,∀a ∈ A(x) (4.26)
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Temporal Difference Learning

Temporal Difference (TD) learning algorithms allow predicting a quantity that
depends on future values of a given signal [92]. In the RL case, these algorithms are
used to predict the total amount of reward expected over the future. In particular,
the name refers to the fact that the prediction is based on differences over successive
time steps.

TD methods are implemented in an online fashion, meaning that the agent learns
from every transition without considering the following actions.

We distinguish between two operational phases of the agent: exploration and
exploitation. In the exploration phase, the agent learns across the available actions
in order to learn the best action to take. On the contrary, when in exploitation phase
the agent exploits acquired knowledge to maximize its overall reward. Defining a
good trade-off between these two phases is fundamental to guarantee good learning
performance. The epsilon-greedy exploration policy is widely used in the literature.
The agent must infinitely select the available actions in order to evaluate and improve
the learned policy. Therefore, the agent needs to continue selecting all the actions to
ensure that all of them are selected infinitely. There are two approaches to guarantee
this, namely on-policy methods and off-policy methods. The on-policy methods
evaluate/improve the policy that is used to make decisions (i.e., they estimate a
policy while using it for control), whereas off-policy methods evaluate/improve a
policy different from the one used to generate the data .

In this dissertation, we consider the Q-Learning (QL) algorithm and its variant Deep
Q-Learning (DQL). More in details, QL is an off-policy TD control algorithm that is
able to learn an approximation of the optimal policy independent of the policy being
followed [92].

Q-learning (QL)

QL is an off-policy TD control algorithm introduced in [100] whereas the proof of the
convergence has been given in [99]. The objective of QL is to recursively estimate the
Q-function q∗(x, a) by considering the available information

(
x(t), a(t), x(t+1), r(t+1)

)
where x(t) is the state at time t, a(t) is the chosen action, x(t+1) is the state at time
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t+ 1 and r(t+1) is the reward returned by the environment after taking action a(t) in
state x(t). The Q-function is updated according to the following rule

Q
(
x(t), a(t)

)
←Q

(
x(t), a(t)

)
+

α
[
r(t+1) + γmax

a′
Q
(
x(t+1), a′

)
−Q

(
x(t), a(t)

)]
,

(4.27)

where α is the learning rate and γ is the discount factor. The learning rate indicates
to what extent newly acquired information overrides old information. Setting α = 0
makes the agent learn nothing, whereas α = 1 makes the agent consider only the
most recent information. The discount factor sets the importance of future rewards.
A value γ = 0 makes the agent short-sighted, only considering current rewards,
whereas a value of γ close to 1 makes it strive for a long-term high reward.

The continuous exploration of the state-action pairs is guaranteed by the adoption
of an ε-greedy policy.

The steps of the QL algorithm are detailed in Algorithm 2.

Algorithm 2 Q-Learning algorithm

1: Initialize Q(x, a)∀x ∈ X , a ∈ A arbitrarily
2: for episodes = 1, ...,M do
3: Initialize x(1)

4: for t = 1, . . . , T do
5: Select action a(t) = maxa′ Q(x(t), a′) with probability 1− ε otherwise take a

random action with probability ε.
6: Execute action a(t) and observe the reward r(t+1) and the next state x(t+1)

7: Update the Q-value by using (4.27)
8: end for
9: end for

In the standard QL algorithm, the Q-function is stored in a tabular form. The table
describing the Q-function is therefore named Q-table. We highlight that continuous
state variables need to be quantized due to the discrete nature of the Q-table, leading
to quantization errors.

Deep Q-learning (DQL)

In the DQL approach, the Q-function is estimated by using a ANN approximator [73].
In details, the Q-function is approximated by the function Q

(
x(t),a(t)|θ

)
, where θ

represents the ANN parameters. The state of the system is the input of the ANN,
whereas the output layer corresponds to the predicted Q-values of the individual
action for the input state.
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The agent experience at each time step t, et = (x(t), a(t), r(t+1), x(t+1)), is stored into
a replay memory R = {e1, . . . , eL} with dimension L. A batch of l experiences is
randomly sampled from R and used to perform the update of the Q-function by
training the ANN. This phase is defined as experience replay.

During the training of the ANN, stochastic gradient decent is used to minimize a
sequence of loss functions that changes at every training iteration i,

Li (θi) = Ex,a∼ρ(·)
[(
yi −Q

(
x(t),a(t); θi

))]2
(4.28)

where yi = Ex′∼ε
[
r + γmaxa′ Q (x′, a′; θi−1) |x(t), a(t)

]
is the target at iteration i

and ρ (x, a) is the probability distribution over states and actions named behaviour
distribution. The ANN parameters from the previous iteration, θi−1, are kept fixed
when optimizing the loss function Li (θi). The parameters are updated at every
iteration and the expectations are replaced by single samples from the behavior
distribution ρ and the state distribution ε. We highlight that this particular solution
allows to simultaneously update the Q-values for all the possible actions in a given
state with only one forward pass in the ANN. After performing the update of the
ANN parameters, an action is taken according to the ε-greedy policy.

The detailed steps of the DQL algorithm are listed in Algorithm 3.

Algorithm 3 Deep Q-Learning algorithm

1: Initialize the replay memory R to capacity L
2: Initialize the ANN with random weights
3: for episodes = 1, ...,M do
4: Initialize state x(1)

5: for t = 1, . . . , T do
6: Select action a(t) = maxa′ Q(x(t), a′; θ) with probability 1− ε otherwise take

a random action with probability ε.
7: Execute action a(t) and observe the reward r(t+1) and the next state x(t+1)

8: Store the experience (x(t), a(t), r(t+1), x(t+1)) in R
9: Sample a random batch of l experiences (x(j), a(j), r(j+1), x(j+1)) from R

10: Set y(j) = r(j+1) for terminal state x(j+1) otherwise y(j) = r(j+1) +
γmaxa′ Q(x(j+1), a′; θ)

11: Perform gradient descend step on
(
y(j) −Q(x(j), a(j); θ)

)
12: end for
13: end for

This approach presents several advantages with respect to the standard QL. DQL
allows to easily deal with the continuous input space and it takes advantage of
the generalization capacity of ANNs to estimate the Q-function. In fact, all the
ANN parameters θ are updated when training for a single state-action pair. On the
contrary, QL estimates the Q-function independently for each state-action pair due to
its tabular form. Moreover, the adoption of experience replay and the randomization
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of the replay buffer allows reducing the variance of the ANN parameters θ during
the training of the ANN by breaking the correlations between consecutive samples
of the stored experience of the agent.

4.3 Conclusions

In this chapter, we provided some background information about the mathematical
framework adopted in this dissertation. In details, we introduced DP and the shortest
path algorithm. Then, we provided an introduction of ML, with a focus on ANNs,
which represent an important building block of this thesis. Finally, TD learning has
been discussed as a method to design agents able of learning from the interaction
with the environment.
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5Characterization of the Solar
Energy

One of the key factor determining the performance of a PV system and its potential
application to supply communication network devices, is the solar energy arriving at
the surface of the Earth. The exploitation of the solar energy resource is determined
by the knowledge of geographical variability and time dynamics. The geographical
analysis of the availability of the primary solar energy resource is then essential to
understand the potential implementation of PV systems for future energy supply to
a specific industrial sector. The geographical dependency and distributed nature of
solar electricity generation impose questions that require specific location-dependent
answers. In fact, the harvested energy strictly depends on the seasons of the year and
the meteorology of the given location. In [72], it has been estimated that even during
summer and in good weather conditions, the harvested energy in the peak irradiation
hour can vary up to the 85%. Similarly, considering that the solar radiation intensity
and the daylight duration vary significantly across the months, seasons have a strong
impact in the amount of the harvested energy income. Normally, this analysis is
performed using solar maps, which provide easy-understandable information. The
total annual solar electricity generation from a PV system is used to characterize
national and regional differences [115].

In this chapter, we are interested in learning hidden features of the solar energy
generation that may give a more accurate characterization of the process beyond
that usual metric. We use unsupervised learning methods to automatically extract
features from solar electricity generation data. Then, we interpret the latent variables
characterizing the solar energy generation process by analyzing the similarities of
the different cities with an agglomerative hierarchical clustering algorithm. Although
ML methods have been used in renewable energy modeling, they have been adopted
mainly to forecast the next energy arrivals in a given location [106]. Instead, to
the best of our knowledge, they have not been used for analyzing geographical
differences of solar electricity generation.

The chapter is organized as follows. In Section 5.1, we describe the studied solar
energy dataset. In Section 5.2, we introduce the two ML methods used to perform
feature extraction. In Section 5.3, we describe the clustering algorithm, and we
analyze the obtained results. Finally, in Section 5.4, we draw our conclusions.
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5.1 Dataset

The solar irradiance dataset considered in this work [89], contains hourly solar irra-
diance values, in W/m2, collected from February 1st, 2004 to December 31st, 2006.
In particular, we consider 67 different cities, located in Europe, Middle East, and
North Africa.

The solar electricity generation is estimated using the model described in Section 3.1.
In particular, the model parameters are set considering a Panasonic N235B PV
module, which has single cell efficiencies of about 21%, delivering about 186 W/m2.
Each module is composed of an array of 16 × 16 solar cells (i.e., a surface of
4.48 m2). We consider this particular dimension since it represents a realistic size
for supplying renewable powered SBSs [81].

We define D = {Dy1 , . . . ,DyK} as the dataset containing the traces of generated
energy, with K = 67. In particular, for each city y, we have a set Dy = {e1, . . . , en}
containing n daily traces of the generated energy ei, i ∈ {1, . . . , n}. The vector
ei has 24 elements, each one containing the amount of energy generated in the
respective hour of the day. Since our dataset contains 35 months of measurements,
n = 1069.

5.2 Feature Extraction

Two different approaches have been used to reduce the dimensionality of the input
data and extract meaningful features: PCA and UAE.

Principal Component Analysis (PCA)

PCA has been used to extract the features from the input data, as described in
Section 4.2.2. In particular, the number of considered PCs has been set tom = 2 since
tests performed on the available data shows that the first 2 PCs retain the 94% of the
information (respectively the 79% and the 15% for the 1st and the 2nd PC). Thus,
we can associate a feature vector hPCA

i = [z1, z2] to each observation ei. In this way,
for each Dy, we obtain a set of 2-dimensional features FyPCA = {hPCA

1 , . . . ,hPCA
n },

which is a compressed representation of the evolution of the solar energy generation
in the city y.
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Figure 5.1: Autoencoder topology used for extracting features of the solar energy generation
of the 67 cities in the dataset.
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Figure 5.2: Training and validation losses of the UAE used for extracting features of the
solar energy generation of the 67 cities in the dataset.

Under-complete Autoencoder (UAE)

An UAE has been implemented to extract the features as described in Section 4.2.2.
The adopted architecture is reported in Figure 5.1. The input and output layers are
composed of 24 neurons, each one representing the amount of energy generated in
the corresponding hour of the day. The single hidden layer, named feature layer, is
composed of 2 neurons. In this way, the information about the 24-hour solar energy
generation trace is coded into a feature of dimension 2. Moreover, the neurons of the
input and feature layers use the Rectified Linear Unit (ReLU) as activation function
(i.e., fa(x) = max(0, x)), whereas the neurons of the output layer use the sigmoid
function (i.e., fb(x) = 1/(1 + e−x)).

The dataset D is split into a training set T , containing nt = 730 daily traces and
a validation set V containing the remaining n − nt daily traces. Figure 5.2 shows
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the decreasing behavior of the losses with the number of training epochs and the
final error value achieved. After training, for each Dy, the encoder computes a set of
2-dimensional features FyUAE = {hUAE

1 , . . . ,hUAE
n }.

5.3 Clustering and Result Discussion

We define the Centroid of the city y as the centroid of the features of the city y,
computed as:

cyPCA,UAE =
∑n
i=1 hPCA,UAE

i

n
(5.1)

where the value of the centroid depends on the approach used to extract the features
(i.e., PCA or UAE).

A distance-based clustering named agglomerative hierarchical clustering algorithm [26]
is applied to the centroids to group the cities according to their similarities. The
similarity between cities is expressed as the distance between their centroids.

