
  
 
 
 
 
 

 
 

 
 
 

 
Image processing techniques for plant phenotyping 

using RGB and thermal imagery  
 

Técnicas de procesamiento de imágenes RGB y térmicas  
como herramienta para fenotipado de cultivos 

 
José Armando Fernández Gallego 

 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial 4.0. Espanya de 
Creative Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento - NoComercial 4.0.  España de 
Creative Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial 4.0. 
Spain License.  
 





 



 

 1 

IMAGE PROCESSING TECHNIQUES FOR PLANT PHENOTYPING USING 

RGB AND THERMAL IMAGERY 

 

TÉCNICAS DE PROCESAMIENTO DE IMÁGENES RGB Y TÉRMICAS 

COMO HERRAMIENTA PARA FENOTIPADO DE CULTIVOS  

 

Memoria presentada por Jose Armando Fernández Gallego para optar el título 

de Doctor de la Universitat de Barcelona. Este trabajo se enmarca dentro del 

programa de doctorado de Biología Vegetal de la Facultad de Biología de la 

Universidad de Barcelona. Este trabajo se realizó en el Departamento de 

Biología Evolutiva, Ecología y Ciencias Ambientales, Unidad de Fisiología 

Vegetal de la Facultad de Biología de la Universidad de Barcelona bajo la 

dirección del Dr. José Luis Araus y el Dr. Shawn Carlisle Kefauver. 

Doctorando 

Jose Armando Fernández Gallego 

             Director y tutor                    Director 

 

  Dr. Jose Luis Araus Ortega    Dr. Shawn Carlisle Kefauver 

 

BARCELONA, SEPTIEMBRE 2019 



 

 2 

(space) 
 
 
 
 
 
 
 
  



 

 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a Vivi por hacer parte cada día de este proceso,  
      a ella todo mi agradecimiento y admiración. 
 
 
 
 
 
 

a mi Familia por ser verdaderamente ellos los que  
motivaron en mi el gusto por el aprendizaje  

serán siempre mi mayor ejemplo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 4 

(space) 
 
 
 
  



 

 5 

Content 

ACKNOWLEDGMENTS 7 

INTRODUCTION 9 

1. CEREALS, CLIMATE CHANGE AND PHENOTYPING FOR GLOBAL FOOD SECURITY 11 
2. IMAGING, APPLICATIONS AND PLATFORMS FOR PLANT PHENOTYPING 14 
3. DIGITAL IMAGE PROCESSING AND MACHINE LEARNING FOR PLANT PHENOTYPING 22 

OBJECTIVES 25 

REPORT OF THE THESIS DIRECTORS 29 

RESULTS 39 

CHAPTER 1 41 
CHAPTER 2 61 
CHAPTER 3 75 
CHAPTER 4 117 
CHAPTER 5 135 

DISCUSSION 153 

1. EAR COUNTING USING IMAGE PROCESSING SYSTEMS 156 
2. PHOTOSYNTHETIC AREA OF THE CANOPY USING IMAGE PROCESSING SYSTEMS 160 
3. EQUIPMENT CONSIDERATIONS AND FUTURE WORKS 164 

CONCLUSIONS 169 

RESUMEN DE LA TESIS 175 

REFERENCES 189 

 
  



 

 6 

(space) 
 
  



 

 7 

Acknowledgments 

 
La primera persona que conocí al llegar a la Universidad fue la Dr. Isabel 

Muñoz, mi más sincero agradecimiento por ayudarme en esta primera etapa, se 

hizo fácil el ingreso al programa gracias a su apoyo. Nunca olvidaré el grato 

recibimiento al grupo por parte de Rut y Shawn, fue muy importante para mi 

empezar a ser parte del grupo de esta forma. Muchas gracias Jose Luis y Dolors 

por darnos a Vivi y a mi la bienvenida a la ciudad, sus recomendaciones nos 

ayudaron a iniciar nuestra estancia mucho mejor. 

 

A mis directores de tesis, Jose Luis y Shawn, mil gracias por su paciencia 

y ayuda, por todas las correcciones y retos; pero sobre todo por enseñarme, sin 

que fueran consientes, lo valioso de ser una persona sencilla desde el trabajo de 

campo hasta la presentación de los resultados. Muchas gracias a Nieves y 

Mariate por ayudarme durante todo este tiempo con el difícil trabajo de campo y 

todas las dudas que iban surgiendo sobre el ensayo. Muchas gracias a los 

integrantes del grupo; Jordi Bort, Dolors, Rut, Rubén, Cristina, Susan, Omar, 

Fadia, Adrián, Luisa, Fatima, Thomas, Melissa y Joel por ayudarme a entender 

conceptos e ideas que estaban fuera de mi alcance, todos ellos hacen parte 

activa de este trabajo.  

 

A la Gobernación del Tolima (Colombia) por apostar por la educación a 

través del proyecto “Formación del Talento Humano de Alto Nivel” liderado por 

la Universidad del Tolima. Muchas gracias al director del proyecto Jonh Jairo 

Méndez, la coordinadora Angélica Torres, a Ángela Collazos, Julián Murillo, 

Gustavo Gallardo y Katherine Leiva por su disposición y ayuda ante todas las 



 

 8 

dudas y trámites a lo largo de este proceso, ellos hicieron posible la realización 

de este trabajo. 

 

Muchas gracias a nuestras Familias, bien saben todo el aprecio y cariño 

que les tenemos, no fue fácil para Vivi y para mi alejarnos, pero todo fue más 

fácil con su apoyo. Muchas gracias a los amigos que fui conociendo poco a poco 

en el transcurso de este trabajo y a los amigos de siempre. 

 

 
 
 
  
 
  



 

 9 

 
 
 
 
 
 
 
 
 

INTRODUCTION 
 

 
 
  



 

 10 

 
(space)  



 

 11 

GENERAL INTRODUCTION 

 

1. Cereals, climate change and phenotyping for global food security  

World cereal stocks need to increase in order to meet growing demands 

(FSIN, 2017). Currently, maize, rice, wheat, are the main crops worldwide, while 

other cereals such as barley, sorghum, oat or different millets are also well placed 

in the top list; in 2019 FAO’s forecast an increase in the cereal production of 1.2% 

from 2018, to 2.685 million tons. As a reduction in maize production is expected 

and rice production is likely to remain similar to previous years, the increase in 

the cereal production globally is attributed to wheat and barley (FAO, 2019). 

Europe contributes with around 20% of the global cereal production, consisting 

mostly of wheat and barley covering more than the 70% of the cultivated area 

(Schils et al., 2018). 

Crop productivity is affected directly by climate change factors such as heat, 

drought, floods or storms. In fact, in countries experiencing high exposure and 

risk related to climate variability and extremes, at least the 80% of the interannual 

production variability can be explained by climate related factors (FAO et al., 

2018). Researchers agree that global climate change is having a major impact 

on crop productivity (Wang et al., 2018). Moreover, the temperatures are 

anticipated to rise by at least 0.2 ºC per decade over the next 30 years and 

additionally, by the end of this century, the temperature will increase by up to 

4.5ºC (Bernstein et al., 2008). Directly, this global warming will increase plant 

respiration (not only dark respiration but also photorespiration) rates, while 

shortening crop duration, and therefore will reduce crop productivity and yield 

(Wang et al., 2018).  
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In that way, several studies have been focused on climate change scenarios 

and more specifically abiotic stresses in cereals. For instance, in the case of heat 

stress, high temperatures between anthesis to grain filling can decrease grain 

yield (Asseng et al., 2011), most likely due to the reduced time to capture 

resources related to accelerated senescence (Farooq et al., 2011). Water stress 

either associated to a decrease in precipitation, due to an increase in the heat-

driven transpirative demand, or both together, can result in stomatal closure as a 

means to reduce the loss of water, subsequently causing leaf temperatures to 

increase (Vicente et al., 2018). Salinity stress, often due to rising sea levels (a 

direct by product of temperature increases causing ice melting and subsequent 

expansion of sea water volumes globally) can also affect plant cereal growth and 

grain yield (Abhinandan et al., 2018; Cocozza et al., 2013).  

In order to deal with the climate change and future environmental scenarios, 

plant breeding is one of the main alternatives (Araus et al., 2018; Araus and 

Kefauver, 2018); breeding is even considered to contribute to the larger 

component of yield growth compared to management (Fischer and Edmeades, 

2010). Plant breeding programs are focused on identifying genotypes with high 

yields and quality to act as a parentals and further the best individuals among the 

segregating population thus develop new varieties of plants. Breeders use the 

phenotypic data, plant and crop performance, and genetic information to improve 

the yield by selection (GxE, with G and E indicating genetic and environmental 

factors) (Fischer and Edmeades, 2010). More factors must be taken into account 

to increase the yield, such as, for instance, the education of farmers, economic 

incentives and the use of new technologies (GxExM, with M indicating 

management). This process started in the twentieth century when evolution 
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principles became firmly established. In order to develop new varieties, the 

experimental design in plant breeding has been established through different 

spatial approaches and multisite scheme. Thus for example randomized blocks; 

where each block or plot contain one variety, called randomized complete plot 

design (Bos and Caligari, 1995); or using split-plot replicates per each variety, 

called randomized split plot design (Sharma, 2006). Currently, this design is still 

used as a strategy to develop new varieties more resilient to environmental 

changes while the grain yield remains constant or increase. After the Green 

Revolution where semi-dwarf and dwarf cultivars were induced and thus a higher 

harvest index (HI) and yield were achieved (Sharma, 2006), a multidisciplinary 

approach, combining the different components of the breeding pipeline,  is crucial 

to have a new Green Revolution (Martin-Guay et al., 2018). Among these 

components plant phenotyping is nowadays realized a major bottleneck limiting 

the genetic advance (Araus et al., 2018; Araus and Cairns, 2014). 

Plant phenotyping have been carried out by farmers for a very long time as 

they, year after year, followed a natural tendency to select the best seed from the 

top performing varieties for replanting (Yol et al., 2015). Plant phenotyping is 

related with the observable (or measurable) characteristics of the plant while the 

crop growing as well as the association between the plant genetic background 

and its response to the environment (GxE). In traditional phenotyping the 

measurements are collated manually, which is tedious, time consuming and 

prone to subjective errors. Nonetheless, nowadays the technology is involved in 

many applications. From the point of view of plan phenotyping, technology has 

been incorporated as a tool. The use of image processing techniques integrating 
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sensors and algorithm processes, is therefore, an alternative to asses 

automatically (or semi-automatically) these traits. 

 

2.  Imaging, applications and platforms for plant phenotyping 

Images have become a useful tool for plant phenotyping because most 

frequently data from the sensors are processed and analyzed as an image in two 

(2D) or three (3D) dimensions (Pound and French, 2014). An image is the 

arrangement of pixels in a regular Cartesian coordinates as a matrix, each pixel 

has a numerical value into the matrix which represents the number of photons 

captured by the sensor within the exposition time (Peres, 2017). Therefore, an 

image is the optical representation of the object illuminated by a radiating source 

(Pitas, 2000). The main characteristics of images can be defined by the sensor 

spectral and spatial properties, with the spatial properties of the resulting image 

also heavily dependent on the sensor platform (which determines the distance 

from the target object). 

 

2.1.  Imaging spectrometers, wavelength spectrum  

Imaging spectrometers, or hyperspectral imagers, are designed to measure 

the energy or photons collected from an object. These sensors can be classified 

on two different categories based in: (i) the method by they achieve the spatial 

discrimination, and (ii) the method by they achieve spectral discrimination (Sellar 

and Boreman, 2005). Regarding spatial acquisition for images, there are two 

main technologies: (i) push-broom sensors, that scan the object in along-track 

and cross-track directions (pixels by pixel or by row of pixels), and (ii) frame 

sensors, that acquire a scene (all pixels at the same time) (Prieto-Blanco et al., 
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2008). Regarding acquire discriminations for images, there are three main 

techniques: (i) filtering, that uses a band-pass optical filter, (ii) dispersive, that 

uses a prism, a grading, or its combination to spread out the wavelengths, and 

(iii) interferometric, that uses the calculation of the Fourier transform by two-beam 

interference to spectrally filter the image (Prieto-Blanco et al., 2008). As example, 

a conventional digital camera acquires the spectral information of three broad 

bands of the spectrum (red, green and blue); but also, hundreds of narrow 

different spectral bands can be acquired using hyperspectral sensors. It is close 

related with the sensor sensibility. 

 

 

Figure 1. Wavelength spectrum and variety of camera sensors available to 

capture different wavelengths (Fahlgren et al., 2015). Ultraviolet (UV) cameras 

(Brugger et al., 2019). Visible (VIS) cameras. Infrared (IR) cameras detect near 

infrared (NIR) and short-wave infrared (SWIR). Thermal infrared (TIR) cameras 

detect long-wave infrared (LWIR). Hyperspectral cameras detect hundreds of 

spectral bands with nm-level resolution providing continuous coverage, often 

covering between 350 and 1000 nm or even reaching 2500 nm (Fahlgren et al., 

2015). Multispectral cameras detect few spectral bands (usually from three to 

twelve bands) also from 350 to even 2500 nm (Lleó et al., 2009). 
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The sensor sensitivity defines the spectral and spatial characteristics that 

can be measured; and moreover, the wavelength is related to the technology of 

the sensor being used and the plant characteristics to be measured (L. Li et al., 

2014) (Fig. 1). Camera or frame sensor devices are widely used, for instance, 

Red/Green/Blue (RGB) broad band multispectral cameras are used for visible 

wavelengths (VIS, 400-700 nm), and laser devices such as Light Detection and 

Ranging (LiDAR) sensor (visible red light, 650 nm). This wavelength range is 

associated with chlorophyll absorption primary in the blue and the red 

wavelengths and data acquisition for visual characteristics and structure of the 

plant and the canopy (Rasmussen et al., 2016). Near-infrared (NIR, 700-1000 

nm) and shortwave infrared (SWIR, 1200-2500 nm) are associated with water 

absorption features and cellulose absorption in the region between 2200-2500 

nm, for this absorption features, IR cameras are used (Manley et al., 2011; Perez-

Sanz et al., 2017; Sankaran et al., 2015). Long wavelengths or thermal (LWIR, 

7500-14000 nm) are most often used to study the dynamic plant responses 

related to water status and transpiration rates, where lower temperatures reflect 

higher rates of leaf transpiration due to the loss of energy from the latent heat of 

vaporization (Cozzolino, 2017; Fernandez-Gallego et al., 2019a; Hou et al., 

2019). Recently, ultraviolet range (UV, 200-380 nm) have also been used for 

monitoring stress processes in barley through a UV camera under controlled 

conditions (Brugger et al., 2019). 

 

2.2.  Spatial resolution 

Spatial resolution is related to many factors like sensor field of view (FOV), 

distance between the sensor and the object of study, and the number of detectors 
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in the sensor. In aerial photogrammetry this resolution is referred as Ground 

Sampling Distance (GSD) and it refers to the area covered on the ground by a 

single pixel (Navulur, 2006). In the case of frame sensors like a RGB-cameras 

sensor, the spatial resolution is related to the sensor size, image ratio, camera 

focal length and the distance between the camera and the object of study 

(Jensen, 2007). In general, the spatial resolution or GSD is main defined by the 

platform used such as satellite, aerial or ground platform (Fig. 2). 

The spatial resolution cannot be easily changed in some cases, as for 

example in a satellite platform. While in aerial and ground platforms the spatial 

resolution can be defined in most cases using a higher/lower resolution sensor at 

a higher/lower distance, allowing more or less details of the object. Therefore, the 

spatial resolution specifications and the low- or high-resolution assumptions, 

depends exclusively on the application itself. In the same way, the concept of 

high resolution is relative to the image; if the image has more pixels than the 

number of pixels required to achieve the goals of the study, it can be considered 

high resolution. 

 

2.3.  Platform scale 

The platform scale and the spatial resolution are in fact closely related by 

the sensor resolution and technology (Fig. 2). The most common devices used 

for crop and plant phenotyping include multispectral, hyperspectral, thermal and 

fluorescence sensors mounted on a platform (Araus et al., 2018). The 

phenotyping platforms can be classified on three main categories: 
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Figure 2. Phenotyping platforms scales from satellite to ground. Satellite, manned 

and unmanned aerial vehicles, phenotyping platforms, phenomobiles and 

phenopoles (Araus et al., 2018). 

 

Satellites 

The biggest platform scale is the satellite (Fig. 2), where multispectral data 

and high spatial resolution are combined. At this scale, general details from the 

surface can be observed with a spatial resolution of meters [m] at height 

distances up to 400 km. For instance, the Sentinel-2 MSI sensor launched in 

2015, it is located at approximatively 800 km distance with 10 m and 20 m spatial 

resolution and sensor wavelengths from 443 nm to 2190 nm (Drusch et al., 2012). 

The WorldView-2 sensor allows spatial resolution up to 0.46 m (Tattaris et al., 

2016). Satellite image data is mainly used for wide cover areas; it is a fast and 
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labor-saving tool, and furthermore, in most of cases, freely available and open 

access to users. Satellites have been used in related studies such as yellow rust 

discrimination for winter wheat (Zheng et al., 2018), leaf rust and infection levels 

discrimination in coffee (Chemura et al., 2017), identification of intra-field 

variations in winter wheat (Jeppesen et al., 2017), crop and tree species 

classification (Drusch et al., 2012), and for instance, fire burn severity 

discrimination (Drusch et al., 2012). 

 

Aerial vehicles  

The next scale is related with aerial vehicles (Fig. 2), for this approach the 

multispectral sensors and spatial resolution can be fixed according to the 

requirements of each application, thus providing more control over image 

acquisition and image characteristics. In this case, sky conditions can be avoided 

before acquisition (sunny or cloudy conditions), optimal daytime can be selected 

(minimizing variation in solar view angle) and more information data can be also 

acquired. At this scale, more canopy detail can be observed with a spatial 

resolution of centimeters [cm] at height distances up to 4 km and 200 m for 

manned and unmanned aerial vehicle, respectively. For example, using 

distances up to 25 m, in the case of cereals, soil, leaves and ears can be 

differentiated. Several types of aerial vehicles have been used for phenotyping 

such as multi-rotors, helicopters, fixed-wing, blimps and flying wings (Yang et al., 

2017). For instance, manned helicopters have been used to assess the canopy 

temperature in wheat (Deery et al., 2016) and crop status and land topographical 

features (Sugiura et al., 2003); as well as unmanned vehicles multi-rotor have 

been used for assessing grain yield and nitrogen use efficiency in barley 
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(Kefauver et al., 2017), phosphorous in maize (Gracia-Romero et al., 2017), 

automatic wheat ear counting (Fernandez-Gallego et al., paper under review), 

plant density estimation (Jin et al., 2017), growth status assessment in wheat (Du 

and Noguchi, 2017) and weed control (Gonzalez-de-Soto et al., 2016). 

 

Ground platforms 

At ground scale and field conditions (Fig. 2); phenotyping platforms, ground 

vehicles and handheld alternatives have been widely used. Those alternatives 

allow to acquire more canopy detail from the multispectral sensors with a spatial 

resolution of millimeters [mm] at height distances up to 10 m. In the case of 

cereals, soil, leaves and ears, images can be acquired with considerably higher 

detail, compared to the previous larger scales, and sky conditions before 

acquisition and optimal daytime can be established. In addition, the close 

distance to the crops allows the use of low-cost sensors with high spatial 

resolution. As phenotyping platforms (Fig. 2), the ETH field phenotyping platform 

have been designed using a cable-suspended system above the crop 

(Spidercam system) in wheat, maize and soybean (Kirchgessner et al., 2017); 

this platform is used to assess canopy cover, canopy height and acquire thermal 

and multi-spectral imaging. The Scanalyzer platform is another example based 

on an industrial portal crane system (Virlet et al., 2017); this system can also 

assess canopy cover, canopy height, canopy temperature, heading and flowering 

time, and automatic wheat ear counting. A simple platform has been also used 

for assessing heading time in wheat using a conventional camera at 5 m above 

the crop (Zhu et al., 2016). As for terrestrial vehicles, wheeled vehicles  are manly 

used on difficult terrain conditions (Bonadies et al., 2016) for weed management 
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(Bawden et al., 2017) and estimate plant height, plant moisture content, tiller 

density and dry biomass in wheat (Busemeyer et al., 2013), three dimensional 

(3D) canopy structure in wheat (Liu et al., 2017), vegetation indexes and canopy 

temperature in cotton (Andrade-Sanchez et al., 2014). The wheeled vehicles, 

which use basic or standard wheels, (e.g. phenomobiles) (Fig. 2) are mainly used 

on flat terrain conditions and usually driven if motorized or pushed by the user; 

for instance, this alternative has been used for quantifying the plant height, 

ground cover and above-ground biomass in wheat (Jimenez-Berni et al., 2018) 

and wheat ear counting (Zhou et al., 2018a). 

Finally, in the case of handheld alternatives; the data is acquired supporting 

the sensor by hand (or using a phenopole, Fig. 2) walking along the extent of the 

crop. Moreover, data can be acquired without previous training and may provide 

for more consistent results than afforded by the human eye, where subjectivity 

may influence quantification. For this approach, several studies have been also 

developed for instance, for counting individual red grapes in vineyards (Font et 

al., 2014), apple fruits (Stajnko et al., 2004), mango fruit (Payne et al., 2013), 

wheat ear counting (Cointault et al., 2008; Madec et al., 2019; Zhou et al., 2018b), 

wheat and barley ear counting (Fernandez-Gallego et al., 2019b, 2019a, 2018a, 

2018b), blueberry identification (H. Li et al., 2014), segmentation of vegetation 

(Arroyo et al., 2016; Guo et al., 2017, 2013), canopy cover and photosynthetic 

area (Casadesús et al., 2007; Fernandez-Gallego et al., 2019c; Meyer and Neto, 

2008; Power and Alessi, 1978; Wang et al., 2013; Woebbecke et al., 1995; Yu et 

al., 2017), crop sensibility to yellow rust in wheat (Vergara-Diaz et al., 2015), 

assessing maize lethal necrosis (Kefauver et al., 2016), estimating canopy 
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temperature in vineyards (Leinonen and Jones, 2004) and wheat (Thapa et al., 

2018).  

 

3. Digital image processing and machine learning for plant phenotyping 

From the digital image processing point of view, an automatic image 

processing and quantification system is a pipeline system with four main steps (i) 

acquisition (ii) pre-processing (iii) segmentation and (iv) classification (Fig. 3).  

 

   

Figure 3. Pipeline image processing system example (i) acquisition: input image 

(ii) pre-processing: useless information is avoided (iii) segmentation: areas of 

interests are isolated (iv) classification: areas are labeled. 

 

In each step, different algorithm techniques are used in order to interpret 

images much as human do but with the use of more quantitative than qualitative 

metrics that can provide greater precision and consistency (Jähne, 2005). 

Although in fact, image interpretation can be conducted by human eye inspection 

from the acquisition step onwards and avoiding further steps; the image 

processing systems have been introduced in order to deal with repetitive and 

tedious processes, subjective measurements, automatic object identification and, 

in general, to interpret visual appearance or geometric properties and transform 

(i) acquisition (ii) pre-processing (iii) segmentation (iv) classification
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it into another type of dataset (Aber et al., 2010). Therefore, each step in the 

pipeline system (Fig. 3) has a specific task: (i) in the acquisition step, the image 

data is recorded. Properties such as spatial resolution, light conditions, camera 

technology, file and data format and calibration are defined (Sonka et al., 1993); 

(ii) the pre-processing step is mainly related with the improvement of the image, 

avoiding distortions or enhancing features that contribute to the next image 

processing step (Sonka et al., 1993); (iii) then, the image analysis pipeline may 

continue to the segmentation phase, which is one of the most important and 

difficult tasks in image processing (Tyagi, 2018); this step recognizes the areas, 

pixel or pixels, where the object of study is in the image and, in that way, the 

image is divided into parts to provide the spatial location of each object; (iv) the 

classification step identifies by labels each segmented object (Vasuki and 

Govindaraju, 2017). Thus, at this point in the end of the pipeline system, the 

individual pixels belong to a single area into the image as well as each area is 

labeled. The image processing system has reached its goal when the object of 

study has been recognized (measured, described or counted) into the input 

image. 

From the plant phenotyping point of view, researchers in general, and 

agronomists and breeders in particular, routinely detect, measure and classify a 

wide variety of phenotypes, mainly using visual inspection in field conditions 

(Kelly et al., 2015). Because of these circumstances, image processing systems 

have a great challenge; far from laboratory or photography studies under 

controlled conditions, field conditions increase algorithm complexity. For 

instance, the development of robust techniques to operate under changing 

sunlight conditions or shadows (for acquisition and preprocessing steps) and 
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overlapping for adjacent plant’s organs (for segmentation and classification 

steps) (L. Li et al., 2014). Additionally, “field plants do not pose nicely for the 

camera” (Kelly et al., 2015). Besides, although many image processing 

techniques were originally developed for medicine diagnostic and industrial 

automation, several image processing techniques have been applied for plant 

phenotyping using platforms equipped with multiples sensors (Fahlgren et al., 

2015). Moreover, these platforms can acquire samples several times per day and 

over the entire season; therefore, large volume of data is involved. In order to 

understand all this data, different types of image processing and machine 

learning techniques have been adapted, especially for the segmentation and 

classification steps (Fig. 3) where its implementation and meaning is mostly 

rooted in mathematics instead of human eye interpretation (Gori, 2018). 

As a summary, sensors and image processing systems can be used as 

useful tools for plant phenotyping. Sensors allow the detection of visible and eye-

invisible characteristics of the plant, and automatic image processing systems 

can be used to avoid manual or subjective tasks, that may be considered as time 

consuming or difficult to quantity by the human eye. This data can be used for 

phenotype selection in plan breeding programs or for crop management in 

agronomy. 
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OBJECTIVES 

 

The main objective of this thesis is to develop image processing techniques for 

plant phenotyping using RGB and thermal imagery. 

 

Specific objectives: 

 

- Develop algorithms for wheat ear detection and counting using RGB and 

thermal zenithal images above the crop and validate using manual image-

based counting. In the case of RGB images an additional objective is to 

develop specific settings for ground and UAV platforms. Use this variable 

as agronomical component to study its relationship with grain yield. 

 

- Develop a protocol using RGB vegetation indexes to phenotype and predict 

wheat grain yield under different growing conditions. 
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Integrative Crop Ecophysiology Group 

https://integrativecropecophysiology.com  

Plant Physiology Section, Department of Evolutionary Biology, Ecology and 

Environmental Sciences, Faculty of Biology, University of Barcelona, Diagonal 643, 

08028, Barcelona, Spain. Tel. 934 021 465, Fax 934 112 842  

 

Dr. José Luis Araus and Dr. Shawn Carlisle Kefauver, as directors of the thesis 

titled “Image processing techniques for plant phenotyping using RGB and thermal 

imagery” which was developed by the doctoral student Jose Armando Fernández 

Gallego, 

 

Report about the impact factor and the participation of the doctoral student in the 

articles included as chapters in the doctoral thesis. 

 

Chapter 1: The article “Wheat ear counting in-field conditions: high throughput 

and low-cost approach using RGB images,” was published in the open access 

journal Plant Methods with an impact factor of 4.16 in 2018, is a journal placed 

within the first decile of the science area: agricultural and biological sciences - 
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plant science. In this study, we have developed an automatic ear counting system 

to estimate the ear density under field conditions using RGB images without using 

any particular physical arrangement in the field (such as artificial lights, platform 

or light blackout). The results demonstrate high success rate between the 

algorithm and manual image-based counting. The relationship between the 

algorithm ear counts and grain yield was greater than the correlation with manual 

(field-based) ear counts. The doctoral student has developed the algorithms, 

manual image-based counting, statistical analysis, validation and results; 

moreover, the doctoral student has drafted the manuscript. 

 

Chapter 2: The article “Cereal Crop Ear Counting in Field Conditions Using 

Zenithal RGB Images” was published in the Journal of Visualized Experiments 

(JoVE), with an impact factor of 1.13 in 2019. In this study, we have developed 

open source plugin (the CerealScanner plugin) for ImageJ (in Java). This plugin 

can be downloaded from the Integrative Crop Ecophysiology Research Group’s 

website (a previous permission is required). The algorithm for wheat ear counting 

was extended for barley ear counting using RGB images under filed conditions 

as well. The image acquisition protocol, light conditions and image processing 

using the plugin were documented in video. The results demonstrate high 

success rate between the algorithm and manual image-based counting for wheat 

and barley images. The doctoral student has developed the algorithms, 

adaptation for barley images, manual image-based counting, statistical analysis, 

validation and results; moreover, the doctoral student has collected the field data 

and drafted the manuscript in both written and audiovisual formats. 
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Chapter 3: The article “Automatic wheat ear counting using machine learning 

based on RGB UAV imagery,” was submitted to the journal Remote Sensing of 

Environment with an impact factor of 8.89 in 2019, is a journal placed in the first 

place of the science areas: agricultural and biological Sciences - soil science, 

earth and planetary sciences – geology, and earth and planetary sciences - 

computers in earth sciences science. In this study, we have developed an 

automatic ear counting system to estimate the ear density under field conditions 

using RGB images from an aerial platform including machine learning techniques. 

The ear counting system was able to identify wheat ears with high accuracy and 

efficiency. The relationship between the algorithm ear counting and grain yield 

was better than the correlation with manual (field-based) ear counting. The 

doctoral student has collected the field validation data as part of a scientific stay 

at ILVO in Belgium and developed the algorithms, machine learning techniques, 

statistical analysis, validation and results; moreover, the doctoral student has 

drafted the manuscript. 

 

Chapter 4: The article “Automatic wheat ear counting using thermal imagery,” 

was published in the open access journal Remote Sensing with an impact factor 

of 4.12 in 2019, is a journal placed in the first seven journals of the science area: 

earth and planetary sciences - general earth and planetary sciences. In this study, 

we have developed an automatic ear counting system to estimate the ear density 

under field conditions using thermal images. The relationship between the 

thermal counting values and the in-situ visual counting was fairly weak, which 

highlights the difficulties in estimating ear density from one single image-
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perspective. However, the results show that the automatic thermal ear counting 

system performed quite well in counting the ears that do appear in the thermal 

images, exhibiting high correlations with the manual image-based counts. The 

doctoral student has collected the field data and developed the algorithms, 

statistical analysis, validation and results; moreover, the doctoral student has 

drafted the manuscript. 

 

Chapter 5: The article “Low-cost assessment of grain yield in durum wheat using 

RGB images” was published in the Journal European Journal of Agronomy 

with an impact factor of 4.13 in 2019, is a journal placed in the first decile of the 

science areas: agricultural and biological sciences - agronomy and crop science, 

agricultural and biological sciences - plant science, and agricultural and biological 

sciences - soil science. In this study, we have developed new the u*v*A index to 

estimate the photosynthetic area of the canopy using high-resolution images. The 

results demonstrate the best phenotypic predictions of grain yield during the last 

part of the crop cycle for irrigated and late planting trial and during the middle part 

of the crop cycle for rainfed conditions. The heritability and genetic correlation 

demonstrated the capacity of the RGB indexes to serve as an indirect selection 

tool for assessing grain yield. Overall the study highlights the capability of an 

affordable approach based in the acquisition of RGB images at the plot level for 

crop phenotyping. The doctoral student has managed the field data collection and 

 developed the algorithms, light concept studies, statistical analysis, validation 

and results; moreover, the doctoral student has drafted the manuscript. 
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Proceedings papers in conference that include oral presentation: 
 

- Conference SPIE Remote Sensing 2018. 

(Best student paper of the conference) 

Fernandez-Gallego, J.A., Kefauver, S.C., Gutiérrez, N.A., Nieto-Taladriz, 

M.T., Araus, J.L., 2018. Automatic wheat ear counting in-field conditions: 

simulation and implication of lower resolution images, in: Neale, C.M., 

Maltese, A. (Eds.), Proc. SPIE 10783, Remote Sensing for Agriculture, 

Ecosystems, and Hydrology XX, 107830M. SPIE, p. 23. 

doi:10.1117/12.2500083 

 

- Conference SPIE Remote Sensing 2018. 

Fernandez-Gallego, J.A., Kefauver, S.C., Kerfal, S., Araus, J.L., 2018. 

Comparative canopy cover estimation using RGB images from UAV and 

ground, in: Proc. SPIE 10783, Remote Sensing for Agriculture, Ecosystems, 

and Hydrology XX, 107830M. p. 20. doi:10.1117/12.2501531 

 

- Conference SPIE Remote Sensing 2019. 

