
B E R N S T E I N - S AT O P O LY N O M I A L O F P L A N E C U RV E S
A N D YA N O ’ S C O N J E C T U R E

A thesis submitted to the
universitat politècnica de catalunya

by
G U I L L E M B L A N C O F E R N Á N D E Z

in partial fulfillment of the
requirements for the degree of
doctor of mathematics

Maria Alberich-Carramiñana, Advisor
Josep Àlvarez Montaner, Advisor

Barcelona, April 2020



Guillem Blanco Fernández: Bernstein-Sato polynomial of plane curves and Yano’s conjecture,
© April 2020



Als meus pares, al meu germà i a la Clàudia





A B S T R A C T

The main aim of this thesis is the study of the Bernstein-Sato polynomial of plane curve
singularities. In this context, we prove a conjecture posed by Yano in 1982 about the
generic b-exponents of an irreducible plane curve.

In a part of the thesis, we study the Bernstein-Sato polynomial using the analytic
continuation of the complex zeta function of a singularity. We obtain several results on
the vanishing and non-vanishing of the residues of the complex zeta function of plane
curves. Using these results we obtain a proof of Yano’s conjecture under the hypothesis
that the eigenvalues of the monodromy are pair-wise different. In another part of
the thesis, we study the periods of integrals in the Milnor fiber and their asymptotic
expansion. This asymptotic expansion of the periods can be related to the b-exponents
and can be constructed in terms of resolution of singularities. Using these techniques,
we can present a proof for the general case of Yano’s conjecture.

In addition to the Bernstein-Sato polynomial, we also study the minimal Tjurina
number of an irreducible plane curve and we answer in the positive a question raised
by Dimca and Greuel on the quotient between the Milnor and Tjurina numbers. More
precisely, we prove a formula for the minimal Tjurina number in an equisingularity
class of an irreducible plane curve in terms of the multiplicities of the strict transform
along the minimal resolution. From this formula, we obtain the positive answer to
Dimca and Greuel question.

This thesis also contains computational results for the theory of singularities on
smooth complex surfaces. First, we describe an algorithm to compute log-resolutions
of ideals on a smooth complex surface. Secondly, we provide an algorithm to compute
generators for complete ideals on a smooth complex surface. These algorithms have
several applications, for instance, in the computation of the multiplier ideals associated
to an ideal on a smooth complex surface.
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A B S T R A C T

El principal objectiu d’aquesta tesi és l’estudi del polinomi de Bernstein-Sato de singu-
laritats de corbes planes. En aquest context, es demostra una conjectura proposada per
Yano el 1982 sobre els b-exponents genèrics d’una corba plana irreductible.

En una part d’aquesta tesi, s’estudia el polinomi de Bernstein-Sato utilitzant la
continuació analítica de la funció zeta complexa d’una singularitat. S’obtenen diversos
resultat sobre l’anul·lació i no anul·lació del residu de la funció zeta complexa d’una
corba plana. Utilitzant aquests resultats, s’obté una demostració de la conjectura de
Yano sota la hipòtesi de que els valors propis de la monodromia siguin diferents dos
a dos. En un altre part de la tesi, s’estudien els períodes d’integrals en la fibra de
Milnor i la seva expansió asimptòtica. Aquesta expansió asimptòtica dels períodes pot
ser relacionada amb els b-exponents i pot ser construïda en termes de la resolució de
singularitats. Utilitzant aquestes tècniques, es presenta una prova del cas general de la
conjectura de Yano.

A més a més del polinomi de Bernstein-Sato, també s’estudia el nombre de Tjurina
mínim d’una corba plana irreductible i responem positivament a una pregunta for-
mulada per Dimca i Greuel sobre el quocient entre els nombres de Milnor i Tjurina.
Concretament, es demostra una fórmula pel nombre de Tjurina mínim en un classe
d’equisingularitat de corbes planes irreductibles en termes de la seqüència de multipli-
citats de la transformada estricta al llarg de la resolució minimal. A partir d’aquesta
fórmula, s’obté la resposta positiva a la pregunta de Dimca i Greuel.

Aquesta tesi també conté resultats computacionals per la teoria de singularitats en
superfícies complexes llises. Primer, es descriu un algorisme que calcula la log-resolució
d’ideals en un superfície complexa llisa. En segon lloc, es dona un algorisme per calcular
generadors per ideals complets en una superfície complexa llisa. Aquests algorismes
tenen diverses aplicacions, com per exemple, en el càlcul d’ideals multiplicadors
associats a un ideal en una superfície complexa llisa.
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I N T R O D U C T I O N

Let X be a smooth complex variety and let a ⊆ OX be an ideal defining a singular
variety Var(a). Since singularities are of local nature, one usually works locally around
one of the singular points p ∈ Sing(a) and considers the stalk ap ⊆ OX,p. There are
many invariants that, to some extent, measure the complexity or the mildness of a
singularity. One may classify the invariants in two big groups, topological and analytical
invariants. The invariants in the first group are invariant under local homomorphisms
of the ambient space. On the contrary, the second group are invariants under local
change of analytical coordinates but not under local homomorphisms.

One of the main problems in Singularity Theory is to determine to what extent
the topology of a singularity constrains its analytical invariants. This problem can be
approached in two different ways. On one side, one can try to determine the generic
behavior of an analytic invariant within singularities having the same topological
type. On the other hand, one can study which part of an analytic invariant is purely
determined by the topology of the singularity and which part is not.

In this thesis, we will study this problem for two analytical invariants of plane
curve singularities: the Bernstein-Sato polynomial and the Tjurina number. The study
of the generic behavior of these two invariants, even for irreducible plane curves,
have been long-standing problems that are completely solved in this thesis. For the
Tjurina number see, for instance, [Zar86; Tei86; Del78; BGM88; LP90; Per97]. For
the Bernstein-Sato polynomial, see [Yan78; Kat81; Kat82; Yan82; Cas87; Cas88; Gea91;
BGM92; BMT07; Art+17b; Art+17a; Art+18]. Additionally, we will give some results
about the topological information contained in these analytical invariants. This study
is partially possible in the case of plane curves because the topological classification of
plane curves is well-understood. In addition, for plane curves, topological equivalence
is the same as equisingular equivalence. Therefore, resolution of singularities becomes
a very useful tool for this study and the results obtained will be described in terms of
the numerical data of the resolution.

Finally, this thesis also contains some computational aspects of the theory of singular-
ities in smooth complex surfaces. First, we will present an algorithm that computes the
log-resolution of an ideal on a smooth complex surface from any given set of generators.
We also have developed an algorithm that allows the computation of explicit generators
for complete ideals on a smooth complex surface. These algorithms are especially
useful to compute effectively the integral closure or the multiplier ideals of a singularity
on a smooth surface. All computations are effective in the sense that both the input
and the output are ideals generated by polynomials. The algorithms presented in this
thesis, as well as other necessary algorithms in the theory of plane curve singularities,
have been implemented in Magma [BCP97] and can be found in Appendix A.

the bernstein-sato polynomial

The main invariant of a singularity studied in this thesis is the Bernstein-Sato poly-
nomial. Let f ∈ C[x1, . . . , xn] be a non-constant polynomial. The Bernstein-Sato
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xvi introduction

polynomial b f (s) of f is defined as the monic polynomial of smallest degree that fulfills
the following functional equation

P(s) · f s+1 = b f (s) f s, (0.1)

where P(s) is a differential operator in DCn+1 ⊗ C[s], with DCn+1 being the ring of
C-linear differential operators and s a formal variable. The Bernstein-Sato polynomial
b f (s) was introduced in the polynomial case, independently, by Bernstein [Ber72] using
the theory of algebraic D-modules and by Sato [SS90] in the context of prehomogeneous
vector spaces. See Section 1.2 for details.

The above construction remains true in the local case. That is, if f : (Cn, 0) −→ (C, 0)
is a germ of a holomorphic function, there exists the local Bernstein-Sato polynomial
b f ,0(s) fulfilling a functional equation as in Equation (0.1). The existence of the Bernstein-
Sato polynomial in the local case is due to Björk [Bjö74]. Since it is known that the
global Bernstein-Sato polynomial b f (s) equals the least common multiple of all the
local Bernstein-Sato polynomials and due to the local nature of singularities, we will
mainly work with the local Bernstein-Sato polynomial.

It is a classical result that the roots of the Bernstein-Sato polynomial are negative
rational numbers. This is established by Malgrange [Mal75] for isolated singularities,
using the Gauss-Manin connection, and by Kashiwara [Kas76] in general, using resolu-
tion of singularities. However, in general, little more is known about the roots of the
Bernstein-Sato polynomial. It is an analytical invariant of the singularity in the sense
established above, see for instance the examples in [Kat81; Kat82]. There are algorithms
as those developed by Oaku [Oak97] for computing the Bernstein-Sato polynomial
of a singularity, however, since they depend on computations with non-commutative
Gröbner bases, it is usually very hard to compute examples of the Bernstein-Sato
polynomial.

The roots of b f (s) are related to other invariants of f . By the results of Malgrange,
first in the isolated singularity case [Mal75] and later in general [Mal83], for every root
α of b f (s), the value exp (2πiα) is an eigenvalue of the local monodromy at some point
of f−1(0) and every eigenvalue is obtained in this way. For an isolated singularity, these
results imply that the degree of b f (s) is at most the Milnor number µ, see Section 1.4
for the definitions.

The log-canonical threshold of the singularity [Kol97; Mus12] is minus the largest
root of b f (s). For isolated singularities, it coincides with the complex singularity
index, a concept that dates back to Arnold [AV88]. The spectral numbers of an
isolated singularity, introduced by Steenbrink in [Ste89], in the range (0, 1] are always
the opposites in sign to roots of the Bernstein-Sato polynomial, for the non-isolated
singularity case we refer to [Bud03]. Similarly, the jumping numbers associated with
the multiplier ideals, introduced in [Ein+04], which are in (0, 1], are roots of b f (−s),
see also [BS05] and [Lic86].

yano’s conjecture

Given the analytical nature of the Bernstein-Sato polynomial, one may ask about
the generic behavior of the Bernstein-Sato polynomial among all singularities with
a fixed topological type. For plane curves, where the topology of singularities is



introduction xvii

well-understood, one can ask whether there exists a generic Bernstein-Sato polynomial
among all plane curves with a given topological type and whether this generic Bernstein-
Sato polynomial can be expressed in terms of the topological data of the singularity.

This is, precisely, for the case of irreducible plane curves, the content of a conjecture
posed by Yano in 1982 [Yan82]. In order to state Yano’s conjecture, one needs the fol-
lowing characterization of the local Bernstein-Sato polynomial of an isolated singularity
due to Malgrange [Mal75]. Let f : (Cn+1, 0) −→ (C, 0) be a germ of a holomorphic
function defining an isolated singularity. First, since −1 is always a root of b f ,0(s), the
reduced Bernstein-Sato polynomial is defined as b̃ f ,0(s) := b f ,0(s)/(s + 1). Let

′′Hn
=

Ωn+1
X,0

d f ∧ dΩn−1
X,0

(0.2)

be the Brieskorn lattice and one considers its saturation ′′H̃n = ∑k=0(∂tt)k ′′Hn. Then,
Malgrange’s result asserts that b̃ f ,0(s) is equal to the minimal polynomial of the complex
endomorphism

−∂tt : ′′H̃n/t ′′H̃n −→ ′′H̃n/t ′′H̃n , (0.3)

induced by the Gauss-Manin connection. Finally, one defines the b-exponents as the
roots of the characteristic polynomial of ∂tt, see Section 1.7 for the exact results and
definitions.

Yano’s conjecture deals with the generic behavior of the b-exponents of the singu-
larity instead of the roots of the Bernstein-Sato polynomial. With the notations from
Section 2.8 the conjecture reads as follows:

Conjecture (Yano [Yan82]). For generic curves in some µ-constant deformation of an irre-
ducible germ of a plane curve having characteristic sequence (n, β1, . . . , βg), the b-exponents
{α1, α2, . . . , αµ} are given by the generating function R. Precisely,

R
(
(n, β1, . . . , βg), t

)
:= t +

g

∑
i=1

t
ri
Ri

1− t

1− t
1

Ri

−
g

∑
i=0

t
r′i
R′i

1− t

1− t
1

R′i

=
µ

∑
i=1

tαi . (0.4)

The numbers ri, Ri (resp. r′i , R′i) are the numerical data at the rupture divisors (resp.
dead-end divisors) of the minimal embedded resolution.

Yano’s conjecture is known to be true in the case that f has a single Puiseux pair,
see the work of Cassou-Noguès [Cas88]. More recently, Artal-Bartolo, Cassou-Noguès,
Luengo, and Melle-Hernández [Art+17b], proved the case of two Puiseux pairs under
the hypothesis that the eigenvalues of the monodromy of f are pair-wise different. The
assumption on the eigenvalues of the monodromy appears naturally in this context
because under this hypothesis the roots of the local Bernstein-Sato polynomial and the
b-exponents coincide.

Using the results from Chapter IV, we can give a proof of Yano’s conjecture that
works under the assumption that the eigenvalues of the monodromy are pair-wise
different. This proof uses the poles of the complex zeta function of f and their relation
with the Bernstein-Sato functional equation via integration by parts. The hypothesis on
the eigenvalues of the monodromy ensures that all the b-exponents can be recovered
from the roots of the Bernstein-Sato polynomial. The proof of the general case will be
the content of Chapter V and it is based on the asymptotic expansion of the periods of
integrals in the Milnor fiber. These periods of integrals are solutions to the Gauss-Manin
connection and they give direct information about the b-exponents.
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poles of the complex zeta function of a plane curve

Let k be either R or C and let ϕ(x) ∈ C∞
c (kn) be an infinitely many times differentiable

function with compact support. Define the archimedean zeta function f s of a non-
constant polynomial f (x) ∈ k[x1, . . . , xn] as the distribution

〈 f s, ϕ〉 =
∫

kn
| f (x)|δs ϕ(x) dx, (0.5)

for s ∈ C, Re(s) > 0, where δ = 1 if k = R and δ = 2 if k = C. In the 1954 edition of the
International Congress of Mathematicians, I. M. Gel’fand [Gel57] posed the following
problem: first, determine whether f s is a meromorphic function of s with poles forming
several arithmetic progressions; second, study the residues at those poles.

The problem is solved for some specific polynomials having simple singularities in
the book of Gel’fand and Shilov [GS64], by regularizing the integral in Equation (0.5).
It is not after Hironaka’s resolution of singularities [Hir64a; Hir64b], that Bernstein
and S. I. Gel’fand [BG69], and independently Atiyah [Ati70], give a positive answer
to Gel’fand’s first question. Both results use resolution of singularities to reduce the
problem to the monomial case, already settled in [GS64], and give a sequence of
candidates poles for f s from the resolution data. These constructions are detailed in
Section 7.1.

A different approach to the same problem is considered by Bernstein [Ber71; Ber72],
who develops the theory of D-modules and proves the existence of the Bernstein-Sato
polynomial b f (s) to analytically continue the archimedean zeta function f s. One verifies,
using the functional equation in Equation (0.1) and integration by parts, see Section 7.2,
that the poles of f s are among the rationals s = α− ν, with b f (α) = 0 and ν ∈ Z≥0.
Loeser [Loe85] shows the equality between both sets for reduced plane curves and
isolated quasi-homogeneous singularities.

In Chapter IV we examine the original questions of Gel’fand and we use resolution of
singularities to study the possible poles and the residues of the complex zeta function of
general plane curves. These results generalize some of the ideas and results of Lichtin
[Lic85; Lic89] in the case of irreducible plane curves. Lichtin computed the residue at
the first poles of each rupture divisor. The main results of Chapter IV are the following:

• For any candidate pole σ of f s, we give a formula for its residue expressed as an
integral along the exceptional divisor associated to σ, see Proposition 8.4

• In Theorem 8.10, we prove that most non-rupture divisors do not contribute to
the poles of f s, and consequently to the roots of b f (s).

Since the residues characterize whether some poles of f s are roots of b f (s), this last
result answers, for reduced plane curves, a question raised by Kollár [Kol97] on which
exceptional divisors contribute to roots of the Bernstein-Sato polynomial. It is already
well-known that, for plane curves, non-rupture divisors do not contribute to topological
invariants such as the eigenvalues of the monodromy [ACa75; Neu83], the jumping
numbers [ST07], or the poles of Igusa’s local zeta function [Loe88]. For irreducible
plane curves, we use Teissier’s monomial curve [Tei86], see Section 2.6, associated with
the semigroup of f to refine our previous results:

• In Theorem 9.7, we obtain an optimal set of candidates for the poles of f s in terms
of the rupture divisors, the characteristic sequence, and the semigroup of f .
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• From this, in Theorem 9.8, we prove that if fgen is generic among all plane
branches with fixed characteristic sequence (in the sense that the coefficients of
some µ-constant deformation are generic), all the candidates are indeed poles of
f s
gen.

• As a consequence, in Corollary 9.9, we prove Yano’s conjecture for any number
of characteristic exponents under the assumption that the eigenvalues of the
monodromy of f are pairwise different.

periods of integrals in the milnor fiber

Let f : (Cn+1, 0) −→ (C, 0) be a germ of a holomorphic function defining an isolated
singularity. Instead of dealing with the poles of the complex zeta function as in
Chapter IV, the proof of Yano’s conjecture presented in Chapter V focuses on the
Gauss-Manin connection of an isolated singularity f , which gives direct information
about the b-exponents.

The main idea of the proof is to construct certain solutions of the Gauss-Manin
connection that are directly associated with the b-exponents of f . These solutions will
be periods of differential forms along vanishing cycles γ(t) on the Milnor fiber of f ,∫

γ(t)

ω

d f
= ∑

λ∈Λ
∑

α∈L(λ)
∑

0≤k≤n
aα−1,ktα−1(ln t)k, (0.6)

see Section 10.1 for the exact definitions. These periods of integrals were originally
considered by Malgrange in [Mal74a; Mal74b], where he proved that they have a
certain asymptotic expansion encoding the structure of the monodromy and the roots
of the Bernstein-Sato polynomial. The exact relation between the b-exponents and
these periods of integrals is given by a theorem of Varchenko [Var80], see Section 10.2.
His result links the so-called geometric sections in the cohomology of the Milnor fiber,
constructed via these periods of integrals, and Malgrange’s characterization of b̃ f ,0(s)
in terms of the Brieskorn lattice.

In [Var82], Varchenko uses the first term of each asymptotic expansion series to
construct a mixed Hodge structure for the cohomology of the Milnor fiber. He uses
resolution of singularities and a process of semi-stable reduction to determine these
first terms of the expansions, as we review in Section 10.5. In Chapter V, we will
generalize this idea,

• In Section 10.6, we determine all the terms of the asymptotic expansions of the
periods of integrals using the divisorial valuations of the resolution.

The main problem arising in arbitrary dimension is how to determine whether a given
coefficient of these asymptotic expansions, equivalently a geometric section, is non-zero.
However, this is possible in the case of plane curves.

The first terms of the periods of integrals in the case of plane curves were originally
determined by Lichtin [Lic89], in the irreducible case, and by Loeser [Loe88], for general
curves. In order to show that a given coefficient of an asymptotic expansion is not zero,
we will use the same idea as in [Loe88]. Namely, since the exceptional divisors of plane
curves are just projective lines, the coefficients of the expansions become integrals of
multivalued differential forms on a punctured projective line. Therefore, one can use
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cohomology with coefficients on local systems and a result of Deligne and Mostow
[DM86] on multivalued forms on the projective line.

Determining the whole asymptotic expansions of the periods of integrals is more
complicated than just giving the first terms. In contrast with the initial terms, the
higher-order terms can change along µ-constant deformations of f . Given an irreducible
f , for a Yano’s candidate to be a b-exponent, one needs that a certain higher-order term
in the asymptotic expansion of some period of integral is non-zero.

• We show in Proposition 11.11 that one can make the corresponding term of the
asymptotic expansion associated with a candidate non-zero when f is generic in
a certain µ-constant deformation.

• This depends on the existence of a particular µ-constant deformation, see Propo-
sition 2.18, whose existence is proved using Teissier’s monomial curve and its
deformations [Tei86].

In this way, we can show that a single candidate is indeed a generic b-exponent in some
µ-constant deformation of f .

In order to show that all the candidate b-exponents are generic in the same µ-constant
deformation of f , as predicted by Yano’s conjecture, we will use a semicontinuity
argument for the b-exponent. More precisely,

• We generalize a semicontinuity argument of Varchenko [Var80], which is only
valid when all the eigenvalues of the monodromy of f are pair-wise different.
Our result works under the assumption of the existence of certain dual geometric
sections with respect to a basis of generalized monodromy eigenvectors, see
Section 10.4.

• For irreducible plane curves, we prove that such dual geometric sections do
indeed exist. Consequently, we show that the b-exponents of some µ-constant de-
formation depend upper-semicontinuously on the parameters of the deformation,
see Theorem 11.10.

• In Theorem 11.12, we show how Yano’s conjecture follows from these results.

Using the results from Chapter V, we finish this chapter with Theorem 12.3, about
the set of topological roots of the Bernstein-Sato polynomial. Precisely, for a irreducible
plane curve, we provide a set of topological roots for the Bernstein-Sato polynomial that
contain both the opposites in sign of the jumping numbers between (0, 1] and the real
parts of the poles of Igusa’s zeta function, see Section 12.1 for the exact definitions. For
curves with one and two Puiseux pairs, these sets of topological roots already appeared
in [Cas87] and [Art+17b].

on the tjurina number of plane curves

The goal of Chapter III is to study another analytic invariant of isolated singularities,
the Tjurina number. Let f : (Cn+1, 0) −→ (C, 0) be a germ of an analytic function
defining an isolated singularity. Taking analytical coordinates, the Tjurina number of f
is defined as

τ = dimC

C{x0, . . . , xn}
( f , ∂ f /∂x0, . . . , ∂ f /∂xn)

. (0.7)
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The geometric significance of the Tjurina number comes from the fact that τ is the
dimension of the miniversal deformation of f . In the case of irreducible plane curve
singularities, the generic behavior of the Tjurina number within a fixed topological
class has been studied extensively, see [Zar86; Tei86; Del78; BGM88; LP90; Per97]. By
semicontinuity, notice that the generic Tjurina number in a topological class coincides
with the minimal Tjurina number τmin.

Briançon, Granger and Maisonobe [BGM88] give recursive formulas to compute τmin
for the equisingularity classes corresponding to plane branches with a single Puiseux
exponent. More generally, Peraire [Per97] gives an algorithm that computes the minimal
Tjurina number τmin from the semigroup of a plane branch.

Our interest in the Tjurina number comes from the following question posed by
Dimca and Greuel in [DG18] on the quotient of the Tjurina number τ, an analytical
invariant, and the Milnor number µ, a topological invariant.

Question. It is true that µ/τ < 4/3 for any reduced plane curve singularity?

Rewriting τ > 3
4 µ, this question can be viewed as a topological constraint to the

Tjurina number imposed by the Milnor number.

In the first section of Chapter III, we give some evidence to the question of Dimca and
Greuel for the case of branches with one Puiseux pair and semi-quasi-homogeneous
plane curve singularities, see Proposition 5.2 and Proposition 5.4. For the case of
branches with one Puiseux pair, we use a result of Delorme [Del78], where he gives
a recursive formula for the generic dimension of the moduli space of a plane branch
with one Puiseux exponent. For the case of semi-quasi-homogeneous plane curves, we
use the recursive formulas of Briançon, Granger and Maisonobe [BGM88]. This is joint
work with Almirón, see [AB19].

In the second part of Chapter III, we present a formula for the minimal Tjurina
number of a irreducible plane curve in terms of the multiplicities of the strict transform
along an embedded resolution of the curve, see Theorem 6.4. This result uses the work
of Genzmer [Gen16], where a formula for the dimension of the generic component of
the moduli space of a plane branch is deduced in terms of the embedded resolution.
Our formula for the Tjurina number of a plane branch allows us to give a positive
answer to Dimca and Greuel question, see Corollary 6.6. This is joint work with
Alberich-Carramiñana, Almirón, and Melle-Hernández, see [Alb+19].

A complete positive answer to the question of Dimca and Greuel is given by Almirón
in [Alm19] using some known cases of Durfee’s conjecture.

effective computation of complete planar ideals

The contents of Chapter II are more computational. Precisely, in Chapter II we give
algorithms for the explicit computation of generators for several types of ideals asso-
ciated with singularities in smooth surfaces, for instance, the multiplier ideals. The
results of Chapter II are joint work with Alberich-Carramiñana and Àlvarez Montaner.

Let (X, 0) be a germ of smooth complex surface and OX,0 the ring of germs of
holomorphic functions in a neighborhood of 0. Let a ⊆ OX,0 be an ideal and let
π : (X′, E) −→ (X, 0) be a log-resolution of a. In the first sections of Chapter II
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we present Algorithm 3.13, an algorithm that computes explicitly the minimal log-
resolution of a from any given set of generators of a. This is a first step towards the
explicit constructions in the second section of this chapter. The results of this chapter
generalize the results of Alberich-Carramiñana in [Alb04] in the case of a pencil of
curves.

More generally, in the second section of Chapter II, we consider π : (X′, E) −→ (X, 0)
a proper birational morphism that can be achieved as a sequence of blow-ups on a set
of points. Given an effective Z-divisor D in X′, we may consider its associated (sheaf)
ideal π∗OX′(−D) whose stalk at 0 we simply denote as HD. These types of ideals were
systematically studied by Zariski in [Zar38]. They are complete ideals of OX,0 and
m-primary whenever D has exceptional support. Among the class of divisors defining
the same complete ideal, we may find a unique maximal representative which happens
to have the property of being antinef, see Section 2.3. Actually, Zariski [Zar38] showed
that that above correspondence is, in fact, an isomorphism of semigroups between
the set of complete m-primary ideals and the set of antinef divisors with exceptional
support.

The aim of the second section is to make the correspondence explicit computationally.
Namely, given any antinef divisor D in X′, we present Algorithm 4.3, an algorithm that
computes a system of generators of the ideal HD. Moreover, the algorithm produces
generators that are monomials in any given set of maximal contact elements of the
morphism π, see Section 2.5 for the exact definitions. The algorithm is based on the
following results: Zariski’s decomposition of complete ideals into simple ones, the
unloading procedure to compute antinef closures, and the theory of adjacent ideals on
smooth surfaces. These preliminary results will be introduced in Section 2.3.

As a first application of the algorithms developed in Chapter II, we provide a method
to compute the integral closure of any ideal a ⊆ OX,0. More precisely, given a log-
resolution π : (X′, E) −→ (X, 0) of the ideal a, let Fπ be the effective Cartier divisor
such that a · OX′ = OX′(−Fπ). Then, the integral closure a is the ideal HFπ . Another
geometric procedure to compute generators for a is given by Casas-Alvero in [Cas98].

The usefulness of the algorithms presented in Chapter II becomes still more apparent
when dealing with families of complete ideals dominated by the same log-resolution.
This is the case of multiplier ideals. Combining the algorithm given in [AÀD16]
with Algorithms 3.13 and 4.3, we can give an effective method that, given any set
of generators of a planar ideal a, returns a set of generators of the corresponding
multiplier ideals J (aλ). Since multiplier ideals are invariant up to integral closure, we
obtain a result that resembles a formula given by Howald [How01] in the sense that
the multiplier ideals of a monomial ideal (in the set of maximal contact elements) are
monomial as well.

Another interesting family of complete ideals was considered by Teissier in [Tei86].
These ideals are described by valuative conditions given by the intersection multi-
plicity of the elements of OX,0 with a fixed germ of a plane curve. With the help of
Algorithm 4.3, we can provide an explicit system of generators for these ideals.
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P R E L I M I N A R I E S

In this chapter, we will introduce all the necessary definitions and results that will be
required throughout this thesis. This chapter will be divided into two sections. We
start reviewing the basics on resolution of singularities, and we introduce the main
invariants that we will consider in this thesis, the Bernstein-Sato polynomial, and a
related invariant, the multiplier ideals and its associated jumping numbers. For the
local study of singularities, we will introduce the Milnor fiber and the monodromy, the
Gauss-Manin connection, the Brieskorn lattice, and we will explain the relationship
with the Bernstein-Sato polynomial given by Malgrange.

The second section will contain results and definitions for the local study of singu-
larities in complex smooth surfaces. Resolution of singularities is well-understood in
this context using the theory of infinitely near points. We will also introduce bases for
divisors with exceptional support, antinef divisors, the unloading process to compute
antinef closures, and maximal contact elements. For plane curve singularities, we will
introduce the semigroup, the minimal embedded resolution via toric morphisms, the
monomial curve and its deformations. Finally, we will present Yano’s conjecture and
some known results about multiplier ideals on a smooth complex surface.

Almost all of the results in this section are well-known results that can be found
in the literature. We include the proof of some small lemmas that are probably well-
known by the experts in the area, but for which no proof has been found in the
literature. In addition, in this section, we include two novel results, Proposition 2.17

and Proposition 2.18, that will be key results for the proof of Yano’s conjecture in
Chapters IV and V.

1 complex algebraic singularities

All the results and objects presented in this section are valid in any dimension.

1.1 Resolution of singularities

Let X be a smooth complex algebraic variety of dimension n with structure sheaf OX.
Denote by Div(X) the free abelian group of prime Weyl divisors. We will write a
divisor has D = ∑ niDi, where Di are prime divisors and only finitely many integers ni
are non-zero. Similarly, DivQ(X) := DivQ(X)⊗Z Q will denote the set of Q-divisors.
Let us start by defining the concept of a log-resolution of an ideal sheaf a of OX.

Definition 1.1. A divisor D = ∑i Di on a smooth complex algebraic variety is a simple
normal crossing (SNC) divisor if each irreducible component Di is smooth, and D is
defined in a neighborhood of any point by an equation in local analytic coordinates of
the type

z1 · · · zk = 0, (1.1)

1
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for some 1 ≤ k ≤ n. We say that a divisor ∑i aiDi has simple normal crossings support
if ∑ Di is a SNC divisor.

That is, the singularities of D should look no worse than a union of coordinate
hyperplanes.

Definition 1.2. Let a ⊂ OX be an ideal sheaf. A log-resolution of the pair (X, a) (or of a,
for short), is a proper birational morphism π : X′ −→ X such that

1. X′ is a smooth complex algebraic variety,

2. a · OX′ = OX′(−Fπ) for some effective Cartier divisor Fπ,

3. Fπ + E is a divisor with SNC support, where E = Exc(π) is the exceptional locus.

The existence of a log-resolution, sometimes also called principalization, for any sheaf
of ideals on any variety over a field of characteristic zero is a result of Hironaka [Hir64a;
Hir64b]. Moreover, one can always construct a log-resolution which is a composition of
blow-ups along smooth centers. One defines a log-resolution of a divisor D ∈ Div(X)

as a log-resolution of the associated ideal sheaf OX(−D), and hence Fπ = π∗D. The
notion of log-resolution can be similarly extended to Q-divisors.

Remark 1.1. A log-resolution of an ideal a is similar to an embedded resolution of the
variety defined in a. In an embedded resolution one requires that the exceptional
divisor as SNC support and the strict transform has simple normal crossings with the
exceptional divisor, see [Cut04] for the exact definitions. �

Let U be the maximal Zariski open set on X such that π
∣∣
U is an isomorphism. Then,

the strict transform of a divisor D ∈ Div(X) is defined as the Zariski closure on X′ of the
set π−1(D ∩U). The divisor Fπ will have a decomposition into irreducible components
that we will denote as

Fπ =
r

∑
i=1

NiEi +
s

∑
i=1

MiSi, (1.2)

where Ei are the irreducible exceptional divisors. Furthermore, when a = OX(−D) for
some D ∈ Div(X) the other irreducible components Si are, precisely, the irreducible
components of the strict transform of D. Notice also that, D is reduced if and only if
Mi = 1 for i = 1, . . . , s.

Let X be a smooth complex algebraic variety, and let ωX = Ωn
X be the canonical bundle

of X, where Ωn
X is the sheaf of differentials of X. A canonical divisor KX of X is the

Cartier divisor satisfying ωX = OX(KX).

Definition 1.3. Let π : X′ −→ X be a birational morphism between smooth complex
varieties. Then, the relative canonical divisor is defined as

Kπ = KX′ − π∗KX. (1.3)

The relative canonical divisor is an effective divisor supported on E, not just an
equivalence class. The determinant of the Jacobian matrix, det(dπ), defines the local
equation of this divisor. Therefore, the divisor Kπ will have a decomposition into
irreducible components that we will write as

Kπ =
r

∑
i=1

kiEi. (1.4)
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1.2 The Bernstein-Sato polynomial

Let R := C[x1, . . . , xn] be the ring of complex polynomials in n variables. Denote
by D := C[x1, . . . , xn]〈∂1, . . . , ∂n〉 the Weyl algebra, where ∂i is the partial derivative
operator with respect to xi. Therefore, in this section, we will set X := Cn.

The Weyl algebra is a non-commutative ring with the relations ∂ixi − xi∂i = 1. Any
element of D can be written as finite sum P = ∑α,β≥0 xα∂β, the normal form of P, where
α, β are multi-indices. If s is another variable that commutes with all the xi, ∂i, let
D[s] := D ⊗C C[s], the polynomial ring in s with coefficients in D. In this case, any
P ∈ D[s] can be written as P(s) = ∑m

i=0 siPi, where the Pi are elements of D.

For any non-constant polynomial f ∈ R, we will associate with the singularity of
f = 0 the main invariant that we will study in this work, which is derived from the
theory of D-modules associated with f .

Definition 1.4. Let s be a new variable, and denote by R f [s] · f s the free module
generated by f s over the localized ring R f [s] := R[ f−1, s]. The chain rule,

∂i ·
(

g
f k · f s

)
= ∂i ·

(
g
f k

)
· f s +

sg
f k+1 ·

∂ f
∂xi
· f s, (1.5)

for each g(x, s) ∈ R[s], induces a structure of left D[s]-module on R f [s] · f s.

Next, define the parametric annihilator of f by

AnnD[s]( f s) = {P(s) ∈ D[s] | P(s) · f s = 0}, (1.6)

and by
M f (s) = D[s]/AnnD[s]( f s), (1.7)

the cyclic D[s]-module generated by 1 · f s ∈ R f [s] · f s.

The Bernstein-Sato functional equation introduced by Bernstein in [Ber72] asserts the
existence of a differential operator P(s) ∈ D[s] and a non-zero polynomial b f ,P(s) ∈ C[s]
such that the following relation holds,

P(s) · f s+1 = b f ,P(s) f s. (1.8)

In other words, there exist an element of the form P(s) · f − b f ,P(s) ∈ AnnD[s]( f s).
Any such differential operator P(s) ∈ D[s] is only determined up to an element
of AnnD[s]( f s). Since all the polynomials b f ,P(s) satisfying Equation (1.8) for some
differential operator P(s) ∈ D[s] form an ideal in C[s], one defines

Definition 1.5. The monic generator of the ideal in C[s] generated by all the b f ,P(s)
fulfilling Equation (1.8) is the Bernstein-Sato polynomial b f (s) of f .

Denote ρ f ⊂ C the set of roots of b f (s). Since s = −1 is always a root of b f (s), one
usually defines the reduced Bernstein-Sato polynomial as b̃ f (s) := b f (s)/(s + 1).

An equivalent way of defining the Bernstein-Sato polynomial b f (s) is as the minimal
polynomial of the action of s in the C[s]-moduleM(s)/M(s + 1). The Bernstein-Sato
polynomial b f (s) of a polynomial f was independently discovered by Sato [SS90] in the
context of the theory of prehomogeneous vector spaces.
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Remark 1.2. All the above remains essentially true if f is a holomorphic (and even
formal) power series in C{x1, . . . , xn}. The proof of the existence of the Bernstein-Sato
for this case is due to Björk [Bjö74]. In this situation, we usually call it the local Bernstein-
Sato polynomial, in contrast to the global b f (s), and we denote it by b f ,0(s) or by b f ,p if
p ∈ X. Similarly, denote b̃ f ,0(s) for the local reduced Bernstein-Sato polynomial. �

The relation between the global b f (s) and the local b f ,p(s), p ∈ X is the following, see
[MN91],

b f (s) = lcmp∈Var( f ) b f ,p(s), (1.9)

that is, the global Bernstein-Sato is the least common multiple of all the local Bernstein-
Sato polynomials. Computing the Bernstein-Sato polynomial for a specific f ∈ R is,
in general, very hard, even computationally, see Remark 1.3 below. If f is smooth at
p ∈ Var( f ), then one can check that b f ,p(s) = s + 1. Therefore, after Equation (1.9),
b f (s) = s + 1 for all smooth hypersurface defined by f ∈ R. The converse is also true,
see [BM96].

Explicit formulas for the Bernstein-Sato polynomial are rare. The normal crossing
case is easy to compute,

f = ∏
i

xai
i , P(s) = ∏

i
∂ai

i , and b f (s) = ∏
i

ai

∏
j=1

(s + j/aj). (1.10)

Notice that from this and Equation (1.9), computing the Bernstein-Sato in the case n = 1
is trivial. Another easy example,

f =
m

∑
i=1

x2
i , P(s) =

m

∑
i=1

∂2
i , and b f (s) = (s + 1)

(
s +

m
2

)
. (1.11)

The case of quasi-homogeneous polynomials with an isolated singularity is also well
understood, see [Yan78] and [Mal75]. There are many examples worked out in [Yan78].
See also [Kat81] and [Kat82].

Remark 1.3. The first general algorithm for computing the Bernstein-Sato polynomial
is due to Oaku [Oak97], using the theory of non-commutative Gröbner basis in the Weyl
algebra. Nowadays, the computer algebra systems Macaulay2 [M2], Singular [Sing],
and Risa/Asir [Asir] have packages that allow the computation of Bernstein-Sato
polynomials. However, due to the high complexity of the Gröbner basis algorithm, the
computation of many examples is not feasible. �

The roots of the Bernstein-Sato polynomial b f (s) are negative rational numbers, i.e.
ρ f ⊂ Q<0, see the works of Malgrange [Mal75], for the case of isolated singularities,
and Kashiwara [Kas76], for the general case. Kashiwara [Kas76] uses resolution of
singularities to reduce the problem to the computation in the normal crossing case.
This method also gives a set of candidates in terms of the multiplicities of f along the
resolution. There is a refinement by Lichtin [Lic89] that takes into account also the
multiplicities of the relative canonical divisor Kπ. Using the notations from Section 1.1,
the candidates are the following,

ρ f ⊂
{
− ki + 1 + ν

Ni
| ν ∈ Z≥0

}
∪
{
−ν + 1

Mi
| ν ∈ Z≥0

}
. (1.12)
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Usually, the set of roots of the Bernstein-Sato polynomial is much smaller than the set
of candidates in (1.12). Determining which divisors of a resolution contribute to the
roots of the Bernstein-Sato is an open problem.

In this context, the smallest root of b f (−s) is called the log-canonical threshold lct( f ) of
f . From the point of view of singularity theory, this notion goes back to Arnold [AV85]
who called it the complex singularity exponent. See Section 1.3 for an analytic approach
close to the original motivation in [AV85]. The name of this invariant comes from the
context of birational geometry and log-canonical models, see [Sho93] for the original
definition in this context. We will denote lct0( f ) or lctp( f ), p ∈ X in the local case. One
can show, see for instance [Mus12, Thm. 1.1], that

lct( f ) = min
i,j

{
ki + 1

Ni
,

1
Mj

}
. (1.13)

For more information on the log-canonical threshold and its relation with other invari-
ants of the singularity see [Kol97] and [Mus12]. The only other general result about the
roots ρ f of b f (s) is the following bound by Saito [Sai94] which uses the log-canonical
threshold.

Theorem 1.6 ([Sai94, Thm. 0.4]). For any non-constant f ∈ R,

ρ f ⊂ [−n + lct( f ),−lct( f )]. (1.14)

The bounds from Theorem 1.6 are sharp in the case of a quasi-homogeneous singu-
larity with an isolated singularity.

Remark 1.4. The definition of the Bernstein-Sato polynomial b f (s) has been generalized
in two different ways. Sabbah [Sab87a; Sab87b] defined the Bernstein-Sato ideal of
a tuple of polynomials f = ( f1, . . . , fr). Budur, Mustaţǎ and Saito [BMS06] defined
the Bernstein-Sato polynomial ba(s) of an arbitrary ideal a ⊆ C[x1, . . . , xn]. After the
results in [Mus19], one has the same kind of relations between the roots of ba(s) and
the numerical data of a log-resolution of the ideal a. �

Before ending this section, some remarks for the local case. If f : (Cn, 0) −→ (C, 0) is
a germ of a holomorphic function, then one can define the local Bernstein-Sato b f ,0(s)
of f as the local Bernstein-Sato of any representative of f in C{x1, . . . , xn}. Indeed,

Lemma 1.7. Let f : (Cn, 0) −→ (C, 0) be a germ of a holomorphic function. Then, the local
Bernstein-Sato b f ,0(s) of f is independent of the representative of f in C{x1, . . . , xn}.
Proof. Abusing the notation, let f ∈ C{x1, . . . , xn} be a representative of the germ f .
Then, consider u f with u(0) 6= 0 a unit, another representative for the germ. Hence, if
P(s, x, ∂) · f s+1 = b f ,0(s) f s, then

u−1P(s, x, ∂− (s + 1)∇ log u) · (u f )s+1 = b f (s)(u f )s. (1.15)

and vice versa, see [Yan78, pg. 119]. Similarly, let ϕ : U −→ Cn be an analytic change of
coordinates for 0 ∈ U ⊂ Cn sufficiently small. If x̄1, . . . , x̄n denote the new coordinates,
then we have

∂̄i =
n

∑
j=1

∂ϕj

∂x̄i
∂j and ∂i =

n

∑
j=1

∂ϕ−1
j

∂xi
∂̄j. (1.16)

Therefore, P(s, x, ∂) · f s+1 = b f ,0(s) f s if and only if

P(s, x̄, ∂̄) · ( f ◦ ϕ)s+1 = b f ◦ϕ,0(s)( f ◦ ϕ)s. (1.17)
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1.3 Multiplier ideals

Let X be a smooth complex algebraic variety of dimension n with structure sheaf
OX and an ideal a ⊆ OX. We use the notions introduced in Section 1.1 and take
π : X′ −→ X a log-resolution of a. If D = ∑i aiDi is a Q-divisor D on X, the round-up
dDe of D is the integral divisor dDe = ∑idaieDi.

Historically, multiplier ideals first appeared in commutative algebra in the work of
Lipman [Lip93]. In an analytical context, they appear in the work of Nadel [Nad90].
However, we will use the following geometric definition. For a complete reference
about multiplier ideals, the reader is referred to [Laz04].

Definition 1.8. The multiplier ideal sheaf associated to a and some rational number
λ ∈ Q>0 is defined as

J (X, aλ) = J (aλ) := π∗OX′(dKπ − λFπe). (1.18)

One can define an analogous multiplier ideal associated to a Q-divisor on X by
means of the same construction. Before reviewing the more important properties of
multiplier ideals, let us motivate the definition of multiplier ideals from an analytic
point of view, see [Laz04, §9.3.D].

For simplicity, let f ∈ C[x1, . . . , xn] be a polynomial and p ∈ Cn a point of Var( f ),
possibly singular. The multiplier ideals arise from an attempt to measure the singularity
of f at p by means of integration. Concretely, for sufficiently small λ ∈ R>0 the integral

∫
Bε(p)

|dx|2
| f |2λ

, (1.19)

where |dx|2 := dx dx, will converge, where Bε(p) is a small enough closed ball around
the point p. In this context we recover one of the original definitions of the log-canonical
threshold, sometimes called the complex singularity exponent of f at p in this context,

lctp( f ) = sup
{

λ ∈ R>0
∣∣ ∃ ε� 1 such that

∫
Bε(p)

1
| f |2λ

< ∞
}

. (1.20)

Resolution of singularities is useful in this context since∫
Bε(p)

|dx|2
| f |2s =

∫
π−1
(

Bε(p)
) |dπ|2
|π∗ f |2λ

, (1.21)

noticing that π−1(Bε(p)
)

is still a compact set since π is proper, and we can use the
local monomial form of Fπ and Kπ to study the convergence of the integral. Namely, in
one of the finitely many local charts U of π−1(Bε(p)

)
the integral reads as,

∫
π−1
(

Bε(p)
) |u(z) zk1

1 zk2
2 · · · z

kr
r |2

|za1
1 za2

2 · · · z
ar
r |2λ

|dz|2. (1.22)

Here u(z) is a unit, r ≤ n and we have used ai ∈ Z to denote both the multiplicities of
the exceptional divisors and of the strict transform. By Fubini’s theorem the integral
in (1.22) will be convergent if and only if ki − λai > −1, that is, λ < (ki + 1)/ai,
for all i = 1, . . . , r. Hence, we recover the formula Equation (1.13) from Section 1.2.
The analytic definition of the log-canonical threshold leads naturally to the analytic
definition of multiplier ideals.
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Definition 1.9. Let f ∈ C[x1, . . . , xn] and p ∈ Var( f ). The multiplier ideal of f at p
associated with a rational number λ ∈ Q>0 is

J ( f λ)p =
{

g ∈ C[x1, . . . , xn]
∣∣ ∃ ε� 1 such that

∫
Bε(p)

|g|2
| f |2λ

< ∞
}

. (1.23)

Thus, from the analytical definition, the multiplier ideals contain polynomials that
can be used as multipliers to make the integral converge. From this same definition,
it is easy to see that the multiplier ideals are, in fact, ideals of C[x1, . . . , xn]. The same
construction can be carried out for an ideal a ⊆ C[x1, . . . , xn] substituting | f |2 by ∑i | fi|2
with fi a set of generators of a giving also a definition for lctp(a), p ∈ Var(a).

We return now to the properties of the multiplier ideals from the algebro-geometric
perspective. The first one being that the multiplier ideals are independent of the chosen
log-resolution.

Theorem 1.10 ([EV92, §7.3]). Let π′ : X′ −→ X, π′′ : X′′ −→ X be two log-resolutions of
an ideal a ⊆ OX. Then,

π′∗OX′(dKπ′ − λFπ′e) = π′′∗OX′′(dKπ′′ − λFπ′′e), (1.24)

for any λ ∈ Q>0.

We continue with some basic properties of the multiplier ideals that basically follow
from the definition.

Proposition 1.11. • Let a1 ⊆ a2 ⊆ OX be two ideals, then for any λ ∈ Q>0,

J (aλ
1 ) ⊆ J (aλ

2 ). (1.25)

• For any ideal a ⊆ OX,
a ⊆ J (a). (1.26)

Multiplier ideals are integrally closed ideal sheaves, this follows from the fact that
direct images of proper birational morphisms are integrally closed, see for instance
[Laz04, Prop. 9.6.11]. Additionally, for any ideal a ⊆ OX, let a ⊆ OX be the inte-
gral closure of a, then J (aλ) = J (aλ), since a = π∗OX′(−Fπ), see [Laz04, §III.9.6].
Consequently, a ⊆ J (a).

Theorem 1.12 (Skoda’s Theorem, [Laz04, Thm. 9.6.21]). Let a ⊆ OX be an ideal sheaf of
the smooth complex algebraic variety X of dimension n.

1. Given any integer m ≥ n,
J (am) = a · J (am−1), (1.27)

consequently, iterating the process

J (am) = am−n+1 · J (an−1), (1.28)

for every m ≥ n. In particular, J (am) ⊆ am−n+1.

2. More generally, for every non-zero ideal b ⊆ OX and λ ∈ Q>0

J (am · bλ) = am−n+1 · J (an−1 · bλ), (1.29)

for every m ≥ n.
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If X is affine, a different version of Skoda’s theorem exists in which the role of the
dimension n of the ambient space is changed by the number of generators of the ideal
a, see [Ein+04, Remark 1.16].

Theorem 1.13 (Skoda’s Theorem, [Ein+04]). Assume that X is affine and let a ⊆ OX be an
ideal generated by r elements. Then,

J (am+1) = a · J (am), (1.30)

for m ≥ r.

Multiplier ideals come together with a set of numerical invariants, the jumping
numbers, that were studied systematically by Ein, Lazarsfeld, Smith and Varolin [Ein+04].
However, they already appeared implicitly in some works of Libgober [Lib83], Lichtin
[Lic86] and Loeser and Vaquié [LV90]. Notice that,

dKπ − λFπe > dKπ − (λ + ε)Fπe (1.31)

for any ε > 0, and the equality holds if ε is small enough. Then, for a ⊆ OX and for a
fixed p ∈ Var(a), there is an increasing discrete sequence

0 = λ0(a, p) < λ1(a, p) < · · · < λi(a, p) < · · · (1.32)

of rational numbers λi := λi(a, p), if a and p are clear from the context, characterized
by the properties that

J (aλ)p = J (aλi)p if λ ∈ [λi, λi+1), (1.33)

and J (aλi+1)p ( J (aλ
i )p for every i. In other words, we have the following nested

sequence of ideals

OX,p ) J (aλ1)p ) J (aλ2)p ) · · · ) J (aλi)p ) · · · . (1.34)

Definition 1.14 (Jumping numbers). The rational numbers λi := λi(a, p) are the jumping
numbers or jumping coefficients of the ideal sheaf a ⊆ OX at p ∈ Var(a).

From the definition of multiplier ideals, and if π : (X′, E) −→ (X, p) is a log-
resolution of the ideal a at p ∈ Var(a), then the set of jumping numbers must be inside
the following set of candidate jumping numbers{

ki + m
ai

∣∣∣∣ m ∈ Z>0

}
, (1.35)

where the notations are the same as in Equation (1.22). As in the case of the Bernstein-
Sato polynomial, Section 1.2, usually, the set of jumping numbers is much smaller than
this set. Even for multiplier ideals, determining which divisors contribute to jumping
numbers is also an open problem.

The first jumping number λ1(a, p) coincides with the log-canonical threshold lctp(a).
After Skoda’s Theorem Theorem 1.12, the jumping numbers of an ideal a exhibit a
periodicity after n− 1. That is, λ > n− 1 is a jumping number if and only if λ + 1
is. For principal ideals, a = ( f ), f ∈ Γ(X,OX), the variant of Skoda’s Theorem 1.13,
implies the periodicity of the jumping numbers λi( f , p) appearing in (0, 1].

We will end this section with some results concerning the relation between the
jumping numbers of a principal ideal generated by f ∈ C[x1, . . . , xn] and the Bernstein-
Sato polynomial of f .
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Theorem 1.15 ([Ein+04], [BS05]). Let f ∈ C[x1, . . . , xn] be a non-constant polynomial. Then
if λi = λi( f , p) is a jumping number of f in (0, 1], then b f (−λi) = 0.

The same statement holds true when f is replaced by a germ of a holomorphic
function at p ∈ Cn. The proof of Theorem 1.15 in [Ein+04] uses the analytic definition
of the multiplier ideals and the Bernstein-Sato functional equation to integrate by parts.
In contrast, in [BS05] the results only use the theory of D-modules.

Remark 1.5. There are general algorithms, like those developed by Shibuta [Shi11]
and Berkersch and Leykin [BL10], that given a set of generators of a, compute the list
of jumping numbers and a set of generators of the corresponding multiplier ideals.
These algorithms use the theory of Bernstein-Sato polynomials and require the use of
non-commutative Gröbner bases in the Weyl algebra. They have been implemented in
Macaulay2 [M2]. However, it is difficult to compute examples due to the complexity
of these algorithms. �

1.4 Milnor fiber and monodromy

Let f : (Cn+1, 0) −→ (C, 0) be a germ of a holomorphic function. For 0 < δ� ε� 1,
let Bε ⊂ Cn+1 be the ball of radius ε centered at the origin, T ⊂ C the disk of radius δ

centered at zero, and T′ := T \ {0} the punctured disk. Abusing the notation, we will
also denote by f a representative of the germ. Set

X := Bε ∩ f−1(T), X′ := X \ f−1(0), Xt := Bε ∩ f−1(t), t ∈ T. (1.36)

The restriction f ′ : X′ −→ T′ is a smooth fiber bundle such that the diffeomorphism
type of the fiber Xt is independent of the choice of δ, ε and t ∈ T′, see [Mil68, §4].
Any of the fibers Xt, or rather its diffeomorphism type, is called the Milnor fiber of f .
The complex homology Hi(Xt, C) (resp. cohomology Hi(Xt, C)) groups of the Milnor
fiber are finite-dimensional vector spaces that vanish above degree n since Xt has the
homotopy type of a finite CW-complex of dimension n [Mil68, Thm. 5.1].

The action of the fundamental group π(T′, t) of the base of the fibration induces a
diffeomorphism h on each fiber Xt which is usually called the geometric monodromy.
Alternatively, this same action induces h∗ (resp. h∗) an endomorphism of H∗(Xt, C)

(resp. H•(Xt, C)), the algebraic (complex) monodromy of f . The algebraic monodromy
depends only on the singularity ( f−1(0), 0). The fundamental result about the structure
of the monodromy endomorphism is the so-called Monodromy Theorem.