The number of clusters has been selected by performing the silhouette analysis [83].
This technique provides a measure of similarity of an object in its own cluster
compared to other clusters. The silhouette value ranges in the interval [-1,1], being
the highest value the best match of the object in the cluster and the smallest the
poorest. The configuration is appropriate if most of the objects have a high value.
Otherwise, the cluster configuration may have too many or too few classes. We have
set the clustering algorithm to find the number of clusters that maximize the average
silhoutte value and we obtained 2 clusters in the case of PCA and 5 clusters in the
case of UAE.

The result of the clustering based on PCA feature centroids is shown in Figure 5.3,
whereas the map obtained using UAE is reported in Figure 5.4. Moreover, we show
the average hourly solar energy generated for each cluster obtained with PCA and
UAE in Figure 5.5 and Figure 5.6, respectively.

The analysis of such variable for each cluster drives our interpretation of the extracted
features to a more understandable model. In fact, we can distinguish four different
parameters characterizing each identified cluster, namely: average daily generated
energy EH , solar energy peak value Pv, solar energy peak hour Ph and average
daylight time D. The values of those parameters are reported in Table 5.1 and
Table 5.2 for the PCA and UAE cases, respectively.

The map obtained with PCA is divided into two clusters (Figure 5.3). The first cluster
covers the norh-east area and is characterized by a low amount of energy generation.
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Figure 5.3: Clusters obtained by using the PCA approach.

Figure 5.4: Clusters obtained by using the UAE approach.
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Figure 5.5: Average hourly solar energy generation of the clusters obtained by using the
PCA approach. The shaded area represents the standard deviation with respect
to the other cities in the cluster.

Figure 5.6: Average hourly solar energy generation of the clusters obtained by using the
UAE approach. The shaded area represents the standard deviation with respect
to the other cities in the cluster.

On the contrary, the second cluster covers the south-west area and is characterized
by higher solar energy generation. Note that the two clusters differs also for peak
hours. On the other hand, from the map obtained by the UAE approach (Figure 5.4),
we see that the north of Europe is divided into two parts (clusters 2 and 4). Those
clusters have the same values of Pv, D, similar EH , but they differ in terms of solar
peak hour. The south area is divided into three clusters (1, 3 and 5). Those clusters
are very similar in terms of peak energy value, but they differ for peak hour, average
energy and daylight hours.

Note that the parameter EH represents the variable used by common solar maps to
discriminate the different locations. In fact, those maps are usually based on the
average or annual amount of solar energy generation. Therefore, PCA and UAE are
able to extract two and three new variables featuring the solar energy generation
process, respectively. The difference on the number of extracted latent variables
may be due to the non-linearity of the autoencoder, which allows to obtain a better
projection of the input data in the feature space with respect to the linear PCA.

The geographical representation described in this work is based on the charac-
terization of several different behaviors of the solar energy generation in diverse
geographical locations. In particular, we believe that it may be helpful in designing
energy management systems that have to control industrial processes, which are
strictly related to the human activity. In fact, the four parameters identified by our
method provide a direct relation between the solar energy generation process and
the time of the day.
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Table 5.1: Statistics of the clusters obtained on features extracted with PCA

Cluster Ph [hr] Pv [kWh] EH [kWh] D [hrs]

1 11 0.4 2.1 12
2 12 0.6 3.2 12

Table 5.2: Statistics of the clusters obtained on features extracted with UAE

Cluster Ph [hr] Pv [kWh] EH [kWh] D [hrs]

1 12 0.6 3.1 12
2 11 0.3 1.8 13
3 11 0.5 2.5 11
4 12 0.3 1.9 13
5 10 0.6 2.9 11

5.4 Conclusions

In this chapter, we have proposed an unsupervised method to learn hidden features
of the solar energy generation from a PV system that may give a more accurate
characterization of the process. In a first step, solar radiation data has been converted
into instantaneous solar power through a detailed source model. Then, two different
approaches, namely PCA and UAE, have been used to extract meaningful features
from the traces of the solar energy generation in an unsupervised manner. A
hierarchical clustering algorithm has been used to group the locations according to
their similarities in terms of solar energy generation. The results show that clustering
on the extracted features provides support for learning latent variables of the solar
energy generation process that may be used for a more detailed characterization of
different geographical locations.
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6Optimal Direct Load Control

The introduction of RESs in our proposed scenario entails an intermittent and erratic
energy budget for the communication operations of the SBSs. Therefore, Demand
Response (DR) is fundamental to properly manage energy inflow and spending,
based on the traffic demand.

The analysis of the literature in Chapter 2 highlighted that the approaches adopted
for the Direct Load Control (DLC) of HetNets powered by RESs are mostly based on
greedy schemes and ML. Although these approaches allow achieving energy savings,
no information on the computed solution optimality is given. An algorithm for the
computation of the optimal policies is fundamental to analyze which is the optimal
control policy for the BSs and to compute a bound on the performance that our
solution may achieve.

In this chapter, we fill the encountered gaps in the literature with the following
contributions:

1. We propose an architecture based on the integration of distributed energy
harvesting and storage systems in RANs with heterogeneous BSs deployment
in urban environments.

2. We formulate the problem of optimal DLC of a two-tier mobile network based
on DP. The key property of DP is that it applies optimal control as a trade
off between the present cost and the future expected costs. This feature is
fundamental in our scenario to prevent SBSs blackout during periods with low
renewable energy arrivals and high traffic demands.

3. We provide a graphical representation of the problem and we use graph theory
to model it. Then, we introduce an algorithm based on the shortest-path
method to find the optimal ON/OFF policy for the SBSs.

4. We provide an analysis of the optimal policies and the network performance
when considering different conditions of traffic demand and energy harvesting.
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The chapter is organized as follows. In Section 6.1, we describe the system model.
In Section 6.2, we we introduce the optimization problem and the methodology
used for its solution. Then, in Section 6.3, we analyze the optimal policies adopted
by the SBSs, and the achieved performance in terms of grid energy consumption
and traffic drop. Finally, we draw our conclusions in Section 6.4.

6.1 System Model

We consider a Long-Term Evolution (LTE) RAN with a transmission bandwidth BW
divided into R Resource Blocks (RBs) of 1 msec each [87]. The RAN is represented
as a set of clusters which not interfere among each other. Every cluster is composed
of 1 MBS and N SBSs. Each SBSs is powered by a solar panel and it can store energy
into a battery. On the contrary, the MBS is connected to the electrical grid. The
two feasible SBS operative states are: (i) ON, where the SBS serves the users in its
coverage area, and (ii) OFF, where the SBS is in an energy saving mode and its users
are handed over the MBS. The state of all the N SBSs at time t is descried by the
vector S(t) =

[
S

(t)
1 , S

(t)
2 , ..., S

(t)
N

]
. Each element S(t)

i , with i = 1, ..., N , is defined as
follows:

S
(t)
i =

0, if i-th SBS is OFF

1, if i-th SBS is ON
(6.1)

The system evolves in time based on the variation of the traffic load and energy
harvested. The traffic load experienced by the SBSs in the cluster at time t is defined
as L(t) =

[
L

(t)
1 , L

(t)
2 , . . . , L

(t)
N

]
where L(t)

i ∈ [0, 1]∀i. The energy harvested by the

SBSs at time t is indicated by the vector H(t) =
[
H

(t)
1 , H

(t)
2 , ...,H

(t)
N

]
, while the

amount of energy stored in the SBSs batteries at time t is indicated by the vector
B(t) =

[
B

(t)
1 , B

(t)
2 , ..., B

(t)
N

]
. The energy stored into the batteries at the beginning of

the next time step is evaluated according to the formula

B(t+1) = min
(
B(t) + H(t) − P (t)∆t, Bcap

)
(6.2)

where P (t) =
[
P

(t)
1 , P

(t)
2 , . . . , P

(t)
N

]
is the power consumed by the SBSs at time t, ∆t

is the duration of the time step, and Bcap is the capacity of the batteries.

Following the model introduced in Section 3.3, the BS energy consumption is
approximated by the linear function P = P0 + βL, where P0 is the baseline power
consumption, β is a hardware-specific constant and L ∈ [0, 1] is the normalized
traffic load. Typical values are PMBS

0 = 750W, βMBS = 600 for MBSs and P SBS
0 =

105.6W, βSBS = 39 for SBSs. This model is supported by real measurements and
closely matches the real power profile of BSs [7].
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If the SBS i is OFF at time t then its associated UEs are managed by the MBS and we
assume that the SBS can be entirely switched OFF (i.e., P = 0). However, the MBS
may have reached its capacity limit at that time instant (i.e., cannot allocate any RB
to the UEs) and may drop part of the handed over UEs. We define this situation as
system outage.

Moreover, the UE allocation scheme uses the methodology defined in [68]. The
modulation and coding scheme is assigned to each UE as a function of its SINR,
which is given by

SINR = |g0|2Pt,0∑NI
i=1 |gi|2Pt,i + σ2

0
, (6.3)

where Pt,0 and g0 are the transmission and the channel gain for the useful transmis-
sion, respectively, NI is the number of interferes, and |gi|2 and Pt,i represent the
channel gain and the transmission power of the i-th interferer. Finally, σ2

0 is the
power of the thermal noise.

6.2 Optimization Problem

The periodicity of the traffic demand and the energy arrivals leads to a cyclic
evolution of the system. At every cycle t, a centralized controller computes the
optimal state configuration of the SBSs in the cluster.

This sequential decision making process is modeled as a DP optimization problem.
The objective is to minimize the grid energy consumed by the MBS while keeping the
traffic drop rate of the system below a threshold Dth. Since there is a linear relation
between the energy consumption and the BS load, the objective is converted into
the minimization of the MBS load over a given time horizon, by offloading the traffic
to the renewable powered SBSs. Furthermore, a threshold Bth on the battery level
is introduced to prevent damages on the storage devices [67]. This optimization
problem can be formulated as

min
{S(t)}t=1,...,K

K∑
t=1

LMBS
(
S(t), t

)
D(t) < Dth

B
(t)
i > Bth ∀i.

(6.4)
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Figure 6.1: Graph showing the ON-OFF sequence possibilities in the case of a cluster with
two SBSs. Green nodes represent ON states, red nodes represent OFF states.
The two dashed nodes indicate the artificial nodes.

whereK is the time horizon or the number of times the control is applied, LMBS(S(t), t)
is the normalized load of the MBS given the SBSs states and the time instant t. Fi-
nally, D(t) is the traffic drop rate of the system at time t. Its value ranges from 0
(when all the traffic is served by the system) to 1 (when all the traffic is dropped by
the system).

6.2.1 Graphical Representation

We represent the DP optimization problem as a graph. A node i at time t in the
graph (V t

i ) represents a possible combination of states of the SBSs in the cluster.
Each combination returns a different SBSs battery level and a different amount of
dropped traffic in the system.

In Figure 6.1 a cluster of 2 SBSs is represented. In the first time step (t = 1) the
SBSs can be in one of the four combinations of ON (green) / OFF (red) states. At
each cycle t, the energy harvesting and traffic processes are evolving, based on H(t)

and L(t). Each node V t
i generates 4 child nodes V t+1

j , as possible combinations at
the cycle t+ 1. The battery levels of the child nodes V t+1

j are calculated based on
Equation 6.2 and each arc connecting two nodes has a cost given by the function
LMBS(S(t), t). The number of combinations is then evolving in time till reaching its
maximum at time instant K. Two artificial nodes have been added at time step t = 0
and t = K + 1, to have a single initial node and a single terminal node. The cost
associated to the arcs connecting the artificial nodes are set to zero.
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The cost associated to each arc, LMBS(S(t), t), may be interpreted as the length of
the corresponding arc. In this case, the problem of minimizing the total cost is equal
to the problem of finding the path with the minimum-length from the initial to the
terminal node.

The problem of finding the shortest path between the initial and the terminal node
involves a very large number of nodes. However, most of these nodes are unlikely
candidates for inclusion in the shortest path. Therefore, considering that we deal
with a single initial and terminal node, and that each arc has a positive cost, we
use the Label Correcting Algorithm described in Section 4.1.3 to achieve an efficient
exploration method.

The graph is explored in a depth-first fashion (following the procedure described
in Section 4.1.3) and the list OPEN contains only the nodes that are candidates for
further examination and possible inclusion in the shortest path. More specifically,
we exclude from the list all those nodes that cannot satisfy the constraint on the
battery or on the drop or that return a minimum path longer than UPPER. This
exploration policy avoids exploring the whole graph and requires relatively little
memory, especially in the case of graphs with a tree-like structure, as in our case.