Fernandez-Gallego, J.A., Buchaillot M., Gutiérrez, N.A., Nieto-Taladriz, M.T., 

Araus, J.L., Kefauver, S.C., 2019. Wheat ear temperature estimation using a 

thermal radiometric camera, in: Proc. SPIE 11149, Remote Sensing for 

Agriculture, Ecosystems, and Hydrology XXI, 11149. 
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Other articles where the doctoral student participated as a co-author: 

 

- Frontiers in Plant Science. Impact factor 4.14 in 2017. 

Kefauver, S.C., Vicente, R., Vergara-Díaz, O., Fernandez-Gallego, J.A., 

Kerfal, S., Lopez, A., Melichar, J.P.E., Serret Molins, M.D., Araus, J.L., 2017. 

Comparative UAV and Field Phenotyping to Assess Yield and Nitrogen Use 

Efficiency in Hybrid and Conventional Barley. Front. Plant Sci. 8, 1–15. 

doi:10.3389/fpls.2017.01733 

 

- Journal of Experimental Botany. Impact factor 5.47 in 2018. 

Vergara-Díaz, O., Chairi, F., Vicente, R., Fernandez-Gallego, J.A., Nieto-

Taladriz, M.T., Aparicio, N., Kefauver, S.C., Araus, J.L., 2018. Leaf 

dorsoventrality as a paramount factor determining spectral performance in 

field-grown wheat under contrasting water regimes. J. Exp. Bot. 69, 3081-

3094. doi:10.1093/jxb/ery109. 

 

- Remote Sensing. Impact factor 4.12 in 2019. 

Sancho-Adamson, M., Trillas, M.I., Bort, J., Fernandez-Gallego, J.A., 

Romanyà, J., 2019. Use of RGB Vegetation Indexes in Assessing Early 

Effects of Verticillium Wilt of Olive in Asymptomatic Plants in High and Low 

Fertility Scenarios. Remote Sensing 11, 607 doi:10.3390/rs11060607 

  

- Remote Sensing. Impact factor 4.12 in 2019. 

Gracia-Romero, A., Kefauver, S.C., Fernandez-Gallego, J.A., Vergara-Díaz, 

O., Nieto-Taladriz, M.T., Araus, J.L., 2019. UAV and Ground Image-Based 
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Phenotyping: A Proof of Concept with Durum Wheat. Remote Sens. 11, 1244. 

doi:10.3390/rs11101244. 
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ABSTRACT  

 

The number of ears per unit ground area (ear density) is one of the main 

agronomic yield components in determining grain yield in wheat. A fast evaluation 

of this attribute may contribute to monitoring the efficiency of crop management 

practices, to an early prediction of grain yield or as a phenotyping trait in breeding 

programs. Currently the number of ears is counted manually, which is time 

consuming. Moreover, there is no single standardized protocol for counting the 

ears. An automatic ear-counting algorithm is proposed to estimate ear density 

under field conditions based on zenithal color digital images taken from above 

the crop in natural light conditions. Field trials were carried out at two sites in 

Spain during the 2014/2015 crop season on a set of 24 varieties of durum wheat 

with two growing conditions per site. The algorithm for counting uses three steps: 

(i) a Laplacian frequency filter chosen to remove low and high frequency elements 

appearing in an image, (ii) a Median filter to reduce high noise still present around 

the ears and (iii) segmentation using Find Maxima to segment local peaks and 

determine the ear count within the image. The results demonstrate high success 

rate (higher than 90%) between the algorithm counts and the manual (image-

based) ear counts, and precision, with a low standard deviation (around 5%). The 

relationships between algorithm ear counts and grain yield was also significant 

and greater than the correlation with manual (field-based) ear counts. In this 

approach, results demonstrate that automatic ear counting performed on data 

captured around anthesis correlated better with grain yield than with images 

captured at later stages when the low performance of ear counting at late grain 

filling stages was associated with the loss of contrast between canopy and ears. 
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Developing robust, low-cost and efficient field methods to assess wheat ear 

density, as a major agronomic component of yield, is highly relevant for 

phenotyping efforts towards increases in grain yield. Although the phenological 

stage of measurements is important, the robust image analysis algorithm 

presented here appears to be amenable from aerial or other automated platforms.  
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METHODOLOGY

Wheat ear counting in-field conditions: 
high throughput and low-cost approach using 
RGB images
Jose A. Fernandez-Gallego1, Shawn C. Kefauver1* , Nieves Aparicio Gutiérrez2, María Teresa Nieto-Taladriz3 
and José Luis Araus1

Abstract 
Background: The number of ears per unit ground area (ear density) is one of the main agronomic yield components 
in determining grain yield in wheat. A fast evaluation of this attribute may contribute to monitoring the efficiency 
of crop management practices, to an early prediction of grain yield or as a phenotyping trait in breeding programs. 
Currently the number of ears is counted manually, which is time consuming. Moreover, there is no single standardized 
protocol for counting the ears. An automatic ear-counting algorithm is proposed to estimate ear density under field 
conditions based on zenithal color digital images taken from above the crop in natural light conditions. Field trials 
were carried out at two sites in Spain during the 2014/2015 crop season on a set of 24 varieties of durum wheat with 
two growing conditions per site. The algorithm for counting uses three steps: (1) a Laplacian frequency filter chosen 
to remove low and high frequency elements appearing in an image, (2) a Median filter to reduce high noise still pre-
sent around the ears and (3) segmentation using Find Maxima to segment local peaks and determine the ear count 
within the image.

Results: The results demonstrate high success rate (higher than 90%) between the algorithm counts and the manual 
(image-based) ear counts, and precision, with a low standard deviation (around 5%). The relationships between 
algorithm ear counts and grain yield was also significant and greater than the correlation with manual (field-based) 
ear counts. In this approach, results demonstrate that automatic ear counting performed on data captured around 
anthesis correlated better with grain yield than with images captured at later stages when the low performance of ear 
counting at late grain filling stages was associated with the loss of contrast between canopy and ears.

Conclusions: Developing robust, low-cost and efficient field methods to assess wheat ear density, as a major agro-
nomic component of yield, is highly relevant for phenotyping efforts towards increases in grain yield. Although the 
phenological stage of measurements is important, the robust image analysis algorithm presented here appears to be 
amenable from aerial or other automated platforms.

Keywords: Digital image processing, Ear counting, Field phenotyping, Laplacian frequency filter, Median filter, Find 
maxima, Wheat

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The number of ears per unit ground area (ear density) is 
one of the main agronomical components that determines 

grain yield in wheat and other cereals, together with the 
number of grains per ear and the thousand kernel weight 
[1]. Nevertheless, different studies have shown that while 
the number of grains per unit ground area is usually the 
best correlated parameter with grain yield, the correla-
tions of other major agronomical components such as ear 
density or number of grain per ear are weaker, and grain 
size is usually the least correlated trait when compared to 
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grain yield [2–4]. Dynamic compensation mechanisms 
among agronomical yield components appear to be the 
cause for such contrasts in performance. In current stud-
ies of wheat crops, ear counting is performed manually 
(in situ), which takes time and severely limits its use in 
breeding as a phenotyping trait, in crop management to 
monitor plant performance, or to predict grain yield. On 
the other hand, there is no a single protocol for counting 
wheat ears, which may further increase experimental var-
iability, particularly when results produced with differ-
ent methodologies are compared. Moreover, some of the 
methodological approaches for ear counting are based in 
the use of grain yield and other traits collected at matu-
rity and therefore, they are not amenable for early yield 
prediction. Automatic image processing techniques may 
represent an alternative for high throughput evaluation 
of ear density. For example, the use of thermal images 
may be considered an alternative for ear counting since 
the temperature of the ear may often be several degrees 
hotter than the surrounding canopy [5]. However, two 
major limitations of this approach include the low reso-
lution and high cost of thermal cameras, which makes 
this approach unfeasible for aerial platforms and pro-
hibitively expensive. Alternatively, techniques based on 
red/green/blue (RGB) digital images of wheat crops cap-
tured under field conditions have been reported previ-
ously. These approaches have mainly used techniques of 
image data extraction that were related to characteristics 
of texture, segmentation of color, morphological opera-
tors and skeletonization [6–8]. In the case of a recent 
paper [6] aiming to automatically determine the head-
ing time, authors made use of a fixed observation device 
on a platform located above ground level and provided 
with two cameras facing the crop from opposite direc-
tions that recorded daily photographs of the crop. In the 
same sense, an earlier study focused specifically on ear 
counting in wheat has shown fairly good results [7], but 
required a large camera platform and a matte black back-
ground structure supported by a tripod for the acquisi-
tion of controlled digital images. This structure allowed 
for avoiding excessive light conditions and unwanted 
image effects produced by sunlight and shadows, but 
would greatly hinder its practical application under field 
conditions. Moreover, these previous approaches have 
been tested on only one single awnless variety of wheat. 
In similar work done by Liu et al. [8], they developed an 
algorithm to calculate the wheat ear count using a data-
base of images in RGB color space and different condi-
tions of planting (drilling and broadcasting); however, the 
performance was not deemed satisfactory [6], most likely 
because the counting accuracy was calculated using dif-
ferent sections of a single image rather than testing accu-
racy in the whole image.

Another example is the automatic ear counting algo-
rithm developed at Rothamsted Research (UK) and tested 
for example on the FieldScanalyzer of Lemnatec Ltd. This 
automatic ear counting algorithm, based on RGB images, 
includes edge detection methods, dilating the lines 
detected and filling the holes and empty regions. It has 
been used with good accuracy for counting ear density in 
a panel composed by five awnless wheat varieties grow-
ing under different nitrogen conditions [9]. The camera 
was installed in an automatic system which moves above 
the crop in a three dimensional space. Besides its huge 
cost, this platform can only be used at this particular site, 
the image processing system uses greyscale images, and 
thus omits potentially useful RGB information, and to 
date it has been tested mostly on awnless wheat varieties 
and across a wide range of ear densities generated largely 
through different nitrogen fertilization levels, which is 
not representative of typical growing conditions [2, 3].

Other similar automatic counting approaches using 
high resolution zenithal RGB images have been devel-
oped to estimate tree density. For that purpose, different 
image processing techniques have been used, which are 
closely related with the algorithm proposed in this work. 
Tree crown detection through aerial and high resolution 
satellite images has often employed smoothing filters to 
simplify crown form and reduce image noise [10–13]. 
Also, local maxima filters have been applied on high 
spatial resolution to detect possible tree crown centers 
[10–14]. In the case of applications aiming at fruit meas-
ure and recognition (e.g. apple, blueberry, grape, mango) 
like systems have used high resolution images in RGB 
color space, in order to optimize the visual characteristics 
of the target objects, followed by segmentation process 
tasks [15–17]. Alternatively, different color space trans-
formations have been used [18–23]. In most cases, the 
use of regular digital cameras have been proposed [24–
28] due to their high resolution, cost-effectiveness, speed 
and reliability.

This work proposes a simple system for the automatic 
quantification of ear density under field conditions based 
on images acquired by conventional digital cameras. 
The system uses natural light conditions and therefore is 
simple to use and may be adaptable to work from aerial 
platforms. In our study, zenithal images were taken by 
holding an RGB camera by hand above the crop. Ears per 
square meter units are calculated using the camera speci-
fications, lens focal length and the distance between the 
canopy and the camera [29]. First, we applied a Lapla-
cian frequency enhancement to remove part of the soil, 
leaves and unwanted brightness from the image. Then, 
similar to other previous automatic image enhancement, 
segmentation and counting approaches, we employed a 
median filter as a smoothing technique to further reduce 
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high frequency noise and finally local maximums to 
determine local peaks within the image for the purpose 
of wheat ear counting. We also tested this ear counting 
system on simulated greyscale and reduced resolution 
images using the same data.

Methods
Plant material and growth conditions
Field trials were carried out, during the 2014/2015 crop 
season at the experimental stations of Colmenar de 
Oreja (40°04′N, 3°31′W) near Aranjuez and Zamadue-
ñas (41°42′N, 4°42′W) near Valladolid belonging to the 
Instituto Nacional de Investigación y Tecnología Agraria 
y Alimentaria (INIA) of Spain and to the Instituto de 
Tecnología Agraria de Castilla y León (ITACyL), respec-
tively. The average annual precipitation corresponding to 
Aranjuez area is about 425  mm and the average annual 
temperature is 13.7 °C, whereas in the case of Valladolid 
annual averages are 386.2 mm and 11.6 °C. In the case of 
the Aranjuez trials, the field was fertilized before planting 
with 400 kg ha−1 of a 15:15:15 N:P:K (15% N, 15%  P2O5, 
15%  K2O) fertilizer. A second application of 150 kg ha−1 
of urea 46% dilution was applied before stem elongation. 
For the Valladolid trials the field was fertilized before 
planting with 300  kg  ha−1 of a 8:15:15  N:P:K (8% N, 
15%  P2O5, 15%  K2O) fertilizer and a second application 
of 300 NAC-fertilizer kg  ha−1 was applied before stem 
elongation.

Twenty-four durum wheat cultivars (Triticum turgi-
dum L. subsp. durum (Desf ) Husn.) post Green Revolu-
tion and cultivated in Spain during the past four decades 
were grown (cvs Amilcar, Avispa, Bólido, Bolo, Bur-
gos, Claudio, Don Ricardo, Don Pedro, Dorondón, Don 
Sebastian, Gallareta, Iride, Kiko Nick, Mexa, Pelayo, 
Ramírez, Pelayo, Simeto, Sula Olivadur, Tussur, Mar-
tinur, Scupur and Vitrón), all of which had awns. For 
each site, two growing conditions were assayed: rainfed 
and supplemental irrigation. For each growing condition, 
the experimental design was established in randomized 
blocks with three replicates and a total of 72 plots. Plant-
ing took place on November 21, 2014 and November 24, 
2014, for Aranjuez and Valladolid, respectively, with a 
planting density of 250 seeds per square meter. The plots 
had an area of 7 × 1.5 m2 with a spacing distance of 0.2 m 
between rows. Rainfall during the 2014/2015 crop season 
was 206  mm and 257  mm and the average temperature 
was 11.3 and 10.3 °C for Aranjuez and Valladolid, respec-
tively. For the trial under supplemental irrigation, six 
irrigations were provided at both sites from stem elonga-
tion to around 2 weeks after anthesis, totaling 125 mm of 
water. Harvest was carried out on July 20, 2015 and July 
22, 2015, for Aranjuez and Valladolid, respectively and 
then grain yield was evaluated. In addition, the number 

of ears per united of grown area (ear density) was meas-
ured manually using different approaches. In Aranjuez it 
was calculated from the total grain yield divided by the 
weight of kernels per ear. To that end 10 ears per plot 
were sampled at maturity, threshed and the total kernel 
weight per spike ear measured. In the case of Valladolid, 
the total number of ears was counted in two half-a-meter 
row sections per plot and then the number of ears per 
united area calculated.

RGB images
For each plot, one digital RGB picture was taken under 
natural light conditions by holding the camera at approx-
imately 1.0 m above the plant canopy, in a zenithal plane 
and focusing near the center of each plot. The images 
from the first and third visits were acquired with an 
Olympus E-M10, 16-megapixel resolution camera with 
a 4/3″ sensor using a 14  mm lens, triggered at a speed 
of 1/125  s with the aperture programmed in automatic 
mode. For the second date of measurement, the images 
were acquired with an Olympus DZ-105, 16-megapixel 
resolution camera with a 1/2.3″ sensor using a 35  mm 
lens, triggered at a speed of 1/250  s with the aperture 
programmed in automatic mode. All images had a native 
resolution of 4608 × 3456 pixels and were stored in JPG 
format using the sRGB color standard [30].

Measurements were performed at three dates: May 12, 
May 25 and June 8, for both rainfed and support irriga-
tion trials at Aranjuez, and May 14, May 28 and June 9, 
2015 for both trials at Valladolid, coincident with the 
development stages of anthesis (first measurement), mid-
dle grain filling (second measurement) and late grain fill-
ing (third measurement), respectively, thereby, the colors 
within the scene changed and depended on not only on 
the wheat variety but also on its growth stage (Fig. 1). The 
calculated ear densities (ears/m2) remained constant for 
each date of measurement as the same camera and speci-
fication were used for each field visit. The normalized dif-
ference vegetation index (NDVI) was measured using a 
portable spectroradiometer (GreenSeeker handheld crop 
sensor, Trimble, USA) for the same plots and on the same 
dates as the RGB image captures.

Preliminary evaluations discarded all images taken late 
in the afternoon due to the shadows created inside the 
canopy by the low angle of the incident sunlight, such 
that all pictures used for further analysis were acquired 
within 2 h of solar noon or diffuse light conditions. The 
Additional file  1: Fig.  S1 shows images of plots taken 
under different incident sunlight conditions and growth 
stages for crops grown under different water regimes. 
The image (A) was acquired under direct sunlight within 
2 h of solar noon, and (B) and (C) were acquired under 
diffuse light conditions. The ears in (A) and (B) remain 
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contrasted between ears, leaves, and soil due to the irri-
gated treatment. The ears in (C) are not contrasted due to 
the change (yellowing) in canopy color by the later stage 
of growth (earlier senescence) of the rainfed treatment. 
Although (C) was taken under optimal sunlight condi-
tions, the stage of growth is not appropriate because of 
the lack of contrast; this was considered as not an opti-
mal phenological condition. As such, both (A) and (B) 
are considered as taken under optimal light and/or phe-
nological conditions. On the other hand, the ears in (D) 
are poorly contrasted even though the growth stage was 
considered appropriate, as the image was taken late in the 
afternoon; we had to discard these images due to shad-
ows and brightness created inside the canopy by the low 
angle of the incident sunlight.

Automatic ear-counting system
The pipeline algorithm for counting consists of three 
steps: (1) Laplacian frequency filter, (2) Median filter, 
and (3) segmentation using Find Maxima. Greyscale and 
reduced resolution image simulations were conducted by 
applying the image conversion prior to the first step. As 
first step of the image processing system we have chosen 

a Laplacian filter, due to the wide frequency range of the 
elements (such as awns, leaves, soil and others unwanted 
objects) appearing in an image. The second step uses a 
median spatial filter to reduce the high frequency noise 
still present around the ears. Finally, we apply the Find 
Maxima segmentation technique, where ears detection 
was determined by local peaks found within the image. 
The output of the system is the binary image Iout (Fig. 2). 
The algorithm was developed in ImageJ software [31].

The Laplacian filter has been used with the aim of 
detecting changes in the different directions of the image 
by using a second-order derivative filter [32]. Imple-
mentation of the filter was done using ImageJ and an 
extension with a Laplacian filter [33]. This isotropic fil-
ter performs as a high frequency enhancement [34] and 
responds independently of the discontinuities within the 
image [35]. Equation  (1) shows the mathematical fre-
quency model of the Laplacian filter.

(1)H(u, v) = − 4 π 2

[

(

u−
M

2

) 2

+

(

v +
N

2

) 2
]

,

Fig. 1 Images of plots at different stages of growth and treatments (Image Database). a Aranjuez Irrigated (first measurement) cv Martinur, b 
Aranjuez Rainfed (second measurement) cv Martinur, c Valladolid Irrigated (third measurement) cv Amilcar, d Valladolid Rainfed (third measurement) cv 
Amilcar



 

 49 

 

Page 5 of 12Fernandez-Gallego et al. Plant Methods  (2018) 14:22 

where H(u,v) represents the transfer function of the 
Laplacian filter in the frequency domain. The variables u 
and v define the frequency axis and the variables M and 
N are the shifter constants (M/2, N/2) from the origin 
(0,0), as the result of working with a centered spectrum. 
The constant − 4π2 is obtained in the Laplacian filter 
mathematical calculations. The Laplacian enhancement 
in the frequency domain was used applying Eq. (2).

where Iin(x,y) is the input image, F  represents the Fou-
rier transform and [1 − H(u,v)] denotes the Laplacian 
frequency enhancement. The resulting image is saved in 
ILaplacian(x,y). In reference to this stage, Fig.  2 shows the 
initial image Iin and the output image ILaplacian where 
Eq.  (2) was used. Using this type of filter, the high fre-
quency information is controlled and appends the 
image filtered with the original image as a background. 
This enables the removal of part of the soil, leaves and 
unwanted brightness in the image of the crop as part of 
the background elements of the image (Fig. 1).

Further, to reduce the high frequency noise in the 
image and decrease the influence of the awns and leaves, 
we employed a median filter. The Median filter uses the 
values in the neighboring cells and sets up a moving win-
dow array to calculate the statistical median function of 
that array; the result is the new pixel in the output image 
(Imedian), as seen in Fig.  2. The Median filter results in 
the visual effect of smoothing the image [36]. This effect 
depends of the size of window used, with larger sizes pro-
ducing a greater smoothing effect. This step used a win-
dow size of 64 × 64 pixels to prevent removing the small 
ears. Equation  (3) shows a representation of the spatial 
filter applied to ILaplacian who represents the image filter-
ing in the frequency domain. The output of this step is 
Imedian.

This filter guarantees as output an image with same 
pixel values as from the input image and contributes to 
the reduction of high frequency noise [37]. In the final 

(2)ILaplacian(x, y) = F
−1

{

[1 −H(u, v)] ∗ F(Iin(x, y))
}

,

(3)Imedian = median
(

ILaplacian
)

stage of image processing, the local maximums were 
detected using the Find Maxima algorithm implemented 
in ImageJ [38]. The technique determines local peaks 
within the image; in that way, it finds the ears because, 
after filtering, each peak in the image represents a wheat 
ear. The algorithm creates a binary image segmentation 
using the pixel value from each local maxima and the 
nearest neighbor pixel variance to identify the wheat ear 
shapes in the filtered image, with the white pixels indi-
cating soil, leaves or awns; and the black pixels indicating 
wheat ears detected in the image.

Figure 3 shows the stages of image processing systems 
using a full-size image. The output image (Iout) is used for 
counting the number of ears in each scene. Each isolated 
region in black color is considered an ear. The number of 
regions in Iout image is counted using Analyzed Particles 
implemented in ImageJ [38].

Algorithm validation
The performance of the image processing system for to 
automatically counting the ears appearing in an image 
was tested in the images taken from anthesis to matu-
rity (Fig.  1). In order to validate the algorithm, the out-
put of Iout was compared with the manual image-based 
ear counting on the same image. Iout in Fig. 2, depicts the 
binary image where the connected pixels in black color 
are considered like a wheat ear automatically detected 
by the image processing system; each of these regions 
are added and the final result is referred to as the algo-
rithm counting. Besides, the number of ears in a subset 
of images has been counted manually (ground truth) and 
is referred to as the manual counting. For Aranjuez, the 
validation-data manual counting included 72 images, 
corresponding to the irrigated trial and 24 images 
belonging to the first block of the rainfed trial from the 
first measurement. For Valladolid, the validation data-
base included 24 ground truth images, taken at the third 
data measurement, corresponding to the first block of the 
irrigation and rainfed trials, respectively. For the manual 
counting we manually marked each ear in the original 
image and then the number of marks in the image were 

Fig. 2 Image processing proposed steps: (i) Laplacian frequency filter (ii) Median filter (iii) Find Maxima
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counted using a simple algorithm developed for count-
ing the number of marks manually selected within the 
image. In order to determine the success of the automatic 
ear-counting algorithm, we employed the percentage 
of error. The success rate in percentage was obtained as 
the difference between 100% and the relative difference 
between the manual counting and the algorithm count-
ing (expressed as the difference in the absolute values of 
the manual and automatic counting, divided by manual 
counting and multiplied by 100%). We have converted 
the corresponding image ear-counting numbers in terms 
of ears per square meter in order to correlate these values 
with grain yield using the standard agronomical units.

Statistical analysis
Data was analyzed using InfoStat version 2014 ([39], 
www.infostat.com.ar) from the National University of 
Córdoba, Argentina. Pearson correlation coefficients and 
linear regression were used to analyze the relationship 
between automatic and manual counting and compare 
the automatic counting against grain yield. The data was 
plotted using SigmaPlot version 12 (Systat Software, Inc., 
San Jose California USA).

Results
Success rate and linear regression between the algorithm 
and manual counts
The success rate in the number of detected ears using the 
ground truth (manual counting) compared with the auto-
matic counting derived from the image processing was 
calculated (Table 1).

Furthermore, the linear regression between the man-
ual counting and the algorithm counting was calculated 
for the 72 irrigated and 24 rainfed plots from Aranjuez 
at anthesis (first sampling date) as well as across 24 plots 
from the irrigated and another 24 plots from the rainfed 
trials of Valladolid at leaf grain filling (Fig. 4).

The success rate demonstrated the high accuracy of the 
algorithm counting with regard the manual ear count-
ing and the standard deviation values imply a small 
data dispersion (Table  1). Thus, mean and standard 
deviation values for Aranjuez derived from the images 
taken at anthesis (mid-May) in the irrigated trial exhib-
ited robust accuracy when applied to only one replicate 
(μ = 91.06%, σ = 6.37) or to the three replicates of each 
genotype (μ = 92.39, σ = 6.23). Performance for the rain-
fed trial at Aranjuez during the first measurement data 
was similar (μ = 91.71%, σ = 6.96). Performance was 
almost as strong (μ = 89.79%, σ = 10.14) at the irrigated 

Fig. 3 Image processing system using image with completed size. a Input image, b Laplacian filter, c Median filter, d Find Maxima (Iout)
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Valladolid trial measured at late grain filling (third valu-
ation, early June). However the performance in the rain-
fed trial of Valladolid measured on early June was much 
lower (μ = 31.86%, σ = 7.54), suggesting the growth stage 
affect the correct identification of ears. In the same sense 
the relationships between the manual and algorithm ear 
counting for Aranjuez at mid-May (irrigated  R2 = 0.62; 
rainfed  R2 = 0.51) and irrigated Valladolid at late grain 
filling  (R2 = 0.75) were positive and strong (Fig.  4), with 
the irrigated Valladolid late grain filling additionally dem-
onstrating a close 1:1 relationship. In the case of rainfed 
Valladolid at late grain filling the correlation, even if sig-
nificant, was weaker  (R2 = 0.17) and much further from a 
1:1 slope that the rest.

Simulating greyscale and lower resolution imagery
The performance of the algorithm was further tested 
through the simulation of images in greyscale and at 
lower resolutions using the original high resolution image 
data. The greyscale images were converted by averaging 
the RGB color bands. The lower resolution images were 
resized to five different resolutions by dividing the origi-
nal image size by two (obtaining an image of 2304 × 1729 
pixels) as far as obtain the smallest image size dividing 
by 32 (114 × 108 pixels). The images were resized using 
average pixel values, with no interpolation techniques 
applied. We have used the same algorithm pipeline pro-
posed for greyscale and lower resolution, although in the 
Median filter step (Eq.  3), we reduced the moving win-
dow size in proportion to the image resizing to match the 

subsequent size of the wheat ears in the reduced image. 
Manual image-based counting was used as the valida-
tion data as before. Table 1 gives the statistical summary 
results obtained for Aranjuez and Valladolid plots. Addi-
tional file 2: Fig. S2 shows the resized imagery simulation; 
the images were resized using average pixel values, with 
no interpolation of values.

The greyscale results show, with respect to the origi-
nal RGB images, a decrease in up to 9.23% in success 
rate while maintaining a similar correlation as the RGB 
results in the irrigated trials. While the greyscale resulted 
in an increase in success rate for the Valladolid rainfed 
trial, little changes were observed in correlation and suc-
cess rate for the Aranjuez rainfed trial.

The lower resolution results show a decrease of < 1% in 
success rate when the images were reduced to a half of 
its original size. Success rates decreased by a maximum 
of 2.29, 7.32 and 17.32% for image size divided by four, 
eight and 16 values, respectively. For the smallest image 
size, success rate decreases as much as 38.82%. Standard 
deviation values exhibited robust accuracy at moderately 
lower resolutions and Pearson correlation coefficients 
remained close to original values, for all but the smallest 
simulated image size where the correlation values shifted 
markedly from the original values.

Understanding algorithm errors
Figure  5 shows the input and output images, with each 
blue pixels representing an ear automatically detected by 
the proposed algorithm. There are three regions in the 

Table 1 Percentage of success of the automatic counting at the original RGB resolution, greyscale and the resized 
imagery validation results

Different sites and phenological stages across the set of 24 durum wheat varieties were assayed. Values presented are the means of percentage of success (μ), 
standard deviation (σ) and Pearson correlation coefficient (r)

Trial, date of sampling Original RGB Greyscale ×1/2 ×1/4 ×1/8 ×1/16 ×1/32

Aranjuez, May 12 μ 92.39% 88.52% 92.14% 91.6% 88.98% 81.10% 62.94%

Irrigated σ 6.23 9.90 5.89 6.04 7.06 8.75 7.51

72 images r 0.79 0.73 0.78 0.78 0.76 0.71 0.64

Aranjuez. May 12 μ 91.06% 90.78% 90.30% 89.25% 85.50% 77.41% 60.12%

Irrigated σ 6.37 8.99 6.29 6.79 7.48 8.66 6.89

24 images r 0.78 0.76 0.77 0.79 0.77 0.76 0.74

Aranjuez. May 12 μ 91.70% 93.01% 91.15% 89.41% 84.92% 76.59% 59.59%

Rainfed σ 6.96 4.57 7.79 8.7 9.37 8.82 7.60

24 images r 0.72 0.80 0.69 0.67 0.65 0.62 0.47

Valladolid. June 9 μ 89.79% 80.56% 89.22% 87.67% 82.47% 72.47% 50.97%

Irrigated σ 10.14 12.19 10.52 11.07 12.47 15.32 14.09

24 images r 0.87 0.87 0.87 0.86 0.824 0.80 0.73

Valladolid. June 9 μ 31.86% 65.36% 31.12% 29.64% 27.01% 22.65% 14.02%

Rainfed σ 7.54 11.53 7.38 7.02 6.51 5.8 4.32

24 images r 0.42 0.35 0.39 0.38 0.39 0.34 0.34
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image indicating examples where the algorithm has not 
worked properly. For example, region R1 shows false pos-
itives where pixels labeled as ear actually corresponded 
to leaves and resulted in irregularities in the ear counting. 

As a result, pixels from leaves were united with ear pix-
els in the Find Maxima step and included together as one 
combined area. In region R2, false negatives resulted in 
ears that were not detected by the algorithm because the 

Fig. 4 Plots of Manual counting versus Algorithm counting at different growth stages. 72 plots: a Aranjuez Irrigated May 12. 24 plots: b Aranjuez 
Rainfed May 12. c Valladolid Irrigated June 9. d Valladolid Rainfed June 9

Fig. 5 Algorithm error regions. Iin and Iout images. Blue marks in the Iout indicate algorithm results
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contrast between the ear and soil was not great enough 
and the segmentation algorithm discarded that region. In 
case of region R3, whereas the algorithm labeled the area 
as an ear, those pixels are soil and noise being a result of 
background brightness caused by a foreign object.

Relationship between algorithm counting and grain yield
The relationship of grain yield against the ear counting 
calculated with the algorithm in terms of ears per square 
meter (ears/m2) at the three measurement dates as well 
as the manual in  situ counting values were assessed. In 
Table  2 we provide a statistical summary of the results 
obtained with the complete dataset of plots from the 
rainfed and support-irrigation trials of the two experi-
mental sites (288 plots), as well as within each trial and 
experimental site (72 plots). Moreover, NDVI is included 
as a standard indicator of crop greenness and vigor.

The results show that the ear-counting algorithm cor-
related better with grain yield at the first measurement 
date  (R2 = 0.30) than at the second measurement date 
 (R2 = 0.08) or the third measurement date  (R2 = 0.05). 
The relationship of the manual in  situ counting against 
grain yield was  R2 = 0.24. The pattern of the relationship 
between the automatic ear counting and grain yield was 
in all cases lineal (Fig. 6).