Theorem 1.16 (Monodromy [SGA7-I; Cle69; Bri70]). The operator h∗ is quasi-unipotent,
that is, there are integers p and q such that (hp

∗ − id)q = 0. In other terms, the eigenvalues of
the monodromy are roots of unity. Moreover, one can take q = n + 1.

If f defines an isolated singularity, the topology of the Milnor fiber is quite simple.
In this case, the Milnor fiber has the homotopy type of a bouquet of µ n-dimensional
spheres, where µ is the Milnor number of the singularity, see [Mil68, Thm. 6.5].
Therefore, H̃i(Xt, C) = 0 for i 6= n and dimC Hn(Xt, C) =: µ. Furthermore, the Milnor
number coincides with

µ = dimC

Ωn+1
X,0

d f ∧Ωn
X,0

. (1.37)
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By the Oka-Grauert principle [Gra58], the Milnor fibration f ′ : X′ −→ T′ of a singular-
ity f defines a holomorphic vector bundle f ∗ : Hn −→ T′ on T′, where

Hn :=
⋃

t∈T′
Hn(Xt, C) (1.38)

and f ∗ is the natural projection of Hn to T′. Similarly, one has the dual vector bundle
f∗ : Hn −→ T′. The vector bundle Hn (resp. Hn) is sometimes called the cohomological
(resp. homological) Milnor fibration. We will denote by Hn (resp. Hn) the locally free
sheaf of holomorphic sections of the vector bundle Hn (resp. Hn). Since f ′ is locally
trivial,

Lemma 1.17. The (co)-homological Milnor fibration is a locally constant vector bundle.

Proof. Fix a trivialization of the Milnor fibration, with {Ui}i∈I an open cover of T′ and
gi,j : Ui ∩Uj → Diff(Xt) be the transition functions. These transition functions induce
maps gi,j : Ui ∩Uj → Aut(Hp(Xt, C)) in cohomology determining the holomorphic
structure on Hp. Let t0, t1 ∈ Ui ∩Uj be two points in the base joined by an arc γ. Then,
gi,j(t0) and gi,j(t0) are homotopic maps from Xt to itself via gi,j(γ(τ)), τ ∈ [0, 1]. Hence,
the induced maps in cohomology coincide, i.e. gi,j(t0) = gi,j(t1). The proof in homology
is the same.

Obviously, the same holds true in homology. Denote by Λ the set of all eigenvalues
of the monodromy operator h∗. Fixed λ ∈ Λ, denote by Hp

λ the set of vectors of Hp that
are annihilated by (h∗ − λ id)n+1 and by f ∗λ the natural projection from Hn

λ to T′. Then,
Hn

λ is a holomorphic subbundle of Hn such that Hn =
⊕

λ∈Λ Hn
λ.

1.5 The Gauss-Manin connection

Let us start with some generalities about holomorphic connections. Let E −→ S be
a holomorphic vector bundle over a complex manifold S. Denote by F its sheaf of
holomorphic sections.

Definition 1.18. A holomorphic connection on E is a C-linear map

∇ : F −→ Ω1
S ⊗OS F =: Ω1

S(F ). (1.39)

satisfying the Leibniz identity,

∇(gσ) = dg⊗ σ + g⊗∇(σ), (1.40)

for g a section of OS and σ a section of F .

Let ΘS := DerC(OS) = HomOS(ΩS,OS) be the sheaf of vector fields in the base space
S, a connection defines a covariant derivative along a section v of ΘS by ∇v(σ) = 〈∇σ, v〉,
where 〈·, ·〉 is induced by the pairing Ω1

S × ΘS → OS. Then, ∇v defines a C-linear
homomorphism ∇v : F → F still satisfying the Leibniz identity. When S is one-
dimensional, giving a covariant derivative is the same as giving a connection so, in this
case, we will use the term connection indistinctly.

A connection ∇ =: ∇0 : F → Ω1
S ⊗OS F can be extended to a C-linear homomor-

phism of sheaves
∇i : Ωi

S ⊗OS

F −→ Ωi+1
S ⊗
OS

F (1.41)
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by means of the equality

∇i(ω⊗ σ) = dω⊗ σ + (−1)iω ∧∇i−1(σ), ω ∈ Ωi
S, σ ∈ F . (1.42)

with ω a section of Ωi
S and σ a section of F . Here ω ∧∇i−1(σ) represents the image of

the section ω⊗∇i−1(σ) of F ⊗ (⊗i−1
1 ΩS) by the natural map

F ⊗ (⊗i−1
1 ΩS) −→ F ⊗ (∧i−1

1 ΩS) = F ⊗Ωi−1
S . (1.43)

The C-linear homomorphism R = ∇1 ◦ ∇0 : F → Ω2
S(F ) is called the curvature of

the connection. A connection is said to be integrable or flat if R = 0. The integrability of
a connection is equivalent to the identity ∇[X,Y] = [∇X,∇Y], for all X, Y sections of ΘS,
of the covariant derivative. In the sequel, all connections will be assumed to be flat.

A local section σ of F is said to be flat or horizontal if ∇(σ) = 0. The integrability of
a connection ∇ implies the integrability of the differential equation ∇(σ) = 0 for any
initial condition σ(s) = v0 ∈ Es, s ∈ S. Cauchy’s Theorem on the existence of solutions
of differential equations implies the existence of a basis of flat local sections. Therefore,
the kernel of the connection ker∇ defines a locally constant sheaf of C-vector spaces on
S. A locally constant sheaf of C-vector spaces of dimension r is usually called a local
system of rank r.

Let now e1, . . . , en be a local basis of a vector bundle E −→ T of dimension n. One
can locally define a flat connection by setting ∇(ei) = 0 for all i = 1, . . . , n. If the
vector bundle is locally constant, this definition extends to a global connection. Indeed,
if {Ui}i∈I and gi,j : Ui ∩Uj → Aut(E) is a trivialization of E, ∇(ek) = ∇(∑l gi,jel) =

∑l dgi,jel = 0 on Ui ∩Uj, since the transition functions are constant. A locally constant
vector bundle is usually called a flat vector bundle.

Theorem 1.19 ([Del70, Thm. 2.17]). There is an equivalence of categories between local
systems and flat vector bundles.

We have seen that one direction is given by the kernel of the connection. For the other,
if L is a local system, the connection ∇ on the locally free sheaf L ⊗C OT is simply
given by ∇(σ · g) = σ · d(g). Notice also that if L = CX is just the constant sheaf, then
F = OT and the connection ∇( f ) = d f , coincides with the exterior derivative.

Definition 1.20. The (co)-homological Gauss-Manin connection is the canonical integrable
connection

∇p : Hp −→ Ω1
T′ ⊗OT′

Hp ∇p : Hp −→ Ω1
T′ ⊗OT′

Hp, (1.44)

on the (co)-homological Milnor fibration.

In the sequel, we will mainly study the cohomological version of the Gauss-Manin
connection in the case that f : (Cn+1, 0) −→ (C, 0) has an isolated singularity. There-
fore, after the discussion in Section 1.4, we will only care about the homology and
cohomology groups of degree n.

Taking a basis vector field d/dt on T′, consider the associated covariant derivative
in cohomology ∂∗t := ∇n

d/dt : Hn −→ Hn, that we will also call the Gauss-Manin
connection. Let L∗ := ker∇n be the local system associated with the (cohomological)
Gauss-Manin connection. Notice that, in this setting, L∗ coincides with Rn f ′∗CX. That
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is, if φ is a locally trivial fibration, Rqφ∗C are always local systems. The subbundles
Hn

λ, λ ∈ Λ, defined in Section 1.4 also carry a connection ∇n
λ which coincides with the

restriction of ∇n. Let L∗λ = ker∇n
λ be the local system generated by the sections of L∗

that are annihilated by the endomorphism (h∗ − λ id)n+1.

We will end this section with the following relation between the differentiation of
a section of OT and the covariant derivative of the Gauss-Manin connection. First,
let 〈·, ·〉 : Hn ×Hn −→ OT′ be the non-degenerate pairing induced by the pairing
Hn(Xt, C)× Hn(Xt, C) −→ C between homology and cohomology.

Lemma 1.21 ([Kul98, §I.2.6 Prop. 1]). Let ω be a section of Hn and γ be a locally constant
section of Hn, then

d
dt
〈ω, γ〉 = 〈∂∗t ω, γ〉. (1.45)

Proof. The equality is true for horizontal sections of Hn. Indeed, in that case, 〈ω, γ〉 ∈ C

and both sides are zero. Let us see that it is true for gω with g a section of OT′ . First,

d
dt
〈gω, γ〉 = d

dt
(g〈ω, γ〉) = dg

dt
〈ω, γ〉+ g〈∂tω, γ〉. (1.46)

On the other side,

〈∂t(gω), γ〉 = 〈dg
dt

ω + g∂tω, γ〉 = dg
dt
〈ω, γ〉+ g〈∂tω, γ〉. (1.47)

Finally, the formula follows because horizontal sections generate Hn.

1.6 Relative differential forms

In this subsection, we will review some of the results of Brieskorn [Bri70] about the
algebraic description of the Gauss-Manin connections. Let f : X −→ T be the Milnor
fibration, see Section 1.4, of a germ f : (Cn+1, 0) −→ (C, 0). With the notations from
Section 1.4, f ′ : X′ −→ T′ is a locally trivial fibration. Notice that we do not require yet
that f is an isolated singularity at the origin.

The complex of sheaves of relative differentials of the morphism f : X −→ T is

Ω•X/T : 0 −→ OX
dr−−→ Ω1

X/T
dr−−→ · · · dr−−→ Ωn

X/T
dr−−→ Ωn+1

X/T −→ 0, (1.48)

where Ωp
X/T := Ωp

X/ f ∗Ω1
T ∧Ωp−1

X = Ωp
X/d f ∧Ωp−1

X and dr is the induced differential
in the quotient. Some basic properties of the relative differentials are the following.

Lemma 1.22. The relative differentials (Ω•X/T, dr) are a chain complex of OX-modules. Fur-
thermore, Ωp

X/T is an OT-module via the action g ·ω 7→ f ∗(g)ω, for g a section of OT, and ω

a section of Ωp
X/T and dr is OT-linear.

Proof. We will check first that dr is well-defined. Let η be a section of Ωp−1
X , then

dr(ω + d f ∧ η) = dω + d(d f ∧ η) = dω + d f ∧ dη = dω = dr(ω), and dr is well
defined. The relative differentials form a complex since dr ◦ dr(ω) = dr(dω) = ddω =

0. Finally, then dr(g · ω) = d( f ∗(g)ω) = d f ∧ f ∗(g′)ω + f ∗(g)dω = f ∗(g)dω =

g · dω = g · dr(ω).
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Lemma 1.23. The sheaf Ωn+1
X/T is concentrated at Sing( f ). Let p ∈ Sing( f ) and let Jp( f ) be

the ideal generated by the partial derivatives of f at p, then Ωn+1
X/T,p

∼= OX,p/Jp( f ).

Proof. The first part is easy to see since, locally around p 6∈ Sing( f ), Xt can be given
by x0 = 0 for some local coordinate x0 and any ωp ∈ Ωn+1

X,p is equal to ωp = gdx0 ∧
· · · ∧ dxn = gd f ∧ · · · ∧ dxn. Hence, ωp is zero in Ωn+1

X/T,p. For the second part, take
η = ∑ xIdxI ∈ Ωn

X,p with x0, . . . , xn local coordinates at p ∈ Sing( f ). Consequently, we
have a first inclusion

d f ∧ η = ∑ ∂i f αIdxi ∧ xI =
(

∑(−1)i∂i f αI

)
dx0 ∧ · · · ∧ dxn ∈ Jp( f )dx. (1.49)

For the second inclusion, take ω ∈ Jp( f )dx, since then

ω =
(

∑ αi∂i f
)

dx = d f ∧
(

∑(−1)iαi

)
dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧dxn ∈ d f ∧Ωn

X,p. (1.50)

The relative de Rham cohomology with respect to the morphism f : X −→ T is

Hp(X/T) := Rp f∗Ω•X/T. (1.51)

If the morphism f is smooth it can be shown that Hp(X/T) is just Rp f∗CX ⊗CT
OT, see

[Kul98, p. 3.3.1]. This means that Hp(X/T) is a natural extension to T of the sheaf Hp

in T′ described in Section 1.4, that is, Hp(X/T)
∣∣
T′ = H

p(X′/T′) ∼= Hp. Furthermore,
in our setting, f is a Stein morphism and, consequently, the first spectral sequence for
the hypercohomology in Equation (1.51) degenerates, which implies that

Hp(X/T) = Hp( f∗Ω•X/T). (1.52)

Theorem 1.24 ([Bri70, Satz 1.5]). If f is an isolated singularity, the sheafs Hp(X/T) are
coherent sheaves on T.

The isomorphism between Hp(X′/T′) and Hp induces a connection on Hp(X/T)
∣∣
T′

which is still called the Gauss-Manin connection. It is one of the fundamental results
of Brieskorn in [Bri70] that it is possible to give an algebraic description of the Gauss-
Manin connection on Hp(X/T)

∣∣
T′ which extends naturally to the whole T.

The way to obtain the algebraic Gauss-Manin connection on Hp(X/T) is as follows.
Since we have a de Rham description of the cohomology bundle Hp, cohomology
classes can be integrated. Integration of a relative differential form [ω] ∈ Γ(X, Ωp

X/T)

along a locally constant cycle γ of Hp

I(t̃) :=
∫

γ(t̃)
ω, t̃ ∈ T̃′, (1.53)

gives a non-degenerate pairing Hp(X′/T′)×Hp −→ OT̃′ . Here OT̃′ denotes the sheaf
of holomorphic forms on the universal cover T̃′ of T′. The monodromy action h∗ on
Hp implies that I(t) is, in general, a multivalued holomorphic form on T′. This pairing
corresponds, over simply connected open sets of T′, to the non-degenerate pairing
Hp ⊗Hp −→ OT′ .

Proposition 1.25 ([Fer+77, §II.2]). The integral I(t̃) on Equation (1.53) is well-defined.
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Proof. Denote Γi : ∆p −→ Xt the fundamental p-simplexes of Xt, that is Γi differentiable
and ∆p the p–th standard simplex. First, two representatives of [ω] differ by an element
of d f ∧Ωp−1

X + dΩp−1, that is, of the form d f ∧ ω′ + dω′′ with ω′, ω′′ ∈ Γ(X, Ωp−1
X ).

Then, if Γ = ∑i λiΓi is such that γ(t) = [Γ(t̃)],∫
Γ(t̃)

(d f ∧ω′) + dω′′ = ∑
i

λi

∫
Γi(t̃)

d f ∧ω +
∫

Γ(t̃)
dω′′

= ∑
i

λi

∫
∆p

d( f ◦ Γi) ∧ (Γi)∗ω
′ +

∫
∂Γ(t̃)

ω′′ = 0,
(1.54)

since Γ(t̃) does not have a boundary and f ◦ Γi is constant. Secondly, two rep-
resentatives of γ(t̃) differ by the boundary of a (p + 1)-simplex Γ′ of Xt, that is,
∂Γ′(t̃) = ∂(∑j λ′jΓ

′
j(t̃)). Then, since dω = d f ∧ η with η ∈ Γ(X, Ωp

X),∫
∂Γ′(t̃)

ω =
∫

Γ′(t̃)
dω = ∑

j
λ′j

∫
Γ′j(t̃)

d f ∧ η = ∑
j

λ′j

∫
∆p+1

d( f ◦ Γ′j) ∧ (Γ′j)∗η = 0, (1.55)

since again f ◦ Γ′j is constant.

In the sequel, the integrals I(t) from Equation (1.53) will be interpreted as holomor-
phic functions I(t) on T′ defined on an arbitrary open sector with center the origin
0 ∈ T. Let us show next that I(t) is a holomorphic function of t in any such sector. To
that end, we need the following result of Leray.

Theorem 1.26 (Leray’s Residue Theorem, [Ler59, p. 28]). Let ω ∈ Γ(X, Ωp
X) and γ(t) ∈

H(Xt, C), then ∫
γ(t)

ω =
1

2πı

∫
δγ(t)

d f ∧ω

f − t
, (1.56)

where δ : Hp(Xt, C) −→ Hp+1(X \ Xt, C) is the Leray coboundary operator.

The formula given in Equation (1.56) is called Leray’s Residue Theorem because ω
∣∣

Xt

is the Poincaré residue of (d f ∧ω)/( f − t).

Proposition 1.27 ([Bri70]). Let [ω] ∈ Γ(X,Hp(X/T)) and let γ(t) be a locally constant
section of Hp. Then

d
dt

∫
γ(t)

ω =
∫

γ(t)
η, (1.57)

where dω = d f ∧ η since dr([ω]) = 0. In particular, the function I(t) from Equation (1.53)
is a holomorphic function in any open sector centered at the origin.

Proof. Using Theorem 1.26,

d
dt

I(t) =
d
dt

∫
σ(t)

ω =
d
dt

(
1

2πı

∫
δσ(t)

d f ∧ω

f − t

)
=

1
2πı

∫
δσ(t)

d f ∧ω

( f − t)2

=
1

2πı

∫
δσ(t)

[
dω

f − t
− d

(
ω

f − t

)]
=

1
2πı

∫
δσ(t)

dω

f − t

=
1

2πı

∫
δσ(t)

d f ∧ η

f − t
=
∫

σ(t)
η.

(1.58)



1 complex algebraic singularities 15

After Proposition 1.27 and Lemma 1.21 the expression of the covariant derivative
of the Gauss-Manin connection on Hp(X/T) must be given by ∂t([ω]) = [η]. In other
terms, ∇([ω]) = dt⊗ [η] where η is such that dω = d f ∧ η. It remains to show that
this expression gives a well-defined connection on Hp(X/T), that is, that η represents a
cohomology class on Hp(X/T). To that end, consider (Ω•, d f ) the Koszul complex of f ,

(Ω•, d f ) : 0 −→ OX
∧d f−−−→ Ω1

X
∧d f−−−→ · · · ∧d f−−−→ Ωn

X
∧d f−−−→ Ωn+1

X −→ 0. (1.59)

Denote by Kp( f ) := Ker(Ωp
X
∧d f−−→ Ωp+1

X )/ Im(Ωp−1
X

∧d f−−→ Ωp
X) the cohomology

sheaves of the complex (Ω•X, d f ). It is clear that at the points p 6∈ Sing( f ) the complex
is exact, that is d f ∧ω = 0 implies that ω = d f ∧ η. On the other hand, if we assume
that Sing( f ) = {0}, i.e. f is an isolated singularity, the following lemma of de Rham
implies the exactness of the complex for p < n.

Lemma 1.28 (Division lemma, [Rha54]). Let R be a noetherian commutative ring. If
g = (g1, . . . , gm) ∈ Rm is a regular sequence on R, then the Koszul complex of g,

K•(g) : 0 −→ R −→ Rm ∧g−→ Λ2Rm ∧g−→ · · · ∧g−→ ΛmRm −→ 0, (1.60)

has the cohomology groups

Hp(K•(g)) =

{
0, p < m,

R/(g1, . . . , gm), p = m.
(1.61)

That is, given ω ∈ ΛpRm there exists η ∈ Λp−1Rm such ω = g ∧ η if and only if g ∧ω = 0.

Indeed, since f has an isolated singularity at the origin, the partial derivatives of
f at 0 form a regular sequence on the ring OX,0. This implies that, for p < n, the
Gauss-Manin connection on Hp(X/T) is given by

∇ f : Hp(X/T) −→ Ω1
T ⊗OT H

p(X/T), with ∇ f ([ω]) = [η], (1.62)

where dω = d f ∧ η. Since 0 = d(dω) = −d f ∧ dη implies that dη = d f ∧ ζ, [η] is a
cocycle in Hp(X/T). This map is independent of the representative of [ω] in Hp(X/T),
indeed, the difference of any two representatives ω, ω′ lies in d f ∧ Ωp−1

X + dΩp−1
X .

Hence, if dω = d f ∧ η, then dω′ = d f ∧ (η − dα) for some section α of Ωp−1
X , and

∇ f ([ω
′]) = [η − dα] = [η] = ∇ f ([ω]). Two representatives of [η] must fulfill 0 =

d f ∧ (η− η′) and Lemma 1.28 implies that η = η′ + d f ∧ β, β a section of Ωp−1
X . Finally,

let us check that it satisfies the Leibniz rule,

d( f ∗(g)ω) = d f ∧ f ∗(g′)ω + f ∗(g)dω = d f ∧ (dg/dt ·ω + g · η), (1.63)

for g ∈ Γ(T,OT).

In general, in the case p = n or if f is not an isolated singularity, one obtains what is
sometimes called a connection of a pair, the definition will be clear after the following
definition. We have the following C-linear morphism satisfying the Leibniz rule that
we keep denoting by ∇ f and calling it the Gauss-Manin connection,

∇ f : Hp(X/T) −→ Ω1
T ⊗OT

′Hp, (1.64)
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where
′Hp := Coker dr = f∗Ω

p+1
X/T

/
Im(Ωp

X/T
dr−→ Ωp+1

X/T). (1.65)

For the case of an isolated singularity and p = n, Brieskorn [Bri70] considered a
slightly bigger and more natural sheaf. The division lemma Lemma 1.28 implies the
existence of the following short exact sequence

0 −→ Ωn
X/T

d f∧−−−→ Ωn+1
X −→ Ωn+1

X/T −→ 0, (1.66)

Taking the quotient by the subsheaves drΩn−1
X/T and applying f∗, one gets the short exact

sequence

0 −→ ′Hn d f∧−−−→ ′′Hn −→ f∗Ωn+1
X/T −→ 0, (1.67)

where
′′Hn := f∗Ωn+1

X /d f ∧ d( f∗Ωn−1
X ). (1.68)

After Equation (1.62), there is also a connection ∇ f : d f ∧ ′Hn −→ ′′Hn, which is simply
[ω] 7→ [dω]. The identification of the new sheaf in Equation (1.68) with Hn over T′

is realized in the following way. Let ω ∈ Γ(X, Ωn+1
X ) representing a section of ′′Hn.

Since d f ∧ω = 0, we can write ω = d f ∧ η, for some η ∈ Γ(X, Ωn
X), locally around the

points of Xt, t 6= 0. The restriction of any such η to Xt does not depend on the chosen
η. In this way, we obtain a form on Ωn

X′/S′ which is usually denoted by ω/d f and it is
called the Gel’fand-Leray form of ω.

1.7 The Brieskorn lattice

This section is a continuation of the previous Section 1.6, and we will make use of
the same notations. The reason why we had to work with connections between pairs
when trying to extend the Gauss-Manin connection to T is because the Gauss-Manin
connection is meromorphic at the origin 0 ∈ T. Notice that when f has an isolated
singularity at the origin, we get the usual notion of a connection in the levels p < n
where the cohomology groups of the Milnor fiber are trivial. Let us start this section
introducing the theory of meromorphic connections.

Denote by k := OT,0[t−1] the field of germs of meromorphic functions at the origin
of T. Let V be a finite-dimensional k-vector space.

Definition 1.29. A meromorphic connection ∇ on V is a C-linear map ∇ : V −→
Ω1

T,0 ⊗OT,0 V satisfying the Leibniz rule, ∇(gv) = dg⊗ v + g⊗∇v.

If ∇ is a connection on a OT,0-module E, it extends naturally to a connection ∇ on
the k-vector space E⊗OT,0 k via

∇(s⊗ t−k) = ∇(s)⊗ t−k − s⊗ kt−k−1, s ∈ E. (1.69)

Similarly, if ∇ : E −→ Ω1
T,0 ⊗OT,0 F is a connection of a pair of free OT,0-modules

E ⊂ F such that F/E is torsion, i.e. dimC F/E < ∞, then the connection ∇ defines
a meromorphic connection on V = E⊗OT,0 k = F ⊗OT,0 k. We will always denote by
∂t := ∇d/dt the covariant derivative of the connection.

Definition 1.30. A lattice on a k-vector space V is a finitely generated OT,0-submodule
L of V such that V = L⊗OT,0 k. The pole order of a meromorphic connection ∇ on a
lattice L is the minimum p ∈ Z such that tp∂tL ⊆ L.
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Notice that because V = L⊗OT,0 k, L is torsion-free. Then, since L is a torsion-free
finitely generated module over a principal ideal domain, it is free of rank dimk V.
Furthermore, any pair of lattices L, L′ of V are related by tpL ⊂ L′ for some p ∈ Z.

A very relevant class of meromorphic connections are those that have regular singu-
larities. There are several definitions for the notion of regularity of a singular point of a
connection, in terms of the rate of growth of the solutions or using the matrix of the
associated meromorphic differential equation, see for instance [CL55, §4]. We will use
the following algebraic definition.

Definition 1.31. A lattice L of the k-vector space V is called saturated, if it is stable under
the operator t∂t, that is t∂tL ⊆ L. A meromorphic connection ∇ : V −→ Ω1

T,0 ⊗OT,0 V is
called regular if there exists a saturated lattice in V.

If L is a lattice of V and ∇ is a regular meromorphic connection on V, a stable
lattice can be constructed from L by a saturation process. That is, L̃ := ∑∞

p=0(t∂t)pL is a
saturated lattice for ∇ on V. Since OT,0 is noetherian, only a finite number of terms are
necessary to construct the saturation of L.

The above discussion translates, in the following way, to the case of the Gauss-Manin
connection of an isolated singularity.

Proposition 1.32 ([Bri70, Prop. 1.6]). If f has an isolated singularity at the origin, one has
Hp(X/T)0 ∼= Hp(Ω•X/T,0) as OT,0-modules.

Let us call Hn := Hn(Ω•X/T,0). Similarly,

′Hn := (′Hn)0 = Ωn
X,0/(d f ∧Ωn−1

X,0 + dΩn−1
X,0 ),

′′Hn := (′′Hn)0 =′′ Hn = Ωn+1
X,0 /(d f ∧ dΩn−1

X,0 ).
(1.70)

The OT,0-module ′′Hn is usually called the Brieskorn lattice, the reason for this name
will be justified in a moment. Notice that,

′Hn/Hn = Ωn+1
X /d f ∧ dΩn−1

X = ′′Hn/d f ∧ ′Hn, (1.71)

are finite-dimensional C-vector spaces of dimension µ.

Proposition 1.33 ([Seb70], [Bri70]). The OT,0-modules Hn, ′Hn and ′′Hn are free of rank µ,
where µ is the Milnor number of f .

Freeness is due to Sebastiani [Seb70], see also [Mal74a, Thm. 5.1]. The result for Hn

follows from the isomorphism in Proposition 1.32, the coherence result in Theorem 1.24,
the isomorphism Hn(X′/T′) ∼= Hn and the result of Milnor given in Section 1.4. For
the other two modules, it follows similarly from this discussion and Equation (1.71).

All three OT,0-modules from Proposition 1.33 are then lattices on the k-vector space
V = Hn ⊗OT,0 k = ′Hn ⊗OT,0 k = ′′Hn ⊗OT,0 k, where the Gauss-Manin connection ∇ f ,0
between the stalks of both pairs defines a meromorphic connection ∇ f ,0 on V. This
connection is usually called the meromorphic Gauss-Manin connection. Moreover, since
these are lattices on V, we have the reverse inclusions

tκ f ′′Hn ⊂ d f ∧ ′Hn and tκ f ′Hn ⊂ Hn, (1.72)
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where κ f ∈ Z is the minimum integer such that f κ f ∈ J0( f ). Indeed, for such an integer,
we have f κ f dx = d f ∧ ξ for some ξ ∈ Ωn

X,0. Then, for any ω ∈ Ωn
X,0,

d( f κ f ω) = κ f f κ f−1d f ∧ω + f κ f dω = d f ∧
(
κ f f κ f−1ω + αξ

)
, (1.73)

where dω = αdx, α ∈ OX,0. Similarly, for g ∈ OX,0, f κ f gdx = d f ∧ gξ. This gives the
following well-defined map,

tκ f∇ f ,0 : ′′Hn −→ Ω1
T,0 ⊗OT,0

′′Hn, (1.74)

given by
tκ f∇ f ,0([gdx]) = dt⊗

[
d(gξ)− κ f f κ f−1gdx

]
. (1.75)

This map shows that the Gauss-Manin connection has a pole of order κ f in the Brieskorn
lattice ′′Hn. The above expression for tκ f∇ f ,0 enables an effective way of computing the
connection matrix of ∇ f ,0 up to arbitrary high order. In this context, one of the most
important results of Brieskorn in [Bri70] is that,

Theorem 1.34 ([Bri70, Satz 2]). The Gauss-Manin connection ∇ f ,0 of an isolated singularity
is a meromorphic connection with regular singularities.

After Theorem 1.34, one can consider the saturation of the Brieskorn lattice ′′Hn with
respect to the Gauss-Manin connection ∇ f ,0. Namely,

′′H̃n =
∞

∑
p=0

(t∂t)
p(′′Hn), (1.76)

where ∂t is the covariant derivative of the Gauss-Manin connection ∇ f ,0. Once this
object has been introduced, we can state the following classical result of Malgrange.

Theorem 1.35 ([Mal75]). If f : (C2, 0) −→ (C, 0) is an isolated singularity, the reduced
Bernstein-Sato polynomial b̃ f ,0(s) of f is equal to the minimal polynomial of the endomorphism

−∂tt : ′′H̃n/t ′′H̃n −→ ′′H̃n/t ′′H̃n , (1.77)

of C-vector spaces of dimension µ, the Milnor number of f .

The saturated lattice is stable under t∂t, however, recall that ∂tt − t∂t = 1. The
following corollaries are also classical results of Malgrange.

Corollary 1.36 ([Mal75]). If α is a root of b̃ f ,0(s), then exp (−2πıα) is an eigenvalue of the
monodromy of f at the origin.

The analogous result for non-isolated singularities is obtained by Malgrange in
[Mal83]. The next result was already mentioned in Section 1.2 and is a consequence of
the previous corollary and Theorem 1.16.

Corollary 1.37 ([Mal75]). The roots of b f ,0(s) are negative rational numbers.

As mentioned earlier in Section 1.2, this result also holds for arbitrary singularities,
see [Kas76]. We end this section with a definition.

Definition 1.38 (b-exponents). The roots of the characteristic polynomial of the en-
domorphism ∂tt from (1.77) in Theorem 1.35 are called the b-exponents of an isolated
singularity.
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2 plane curve singularities

The results in this section are framed in the context of the local geometry of smooth
surfaces. The first part of the section introduces the theory of infinitely near points,
bases for divisors with exceptional support, antinef divisors, the unloading procedure
to compute antinef closures, and maximal contact elements. The second part deals with
invariants for plane curves singularities such as the semigroup, the minimal embedded
resolution or the monomial curve and its deformations. At the end of this section, we
present Yano’s conjecture and review the state of the art for multiplier ideals in complex
smooth surfaces.

2.1 Proper birational morphisms

The goal of this section is to review the specifics of log-resolutions of ideals and, in
general, the properties of proper birational morphisms on smooth complex surfaces. In
this section, we will work locally on a smooth complex surface (X, 0), which we can,
and we will, think as (C2, 0) whenever it is convenient.

Let X be a smooth complex surface and OX,0 be the ring of germs of holomorphic
functions in a neighborhood of a smooth point 0 ∈ X, which after taking local co-
ordinates, we can always identify with C{x, y}, the ring of convergent power series
in two variables over the complex numbers. In the sequel, we will always denote
m := mX,0 ⊂ OX,0 the maximal ideal at 0. Given a proper ideal a ⊂ OX,0, we always
have a decomposition a = ( f ) · a′, where f ∈ OX,0 is the greatest common divisor of
the elements of a and a′ is m-primary.

Let π : (X′, E) −→ (X, 0) be a proper birational morphism, with X′ a smooth complex
surface and E = Exc(π) the exceptional locus. Any such morphism can be achieved by
a sequence of point blow-ups

π : (X′, E) := (Xr+1, Er+1) −→ (Xr, Er) −→ · · · −→ (X0, 0) := (X, 0), (2.1)

with Xi+1 := Blpi Xi the surface obtained by blowing-up a point pi ∈ Xi. Since we are
in a local framework the points pi are always assumed to be on the exceptional divisor
of the surface Xi. The set K of points that have been blown-up gives an index for the
exceptional components {Ep}p∈K of E. These points are sometimes called infinitely near
points to the origin 0 ∈ X supporting the divisor E and we can establish a proximity
relation between them.

Namely, we say that a point q ∈ K is proximate to p ∈ K if and only if q belongs to
the exceptional divisor Ep corresponding to p as proper or infinitely near point. We
will denote this relation as q→ p and we can collect all these relations by means of the
proximity matrix P = (Pp,q) defined as:

Pp,q :=


1 if p = q,
−1 if q→ p,

0 otherwise.
(2.2)

Notice that an infinitely near point q is proximate to just one or two points. In the
former case, we say that q is a free point, and in the later, it is a satellite point. Besides,
one can establish a partial ordering in K. Namely, q 6 p if and only if p is infinitely
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near to q. Another important matrix associated with a proper birational morphism is
the intersection matrix, defined as N = (Ep · Eq). The proximity matrix is related to the
intersection matrix by the formula N = −Pt · P, see [Cas00, §4.5].

Definition 2.1. An irreducible exceptional divisor Ei of a proper birational morphism
π will be called a rupture divisor if χ(E◦i ) < 0, where χ denotes the Euler-Poincaré
characteristic and E◦i := Ei \ ∪j 6=iEj. On the other hand, the divisor Ei will be called a
dead-end divisor if χ(E◦i ) = 1.

Remark 2.1. When working with the morphism π of the minimal embedded resolution
of a plane curve f , the definition of E◦i will also take into account the strict transform
of f . That is, in this case, E◦i := Ei \ ∪Dj 6=Ei Dj with Dj ∈ Supp(Fπ). This means that
the set of rupture divisors of the minimal resolution of f can be bigger than the set of
rupture divisors of the morphism π. �

Since Ei
∼= P1

C, we will have that χ(E◦i ) = 2− ri, where ri is the number of irreducible
components of Fπ intersecting Ei. The canonical examples of proper birational mor-
phisms are the log-resolutions of ideals a ⊂ OX,0. In this local context, we recover the
definition of log-resolution from Section 1.1.

Definition 2.2. A log-resolution of a proper ideal a ⊂ OX,0 is a proper birational
morphism π : (X′, E) −→ (X, 0) with X′ smooth and such that there exists a Cartier
divisor Fπ satisfying a · OX′ = OX′(−Fπ) and such that Fπ has simple normal crossings
support.

We will use here the same notation as in Section 1.1, for the irreducible components
and the multiplicities of the total transform divisor Fπ and the relative canonical divisor
Kπ. Namely,

Fπ =
r

∑
i=1

NiEi +
s

∑
j=1

MjSj, Kπ =
r

∑
i=1

kiEi, (2.3)

for an arbitrary total ordering of the exceptional components Ei := Epi , pi ∈ K which
we always assume compatible with the partial ordering of the infinitely near points.
Given a divisor D on X′ we will denote by Dexc its exceptional part.

The affine components Sj are always zero if a is m-primary and the multiplicities Mj
are one whenever f is reduced. In the two-dimensional case, a log-resolution coincides
with an embedded resolution of the ideal, this is no longer the case in higher dimensions.
In addition, in the two-dimensional case, there is a distinguished log-resolution, the
minimal log-resolution, in which all the unnecessary (−1)–curves are contracted.

In Section 3, we will present an explicit way of constructing the minimal log-resolution
of a two-dimensional ideal in a smooth complex surface from the embedded resolutions
of a given set of generators of the ideal.

As a final remark, there are many, sometimes equivalent, ways of encoding the
combinatorial information of a proper birational morphism, or equivalently of a log-
resolution, in a weighted graph, for instance: the Enriques diagram [EC15, §IV.I] [Cas00,
§3.9], the dual graph [Cas00, §4.4] [Wal04, §3.6], the Eisenbud-Neumann diagrams
[EN85], or the Eggers-Wall tree [Wal03], to name a few.
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2.2 Divisor basis

Let Λπ :=
⊕

p∈K ZEp be the lattice of integral divisors in X′ with exceptional support.
We have two different bases of this Z-module given by the strict transforms and the total
transforms of the exceptional components. For simplicity, we will also denote the strict
transforms by Ep and the total transforms by Ep. In particular, any divisor D ∈ Λπ can
be presented in two different ways

D = ∑
p∈K

vp(D)Ep = ∑
p∈K

ep(D)Ep, (2.4)

where the integers vp(D) (resp. ep(D)) are the values (resp. multiplicities) of D. In
Section 2.1 we used the notation, Ni = vpi(Fπ) with pi ∈ K for the total transform
divisor Fπ of a log-resolution. For the particular case where D = Div(π∗g)exc, g ∈ OX,0,
and π dominates the log-resolution of the ideal (g) one usually denotes vp(g) := vp(D)

and ep(g) := ep(D) for all p ∈ K. In this situation, the integers ep( f ), p ∈ K are the
multiplicities of the strict transform at the exceptional divisors Ep, p ∈ K.

The total transform basis turns out to be very convenient to describe the relative
canonical divisor Kπ of any proper birational morphism. Indeed, after [Har77, Prop.
3.3], one has that the relative canonical divisor is just

Kπ = ∑
p∈K

Ep. (2.5)

Fixed an exceptional irreducible component Ep, pi ∈ K, the function vp : OX,0 −→
Z≥0 ∪ {∞} that assigns g 7→ vp(g) is a rank one discrete valuation. That is, for all
g1, g2 ∈ OC,0 it satisfies the properties: vp(g1g2) = vp(g1) + vp(g2), vp(g1 + g2) ≥
min{vp(g1), vp(g2)} and vp(g1) = ∞ if and only if g1 = 0. We will call it the valuation
associated with the exceptional divisor Ep. For consistency, if the exceptional divisor is
denoted as Ei := Epi , pi ∈ K, the valuation will be denoted vi.

The relation between values and multiplicities is given by the proximity relations

vq(D) = eq(D) + ∑
p→q

vp(D). (2.6)

These relations provide a base change formula et = P · vt, where we collected the mul-
tiplicities and values in the vectors e = (ep(D))p∈K and v = (vp(D))p∈K, respectively.

Aside from the total and strict transform basis {Ep}p∈K and {Ep}p∈K of the lattice
Λπ of exceptional divisors, we may also consider the branch basis {Bp}p∈K defined as
the dual of {−Ep}p∈K with respect to the intersection form. Any divisor D ∈ Λπ has a
presentation

D = ∑
p∈K

ρp(D)Bp, (2.7)

where ρp(D) = −D · Ep is the excess at p and the relation between excesses and
multiplicities is given by ρt = Ptet, where ρ = (ρp(D))p∈K denotes the vector of
excesses. The branch basis will be useful in Section 2.3 to announce Zariski’s Unique
Factorization Theorem for complete ideals.

The support Supp(D) of a divisor D ∈ Λπ is the union of irreducible divisors
of D, i.e. if D = ∑p vp(D)Ep is the expression of D in the strict transform basis
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then Supp(D) = {Ep | vp(D) 6= 0}. We will also consider the same construction
in the total transform basis. Namely, let D = ∑p ep(D)Ep be the expression of D
in the total transform basis, then we define its support in the total transform basis as
SuppE(D) = {Ep | ep(D) 6= 0}. To avoid confusion with the usual notion of support,
we will always be explicit when referring to the support in the total transform basis.

Definition 2.3. Given a point p ∈ K, define fp ∈ OX,0 as any irreducible element such
that its strict transform by the proper birational morphism π intersects transversally Ep

at a smooth point of E. Then, we have that Bp = Div(π∗ fp)exc. Conversely, any g ∈ OX,0

with Bp = Div(π∗g)exc is irreducible and its strict transform intersects transversally Ep

at a smooth point of E.

Notice that since the elements fp ∈ OX,0 are irreducible, the points q ∈ K such that
eq(Bp) 6= 0 are totally ordered. Furthermore, the resolution of any fp ∈ OX,0, p ∈ K is
dominated by π. Moreover, any f whose resolution is dominated by π can be written
as a product f = ∏p f ρp

p of suitable elements fp from Definition 2.3.

We will end this section with a brief discussion on intersection multiplicity. Let
C1 : g1 = 0 and C2 : g2 = 0 be two germs of curves with g1, g2 ∈ OX,0, then [C1, C2]

will denote the multiplicity intersection of C1 and C2 at the origin 0. Recall, this can be
defined as

[C1, C2] = dimCOX,0/(g1, g2), (2.8)

and does not depend on the representatives g1, g2 of C1, C2, see [Cas00, §2.6]. Similarly,
for D1, D2 ∈ Div(X′), the usual intersection multiplicity of the divisors D1 and D1,
see [Har77, §V.1], will be denoted by D1 · D2. Noether’s intersection formula [Cas00,
Thm. 3.3.1] gives a relation between these two intersection multiplicities and the total
transform basis, namely if Di := Div(π∗gi)exc for i = 1, 2, then

[C1, C2] = ∑
p∈K

ep(D1)ep(D2) = −
(

∑
p∈K

ep(D1)Ep

)
·
(

∑
p∈K

ep(D2)Ep

)
= −D1 · D2. (2.9)

We will make use of the adjunction formula for surfaces in the forthcoming chapters.

Proposition 2.4 (Adjunction formula, [Har77, Prop. §V.1.5]). If C is a non-singular curve
of genus g on a smooth surface X, and if KX is a canonical divisor on X, then,

2g− 2 = C · (C + KX). (2.10)

Finally, this small lemma will be useful in the sequel.

Lemma 2.5. For any p ∈ K and f ∈ OX,0, one has vp( f ) = D · Bp with D = Div(π∗ f )exc.

Proof. By construction Bp is the dual to −Ep with respect to the intersection form,
hence D · Bp equals the coefficient of the irreducible exceptional divisor Ep in the strict
transform basis, that is vp(D) which we denote by vp( f ).

2.3 Complete ideals an antinef divisors

Given an effective divisor D = ∑p∈K vpEp ∈ Λπ, we may consider its associated ideal
sheaf π∗OX′(−D). Its stalk at 0 is

HD = { f ∈ OX,0 | vp( f ) ≥ vp(D) for all Ep ≤ D}. (2.11)
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The ideal HD is complete, see [Zar38], and m-primary since D has only exceptional
support. Complete ideals are closed under all standard operations on ideals, except
addition: the intersection, product, and quotient of complete ideals are complete.

Recall that an effective divisor D ∈ Div(X′) is called antinef if ρp = −D · Ep ≥ 0, for
every exceptional component Ep, p ∈ K. This notion is equivalent, in the total transform
basis, to

ep(D) ≥ ∑
q→p

eq(D), for all p ∈ K. (2.12)

These are usually called proximity inequalities, see [Cas00, §4.2]. By means of the relation
given in Equation (2.11), Zariski [Zar38] establishes an isomorphism of semigroups
between the set of ideals HD and the set of antinef divisors in Λπ.

Given a non-antinef divisor D, one can compute an equivalent antinef divisor D̃,
called the antinef closure, under the equivalence relation that both divisors define the
same ideal, i.e. π∗OX′(−D) = π∗OX′(−D̃), and via the so-called unloading procedure.
This is an inductive procedure that was already described in the work of Enriques
[EC15, §IV.II.17], see also [Cas00, §4.6] for more details. The version that we present
here is the one considered in [AÀD16], where it is proved that Algorithm 2.6 finished
in a finite number of steps.

Algorithm 2.6 (Unloading procedure).
Input: A divisor D = ∑ dpEp ∈ Λπ.
Output: The antinef closure D̃ of D.

Repeat:
· Define Θ := {Ep ∈ Λπ | ρp = −D · Ep < 0}.
· Let np = dρp/E2

pe for each Ep ∈ Θ. (Notice that (D + npEp) · Ep ≤ 0).
· Define a new divisor as D̃ := D + ∑Ep∈Θ npEp.

Until the resulting divisor D̃ is antinef.

A fundamental result of Zariski [Zar38] establishes the unique factorization of
complete ideals into simple complete ideals, an ideal being simple if it is not the
product of ideals different from the unit ideal. A reinterpretation of this result in a
more geometrical context is given by Casas-Alvero in [Cas00, §8.4].

Theorem 2.7 ([Zar38], [Cas00, §8.4]). Let D ∈ Λπ be an antinef divisor expressed as
D = ∑p∈K ρpBp in the branch basis. Then,

HD = ∏
p∈K

Hρp
Bp

, (2.13)

with HBp being simple complete ideals for any p ∈ K.

In the sequel, we will call simple divisor the unique antinef divisor defining a simple
complete ideal. As a corollary of Theorem 2.7, simple divisors in Λπ will always be
equal to Bp for some p ∈ K.

2.4 The semigroup of a plane branch

Let f : (C2, 0) −→ (C, 0) be an irreducible plane curve. Irreducible plane curves
are usually called plane branches. To any plane branch, we associate a sequence of
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positive integers, the characteristic sequence (n, β1, . . . , βg), n, βi ∈ Z>0 of f , where n is
the algebraic multiplicity of f . After an analytic change of variables, we can assume,
and we will, that n < β1 < · · · < βg. The characteristic sequence can be obtained from
the Puiseux parameterization of f , see [Cas00, §5.1]. See also Section 2.5.

The characteristic sequence of a plane branch is a complete equisingular invariant
of the singularity, see [Cas00, Cor. 5.5.4]. That is, any two plane branches with the
same characteristic sequence have, combinatorially, the same embedded resolution.
The reader is referred to [Cas00, §3.8] for the exact definition. Notice that for f non-
irreducible, to describe the equisingularity class one needs both the characteristic
sequence and the intersection numbers of the different branches of f [Cas00, Thm.
3.8.6]. Since equisingular plane curves are topologically equivalent, [Bra28] and [Zar32],
the characteristic exponents are also a complete topological invariant of plane branches.

Define the integers ei := gcd(ei−1, βi), e0 := n, notice that they satisfy e0 > e1 >

· · · > eg = 1 and ei−1 6 | βi. Set ni := ei−1/ei for i = 1, . . . , g and, by convention,
β0 := 0 and n0 := 0. The integers n1, . . . , ng are strictly larger than 1 and we have
that ei−1 = nini+1 · · · ng for i = 1, . . . , g. In particular, n = n1 · · · ng. The fractions
mi/n1 · · · ni, with mi defined as mi := βi/ei, are the reduced characteristic exponents
appearing in the Puiseux series of f . The tuples (mi, ni) satisfy gcd(mi, ni) = 1 and are
usually called the Puiseux pairs.

Let O f := OC2,0/( f ) be the local ring of f . The Puiseux parameterization of f gives
an injection O f ↪−→ C{t}. If we denote the t-adic valuation of O f by ν f , then Γ ⊆ Z≥0

denotes the associated semigroup to f , that is

Γ :=
{

ν f (g) ∈ Z≥0 | g ∈ O f \ {0}
}

. (2.14)

Since f is irreducible there exists a minimum integer c ∈ Z>0, the conductor of Γ, such
that (tc) ·C{t} ⊆ O f . As a result, any integer in [c, ∞) must belong to Γ, which implies
that Z≥0 \ Γ is finite. Since Z≥0 \ Γ is finite, we can find a minimal generating set
〈β0, β1, . . . , βg〉 of Γ, i.e. βi are the minimal integers such that βi 6∈ 〈β0, β1, . . . , βi−1〉,
with β0 < β1 < · · · < βg and gcd(β0, β1, . . . , βg) = 1.

It is well known that the valuation ν f : O f −→ Z≥0 given by f coincides with the
intersection multiplicity with f , see [Cas00, §2.6]. Precisely, this means that if C : f = 0,
then for any g ∈ OX,0 one has that ν f (g) = [C, C′] with C′ : g = 0. In the sequel, when
working with the valuation ν f no distinction will be made between g and its class g
inside O f .

The semigroup generators can be computed from the characteristic sequence in the
following way, see [Zar86, §II.3],

βi = (n1 − 1)n2 · · · ni−1β1 + (n2 − 1)n3 · · · ni−1β2 + · · ·+ (ni−1 − 1)βi−1 + βi, (2.15)

for i = 2, . . . , g and with β0 = n, β1 = β1. Recursively this can be expressed as

βi = ni−1βi−1 − βi−1 + βi, i = 2, . . . , g. (2.16)

In a similar way, one can express the characteristic sequence in terms of the generators
of the semigroup. Consequently, both the characteristic sequence and the semigroup
are complete topological invariants of the singularity defined by f .
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By Equation (2.15), gcd(ei−1, βi) = ei with e0 = β0 = n and ei−1 6 | βi. In the same way
as before, we define the sequence of integers mi := βi/ei which will be useful in the
sequel to describe some invariants of the singularity. The integers mi for i = 1, . . . , g
can be obtained recursively using Equation (2.16), namely

mi = nini−1mi−1 − nimi−1 + mi, i = 2, . . . , g, (2.17)

with m0 = 1, m1 = m1. Note that Equation (2.17) implies gcd(mi, ni) = 1 for i = 1, . . . , g.
Finally, we define qi := (βi − βi−1)/ei = mi − nimi−1 for i = 1, . . . , g. Alternatively,
by Equation (2.16), these quantities are qi = (βi − ni−1βi−1)/ei = mi − nini−1mi−1 for
i = 2, . . . , g and q1 = m1 = m1.

The conductor c of Γ can be computed from the data introduced so far in the
following way, c = ngβg − βg − (n− 1), see [Zar86, §II.3]. Combining this formula
with Equation (2.16), one gets the following formula for the conductor in terms of the
semigroup data

c =
g

∑
i=1

(ni − 1)βi − β0 + 1. (2.18)

As a consequence of these formulas, one gets an expression for the Milnor number µ of
the singularity. Recall that, in local coordinates, µ = dimC C{x, y}/〈∂ f /∂x, ∂ f /∂y〉, for
any representative f of a germ of a reduced plane curve, not necessarily irreducible.
Then, for plane branches, the Milnor number µ of f coincides with the conductor c,
see [Cas00, Prop. 5.8.7, Cor. 6.4.3]. Therefore, µ can be computed from the semigroup
Γ = 〈β0, β1, . . . , βg〉 using Equation (2.18).

We end this section with some properties of semigroups coming from plane branches.
The following lemma is a fundamental property of these kinds of semigroups.

Lemma 2.8 ([Tei86, Lemma 2.2.1]). If Γ = 〈β0, β1, . . . , βg〉 is the semigroup of a plane
branch, then one has

niβi ∈ 〈β0, β1, . . . , βi−1〉. (2.19)

The property in Equation (2.19) from Lemma 2.8 together with the inequality niβi <

βi+1, which follows directly from βi < βi+1 and Equation (2.16), characterize the
semigroups coming from plane branches.

Proposition 2.9 ([Tei86, Prop. 3.2.1]). Let Γ = 〈β0, β1, . . . , βg〉 ⊆ Z≥0 be a semigroup
such that Z≥0 \ Γ is finite. Then Γ is the semigroup of a plane branch if and only if niβi ∈
〈β0, β1, . . . , βi−1〉 for i = 1, . . . , g, and niβi < βi+1, for i = 1, . . . , g− 1.

The reverse implication of Proposition 2.9 will be proved at the end of the next
section.

2.5 Maximal contact elements

Let f : (C2, 0) −→ (C, 0) be a germ of an irreducible plane curve singularity together
with a proper birational morphism π that dominates the log-resolution of ( f ). Then,
f having characteristic sequence (n; β1, . . . , βg) is equivalent to the fact that a Puiseux
series [Cas00, §1.2] of f has the form

s(x) = ∑
j∈(e0)

β0≤j<β1

ajxj/n + ∑
j∈(e1)

β1≤j<β2

ajxj/n + · · ·+ ∑
j∈(eg−1)

βg−1≤j<βg

ajxj/n + ∑
j∈(eg)
j≥βg

ajxj/n, (2.20)
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with ei, i = 0, . . . , g being the integers defined in Section 2.4.

Let Γ = 〈β0, · · · , βg〉 be the semigroup of f and denote C : f = 0 the curve defined
by f . We are interested in elements fi ∈ OX,0 such that ν f ( fi) = [C, Ci] = βi, with
Ci : fi = 0, fi ∈ OX,0, for every i = 0, . . . , g. These curves will be called maximal contact
elements of f . Of course, the elements fi are not unique; for instance, if f is not tangent
to the y-axis, then f0 = x and f1 = y + a1x + a2x2 + · · ·, for some a1, a2, · · · ∈ C.