The algorithm steps are detailed in Algorithm 4.

Algorithm 4 Optimal policy algorithm

initialize OPEN with possible states at time t
while OPEN is not empty do

remove a node V t
i

compute battery value B
(t+1)
j , j = 1, .., 2N , for all possible S(t+1) using formula

(6.2)
for each node V t+1

j child of V t
i do

Aj,t+1
i,t = LMBS(S(t+1)

j , t+ 1)
if dti + A

(j,t+1)
(i,t) < min{dt+1

j ,UPPER} and B
(t+1)
j > Bth and D

(t+1)
j > Dth

then
dt+1
j ← dti +Aj,t+1

(i,t)
set V t

i parent of V t+1
j

if t 6= K then
place V t+1

j in OPEN (if not already)
else

UPPER = dti +A
(j,t+1)
(i,t)

end if
end if

end for
end while
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6.3 Results and Discussion

In this section, we discuss the numerical results obtained by running the proposed
optimal algorithm. In particular, we present an analysis of the optimal time horizon,
and we evaluate the optimal policies when considering different conditions of the
traffic demand and the energy harvesting. Finally, we provide an analysis of the
network performance in terms of the grid energy consumption and the dropped
traffic.

6.3.1 Simulation Scenario

We consider a square area with a side of 1 km. The MBS is located at the center
of the area and 3 SBSs are randomly positioned. The SBSs have a transmission
power of 38 dBm, which corresponds to a coverage radius of 50 m. The coverage
areas of the SBSs do not overlap. The BSs have a transmission bandwidth of 5 MHz.
Aggregated downlink traffic has been generated based on the traffic profiles and
user classification described in Section 3.2. In particular, we consider three different
weekly traffic profiles: residential, transportation and office. We underline that, with
the considered approach, the traffic is described both in time (temporal variation
during the week) and in space (spacial distribution in the area).

As for the RES system, we consider the Panasonic N235B solar modules, which
have single cell efficiencies of about 21% delivering about 186 W/m2. Each SBS
is equipped with an array of 16×16 solar cells (i.e., 4.48 m2) and a 83 Ah battery.
Panel and battery sizes have been chosen so that SBS batteries can be replenished in
a full winter day. Realistic energy harvesting traces are obtained by using the model
introduced in Section 3.1, considering the city of Los Angeles. All the simulations
have been performed focusing on a generic week of December and July, in order to
highlight the differences between the worst and the best months in terms of energy
arrivals.

The optimal approach is compared with a naive algorithm that operates by turning
OFF the SBSs when their battery levels go below the threshold Bth and turning them
ON when the level is above it. Additional simulation parameters may be found in
Table 6.1.
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Table 6.1: Simulation parameters

Parameter Value

BS Bandwidth 5 MHz

Channel model Okumura-Hata [40]

Macro BS TX power 43 dBm

SBS TX power 38 dBm

Solar modules Panasonic N235B

Solar cell efficiency 21%

Bth 0.2

6.3.2 Optimal Time Horizon

Here below we empirically analyze the optimal duration of the time horizon K

that allows achieving the minimum cost. This parameter may give an idea on the
temporal correlation among the control actions.

Figure 6.2 represents the amount of energy drained from the grid by the MBS in
one week for different dimensions of the horizon K (Figure 6.2a) and the algorithm
complexity, in terms of number of iterations, over the time horizon K (Figure 6.2b)
for a single SBS within the coverage area of the MBS.

The time horizon K = 21 represents a turning point for both grid energy and algo-
rithm complexity: the energy drained from the grid approaches an asymptote and
the number of iterations explodes to higher values quasi-exponentially. Simulations
performed in scenarios with multiple SBSs show the same behavior in terms of
energy drained, number of iterations and time horizon K. Therefore, we state that
a time horizon of about 21 hours represents a good trade-off between network
performance and algorithm complexity.

This value is therefore adopted in all the following simulations.

6.3.3 Optimal ON-OFF Policies

The traffic demand in the considered areas differs both in terms of temporal distribu-
tion and magnitude. In particular, the residential area is the most demanding, with
a weekly aggregated traffic of 2.17 TB. The lowest traffic demand is experienced
in the transportation area, with a weekly aggregated traffic of 0.41 TB. The three
traffic profiles and the two energy arrival processes are not always time correlated.
In fact, in the case of residential traffic, the peak of the demand is at 10 pm. In the

6.3 Results and Discussion 69



5 10 15 20 25 30155

156

157

158

time horizon [hours]

En
er

gy
(k

W
h)

(a)

5 10 15 20 25 30

2

4

6

8

·104

time horizon [hours]

It
er

at
io

ns

(b)

Figure 6.2: Grid energy consumption (a) and number of algorithm iterations (b) of the
optimal policy when varying the time horizon.
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Figure 6.3: Daily average switch ON rate for the optimal algorithm. Simulations on the
residential, office and transportation traffic profile for a week of December and
July. The scenario with 10 UEs (20% heavy) is indicated as low traffic, whereas
the scenario with 90 UEs (50% heavy) is indicated as high traffic. The shaded
area represents the shape of the traffic demand.
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case of office traffic, it is at 11 am on the weekdays and at midday on the weekends.
Finally, in the transportation case we have two peaks during the weekdays, at 8 am
and 6 pm, while on the weekends there is a single peak at 5 pm. From the energy
side, the peak of energy arrivals is always between midday and 1 pm for the two
considered months. This confirms the necessity of taking into account present and
future costs when the optimal control is applied.

The daily average switch ON rate of the SBSs for the optimal and the naive policy
is reported in Figure 6.3 and Figure 6.4, respectively. The three traffic profiles and
the months of December and July are depicted. We consider a high-traffic intensity
involving 90 UEs (50% heavy) represented by solid lines, and a low-traffic intensity
with 10 UEs (20% heavy) indicated with dashed lines.

In Figure 6.3, we observe that the number of SBSs in OFF is generally higher
during night hours due to the scarce availability of the energy and the low traffic
demand. More in detail, we can notice that high-traffic intensity and low energy
arrivals (December) result in longer and more intensive switch OFF periods during
the night. For the residential profile (Figure 6.3a) SBSs experience intense switch
OFF in a typical week of July between 3 am and 6 am (low-traffic case) and from
2 am to 8 am (high-traffic case). In a week of December, intense switch OFF is
experienced from 1 am to 10 am (low-traffic case). In the case of office (Figure 6.3b)
and transportation (Figure 6.3c) profiles, the intensive night OFF periods are less
influenced by the total number of UEs served by the SBSs. This is due to the low
magnitude of the total traffic demand experienced in these areas.

In Figure 6.4, we observe that the switch ON rate is lower than 1 in periods of
high traffic demand. In fact, the naive algorithm takes immediate decisions without
considering any future evolution of the traffic and energy arrival processes. In this
way, a SBS always consumes the available energy and then it remains in an OFF
state until the harvested energy is sufficient to return operative. On the contrary,
the optimal policy turns OFF a SBS in an intelligent way, by considering the future
evolution of the traffic and energy arrivals. Therefore, it saves energy during low
traffic periods (e.g., night hours) to maintain ON the SBS during high traffic peaks,
which may correspond to scarce energy arrivals. For instance, let’s consider the
residential profile with high-traffic intensity in December, where the peak of the
traffic demand is at 10 pm. The naive algorithm switch ON rate is 0.5 at 10 pm
(Figure 6.4a), whereas it is equal to 1 during the daytime (i.e., from 11 am to 7 pm).
In fact, the SBSs immediately use the available energy during the day, and then
switch OFF in the evening due to scarce energy availability. On the contrary, the
optimal switch ON rate (Figure 6.3a) is almost 1 during the traffic peak hours and it
has an average of 0.89 during daytime. This behavior indicates that some SBSs are
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Figure 6.4: Daily average switch ON rate for the naive algorithm. Simulations on the
residential, office and transportation traffic profile for a week of December and
July. The scenario with 10 UEs (20% heavy) is indicated as low traffic, whereas
the scenario with 90 UEs (50% heavy) is indicated as high traffic. The shaded
area represents the shape of the traffic demand.
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Figure 6.5: Percentage of weekly traffic request not serviced for both the naive and optimal
algorithm in December and July. The 50% of the UEs are heavy users.

switched OFF during the day to save the necessary energy to satisfy the traffic peak
in the evening.

6.3.4 System Outage

In this section, we analyze the system outage measured as the percentage of the
traffic dropped in the system. We present the case of residential profile only, since
the others have similar performance. The percentage of the traffic dropped in a week
is reported in Figure 6.5 for a number of UEs ranging from 10 to 90 (50% of them
are heavy users).

The optimal policy succeeds in delivering all the requested traffic and the system does
not experience any outage in almost all the studied situations. In December, however,
some traffic is dropped starting from 60 UEs per SBS, reaching the maximum of
0.9% for 90 UEs. The naive approach, on the other hand, always performs worse
than the optimal policy. In particular, in December the dropped traffic reaches 10%
in the case of 90 UEs per SBS.

This phenomenon is confirmed in Figure 6.6, where the average hourly dropped
traffic is shown for a scenario with 90 UEs per SBS with 50% of heavy users. As
for the optimal policy, the outage is concentrated in the morning (from 7 am to
10 am), afternoon (5 pm) and night, with values that reach the maximum of 5%
at midnight. The naive approach, instead, causes system outage for longer periods
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Figure 6.6: Average hourly traffic drop for the optimal and the naive algorithms in December
and July. The traffic profile is residential and every SBS has 90 UEs in its
coverage area; 50% of them are heavy users. The shaded area represents the
shape of the traffic demand.

and with higher values of the dropped traffic, which reaches a maximum of 44% at
11 pm.

6.3.5 Energy Consumption

The amount of grid energy consumed by the MBS is shown is Figure 6.7, varying the
number of UEs in the coverage area of the SBSs. We consider two cases: a scenario
with 20% and 50% of heavy users, respectively. In both scenarios, the grid energy
consumption increases linearly with the number of UEs. The slope of the curves is
higher for the scenario with 50% of heavy users since the traffic increases faster with
the number of UEs. Grid energy consumption is higher in December since the scarce
availability of the renewable energy turns out into longer SBS sleeping periods and
higher MBS operation.

The naive approach presents higher values of the grid energy consumption than the
optimal policy. However, in the case of December and with 50% of heavy users, we
observe that the naive approach has lower energy consumption for more than 70
UEs per SBS. This behavior is due to the fact that the system is heavily in outage
and loses a considerable amount of traffic, as described in the previous section.

Finally, Figure 6.8 reports the grid energy consumption for a week of July in different
architecture scenarios. We compare a solution where MBS and SBSs are connected
to the grid (also referred to as grid-only) with our scenario where SBSs are solely
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Figure 6.7: Grid energy consumption for the optimal and the naive algorithms in December
and July, while increasing the number of UEs in the SBS area.
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Figure 6.8: Grid energy consumption for different deployment architectures during a week
of July. The traffic profile is residential and every SBS has 90 UEs in its coverage
area; 50% of them are heavy users.
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powered by solar panel plus battery (also referred to as EH SBSs). The grid-only
scenario consumes 190.3 kWh in a week; deploying renewable powered SBSs saves
28% of the grid energy. Moreover, since the RES systems have been dimensioned for
winter, the harvested energy may be abundant during summer and be discarded by
the SBSs, i.e., it can neither be used for transmission nor stored in the battery. This
redundant energy is concentrated at the peak hours of the energy arrival process
(i.e., between midday and 2 pm). Considering that the SBSs may be connected
through a power micro-grid, the excess energy can be used for ancillary services
(e.g., light system) or shared to support the MBS operation, thus reducing its grid
energy consumption. In fact, a grid energy saving of 38% is achieved, in case the
MBS uses the energy shared by the SBSs (also referred to as EH SBSs + energy
sharing).

6.4 Conclusions

In this chapter, we have introduced an optimal DLC of renewable powered SBSs
in a two-tier mobile network. We have analyzed the optimal policies and their
dependence on the traffic and the energy arrival processes. We have compared the
optimal approach with a naive algorithm and analyzed the network performance
in different scenarios. We have also introduced a new possibility of energy sharing
among the network elements to reduce the dependence on the power grid and
increase the energy savings.