Discussion
Working in field conditions implies many considerations, 
especially when plant phenotyping tasks are developed. 
Ear density is frequently identified as the main agro-
nomical component of yield and it appears to be the most 
relevant towards future increases in grain yield ([4] and 

Table 2 Statistical results of the relationships across the whole set of plots (288), as well as across the set of plots of each 
trial (72) between grain yield and the ear counting using the algorithm (ears/m2) in the first, second and third date 
of measurement as well as the manual in situ counting

The mean (μ) ± standard deviation of the normalized difference vegetation index (NDVI) values, across the whole set of plots within each trial is also included for 
reference

ns no significant

*p value < 0.05; **p value < 0.01; ***p value < 0.001

Determination coefficient  (R2), Pearson cor-
relation (r) and mean (μ) ± standard deviation 
for NDVI

First measurement Second measurement Third measurement Manual in situ counting

Whole dataset (288) R2 = 0.30*** R2 = 0.08*** R2 = 0.05*** R2 = 0.24***

r = 0.55*** r = 0.28*** r = 0.21*** r = 0.49***

Aranjuez Irrigated
Dataset (72)

R2 = 0.05ns R2 = 0.05ns R2 = 0.02ns R2 = 0.18**

r = 0.22ns r = -0.04ns r = 0.14ns r = 0.43**

μ = 0.78 ± 0.03 μ = 0.71 ± 0.07 μ = 0.29 ± 0.14

Aranjuez Rainfed
Dataset (72)

R2 = 0.05ns R2 = 0.02ns R2 = 0.02ns R2 = 0.53***

r = 0.22ns r = 0.16ns r = 0.14ns r = 0.73***

μ = 0.76 ± 0.02 μ = 0.67 ± 0.04 μ = 0.17 ± 0.11

Valladolid Irrigated
Dataset (72)

R2 = 0.06* R2 = 0.0049ns R2 = 0.06* R2 = 0.01ns

r  =  − 0.24* r = − 0.07ns r = 0.25* r = 0.07ns

μ = 0.73 ± 0.03 μ = 0.67 ± 0.05 μ = 0.45 ± 0.10

Valladolid Rainfed
Dataset (72)

R2 = 0.07* R2 = 0.05ns R2 = 0.18*** R2 = 0.05*

r = 0.26* r = 0.22ns r = 0.43*** r = 0.23*

μ = 0.66 ± 0.04 μ = 0.41 ± 0.05 μ = 0.18 ± 0.14

Fig. 6 Fitting regression of the grain yield against the ear counting, 
estimated during the first measurement and for the whole dataset 
(288 plots) using the algorithm counting
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references therein). Developing low-cost, fast and easy-
to-implement field methods to assess wheat ear density 
is therefore critical to developing wheat varieties with 
greater yield. We propose the use of a simple RGB image 
acquisition method holding the camera above the crop 
canopy, whereas the automatic image processing includes 
robust algorithms designed for different wheat varieties 
and growth stages. Previous studies in ear recognition 
have used acquisition methods/structures which include 
the use of enclosing structure or a fixed camera support 
[7, 8] or even artificial light [40] that would greatly limit 
their practical application under field conditions. Moreo-
ver, even if good results were achieved, in most cases only 
a single awnless wheat variety was used. By contrast, our 
study included 24 wheat varieties with awns of different 
colors and culms with ears ranging from erect to floppy, 
which eventually may affect negatively the performance 
of the algorithm compared to its application on a single 
awnless variety.

Unlike the use of artificial light and enclosures, 
together with a camera support (e.g. tripod), our flex-
ible and fast image acquisition technique presents some 
major challenges related to image processing. Some ears 
in the image may appear blurred due to plant movements 
as a result of wind or absolute camera stability. Sharp 
shadows and bright surfaces may appear in the images as 
a product of the light conditions (e.g. in a sunny day). The 
more erect or floppy attitude of the ears may also affect 
the counting, whereas the presence of awns represents 
an additional problem since the awns visually overlap 
with the body of the ear. This is the case of our study per-
formed in durum wheat, a species which always exhibits 
awns. Finally, changes in the color of the leaves and ears 
due to crop growth stage, together with differences in 
crop density and the soil background may also interfere.

As such, in order to provide robust results, the image 
processing algorithm pipeline must consider different 
disturbing effects related with shadows, brightness, leaf 
color, the presence of awns or even overlapping ears. 
The Laplacian frequency filter contributes to removing 
or minimizing visual effects from unwanted brightness 
and background elements, and the Median spatial filter 
provides an important contribution to smoothing regions 
and removing noise from regions that still contained 
high frequency noise because of the presence of awns 
[33, 36]. Even so, the lower performance of the counting 
algorithm in the rainfed trial of Valladolid at late grain 
filling, compared with the results of the irrigated trial at 
the same date or compared with the trials at anthesis, was 
most likely due to the differences in color between the 
first compared with the other three cases. In the case of 
the rainfed trial of Valladolid at late grain filling, plants 
were much more senescent compared with the other 

three cases (Fig. 4). The lack of contrast in the images of 
the rainfed plots on late grain filling between ears, leaves 
and soil did not permit consistent ear identification. We 
consider the stage of growth of this treatment too late 
for the proposed algorithm. In comparison, the irrigated 
trial at Valladolid still exhibited sufficient contrast in the 
upper part of the canopy at the third date of measure-
ments, which contributed to the better performance of 
the counting algorithm compared to manual counts in 
terms of precision, r correlation value, and 1:1 relation-
ship between modeled and predicted counts. During 
grain filling, particularly under Mediterranean condi-
tions, the ears often remain greener longer compared to 
the leaves and the culm [41], which is essential to provide 
the necessary contrast between ears, leaves and soil.

In our study, phenotypic correlations across mean val-
ues for the 24 genotypes between ear density and grain 
yield were very poor (in fact absent in most cases) and 
regardless of whether ear density was directly measured 
directly in the field or inferred from the automatic count-
ing algorithm. Only in one of the 4 individual trials was 
manual counting correlated with grain yield, whereas 
automatic counting was only found to be correlated with 
grain yield in another trial; in both cases the correla-
tions were found in the rainfed trials (data not shown), 
explaining in each case about 35% on genotypic vari-
ability in grain yield. In fact, compensatory mechanisms 
between ear density and number of kernels per ear have 
been reported widely [4, 42], which may account for 
the lack of correlation between ear density and grain 
yield in our study. For example, in Valladolid ear den-
sity was negatively correlated with the number of grains 
per ear in both rainfed (r = − 0.31; p < 0.01) and irri-
gated (r = − 0.36; p < 0.01) conditions. Additional file  3: 
Table  S1 gives the statistical summary results of mean, 
standard error, minimum and maximum value for the 
whole set of four trials as well as within each trial, for 
grain yield, thousand kernel weight (TKW), number of 
grains per unit ground area and ear density (number of 
ears per unit ground area).

Automatic ear counting performed around anthesis 
correlated better with grain yield than at later stages, 
when canopy color shifts to yellow. The low performance 
of ear counting at the late grain filling stages associated 
with a change (yellowing) in canopy color, including the 
ears, with the subsequent loss of contrast, may be a rea-
son. An additional factor may be due to the fact ears in 
the two trials of Aranjuez suffered logging during middle 
grain filling and strongly increased at late grain filling. In 
any case, the solid performance of the algorithm at ear-
lier growth stages is viewed as one of its strong points 
as it may contribute to earlier yield prediction for crop 
management purposes. In fact, this method may be fully 
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amenable for management purposes since frequently the 
range of variability in ear density due to environmental 
causes and agronomical factors (e.g. availability of water, 
nutrients, other abiotic and biotic factors, planting date 
and density, etc.) is larger than that due exclusively to 
genotypic variability. Therefore, the level of precision 
provided by the method is less critical for crop manage-
ment than for phenotype selection in breeding programs.

The greyscale image simulations resulted in a decrease 
in success rate for the irrigated trials, while on the other 
hand contributing to an improvement in success rate for 
rainfed trial images, especially for the Valladolid rain-
fed trial, but the correlation against manual counting for 
that trial still remained the lowest. This may be a result 
of the increased senescence of the rainfed trials at the 
time of data capture, in which the benefits of color con-
trast between the leaves and the ears had passed, indicat-
ing that it was not an optimal moment for data capture. 
These results therefore suggest that at a specific growth 
stage the full RGB color information may provide signifi-
cant improvements over greyscale images.

Further still, in our study, two different models of cam-
eras were used in image acquisition (Olympus E-M10 
and DZ-105) and the algorithm was tested for accuracy 
with greyscale images without color information and at 
lower resolutions, in order to provide an idea about the 
possibility of optimizing processing requirements (less 
computing time with single band images) and using 
other types of cameras with lower resolution, such 
mobile phones, action cameras (GoPro), or even similar 
or higher quality cameras at a greater distance (with or 
without zoom lens, etc.) such that the same robust algo-
rithm for ear counting may be adaptable to mobile, field 
or aerial (UAV) phenotyping and precision agriculture 
platforms.

Conclusions
This study proposes a low-cost and easy-to implement 
approach for ear counting. The system uses a handheld 
camera that easily can be moved across the plots. More-
over, the image analysis algorithm is amenable to other 
applications, such as early assessment of yield through 
the acquisition of RGB images from aerial or other auto-
mated platforms. Nevertheless, the performance of this 
image processing system depends on the phenologi-
cal stage when measurements took place. Mature cano-
pies, with the ears already yellow, are not adequate for 
ear counting. In our study, different hybrid color spaces 
were considered as an image pre-processing stage, but 
there was no difference in input image enhancement or 
algorithm results. We chose to use the original RGB color 
space for its benefits in contrast at specific growth stages, 
although greyscale images can be useful in low color 

contrast conditions; nevertheless, in future studies it may 
be interesting to investigate hybrid color spaces or high 
resolution RGB imagery combined with multispectral or 
thermal imagery to enhance the performance of the ear 
counting algorithm.
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Supplementary Figure 1. Images of plots taken under different incident sunlight conditions, and 
growth stages on crops grown under different water regimes. A) Image taken at anthesis with direct 
sunlight within two hours of solar noon in an irrigated plot. B) Image taken at late grain filling 
under diffuse light conditions in the morning in an irrigated plot. C) Image taken during late grain 
filling under diffuse light conditions near solar noon in a rainfed plot. D) Image taken late at middle 
grain filling with direct sunlight in the afternoon 
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Supplementary Figure 2. Resized imagery simulation – input and output images. The images 
were resided using average pixel values, with no interpolation techniques applied   
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Supplementary Table 1. Values for the whole set of four trials as well as within each trial, for 
grain yield, thousand kernel weight (TKW), number of grains per unit ground area (grains/m2) 
and ear density (number of ears per unit ground area). For each trait, mean, standard error (SE) 
and minimum and maximum value across the individual plot 
 

Trial, database Variable Mean SE Min. Max. 

Whole set (288 plots) 

grain yield [kg/ha] 
TWK [g] 
grains/m2 
ears/m2 

5499 
42.3 

13266 
410.0 

97 
0.5 
168 
5.2 

2220 
27.9 
6154 
205.6 

9281 
63.8 

20361 
709.0 

Aranjuez Irrigated  
(72 plots) 

grain yield [kg/ha] 
TWK [g] 
grains/m2 
ears/m2 

5126 
40.3 

14014 
487.0 

88 
0.5 
306 
11.1 

3245 
32.3 
8100 
313.8 

6924 
48.6 

19663 
709.0 

 
Aranjuez Rainfed 

 (72 plots) 

grain yield [kg/ha] 
TWK [g] 
grains/m2 
ears/m2 

4648 
40.8 

12549 
405.8 

104 
0.5 
303 
10.8 

2220 
32.0 
6154 
205.6 

6397 
50.1 

17846 
642.5 

 
Valladolid Irrigated 

(72 plots) 

grain yield [kg/ha] 
TWK [g] 
grains/m2 
ears/m2 

7971 
52.0 

14882 
388.7 

91 
0.8 
347 
6.3 

6101 
33.9 
9074 
244.0 

9281 
63.8 

20361 
524.0 

 
Valladolid Rainfed 

(72 plots) 

grain yield [kg/ha] 
TWK [g] 
grains/m2 
ears/m2 

4231 
36.0 

11618 
358.3 

67 
0.6 
242 
5.4 

2566 
27.9 
7718 
260.0 

6510 
47.1 

16517 
488.0 
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ABSTRACT 

 

Ear density, or the number of ears per square meter (ears/m2), is a central 

focus in many cereal crop breeding programs, such as wheat and barley, 

representing an important agronomic yield component for estimating grain yield. 

Therefore, a quick, efficient, and standardized technique for assessing ear 

density would aid in improving agricultural management, providing improvements 

in preharvest yield predictions, or could even be used as a tool for crop breeding 

when it has been defined as a trait of importance. Not only are the current 

techniques for manual ear density assessments laborious and time-consuming, 

but they are also without any official standardized protocol, whether by linear 

meter, area quadrant, or an extrapolation based on plant ear density and plant 

counts postharvest. An automatic ear counting algorithm is presented in detail for 

estimating ear density with only sunlight illumination in field conditions based on 

zenithal (nadir) natural color (red, green, and blue [RGB]) digital images, allowing 

for high-throughput standardized measurements. Different field trials of durum 

wheat and barley distributed geographically across Spain during the 2014/2015 

and 2015/2016 crop seasons in irrigated and rainfed trials were used to provide 

representative results. The three-phase protocol includes crop growth stage and 

field condition planning, image capture guidelines, and a computer algorithm of 

three steps: (i) a Laplacian frequency filter to remove low- and high-frequency 

artifacts, (ii) a median filter to reduce high noise, and (iii) segmentation and 

counting using local maxima peaks for the final count. Minor adjustments to the 

algorithm code must be made corresponding to the camera resolution, focal 

length, and distance between the camera and the crop canopy. The results 
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demonstrate a high success rate (higher than 90%) and R2 values (of 0.62-0.75) 

between the algorithm counts and the manual image-based ear counts for both 

durum wheat and barley. 
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Abstract

Ear density, or the number of ears per square meter (ears/m2), is a central focus in many cereal crop breeding programs, such as wheat and
barley, representing an important agronomic yield component for estimating grain yield. Therefore, a quick, efficient, and standardized technique
for assessing ear density would aid in improving agricultural management, providing improvements in preharvest yield predictions, or could even
be used as a tool for crop breeding when it has been defined as a trait of importance. Not only are the current techniques for manual ear density
assessments laborious and time-consuming, but they are also without any official standardized protocol, whether by linear meter, area quadrant,
or an extrapolation based on plant ear density and plant counts postharvest. An automatic ear counting algorithm is presented in detail for
estimating ear density with only sunlight illumination in field conditions based on zenithal (nadir) natural color (red, green, and blue [RGB]) digital
images, allowing for high-throughput standardized measurements. Different field trials of durum wheat and barley distributed geographically
across Spain during the 2014/2015 and 2015/2016 crop seasons in irrigated and rainfed trials were used to provide representative results. The
three-phase protocol includes crop growth stage and field condition planning, image capture guidelines, and a computer algorithm of three steps:
(i) a Laplacian frequency filter to remove low- and high-frequency artifacts, (ii) a median filter to reduce high noise, and (iii) segmentation and
counting using local maxima peaks for the final count. Minor adjustments to the algorithm code must be made corresponding to the camera
resolution, focal length, and distance between the camera and the crop canopy. The results demonstrate a high success rate (higher than 90%)
and R2 values (of 0.62-0.75) between the algorithm counts and the manual image-based ear counts for both durum wheat and barley.

Video Link

The video component of this article can be found at https://www.jove.com/video/58695/

Introduction

The world cereal utilization in 2017/2018 is reported expand by 1% from the previous year1. Based on the latest predictions for cereal production
and population utilization, world cereal stocks need to increase yields at a faster rate in order to meet growing demands, while also adapting
to increasing effects of climate change2. Therefore, there is an important focus on yield improvement in cereal crops through improved crop
breeding techniques. Two the most important and harvested cereals in the Mediterranean region are selected as examples for this study, namely,
durum wheat (Triticum aestivum L. ssp. durum [Desf.]) and barley (Hordeum vulgare L.). Durum wheat is, by extension, the most cultivated
cereal in the south and east margins of the Mediterranean Basin and is the 10th most important crop worldwide, owing to its annual production of
37 million tons annually3, while barley is the fourth global grain in terms of production, with a global production at 144.6 million tons annually4.

Remote sensing and proximal image analysis techniques are increasingly key tools in the advancement of field high-throughput plant
phenotyping (HTPP) as they not only provide more agile but also, often, more precise and consistent retrievals of target crop biophysiological
traits, such as assessments of photosynthetic activity and biomass, preharvest yield estimates, and even improvements in trait heritability, such
as efficiency in resource use and uptake5,6,7,8,9. Remote sensing has traditionally focused on multispectral, hyperspectral, and thermal imaging
sensors from aerial platforms for precision agriculture at the field scale or for plant phenotyping studies at the microplot scale10. Common,
commercially available digital cameras that measure only visible reflected light were often overlooked, despite their very high spatial resolution,
but have recently become popular as new innovative image-processing algorithms are increasingly able to take advantage of the detailed
color and spatial information that they provide. Many of the newest innovations in advanced agricultural image analyses increasingly rely
on the interpretation of data provided by very high-resolution (VHR) RGB images (for their measurement of red, green, and blue visible light
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reflectance), including crop monitoring (vigor, phenology, disease assessments, and identification), segmentation and quantification (emergence,
ear density, flower and fruit counts), and even full 3D reconstructions based on a new structure from motion workflows11.

One of the most essential points for improvement in cereal productivity is a more efficient assessment of yield, which is determined by three
major components: ear density or the number of ears per square meter (ears/m2), the number of the grains per ear, and the thousand-kernel
weight. Ear density can be obtained manually in the field, but this method is laborious, time-consuming, and lacking in a single standardized
protocol, which together may result in a significant source of error. Incorporating the automatic counting of ears is a challenging task because
of the complex crop structure, close plant spacing, high extent of overlap, background elements, and the presence of awns. Recent work has
advanced in this direction by using a black background structure supported by a tripod in order to acquire suitable crop images, demonstrating
fairly good results in ear counting12. In this way, excessive sunlight and shadow effects were avoided, but such a structure would be cumbersome
and a major limitation in an application to field conditions. Another example is an automatic ear counting algorithm developed using a fully
automated phenotyping system with a rigid motorized gantry, which was used with good accuracy for counting ear density in a panel composed
of five awnless bread wheat (Triticum aestivum L.) varieties growing under different nitrogen conditions13. Recent work by Fernandez-Gallego14

has optimized this process for quicker and easier data capture, using VHR RGB color images followed by more advanced, yet still fully
automated, image analyses. The efficient and high-quality data collection in field conditions emphasizes a simplified standardized protocol for
consistency and high data capture throughput, while the image-processing algorithm employs the novel use of Laplacian and frequency domain
filters to remove undesired image components before applying a segmentation for counting based on finding local maxima (as opposed to full
delineation as in other previous studies, which may result in more errors with overlapping ears).

This work proposes a simple system for the automatic quantification of ear density in field conditions, using images acquired from commercially
available digital cameras. This system takes advantage of natural light in field conditions and, therefore, requires consideration of some related
environmental factors, such as time of day and cloud cover, but remains, in effect, simple to implement. The system has been demonstrated
on examples for durum wheat and barley but should be extendable in application to bread wheat, which, besides exhibiting ears with similar
morphology, are frequently awnless, but further experiments would be required in order to confirm this. In the data capture protocol presented
here, zenithal images are taken by simply holding the camera by hand or using a monopod for positioning the digital camera above the crop.
Validation data can be acquired by counting the ears manually for subplots in the field or during postprocessing, by counting ears in the image
itself. The image-processing algorithm is composed of three processes that, first, effectively remove unwanted components of the image in a
manner that, then, allows for the subsequent segmentation and counting of the individual wheat ears in the acquired images. First, a Laplacian
frequency filter is used in order to detect changes in the different spatial directions of the image using the default ImageJ filter settings without
window kernel size adjustments (Find !a"ima segmentation technique determines the local peaks after the median spatial filter step, at which
stage the pixels related with ears have higher pixel values than soil or leaves. Therefore, Find Maxima is used to segment the high values in the
image, and those regions are labeled as ears, which identifies ears while also reducing overlapping ear errors. Anal#$e %articles is then used
on the binary images to count and/or measure parameters from the regions created by the contrast between the white and black surface created
by the Find Maxima step. The result is then processed to create a binary image segmentation by analyzing the nearest neighbor pixel variance
around each local maximum to identify the wheat ear shapes in the filtered image. Finally, the ear density is counted using Analyze Particles, as
implemented in Fiji15. Both Find Maxima and Analyze Particles are standalone functions and available as plugins in Fiji (https://imagej.nih.gov/ij/
plugins/index.html). Though not presented specifically in the protocol here, preliminary results presented as supplementary material suggest that
this technique may be adaptable to conducting ear count surveys from unmanned aerial vehicles (UAVs), providing that the resolution remains
sufficiently high14.

%rotocol

&' %re(ield crop gro)th stage and en*ironmental conditions

1. Make sure that the crop growth stage is approximately between grain filling and near crop maturity, with ears that are still green even if
the leaves are senescent (which corresponds in the case of wheat to the range 60-87 of ZadoksK scale16). Some yellowing of the leaves is
acceptable but not necessary.

2. Prepare a sampling plan for image capture with various replicates (pictures per plot) in order to capture plot/area variabilityL the image-
processing algorithm will count the number of ears in the image and convert that to ears per square meter (ears/m2) based on the camera
specifications.

3. Plan the field excursions to capture the images within two hours of solar noon or, alternatively, on an overcast day in diffuse lighting
conditions in order to avoid the negative effects of ear shadowing on the ear counting algorithm.

4. Once in the field, check the top of the crop canopy to make sure that it is dry in order to avoid specular light reflection from moisture.
NOTE: In considering the objectives of this protocol, it is important to first consider whether the growth stage of the crop is suitable for
applying ear counts. Capturing images outside of the recommended growth stage will either result in suboptimal or in meaningless results
(if ears are not present or fully emerged). Image quality also has a considerable impact on processing the results, including resolution and
sensor size, and some environmental conditions, such as time of day and cloud cover, need to be carefully considered before proceeding
with image capture.

+' Image capture in (ield conditions )ith natural light

1. Prepare a MphenopoleM as shown in Figure & or a similar acquisition system (even handheld) to capture images quickly and yet in a
standardized and consistent manner at each plot or target location.
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Figure &, Ear counting s#stem' Ear counting system using the MphenopoleM shown in the field on the left, with a remotely controlled natural
color (RGB) large sensor and high-resolution digital camera system with camera tilt and height, indicating the necessary parameters for adjusting
the image-processing algorithm. The sensor and image resolution are detected automatically by the image properties, while the user should
input the specifics for the lens focal length and the distance from the canopy. These are necessary to adjust the algorithm for the estimated
number of pixels per ear and also the conversion of the image-based total ear count to ear density (ears/m2). For that reason, it is recommended
to use the same camera and lens focal length for all field images. Please click here to view a larger version of this figure.

2. Position the camera on a suitable monopod or MselfieM pole so that it may be maintained level, either using level bubbles or an in-camera
stabilization system, to obtain zenithal images.

3. Use a mobile phone, tablet, or another device to connect the camera for both remote control image capture and image visualization for the
best results with correctly focused images. Program the camera for autofocus in order to reduce any errors in case the user is not familiar
enough with their camera or photography techniques to set a correct manual focus, as demonstrated by the examples of zenithal images with
correct focus and exposure in Figure +.
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Figure +, Zenithal crop images' Durum wheat and barley ear zenithal images for ear counting data set examples with an acceptable stage of
growth and senescence from approximately 61 to 87 according to ZadoksK scale. (Left) Durum wheat zenithal image data set example. (Right)
Barley zenithal image data set example. Please click here to view a larger version of this figure.

4. Take note of the image number prior to image capture in order to match the images correctly with the field plots. Record one image of the
general field area at the start and one image of the ground/field between blocks for postprocessing controls.

5. Position the camera at approximately 80 cm above the top of the crop canopy, using a ruler or measurement string to periodically check the
camera height above the canopy. Ensure that the camera is level and capture the image. This technique may require 1-2 researcher(s).

6. If additional field ear count validation is desired apart from a manual image count validation, install an extension arm to the frame (e.g., a
small circle) and position it in the middle of the image in order to conduct manual field counts of a precise image subsetL this technique may
require 2-3 people to implement.
NOTE: Three major considerations in selecting a camera, therefore, include: (1) camera specificationsL in this case, the sensorKs physical
sizeL (2) focal length of the image lensL (3) distance between the canopy and the camera: smaller distances or greater zoom lenses will
capture a smaller area while images captured from a greater distance will capture a bigger crop area. See Figure & for the details on the
relevant camera specifications.

-' Algorithm implementation and ad.ustments

NOTE: Here we present algorithm implementation and adjustments for different camera specifications (sensor size, megapixels, focal length,
distance to crop) and crop (durum wheat or barley) for automatic ear counting. An overview of the algorithm is presented graphically in Figure -.
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Figure -, Image�processing pipeline (or t)o�ro) barle# ear counting' Image-processing pipeline for two-row barley ear counting as
implemented using specific computer code or using the Cereal/canner software, both of which operate within Fiji (ImageJ). Panel 1 shows the
original image. Panel 2 shows the results of the applications of the Laplacian filter. Panel 3 shows the application of the median filter, and Panel
4 shows the results of the final Find Maxima and segmentation for producing the final ear count. Then, the calculations are made to convert
the image count to ear density, as shown in Figure &. These images are an example taken from the Arazuri field site (Northeastern Spain,
42N48K33.9MN 1N43K37.9MW) in diffuse light conditions. Please click here to view a larger version of this figure.

1. Download and install Fiji, Java 8, and the processing code or the University of BarcelonaOs proprietary Cereal/canner plugin (https://fiji.sc/,
https://www.java.com/en/download/, and https://integrativecropecophysiology.com/software-development/cerealscanner/ [information] or
https://gitlab/sckefauver/CerealScanner [code repository])L contact the corresponding authors for access permissions. The plugin is installed
within Fiji by simply copying it into the plugins folder.

2. Open the plugin from the top menu through %lugins 0 Cereal/canner 0 1pen Cereal /canner.
NOTE: Apart from the work presented here, the CerealScanner plugin includes several different RGB-based vegetation indices related to
crop vigor, stress, or chlorophyll17,18. The specific CerealScanner portion includes specific algorithms for Earl# Vigor (Fernandez-Gallego, In
review), Ear Counting14, and Crop /enescence19, as shown in Figure 2.

3. Enter the adjustments of the camera specifications and image capture details if they are different from the default values (see Figure & and
Figure 2 for details).

1. Adjust the algorithm parameter for the camera focal length.
2. Adjust the algorithm parameter for the distance from the crop canopy.
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Figure 2, 3he Cereal/canner +'&+ Beta central tab on both le*els4 marking the Ear Counting (unction )ithin the Cereal/canner
algorithm collection' The user must select the P button to the right of Batch Inputs to select the folder where the image files are stored,
change the default values of the H Distance (distance from the camera to the top of the crop canopy) and Focal Length, if different from the
default values, and then select the P button to the right of Results File to choose the name and location of the final results file. The other tabs
of the CerealScanner provide algorithms for trait-based phenotyping for Earl# Vigor and onset of !aturit# as part of the CerealScanner code
suite. Under the Biomass tab, there are several algorithms for estimations of more general crop vigor and biomass calculations, also for RGB
digital images. The example refers to two-row barley, as it was demonstrated in detail in Figure -.Please click here to view a larger version of
this figure.

Figure 5, Algorithm ad.ustments' Adjustments required in the image-processing pipeline in order to successfully count both wheat and barley
ears using the same algorithm are managed automatically as part of the camera-specific adjustments of H Distance (distance between the
camera and the crop canopy) and Focal Length and serve to ensure that the number of pixels per ear remains more or less constant between
different applications. Please click here to view a larger version of this figure.

4. Select the center tab Cereal/canner and the subsequent central tab Ear Counting in order to calculate the number of ears in each image of
a field data set.

1. Under 1ptions, enter, in Batch Inputs, the location of the photos to analyze.
2. In the Results Files, select where to save the results file. The results file will include two columns with the image file name and the ear

counting results.
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3. Finally, click on %rocess, and the results file with the ear density in square meters (ears/m2), using a simple ratio using the camera
settings and the distance between canopy and camera to convert the image area to an actual canopy area in square meters following
Figure &, will be automatically produced in a few minutes, depending on the computer speed.

5. Conduct a post-processing validation after the data collection by manually counting the number of wheat or barley ears in the image and then
converting this to the number of ears per square meters (ears/m2), as is shown in Figure &, to compare the results with those based on the
algorithm values.

1. Use the simple point placement tool built within Fiji, which provides easy support for this process, and the Fiji Anal#$e %articles
function for producing the counts automaticallyL this is shown graphically in Figure 6.

2. Optionally, conduct a validation using a small area circle during field data acquisition as described in step 2.6L manual counts in the
field and manual image counts in the laboratory can, then, be used for algorithm validation as shown in Figure 7.

Figure 6, Algorithm *alidation using manual in�image ear counts' !anual in�image ear counts (or 8le(t9 durum )heat and 8right9 barle#'
The small dots were created using the Fiji %oint 3ool and then counted using the Anal#$e %articles Function with a 0.90-1.00 Circularit#
constraint after applying a Color 3hreshold from the :ue /aturation Intensit# color space for the color specified by the %oint 3ool. This
method ensures more accurate image-based manual ear counts. Please click here to view a larger version of this figure.

Figure 7, Algorithm *alidation using manual counts in the (ield and manual in�image ear counts o( )heat and barle#4 using a circle'
(Left) Wheat image count validation example using a circle. (Right) Barley image count validation example using a circle. The subset counts of
the ears within the white circle were counted using the same technique as described in Figure 6 with the %oint 3ool, Color 3hreshold, and
then, Anal#$e %articles Function with Circularit# constraints and color selection using Hue. Please click here to view a larger version of this
figure.

Representati*e Results

In Figure ;, the results show the determination coefficient between the ear density (number of ears per square meters) using manual counting
and the ear counting algorithm for wheat and barley at three different crop growth stages. The first one is durum wheat with a ZadoksK scale
between 61 and 65 (R2 Q 0.62). The second one is two-row barley with a ZadoksK scale between 71 and 77 (R2 Q 0.75), and the last one is durum
wheat with a ZadoksK scale between 81 and 87 (R2 Q 0.75).
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Figure ;, 3he coe((icient o( determination bet)een ear densit# 8number o( ears<m+9 using manual image�based counting and the image
algorithm (or ear counting o( durum )heat and t)o�ro) barle# at di((erent acceptable crop gro)th stages 8at Zadoks= scale 6&�;79' Both
axes show calculations, including conversions to ear density, rather than image-based results only. The representative results are presented
here for two different crops over three different growth stages, as well as under different light conditions, namely direct sunlight images of durum
wheat at ZadoksK scale 61-65 on the top (R2 Q 0.62, � Q 72), diffuse light images of barley at ZadoksK scale 71-77 in the middle (R2 Q 0.75, � Q
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30), and diffuse light conditions for durum wheat at ZadoksK scale 81-87 at the bottom (R2 Q 0.75, � Q 24). An example image of each is also
shown as an inset in the bottom right corner of each graph. Please click here to view a larger version of this figure.

>iscussion

Increased agility, consistency, and precision are key to developing useful new phenotyping tools to assist the crop-breeding community
in their efforts to increase grain yield despite negative pressures related to global climate change. Efficient and accurate assessments of
cereal ear density, as a major agronomic component of yield of important staple crops, will help provide the tools needed for feeding future
generations. Focusing on the improvement and support of crop-breeding efforts in field conditions helps keep this research and the techniques
presented here more closely tied to real-world climate change scenarios and the needs of the breeding community but also presents technical
difficulties. As such, it is important to pay close adherence not only to the data capture and image processing in this protocol but also to the
recommendations for optimal environmental conditions and crop growth stages for its successful implementation11. As a major agronomical
component of yield, ear density is considered one of the most important target traits in the push for increasing cereal crop yields (see the article
by Slafer et al.20 and references therein). The focus in this protocol toward an optimally cost-efficient, agile, and straightforward field phenotyping
technique considers that these aspects of the protocol are key to its adoption and implementation by the breeding community at large. In
contrast, previous related studies with similar aims at assessing ear density or other yield component quantification have used more involved
data capture and environmental control structures, such as enclosing structures and fixed camera supports or even artificial light inputs, that
effectively impede practical application under field conditions and implementation in actual breeding programs12,20,22.