In general, these elements can be explicitly computed. If f is in Weierstrass form,
maximal contact elements correspond to approximate roots of f in the sense of Abhyankar
[AM73a], [AM73b]. Alternatively, if one has a Puiseux series of f as in Equation (2.20),
then the equations of a maximal contact element fi have Puiseux series:

si(x) = ∑
j∈(e0)

β0≤j<β1

ajxj/n + · · ·+ ∑
j∈(ei−1)

βi−1≤j<βi

ajxj/n + · · · for i = 1, . . . g, (2.21)

where the non-explicit terms are assumed not to increase the polydromy order, [Cas00,
§1.2], n/ei−1 of si, and either f0 = x or f0 = y depending on whether f is tangent to
the x-axis or the y-axis respectively, see [Cas00, §5.8]. Notice that the multiplicity at the
origin of these maximal contact elements is n/ei−1 = n1 . . . ni for i = 1, . . . , g. It is not
hard to see that the semigroups Γi of the singular maximal contact elements fi are then

Γi = 〈n1n2 · · · ni−1, n2 · · · ni−1m1, . . . , ni−1mi−2,mi−1〉, for i = 2, . . . , g + 1. (2.22)

Similarly, its characteristic sequence is (n1n2 · · · ni−1; n2 · · · ni−1m1, . . . , ni−1mi−2, mi−1).
For convenience, and whenever it makes sense, we will assume that the (g + 1)–th
maximal contact element fg+1 is f itself.

Let pi ∈ K, i = 1, . . . , g be the infinitely near points associated with the rupture
divisors Epi of the minimal log-resolution of ( f ). Similarly, denote by qi ∈ K, i = 0, . . . , g
the points for which Eqi is a dead-end divisor of the minimal log-resolution of ( f ).
Observe that these points are totally ordered in the following way: q0 6 q1 6 p1 6
q2 6 · · · 6 qg 6 pg. Then, one has the following results about the valuation of maximal
contact elements of plane branches at these divisors.

Lemma 2.10. The semigroup Γi of the i–th maximal contact element corresponds to the
semigroup of the valuation vpi−1 of the (i− 1)–th rupture divisor Epi−1 .

Proof. This lemma follows from Lemma 2.5, since for any g ∈ OX,0, vpi−1(g) =

Div(π∗g)exc · Bpi−1 , and Div(π∗ fp)exc = Bp.

Lemma 2.11. For the dead-end divisors Eqi with i = 0, . . . , g, we have:

vqi( f j) = ni+1 · · · nj−1mi for 0 ≤ i ≤ j− 1, (2.23)

and
vqi( f j) = nj−1 · · · ni−1mj−1 for j ≤ i ≤ g. (2.24)

For the rupture divisors Epi with i = 1, . . . , g, we have:

vpi( f j) = ni · · · nj−1mi for 0 ≤ i ≤ j− 1, (2.25)

and
vpi( f j) = nj−1 · · · nimj−1 for j ≤ i ≤ g. (2.26)



2 plane curve singularities 27

Proof. The first part of the lemma for the dead-end divisors Eqi follows from the
semigroup of the j–th maximal contact element in Equation (2.22), Lemma 2.5, and
[Cas00, §5.8]. The first part for rupture divisors follows from the fact that vpi(g) =

nivqi(g) for any g ∈ OX,0, which follows from Enriques’ Theorem [Cas00, Thm. 5.5.1].
For the second part observe that vqi( f j) = vpi−1( f j) if i ≥ j since the multiplicities at
the points between pi−1 and qj of the strict transform of f j are zero. Then, vqj( f j) =

vpj−1( f j) = nj−1mj−1 and the rest of the lemma follows from induction and the equality
vpi( f j) = nivqi( f j)

As a consequence of this lemma notice that if j = g + 1, then vqi( fg+1) := vqi( f ) =
Nqi = βi and vpi( f ) = Npi = niβi, since ei = ni+1 · · · ng and βi = eimi. Recall that the
notation Nqi , Npi is used when vqi( f ), vpi( f ) are interpreted as the multiplicities of the
total transform of f along the embedded resolution. Related to this discussion is the
following result on the multiplicities of the relative canonical divisor Kπ at these same
divisors.

Lemma 2.12 ([Wal04, Thm. 8.5.2]). For the dead-end divisors Eqi with i = 0, . . . , g, we have

vqi(Kπ) = kqi = d(mi + n1 · · · ni)/nie − 1. (2.27)

For the rupture divisors Epi with i = 1, . . . , g, we have

vpi(Kπ) = kpi = mi + n1 · · · ni − 1. (2.28)

We introduce now the notion of maximal contact elements for a proper birational
morphism π : X′ −→ X.

Definition 2.13. The maximal contact elements of π with exceptional divisor E are
those fp ∈ OX,0 with p ∈ K considered in Definition 2.3, such that the divisor Ep is a
dead-end, i.e. χ(E◦i ) = 1.

One can interpret dead-end divisors in terms of the dual graph of π when the vertex
associated with Ep is removed the dual graph remains connected. This means that a
dead-end divisor Ep will always correspond to a free point of K or the origin 0 because
satellite points are always proximate to two other points.

A set of maximal contact elements { fi}i∈I contains a unique fpi =: fi for each dead-end
vertex pi ∈ K. Since these elements are determined by a finite number of valuative
conditions, the elements fi can always be chosen to be polynomials instead of power
series. Moreover, since the maximal contact elements are irreducible, one usually
constructs them via its Puiseux series in an intrinsic way, i.e. by truncating the series in
(2.21) up to the last summation. As one should expect, this definition coincides with
the one given above for an irreducible element f ∈ OX,0. The elements fp ∈ OX,0 such
that Ep is a dead-end divisor of the minimal log-resolution of ( f ) are exactly those with
Puiseux series as in Equation (2.21).

Example 2.1. Let a = ((y2 − x3)2, x2y3) ⊆ OX,O be an ideal. Consider the minimal
log-resolution π : (X′, E) −→ (X, 0) of a consisting of blowing-up four points with the
configuration given by the dual graph in Figure 2.1.
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Figure 2.1: Dual graph of the ideal in Example 2.1.

Therefore, Fπ = 4Ep0 + 6Ep1 + 12Ep2 + 13Ep3 + 26Ep4 . The dead-end points are
precisely p0, p1, p3 and a set of maximal contact elements for π is { f0, f1, f2} with

f0 := x + a2,0x2 + a0,2y2 + a1,1xy + · · · ,

f1 := y + b2x2 + b3x3 + · · · ,

f2 := y2 − x3 + ∑
3i+2j>6

ci,jxiyj.

Different choices of ai,j, bi, ci,j ∈ C will give different sets of maximal contact elements.
For simplicity, all the coefficients are chosen to be zero, f0 = x, f1 = y, f2 = y2 − x3,
which are polynomials. �

2.6 The monomial curve and its deformations

Let Γ = 〈β0, β1, . . . , βg〉 ⊆ Z≥0 be a semigroup such that Z≥0 \ Γ is finite, that is
gcd(β0, . . . , βg) = 1, not necessarily the semigroup of a plane branch. We use the
notations and definitions from Section 2.4. Following Teissier [Tei86, §I.1.2], let (CΓ, 0) ⊂
(X, 0) be the curve defined via the parameterization

CΓ : ui = tβi , 0 ≤ i ≤ g, (2.29)

where X := Cg+1. The germ (CΓ, 0) is irreducible since gcd(β0, . . . , βg) = 1 and its
local ring OCΓ,0 equals

C
{

CΓ} := C
{

tβ0 , . . . , tβg
}
↪−→ C{t}, (2.30)

which has a natural structure of graded subalgebra of C{t}. The branch (CΓ, 0) is
usually called the monomial curve associated with the semigroup Γ. The first important
property of the monomial curve CΓ is the following

Theorem 2.14 ([Tei86, Thm. 1]). Every branch (C, 0) with semigroup Γ is isomorphic to the
generic fiber of a one-parameter complex analytic deformation of (CΓ, 0).

Moreover, with some extra structure on the semigroup Γ, it is possible to obtain more
structure on the singularity of (CΓ, 0) and even explicit equations.

Proposition 2.15 ([Tei86, Prop. 2.2]). If Γ satisfies the condition in Lemma 2.8, then the
branch (CΓ, 0) ⊂ (X, 0) is a quasi-homogeneous complete intersection with equations

hi := uni
i − ul(i)0

0 ul(i)1
1 · · · u

l(i)i−1
i−1 = 0, 1 ≤ i ≤ g, (2.31)

and weights β0, β1, . . . , βg, where

niβi = β0l(i)0 + · · ·+ βi−1l(i)i−1 ∈ 〈β0, . . . , βi−1〉. (2.32)
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In the sequel, we will always assume that the semigroup Γ fulfills (2.19). Since CΓ is
an isolated singularity one has the existence of the miniversal deformation of (CΓ, 0),
see for instance [Tei86, Add.]. After Theorem 2.14, every branch with semigroup Γ, is
analytically isomorphic to one of the fibers of the miniversal deformation of (CΓ, 0).
Moreover, Teissier [Tei86, §I.2] proves the existence of the miniversal semigroup constant
deformation of (CΓ, 0), that is a miniversal deformation such that all the fibers have
constant semigroup.

Theorem 2.16 ([Tei86, §I.2]). There exists a germ of a flat morphism

G : (XΓ, CΓ) −→ (Cτ− , 0) (2.33)

such that it is a miniversal semigroup constant deformation of (CΓ, 0). Furthermore, for every
representative of the morphism G, and for any branch (C, 0) with semigroup Γ, there exists
vC ∈ Cτ− such that (G−1(vC), 0) is analytically isomorphic to (C, 0).

Since CΓ is a complete intersection and we have quasi-homogeneous equations for
CΓ, the miniversal semigroup constant deformation can be made explicit, see [Tei86,
§I.2]. This is essentially the proof of Theorem 2.16. Consider the Tjurina module of the
complete intersection (CΓ, 0),

T1
CΓ,0 = Og

X,0

/(
Jac h · Og+1

X,0 + 〈h1, . . . , hg〉 · Og
X,0

)
, (2.34)

where Jac h · Og+1
X,0 is the submodule of Og

X,0 generated by the columns of the Jacobian
matrix of the morphism h = (h1, . . . , hg). Since (CΓ, 0) is an isolated singularity,
T1

CΓ,0 is a finite-dimensional C–vector space of dimension the Tjurina number of the
singularity, usually denoted by τ. Moreover, since (CΓ, 0) is a Gorenstein singularity ,
τ = 2 · #(Z>0 \ Γ), see [Tei86, Prop. 2.7].

We will denote by φ1, . . . , φµ ∈ O
g+1
X,0 representatives for a basis of the C–vector

space T1
CΓ,0. One can check that we can take these representatives as vectors φr in Og+1

X,0

having only one non-zero monomial entry φr,i for some index 0 ≤ i ≤ g. Since (CΓ, 0)
is quasi-homogeneous, we can endow T1

CΓ,0 with a structure of graded module.

Denote, after a possible reordering, φ1, . . . , φτ−
the representative of a basis of T1

CΓ,0
with negative weight. Recall from Theorem 2.16 that τ− was used to denote the
dimension of the base of the miniversal semigroup constant deformation of (CΓ, 0).
Then XΓ is defined from Equation (2.31) by the equations

Hi := hi +
τ−

∑
r=1

vrφr,i(u0, . . . , ug) = 0, 1 ≤ i ≤ g, (2.35)

with the weight of φr,i strictly bigger than niβi, see [Tei86, Thm. 3]. Finally, the
morphism G is just the projection of the vr components to Cτ− .

We focus now on the fibers of the miniversal semigroup constant deformation of
(CΓ, 0) that are plane, that is that can be embedded in a smooth complex surface. First,
notice that the classes of the vectors u2e1 := (u2, 0, . . . , 0), . . . , ugeg−1 := (0, . . . , ug, 0)
on T1

CΓ,0 are linearly independent over C. If we assume now that Γ is the semigroup of
a plane branch, not just that Lemma 2.8 is fulfilled, we also have that niβi < βi+1 for
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i = 1, . . . , g− 1, and the vectors u2e1, . . . , ugeg−1 are part of the miniversal semigroup
constant deformation of (CΓ, 0).

Then consider, the following semigroup constant deformation of (CΓ, 0),

C : H′i := hi − ui+1 = 0, 1 ≤ i ≤ g. (2.36)

Define f0 := x, f1 := y and set recursively,

fi+1 := f ni
i − f l(i)0

0 f l(i)1
1 · · · f

l(i)i−1
i−1 with niβi = β0l(i)0 + · · ·+ βi−1l(i)i−1, (2.37)

for i = 1, . . . , g. Then, we can embed (C, 0) in the plane in such a way that it has
equation f := fg+1. Such an equation looks like(
· · ·
((
· · ·
((

yn1 − xl(1)0

)n2
− xl(2)0 yl(2)0

)n3

− · · ·
)ni

− xl(i)0 · · · f
l(i)i−1
i−1

)ni+1

− · · ·
)ng−1

− xl(g)
0 · · · f

l(g)
g−1

g−1 .

(2.38)
This particular construction proves the reverse implication of Proposition 2.9.

From the monomial curve and its deformation, we can deduce the following two
novel propositions that provide the existence of certain µ-constant deformations, where
µ is the Milnor number, of irreducible plane curves that will be used in the next
chapters.

First, recall that, since the semigroup is a complete topological invariant, a semigroup
constant deformation is equivalent to a topologically trivial deformation. For reduced
plane curves, since the Milnor number µ is a topological invariant, topologically trivial
implies µ-constant. It is a result of Lê Dũng Tráng and Ramanujam [TR76] that the
converse is also true. Hence, in the case of plane branches, the semigroup constant
deformations are the same as the µ-constant deformations.

The first result provides a family of µ-constant deformation that looks like fg+1 in
Equation (2.37), in such a way that any other plane branch with the same topological
class is analytically equivalent to a fiber of some deformation in the family.

Proposition 2.17. Let Γ = 〈β0, β1, . . . , βg〉 be a plane branch semigroup. Consider, with the
same notation as above,

fi+1 = f ni
i − λi f l(i)0

0 f l(i)1
1 · · · f

l(i)i−1
i−1 + ∑
β0k0+···+βiki>ni βi

t(i)k f k0
0 f k1

1 · · · f ki
i , (2.39)

with λ1 := 1, λi 6= 0 for i = 2, . . . , g and the sum being finite. Define,

ft,λ(x, y) := fg+1(x, y; t(1), . . . , t(g); λ2, . . . , λg). (2.40)

Then, { ft,λ(x, y)}λ∈Cg−1 is an infinite family of µ-constant deformations, all having semigroup
Γ, with the property that any other plane branch with semigroup Γ is analytically equivalent to
a fiber of one element of the family.

Proof. Consider the semigroup constant deformation of the monomial curve (CΓ, 0)
with semigroup Γ from Theorem 2.16. Since the semigroup Γ is of a plane branch, we
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can assume that the set of vectors u2e1, . . . , ugeg−1 are part of the semigroup constant
deformation. Then, XΓ will have equations

C : Hi = hi − vi+1ui+1 +
τ−

∑
r=g+1

vrφr,i(u0, . . . , ug) = 0, 1 ≤ i ≤ g. (2.41)

The embedding dimension of (C, 0) is equal to g + 1− rk Jac H(0), see for instance
[JP00, Thm. 4.3.6]. Since all the monomials in Hi have (non-weighted) degree bigger
than 2, except for those in the vectors u2e1, . . . , ugeg−1, the rank of the Jacobian matrix
is g− 1 if and only if v2 · · · vg−1 is non-zero. Thus, the embedding dimension of (C, 0)
is 2 if and only if all v2, . . . , vg−1 are different from zero.

Finally, performing elimination on the variables u2, . . . , ug one obtains a plane branch
equation similar to Equation (2.39) with λi = vn2

2 · · · v
ni
i 6= 0 and a finite number

of deformation monomials with coefficients that are polynomials in the variables vr.
Therefore, there is an inclusion of the parameter space of XΓ into the parameters of the
family of deformations ft,λ.

We will sometimes drop the dependency on the parameters λ ∈ Cg−1 and denote
just ft(x, y). Although we are considering a deformation ft with a finite number of
deformation terms, we can always assume that we have deformation terms of high
enough order in the summations of Equation (2.39). Indeed, adding extra terms to the
summation does not change the fact that the family contains all plane curves up to
analytic isomorphism or that the deformation has constant semigroup.

The second novel result shows the existence of a very particular type of one-parameter
µ-constant deformation of irreducible plane curves and it will be key in the proof of
Yano’s conjecture in Chapter V.

Proposition 2.18. Let f : (C2, 0) −→ (C, 0) be a plane branch. Let Ei be a rupture divisor of
the minimal resolution of f with divisorial valuation vi. Then, for any v > niβi there exists
a one-parameter µ-constant deformation of f of the form f + tgt such that vi(gt) = v, for all
values of the parameter t.

Proof. By the previous discussion, there exists a fiber of the miniversal semigroup
constant deformation of the monomial curve (CΓ, 0) that is analytically equivalent to
the germ of curve (C, 0) defined by f . Precisely, with the notations above,

C : hj + λjuj+1 + lj = 0 for 0 ≤ j ≤ g, (2.42)

with λj 6= 0 and where we set ug+1 := 0 for convenience. Here the elements lj are
linear combinations of the non-zero components of the elements φ1, . . . , φτ−

that are
different from u2e1, . . . , ugeg−1, see Equation (2.35). Set now v′ := nimi + v− niβi, then
v′ belongs to the semigroup

Γi+1 = 〈n1n2 · · · ni, n2 · · · nim1, . . . , nimi−1, mi〉 (2.43)

introduced in Equation (2.22) which corresponds to the divisorial valuation vi, see
Lemma 2.10. Indeed, notice that v′ is strictly larger than the conductor of Γi+1. There-
fore, there exists (α0, . . . , αi) ∈ Zi+1

≥0 such that

v′ = α0n1n2 · · · ni + α1n2 · · · nim1 + · · ·+ αgmi. (2.44)
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Consider the one-parameter deformation of C given by deforming the i–th equation of
(2.42) in the following way

hi + λiui+1 + li + tuα0
0 uα1

1 · · · u
αi
i = 0. (2.45)

First, we must check that this deformation is semigroup constant, which is equivalent
to seeing that deg(uα0

0 · · · u
αg
g ) > niβi. Indeed,

deg(uα0
0 uα1

1 · · · u
αg
g ) = α0β0 + α1β1 + · · ·+ αgβg

= ei(α0n1n2 · · · ni + α1n2 · · · nim1 + · · ·+ αgmi)

= niβi + ei(v− niβi) > niβi.

(2.46)

Now, eliminating the variables u2, u3, . . . , ug successively from Equation (2.42) one gets
a deformation of f of the form f + tg0 + t2g1 + · · ·, where the dots mean higher-order
terms on t. For plane branches, a family with constant semigroup is µ-constant, so this
proves the first part of the lemma.

For the second part, one can see that when the first u2, u3, . . . , ui−1 variables are
eliminated, ui = 0 defines a plane branch fi that is one of the maximal contact element
of f from Section 2.5 with ν f ( fi) = βi = deg ui. Finally, after making the corresponding
computations,

g0 = f α0
0 · · · f αi

i f ni+1−1
i+1 · · · f ng−1

g + · · · (2.47)

with precisely

vi( f α0
0 · · · f αi

i f ni+1−1
i+1 · · · f ng−1

g ) = v. (2.48)

In order to check Equation (2.48), recall that from Lemma 2.11, we have vi( f j) =

ni · · · nj−1mi, for i ≤ j, and then

vi( f α0
0 · · · f αi

i f ni+1−1
i+1 · · · f ng−1

g ) = v′ + (ni+1 − 1)vi( fi+1) + · · ·+ (ng − 1)vi( fg)

= v′ + (ni − 1)nimi + · · ·+ (ng − 1)ng−1 · · · nimi

= ngng−1 · · · nimi + v− niβi = v.

(2.49)

A similar computation shows that any other term in g0, or in higher-order powers of t,
has a value strictly larger than v for the valuation vi of the divisor Ei.

2.7 Toric resolutions

Let f : (C2, 0) −→ (C, 0) be a germ of an irreducible plane curve with semigroup
Γ = 〈β0, β1, . . . , βg〉. A classical way to obtain the minimal embedded resolution
by point blow-ups of an irreducible plane curve f from its characteristic sequence
(n, β1, . . . , βg) is using Enriques’ Theorem, see [Cas00, Thm. 5.5.1]. However, here we
will describe the approach of Oka given in [Oka96] and describe the minimal resolution
of f as a composition of toric morphisms.

There exists a minimal resolution map π of f that decomposes into g ≥ 1 toric
morphisms. For i = 1, . . . , g,

π(i) := π1 ◦ · · · ◦ πi : (X(i), E(i))
πi−−→ (X(i−1), E(i−1))

πi−1−−→ · · · π1−−→ (X(0), 0) := (C2, 0),
(2.50)
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where πi is a toric morphism for a suitable choice of coordinates on X(i−1) and we
define π := π(g). Each morphism πi resolves one characteristic exponent of the plane
branch f in the sense that the strict transform of f on X(i) has one characteristic
exponent less than the strict transform on X(i−1). In this way, X(i) always contains one
more rupture divisor Epi than X(i−1). We will denote by Ui, Vi some affine open sets,
and by (xi, yi), (zi, wi) their respective coordinates, such that Ui ∪Vi contains the i–th
rupture divisor Epi on X(i) after the i–th toric modification πi. In these coordinates,
recalling the definitions of the integers ni, qi from Section 2.4, the toric morphism is
given by

πi(xi, yi) =
(

xni
i yai

i , xqi
i ybi

i

)
and πi(zi, wi) =

(
zci

i wni
i , zdi

i wqi
i

)
, (2.51)

with ai, bi, ci, di ∈ Z≥0 such that nibi − qiai = 1, qici − nidi = 1 and aiqi + dini = niqi − 1.
These toric morphisms can be thought as a composition of point blow-ups. In the
sequel, we will associate with each plane branch singularity these series of four integers
ai, bi, ci, di for every i = 1, . . . , g. They are determined, although not explicitly, by the
semigroup Γ of f since they depend on the continued fraction expansion of qi/ni.

If the singularity is still not resolved at X(i), one needs to perform an analytic change
of coordinates around the unique singular point of the strict transform of f on X(i) in
order for πi+1 to be toric. These new coordinates, let us say (x̄i, ȳi) and (z̄i, w̄i), are
such that π

(i)
∗ ȳi = π

(i)
∗ z̄i defines a germ fi : (C2, 0) −→ (C, 0) that is a maximal contact

element of f in the sense of Section 2.5. By construction, each of these maximal contact
elements fi are resolved by the corresponding π(i). In the case of the plane curves
constructed in Section 2.6, the maximal contact element fi coincide with the elements fi
defined in Equation (2.37) and Equation (2.39).

We will continue with a novel result about the resolution of the elements of the
semigroup constant deformations { ft,λ}λ∈Cg−1 from Proposition 2.17 that will be used
in Chapter IV. Since having constant semigroup means that all the fibers of all the
elements of the family are equisingular, the toric resolution of the plane branches in
the family ft is the same modulo the coordinates needed at each X(i). The following
proposition describes locally the equations of ft around the rupture divisors after
pulling back by π(i).

Proposition 2.19. Let Epi be the i–th rupture divisor on the surface X(i) and let Ui, Vi be the
corresponding charts containing Epi with local coordinates (xi, yi) and (zi, wi), respectively.
Then,

• The equations of the total transform of ft are given by

xni βi
i yai βi

i u1(xi, yi) f̃t(xi, yi), z(cini−1mi−1+di)ei−1
i wni βi

i u2(xi, yi) f̃t(zi, wi), (2.52)

where u1, u2 are units at any point of Epi .

• The equations f̃t of the strict transform of f are

f̃t(xi, yi) = f̃g+1(xi, yi; t(1), . . . , t(g)), f̃t(zi, wi) = f̃g+1(zi, wi; t(1), . . . , t(g)). (2.53)
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• The (i + 1)–th maximal contact element has equations

f̃i+1(xi, yi) = yi − λi + ∑
β0k0+···+βiki>ni βi

t(i)k x
ρ
(i)
i+1(k)

i y
A(i)

i+1(k)
i u(i)

k (xi, yi), (Ui chart ),

f̃i+1(zi, wi) = 1− λizi + ∑
β0k0+···+βiki>ni βi

t(i)k z
C(i)

i+1(k)
i w

ρ
(i)
i+1(k)

i u(i)
k (zi, wi), (Vi chart ),

(2.54)

where u(i)
k are units at any point of Epi .

• The remaining maximal contact elements f j+1, j > i have strict transforms given by

f̃ j+1 = f̃
nj
j − λjx

ρ
(i)
j+1(l j)

i y
A(i)

j+1(l j)

i u(j)
0 f̃

l(j)
i+1

i+1 · · · f̃
l(j)
j−1

j−1 +∑
β0k0+···+βjk j>nj βj

t(j)
k x

ρ
(i)
j+1(k)

i y
A(i)

j+1(k)
i u(j)

k f̃ ki+1
i+1 · · · f̃

k j
j

(2.55)
in the Ui chart, and similarly in Vi. As before, u(j)

0 , u(j)
k are units everywhere on Epi and we

denote l j :=
(
l(j)
0 , l(j)

1 , . . . , l(j)
j−1, 0

)
the integers from Proposition 2.15.

Finally, ρ
(i)
j+1, A(i)

j+1, C(i)
j+1, j ≥ i, are the following linear forms:

ρ
(i)
j+1(k) =

i

∑
l=0

nl+1 · · · nimlkl + nimi

j

∑
l=i+1

ni+1 · · · nl−1kl − ni · · · njmi,

A(i)
j+1(k) = ai

i−1

∑
l=0

nl+1 · · · ni−1mlkl + (aini−1mi−1 + bi)ki

+ aimi

j

∑
l=i+1

ni+1 · · · nl−1kl − aimini+1 · · · nj,

C(i)
j+1(k) = ci

i−1

∑
l=0

nl+1 · · · ni−1mlkl + (cini−1mi−1 + di)ki

+ ni(cini−1mi−1 + di)
j

∑
l=i+1

ni+1 · · · nl−1kl − (cini−1mi−1 + di)ni · · · nj.

(2.56)

Proof. The results follow from the inductive procedure of applying the toric trans-
formations from Equation (2.51) to the equations of ft in Proposition 2.17. At each
X(i) the analytic coordinates which make the morphism πi toric are described by
ȳi = f̃i+1, x̄i = xiui in the Ui chart, for some unit ui. The expressions for the linear
forms ρ

(i)
j+1, A(i)

j+1, C(i)
j+1 follow, recursively, from the relations

ρ
(i)
j+1(k) = niρ

(i−1)
j+1 (k) + qiki + niqi

j

∑
l=i+1

ni+1 · · · nl−1kl − ni · · · njqi,

A(i)
j+1(k) = aiρ

(i−1)
j+1 (k) + biki + aiqi

j

∑
l=i+1

ni+1 · · · nl−1kl − aiqini+1 · · · nj,

C(i)
j+1(k) = ciρ

(i−1)
j+1 (k) + diki + nidi

j

∑
l=i+1

ni+1 · · · nl−1kl − dini · · · nj.

(2.57)
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Following the notations from Proposition 2.19, we will usually fix the index i to
denote that we have resolved the singularity up to the i–th rupture divisor on X(i). On
the other hand, the index j will make reference to the j–th maximal contact element. At
any step of the resolution process, one has that 1 ≤ i ≤ j ≤ g.

Corollary 2.20. Let ρ
(i)
j+1(k), A(i)

j+1(k), C(i)
j+1(k) be the linear forms in Proposition 2.19. Then,

A(i)
j+1(k) + C(i)

j+1(k) +
j

∑
l=i+1

ni+1 · · · nl−1kl = ρ
(i)
j+1(k) + ni+1 · · · nj. (2.58)

Proof. From the relations between ai, bi, ci, di, one can deduce that ai + ci = ni, bi + di =

qi. The result follows from adding A(i)
j+1 and C(i)

j+1 and using these relations.

The following corollary will be useful in the next chapters. In the case of plane
branches, it describes the multiplicity of the total transform along the two exceptional
divisors preceding a certain rupture divisor in terms of the toric morphism. For the
sake of simplifying the notation, and since no confusion may arise since we will always
work with a fixed rupture divisor, Ei := Epi , pi ∈ K, we will denote by D1, D2, D3 the
irreducible components in Supp(Fπ) such that Ei ∩ Di 6= ∅. Furthermore, we will
assume that D1 and D2 precede Ei in the resolution process.

Corollary 2.21. Let Ei be a rupture divisor of the minimal embedded resolution of f . Then, the
multiplicities of D1 and D2 in Fπ are

N1 = aiβi and N2 = (cini−1mi−1 + di)ei−1. (2.59)

2.8 Yano’s conjecture

We will next present the conjecture posed in 1982 by Yano [Yan82] about the generic
b-exponents, see Definition 1.38, of irreducible germs of plane curve singularities.
The conjecture predicts that for generic curves in some µ-constant deformation of f ,
the whole set of µ b-exponents can be completely determined from the characteristic
sequence of the topological class.

Accordingly, let f : (C2, 0) −→ (C, 0) be a germ of a holomorphic function defining
an irreducible plane curve singularity with characteristic sequence (n, β1, . . . , βg), where
n is the algebraic multiplicity of f at the origin and g ≥ 1 is the number of characteristic
pairs. With the same notations as [Yan82, §2], define

ri :=
βi + n

ei
, Ri :=

βiei−1 + βi−1(ei−2 − ei−1) + · · ·+ β1(e0 − e1)

ei
,

r′0 := 2, r′i := ri−1 +

⌊
βi − βi−1

ei−1

⌋
+ 1 =

⌊
riei

ei−1

⌋
+ 1,

R′0 := n, R′i := Ri−1 + βi − βi−1 =
Riei

ei−1
.

(2.60)

where the integers ei, i = 0, . . . , g were defined in Section 2.4. Inspired by A’Campo
formula [ACa75] for the eigenvalues of the monodromy of an isolated singularity, Yano
defines the following polynomial with fractional powers in t

R
(
(n, β1, . . . , βg), t

)
:=

g

∑
i=1

t
ri
Ri

1− t

1− t
1

Ri

−
g

∑
i=0

t
r′i
R′i

1− t

1− t
1

R′i

+ t, (2.61)
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and proves that R
(
(n, β1, . . . , βn), t

)
has non-negative coefficients. Finally,

Conjecture (Yano [Yan82]). For generic curves in some µ-constant deformation of an irre-
ducible germ of plane curve having characteristic sequence (n, β1, . . . , βg), the b-exponents
{α1, α2, . . . , αµ} are given by the generating function R. That is,

µ

∑
i=1

tαi = R
(
(n, β1, . . . , βg), t

)
. (2.62)

Yano’s conjecture was proved in the case of one Puiseux pair, g = 1, by Cassou-
Noguès [Cas88]. More recently, Artal-Bartolo, Cassou-Noguès, Luengo, and Melle-
Hernández [Art+17b] proved the case of two Puiseux pairs under the hypothesis that
the eigenvalues of the monodromy of f are pair-wise different. This hypothesis on
the eigenvalues of the monodromy ensures that the minimal and the characteristic
polynomial of the endomorphism (1.77) from Theorem 1.35 coincide. This means that
the roots of the Bernstein-Sato polynomial and the b-exponents are the same.

Remark 2.2. With the notations from Section 2.5 and Lemma 2.12, the integers defined
in Equation (2.60) are equal to

ri = kpi , Ri = Npi , r′i = kqi , R′i = Nqi . (2.63)

where Epi , Eqi are, respectively, the rupture and dead-end exceptional divisors of the
minimal resolution of f . �

2.9 Multiplier ideals and jumping numbers

The multiplier ideals, introduced in Section 1.3, and the associated jumping numbers
are quite well-understood in the case of a smooth surface (X, 0). The first results about
the jumping numbers of ideals in smooth complex surfaces are due to Järvilehto [Jär11],
for simple complete ideals, and Naie [Nai09] for irreducible plane curve singularities.
We will use the notation introduced in Section 2.4 for the semigroup of a plane branch
to describe these results.

Theorem 2.22 ([Jär11, Thm. 6.2]). Let a ⊆ OX,0 be a simple complete m-primary ideal
and assume that the generic curve of the ideal has semigroup Γ = 〈β0, β1, . . . , βg〉. Then, the
jumping numbers of a are

g−1⋃
ν=1

{
mνi + nν−1 j + nνmνk

nνβν

∣∣∣∣ i, j ∈ Z>0, k ∈ Z≥0,
i

nν
+

j
mν
≤ 1

}
(2.64)

and {
βgi + ng j

ngβg

∣∣∣∣ i, j ∈ Z≥0,
i

ng
+

j
βg
≤ 1

}
, (2.65)

and all the jumping numbers are contributed by the rupture divisor Epi , i = 1, . . . , g.

For irreducible plane curve singularities, Naie [Nai09] also presents a formula in
terms of the semigroup of the singularity. Due to the relation of the jumping numbers
of an isolated singularity with the spectral numbers of the singularity, see [Ein+04,
Remark 3.10], Naie’s result already appeared in [Sai00], where Saito computed the
spectral numbers of an irreducible curve singularity in terms of the characteristic
exponents.



2 plane curve singularities 37

Theorem 2.23 ([Sai00, Thm. 1.5], [Nai09, Thm. 3.1]). The jumping numbers in (0, 1] of an
irreducible plane curve singularity with semigroup Γ = 〈β0, β1, . . . , βg〉 are

g⋃
ν=1

{
mνi + nν j + nνmνk

nνβν

∣∣∣∣ i, j ∈ Z>0, 0 ≤ r < eν,
i

nν
+

j
mν

< 1
}

, (2.66)

and all the jumping numbers are contributed by the rupture divisors Epi , i = 1, . . . , g.

For arbitrary plane curve singularity, it is also true, see the work of Smith and
Thompson [ST07, Thm. 3.1], that the only exceptional divisors contributing to jumping
numbers are the rupture divisors of the minimal embedded resolution.

More generally, there is an algorithm by Tucker [Tuc10] that computes all the jumping
numbers of an ideal a from a log-resolution of a. However, we will present the
algorithm by Alberich-Carramiñana, Àlvarez Montaner and Dachs-Cadefau [AÀD16]
that computes both the jumping numbers λi(a) := λi(a, 0) of any ideal of OX,0 and
the integral divisor on the resolution surface X′ defining the i–th multiplier ideal. The
algorithm in [AÀD16] is based on the unloading procedure, see Algorithm 2.6, and on
the following result.

Theorem 2.24 ([AÀD16, Thm 3.5]). Let a ⊆ OX,0 be an ideal and let Dλ′ = ∑ aλ′
i Ei be the

antinef closure of bλ′Fπ − Kπc for a given λ′ ∈ Q>0. Then,

λ = min
i

{
ki + 1 + aλ′

i
ai

}
(2.67)

is the jumping number consecutive to λ′. Here Fπ = ∑i aiDi.

Algorithm 2.25 (Jumping Numbers and Multiplier Ideals, [AÀD16]).
Input: A log-resolution of the ideal a ⊆ OX,0, a positive integer N ∈ Z>0.
Output: The first N jumping numbers of a and the corresponding multiplier ideals.
· Set λ0 := 0, Dλ0 := 0. For j = 1, . . . , N:

· Jumping number: Compute

λj = min
i

{
ki + 1 + a

λj−1
i

ai

}
.

· Multiplier ideal: Compute the antinef closure Dλj = ∑ e
λj
i Ei of bλjFπ − Kπc

using Algorithm 2.6.

Both the results in [Tuc10] and the algorithm in [AÀD16] are more general than
the ones presented above since both results also work if (X, 0) has at most, a rational
singularity.

In Chapter II, we will present some results that combined with Algorithm 2.25 will
allow the computation of generators for all the multiplier ideals of a starting from any
set of generators of a.





II
E F F E C T I V E C O M P U TAT I O N O F C O M P L E T E P L A N A R I D E A L S

This chapter is divided in two sections. The first section contains an algorithm that
computes the log-resolution of an ideal in a smooth complex surface from any set of
generators. The second section develops an algorithm that computes generators for the
complete ideal given by the push-forward by a proper birational morphism of the ideal
sheaf defined by a divisor with exceptional support. This chapter contains the more
algorithmic results of this thesis.

At the end of the chapter, we also include some of the applications of these algorithms.
For instance, combining these two algorithms with Algorithm 2.25, one has an effective
method to compute the multiplier ideals of an ideal in a smooth complex surface. The
combination of the three algorithms is effective in the sense that both the input and the
output are given by polynomials. The code for the algorithms presented in this chapter,
as well as for other required algorithms from the theory of plane curve singularities,
can be found in Appendix A.

3 computing log-resolutions of planar ideals

In this section, we present an algorithm to compute the log-resolution of a planar ideal
in a smooth surface from any given set of generators of the ideal. Although explicit
computation of log-resolutions of general ideals by blowing-up smooth centers is a
well-studied and solved problem, see [Vil89; BEV05; Frü07], the result in this section
can be seen as the analog for log-resolutions of ideals to the classical resolution of plane
curve singularities via the Newton-Puiseux expansion and Enriques’ Theorem [Cas00,
§1, §5.5]. The results of this section are joint work with Alberich-Carramiñana and
Àlvarez Montaner and can be found in [AÀB19].

3.1 A characterization of the log-resolution of an ideal

Let (X, 0) be a germ of a smooth complex surface and let a ⊆ OX,0 be an ideal
and m = mX,0 ⊆ OX,0 be the maximal ideal. The aim of this section is to give a
characterization of the minimal log-resolution divisor Fπ, see Definition 2.2, associated
to a = ( f1, . . . , fr). This description will be more suitable for the computational
purposes of the rest of the section. Then, we will describe a divisor G = ∑p∈K′ vpEp

with multiplicities vp depending on the values of the curves Ci : fi = 0, i = 1, . . . , r and
we will then prove that it is equal to Fπ.

Remark 3.1. For the sake of simplicity, we will assume that a is m-primary. Otherwise,
a = ( f ) · a′ with a′ being m-primary and f ∈ OX,0. Then, the minimal log-resolution
divisor of a will be obtained by combining the minimal log-resolution divisors of ( f )
and a′, plus some extra blow-ups. �

39
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Definition 3.1. Let a = ( f1, . . . , fr) ⊆ OX,0 be an m-primary ideal. For any point p
equal or infinitely near to 0 we define the value vp := min{vp( f1), . . . , vp( fr)}, and
recursively on the proximate points, we define h0 = 0 and

hp := ∑
p→q

vq. (3.1)

Define also the divisor G = ∑p∈K′ vpEp, where K′ is the set of points p such that
hp < vp.

Notice that, after Equation (2.6), the multiplicities ep in the total transform basis are
ep = vp − hp, for each p ∈ K′, i.e. G = ∑p∈K′ epEp.

For G to be a minimal log-resolution divisor, we need to check that K′ is finite and
that for any p ∈ K′, all the preceding points also belong to K′. To do so, we will start
with a technical lemma.

Lemma 3.2. Let a = ( f1, . . . , fr) ⊆ OX,0 be an m-primary ideal. Then, for any f ∈ a and any
p proper or infinitely near to the origin, we have vp( f ) ≥ min{vp( f1), . . . , vp( fr)}.

Proof. Assume that f = g1 f1 + · · ·+ gr fr, for g1, . . . , gr ∈ OX,0. Using the fact that vp(·)
is a discrete valuation in OX,0, see [Cas00, §4.5], we have:

vp( f ) = vp(g1 f1 + · · ·+ gr fr) ≥ min{vp(g1 f1), . . . , vp(gr fr)}
= min

i
{vp(gi) + vp( fi)} ≥ min{vp( f1), . . . , vp( fr)},

(3.2)

where in the last inequality we used that vp(g) ≥ 0, ∀g ∈ OX,0.

Next, we prove that the definition of the divisor G does not depend on the generators
of the ideal a.

Lemma 3.3. Let a = ( f1, . . . , fr) ⊆ OX,0 be an m-primary ideal. The multiplicities vp, p ∈ K′

of the divisor G associated to a do not depend on the generators of the ideal. In other words,
vp = min f∈a{vp( f )}.

Proof. It is clear that vp = mini{vp( fi)} ≥ min f∈a{vp( f )} since { f1, . . . , fr} ⊂ a. On the
other hand, by Lemma 3.2, vp( f ) ≥ mini{vp( fi)}, for all f ∈ a, hence min f∈a{vp( f )} ≥
vp and the result follows.

Lemma 3.4. Under the assumptions of Definition 3.1, the inequality hp ≤ vp holds for any
point p equal or infinitely near to 0.

Proof. The inequality is clear when p = 0. Now, assume that p is free, so it is proximate
to one point p→ q. Then, we have:

hp = vq = min
i
{vq( fi)} ≤ min

i
{vp( fi)} = vp. (3.3)

If p is satellite, it is proximate to two points p→ q and p→ q′. Then, we have:

hp = vq + vq′ = min
i
{vq( fi)}+ min

i
{vq′( fi)}

≤ min
i
{vq( fi) + vq′( fi)} = min

i
{vp( fi)} = vp.

(3.4)
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Lemma 3.5. Let a = ( f1, . . . , fr) ⊆ OX,0 be an m-primary ideal. If there exists a generator fi
such that hp = vp = vp( fi), then we have ep( fi) = 0 and vq = vq( fi) for any point q proper
or infinitely near to the origin such that p→ q.

Proof. If p is a free point, we take the unique point q such that p→ q. Notice that

vp( fi) = vp = hp = vq = min
j
{vq( f j)}, (3.5)

so we have vp( fi) ≤ vq( fi). It follows from Equation (2.6) that vp( fi) = vq( fi) and
ep( fi) = 0, hence, vq = vq( fi).

If p is satellite, we take the points q and q′ such that p→ q, p→ q′. We have

vp( fi) = vp = hp = vq + vq′ , (3.6)

thus vp( fi) ≤ vq( fi) + vq′( fi). Using Equation (2.6), we obtain vp( fi) = vq( fi) + vq′( fi)

and ep( fi) = 0. Finally, if vq < vq( fi) or vq′ < vq′( fi), then hp = vq + vq′ < vp( fi), so we
get a contradiction.

Proposition 3.6. Under the assumptions of Definition 3.1, if p ∈ K′, then any point q
preceding p also belongs to K′.

Proof. We will prove the converse statement: assume that q 6∈ K′, i.e. hq = vq. We will
prove hp = vp for any p in the first neighborhood of q, and it will follow inductively
hp = vp, i.e. p 6∈ K′, for any point p infinitely near to q.

Assume that q 6∈ K′ and let p be a point in the first neighborhood of q, in particular
p → q. Consider a generator fi such that vq = minj{vq( f j)} = vq( fi), hence hq =

vq = vq( fi). If p is satellite, we take the second point q′ such that p → q′. Then, by
Lemma 3.5

hp = vq + vq′ = vq( fi) + vq′( fi) = vp( fi), (3.7)

and by Lemma 3.4, hp = vp( fi) = vp. If p is free, the same reasoning is valid by taking
vq′ = vq′( fi) = 0.

Since we are assuming that a is m-primary, we will assume that the minimal log-
resolution divisor has the expression Fπ = ∑p∈K NpEp in the strict transform basis.
Notice that since the log-resolution of a can be constructed by successive blow-ups, we
can assume that Fπ is antinef. We will show next that the divisor G equals the minimal
log-resolution divisor Fπ of a and we will conclude that K′ is finite.

Proposition 3.7. Let Fπ = ∑p∈K NpEp be the minimal log-resolution divisor of the m-primary
ideal a = ( f1, . . . , fr) ⊆ OX,0 and G = ∑p∈K′ vpEp as given in Definition 3.1. Let p ∈ K,
then p ∈ K′ and the equality of multiplicities Np = vp is satisfied.

Proof. Let f = g1 f1 + · · ·+ gr fr be an element of a such that the minimal log-resolution
divisor of ( f ) equals Fπ, such elements always exist [Cas00, Thm. 7.2.13]. From
Lemma 3.2 we obtain

Np = vp( f ) ≥ min
i
{vp( fi)} = vp. (3.8)

Now, by [Cas00, Cor. 7.2.16], we may find a system of generators a = (h1, . . . , hs) such
that the minimal log-resolution divisor of each (hi) equals Fπ. Then,

vp = min
i
{vp( fi)} ≥ min

i
{vp(hi)} = Np, (3.9)
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after applying Lemma 3.2, once again, to the elements fi expressed in terms of h1, . . . , hs.
Therefore, the equality vp = Np follows. Since the same equality holds for all the points
preceding p, we infer

vp − hp = Np − ∑
p→q

Nq = ep(Fπ) > 0, (3.10)

that is, vp > hp, since ep(Fπ) is the multiplicity of Ep in the minimal log-resolution
divisor Fπ which is antinef, Equation (2.6).

Theorem 3.8. The minimal log-resolution divisor Fπ and the divisor G are equal. In particular,
K′ is finite.

Proof. From Proposition 3.7 we already have K ⊆ K′. We will prove the other inclusion
using induction on the order of neighborhood which a point p ∈ K′ belongs to.

For p = 0, it is clear that p belongs to both K′ and K. Now, assume that the assertion
is true for all the points preceding p, which are in K′ by Proposition 3.6. Let q ∈ K be
the antecessor of p. By [Cas00, Lemma 7.2.6], p ∈ K if and only if 0 < min f∈a{ep( f̌p)},
where ep( f̌p) is the multiplicity of the strict transform of a f at p relative to the
proper birational morphism where the points after p have not been blown-up. This is
equivalent, by Equation (2.6), to

min
f∈a
{vp( f )} > ∑

p→s
Ns. (3.11)

By Lemma 3.3, vp = min f∈a{vp( f )}. Thus, applying Proposition 3.7 to the points
preceding p, we have that p belongs to K if and only if,

vp > ∑
p→s

Ns = ∑
p→s

vs = hp. (3.12)

Remark 3.2. Theorem 3.8 is a generalization for m-primary ideals of [Alb04, Thm. 2.5]
which describes the log-resolution of the general element of a pencil λ1 f1 + λ2 f2 of
curves f1, f2 ∈ OX,0, λ1, λ2 ∈ C. �

Corollary 3.9. Let Fπ = ∑p∈K NpEp be the minimal log-resolution divisor of a m-primary
ideal a = ( f1, . . . , fr) ⊆ OX,0. Let D = ∑p∈K′′ vp(D)Ep = ∑p∈K′′ ep(D)Ep be any divisor
with

vp(D) = min
i
{vp( fi)}, for all p ∈ K′′, (3.13)

or, alternatively,
ep(D) = vp(D)− ∑

p→q
vq(D), for all p ∈ K′′, (3.14)

and such that, for any p ∈ K′′, ep(D) 6= 0. Then K′′ ⊆ K.

Proof. Since, by definition, p ∈ K if and only if ep > 0, clearly K′′ ⊆ K. Then, the result
follows using Theorem 3.8.
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3.2 An algorithm to compute the log-resolution of an ideal

In this section we will describe an algorithm that allows to compute the minimal
log-resolution divisor of any ideal a = (a1, . . . , ar) ⊆ OX,0. First we recall that we have
a decomposition a = ( f ) · a′, where f ∈ OX,0 is the greatest common divisor of the
generators of a and a′ = ( f1, . . . , fr) is m-primary. Moreover, the minimal log-resolution
divisor of a is described in terms of the minimal log-resolution divisors of a′ and ( f ),
see Remark 3.1.

The log-resolution of f , which coincides with its minimal embedded resolution, is
easy to describe using, for instance, the Newton-Puiseux algorithm, see [Cas00]. The
bulk of the process is then in the computation of the minimal log-resolution Fπ of a′.
Before proceeding to describe the algorithm we need to introduce several technical
results that will allow us to compute Fπ in terms of the minimal log-resolutions of the
given set of generators.

Blowing-up free and satellite points

Again, for the sake of simplicity, we will assume throughout this subsection that
our ideal a = ( f1, . . . , fr) ⊆ OX,0 is m-primary. In order to compute the minimal
log-resolution divisor Fπ, we will start with the minimal log-resolution divisor of the
product of the generators f1 · · · fr, which gives a first approximation. Then, using the
following results, we will blow-up and blow-down the necessary free and satellite
points to obtain the divisor Fπ.

In the sequel, we assume that G′ = ∑p∈K′ vpEp is a divisor with vp = mini{vp( fi)}
and such that any point p ∈ K that also belongs to the minimal log-resolution of
( f1 · · · fr) is already in K′.

The following set of technical results will allow us to decide which points we need to
blow-up or blow-down from the minimal log-resolution surface of f1 · · · fr in order to
obtain the minimal log-resolution surface (X′, E) of a where the minimal log-resolution
divisor Fπ lives. The first result states that all the free points supporting the exceptional
part of Fπ lie on the generators.

Lemma 3.10. Let Ki be the infinitely points supporting the exceptional part of the divisors
of the minimal log-resolution of the generators fi, i = 1, . . . , r. Let q be a free point such that
q 6∈ Ki for i = 1, . . . , r, then q 6∈ K

Proof. Let q → p. If q 6∈ Ki for all i, then vq( fi) = vp( fi) for all i = 1, . . . , r and
vq = mini{vq( fi)} = mini{vp( fi)} = vp, hence eq = vq − vp = 0 and q 6∈ K.

The next result characterizes the free points supporting the exceptional part of Fπ

that are not part of the minimal log-resolution of ( f1 · · · fr).

Proposition 3.11. Let G′ be a divisor as above. Let q 6∈ K′ be a free point proximate to p ∈ K′.
Then, q is in K if and only if any generator fi with vp( fi) = vp satisfies eq( fi) > 0.

Proof. We shall apply Theorem 3.8 to characterize whether q belongs to K. By definition,
vq = minj{vq( f j)} and vq( f j) = eq( f j) + vp( f j), for j = 1, . . . , r. Set Λq := {j | eq( f j) >

0}. Comparing

vq = min
j∈Λq,k 6∈Λq

{vp( fk), vp( f j) + eq( f j)} and vp = min
i
{vp( fi)}, (3.15)
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we infer that eq = vq − vp > 0 if and only if vp( fk) > vp, for all k 6∈ Λq, which is
equivalent to {i | vp( fi) = vp} ⊆ Λq.

Remark 3.3. Under the hypothesis of Proposition 3.11 we observe that there might be
two generators, say fi, f j, such that eq( fi) > 0, eq( f j) > 0 although the point q is not
singular for the reduced germ of f1 · · · fr = 0. This may happen when fi and f j have a
common factor which is not a common factor of the rest of generators. This is a subtle
difference with respect to the case of pencils treated in [Alb04]. �

Our next result deals with the satellite points not already in K′. Notice that these
missing satellite points will not lie on any generator, otherwise they would belong
to the points supporting the exceptional part of the minimal log-resolution divisor of
( f1 · · · fr).

Proposition 3.12. Let G′ be a divisor as above. Let q 6∈ K′ be a satellite point proximate
to p, p′ ∈ K′. Then, q is in K if and only if for each generator fi either vp( fi) > vp or
vp′( fi) > vp′ .

Proof. Let us start by proving the converse implication. We know that q 6∈ f j for any
j = 1, . . . , r, otherwise q would be in K′. We want to see that eq = vq − vp − vp′ > 0.
Then, vq = minj{vq( f j)} = minj{vp( f j) + vp′( f j)} and the last equality is true because
eq( f j) = 0. By hypothesis, vp( f j) + vp′( f j) > vp + vp′ , for any j, hence vq > vp + vp′ as
we wanted.

For the other implication, let us assume the contrary, that is, there exists a generator fi
such that vp( fi) = vp and vp′( fi) = vp′ . We know that q 6∈ fi, otherwise it would be in K′.
By definition, vq = minj{vq( f j)} = minj{vp( f j) + vp′( f j)} = vp( fi) + vp′( fi) = vp + vp′ ,
implying that eq = 0, which is a contradiction with the fact that q ∈ K

The algorithm

In this subsection we go back to our original setup, so let a = (a1, . . . , ar) ⊆ OX,0 be an
ideal that admits a decomposition a = ( f ) · a′, where f ∈ OX,0 is the greatest common
divisor of the generators of a and a′ = ( f1, . . . , fr) is m-primary. With all the technical
results stated above and the relation between the minimal log-resolutions of a, a′ and
( f ), see Remark 3.1, we present the algorithm.

Algorithm 3.13. (Minimal log-resolution of an ideal)
Input: An ideal a = (a1, . . . , ar) ⊆ OX,0.
Output: The log-resolution divisor Fπ = ∑p∈K NpEp + ∑s

i=1 MiSi of a.

1. Find f = gcd(a1, . . . , ar) and set ai = f fi.

2. Find the minimal log-resolution π : (X, E) −→ (X, 0) of ( f · f1 · · · fr). Let Di :=
Div(π∗ fi)exc = ∑p∈K vp( fi)Ep. Compute vp = mini{vp( fi)} for p ∈ K and define
G = ∑p∈K vpEp. Set also D := Div(π∗ f ).