From this analysis, we can draw the following conclusions. The different temporal
behavior of the traffic and energy arrival processes highlights the necessity of deploy-
ing storage devices along with solar panels. Moreover, it is fundamental to properly
manage the storage to maintain good network performance. The comparison be-
tween the optimal and the naive approach shows that grid energy savings and traffic
drop limitations are possible only if the control algorithm is able to forecast the
evolution of the two processes. Finally, the analysis of the redundant energy shows
that sharing energy among BSs may lead to considerable amount of grid energy
savings. This scenario will be further analyzed in the next chapter.
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7Optimal Direct Load Control plus
Energy Sharing

In this chapter, we focus on the design of energy self-sustainable mobile networks,
by enabling intelligent energy management that allows the BSs to mostly operate
off-grid by using renewable energies. Building on the conclusions of the previous
chapter, we advocate future mobile networks with a hierarchical cell structure and
powered by energy harvesting hardware. BSs within the same geographical area
are grouped in a micro-grid and operate almost autonomously from the power grid.
To achieve this goal, we target the design of an optimal DLC method with energy
sharing within the micro-grid. We solve the optimization problem by using the
graph-based method introduced in Chapter 6 and we demonstrate, via software
simulations, that a combination of load control plus energy sharing represents a
viable and economically convenient solution for enabling energy self-sustainability
of mobile networks grouped in micro-grids.

The analysis of the literature in Chapter 2 highlighted that both communication
cooperation and energy sharing methods are adopted as a way to cooperate between
BSs. The approach presented in this chapter is the first that consider a combination
of them for minimizing the mobile network power consumption.

The contributions of this chapter are summarized in the list below:

• We propose a RAN architecture with SBSs powered by distributed energy
harvesters and storage devices. Energy sharing between BSs is used to improve
the energy efficiency of the network.

• We provide a theoretical formulation of the joint load control and energy
sharing optimization problem. The objective of the problem is to minimize the
grid energy consumption and the system outage.

• We design a joint optimal load control plus energy sharing method for a
two-tier HetNet.

• We analyze the dimensioning of the energy harvesting and storage system and
its influence to the network performance.
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Intelligent Energy Management System (IEMS)

power lines

Figure 7.1: Diagram illustrating the reference framework, including the RAN with multiple
tiers, the intelligent energy management system and the micro-grid connections.
In left-bottom side, a simplified scheme of the solar-powered BS is shown.

• We provide an analysis of the energy saving and monetary cost for different
energy harvesting and storage design approaches.

The chapter is organized as follows. In Section 7.1, we introduce the reference
framework. In Section 7.2, we describe the system model. In Section 7.3, we
introduce the optimization problem and the methodology used for its solution. Then,
in Section 7.4, we discuss results on the dimensioning of the harvesting and storage
system, the optimal SBS configuration policies and the energy shared within the
micro-grid. In Section 7.5, we provide an energy and monetary cost analysis of the
studied architecture. Finally, we draw our conclusions in Section 7.6.

7.1 Reference Framework

We consider the multi-tier architecture described in the previous chapter. However,
in this new scenario, the BSs in the cluster are connected into a micro-grid and the
renewable energy is managed based on a harvest-store-share approach. In details,
the power harvested by the solar panel is consumed by the SBS and any excess is
stored into the battery. Whenever the battery has reached its full capacity, the excess
energy is shared with the MBS that will exploit it to reduce its consumption of energy
from the electricity grid. The micro-grid is implemented by deploying power lines.
Low resistive losses (i.e., the energy lost in the conductor due to Joule heating) are
guaranteed by the short distances between MBS and SBSs. When the SBSs have
exceeding energy that is not needed by the MBS, this energy is locally dissipated at
the SBSs site and not injected into the micro-grid. In this way, the micro-grid energy
balance is maintained.
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In the proposed framework, we envision a central control unit named Intelligent
Energy Management System (IEMS), located at the MBS site. The central controller
has a full knowledge of the the network condition, enabling a better coordination
of the SBSs. In particular, the SBSs operational states depends on the dynamics
of the energy harvesting and traffic demand. Therefore, the IEMS is in charge of
opportunistically operate the network to achieve efficient utilization of the harvested
energy and prevent SBSs blackout during periods with low renewable energy arrivals
and high traffic demand.

The Energy Controller (EC) is an entity located at the SBSs site which is in charge of
communicating to the IEMS the necessary local information (e.g., the battery level)
and to implement the decisions taken by it. The control architecture is shown in
Figure 7.1.

7.2 System Model

In this section, we modify the system model defined in Section 6.1 by introducing
the energy sharing between SBSs and MBS. The RAN consists of a set of clusters
which not interfere among each other. Every cluster is composed of 1 MBS and N
SBSs. Each SBS is powered by a solar panel and it can store energy into a battery.
On the contrary, the MBS is connected to the electrical grid.

Each SBS can be in one of the following operative states: (i) ON, where it serves the
users in its coverage area, or (ii) OFF, where it is in an energy saving mode and its
users are handed over the MBS. The vector S(t) =

[
S

(t)
1 , S

(t)
2 , ..., S

(t)
N

]
describes the

state of all the N SBSs at time t. Each element S(t)
i , with i = 1, ..., N , is defined as

follows:

S
(t)
i =

0, if i-th SBS is OFF

1, if i-th SBS is ON
(7.1)

The vector L(t) =
[
L

(t)
1 , L

(t)
2 , . . . , L

(t)
N

]
describes the traffic load experienced by the

SBSs in the cluster at time t, where L(t)
i ∈ [0, 1]∀i. The energy harvested by the

SBSs at time t is indicated by the vector H(t) =
[
H

(t)
1 , H

(t)
2 , ...,H

(t)
N

]
, while the

amount of energy stored in the SBSs batteries at time t is indicated by the vector
B(t) =

[
B

(t)
1 , B

(t)
2 , ..., B

(t)
N

]
. The energy stored into the batteries at the beginning of

the next time step is evaluated according to the formula

B(t+1) = min
(
B(t) + H(t) − P (t)∆t, Bcap

)
(7.2)
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where P (t) =
[
P

(t)
1 , P

(t)
2 , . . . , P

(t)
N

]
is the power consumed by the SBSs at time t, ∆t

is the duration of the time step, and Bcap is the capacity of the batteries. The amount
of energy that exceeds the battery capacity, and can be shared within the network by
the SBSs, is defined by the vector X(t) =

[
X

(t)
1 , X

(t)
2 , . . . , X

(t)
n

]
, and calculated as

X(t+1) = max
(
B(t) + H(t) − P (t)∆t −Bcap, 0

)
(7.3)

Moreover, we adopt the BS energy consumption model and the UE allocation scheme
described in Section 6.1.

7.3 Optimization Problem

The periodicity of the traffic demand and the energy arrivals leads to a cyclic
evolution of the system. At each cycle, the IEMS decides the optimal configuration
of the SBSs in the cluster to serve the traffic demand in that area. The optimization
goal is to minimize the grid energy consumption, while keeping the percentage
of dropped traffic experienced in the cluster below a threshold Dth, and the SBSs
battery levels above a threshold Bth. This optimization problem can be formulated
as

min
{S(t)}t=1,...,K

K∑
t=1

EMBS
(
S(t), t

)
D(t) < Dth

B
(t)
i > Bth ∀i.

(7.4)

where K is the time horizon, D(t) is the normalized traffic drop at time t and EMBS

is the normalized grid energy consumption drained by the MBSs, given the operative
modes of the SBSs at time t, whether ON or OFF. The normalized grid energy
consumption drained by the MBSs at time t is computed as:

EMBS
(
S(t), t

)
=
PMBS

(
S(t), t

)
·∆t −

∑N
i=1X

(t)
i

Pmax
MBS∆t

(7.5)

where PMBS and Pmax
MBS are respectively the power and the peak power consumed by

the MBS.

This optimization problem has been solved by using the graph-based approach
introduced in Section 6.2.1.
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Table 7.1: Simulation parameters

Parameter Value

BS Bandwidth 5 MHz

Channel model Okumura-Hata [40]

MBS TX power 43 dBm

SBS TX power 38 dBm

Solar modules Panasonic N235B

Solar cell efficiency 21%

Traffic area Residential

Bth 0.2

7.4 Results and Discussion

In this section, we provide an analysis of the dimensioning of the harvesting and
storage devices. Then, we analyze the operative state configuration of the SBSs and
the energy shared with the MBS.

7.4.1 Simulation Scenario

We consider a square area with a side of 1 km and one MBS located in the center
providing baseline coverage. Three SBSs are positioned in hotspots for capacity
enhancement. The coverage areas of the SBSs do not overlap. Energy arrivals
and aggregated downlink traffic have been generated according to the realistic
models described in Section 3.1 and Section 3.2. In particular, the city of Los
Angeles has been used for generating the solar energy traces. The adopted power
consumption model is described in Section 3.3. The results provided in what follows
are averaged among ten different independent realizations of both energy arrivals
and traffic processes. In the discussion presented next, we refer to January February,
October, November and December as winter months; the remaining part of the year
is considered as summer. Additional simulation parameters are listed in Table 7.1.

7.4.2 Dimensioning of the Harvesting and Storage System

Figure 7.2 shows the contour plots of the traffic drop rate during the month of
December (the worst in terms of harvested energy). Different colors are used to
indicate traffic drop rate regions (maximum values are specified in the associated
color map). The white filled area indicates the parameter region where the traffic
drop is smaller than 1%. Our optimal analysis is compared with a naive approach.
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Figure 7.2: Contour plot of the traffic drop rate of the optimal and the naive algorithm.
Different colors indicate traffic drop rate regions, whose maximum drop value
is specified in the color map in the right hand side of the plot. The white filled
region indicates a traffic drop rate smaller than 1%.

The naive algorithm switches OFF a SBS when its battery level is below the threshold
Bth and turns it ON when the battery is above.

Taking 1% as our design parameter, all the points on the boundary of the white
filled region are equally good. It is evident that the use of the optimal load control
with energy sharing allows the network to work with much lower sizes of the
harvesting/storage system compared to the naive approach. These results confirm
that an intelligent energy management system is essential for an efficient use of the
renewable energy resource and its installation in town facilities.

The analysis in the following parts of the chapter considers various harvesting/storage
design approaches corresponding to the different points laying in the boundary of
the white filled area of Figure 7.2 and labeled with star, circle and square symbols.

7.4.3 SBSs Operative State Configuration

In this section, we provide an analysis of the behaviors adopted by the SBSs when
experiencing different conditions of harvested energy.

In Figure 7.3, we report the different choices of the operative states of the SBSs by
the optimal policy across the different months of the year. The graphs refer to the
selected harvesting/storage dimensions.

The SBSs are active and offload the MBS longer during the summer months (high en-
ergy inflow). We can appreciate different behaviors based on the harvesting/storage
dimensions: star approach ranges between 53% (in December) and 65% (in August)
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Figure 7.3: Percentage of time the ON state is selected by the optimal algorithm when
considering different months and deployment sizes.

of time, circle between 56% (in December) and 76% (in July) of time and square
between 59% (in December) and 64% (in July) of time.

7.4.4 Shared Energy Assessment

In Figure 7.4, we show the energy shared and used by the MBS for every month
of the year. The graphs are collected considering the selected harvesting/storage
design approaches. For comparison purposes, we also indicate the amount of shared
energy experienced when using the naive approach. In particular, we consider the
smallest configuration of the harvesting/storage devices that allows meeting the
drop requirements.

We observe a general trend of sharing a bigger amount of energy during the summer
months, when a higher solar energy inflow occurs and, hence, a higher probability
of exceeding the battery capacity of the SBSs. The square harvesting/storage de-
ployment presents the highest amount of shared energy and the circle approach the
poorest.

7.5 Energy Savings and Cost Analysis

In Table 7.2, we provide an energy and monetary cost comparison between a scenario
where MBS and SBSs are connected to the grid (also referred to as grid-only) and
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Figure 7.4: Energy shared by the SBSs and used by the MBS per month when considering
different deployment sizes.