Thus, we have presented here a detailed protocol that is the result of testing various different techniques in an iterative optimization process,
resulting in a simple but effective image data capture method requiring only a commercially available, moderately high-resolution RGB digital
camera and a rudimentary MphenopoleM for holding the camera above the crop canopy. Other image-filtering attempts based on RGB color or
alternative color spaces, such as hue-saturation-intensity or CIELAB, were not as effective or consistent as the use of the Laplacian and median
frequency domain filters in removing unwanted image elements, especially the awns. We have designed the image capture pipeline system
with different elements, some of which can be easily adjusted with minor changes in the image-processing algorithm implementation. In the
case studies presented here, we have used two different compact cameras with relatively large sensors and 20.1 megapixels (MP) and 16.0 MP
resolutions for capturing images with wide-angle lenses of 16-20 mm from a distance of 80 cm from the crop canopy. This has proven more than
sufficient to produce detailed canopy barley and wheat information, with simulations demonstrating that the technique maintains high levels of
precision down to approximately 8 MP14 (with similar lenses and distances from the canopy).

Although the consistency and precision of the presented image-processing techniques depend on the environmental conditions and phenological
stage at the time of image capture, the algorithms show promise in providing a robust performance in their application to different small-grain
cereals, including durum and bread wheat and two-row and six-row barley varieties. While this algorithm has yet to be fully tested, the image
capture would the same, with perhaps some minor adjustments with regard to the relative size and position of the ear in the images in order
to provide for optimal ear counting results. In the presented protocol, the image-based ear density estimates achieved maximal accuracy and
correlated best with manual image counts and grain yield compared to images captured at later growth stages, when crop senescence resulted
in a loss of color and illumination contrast between the rest of the crop canopy and the ears. This may be a result of higher temperatures or lower
water availability at the later parts of grain filling, which are especially common in typical Mediterranean conditions, that can cause the leaves
and culm to senesce before the ears do23L this contrast is essential for the effectiveness of the separation between the ears, leaves, and soil.
In overly mature or senescent canopies with the ears already yellow, the contrast between the different image elements is not adequate for ear
counting. As such, in other climates, the optimal timing may be slightly different if there is no water stress during senescence onset.

Even though the data collection in field conditions requires close attention to such environmental conditions as sunlight intensity and sunlight
illumination angles, the robust image analysis algorithm presented here provides some leeway in the image capture window by using spatial
techniques that ignore image albedo effects, given that the correct image exposure was used for the particular light conditions at the moment
of image captureL automatic settings have worked well in that respect. In previous work, a fuller range of lighting effects was tested, indicating
that the only major source of error with regard to light effects is the production of strong shadows in the image when capturing images in direct
sunlight either early or late in the day, due to the angle of the sun14. The first two image filter applications help to minimize any apparent effects
from excess illumination (although not via camera overexposure) while also reducing any background components of the imageL at the same
time, these filters also contribute to smoothing and noise reduction, both of which aide in the subsequent Find Maxima process23,24. Therefore,
while the natural illumination factors must be accounted for, such as the angle of the sun when the images are taken in direct rather than in
diffuse light conditions, this is mainly in order to reduce errors related to shadow artifacts.

Furthermore, correlations between algorithm ear counts from the presented protocol and grain yield were greater and more significant than
manual (field-based) ear counts of the same experiment11, which supports the claim that this protocol is not only more precise but also more
consistent as a standardized protocol for the assessment of ear density. While not presented here specifically, similar data capture and
processing techniques appears to be feasible using mobile phone, aerial or other automated platforms as they performs quite well under
simulated reduced image resolutions. Additional tests for greyscale reduction (for faster image processing) and reduced resolution image
simulations (from the application of other cameras or UAVs) were conducted by applying the image conversions before the first filter14 and
suggested that, in optimal conditions, processing times may be reduced in these ways without any loss of accuracy. As for possible future
directions, the image-processing algorithms presented here only take advantage of the VHR RGB color data as it is captured by the camera
(similar to the human eye), but other potential improvements may result from the conversion to hybrid color spaces, such as hue-saturation-
intensity, or through data fusion in combination with other more advanced scientific sensors, such as multispectral or thermal, which both have
become more affordable recently and offer the potential for improvement in ear density estimations, although perhaps at different growth stages
or in different field conditions.

In summary, the critical steps for the implementation of this protocol include first and foremost proper planning for the time of year and
environmental conditions of the crop, which are optimal when the crop is in growth stages 60-87 of ZadoksK scale and either at solar noon or
in diffuse light conditions. Furthermore, the acquisition of digital images should be conducted in a controlled manner accounting for camera
angle, distance from the canopy, and camera focus for each image. Finally, optimized computer-processing options are presented in detail for
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reproducing the processing code pipeline, or contact the authors for either the original code or the code integrated as a graphical user interface
(GUI) in a plug-in for Fiji, namely, the CerealScanner.

>isclosures

The authors have nothing to disclose.

Ackno)ledgements

The authors of this research would like to thank the field management staff at the experimental stations of Colmenar de Oreja (Aranjuez) of
the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and ZamadueRas (Valladolid) of the Instituto de Tecnología
Agraria de Castilla y León (ITACyL) for their field support of the research study crops used. This study was supported by the research project
AGL2016-76527-R from MINECO, Spain and part of a collaboration project with Syngenta, Spain. The BPIN 2013000100103 fellowship from
the MFormación de Talento Humano de Alto Nivel, Gobernación del Tolima - Universidad del Tolima, ColombiaM was the sole funding support for
the first author Jose Armando Fernandez-Gallego. The primary funding source of the corresponding author, Shawn C. Kefauver, came from the
ICREA Academia program through a grant awarded to Prof. Jose Luis Araus.

Re(erences

1. Food and Agriculture Organization (FAO). �ood outloo�� �ia��ual report o� glo al !ood mar�ets "#ovem er). Food and Agriculture
Organization of the United Nations (2017).

2. Araus, J.L., Kefauver, S.C. Breeding to adapt agriculture to climate change: affordable phenotyping solutions. $urre�t %pi�io� i� &la�t
�iolog'. (2018).

3. Ranieri, R. Geography of the Durum Wheat Crop. &astaria (�ter�atio�al. 6 (2015).
4. Food and Agriculture Organization (FAO). T)e *tate o! �ood (�securit' i� t)e +orld. Food and Agriculture Organization of the United Nations

(2014).
5. Araus, J.L., Cairns, J.E. Field high-throughput phenotyping: the new crop breeding frontier. Tre�ds i� &la�t *cie�ce. &? (1), 52S61 (2014).
6. Fiorani, F., Schurr, U. Future Scenarios for Plant Phenotyping. ,��ual Revie- o! &la�t �iolog'. 62 (1), 267S291 (2013).
7. Cabrera-Bosquet, L., Crossa, J., von Zitzewitz, J., Serret, M.D., Luis Araus, J. High-throughput Phenotyping and Genomic Selection: The

Frontiers of Crop Breeding ConvergeF. Jour�al o! (�tegrative &la�t �iolog'. 52 (5), 312S320 (2012).
8. Araus, J.L., Ferrio, J.P., Voltas, J., Aguilera, M., Buxó, R. Agronomic conditions and crop evolution in ancient Near East agriculture. #ature

$ommu�icatio�s. 5 (1), 3953 (2014).
9. Furbank, R.T., Tester, M. Phenomics S technologies to relieve the phenotyping bottleneck. Tre�ds i� &la�t *cie�ce. &6 (12), 635S644 (2011).
10. Araus, J.L., Kefauver, S.C., Zaman-Allah, M., Olsen, M.S., Cairns, J.E. Translating High-Throughput Phenotyping into Genetic Gain. Tre�ds

i� &la�t *cie�ce. +- (5), P451S466 (2018).
11. Duan, T. et al. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes. Jour�al o! Experime�tal

�ota�'. 67 (15), 4523S4534 (2016).
12. Cointault, F., Guerin, D., Guillemin, J., Chopinet, B. In-field Triticum aestivum ear counting using colour-texture image analysis. #e- .eala�d

Jour�al o! $rop a�d Horticultural *cie�ce. -6 (2), 117S130 (2008).
13. Dornbusch, T. et al. /igital �ield &)e�ot'pi�g  ' 0em�aTec. (2015).
14. Fernandez-Gallego, J.A., Kefauver, S.C., Gutiérrez, N.A., Nieto-Taladriz, M.T., Araus, J.L. Wheat ear counting in-field conditions: high

throughput and low-cost approach using RGB images. &la�t 1et)ods. &2 (1), 22 (2018).
15. Schneider, C.A., Rasband, W.S., Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. #ature 1et)ods. ? (7), 671S675 (2012).
16. Zadoks, J., Chang, T., Konzak, C. A decimal growth code for the growth stages of cereals. +eed Researc). &2 (14), 415S421 (1974).
17. CasadesTs, J. et al. Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-

limited environments. ,��als o! ,pplied �iolog'. &5@ (2), 227S236 (2007).
18. Hunt, E.R. et al. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. (�ter�atio�al Jour�al o! ,pplied Eart)

% servatio� a�d 2eoi�!ormatio�. +& (1), 103S112 (2013).
19. Zaman-Allah, M. et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. &la�t 1et)ods. && (1), 35

(2015).
20. Slafer, G.A., Savin, R., Sadras, V.O. Coarse and fine regulation of wheat yield components in response to genotype and environment. �ield

$rops Researc). &57, 71S83 (2014).
21. Liu, T. et al. In-field wheatear counting based on image processing technology. #o�g'e Jixie 3ue ao4Tra�sactio�s o! t)e $)i�ese *ociet' !or

,gricultural 1ac)i�er'. 25 (2), 282S290 (2014).
22. Cointault, F. et al. Texture, Color and Frequential Proxy-Detection Image Processing for Crop Characterization in a Context of Precision

Agriculture. ,gricultural *cie�ce. 49S70 (2012).
23. Abbad, H., El Jaafari, S., Bort, J., Araus, J.L. Comparative relationship of the flag leaf and the ear photosynthesis with the biomass and grain

yield of durum wheat under a range of water conditions and different genotypes. ,gro�omie. +2, 19S28 (2004).
24. Ko, S.-J., Lee, U.H. Center weighted median filters and their applications to image enhancement. (EEE Tra�sactio�s o� $ircuits a�d *'stems.

-; (9), 984S993 (1991).
25. SmoVka, B. #o�li�ear tec)�i5ues o! �oise reductio� i� digital color images. Wydawnictwo Politechniki WlXskiej (2004).

74 



 

 75 

 

3.3. Chapter 3 

Automatic wheat ear counting using machine learning based on RGB UAV 

imagery 

 

Jose A. Fernandez-Gallego1,2,3, Peter Lootens4, Irene Borra-Serrano4,5, Veerle 

Derycke6, Geert Haesaert6, Isabel Roldán-Ruiz4,7, Jose L. Araus1,2,*, Shawn C. 

Kefauver1,2,* 

 

1 Plant Physiology Section, Department of Evolutionary Biology, Ecology and 

Environmental Sciences, Faculty of Biology, University of Barcelona, Diagonal 

643, 08028, Barcelona, Spain. 

2 AGROTECNIO (Center for Research in Agrotechnology), Av. Rovira Roure 191, 

25198, Lleida, Spain. 

3 Programa de Ingeniería Electrónica, Facultad de Ingeniería, Universidad de 

Ibagué, Carrera 22 Calle 67, 730001, Ibagué, Colombia 

4 Plant Sciences Unit, Institute of Agricultural, Fisheries and Food Research 

(ILVO), Caritasstraat 39, 9090 Melle, Belgium. 

5 Department of Biosystems, MeBios, KU Leuven, Leuven, Belgium 

6 Ghent University, Department Plants and Crops, Faculty of Bioscience 

Engineering, Valentin Vaerwyckweg1, 9000 Ghent, Belgium. 

7 Ghent University, Department of Plant Biotechnology and Bioinformatics, 

Technologiepark 71, 9052 Ghent, Belgium. 



 

 76 

Submitted to: 

Remote Sensing of Environment 

  



 

 77 

ABSTRACT 

 

In wheat and other cereals, the number of ears per unit area is one of the 

main yield determining components. An automatic evaluation of this parameter 

may contribute to the advance of wheat phenotyping and monitoring. There is no 

standard protocol for wheat ear counting in the field, and moreover it is time-

consuming. An automatic ear counting system is proposed using machine 

learning techniques based on RGB images acquired from an aerial platform. 

Evaluation was performed on a set of 12 winter wheat cultivars with 3 nitrogen 

treatments during the 2017-2018 crop season. The automatic system developed 

uses frequency filter, segmentation, feature extraction and classification 

techniques to discriminate ears into the image. The relationship between the 

image-based manual counting and the algorithm counting for training and 

classifying, and validation exhibited high accuracy and efficiency. In addition, 

manual ear counting was conducted in the field. The correlations between the 

automatic and the manual in-situ ear counting with grain yield were compared. 

Correlations between both ear counting systems were strong, particularly for the 

lower N treatment. Methodological requirements and limitations are discussed. 
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Abstract: 

In wheat and other cereals, the number of ears per unit area is one of the main 

yield determining components. An automatic evaluation of this parameter may 

contribute to the advance of wheat phenotyping and monitoring. There is no 

standard protocol for wheat ear counting in the field, and moreover it is time-

consuming. An automatic ear counting system is proposed using machine 

learning techniques based on RGB images acquired from an aerial platform. 

Evaluation was performed on a set of 12 winter wheat cultivars with 3 nitrogen 

treatments during the 2017-2018 crop season. The automatic system developed 

uses frequency filter, segmentation, feature extraction and classification 

techniques to discriminate ears into the image. The relationship between the 

image-based manual counting and the algorithm counting for training and 

classifying, and validation exhibited high accuracy and efficiency. In addition, 

manual ear counting was conducted in the field. The correlations between the 

automatic and the manual in-situ ear counting with grain yield were compared. 

Correlations between both ear counting systems were strong, particularly for the 

lower N treatment. Methodological requirements and limitations are discussed. 
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1. Introduction 

High throughput plant phenotyping (HTPP) relies on the availability of 

advanced sensors, suitable image analysis and data mining tools (Araus and 

Cairns, 2014; Deery et al., 2014). In recent years, research in this area is growing 

exponentially, but field phenotyping is still perceived as a bottleneck for crop 

breeding due to the need for massive data collection and processing (Araus and 

Kefauver, 2018), image analysis tasks (Kefauver et al., 2018; Kelly et al., 2015; 

Minervini et al., 2015), science community adaptation to new technologies (Singh 

et al., 2016), and the need to adapt sensors, algorithms and data management 

to the wide array of traits needed for phenotyping (Qiu et al., 2018). 

Grain weight, number of grains per ear and ear density (understood as the 

number of ears or spikes per unit ground area) are the most important yield 

components in wheat (del Moral et al., 2010; Simane et al., 1993; Slafer et al., 

2014). An appropriate quantification of these components is therefore essential 

for wheat breeders to assess yield potential of breeding material in early 

generation. Traditionally, ear density is determined manually in-situ, by counting 

the number of ears present in a given area, which is time-consuming. In addition, 

as only a small subsection of the plot is usually considered, intra-plot 

heterogeneity might result in inaccurate estimations. 

As an alternative to this approach, on-ground automatic ear counting systems 

have been developed, based on RGB (Red/Green/Blue), thermal, multispectral 

and laser images. In the case of thermal, multispectral and laser sensors, few 

image processing techniques have been developed. For instance, color thermal 

maps and contrast limited adaptive histogram equalization (CLAHE) (Fernandez-

Gallego et al., 2019a); threshold segmentation and denoising based on 
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morphological filters (Zhou et al., 2018a) for multispectral images; and in case of 

a laser sensor, voxel-based tree detection and mean shift approach (Velumani et 

al., 2017). Nevertheless, RGB sensors have been widely used as a major remote 

sensing tool in many phenotyping tasks (Araus et al., 2018) due to their relatively 

low cost (Araus et al., 2018; Qiu et al., 2018), high resolution (Deery et al., 2014; 

Minervini et al., 2015), and a fast adaptation to natural light conditions (Cointault 

et al., 2008; Fernandez-Gallego et al., 2019b) that allows RGB sensors to acquire 

a faithful representation of an original scene even mounted on aerial platforms 

with continuous and unforeseen movements. 

Different image processing techniques have been developed for ear counting 

using RGB sensors. These image processing techniques include (i) hybrid 

spaces with texture parameters (Cointault et al., 2008); (ii) decorrelation 

stretching, scale-invariant feature transform (SIFT) descriptors and support 

vector machine (SVM) (Sadeghi-Tehran et al., 2017; Zhu et al., 2016); (iii) multi-

feature extraction using color, texture and histogram, kernel principal component 

analysis (KPCA) and the twin-support-vector-machine (TWSVM) model (Zhou et 

al., 2018b); (iv) Laplacian frequency filter, median spatial filter and local peak 

segmentation (Fernandez-Gallego et al., 2018a), including a simulation and 

implications of lower resolution (Fernandez-Gallego et al., 2018b); and (v) 

convolutional neural networks (CNNs) using fast region-based CNN (Madec et 

al., 2019). However, to date automatic ear counting systems have been 

implemented only on the ground for resolution reasons, using zenithal RGB 

images acquired at less than one meter (Cointault et al., 2008), around one meter 

(Fernandez-Gallego et al., 2018a) or at few meters above the crop:  2.5 m (Madec 

et al., 2019), 2.9 m (Sadeghi-Tehran et al., 2017), 3.5 m (Zhou et al., 2018a), and 
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even 5 m (Zhu et al., 2016). 

To the best of our knowledge, there is no information in the literature regarding 

the use of RGB images acquired at further distances above the crop, for example 

from an Unmanned Aerial Vehicle (UAV), for ear counting. Resolution is a key 

factor for image processing: higher resolution allows to extract more features from 

the input image in comparison to lower resolution (Syrris et al., 2015), which is 

critical for the detection of ears from any aerial platform. While this limited 

application in the past, the increasing availability of high resolution RGB imaging 

devices that provide high pixel density and thus improved ground sampling 

distance (GSD) from a greater distance, may make it feasible to use UAV 

platforms for ear counting. 

In this study, we propose an automatic wheat ear counting system using RGB 

images acquired from an UAV. A field trial comprising 12 modern wheat varieties 

tested under three fertilization conditions in four replicates was used for method 

development and validation. Orthophotos with a GSD of 0.24 cm/pixel were used. 

An image processing pipeline was developed using filtering, segmentation, 

feature extraction and machine learning techniques. Manual in-situ and image-

based counting were conducted for validation purposes. 

 

2. Material and methods 

2.1. Plant material and growing conditions 

A field trial with twelve winter wheat (Triticum aestivum L.) varieties (Benchmark, 

Bologna, Nara, Chambo, Henrik, Hondia, Diego, Julius, Lilli, Siskin, RGT Reform 

and Sobervio) and 3 nitrogen levels was established on a sandy loam soil at the 

experimental farm of Ghent University in Bottelare, Belgium (lat. 50.96 N, long. 
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3.78 E). Nitrogen fertilization levels included the standard recommended in the 

area (N.std), standard+30% (N+30) and standard-50% (N-50) (Fig. 1). The trial 

was part of a multi-location field trial run by the European Consortium for Open 

Field Experimentation (ECOFE, https://www.ecofe.eu) (Stützel et al., 2016). The 

field trial was set-up as a split-plot design with varieties grown in plots of 1,5 m 

by 12 m at a sowing density of 350 seeds m-2, and with four replicates. Nitrogen 

fractions were given on March 22, 2018, on April 27, 2018 and on May 25, 2018 

respectively. Nitrogen fertilizer used was Ammonium nitrate 27%. The 

accumulated rainfall during the growing season was 513.7 mm and the average 

temperature was 10.2 ºC (Fig. 1). Plots were mechanically harvested on July 14, 

2018. 

 

 

Figure 1. A) Schematic overview of the field trial with the nine ground control 

points (GCPs), the four blocks division, plots delimited and the treatments 
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applied; B) Zoom of one plot (central part indicated in red in A); C) overview of 

the field trial and D) average air temperature (°C) and cumulative precipitation 

(mm) for the entire growing period (November 1, 2017 – July 15, 2018) of the 

winter wheat trial. 

 

2.2. Orthophotos, plot and subplot images 

RGB images were acquired using a 12-rotor UAV (Model Onyxstar Hydra-12, 

Altigator, Belgium) at 25 m flight altitude under natural sunlight conditions with an 

overlap of 70% in both directions (forward-lap and side-lap). The images were 

acquired with a Sony α6000 DLSR (Sony Corporation, Japan), 24.5-megapixel 

resolution camera with a 23.5 x 15.6 mm sensor size, native resolution of 6000 x 

4000 pixels and equipped with a 35 mm focal length lens. All images were taken 

in manual mode to avoid different settings in successive images. Trigger speed, 

aperture and sensitivity to light (ISO) were adjusted in the field before the start of 

the flight, and the focus was set to automatic mode. Files were stored in RAW 

and JPG format. Images were acquired under diffuse light conditions (cloudy) at 

two dates: June 4 and June 19, 2018 corresponding to 61 and 75 growth stages 

(GS) of the Zadoks scale (Zadoks et al., 1974), respectively. Agisoft Photoscan 

software (version 1.2.3, Agisoft LLC, St. Peterburg, Russia) was used to build 

geo-referenced orthophotos using nine ground control points (Fig. 1). The 

coordinates of those points were determined with an RTK GPS (Stonex S10 

GNSS, Stonex SRL, Italy). The spatial resolution was defined automatically by 

the software based on the camera parameters and flight altitude. In practice it 

ranged from 0.23 cm/pixel to 0.24 cm/pixel. For comparison reasons the 

orthomosaics of both dates were exported at the lowest spatial resolution, which 
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was 0.24 cm/pixel. Halcon Image Analysis software (version 11, MVTec Software 

GmbH, Munich, Germany) was used to delineate each plot avoiding borders and 

to divide it into nine subplots (Fig. 2). The resulting plots had a footprint size of 

0.96 m x 8.64 m; therefore, each subplot had a footprint size of 0.96 m x 0.96 m. 

Images from the centre of each plot (subplot #5, Fig. 2) were selected for training 

and validation purposes in order to avoid possible errors due to the distortion or 

perspective (Jaud et al., 2018). The complete plots (from subplot #1 to #9) were 

used for the automatic wheat ear counting system. In total 2592 subplot images 

were processed. 

 

 

Figure 2. Schematic representation of the image acquisition system and image-

based validation. Each plot was divided in nine subplots. The central subplot 

(subplot #5) was selected for training and validation, to avoid possible errors due 

to the distortion or perspective. Red marks were placed manually on each ear. 

The dotted line rectangle shows a zoom-in of subplot #5 including the manual 

marks corresponding to the complete area covered by each single ear. These 

marks were used for training and classification purposes. For algorithm validation, 

UAV platform Orthophotos field trialAerial Images 

Plot and subplotsSubplot #5Manual marks
subplot #5

Subplot #5 (zoom-in)
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a single dot per ear was used, as the final purpose of this work was to develop a 

methodology for wheat ear counting and not to determine their shape or size. 

 

2.3. Automatic wheat ear counting system using UAV imagery 

The algorithm for ear counting is based on the pipeline developed by 

Fernandez-Gallego et al. (2018) which includes three main steps: Laplacian 

frequency filter, median filter and Find Maxima. For the case presented in this 

study based on UAV imagery, we have used the Laplacian frequency filter and 

Find Maxima steps (Fernandez-Gallego et al., 2018a), and have included two 

additional steps: (a) feature extraction and (b) training and classifying (Fig. 3). In 

this adaptation of the original algorithm, the median filter step was excluded in 

order to maintain the high frequency information of the canopy after the Laplacian 

frequency filter step, considering the greater distance between the sensor and 

canopy. The algorithms were developed in ImageJ (version 2.0.0-rc-69, NIH, 

Bethesda, MD, USA) and MATLAB (version R2014b, Mathworks, Inc., MA, USA). 

Therefore, the final pipeline algorithm consists of four steps: (1) Laplacian 

frequency filter, (2) Find Maxima, (3) features extraction and (4) training and 

classifying. The Laplacian filter was applied as a wide frequency filter to avoid 

unwanted objects such as awns, leaves and soil. Find Maxima was then used for 

local peak detection in order to define image areas where ears could be located 

(segmentation). We developed a feature extraction step in order to obtain 

numerical characteristics related to shape, color and statistical measurements 

(such as mean and standard deviation) for each local peak detected in the 

previous step. Finally, a training and classifying step was developed to decide 

between two classes; Class1: Ear, Class2: Non-Ear. The image processing 
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system proposed uses as input subplot images (Fig. 3). This means that the 

estimation of the number of ears per plot is the sum of each subplot (from the 

subplot #1 to #9) not including the buffer area, which was excluded in the 

preliminary plot delineation). The sequence of steps implemented is described in 

Fig. 4. Laplacian frequency filter and Find Maxima steps are widely discussed in 

(Fernandez-Gallego et al., 2018a). 

  

   

Figure 3. Image processing system proposed. The input is a subplot image. 

Laplacian filter and Find Maxima are used for filtering and segmentation tasks 

respectively. Numerical characteristics such as shape, color and statistical 

measurement for each segmented area are calculated in the feature extraction 

step. Areas in color were used for training and classifying purposes: (i) red: 

manual image-based ears; (ii) white (Class1: Ear): overlap between the areas 

automatically selected and the areas manually marked as ear; (iii) blue (Class2: 

Non-Ear): no overlap between the areas automatically selected and the areas 

manually marked as ear; these blue areas corresponding to soil, leaves and 

unwanted objects that were wrongly identified by ear by the automatic counting 

algorithm. The m features (columns) per n segmented areas (rows) were 

calculated to obtain the feature matrix. 
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2.3.1. Features extraction 

The features extraction was developed using Analyze Particles after Find 

Maxima (Schneider et al., 2012). The binary areas from the Find Maxima step 

were used as masks to calculate features (Fig. 3). We have extracted shape 

descriptors and statistical information from the original RGB image and its color 

channels, such as area, height, width, Feret, circularity, mean, standard 

deviation, mode and more measurements, totaling 30 features (m = 30 in Fig. 4). 

An overview of the complete set of features extracted and their definition can be 

found in Supplementary File 1. A feature selection was developed in order to 

reduce the dimensionality of the data in preference to feature reduction by 

transformation. This allowed us to keep the units and meaning of all variables 

(Tripathy and Sahoo, 2015), thereby losing less of the information contained in 

the original features space (Khalid et al., 2014). For this purpose the Sequential 

Feature Selection (SFS) (Kohavi and John, 1997) was used with forward direction 

and stop criterium of 20 features (s = 20 in Fig. 4). Supplementary File 1 also 

shows the selected features. 

 

2.3.2. Training and classifying 

The training and classifying steps were developed using diverse machine 

learning techniques in order to compare the capability of each technique to 

discriminate between the Class1 and the Class2 labeled objects using the manual 

marks as a reference. 

For labeling purposes (Class1 or Class2), red marks were used to delineate 

all the ears manually. We marked the complete area covered by each single ear 

in order to maximize information gained in this step. Figure 2 shows in the dotted 
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line rectangle a sample of the manual marks. For each date of measurement 

(June 4 and June 19), 16 subplots images were manually marked for training and 

classifying; totalling 32 subplots. Different subplots we used for each data of 

measurement. The overlapping areas between automatic and manual selection 

were represented in white color and correspond to the Class1; the non-

overlapping areas were represented in blue color and correspond to the Class2 

(Fig. 3 and Fig. 4). The same data was used for training and validation purposes 

for each classification technique. 

The supervised machine learning techniques implemented for classification 

were: (i) discriminant analysis (DA) (Box, 1949) using linear discriminant, (ii) 

generalized linear models (GLM) (Dobson and Barnett, 2008) using binomial 

distribution, (iii) k-nearest neighbors (kNN) (Mitchell, 1997) using Euclidian 

distance, (iv) native Bayes (nB) (Mitchell, 1997), (v) neural feedforward neural 

networks (NN) (Beale et al., 2015) with ten hidden layers, (vi) support vector 

machine (SVM) (Cristianini and Shawe-Taylor, 2000) with a Gaussian radial basis 

kernel (Cristianini and Scholkopf, 2002; Liu et al., 2012), decision trees (DT) 

(Sheppard, 2017) and random forest (RF) (Breiman, 2001). Figure 4 shows the 

pipeline system used for training and classifying, the same data from the feature 

extraction step were used to train each classifier. The classification accuracy was 

calculated using cross-validation in terms of true positives (TP) and false 

positives (FP) and true negatives (TN) and false negatives (FN) based on the 

confusion matrix (Tso and Mather, 2009). The TP and TN correspond to the 

Class1 and Class2 correctly classified by the automatic system, respectively. 
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Figure 4. Image processing system proposed including training and classifying 

processes. The subplot images were batch processed, such that each row of the 

feature extraction matrix contained the features of each particular area detected 

per subplot image. Inside the dotted line rectangle, each matrix row was labelled 

automatically Class1 or Class2. Feature selection reduced the dimensionality of 

the data and then the classifier was trained. The m features per each n area were 

used for training and classifying, and s features were selected. The same data 

from the feature extraction step was used to train each classifier. Classification 

accuracy was calculated using cross-validation. 

 

2.3.3. Algorithm validation 

In addition to the training and classification section, the performance of the 

image processing system using an UAV platform was also tested at anthesis 

(June 4, GS = 65) and early grain filling (June 19, GS = 75) growth stages using 

additional subplots from the total dataset of subplot images. These additional 

subplots were not used at the training and classifying procedure (previous 

section). In order to further validate the automatic ear counting system, the 

algorithm results were compared with the manual image-based marks on the 
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same images. The number of ears automatically detected by the image 

processing system is referred to as the algorithm counting and the number of 

ears manually marked is referred to as manual image-based counting. For each 

N treatment and date of measurement we have used 24 subplots, totalling 144 

subplots. For this manual image-based counting, only one red dot was marked 

per ear in the original image with the same color value, circular shape and size; 

then, we used a simple algorithm to search the same color and shape marks and 

count them. The corresponding manual image-based counting and algorithm 

counting numbers were expressed in terms of ears per square meter in order to 

use standard units. To determine the prediction power of the automatic ear 

counting, we calculated cross-validation R2 values between manual image-based 

counting and algorithm counting for each discrimination technique and date of 

measurement. 

 A manual in-situ counting at crop maturity was carried out. For each plot, two 

half linear meter counts were used as a reference for the number of ears. Two 

different rows near the centre of the plot were selected. The manual in-situ 

counting was calculated as the sum of the number of ears counted in each half 

linear meter divided by the ratio between the plot width and the number of rows 

per plot.  

 

2.3.4. Statistical analysis 

Data analyses were performed using R Studio (version 1.2.135, R Foundation 

for Statistic Computing, Vienna 2018) and MATLAB (version R2014b, 

Mathworks, Inc., MA, USA). Determination coefficients of linear regressions (LR) 

and multiple linear regression (MLR), as well as the root mean square error 
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(RMSE), were calculated. The effects of genotype (G) and nitrogen (N) 

fertilization factors on grain yield (GY) were also calculated using LR and MLR. 

The G by N interactions (G*N) were analysed using analysis of variance 

(ANOVA). To validate the robustness of the classification and validation a five-

fold cross-validation (CV) was performed. In total, 100 CV runs (20 times five-fold 

CV) were performed. The data was plotted using SigmaPlot (version 12, Systat 

Software, Inc., San Jose California USA). 

 

3. Results 

3.1.  Algorithm development and validation 

The classification accuracy of each classifier was calculated (Table 1). The 

determination coefficient (R2) of the manual image-based counting and the 

algorithm counting for each classifier was calculated (Table 2). Furthermore, the 

linear regression between manual image-based counting and the algorithm 

counting for the best classifier was calculated (Fig. 5). 

First, the classification accuracy demonstrated a high percentage of correct 

prediction with a low standard error for k-nearest neighbors (kNN), support vector 

machine (SVM), decision trees (DT) and and random forest (RF) (Table 1). The 

RF classifier reached the highest percent of accuracy of true positives (TP) and 

true negatives (TN) for both dates (June 4: TP = 98.0%, TN = 96.9%; June 19: 

TP = 98.8%, TN = 95.8%), while the generalized linear models (GLM) (TP = 

65.2%) and native Bayes (nB) (TN = 78.5%) showed the lowest accuracy in terms 

of TP and TN, respectively, for June 4; and (nB) (TP = 87.9%) and discriminant 

analysis (DA) (TN = 75.3%) showed the lowest accuracy of TP and TN, 

respectively, in the case of June 19. 
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Table 1. Classification accuracy of the automatic wheat ear counting system 

using UAV imagery for each classification technique and date. Training and 

classifying step used cross-validation to calculate the confusion matrix. Standard 

error (se) was calculated for each result for each true positives (TP) and true 

negatives (TN). For details about the classification techniques assayed see 

Material and Methods. Discriminant analysis (DA), generalized linear models 

(GLM), k-nearest neighbors (kNN), native Bayes (nB), neural feedforward neural 

networks (NN), support vector machine (SVM), decision trees (DT) and random 

forest (RF). 