3. Define G′ = ∑p∈K′ vpEp from G by blowing-up, if necessary, the missing free points
using Proposition 3.11. Define D′ by pulling-back D.

4. Define G′′ = ∑p∈K′′ vpEp from G′ by blowing-up, if necessary, the missing satellite
points using Proposition 3.12. Define D′′ by pulling-back D′.



3 computing log-resolutions of planar ideals 45

5. Compute, recursively on the order of neighborhood p belongs to, the multiplicities ep =

vp −∑p→q vq. Define G = ∑p∈K vpEp from G′′ by blowing-down the points such that
ep = 0 and ep(D′′) = 0. Define D by pulling-back D′′.

6. Return Fπ := G + D.

The next result proves the correctness of Algorithm 3.13.

Theorem 3.14. Algorithm 3.13 computes Fπ = ∑p∈K NpEp + ∑s
i=1 MiSi, the minimal log-

resolution divisor of the ideal a.

Proof. Since the divisor G from step 2 fulfills the hypothesis of Proposition 3.11 and
Proposition 3.12, we can use them to blow-up the remaining points.

After step 4 all remaining points to get Fπ have been blown-up. Indeed, if we had to
blow-up a missing point in the first neighborhood of a point already in K′, it would
have to be free as we have blown-up all the missing satellites in the last step. This
free point would have to be on a generator, by Lemma Lemma 3.10, and it would have
to be after one of the new satellite points, otherwise it would have been blown-up in
the fourth step. But that is impossible because the new satellite points cannot be on a
generator, and hence, neither can do any of its successors.

By Corollary 3.9, after blowing-down the points p in K′′ such that ep = 0 and
ep(D) = 0, the set of points parameterizing the resulting divisor is inside K and, since
no point remains to be blown-up, it must be equal to K.

As a corollary Theorem 3.14 we obtain the following generalization of the classical
result that the equisingularity class of a plane curve is determined by the equisingularity
class and the intersection multiplicity of its branches.

Corollary 3.15. Given an ideal a = (a1, . . . , ar) ⊆ OX,0, the equisingular class of a general
element of a is determined by the equisingularity class of each generator ai, and the intersection
multiplicities of every pair of branches from different generators.

Proof. General elements in a have the same minimal log-resolution divisor as a. By
Theorem 3.14, the relative position of the infinitely near points in Fπ are completely
determined by the equisingularity class of each ai and the intersection multiplicities
between any pair of branches of different generators.

Example 3.1. Consider the ideal

a = (a1, a2, a3) =
(
(y5 + x7)2 + y10x, x8(y3 + x5), y8(y2 − x3)

)
⊆ C{x, y}. (3.16)

The steps of Algorithm 3.13 are performed as follows:

1. We have that g = gcd(a1, a2, a3) = 1, so the ideal is m-primary. Then, fi := ai.
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2. The minimal log-resolution of (a1a2a3) is described by means of the proximity
matrix

PK =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0−1 1 0 0 0 0 0 0 0 0 0 0 0
−1 0−1 0 1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0−1 1 0 0 0 0 0 0 0 0 0

0 0 0 0−1−1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0−1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0−1 1 0 0 0 0 0
0 0 0 0 0 0 0 0−1−1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0−1 1 0 0 0
0 0 0 0−1 0 0 0 0 0 0 0 1 0 0
0 0−1 0−1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0−1 1



. (3.17)

The multiplicities {vp(ai)}p∈K, i = 1, 2, 3 are the following:

v(a1) = [10 10 14 14 28 40 70 72 74 75 150 151 28 42 42]t,

v(a2) = [11 19 13 13 25 36 61 61 61 61 122 122 25 39 40]t,

v(a3) = [10 10 19 27 30 40 70 70 70 70 140 140 31 49 49]t.

(3.18)

Therefore, vp = mini{vp( fi)} for p ∈ K is:

v = [10 10 13 13 25 36 61 61 61 61 122 122 25 39 40]t. (3.19)

The corresponding divisor G = ∑p∈K vpEp is represented using the dual graph in
Figure 3.1.

10 10 36

61

25 39 13 13

61

61

122

61

122

25 40

Figure 3.1: Dual graph of G from Algorithm 3.13 in Example 3.1.
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3. There are two missing free points that we have to blow-up. The infinitely near
points K′ parameterizing the divisor G′ are given by the proximity matrix

PK′ =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0−1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0−1−1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0−1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0−1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0−1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0−1−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0−1 1 0 0 0 0 0
0 0 0 0−1 0 0 0 0 0 0 0 1 0 0 0 0
0 0−1 0−1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0−1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 1



. (3.20)

The updated multiplicities v(ai), i = 1, 2, 3 are

v(a1) = [10 10 14 14 28 40 70 72 74 75 150 151 28 42 42 42 42]t,

v(a2) = [11 19 13 13 25 36 61 61 61 61 122 122 25 39 40 41 42]t,

v(a3) = [10 10 19 27 30 40 70 70 70 70 140 140 31 49 49 49 49]t.

(3.21)

Thus, we have

v = [10 10 13 13 25 36 61 61 61 61 122 122 25 39 40 41 42]t, (3.22)

and the divisor G′ is represented by the dual graph in Figure 3.2.

10 10 36

61

25 39 13 13

61

61

122

61

122

25
40

41

42

Figure 3.2: Dual graph of G′ from Algorithm 3.13 in Example 3.1.
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4. There are four missing satellite base points. The points in K′′ are given by the
proximity matrix

PK′′ =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0−1−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0−1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0−1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0−1−1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0−1 1 0 0 0 0 0 0 0 0 0
0 0 0 0−1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0−1 0−1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 1 0 0 0 0
−1 0 0 0 0−1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 1 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 1 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 1



. (3.23)

The updated multiplicities are:

v(a1) = [10 10 14 14 28 40 70 72 74 75 150 151 28 42 42 42 42 50 60 70 80]t,

v(a2) = [11 19 13 13 25 36 61 61 61 61 122 122 25 39 40 41 42 47 58 69 80]t,

v(a3) = [10 10 19 27 30 40 70 70 70 70 140 140 31 49 49 49 49 50 60 70 80]t,

v = [10 10 13 13 25 36 61 61 61 61 122 122 25 39 40 41 42 47 58 69 80]t.

(3.24)

and the corresponding divisor G′′ is represented by the dual graph in Figure 3.3.

10 10 47 58 69 80 36

61

25 39 13 13

61

61

122

61

122

25
40

41

42

Figure 3.3: Dual graph of G′′ from Algorithm 3.13 in Example 3.1.

5. Using the base change formula et = PK′′vt we get

e = [10 0 3 0 2 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1]t. (3.25)
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Thus, blowing-down the points with multiplicity zero, we finally obtain the
minimal log-resolution divisor Fπ = ∑p∈K NpEp. The points in K are represented
by the proximity matrix

PK =



1 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0
−1−1 1 0 0 0 0 0 0 0 0 0
−1 0−1 1 0 0 0 0 0 0 0 0

0−1−1 0 1 0 0 0 0 0 0 0
0 0 0 0−1 1 0 0 0 0 0 0
0 0 0 0 0−1 1 0 0 0 0 0
0 0 0 0 0 0−1 1 0 0 0 0
−1 0 0−1 0 0 0 0 1 0 0 0
−1 0 0 0 0 0 0 0−1 1 0 0
−1 0 0 0 0 0 0 0 0−1 1 0
−1 0 0 0 0 0 0 0 0 0−1 1



, (3.26)

and
N = [10 13 25 36 39 40 41 42 47 58 69 80]t. (3.27)

Equivalently, the dual graph of Fπ is in Figure 3.4.

10 47 58 69 80 36 25 39 13

40

41

42

Figure 3.4: Dual graph of Fπ from Algorithm 3.13 in Example 3.1.

�

3.3 Newton-Puiseux revisited

Taking a closer look at Algorithm 3.13, we see that all the steps can be effectively
computed once we have a precise description of the minimal log-resolution divisor
from step 2. The aim of this section is to provide an algorithm that solves the following
problem:

Given a set of elements f1, . . . , fr ∈ C{x, y}, provide a method to compute the minimal
log-resolution π : (X′, E) −→ (C2, 0) of ( f = f1 · · · fr) with log-resolution divisor Fπ =

∑p∈K NpEp + ∑s
i=1 MiSi together with the divisors Di := Div(π∗ fi) = ∑p∈K vp( fi)Ep +

∑si
j=1 αi,jSi,j.

We point out that in the case that f is reduced, we can compute the minimal log-
resolution using the Newton-Puiseux algorithm and Enriques’ Theorem [Cas00, §1,
§5.5]. However, we are in a more general situation that requires some extra work.
The Puiseux Factorization Theorem [Cas00, §1.5] states that any g ∈ C{x, y} can be
decomposed as

g(x, y) = uxα0 gα1
1 · · · g

α`
` = uxα0

`

∏
i=1

νi

∏
j=1

(y− σ
j
i (si))

αi , α1, . . . , αl ∈N (3.28)
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where u ∈ C{x, y} is a unit, g1, . . . , g` ∈ C{x, y} are irreducible, si ∈ C〈〈x〉〉 are Puiseux
series such that gi(x, si(x)) = 0, νi = ordy(gi(0, y)), and σ

j
i is the automorphism of

C((x1/νi)) generated by x1/νi 7→ e2π
√
−1j/νi x1/νi .

From the above factorization one can compute all the minimal log-resolution data. It
is a classical result, see [Cas00, §5.5], that the Puiseux series si, i = 1, . . . , ` completely
determine the minimal log-resolution of an element g ∈ C{x, y}. In order to compute
the values vp(g) for any point p, we can use the fact that vp are valuations, thus

vp(g) = α0vp(x) + α1vp(g1) + · · ·+ α`vp(g`). (3.29)

In addition, the values vp(x), vp(gi), i = 1, . . . , `, can also be deduced from their
associated Puiseux series si of (gi). However, notice that the algebraic multiplicities αi
play their role in Equation (3.29).

The Newton-Puiseux algorithm, that traditionally has been used to obtain the Puiseux
decompositions, only works for reduced elements. This means that you cannot recover
the algebraic multiplicities of the Puiseux series in Equation (3.28). Another problem
that arises when applying the Newton-Puiseux algorithm to a product f = f1 · · · fr is
that you cannot find which factor fi contains each resulting Puiseux series.

To overcome such inconvenients, we will present a modified version of the Newton-
Puiseux algorithm that, given a set of elements f1, . . . , fr ∈ C{x, y} not necessarily
reduced or irreducible, will compute the Puiseux decomposition of the product f =

f1 · · · fr, that is, the Puiseux series of f together with their algebraic multiplicities in
each of the factors f1, . . . , fr.

The Newton-Puiseux algorithm is obviously restricted to compute a partial sum of
each Puiseux series in the decomposition (3.28) as the series are potentially infinite.
Thus, the algorithm computes enough terms of each series so they do not share terms
from a certain degree onward. In this situation we will say that the series have been
pair-wise separated. In particular, this means that a partial sum of Puiseux series s might
be enough to separate s inside a factor, but not inside the whole product f = f1 · · · fr.
Hence, applying the Newton-Puiseux algorithm to the factors f1, . . . , fr does not provide
as much information as applying the Newton-Puiseux algorithm to the product.

Similarly, if one obtains just the Puiseux series of the product it is not possible to
recover the Puiseux decomposition of each factor. The modification of the Newton-
Puiseux algorithm that we will present provides all the information needed to recover
both the decomposition of each factors and the decomposition of the whole product at
the same time. One of the key ingredients is the square-free factorization.

Definition 3.16. Let R be a unique factorization domain. The square-free factorization of
an element h ∈ R[[x]] is

h = h1h2
2 · · · hn

n, (3.30)

such that hi ∈ R[[x]], i = 1, . . . , n are reduced, pair-wise coprime elements, and hn is a
non-unit.

Notice that some of the hi, i = 1, . . . , n − 1 can be units. The non-unit factors in
Equation (3.30) will be called square-free factors and are unique up to multiplication by a
unit. The square-free factorization can be computed efficiently, see for instance [Yun76].
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We will not explain all the details for the traditional Newton-Puiseux algorithm,
for that we refer the reader to [Cas00, §1.5]. We will just recall that it is an iterative
algorithm that at the i–th step computes the i–th term of one of the Puiseux series s.
The first term of s(x) =: s(0)(x0) is computed from f (x, y) =: f (0)(x0, y0), and the i–th
term of s is computed as the first term of s(i)(xi) ∈ C〈〈xi〉〉 from f (i)(xi, yi) ∈ C{xi, yi}
which are defined recursively from s(i−1) and f (i−1)(xi−1, yi−1) by means of a change of
variables.

The basic idea behind our new algorithm is to apply the traditional Newton-Puiseux
algorithm to the reduced part of f , f̄ , while the square-free factors of each fi, i = 1, . . . , r
are transformed using the changes of variables given by f̄ . The Newton-Puiseux
algorithm applied on f̄ will tell when all the branches have been separated, i.e. the
stopping condition. The square-free factors will encode, at the end, the algebraic
multiplicities of the resulting Puiseux series in each factor.

The modified Newton-Puiseux algorithm works as follows:

• Compute the element f = f1 · · · fr and f̄ = f / gcd( f , ∂ f
∂x , ∂ f

∂y ). Define x0 :=

x, y0 := y, f (0) := f̄ , and

S(0) := {hj,k ∈ C{x0, y0} | hj,k square-free factor of fk, k = 1, . . . , r

with multiplicity j ∈N}

• Step (i): The i–th iteration runs as in the traditional algorithm and we compute
xi+1, yi+1 and f (i+1). In addition, we compute S(i+1) from S(i) in the following
way:

S(i+1) = {x−βi,j,k
i+1 h(i)j,k (xi+1, yi+1) ∈ C{xi+1, yi+1} | x

βi,j,k+1
i+1 6 | h(i)j,k (xi+1, yi+1),

h(i+1)
j,k non-unit, h(i)j,k ∈ S(i)}

• The algorithm ends at the same step the traditional Newton-Puiseux algorithm
ends for the reduced part f̄ .

In order to prove the correctness of this modification we will need the following
results.

Lemma 3.17 ([Cas00, p. 1.6.3]). For any j > i ≥ 0, the multiplicity of s(i) as Puiseux series
of f (i) equals the multiplicity of s(j) as Puiseux series of f (j).

In the current context the following lemma follows from the definitions.

Lemma 3.18. Two elements of C{x, y} are coprime if and only if they share no Puiseux series
and no x factor.

Proposition 3.19. The set S(i) contains the square-free factors of f (i)k for any i ≥ 0 and any
k = 1, . . . , r.

Proof. By induction on i ≥ 0. By construction, S(0) contains the square-free factors of
f (0)k := f k, for k = 1, . . . , r. Assume now that S(i) contains the square-free factors of f (i)k .

If two elements of h(i+1)
n,k , h(i+1)

m,k are not coprime, they would share a Puiseux series
or an x factor, by Lemma 3.18. The x factor is not possible by definition of S(i+1). If
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they share a Puiseux series s(i+1), s(i) would be a series of h(i)n,k and h(i)m,k, contradicting

the induction hypothesis. Since h(i)j,k is reduced so is h(i+1)
j,k , by Lemma 3.17. Since

Equation (3.30) still holds after applying the change of variables two both sides, the
result follows.

Proposition 3.20. Assume s ∈ C〈〈x〉〉 has been separated from the rest of the series of f̄
at the i–th step of the algorithm. Then, s is a Puiseux series of fk ∈ C{x, y} with algebraic
multiplicity j ∈N if and only if h(i)j,k ∈ S(i).

Proof. For the direct implication, assume that s is a Puiseux series of fk with multiplicity
j ∈ N. Then, s is a Puiseux series of h(0)j,k ∈ S(0) and no other square-free factor, by

Lemma 3.18. Now, by Lemma 3.17, s(i) is a root of h(i)j,k and it belongs to S(i) because it

is a non-unit. For the converse, since s has been separated, f (i) has no other Puiseux
series other than s(i) and its conjugates. By Proposition 3.19, there must be a unique
h(i)j,k square-free factor of f (i)k in S(i). Finally, by Lemma 3.17, if the algebraic multiplicity

of s(i) is j > 0 in f (i)k , so is the algebraic multiplicity of s in fk.

It follows from Proposition 3.20 that, when the algorithm stops at the i–th step after
s has been separated, the set S(i) contains the information about the factors and the
algebraic multiplicities of the Puiseux series s.

4 monomial generators of complete planar ideals

This section contains the second algorithms presented in this thesis together with the
proof of its correctness. Given a proper birational morphism π : (X′, E) −→ (X, 0)
between smooth complex surfaces, this algorithm computes a set of generators for
the push-forward of the ideal sheaf OX′(−D) for D a divisor in X′ with support on E.
Furthermore, the generators of these ideals are monomials in a set of maximal contact
elements of the morphism π. At the end of this sections we give some applications
of this algorithm to three different problems: the computation of the integral closure,
multiplier ideals, and ideals defined by curve valuations. The results of this sections
are joint work with Alberich-Carramiñana and Àlvarez Montaner and can be found in
[AMB20].

4.1 An algorithm to compute HD

Let (X, 0) be a germ of smooth complex surface and let π : (X′, E) −→ (X, 0) be a
proper birational morphism. In this section we present an algorithm which computes a
set of generators for the m-primary ideal HD, see Section 2.3, for any divisor D with
exceptional support in X′, i.e. D ∈ Λπ.

We start by briefly describing the main ideas behind Algorithm 4.3. We start with a
divisor D ∈ Λπ which can be assumed to be antinef. After Theorem 2.7, D decomposes
into simple divisors D = ρq1 Bq1 + · · ·+ ρqr Bqr with all ρqi > 0. For each simple divisor
Bqi , qi 6= 0, we compute the antinef closure of Bqi + E0 which we denote D̂i. This new
divisor describes a particular adjacent ideal HD̂i

below HBqi
, i.e. an ideal HD̂i

 HBqi
such

that dimC HBqi
/HD̂i

= 1. Next, we find, among the set of maximal contact elements of
π, see Definition 2.13, an element f ∈ OX,0 belonging to HBqi

but not to HD̂i
. Now, D̂i is
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no longer simple but has smaller support than Bqi in the total transform basis. Therefore
we may repeat the same procedure with D := Bqj , j < i until D = B0 := Div(π∗m).

The first part of the algorithm can be represented by a tree where each vertex is an
antinef divisor. The leaves of the tree are all B0 = Div(π∗m) and the root is the initial
divisor D. The second part of the algorithm traverses the tree bottom-up computing,
in each node, the ideal associated to the divisor of that node. Using the notations
from the paragraph above, given any node in the tree with divisor D, the ideal HD

is computed multiplying the ideals in child nodes and adding the element f to the
resulting generators.

Before giving a more explicit description of the algorithm, let us first state two
technical results. The first one presents some properties of adjacent ideals based
on results obtained by Fernández-Sánchez, see [Fer03; Fer05; Fer06], in the study of
sandwiched singularities and the Nash conjecture of arcs on these singularities.

Proposition 4.1. Let HD be the complete ideal defined by an antinef divisor D ∈ Λπ. Consider
D̂ the antinef closure of D + E0, obtained from D + E0 by unloading on a given1 subset of
points T ⊆ K. Then, HD̂  HD are adjacent ideals if and only if ρ0(D) = 0.

Furthermore, if HD̂  HD are adjacent then,

1. ∑p∈T Ep is the connected component of ∑p∈K, ρp(D)=0 Ep containing E0;

2. e0(D̂) = e0(D) + 1, and ep(D)− 1 ≤ ep(D̂) ≤ ep(D) for any p ∈ K, p 6= 0. Moreover
ρ0(D̂) > 0.

3. If p ∈ K \ T and p is proximate to some point in T then, ep(D̂) = ep(D)− 1.

Proof. Consider r := ρ0(D) + 1 new free points p1, . . . , pr lying on E0. Let π′ :
(Y′, E′) −→ (X, 0) be the composition of π with the sequence of blow-ups of the
points p1, . . . , pr. Denote by G ∈ Div(Y′) the pullback of any G ∈ Div(X′). For simplic-
ity, denote the strict and the total transform basis by {Ep}p∈K′ and {Ep}p∈K′ respectively
in the lattice Λπ′ .

Clearly, both D + E0 and D + Ep1 + · · · + Epr are not antinef, whereas D + Ep1 +

· · · + Epi are antinef for all 1 ≤ i < r. Moreover, when applying the unloading
procedure described in Algorithm 2.6, we find that the antinef closures of D + E0 and
D + Ep1 + · · ·+ Epr are the same, say D̂′, and epi(D̂′) = 0 for all 1 ≤ i ≤ r. Indeed,
the first step of the unloading procedure applied to D + E0 or D + Ep1 + · · · + Epr

gives the same divisor D + E0 + Ep1 + · · ·+ Epr . Furthermore, D̂′ is the pullback of the
antinef closure D̂ of D + E0 in Div(X′) and hence they define the same complete ideal
HD̂′ = HD̂.

Now, from [Cas00, §4.7], the codimension of a complete ideal HG defined by a divisor
G ∈ Λπ satisfies

dimOX,0/HG = ∑
p∈K

ep(G̃)(ep(G̃) + 1)
2

≤ ∑
p∈K

ep(G)(ep(G) + 1)
2

, (4.1)

where G̃ is the antinef closure of G. Hence,

HD̂ = HD+Ep1+···+Epr
 HD+Ep1+···+Epr−1

 . . .  HD+Ep1
 HD (4.2)

1 T is the set of points p ∈ K that parameterize the support of D̂− (D + E0). Notice that T may be empty.
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is a chain of adjacent complete ideals, giving dimC HBqi
/HD̂i

= r = ρ0(D) + 1. There-
fore, HD̂  HD are adjacent if and only if ρ0(D) = 0.

Finally, from [AF07, Prop. 2.1] and [Fer03, Cor. 4.6] claim i) follows. Claim ii) and
iii) are consequences of [Fer05, Lemma 4.2] and [Fer06, Lemma 2.2], see also [AF10,
Prop. 3.1].

Remark 4.1. Although there may be multiple adjacent ideals HD̂ to a fixed ideal
HD, the adjacent ideal considered in Proposition 4.1 is unique with the property that
e0(D̂) = e0(D) + 1, so we will refer to it as the adjacent ideal to HD. This property turns
out to be crucial for the finiteness of the algorithm. �

Remark 4.2. Notice that if D is a simple divisor such that HD 6= m, then ρ0(D) = 0
and HD̂ is always adjacent. Furthermore, the unloading step is always required, i.e. T
is always non empty in this case. �

Lemma 4.2. Let HD be the complete ideal defined by an antinef divisor D ∈ Λπ. The divisor
D + E0 is antinef and HD+E0

= mHD.

Proof. Clearly m = { f ∈ OX,0 | e0( f ) ≥ 1}. Thus, m = HE0
, and since E0 = B0 it

is antinef and the result follows by the correspondence between antinef divisor and
complete ideals in section Section 2.3.

The following algorithm computes generators for the ideals HD, D ∈ Λπ that are
monomial in any set of maximal contact elements of the morphism π. This algorithms
is inspired in the work [Cas98] of Casas-Alvero.

Algorithm 4.3. (Generators for HD)
Input: A proper birational morphism π : (X′, E)→ (X, 0) and an antinef divisor D ∈ Λπ.
Output: Generators for the ideal HD.

1. Compute and fix a set of maximal contact elements { fi} with i ∈ I of π.

2. Set D(0) := D and proceed from step (0.1).

Step (i):

i.1 Decompose D(i) into di := #{p ∈ K | ρp(D(i)) > 0} simple divisors.

i.2 For each j = 1, . . . , di, consider qj ∈ {p ∈ K | ρp(D(i)) > 0} and assume
Bqj = ∑p∈K epEp.

i.j.1 Stop at the maximal ideal: If Bqj = B0 := Div(π∗m), then set HBqj
=

( fi0 , fi1) for i0, i1 ∈ I such that they are smooth and transverse at O, then stop.
Otherwise, proceed from i.j.2.

i.j.2 Compute the adjacent ideal to HBqj
: Perform unloading on the divisor

Bqj + E0 to get its antinef closure D̂j.

i.j.3 Select a maximal contact element in HBqj
\ HD̂j

: Let p ∈ K be the last free
point such that ep 6= 0. Take τj ∈ I such that ep( fτj) = 1 and e0( fτj) ≤ e0.
Define the integer ej := e0(Bqj)/e0( fτj).

i.j.4 Recursive step: Assume that HD̂j
has been computed after performing step

(i + 1) with D(i+1) := D̂j.
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i.j.5 Set:
HBqj

=
(

f
ej
τj

)
+ HD̂j

.

i.3 Apply Zariski’s factorization theorem: Compute the product

HD(i) =
di

∏
j=1

H
ρqj
Bqj

,

giving generators h1, . . . , hsi .

i.4 Set, using Nakayama’s Lemma:

HD(i) =
(

hk
∣∣ π∗hk 6∈ OX′

(
− D(i) − E0

)
, k = 1, . . . , si

)
OX,0.

3. Return: HD = HD(0) .

Remark 4.3. In order to clarify some steps of the algorithm we point out the following:

· At step 1 of Algorithm 4.3 a set of maximal contact elements { fi}i∈I of π is fixed.
The specific choice of the germs fi = 0 nor of the equations fi do not affect the
output of the algorithm: the monomial expression remains the same for whatever
choice, since the algorithm only uses the information of the equisingularity types
of the maximal contact elements.

· At steps (i.j.1) and (i.j.3) of Algorithm 4.3 we have to choose maximal contact
elements. These choices are not necessary unique as several maximal contact
elements may fulfill the required conditions.

· Since the sheaf ideals OX′(−D), with D ∈ Div(X′), are defined by valuations,
testing whether the pullback of an element f belongs to OX′(−D) or not is only a
matter of comparing the values vp(Div(π∗ f )) and vp(D) for all p ∈ K.

· It is clear from Nakayama’s Lemma and Lemma 4.2 that a set of elements of OX,0

is a system of generators of HD if and only if its classes modulo HD+E0
are a

system of generators of HD/HD+E0
as C-vector space. Equivalently, any element

of HD+E0
is redundant in a system of generators of HD.

�

Example 4.1. We will compute HD for the divisor D and the morphism π from Ex-
ample 2.1. Let us fix the set of maximal contact elements f0 = x, f1 = y, f2 = y2 − x3.
The steps of Algorithm 4.3 applied to D = 4E0 + 6Ep1 + 12Ep2 + 13Ep3 + 26Ep4 will be
illustrated in Figure 4.1 by means of the tree-shaped graph in Figure 2.1.

Each vertex of the tree contains an antinef divisor. In this example, we use dual
graphs to represent them. The root node contains the initial divisor D. Dashed arrows
connect simple divisors Bqj with its corresponding adjacent D̂j from step (i.j.2) of
Algorithm 4.3. The maximal contact elements from step (i.j.3) that belong to HBqj

but

not to HD̂j
are represented next to dashed arrows. Solid arrows connect D̂j =: D(i+1)

with each of its irreducible components Bp, with p ∈ K. Finally, the weight ρ
(i)
p of each

divisor Bp, p ∈ K, in D̂(i) is written next to the solid arrows.
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Figure 4.1: Tree of divisors from Algorithm 4.3 in Example 4.1.

We have added some extra indices to the divisors appearing in the algorithm to
highlight at which step we encounter them. Hopefully it does not create any confusion
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since its meaning should be clear from the context. The generators of the ideals
associated to the divisors in each intermediate step are then:

• HB0 = m = (x, y).

• HBp1
= (y) + H

D(2)
1

= (y) +m2 = (y, x2, xy, y2).

• HBp2
= (y2) + H

D(2)
2

= (y2) +m3 = (y2, x3, x2y, xy2, y3).

• HD(1) = B2
0 · Bp1 · Bp2 = (x, y)2 · (y, x2, xy, y2) · (y2, x3, x2y, xy2, y3)

= (x7,��x6y ,���x5y2 ,
�
��x4y3 , . . . , x5y, x4y2, . . . ,���x3y3 ,

�
��x2y4 , x2y3, xy4, y5)

= (x7, x5y, x4y2, x2y3, xy4, y5).

• Bp4 =
(
(y2 − x3)2)+ HD(1) =

(
(y2 − x3)2, x7, x5y, x4y2, x2y3, xy4, y5).

• HD := HD(0) = Bp4 =
(
(y2 − x3)2, x7, x5y, x4y2, x2y3, xy4,��y

5).
The crossed out elements are those that are redundant by step (i.4) of Algorithm 4.3

and Lemma 4.2. Observe that, although many crossed out elements are actually
multiple of other elements, step (i.4) and Lemma 4.2 allows us to remove y5 which is
not multiple of any other element.

Remark 4.4. As an outcome of the algorithm, we see that HD admits the following
monomial expression

HD =
(

f 2
2 , f 7

0 , f 5
0 f1, f 4

0 f 2
1 , f 2

0 f 3
1 , f0 f 4

1
)
, (4.3)

in the set of maximal contact elements f0 = x, f1 = y, f2 = y2 − x3 associated to π that
we fixed in the beginning. It is worth remarking that we would get the same monomial
expression for any other set of maximal contact elements chosen in the beginning.

However, we might get a different monomial expression depending on the maximal
contact elements (or powers of) that we choose in step (i.j.3) of Algorithm 4.3. In this
example, when choosing an element in HBp3

that does not belong to H
D̂(1)

2
we took

f 2
1 = y2, but we could also have chosen f2 = y2 − x3. In the later case the final system

of generators is

HD =
(
(y2 − x3)2, x2y(y2 − x3), xy2(y2 − x3), x7, x5y, x4(y2 − x3), x4y2

)
, (4.4)

so we get the monomial expression

HD =
(

f 2
2 , f 2

0 f1 f2, f0 f 2
1 f2, f 7

0 , f 5
0 f1, f 4

0 f2, f 4
0 f 2

1
)
. (4.5)

�

�
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4.2 Correctness of the algorithm

In this section we will prove that Algorithm 4.3 described in Section 4.1 is correct. First,
we need to check that it terminates after a finite number of steps. The key point is to
prove that the divisor D̂j defining the adjacent ideal to the simple ideal HBqj

has smaller
support in the total transform basis than Bqj .

Lemma 4.4. Using the notations in Algorithm 4.3, assume that Bqj is a simple divisor different
from B0 = Div(π∗m). Let D̂j be the antinef closure of Bqj + E0 computed in step (i.j.2). Then,
D̂j has smaller support than Bqj in the total transform basis. That is,

|SuppE(Bqj)| > |SuppE(D̂j)|. (4.6)

Proof. Since Bqj 6= B0, the excess of Bqj at O is ρ0(Bqj) = 0. Then, according to
Proposition 4.1, the ideal defined by Bqj + E0 is an adjacent ideal below HBqj

. Let T ⊆ K

be the points on which unloading is performed to obtain the antinef closure D̂j from
Bqj + E0. By Proposition 4.1, T are the points p ∈ K whose associated exceptional
divisor Ep belongs to the same connected component as E0 in ∑O≤p<qj

Ep. Observe
that ∑0≤p<qj

Ep has either one or two components, according if qj is either free or
satellite. In both cases, qj is proximate to the point p ∈ T whose exceptional divisor
cuts Eqj , i.e. Ep · Eqj = 1. Hence, using Proposition 4.1 again, the multiplicity at qj of
D̂j, after performing unloading on Bqj + E0, decreases by one. Since Bqj is simple, the
multiplicity of Bqj at qj is one. Hence, the multiplicity of D̂j at qj is zero, giving the
desired result.

In the next proposition we prove that Algorithm 4.3 terminates after a finite number
of steps. To emphasize the dependence of the divisors on a specific step (i) of the
algorithm we will use the notation B(i)

qj and D̂(i)
j .

Proposition 4.5. Algorithm 4.3 terminates after a finite number of steps.

Proof. As noted in Section 2.2, the points q ∈ K such that eq(Bp) 6= 0 are totally ordered.
Then, using Equation (2.12), the sequence of multiplicities of Bp decrease along those
points. Hence, we have |Bp|E = 1 for some p ∈ K if and only if p = 0 and then,
Bp = Div(π∗m).

Using the notations in Algorithm 4.3, assume that we are in step (i) and we have a
simple divisor Bqj in step (i.j.1). If qj = 0, then B0 = Div(π∗m) and we are done.

Otherwise, since qj 6= 0, we have that |SuppE(Bqj)| > |SuppE(D̂(i)
j )| by Lemma

Lemma 4.4. Since D(i+1) := D̂(i)
j admits a decomposition D(i+1) = ∑p∈K ρ

(i+1)
p Bp, we

have |SuppE(D(i+1))| ≥ |SuppE(Bp)| for all Bp with ρ
(i+1)
p > 0. Hence, |SuppE(Bqj)| >

|SuppE(Bp)|, for all p with ρ
(i+1)
p > 0, and the result follows by induction.

Lemma 4.6. Let Bq be a branch basis divisor associated to a satellite point q ∈ K. Let
Γq = 〈β0, β1, . . . , βr〉 be the semigroup of a Cq : fq = 0, fq ∈ OX,0 associated to Bq and
take C : fr = 0, fr ∈ OX,0 such that [Cq, C] = βr. Then, B2

q = [Cq, er−1C]. Furthermore,
vp( f er−1

r ) ≥ vp(Bq), for all p ≤ q.
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Proof. Assume that Bq = ∑p∈K epEp. The first claim follows from the following compu-
tation:

B2
q = ∑

p∈K
e2

p =
r

∑
i=1

(βi − βi−1)ei−1 =
r−1

∑
i=1

(ei−1 − ei)βi + er−1βr

= er−1βr = er−1[Cq, C] = [Cq, er−1C].

(4.7)

where the second equality is true since q ∈ K is a satellite point, see [Cas00, §5.10, Ex.
5.6], and the fourth equality comes from Equation (2.16)

To prove the second claim, after Lemma 2.5, it suffices to check the inequalities
[er−1C, Cp] ≥ [Cq, Cp] for any p ≤ q with Cp : fp = 0. We will use well-known
properties of the ultrametric dC distance, introduced in [Pło86], defined over the space
C of plane branches as

1
dC(C, D)

:=
[C, D]

e0(C)e0(D)
, (4.8)

for any C, D ∈ C. Hence, the inequalities above are equivalent to dC(er−1C, Cp) ≥
dC(Cq, Cp) for any p ≤ q, since in our case

[er−1C, Cp]

e0(er−1C)e0(Cp)
=

eg−1[C, Cp]

eg−1e0(C)e0(Cp)
=

1
dC(C, Cp)

. (4.9)

Notice that fq = fqg for some point qg, 0 ≤ qg ≤ q, which corresponds to a dead-end in
the dual graph of Bq. Now we summarize the results on the ultrametric space of plane
branches from [AAG11, Thm. 3.1, Thm. 3.2, Prop. 3.4] adapted to our setting:

· dC(Cq, Cp) = dC(C, Cp), if 0 ≤ p < qg.

· dC(Cq, Cp) = dC(C, Cp), if qg < p ≤ q and in the dual graph of Bq the vertex of p
lies on the segment joining the vertexes q and qg.

· dC(Cq, Cp) > dC(C, Cp), otherwise.

Hence, the second claim follows.

Proposition 4.7. Using the notations in Algorithm 2.6, at any step (i) of the algorithm, there
exists a power of a maximal contact element f

ej
τj ∈ OX,0 as required at step (i.j.3) and such

element belongs to HBqj
but not to HD̂j

.

Proof. We are going to break the proof of the first statement in two cases depending on
whether the point qj ∈ K is free or satellite. With the notations from step (i.j.3), p ∈ K
will be the last free point such that ep(Bqj) 6= 0.

Assume first that qj is free, i.e. p = qj. If, in addition, the vertex of qj is a dead-end of
the dual graph of π we are done, since fτj = fqj and fqj ∈ HBqj

. If qj is not a dead-end
of the dual graph, there is a dead-end q ∈ K and a totally ordered sequence qj ≤ p1 ≤
· · · ≤ pr ≤ q of free points such that eqj(Bq) = ep1(Bq) = · · · = epr(Bq) = eq(Bq) = 1, by
Equation (2.12). Therefore, fτj = fq with eqj( fq) = 1 and Bq = Bp + Ep1 + · · ·+ Epr + Eq,
which implies, by Equation (2.6), that fq ∈ HBq  HBqj

. In both cases, we have that
ej = e0(Bqj)/e0( fτj) = 1.

Now, assume that qj is satellite and hence p < qj. Let Γqj = 〈β0, β1, . . . , βg〉 be the
semigroup of Cqj : fqj = 0. By [Cas00, §5.8], p has the property that any C : fp =
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0, fp ∈ OX,0 satisfies [Cqj , C] = Bqj · Bp = βg. However, it may happen that p ∈ K is
not a dead-end. In this case, using the same argument as before, there is a dead-end
q ∈ K and a totally ordered sequence p ≤ p1 ≤ · · · ≤ pr ≤ q of free points and
Bq = Bp + Ep1 + · · ·+ Epr + Eq. Since p is the last free point of Bqj , Bqj · Epi = 0 for
i = 1, . . . , r and also Bqj · Eq = 0. Hence, [C′, Cqj ] = Bq · Bqj = βg with C′ : fq = 0, i.e.
we can take fτj = fq. We can then apply Lemma 4.6 to Bqj with fg = fτj yielding that
f

ej
τj ∈ HBqj

with ej = e0(Bqj)/e0( fτj).

Finally, if f
ej
τj ∈ OX,0 fulfills the requirements of step (i.j.3), then e0( f

ej
τj ) = e0(Bqj),

but e0(D̂j) > e0(Bqj) by Proposition 4.1, therefore we have that f
ej
τ 6∈ HD̂j

.

Theorem 4.8. Let π : (X′, E) −→ (X, 0) be a proper birational morphism and let D ∈ Λπ.
Then, Algorithm 4.3 computes a set of generators for HD that are monomial in any given set of
maximal contact elements of π.

Proof. Let us prove that the i–th step of the algorithm returns a system of generators
of HD(i) which has the desired properties. By Zariski’s Factorization Theorem 2.7, it is
enough to focus on computing generators for each simple ideal HBqj

, j = 1, . . . , di, in the

decomposition of D(i). Fixing Bqj at step (i.2), we will make induction on the order of
the neighborhood that qj ∈ K belongs to, and we will show that Algorithm 4.3 computes
generators for HBqj

which are monomials in the set of maximal contact elements.

If qj = 0, then B0 = Div(π∗m) and step (i.j.1) returns HD(i) = m, since a pair of
smooth transverse elements generate m. By construction, any set of maximal contact
elements contain such a pair of elements.

Assume now that qj 6= O and that the algorithm computes the generators of the
ideals associated to Bp for p < qj. By Proposition 4.1, HD̂j

 HBqj
are adjacent ideals.

Since D̂j = ∑p<qj
ρ
(i)
p Bp, we can apply the induction hypothesis to the simple divisors

Bp, p < qj such that ρ
(i)
p 6= 0 and apply Theorem 2.7 to get

HD̂j
= ∏

p<qj

H
ρ
(i)
p

Bp
 HD(i) . (4.10)

At this point is it enough to add any element that belongs to HBqj
but not to HD̂j

to get
a system of generators of HBqj

. By Proposition 4.7, the element chosen at step (i.j.3)
has the desired properties, namely, it is a power of a maximal contact element. Finally,
we can remove unnecessary elements from the system of generators of HD(i) using
Lemma 4.2.

The dependency on the set of maximal contact elements { fi}i∈I is only used in step
(i.j.3). The conditions required to { fp}i∈I depend only on a finite number of valuations
associated to the exceptional divisors of π. These conditions are fulfilled by an infinite
number of elements which can be part of a set of maximal contact elements.

Remark 4.5. We would like to stress the generality of the monomial generators in
Theorem 4.8. Consider the monomials zα = ∏i∈I zαi

i , α = (αi)i∈I in the variables zi, i ∈ I.
Each variable zi formally represents all possible elements fp for a fixed dead-end of
the dual graph of π. They all have the same value for the valuations associated to the
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exceptional divisors. Take now any set of maximal contact elements f = { fpi}i∈I and
denote zα

f = ∏i∈I f αi
pi the specialization zi 7→ fpi .

The result of Theorem 4.8 is that Algorithm 4.3 returns formally (zα1 , . . . , zαr) and
that for any two sets of maximal contact elements f = { fpi}i∈I and g = {gpi}i∈I , both
specializations HD, f = (zα1

f , . . . , zαr
f ) and HD,g = (zα1

g , . . . , zαr
g ) are equal. �

Corollary 4.9. The set of monomial expressions returned by Algorithm 4.3 is a topological
invariant of D, i.e. it is an invariant of the weighted dual graph of D.

Proof. From the proof of Theorem 4.8 it follows that the algorithm only uses the
information of the equisingularity types of the maximal contact elements and of the
dual graph of D weighted by the natural numbers vp(D) for p ∈ K.

4.3 Applications to some families of complete ideals

Let (X, 0) be a germ of smooth complex surface and let π : (X′, E) −→ (X, 0) be a
proper birational transform. The ideal sheaves OX′(D) and its pushforward, for some
D ∈ Λπ, arise in many different contexts. The goal of this sections is to show how
Algorithm 4.3 and Theorem 4.8 applies to different problems. Our approach is specially
useful when studying families of divisors {Di}i∈I in Λπ since all the generators for all
the ideals HDi will be given as monomials in any set of maximal contact elements.

Integral closure

Let a ⊆ OX,0 be an ideal which can be assumed to be m-primary after considering
the decomposition a = (a) · a′ with a = gcd(a). Let π : (X′, E) −→ (X, 0) be a log-
resolution of the ideal a, i.e., a proper birational morphism such that there exists Fπ an
effective Cartier divisor such that a · OX′ = OX′ (−Fπ). Then, the integral closure a of a
is just the ideal HFπ .

Therefore, we have a very simple method to compute the integral closure of any
planar ideal that boils down to the following steps:

· Compute the divisor Fπ of the minimal log-resolution of a by using Algorithm 3.13.

· Compute a set of generators for the ideal HFπ using Algorithm 4.3.

Let us illustrate this situation with an small example.

Example 4.2. Let a = ((y2 − x3)2, x2y3) ⊆ OX,0 be an ideal. One can compute the
minimal log-resolution divisor of a using Algorithm 3.13. The minimal log-resolution
and its associated divisor Fπ of a are precisely the proper birational morphism π and
the divisor D from Example 2.1.

Namely, Fπ = 4E0 + 6Ep1 + 12Ep2 + 13Ep3 + 26Ep4 and we can take f0 = x, f1 =

y, f2 = y2 − x3 as a set of maximal contact elements of the minimal log-resolution π.
Thus, from the computation in Example 4.1, one deduces that

a = HFπ = π∗OX′(−Fπ) = ((y2 − x3)2, x7, x5y, x4y2, x2y3, xy4). (4.11)

�
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The following results follows directly from Theorem 4.8 and its corollaries.

Theorem 4.10. Let a ⊆ OX,0 be an ideal. There exists a set of generators of the integral closure
a that are monomial in any given set of maximal contact elements of the minimal log-resolution
of a.

Corollary 4.11. Let π : (X′, E) −→ (X, 0) be a proper birational morphism. Any complete
ideal a ⊆ OX,0 whose log-resolution is dominated by π admits a system of generators given by
monomials in any set of maximal contact elements associated to π.

Corollary 4.12. The set of monomial expressions returned by Algorithm 4.3 for the integral
closure of an ideal a is an equisingular invariant of a.

Multiplier ideals

Let π : (X′, E) −→ (X, 0) be a log-resolution of an ideal a ⊆ OX and let Fπ be the divisor
such that a · O′X = OX′(−Fπ). Recall the definition of the multiplier ideal associated to a

and some rational number λ ∈ Q>0 introduced in Section 1.3,

J (aλ) = π∗OX′(dKπ − λFπe)0, (4.12)

Combining the algorithms from Section 3 and Section 2.9 with Algorithm 4.3 we may
provide a method that, given a set of generators of a planar ideal a, returns the set of
jumping numbers and a set of generators of the corresponding multiplier ideals, see
[BD18]. Namely, we have to perform the following steps:

· Compute the divisor Fπ of the minimal log-resolution of a by using Algorithm 3.13.

· Compute the sequence of jumping numbers {λj}j∈Z≥0 and the divisor corresponding to the
associated multiplier ideals {J (aλj)}j∈Z≥0 , i.e. the antinef closures Dλj of bλjFπ − Kπc,
using Algorithm 2.25.

· Compute a set of generators for the ideals HDλj
using Algorithm 4.3.

This method is illustrated with the following

Example 4.3. Consider the ideal a = ((y2 − x3)3, x3(y2 − x3)2, x6y3) ⊆ OX,0. The
minimal log-resolution of a can be computed using the algorithm from Algorithm 3.13

and it is represented by means of the following dual graph:

p2O p1

p3

p5

p4

186 9

20

42

21

Figure 4.2: Dual graph of the ideal in Example 4.3.
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The divisor Fπ such that a · O′X = OX′(−Fπ) is Fπ = 6E0 + 9E1 + 18E2 + 20E3 +

21E4 + 42E5. A set of maximal contact elements for the minimal log-resolution of a is,
for instance, f0 = x, f1 = y, f2 = y2 − x3.

The jumping numbers smaller than 1 computed using the Algorithm 2.25 and
generators for the associated multiplier ideals computed using Algorithm 4.3 can be
found in Table 4.1.

λi J (aλi)

5
18 x, y
7

18 y, x2

4
9 x2, xy, y2

1
2 xy, y2, x3

23
42 y2, x3, x2y
25
42 y2 − x3, x2y, xy2, x4

11
18 x2y, xy2, y3, x4

9
14 xy2, y3, x4, x3y
29
42 x(y2 − x3), y(y2 − x3), x3y, x2y2, x5

13
18 y3, x3y, x2y2, x5

31
42 y(y2 − x3), x2y2, xy3, x2(y2 − x3), x4y
7
9 x2y2, xy3, y4, x5, x4y

11
14 x2(y2 − x3), xy(y2 − x3), y2(y2 − x3), x4y, x3y2, x6

5
6 xy(y2 − x3), y2(y2 − x3), x3(y2 − x3), x3y2, x2y3, x5y

37
42 xy(y2 − x3), y2(y2 − x3), x3(y2 − x3), x2y3, xy4, x5y, x4y2, x7

8
9 y2(y2 − x3), x5y, x3(y2 − x3), x2y3, x2y(y2 − x3), xy4, x4y2, x7

13
14 y2(y2 − x3), x3(y2 − x3), x2y(y2 − x3), xy4, y5, x4y2, x3y3, x7, x6y
17
18 x2y(y2 − x3), xy2(y2 − x3), y3(y2 − x3), x4y2, x4(y2 − x3), x3y3, x6y
41
42 x2y(y2 − x3), xy2(y2 − x3), y3(y2 − x3), x4(y2 − x3), x3y3, x2y4, x6y, x5y2, x8

Table 4.1: The jumping numbers smaller than 1 and generators of the associated multiplier ideal
for a = ((y2 − x3)3, x3(y2 − x3)2, x6y3).

�

It is a known result that the multiplier ideals J (aλ) associated to a are the same
when taking the completion a of a, i.e. J (aλ) = J (aλ). As a corollary of Theorem 4.8
and Corollary 4.11 we obtain the following result which resembles Howald’s Theorem
[How01] on the fact that multiplier ideals of monomial ideals are also monomial.

Theorem 4.13. Let a ⊆ OX,0 be an ideal and consider its completion a, that can be generated
by monomials in any given set of maximal contact elements. Then, the multiplier ideals J (aλ)
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are also generated by monomials in the same set of maximal contact elements of the minimal
log-resolution of a.

Valuation filtration

Let f : (C2, 0) −→ (C, 0) be a plane branch and let ν f be the valuation induced by
the intersection multiplicity. Let Vi denote the ideal of all the elements in OX,0 with
valuation greater or equal to i:

Vi := {g ∈ OX,0 | ν f (g) ≥ i}. (4.13)

These ideals form a filtration in OX,0:

OX,0 = V0 ⊇ V1 ⊇ · · · ⊇ Vi ⊇ Vi+1 ⊇ · · · (4.14)

such that Vi ·Vj ⊂ Vi+j and ∩i∈Z≥0Vi = ( f ). For instance, this type of filtration was
considered by Teissier in [Tei86]. Since, the ideals Vi are defined by valuations, they are
complete, and hence, have the form π∗OX′i

(Di)0 for some effective divisor Di in some
surface X′i .

Example 4.4. Consider the plane branch, f = (y2 − x3)2 − x5y ∈ OX,0. A minimal
embedded resolution π : (X′, E) −→ (X, 0) of f is the same as the one given for the
ideal in Example 2.1. Using Algorithm 4.3 we obtain the generators of the filtration
in (4.14) until the last Vi dominated by the minimal log-resolution of ( f ), which we
collect in Table 4.2

�
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i Vi

1, 2, 3, 4 x, y

5, 6 y, x2

7, 8 xy, x2, y2

9, 10 xy, y2, x3

11, 12 x2y, y2, x3

13 y2 − x3, x2y, xy2, x4

14 x2y, xy2, y3, x4

15, 16 xy2, y3, x4, x3y

17 x(y2 − x3), y(y2 − x3), x3y, x2y2, x5

18 y3, x3y, x2y2, x5

19 y(y2 − x3), x2(y2 − x3), x4y, x2y2, xy3

20 x4y, x2y2, xy3, y4, x5

21 x2(y2 − x3), xy(y2 − x3), y2(y2 − x3), x4y, x3y2, x6

22 xy3, y4, x4y, x3y2, x6

23 xy(y2 − x3), y2(y2 − x3), x3y2, x3(y2 − x3), x2y3, x5y

24 y4, x3y2, x2y3, x6, x5y

25 (y2 − x3)2, x3(y2 − x3), x2y(y2 − x3), x5y, x4y2, x7

26 (y2 − x3)2, x2y3, xy4, x5y, x4y2, x7

Table 4.2: The ideals Vi of the filtration associated to the plane branch f = (y2 − x3)2 − x5y for
i = 1, . . . , 26.





III
O N T H E T J U R I N A N U M B E R O F P L A N E C U RV E S

Let f : (Cn+1, 0) −→ (C, 0) be a germ of a holomorphic function defining an isolated
singularity. Taking local coordinates at the origin, the Tjurina number τ of f is defined
as the codimension of the Jacobian ideal, that is

τ := dimC

C{x0, . . . , xn}
( f , ∂ f /∂x0, . . . , ∂ f /∂xn)

. (4.1)

Its significance comes from the fact that the Tjurina number of f is the dimension of
the miniversal deformation of f . We are interested in the following question posed by
Dimca and Greuel in [DG18] between the quotient of the Milnor and Tjurina number.

Question. It is true that µ/τ < 4/3 for any reduced plane curve singularity?

By the semicontinuity of the dimension, the Tjurina number achieves a minimal
value τmin, the minimal Tjurina number, within a fixed topological class. In this chapter,
we will study the question of Dimca and Greuel using the minimal Tjurina number of a
topological class. In the first section, we present some results towards a positive answer
to the question for the case of semi-quasi-homogeneous plane curve singularities. In the
second section, we give a formula for the minimal Tjurina number of an equisingularity
class in terms of its minimal resolution and we deduce a positive answer to the question
in this case.

A complete positive answer to the question of Dimca and Greuel is given by Almirón
in [Alm19] using some known cases of Durfee’s conjecture.

5 quasi-homogeneous plane curves

In the first part of this section, we will provide a positive answer to the question of
Dimca and Greuel for irreducible plane curves with one Puiseux exponent using results
of Delorme [Del78]. Then, in the second part, we give a different proof for semi-quasi-
homogeneous singularities using results of Briançon, Granger, and Maisonobe [BGM88].
By a well-known result of Zariski [Zar86, §VI.2], the latter case contains the former.
However, we include both proofs as the approaches are fundamentally different and, at
the time of its publication, they might have led to different more general cases of the
question. The results of this section give the first evidence towards a possible positive
answer to the Dimca and Gruel question. The results of this section are joint work with
Almirón and are published in [AB19].

5.1 The case of one Puiseux pair

In this section, we assume that f : (C2, 0) −→ (C, 0) defines a curve with a single
Puiseux pair (n, m). We will denote by Γ = 〈n, m〉, n < m with gcd(n, m) = 1 the
semigroup of f . Ebey proves in [Ebe65] that the moduli space of curves having a given
semigroup is in bijection with a constructible algebraic subset of some affine space. For

67
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this, he shows that the moduli space is a quotient of an affine space by an algebraic
group. Consequently, Zariski [Zar86, §VI] defines the generic component of the moduli
space as the variety representing the generic orbits of this group action.

Following the ideas of Zariski in [Zar86], Delorme [Del78] computed the dimension
qn,m of the generic component of the moduli space of plane branches with a single
Puiseux pair (n, m).