Table 7.2: Energy savings and costs for different deployment dimensions

Configuration Energy (kW) Costs ($)

panel (m2) battery (Ah) 1yr consumption CAPEX cost [5yrs] cost [10yrs]

Grid-only
- - 10,264 0 10,775 21,550

EH SBS + sharing
? 4.48 62 7,982 (-22%) 2,345 10,725 (-0.5%) 19,105 (-11%)

◦ 4.48 83 7,160 (-30%) 2,541 10,060 (-7%) 17,578 (-18%)

� 7.00 62 7,169 (-30%) 4,100 11,625 (+8%) 19,150 (-11%)

our scenario where SBSs are solely powered by solar panel plus battery and can
share energy with the MBS (also referred to as EH SBSs+sharing). We report the
grid energy consumption, the CAPEX and the monetary cost (i.e., CAPEX + OPEX)
due to the harvesting/storage add-on after 5 and 10 years, for the different panel
and battery dimensions introduced in the previous section. The values between
brackets indicate the savings with respect to the grid-only scenario. We consider a
cost of 1.17 $/W for the solar panel (which also includes the installation cost) and
131 $/kWh for the battery. Moreover, the energy purchased from the grid has a cost
of 0.21 $/kWh in our calculation.

The additional harvesting/storage hardware jointly with the optimal load control
and energy sharing method allows reducing the grid power consumption. The energy
savings range between 22% and 30%, depending on the harvesting/storage size.
Carbon footprint and OPEX are decreased accordingly. In particular, monetary cost
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savings range between 0.5% and 7% after 5 years. The only exception is represented
by the third harvesting/storage size (i.e., square), where 7 years are needed to reach
the breakeven point. The results at 10 years show higher savings, ranging between
11% and 18%.

Table 7.2 provides useful insights on the energy and cost savings and permits
the MNOs to design their harvesting/storage systems by considering the tradeoff
between dimensions and economic cost. In general, the harvesting/storage system
with the lowest CAPEX is not the most economically convenient option in the long
run. The highest savings are achieved for deployments in the right side of the
boundary region of Figure 7.2 (i.e., circle). With this design approach, the proposed
method achieves the highest energy and cost savings by maintaining active the SBSs
for longer periods and sharing less energy with the MBS compared to the other two
harvesting/storage dimensions.

As a final remark, we can assume that higher revenues and savings can be achieved
during the lifetime of the network in a near future considering that: i) equipment
hardware is designed to be always more energy efficient, ii) the actual market trends
show a decreasing cost of the solar panels and batteries, and increasing prices of
the grid energy, iii) future radio access networks will be ultra-dense and longer
offloading periods may occur due to the higher number of SBSs.

7.6 Conclusions

In this chapter, we have extended the optimal load control method discussed in the
previous chapter by introducing energy sharing capabilities that allows to efficiently
use the renewable energy coming from distributed sources and to facilitate the
off-grid operation of the RAN. The proposed approach enables the dynamic switch
ON/OFF of portions of the SBSs. Energy exceeding the battery capacity is managed
to be used by the MBS operations and further reduce the energy drained from the
power grid. Software simulations demonstrated that an intelligent renewable energy
management is essential to reduce the harvesting/storage system dimension with
respect to naive approaches and leads to high energy and cost savings for a MNO.
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8Online Direct Load Control plus
Energy Sharing

In this chapter, we investigate on the control of the sleep modes plus energy sharing
among the BSs by a centralized agent, which implements ML techniques and is capa-
ble of learning how to efficiently operate the network. We discuss on the achieved
performance, complexity and feasibility of different ML approaches. In particular,
we study supervised and reinforcement learning models. The proposed supervised
approach, called Imitation Learning, learns the optimal policies from labeled data
collected by a supervisor. The creation of the training set is a hard task since it relies
on an expert supervision. For this reason, Imitation Learning is generally feasible
in scenarios with a limited number of SBSs due to complexity issues. Instead, solu-
tions based on RL learn from the interaction with the environment and no specific
supervision is required. However, a Markov Decision Process has to be properly
defined together with a reward function to fit the optimization problem that must
be solved [92]. In this work, we tailor two RL methods based on tabular and deep
models, respectively.

The tabular RL method, i.e., Q-learning, is thought for discrete state/action spaces,
and requires quantitation to deal with the continuous states of our scenario. Con-
sequently, the number of quantitation levels have to be properly settled to find a
reasonable trade-off between the approximation introduced and the performance in
terms of cumulative reward, convergence time and memory footprint.

On the other hand, the Deep RL method, i.e., Deep Q-learning, uses ANNs as
function approximation to address the quantization issue of the tabular method, and
may handle a continuous state space. Moreover, the ANN tailored for our scenario
requires smaller memory and achieves faster convergence than the tabular method.
This translates into higher performance in terms of energy saving and system outage.
Moreover, deep RL is able to control dense scenarios, i.e., a high (> 4) number of
deployed SBSs, where the other models fail for complexity and memory issues.

Considering the literature reviewed in Section 2, the study presented in this chapter
is the first focusing on centralized learning methods for the optimization of BS
switch ON/OFF plus energy sharing policies. Moreover, the study reported here may
also serve as a compendium of supervised and reinforcement learning approaches
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for network optimization and their comparison in terms of system performance,
implementation complexity, memory footprint and feasibility.

In summary, the contributions of the paper are listed below:

• We develop three different implementations of a centralized energy-aware
RAN controller based on ML: namely Imitation Learning, Q-Learning and Deep
Q-Learning. The training phase of those three different implementations is
analyzed against different setups of the learning parameters.

• We analyze the load control plus energy sharing policies learned by the three
different implementations of the agent and the achieved performance are
compared in terms of grid energy consumption and dropped traffic.

• We provide an analysis of savings that a mobile operator may achieve by
deploying a RAN powered with renewable energy and implementing our
centralized learning controller in terms of monetary cost and energy footprint.

• We provide an analysis on how the different representations of the environ-
mental state affects the training and their effects on the learned policies and
system performance.

The rest of the chapter is organized as follows. In Section 8.1, we formulate the joint
load control and energy sharing optimization problem. In Section 8.2, we discuss
the proposed learning approaches, i.e., Imitation Learning, Q-Learning and Deep
Q-Learning. In Section 8.3, we introduce the simulation scenario, discuss the setup
of the parameters for the learning approaches, analyze the obtained policies and
the achieved performance in terms of energy consumption and dropped traffic. In
Section 8.4, we extend the analysis by considering different representations of the
environmental state and their influence on the training, the learned policies and the
system performance. Finally, in Section 8.5, we draw our conclusions.

8.1 Optimization Problem

The evolution of the system under study, and described in the previous chapter, may
be defined by a Markov Decision Process as: x(t+1) = f

(
x(t),a(t),w(t)

)
, where x(t)

is the state of the system, a(t) is the control and w(t) is the random disturbance at
time t (i.e., the randomness of the energy arrival and traffic processes).
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The state of the system at time t is defined as x(t) =
[
B(t), h(t)

]
, where h(t) ∈ [0, 23]

is the hour of the day at time t, while the system control is defined as a(t) =[
a

(t)
1 , a

(t)
2 , . . . , a

(t)
N

]
, where

a
(t)
i =

0 if the i-th SBS is switched OFF

1 if the i-th SBS is switched ON.
(8.1)

The optimization goal is to minimize the grid energy consumption, while keeping
the percentage of dropped traffic experienced in the cluster below a threshold, Dth.
This optimization problem can be formulated as:

P1: min
{a(t)}t=1,...,K

K∑
t=1

EMBS(x(t),a(t),w(t))

subject to D(t) < Dth
(8.2)

where K is the time horizon or the number of times the control is applied, D(t)

is the normalized traffic drop at time t and EMBS is the normalized grid energy
consumption drained by the MBS, given the operative modes of the SBSs at time t,
whether ON or OFF.

We highlight here, that SBSs automatically switch OFF when the battery level is
below a threshold Bth.

In this chapter, we adopt the offline solution introduced in Chapter 7 to compute
performance bounds, and compare them with the policies learned through the
proposed ML approaches.

8.2 Machine Learning Models

In this section, we discuss the different implementations of the centralized agent at
the IEMS, namely Imitation Learning and the two variants of RL, Q-Learning and
Deep Q-Learning.

8.2.1 Imitation Learning

Imitation Learning (IL) is a supervised approach that consists on learning from a
set of labeled data provided by an external supervisor [78]. Each example in the
training set is a description of the system state with a specification of the correct
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Figure 8.1: Example of a multiclass classifier based on ANNs.

action the agent shall take in that situation. In this case, the objective of the agent is
to extrapolate (i.e., generalize) its response, so that it acts correctly in situations not
included in the training set. Specifically, the agent is trained on the policies adopted
by the optimal algorithm in Chapter 7. More in details, a multi-class classifier based
on ANNs is used to learn a mapping from the state of the system x(t) to the action
a(t). An example of the general ANN architecture for a multiclass classifier is shown
in Figure 8.1. We consider the multilayer perceptron as basic architecture for the
ANN, consisting on multiple fully connected layers of neurons [41]. The output of a
neuron is computed using the following equation:

output = fa

(∑
i

(zi · wi + bi)
)
, (8.3)

where z is the input of the neuron, w is the weight of the connection to the neuron,
b is the bias and fa(·) is the activation function. The ReLU activation function (i.e.,
fa(z) = max(0, z)) is used for the hidden layers, whereas the SoftMax activation
function is used for the output layer.

The SoftMax activation function takes as input a vector of K real numbers, and
normalizes it into a probability distribution consisting of K probabilities proportional
to the exponentials of the input numbers. It is defined as

fa(z)i = ezi∑K
j=1 e

zj
(8.4)

where z = (z1, . . . , zK) ∈ RK is the input vector. The standard exponential function
is applied to each element zi of the input vector z. These values are then normalized
by dividing them by the sum of all the exponentials. In this way, the sum of the
components of the output vector fa(z) is 1. After applying the SoftMax function,
each component in the output is in the interval (0, 1), and the components add up to
1, so that they can be interpreted as probabilities.
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The model is optimized using the categorical cross entropy loss function, defined
as:

L(y − ŷi) = −
∑
i

yi log ŷi (8.5)

where y is a grounded truth vector (i.e., the actions taken by the offline algorithm),
and ŷ is a vector of predictions. The detailed steps of the training algorithm are
specified in Algorithm 5.

Algorithm 5 Training of the ANN classifier

Input: dataset D
Output: classifier c(·)

1: Collect all state/action pairs D ←< x,a >
2: Train a classifier c using the dataset D
3: return c

We consider a dataset containing observations collected in one year. A portion of
80% of the dataset is used for training the classifier, whereas the remaining 20% is
used to validate the learned model.

The trained ANN is then implemented in the IEMS and manages the operative modes
of the SBSs by the procedure described in Algorithm 6.

Algorithm 6 Imitation Learning agent

Input: classifier c
1: for t = 1, . . . , T do
2: x(t) ← current state of the system
3: a← c

(
x(t)

)
4: take action a(t)

5: end for

8.2.2 Reinforcement Learning

The objective of RL is to learn how to map the experienced situation (i.e., the state
of the system) into the best action to take at every decision cycle t. By trying
different actions, the agent learns the optimal behavior of the system that maximizes
a cumulative reward. This phase is called exploration and is aimed at training the
algorithm for the stable phase, called exploitation, in which the agent will use the
learned policies. A good trade off between exploration and exploitation has to be
maintained to assure that the system is continuously exploring new state/action
pairs and updating its policies with actions that return higher rewards.

The IEMS implements an agent in charge of maintaining a policy and a Q-function
Q(x(t),a(t)), representing the level of convenience in taking the action a(t) at time
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step t, given that the system is in state x(t). As a result of the execution of an
action at time t, the environment returns a reward r(t), which is used to update the
Q-values, Q(x(t),a(t)). In our proposals, the reward given to the agent after taking
action a(t), being in state x(t) at time t, is defined as:

r(t) = −EMBS
(
x(t),a(t)

)
+ 1

(
D(t) < Dth

)
, (8.6)

where 1(·) is the step function. The rationale behind this equation is to mimic the
optimization problem in (8.2): the agent is getting a reward equal to 1 each time it is
able to maintain the drop level below the threshold Dth, and a discount proportional
to the consumed grid energy is applied. Moreover, in our implementations, an
ε-greedy exploration policy is adopted: the learned action is taken with probability
1− ε (i.e., exploitation), whereas a random action is taken with probability ε (i.e.,
exploration).

In this paper, we consider the QL and DQL algorithms described in Section 4.2.3, as
instances of RL. Next, we detail the specific implementation of the two algorithms.

Q-Learning

In the standard QL algorithm, the Q-function is stored in a tabular form. The table
describing the Q-function is therefore named Q-table. The reward r(t) is used to
update the Q-value Q(x(t),a(t)) according to the following rule:

Q(x(t),a(t))←Q(x(t),a(t))+

α[r(t) + γmax
a′

Q(x(t+1),a′)−Q(x(t),a(t))],
(8.7)

where α is the learning rate and γ is the discount factor.