 

Classification 
technique 

June 4 June 19 

TP (%) 
Class1 

 
se 

TN (%) 
Class2 

 
se 

TP (%) 
Class1 

 
se 

TN (%) 
Class2 

 
se 

DA 90.7 0.09 80.2 0.16 93.2 0.07 75.3 0.17 
GLM 65.2 0.13 93.7 0.08 92.2 0.08 77.5 0.17 
kNN 96.4 0.17 94.1 0.28 97.0 0.15 93.9 0.27 
nB 86.1 0.11 78.5 0.15 87.9 0.11 75.6 0.16 
NN 90.5 0.09 79.7 0.16 93.1 0.08 79.8 0.15 

SVM 94.0 0.14 93.5 0.10 95.3 0.14 91.7 0.13 
DT 94.3 0.13 93.0 0.16 94.3 0.13 91.6 0.20 
RF 98.0 0.10 96.8 0.16 98.8 0.06 95.8 0.20 

 

The manual image-based counting and the algorithm counting demonstrated 

high determination coefficient (R2) cross-validation results with low standard error 

for SVM, DT and RF under further subplot inputs (Table 2). The RF classifier 

reached the highest R2 cross-validation values for both dates (June 4: R2 = 0.82; 

June 19: R2 = 0.87), while GLM showed the lowest R2 cross-validation values for 

both dates (June 4: R2 = 0.33; June 19: R2 = 0.36). 
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Table 2. Determination coefficient (R2) of the cross-validation results between 

manual image-based counting and algorithm counting for each classification 

technique and date. Standard error (se) was calculated for each result. 

Discriminant analysis (DA), generalized linear models (GLM), k-nearest 

neighbors (kNN), native Bayes (nB), neural feedforward neural networks (NN), 

support vector machine (SVM), decision trees (DT) and random forest (RF). 

 

Classification 
technique 

cross-validation R2 value 

June 4 se June 19 se 

DA 0.59 0.02 0.63 0.02 
GLM 0.33 0.03 0.36 0.03 
kNN 0.58 0.02 0.71 0.02 
nB 0.44 0.02 0.38 0.02 
NN 0.60 0.02 0.64 0.02 

SVM 0.80 0.01 0.71 0.01 
DT 0.77 0.01 0.76 0.01 
RF 0.82 0.01 0.87 0.01 

 

Furthermore, the relationship between the manual image-based counting and 

the algorithm counting for the best classifier (RF), also shows high determination 

coefficient on both dates (June 4: R2 = 0.83, June 19: R2 = 0.89) using a linear 

regression without cross-validation (Figure 5). 
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Figure 5. Linear regression for algorithm counting vs. manual image-based 

counting on the same image using the RF classifier. Two dates of measurement 

with the whole data were used. The dotted line indicates the 1:1 slope. The root 

mean square error (RMSE) was calculated for each date. 

 

3.2. Relationship between manual in-situ and algorithm counting 

The relationship between manual in-situ counting and algorithm counting were 

calculated using the determination coefficient of the cross-validation and the 

complete data set for each date of measurement (June 4, June 19) and also 

combining both dates (June 4 + June 19). 

Moreover, the genotype (G), nitrogen fertilization (N) and G+N effects were 

tested. G*N interactions were not observed. Additionally, we also grouped the 

data by N treatments in order to analyze the correlation between the manual in 

situ counting and the algorithm counting. Although, very low determinations 

coefficients were observed (R2 ≈ 0.0) for all cases (results not shown). 

 

Table 3. Determination coefficient (R2) of the cross-validation results between 

manual in-situ counting and algorithm counting (June 4, June 19 and June 4 + 

June 19) with grain yield (GY) using the linear regression (LR) for all data (n = 

144) and also for data grouping by N fertilization (N.std, N+30 and N+50) are 

shown (n = 48). The results are also shown for the same data and dates with GY 

including the effects of G (all data + G) and N (all data + N) and also both 

combined (all data + G + N) factors (n = 144) using multiple linear regression 

(MLR). G by N interactions were not observed. The root mean square error 

(RMSE) was calculated for each model. 



 

 97 

 n = 144 n = 48 

Input data 
all data 

all data 
+ G 

all data 
+ N 

all data 
+ G + N 

N.std N+30 N-50 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Manual in-situ 
counting 0.02 806.0 0.06 807.5 0.34 664.8 0.41 631.0 0.11 733.6 0.14 735.1 0.08 442.4 

Algorithm counting 
(June 4) 0.04 798.5 0.11 781.8 0.34 662.9 0.45 609.4 0.14 740.0 0.20 737.4 0.17 447.2 

Algorithm counting 
(June 19) 0.14 766.2 0.16 766.2 0.36 764.8 0.41 630.1 0.11 752.3 0.17 732.2 0.42 376.2 

Algorithm counting 
(June 4 + June 19) 0.28 737.7 0.20 745.5 0.35 656.6 0.46 606.8 0.10 766.0 0.16 727.9 0.46 368.5 

 

3.3. Relationship between manual in-situ and algorithm counting with 

grain yield 

The relationship between manual in-situ counting and algorithm counting with 

grain yield were assessed using the R2 of the cross-validation. In the case of 

algorithm counting, the mean of nine subplots from the RF classifier were used 

(Table 3). 

Using all data, determination coefficients showed no correlation between 

manual in-situ counting and algorithm counting for June 4 with grain yield (R2 = 

0.02 and R2 = 0.04). In the case of algorithm counting for June 19 and June 4 + 

June 19 together, low correlations (R2 = 0.14, R2 = 0.28; respectively) were 

observed. Including G effects, the results showed low correlation for all four input 

data (R2 = 0.06, R2 = 0.11, R2 = 0.16 and R2 = 0.20). By contrast including N 

effects the correlation increased (R2 = 0.34–0.36). In the case of G+N effects, the 

determination coefficient also increased (R2 = 0.41–0.46). Grouping by N 

treatments, the best correlations were achieved for N.std and N+30 (R2 = 0.14 

and R2 = 0.20; respectively) on June 4; while for N-50 (R2 = 0.42) it was on June 

19. Additionally, using two input data together (June 4 + June 19), the correlation 

increased for N-50 (R2 = 0.46). Moreover, manual in-situ counting did not improve 

the strength of the correlations of the algorithm counting against grain yield when 

this variable was added in a multiple linear regression model (results not shown). 
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4. Discussion 

Agronomical yield components are key to dissect how wheat responds to 

growing conditions as well the basis of the genetic advance of grain yield (Slafer 

et al., 2014). In our study, the classification showed high accuracy for TP and TN 

in the training and classifying step; four classification techniques showed results 

above 90% for TF and TN, which means relevant information contributed by the 

feature extraction step to classification (Kumar and Bhatia, 2014) (Table 1). 

Across all machine learning techniques, RF achieved the highest classification 

accuracy at both date of measurement for Class1 and Class2 (June 4: TP = 

98.0%, TN = 96.9%; June 19: TP = 98.8%, TN = 95.8%) (Table 1). In the case of 

validation using manual image-based counting, RF also achieved the highest 

cross-validation results (June 4: R2 = 0.82, June 19: R2 = 0.87), but the other 

classifiers achieved much lower results (Table 2). Particularly, the best three 

classifications techniques using manual image-based counting and algorithm 

counting cross-validation were SVM, DT and RF (Table 2). In the linear 

regression, RF also achieved the highest determination coefficient on both dates 

(June 4: R2 = 0.83, June 19: R2 = 0.89 in Fig 5), in this case cross-validation was 

not performed. In our case, RF have performed better than the other classifiers 

for our shape and statistic features; this may be due to RF have shown higher 

performance in classification tasks when multi-dimensional data is used (Belgiu 

and Drăgu, 2016), as it is usually in remote sensing applications. RF robustness 

to outliers and noise (Breiman, 2001) and bootstrapping aggregations together 

with the many tree learners used in the RF classifier proved less sensitive to the 

quality of the training samples than other machine learning classifiers (Belgiu and 

Drăgu, 2016). These characteristics allowed for an effective prediction capacity 
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and also resulted in less overfitting (Berk, 2013). Moreover, for remote sensing 

approaches, parametric classifiers such as DA, GLM, nB have shown limitations 

dealing with multimodal distributions (Liu et al., 2011), while by contrast, 

nonparametric classifiers such as kNN, NN, SVM, DT and RF have shown better 

results under multimodal distributions (Marsum et al., 2018; Maulik and 

Chakraborty, 2017). 

To date, automatic ear counting systems, regardless of the acquisition 

equipment, have been evaluated from ground, using only a portion of the area of 

the plot (Cointault et al., 2008; Fernandez-Gallego et al., 2019a, 2018a, 2018b; 

Madec et al., 2019; Sadeghi-Tehran et al., 2017; Velumani et al., 2017; Zhou et 

al., 2018a, 2018b; Zhu et al., 2016). Although the use of an UAV platform allows 

the acquisition of the complete area plot, multispectral and thermal sensors have 

low spatial resolution from aerial platforms and laser sensors are still costly. RGB 

sensors are not without their limitations; images taken on June 6, June 25 and 

July 3 under direct sunlight conditions (sunny days) were discarded. Due to the 

sunlight reflections on bending leaves it was hard to differentiate between ears 

and reflections on the leaves making it impossible to do a correct visual (i.e. 

manual) ear detection on the orthomosaic images. Therefore, the relatively low 

spatial resolution from the UAV combined with sunny day restrictions (blurring 

and degraded orthophotos due to sunlight reflections) do not permit precise 

reconstruction of the orthophoto at the canopy scale (Ortega-Terol et al., 2017). 

As a result, these resolution and light conditions affect the number of matching 

features found for the Structure from Motion (SfM) process used to build the 

orthophoto (Aasen et al., 2018). Nonetheless, under cloudy sky conditions, RGB 

orthophotos can precisely reconstruct the ears, leaves and soil for recognition 
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purposes. 

On the other hand, although the ear density is part of the yield components, 

previous studies in ear recognition have not further used this information in order 

to understand the relationship between (automatic) ear counting systems with 

grain yield. In this study using the complete plot size area, the automatic ear 

counting system and cross-validation technique overall results showed no 

correlation with grain yield at June 4 (R2 = 0.04) and low correlation at June 19 

(R2 = 0.14). In the same way, for manual in-situ counting any correlation with 

grain yield (R2 = 0.02) was observed. Nevertheless, when including G and N 

effects the determination coefficient increased. Furthermore, the correlation for N 

effects is higher (R2 = 0.34–0.36) compared with G effects (R2 = 0.06–0.20) for 

manual and algorithm counting as input data, which suggests that the relationship 

between the manual in-situ counting and algorithm counting with grain yield is 

more supported by the nitrogen treatment factors than genotype differences. In 

fact, Slafer et al. (2014) also concluded that the effect of nitrogen fertilization may 

affect ear density far more than the genotypic differences across cultivars. In 

addition, the determination coefficient including G+N effects also increased (R2 = 

0.41–0.46) in all cases. In general, for grain yield assessment, algorithm counting 

performed better in terms of correlation with grain yield than manual in-situ 

counting. Regarding this relationship, no correlations were observed between 

manual and algorithm counting. This may be due to the limited reference 

measurement of two half linear meters used for manual in-situ counting compared 

to the complete plot area footprint acquired from the UAV platform. On the other 

hand, automatic counting from zenithal images only considers the upper (i.e. 

exposed) ears, which usually correspond to the main and primary tillers, while 
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manual counting considers all the ears, including those from secondary and 

tertiary tillers, which frequently are placed to lower levels within the canopy. Since 

the contribution of secondary and tertiary tillers to grain yield is usually minor if 

not negative (Ishag and Taha, 1974), this might explain the fact that in-situ ear 

counting correlated even weaker with grain yield that the values of the automatic 

counting. 

Grouping by nitrogen treatments, the best correlations of ear density against 

grain yield were achieved for June 4 and June 19 in N+30 and N-50 (R2 = 0.20 

and R2 = 0.42, respectively). June 4 + June 19 achieved the best correlation in 

N-50 (R2 = 0.46). In this way, the number of ears can be affected by genotype 

characteristics and N treatments, therefore these considerations should be added 

as variables into the model for grain yield assessment. The higher correlation 

between ear density and grain yield was observed at the lower N treatment (N-

50). This could be explained by less hidden ears as less nitrogen fertilization 

diminishes tillering capacity (Power and Alessi, 1978) which decreases hidden 

ears out of the reach of the automatic counting system. Considering the massive 

amount of data acquired from an aerial platform and the lower spatial resolution 

due to increased distance between object and camera, the image processing 

systems combined with machine learning techniques demonstrated an effective 

data management and image interpretation capacity. 

 

5. Conclusions 

In this study, we proposed an automatic system for ear counting using RGB 

aerial images from a UAV platform, together with machine learning techniques. 

Previously, similar techniques had been implemented from ground imagery, but, 
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with adaptation to UAVs, improved throughput is provided for more complete 

microplot coverage and feasibility in application to larger phenotyping studies. 

The ear counting system is able to identify wheat ears with high accuracy and 

efficiency. In that way, the system can be used for targeted trait breeding in cereal 

phenotyping, critical to developing wheat varieties that could be translated into 

yield gain (Araus et al., 2018). 

The algorithm counting demonstrated better correlation with the grain yield 

compared with the manual counting using all data and grouping by N treatments. 

Although the correlation between the algorithm counting and grain yield was 

relatively low using all data, when including the effects of G+N factors the 

determinations coefficient (R2) increased. Furthermore, the R2 with grain yield 

were higher including N than G factors, which suggests that ear counting 

relationship with grain yield is more supported by the N treatment factors than G 

differences. Moreover, the highest correlation between automatic counting and 

grain yield were achieved at the lower N treatment, where less hidden ears and 

lower tillering capacity occurs. In turn, it could indicate more applicability to real 

growing conditions in production fields, commonly under rainfed or low N 

conditions. 

Sunlight conditions were an important factor for this application, while direct 

sunlight (sunny days) did not allow for the correct visual identification of ears on 

the orthomosaic images; under diffuse light conditions (e.g. due to cloudy days 

or eventually measuring just before sunrise or just after sunset), the ears could 

be differentiated from leaves, soil or unwanted objects. In future studies with more 

spatial resolution from an aerial platform, the algorithm could be trained for direct 

sunlight conditions. Perhaps 3-dimensional imaging, along with ear size/volume 
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estimation, could be the next step to achieve higher correlation with grain yield. 
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Supplementary Table 1. Shape descriptors: In the feature extraction step, shape 

descriptors from the original Red/Green/Blue (RGB) image, such as area, Feret, 

width, height and circularity were extracted. The visual representation 

corresponds to one area segmented at the Find maxima step into the image 

processing system. The shape descriptors were calculated using the complete 

color image. In summary, 10 shape descriptors. 

 

Feature Visual representation Description 

Area 

 
Area of selection in square 

pixels. This are is calibrated in 
meters units. 

Feret distance 

 
The longest distance between 

any two points along the 
selection boundary 

Min Feret distance 

 

The minimum caliper 
diameter 
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Width 

 
The longest distance in the 

x-axis 

Height 

 

The longest distance in the 
y-axis 

Raw integrated density 

 
The sum of the values of the 

pixels in the image or 
selection 

Circularity 

 Circularity = 
4π*area/perimeter2 

 
Perfect circle à a value of 1.0 

 
Elongated shape à a value 

close to 0.0 

Aspect radio 

 

The minor x or y axis value 
measured 

Solidity 

 

Solidity = area / convex area 

Round  
Round = 4*area / (π*major 

axis2) 
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Supplementary Table 2. Statistical descriptors: In the feature extraction step 

statistical information from the original Red/Green/Blue (RGB) image and its color 

channels, such as area, mean and standard deviation were extracted. These 

descriptors are measured using the value of the pixels of each area segmented 

at the Find maxima step into the image processing system. The statistical 

descriptors were calculated using the complete color image (5 descriptors); and 

in addition, the statistical descriptors were also calculated per each color channel 

(R, B and G color channel, 15 descriptors). In summary, 20 statistical descriptors 

were used. 

 

Feature Description 

Mean Arithmetic mean value 

Std Arithmetical standard deviation value 

Mode Value most frequently fund 

Max Maximum value 

Min Minimum value 
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Supplementary Table 3. Feature selection: The Sequential Feature Selection 

(SFS) was used to select the features. The complete shape descriptors and 

statistical descriptors (for the color image) were selected (15 descriptors). 

Moreover, the statistical descriptors Mean (in G color channel), Std (in R, G, B 

color channels), Max (in G color channel) were selected (5 descriptor) for each 

color channel, totaling 20 descriptors. 

 

Feature 
Selection 

RGB R G B 

Area ü - - - 

Feret distance ü - - - 

Min Feret distance ü - - - 

Width ü - - - 

Height ü - - - 

Raw integrated density ü - - - 

Circularity ü - - - 

Aspect radio ü - - - 

Solidity ü - - - 

Round ü - - - 

Mean ü û ü û 

Std ü ü ü ü 

Mode ü û û û 

Max ü û ü û 

Min ü û û û 

   ü, selected; û not selected; - not used 
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ABSTRACT  

 

Ear density is one of the most important agronomical yield components in 

wheat. Ear counting is time-consuming and tedious as it is most often conducted 

manually in field conditions. Moreover, different sampling techniques are often 

used resulting in a lack of standard protocol, which may eventually affect inter-

comparability of results. Thermal sensors capture crop canopy features with more 

contrast than RGB sensors for image segmentation and classification tasks. An 

automatic thermal ear counting system is proposed to count the number of ears 

using zenithal/nadir thermal images acquired from a moderately high resolution 

handheld thermal camera. Three experimental sites under different growing 

conditions in Spain were used on a set of 24 varieties of durum wheat for this 

study. The automatic pipeline system developed uses contrast enhancement and 

filter techniques to segment image regions detected as ears. The approach is 

based on the temperature differential between the ears and the rest of the 

canopy, given that ears usually have higher temperatures due to their lower 

transpiration rates. Thermal images were acquired, together with RGB images 

and in situ (i.e., directly in the plot) visual ear counting from the same plot segment 

for validation purposes. The relationship between the thermal counting values 

and the in situ visual counting was fairly weak (R2 = 0.40), which highlights the 

difficulties in estimating ear density from one single image-perspective. However, 

the results show that the automatic thermal ear counting system performed quite 

well in counting the ears that do appear in the thermal images, exhibiting high 

correlations with the manual image-based counts from both thermal and RGB 

images in the sub-plot validation ring (R2 = 0.75–0.84). Automatic ear counting 
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also exhibited high correlation with the manual counting from thermal images 

when considering the complete image (R2 = 0.80). The results also show a high 

correlation between the thermal and the RGB manual counting using the 

validation ring (R2 = 0.83). Methodological requirements and potential limitations 

of the technique are discussed 
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Abstract: Ear density is one of the most important agronomical yield components in wheat. Ear
counting is time-consuming and tedious as it is most often conducted manually in field conditions.
Moreover, different sampling techniques are often used resulting in a lack of standard protocol, which
may eventually affect inter-comparability of results. Thermal sensors capture crop canopy features
with more contrast than RGB sensors for image segmentation and classification tasks. An automatic
thermal ear counting system is proposed to count the number of ears using zenithal/nadir thermal
images acquired from a moderately high resolution handheld thermal camera. Three experimental
sites under different growing conditions in Spain were used on a set of 24 varieties of durum wheat for
this study. The automatic pipeline system developed uses contrast enhancement and filter techniques
to segment image regions detected as ears. The approach is based on the temperature differential
between the ears and the rest of the canopy, given that ears usually have higher temperatures due
to their lower transpiration rates. Thermal images were acquired, together with RGB images and
in situ (i.e., directly in the plot) visual ear counting from the same plot segment for validation
purposes. The relationship between the thermal counting values and the in situ visual counting
was fairly weak (R2 = 0.40), which highlights the difficulties in estimating ear density from one
single image-perspective. However, the results show that the automatic thermal ear counting system
performed quite well in counting the ears that do appear in the thermal images, exhibiting high
correlations with the manual image-based counts from both thermal and RGB images in the sub-plot
validation ring (R2 = 0.75–0.84). Automatic ear counting also exhibited high correlation with the
manual counting from thermal images when considering the complete image (R2 = 0.80). The results
also show a high correlation between the thermal and the RGB manual counting using the validation
ring (R2 = 0.83). Methodological requirements and potential limitations of the technique are discussed.

Keywords: thermal images; ear counting; digital image processing; wheat

1. Introduction

High throughput plant phenotyping (HTPP) is a quantitative description of the functional and
structural properties of the plant [1] for the purpose of crop breeding [2,3]. In the case of cereals,
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e.g., wheat, besides grain yield, agronomical yield components are also assessed as part of plant
phenotyping pipeline [4]. The accurate quantification of the number of ears per square meter, number
of grains per ear and the thousand kernel weight, as the main yield components in wheat, are therefore
essential in breeding programs [5]. In the case of ear counting, it is time-consuming and tedious as it
is most often conducted manually in field conditions. Moreover, different subsampling techniques
and derived protocols for calculation are often used resulting in a lack of standard protocol. As
an alternative, several automatic ear counting techniques have been developed in the last years,
mainly using as input high resolution RGB (Red/Green/Blue) images. Different image processing
techniques have been used such as texture and hybrid color space [6,7], multi-features from color,
grayscale and texture data [8]. Decorrelation stretch for color contrast enhancement and Support
Vector Machine (SVM) as classification techniques [9,10] and convolutional neural network recognition
have been also used [11]. Other approaches use frequency and spatial filter techniques as well as
local peaks segmentation [12,13]. Even though the visual spectrum has been widely used for ear
counting, there are general limitations to have into account in field conditions, such as solar light
conditions (unwanted shadows and bright surfaces), wind conditions (blur ears), ears overlapping
and size/shape variation (mostly depending of their more/less horizontal position) and spatial image
resolution (camera/canopy distance and sensor size).

Recently, a fusion of multispectral and RGB images have been developed for ear counting
estimation [14]. Though not yet applied to wheat ear counting, fruit defect detection using
hyperspectral images, through image processing systems, has also been recently developed [15].
Therefore, although visual and multispectral information has been used for ear counting and
hyperspectral for fruit defect detection, there is no information in the literature regarding thermal
images for ear counting applications or segmentation on such a fine spatial scale, perhaps due to the
comparatively low resolution and high cost of thermal cameras [2].

Thermal imagery is related with the transpirative status of the plant [16] that is separate from the
visual characteristics that could result in the RGB imagery limitations. Thermal information has been
used mainly for monitoring crop water status [17–22] and irrigation management [23,24]. However,
previous studies have shown that, regardless of the water conditions during the growing season, there
are often significant constitutive differences between leaf and ear temperature on sunny days [25], with
ear temperature being higher than leaf temperature. This suggests that thermal imagery may provide
a useful approach for ear counting [26]. Temperature distribution across a particular surface have
been studied using image processing techniques; for instance, in segmentation applications using the
thermal color map, thresholding and morphology operators in research related with orange, apple and
almond tree orchards [27–29]. Other similar segmentation approaches have focused on the assessment
of plant and leaf temperature separately in vegetables and soybean crops [30,31].

In this study, we propose an automatic wheat ear counting system using thermal images acquired
holding the camera by hand above the canopy. We include data captured at three different experimental
stations located in northern, central and southern Spain with different environmental conditions. An
image processing system was developed to segment the wheat ears taking advantage of the thermal
color map. A pipeline structure was designed to filter background and unwanted regions into the
image using an adaptive contrast technique and morphological operators. Visual counting directly in
the field (i.e., in situ) as well as ear counts derived from RGB images of the same plot segments were
also added for the purposes of validating the thermal image and algorithm counting measurements.

2. Materials and Methods

2.1. Plant Material and Experimental Setup

Two sets of twenty-four post Green Revolution (i.e., semi-dwarf) durum wheat (Triticum turgidum
L. subsp. durum (Desf) Husn.) cultivars (cvs Amilcar, Arcobaleno, Athoris, Avispa, Burgos, Claudio,
Core, Don Norman, Don Ricardo, Dorondon, Euroduro, Gallareta, Iberus, Kiko Nick, Mexa, Olivadur,
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Paramo, Pedroso, Regallo, Saragolla, Sculptur, Simeto, Solea and Vitron) were grown during two
consecutive seasons. In the second year, the Haristide variety was planted instead of Paramo. Field
trials were carried at the experimental stations of Colmenar de la Oreja (40�040 N, 3�310 W), near
Aranjuez (Madrid province) and Coria del Rio (37�140 N, 6�030 W), near Sevilla during the 2016/2017
crop seasons and at Zamadueñas (41�420 N, 4�420 W), near Valladolid during the 2017/2018 crop
season. The first two stations belong to the Instituto Nacional de Investigación y Tecnología Agraria y
Alimentaria (INIA), while the third one belongs to the Instituto de Tecnología Agraria de Castilla y
León (ITACyL) of Spain. The average annual precipitation and annual temperature is about 425 mm
and 13.7 �C, 502 mm and 18.0 �C and 269 mm and 13.2 �C for Aranjuez, Sevilla and Valladolid,
respectively. The meteorological data were obtained from the meteorological stations nearest to
each experimental station using the SIAR (Sistema de Información Agroclimática para el Regadio)
information system [32].

Aranjuez trials were fertilized before sowing with 450 kg ha�1 of 8:15:15 (8% N, 15% P2O5, 15%
K2O) fertilizer and in addition 185 kg ha�1 of 46% urea was applied before stem elongation. Sevilla
trials were fertilized before sowing with 500 kg ha�1 of 15:15:15 (15% N, 15% P2O5, and 15% K2O)
fertilizer and 100 kg ha�1 of 46% urea was applied before stem elongation. Finally, Valladolid trials
were fertilized before sowing with 300 kg ha�1 of 8:15:15 (8% N, 15% P2O5, and 15% K2O) fertilizer;
150 kg ha�1 of calcium ammonium nitrate (27% richness in nitrogen) was applied before tillering; and
150 kg ha�1 of ammonium sulfate nitrate (26% richness in nitrogen) was applied before heading.

Two experimental conditions (rainfed and supplemental irrigation) were assayed at Aranjuez
and Valladolid, while, in the case of Sevilla, only rainfed conditions were assayed. The genotypes
were evaluated in 9 m2 in size plots, 6 rows, 0.25 m apart and a planting density of 250 seeds per
m2. Randomized blocks were used with three replicates and a total of 72 plots per trial (3 replicates
⇥ 24 genotypes). Supplemental irrigation and rainfed trials were planted on 22 December 2016
for Aranjuez and, in the case of Valladolid, supplemental irrigation and rainfed were planted on
13 November 2017 and 23 November 2017, respectively. The rainfed trail at Sevilla was planted on
15 December 2016. Accumulated rainfall and the average temperatures during the crop season for
each experimental station were 134 mm and 14.4 �C; 261 mm and 15.7 �C; and 169 mm and 10.2 �C for
Aranjuez (2016/2017), Sevilla (2016/2017) and Valladolid (2017/2018), respectively. For field trials
under supplemental irrigation, eight irrigations were provided at Aranjuez, with a total of 420 mm of
water, and eight irrigations were provided at Valladolid, with a total of 110 mm of water.

2.2. Thermal Images

Thermal images were acquired at Aranjuez, Sevilla and Valladolid using the MIDAS 320L infrared
camera (DIAS infrared GmbH, Germany) with a �20 �C to 120 �C temperature range, 8–14 µm spectral
range in one channel, 320 ⇥ 240 radiometric detector and 16-bit format using focal length in manual
mode. All files were exported using the default settings for PYROSOFT Professional software (DIAS
infrared GmbH, Germany) in BMP (bitmap file) format using 8 bits, and then images were converted
to JPG format using 8 bits.

Thermal images from the complete trials (72 plots each) of Aranjuez (supplemental irrigation
condition only) and Sevilla (rainfed), together with the first block (24 plots) from Valladolid (rainfed
only), were captured for this study. For each plot, one thermal image was taken holding the camera
by hand above the canopy and near the center of the plot. Images were acquired after midday in a
zenithal/nadir plane at between 0.8 and 1 m distance at each particular growth stage (GS) using Zadoks
growth stage [33] (Table 1). Spatial resolution was approximately 0.14 cm/pixel. Images were acquired
on 5 May 2017 (10:00–11:00 UTC, GS = 61–65, anthesis), 25 April 2017 (10:00–11:00 UTC, GS = 69,
grain filling) and 14 June 2018 (14:30–15:00 UTC, GS = 77, late grain filling) for Aranjuez, Sevilla and
Valladolid, respectively. Figure 1 shows an example of thermal images acquired for each experimental
station. The actual time of the data acquisition at each location was slightly different to allow for the
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adequate contrast between the leaves and ears in the thermal images. Preliminary selection discarded
images with acquisition or temperature problems such as blurred images or overcast conditions.

 
Figure 1. Images of plots acquired using the MIDAS 320L thermal camera: (a) Aranjuez (anthesis); (b)
Sevilla (grain filling); and (c) Valladolid (late grain filling). The last image includes the ring used for
validation purposes.

2.3. Automatic Thermal Ear Counting System

This work proposes an automatic image processing system based on the thermal color map using
four steps: (1) low temperature detection; (2) contrast limited adaptive histogram equalization (CLAHE); (3)
color threshold; and (4) analyze particles command (Figure 2). The automatic system was developed
in ImageJ open source software [34]. As a first step, low temperature detection uses the CIE L*a*b*
color space [35] to avoid the blue color values; the negative b* values were filtered using the color
threshold macro [34]. CLAHE method [36] was used to enhance the local contrast in small regions
in the image. As a next step, color threshold macro was used to select the high temperature via the
Hue/Saturation/Value (HSV) color space [37], represented in colors between red and green, which
correspond to hue values from 2 to 120, and therefore closely related with the presence of ears. Finally,
analyze particles function [34] was used to count and filter the regions detected as ears.
 

 Image Iin Low temp. detection CLAHE Color threshold Analyze particles Iout

Figure 2. Automatic thermal ear counting system: (1) low temperature detection; (2) contrast limited
adaptive histogram equalization (CLAHE); (3) color threshold; and (4) analyze particles command, boundaries
regions detected as an ear were underlined in white color.

Color thermal maps were used for the ear detection system, and the CIE L*a*b* color space
was selected with the aim of detecting the lower temperatures in the image. This color space uses
a Cartesian system of coordinates, where the positive b* axis represents the amount of yellow and
the negative b* axis represents the amount of blue [35]; in that way, we filtered the negative b* axis
to avoid leaves, which are related with lower temperature. The a* axis was not filtered for this step.
The CLAHE algorithm was used to enhance the local contrast in edges and regions into the image
and contribute to isolate overlapping or neighboring ears. The HSV color space uses the hue values
from 0� to 360� to represent colors from red to magenta, while saturation and value (or brightness)
have numbers from 0 to 100 [37]. This color space was used to segment high temperature represented
in colors between green and red. Finally, analyze particles command was used to count and filter the
regions detected as ears by the automatic algorithm.
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2.4. Algorithm Validation

Manual In Situ Counting and RGB Images

For validation purposes, a physical ring was placed on the top of the canopy for counting the
number of ears in the exact ring area by visual inspection in the field. The ring has a radius of 0.1225 m.
The ring was attached by an extension arm to the monopod used to acquire the RGB images. Thermal
and RGB images were acquired at the same time as the visual (in situ) ear counting (inside the ring) was
assessed in the first block (i.e., 24 plots) of the rainfed trial at Valladolid. Visual counting was always
performed by the same person at the same position where the images were acquired. Approximately
15 s were spent for each counting using a clicker to keep track of the exact number and making sure to
inspect the area inside the ring to accurately include all ears present by moving plants and changing
perspective angles at each location. Additionally, RGB images from the same plot segments were
acquired (at the same time than the thermal images) in a zenithal/nadir plane with a Sony QX1-ILCE
camera (Sony Corporation, Japan), 20.1-megapixel resolution, with 23.2 ⇥ 15.4 mm sensor size, using
16 mm focal lens and resolution of 5456 ⇥ 3632 pixels. The images were taken using a monopod at 1 m
above the canopy. The resulting RGB image spatial resolution was approximately 0.03 cm/pixel.