Theorem 5.1 ([Del78, Thm. 32]). Consider the continued fraction representation m/n =

[h1, h2, . . . , hk], with k ≥ 2, h1 > 0 and h2 > 0. Define, inductively, the following numbers

rk := 0, tk := 1, ri−1 := ri + tihi, ti−1 :=

{
0, if ti = 1 and ri−1 even,

1, otherwise.
(5.1)

Then, the dimension qn,m of the generic component of the moduli space is given by

qn,m =
(n− 4)(m− 4)

4
+

r0

4
+

(2− t1)(h1 − 2)
2

− t1t2

2
. (5.2)

In particular, except for the case (n, m) = (2, 3),

(n− 4)(m− 4)
4

≤ qn,m ≤
(n− 3)(m− 3)

2
. (5.3)

The bound on the left-hand side of Equation (5.3) is sharp, consider, for instance, the
characteristic pair n = 8, m = 11. In the Appendix [Tei86] of [Zar86], Teissier, using the
monomial curve CΓ, proves that, in general, the dimension q of the generic component
of the moduli space of plane branch with semigroup Γ is given by

q = τ− − (µ− τmin), (5.4)

where τ− is the dimension of the miniversal semigroup constant deformation of the
monomial curve CΓ. For one characteristic exponent we have that τ− is the number of
points of the standard lattice of R2 that are in the interior of the triangle defined by the
lines α = m− 1, β = n− 1, αn + βm = nm, see [Zar86, §VI.2]. Therefore, it is easy to
see that

τ− =
(n− 3)(m− 3)

2
+
[m

n

]
− 1, (5.5)

where [ · ] denotes the integer part. In this case, the Milnor number is µ = (n− 1)(m− 1).
Combining the lower bound in Equation (5.3) and Equation (5.4) one obtains the
following lower bound for τmin

(n− 4)(m− 4)
4

+ (n− 1)(m− 1)− (n− 3)(m− 3)
2

− m
n
+ 1 ≤ τmin. (5.6)

except for the case (n, m) = (2, 3).

Proposition 5.2. For any plane branch with one characteristic exponent, µ/τ < 4/3.

Proof. It is sufficient to prove the inequality for the τmin of each characteristic pair (n, m).
Dividing µ by the expression in Equation (5.6) and rewriting

µ

τ
≤ µ

τmin
≤ 4n(n− 1)(m− 1)

3n2m− 2n2 − 2nm + 6n− 4m
, (5.7)
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assuming always that (n, m) 6= (2, 3), n < m. The upper bound in Equation (5.7) is
strictly smaller than 4/3 if and only if 0 < m(n− 4) + n(n + 3). Therefore, the result
holds if n ≥ 4. The cases n = 2 and n = 3 follow from computing the τmin using
Theorem 5.1

Indeed, let n = 2 and m = 2h1 + 1, h1 > 1 so the continued fraction representation
is m/n = [h1, 2]. Then, r0 = 2, t1 = 0, t2 = 1 and q2,m = h1 − m/2 − 1/2 = 0.
Analogously, if n = 3, then m = 3h1 + 1 or m = 3h1 + 2; the continued fractions are
either m/n = [h1, 3] or m/n = [h1, 1, 2]. Then, r0 = 3 + h or r0 = 2 + h, t2 = 1 or
t2 = 0, respectively, and t1 = 1 in either case. Consequently, in both cases, q3,3h1+1 =

−m/4 + 3h1/4 + 1/4 = 0 and q3,3h1+1 = −m/4 + 3h1/4 + 1/2 = 0. Finally, since
τ− = 0 if n = 2 and τ− = h1 − 1 if n = 3,

µ

τmin
= 1 <

4
3

,
µ

τmin
<

6m− 6
5m− 3

<
6
5
<

4
3

, (5.8)

for n = 2, m ≥ 3 and n = 3, m ≥ 4, respectively.

5.2 Semi-quasi-homogeneous singularities

We assume now that f is a semi-quasi-homogeneous singularity with weights w =

(n, m) such that gcd(n, m) ≥ 1 and n, m ≥ 2. This means that f = f0 + g is a defor-
mation of the initial term f0 = yn − xm such that degw( f0) < degw(g). In [BGM88],
Briançon, Granger and Maisonobe, using the technique of escaliers, give recursive
formulas to compute the τmin of this type of singularities. Their main result is the
following:

Theorem 5.3 ([BGM88, §I.6]). For semi-quasi-homogeneous singularities with initial term
yn − xm,

τmin = (m− 1)(n− 1)− σ(m, n). (5.9)

The number σ(a, b) is defined recursively for any non-negative integers a, b as follows.
If a, b ≤ 2 then σ(a, b) := 0. Otherwise, we can express a = bq + r, 0 ≤ r < b, q ≥ 1.
For the cases r = 0, 1, b − 1, b/2 there are closed formulas for σ(a, b) denoted by
Σ0, Σ1, Σb−1, Σb/2, see Table 1 in [BGM88]. If none of the above cases hold, define
recursively, see Tables 2 and 3 in [BGM88], a finite sequence (a0, b0), (a1, b1), . . . , (ak, bk)

with (a0, b0) = (m, n), σ(ak, bk) is in one of the previous cases, and for i = 0, . . . , k− 1:

(A) If gcd(ai, bi) = 1, we can find ubi − vai = 1 with 2 ≤ u < ai. Letting γ := [ ai−1
u ],

we have two subcases:

(AE) If γ is even, define ai+1 = ai − γu, bi+1 = bi − γv, then

σ(ai, bi) :=
(ai − 2)(bi − 2)

4
− (ai+1 − 2)(bi+1 − 2)

4
− γ

4
+ σ(ai+1, bi+1).

(5.10)

(AO) If γ is odd, define ai+1 = (γ + 1)u− ai, bi+1 = (γ + 1)v− bi, and

σ(ai, bi) :=
(ai − 2)(bi − 2)

4
− (ai+1 − 2)(bi+1 − 2)

4
− γ + 1

4
+ σ(ai+1, bi+1).

(5.11)

(B) Otherwise, ai = αa′, bi = αb′ with α ≥ 2, gcd(a′, b′) = 1, and we can find a
Bezout’s identity ub′ − va′ = 1 with 1 ≤ u < a′. We have again two subcases:
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(BP) If α is even,

σ(ai, bi) :=
(ai − 2)(bi − 2)

4
− α

2
. (5.12)

(BO) If α is odd, define ai+1 = |a′ − 2u| and bi+1 = |b′ − 2v|, and

σ(ai, bi) :=
(ai − 2)(bi − 2)

4
− α

2
− (ai+1 − 2)(bi+1 − 2)

4
+ σ(ai+1, bi+1).

(5.13)

Proposition 5.4. For any semi-quasi-homogeneous singularities with initial term yn − xm,

µ/τ < 4/3. (5.14)

Proof. Observe that in the recursive cases (A) and (BO),

σ(a, b) ≤ (a− 2)(b− 2)
4

− (ak − 2)(bk − 2)
4

+ σ(ak, bk), (5.15)

where σ(ak, bk) is either zero or has a closed-form. Notice also that aibi+1 > biai+1 for
all i = 0, . . . , k− 1. From these observations, one can deduce that, in general,

(n− 1)(m− 1)− (m− 2)(n− 2)
4

− κ(n, m) ≤ τmin, (5.16)

where κ(n, m) = m/4n if σ(ak, bk) is Σ0, Σ1, Σb−1 with b odd, κ(n, m) = 5/4 if σ(ak, bk)

is Σ0, Σ1, Σb−1 with b even or Σb/2 with b/2 odd, and κ(n, m) = 0 if σ(ak, bk) is Σb/2
with b/2 even or in the case (BP). In any case,

µ

τ
≤ µ

τmin
≤ 4(n− 1)(m− 1)

3nm− 2n− 2m− 4κ(n, m)
, (5.17)

which is bounded by 4/3 if and only if n + m + κ(n, m) > 3, which is true for n, m ≥
2.

5.3 A family with two Puiseux pairs

In [LP90], Luengo and Pfister study the family of irreducible plane curve singularities
with semigroup 〈2p, 2q, 2pq + d〉 such that gcd(p, q) = 1, p < q and d odd. The Milnor
number of this family equals

µ = (2p− 1)(2q− 1) + d. (5.18)

Studying the kernel of the Kodaira-Spencer map, they prove, see [LP90, pg. 259], that τ

is constant in each equisingularity class and equals,

τ = µ− (p− 1)(q− 1). (5.19)

One can easily check that µ/τ < 4/3 for all the semigroups of the family.

6 the minimal tjurina number of a plane branch

In this section, we will prove a formula for the minimal Tjurina number in an equisin-
gularity class of plane branches. The formula is expressed in terms of the multiplicities
of the strict transform along the resolution. As a consequence, we can give a positive
answer to the question of Dimca and Greuel in the case of irreducible plane curves.
The results of this section are joint work with Almirón, Alberich-Carramiñana, and
Melle-Hernández and will appear in [Alb+19]. Similar results appeared simultaneous
in [GH20].
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6.1 Semigroup constant deformations of CΓ

Recall the definition of the monomial curve CΓ associated with a numerical semigroup
Γ from Section 2.6. After Theorem 2.14, every branch (C, 0) with semigroup Γ is
analytically isomorphic to one of the fibers of the miniversal deformation G : (X, 0) −→
(D, 0) of CΓ. The dimension of the base D of the miniversal deformation of (CΓ, 0)
equals µ, the Milnor number of the equisingularity class of plane branches with
semigroup Γ, see [Tei86, Prop. 2.7].

After [Tei86, Thm. 3], we will denote by τ− the dimension of the base (DΓ, 0) of the
miniversal semigroup constant deformation of (CΓ, 0). Let us denote by (Cv, 0), v ∈ DΓ

any fiber of the miniversal semigroup constant deformation of (CΓ, 0). We will denote
by τ(Cv) the dimension of the base of the miniversal deformation of (Cv, 0). Similarly,
we denote by q(Cv) the dimension of the base of the miniversal semigroup constant
deformation of the fiber (Cv, 0).

By the Product Decomposition Theorem [Tei86, Addendum 2.1], the germ of DΓ at
any v is a product

(DΓ, v) ∼= (Cµ−τ(Cv) × DΓ,v, 0), (6.1)

where DΓ,v is the base of the miniversal semigroup constant deformation of (Cv, 0).
Thus, one has the following relation, see [Tei86, §II.3.4],

τ(Cv)− q(Cv) = µ− τ−. (6.2)

Let π : (X, E) −→ (C2, 0) be a resolution of any plane branch with semigroup Γ.
Since all such plane branches are equisingular, Fπ,exc = ∑p∈K epEp + S is the expression
of the exceptional part of the total transform divisor, regardless of the chosen branch.
In the same way that the Milnor number µ can be expressed in terms of the sequence
{ep}p∈K, see for instance [Cas00, p. 6.4],

µ = ∑
p∈K

ep(ep − 1), (6.3)

the same is possible for τ− as we are going to show next. Assume now that (Cv, 0), v ∈
DΓ is a plane branch and take f ∈ C{x, y} any equation of (Cv, 0).

Proposition 6.1. The dimension of the miniversal µ-constant unfolding of f equals τ−.

Proof. The miniversal unfolding of the equation f has a base of dimension µ. Let us
denote by ϑ the dimension of the base of the miniversal µ-constant unfolding of f .
The codimension of the µ-constant stratum is then µ− ϑ. Now, since the miniversal
unfolding of f is a versal deformation of (Cv, 0), the codimension of the µ-constant
strata of both deformations coincide. The curve (Cv, 0) being plane implies that µ-
constant is equivalent to constant semigroup, [TR76], and hence, τ(Cv)− q(Cv) = µ− ϑ.
Finally, by Equation (6.2), ϑ equals τ−.

Finally, the dimension of the µ-constant stratum of the miniversal unfolding of any
reduced f ∈ C{x, y}, which we will also denote by τ− after Proposition 6.1, is computed
by Mattei [Mat91] and Wall [Wal84] in terms of the sequence of multiplicities of the
strict transform along an embedded resolution of the germ (C, 0).
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Theorem 6.2 ([Mat91, Thm. 4.2.1], [Wal84, Thm. 8.1]). The dimension of the µ-constant
stratum of the miniversal unfolding of f equals

τ− = ∑
p∈K

(e′p − 2)(e′p − 3)
2

, (6.4)

where

(a) e′p := ep if p is the origin,

(b) e′p := ep + 1 if p is free and ep > 0,

(c) e′p := ep + 2 if p is satellite and ep > 0,

(d) e′p := 2 otherwise.

Remark 6.1. It might be worth noticing that the quantity on the left (or right) hand-side
of Equation (6.2) coincides with the codimension τes of the equisingularity ideal Ies of
(Cv, 0), see for instance [GLS07] and the references therein. Similarly, it can be seen
that τ− also equals the modality of f in the sense of Wall [Wal84]. �

6.2 The dimension of the generic component of the moduli space

Following the notations from the last section, let us begin this section by defining
the moduli space of plane branches with semigroup Γ. Analytically equivalence of
germs induces an equivalence relation ∼ in DΓ. The topological space DΓ/ ∼, with the
quotient topology, will be denoted by M̃Γ and it is called the moduli space associated
to the semigroup Γ. Let m : DΓ −→ M̃Γ be the natural projection and let D(2)

Γ be the
following subset of DΓ

D(2)
Γ := {v ∈ DΓ | (G−1(v), 0) is a plane branch}. (6.5)

Then, Teissier proves in [Tei86] that D(2)
Γ is an analytic open dense subset of DΓ and

that m(D(2)
Γ ) is the moduli space MΓ of plane branches with semigroup Γ in the sense

of Zariski [Zar86]. Moreover, M̃Γ = MΓ if and only if Γ is generated by two elements.

Following [Zar86], we define the generic curve Cv of the moduli space M̃Γ as the fiber
corresponding to the generic point v in the base space DΓ of the miniversal semigroup
constant deformation. By the discussion in the previous paragraph, Cv is a plane
branch and coincides with the generic fiber defined in MΓ. Since τ(Cv) coincides
with the dimension of the Tjurina algebra of (Cv, 0) and it is upper-semicontinuous,
we can define τmin := τ(Cv). Similarly, after Equation (6.2), it makes sense to define
qmin := q(Cv).

The quantity qmin is the dimension of the generic component of the moduli space
M̃Γ of branches with semigroup Γ, see [Tei86, Thm. 6]. Therefore, after applying
Equation (6.2) to the generic branch (Cv, 0), see [Tei86, §II.3.6],

τmin − qmin = µ− τ−, (6.6)

and, after Theorem 6.2, computing qmin is equivalent to computing τmin.
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Recently, Genzmer in [Gen16] computed the dimension of the generic component
of the moduli space qmin for any plane branch (C, 0) in terms of the sequence of
multiplicities of the strict transform along the minimal embedded resolution of the
germ (C, 0). With the same notations from Theorem 6.2,

Theorem 6.3 ([Gen16]). The dimension of the generic component qmin of the moduli space of
plane branches with semigroup Γ equals

qmin = ∑
p∈K

σ(e′p), (6.7)

and

σ(k) :=


(k− 2)(k− 4)

4
, if k is even,

(k− 3)2

4
, if k is odd.

(6.8)

6.3 The minimal Tjurina number of an equisingularity class

In this section, we present a closed formula for the minimal Tjurina number τmin of an
equisingularity class of a plane branch (C, 0) in terms of the sequence of multiplicities
{ep}p. From the formula for the τmin, some consequences will be inferred, including
the main result of this paper which is a positive answer to Dimca and Greuel question
on the quotient µ/τ of any plane branch.

Theorem 6.4. For any equisingular class of germs of irreducible plane curve singularity,

τmin = σ(n) +
n2 + 3n− 6

2
+ ∑

p∈K,
p free

(ep − 1)(ep + 2) + 2σ(ep + 1)
2

+ ∑
p∈K,
p sat.

ep(ep − 1) + 2σ(ep + 2)
2

.

Proof. Using Equation (6.6) we have τmin = qmin + µ− τ−, from Theorems 6.2 and 6.3
the claimed formula follows.

A fortiori, we can see from Theorem 6.4 that the τmin of an equisingularity class
depends only on the minimal resolution of (C, 0) and not on the minimal embedded
resolution. Furthermore, the formula works for any resolution of (C, 0), minimal or
not.

This formula for τmin enables us to give a positive answer to Dimca and Greuel
question, in the case of any plane branch. Before proving this, we need the following
property of the sequence of multiplicities.

Lemma 6.5. For any plane branch singularity of multiplicity n,

∑
p∈K,
p sat.

ep = n− 1. (6.9)
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Proof. Consider the finite sequence of positive multiplicities {ep}p along the minimal
embedded resolution of the plane branch. From Enriques’ Theorem [Cas00, Thm. 5.5.1]
one has that n + ∑p free ep = βg, where βg/n is the last characteristic exponent. On
the other hand, from [Cas00, Ex. 5.6], ∑p ep = βg + n− 1, where this summation runs
on all points p equal or infinitely near to the origin. Since all the satellite points for
which ep is positive are included in the sequence of points blown-up in the minimal
embedded resolution, the result follows.

Finally, we get the announced positive answer to Dimca and Greuel question as a
corollary of Theorem 6.4.

Corollary 6.6. For any plane branch singularity,

µ

τ
<

4
3

. (6.10)

Proof. It is enough to prove the inequality for the τmin of each equisingularity class of
plane branches. We will show that 4τmin− 3µ > 0. From Theorem 6.4 and Equation (6.3)
we have that

4τmin − 3µ = 4σ(n)− n2 + 9n− 12 + ∑
p∈K,
p free

(
4σ(ep + 1)− (ep − 1)(ep − 4)

)
+ ∑

p∈K
,p sat.

(
4σ(ep + 2)− ep(ep − 1)

)
.

Now, since σ(k) ≥ (k− 2)(k− 4)/4,

4τmin − 3µ ≥ 3n− 4 + ∑
p∈K,
p free

(ep − 1)− ∑
p sat.

ep. (6.11)

Finally, using Lemma 6.5

4τmin − 3µ ≥ 2n− 3 + ∑
p∈K,
p free

(ep − 1) > 0, (6.12)

and the result follows, since n ≥ 2.

As a direct consequence of Theorem 6.4 we also obtain the following lower bound
for τ:

Corollary 6.7. For any plane branch,

τ ≥ 3n2

4
− 1 if n is even,

τ ≥ 3
4
(n2 − 1) if n is odd.

(6.13)

The bound in Corollary 6.7 is sharp, as one can easily check for generic curves in
the equisingularity class of the singularities yn − xn+1 = 0, i.e. the minimal Tjurina
number in the equisingularity class of the singularities yn − xn+1 = 0 coincides with
the bound of Corollary 6.7. In fact, from Theorem 6.4 one can see that these are the
only topological types of singular plane branches for which the bound is reached.



IV
T H E C O M P L E X Z E TA F U N C T I O N

In this chapter, we study the complex zeta function of a singularity with a special
emphasis in the case of plane curve singularities. The first part of the chapter will
introduce the complex zeta function of a singularity, its analytic continuation as a
distribution using resolution of singularities, and its connection with the Bernstein-Sato
polynomial.

In the second part, we will present some results about the vanishing and non-
vanishing of the residues at the poles in the case of plane curves, generalizing some
results of Lichtin [Lic85; Lic89]. Using these results we can ask, for the case of
reduced plane curves, a question raised by Kollár [Kol97] on which exceptional divisors
contribute to roots of the Bernstein-Sato polynomial Finally, using the study of the
residues in the case of plane branches, we will give a proof of Yano’s conjecture for
irreducible plane curves with any number of Puiseux pairs under the topological
restriction that the eigenvalues of the monodromy are pair-wise different. The results
of this chapter are published in [Bla19a].

7 analytic continuation of complex powers

In this section, we will review the basic results on regularization of complex powers
appearing in the book of Gel’fand and Shilov [GS64]. We will see how resolution of
singularities is used to construct the analytic continuation of the complex zeta function
of an arbitrary polynomial f ∈ C[z1, . . . , zn]. On the other hand, the Bernstein-Sato
polynomial, see Section 1.2, is used to construct the analytic continuation of f s in a
different way.

7.1 Regularization of complex powers

We will take the set of test functions of complex variable as the set of smooth, com-
pactly supported functions ϕ : Cn −→ C. The space of such functions is denoted by
C∞

c (Cn). Alternatively, we can consider the larger space of test functions consisting of
Schwartz functions. From the analytic continuation principle, one deduces that there
are no holomorphic compactly supported functions. Therefore, any ϕ ∈ C∞

c (Cn) has a
holomorphic and an antiholomorphic part, i.e. ϕ = ϕ(z, z̄).

Let f (z) ∈ C[z1, . . . , zn] be a non-constant polynomial. We define a parametric family
of distributions of complex variable f s : C∞

c (Cn) −→ C given by

〈 f s, ϕ〉 :=
∫

Cn
ϕ(z, z̄)| f (z)|2sdzdz̄, (7.1)

which is well-defined for any s ∈ C with Re(s) > 0. The dependence of f s on the
parameter s is holomorphic as we can differentiate under the integral symbol to obtain
another well-defined distribution, namely

d
ds
〈 f s, ϕ〉 =

∫
Cn

ϕ(z, z̄)| f (z)|2s log | f (z)|2dzdz̄ =
〈d f s

ds
, ϕ
〉

, Re(s) > 0. (7.2)

75
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The distribution f s or the function 〈 f s, ϕ〉 are usually called the complex zeta function of
f . This name goes back to Gel’fand [Gel57]. In [GS64], it is shown how one can obtain
the analytic continuation of 〈 f s, ϕ〉 by regularizing the integral in Equation (7.1), for
some classes of polynomials. The concept of regularization is better understood after the
following example.

If one takes the function z−3/2, in general, its integral 〈z−3/2, ϕ〉 against a test function
ϕ(z, z̄) will diverge. However, if ϕ(z, z̄) vanishes at zero, the integral converges. Any
distribution whose action on the elements of C∞

c (C) vanishing at zero coincides with
the action of z−3/2 is a regularization of z−3/2. The regularization of a function with
algebraic singularities is unique up to functionals concentrated in the zero locus, see
[GS64, p. I.1.7]. For a fixed s ∈ C, the canonical regularization of the function zs, in the
sense that it is the most natural, is presented in the following proposition.

Proposition 7.1 ([GS64, B1.2], Gel’fand-Shilov regularization). For any m ∈ Z≥0, the
regularization of the distribution zs : C∞

c (C) −→ C is given by

〈zs, ϕ〉 =
∫
|z|≤1

[
ϕ(z, z̄)−

m−1

∑
k+l=0

ϕ(k,l)(0, 0)
zk z̄l

k!l!

]
|z|2sdzdz̄

+
∫
|z|>1

ϕ(z, z̄)|z|2sdzdz̄− 2πi
m−1

∑
k=0

ϕ(k,k)(0, 0)

(k!)2(s + k + 1)
, Re(s) > −m− 1,

(7.3)

where ϕ(i,j) := ∂i+j ϕ/∂zi∂z̄j. Hence, zs has poles at s = −k− 1 for k ∈ Z≥0 with residues

Res
s=−k−1

zs = − 2πi
(k!)2 δ

(k,k)
0 , (7.4)

where δ
(i,j)
0 are the distributional derivatives of the Dirac’s delta function defined by 〈δ(i,j)0 , ϕ〉 :=

(−1)i+j ϕ(i,j)(0, 0). Furthermore, in the strip −m− 1 < Re(s) < −m, Equation (7.3) reduces
to

〈zs, ϕ〉 =
∫

C

[
ϕ(z, z̄)−

m−1

∑
k+l=0

ϕ(k,l)(0, 0)
zk z̄l

k!l!

]
|z|2sdzdz̄. (7.5)

For a fixed ϕ ∈ C∞
c (C), Proposition 7.1 gives the meromorphic continuation to

the whole complex plane of the holomorphic function of s defined by the integral
〈zs, ϕ〉. For any polynomial f , we will talk indistinguishably about the meromorphic
continuation or the (canonical) regularization of its complex zeta function f s.

Remark 7.1. Although in Proposition 7.1 the test function ϕ is assumed to be in C∞
c (C),

the proof of the result only uses the fact that ϕ is infinitely differentiable near 0 and
compactly supported. This means that the same result works for a meromorphic ϕ with
poles away from 0 and compact support. In particular, if ϕ(z, z̄; s) ∈ C∞(U), where U
is a neighborhood of 0, and compactly supported, the poles of 〈zs, ϕ(z, z̄; s)〉 will be the
negative integers Z<0 together with the poles of ϕ(z, z̄; s) in s away from U. �

7.2 Resolution of singularities & Bernstein-Sato polynomial

Resolution of the singularities of f ∈ C[z1, . . . , zn] is used by Bernstein and Gel’fand
[BG69] and Atiyah [Ati70] to reduce the problem of finding the analytic continuation
of f s to the monomial case considered in Proposition 7.1. Using the notations from
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Section 1.1, let π : X′ −→ Cn be a resolution of f with Fπ := ∑i NiEi + ∑j MiSi the total
transform divisor and Kπ := ∑i kiEi the relative canonical divisor, and suppose that
E := Exc(π) = ∑i Ei is the exceptional locus. Let {Uα}α∈Λ be an affine open cover of X′.
Take {ηα} a partition of unity subordinated to the cover {Uα}α∈Λ. That is, ηα ∈ C∞(Cn)

(not necessarily with compact support), ∑α ηα ≡ 1, with only finitely many ηα being
non-zero at a point of X′ and Supp(ηα) ⊆ Uα. Then, with a small abuse of notation,

〈 f s, ϕ〉 =
∫

X′
|π∗ f |2s(π∗ϕ)|dπ|2

= ∑
α∈Λ

∫
Uα

|z1|2(N1,αs+k1,α) · · · |zn|2(Nn,αs+kn,α)|uα(z)|2s|vα(z)|2ϕα(z, z̄)dzdz̄,
(7.6)

where ϕα := ηαπ∗ϕ for each α ∈ Λ and uα(0), vα(0) 6= 0. The resolution morphism
π being proper implies that both E and π−1(Supp(ϕ)) are compact sets. Since the
singularities of the integral 〈 f s, ϕ〉 are produced by the zero set of f , in order to study
the poles of f s, it is enough to consider a finite affine open cover {Uα}α∈Λ of E consisting
of neighborhoods of points pα ∈ E and such that Supp(ϕ) ⊆ π(∪αUα).

From Equation (7.6) and Proposition 7.1, we see that each divisor Di in the support
of Fπ generates a set of candidate poles of f s, namely

− ki + 1 + ν

Ni
,− ν

Mi
, ν ∈ Z≥0. (7.7)

The opposite in sign to the largest pole coincides with the log-canonical threshold lct( f )
of f , see Section 1.2 and Section 1.3, and sets the maximal region of holomorphy of
〈 f s, ϕ〉 for a general ϕ ∈ C∞

c (Cn). Resolution of singularities then solves Gel’fand’s first
question in [Gel57]. However, nothing is said about the residues of f s at those poles.
Moreover, the set of candidates is usually much large than the actual poles of f s.

On the other hand, the Bernstein-Sato polynomial and its functional equation, in-
troduced in Section 1.2, together with integration by parts can be used to obtain the
analytic continuation of f s in a different way.

Proposition 7.2. The complex zeta function f s admits a meromorphic continuation to C with
poles among the rational numbers α− k with b f (α) = 0 and k ∈ Z≥0.

Proof. We can use the functional Equation (1.8) and integration by parts to analytically
continue Equation (7.1) in the following way

〈 f s, ϕ〉 =
∫

Cn
ϕ(z, z̄)| f (z)|2sdzdz̄ =

1
b2

f (s)

∫
Cn

ϕ(z, z̄)
[
P(s) · f s+1(z)

][
P(s) · f s+1(z̄)

]
dzdz̄

=
1

b2
f (s)

∫
Cn

P∗P∗(s)
(

ϕ(z, z̄)
)
| f (z)|2(s+1)dzdz̄.

(7.8)

The last term of Equation (7.8) defines an analytic function whenever Re(s) > −1, except
for possible poles at b−1

f (0), and it is equal to 〈 f s, ϕ〉 in Re(s) > 0. If a differential

operator has the form P(s) = ∑β aβ(s, z)( ∂
∂z )

β, we have considered

P(s) := ∑
β

aβ(s̄, z̄)
( ∂

∂z̄

)β
, P∗(s) := ∑

β

(−1)|β|
( ∂

∂z

)β
aβ(z, s), (7.9)
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the conjugate and adjoint operator of P(s), respectively. Iterating the process we get

〈 f s, ϕ〉 = 〈 f
s+k+1,P∗P∗(s + k) · · ·P∗P∗(s)(ϕ)〉

b2
f (s) · · · b2

f (s + k)
, Re(s) > −k− 1, (7.10)

and the result follows.

The set of poles of the complex zeta function f s is known to be exactly the set
α− k with b f (α) = 0 and k ∈ Z≥0 for reduced plane curve singularities and isolated
quasi-homogeneous singularities, see [Loe85, Thm. 1.9]. Therefore, at least in these
cases, the divisors contributing to poles of the complex zeta function f s are the same
divisors that contribute to roots of the Bernstein-Sato polynomial b f (s). However, even
in these cases, it is not straightforward to relate poles of f s with roots of b f (s). In
general, from Theorem 1.6 and Proposition 7.2, one has that,

Corollary 7.3. Every pole σ ∈ [−n + lct( f ),−lct( f )] of f s such that σ + k is not a root of
b f (s) for all k ∈ Z>0 is a root of b f (s).

8 poles and residues for plane curves

Let f : (C2, 0) −→ (C, 0) be a plane curve not necessarily reduced or irreducible. After
fixing local coordinates x, y, and with a small abuse of notation, let f ∈ C{x, y} be an
equation of the germ, assuming it is defined in a neighborhood U ⊆ C2 of the origin.
Following Section 7.1, define the complex zeta function f s of a local singularity as

〈 f s, ϕ〉 :=
∫

U
| f (x, y)|2s ϕ(z)dz, for Re(s) > 0, (8.1)

with ϕ ∈ C∞
c (U) and z := (x, y, x̄, ȳ). The poles of 〈 f s, ϕ〉 do not depend on the

equation of the germ or the local coordinates x, y. As discussed in Section 7.1, f s must
be understood in the distributional sense. In this section, we will use the minimal
embedded resolution of singularities of f to study the structure of the residues of
f s at any candidate pole σ. The residue will be expressed as an improper integral
along the exceptional divisor associated with σ. In order to do so, we first present the
straightforward generalization of Proposition 7.1 to the two-dimensional case and see
how poles of order two might arise. Finally, we will use the residue formula to prove
that most non-rupture divisors do not contribute to poles of the complex zeta function
f s.

8.1 Regularization of monomials in two variables

The result from Proposition 7.1 can be easily generalized to the two-dimensional case,
mimicking the proof in [GS64], to see how poles of order two arise. Let ϕ(z1, z2) ∈
C∞

c (C2) which is, in fact, a function of z = (z1, z2, z̄1, z̄2), and consider

〈zs1
1 zs2

2 , ϕ〉 =
∫

C2
|z1|2s1 |z2|2s2 ϕ(z)dz, (8.2)

which is absolutely convergent for Re(s1) > −1, Re(s2) > −1 since ϕ has compact
support.
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Let ∆0 = D1 × D2 be the polydisc formed by the discs of radius one centered at the
origin, i.e. D1 = {|z1| ≤ 1} and D2 = {|z2| ≤ 1}. We can decompose C2 as the disjoint
union

∆0 ∪ (D1 ×C \ D2) ∪ (C \ D1 × D2) ∪ (C \ D1 ×C \ D2). (8.3)

Using the notation zk = zk1
1 zk2

2 z̄k3
1 z̄k4

2 , the integral in Equation (8.2) on the region ∆0 can
be written as∫

∆0

|z1|2s1 |z2|2s2

(
ϕ(z)− ∑

|k|≤m

∂k ϕ(0)
∂zk

zk

k!

)
dz− ∑

|k|≤m

∂k ϕ

∂zk (0)
4π2

k!(s1 + k1 + 1)(s2 + k2 + 1)
,

(8.4)
where, in the second summation, we have k1 = k3, k2 = k4. The integral in the left-hand
side is holomorphic on the regions Re(s1) > −m− 1, Re(s2) > −m− 1.

With a small abuse of the notation, let z1 = (z1, z̄1), z2 = (z2, z̄2) and zk1
1 = zk1,1

1 z̄k1,2
1 .

On the region D1 ×C \ D2, the integral in Equation (8.2) is

∫
D1×C\D2

|z1|2s1 |z2|2s2

(
ϕ(z)− ∑

|k1|≤m

∂k1 ϕ

∂zk1
1

(0, z2)
zk1

1
k1!

)
dz1dz2

−2πi ∑
|k1|≤m

∫
|z2|>1

|z2|2s2
∂k1 ϕ

∂zk1
1

(0, z2)dz2

(k1,1!)2(s1 + k1,1 + 1)
,

(8.5)

where, in the second sum, k1,1 = k1,2. The left-hand integral is holomorphic in Re(s1) >

−m− 1. By symmetry, a similar expression holds in the other region, C \ D1 × D2. On
the last region, C \ D1 ×C \ D2, the integral in Equation (8.2) is absolutely convergent
for all s1, s2 ∈ C.

From the regularization of zs1
1 zs2

2 constructed above, we can see that the residue of
zs1

1 zs2
2 at a simple pole s1 = −k1 − 1, k1 ∈ Z>0, i.e. the coefficient of (s1 + k1 + 1)−1, is

given by the following function of s2

Res
s1=−k1−1

〈zs1
1 zs2

2 , ϕ〉 = − 2πi
(k1!)2

∫
C
|z2|2s2

∂2k1 ϕ

∂zk1
1 ∂z̄k1

1

(0, s2)dz2dz̄2. (8.6)

The residue in Equation (8.6) is a meromorphic function of s2 which will have simple
poles at the points s2 = −k2 − 1, k2 ∈ Z>0. A pole of Ress1=−k1−1zs1

1 zs2
2 as a function of

s2 means that zs1
1 zs2

2 has a pole of order one in both s1 and s2.

8.2 The residue at the poles

Let Ep, p ∈ K be an irreducible exceptional divisor of the minimal embedded resolution
of f : (C2, 0) −→ (C, 0). We will denote by D1, D2, . . . , Dr ∈ Div(X′) the other prime
components (exceptional or not) of Fπ crossing Ep. By definition, dead-end divisors
have only one divisor crossing them, which will be denoted D1. On the other hand,
rupture divisors have at least three divisors crossing them, i.e. r ≥ 3. In any other
case, r = 2. We will denote by N1, N2, . . . , Nr (resp. k1, k2, . . . , kr) the coefficients of
D1, D2, . . . , Dr in Fπ (resp. in Kπ). Since no confusion arises, we drop the explicit
dependence on p ∈ K.
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For each Ep, p ∈ K we consider two affine charts Up, Vp containing Ep that arise after
the blow-up of a neighborhood of p in any chart containing p. The origin of the charts
Up, Vp are neighborhoods of opposite points in the projective line Ep. Usually, these
points are the intersection points of Ep with two other components of Fπ which we will
assume to be D1 and D2. For simplicity, if this is not the case, we will set D1, N1, k1 (or
D2, N2, k2) to be zero.

In order to define the complex zeta function f s on X′, we need to work locally with
coordinates. Accordingly, let (xp, yp), (zp, wp) be the natural holomorphic coordinates
of Up, Vp centered at the origins of both charts which, by construction, are the origin
and the infinity point on a P1

C, or vice versa. The coordinates (xp, yp), (zp, wp) are
related at the intersection Up ∩Vp by xp = zκp

p wp, ypzp = 1, and where the integer value
κp ∈ Z>0 has a very precise geometric meaning, namely, κp = −Ep · Ep.

Following the discussion in Section 7.1, each exceptional component Ep contributes
with a sequence of candidate poles to the meromorphic continuation of f s. Indeed,
with the notations above,{

σp,ν = −
kp + 1 + ν

Np

∣∣∣∣ ν ∈ Z≥0

}
, p ∈ K. (8.7)

The set WK := {Up, Vp}p∈K forms a finite affine open cover X′, which applied to the
construction presented in Section 7.1, Equation (7.6), results in the following proposition.
First, denote by {η1,q, η2,q}q∈K a partition of unity subordinated to the open coverWK.

Proposition 8.1. Using the affine open coverWK, the part of the complex zeta function f s on
Equation (7.6) involving the exceptional divisor Ep can be written as the sum of the integrals
over just two affine charts Up, Vp ∈ WK containing Ep, namely∫

Up

|xp|2(Nps+kp)|yp|2(N1s+k1)Φ1(xp, yp; s)η1dxpdypdx̄pdȳp +∫
Vp

|zp|2(N2s+k2)|wp|2(Nps+kp)Φ2(zp, wp; s)η2dzpdwpdz̄pdw̄p,
(8.8)

where Φ1(xi, yi; s), Φ2(zi, wi; s) are infinitely many times differentiable at neighborhoods of the
points p1 = Ep ∩ D1 and p2 = Ep ∩ D2. More precisely,

Φ1 := |u1|2s|v1|2(π∗ϕ)
∣∣
Up

, Φ2 := |u2|2s|v2|2(π∗ϕ)
∣∣
Vp

, (8.9)

with the elements u1, v1 (resp. u2, v2) being units in the local ring at the points p1 (resp. p2).
Finally, η1 and η2 have compact support and η1Ep

∣∣
+

η2Ep
∣∣
≡1.

Proof. Let us denote by Wp1 ,Wp2 all the elements in WK that contain p1 and p2. By
construction, Wp1 is disjoint from Wp2 , since there can be no affine open set in our
collectionW containing both p1 and p2, and the union ofWp1 andWp2 contains all the
charts fromWK containing Ep. Applying Equation (7.6) from Section 7.1, the part of f s

on X′ where the divisor Ep appears is a sum of the integrals over the affine open sets
fromWp1 andWp2 ,

∑
Uq∈Wp1

∫
Uq

|π∗ f |2s∣∣
Uq
(π∗ϕ)

∣∣
Uq
|dπ|2η1,q + ∑

Vq∈Wp2

∫
Vq

|π∗ f |2s∣∣
Vq
(π∗ϕ)

∣∣
Vq
|dπ|2η2,q. (8.10)

Let us see that we can reduce (8.10) to Proposition 8.1. The proof is the same for
both summations in (8.10). Since the elements ofWp1 are blow-up charts, the difference
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between the union and the intersection of all the elements in Wp1 is contained in a
finite number of lines. Given that a finite number of lines have measure zero, they do
not affect the integral, and we can replace the left-hand summation of (8.10) by

∑
Uq∈Wp1

∫
Uq

|π∗ f |2s∣∣
Uq
(π∗ϕ)

∣∣
Uq
|dπ|2η1,q =

∫
∩Uq

|π∗ f |2s∣∣
∩Uq

(π∗ϕ)
∣∣
∩Uq
|dπ|2η1. (8.11)

This equality is true since |π∗ f |2sπ∗ϕ|dπ|2 is a global section on X′ and its restriction
on the Uq agrees on the overlap of all Uq ∈ Wp1 . Concerning the partitions of unity,
we just set η1 := ∑Uq∈Wp1

η1,q. Finally, by the same argument as before, we can replace
∩Uq∈Wp1

Uq by any Up ∈ Wp1 yielding Proposition 8.1. Notice that, by definition ofWp1 ,
no other η ∈ {η1,q, η2,q}q∈K, except for those in η1, has p1 in its support.

Before presenting the formula for the residue, let us introduce the following rational
numbers associated with a candidate pole σp,ν of an irreducible exceptional divisor
Ep, p ∈ K. They will play an important role in the analysis of the residues.

Definition 8.2 (Residue numbers). Let σp,ν, ν ∈ Z≥0 be a candidate pole of f s associated
with an exceptional divisor Ep, p ∈ K intersecting the divisors D1, D2, . . . , Dr ∈ Div(X′).
Define the residue numbers as

εi,ν := Niσp,ν + ki ∈ Q for i = 1, . . . , r. (8.12)

For the ease of notation, we will omit the dependence of ε1,ν, ε2,ν on p ∈ K. The
following relations between ε1,ν, ε2,ν, . . . , εr,ν holds.

Lemma 8.3. For any ν ∈ Z≥0, we have

ε1,ν + ε2,ν + · · ·+ εr,ν + κpν + 2 = 0. (8.13)

Proof. Consider the Q–divisor σp,νFπ + Kπ. Applying the adjunction formula for sur-
faces Proposition 2.4, (σp,νFπ + Kπ) · Ep = κp − 2, recall κp = −Ep · Ep. On the other
hand,

(σp,νFπ + Kπ) · Ep =
r

∑
i=0

εi,ν − κp(Npσp,v + kp). (8.14)

Since Npσp,ν + kp = −ν− 1, the result follows.

A first instance of the numbers εi,ν and of Equation (8.13), in the case of rupture
divisors of irreducible plane curves and ν = 0, already appeared in an article of Lichtin
[Lic85].

The formula for the residue at a candidate pole σp,ν is presented next. The residue
is expressed as an improper integral, see Remark 8.1 below, along the divisor Ep

having singularities of orders ε1,ν, ε2,ν, . . . , ε1,r at the intersection points of Ep with
D1, D2, . . . , Dr.

Proposition 8.4. The residue of the complex zeta function f s at a candidate pole s = σp,ν is
given by

Res
s=σp,ν
〈 f s, ϕ〉 = −2πi

(ν!)2

∫
C
|yp|2ε1,ν

∂2νΦ1

∂xν
p∂x̄ν

p
(0, yp; σp,ν)dypdȳp (Up chart)

=
−2πi
(ν!)2

∫
C
|zp|2ε2,ν

∂2νΦ2

∂wν
p∂w̄ν

p
(zp, 0; σp,ν)dzpdz̄p, (Vp chart).

(8.15)
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Proof. Applying Equation (8.6) to Proposition 8.1 with s2 = N1σp,ν + k1 and N2σp,ν + k2,
respectively, we obtain that the residue of f s at s = σp,ν is

Res
s=σp,ν
〈 f s, ϕ〉 = −2πi

(ν!)2

( ∫
C
|yp|2(N1σp,ν+k1)

∂2νΦ1η1

∂xν
p∂x̄ν

p
(0, yp; σp,ν)dypdȳp

+
∫

C
|zp|2(N2σp,ν+k2)

∂2νΦ2η2

∂wν
p∂w̄ν

p
(zp, 0; σp,ν)dzpdz̄p

)
.

(8.16)

The differential form |π∗ f |2s(π∗ϕ)|dπ|2 is a global section on X′ such that its restriction
to Up, resp. Vp, has Φ1, resp. Φ2, as factor. The global section differs only from Φ1, Φ2

by the exceptional part of D1, D2 in the total transform |π∗ f |2s. Thus, at the intersection
Up ∩Vp, having that ypzp = 1, wp = xκp

p yp, one checks that

Φ2(zp, wp; σp,ν) = Φ2(y−1
p , xκp

p yp; σp,ν)

= |yp|−2(ε3,ν+···+εr,ν)Φ2(yp, xκp
p yp; σp,ν)

= |yp|−2(ε3,ν+···+εr,ν)Φ1(xp, yp; σp,ν).

(8.17)

Now, taking derivatives on both sides with respect to wp and wp and setting wp, w̄p = 0
yields,

∂2νΦ2

∂wν
p∂wν

p
(zp, 0; σp,ν) = |yp|−2(ε3,ν+···+εr,ν+κpν) ∂2νΦ1

∂xν
p∂x̄ν

p
(0, yp; σp,ν). (8.18)

This, together with Lemma 8.3, shows that the differential forms

|yp|2ε1,ν
∂2νΦ1

∂νxp∂ν x̄p
(0, yp; σp,ν)dyp ∧ dȳp, |zp|2ε2,ν

∂2νΦ2

∂wν
p∂w̄p

(zp, 0; σp,ν)dwp ∧ dw̄p, (8.19)

define a global section on Ep. As a consequence, it suffices to use zpyp = 1 in either of
the integrals in Equation (8.16), together with the fact that η1

∣∣
Ep

+ η2
∣∣

Ep
≡ 1.

Corollary 8.5. The residue of the complex zeta function f s at s = σp,ν is given, in the Up chart,
by

Res
s=σp,ν
〈 f s, ϕ〉 =−2πi

(ν!)2

∫
|yp|≤R

|yp|2ε1,ν
∂2νΦ1

∂xν
p∂x̄ν

p
(0, yp; σp,ν)dypdȳp

+
−2πi
(ν!)2

∫
|yp|>R

|yp|2ε1,ν
∂2νΦ1

∂xν
p∂x̄ν

p
(0, yp; σp,ν)dypdȳp, R > 0,

(8.20)

and analogously for the other chart Vp.

Proof. The function η1 can be chosen to be continuous and such that its restriction to
Ep is η1

∣∣
Ep
≡ 1 in |yp| ≤ R and 0 in |yp| > R. Because zpyp = 1 on the overlap of any

two charts of Ep, η2
∣∣

Ep
must be identically 1 in |zp| < 1/R, i.e. |yp| > R, and zero in

the complement. The results follow now from the proof of the previous proposition.
Indeed, substitute such η1 and η2 in Equation (8.16) and use the fact that the integrand
is a global section on Ep.
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Remark 8.1. The value of the residue Ress=σp,ν〈 f s, ϕ〉must be understood as the analytic
continuation of the functions,

I1(α1, β3, . . . , βr) =
∫

C
|yp|2α1

∂2νΦ1

∂xν
p∂x̄ν

p
(0, yp; β3, . . . , βr)dypdȳp,

I2(α2, β3, . . . , βr) =
∫

C
|zp|2α2

∂2νΦ2

∂wν
p∂w̄ν

p
(zp, 0; β3, . . . , βr)dzpdz̄p,

(8.21)

at the rational points (ε1,ν, ε3,ν, . . . , εr,ν) and (ε2,ν, ε3,ν, . . . , εr,ν), respectively, as these
points will usually be outside the region of convergence of the integrals defining I1, I2.
For simplicity of the notation, we always present Φ1, Φ2 depending only on a single
variable σp,ν, as ε3,r, . . . , εr,ν are in fact N3σp,ν + k3 = ε3,ν, . . . , Nrσp,ν + kr = εr,ν. �

Using the residue formula from Proposition 8.4, we can detect whether the complex
zeta function f s has poles of order one or two. Since the residue of zs1

1 zs2
2 as a function

of s2 has poles, the residue of f s at s = σp,ν can be infinity, in the sense that the analytic
continuation of the functions in Equation (8.21) at the points εi,ν has a pole. Therefore,

Lemma 8.6. If the residue Ress=σp,ν f s is infinite, then σp,ν is a pole of order two. Conversely, if
Ress=σp,ν f s is zero, σp,ν is neither a pole of order one or two. In particular, a necessary condition
for σp,ν to be a pole of order two is that εi,ν ∈ Z<0 for some i = 1, . . . , r.

Proof. In the proof of Proposition 8.4, we have used the expression for the residue of
zs1

1 zs2
2 at s1 = Npσp,ν + kp = −ν− 1 with s2 = Niσp,ν + ki = εi,ν, to deduce the expression

for the residue of f s at s = σp,ν. Thus, in terms of the Laurent expansions, a term
(s1 + ν1 + 1)−1(s2 + ν2 + 1)−1 from zs1

1 zs2
2 becomes a term (Nps + kp + ν1 + 1)−1(Nis +

ki + ν2 + 1)−1, which may generate a pole if εi,ν ∈ Z<0.

Finally, we end this section with the following important observation. As in the
monomial case 〈zs, ϕ〉 considered in Proposition 7.1, where the residue is interpreted
in terms of the derivatives of the test function ϕ, and consequently, in terms of the
Dirac’s delta function, the same holds for any f s. The derivatives of Φ1, Φ2 involve
taking derivatives on π∗ϕ which, by the product rule of differentiation and the fact that
(π∗ϕ)

∣∣
Ep

= ϕ(0), imply that

Res
s=σp,ν

f s ∈
〈
δ
(0,0,0,0)
0 , δ

(1,0,0,0)
0 , δ

(0,1,0,0)
0 , . . . , δ

(ν,ν,ν,ν)
0

〉
C

. (8.22)

Therefore, the residue of f s at any candidate pole must be also understood as a
distribution in this precise sense. As a consequence, the residue of f s at a candidate
pole will be zero when all the coefficients of the linear combination in Equation (8.22)
are zero. In a similar way, the residue will be non-zero when just one of the coefficients
is non-zero.

8.3 Residues at non-rupture divisors

The exact expression of the residue is quite involved due to the presence of the ν–th
derivative of Φ1 or Φ2. However, from the study of the derivatives of the factors of Φ1

or Φ2, we will show when the residues at a candidate σp,ν is zero for a non-rupture
exceptional divisor Ep. The proof uses the following technical results.
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Lemma 8.7 (Faà di Bruno’s formula, [Com74, p. III.3.4]). Let g, h be two infinitely many
times differentiable functions. Then,

dν

dxν
g(h(x)) =

ν

∑
k=1

dkg
dxk (h(x))Bν,k

(
dh
dx

(x),
d2h
dx2 (x), . . . ,

dν−k+1h
dxν−k+1 (x)

)
, (8.23)

where Bν,k are the partial exponential Bell polynomials

Bν,k(x1, x2, . . . , xν−k+1) := ∑
ν!

j1!j2! · · · jν−k+1!

( x1

1!

)j1 ( x2

2!

)j2
· · ·
(

xν−k+1

(ν− k + 1)!

)jν−k+1

,

(8.24)
and where the summation takes places over all integers j1, j2, j3, . . . , jν−k+1, such that

j1 + j2 + j3 + · · ·+ jν−k+1 = k,

j1 + 2j2 + 3j3 + · · ·+ (ν− k + 1)jν−k+1 = ν.
(8.25)

For instance, in the chart Up around Ep, we are interested in the situation where
g(x) = xs and h(xp) is equal to u1(xp, yp) from Proposition 8.1, and we set xp = 0 after
deriving. In this case, Lemma 8.7 reads as

∂νus
1

∂xν
p
(0, yp) =

ν

∑
k=1

(s)k
(
u1(0, yp)

)s−kBν,k

(
du1

dxp
(0, yp),

d2u1

dx2
p
(0, yp), . . . ,

dν−k+1u1

dxν−k+1
p

(0, yp)

)
,

(8.26)
where (s)k := s(s− 1) · · · (s− k + 1). And similarly in the other chart Vp.

Proposition 8.8 ([GS64, p. I.3.8]). For any α, α′ ∈ C such that α′ − α = n ∈ Z, the analytic
continuation of the sum

In(α) :=
∫
|z|≤R

zα′ z̄αdzdz̄ +
∫
|z|>R

zα′ z̄αdzdz̄ for any R > 0. (8.27)

is zero everywhere, i.e. In(α) ≡ 0.

Proof. Using polar coordinates1

−2i
∫ R

0

∫ 2π

0
r2α+n+1e2πinθdθdr− 2i

∫ ∞

R

∫ 2π

0
r2α+n+1e2πinθdθdr. (8.28)

However, ∫ 2π

0
e2πinθdθ =

{
0, n 6= 0,

2π, n = 0.
(8.29)

Hence, the result follows if n 6= 0. In the case that n = 0, the first integral defines a
holomorphic function in Re(α) > −1. It can be analytically continued by means of

−4πi
∫ R

0
r2α+1dr = −2πi

R2(α+1)

α + 1
for α 6= −1. (8.30)

Similarly, the other integral defines a holomorphic function in Re(α) < −1, and the
analytic continuation to the whole complex plane is

−4πi
∫ ∞

R
r2α+1dr = 2πi

R2(α+1)

α + 1
for α 6= −1. (8.31)

Finally, the sum of the analytic continuation of both integrals is identically zero.

1 By definition, zα′ z̄α := |z|α′+αei(α′−α) arg z, which, for integral α′ − α, is a single-valued function of z.
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In the following proposition, we generalize a calculation attributed to Cohen appear-
ing in an article of Barlet [Bar86] and used by Lichtin in [Lic89]. The original result
gives a closed form for the integral in Equation (8.32) below in the case R0,0(α, β). We
provide a formula for the general case Rn,m(α, β).

Proposition 8.9. For α, α′, β, β′ ∈ C, such that α′ − α = n ∈ Z and β′ − β = m ∈ Z, the
integral

Rn,m(α, β) :=
∫

C
zα′ z̄α(1− λz)β′(1− λ̄z̄)βdzdz̄ = R−n,−m(α

′, β′), λ ∈ C∗, (8.32)

is absolutely convergent for Re(α′ + α) > −2, Re(β′ + β) > −2 and Re(α′ + α + β′ + β) <

−2. It defines a meromorphic function on C2 equal to

Rn,m(α, β) = −2πiλ−α′−1λ̄−α−1 Γ(α + 1)Γ(β + 1)Γ(γ + 1)
Γ(−α− n)Γ(−β−m)Γ(−γ− n−m)

, (8.33)

where γ := −α− β− n−m− 2.