The state variables need to be quantized due to the discrete nature of the Q-table.

Therefore, the state of the system at time t is defined by x̂(t) =
[
B̂

(t)
, h(t)

]
, where

B̂
(t) =

[
B̂

(t)
1 , . . . , B̂

(t)
N

]
is a vector representing the quantized values of the battery

levels of the SBSs in the cluster and h is a variable representing the hours of the day.
The detailed steps of the adopted QL algorithm are listed in Algorithm 7.

Deep Q-Learning

In the DQL approach, the Q-function is estimated by using a ANN approximator [73],
as described in Section 4.2.3. The Q-function is approximated by the function
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Algorithm 7 Q-Learning algorithm

1: Initialize Q(x,a) ∀x ∈X,a ∈ A arbitrarily
2: for episodes = 1, ...,M do
3: Initialize x(1)

4: for t = 1, . . . , T do
5: Select action a(t) = maxa′ Q(x(t),a′) with probability 1− ε otherwise take

a random action with probability ε.
6: Execute action a(t) and observe the reward r(t) and the next state x(t+1)

7: Update the Q-value by using (8.7)
8: end for
9: end for

Q
(
x(t),a(t)|θ

)
, where θ represents the ANN parameters. The state of the system

is the input of the ANN, whereas the output layer corresponds to the predicted Q-
values of the individual action for the input state. In details, the number of neurons
in the input layer is equal to N + 1, i.e., the hour and the values of battery level of
all the SBSs, whereas the number of neurons in the output layer is equal to 2N , i.e.,
all possible combinations of ON/OFF operative modes of the SBSs in the cluster.

The detailed steps of the DQL algorithm are listed in Algorithm 8.

Algorithm 8 Deep Q-Learning algorithm

1: Initialize the replay memory R to capacity L
2: Initialize the ANN with random weights
3: for episodes = 1, ...,M do
4: Initialize state x(1)

5: for t = 1, . . . , T do
6: Select action a(t) = maxa′ Q(x(t),a′; θ) with probability 1−ε otherwise take

a random action with probability ε.
7: Execute action a(t) and observe the reward r(t) and the next state x(t+1)

8: Store the experience (x(t),a(t), r(t),x(t+1)) in R
9: Sample a random batch of l experiences (x(j),a(j), r(j),x(j+1)) from R

10: Set y(j) = r(j) for terminal state x(j+1) otherwise y(j) = r(j) +
γmaxa′ Q(x(j+1),a′; θ)

11: Perform gradient descend step on
(
y(j) −Q(x(j),a(j); θ)

)
12: end for
13: end for

8.3 Numerical Results and Discussion

In this section, we discuss the numerical results achieved after our extensive sim-
ulation campaign. In particular, we present the performance of the training phase
of the three ML models, analyze the learned policies and the energy shared in the
micro-grid. After, we provide an analysis of the network performance in terms of the
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Table 8.1: Simulation parameters

Parameter Value

Scenario Solar panel size (m2) 4.48 (16×16)
Solar panel efficiency (%) 21
Battery capacity (Ah) 83
MBS transmission power (dBm) 43
SBS transmission power (dBm) 38
Bandwidth (MHz) 20
Channel model Okumura-Hata [40]
Heavy users traffic (MB/h) 900
Ordinary users traffic (MB/h) 112.5
Heavy users percentage (%) 50
Traffic profile Residential, Office

IEMS Battery threshold Bth (%) 20
High drop level Dth (%) 10

grid energy consumption and the dropped traffic. Finally, we discuss the energy and
monetary cost savings achieved by the proposed RAN architecture.

8.3.1 Simulation Scenario

The scenario considered in this analysis consists of a single cluster of 1 MBS placed
in the middle of a 1 km2 area and N SBSs randomly placed. In order to avoid
overlap, the distance between SBSs is at least of 100 m, and SBSs have a maximum
transmission power of 38 dBm. The UEs are deployed in a radius of 50 m from each
SBSs to mimic a hot-spot scenario [2]. Each SBS is supplied by a solar panel of
4.48 m2 area and a lithium ion battery of 83 Ah capacity. The solar panel consists of
an array of 16×16 solar cells of Panasonic N235B solar modules that have a single
cell efficiency of about 21%. These dimensions allow to fully recharge the batteries
in a typical winter day, and are consistent with the results obtained in Chapter 7. The
solar energy arrivals are generated according to the city of Los Angeles, following
the approach described in Section 3.1. The traffic demand is modeled as described
in Section 3.2, considering a heavy user ratio of 50%. Further details about the
simulation parameters are given in Table 8.1.

Finally, the training of all the learning algorithms is performed by considering a
cluster of 3 SBSs. The simulations have been run on a machine with an Intel®Core™
i5-6300U CPU @ 2.40GHz and 8 GB of RAM.
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Table 8.2: Training and validation performance for different ANN architectures

Neurons per layer Training Validation

1st 2nd 3rd Loss Accuracy MA F-score Loss Accuracy MA F-score

8 - - 0,17 0,93 0,93 0,19 0,93 0,93
32 - - 0,15 0,94 0,94 0,16 0,93 0,93
64 - - 0,14 0,94 0,94 0,16 0,93 0,93
512 - - 0,11 0,95 0,95 0,15 0,94 0,94
32 32 - 0,12 0,95 0,95 0,14 0,95 0,95
64 64 - 0,10 0,95 0,95 0,15 0,94 0,94
32 32 32 0,11 0,95 0,95 0,16 0,94 0,94

8.3.2 Imitation Learning Training

A dataset containing the offline policies computed over one year has been split into a
training dataset and a validation dataset, as described in Section 8.2.1. The training
dataset has been used to train ANN classifiers with different architectures using the
Adam version of gradient descent [53], with the goal of minimizing the categorical
cross entropy, introduced in Equation (8.5).

The loss, the accuracy and the macro average (MA) F-score measured on the training
and validation set, are reported in Table 8.2. The accuracy is defined as the number
of correct predictions divided by the total number of predictions whereas the MA
F-score is computed as the average of the categories F-scores, which are:

F1 = 2 · p · r
p+ r

, (8.8)

where p is the number of correct positive results divided by the number of all positive
results (i.e., precision), whereas r is the number of correct positive results divided
by the number of all the samples that should have been identified as positive (i.e.,
recall).

The ANN architecture with two hidden layers of 32 neurons is selected, based on
the maximum accuracy, MA F-score, training velocity (=300 epochs). Adding more
neurons/layers leads to an increment of the computational complexity, without any
positive impact to the performance.

8.3.3 Q-Learning Training

An analysis on the influence of the learning parameters to the training performance
is presented in this section for the QL algorithm. The QL algorithm exploration
rate is set to ε = 0.9 at the beginning of the training, and discounted by 10% at
each episode, until reaching the minimum value of εmin = 0.05. In this way, the
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Figure 8.2: Average reward per episode of the QL algorithm when adopting different values
of learning rate (a) and discount factor (b). Values of average reward per
episode achieved at convergence are indicated in (c)
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exploration is prioritized during the first phase of the training, enabling a faster
convergence. Moreover, the battery levels B are quantized by considering a uniform
quantizer with 3 levels, whereas the hour of the day h is a variable quantized with
24 levels. This choice represents a good trade-off between achieved performance
and computational complexity, according to the performed simulations.

Figure 8.2 reports the performance obtained for different setups of the training
parameters. The average reward per episode achieved by the QL agent for different
values of the learning rate are shown in Figure 8.2(a). The highest reward is achieved
for α = 0.3. Using a smaller learning rate (e.g., α = 0.1) makes the agent to converge
slower to the maximum average reward, which is additionally slightly smaller than
α = 0.3. Instead, higher oscillations are experienced for a bigger learning rate (e.g.,
α = 0.9), leading to a low average reward per episode.

Figure 8.2(b) shows the average reward per episode for three different values of the
discount factor. The highest average reward is achieved for γ = 0.9, which implies
that the system needs to be optimized over a long horizon. In fact, a big value of γ
makes the agent looking for a long-term high reward by giving more importance to
future rewards.

Finally, Figure 8.2(c) shows the average reward per episode achieved at convergence
for different values of the learning rate α and discount factor γ. The highest average
reward is achieved for α = 0.3 and γ = 0.9.

8.3.4 Deep Q-Learning Training

An analysis of the influence of the learning parameters to the training performance is
presented in this section for the DQL algorithm. In particular, Figure 8.3 reports the
performance achieved for different values of the learning rate and the batch size.

Figure 8.3(a) shows the average reward per episode achieved by the DQL agent for
three different values of the learning rate. The discount factor and the batch size are
fixed to γ = 0.9 and l = 20, respectively. The value at convergence and the number
of episodes needed to converge are influenced by the learning rate. In particular,
big values of α make rapidly achieve a stable average reward per episode, whereas
smaller learning rates lead to a slower convergence, but a higher average reward
per episode in the long run.

Figure 8.3(b) shows how the training performance is affected by the batch size l.
The average reward per episode shows high oscillations and a slow convergence if
experience replay is not used (i.e., l = 1). Instead, enabling it allows to reduce the
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Figure 8.3: Average reward per episode of the DQL algorithm when adopting different
values of learning rate (a) and batch size (b). The dimension of the batch is
l = 20 in (a) whereas the learning rate is α = 1 · 10−4 in (b). The discount
factor is γ = 0.9.

magnitude of the oscillations and the number of epochs needed to converge. We
highlight here that this does not come for free in terms of execution time. In fact,
the running time per episode increases linearly with the dimension of the batch size
l, since the number of forward and backward passes through the ANN scales linearly
with l.

Finally, the average reward per episode achieved varying the numbers of neurons
per layer and the number of layers is reported in Table 8.3. The average reward per
episode increases with the dimension of the ANN till a performance limit. Increasing
the dimension of the ANN only leads to longer training times without any positive
influence on the average reward per episode. The best average reward per episode
is achieved with an ANN architecture composed of two layers, both consisting of 50
neurons. Moreover, the best results have been obtained using the linear activation
function (i.e., fa(x) = x) for the output layer and the ReLU activation function for
the input and hidden layers. We experimentally noticed that the property of ReLU
of turning any negative argument into zero helps the convergence speed and the
average reward per episode at convergence.

8.3.5 ON-OFF Policies

In this section, we analyze the daily average SBSs switch ON rate experienced by
the three different implementations of the agent in a cluster of 3 SBSs. In particular,
the switch ON rates experienced in a residential and an office area are reported
in Figure 8.4 and Figure 8.5, respectively, for the months of December and July.
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Table 8.3: Average reward per episode for different ANN architectures

Number of neurons
Avg. reward per episode

1st layer 2nd layer 3rd layer

10 - - 0.63
20 - - 0.64
20 20 - 0.64
50 - - 0.65
50 50 - 0.66
50 50 50 0.65

100 - - 0.65
100 100 - 0.65
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Figure 8.4: Average switch ON rate of the SBSs when adopting different policies in a
residential (a) and office (b) area in the months of December. The shaded area
represents the shape of the traffic demand.
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Figure 8.5: Average switch ON rate of the SBSs when adopting different policies in a
residential (a) and office (b) area in the months of July. The shaded area
represents the shape of the traffic demand.
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Those months represent the worst and the best case in terms of harvested energy,
respectively. The shape of the traffic demand profiles is indicated by the shaded
areas. The three agent implementations are compared with a naive approach that
operates by turning OFF the SBSs when their battery levels go below the threshold
Bth and switching them ON when the level is above it. The performance bound
using the offline optimization is also reported in the figures as a reference. We refer
to this policy as Bound policy.

In general, the policy works so that the SBSs save energy during nights, when the
traffic is low, and provides service during the high traffic demand hours. The length
of the night switch OFF period depends on the energy availability and, thus, on the
season of the year. In particular, longer switch OFF periods are generally observed
in December for both the traffic areas.

Figure 8.4(a) shows the switch ON rate for a residential area in the month of
December.

The bound policy is characterized by a high switch ON rate of 0.94 in average during
the traffic peak, i.e., from 6 pm to midnight, whereas an average switch ON rate of
0.75 is experienced from 10 am to 3 pm. This means that the bound policy partially
switches OFF the SBSs during those hours to save energy needed to provide service
during the peak hours.