The presence of an ear inside the ring area assigned through the thermal images was checked by
the RGB image (Figure 3) together with the in situ visual counting. In that way, it was assured that the
temperature changes were due to the presence of an ear instead of soil, leaves or unwanted objects.

 
Figure 3. Thermal and RGB images were acquired for Valladolid at late grain filling. A ring was used
as a reference area for validation purposes. The number of ears inside the ring area were counted
using the thermal and the RGB images and, additionally, the number of ears was counted by visual
inspection in the field. The black extension-arm that supported the ring showed higher temperature
than ears and canopy (in red color), enabling it to be automatically extracted by morphology operators
in the image processing system.

Two validation steps were developed using manual image-based counting. On the one hand,
the ears inside the ring area (including the ring edge) in the thermal and RGB images were manually
marked, and the visual ear counting data from the field and the algorithm results were also included.
The results are referred to as Ring-Manual-In-situ-Counting (Ring-MIC), Ring-Manual-Thermal-Counting
(Ring-MTC), Ring-Manual-RGB-Counting (Ring-MRC) and Ring-Algorithm-Thermal-Counting (Ring-ATC).
A set of 24 images and full counting datasets were used for each variable of the ring related
measurements, thermal and RGB images. On the other hand, selected additional complete (full-sized)
thermal images (without cropping to the size of the reference ring) were also manually marked
(Figure 1). The result is referred to as the Complete-Manual-Thermal-Counting (Complete-MTC).
Finally, the number of ears automatically detected by the algorithm is referred to as the
Complete-Algorithm-Thermal-Counting (Complete-ATC). The ears manually marked in the images were
counted using a simple algorithm developed for counting the number of colored marks present in
the image. The markers were placed using the Pencil tool [34] with the same color value and circular
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shape and size. In this way, the simple algorithm for the marker counting could be limited to search
for precisely the same color and shape marks to then segment and count them.

2.5. Statistical Analysis

Data analysis was performed using the open source software, RStudio 1.1.423 (R Foundation
for Statistical Computing, Vienna, Austria). Lineal regressions were used to analyze the relationship
between manual image-base counting and automatic thermal ear counting. The data were plotted
using SigmaPlot version 12 (Systat Software, Inc., San Jose, CA, USA).

3. Results

3.1. Linear Regression between Thermal, RGB, In Situ and Algorithm Counting

Linear regression of Ring-MIC, Ring-MRC and Ring-MTC against Ring-ATC was calculated for the
24 rainfed plots from Valladolid at late grain filling growth stage (Figure 4). The relationships between
Ring-ATC against Ring-MIC (R2 = 0.40), Ring-MRC (R2 = 0.84) and Ring-MTC (R2 = 0.75) were positive
and statistically significant (p-value < 0.001). Therefore, the weakest correlation was recorded against
the visual counting in the field, which a priori represents the actual number of ears present. We also
calculated the relationship between the thermal and the RGB manual counting using the ring, where a
positive correlation with statistical significance was obtained (R2 = 0.83, p-value < 0.001). In addition,
the relationship of Ring-MRC against Ring-MIC was positive and statistically significant (R2 = 0.37,
p-value < 0.001), and similar in strength to the correlation between Ring-ATC and Ring-MIC.

 
Figure 4. Linear regression of the relationships using the ring area for: (a) Ring-MIC (R2 = 0.40); (b)
Ring-MRC (R2 = 0.84); and (c) Ring-MTC (R2 = 0.75) vs. Ring-ATC using images from Valladolid rainfed
trial at late grain filling. The dotted lines indicate the 1:1 slope.
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On the other hand, the relationship using the preselection of complete (full-sized) thermal
images from Aranjuez, Sevilla and Valladolid against the algorithms counting (Complete-ATC vs.
Complete-MTC) were also positive, statistically significant (R2 = 0.80, p-value < 0.001) and close to 1:1
slope relationship (Figure 5).

 
Figure 5. Linear regression for Complete-MTC vs. Complete-ATC (R2 = 0.80) using the full-sized thermal
images from Aranjuez, Sevilla and Valladolid at anthesis, grain filling and late grain filling, respectively.
The dotted line indicates the 1:1 slope.

3.2. Understanding Acquisition and Algorithm Errors

Figure 6 shows three temperature image scenarios related with the acquisition protocol, wheat
crop temperature and optimal algorithm considerations. The image in Figure 6a was acquired at
around 10:30 UTC in Aranjuez (supplementary irrigation) when, at this time, the ears exhibited higher
temperature than the canopy leaves due to direct sunlight conditions for several hours. In the case
of low thermal image contrast (Figure 6b), there were no temperature differences observed between
the ears and the rest of the canopy due image acquisition at 10:30 UTC in Sevilla, when overcast
conditions inhibited any direct sunlight to increase ear temperatures. Thus, the ears could not be
detected separately by the temperature sensor, resulting in some leaves being detected as an ear by the
algorithm. On the other hand, Figure 6c shows an image acquired in Aranjuez at the same optimal
daytime as Figure 6a, although the acquisitions distance used was less than 0.8 m by mistake, so that
the ears visually appear blurred in the image; the algorithm could not isolate property the ear regions.
The images in Figure 6b,c may be considered as acquisition errors due to improper sky conditions and
camera user error, respectively. Providing adequate sky conditions and correct camera settings, the
algorithm errors related with ear identification are relatively minor (Figure 6a) and basically due to the
inability of the algorithm to detect or separate very closely or overlapping ears in these circumstances
(see red color semi-circle in Figure 6a; similarly, two ears were not identified, as shown by yellow
circles in dots in Figure 6a) by the algorithm due to the lack of contrast.
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Figure 6. Thermal images: (a) optimal temperature: higher ear temperature than canopy temperature;
(b) low thermal image contrast: no temperature differences between canopy and ears; and (c)
out-of-focus image: ears and canopy at high temperature, and the image was acquired at less than
0.8 m distance between the camera and the canopy. The boundary regions underlined in white color
represent the ears automatically detected by the algorithm.

4. Discussion

Ear density can be used as a target breeding trait in cereal phenotyping. To date, the few
studies dealing with automatic ear counting in the field have mostly been performed using RGB
images [6,8–13]. Besides the intrinsic low cost of this approach due to the easy operation and
affordability of digital cameras, the high resolution of the natural color digital images is a major
factor to consider as both a cost and a benefit. The use of RGB images may have limitations under
certain field conditions, including the quality of the sky and light conditions, which can be overcome
with sufficiently high spatial resolution, but which requires powerful computing capacities and makes
its implementation more complex or less high throughput than expected. Other remote sensing
approaches include the use of multispectral images [14], but the segmentation accuracy decreases
as the canopy area observed within a single image increases, potentially due to the lower spatial
resolution of these images and the reflectance angle dependence of multispectral data. Even LIDAR
may be used [38] but its price and processing requirements may still be considered prohibitive and
its size and weight makes it too cumbersome to be handheld or pole mounted for quick ground
evaluation in field conditions. As an alternative, thermal images may be used. While thermal imagery
may provide slightly lower spatial resolution compared to multispectral images, the possibilities for
obtaining images with a much greater contrast between ears and leaves is much higher with thermal
imaging. The increase in contrast provided by thermal imaging stems from large differences in ear and
leaf transpiration rates, which directly affect cooling capacity and temperature. To ensure differences
in temperature between the ears and the rest of the canopy, it is still recommended the images be
acquired within a few hours of solar noon to reduce shadowing and sun angle effects. In fact, this
recommendation may be extended for any passive remote sensing imaging technique.

Moreover, thermal cameras use radiation far from the visible and near infrared spectral regions
and thus the factors that contribute to some of the limitations of RGB digital images such as brightness
of other factors affecting light conditions [2,16,26] are removed. For that reason, thermal images have
proven to be easier to process than RGB images, in part due to their lower resolution, without the
lack of contrast and technical limitations of multisensory array multispectral imagers. In fact, the
ears, and regardless of the water conditions, are usually several degrees warmer than the leaves [25],
due to their constitutive lower stomatal conductance and thus transpiration rates compared with
the leaves [39]. For this study, we measured the leaf and the ear temperature, with differences
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within images ranging 1.9–5.0 �C, 2.1–3.4 �C and 2.0–5.0 �C for Aranjuez, Sevilla and Valladolid,
respectively. The mean temperate differential between ears and leaves across all treatments needed for
the algorithm to segment property the ears was around 2.0 �C. Although, for this application, we used
the thermal color map to focus on the contrast present due to relative temperature differences, it is
also possible to work on the full radiometric kelvin information to get, for instance, the mean, range or
specific ear(s) temperature from the thermal images using the same segmentation algorithm. It could
represent additional useful information for phenotyping tasks as ear temperatures have been reported
in some cases to be better correlated with grain yield than spectral vegetation indices and also provide
comparable correlations as gene expression performance in predicting grain yield [25].

For additional thermal image algorithm validation purposes, visual in situ counting was
developed using a ring to delimit a specific area over the crop while in the field and thus facilitate
the manual counting. Although the ring has a small area, compared with the complete plot size, we
obtained a relatively low R2 relationship against thermal image-based counting (R2 = 0.40, Figure 4).
This is most likely associated with the limited single image-perspective of the one zenithal/nadir
thermal image or RGB image captured in the field. Some portion of the error could additionally be
associated with human visual inspection errors in the field and potentially the subjectivity of the
observer, as are often assumed to be major sources of error in manual ear counting in actual breeding
programs; however, for this study, the researchers attempted to minimize the human error associated
with the Ring-MIC ear counts to provide quality validation data. In the manual in situ counting in
the field, it was necessary to both view the canopy from different angles as well as physically move
plants to acquire accurate field validation data, representing a major difference between the in situ
counting and the single image-perspective remote sensing approach of the automatic thermal image ear
counting technique presented here. In previous studies on ear recognition, no information regarding
the correlation between in situ visual ear counting and automatic ear counting was provided [6–14],
but it is nonetheless an important point to consider as the entire image acquisition and processing
pipeline represents a sum of errors. Of course, the approach for visual counting assayed was in fact
much faster than the traditional ear counting procedures, which implies for example counting the total
number of ears in one-meter linear row length. However, this approach is quite tedious (and of course
takes much longer than the 15 s per plot as in our study). Nonetheless, we obtained good results
using thermal imagery for ear counting with positive and strong relationships between the automatic
thermal ear counting system and the manual image-based ear counting (R2 = 0.84 for Ring-MRC,
Figure 4; R2 = 0.75 for Ring-MTC, Figure 4 and R2 = 0.80 for Complete-MTC, Figure 5). Furthermore, in
all comparisons, the slope of the correlation was quite close to a 1:1 ratio, indicating very little bias
toward over- or under-counting within the range of ear density in this study. Thus, the additional
validation results provide support for the capacity of the automatic thermal image counting algorithm
to count the ears that are present in the image with high precision and low bias. However, other
potential sources of error in the thermal image counting pipeline should be considered in more detail.

Although we also detected limitations specific to the use of thermal imagery for ear counting, such
as the observed crop temperature issues (Figure 6), there are also errors related to the general use of
remote sensing imaging for ear counting, potentially applicable to any other single image or “snapshot”
approaches regardless of the range of non-penetrating electromagnetic radiation employed. This is the
case for instance of overlapping and hidden ears and might explain the rather low correlation between
the Ring-MRC (single human eye perspective) and the Ring-MIC (R2 = 0.37). The use of additional
oblique/off-nadir thermal imaging may provide improved canopy penetration, as for instance 3D surface
models that suggest performance improvements when off-nadir images are incorporated [40,41], but
may also come with other complications (consistency in oblique off-nadir angle, determination of
optimal angle, and more complex 3D processing algorithms) or yet unknown errors.
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Table 1. Comparative thermal and RGB data information in field conditions for ear
counting applications.

Thermal RGB

Temperature of the Ears Several degrees warmer than leaves [25]. Irrelevant.

Stage growth From heading to near crop maturity [42]. From heading to near crop maturity [12].

Accuracy hour of the day
and sky conditions

Clear sky conditions. After midday until
18:00, depending on plant water stress
conditions.

Depends of the hour of the day, 8:00 to
18:30 [10], 8:00 to 17:00 [14], 9:00 to 16:00
[9], 12:00 to 16:00 and sky (preferably
diffuse light) conditions [12].

Position of the camera Zenithal/nadir. Zenithal/nadir [6,10–13]; 45� above the
horizontal [14].

Distance of the camera
from crop 0.8–1 m. 0.85 m [6], 2.5 m [10], 2.9 m [11], 3.5 m

[14], 0.8–1 m [12].

Spatial resolution from
ground acquired images

Approximately 0.14 cm/pixel, depending
on camera and distance from crop.

Ranging 0.01–0.25 cm/pixel [6,10–13];
depending on camera and distance from
crop.

Possible algorithm errors

-The algorithm presents errors when the air
temperature is too low or high or the sky is
too cloudy, or the conditions very windy,
which may prevent differences between the
canopy and the ear temperature appears.
-The camera could be out-of-focus,
potentially due to a very short image
acquisition distance between the camera
and the canopy.
-In sparse canopies, soil temperature may
affect the background.
-Dry or senescent leaf canopy may affect the
background.

-False positives where pixels are labeled
as ears correspond to leaves and result in
irregularities in the ear counting.
-False negatives result in ears that are not
detected by the algorithm because the
contrast between the ear and soil is not
great enough and the segmentation
algorithm discarded that region.
-The algorithm labeled the area as an ear,
where the pixels are soil and noise being a
result of background brightness caused by
a foreign object [12].

Thermal and RGB image data in field conditions are discussed throughout this work and each of
the technology, acquisition and image processing steps show some limitations (summarized in Table 1).
RGB sensors provide high frequency information (very high spatial resolution) that contributes to
improvements in perceiving the existence of an ear separate from leaves, soil and other unwanted
objects; even though similar texture characteristics can be found in the awns or in parts of the leaves
for instance due to the high RGB resolution [12], these similarities between awns and ears actually
increases the challenges for automatic RGB ear counting systems. On the other hand, thermal images
filter high frequency details intrinsically due to the different technology that it uses to detect much
longer wavelength radiation emissions and its low-resolution characteristics [16]; this helps in the
automatic ear counting system implementation using thermal images. However, we could detect some
similar RGB and thermal image errors, such as overlapping and non-identified ears, yet they may still
provide some complimentary benefits together, such as more flexible image acquisition conditions
or improved image feature extraction and opportunities for validation. Therefore, thermal and RGB
fusion may in combination provide the best features of each technology in a way that could be acquired
by new mobile phones that incorporate thermal sensors [2]. Even more advanced systems that include
hyperspectral cameras [15] may also be considered in the future for ear counting purposes.

On the other hand, researcher visual interpretation of the RGB images was crucial in correctly
locating the presence of ears in thermal images for the development of the thermal image ear counting
algorithm. Thereby, the acquisition of thermal and RGB images at the same time may contribute
further to the understanding and interpretation of the information in the thermal images, contributing
to the development of a more robust algorithm for ear counting with thermal image color maps. In
fact, the ears are usually several degrees warmer than leaves for only some parts of the day under the
right conditions; thus, for ear counting purposes, it is necessary to select the optimal time of day for
acquiring thermal images. The thermal images, when taken at the right moment, can provide, from an
image processing system perspective, clearer information of the different components of the canopy;
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however, in some cases, high temperature information could be associated with soil or unwanted
objects that RGB images can help to avoid. Therefore, for future work, it may be the case that perhaps
thermal and RGB fusion could be the next step for ear counting applications.

5. Conclusions

In our study, a thermal camera was used to develop an image processing system for automatic ear
counting in field conditions. In favor of the thermal counting approach, ear density values estimated
through thermal imaging can be processed much more rapidly as the size of the images is much
smaller compared to high resolution RGB images used in other previous studies, while the increase
in contrast allows for equally accurate assessments when the thermal images are captured under
specific conditions. There should be a difference of at least 2 �C between the ear and leaf temperatures
for this thermal ear counting algorithm to work. Although the correlation with manual in situ ear
counts (Ring-MIC) was not very high, the algorithm did demonstrate high correlations with various
manual image-based ear counts (Ring-MRC, Ring-MTC, Complete-MTC). In future applications, thermal
imagery may be acquired from multiple perspectives (including off-nadir and oblique), or even thermal
video data, for improved ear detection in comparison with in situ counts. However, further studies
could use the same thermal image segmentation algorithm developed here for ear detection (Figure 2)
to extract the temperature of ears and leaves separately for other phenotyping applications related to
plant water stress effects or grain yield prediction. Thermal and RGB fusion, along with 3D imaging,
could be the next steps for cereal ear counting in field conditions to take maximal advantage of the
strengths of each imaging technology.
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ABSTRACT 

 

The pattern of photosynthetic area of the canopy throughout the crop cycle 

is an important factor for determining grain yield in wheat. This work proposes the 

use of zenithal RGB images of the canopy taken in natural light conditions to 

derive vegetation indices as a low-cost approach to predict grain yield. A set of 

23 varieties of durum wheat was monitored in three growing conditions 

(support irrigation, rainfed and late planting) and two sites (Aranjuez and 

Valladolid, Spain), totalling 6 field trials. For each plot, digital RGB images were 

taken periodically from seedling emergence to late grain filling. RGB-based 

Green Area (GA), Greener Area (GGA), Normalized Green Red Difference Index 

(NGRDI), Triangular Greenness Index (TGI) and a novel photosynthetic area 

index based on the CIE L*u*v* colour space (u*v*A) were compared to 

handheld spectroradiometer Normalised Difference Vegetation Index (NDVI) for 

reference. In the case of the irrigated and late planting trials the best phenotypic 

predictions of grain yield were achieved with the vegetation indices measured 

during the last part of the crop cycle (i.e. grain filling). For the rainfed trials the 

best phenotypic predictions were achieved with indices measured earlier (around 

heading). Among all the evaluated indices, the novel index performed the best. 

Considering the heritabilities of the evaluated RGB indices and their genetic 

correlations with grain yield, index-based predictions of grain yield were best in 

the early crop stages for both rainfed and irrigated conditions, while for late 

planting indices measured at different crop stages performed equally well. 
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A B S T R A C T

The pattern of photosynthetic area of the canopy throughout the crop cycle is an important factor for de-
termining grain yield in wheat. This work proposes the use of zenithal RGB images of the canopy taken in natural
light conditions to derive vegetation indices as a low-cost approach to predict grain yield. A set of 23 varieties of
durum wheat was monitored in three growing conditions (support irrigation, rainfed and late planting) and two
sites (Aranjuez and Valladolid, Spain), totalling 6 field trials. For each plot, digital RGB images were taken
periodically from seedling emergence to late grain filling. RGB-based Green Area (GA), Greener Area (GGA),
Normalized Green Red Difference Index (NGRDI), Triangular Greenness Index (TGI) and a novel photosynthetic
area index based on the CIE L*u*v* colour space (u*v*A) were compared to handheld spectroradiometer
Normalised Difference Vegetation Index (NDVI) for reference. In the case of the irrigated and late planting trials
the best phenotypic predictions of grain yield were achieved with the vegetation indices measured during the
last part of the crop cycle (i.e. grain filling). For the rainfed trials the best phenotypic predictions were achieved
with indices measured earlier (around heading). Among all the evaluated indices, the novel index performed the
best. Considering the heritabilities of the evaluated RGB indices and their genetic correlations with grain yield,
index-based predictions of grain yield were best in the early crop stages for both rainfed and irrigated conditions,
while for late planting indices measured at different crop stages performed equally well.

1. Introduction

The photosynthetic area of the canopy is an important factor for
determining grain yield. Rapid ground cover as well as stay green late
in the crop cycle have potential grain yield benefits in Mediterranean
environments where water is available early in the season but its
availability declines around grain filling (Pask et al., 2012). Colour
indices can discriminate plants from background using Red/Green/Blue
(RGB) images. Studies have shown that RGB vegetation indices con-
tribute to separate plants and soil in digital images (Woebbecke et al.,
1993, 1995). Several studies have shown the applicability of RGB ve-
getation indices to obtain relevant information about crop status. For
example, the Normalized Green-Red Difference Index (NGRDI) was
used for aerial photography to estimate nutrient status and crop

biomass in trials such as alfalfa, corn soybean (Hunt et al., 2005), pea
and oat (Hunt et al., 2014; Jannoura et al., 2015). The Triangular
Greenness Index (TGI), which calculates the triangle area of the re-
flectance spectrum with vertices in red, green and blue wavelengths,
allows estimation of chlorophyll concentration in leaves and the canopy
(Hunt et al., 2014, 2013, 2011). Relative green area (GA) and relative
greener green area (GGA) are two indices used to estimate the photo-
synthetic area of the canopy. They use the three-colour camera chan-
nels (Casadesús et al., 2007) and are based on the Intensity, Hue and
Saturation (IHS) colour space (Judd and Wyszecki, 1967). Next to these
established vegetation indices, our study proposes a new vegetation
index, which uses the CIE L*u*v* colour space (Robertson, 1977) in
order to include the white reference for each image and force the hue
and chroma values to be dependent on the luminance (L) (Malacara,

https://doi.org/10.1016/j.eja.2019.02.007
Received 27 August 2018; Received in revised form 13 December 2018; Accepted 11 February 2019

⁎ Corresponding authors at: Plant Physiology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of
Barcelona, Diagonal 643, 08028, Barcelona, Spain.

E-mail addresses: jfernaga46@alumnes.ub.edu (J.A. Fernandez-Gallego), sckefauver@ub.edu (S.C. Kefauver), tvatter@ub.edu (T. Vatter),
apagutni@itacyl.es (N. Aparicio Gutiérrez), mtnieto@inia.es (M.T. Nieto-Taladriz), jaraus@ub.edu (J.L. Araus).

(XURSHDQ�-RXUQDO�RI�$JURQRP\���������������²���

������������������(OVHYLHU�%�9��$OO�ULJKWV�UHVHUYHG�

7

��� 



2011).
Plant and background segmentation is complicated under field

conditions by numerous factors including soil, shadows and unexpected
miscellaneous objects such as rocks, weeds, and plant remains, or if the
images are taken from the ground with a hand-held camera, factors
such as the photographer’s legs. Therefore the algorithms must be ro-
bust to accommodate these conditions (Bai et al., 2014, 2013; Guijarro
et al., 2011; Wang et al., 2013). For this purpose CIE L*u*v* is a colour
space with better detection of colour in variable light conditions,
overlapping leaves and shadows due to u*v*, being dependent pro-
portionally on the Luminance (L*) according to the chromaticity dia-
gram (Malacara, 2011).

Therefore, colour indices derived from RGB images may be used in
crop management, and even as phenotypic tools for breeding that are
aimed at increasing yield under different environmental conditions. For
example, for crops such as wheat and maize, GA and GGA have shown
similar or even better performance than a multispectral index like the
Normalized Difference Vegetation Index (NDVI) in applications like
predicting grain yield under different growing conditions including
water status (Casadesús et al., 2007), availability of nitrogen (Kefauver
et al., 2017; Vergara-díaz et al., 2016) and phosphorous (Gracia-
Romero et al., 2017), or the presence of foliar diseases (Zhou et al.,
2015). Therefore, estimating grain yield and other crop features using
RGB vegetation indices such as the GA, GGA, NGRDI, TGI, and new
colour space indices such as CIE L*u*v* promises to contribute to an
increased efficiency of crop management practices and phenotyping.

Durum wheat is by dedicated area the main herbaceous crop on the
southern and eastern shores of the Mediterranean basin and among the
most cultivated in Southern Europe (FAO et al., 2014). The climate
change scenarios for the next decades predict higher temperatures and
decreased precipitation, with subsequent increases in the frequency of
drought and heat stresses in the Mediterranean Basin (Schlaepfer et al.,
2017). As a consequence, adaptation measures for Mediterranean
agriculture are needed, including an increased breeding effort or more
efficient monitoring techniques for crop management. For example,
precise high throughput field phenotyping (HTP) is perceived as one of
the main bottlenecks hindering genetic advance in general (Araus et al.,
2018), and the need to deploy affordable phenotyping techniques is
perceived as a prerequisite for the national agricultural programs of
developing countries and small seed companies (Araus and Kefauver,
2018). The objective of the current study was to evaluate different
vegetation indices derived from RGB images, throughout the crop cycle,
as a phenotypic trait to predict durum wheat yield under different
water regime conditions. To achieve this objective, vegetation indices
obtained by analysis of 4140 RGB images were correlated against grain
yield and evaluated in terms of their ability to predict yield. Further-
more, genetic correlations of these indices against grain yield along

with the heritability of these indices were calculated. To further stress
the low-cost nature of this approach, RGB images were acquired at
ground level without the need of any platform, by using a hand-held
camera. Besides the evaluation of the different RGB vegetation indices
under different agronomical conditions, the objective of this study was
to determine the best phenological stage of the crop to undertake
measurements. In addition the NDVI was measured in half of the trials
throughout the crop cycle and their correlations against grain yield
compared with that of RGB indices.

2. Materials and methods

2.1. Plant material and growing conditions

A set of twenty-three post Green Revolution (i.e. semidwarf) durum
wheat (Triticum turgidum L. subsp. durum [Desf) Husn.) cultivars (cvs
Amilcar, Arcobaleno, Athoris, Avispa, Burgos, Claudio, Core, Don
Norman, Don Ricardo, Dorondon, Euroduro, Gallareta, Iberus, Kiko
Nick, Mexa, Olivadur, Pedroso, Regallo, Saragolla, Sculptur, Simeto,
Solea and Vitron) were grown, which have been widely cultivated in
Spain during the past four decades. Field trials were carried out during
the 2016/2017 crop season at the experimental stations of Colmenar de
la Oreja (40° 04′ N, 3° 31′ W), near Aranjuez (Madrid Province), which
belong to the Instituto Nacional de Investigación y Tecnología Agraria y
Alimentaria (INIA) of Spain and at Zamadueñas (41° 42′ N, 4° 42′ W),
near Valladolid, which belong to the Instituto de Tecnología Agraria de
Castilla y León (ITACyL). The average annual precipitation of Aranjuez
is about 425mm and the average annual temperature is 13.7 °C, while
at Valladolid the annual averages are 386mm and 11.6 °C, respectively.
In relation to the Aranjuez trials, the field was fertilized before sowing
with 450 kg ha−1 of 8:15:15 (8% N, 15% P205, 15% K2O) fertilizer.
Further, 185 kg ha−1 of 46% urea was applied before stem elongation.
For the Valladolid trials, the field was fertilized before sowing with
300 kg ha−1 of 8:15:15 fertilizer. A second application of fertilizer,
consisting of 300 kg ha−1 of calcium ammonium nitrate (27% richness
in nitrogen), was applied before stem elongation. For the Valladolid
trials, weed management was conducted using Amadeus Top 50gr/ha
(50% p/p Tifensulfuron-metil. 25% p/p Tribenuron-metil) applied at
the beginning of tillering, which corresponded to Zadoks scale around
20–23 (Zadoks et al., 1974). In the case of Aranjuez, weeds were re-
moved manually throughout the crop season. For each site three
growing conditions were assayed: supplemental irrigation (R+),
rainfed (R-) and late planting (L). For each growing condition, geno-
types were evaluated in plots of 6× 1.5m2 in size, with a spacing
distance of 0.2 m between rows and a planting density of 250 seeds per
m2, using a randomized complete block design with three replicates,
totalling 69 plots. Fig. 1 shows the field trials at Aranjuez experimental
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station for (a) supplemental irrigation, (b) rainfed and (c) late planting.
The supplemental irrigation and rainfed trials were planted on De-
cember 22, 2016 and November 29, 2016, for Aranjuez and Valladolid,
respectively; late planting was planted on March 1, 2017 and February
9, 2017, for Aranjuez and Valladolid, respectively and also subjected to
supplementary irrigation. Accumulated rainfall during the 2016/2017
crop season for supplemental irrigation and rainfed trials was 134mm
and 124mm and the average temperatures were 14.4 °C and 10.9 °C, for
Aranjuez and Valladolid, respectively. Accumulated rainfall during the
crop season for late planting was 98mm and 71mm and the average
temperatures were 18.7 °C and 14.3 °C for Aranjuez and Valladolid,
respectively. For trials under supplemental irrigation, eight irrigations
were provided at Aranjuez, with a total of 420mm of water, and nine
irrigations at Valladolid, totalling 155mm of water. Supplemental ir-
rigation was provided from stem elongation to around two weeks after
anthesis. In the case of late planting trials, nine irrigations were pro-
vided at Aranjuez and Valladolid, with a total of 540mm and 155mm
of water, respectively, distributed all throughout the crop cycle.
Emergency irrigation was provided to rainfed trials to ensure plant
emergence; one irrigation at Aranjuez, with a total of 60mm of water
and three irrigations at Valladolid, with a total of 55mm of water.
Harvest was carried out in Aranjuez on July 19, 2017 for all three
growing conditions, while for Valladolid, harvest was carried out on
July 6, 2017 for supplemental irrigation and rainfed and on July 19,
2017 for late planting.

2.2. RGB images

RGB images at Aranjuez were acquired with a Canon IXUS 310 HS
12-megapixel resolution camera, with a 6.16 x 4.62mm sensor size
using 4mm focal length lens and native resolution of 4000× 3000
pixels. The images in Valladolid were acquired with a Nikon D70 6.1-
megapixel resolution camera with a 23.7 x 15.6 mm sensor size using an
18mm focal length lens and native resolution of 3008× 2000 pixels.
All images were taken using trigger speed and aperture programmed in
automatic mode. Files were stored in JPG format using sRGB colour
standard (Susstrunk et al., 1999). Images obtained at the Aranjuez field
trials were resized to 4000× 1500 pixels, as a way to discard back-
ground noise (e.g. pixels from the soil, adjacent plots or photographer’s
boots).

For each plot and day of measurement, one digital RGB image was
taken under natural light conditions holding the camera by hand above
the plant canopy, in a zenithal plane, at about one meter above the top
of the canopy, near the centre of each plot. Measurements were ac-
quired at least 3 times per month for each growing condition in 2017. In
the case of Valladolid, imaging was performed between February 20
and June 5, February 9 and May 29, and April 6 and June 5 for sup-
plementary irrigation, rainfed and late planting trials, respectively. In
total 4140 images were obtained throughout the crop season. In addi-
tion, the ColorChecker Passport (colour chart, X-Rite, USA) was used for
colour calibration purposes. One RGB image of the colour chart was
taken in natural light conditions with each camera placed in a zenithal
plane. For Aranjuez, imaging was performed between February 17 and
June 1 for supplemental irrigation and rainfed trials, respectively; and
between March 30 and June 1 for the late planting trial. Table 1 shows
a summary of the database quantified by growth stage (GS), using the
Zadoks growth scale (Zadoks et al., 1974) as well as the date of mea-
surement in days after sowing and the calendar date. In addition, NDVI
was determined for the three trials at Valladolid Experimental Station
using a hand-held portable spectroradiometer (GreenSeeker, handheld
crop sensor, Trimble, Sunnyvale, CA, USA) by passing the sensor over
the middle of each plot at a constant height of 0.5m above and per-
pendicular to the canopy. The measurements were performed periodi-
cally, between March 8 and June 5, March 8 and May 29, and April 4
and June 22 for supplemental irrigation, rainfed and late planting, re-
spectively with a frequency similar to that for the RGB images

(Supplementary Table 1).