Proof. Let us prove first the case m = 0. Since Rn,0(α, β) = R−n,0(α′, β′), we can assume
n ∈ Z≥0. Using polar coordinates λz = reiθ , we have that (1 − λz)β′(1 − λ̄z̄)β =

|1− λz|2β = (1− 2r cos θ + r2)β and

Rn,0(α, β) = −2iλ−α′−1λ̄−α−1
∫ 2π

0

∫ ∞

0
r2α+n+1einθ(1− 2r cos θ + r2)βdrdθ. (8.34)

For simplicity, we can set λ = 1. We have,

(1− 2r cos θ + r2)β = (1 + r2)β

(
1− 2r cos θ

1 + r2

)β

(8.35)

and since |2r/(1 + r2)| ≤ 1, we may expand the binomial,(
1− 2r cos θ

1 + r2

)β

=
∞

∑
k=0

(
β

k

)
(−2)krk

(1 + r2)k cosk θ. (8.36)

The angular part of the integral is just

∫ 2π

0
einθ cosk θ dθ =



2π

4l

(
2l

l − s

)
, if k = 2l ≥ n = 2s, l ∈ Z≥0, s ∈ Z≥0,

π

4l

(
2l + 1
l − s

)
, if k = 2l + 1 ≥ n = 2s + 1, l ∈ Z≥0, s ∈ Z≥0,

0, otherwise.
(8.37)

The integral then reads as

R2s,0(α, β) = −4πi
∫ ∞

0
r2α+2s+1(1 + r2)β

∞

∑
l=0

(
2l

l − s

)(
β

2l

)
r2l

(1 + r2)2l dr, (8.38)

for n even, and

R2s+1,0(α, β) = 4πi
∫ ∞

0
r2α+2s+2(1 + r2)β

∞

∑
l=0

(
2l + 1
l − s

)(
β

2l + 1

)
r2l+1

(1 + r2)2l+1 dr, (8.39)
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for n odd. Using that
(

β

k

)
= (−1)k Γ(k− β)

Γ(−β)k!
and interchanging the summation and

integral signs,

R2s,0(α, β) =
−4πi

Γ(−β)

∞

∑
l=0

Γ(2l − β)

(l − s)!(l + s)!

∫ ∞

0
r2α+2s+2l+1(1 + r2)β−2ldr,

R2s+1,0(α, β) =
−4πi

Γ(−β)

∞

∑
l=0

Γ(2l + 1− β)

(l − s)!(l + s + 1)!

∫ ∞

0
r2α+2s+2l+3(1 + r2)β−2l−1dr.

(8.40)

Now, for Re(µ) > 0 and Re(2ν + µ) < 0,∫ ∞

0
xµ−1(1 + x2)νdx =

1
2

B
(µ

2
,−ν− µ

2

)
=

1
2

Γ
(µ

2

)
Γ
(
−ν− µ

2

)
Γ(−ν)−1. (8.41)

See, for instance, [GR15, pp. 3.251–2]. For µl = 2(α + s + l + 1) and νl = β− 2l,

R2s(α, β) =
−2πi
Γ(−β)

∞

∑
l=0

Γ(α + s + l + 1)Γ(l − α− s− β− 1)
(l − s)!(l + s)!

, (8.42)

since Re(µl) > 0 and Re(2νl + µl) < 0 for all l ∈ Z≥0. Analogously, for n ≥ 0 odd,
µl = 2(α + s + l + 2) and νl = β− 2l − 1,

R2s+1,0(α, β) =
−2πi

Γ(−β)

∞

∑
l=0

Γ(α + s + l + 2)Γ(l − α− s− β− 1)
(l − s)!(l + s + 1)!

. (8.43)

Since Γ(−k)−1 = 0 for k ∈ Z≥0, we can write

R2s,0(α, β) =
−2πi
Γ(−β)

∞

∑
l=0

Γ(α + l + 1)Γ(l − α− 2s− β− 1)
Γ(l − 2s + 1) l!

,

R2s+1,0(α, β) =
−2πi
Γ(−β)

∞

∑
l=0

Γ(α + l + 1)Γ(l − α− 2s− β− 2)
Γ(l − 2s) l!

.
(8.44)

Finally, for Re(c) > Re(a + b),

∞

∑
k=0

Γ(a + k)Γ(b + k)
Γ(c + k)k!

=
Γ(a)Γ(b)

Γ(c) 2F1(a, b; c; 1) =
Γ(a)Γ(b)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (8.45)

where 2F1(a, b; c; z) is the hypergeometric function. For the last equality see, for instance,
[GR15, pp. 9.122–1]. For n = 2s, set a = α + 1, b = −α− β− 2s− 1 and c = −2s + 1.
Similarly, for n = 2s + 1, a = α + 1, b = −α− β− 2s− 2 and c = −2s. Then,

R2s,0(α, β) = R2s+1,0(α, β) = −2πi
Γ(α + 1)Γ(−α− β− n− 1)Γ(β + 1)

Γ(−β)Γ(−n− α)Γ(α + β + 2)
. (8.46)

For the case where m 6= 0, having proved the result for n ∈ Z, m = 0, we can assume
without loss of generality that m ∈ Z≥0. Keeping λ = 1, notice that

Rn,m(α, β) =
∫

C
zα′zα|1− z|2β(1− z)mdzdz =

m

∑
j=0

(
m
j

)
(−1)jRn+j,0(α, β). (8.47)

Hence,

Rn,m(α, β) = −2πi
Γ(α + 1)Γ(β + 1)

Γ(−β)Γ(α + β + 2)

m

∑
j=0

(
m
j

)
(−1)j Γ(−α− β− n− j− 1)

Γ(−n− j− α)
. (8.48)
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Since the binomial coefficient is zero if j > m, we can consider the infinite sum.
Expanding the binomial coefficient in terms of the Gamma function

Rn,m(α, β) = −2πi
Γ(α + 1)Γ(β + 1)

Γ(−β)Γ(α + β + 2)Γ(−m)

∞

∑
j=0

Γ(j−m)Γ(−α− β− n− j− 1)
Γ(−n− j− α) j!

.

(8.49)
Using the functional equation Γ(z + 1) = zΓ(z) at each term

Rn,m(α, β) =− 2πi
Γ(α + 1)Γ(β + 1)Γ(−α− β− n− 1)Γ(α + β + n + 2)

Γ(−β)Γ(α + β + 2)Γ(−m)Γ(−α− n)Γ(α + n + 1)

·
∞

∑
j=0

Γ(j−m)Γ(α + n + j + 1)
Γ(α + β + n + j + 2) j!

.
(8.50)

Applying Equation (8.45) once again, since Re(β′ + β) > −2 implies Re(β + m) > −1,

Rn,m(α, β) = −2πi
Γ(α + 1)Γ(β + 1)Γ(−α− β− n− 1)Γ(α + β + n + 2)Γ(β + m + 1)

Γ(−β)Γ(α + β + 2)Γ(−α− n)Γ(α + β + n + m + 2)Γ(β + 1)
.

(8.51)
And we get the desired result using the functional equation Γ(z + 1) = zΓ(z) once
again.

It is now possible to prove the following result regarding non-rupture divisors. Recall
that, with the notations set in the first paragraph of Section 8.2, the divisors crossing
a non-rupture exceptional divisor Ep can only be D1, D2, D3, with at least one being
non-zero. Recall also the residue numbers ε1,ν, ε2,ν, ε3,ν from Definition 8.2.

Theorem 8.10. Let f : (C2, 0) −→ (C, 0) be any plane branch. Let Ep, p ∈ K be a non-rupture
exceptional divisor with sequence of candidate poles σp,ν, ν ∈ Z≥0. Then,

• If D3 = 0,
Res
s=σp,ν

f s = 0, for all ν ∈ Z≥0. (8.52)

• If D3 6= 0,
Res
s=σp,ν

f s = 0, if ε3,ν 6∈ Z. (8.53)

Proof. Let us first begin with D3 non-zero. In this case, we must also have D1 or D2

non-zero. We can assume, for instance, D1 non-zero.

By the definition of D1, D2, . . . , Dr, if D1 and D3 are non-zero, D3 is the only divisor
crossing Ep in the Vp chart. In the (zp, wp) coordinates, this means that us

2(zp, 0)v2(zp, 0)
has the form (1− λyp)N3s+k3 for some λ ∈ C∗. By Faà di Bruno’s formula in Lemma 8.7
and Equation (8.26), the ν–th holomorphic and antiholomorphic derivatives of Φ2 at
zp, z̄p = 0, s = σp,ν is an algebraic function involving the terms zk′

p z̄k
p(1− λzp)ε3,ν−l′(1−

λ̄ȳp)ε3,ν−l with k, k′, l, l′ ∈ Z≥0. Hence, the residue reduces to a finite sum involving the
integrals Rn,m(α, β) from Equation (8.32) which, by Proposition 8.9, are proportional to

Γ(α + 1)Γ(β + 1)Γ(γ + 1)
Γ(−α− n)Γ(−β−m)Γ(−γ− n−m)

, n, m ∈ Z. (8.54)

Applying Lemma 8.3 to this situation implies that, ε1,ν + ε3,ν + κpν + 2 = 0. Notice that
ε3,ν 6∈ Z implies ε1,ν 6∈ Z. Since the poles of Γ(z) are located at the negative integers,
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and Γ(z) has no zeros, Γ(β+ 1), Γ(γ+ 1), Γ(−β−m)−1, Γ(−γ− n−m)−1 ∈ C∗. Finally,
consider the non-negative integers k, k′ in zk′

p z̄k
p above. The quotient Γ(α + 1)/Γ(−α− n)

is zero since ε2,ν = 0 and α + 1 = k + 1 > 0,−α− n = −α′ = −k′ ≤ 0.

If D3 is zero and Ep is a non-rupture divisor, it may happen that D2 is zero or not. If
D2 is not zero, it must cross Ep in the only point of Vp not in Up. In both cases, in the
chart Up, none of the components us

1, v1 of Φ1 will cross Ep. In the (xp, yp) coordinates
this means that us

1(0, yp)v1(0, yp) ∈ C∗ for all yp ∈ C. Applying Faà di Bruno’s formula
again, the holomorphic and antiholomorphic derivatives of Φ1 restricted to xp, x̄p = 0
are just polynomials in yp and ȳp. By Corollary 8.5 and Proposition 8.8, the residue is
zero.

Example 8.1. There are examples where D3 6= 0 and ε3,ν ∈ Z and the corresponding
σp,ν has non-zero residue. For instance, f = (y2 − x3)(y− x2)3. Its minimal embedded
resolution is given by

Fπ = 5Ep0 + 9Ep1 + 15Ep2 + C1 + 3C2, Kπ = Ep0 + 2Ep1 + 4Ep2 . (8.55)

In this case, Ep1 is a non-rupture exceptional divisor with Ep2 and C2 crossing Ep1 . It
can be checked that σp1,0 = −1/3 is a pole of order two of f s. Here, D1 = Ep2 , D3 = C2

and ε1,0 = ε3,0 = −1. �

9 the set of poles of the complex zeta function of a plane branch

In this section, we restrict our study of the poles of the complex zeta function to the
case of plane branch singularities. Throughout the rest of this work, we will fix a plane
branch semigroup Γ = 〈β0, β1, . . . , βg〉 and we stick to the notations from Section 2.4.
Instead of taking any germ f : (C2, 0) −→ (C, 0) with semigroup Γ, we will work with
the family { ft,λ}λ∈Cg−1 from Proposition 2.17. Since this family contains at least one
representative for each analytic type in the equisingularity class of the semigroup Γ, we
can give an optimal set of candidates for the poles of the complex zeta function f s of
all plane branches with semigroup Γ. Furthermore, we will prove that if fgen is generic
among all branches with semigroup Γ (in the sense that the coefficients of a µ-constant
deformation are generic), all the candidates are indeed poles of f s

gen. As a corollary, we
prove Yano’s conjecture under the assumption that eigenvalues of the monodromy are
pairwise distinct.

9.1 Residues at rupture divisors

After Theorem 8.10 in the preceding section, the only divisors that will contribute
to poles of the complex zeta function of a plane branch will be rupture divisors and
the divisor of the strict transform. Following the discussion in Section 2.7, a singular
plane branch will have exactly g ≥ 1 rupture divisors, denoted Ep1 , . . . , Epg , where g
is the number of characteristic exponents of ft. This first observation reduces the list
of candidate poles to σi,ν, ν ∈ Z for i = 1, . . . , g contributed by Epi , in addition to the
negative integers corresponding to the strict transform C̃. With the notations from
Lemma 2.11

σi,ν = −mi + n1 · · · ni + ν

niβi
, ν ∈ Z≥0. (9.1)
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We will basically use the same results about the residue presented in Section 8.2.
However, in this case, a better understanding of the total transform around the rupture
divisors is needed. To that end, we will make use of Proposition 2.19. The only thing
that will differ from Section 8.2 is that, instead of computing the residue on the minimal
resolution surface X′, we proceed inductively and resolve up to the i–th rupture divisor,
compute the residue on X(i) and blow-up up to the (i + 1)–th rupture divisor. This
process simplifies the notation and fits more naturally with the toric resolutions from
Section 2.7.

First of all, we have to analyze the residue numbers from Equation (8.12) in the case of
a rupture divisor of a plane branch. In this case, Lemma 8.3 is ε1,ν + ε2,ν + ε3,ν + κpi ν +

2 = 0, since rupture divisors of plane branches only have three divisors, D1, D2, D3,
crossing them. Since we will be working on X(i), the divisor previously written as D3 is
the strict transform C̃ of f on X(i) and thus, ε3,ν = eiσi,ν, because Epi · C̃ = ei. Similarly,
on the surface X(i), κpi = −Epi · Epi = 1. Hence,

ε1,ν + ε2,ν + eiσi,ν + ν + 2 = 0. (9.2)

It is then enough to study the relation of ε1,ν, ε2,ν, ν ∈ Z≥0 with the semigroup Γ. We
point out that Lichtin [Lic85] studied the residue numbers ε1,ν, ε2,ν for the case ν = 0.
Using the notations and definitions from Section 2.4.

Proposition 9.1 ([Lic85, Prop. 2.12]). The residue numbers ε1,0, ε2,0 associated with a rupture
divisor Epi of a plane branch are given by

ε1,0 + 1 =
1
ni

, ε2,0 + 1 =
mi−1 − ni−1mi−1 + n1 · · · ni−1

mi
. (9.3)

Corollary 9.2. For any ν ∈ Z≥0, the residue numbers are

ε1,ν + 1 = − ai

ni
ν +

1
ni

, ε2,ν + 1 = − cini−1mi−1 + di

mi
ν +

mi−1 − ni−1mi−1 + n1 · · · ni−1

mi
.

(9.4)

Proof. The result follows from the definition of ε1,ν, ε2,ν in Equation (8.12) and using
Proposition 9.1 and Corollary 2.21.

Secondly, we focus our attention on the functions Φ1, Φ2 from Proposition 8.1 but
now in the case of the family ft. Around the rupture divisor Epi on X(i), we have that
Φ1,t = |u1|2s|v1|2| f̃t|2s(π(i))∗ϕ

∣∣
Ui

and Φ2,t = |u2|2s|v2|s| f̃t|2s(π(i))∗ϕ
∣∣
Vi

. Since the only

factor of Φ1,t, Φ2,t crossing Epi is the strict transform f̃t, by Faà di Bruno’s formula in
Lemma 8.7 applied to the equations in Proposition 2.19, the ν–th derivatives of Φ1,t, Φ2,t

at xp, x̄p = 0, wp, w̄p = 0 with s = σi,ν are a finite sum with summands that look like

yk′
p ȳk

p(yi − λi)
ei(σi,ν−l′)(ȳi − λ̄i)

ei(σi,ν−l), zk′
p z̄k

p(1− λizp)
ei(σi,ν−l′)(1− λ̄i z̄p)

ei(σi,ν−l), (9.5)

with k′, k, l′, l ∈ Z≥0. Therefore, it makes sense to consider the order and the degree of
yi, zi in Φ1,t, Φ2,t. On the Ui chart, they will be denoted by

0 ≤ ordyi

∂νΦ1,t

∂xν∂x̄ν
(0, yi; σi,ν) ≤ degyi

∂νΦ1,t

∂xν∂x̄ν
(0, yi; σi,ν), (9.6)

and respectively on the Vi chart. By the symmetry of the holomorphic and antiholo-
morphic parts, the orders and degrees are exactly the same if considered with respect
to the conjugated variables ȳi, z̄i. By convention, the order and degree of zero are +∞
and 0, respectively. Let us first present some technical lemmas.
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Lemma 9.3. Let f1, . . . , fn ∈ C∞(C2) be functions such that

αν ≤ ordy
∂ν fi

∂xν
(0, y), degy

∂ν fi

∂xν
(0, y) ≤ βν, for i = 1, . . . , n, (9.7)

and α, β ∈ Q>0. Then,

αν ≤ ordy
∂ν( f1 · · · fn)

∂xν
(0, y), degy

∂ν( f1 · · · fn)

∂xν
(0, y) ≤ βν, (9.8)

and,

αν ≤ ordy
∂ν f s

1
∂xν

(0, y), degy
∂ν f s

1
∂xν

(0, y) ≤ βν for all s ∈ C. (9.9)

Proof. The first inequalities follow from the general Leibniz rule,

∂ν( f1 · · · fn)

∂xν
(0, y) = ∑

k1+···+kn=ν

(
n

k1, . . . , kn

)
∂k1 f1

∂xk1
(0, y) · · · ∂kn fn

∂xkn
(0, y). (9.10)

Similarly, the second follows from Faà di Bruno’s formula and the definition of the
partial exponential Bell polynomials, see Lemma 8.7 and Lemma 8.7. Specifically, they
follow from the second part of Equation (8.25)

Lemma 9.4. Let f (x, y) ∈ C∞(C2) and let π(x, y) = (xnya, xmyb) with n, m, a, b ∈ Z≥0.
Furthermore, assume that nb−ma ≥ 0. Then,

a
n

ν ≤ ordy
∂ν( f ◦ π)

∂xν
(0, y), degy

∂ν( f ◦ π)

∂xν
(0, y) ≤ b

m
ν for all ν ∈ Z≥0. (9.11)

Proof. Consider the Taylor expansion of f at the origin of order τ > ν,

f (x, y) =
τ−1

∑
i,j=0

∂i+j f
∂xi∂yi (0, 0)

xi

i!
yj

j!
+ Rτ(x, y)xτyτ, (9.12)

where Rτ is the residual. Composing with π, we get

f (π(x, y)) =
τ−1

∑
i,j=0

∂i+j f
∂xi∂yi (0, 0)

xni+mj

i!
yai+bj

j!
+ Rτ(xnya, xmyb)x(n+m)τy(a+b)τ. (9.13)

At the ν–th derivative of this Taylor polynomial with respect to x and restricted to
x = 0, we must have that ni + mj = ν for some integers i, j ≥ 0. Notice that if there are
no such i, j ≥ 0 the derivative is zero, and the bounds are trivially fulfilled. Finally,

ordy
∂ν( f ◦ π)

∂xν
(0, y) = min

ni+mj=ν
{ai + bj} ≥ min

j≥0

{
a
n

ν +
(nb−ma)j

n

}
≥ a

n
ν,

degy
∂ν( f ◦ π)

∂xν
(0, y) = max

ni+mj=ν
{ai + bj} ≤ max

i≥0

{
b
m

ν− (nb−ma)i
m

}
≤ b

m
ν,

(9.14)

where in the first inequality of each equation used that i = (ν − mj)/n and j =

(ν− ni)/m, respectively.

Recall the linear forms ρ
(i)
j+1(k), A(i)

j+1(k), C(i)
j+1(k) from Proposition 2.19.
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Lemma 9.5. For any ν ∈ Z≥0, we have

ai

ni
ν ≤ min

ρ
(i)
j+1(k)=ν

A(i)
j+1(k),

cini−1mi−1 + di

mi
ν ≤ min

ρ
(i)
j+1(k)=ν

C(i)
j+1(k), (9.15)

max
ρ
(i)
j+1(k)=ν

A(i)
j+1(k) ≤

aini−1mi−1 + bi

mi
ν + ni+1 · · · nj, max

ρ
(i)
j+1(k)=ν

C(i)
j+1(k) ≤

ci

ni
ν + ni+1 · · · nj.

(9.16)

Proof. For the first inequality, solve for k0 in the constrain ρ
(i)
j+1(k0, . . . , k j) = ν and

substitute in A(i)
j+1(k). After some cancellations, we get

ai

ni
ν + aini−1mi−1ki + biki −

ai

ni
miki =

ai

ni
ν +

ki

ni
, (9.17)

where in the equality we applied mi = nini−1mi−1 + qi, from Equation (2.17), and that
nibi − aiqi = 1. Since ki ≥ 0, we obtain the lower bound for the minimum of A(i)

j+1(k)

restricted to ρ
(i)
j+1(k) = ν. The argument for the lower bound for the minimum of C(i)

j+1(k)

works similarly. Instead, solve for ki in the constrain ρ
(i)
j+1(k0, . . . , ki, . . . , k j) = ν and

substitute in C(i)
j+1(k). Applying Equation (2.17) when necessary and that qici − nidi = 1,

we obtain
cini−1mi−1 + di

mi
ν +

1
mi

i−1

∑
l=0

nl+1 · · · nimlkl , (9.18)

which gives again the lower bound since kl ≥ 0. Having obtained the lower bounds for
the minimums of A(i)

j+1 and C(i)
j+1 we can use Corollary 2.20 to obtain the upper bounds

for the maximums. Indeed,

A(i)
j+1(k) + C(i)

j+1(k) ≤ ρ
(i)
j+1(k) + ni+1 · · · nj, (9.19)

since kl ≥ 0. Hence,

max
ρ
(i)
j+1(k)=ν

A(i)
j+1(k) ≤ ν + ni+1 · · · nj − min

ρ
(i)
j+1(k)=ν

C(i)
j+1(k) =

aini−1mi−1 + bi

mi
ν + ni+1 · · · nj,

(9.20)
since ai + ci = ni and bi + di = qi. We can argue similarly for the remaining bound.

All these technical lemmas are used in the proof of the following proposition.

Proposition 9.6. With the notations above, we have that

ai

ni
ν ≤ ordyi

∂2νΦ1,t

∂xν
i ∂x̄ν

i
(0, yi; σi,ν),

di

qi
ν ≤ ordzi

∂2νΦ2,t

∂wν
i ∂w̄ν

i
(zi, 0; σi,ν), (9.21)

degyi

∂2νΦ1,t

∂xν
i ∂x̄ν

i
(0, yi; σi,ν) ≤

bi

qi
ν + ei, degzi

∂2νΦ2,t

∂wν
i ∂w̄ν

i
(zi, 0; σi,ν) ≤

ci

ni
ν + ei, (9.22)

for all ν ∈ Z≥0, and the same bounds hold for the conjugated variables ȳi, z̄i.
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Proof. We will do the proof for Φ1,t since the proof for Φ2,t works similarly. Recall
that Φ1,t = |u1|2s|v1|2| f̃t|2s(π(i))∗ϕ

∣∣
Ui

. By Lemma 9.3, it is enough to prove the bounds

for each holomorphic or antiholomorphic factor. The factors u1, v1, (π(i))∗ϕ
∣∣
Ui

are the
pull-back by the toric morphism πi of some invertible elements in the unique point of
the total transform of ft that is not a simple normal crossing on X(i−1). Therefore, by
Section 2.7 and Lemma 9.4, their orders (resp. degrees) with respect to yi are bounded
by aiν/ni (resp. biν/qi). It remains to prove the bounds for the strict transform f̃t.

For the strict transform, consider Proposition 2.19 and proceed by induction from
f̃i+1. Analyzing Equation (2.54), the only part depending on xi is the summation. By
Lemma 9.3, it is enough to show that each factor of each summand fulfills the bounds.
By the same argument as before, the units u(i)

k satisfy the bounds. On the other hand,
Lemma 9.5 assures the bounds for the monomials in xi, yi. The lower-bound for the
order is clear. For the upper-bound on the degree just notice that

aini−1mi−1 + bi

mi
=

aini−1mi−1 + bi

nini−1mi−1 + qi
<

bi

qi
, (9.23)

since mi = nini−1mi−1 + qi and nibi − qiai = 1. Therefore, we are done for f̃i+1. By
induction, if all f̃k+1, i ≤ k < j satisfy the bounds, so does f̃ j+1. To see this, it is just a
matter of applying Lemma 9.3, Lemma 9.4, Lemma 9.5, and the induction hypothesis
to Equation (2.55).

We are ready to present the main result of this section.

Theorem 9.7. For any plane branch singularity f : (C2, 0) −→ (C, 0), the poles of the complex
zeta function f s are simple and contained in the sets{

σi,ν = −mi + n1 · · · ni + ν

niβi

∣∣∣∣ ν ∈ Z≥0, βiσi,ν, ei−1σi,ν 6∈ Z

}
, i = 1, . . . , g, (9.24)

contributed by the rupture divisors Epi , together with the negative integers Z<0, contributed by
the strict transform C̃.

Proof. In order to prove this result for any plane branch, it is enough to restrict the study
to the family of ft from Proposition 2.17. By the previous discussion, we only have
to show that the candidates σi,ν such that βiσi,ν, ei−1σi,ν ∈ Z have always residue zero.
The first important observation is that βiσi,ν, ei−1σi,ν ∈ Z, if and only if, ε1,ν, ε2,ν ∈ Z,
respectively. To see this, consider the definitions ε1,ν = N1σ1,ν + k1, ε2,ν = N2σ2,ν + k2

from Equation (8.12). Hence, ε1,ν, ε2,ν ∈ Z, if and only if, N1σi,ν, N2σi,ν ∈ Z, respectively.
By Proposition 2.19, N1 = aiβi and N2 = (cini−1mi−1 + di)ei−1, and the remark follows
because

gcd(niβi, aiβi) = βi gcd(ni, ai) = βi, (9.25)

since nibi − qiai = 1, and

gcd(niβi, (cini−1mi−1 + di)ei−1) = ei−1 gcd(mi, cini−1mi−1 + di) = ei−1, (9.26)

since mi = nini−1mi−1 + qi and qici − nidi = 1. The argument to show that the residue
is zero if ε1,ν ∈ Z or ε2,ν ∈ Z is fundamentally different for each case. Let us begin by
the case where βiσi,ν ∈ Z and ei−1σi,ν 6∈ Z.
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In order to study the residues of the candidates σi,ν of the i–th rupture divisor Epi

such that βiσi,ν ∈ Z, we place ourselves in the chart Ui of X(i) with local coordinates
(xi, yi). The origin of this chart is the intersection point Ep1 ∩ D1. The only point of the
total transform on X(i) that is not a simple normal crossing is the intersection of the
strict transform of ft with Epi , with Epi being the only exceptional divisor at that point.
Therefore, we can apply the formula for the residue in Section 1.1 for the Ui chart.

From the preceding discussion, the derivatives of Φ1,t appearing in the residue
formula are a finite sum of terms that look like yk′

p ȳk
p(yi − λi)

ei(σi,ν−l′)(ȳi − λ̄i)
ei(σi,ν−l).

Consequently, we can reduce the residue to a finite sum of the integrals from Equa-
tion (8.32), which, by Proposition 8.9, are equal to

−2πiλ−α−n−1λ̄−α−1 Γ(α + 1)Γ(β + 1)Γ(γ + 1)
Γ(−α− n)Γ(−β−m)Γ(−γ− n−m)

, n, m ∈ Z. (9.27)

As noted earlier, for Epi on X(i) we have that ε1,ν + ε2,ν + eiσi,ν + ν + 2 = 0. If we are
assuming that ε1,ν ∈ Z but ε2,ν 6∈ Z, i.e. ei−1σi,ν 6∈ Z, it must happen that eiσi,ν 6∈ Z.
This implies that Γ(β + 1), Γ(−β − n), Γ(γ + 1), Γ(−γ − n − m) ∈ C∗. However, the
remaining factor, Γ(α + 1)/Γ(−α − n), is always zero, since ε1,ν ∈ Z implies that
α, α′ ∈ Z,

α + 1 = ε1,ν + 1 + k ≥ − ai

ni
ν +

1
ni

+
ai

ni
ν =

1
ni

> 0, (9.28)

and −α− n = −α′ < 1, by Corollary 9.2 and Proposition 9.6. This proves that the
residue at the candidate poles σi,ν such that βiσi,ν ∈ Z, ei−1σi,ν 6∈ Z is zero.

We move now to the case where ei−1σi,ν ∈ Z, βiσi,ν 6∈ Z, i.e. ε2,ν ∈ Z and eiσi,ν 6∈ Z.
For this case observe that the previous argument, applied to the residue in the Vi chart,
only works for the first rupture divisor. For i = 1, ε2,ν + 1 = −d1ν/q1 + 1/q1, since
n0, m0 = 0 and m1 = q1. Otherwise, the formula for ε2,ν from Corollary 9.2 and the
bound for the order of Φ2,t in Proposition 9.6 do not match. Thus, from now on, we
will assume i ≥ 2.

To study the residue at these poles, we consider Ress=σi,ν f s
t as a function of λi ∈ C

and we place ourselves in the Vi chart. Since λi is the intersection coordinate of the strict
transform with Epi , if we let λi → 0 or λi → ∞, we are in the situation of a non-rupture
divisor and the residue is zero. By Proposition 8.9 and since ε2 ∈ Z, the residue is a
Laurent series on λi, λ̄i 6= 0. Deriving under the integral sign in the formula for the
residue from Corollary 8.5 we increase the order in zi, z̄i of Φ2,t by one unit. Therefore,
after deriving enough times we can assume that in Equation (9.27), α + 1 > 0,−α′ ≤
0, α, α′ ∈ Z. This implies that the principal part in λi, λ̄i of Ress=σi,ν f s

t (λi) must be zero.
However, the same argument is true if we consider the residue as a function of λ−1

i ,λ−1
i .

Hence, the residue is independent of λi, λ̄i. This implies that the residue is zero overall.

It remains to show that the residue is zero in the case that βiσi,ν ∈ Z and ei−1σi,ν ∈ Z.
Both conditions imply that, eiσi,ν ∈ Z. To see that the residue is zero in this situation, it
is just a matter of combining the previous arguments and recalling that the Gamma
function has only simple poles. After deriving with respect to λi in the Vi chart,
we can get Equation (9.27) with α + 1 > 0 and −α − n = −α′ ≤ 0, i.e., the factor
Γ(α + 1)/Γ(−α− n) is zero. Assume we have derived d′ times with respect to λi, then

α′ = ε2,ν + d′ + k′ β′ = eiσi,ν − eil′ − eid′. (9.29)
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Consequently, since ei ≥ 1,

γ + 1 = −α′ − β′ − 1 = −ε2,ν + 1− k′ − eiσi,ν + eil′ − 2 ≥ ε1,ν + ν + 1− k′ + ei

≥ − ai

ni
ν +

1
ni

+ ν− ci

ni
ν− ei + ei =

1
ni

> 0,
(9.30)

by Corollary 9.2 and Proposition 9.6. Similarly, −γ′ − n−m < 1. Therefore, the factor
Γ(γ+ 1)/Γ(−γ− n−m) is also zero. Since ei−1σi,ν ∈ Z, the piece, Γ(β+ 1)/Γ(−β−m),
has a pole. However, Equation (9.27) is zero because the poles of Γ(z) are simple.

Finally, we need to see that the negative integers, the candidates coming from the
strict transform C̃, are poles. We can argue directly from the definition of f s given in
Equation (8.1). Take 0 6= p ∈ f−1

t (0) ∩U at which the equation ft can be taken as one
of the holomorphic coordinates. Thus, we reduce the problem to the monomial case
and, by Proposition 7.1, the negative integers are simple poles. The poles contributed
by rupture divisors are also simple because they must have ε1,ν, ε2,ν, eiσi,ν 6∈ Z for all
ν ∈ Z≥0. These conditions imply that Equation (9.27) cannot have a pole and hence,
the residue does not have a pole. By Section 8.1, all the poles of f s are simple.

We point out that the candidate poles σ1,0 > σ2,0 > · · · > σg,0 are always poles of f s

for any plane branch f as shown by Lichtin in [Lic85; Lic89].

Example 9.1. There are examples where the candidate poles of f s that are in the sets
from Equation (9.24) vary in a µ–constant deformations of f . For instance, consider
f = y4 − x9 and the µ–constant deformation ft = y4 − x9 + tx5y2. For the unique
rupture divisor, the sequence of candidate poles is σ1,ν = −(13 + ν)/36, ν ∈ Z≥0.
Taking ν = 2, σ1,2 = −5/12, ε1,2 = −9/4, ε2,2 = −4/3, and

Res
s=σ1,2

ft = −16π2σ2
1,2

Γ(ε1,2 + 3)Γ(σ1,2)Γ(ε2,2 + 2)
Γ(−ε1,2 − 2)Γ(−σ1,2 + 1)Γ(−ε2,2 − 1)

|t|2δ
(0,0,0,0)
0 . (9.31)

Therefore, σ1,2 = −5/12 is a pole, if and only if, t 6= 0. �

9.2 Generic poles

Studying the residues in terms of the deformation parameters of ft, we can get open
conditions in which a certain candidate pole is indeed a pole, as seen in Example 9.1.
Recalling Equation (8.22), the first observation is that, in terms of t,

Res
s=σi,ν

f s
t =

ν

∑
k′,l′,k,l=0

pk′,l′(t)pk,l(t̄) δ
(k′,l′,k,l)
0 , (9.32)

with pk′,l′(t) = pk,l(t̄) if k′ = k and l′ = l. The following theorem shows that, actually,
any candidate is a pole in a certain Zariski open set in the deformation space of ft.

Theorem 9.8. For any M1, . . . , Mg ∈ Z≥0, generic plane branches fgen in the equisingularity
class corresponding to the semigroup Γ = 〈β0, β1, . . . , βg〉 satisfy that{

σi,ν = −mi + n1 · · · ni + ν

niβi

∣∣∣∣ 0 ≤ ν < Mi, βiσi,ν, ei−1σi,ν 6∈ Z

}
, i = 1, . . . , g, (9.33)

are simple poles of the complex zeta function f s
gen.
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Proof. By Theorem 9.7, we only have to check the candidates in the sets given in
Equation (9.24). In the case that ν = 0, the residue for the candidates σ1,0 > σ2,0 > · · · >
σg,0 does not depend on t and consists only of one of the integrals from Proposition 8.9
which is non-zero by Proposition 9.1.

Therefore, fix a candidate pole σi,ν with 0 < ν < Mi. It is enough to show that one
of the polynomials pk′,l′(t) on the parameters t in the expression from Equation (9.32)
is not identically zero. Consider the residue formula from Proposition 8.4 in, for in-
stance, the Ui chart and recall that Φ1,t = |u1|2s|v1|2| f̃t|2s(π(i))∗ϕ

∣∣
Ui

. Now, considering
Equation (2.54), we claim that the strict transform has a deformation term

t(i)k x
ρ
(i)
i+1(k)

i y
A(i)

i+1(k)
i u(i)

k (xi, yi) (9.34)

for a certain k such that ρ
(i)
i+1(k) = ν. Indeed, this happens since ρ

(i)
i+1(k) = ν is

equivalent, by Equation (2.56), to

n1 · · · nik0 + n2 · · · nim1k1 + · · ·+ miki = nimi + ν. (9.35)

But this is an identity in the semigroup Γi+1 of the maximal contact element fi+1,
see Equation (2.22), and such a k always exists because nimi + ν is bigger than the
conductor of Γi+1. The deformation parameter t(i)k for such a k can only appear when ft

is derived ν times. By Faà di Bruno’s formula, this implies that the polynomial p0,0(t)
in Equation (9.32) is equal to ζt(i)k + · · · , where the dots represent other terms on t

not containing t(i)k . The coefficient ζ ∈ C is different from zero since it has the form
of Equation (8.33) and we are assuming that βiσi,ν, ei−1σi,ν 6∈ Z. Hence, the condition
p0,0(t) 6= 0 gives a non-empty Zariski open subset on the deformation space of ft in
which σi,ν is a pole.

In the case that there is a resonance between two poles, i.e. σi,ν = σi′,ν′ for i 6= i′, the
condition that the residues of σi,ν and σi′,ν′ do not cancel out gives another Zariski open
set. The intersection of all the open sets defines generic plane branches fgen.

Consider the sets from Equation (9.33) with Mi = niβi, namely

Πi :=

{
σi,ν = −mi + n1 · · · ni + ν

niβi

∣∣∣∣ 0 ≤ ν < niβi, βiσi,ν, ei−1σi,ν 6∈ Z

}
, (9.36)

for i = 1, . . . , g and define Π :=
⋃g

i=1 Πi. An easy computation shows that there are
exactly µ elements in Π, counted with possible multiplicities,

|Π| =
g

∑
i=1

niβi − βi − niei + ei =
g

∑
i=1

(ni − 1)βi +
g

∑
i=1

ei − ei−1 =
g

∑
i=1

(ni − 1)βi − n + 1 = µ,

(9.37)
using Equation (2.18) in the last equality. The sets Πi are precisely the b-exponents
in Yano’s conjecture from Section 2.8. Indeed, the relation between the notations in
Equation (2.60) and the resolution data in Section 2.5 is clear. Namely, Ri = Npi =

niβi, R′i = Nqi = βi, ri = kpi + 1 = mi + n1 · · · ni and r′i = kqi + 1 = d(mi + n1 · · · ni)/nie,
see Remark 2.2. To see the equality between the exponents in Equation (2.61) and the set
Π is enough to notice that Ri = Npi = niNqi = niR′i and ri = kpi + 1 = ni(kqi + 1) = nir′i .
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The results of Malgrange [Mal75] and Barlet [Bar84] imply that the elements of
Π generate all the eigenvalues of the monodromy. The characteristic polynomial of
the monodromy is a topological invariant of the singularity, see A’Campo formula
[ACa75]. Consequently, it can be computed from the semigroup Γ of f , see [Neu83].
The hypothesis that the eigenvalues of the monodromy are pairwise different is a
condition on the equisingularity class, i.e. on the semigroup Γ, implying that there are
exactly µ different elements in Π.

As a corollary of Theorem 9.8, we can deduce Yano’s conjecture for any number
of characteristic exponents if we assume that the eigenvalues of the monodromy are
different.

Corollary 9.9. Let Γ = 〈β0, β1, . . . , βg〉 be a semigroup defining an equisingularity class of
plane branches. If the eigenvalues of the monodromy in the equisingularity class associated with
the semigroup Γ are pairwise different, then Yano’s conjecture holds.

Proof. We must check that all the µ different elements of Π are roots of the Bernstein-
Sato polynomial bgen,0(s) of fgen. If σi,ν ∈ Πi is in between −lct( f )− 1 and −lct( f ), then
σi,ν is automatically a root of bgen,0(s) by Corollary 7.3. Otherwise, by Corollary 7.3,
we must check that σi,ν + 1 is not a root of bgen,0(s). By contradiction, assume σi,ν + 1
is a root of bgen,0(s). By [Loe85, Thm. 1.9], the roots of the Bernstein-Sato polynomial
of a reduced plane curve can only be of the form σ− k, with k ∈ Z≥0 and σ a pole of
f s. Hence, by Theorem 9.7, σi,ν + 1 = σi′,ν′ ∈ Πi′ , i 6= i′. But this is impossible since,
as eigenvalues of the monodromy, they are both equal, contradicting the hypothesis.
Finally, by the definitions in Section 2.8, if the Bernstein-Sato polynomial has exactly µ

different roots they must coincide with the opposites in sign to the b-exponents.
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P E R I O D S O F I N T E G R A L S I N T H E M I L N O R F I B E R

In this chapter, we will study periods of integrals in the Milnor fiber. These periods
are multivalued functions in the base of the Milnor fiber that have an asymptotic
expansion that encodes invariants of the singularity as the monodromy or the roots of
the Bernstein-Sato polynomial. Furthermore, the asymptotic expansion of the periods
can be constructed using resolution of singularities. Therefore, these periods of integrals
can be used to study these invariants in terms of resolution of singularities.

The asymptotic expansion of the periods has been studied by Malgrange [Mal74a;
Mal74b], Varchenko [Var80; Var82], Lichtin [Lic89], and Loeser [Loe88; Loe90]. We will
present some new results in the case of plane curves, generalizing previous results of
Varchenko [Var80], Lichtin [Lic89], and Loeser [Loe88]. Using these new results we
will give a proof for the general case of Yano’s conjecture. Finally, in the last section,
and using these ideas, we will deduce some results about topological roots of the
Bernstein-Sato polynomial of a plane branch.

10 asymptotics of integrals and cohomology of the milnor fiber

Let f : (Cn+1, 0) −→ (C, 0) be a germ of a holomorphic map with an isolated singularity
at the origin. In this section, we will introduce the main object of study of this chapter:
the periods of integrals in the Milnor fiber and their asymptotic expansion. We will also
introduce the notion of geometric and elementary sections that are due to Varchenko,
the relation between these sections and the b-exponents, and a semicontinuity result
for the b-exponents. Finally, we will show how one can construct the full asymptotic
expansion of the periods using resolution of singularities.

Throughout this section, we will use the notations and results introduced in Chapter I
for the Milnor fiber, see Section 1.4, the Gauss-Manin connection, see Section 1.5, and
the Brieskorn lattice, see Section 1.6.

10.1 Periods of integrals

Let η ∈ Γ(X, Ωn
X) be a holomorphic n-form on X and let γ(t), t ∈ T′ be a locally

constant section of the fibration Hn = ∪t∈T′Hn(Xt, C). Since the restriction of η to Xt is
a holomorphic form of maximal degree, and thus it is closed, the integral

I(t) :=
∫

γ(t)
η, (10.1)

already considered in Section 1.6, of η along the cycle γ(t) is well-defined. Further-
more, by the monodromy action, γ(t) is a multivalued function of t with values in
Hn(Xt, C) and I(t) defines a multivalued function on T′. After Leray’s Residue The-
orem Theorem 1.26, it is a (multivalued) holomorphic function since it holds that

I′(t) =
d
dt

∫
γ(t)

η =
∫

γ(t)

dη

d f
, (10.2)

97
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where dη/d f is the Gel’fand-Leray form of dη, introduced in Section 1.6, which
denotes the restriction to Xt of any holomorphic form ξ such that ξ ∧ d f = dη. In local
coordinates, if dη = g dx0 ∧ · · · ∧ dxn, then, on the set {x ∈ X | ∂ f /∂xi 6= 0}, dη/d f is
defined by the restriction to Xt of the form

(−1)i
(

∂ f
∂xi

)−1

g dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn. (10.3)

Now, let γ(t) be a vanishing cycle, that is, a locally constant section of Hn such that
γ(t) → 0 as t → 0. Malgrange [Mal74a, Lemma 4.5] proves that if γ(t) is such a
cycle, I(t) → 0 as t → 0 in any sector | arg t | ≤ C, C ∈ R+. In addition, assume that
γ(t) is a generalized eigenvector of the monodromy automorphism hn of Hn(Xt, C),
i.e. (hn − λ id)pγ(t) = 0 with p minimal and λ ∈ C∗ a root of unity. Then, since the
Gauss-Manin connection is regular, one has that I(t) has the following expansion, see
[Mal74a, Eq. 4.7.1],

I(t) =
∫

γ(t)
η = ∑

α∈L(λ)
0≤q<p

aα,qtα(ln t)q, aα,q ∈ C, (10.4)

where L(λ) is the set of α > 0 such that λ = exp(−2πıα). Notice from this that if γ(t)
is not a vanishing cycle, then necessarily λ = 1, since I(t) has the same expression as
Equation (10.4) plus a non-zero constant term.

Since for any top form ω ∈ Γ(X, Ωn+1
X ) there exists η ∈ Γ(X, Ωn

X) such that ω = dη,
we will consider only the integrals of dη/d f along any vanishing cycle γ(t) ∈ Hn(Xt, C).
Then, by the Monodromy Theorem and Equation (10.4)∫

γ(t)

ω

d f
= ∑

λ∈Λ
∑

α∈L(λ)
∑

0≤k≤n
aα−1,ktα−1(ln t)k. (10.5)

10.2 Geometric sections

For every top form ω ∈ Γ(X, Ωn+1
X ) and every t ∈ T′, the form ω/d f in Xt defines an

element of Hn(Xt, C). Hence, every such ω defines a section s[ω] of the bundle Hn.
Indeed, by the previous section, if γ(t) is a locally constant section of the fibration
Hn, the pairing 〈s[ω], γ〉 given by Equation (10.5) is holomorphic and hence s[ω] is a
holomorphic section of the bundle Hn, i.e. an element ofHn. Following the terminology
of Varchenko [Var80, §4], these sections will be called geometric sections.

Given w a local section of Hn and γ a locally constant section of Hn, one has that
d
dt 〈w, γ〉 = 〈∂∗t w, γ〉, since horizontals sections generate Hn over OT′ . Consequently,
by Equation (10.2), the Gauss-Manin connection ∂∗t on Hn applied to the geometrical
sections can be computed as ∂∗t s[ω] = s[d(ω/d f )].

The complex numbers aα,k appearing in Equation (10.5) depend on ω and γ(t). For a
fixed ω, aα,k is a linear function on the space of locally constant sections of Hn. As a
consequence, the number aα,k defines a locally constant section Aω

α,k(t) of the fibration
Hn by the rule 〈Aω

α,k(t), γ(t)〉 := aα,k(ω, γ). By construction, the geometrical sections
s[ω] are defined by

s[ω] := ∑
λ∈Λ

∑
α∈L(λ)

∑
0≤k≤n

tα−1(ln t)k Aω
α−1,k(t). (10.6)
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The sections Aω
α,k(t) will be called locally constant geometric sections.

Lemma 10.1 ([Var80, Lemma 4]). The local system L∗ := ker∇n is generated by the locally
constant sections Aω

α,k, where ω ∈ Γ(X, Ωn+1
X ) and the α, k are the same as in Equation (10.5).

Let Sα be the sheaf of all locally constant sections of the bundle Hn generated by
the sections Aω

α,k with fixed α ∈ Q and where ω ∈ Γ(X, Ωn+1
X ), k = 0, . . . , n. Since

Aω
α,k = A f ω

α+1,k, one has that Sα ⊆ Sα+1. After Lemma 10.1, L∗ = ⊕
α Sα.

Following [Var80, §4], for every α ∈ ∪λ∈ΛL(λ) one defines the holomorphic sub-
bundle f ∗λ,α : Hn

λ,α −→ T′ of Hn
λ generated over OT′ by the sections of Sα. According

to [Var80, §2], these subbundles have the following properties. If α, α′ ∈ L(λ) and
α > α′, then Hn

λ,α′ is a subbundle of Hn
λ,α and for α ∈ L(λ) sufficiently large then

Hn
λ,α = Hn

λ. Moreover, these subbundles are invariant under the covariant derivative of
the connection ∇∗λ and the monodromy endomorphism h∗.

10.3 Elementary sections

We will proceed now to define the elementary sections of Hn in the sense of Varchenko
[Var80, §6]. In order to do that, one needs to understand first the natural action
of the monodromy on the local system L∗ in terms of the sections Aω

α,k. Let ω ∈
Γ(X, Ωn+1

X ), λ ∈ Λ, α ∈ L(λ) and assume that, at least, one of the sections Aω
α,0, . . . , Aω

α,n
is not equal to zero. Let p = max{k ∈ Z | Aω

α,k 6= 0}.

The natural action of the monodromy h∗ on the homology bundle Hn translates into a
natural action of (h∗)−1 on the sections Aω

α,k via the integral in Equation (10.5). Namely,
Varchenko shows in [Var80, Lemma 5] that

(h∗)−1Aω
α,k = λ−1

p

∑
j=k

(2πı)j−k

(j− k)!
Aω

α,j. (10.7)

Therefore, the sections Aω
α,0, . . . , Aω

α,p are in the locally constant subsheaf L∗λ of L∗ that
is invariant under h∗ and Aω

α,0 is a cyclic section of this subsheaf. After Equation (10.7),
instead of the operator h∗ − λ id, we will consider the operator (h∗)−1λ− id on L∗λ.
Notice that, ((h∗)−1λ− id)n+1 = 0 on L∗λ. Now, define the operator ln ((h∗)−1λ) on L∗λ
by the formula

ln ((h∗)−1λ) :=
∞

∑
j=1

(−1)j−1

j
((h∗)−1λ− id)j (10.8)

as in [Var80, Lemma 5]. Hence, from Equation (10.7),

Aω
α,k =

(
ln ((h∗)−1λ)

2πı

)k

Aω
α,0, (10.9)

and, therefore,

tα
p

∑
k=0

(ln t)k Aω
α,k(t) = exp

[
ln t
(

α id+
ln ((h∗)−1λ)

2πı

)]
Aω

α,0(t). (10.10)

Then, Varchenko [Var80] defines the elementary section associated with a locally constant
section A ∈ L∗λ and α ∈ L(λ) as the section sα[A] of Hλ := L∗λ ⊗CT′

OT′ defined by

sα[A](t) := exp
[

ln t
(

α id+
ln ((h∗)−1λ)

2πı

)]
A(t). (10.11)
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We end this section with the following properties of elementary sections.

Lemma 10.2 ([Var80, Lemma 9]). Let λ ∈ Λ, α ∈ L(λ) and A a section of L∗λ, then:

1. The sections sα[A] are holomorphic univalued sections of the vector bundle Hn
λ.

2. If the sections A0, . . . , Ap ∈ L∗λ are linearly independent at every fiber, then the sections
sα[A0], . . . , sα[Ap] are linearly independent at every point t ∈ T′.

3. The action of the covariant derivative on an elementary section is:

t∂∗t sα[A] = αsα[A] + (2πı)−1sα[ln ((h∗)−1λ)A]. (10.12)

Next, we will present the relation, given by Varchenko in [Var80, §8], between the
elementary sections and the saturation of the Brieskorn lattice appearing in Malgrange’s
result in Theorem 1.35.

Consider the quotient vector bundle Hn
λ,α/Hn

λ,α−1 over T′ which will be denoted by
Fα. Let Fα be the locally free sheaf of sections of the vector bundle Fα. We will denote
by Gα the subsheaf of Fα generated by the image of the elementary sections sα[A], with
A a section of Sα, under the projection map

πα : Hn
λ,α −→ Hn

λ,α/Hn
λ,α−1 = Fα. (10.13)

After Lemma 10.2, for every value t ∈ T′, the sections Gα generate the whole fiber of
Fα. The restriction of the connection ∇∗λ of Hn

λ to Hn
λ,α induces a connection ∇∗λ,α in the

quotient bundle Fα. Therefore, since the sheaf Gα is annihilated by this connection ∇∗λ,α,
Gα is a local system equal to ker∇∗λ,α. Furthermore, by Lemma 10.2, the operator ∂∗t t
maps elementary sections to elementary sections and thus, it induces an endomorphism
Dα on Gα which has eigenvalues equal to α at every fiber. For more details see [Var80,
Lemma 10].

If j : T′ ↪−→ T denotes again the open inclusion and j! is the extension by zero,
then we have that j!Gα 6= j∗Gα, meaning that the stalk (j∗Gα)0 is not zero. Indeed, by
Lemma 10.2, the elementary sections whose image under πα generate Gα are univalued.
We will continue to denote Dα the extension to j∗Gα of the endomorphism Dα of Gα.

Theorem 10.3. [Var80, Thm. 13] Let Gα, α ∈ L(λ), λ ∈ Λ be the locally constant sheaves
defined above and consider the locally constant sheaf G :=

⊕
λ∈Λ

⊕
α∈L(λ) Gα of complex vector

spaces with the endomorphism D :=
⊕

λ∈Λ
⊕

α∈L(λ) Dα. Then, there exists a natural isomor-
phism of complex vectors spaces between (j∗G)0 and H̃′′f ,0/tH̃′′f ,0 and under this isomorphism,

the endomorphism ∂tt in H̃′′f ,0/tH̃′′f ,0 corresponds to D0.

The set of b-exponents of an isolated singularity is, therefore, after Theorem 10.3,
contained in the set of positive rational numbers of the form α ∈ L(λ), λ ∈ Λ.