The naive policy switches ON the SBSs as soon as sufficient energy is harvested
in the morning. Therefore, high switch ON rate is measured from 10 am to 3 pm.
i.e., in correspondence with the peak of the harvesting process. Then, as soon as
the energy reserves fall below the threshold Bth, the switch ON rate decreases and
reaches low values during the peak of the traffic demand, leading to high traffic
drop.

The QL and DQL policies have an average switch ON rate of 0.7 and 0.8, respectively,
between 10 am and 3 pm. Those values highlight that the adopted policies follow
the behavior of the bound policy: they partially switch OFF the SBSs during the
daytime and maintain the switch ON rate to an average of 0.8 during the peak of the
traffic demand. The same behavior is reproduced by the IL algorithm. We highlight
here that the behavior of the QL, DQL and IL policies follows the behavior of the
bound policy with some differences due to the stochastic nature of the energy and
traffic processes.

Figure 8.4(b) shows the switch ON rate for an office area in the month of December.
The office traffic profile is easier to manage, since the peak of the traffic demand
coincides with the period of more intensive energy arrivals (i.e., around midday). In
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Figure 8.6: Average amount of shared energy used by the MBS in December when adopting
different policies in a residential (a) and office (b) area.

all the studied cases, the SBSs are switched ON after the night sleep starting from
7 am, and a high switch ON rate is experienced from 10 am to 5 pm for all the
policies (i.e., during the peak of the traffic demand).

Finally, Figure 8.5(a) and Figure 8.5(b) show the switch ON rate in the month of July
for the residential and the office areas, respectively. In both the cases, bound policies
show an increase of the switch ON rate after 6 am, whereas in the case of the naive
and learning agents, it starts raising from 7 am. No other particular difference from
the studied algorithms is noticed due to the high availability of harvested energy
in summer, which allows the agent to keep the SBSs ON until midnight in both the
traffic areas regardless the specific implementation.

8.3.6 Shared Energy Assessment

In this section, we analyze the behavior of the different implementations of the agent
in terms of the daily energy shared between SBSs and MBS. The average amount of
energy shared with the MBS and used for its operations is reported in Figure 8.6 and
Figure 8.7 for the month of December and July, respectively. Results are provided
for both a residential and an office area.

In general, the energy is shared around noon during a period of time whose duration
depends on the season of the year. The energy in December is shared between 11 am
and 3 pm, whereas in July is shared from 10 am to 4 pm, which is longer since
during summer the SBSs harvest more solar energy.
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Figure 8.7: Average amount of shared energy used by the MBS in July when adopting
different policies in a residential (a) and office (b) area.

The bound policy shares less energy with respect to the other policies in all the
considered scenarios. This is motivated by the fact the bound policy maximizes
the amount of traffic which is offloaded to the SBSs and, thus, the local use of
the harvested energy. This behavior is confirmed by the high switch ON rates in
Figure 8.4 and Figure 8.5, and is made possible by the prior knowledge of the
temporal variation of the energy and traffic processes.

The naive policy shares less energy than the three implementations based on ML. In
fact, the naive policy maintains the SBSs active as long as their energy is available.
This policy reduces the probability of filling the batteries and, thus, of sharing the
excess energy.

The IL, QL and DQL policies show similar behaviors. In particular, the DQL agent
is that leading to higher energy sharing with an average of 39 Wh and 89 Wh in a
residential and office area, respectively, for a day of December. Higher values are
measured in the month of July, where DQL is sharing an average of 2.54 kWh and
2.51 kWh per day in the residential and office area, respectively.

8.3.7 Network Performance

In this section, we compare the three learning algorithms in terms of grid energy
consumption and traffic drop. The results have been obtained by setting each
algorithm with the best configuration of the training parameters, as discussed in
Sections 8.2-4. In particular, we focus on the performance achieved in the month of
December (i.e., the worst in terms of harvested energy).
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Figure 8.8: Percentage of dropped traffic experienced in the month of December, when
adopting the naive policy and the policy obtained by the proposed learning
approaches.
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Figure 8.9: Grid energy consumption experienced in the month of December, when adopting
the naive policy and the policy obtained by the proposed learning approaches.

Figure 8.8 and Figure 8.9 show the traffic drop and grid energy consumption
performance achieved when considering different cluster sizes in a residential and
office area, respectively. In particular, we consider a scenario with 100 UEs deployed
in the area of each SBSs, such that the traffic demand linearly increases with the
number of deployed SBSs in the cluster.

The IL approach cannot be adopted in scenarios with more than 3 SBSs due to
the high computational complexity and the amount of memory required by the
optimal algorithm and the resulting unavailability of training data. Similarly, the QL
approach cannot be adopted in scenarios with more than 4 SBSs, due to the high
amount of memory required to store the Q-table, which increases exponentially with
the number of SBSs (i.e., | B̂(t)

i |N × | h(t) | ×2N). On the contrary, DQL limits this
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problem thanks to the introduction of the ANN function approximation, in which the
number of weights that needs to be estimated is lower than the number of Q-table
elements estimated by QL. This makes the memory footprint of the DQL controller
much lower, and allows its operations for a network with a higher number of SBSs
in the cluster.

Figure 8.8 shows the traffic drop experienced in a residential and an office area.
The ML agents reach the same performance in the scenario with 2 SBSs, whereas
DQL reduces the drop by 60% with respect to QL in the scenario with 4 SBSs in
a residential area. This is mainly due to the possibility of using continuous state
variables as input of the ANN and avoid the quantitation errors of QL.

IL, QL and DQL algorithms lead to lower traffic drop than the naive approach for all
the considered cluster dimensions. In the case of DQL, this aspect is more evident
for deployments with more than 4 SBSs in the residential area and 6 SBSs in the
office area. In those cases, the traffic drop experienced by the naive policy linearly
increases with the number of SBSs. We highlight here that DQL reaches significant
savings up to 90% with respect to the naive algorithm for both traffic profiles.

The amount of grid energy consumed by the MBS in the month of December is
reported in Figure 8.9, for the residential and the office traffic profiles. DQL saves
up to 3% and 1% of the grid energy than IL, QL for all the considered cluster
dimensions in office and residential area, respectively. This translates into a high
energy efficiency, since DQL is able to serve more traffic. We highlight that the naive
policy consumes less grid energy when considering a cluster with more than 4 SBSs
in a residential area. This is motivated by the high amount of traffic that is not
served by this policy.

8.3.8 Energy Savings and Cost Analysis

In this section, we provide an analysis of the grid energy consumed in one year and
monetary costs experienced after five and ten years for different cluster dimensions
that an operator may achieve through the implementation of the proposed DQL
algorithm. They are reported in Table 8.4 considering two different traffic areas,
namely residential and office. Note that in this analysis a trained version of the
DQL agent is implemented in a new environment, characterized by instances of the
energy arrival and traffic demand processes that are different from those used during
the training phase. In such a way, we generalize the behavior of the agent and get
performance as close as a real implementation in an operative network.
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Table 8.4: Energy and cost analysis

SBSs
Grid Energy (kWh) Cost at 5 years ($) Cost at 10 years ($)

Grid-only DQL Grid-only DQL Grid-only DQL

Residential
2 8,312 5,753 (-31%) 8,728 7,735 (-11%) 17,455 13,775 (-21%)

4 10,580 5,932 (-44%) 11,109 9,617 (-13%) 22,218 15,845 (-29%)

6 12,848 6,292 (-51%) 13,490 11,689 (-13%) 26,981 18,295 (-32%)

8 15,116 6,560 (-57%) 15,872 13,664 (-14%) 31,744 20,552 (-35%)

10 17,384 7,236 (-58%) 18,253 16,068 (-12%) 36,506 23,666 (-35%)

Office
2 8,301 5,500 (-34%) 8,716 7,469 (-14%) 17,432 13,244 (-24%)

4 10,554 5,512 (-48%) 11,081 9,617 (-17%) 22,163 14,963 (-32%)

6 12,806 5,536 (-57%) 13,447 10,895 (-19%) 26,893 16,708 (-38%)

8 15,059 5,504 (-63%) 15,812 12,555 (-21%) 31,624 18,334 (-42%)

10 17,312 5,576 (-68%) 18,178 14,325 (-21%) 36,355 20,180 (-44%)

The performance achieved by DQL are compared with a network scenario in which
all the BSs are supplied by the power grid, also referred to as grid-only. We consider
a cost of 1.17 $/W for the solar panel (which also includes the installation cost) and
131 $/kWh for the battery. Moreover, the grid energy has a cost of 0.21 $/kWh.

The harvesting/storage hardware jointly with the centralized network control based
on DQL allows to reduce the grid energy consumption in both the traffic areas. The
savings increase as the network deployment is more dense (i.e., more SBSs in the
cluster): from 31% to 58% higher than the grid-only case in the residential area and
from 34% to 68% in the office area. OPEX is decreased accordingly. Costs after 10
years are significantly reduced up to 35% and 44% in the residential and the office
area, respectively.

8.4 Discussion on the Environmental Modeling

A key issue in RL is to define a proper model of the environment sensed by the
agents, so that they may accurately capture the system dynamics and learn how
to optimally interact with it. In this section, we extend the analysis of the DQL
algorithm by investigating on different representations of the environmental state.
In particular, we provide an analysis of the state representations effect to the RL
training phase, its policies and to the resulting system performance.

We considered the following representations of the environment:

• B: x = [B]

• HBL: x = [H,B,L]
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• Bh: x = [B, h]

• HBLh: x = [H,B,L, h]

where h ∈ [0, 23] represents the hour of the day in which the measurements are
collected. The rationale behind these choices is to model the environment with an in-
cremental number of variables that may (or may not) lead to a better representation
of the dynamic processes that characterize the system under study.

8.4.1 Training Performance

In this section, we analyze the influence of the environment state representation
on the algorithm training when considering a cluster of 5 SBSs. In particular, the
agent parameters have been set to the values that provide the best average reward
per episode according to simulations. In details, the learning rate is α = 10−4, the
discount factor is γ = 0.9 and the size of the experience replay batch is l = 20. The
exploration rate is set to ε = 0.9 at the beginning of the training and discounted by
10% at every training episode, until reaching the minimum value of εmin = 0.05.

Figure 8.10 shows the average reward per episode for the different representations.
The highest is achieved by the Bh and HBLh representations: both of them reach
0.546 on average after 160 episodes. The EBL representation reaches 0.542 on aver-
age after 120 episodes, whereas the B representation reaches 0.540 on average after
30 episodes. Therefore, we can note that: i) increasing the number of state variable
does not necessarily improve the average reward per episode, and ii) including the
hour of the day in the environmental model increases the average reward, at the
expenses of a longer training phase.

8.4.2 ON-OFF Policies

In this section, we analyze the policy selected by the agent when considering the
different representations. We adopt the switch ON rate as a metric to describe the
behaviors of the SBSs, and we focus on the month of December since it represents
the most challenging month for learning a policy due to the scarce availability of the
harvested energy.

The daily average switch ON rate of the SBSs is reported in Figure 8.11. The shape
of the residential traffic profile is also depicted. A common behavior can be observed
regardless the environmental model adopted. The SBSs switch OFF during night
hours, when the traffic is low, to save the stored energy. Then, the SBSs are gradually
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Figure 8.10: Average reward per episode when adopting different representations of the
environment state. The learning rate is α = 10−4, the discount factor is γ = 0.9
and the dimension of the batch is l = 20.

switched ON, starting from 7 am to provide service during high traffic demand hours.
However, the B and HBL policies show a higher average switch ON rate between
1 am and 7 am than the Bh and HBLh policies. Moreover, the B policy maintains the
switch ON rate to an average of 0.9 between midday and 6 pm. The HBL, Bh and
HBLh policies maintain the switch ON rate to an average of 0.80, 0.79 and 0.78 in
the same period, respectively. In particular, a local minimum is experienced at 5 pm.
Finally, the different policies show different average switch ON rates also during
the peak of the traffic (i.e., between 7 pm and midnight). In details, the B and HBL
policies maintain an average switch ON rate of 0.65 and 0.67, respectively. On the
other hand, the Bh and HBLh reach higher values, respectively 0.74 and 0.76.

8.4.3 Energy Consumption and Network Performance

The effects of the learned policies on the network performance are discussed in this
section. In particular, the grid energy consumption and the traffic drop experienced
in the month of December are reported in Table 8.5, considering the different
representations of the environment.