2.3. Image analysis

Vegetation indices were calculated from the RGB images using the
open source BreedPix software to calculate the GA and GGA (Casadesús
and Villegas, 2014), implemented along with the NGRDI and TGI as
part of the open-source CerealScanner plugin (Kefauver et al., 2018;
https://integrativecropecophysiology.com/software-development/
cerealscanner/) developed for ImageJ software (Schneider et al., 2012).
In addition, we tested a new algorithm formulated as the portion of
green pixels within the range of 90° to 180° of the chromaticity diagram
defined by the Cartesian u* and v* axes (here defined as u*v*A index).
The u*v*A index was also included in the open-source CerealScanner
plugin (Kefauver et al., 2018). Thus, the u*v*A index has been devel-
oped based in the 1976 CIE L*u*v* colour space as a modification of the
u´v´ chromaticity diagram from the 1960 CIE Luv colour space:

= + +u X
X Y Z

´ 4
15 3 (1)

= + +v Y
X Y Z

´ 9
15 3 (2)

where u´ and v´ are defined as =u u´ and =v v´ 1.5 and X, Y, Z are
refined by the CIE XYZ colour space. In the same way, the CIE L*u*v*
colour space is defined by:

=L f Y
Y

116 16
n

*
(3)

=u L u u13 ( ´ )n* * (4)
=v L v v13 ( ´ )n* * (5)

where un and vn are the coordinates for the nominal white colour and
Yn is part of the tristimulus values of the perfect diffusor (Malacara,
2011). Equations (4–5) show the dependence of the u*v* chromaticity
diagram on the luminance (L*) and force the hue and chroma values to
be dependent on the luminance (L*). To complement this, the differ-
ences u u( ´ )n and v v( ´ )n were used as a white reference for D65
daylight standard illumination (Burton and Moorhead, 1987). The
equations (3–5) contribute towards reducing the colour perception
problems caused by natural light changes, resulting in a conic shape
luminance, with the vertex at the u*v* chromaticity origin, because
when luminance decreases, colour differences are more difficult to
perceive (Malacara, 2011). The hue angle using the u*v* chromaticity
diagram is calculated using the formula:

=h v
u

tan* 1
*

* (6)
where h* is used to segment the green cover area of the image. Values
from 90° to 180° are segmented as photosynthetic area of canopy, from
blueish green to greenish yellow. The output of the u*v*A index is the
percentage of the photosynthetic area estimated in the zenithal input
image, ranging from 0 to 1. Fig. 1 (d) and (e) show a sample of the
image database for the Aranjuez and Valladolid experimental stations.
Fig. 2 shows a sample of the image database and indices at different
growth stages. All indices have been calculated using ImageJ open
source software (Schneider et al., 2012).

Previous to the present study we had tested the effect of calibrating
the vegetation indices derived from the RGB images using the color
chart. The results showed very high determination coefficients (R2 ≈
0.98) between the RGB indexes derived from the calibrated and un-
calibrated images. This is why we did not consider the need to regularly
(during the image acquisition) calibrate the images against the color
chart in this study, since the absence of calibration may save time. Even
so we tested the calibration using a single image of the color chart. To
that end and for the two cameras used in this study we calibrated the
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complete set of plot images against the reference images of the colour
chart acquired after completing the field evaluation. We used the color
chart ColorChecker Passport (website: https://www.xrite.com/
categories/calibration-profiling/colorchecker-passport-photo), pay-
ment and open source software: Lightroom CC (website: https://
lightroom.adobe.com, using the free full-trial version) and open-
source software ImageJ (website: https://imagej.nih.gov/ij/). With
Lightroom we have used the standard color calibration for
ColorChecker Passport and with ImageJ we have calibrated by

interpolation technique. In order to compare the results, we have cal-
culated the regression coefficient between calibrated and uncalibrated
the RGB indexes as well as their performance in predicting grain yield
and their broad sense heritability.

2.4. Statistical analysis

Phenotypic data analysis was performed using the software package
SAS 9.4 (SAS Institute Inc., Cary, NC, USA) and selecting proc mixed to

Table 1
Dataset summary for each experimental site the growing conditions and the measurement dates, expressed as calendar date (CD) and number of days after
sowing (DAS), and corresponding growth stage (GS) expressed in the Zadoks growth scale. Within each trial category (rainfed, support irrigation or late
planting) the GSs that are highlighted in green were tested for heritability and genetic correlation within a given growing conditions.
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estimate broad sense heritability and genetic correlation and proc reg
for regression analysis.

To estimate the variance components for use in the calculation of
broad sense heritability, all model parameters were set as random.
Broad sense heritability across environments (Aranjuez and Valladolid;
Equation 7) was calculated separately for the three growing conditions
(support irrigation, rainfed and late planting) as:

= + +h V
V

G

G
V
e

V
er

2
GE R (7)

Where genotypic variance is coded by (VG), genotype x environment
variance is coded by (VGE), and residual variance is coded by (VR). The
terms e and r indicate the number of environments and replicates, re-
spectively.

Genetic correlation between RGB vegetation indices and yield was
calculated separately for the three growing conditions. Environment x
trait as well as environment x rep x trait interactions were set as fixed,
with all remaining effects being set as random. Genetic correlation
(Equation 8) was calculated as:

= +r Cov
V VA

XY

X Y (8)
where covariance between trait 1 and 2 (yield and the respective RGB
vegetation index) is coded by (Covxy), genotypic variance of trait 1 is
coded by (VX), and genotypic variance of trait 2 is coded by (VY). The
standard error (Equation 9) of the genetic correlation was calculated
using the delta method (Lynch and Walsh, 1998) as:

= + + +SE r var V
V

var V
V

var Cov
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cov V V
V V

cov V Cov
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cov V Cov
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4

( )
4

( ) 2 ( )
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Y XY
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2
2 2 2A

(9)
where genotypic variance of trait 1 is coded by (VX), genotypic variance
of trait 2 is coded by (VY); variance of the variance of trait 1 and trait 2
is coded by (var(VX)) and (var(VY)), respectively; covariance between

trait 1 and 2 is coded by (CovXY); variance of the covariance between
trait 1 and trait 2 is coded by (var(CovXY)); the covariance between the
variances of trait 1 and trait 2 is coded by (var(VXVY)); covariance
between the variance of trait 1 and the covariance is coded by (cov
(VXCovXY)); and the covariance between the variance of trait 2 and the
covariance is coded by (cov(VYCovXY)).

To validate the robustness of the regression analysis, a five-fold
cross-validation (CV) was performed. In total, 100 CV runs (20 times
five-fold CV) were performed. For this, 100 subsets were extracted from
the full genotype set. Subsets each included 80% of the data of the full
genotype set, randomly selected. The subsets were taken as training sets
for the calculation of regression estimates. The remaining 20% of the
data was used as the validation set. To estimate the proportion of
phenotypic variance explained by the model, the unbiased estimator
R2adj (Draper and Smith, 1998) was calculated for each subset. As a
measure of accuracy, the root mean square error (RMSE) was calcu-
lated. To determine the predictive ability R2pred of the model for yield,
the regression estimates, estimated using the training sets, were used to
predict the phenotypic value of the remaining 20% of the data forming
the validation sets. R2pred was defined as the squared Pearson product-
moment correlation between predicted and observed phenotypic va-
lues. Subsequently, R2adj, R2pred and RMSE values were averaged over all
100 CV runs to obtain final estimates.

The capacity within each of the three growing environments (sup-
plemental irrigation, rainfed and late planting) of a given vegetation
index to serve as an indirect selection tool for assessing grain yield was
evaluated as the comparison between the broad sense heritability (h2)
of grain yield and the value of multiplying the h2 of a given vegetation
index with the genetic correlation with grain yield to the power of two
(rA2 x h2), which was adapted from the equation of Falconer and
Mackay (1996). Data was plotted using SigmaPlot version 12 (Systat
Software, Inc., San Jose California USA).

3. Results

Average grain yield was 2735 and 2783 Kg ha−1 under rainfed

Fig. 3. Pattern of values of the three different RGB vegetation indices (u*v*A, GA, GGA) throughout the crop cycle measured in each of the six different trials of the
study. In addition, the pattern for NDVI is shown for Valladolid. For each trial the values of all plots were used to calculate the standard error. Days after sowing
(DAS) was used to normalize the crop duration.
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conditions in Aranjuez and Valladolid, respectively, while under sup-
port irrigation the yield increased to 4838 and 6937 Kg ha-1, respec-
tively. In late planting the average values were 3779 and 5208 Kg ha−1
(Supplementary Table 2).

3.1. RGB and NDVI vegetation indices

In general, the different RGB vegetation indices, particularly GA,
and u*v*A, as well as the multispectral index NDVI followed a pattern
similar to that of crop growth (Fig. 3). Values increased from the be-
ginning, then reached a plateau from stem elongation to anthesis/early
grain filling in the case of support irrigation and late planting trials or
reached a maximum around anthesis in the rainfed trials, and then
decreased. GGA showed similar patterns but with comparatively lower
values. Values for these three indices ranged between 0 and 1. The
NGRDI and TGI results as measured in support irrigation and rainfed
trials also followed similar patterns of crop development, but only in
the Aranjuez trials (Fig. 4). Values ranged from -0.2 to 0.3 and from 0 to
20 for the NGRDI and TGI, respectively.

3.2. Phenotypic correlation with grain yield within a trial

Predictions of grain yield based on the linear correlation between
any of the vegetation indices and yield were evaluated for the 5 dif-
ferent RGB vegetation indices, measured during the crop growth,
within each of the six different trials and additionally, NDVI was
evaluated during the crop growth for Valladolid. Further, cross

validations were run. For supplemental irrigation and late planting, the
most robust models between grain yield and the various vegetation
indices were observed in the latest stages of the evaluation (around the
second half of grain filling) with determination coefficient (R2) values
around 0.6, while for rainfed trials the best performance was reached
around heading, with R2 values around 0.5 (Fig. 5; Supplementary File
1). Out of all the RGB indices, the GA, NGRDI and u*v*A reached the
highest cross validation R2 values across all growing conditions and
experimental sites, while GGA and particularly the TGI showed lower
R2 (Fig. 5). Furthermore, we compared the performance of the indices
formulated with uncalibrated images against that of calibrated images.
In general, the determination coefficients between each calibrated and
uncalibrated index were high (R2 0.91-0.99). The cross-validation re-
sults of RGB indexes calculated from calibrated images against grain
yield, together with the broad sense heritability of the RGB indices
formulated with calibrated images were lower than the case for the RGB
indices derived from uncalibrated images (data not shown).

Concerning the NDVI measured in Valladolid station, under support
irrigation, the NDVI achieved slightly higher cross validation R2 values
against grain yield than RGB indexes at around the second half of grain
filling. In the case of rainfed, similar values were observed for NDVI and
the RGB indexes. Finally, for late planting, the NDVI achieved a lower
cross validation R2 value than u*v*A, GA, NGRDI at around the second
half of grain filling, whereas NDVI outperformed the RGB indices when
measured around heading (Fig. 5).

R2pred values obtained for the vegetation indices were comparable to
the R2 values obtained based on the training set (Fig. 5; Supplementary

Fig. 4. Pattern of values of the NGRDI and TGI throughout the crop cycle measured in each of the six trials of the study. For each trial the values of all the plots were
used to calculate the standard error. Days after sowing (DAS) was used to normalize the crop duration.

J.A. Fernandez-Gallego, et al. (XURSHDQ�-RXUQDO�RI�$JURQRP\���������������²���

���  



Fig. 1). The NGRDI achieved the highest cross validation R2 values a
date of measurement before (during the crop cycle), compared with GA
and u*v*A indices, particularly for Aranjuez in support irrigation and
rainfed.

RMSE values were always higher in the Valladolid trials in the
standard growing period but taking into consideration the larger range
in yield in the genotypes at this location, the yield prediction was more
precise than at Aranjuez (Supplementary File 1). In the late planting
conditions, yield prediction based on the RMSE showed a slightly
higher precision in the Aranjuez field trials (Supplementary File 1).

3.3. Heritability and genetic correlation

The strength of the genetic correlation of the vegetation indices with
grain yield varied depending on the growing conditions and the vege-
tation index (Table 2). In terms of support irrigation, the highest de-
termination coefficients were achieved at the early stages of crop
growth (seedling emergence and tillering) and later during anthesis and
grain filling, while for rainfed conditions the highest determination
coefficients were reached at tillering and the beginning of stem elon-
gation and further at heading and anthesis. In the case of late planting,
the determination coefficients were in general higher than for the other
two conditions and the highest values were achieved from tillering to
heading. Except for a somewhat poorer performance from TGI, there
was no clear trend in terms of the best performing vegetation index.

Broad sense heritability (h2) for yield and the different vegetation
indices were calculated for each of the three different growing condi-
tions (support irrigation, rainfed and late planting) including in each
case the trials of the two sites. In the first two cases heritability for grain
yield was moderate, while in late planting it increased markedly. In
many cases vegetation indices achieved higher heritability estimates
than yield for the three growing conditions. For both the support irri-
gation and the rainfed environments the highest heritabilities for ve-
getation indices were observed in the first part of the crop cycle, par-
ticularly during stem elongation and tillering; later heritabilities were
also relatively high during grain filling (Table 2). For the late planting,

heritabilities of the vegetation indices increased progressively until
heading and reached the maximum values during grain filling.

For each growing condition (rainfed, support irrigation and late
planting) we compared the heritability of grain yield and the product
between the heritability of a given vegetation index and the determi-
nation coefficient of the genetic correlation between this vegetation
index and grain yield (rA2 x h2). Regarding support irrigation, rA2 x h2
for the u*v*A index measured at stem elongation had a higher value
than the h2 of grain yield, while the values of NGRDI measured at milk
stage were near to the h2 of grain yield (Fig. 6). For rainfed conditions,
several indices exhibited a higher rA2 x h2 product than the h2 of grain
yield. This is the case for GGA measured at tillering, which exhibited
the highest value, together with u*v*A measured at tillering and stem
elongation, GA measured at tillering and stem elongation and TGI
measured at stem elongation (Fig. 6). Regarding late planting, the u*v*A
index reached its highest product value for rA2 x h2, followed by GA and
GGA, but in all cases values were lower than the h2 of grain yield
(Fig. 6).

4. Discussion

This study shows the use of RGB indices to assess grain yield is not
just an affordable phenotyping approach by itself, but also allows other
applications such as forecasting yield in advance. Predicting in advance
the genotypic performance of grain yield also may have an economic
impact in reducing the number of plots maintained to maturity and
brought to grain harvest. Although we have calibrated the plot images
using images of a colour chart acquired after taking the field mea-
surements, it did not produce better cross-validation results, but rather
the indices derived from corrected images tended to perform somewhat
poorer. This may due to the fact that under natural light conditions the
RGB cameras have very few colour errors related with colour calibra-
tion (Penczek et al., 2014). Regarding the lower broad sense heritability
of the indices derived from calibrated images, we consider this was
because the result of using just one calibration image, rather than
periodical calibration images intercalated during the plot image

Fig. 5. Determination coefficient (R2) of the cross-validation results of the phenotypic correlations between a given vegetation index measured in a particular
experimental site during the crop cycle against grain yield. Results are shown for the 6 trials included in the study. NDVI results are shown for Valladolid trials only.
Days after sowing (DAS) was used to normalize the crop duration.
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acquisition. The approach of using one calibration image doesn’t take
into account fast light changes in the field which actually might force
the images to be wrongly calibrated from a single colour values.
Therefore, we propose to use the automatic setting of the camera under
natural light conditions.

The highest correlations of RGB indices with grain yield were ob-
served when the canopy colour started to shift from green to yellow. In
the rainfed trials this corresponded to post heading, when leaves below
the penultimate leaf enter senescence, while in the less stressed con-
ditions of supplemental irrigation the highest correlation indices oc-
curred during grain filling. In the case of late planting under full irri-
gation, the behaviour was comparable to the normal planting under
support irrigation. In fact, the different RGB vegetation indices share in
common a capability to more or less distinguish the green colour from
the other colours related to senescent leaves such as yellow, brown or
grey, among others (Zaman-Allah et al., 2015). Interestingly, the dif-
ferences in phenology across the set of durum wheat tested, in terms of
date to heading, were minimal (Chairi et al., 2018). Therefore, geno-
typic differences in the pattern of changing canopy colour across the
genotypes within each growing condition were not due to phenology
but to the specific performance of the genotypes under each particular
growing condition. At least for Aranjuez, the NGRDI achieved the
highest cross validation R2 value a date of measurement before (during
crop cycle) than GA and u*v*A, which may be due to the fact that the
NGRDI is not prone to saturation (Elazab et al., 2016). Indeed, the GA
and GGA indices have been reported as saturating earlier (Kefauver
et al., 2015), which was observed in our study and was also the case
with the u*v*A index. Therefore, compared to the response of the
NGRDI, the saturating indices only capture genotypic differences in the
greenest canopies when senescence is more advanced. In general, TGI
was less correlated with grain yield than the other RGB indices, which
may be due to TGI’s lower sensitivity to green plant cover at the canopy
scale in comparison to other RGB vegetation, even though it is more
sensitive than other vegetation indices to chlorophyll content at leaf
level (Hunt et al., 2014). The fact that the predicted R2 values were
comparable to the cross validated R2 values obtained from the training
set highlights the robustness of the identified correlations. For its part,
in our study NDVI gave overall comparable results (or even slightly
better), in terms of cross-validation R2 patterns, than the RGB indices.
Even so there are still reasons for considering RGB images as a better
alternative than the use of NDVI measured with affordable easy-to-
handle spectroradiometer such is the case of the GreenSeeker. RGB
cameras may be even cheaper than a low-cost spectroradiometer.
Moreover RGB cameras are already incorporated in devices such as
mobile phones, which makes the smartphone a very flexible alternative
as a phenotyping platform as these images may be directly processed
through mobile-installed apps (Araus and Kefauver, 2018). Moreover,
the RGB images may provide additional information (besides the RGB
indices) which is not captured by NDVI or other multispectral indices.
For example from RGB images it is possible an automatic counting of
seedling density (Liu et al., 2018) and ear density (Fernández-Gallego
et al. 2018). Automatic determination of crop phenology stages such as
dates of heading (Zhu et al., 2016) or even anthesis (Sadeghi-Tehran
et al., 2017) is also possible from RGB images. Concerning the potential
application of the cameras from smartphones our study tested two types
of cameras: the first one is the Canon IXUS 310 HS camera (12-mega-
pixel resolution and 6.16 x 4.62mm sensor) and a very low price (less
than 100 €). This camera has a 12-megapixel resolution and a small
sensor size, which is comparable with those of mobile phone cameras.
The second one, the Nikon D70 camera (6.1-megapixel resolution and
23.7 x 15.6 mm), has more professional sensor specifications and a
medium price (around 300 €). We have obtained comparable results
from both devices. That could contribute to move on into new appli-
cations using mobile phones to acquire and process information from
the field using new technologies. Therefore, it is possible to use low-cost
or small sensor sizes in the field with good accuracy for application

related with photosynthetic area assessment. We could conclude that
devices with sensor size corresponding to mobile phone cameras or
action cameras (GoPro) could be used for these applications. Thus,
cameras devices, labor and computing steps could be developed in a
low-cost way. Moreover, the images can be acquired by hand across the
plots in a fraction of minute per plot.

Under normal planting conditions, and regardless of the water re-
gime (rainfed or support irrigation), the strongest heritabilities (h2) and
rA2 x h2 values for the different vegetation indices were observed at
early growth stages (Table 2; Fig. 6). In this case, the high rA2 x h2

Fig. 6. Relationship between broad sense heritability (h2) for any of the ve-
getation indices and yield (vertical axis) and the product between the h2 of a
given vegetation index and the determination coefficient of the genetic corre-
lation (rA2) between this vegetation index and grain yield (rA2x h2). Horizontal
and vertical lines inside stand for the h2 of grain yield.
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values are essentially due to the fact that the h2 values of the vegetation
indices measured during early crop stages were much higher than the
h2 for grain yield (Table 2). The high h2 values obtained for the indices
during the early crop stages are in agreement with the fact that the
pattern of crop establishment, particularly of soil covered by plants and
tillering, is usually less dependent on environmental conditions than
final grain yield (López-Castañeda et al., 1996; Rebetzke et al., 2004;
Rebetzke and Richards, 1999). Therefore, the repeatability (which in
fact is measured by h2) of early crop growth characteristics is higher
than that of final grain yield. For several indices measured at the early
stages of the crop cycle the value of the rA2 x h2 product was higher than
the h2 of grain yield (Fig. 6). This indicates that under normal planting
conditions the indirect selection based on measuring a specific vege-
tation index at a given crop stage performs better than the direct se-
lection based on the yield harvested (Richards et al., 2002).

In relation to the late planting trials grown under an intensive ir-
rigation scheme, the h2 for grain yield was considerably higher than the
h2 obtained for the normal planting date conditions grown under either
rainfed or support irrigation (Table 2). However, h2 values for the
different vegetation indices were lower, particularly in the early stages
of the crop cycle (Table 2). This may be due to the fact that high
temperature accelerates plant growth preventing the appearance of
genotypic differences during crop establishment (Stone and Nicolas,
1995). Under that particular growing condition, the value of the rA2
x h2 product was always lower than the h2 of the yield itself (Fig. 6).
Despite this situation, indirect selection may still have provided the
benefit of its lower cost and higher throughput via measurement of a
specific RGB vegetation index at a certain moment during the crop
cycle, rather than having to wait until maturity to harvest the crop. The
cost per breeding plot of the whole harvesting process (until getting the
yields) may go easily beyond € 15, plus the cost of maintaining the crop
until maturity. By contrast the evaluation at ground level done by hand
by walking through the plots takes a fraction of minute, which means
that one worker provided with a camera may even record thousands of
plots in a day. Further data processing via open source software only
requires a few more minutes. The savings in cost and time will allow
breeders to increase selection intensity, thus allowing greater genetic
gains to be obtained (Araus et al., 2018; Araus and Kefauver, 2018).

5. Conclusions

Conventional cameras can be used to assess grain yield in durum
wheat via RGB indices for yield prediction or screening purposes using
a robust statistical approach. Changes in the colour of the canopy from
green to yellow provide the best information on grain yield and early
stages present better heritabilities (h2) and rA2 x h2 values in normal
planting conditions and, in the case of late planting, these values were
better during the late stages.

Given that until now most HPT techniques are costly, and thus af-
fordable by only a few research teams or breeding programs, the
method tested in this study will serve as a cost efficient, easy-to-use
alternative while maintaining high precision.
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Fig. S1. Predictive ability R2pred of the model for yield for each vegetation index, based 

on the regression estimates, estimated using the training set. 
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Support irrigation Rainfed Late planting 

Valladolid Valladolid Valladolid 
GS DAS CD GS DAS CD GS DAS CD 

16-19 99 08/03 16-19 99 8/03 15 53 04/04 

23-27 112 21/03 23-27 112 21/03 20-22 60 11/04 

37-39 133 11/04 30-35 129 07/04 23-27 69 20/04 

45-47 142 20/04 36-37 133 11/04 30-35 81 02/05 

52 148 26/04 41-47 143 21/04 45-47 87 08/05 

55-59 154 02/05 55-57 148 26/04 55-59 95 16/05 

61 160 08/05 61-65 154 02/05 69 104 23/05 

69 168 16/05 69 160 08/05 75-79 117 05/06 

75 177 23/05 73 168 16/05    

81 188 05/06 77-79 181 29/06    

 

Supplementary Table 1. NDVI measurement summary for Valladolid experimental site 

the growing conditions and the measurement dates, expressed as calendar date (CD) and 

number of days after sowing (DAS), and corresponding growth stage (GS) expressed in 

the Zadoks growth scale. 
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Low-cost assessment of grain yield in durum wheat using RGB images 

 

Jose A. Fernandez-Gallego, Shawn C. Kefauver, Thomas Vatter, Nieves Aparicio 

Gutiérrez, María Teresa Nieto-Taladriz, José Luis Araus 

 

 
Experimental 

station Trial Mean Min. Max. 

Aranjuez 

Support irrigation 4838 3463 6030 

Rainfed 2735 1607 3583 

Late sowing 3779 2947 5057 

 
Valladolid 

 

Support irrigation 6937 5919 7811 

Rainfed 2783 1713 3787 

Late sowing 5208 4085 7133 

 

Supplementary Table 2. Grain yield for each of the three trials of Aranjuez and 

Valladolid stations. Mean values for the entire trial and minimum and maximum values 

of single plots (kg ha-1) 
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GENERAL DISCUSSION 

 

Image processing techniques for plant phenotyping have been used from 

acquisition to classifications tasks; under field conditions, it was mainly studied 

for difficult changing sunlight and shadow conditions, and isolation of plants and 

organs within the image (Kelly et al., 2015; L. Li et al., 2014). These techniques 

can be used for plant phenotyping through different types of platforms equipped 

with visual, multispectral and hyperspectral cameras (Fahlgren et al., 2015). 

Moreover, different types of machine learning techniques can be developed for 

segmentation and discriminations tasks instead of human eye inspection (Gori, 

2018). Depending on the phenological stage and the sensor technology (or the 

human eye inspection), many phenotypic traits can be assessed such as plant 

density, ear density, ear temperature, cover fraction, peduncle length, awn length, 

plant height, leaf size, leaf rolling, weed inspection, lodging, weed infestation, 

chlorophyll content, and many others (Araus et al., 2018; Pask et al., 2012). 

Image processing systems must adapt to the field conditions to contribute to the 

extraction of comparable traits from crops in order to move toward the high 

throughput plant phenotyping (HTPP) improvement. The correct balance in 

acquisition technology, data processing strategy and phenological stage 

selection would seem to be the best way forward. The optimal daytime and light 

conditions must be taken into account for each sensor technology and 

application. We have used the Zadoks scale to recognize the phenological stage 

by growth stage (GS) codes from GS 00 to GS 99; which corresponded to 

germination/dry seed (GS 00) and ripening/secondary dormancy lost (GS 99) 

(Zadoks et al., 1974).  
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This work has mainly considered the assessment of two traits (i) ear density 

and (ii) photosynthetic area of the canopy. Even though the image processing 

systems were tested principally for wheat, many of the techniques can be used 

for other crops, and have been particularly extended and tested for barley. 

 

1. Ear counting using image processing systems 

For ear density, we have developed ear counting systems for ground and 

aerial platforms using RGB and thermal imagery under low- and high-resolution 

imaging conditions. These systems were designed for field data acquisition 

experiences and specific image characteristics. The validation was performed 

primarily using image-based data. 

 

Ear counting using RGB imagery          

We proposed the use RGB images acquired using a simple method holding 

the camera by hand at around 1 m (ground platform, in Chapter 1 and Chapter 

2), and also using a more complex method mounting the camera on a drone at 

around 25 m a.g.l. (aerial platform, in Chapter 3). In both cases, we could observe 

similar limitations and requirements due to the visual wavelength characteristics 

such as shadows and bright surfaces and overlapping ears. Sunlight reflections 

on leaves could be one of the most important limitation for the automatic ear 

counting systems proposed. On the one hand, with the ground platform the 

sunlight reflections are similar to ears into the image, and additionally, the image 

processing system used local peaks (based mainly on the bright color 

information) as the principal characteristic to isolate ears from leaves and 

unwanted objects. For those reasons, ears and sunlight reflections may be 
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confused with each other.  On the other hand, from the aerial platform the sunlight 

reflects off of bending leaves under direct sunlight conditions, and also the low 

spatial resolution did not allow for correct visual differentiation between ears and 

leaves using orthomosaic images. Despite these limitations, both the automatic 

ear counting systems have achieved high accuracy (e.g. R2 = 0.75 and R2 = 0.89; 

using ground and aerial platforms, best results respectively). In both platforms we 

further improved the system; in the first one, we added the training and classifying 

step (Chapter 3) in order to increase the robustness of the image processing 

system; and in the second one, we employed a higher resolution RGB camera 

(and lower flight altitude) in order to increase the number of matching features 

found from the Structure from Motion (SfM) process used to build the orthomosaic 

with higher spatial resolution (Aasen et al., 2018). 

 

Ear counting using thermal imagery 

We purposed the use of thermal images acquired holding the thermal 

camera by hand at approximately 1 m (ground platform, in Chapter 4) above the 

canopy surface. We also observed some limitations using this data such as low 

spatial resolution, no temperature differences between canopy and ears 

(depending on the acquisition time) and overlapping ears. Low spatial resolution 

was identified the most important limitation for the proposed automatic ear 

counting system. Thermal imagery can avoid shadows and bright surfaces (the 

main RGB limitation); and moreover, thermal images filter high frequency details 

intrinsically due to the manner in which this technology detects much longer 

wavelength radiation emissions. In that way, these images are less sensitive to 

overlapping and provide enhanced information towards differentiating ears from 
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leaves which in turn contributes to simplify the image processing tasks. However, 

its low spatial resolution is still a major issue and this technology sensor cannot 

yet be used from an aerial platform for this reason. On the other hand; for the 

development of the thermal ear counting algorithm, visual interpretation of RGB 

images (RGB images acquired at the same time as the thermal images) was 

crucial in correctly locating the presence of ears in thermal images.  Despite these 

limitations, the thermal image based automatic ear counting systems have 

achieved high accuracy (R2 = 0.80) (Fernandez-Gallego et al., 2019a). This 

system may furthermore be improved using a thermal and RGB fusion sensor to 

be able to increase the spatial resolution in order to cover more footprint area at 

higher distances. 

 

1.1. Phenological stage and data acquisition time for ear density 

The ear density trait can be estimated from anthesis to late grain filling using 

RGB and thermal imagery (Chapter 1, Chapter 2, Chapter 3 and Chapter 4). At 

late grain filling in the rainfed trial (near to maturity), the ground level algorithm 

did not perform as well in ear identification (R2 = 0.17, GS 91) when automatic 

and manual image-based counting were compared. The late growth stage did not 

permit consistent ear identification due to the lack of contrast between de leaves 

and ears. However, from anthesis (support irrigation and rainfed) to late grain 

filling (support irrigation) the approach had good accuracy. Even under low 

resolution sceneries the determination coefficient was higher at late grain filing 

under support irrigation (R2 = 0.75, GS 81) than anthesis under support irrigation 

and rainfed (R2 = 0.62, GS 61-65, R2 = 0.51, GS 61-65), respectively, when 

automatic and manual image-based counting were compared. This comparison 
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at late grain filling using the aerial level algorithm could not be done, this was 

mainly due to sunlight/sunglint and resolution issues (Ortega-Terol et al., 2017). 

However, the determination coefficient was also higher at a later stage in the 

aerial data in the same way as the ground data - the correlation at grain filing (R2 

= 0.89, GS 75) was higher than at the anthesis (R2 = 0.83, GS 61) growth stage. 

Using thermal imagery, the determination coefficients performed almost the 

same, although we compared growth stages between experimental stations 

instead of use the same site. The determination coefficient was higher at grain 

filling in Seville (R2 = 0.76, GS 69; unpublished results) than anthesis in Aranjuez 

(R2 = 0.65, GS 61-65; unpublished results); but the correlation decreased at late 

grain filling in Valladolid (R2 = 0.70, GS 77; unpublished results) compared with 

grain filling in Seville (shown above) when automatic and manual image-based 

counting were compared. 

 

1.2. Ear density trait and grain yield 

The ear counting systems in field conditions (including also manual in-situ 

counting) has shown low correlation with GY when all data plots were used in 

cross-validated linear regression (LR) models. Using ground scale images 

(Chapter 1 and Chapter 2), the automatic ear counting system achieved relatively 

low correlation with GY (R2 = 0.30), yet it was higher than the manual in-situ 

counting (R2 = 0.24) when compared to GY. In the same way when using aerial 

images (Chapter 3), the automatic ear counting system also achieved low 

correlation (R2 = 0.28) with grain yield, and also for this platform, it was higher 

than the manual in-situ counting (R2 = 0.02) when compared with GY. Two main 

explanations have been presented, (a) dynamic compensation mechanisms 
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between the ear density and number of kernels per ear (Slafer et al., 2014; Slafer 

and Savin, 2007); and (b) hidden ears, due to zenithal images only consider the 

upper ears which frequently correspond to the main and primary tillers (Ishag and 

Taha, 1974). On the other hand, when genotyping (G), nitrogen (N) fertilization, 

and G + N effects were included in cross-validated multiple linear regression 

(MLR) models; the relationship between ear counting (automatic and manual 

counting) and GY increased. Best predictions (R2 = 0.41-0.46) were achieved 

when G + N effects were included, followed by N (R2 = 0.34-0.36) and G (R2 = 

0.06-0.20) effects; which suggest that the relationship between ear density and 

GY is more supported by the N treatment factors than genotypic differences. 

Additionally, grouping by N treatment and using a LR model, the best relationship 

(R2 = 0.46) was achieved for the lower N treatment, it may observations that, at 

lower N levels, the contribution of secondary and tertiary tillers to GY is usually 

minor if not negative. In summary, the automatic ear density can explain around 

30% (under different nitrogen treatment) (Fernandez-Gallego et al., 2019b, 

2018a) and around 50% (under low N conditions) of the variability in yield 

(Fernandez-Gallego et al., paper under review). This system could be improved 

using 3-dimensional data to assess the ear size/volume. 