10.4 Semicontinuity of the b-exponents

In [Var80, §11], Varchenko proves the semicontinuity of the b-exponents under µ-
constant deformations of the singularity in the case that the eigenvalues of the mon-
odromy endomorphism are pair-wise different. In this section, we will generalize his
result to any isolated singularity under the extra assumption of the existence of certain
dual locally constant geometric sections. First, let us review the results from [Var80, §11].
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Fix λ ∈ Λ an eigenvalue of the monodromy. We have seen in Section 10.2 that the
vector bundles Hn

λ,α, α ∈ L(λ) form an increasing filtration in Hn
λ. Denote by dα the

dimension of the bundle Hn
λ,α. Then, dα ≤ dα+1 and dα = dimC Hn

λ, for α� 0, which is
exactly the number of eigenvalues of the monodromy that are equal to λ. Then, for the
quotient bundles Fα defined in the previous section, we have that

∑
λ∈Λ

∑
α∈L(λ)

dimC Fα = µ, (10.14)

since dimC Fα = dα − dα−1. If one assumes that the monodromy has pair-wise different
eigenvalues, then dimC Hn

λ = 1 for all λ ∈ Λ. Therefore, there is only a single α ∈ L(λ)
that can be a b-exponent, and such α is characterized by the fact that dimC Fα = 1.

Let fy : (Cn+1, 0) −→ (C, 0), with y ∈ Iη := {z ∈ C | |z| < η}, 0 < η � 1, be
a one-parameter µ-constant deformation of the isolated singularity f =: f0. Recall
that under µ-constant deformations neither the eigenvalues nor the Jordan form of
the monodromy endomorphism change, [TR76]. Then, if one denotes by dα(y) the
dimension of the corresponding bundle Hn

λ,α(y) of the isolated singularity fy, we have

Proposition 10.4 ([Var80, Cor. 19]). The dimension dα(y) of Fα(y) depends lower-semicon-
tinuously on the parameter y.

From this, and under the assumption that the eigenvalues of the monodromy are
pair-wise different, Varchenko [Var80, Cor. 21] deduces a lower-semicontinuity for the
roots of the Bernstein-Sato polynomial of f . Since the b-exponents are the opposites
in sign to the roots of b f ,0(s), one has an analogous upper-semicontinuity for the
b-exponents of f . Next, we will construct suitable subbundles of Hn

λ,α such that its
dimension completely characterizes the existence of b-exponents even if the eigenvalues
of the monodromy are not pair-wise different.

Let us fix γ1(t), . . . , γµ(t) a basis of generalized eigenvectors of the monodromy
endomorphism in the homology of each fiber Xt, t ∈ T′. Similarly to the sheaf of locally
constant sections Sα, α ∈ L(λ) introduced in Section 10.2, define Sγi , i = 1, . . . , µ the
sheaf of locally constant sections of the bundle Hn generated by the locally constant
geometric sections Aω

α,k, k = 0, . . . , n with ω ∈ Γ(X, Ωn+1
X ) such that

〈Aω
α,k(t), γi(t)〉 6= 0 and 〈Aω

α,k(t), γj(t)〉 = 0, (10.15)

with γj(t) any other eigenvector of the basis different from γi(t). The locally constant
sections in Sγi will be called dual locally constant geometric sections to γi(t). Notice that,
after Equation (10.4), if γ(t) is a generalized eigenvector of eigenvalue λ, then it is
necessary that λ = exp (−2πıα) for 〈Aω

α,k(t), γ(t)〉 to be non-zero.

It is not a priori clear that dual locally constant geometric sections should exist. In
Sections 11.3 and 11.5, we will show that, for irreducible plane curve singularities, dual
locally constant geometric sections exist with respect to a certain basis of eigenvectors of
the monodromy. As we will see in Sections 11.3 and 11.5, the geometric picture behind
the duality (10.15) is that two locally constant sections of Hn with the same α ∈ L(λ)
will be linearly independent because they will be dual to two linearly independent
eigenvectors of eigenvalue λ. At the same time, these eigenvectors will be linearly
independent because they will vanish to different rupture divisors of the minimal
embedded resolution of f .
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Let γλ(t) be a generalized eigenvector of the basis γ1(t), . . . , γµ(t) with eigenvalue
λ ∈ Λ. We define the holomorphic subbundle f ∗γλ

: Hn
γλ
−→ T′ of the bundle Hn

λ as
the bundle generated by the locally constant sections in Sγλ

. These subbundles are
also invariant under the covariant derivative associated with the connection ∇∗λ in Hn

λ.
Consider the vector bundle Hn

γλ
∩ Hn

λ,α, which will be denoted by Hn
γλ,α, and which is a

subbundle of Hn
λ,α ⊂ Hn

λ. The bundle Hn
γλ,α is also invariant by the covariant derivative

of the connection ∇∗λ of Hn
λ. Notice that dimC Hn

γλ
= 1 and if the monodromy has only

one eigenvalue equal to λ, then Hn
λ = Hn

γλ
.

Following Section 10.3, define the quotient bundles Hn
γλ,α/Hn

γλ,α−1 which will be
denoted by Fγλ,α. Let Fγλ,α denote the locally free sheaf of sections of Fγλ,α. Then, Gγλ,α

is the subsheaf of Fγλ,α generated by the image of the elementary sections sα[A], with
A a section in Sα ∩ Sγλ

, under the projection map

πγλ,α : Hn
γλ,α −→ Hn

γλ,α/Hn
γλ,α−1 =: Fγλ,α. (10.16)

All the quotient bundles and subbundles of Hn presented so far are related by the
following diagram,

Hn
γλ,α Hn

λ,α Hn
λ Hn

Fγλ,α Fα

Gγλ,α Gα.

(10.17)

One can check that the subsheaf Gγλ,α has the same properties as the subsheaf Gα

described in the previous section. The important point is that the dimensions of the
vector bundles Hn

γλ,α ⊆ Hn
γλ

, α ∈ L(λ), denoted dγλ,α, are either zero or one. In addition,
dγλ,α = dimC Hn

γλ
= 1, for α� 0. Therefore, this construction allows us to characterize

the existence of a certain b-exponent in terms of the dimensions of Fγλ,α. A candidate
b-exponent α for α ∈ L(λ), associated with the generalized eigenvector γλ of the
monodromy, is a b-exponent, if and only if, dimC Fγλ,α = dγλ,α − dγλ,α−1 = 1.

As before, let fy : (Cn+1, 0) −→ (C, 0), y ∈ Iη be a one-parameter µ-constant de-
formation of an isolated singularity. Following [Var80, §11] and the notations from
Section 1.4, let X := {(x, y) ∈ Bε × Iη | fy(x) = t ∈ Tδ}. Denote by Φ : X −→ Tδ the
application given by (x, y) 7→ ( fy(x), y). Let

Xt,y := F ∩Φ−1(t, y) and X ′ := X \Φ−1({0} × Iη), (10.18)

then Φ′ : X ′ −→ T′δ × Iη is a locally trivial fibration. As in Section 1.5, this means
that the associated homological and cohomological µ-dimensional bundles carry an
integrable connection. Furthermore, the (co)homological bundle of the restriction of Φ′

over T′δ × {y} is canonically isomorphic to the (co)homological Milnor fibration of the
singular point of the fiber fy, see [Var80, Cor. 17].

In particular, this means that we can fix a basis γ1(t, y), γ2(t, y), . . . , γµ(t, y) of the
homological Milnor fibration of fy for y ∈ Iη , given by eigenvectors of the monodromy
endomorphism, and they can be extended by parallel transport, to a basis of the
homological bundle associated with the locally trivial fibration Φ : X ′ −→ T′δ × Iη .
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After the above discussion, we are in the same situation as in [Var80, Cor. 21], replac-
ing the distinct eigenvalues of the monodromy by the distinct generalized eigenvectors
of the monodromy. Therefore, assuming the existence of dual locally constant geomet-
ric sections, there is a single b-exponent α ∈ L(λ) associated with each generalized
eigenvector of the monodromy. The following proposition then follows from the same
argument as in [Var80, Cor. 21].

Proposition 10.5. Let γλ(t, y) be a generalized eigenvector of the monodromy of eigenvalue
λ ∈ Λ. Assume that there exist dual locally constant geometric sections to γλ(t, y) for all
fibers of the deformation, that is, dimC Hn

γλ
(y) = 1 for all y ∈ Iη . Then, the b-exponent

associated with γλ(t, y) depends upper-semicontinuously on the parameter y of the µ-constant
deformation.

Proof. For the semicontinuity of the dimension dγλ,α(y), one argues as in the proof of
Proposition 10.4 given in [Var80] since the bundle Hn

γλ,α
is a subbundle of Hn

λ,α. Then,
after Theorem 10.3 and since dimC Hn

γλ
(y) = 1 for all y ∈ Iη , one has that α ∈ L(λ) is a

b-exponent of fy, if and only if, dγλ,α(y)− dγλ,α−1(y) = 1.

10.5 Resolution of singularities and semi-stable reduction

In this section, we show how to use a resolution of singularities of f to study the
integrals of relative differential forms along vanishing cycles following the ideas of
Varchenko in [Var82, §4].

With the notations and definition from Section 1.1, let π : X −→ X be a resolution
of singularities of f . For reasons that will become clear later, it is convenient to pass
from the resolution manifold X to another space where the normal crossings of the
exceptional divisor E are preserved but Fπ is reduced. This is indeed possible if we
relax the smoothness conditions of X. This process is called semi-stable reduction and the
reader is referred to [Ste77, §2] for the details.

Let e be a positive integer such that the e–th power of the monodromy is unipotent.
By A’Campo’s description of the monodromy in terms of a resolution of f given in
[ACa75], we can take e = lcm(N1, N2, . . . , Nr). Define

T̃ := {t̃ ∈ C | |t̃| < δ1/e} (10.19)

and let σ : T̃ −→ T be given by σ(t̃) = t̃e. Denote by X̃ the normalization of the fiber
product X×T T̃ and by n : X̃ −→ X×T T̃ the normalization morphism. Let ρ : X̃ −→ X
and f̃ : X̃ −→ T̃ be the natural maps. Finally, denote X̃t := f̃−1(t) and D̃ := ρ∗(D) for
any divisor D on X. We have the following commutative diagram

X̃ X X

T̃ T T.

f̃

ρ

π∗ f

π

f

σ

(10.20)

An orbifold of dimension n + 1 is a complex analytic space which admits an open
covering {Ui} such that each Ui is analytically isomorphic to Zi/Gi where Zi ⊂ Cn+1

is an open ball and Gi is finite subgroup of GL(n + 1, C). Similarly, a divisor D on
an orbifold X̃ is an orbifold normal crossing divisor if locally (X̃, D̃) = (Z, F)/G with
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Z ⊂ Cn+1 an open domain, G ⊂ GL(n + 1, C) a small subgroup acting on Z and
F ⊂ Z a G–invariant divisor with normal crossings. The singularities of an orbifold are
concentrated in codimension at least two.

Lemma 10.6 ([Ste77, Lemma 2.2]). X̃ is an orbifold and the divisor of (πρ)∗ f is a reduced
divisor with orbifold normal crossings.

In terms of the local coordinates of X, the orbifold X̃ is presented as follows. Fix U an
affine coordinate chart of X with coordinates x0, . . . , xn, for which there are non-negative
integers k and N0, . . . , Nk such that (π∗ f )(x0, . . . , xn) = xN0

0 · · · x
Nk
k . Then, on the open

neighborhood U × T̃ in X × T̃, we have xN0
0 · · · x

Nk
k = t̃e. Set d := gcd(N0, . . . , Nk),

the preimage of U × T̃ in X̃ consists of d disjoint open sets which we denote by
U1, U2, . . . , Ud. On one of these subsets Uj, there are coordinates y0, . . . , yk, τ related
by τ = y0 · · · yk. The map ρ

∣∣
Uj

: Uj −→ U ×T T̃ is given by t̃ = τ exp(2πıj/d) and

xi = ye/Ni
i if 0 ≤ i ≤ k and xi = yi if i > k.

Let G = Z/(e/N0)× · · · ×Z/(e/Nk) be the group that acts on C{y0, . . . , yk} accord-
ing to the following rules

(a0, . . . , ak) · yi =

{
exp(2πıajNj/e) · yj if 0 ≤ j ≤ k,

yj if j > k.
(10.21)

Let G′ := {g ∈ G | gτ = τ} ⊂ GL(n + 1, C). Then, the holomorphic functions and
differential forms on Uj are the usual ones in terms of the coordinates y0, . . . , yn subject
to the condition that they must be invariant under G′, i.e. g · (y0 · · · yk) = y0 · · · yk. In
this context, differential calculus is completely analogous to the usual one on manifolds.

Assume that ω ∈ Γ(X, Ωn+1
X ) is a top holomorphic form. Let vi(ω) be the order of

vanishing of π∗ω along the exceptional component Ei, then the order of vanishing ṽi(ω)

of (πρ)∗ω along Ẽi is e(vi(ω) + 1)/Ni − 1, see [Var82, Lemma 4.4]. Clearly, vi(ω) = ki
if ω = dx0 ∧ · · · ∧ dxn, and thus ṽi(ω) = e(ki + 1)/Ni − 1. Now, take ω̃ a section of
Ωn+1

X̃
, since locally f̃ (y0, . . . , yn) = y0 · · · yk, the relative form ω̃/d f̃ is well-defined on

Ẽ◦ :=
r⋃

i=1

Ẽ◦i where Ẽ◦i := Ẽi \
⋃
j 6=i

(Ẽi ∩ Ẽj). (10.22)

The following lemma is easy to establish.

Lemma 10.7 ([Var82, Lemma 4.3]). If πρ also denotes the restriction to X̃t, t̃ ∈ T̃∗, of the
map πρ : X̃ −→ X, then, for all t̃ ∈ T̃∗,

(πρ)∗(ω)

d f̃

∣∣∣∣
X̃t̃

= e f̃ e−1(πρ)∗
(

ω

d f

∣∣∣∣
Xt̃e

)
. (10.23)

10.6 Full asymptotic expansion

In this section, we will construct the full expansion of the integrals in Equation (10.5)
from a resolution of singularities of f and the powers of the exceptional divisors. We
will use the same notations from the previous section. In the sequel, we will always fix
an exceptional component Ei of a resolution of the germ f : (Cn+1, 0) −→ (C, 0).
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Let ω ∈ Γ(X, Ωn+1
X ) be a holomorphic differential form of maximal degree on X.

Consider on E◦i ×T ⊂ X the analytic coordinates such that f̄ = xNi
0 = t. Expressing ω :=

π∗ω in these fixed analytic coordinates, we can consider the following decomposition
of ω

ω = ω0 + ω1 + · · ·+ ων + · · · , (10.24)

where ων is a holomorphic form with degree vi(ω) + ν in x0. Since E◦i is quasi-
projective each form ων, ν ∈ Z+ extends to a section of ΩX(−νEi) := ΩX · OX(−νEi),
where OX(−Ei) is the ideal sheaf of the effective divisor Ei. We will call ων the ν–th
piece of ω associated with the divisor Ei. For the ease of notation, we will omit the
dependence of the pieces ων on the index i as we will always work with a fixed divisor
Ei.

Set X̃◦i := n−1(E◦i × T̃) ⊂ X̃, where n is the normalization morphism from the
previous section. Recall that on X̃◦i there are local coordinates such that f̃ (y0, . . . , yn) =

y0 = t̃ with Ẽ◦i : y0 = 0. Recall that if ω̃ν = ρ∗ων, then the orders of vanishing have the
following relation: since vi(ων) = vi(ω) + ν, then ṽi(ω̃ν) = e(vi(ω) + 1 + ν)/Ni − 1.
With all these considerations, the following lemma follows from a local computation.

Lemma 10.8. Let γ̃(t̃) be any n-cycle on X̃◦i . Then,∫
γ̃(t̃)

ω̃

d f̃
= ∑

ν≥0
t̃ ṽi(ω̃ν)

∫
γ̃(t̃)

Ri(ω̃ν), (10.25)

where Ri(ω̃ν) := f̃−ṽi(ω̃ν)ω̃ν/d f̃ is a well-defined holomorphic n-form on Ẽ◦i .

Notice that since ω0 is always different from zero, Ri(ω̃0) is always a non-zero n-form
on Ẽ◦i . However, this may not be the case for the other terms Ri(ω̃ν), ν > 0.

Now we can obtain the expression of Equation (10.5) in terms of the resolution
data by pushing down to X the expressions from Equation (10.25). Namely, after
Lemma 10.7, the left-hand side of Equation (10.25) reads as∫

γ̃(t̃)

(πρ)∗ω

d f̃
= et̃e−1

∫
γ̃(t̃e)

(πρ)∗
( ω

d f

)
. (10.26)

Define the numbers

σi,ν(ω) :=
vi(ω) + 1 + ν

Ni
, ν ∈ Z+. (10.27)

In particular, σi,ν(dx0 ∧ · · · ∧ dxn) = (ki + 1 + ν)/Ni. Then∫
γ̃(t̃e)

(πρ)∗
( ω

d f

)
= e−1 ∑

ν≥0
t̃e(σi,ν(ω)−1)

∫
γ̃(t̃)

Ri(ω̃ν), (10.28)

since ṽi(ω̃ν)− e + 1 = e(σi,ν(ω)− 1). Finally, since t̃e = t, the following lemma follows.

Lemma 10.9. For any n-cycle γ̃(t̃) on X̃◦i , let γ(t) := ρ∗γ̃(t̃e), then∫
π∗γ(t)

ω

d f
= ∑

ν≥0
tσi,ν(ω)−1

∫
γ(t̃)

Ri,ν(ω), (10.29)

where Ri,ν(ω) := e−1(ρ−1)∗Ri(ω̃ν) is a multivalued n-form on E◦i that does not depend on the
integer e.
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The missing logarithmic terms in Equation (10.29), when compared to Equation (10.5),
are in the integrals on the right-hand side of Equation (10.29). Indeed, some of these
integrals may blow-up to infinity as t̃ tends to zero. This would mean that, after
Equation (10.5), there is a logarithmic term associated with the exponent σi,ν(ω)− 1.

Remark 10.1. Since vi(ω) ≥ ki, after Lemma 10.9 the set of candidates for the b-
exponents of an isolated singularity f are the set of rational numbers

σi,ν(dx0 ∧ · · · ∧ dxn) = (ki + 1 + ν)/Ni, ν ∈ Z+ (10.30)

associated with each exceptional divisor Ei of a resolution of f . Obviously, this set
of candidates coincides with the well-known set of candidates for the roots of the
Bernstein-Sato polynomial from Equation (1.12) in Section 1.2. �

Consequently, at least for those terms such that the integral as t tends to zero of
Ri,ν(ω) along some cycle γ(t̃) is well-defined, the multivalued n-form Ri,ν(ω) on Ei
defines a locally constant cohomology class Aω

σi,ν−1,0(t) of the bundle that is dual to the
vector bundle generated at each fiber by π∗γ(t), t ∈ T′. Indeed, define the pairing

〈Aω
σi,ν−1,0(t), π∗γ(t)〉 := lim

t̃→0

∫
γ(t̃)

Ri,ν(ω) ∈ C. (10.31)

Here, and in the sequel, we denote Aω
σi,ν−1,0 instead of Aω

σi,ν(ω)−1,0 for the ease of
notation.

Let Di,j be the intersection of Ei with another irreducible component Dj ∈ Supp(Fπ).
Then, the Di,j are divisors on Ei since Fπ is a simple normal crossing divisor. By
definition, E◦i = Ei \ ∪jDi,j.

Lemma 10.10. The n-forms Ri,ν(ω) on E◦i are multivalued along the divisors Di,j with order
of vanishing

ε j,ν(ω) := −Njσi,ν(ω) + vj(ων) = −Nj
vi(ω) + 1 + ν

Ni
+ vj(ων). (10.32)

Proof. The proof follows from a local computation. Let x0, x1 be coordinates around a
general point of Di,j, with x0 = x1 = 0 a local equation for Di,j and f = xNi

0 x
Nj
1 . Then,

for any ω ∈ Γ(X, Ωn+1
X ), ων = xvi(ω)+ν

0 x
vj(ων)

1 vdx0 ∧ . . . dxn, with v a unit. Following

Section 10.5, we set x0 = ye/Ni
0 , x1 = y

e/Nj
1 and xk = yk otherwise. Hence,

ω̃ν =
e

Ni

e
Nj

ye(vi(ω)+1+ν)/Ni−1
0 y

e(vj(ων)+1)/Nj−1
1 vdy0 ∧ · · · ∧ yn, (10.33)

and f = z0z1. Now, on Ẽ◦i , f = ȳ0 with y0 = ȳ0/y1. Making the substitution on ω̃ν,

ω̃ν =
e

Ni

e
Nj

ȳeσi,ν(ω)−1
0 y

e(vj(ων)+1)/Nj−eσi,ν(ω)−1
1 vdȳ0 ∧ · · · ∧ yn. (10.34)

Finally, with the notations from Lemma 10.8, Ri(ω̃ν) is given locally around y1 = 0 on
Ẽ◦i by the expression

e
Nj

y
e(vj(ων)+1)/Nj−eσi,ν(ω)−1
1 vdy1 ∧ · · · ∧ yn. (10.35)
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Finally, to get the local expression for the Ri,ν(ω) from Lemma 10.9, one simply undoes

the first change of variables, i.e. y1 = x
Nj/e
1 and yk = xk otherwise, obtaining

y
vj(ων)−Njσi,ν(ω)

1 vdx1 ∧ · · · ∧ xn, (10.36)

as we wanted to show.

Since no confusion may arise we drop the dependency on the index i of the divisor
Ei when referring to the numbers ε j,ν(ω). These numbers are similar, although not
exactly the same, to the residue numbers considered in Definition 8.2.

Given ω ∈ Γ(X, Ωn+1
X ), in order to prove that one candidate σi,ν(ω) is a b-exponent

of f , several things must be checked. First, the ν–th piece ων of ω associated with
the exceptional divisor Ei must be non-zero. Then, one must show that there exists
a cycle γ(t̃) such that the integral of Ri,ν(ω) along γ(t̃) is non-zero when t̃ tends to
zero. After Section 10.2, this would give a locally constant section Aω

σi,ν−1,0. Finally, after
Theorem 10.3, for σi,ν(ω) to be a b-exponent it is enough that Aω

σi,ν−1,0 6∈ Sσi,ν−2, since
then the image of sσi,ν−1[Aω

σi,ν−1,0] in Gσi,ν−1 ⊆ Fσi,ν−1 will be non-zero.

We will devote the rest of this chapter to check these conditions, under some hypoth-
esis of genericity, for the candidate b-exponents of irreducible plane curve singularities.

11 the case of plane curve singularities

In this section, we will study the object present in the previous section in the case of
plane curve singularities. In this context, we will be able to prove the existence of non-
zero locally constant sections. This will be possible because resolution of singularities
of plane curves is well-understood and because of a result of Deligne and Mostow that
is presented in the sequel. Finally, using all the techniques developed in this chapter,
we will present a proof of Yano’s conjecture in its full generality. The results of this
section can be found in [Bla19b].

11.1 Multivalued forms on the punctured projective line

In this section, we will review the basic facts from Section 2 of [DM86] about multivalued
holomorphic forms on the punctured projective line defining cohomology classes in
the cohomology groups with coefficients on a local system.

Let P := P1
C be the complex projective line, and S := {s1, s2, . . . , sr} be a set of r ≥ 1

distinct points on P and (αs)s∈S be a family of complex numbers satisfying ∏s∈S αs = 1.
With these data there is, up to non-unique isomorphism, a unique local system L of
rang one in P \ S such that the monodromy of L around each s ∈ S is the multiplication
by αs. We will denote by L∨ the dual local system with monodromies α−1

s , s ∈ S.

In order to work with the locally constant sections of L, we fix complex numbers
(µs)s∈S such that αs = e2πıµs , s ∈ S. Let z be a local coordinate near s ∈ S. Any local
section u of O(L) (resp. Ω1(L)) in a neighborhood of s can be written as u = z−µs e f
(resp. u = z−µs e f dz) with e a non-zero multivalued section of L and f holomorphic in
a punctured neighborhood of s. We define u to be meromorphic in s ∈ S if f is, and we
define the valuation of u at s as vs(u) := vs( f )− µs.



108 periods of integrals in the milnor fiber

The holomorphic L-valued de Rham complex Ω•(L): O(L) −→ Ω1(L) with the
natural connecting morphism d(e f ) = ed f is a resolution of L by coherent sheaves.
Therefore, one can interpret H∗(P \ S, L) as the hypercohomology on P \ S of Ω•(L).
Since P \ S is Stein, Hq(P \ S, Ωp(L)) = 0 for q > 0 and the hypercohomology H∗(P \
S, Ω•(L)) gives

H∗(P \ S, L) = H∗Γ(P \ S, Ω•(L)). (11.1)

Let j : P \ S −→ P be the inclusion. Similarly, since j is a Stein morphism, the higher
direct images Rq j∗Ωp(L) vanish for q > 0 and

H∗(P \ S, L) = H∗Γ(P \ S, Ω•(L)) = H∗Γ(P, j∗Ω•(L)) = H∗(P, j∗Ω•(L)). (11.2)

It is convenient to replace the complex of sheaves j∗Ω•(L) by the subcomplex jm
∗ Ωp(L)

of meromorphic forms. The analytic Atiyah-Hodge Lemma [HA55, Lemma 17] implies
that

H∗(P, jm
∗ Ω•(L)) ∼= H∗(P, j∗Ω•(L)) = H∗(P \ S, L). (11.3)

Since jm
∗ Ωp(L) is an inductive limit of line bundles with degrees tending to infinity, one

can show that Hq(P, jm
∗ Ωp(L)) vanishes for q > 0. Indeed, if D = ∑s∈S s is the divisor

on P associated with S, then

Hq(P, jm
∗ Ωq(L)) = Hq(P, lim

−→n
Ωp(L)⊗O(nD)) = lim

−→n
Hq(P, Ωp(L)⊗O(nD)) = 0,

(11.4)
since Hq(P, Ωp(L)⊗O(nD)) vanishes for n � 0. Finally, this means that the coho-
mology groups Hq(P \ S, L) can be computed as the cohomology of the complex of
L–valued forms on P meromorphic along D,

H∗(P \ S, L) ∼= H∗Γ(P, jm
∗ Ω•(L)). (11.5)

Define the line bundle O(∑ µss)(L) as the subsheaf of jm
∗ O(L) whose local holomor-

phic sections are the local sections u of jm
∗ O(L) such that the integer vs(u)+ µs is greater

or equal than zero, i.e. vs(u) ≥ −µs. If u is a meromorphic section of O(∑s µss)(L) and
if s ∈ S, one has that degs(u) = vs(u) + µs. The same holds true for x ∈ P \ S if one
defines µx = 0 for x ∈ P \ S. By [DM86, Prop. 2.11.1], the degree of the line bundle
O(∑ µss)(L) is equal to ∑s∈S µs. Similarly, deg Ω1(∑ µss)(L) = ∑s∈S µs − 2.

The following proposition is a slight generalization of [DM86, Prop. 2.14], where the
differential form is assumed to be invertible in P \ S. We will allow ω to have zeros in
P \ S. Denote by δx ∈N the order of vanishing of ω in the points x ∈ P \ S.

Proposition 11.1. Let ω ∈ Γ(P, Ω1(∑ µss−∑ δxx)(L)). Assume that ∑s∈S µs ≤ r− 1 and
that αs 6= 1 for all s ∈ S. Then, ω defines a non-zero cohomology class in H1(P \ S, L).

Proof. After Equation (11.5), we want to show that equation du = ω is impossible
for u ∈ Γ(P, jm

∗ O(L)). For any section of jm
∗ O(L) verifying the relation, one has that

vx(ω) ≥ vx(u) − 1, for x ∈ P. The equality may fail if vx(u) = 0 or if vx(ω) is a
non-negative integer. In any case, vx(u) is always a non-negative integer if x ∈ P \ S.
This implies that u must be a global section of the line bundle O(∑(µs− 1)s−∑ δ′xx)(L)
with δ′x > 0, x ∈ P \ S. But the degree of this line bundle is

∑
s∈S

(µs − 1)− ∑
x∈P\S

δ′x ≤ ∑
s∈S

µs − r ≤ −1, (11.6)

which is impossible.
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11.2 Periods of plane curve singularities

In the sequel, let f : (C2, 0) −→ (C, 0) be a germ of a holomorphic function defining a
reduced plane curve singularity, not necessarily irreducible. Using the notations from
Section 10.5 we will fix any embedded resolution π : X −→ X of f . Notice that, the
exceptional divisor of any such resolution is composed exclusively of rational curves,
i.e. Ei

∼= P1
C.

Using the same notation from Sections 10.5 and 10.6, let us fix an exceptional divisor
Ei from a resolution of f . Assume that one has a holomorphic 2-form ω ∈ Γ(X, Ω2

X)

such that the piece ων of degree ν associated with the i–th rupture divisor Ei is non-zero.
The following argument to find cycles C on rupture exceptional divisors such that for
certain candidate exponents σi,ν − 1 on has that

lim
t̃→0

∫
γ(t̃)

Ri,ν(ω) = m
∫

C
Ri,ν(ω) 6= 0, m ∈ Z, (11.7)

is basically due to Loeser [Loe88, §III.3] using the results of Deligne and Mostow
reviewed in Section 11.1. Thus, as noticed earlier in Section 10.6, this implies that the
multivalued form Ri,ν(ω) on Ei defines a non-zero locally constant section Aω

σi,ν−1,0.

In the case of plane curves, the divisors Di,j on Ei are just points which we will
denote by pj, dropping its dependence on Ei since no confusion may arise. Let

Si,ν(ω) := {pj ∈ Ei | pj = Ei ∩ Dj with Dj ∈ Supp(Fπ) and ε j,ν(ω) 6= 0}, (11.8)

and let L be the local system on Ei \ Si,ν(ω) with monodromies e−2πıε j,ν(ω) at the points
pj ∈ Si,ν(ω). The forms Ri,ν(ω), for ν > 0, might not be invertible in E◦i . Hence,
denote by qk ∈ E◦i , k = 1, . . . , r the points where Ri,ν(ω) has zeros of order δk,ν(ω) > 0.
Then, the multivalued form Ri,ν(ω) defines an element of Γ(Ei, Ω1(−∑ ε j,ν(ω)pj −
∑ δk,ν(ω)qk)(L)) in the sense of Section 11.1.

The following lemma is key to apply the results of Deligne and Mostow from
Section 11.1. Other versions of this result in the case ν = 0 can be found in the works
of Lichtin [Lic85] and Loeser [Loe88].

Proposition 11.2. For any holomorphic form ω ∈ Γ(X, Ω2
X),

r

∑
j=1

ε j,ν(ω) +
s

∑
k=1

δk,ν(ω) = −2− νE2
i . (11.9)

Proof. Consider the Q-divisor −σi,ν(ω)Fπ + Div(ων) on X. Let us compute the inter-
section number of this divisor with Ei in two different ways. First, notice that the
intersection number (−σi,ν(ω)Fπ + Div(ων)) · Ei equals

r

∑
j=1

ε j,ν(ω) +
s

∑
k=1

δk,ν(ω)− E2
i . (11.10)

On the other hand, recall that the ideal sheaf of Ei in X is OX(−Ei) and that ων is a
section of Ω2

X ⊗OX(−νEi). Hence, Div(ων) · Ei = (Kπ − νEi) · Ei = −2− E2
i − νE2

i , by
the adjunction formula for surfaces Proposition 2.4.
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Corollary 11.3. Assume ω ∈ Γ(X, Ω2
X) is such that the divisors in Supp(Div(π∗ω)) and in

Supp(Fπ) intersecting Ei are the same, then

r

∑
j=1

ε j,ν(ω) ≥ −2. (11.11)

Proof. This follows from the assumption and the fact that the line bundle OX(−νEi)⊗
OEi on Ei has a degree equal to −νE2

i .

Remark 11.1. Notice that this result is not true without the hypothesis on the support
of the divisor of π∗ω. For instance, let f = (y2 − x3)2 − x5y and ω = (y2 + x3)dx ∧ dy.
On the first rupture divisor E1, one has that N1 = 12, v1(ω) = 10. Then, for ν = 0,
σ1,0(ω) = −11/12 and ε1,0(ω) = −2/3, ε2,0(ω) = −1/2, ε3,0(ω) = −11/6. In addition,
Ri,0(ω) has an extra zero of multiplicity 1 in E◦1 given by the strict transform of y2 + x3.
Then, ε1,0(ω) + ε2,0(ω) + ε3,0(ω) = −3 ≤ −2. �

Assuming that ω satisfies Corollary 11.3, if Ei is a rupture divisor, i.e. χ(E◦i ) =

2− r < 0, and we suppose that the candidate σi,ν(ω)− 1 is such that ε j,ν(ω) 6∈ Z, then
Proposition 11.1 holds and the multivalued form Ri,ν(ω) defines a non-zero cohomology
class on H1(E◦i , L). The consequence of this is that, since the pairing between homology
and cohomology is non-degenerate, there exists a twisted cycle C ∈ H1(E◦i , L∨) such
that ∫

C
Ri,ν(ω) 6= 0. (11.12)

Following [Loe88], let p : F −→ E◦i be the finite cover associated with the local system
L on E◦i . This finite cover is characterized by the fact that p∗CF = L. By definition,
the twisted cycle C ∈ H1(E◦i , L∨) is identified with a cycle in H1(F, C). Recall now
the morphism ρ : X̃ −→ X from Section 10.5. The restriction of ρ to Ẽi is a ramified
covering of degree Ni, the multiplicity of the divisor Ei, ramified at the points Ei ∩ Dj
with monodromies exp (2πıNj/Ni). Therefore, since the monodromies of F are

exp(2πıε j,ν(ω)) = exp
(
−2πı(ki + 1 + ν)

Nj

Ni

)
= exp

(
2πı

Nj

Ni

)−(ki+1+ν)

, (11.13)

the restriction ρi of ρ to Ẽ◦i factorizes as

ρi : Ẽ◦i
q−−→ F0

p|F0−−−→ E◦i , (11.14)

where F0 is a given connected component of F. Now, since q is also a finite covering,
there exists an integer m and a cycle γ̃ in H1(Ẽ◦i , C) such that q∗γ̃ = mC. Finally, since
f̃ is a locally trivial fibration in a neighborhood of Ẽ◦i , using tubular neighborhoods, we
can extend γ̃ to a family of locally constant cycles γ̃(t̃) in H1(X̃t, C) with t̃ ∈ T̃′ such
that they vanish to γ̃(0) := γ̃, see [Var82, §4.3].

Setting γ(t) := ρ∗γ̃(t̃e) for every point t ∈ T′ in the base we have obtained, under
some assumptions on the candidate exponent σi,ν(ω)− 1 and the exceptional divisor
Ei, a family of locally constant cycles in H1(Xt, C) such that they satisfy Equation (11.7).
The precise result is stated in the proposition below.

Definition 11.4. A candidate b-exponent σi,ν(ω) will be called non-resonant if the num-
bers ε j,ν(ω), defined in Equation (10.32), belong to Q \Z.
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Notice that the non-resonance condition is independent of the form ω ∈ Γ(X, Ω2
X)

chosen to define σi,ν(ω). That is, if ω′ ∈ Γ(X, Ω2
X) is another differential form such that

σi,ν(ω
′) = σi,ν(ω) and σi,ν(ω) is non-resonant, then σi,ν(ω

′) is also non-resonant.

Proposition 11.5. Let ω ∈ Γ(X, Ω2
X) be a differential form satisfying Corollary 11.3 and such

that the ν–th piece ων of ω for the rupture divisor Ei is non-zero. Assume also that σi,ν(ω) is
non-resonant. Then, the multivalued differential form Ri,ν(ω) on Ei defines a non-zero locally
constant geometric section Aω

σi,ν−1,0(t) of the vector bundle H1.

Proof. We have seen that under the hypothesis of the proposition there exists a vanishing
cycle γ(t) such that 〈Aω

σi,ν−1,0(t), γ(t)〉 is non-zero. For any other vanishing cycle γ′(t)
of the bundle H1, if its limit cycle γ′ defines a cycle C′ of H1(E◦i , L∨), the pairing
〈Aω

σi,ν−1,0(t), γ′(t)〉 = 〈Ri,ν(ω), C′〉 is well-defined since Ri,ν(ω) defines a cohomology
class of H1(E◦i , L). It may happen that γ′ does not define a cycle in E◦i . However, in this
case, γ′ defines a locally finite homology class C′ of Hl f

1 (E◦i , L∨). Now, since σi,ν(ω) is
non-resonant, one has that Hl f

1 (E◦i , L∨) ∼= H1(E◦i , L∨), see [DM86, Prop. 2.6.1], and C′

can be replaced by a cycle C′′ in H1(E◦i , L∨) for which 〈Aω
σi,ν−1,0(t), γ′(t)〉 = 〈Ri,ν(ω), C′′〉

is well-defined.

If in Proposition 11.5 one sets ν = 0 and takes, for instance, ω = dx ∧ dy one obtains
the results of Lichtin [Lic89, Prop. 1], for the case of irreducible plane curves, and Loeser
[Loe88, Prop. III.3.2], for general plane curves. In this situation the first piece ω0 for any
exceptional divisor Ei is always non-zero. For irreducible plane curves, Lichtin [Lic85,
Prop. 2.12] proves that the exponents σi,0(dx ∧ dy) are always non-resonant. This
result is related to the fact that for irreducible plane curve singularities the monodromy
endomorphism is semi-simple, see [Trá72, Thm. 3.3.1].

11.3 Dual locally constant geometric sections

In this section, we will continue to work on a fixed exceptional divisor Ei of the minimal
resolution. We will show that, under some assumptions on the combinatorics of the ex-
ceptional divisors, the locally constant geometric sections Aω

σi,ν−1,0 from Proposition 11.5
are dual with respect to the exceptional divisor Ei. This concept of duality with respect
to Ei will be clear at the end of the section, but it essentially means that the locally
constant section Aω

σi,ν−1,0 will be dual to some eigenvector of the monodromy with
respect to a basis of cycles vanishing to E◦i . This is a first step towards constructing a
basis of locally constant geometric sections of H1 dual to a certain basis of H1.

Fixing a locally constant geometric section Aω
σi,ν−1,0 from Proposition 11.5, we first

construct the cycle which will be dual to Aω
σi,ν−1,0. In order to do that, take the non-zero

cycle γ(t) ∈ H1(Xt, C), given by Proposition 11.5, such that 〈Aω
σi,ν−1,0(t), γ(t)〉 6= 0, and

consider the projection γλ(t) of γ(t) to the subbundle of H1 annihilated by (h∗ − λ id)2,
where λ := exp (−2πıσi,ν(ω)). The first important observation is that Equations (10.4)
and (10.5), imply that 〈Aω

σi,ν−1,0(t), γ(t)〉 = 〈Aω
σi,ν−1,0(t), γλ(t)〉, which implies γλ(t) 6= 0.

Denote by Xi,t the subset of the Milnor fiber Xt over the subset E◦i of the exceptional
fiber X0. These are the points where, locally, the Milnor fiber can be written as xNi

0 = t
with xNi

0 = 0 being a local equation of E◦i . Locally around these points Xi,t is an Ni-fold
covering of E◦i . Let φt : Xi,t −→ E◦i be the projection map. In this situation, the geometric
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monodromy acting on Xi,t is just a deck transformation permuting the elements of each
fiber.

Denoting by h′ the restriction of the monodromy map to Xi,t and by j : Xi,t ↪→ Xt the
open inclusion, we obtain the following commutative diagram,

Xi,t Xi,t E◦i

Xt Xt X0.

j

h′

j

φt

h

(11.15)

This commutative diagram then induces a commutative diagram on homology. Namely,

H1(Xi,t, C) H1(Xi,t, C) H1(E◦i , C)

H1(Xt, C) H1(Xt, C) H1(X0, C).

j∗

h′∗

j∗

(φt)∗

h∗

(11.16)

The vanishing cycles in j∗H1(Xi,t, C) are precisely those vanishing cycles from H1(Xt, C)

that vanish to a cycle in E◦i associated with the exceptional divisor Ei. By construction,
the vanishing cycle γ(t) from above belongs to j∗H1(Xi,t, C) ⊂ H1(Xt, C), and this
means that there exists ζi(t) ∈ H1(Xi,t, C) such that j∗ζi(t) = γ(t). We will show in
Proposition 11.7 that γλ(t) is also an element of j∗H1(Xi,t, C) and that it is also an
eigenvector with eigenvalue λ of h′∗.

First, recall that the characteristic polynomial ∆(t) of the monodromy endomorphism
h∗ : Hn(Xt, C) −→ Hn(Xt, C) is determined by A’Campo [ACa75] in terms of a reso-
lution of the singularity of f : (Cn+1, 0) −→ (C, 0). Precisely, A’Campo proved the
following formula for ∆(t):

∆(t) =

[
1

t− 1

r

∏
i=1

(
tNi − 1

)χ(E◦i )
](−1)n+1

. (11.17)

For the two-dimensional case, i.e. n = 1, one has a similar result to Equation (11.17) for
the action of the monodromy h′∗ on Hn(Xi,t, C).

Proposition 11.6. Let Ei be a rupture divisor with multiplicity Ni. Then, the characteristic
polynomial ∆i(t) of the monodromy endomorphism h∗ : H1(Xi,t, C) −→ H1(Xi,t, C) is equal
to

∆i(t) = (tNi − 1)−χ(E◦i )(tci − 1), (11.18)

where ci = gcd(Nj | Dj ∩ Ei 6= ∅, Dj ∈ Supp(Fπ)).

The proof of Proposition 11.6, which uses basically the same ideas as the proof
of Equation (11.17) given in [ACa75], will be the content of the next section. Since
σi,ν(ω) = (vi(ω) + 1 + ν)/Ni and λ = exp (−2πıσi,ν(ω)), the subspace of generalized
eigenvectors with eigenvalue λ is different from zero and we consider the projection
ζi,λ(t) of ζi(t). Since the diagram (11.16) is commutative, one also has the following
commutative diagram

H1(Xi,t, C) H1(Xt, C)

ker(h′∗ − λ id)2 ker(h∗ − λ id)2,

j∗

(11.19)
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the vertical arrows being the natural projections. Hence, as we wanted to show, one
has that γλ(t) = j∗ζi,λ(t), since γ(t) = j∗ζi(t).

Proposition 11.7. Under the assumptions of Proposition 11.5, let σi,ν(ω) be non-resonant
associated with a rupture divisor Ei such that χ(E◦i ) = −1. Then, γλ(t) is an eigenvector of
the monodromy of eigenvalue λ = exp(−2πıσi,ν(ω)) belonging to the subspace j∗H1(Xi,t, C).
Furthermore, it is dual to Aω

σi,ν−1,0(t) with respect to any basis of the monodromy restricted to
the subspace j∗H1(Xi,t, C).

Proof. If we assume that χ(E◦i ) = −1, then by Proposition 11.6 there is only one
eigenvalue equal to λ in ∆i(t). Indeed, notice that since σi,ν(ω) is non-resonant, the
eigenvalue λ cannot be a root of the factor tci − 1 of ∆i(t). First, this implies that γλ(t)
is an eigenvector of the monodromy,

h∗γλ(t) = h∗ j∗ζi,λ(t) = j∗h′∗ζi,λ(t) = λj∗ζi,λ(t) = λγλ(t). (11.20)

Secondly, this implies that Aω
σi,ν−1,0(t) is dual to γλ(t) with respect to any basis of the

vector space j∗H1(Xi,t, C) since there is only one eigenvalue equal to exp (−2πıσi,ν(ω)).
That is, 〈Aω

σi,ν−1,0(t), γj(t)〉 = 0 for any γj(t) 6= γλ(t) on a basis of the monodromy
restricted to j∗H1(Xi,t, C).

In Section 11.5, for irreducible plane curves, we will merge the cycles and the locally
constant geometric sections with respect to each exceptional divisor Ei to construct a
basis of locally constant geometric sections of the bundle H1 dual to a basis of H1. This
will be possible because the monodromy of an irreducible plane curve is semi-simple
[Trá72, Thm. 3.3.1].

11.4 Partial characteristic polynomial of the monodromy

In the celebrated work [ACa75] of A’Campo, the characteristic polynomial of the
monodromy h∗ : Hn(Xt, C) −→ Hn(Xt, C) is computed in terms of a resolution of the
singularity. A’Campo constructs a homotopic model Ft of the Milnor fiber Xt so that
there is a continuous retraction ct : Ft −→ X0 from the general to the exceptional fiber,
which is compatible with the geometric monodromy. Then, he uses Leray’s spectral
sequence associated with this map to compute the Lefschetz number of the monodromy
which determines the zeta function of the monodromy.

We will show next how the same argument works to prove Proposition 11.6. Here,
we will use the map φt : Xi,t −→ E◦i of the unramified covering. Over the sets E◦i , the
homotopic model Ft and the fiber Xt are homeomorphic. To simplify the notation, in
the sequel, we will denote also by h the restriction of the monodromy h to the sets
Xi,t ⊂ Xt. First, recall the zeta function of the monodromy

Zh(t) := ∏
q≥0

det
(

id−th∗; Hq(Xi,t, C)
)(−1)q+1

. (11.21)

If we denote the Lefschetz numbers of the monodromy in the following way

Λ(hk) = ∑
q≥0

(−1)q tr
(
(h∗)k; Hq(Xi,t, C)

)
, (11.22)
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the zeta function Zh(t) depends on the integers Λ(hk) through the following well-
known inversion formula. Let s1, s2, . . . be the integers defined by Λ(hk) = ∑i|k si for
k ≥ 0, then

Zh(t) = ∏
i≥0

(1− ti)−si/i. (11.23)

Now, one can use Leray’s spectral sequence of the map φt to compute the Lefschetz
numbers Λ(hk). Define the sheaf of cycles vanishing to the divisor Ei as Ψq

i := Rqφt∗CXi,t
.

If one replaces φt by the retraction ct, one gets the usual sheaf of vanishing cycles, see
for instance [SGA7-II]. The second page of Leray’s spectral sequence of the map φt is
then equal to

Ep,q
2 = Hp(E◦i , Ψq

i ), (11.24)

and the spectral sequence converges to Ep+q
∞ = Hp+q(Xi,t, C). Since φt is compati-

ble with the geometric monodromy, the monodromy endomorphism h∗ induces a
monodromy action T on the sheaf of vanishing cycles of the divisor Ei, namely

T(U) :=
(
h
∣∣
φ−1

t (U)

)∗ : H∗(φ−1
t (U), C) −→ H∗(φ−1

t (U), C), (11.25)

with the actions Tp,q
2 on the terms Ep,q

2 converging to Tp+q
∞ = h∗ : Hp+q(Xi,t, C) −→

Hp+q(Xi,t, C). Therefore, one has that

Λ(hk) = Λ(Tk, E••∞ ) = · · · = Λ(Tk, E••3 ) = Λ(Tk, E••2 ), (11.26)

see for instance [Spa81, Thm. 4.3.14]. It is then enough to compute Λ(Tk, E••2 ). Again,
one argues similarly to [ACa75]. Since φt is a locally trivial fibration, the sheaves of
vanishing cycles of the divisor Ei, Ψ•i , are complex local systems. Notice that when one
considers all the exceptional fiber X0, the usual sheaves of vanishing cycles are not local
systems but constructible sheaves. Hence,

Λ(Tk, E••2 ) = ∑
p,q≥0

tr
(
Tk; Hp(E◦i , Ψq

i )
)
= χ(E◦i )Λ(Tk, (Ψ•i )s), (11.27)

with s ∈ E◦i . The stalk (Ψ•)s is identified with the cohomology of the Milnor fibration
of the equation of Ei at s ∈ E◦i , and this identification is compatible with both mon-
odromies, see [ACa73]. Since locally at s ∈ E◦i , Ei is xNi

0 = 0 for some local coordinate
x0, then counting fixed points

Λ(Tk, (Ψ•i )s) =

{
0, if Ni 6 | k,

Ni, if Ni | k.
(11.28)

Finally, the zeta function of the monodromy h∗ : Hn(Xi,t, C) −→ Hn(Xi,t, C) equals to

Zh(t) =
(
1− tNi

)−χ(E◦i ). (11.29)

It remains to compute the characteristic polynomial ∆1(t) of the monodromy action
from the zeta function.

Proof of Proposition 11.6. If we now restrict to the case n = 1, then the only homology
groups are Hi(Xi,t, C) for i = 0, 1. Hence, in terms of the zeta functions the characteristic
polynomial ∆1(t) reads as

∆1(t) = tb1

[
tb0 − 1

t
Zh(1/t)

]
(11.30)



11 the case of plane curve singularities 115

where b0 and b1 are, respectively, the dimensions of H0(Xi,t, C) and H1(Xi,t, C).

Let us now compute the dimension of these homology groups. First, one has that
χ(Xi,t) = Niχ(E◦i ) since Xi,t is a Ni-fold unramified covering of E◦i . Second, the number
of connected components ci of a covering equals the index of the fundamental group of
the base in the covering group.

Fix a point x ∈ E◦i . The fundamental group π1(E◦i , x) has rank ri − 1, where ri is the
number of missing points from E◦i , and it is generated by loops γ1, . . . , γri around the
missing points with the relation γri γri−1 · · · γ1 = 1. On the other hand, the covering
group is cyclic and is generated by the monodromy action h. Hence, the action of
a loop γj around the intersection of Ei with Ej in the covering group is hNi/ gcd(Ni ,Nj).
Therefore, the index of π1(E◦i , x) in the covering group is

ci = gcd(Nj | Ej ∩ Ei 6= ∅, Ej ∈ Supp(Fπ)) = b0, (11.31)

and b1 = ci − Niχ(E◦i ). Finally,

∆i(t) = (tNi − 1)−χ(E◦i )(tci − 1). (11.32)

11.5 Generic b-exponents

Let f : (C2, 0) −→ (C, 0) be a germ of a holomorphic function defining an irreducible
plane curve with semigroup Γ = 〈β0, . . . , βg〉. Given Ei a rupture divisor of the minimal
embedded resolution of f , take σi,ν(ω) a non-resonant candidate b-exponent associated
with Ei, see Definition 11.4.

Lemma 11.8. A candidate b-exponent σi,ν(ω) is non-resonant, if and only if, βiσi,ν(ω) 6∈ Z

and ei−1σi,ν(ω) 6∈ Z.

Proof. The candidate σi,ν(ω) is non-resonant if ε j,ν(ω) 6∈ Z, for all Dj ∩ Ei 6= ∅, Dj ∈
Supp(Fπ). By the definition of ε j,ν(ω), this is the same as Njσi,ν(ω) 6∈ Z. Since for
plane branches there are only three D1, D2, D3 divisors crossing Ei in the support of
Fπ, by Proposition 11.2, and since the δk,ν(ω) are integers, it is enough to check the
non-resonance condition for two of the crossing divisors. Therefore, assume D1, D2

are the divisors preceding Ei in the minimal resolution. Hence, N1, N2 < Ni = niβi
and Njσi,ν 6∈ Z is equivalent to gcd(Ni, Nj)σi,ν 6∈ Z, j = 1, 2. However, after a possible
reordering, gcd(Ni, N1) = βi and gcd(Ni, N2) = ei−1, see [Wal04, Prop. 8.5.3].

For the rest of the section, ω ∈ Γ(X, Ω2
X) will be a fixed top differential form such

that ω = gdx ∧ dy with g(0) 6= 0. For simplicity, we could take ω = dx ∧ dy. After
Lemmas 2.11 and 2.12, we can write the candidates associated with such ω along each
rupture divisor Ei in terms of the semigroup Γ in the following way,

σi,ν(ω) =
mi + n1 · · · ni + ν

niβi
, ν ∈ Z+. (11.33)

Notice now that the set of candidates from Yano’s conjecture, see Equation (2.61), are
exactly

g⋃
i=1

{
σi,ν(ω) =

mi + n1 · · · ni + ν

niβi

∣∣∣∣ 0 ≤ ν < niβi, βiσi,ν(ω), ei−1σi,ν(ω) 6∈ Z

}
. (11.34)
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To see the equality between the exponents of Equation (2.61) and the set in (11.34), it
is enough to notice that R′i = βi and r′i = d(mi + n1 · · · ni)/nie, see Remark 2.2. Hence,
Ri = Ni = niβi = niR′i and ri = ki + 1 = mi + n1 · · · ni = nir′i .

If we consider A’Campo formula in the case of plane branches, it is easy to see that
there are exactly µ elements in the sets from (11.34), counted with possible multiplicities.
Therefore, λ = exp (2πıσi,ν(ω)) with i = 1, . . . , g and 0 ≤ ν < niβi is the set of all the
eigenvalues of the monodromy of a plane branch.

Proposition 11.9. Let λ = exp(−2πıσi,ν(ω)), 0 ≤ ν < niβi, be an eigenvalue of the
monodromy. For any fy : (C2, 0) −→ (C, 0), y ∈ Iδ, µ-constant deformation of f , there exists
a differential form ηy ∈ Γ(X, Ω2

X) such that Aηy
σi,0−1,0(t, y) is non-zero for all fibers of the

deformation and exp(−2πıσi,0(ηy)) = exp (−2πıσi,ν(ω)).