The worst performance in terms of traffic drop is achieved by the B representation.
The HBL representations leads to 6% less drop than the B representation, at the
price of a small increase in the grid energy consumption. The best performance
is achieved by the HBLh representation, which leads to the smallest values of grid
energy and traffic drop. The Bh representation returns very similar values of grid
energy and traffic drop. This suggests that a simple model including the battery
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Figure 8.11: Average switch ON rate of the SBSs when adopting different policies in the
month of December. The shaded area represents the shape of the traffic
demand.

Table 8.5: Grid energy consumption and traffic drop performance achieved at convergence
when using different representations of the environment

State definition Grid energy [kWh] Traffic drop [GB]

[B] 651.4 108.6
[H,B,L] 652.1 101.1

[B, h] 647.9 72.2
[H,B,L, h] 647.6 70.1

level and the hour of the day is sufficiently good to capture the dynamics of the
environment and return high performance.

8.5 Conclusions

In this chapter, we have proposed a RAN setup in which a hierarchical cell structure
is deployed within the same geographical area with BSs of different scale factors,
transmission power, computational capabilities and coverage areas. This federation
of BSs together with the distributed harvesters and storage devices at SBSs sites form
a micro-grid, whose operations are managed by an energy management system in
charge of controlling the intermittent and erratic energy budget from the RESs. We
have focused on the design of online algorithms capable of jointly control sleep mode
and energy sharing within the micro-grid. Three different implementations of ML
models are proposed for the central agent, namely Imitation Learning, Q-Learning
and Deep Q-Learning. We have discussed on the achieved performance, complexity
and feasibility of those different ML approaches.

108 Chapter 8 Online Direct Load Control plus Energy Sharing



The DQL algorithm tailored for our scenario presents higher performance in terms
of energy saving and system outage, and is able to control highly dense scenarios,
where the other approaches fail due to complexity and memory issues. The energy
and cost analysis provides an insight on the greater savings that can be achieved by
an operator implementing the proposed DQL algorithm in the central controller of
the RAN setup with energy harvesting capabilities.

Finally, we analyzed the performance of the DQL approach when considering differ-
ent representations of the environment. Numerical results show that the adopted
representations affect both the number of training episodes needed to converge
and the asymptotic values of convergence. Moreover, the state representations may
produce different operative policies, since they change the way the agent senses the
environment. The performance of the system under study show that including the
hour of the day in the state representation is fundamental to efficiently reduce both
the energy consumption and the traffic drop.
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9Conclusions

In this final chapter, which conclude the dissertation, we provide a summary of the
achieved results and what we consider to be the most promising directions for the
related future works.

The chapter is organized as follows. In Section 9.1, we discuss the results achieved
in this dissertation. Then, in Section 9.2 we introduce the related future works.

9.1 Summary of the Results

The goal of this dissertation is to contribute on the design of sustainable mobile
networks. In particular, we focused on the analysis of the performance of optimal and
online control algorithms for HetNets with energy harvesting capabilities. Moreover,
we investigated on the possibility of intelligently routing energy in a micro-grid of
interconnected conventional/renewable energy sources and loads.

The dissertation is divided into one introductory part and 4 main parts:

1. Chapter 1, Chapter 2, Chapter 3, Chapter 4 introduce the investigated problem
and provide a discussion on the state-of-the-art literature. Moreover, the math-
ematical models of the system under studying is proposed and an introduction
on the adopted mathematical framework is given.

2. Chapter 5 presents the first technical contribution part on the characterization
of the solar energy source.

3. Chapter 6, presents the second technical contribution part on the design of an
optimal load control solution for SBSs powered with solar panels.

4. Chapter 7 presents the third technical contribution part on the definition of a
optimal load control and energy sharing solution for SBSs powered by solar
panels.
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5. Chapter 8 presents the fourth technical contribution part on the design of
online ML algorithms capable of jointly control sleep mode and energy sharing
within a micro-grid of interconnected BSs.

In the next sections, we summarize the contributions and the conclusions of the
fourth main technical parts (i.e., items 2-5).

9.1.1 Characterization of the Solar Energy

The first technical section of this dissertation proposes a method based on unsuper-
vised learning to extract hidden features of the solar energy generation. Moreover,
clustering performed on the extracted features allows grouping geographical loca-
tions according to their similarities in terms of solar energy generation.

The results analyzed in the chapter show that clustering the extracted features
provides a valid support for learning latent variables of the solar energy generation
process. This approach can therefore be adopted to have a more detailed characteri-
zation of different locations with respect to state-of-the-art solar maps that relies on
a single metric (e.g., annual solar radiation).

9.1.2 Optimal Direct Load Control

Current trends anticipate that future mobile networks will be composed of dense
deployments of heterogeneous BSs that will allow meeting the foreseen huge traffic
demand. New generation networks are also going to be very demanding in terms of
energy consumption from the power grid. The high power requirements suggests
that RESs can be adopted to reduce the environmental impact of mobile networks
while also enabling cost savings from the MNO perspective. However, the adoption
of RESs entails higher management complexity do to the inherently erratic and
intermittent nature of this sources, which may cause fluctuating energy inflow and
produce system outage.

In the second technical part we have therefore introduced an optimal DLC of a
two-tier mobile network based on DP. We have provided a graphical representation
of the problem and introduced an algorithm based on the shortest path method to
find the optimal ON/OFF policy for the SBSs.

The analysis of the results achieved by the proposed algorithm provided a first
insight on the characteristics of the optimal ON/OFF policies and how those are
affected by the energy and traffic processes. In particular, we analyzed the ON/OFF
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policies for a winter and a summer month in three different traffic areas. Then we
compared the achieved performance with the one of a naive algorithm in terms of
grid energy consumption and system traffic drop. In particular, a further analysis on
the exceeding energy available at the SBS sites in summer months suggested that this
energy may be shared with the MBS to further reduce its grid energy consumption
and therefore increase the mobile network self-sustainability.

9.1.3 Optimal Direct Load Control plus Energy Sharing

In the third technical part, we extended our analysis by investigating a scenario
in which BSs within the same geographical area are grouped in a micro-grid. The
micro-grid enables the efficient use of the renewable energy coming from distributed
sources and facilitates the off-grid operation of the RAN.

In particular, we targeted the design of an optimal load control method with energy
sharing within the micro-grid, and we solved the optimization problem by using the
approach introduced in the previous technical part.

We studied the dimensioning of the energy harvesting and storage devices, and
we analyzed how the dimension of the adopted deployment affects the optimal
policies, the network performance and the monetary cost of a MNO. The numerical
results demonstrate that the intelligent renewable energy management is essential
to reduce the dimensions of the harvesting/storage devices and that it also leads to
high energy and cost savings for a MNO.

9.1.4 Online Direct Load Control plus Energy Sharing

In the last technical part, we investigated the control of sleep modes and energy
sharing among the BSs by a centralized agent which implements ML techniques and
is capable of learning how to efficiently operate the network. We proposed three
different implementations of ML models based on supervised and reinforcement
learning, and we analyzed their performance, complexity and feasibility.

The proposed DQL algorithm achieved better performance in terms of energy saving
and system outage and was able to control dense scenarios, where other approaches
failed due to memory and complexity issues.

Moreover, we extended the analysis of the DQL algorithm by investigating how
the representation of the environment affects the training, the policies and the
performance of this approach. Numerical results showed that including the hour of
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the day in the environment state representation is fundamental for the design of a
control algorithm that allows efficiently reducing both the energy consumption and
the traffic drop.

9.2 Future Works

The sustainability of future mobile networks still represents an important challenge
for the coming years. In this dissertation, we proposed and analyzed new approaches
that were not covered in the literature. In the following, we provide some open
issues that we identified while working on this topic. In particular, we focus on what
we consider being the most promising research lines that should be investigated in
the following years.

9.2.1 Characterization of the Solar Energy Generation

In Chapter 5, we introduced an approach based on feature extraction to learn hidden
features of the solar energy generation process. This method allowed obtaining a
classification of geographical locations that consider different characteristics of the
solar energy generation process, going beyond state-of-the-art solar maps.

The input of the adopted feature extraction methods consisted of daily traces of solar
energy generation. We believe that the adoption of additional input variables may
allow obtaining a more detailed characterization of the process. In particular, the
predictability of the solar generation process is an important factor to consider in the
future, due to the development of control algorithms that relies on the prediction of
the energy harvesting process. Weather forecast data could be included as an input
of the adopted feature extraction method. In this way, cities with the same solar
energy characteristics (according to what reported in Chapter 5) could be classified
into different clusters based on the different level of predictability (e.g., cities in
which the weather conditions are mostly stable and cities with high variations would
fall into two different clusters).

Finally, the application of our proposed method to characterize other RESs (e.g.,
wind) needs to be investigated. Moreover, feature extraction performed on datasets
merging data from different types of RES could provide a more complete characteri-
zation of the cities, based on their overall harvesting capabilities. This classification
is expected to be useful when considering the deployment of heterogeneous RESs.
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9.2.2 Updated and Flexible Power Consumption Models

In the last decade, Cloud Computing has emerged as a new paradigm characterized
by the idea of a centralization of computing, storage and network management
implemented in the Clouds (i.e., datacenters, core networks, etc.). However, in recent
years, a new trend has emerged with cloud functions moving towards the edges of the
network. This new paradigm is named Mobile Edge Computing (MEC) and its main
feature is to push computing functions and storage to the network edges (i.e., BSs
and access points) to allow intensive computation and low latency [65]. Therefore,
the processing component of future BSs power consumption is expected to be more
relevant and it needs to be accurately modeled. Moreover, new models should be
versatile, allowing the estimation of the power consumed by the developed network
control algorithms (e.g., our proposed direct load control centralized controller).

9.2.3 Uncoupled BSs - RESs

In Chapter 6, we highlighted how energy sharing among BSs represents a valid
method to reduce the mobile network grid energy consumption. We believe that this
approach introduces advantages that need to be further investigated. In particular,
the introduction of energy sharing capabilities allows removing the requirement of
having a solar panel located at every SBS site. We believe that in some scenarios (e.g.,
SBSs with low traffic demand), having one solar panel per SBS may be less energy
and cost effective than having less solar panels of bigger dimensions. Therefore, an
analysis of the costs and benefits experienced when considering different amounts
and dimensions of the harvesting devices could be performed similarly to what
has been done in Chapter 7. Furthermore, the harvesting devices could also be
uncoupled from the SBSs and deployed in the proximity of them, taking advantage
of bigger spaces.

9.2.4 Grid of Heterogeneous Sources and Loads

The integration of heterogeneous sources and loads may allow reaching high energy
savings thanks to the cooperation between different elements of the micro-grid.

In particular, the deployment of heterogeneous RESs (e.g., solar panels and wind
turbines) needs to be investigated since this approach is expected to increase the
micro-grid self-sufficiency, taking benefit from the low correlation between the
different energy processes.
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On the other hand, different types of load can be introduced into the framework
to be managed by the proposed centralized controller. We consider, for instance,
the emerging concept of intelligent street lighting[56, 74] based on the deployment
of smart lampposts. These devices are going to implement presence detectors, to
reduce the lamp power consumption when light is not needed. Therefore, the lamp
load process is going to be stochastic and dependent from different factors (e.g.,
available natural light, people presence, etc.). The management of new loads entails
a higher complexity of the controller, but it open new possibilities for a more efficient
use of the harvested energy.

9.2.5 Learning Agents and Complexity

In Chapter 8, we proposed three centralized controller implementations based on
supervised and reinforcement learning. Different learning algorithms and neural net-
works architectures need to be investigated since they could provide an improvement
in terms of performance and complexity. In particular, the application of recurrent
neural networks as function approximators for the DQL approach needs to be studied
since it may allow taking advantage of the sequential characteristics of the energy
and traffic processes.

The clusterization of the mobile network introduced in our reference model allowed
to scale the complexity of the centralized controller. However, the augmented number
of loads in the cluster may lead to big action spaces, unmanageable for the learning
algorithms. An ability to generalize over the set of actions is necessary to handle
scenarios with increased number of loads. Some recent literature investigated this
problem in the case of large discrete action spaces [24] and continuous control [59],
by considering approaches based on the actor-critic method [92] and deep RL. We
believe these new methods may allow better scaling our proposed architecture,
allowing dealing with more complex scenarios. However, the implementation of
such methods into real-world control problems needs to be further investigated.
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