 

2. Photosynthetic area of the canopy using image processing systems 

Regarding RGB indexes, we have proposed the novel vegetation index 

u*v*A to estimate the green canopy area associated with the photosynthetic area 

of the canopy (Chapter 5). This index has shown good performance even though 

a conventional camera with very low resolution and very small size sensor was 

used. The Canon IXUS 310 HS camera (12-megapixel resolution, 6.16 x 4.62mm 
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sensor size and price less than 100 €) achieved comparable results to those 

obtained with the Nikon D70 camera (6.1-megapixel resolution, 23.7 x 15.6 mm 

sensor size and price around 300 €) and a hand-held portable spectroradiometer 

(GreenSeeker, price around 500 €). This contributes to the move towards the use 

of low-cost and small sized sensors such as action cameras (GoPro) or mobile 

phone cameras. On the other hand, the approach of using the color calibration 

experiment with a color chart (the ColorChecker Passport, in Chapter 5) did not 

improve the results. At the begining of the experiment, we assumed that this step 

would improve the information provided by the RGB sensor and therefore we 

would have better data; nevertheless, the color information did not change, we 

had very high determination coefficient (R2 ≈ 0.98) between the RGB indexes 

derived from the calibrated and un-calibrated images, at least for the acquired 

database of 4,140 images taken at ground level. Moreover, this calibrated images 

(when the RGB indexes where used for GY prediction) tented to perform 

somewhat poorer; this is maybe because we have only used one calibration 

image (taken at the beginning of each block), and single image doesn’t take into 

account fast light changes in the field which actually might force the images to be 

wrongly calibrated from a single color values. Besides the fact that under natural 

light conditions the RGB cameras have very few color errors related with color 

calibration (Penczek et al., 2014). Furthermore, the u*v*A index force the hue and 

chroma values to be dependent to the luminance (L*) and contribute to the 

reduction of the color perception problems caused by natural light changes; in 

that way, green pixels from the canopy can be better interpreted due to color 

differences are more difficult to perceive when luminance decreases (Malacara, 

2011), mainly in cases such as variable light conditions, overlapping ears and 



 

 162 

shadows. Therefore, we proposed to take more periodical calibration images 

intercalated during the plot image acquisition or; in a simpler way, to use the 

automatic setting of the camera under natural light conditions. 

 

2.1. Phenological stage and data acquisition time for photosynthetic area 

of the canopy 

The photosynthetic area trait can be estimated from seedling growth (GS 

10) to late grain filling (GS 99). Although in general, the area indexes (u*v*A, GA, 

GGA) and Normalized Difference Vegetation Index (NDVI) followed a pattern 

similar to that of crop growth in both experimental stations; the NGRDI, TGI 

indexes only followed this pattern in one of them (Chapter 5). This may due to 

NGRDI and TGI are more related with the nutrient status and crop biomass; and 

chlorophyll concentration, respectively; than photosynthetic area  estimation 

(Hunt et al., 2014, 2013, 2011, 2005; Jannoura et al., 2015). However, the NGRDI 

index achieved the highest determination coefficient value (at least for Aranjuez) 

when it was correlated with grain yield. In addition, it was achieved a date of 

measurement before u*v*A and GA, which may be due to the fact that this type 

of index can saturate (Kefauver et al., 2015), but NGRDI is not as prone to 

saturation (Elazab et al., 2016). This could be an important factor to take into 

account to improve the performance RGB indexes. Furthermore, the best 

performance of the RGB indexes (best correlation with grain yield) were observed 

when the canopy color started to shift from green to yellow, which correspond to 

the second half of grain filling (GS 75-79) under support irrigation and late 

planting conditions and heading (GS 55-57) under rainfed conditions. Although 

we observed similar performance using a multispectral index (GreenSeeker) 
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compared to RGB indexes, the use of modified color-infrared (CIR) cameras 

could be useful. A conventional RGB camera can be used to build a CIR camera 

removing the internal “hot mirror filter” to enable recoding the near infrared (NIR) 

information (Lehmann et al., 2017). This modification allows to acquired infrared 

data with much higher resolution per measurement than the individual points 

acquired by GreenSeeker device. Besides that, the two-dimensional information 

would still be available for image processing tasks avoiding parallax issues of 

multispectral (multi-lens) cameras (Jhan et al., 2017). 

 

2.2. Photosynthetic area of the canopy trait and grain yield 

The photosynthetic area of the canopy in field conditions, assessed by 

RGB-derived indices, has shown to be highly correlated with GY regardless the 

growing conditions (Chapter 5). We have compared Green Area (GA), Greener 

Area (GGA), Normalized Green Red Difference Index (NGRDI) and Triangular 

Greenness Index (TGI) (Casadesús et al., 2007; Hunt et al., 2014, 2013, 2011, 

2005) with a novel photosynthetic area index (u*v*A) (Fernandez-Gallego et al., 

2019c) based on the CIE L*u*v* color space (Robertson, 1977). Even though, 

using previous RGB indexes of the literature (GA, GGA, NGRDI, TGI) and the 

novel vegetation index (u*v*A) we have achieved almost the same or better 

relationship with GY; the best performance of the RGB indexes were achieved at 

the second half of grain filling (GS 75-79, R2 ≈ 0.6) under support irrigation and 

late planting conditions, and heading (GS 55-57, R2 ≈ 0.5) under rainfed 

conditions. Further analysis such as broad sense heritability (h2) and genetic 

correlation (rA) showed better results from the u*v*A index than the GA, GGA, 

NGRDI and TGI indexes. Regarding heritability of RGB index and heritability of 
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grain yield, under normal planting conditions (support irrigation and rainfed); for 

several indexes measured at early stages, the value of the h2 x rA2 product 

(Falconer and Mackay, 1996) was higher than the h2 of the grain yield. This shows 

that under normal planting conditions the indirect selection based on RGB 

indexes performs better than the direct selection based on the yield harvested 

(Richards et al., 2002). In the case of late planting condition, in several indexes 

and particularly at early stages, the value of the h2 x rA2 product was lower than 

the h2 of the grain yield. This may due to the fact that high temperature 

accelerates the plant growth thus preventing the appearance of genotypic 

differences (Stone and Nicolas, 1995). Thus, under normal planting conditions at 

early stages, indirect selection may still have provided a higher throughput via 

measurement of a specific RGB vegetation index and the benefit of its lower cost, 

rather than having to wait until maturity to harvest the crop. The early stages 

seem to be the best phenological stages for saving in cost and time and increase 

the selection intensity. The cost per breeding plot of the whole harvesting process 

(until getting the yields) may go easily beyond € 15, plus the cost of maintaining 

the crop until maturity. By contrast the evaluation at ground level done by hand 

by walking through the plots takes a fraction of minute, which means that one 

worker provided with a camera may even record thousands of plots in a day 

(Fernandez-Gallego et al., 2019c).  

 

3. Equipment considerations and future works 

3.1. Equipment considerations 

The software could be a restriction for HTPP, several types of open source 

and payment software, sensors and platforms are being used for plant 
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phenotyping tasks in the different research centers and experimental station 

around the world. In our case, the CerealScanner software (Chapter 2), 

developed for ear counting estimation and the u*v*A index calculation, operate 

within the open source software ImageJ (Schneider et al., 2012). More 

information is available and software contacts can be found at the URL: 

https://integrativecropecophysiology.com/softwaredevelopment/cerealscanner/. 

The thermal ear counting system was also developed within ImageJ. Although 

we have programmed mainly using open source software in this work, for the ear 

counting system using an aerial platform we have combined open source 

software ImageJ (version 2.0.0-rc-69, NIH, Bethesda, MD, USA) for processing 

and feature extraction; and commercial software such as Agisoft 

Photoscan (version 1.2.3, Agisoft LLC, St. Peterburg, Russia) for build the geo-

referenced ortophotos, Halcon (version 11, MVTec Software GmbH, Munich, 

Germany) for orthomosaic preprocessing and MATLAB (version R2014b, 

MathWorks, Inc., MA, USA) for training and classifying. The use of commercial 

software, costly sensors and remote sensing approaches cannot be considered 

as a negative characteristic; however, the experiment repeatability in developing 

countries or small companies could be a limitation (Araus et al., 2015) to take into 

account. 

 

3.2. Future works 

Many different algorithm adaptations can be designed from the new sensors 

and new platform technology. Future works concerns higher sensor resolution, 

multi-sensor and multi-data integration. Regarding ear counting, we have 

developed an accurate image processing system; however future work and 
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improvements may include, (i) at ground level, we would like to include a machine 

learning stage in order to improve the ear detection, especially for protocol 

acquisition errors such as images with oblique angles, changing sunlight 

conditions and sub-optimal distances between the camera and the canopy; (ii) at 

aerial level, we would like to use a higher resolution camera  such as the Phase 

One iXU-100 with 100-mega-pixel resolution and 53.4 x 40.0 mm sensor size or 

a UAV such as the DJI Mavic 2 Pro equipped with 20-mega-pixel resolution and 

35.0 x 28.0 mm at a lower distance from the canopy in order to acquire more 

canopy details that could help to increase the ear detection accuracy and  the 

orthomosaic reconstruction; (iii) using thermal imagery, we would like to use a 

thermal/RGB fusion camera or a  higher thermal resolution camera or such as 

the FLIR T1020 in order to have more spatial resolution at highest distances, this 

could contribute to differentiates better the surfaces into the image at similar ear 

temperatures using morphological operates; (iv) 3-dimensional imagery, we 

would like to estimating the ear size/volume, along our research we have 

confirmed the dynamic compensation mechanisms among agronomical yield 

components, perhaps using 3-dimentional information to estimate the ear 

size/volume could be useful for grain yield prediction. Regarding photosynthetic 

area estimation we have obtained almost the same or better results compared 

with other RGB and NDVI indexes; however, we would like to use a CIR camera 

to study the canopy reflectance including the NIR information that provide less 

sunlight and shadows issues than an RGB camera and more spatial resolution 

than a NDVI hand-held device. Moreover, the CIR imagery could the used to 

calculate multispectral indexes or design a new one using image processing 

techniques. 
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Finally, the new UAV platforms and its integrated sensors could be a key 

factor; for instance, the new DJI Mavic 2 Enterprise Dual equipped with an RGB 

and thermal camera, Global Positions System (GPS) and Global Navigation 

Satellite System (GLONAS). This visual and thermal and position data integration 

could be useful to the robust interpretation of the crop for plant phenotyping 

purposes. Even though, the thermal sensor has relatively low resolution for ear 

counting or ear temperature estimation, this platform allows low flight altitude that 

increases image spatial resolution without wind turbulence affecting the crop 

canopy. Moreover, future technology improvements of this type of platform and 

sensors are expected. In that way, future sceneries with higher resolution sensors 

and data integration could be projected for plant phenotyping tasks. 
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CONCLUSIONS 

 

1. Frequency domain filters were essential in the RGB pre-processing steps to 

avoid a wide frequency range information from awns, leaves and unwanted 

objects into the image when employed for ear counting. Although high 

frequency information contributes to discrimination tasks, redundancy 

information reduces accuracy and complicates image processing 

algorithms. Frequency domain filters maintain the essential information, 

connect the pixels regions of each object; and therefore, simplify following 

algorithms in the image processing pipeline. 

 

2. However, the RGB color space is the standard provided by the camera 

sensor technology. The interpretation of the ambient light conditions during 

image capture and its proper image representation for each phenotyping 

trait in other color spaces should be considered, such as HSI, CIE L*a*b or 

CIE L*u*v or others, especially for automatic imaging systems under field 

conditions. 

 

3. Ear counting systems have demonstrated high accuracy under field 

conditions in low- and high- resolution scenarios to estimate the number of 

visible ears within an image. The best relationships of ear density with GY 

were achieved in trials under low nitrogen conditions; this could indicate 

more applicability to real growing conditions in production fields. 

 

4. Random forest (RF) has achieved the best performance in training and 

classifying tasks using multi-dimensional data. The bootstrapping 
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aggregation and the many learners used provide robustness against outliers 

and noise and less sensitivity when applied to remote sensing data. 

 

5. The performance of the RGB and thermal ear counting system were 

comparable; however, from the implementation and computation 

requirements point of view, thermal data is considerably simpler than RGB 

data. For mobile applications, thermal imagery processing could be easily 

handled for the mobile device’s own processing power. On the other hand, 

optimal thermal image data capture is more sensitive to environmental 

conditions. 

 

6. The best correlation between GY and RGB indexes were achieve when the 

canopy color started to shift from green to yellow, which corresponds to the 

second half of grain filling under support irrigation and late planting 

conditions and heading under rainfed conditions. Perhaps, the use of those 

more yellow color characteristics instead of focus on the green color 

characteristics could be an opportunity to improve the performance of RGB 

indexes. 

 

7. Although the correlation between different RGB indexes and GY were quite 

similar across the experimental sites and measurements dates, combining 

all data to calculate h2 and rA for each index, the results were considerably 

better for the newly developed u*v*A than the other RGB indexes. The white 

reference and luminance characteristics of the CIE L*u*v* color space 

improved the data for h2 and rA analysis. 
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8. The color calibration did not improve the information provided by the RGB 

sensor under natural light conditions. Conversely, the indexes from 

calibrated images tended to perform somewhat poorer than indexes from 

un-calibrated images taken using the automatic settings of the cameras 

used in this research. 

 

9. The use of low-cost devices and a hand-help acquisition platform, such as 

conventional cameras with small sensor size or to hold the camera by hand, 

were not a limitation to achieve comparable or better results than state-of-

the-art complex platforms or higher resolution sensors used in similar 

experiments. 
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TÉCNICAS DE PROCESAMIENTO DE IMÁGENES RGB Y TÉRMICAS 

COMO HERRAMIENTA PARA FENOTIPADO DE CULTIVOS 

 

 

Introducción: 

Las existencias mundiales de cereales deben aumentar para satisfacer la 

creciente demanda. Actualmente, el maíz, el arroz y el trigo son los principales 

cultivos a nivel mundial, otros cereales como la cebada, el sorgo y la avena están 

también bien ubicados en la lista. En 2019, la FAO pronostica un aumento en la 

producción de cereales del 1,2% desde 2018, que corresponde a 2.685 millones 

de toneladas. Europa contribuye con alrededor del 20% de la producción mundial 

de cereales, principalmente en cultivos de trigo y cebada que cubren más del 

70% de la superficie cultivada. La productividad de los cultivos se ve afectada 

directamente por factores del cambio climático como el calor, la sequía, las 

inundaciones o las tormentas. De hecho, en países que experimentan una alta 

exposición y riesgo relacionado con la variabilidad climática y climas extremos, 

al menos el 80% de la variabilidad de producción interanual puede explicarse por 

factores relacionados con el clima. Los investigadores coinciden en que el 

cambio climático global está teniendo un gran impacto en la productividad de los 

cultivos. Además, se prevé que las temperaturas aumentarán al menos 0.2 ºC 

por década durante los próximos 30 años; adicionalmente, para fines de este 

siglo, la temperatura aumentará hasta 4.5 ºC. El calentamiento global aumentará 
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las tasas de respiración de la planta, al mismo tiempo que acortará la duración 

del cultivo y, por lo tanto, reducirá la productividad y el rendimiento. 

Es por esto que muchos estudios se han centrado en escenarios de cambio 

climático y más específicamente en estrés abiótico en cereales. Por ejemplo, en 

el caso de estrés por calor, las altas temperaturas entre antesis y llenado de 

grano pueden disminuir el rendimiento del grano, probablemente debido al 

reducido tiempo que tiene el cultivo para capturar recursos. El estrés hídrico 

asociado con una disminución en la precipitación, debido a un aumento en la 

demanda transpirativa impulsada por el calor (o ambos juntos) pueden dar como 

resultado el cierre de estomas como un medio para reducir la pérdida de agua, 

lo que posteriormente aumenta la temperatura de las hojas. El estrés por 

salinidad, a menudo debido al aumento del nivel del mar, también puede afectar 

el crecimiento de los cereales y el rendimiento de los granos. 

Para hacer frente al cambio climático y escenarios ambientales futuros, el 

mejoramiento de plantas es una de las principales alternativas; incluso se 

considera que las técnicas de mejoramiento contribuyen en mayor medida al 

aumento del rendimiento que el manejo del cultivo. Los programas de mejora se 

centran en identificar genotipos con altos rendimientos y calidad para actuar 

como progenitores y promover los mejores individuos para desarrollar nuevas 

variedades de plantas. Los mejoradores utilizan los datos fenotípicos, el 

desempeño de las plantas y los cultivos, y la información genética para mejorar 

el rendimiento mediante la selección (GxE, donde G y E indican factores 

genéticos y ambientales). Se deben tener en cuenta más factores para aumentar 

el rendimiento, como por ejemplo, la educación de los agricultores, los incentivos 
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económicos y el uso de nuevas tecnologías (GxExM, donde M indica manejo del 

cultivo).  

Los agricultores han llevado a cabo el fenotipado de plantas durante mucho 

tiempo, ya que año tras año, siguieron la tendencia natural de seleccionar la 

mejor semilla de las variedades de mayor rendimiento para la replantación. El 

fenotipado plantas está relacionado con las características observables (o 

medibles) de la planta mientras crece el cultivo, así como con la asociación entre 

el fondo genético de la planta y su respuesta al medio ambiente (GxE). En el 

fenotipado tradicional, las mediciones se clasifican manualmente, lo cual es 

tedioso, consume mucho tiempo y es propenso a errores subjetivos. Sin 

embargo, hoy en día la tecnología está involucrada en muchas aplicaciones. 

Desde el punto de vista del fenotipado de plantas, la tecnología se ha 

incorporado como una herramienta. El uso de técnicas de procesamiento de 

imágenes que integran sensores y algoritmos son por lo tanto una alternativa 

para evaluar automáticamente (o semiautomáticamente) estas características. 

 

Objetivos: 

El objetivo principal de esta tesis es desarrollar técnicas de procesamiento de 

imágenes para el fenotipado de plantas usando imágenes RGB y térmicas. 

 

Objetivos específicos: 

- Desarrollar algoritmos para la detección y el conteo de espigas de trigo 

utilizando imágenes cenitales RGB y térmicas sobre el cultivo y realizar la 

validación utilizando conteo manual en las imágenes. En el caso de las 

imágenes RGB, el objetivo adicional es desarrollar las configuraciones 
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específicas para plataformas terrestres y aéreas. Usar esta variable como 

componente agronómica para estudiar su relación con el rendimiento del 

cultivo. 

 

- Desarrollar un protocolo utilizando índices de vegetación RGB para 

fenotipado y predicción del rendimiento del cultivo de trigo en diferentes 

condiciones de crecimiento. 

 

Resumen por capítulo: 

 

Capítulo 1 

El número de espigas por unidad de superficie (densidad de espigas) es uno de 

los principales componentes del rendimiento agronómico para determinar el 

rendimiento en trigo. Una evaluación rápida de este atributo puede contribuir a 

monitorear la eficiencia de las prácticas de manejo de cultivos, predicción 

temprana del rendimiento o ser utilizada como una característica fenotípica en 

los programas de mejoramiento. Actualmente, el número de espigas se cuenta 

manualmente, lo que lleva mucho tiempo. Además, no existe un protocolo 

estandarizado para contar espigas. Se propone un algoritmo automático de 

conteo de espigas para estimar la densidad de espigas en condiciones de campo 

utilizando imágenes digitales en color tomadas desde arriba del cultivo en 

condiciones de luz natural. Los ensayos de campo se llevaron a cabo en dos 

lugares de España durante la temporada de cultivos 2014/2015 en un conjunto 

de 24 variedades de trigo duro con dos condiciones de crecimiento por lugar. El 

algoritmo para contar utiliza tres pasos: (i) filtro Laplaciano en frecuencia elegido 
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para eliminar los elementos de baja y alta frecuencia que aparecen en una 

imagen, (ii) filtro Mediana para reducir el ruido aún presente alrededor de las 

espigas y (iii) segmentación de los picos locales dentro de la imagen. Los 

resultados demuestran una alta tasa de acierto (superior al 90%) entre el conteo 

por algoritmo y manual de espigas con baja desviación estándar (alrededor del 

5%). La correlación entre el conteo por algoritmo y rendimiento fueron 

significativas y mayores que la correlación del conteo manual realizado en 

campo. Los resultados demuestran que el conteo automático de espigas 

realizados con las imágenes adquiridas alrededor de la antesis se correlacionó 

mejor con el rendimiento que con las imágenes adquiridas en etapas posteriores. 

El bajo rendimiento del conteo de espigas en las etapas tardías de llenado de 

granos se asoció con la pérdida de contraste en la imagen. El desarrollo de 

métodos robustos, de bajo costo y eficientes para evaluar la densidad espigas 

de trigo, como un componente agronómico importante del rendimiento, es muy 

relevante para los esfuerzos de fenotipado dirigidos al aumento del rendimiento. 

Aunque la etapa fenológica de las mediciones es importante, el sistema de 

procesamiento presentado parece ser adecuado para plataformas aéreas u otras 

plataformas automatizadas.  

 

Capítulo 2 

La densidad de espigas, o el número de espigas por metro cuadrado 

(espigas/m2), es central en muchos programas de mejoramiento de cultivos de 

cereales, como en trigo y cebada, debido a que es un componente importante 

para estimar rendimiento. Por esto, una técnica rápida, eficiente y estandarizada 

para evaluar la densidad de espigas ayudaría a mejorar el manejo agrícola, 
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proporcionando mejoras en las predicciones de rendimiento previo a la cosecha, 

o incluso podría usarse como una herramienta para el mejoramiento de cultivos. 

Las técnicas actuales para estimar la densidad de espigas no solo son laboriosas 

y requieren mucho tiempo, sino que además no tienen un protocolo 

estandarizado, ya sea por metro lineal, área cuadrada, o una extrapolación 

basada en la densidad de espigas y numero plantas después de la cosecha. Se 

presenta un algoritmo automático de conteo de espigas para estimar la densidad 

de espigas utilizando imágenes cenitales del cultivo bajo condiciones de luz solar 

natural. Se utilizaron diferentes ensayos de campo de trigo duro y cebada 

distribuidos geográficamente en España durante las temporadas de cultivo 

2014/2015 y 2015/2016 en ensayos de riego y secano. El protocolo de tres fases 

incluye la etapa de crecimiento del cultivo y la planificación de las condiciones 

del campo, pautas para la adquisición de las imágenes y un algoritmo de tres 

pasos: (i) filtro Laplaciano en frecuencia para eliminar información de baja y alta 

frecuencia no deseados, (ii) filtro Mediana para reducir el ruido de alta frecuencia 

y (iii) segmentación y conteo utilizando los picos máximos locales. Se realizaron 

ajustes al algoritmo correspondientes a la resolución de la cámara, distancia 

focal y distancia entre la cámara y el dosel del cultivo. Los resultados demuestran 

una alta tasa de acierto (superior al 90%) y valores de R2 (de 0.62-0.75) entre el 

conteo con algoritmos y conteo manual en imágenes de trigo duro y cebada. 

 

Capítulo 3 

En el trigo y otros cereales, el número de espigas por unidad de área es uno de 

los principales componentes determinantes del rendimiento. Una evaluación 

automática de este parámetro puede contribuir al avance del fenotipado y 
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monitoreo de trigo. No existe un protocolo estándar para el recuento de espigas 

en el campo, y además requiere mucho tiempo. Se propone un sistema 

automático de conteo de espigas utilizando técnicas de aprendizaje de maquina 

basadas en imágenes RGB adquiridas de una plataforma aérea. La evaluación 

se realizó en un conjunto de 12 variedades de trigo de invierno con 3 tratamientos 

de nitrógeno durante la temporada 2017-2018. El sistema automático 

desarrollado utiliza técnicas de filtrado de frecuencia, segmentación, extracción 

de características y clasificación para discriminar las espigas en la imagen. La 

relación entre el conteo manual basado en imágenes y el conteo por algoritmo 

para entrenamiento, clasificación y validación exhibió alta precisión y eficiencia. 

Además, un conteo manual de espigas en campo fue realizado. Se compararon 

las correlaciones entre el conteo automático y conteo manual de espigas en 

campo contra el rendimiento. Las correlaciones fueron más fuertes con el 

sistema de conteo automático de espigas, particularmente considerando el 

tratamiento con N más bajo. Se discuten los requisitos metodológicos y las 

limitaciones. 

 

Capítulo 4 

La densidad de espigas es uno de los componentes agronómicos de rendimiento 

más importantes en trigo. El conteo de espigas lleva mucho tiempo y es tedioso, 

ya que se realiza con mayor frecuencia de forma manual en condiciones de 

campo. Además, a menudo se utilizan diferentes técnicas de muestreo, lo que 

resulta en una falta de protocolo estandarizado, que eventualmente puede 

afectar la comparabilidad de los resultados. Los sensores térmicos capturan las 

características del dosel de cultivo con más contraste que los sensores RGB para 
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tareas de segmentación y clasificación de imágenes. Se propone un sistema de 

conteo automático de espigas utilizando imágenes térmicas cenitales adquiridas 

de una cámara térmica portátil de resolución moderadamente alta. En este 

estudio, se utilizaron tres sitios experimentales en diferentes condiciones de 

crecimiento en España en un conjunto de 24 variedades de trigo duro. El sistema 

automático desarrollado utiliza técnicas para mejorar el contraste y técnicas de 

filtrado para segmentar las regiones detectadas como espiga. Este enfoque se 

basa en las diferencias de temperatura entre las espigas y el resto del dosel, 

dado que las espigas generalmente tienen temperaturas más altas por sus más 

bajas tasas de transpiración. Se realizó la adquisición de imágenes térmicas, 

junto con imágenes RGB y el conteo visual de espigas en campo en el mismo 

segmento del cultivo para fines de validación. La relación entre el conteo usando 

imágenes termales y el conteo visual en campo fue bastante débil (R2 = 0.40), lo 

que resalta las dificultades para estimar la densidad de espigas desde una sola 

perspectiva de la imagen. Sin embargo, los resultados muestran que el sistema 

de conteo automático de espigas utilizando imágenes térmicas funciona bastante 

bien en el conteo de las espigas que aparecen en la imagen, exhibiendo altas 

correlaciones con los conteos manuales basados en imágenes térmicas y RGB 

al usar un aro físico de validación (R2 = 0.75–0.84). El conteo automático de 

espigas también exhibió una alta correlación con el conteo manual de las 

imágenes térmicas cuando se considera la imagen completa (R2 = 0.80). Los 

resultados también muestran alta correlación entre el conteo manual al utilizar 

imágenes térmicas y RGB con un aro físico de validación (R2 = 0.83). Se discuten 

los requisitos metodológicos y las posibles limitaciones de la técnica. 
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Capítulo 5 

El área fotosintética del dosel a lo largo del ciclo de cultivo es un factor importante 

para determinar el rendimiento en trigo. Este trabajo propone el uso de imágenes 

cenitales RGB del dosel tomadas en condiciones de luz natural para evaluar 

índices de vegetación para predecir el rendimiento como un enfoque de bajo 

costo. Se monitoreó un conjunto de 23 variedades de trigo duro en tres 

condiciones de cultivo (riego, secano y siembra tardía) en dos lugares (Aranjuez 

y Valladolid, España), con un total de 6 ensayos de campo. Para cada parcela, 

se tomaron periódicamente imágenes digitales RGB desde la emergencia de las 

plántulas hasta el llenado tardío del grano. El área verde (GA y GGA), índice 

normalizado de la diferencia entre rojo y verde (NGRDI), índice triangular de 

verdor (TGI) y un nuevo índice u*v*A, para calcular el área fotosintética basado 

en el espacio de color CIE L*u*v*, fueron comparados como referencia con el 

índice de vegetación de diferencia normalizada (NDVI) usando un 

espectroradiómetro de mano. En el caso de los ensayos de regado y siembra 

tardía, las mejores predicciones fenotípicas con rendimiento se lograron con los 

índices de vegetación medidos durante la última parte del ciclo del cultivo (es 

decir, llenado de grano). Para los ensayos de secano, las mejores predicciones 

fenotípicas se lograron con índices medidos anteriormente (alrededor de 

espigado). Entre todos los índices evaluados, el nuevo índice tuvo el mejor 

desempeño. Considerando las heredabilidades y correlaciones genéticas de los 

índices RGB evaluados con rendimiento, las predicciones de rendimiento 

basadas en índices fueron mejores en las primeras etapas de cultivo en 

condiciones de riego y de secano, mientras que en condiciones de siembra tardía 

los índices medidos tuvieron buen desempeño en diferentes etapas del cultivo. 
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Conclusiones: 

 

1. Los filtros en el dominio de la frecuencia fueron esenciales para el 

preprocesamiento de imágenes RGB para evitar un amplio rango de 

frecuencias en aristas, hojas y objetos no deseados en la imagen para el 

conteo de espigas. Aunque la información de alta frecuencia contribuye a 

tareas de discriminación, la información redundante reduce la precisión y 

complica los algoritmos de procesamiento de imágenes. Los filtros de 

dominio de frecuencia mantienen la información esencial, conectan los 

píxeles las regiones de cada objeto; y por lo tanto, simplifican los algoritmos 

posteriores en el sistema de procesamiento de imágenes. 

 

2. Aunque, el espacio de color RGB es el estándar proporcionado por la 

tecnología del sensor de la cámara. La interpretación de las condiciones de 

luz ambiental durante la captura de las imágenes y su adecuada 

representación en la imagen para cada característica para fenotipado debe 

ser considerada en otros espacios de color, como HSI, CIE L*a*b, CIE L*u*v 

u otros, especialmente para sistemas de imágenes automáticas bajo 

condiciones de campo. 

 

3. Los sistemas de conteo de espigas han demostrado una alta precisión en 

condiciones de campo en escenarios de baja y alta resolución para estimar 

el número de espigas visibles dentro de una imagen. Las mejores 

relaciones de densidad de espigas con rendimiento se lograron en ensayos 

en condiciones de bajo contenido de nitrógeno; esto podría indicar una 
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mayor aplicabilidad en condiciones reales de crecimiento en campos de 

producción. 

 

4. Random forest (RF) ha logrado el mejor rendimiento en tareas de 

entrenamiento y clasificación utilizando datos multidimensionales. 

Bootstrapping aggregation y la gran cantidad de learners utilizados 

proporcionan robustez frente a valores atípicos, ruido y menor sensibilidad 

cuando es aplicado en datos obtenidos por teledetección. 

 

5. El rendimiento de los sistemas de conteo de espigas RGB y térmico fue 

comparable; sin embargo, desde el punto de vista de los requisitos de 

implementación y cálculo, los datos térmicos son considerablemente más 

simples que los datos RGB. Para aplicaciones móviles, las imágenes 

térmicas podrían ser más fácilmente procesadas. Por otro parte, la captura 

óptima de datos, utilizando imágenes térmicas, es más sensible a las 

condiciones ambientales. 

 

6. La mejor correlación entre rendimiento y los índices RGB se logró cuando 

el color del dosel comenzó a cambiar de verde a amarillo, lo que 

corresponde a la segunda mitad de llenado de grano en condiciones de 

riego y siembra tardía, y a espigado en condiciones de secano. Quizás, el 

uso de más de estas características de color amarillo en lugar de centrarse 

en las características de color verde podría ser una oportunidad para 

mejorar el rendimiento de los índices RGB. 
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7. Aunque la correlación entre los diferentes índices RGB y rendimiento fueron 

bastante similares en las estaciones experimentales y fechas de 

adquisición, combinando todos los datos para calcular h2 y rA para cada 

índice, los resultados fueron considerablemente mejores para el nuevo 

índice u*v*A en comparación con los otros índices RGB. La referencia de 

blancos y las características de luminancia del espacio de color CIE L*u*v* 

mejoraron los datos para el análisis de h2 y rA. 

 

8. La calibración de color no mejoró la información proporcionada por el 

sensor RGB en condiciones de luz natural. Por el contrario, los índices de 

las imágenes calibradas tendieron a tener un desempeño algo peor que los 

índices de las imágenes no calibradas tomadas en configuración 

automática con las cámaras utilizadas en esta investigación. 

 

9. El uso de dispositivos de bajo costo y una plataforma de adquisición 

manual, como cámaras convencionales con un tamaño de sensor pequeño 

o sosteniendo la cámara con la mano, no fueron una limitación para lograr 

resultados comparables o mejores que complejas plataformas del estado 

del arte o sensores con más alta resolución usados en experimentos 

similares. 
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