Proof. First, recall that a µ-constant deformation is topologically trivial, see [TR76],
and hence equisingular. Recall also that the semigroup Γi of the divisorial valuation
vi associated with the rupture divisor Ei with candidate exponent σi,ν(ω) is finitely
generated, see Equation (2.22). Take k � 0, such that ν′ = ν + kNi is larger than the
conductor of the semigroup Γi. Now, let hy ∈ Γ(X,OX) with vi(hy) = ν′ and define
ηy = hydx∧dy. Notice that hy can always be chosen such that ηy satisfies Corollary 11.3.
Then, because

σi,0(ηy) =
ki + ν′ + 1

Ni
=

ki + ν + kNi + 1
Ni

= σi,ν(ω) + k, (11.35)

the eigenvalues of the monodromy are the same, and σi,0(ηy) is non-resonant since
σi,ν(ω) is non-resonant by Lemma 11.8. Finally, the first piece ηy,0 of ηy associated with

Ei is non-zero. Therefore, by Proposition 11.5, the locally constant section Aηy
σi,0−1,0(t, y)

defined by Ri,0(ηy) is non-zero.

We can now use the previous proposition together with Proposition 11.7 to construct
dual bases of locally constant sections of the bundles H1 and H1 for all fibers of a
one-parameter µ-constant deformation of a plane branch.

Theorem 11.10 (Semicontinuity). If f : (C2, 0) −→ (C, 0) is a plane branch, the b-exponents
of a one-parameter µ-constant deformation of f depend upper-semicontinuously on the parameter.

Proof. For a fixed 1 ≤ 1 ≤ g, let λ := exp(−2πıσi,ν(ω)), 0 ≤ ν < niβi be an eigenvalue
of the monodromy with σi,ν(ω) from (11.34). After Proposition 11.9, there is a differ-
ential form ηy with λ = exp (−2πıσi,0(ηy)) such that there exists a non-zero locally
constant section Aηy

σi,0−1,0(t, y) for all values of the parameter y. Since for plane branches
χ(E◦i ) = −1, we can apply Proposition 11.7 to this section, and for t 6= 0, we obtain the
existence of γλ(t, y) a representative 1-cycle of an eigenvector of the monodromy of the
subspace j∗H1(Xi,t, C) with eigenvalue λ.

The set of all homology classes of all such cycles for all σi,ν(ω), 0 ≤ ν < niβi, i =
1, . . . , g, in (11.34) gives a basis of eigenvectors γλ(t, y) of the monodromy endomor-
phism which are dual to the corresponding Aηy

σi,0−1,0(t, y), for all fibers of the µ-constant
deformation. Indeed, since we have exactly µ cycles and all these subspaces j∗H1(X j,t, C)

are direct summands in H1(Xt, C), one has that

H1(Xt, C) = j∗H1(X1,t, C)⊕ j∗H1(X2,t, C)⊕ · · · ⊕ j∗H1(Xg,t, C).
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After Proposition 11.7, any such Aηy
σi,0−1,0 is dual to the eigenvectors forming a basis of

j∗H1(Xi,t, C). Finally, since any other cycle not in j∗H1(Xi,t, C) must vanish to a different
rupture divisor, i.e. other than Ei, we obtain the desired duality.

For this precise basis of eigenvectors of the monodromy we have constructed, we
have shown the existence of dual locally constant geometric sections for all fibers of
the deformation. That is, using the notations from Section 10.4, for all γλ(t, y) in the
basis, dimC H1

γλ
(y) = 1, for all values of the parameter y. Therefore, we can apply

Proposition 10.5, and all the b-exponents of any one-parameter µ-constant deformation
depend upper-semicontinuously on the parameter.

Finally, Yano’s conjecture will follow from Theorem 11.10 and the following propo-
sition. For any ν ∈ Z+, we can show that, generically in a one-parameter µ-constant
deformation of f , the piece ων of degree ν of ω associated with a rupture divisor Ei is
non-zero, and hence Ri,ν(ω) is non-zero.

Proposition 11.11. For any σi,ν(ω), ν ∈ Z+ non-resonant, there exists fy : (C2, 0) −→
(C, 0), y ∈ Iδ, a one-parameter µ-constant deformation of f such the locally constant section
Aω

σi,ν−1,0(t, y) is non-zero for generic fibers of the deformation.

Proof. Assume that ν > 0. Let fy = f + ygy be the one-parameter µ-constant deforma-
tion of f from Proposition 2.18 with vi(gy) = Ni + ν = niβi + ν. Recall that, since the
deformation is µ-constant, all the fibers are equisingular. Thus, locally at a point p in
E◦i , let x denote a local defining function for E◦i and z the other coordinate. Then, near
p we can write

fy = xNi + yxNi+νuy(x, z), (11.36)

since vi(gy) = Ni + ν and where uy(0, z) is not identically zero. Then, this is equal to
xNi(1 + yxνuy) and the curves fy can be written, locally around the same point of E◦i ,
as x̄Ni for a new coordinate x̄.

Focusing on the differential form, we have that ω = xki zbi v(x, z), bi ≥ 0, with
v(x, z) a local unit. Now, expand ω in series and apply the change of coordinates
x = x̄(1− yx̄νūy(x̄, z)) which comes from inverting x̄ = x(1 + yxνuy(x, z))1/Ni with
respect to x, and ūy(0, z) is not identically zero. That is,

ωy = ∑
α,β≥0

aα,β x̄ki+α(1− yx̄νūy)
ki+αzbi+βd

(
x̄(1− yx̄νūy)

)
∧ dz, (11.37)

where the differential form now depends on the deformation parameter y. We have
to check that, generically on y, the ν–th piece ωy,ν of ωy is non-zero. In order to
study ων,y, we look at the terms of ωy with degree ki + ν in x̄. Since dx ∧ dz =

[1− (ν + 1)yx̄νūy− yxν+1∂ūy/∂x]dx̄∧dz, the only relevant terms from Equation (11.37)
are,

aν,β x̄ki+νzβ, −a0,βkiyx̄ki+νūyzβ, −a0,β(ν + 1)yx̄ki+νūyzβ. (11.38)

Since a0,0 6= 0, ων,y is non-zero for y 6= 0, 0 < |y| � 1, as we wanted to show. Since
σi,ν(ωy) is non-resonant, and since the pull-back of ω has exceptional support, we can
apply Proposition 11.5. This implies that Ri,ν(ωy), and hence Aω

σi,ν−1,0(t, y), is non-zero
as required.

Finally, notice that for the case ν = 0, it is enough to consider the trivial deformation
since ω0 is always different from zero.
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Theorem 11.12 (Yano’s conjecture). Let f : (C2, 0) −→ (C, 0) be a germ of a holomorphic
function defining an irreducible plane curve with semigroup Γ = 〈β0, β1, . . . , βg〉. Then, for
generic curves in some µ-constant deformation of f , the b-exponents are

g⋃
i=1

{
σi,ν =

mi + n1 · · · ni + ν

niβi

∣∣∣∣ 0 ≤ ν < niβi, βiσi,ν, ei−1σi,ν 6∈ Z

}
. (11.39)

Proof. Let σi,ν = σi,ν(ω) be a candidate b-exponent from the set (11.39). By Lemma 11.8,
σi,ν(ω) is non-resonant and, as a consequence of Proposition 11.11, we have the existence,
generically in a µ-constant deformation of f , of non-zero locally constant geometric
section Aω

σi,ν−1,0 given by the exponent σi,ν(ω)− 1 associated with the rupture divisor
Ei. After Theorem 10.3, we have that since 0 ≤ ν < Ni, then σi,ν(ω) is a b-exponent
of these generic curves, because the projection of sσi,ν(ω)−1[Aω

σi,ν−1,0] in the quotient
bundle Fσi,ν(ω)−1, see Section 10.3, is non-zero. Indeed, Aω

σi,ν−1,0 is not in the subbundle

H1
λ,σi,ν(ω)−2 because σi,ν(ω)− 1, 0 ≤ ν < niβi, is strictly smaller than σi,0(ω).

Finally, we can use the upper-semicontinuity result from Theorem 11.10, in order
to apply this argument to all the candidate b-exponents from (11.39). In this case,
since σi,ν(ω)− 1, 0 ≤ ν < niβi, is smaller than σi,0(ω) for all i = 1, . . . , g, the upper-
semicontinuity implies that when a single candidate b-exponent has been set generically,
further deformations do move that b-exponent. This way, we obtain a µ-constant
deformation of the original curve f such that all the candidates from (11.39) are the
b-exponents of generic fibers of this µ-constant deformation.

12 topological roots of the bernstein-sato polynomial of a plane

curve

In this section, we present a result about topological roots of the Bernstein-Sato poly-
nomial of a plane branch. The set of roots of the Bernstein-Sato polynomial that we
are going to describe are called topological because they are constant among plane
branches that are topologically equivalent. That is, these roots do not exhibit a jumping
behavior as some other roots of the Bernstein-Sato polynomial, see [Kat81; Kat82] or
[Var80, §11]. Furthermore, this set of topological roots of the Bernstein-Sato polynomial
contains both the opposites in sign to the jumping numbers in [0, 1) and the real part
of the poles of Igusa’s zeta function. The results in this section will appear in [Bla].

12.1 Igusa’s zeta function

Let f ∈ Z[x0, . . . , xn] be a non-constant polynomial and fix a prime numbers p. Igusa’s
zeta function of f is defined by the following p-adic integral

Zp(s; f ) :=
∫

Zn
p

| f (x)|sp|dx|, (12.1)

for s ∈ C with Re(s) > 0. Here Zp denotes the ring of p-adic integers inside the field
of p-adic numbers Qp. The p-adic numbers Qp carry an absolute value defined by

|a|p = p−ordp(a). (12.2)

Then, Zp is the closed ball of radius one under this absolute value. The measure |dx|
used to define the integral in Equation (12.1) is the Haar measure on Qp normalized
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in such a way that Zp has measure 1. The function Zp(s; f ) is a holomorphic function
on the half-plane {s ∈ C | Re(s) > 0} and it is a result of Igusa [Igu74; Igu75] that it
admits a meromorphic extension to the whole complex plane. Moreover, Igusa proves
that Zp(s; f ) is a meromorphic function of p−s.

Remark 12.1. Igusa’s zeta function of f is the non-archimedean version of the complex
zeta function of a complex polynomial studied in Chapter IV. One can define similar
Igusa zeta functions depending on a p-adic test function. However, p-adic functions
are locally constant and one can always reduce the analysis to the unit ball as in
Equation (12.1). �

The rationality of Zp(s; f ) is obtained using a resolution of singularities of f . As-
suming π : X −→ An

Q is an embedded resolution of f and denoting by Ei, i ∈ I the
irreducible components of π−1(Var( f )), let ai be the multiplicity of Ei in the divisor
of π∗ f and ki the multiplicity of Ei in the relative canonical divisor. After Denef’s
formula [Den87, Thm 2.4], the real parts of the poles of Zp(s; f ) are contained in the set
{−(ki + 1)/ai | i ∈ I}. Comparing this with Equation (1.12), these results lead naturally
to the following conjecture.

Conjecture (Strong Monodromy). For almost all prime numbers p, if σ is a pole of Igusa’s
zeta function Zp(s; f ), then Re(s) is a pole of the Bernstein-Sato polynomial b f (s).

The adjective strong in the name of the above conjecture is due to the existence of
a related conjecture, the Monodromy conjecture, linking the real parts of the roots of
Zp(s; f ) with the eigenvalues of the monodromy of f at some point of Var( f ). Notice
that, after the results of Malgrange [Mal75; Mal83], the Strong Monodromy conjecture
implies the Monodromy conjecture, hence the name.

Loeser proved in [Loe88] that the Strong Monodromy conjecture is true for plane
curves, i.e. the case n = 1. The proof involves the study of the periods of integrals in
the Milnor fiber in terms of resolutions of singularities as in Section 10. The important
point in this case is that, except for the case where there is a double root of b f ,0(s), the
real parts of the poles of Zp(s; f ) are non-resonant in the sense of Definition 11.4. That
is, using the notations from Section 10.6,

Proposition 12.1 ([Loe88, Prop. II.3.1]). Let Ei be an exceptional divisor of the minimal
resolution of f . Consider the numbers ε j,0(dx ∧ dy) from Equation (10.32) associated with the
divisors Dj from the resolution that cross Ei. If χ(E◦i ) < 1, then −2 < ε j,0(dx ∧ dy) < 0.

In [Loe90], Loeser proved the Strong Monodromy conjecture for singularities with
non-degenerate Newton polygon assuming that the real parts of the poles of Zp(s; f )
are non-resonant. The Strong Monodromy conjecture has also been proved for some
special types of hyperplane arrangements, see [BSY11; Wal17; BW17].

Remark 12.2. The Strong Monodromy conjecture can be generalized to arbitrary vari-
eties by considering the Bernstein-Sato polynomial of a variety, see Remark 1.4. In this
context, it has been proved in the case of monomial ideals [JY07], and some determi-
nantal varieties [Lőr+17]. After Mustaţǎ [Mus19, Thm. 1.4], the Strong Monodromy
conjecture for hypersurface implies the conjecture for arbitrary varieties. �
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12.2 Topological roots

Let f : (C2, 0) −→ (C, 0) be a holomorphic map with a singularity at the origin defining
a plane curve singularity.

Definition 12.2. A root σ of the local Bernstein-Sato polynomial b f ,0(s) of f is called
a topological root if, for any equisingular deformation of f , σ is a root of the local
Bernstein-Sato polynomial of each fiber of the deformation.

Recall that, in the case n = 1, equisingular deformations are the same as the topo-
logically trivial ones. By the classic result of Lê Dũng Tráng and Ramanujam [TR76],
if f has an isolated singularity, topologically trivial deformations are equivalent to
µ-constant deformations.

The jumping numbers in (0, 1] of f at the origin, see Section 1.3, are, by definition
and Theorem 1.15, topological roots of the Bernstein-Sato polynomial b f ,0(−s) of f .
Similarly, since the Strong Monodromy conjecture is true, the real parts of the poles of
Igusa’s zeta function are also topological roots of the Bernstein-Sato polynomial. It is
also well-known that, generally, not all the roots of the Bernstein-Sato are topological
roots, see for instance the examples in [Yan78] or [Kat81; Kat82].

However, the intersection of the opposites in sign to the jumping numbers in (0, 1]
and the real parts of the poles of Igusa’s zeta function is just the log-canonical threshold
of f at the origin. For the case of irreducible plane curves, the next result shows that
there is a bigger set of topological roots of the Bernstein-Sato polynomial containing
both the opposites in sign to the jumping numbers in (0, 1] and the real parts of the
poles of Igusa’s zeta function Zp(s; f ).

Theorem 12.3. Let f : (C2, 0) −→ (C, 0) be an irreducible plane curve. Let Ei, i = 1, . . . , g
be the rupture divisors of the minimal resolution of f with resolution data (Ni, ki) and let Γi be
the value semigroup of the divisorial valuation of Ei. Denote N(i)

j , j = 1, 2, 3, the multiplicities
of the other divisors of the resolution crossing Ei. Then,

g⋃
i=1

{
σi,ν = − ki + 1 + ν

Ni

∣∣∣∣ ν ∈ Γi, 0 ≤ ν < Ni, N(i)
j σi,ν 6∈ Z for j = 1, 2, 3

}
∪ {−1}

(12.3)
is a set of topological roots of the Bernstein-Sato of f that contains the opposite in sign to the
jumping numbers of f in (0, 1] and the real parts of the poles of Igusa’s zeta function of f .

Proof. We will begin by showing that all the rational numbers in (12.3) are topological
roots of b f ,0(s). In order to do that, we will use the notations from Chapter V and fix a
Milnor representative f : X −→ T. Since the statement is trivially true for −1 and it
is the only root contributed by the strict transform, for the sake of simplicity, we will
omit this case in the discussion below.

First, since ν ∈ Γi, there exists g ∈ Γ(X,OX) such that vi(g) = ν. Therefore, after
Section 10.6, considering ω = gdx ∧ dy, one has that with σi,0(ω) = (ki + 1 + ν)/Ni =

−σi,ν. By the third condition in (12.3), all the rational numbers σi,0(ω) = −σi,ν in (12.3)
are non-resonant in the sense of Definition 11.4. Since Ei are rupture divisors, after the
discussion in Section 11.2,

lim
t→0

t1−σi,0(ω)
∫

γ(t)

ω

d f
= aσi,0−1,0(ω) 6= 0, (12.4)
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for some cycle γ(t). Then Aω
σi,0−1,0(t) 6= 0 and, since 0 ≤ ν < Ni, by Theorem 10.3, the

numbers σi,ν are roots of the local Bernstein-Sato b f ,0(s). Notice that σi,ν are topological
roots since for any fiber of an equisingular deformation of f , the element g ∈ Γ(X,OX)

with vi(g) = ν will always exist. Furthermore, the g ∈ Γ(X,OX) can always be chosen
such that ω satisfies the hypothesis of Corollary 11.3.

Let us now check that the real parts of the poles of Igusa’s zeta function are in
(12.3). The only exceptional divisors of a resolution contributing to such poles are the
rupture divisors [Loe88, Lemme IV.2.3] of the minimal resolution. That is, they are
σi,0 = −(ki + 1)/Ni, i = 1, . . . , g. It remains to check that these numbers are indeed
non-resonant in the sense of Definition 11.4. In the irreducible case, this follows from
Proposition 9.1 and the definitions in Section 2.4.

Since the only contributing exceptional divisors to the jumping numbers of a plane
curve are the rupture divisors of the minimal resolution [ST07, Thm. 3.1], it remains
to check that the jumping numbers in (0, 1] are non-resonant. In order to do that we
will use the formula given in Theorem 2.23. Furthermore, in Corollary 2.21 we have
an explicit expression for N(i)

1 , N(i)
2 in terms of the semigroup. Therefore, if λi,ν is an

element of the i–th set in Theorem 2.23,

N(i)
1 λi,ν = N(i)

1
ki + 1 + ν

Ni
= aiβi

miι + ni j + nimik
niβi

=
ai

ni
(miι + ni j + nimik). (12.5)

Then, ai(miι + ni j + nimik) ≡ aimiι (mod ni). Since gcd(mi, ni) = gcd(ai, ni) = 1, see
Sections 2.4 and 2.7, N(i)

1 λi,ν ∈ Z if and only if ι ≡ 0 (mod ni). But the later is
impossible under the conditions in Theorem 2.23. The other case works similarly,

N(i)
2 λi,ν = (cini−1mi−1 + di)ei−1

miι + ni j + nimik
niβi

=
cini−1mi−1 + di

mi
(miι + ni j + nimik).

(12.6)
Then, gcd(cini−1mi−1 + di, mi) = 1, since qi = nini−1mi−1 + qi and qici − nidi = 1, see
again Sections 2.4 and 2.7. Thus, N(i)

1 λi,ν ∈ Z if and only if ni j ≡ 0 (mod mi), which is
impossible under the conditions in Theorem 2.23.

Remark 12.3. Notice that the hypothesis of irreducibility is only used to apply Proposi-
tion 9.1 and Theorem 2.23. For the poles of Zp(s; f ), the general case can be worked
out by using Proposition 12.1 and distinguishing the case of a double root of b f ,0(s).
However, how to prove that the jumping numbers of a reduced plane curve are non-
resonant is not a priori clear. At the time of finishing this thesis, the generalization of
Theorem 12.3 to reduced curves is work in progress. �

One can find examples where the elements in (12.3) are all the topological roots of
b f ,0(s). See, for instance, Example 12.1 below. How to prove that the set from (12.3) is
the set of all topological roots of a plane curve is also not a priori clear.

Example 12.1. Consider the irreducible plane curve f = (y2 − x3)2 − x5y with semi-
group Γ = 〈4, 6, 13〉. The minimal log-resolution divisor is Fπ = 4E0 + 6E1 + 12E2 +

13E3 + 26E4 and Kπ = E0 + 2E1 + 4E2 + 5E3 + 10E4. The rupture divisors are E2 and
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E4 and the associated valuations have semigroups Γ2 = 〈2, 3〉 and Γ4 = Γ. Then, the
topological roots of b f ,0(s) from Theorem 12.3 are

E2 : − 5
12

,− 7
12

,−11
12

,−13
12

.

E4 : −11
26

,−15
26

,−17
26

,−19
26

,−21
26

,−23
26

,−25
26

,−27
26

,−29
26

,−31
26

,−33
26

,−35
26

.
(12.7)

and −1. One can check that these are, in fact, all the roots of b f ,0(s). This is due to the
fact that f has no non-trivial µ-constant deformations, see [Tei86, §II.1]. In contrast, the
real parts of the poles of Igusa’s zeta function are − 5

12 ,− 11
26 , and the jumping numbers

in (0, 1] are 5
12 , 11

12 , 15
26 , 17

26 , 19
26 , 21

26 , 23
26 , 25

26 . �
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This appendix contains the implementation in Magma [BCP97] of the Algorithms
3.13, 2.6, 2.25, and 4.3, as well as the applications from Section 4.3. We also include
the implementation of other classical algorithms in the theory of plane curves, some
of them being prerequisites for the algorithms present in this thesis. For instance:
the Newton-Puiseux algorithm, resolution of plane curves via Enriques’ Theorem,
algorithms for numerical semigroups of curves, the computation of the monomial curve
and its deformations, etc. The code has been tested in Magma v2.24–4.

List of functions:

• ASufficiencyBound: Computes a lower-bound for the A-sufficiency degree of a
plane curve, see [Cas00, §7.7].

• CharExponents: Returns the characteristic exponents associated with a Puiseux
series, a plane branch equation or a semigroup.

• Conductor: Returns the conductor of a plane curve semigroup from the minimal
set of generators, the characteristic exponents, a plane branch equation or a
Puiseux series.

• ContactMatrix: The contact matrix between the branches of a plane curve.

• DeformationCurve: The miniversal semigroup constant deformation of the mono-
mial curve associated to a plane curve semigroup.

• ESufficiencyDegree: Computes a lower-bound for the E-sufficiency degree of a
plane curve, see [Cas00, §7.5].

• Filtration: Returns the filtration of the local ring by the complete ideals defined
by the valuation of a plane branch.

• FiltrationRupture: Returns the filtration of the local ring by the complete ideals
defined by the valuation of the i–th rupture divisor of a plane branch.

• GenericBExponents: Returns the generating sequence for the generic b-exponents
from the characteristic sequence or the semigroup using Yano’s formula.

• IsCharSequence: Whether the input is a valid characteristic sequence or not.

• IsPlaneCurveSemiGroup: Whether the input is a plane curve semigroup or not.

• JumpingNumbers: The jumping numbers in (0, 1] of a plane branch from its semi-
group or characteristic sequence.

• LogResolution: Computes the proximity matrix and total transform multiplicities
of the minimal log-resolution of a bivariate polynomial ideal.

• MaxContactElements: Computes a set of maximal contact elements of a plane
curve singularity.

123
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• MilnorAlgebraAdapted: Constructs an adapted basis of the Milnor algebra of an
isolated singularity f from a given basis of the Tjurina algebra by successive
multiplication by f .

• MilnorAlgebra: Computes a monomial basis for the Milnor algebra of an isolated
singularity.

• MilnorNumber: The Milnor number of an isolated singularity. Computes the
Milnor number from the semigroup or characteristic sequence of a plane branch.

• MonomialCurve: Equations for the monomial curve associated to a plane curve
semigroup.

• MultiplierIdeals: Returns generators for the multiplier ideals of a singularity
in a smooth complex surface.

• NewtonPolygon: The Newton polygon of a plane curve.

• PolarInvariants: The polar invariants of a plane curve, see [Cas00, §6].

• ProximityMatrix: The proximity matrix and the multiplicities of the strict trans-
form of a plane curve singularity.

• PuiseuxExpansion: The Puiseux expansions of a plane curve singularity.

• SemiGroup: Computes the minimal set of generators for the semigroup of a plane
branch from the characteristic sequence, a Puiseux series, an equation or the
proximity matrix.

• SemiGroupMembership: Whether a number belongs to a given semigroup or not.

• Spectrum: Computes the singularity spectrum of a plane branch from the semi-
group, the characteristic sequence or an equation.

• TjurinaAlgebra: Computes a monomial basis for the Tjurina algebra of an iso-
lated singularity.

• TjurinaAlgebraAdapted: Computes a basis for the Tjurina algebra of a plane
branch using maximal contact elements.

• TjurinaFiltration: Returns a filtration of the Tjurina ideal, see [Per97].

• TjurinaGaps: Computes the gaps of the Tjurina algebra, see [Per97].

• TjurinaNumber: The Tjurina number of an isolated singularity.

• TopologicalRootsBS: Returns the topological roots of the Bernstein-Sato polyno-
mial of a plane branch.

• WeierstrassEquation: Computes the Weierstrass equation of a plane branch from
a Puiseux series.
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LogResolution.m

1 import "ProximityMatrix.m": ProximityMatrixImpl, CoefficientsVectorBranch;

2

3 ExpandWeightedCluster := procedure(~P, ~EE, ~CC, ~S, b)

4 // Expand the proximity matrix.

5 P := InsertBlock(ScalarMatrix(Ncols(P) + 1, 1), P, 1, 1); N := Ncols(P);

6 // Expand branches multiplicities.

7 EE := [InsertBlock(ZeroMatrix(IntegerRing(), 1, N), EEi, 1, 1)

8 : EEi in EE];

9 // If a free points, it has mult. 1 in the branch & expand the Puiseux series.

10 if b ne -1 then

11 EE[b][1, N] := 1;

12 // Number of points of branch b appearing in BP(I)

13 m := #[e : e in Eltseq(EE[b]) | e ne 0];

14 // If we do not have enough terms of Puiseux already computed...

15 if #CC[b] lt m + 1 then

16 SS := PuiseuxExpansionExpandReduced(S[b][1], S[b][3]:

17 Terms := m + 1 - #CC[b], Polynomial := true)[1];

18 S[b][1] := SS[1]; S[b][3] := SS[2];

19 CC[b] := CoefficientsVectorBranch(S[b][1], m + 1);

20 end if;

21 end if;

22 end procedure;

23

24 ComputeLogResolutionData := procedure(~P, ~EE, ~CC, ~S, N, ~E, ~C, ~V, ~v)

25 // Compute the multiplicities of each generator in G.

26 E := [ZeroMatrix(IntegerRing(), 1, Ncols(P)) : i in [1..N]];

27 // Hold information about the branches in each generator.

28 for i in [1..#S] do for m in S[i][2] do

29 E[m[2]] := E[m[2]] + m[1] * EE[i];

30 end for; end for;

31 // Merge the coefficients of each branch.

32 C := [#CC gt 0 select Parent(CC[1][2]) else RationalField()

33 | <0, 1> : i in [1..Ncols(P)]];

34 for i in [1..#EE] do

35 I := [j : j in [1..Ncols(P)] | EE[i][1][j] ne 0];

36 for j in [1..#I] do C[I[j]] := CC[i][j]; end for;

37 end for;

38 // Values for each generator in G & each (initial) base point.

39 Pt_inv := Transpose(P^-1); V := [e * Pt_inv : e in E];

40 v := ZeroMatrix(IntegerRing(), 1, Ncols(P));

41 for i in [1..Ncols(P)] do v[1][i] := Min([vj[1][i] : vj in V]); end for;

42 end procedure;

43

44 intrinsic LogResolution(I::RngMPolLoc : Coefficients := false) -> []

45 { Computes the proximity matrix matrix and total transform multiplicities of

46 the minimal log-resolution of a bivariate polynomial ideal I }

47 // Generators in G & fixed part F.

48 G := Basis(I); F := Gcd(G); G := [ExactQuotient(g, F) : g in G];

49

50 ////////////// Compute all information ////////////////

51 S := PuiseuxExpansion(G: Polynomial := true);

52 P, EE, CC := ProximityMatrixImpl([*<s[1], 1> : s in S*]: ExtraPoint := true);

53

54 E := []; // Multiplicities of each generator.

55 C := []; // Coefficients of BP(I).

56 V := []; // Vector a values for each generator.

57 v := []; // Virtual values of BP(I).

58 ComputeLogResolutionData(~P, ~EE, ~CC, ~S, #G, ~E, ~C, ~V, ~v);
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59

60 /////////////// Add new free points /////////////////////

61 lastFree := [i : i in [1..Ncols(P)] | (&+P[1..Ncols(P)])[i] eq 1];

62 points2test := #lastFree; idx := 1;

63 // For each last free point on a branch...

64 while points2test gt 0 do

65 // Values for each gen. at p.

66 p := lastFree[idx]; Vp := [vi[1][p] : vi in V];

67 // Generators achieving the minimum.

68 GG := [i : i in [1..#Vp] | Vp[i] eq Min(Vp)];

69 // If the multiplicities of all the generators achieving the minimum

70 // at p is > 0 add new point.

71 if &and[E[g][1][p] ne 0 : g in GG] then

72 // The (unique) branch of the generator ’g’ where ’p’ belongs.

73 assert(#[i : i in [1..#EE] | EE[i][1, p] ne 0] eq 1);

74 b := [i : i in [1..#EE] | EE[i][1, p] ne 0][1];

75 ExpandWeightedCluster(~P, ~EE, ~CC, ~S, b); P[Ncols(P)][p] := -1;

76 ComputeLogResolutionData(~P, ~EE, ~CC, ~S, #G, ~E, ~C, ~V, ~v);

77 // We may need to add more free points after the points we added.

78 lastFree cat:= [Ncols(P)]; points2test := points2test + 1;

79 end if;

80 points2test := points2test - 1; idx := idx + 1;

81 end while;

82

83 /////////////// Add new satellite points /////////////////////

84 points2test := Ncols(P) - 1; p := 2; // Do not start at the origin.

85 while points2test gt 0 do

86 // Values for the generators at point p.

87 Vp := [vi[1][p] - v[1][p] : vi in V];

88 // Points p is proximate to && Points proximate to p.

89 p_prox := [i : i in [1..Ncols(P)] | P[p][i] eq -1];

90 prox_p := [i : i in [1..Ncols(P)] | P[i][p] eq -1];

91 Q := [q : q in p_prox | &+Eltseq(Submatrix(P, prox_p, [q])) eq 0];

92 for q in Q do

93 // Values for the generators at point q.

94 Vq := [vi[1][q] - v[1][q] : vi in V];

95 if &*[Vp[i] + Vq[i] : i in [1..#Vp]] ne 0 then

96 ExpandWeightedCluster(~P, ~EE, ~CC, ~S, -1);

97 P[Ncols(P)][p] := -1; P[Ncols(P)][q] := -1;

98 ComputeLogResolutionData(~P, ~EE, ~CC, ~S, #G, ~E, ~C, ~V, ~v);

99 // We may need to add more satellite points after the points we added.

100 points2test := points2test + 1;

101 end if;

102 end for;

103 points2test := points2test - 1; p := p + 1;

104 end while;

105

106 /////////////// Remove non base points ////////////////

107 // Multiplicities for the cluster of base points.

108 e := v * Transpose(P); I := [i : i in [1..Ncols(P)] | e[1][i] ne 0];

109 // Remove points not in the cluster of base points.

110 P := Submatrix(P, I, I); v := Submatrix(v, [1], I); C := C[I];

111

112 // Select 1 as affine part iff F is a unit.

113 F := Evaluate(F, <0, 0>) ne 0 select Parent(F)!1 else F;

114 if Coefficients then return P, v, F, C;

115 else return P, v, F; end if;

116 end intrinsic;
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Filtration.m

1 import "ProximityMatrix.m": ProximityMatrixImpl,

2 ProximityMatrixBranch,

3 MultiplicityVectorBranch,

4 CoefficientsVectorBranch;

5 import "IntegralClosure.m": IntegralClosureIrreducible,

6 Unloading, ProductIdeals,

7 ClusterFactorization, MaxContactElements;

8 import "LogResolution.m": ExpandWeightedCluster;

9 import "SemiGroup.m": TailExponentSeries;

10

11 // Helper funcition

12 ConvertToIdeal := func<I, Q | [&*[g[1]^g[2] : g in f] : f in I]>;

13

14 FiltrationRuptureImpl := function(P, e, c, i, niBi)

15 // Compute a set of max. cont. elem. of the curve.

16 Q<x, y> := LocalPolynomialRing(Parent(c[1][2]), 2, "lglex"); ZZ := Integers();

17 Pt := Transpose(P); Pt_inv := Pt^-1;

18 Cv := MaxContactElements(P, e*Pt_inv, c, Q); N := Ncols(P);

19 // Compute the maximal ideal values.

20 max := ZeroMatrix(IntegerRing(), 1, N); max[1][1] := 1; max := max*Pt_inv;

21

22 // Compute the position of the i-th rupture divisor.

23 VS := RSpace(ZZ, N); isSat := &+[VS | Pt[i] : i in [1..N]]; R := [];

24 for p in [2..N] do // Construct the set of rupture points.

25 // Points proximate to ’p’ that are free.

26 prox_p_free := [i : i in [p + 1..N] | Pt[p][i] eq -1 and isSat[i] ne -1];

27 if (isSat[p] eq -1 and (#prox_p_free ge 1 or p eq N)) or

28 (isSat[p] ne -1 and #prox_p_free ge 2) then R cat:= [p]; end if;

29 end for; Ri := R[i];

30

31 // Construct the i-th cluster.

32 vi := ZeroMatrix(IntegerRing(), 1, N); H := [];

33 while vi[1][Ri] lt niBi do

34 // Unload K_i to get a strictly consistent cluster.

35 vi[1][Ri] +:= 1; vi := Unloading(P, vi);

36

37 // Compute generators for the complete ideal H_i.

38 Hi := [IntegralClosureIrreducible(P, P*Transpose(v_j), v_j, Cv, max, Q) :

39 v_j in ClusterFactorization(P, vi)];

40 Hi := [g[1] : g in ProductIdeals(Hi) |

41 &or[g[2][1][i] lt (vi + max)[1][i] : i in [1..N]]];

42 H cat:= [<Hi, vi[1][Ri]>];

43 end while; return H;

44 end function;

45

46 intrinsic FiltrationRupture(f::RngMPolLocElt, i::RngIntElt : N := -1, Ideal := true) -> []

47 { Returns the filtration of the local ring by the complete ideals defined

48 by the valuation of the \( i \)--th rupture divisor of a plane branch }

49 require i gt 0: "Second argument must be a positive integer";

50

51 Q := Parent(f); S := PuiseuxExpansion(f: Polynomial := true); ZZ := Integers();

52 if #S gt 1 or S[1][2] gt 1 then error "The curve must be irreducible"; end if;

53 s := S[1][1]; P, e, c := ProximityMatrixImpl([<s, 1>]); G := SemiGroup(P);

54 if i gt #G - 1 then error "Rupture divisor index too large"; end if;

55 Ei := [i gt 1 select Gcd(Self(i - 1), G[i]) else G[1] : i in [1..#G]];

56 n := G[1]; Ni := [0] cat [ZZ!(Ei[i] div Ei[i + 1]) : i in [1..#G - 1]];

57 if N lt 0 then N := Ni[i + 1] * G[i + 1]; end if;

58
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59 F := FiltrationRuptureImpl(P, e[1], c[1], i, N);

60 if Ideal eq true then return [<ConvertToIdeal(I[1], Q), I[2]> : I in F];

61 else return F; end if;

62 end intrinsic;

63

64 FiltrationImpl := function(s, f, e, M)

65 // Compute an upper bound for the necessary points.

66 KK := (e*Transpose(e))[1][1]; N := Max(Ncols(e) + M - KK, Ncols(e));

67 // Get the proximity matrix with all the necessary points.

68 s := PuiseuxExpansionExpandReduced(s, f: Terms := M - KK - 1)[1];

69 P := ProximityMatrixBranch(s, N); Pt := Transpose(P); Pt_inv := Pt^-1;

70 e := MultiplicityVectorBranch(s, N); c := CoefficientsVectorBranch(s, N);

71

72 // Compute a set of max. cont. elem. of the curve.

73 Q<x, y> := LocalPolynomialRing(Parent(c[1][2]), 2, "lglex");

74 Cv := MaxContactElements(P, e*Pt_inv, c, Q);

75 // Compute the maximal ideal values.

76 max := ZeroMatrix(IntegerRing(), 1, N); max[1][1] := 1; max := max*Pt_inv;

77

78 // Construct the i-th cluster.

79 ei := ZeroMatrix(IntegerRing(), 1, N); m_i := 0; H := [];

80 while m_i lt M do

81 // Get the last points with multiplicity zero.

82 I := [i : i in [1..N] | ei[1][i] eq 0][1];

83 ei[1][I] := 1; vi := ei*Pt_inv;

84 // Unload K_i to get a strictly consistent cluster.

85 vi := Unloading(P, vi); ei := vi*Pt;

86

87 // Compute generators for the complete ideal H_i.

88 Hi := [IntegralClosureIrreducible(P, P*Transpose(v_j), v_j, Cv, max, Q) :

89 v_j in ClusterFactorization(P, vi)];

90 Hi := [g[1] : g in ProductIdeals(Hi) |

91 &or[g[2][1][i] lt (vi + max)[1][i] : i in [1..N]]];

92

93 // Fill the gaps in the filtration.

94 KK_i := &+[e[i] * ei[1][i] : i in [1..N]]; // Intersection [K, K_i]

95 H cat:= [<Hi, KK_i>]; m_i := KK_i;

96 end while; return H;

97 end function;

98

99 intrinsic Filtration(f::RngMPolLocElt : N := -1, Ideal := true) -> []

100 { Returns the filtration of the local ring by the complete ideals

101 defined by the valuation of a plane branch }

102

103 Q := Parent(f); S := PuiseuxExpansion(f: Polynomial := true);

104 if #S gt 1 or S[1][2] gt 1 then error "the curve must be irreducible"; end if;

105 s := S[1][1]; f := S[1][3]; _, e, _ := ProximityMatrixImpl([<s, 1>]);

106 KK := e[1]*Transpose(e[1]); // Curve auto-intersection.

107

108 F := FiltrationImpl(s, f, e[1], N lt 0 select KK[1][1] else N);

109 if Ideal eq true then return [<ConvertToIdeal(I[1], Q), I[2]> : I in F];

110 else return F; end if;

111 end intrinsic;

112

113 TjurinaFiltrationImpl := function(S, f)

114 // Get the proximity matrix with all the necessary points.

115 P, E, C := ProximityMatrixImpl(S); N := NumberOfColumns(P);

116 Pt := Transpose(P); Pt_inv := Pt^-1; R := Parent(f);

117 // The Tjurina ideal & its standard basis.
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118 J := JacobianIdeal(f) + ideal<R | f>; J := ideal<R | StandardBasis(J)>;

119

120 // Compute a set of max. cont. elem. of the curve.

121 A := Parent(C[1][1][2]); Q := LocalPolynomialRing(A, 2, "lglex");

122 vi := E[1]*Pt_inv; Cv := MaxContactElements(P, vi, C[1], Q); ZZ := IntegerRing();

123 // Add the curve itself as a max. contact element.

124 Cvf := <[<Q!f, 1>], vi, E[1]>; Cv cat:= [Cvf];

125 // Compute the maximal ideal values.

126 max := ZeroMatrix(ZZ, 1, N); max[1][1] := 1; max := max*Pt_inv;

127

128 // Construct the i-th cluster.

129 ei := ZeroMatrix(ZZ, 1, N); JJ := []; Hi := ideal<R | 1>; Ji := Hi meet J;

130 while Hi ne Ji do

131 // Enlarge, if necessary, the cluster with one point on the curve.

132 I := [i : i in [1..N] | ei[1][i] eq 0];

133 if #I eq 0 then

134 ExpandWeightedCluster(~P, ~E, ~C, ~S, -1); N := N + 1; P[N][N - 1] := -1;

135 E[1][1][N] := 1; ei := E[1]; Pt := Transpose(P); Pt_inv := Pt^-1;

136 // Expand (i.e. blow-up an extra point) the maximal ideal.

137 max := ZeroMatrix(ZZ, 1, N); max[1][1] := 1; max := max*Pt_inv;

138

139 newCv := []; // Expand (i.e. blow-up an extra points) the max. cont. elem.

140 for i in [1..#Cv] do

141 Ei := InsertBlock(ZeroMatrix(ZZ, 1, N), Cv[i][3], 1, 1);

142 if i eq #Cv then Ei[1][N] := 1; end if; // The last max. cont. elem. is f.

143 newCv cat:= [<Cv[i][1], Ei*Pt_inv, Ei>];

144 end for; Cv := newCv;

145 else ei[1][I[1]] := 1; end if;

146

147 // Unload K_i to get a strictly consistent cluster.

148 vi := ei*Pt^-1; vi := Unloading(P, vi); ei := vi*Pt;

149

150 // Compute generators for the complete ideal H_i.

151 Hi := [IntegralClosureIrreducible(P, P*Transpose(v_j), v_j, Cv, max, Q)

152 : v_j in ClusterFactorization(P, vi)];

153 Hi := [g[1] : g in ProductIdeals(Hi) | &or[g[2][1][i] lt

154 (vi + max)[1][i] : i in [1..N]]];

155 Hi := ideal<R | ConvertToIdeal(Hi, R)>; Ji := Hi meet J;

156 // Ignore the begining of the filtration.

157 if Ji eq J then continue;

158 else JJ cat:= [<Ji, vi[1][Ncols(vi)]>];

159 end if;

160 end while; return JJ;

161 end function;

162

163 intrinsic TjurinaFiltration(f::RngMPolLocElt) -> []

164 { Returns an adapted filtration of the Tjurina ideal of an irreducible

165 plane curve }

166

167 Q := Parent(f); S := PuiseuxExpansion(f: Polynomial := true);

168 if #S gt 1 or S[1][2] gt 1 then error "the curve must be irreducible"; end if;

169 return TjurinaFiltrationImpl(S, f);

170 end intrinsic;

IntegralClosure.m

1 import "SemiGroup.m": Euclides, TailExponentMatrix, InversionFormula;

2

3 // Given a Puiseux series s, returns its associated Weierstrass equation.
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4 intrinsic WeierstrassEquation(s::RngSerPuisElt, Q::RngMPolLoc) ->

5 RngMPolLocElt

6 { Computes the Weierstrass equation associated to a Puiseux series }

7

8 x := Q.1; y := Q.2; C, m, n := Coefficients(s); G := CyclicGroup(n);

9 g := n gt 1 select G.1^(n - 1) else G.0;

10

11 V := [&+[Q | C[i + 1] * x^((m + i - s) div n) : i in [0..#C - 1] |

12 (i + m) mod n eq s] : s in [0..n - 1]];

13 M := Matrix([V[Eltseq(g^i)] : i in [0..n - 1]]);

14 for i in [1..n] do

15 InsertBlock(~M, x * Submatrix(M, [i], [1..i - 1]), i, 1);

16 end for;

17 return Determinant(ScalarMatrix(n, y) - M);

18 end intrinsic;

19

20 // Factorices the weighted cluster (P, v) as a unique sum of

21 // irreducible weighted clusters.

22 ClusterFactorization := function(P, v)

23 N := Transpose(P) * P; Ninv := N^-1; exc := v * N; n := Ncols(P);

24 B := []; // For each point with strictly positive excess.

25 for i in [i : i in [1..n] | exc[1][i] gt 0] do

26 p := i; I := [p];

27 while p ne 1 do // Traverse the cluster back to the origin

28 p := [j : j in Reverse([1..n]) | P[p][j] eq -1][1]; I := [p] cat I;

29 end while;

30 v := ZeroMatrix(IntegerRing(), 1, n); v[1][i] := exc[1][i];

31 v := v * Ninv; B cat:= [v];

32 end for; return B;

33 end function;

34

35 // Returns the curve going sharply through (P, v).

36 // Prerequisite: The cluster (P, v, c) must be irreducible.

37 // && the last point of (P, v) must be free.

38 SharplyCurve := function(P, v, c, Q)

39 m := Gcd(Eltseq(v)); v := v div m; G := SemiGroup(P);

40 M := CharExponents(G) cat [TailExponentMatrix(P)];

41 // If the curve is the y-axis.

42 if #G eq 1 and #c gt 1 and &and[c[i][1] eq 0: i in [2..#c]] then

43 return Q.1; end if;

44 // If the curve is inverted.

45 if c[2][1] eq 0 then M := InversionFormula(M, P, c); end if;

46 P<t> := PuiseuxSeriesRing(Parent(c[1][2])); s := P!0; k := 1; n := M[1][2];

47 for i in [2..#M] do

48 mj := M[i - 1][1]; nj := M[i - 1][2]; mi := M[i][1]; h0 := (mi - mj) div nj;

49 s +:= &+[P | c[k + l][2] * t^((mj + l * nj) / n) : l in [0..h0]];

50 k +:= &+Euclides(mi - mj, nj)[1];

51 end for; return WeierstrassEquation(s, Q)^m;

52 end function;

53

54 // Computes the maximal contact elements of a weighted cluster.

55 MaxContactElements := function(P, v, c, Q)

56 P_inv := P^-1; Pt := Transpose(P); Pt_inv := Transpose(P_inv);

57 n := Ncols(P); isSat := &+[Pt[i] : i in [1..n]];

58 // Dead-end points are always free.

59 freePoints := [p : p in [1..n] | isSat[p] eq 0]; curvPoints := [];

60 for p in freePoints do

61 // Points proximate to ’p’.

62 prox_p := [i : i in [p + 1..n] | Pt[p][i] eq -1];



appendix 131

63 // Points proximate to ’p’ that are satellites.

64 prox_p_sat := [q : q in prox_p | isSat[q] eq -1];

65 // Select ’p’ is if it has no proximate points in K (dead end) or

66 // all its proximate points in K are satellite (rupture point).

67 if #prox_p eq 0 or #prox_p eq #prox_p_sat then

68 curvPoints cat:= [p]; end if;

69 end for; C := []; // Now, construct equations for each max. cont. elem.

70 for p in curvPoints do

71 i_p := ZeroMatrix(IntegerRing(), 1, n); i_p[1][p] := 1;

72 e_p := i_p*P_inv; Ip := [i : i in [1..n] | e_p[1][i] ne 0];

73 v_p := e_p*Pt_inv; f_p := SharplyCurve(Submatrix(P, Ip, Ip),

74 Submatrix(v_p, [1], Ip), c[Ip], Q);

75 C cat:= [<[<f_p, 1>], v_p, e_p>];

76 end for;

77 // Let’s check if we need to add x or y as a max. cont. elem. This will always

78 // happen in the irreducible case. Otherwise, we might have smooth max. cont.

79 // elem. playing the role of x and/or y.

80 e_O := ZeroMatrix(IntegerRing(), 1, n); e_O[1][1] := 1; v_O := e_O*Pt_inv;

81 if #[f : f in C | LeadingMonomial(f[1][1][1]) eq Q.1] eq 0 then

82 C := [<[<Q.1, 1>], v_O, e_O>] cat C; end if;

83 if #[f : f in C | LeadingMonomial(f[1][1][1]) eq Q.2] eq 0 then

84 C := [<[<Q.2, 1>], v_O, e_O>] cat C; end if;

85 return C;

86 end function;

87

88 // Unloads the weighted cluster represented by (P, v) where v are virtual values.

89 Unloading := function(P, v)

90 N := Transpose(P) * P; n := Ncols(P); R := CoefficientRing(P);

91 while #[r : r in Eltseq(v * N) | r lt 0] gt 0 do

92 p := [i : i in [1..n] | (v * N)[1][i] lt 0][1];

93 lp := ZeroMatrix(R, 1, n); lp[1][p] := 1;

94 rp := (lp * N * Transpose(lp))[1][1];

95 np := Ceiling(-(v * N * Transpose(lp))[1][1] / rp);

96 v +:= np * lp;

97 end while; return v;

98 end function;

99

100 // Returns the datum corresponding to multipling the datum of the

101 // max. contact elements of f and g.

102 ProductMaxContElem := function(f, g)

103 fg := f[1] cat g[1]; S := {h[1] : h in fg};

104 return <[<s, &+[h[2] : h in fg | h[1] eq s]> : s in S],

105 f[2] + g[2], f[3] + g[3]>;

106 end function;

107

108 // Returns the datum corresponding to raising the datum representing

109 // the max. cont. elem. f to alpha \in \mathbb{N}.

110 PowerMaxContElem := function(f, alpha)

111 return <[<f_i[1], alpha * f_i[2]> : f_i in f[1]], alpha * f[2], alpha * f[3]>;

112 end function;

113

114 // Multiplies together all the ’ideals’ of max. cont. elem. in the sequence S.

115 ProductIdeals := function(S)

116 if #S eq 0 then return []; end if;

117 return Reverse([i gt 1 select SetToSequence({ProductMaxContElem(f, g) :

118 f in S[i], g in Self(i - 1)}) else S[1] : i in [1..#S]])[1];

119 end function;

120

121 // Raises the ’ideal’ of max. cont. elem. to the alpha-th power.



132 appendix

122 PowerIdeal := function(I, alpha)

123 return Reverse([i gt 1 select ProductIdeals([I] cat [Self(i - 1)])

124 else I : i in [1..alpha]])[1];

125 end function;

126

127 forward IntegralClosureIrreducible;

128

129 IntegralClosureIrreducible := function(P, e, v_i, Cv, max, Q)

130 // If the cluster is a power of the maximal ideal, select all the

131 // possible generators for a maximal ideal from the max. cont. elem.

132 alpha := Gcd(Eltseq(v_i)); v_i := v_i div alpha;

133 if v_i eq max then

134 X := [f : f in Cv | LeadingMonomial(f[1][1][1]) eq Q.1];

135 Y := [f : f in Cv | LeadingMonomial(f[1][1][1]) eq Q.2];

136 _, i1 := Max([(f[3] * e)[1][1] : f in X]);

137 _, i2 := Max([(f[3] * e)[1][1] : f in Y]);

138 return PowerIdeal([X[i1], Y[i2]], alpha);

139 end if;

140

141 // Find the max. cont. elem. going through the current cluster.

142 Pt := Transpose(P); n := Ncols(P); isFree := &+[Pt[i] : i in [1..n]];

143 e_i := v_i*Pt; p := [j : j in Reverse([1..n]) | isFree[j] eq 0 and

144 e_i[1][j] ne 0][1]; // Last free point.

145 Fs := [f : f in Cv | f[3][1][p] gt 0 and f[3][1][1] le v_i[1][1]][1];

146 beta := v_i[1][1] div Fs[3][1][1];

147

148 // Increase the value at the origin & unload.

149 v := v_i; v[1][1] +:= 1; v := Unloading(P, v);

150 // Apply Zariski theorem on complete ideals and recurse.

151 Is := [IntegralClosureIrreducible(P, e, v_j, Cv, max, Q) :

152 v_j in ClusterFactorization(P, v)];

153

154 // Compute (f^\beta) + \prod_{i=1}^{#II} I_i and clean gens.

155 return PowerIdeal([PowerMaxContElem(Fs, beta)] cat [g : g in ProductIdeals(Is)

156 | &or[g[2][1][i] lt (v_i + max)[1][i] : i in [1..n]]], alpha);

157 end function;

158

159 intrinsic IntegralClosure(I::RngMPolLoc : Ideal := true) -> []

160 { Computes the integral closure of a bivariate polynomial ideal }

161 // Compute the log-resolution of I

162 P, v, f, c := LogResolution(I : Coefficients := true);

163 Pt := Transpose(P); n := Ncols(P); R := Parent(f);

164 // If the ideal is principal its integral closure is itself.

165 if n eq 0 then

166 if Ideal then return ideal<R | f>; else return [[<R!f, 1>]]; end if;

167 end if;

168

169 // Compute the maximal contact elements of the log-resolution morphism.

170 Q<x, y> := LocalPolynomialRing(Parent(c[1][2]), 2, "lglex");

171 Cv := MaxContactElements(P, v, c, Q); e := P*Transpose(v);

172 // Sort max. contact elements by increasing intersection mult. with F_\pi.

173 Sort(~Cv, func<x, y | (y[3]*e - x[3]*e)[1][1]>);

174 // Compute the maximal ideal values.

175 max := ZeroMatrix(IntegerRing(), 1, n); max[1][1] := 1; max := max*Pt^-1;

176

177 // Compute systems of generators of irreducible cluster.

178 Is := [IntegralClosureIrreducible(P, P*Transpose(v_i), v_i, Cv, max, Q) :

179 v_i in ClusterFactorization(P, v)];

180 // Multiply all the ideals together, add the affine part and clean gens.
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181 Ibar := [g[1] cat (f eq 1 select [] else [<Q!f, 1>]) : g in ProductIdeals(Is)

182 | &or[g[2][1][i] lt (v + max)[1][i] : i in [1..n]]];

183

184 // Return the internal representation of the monomials in the max. contact

185 // elements or return a sequence of ideals instead.

186 ConvertToIdeal := func<I, Q | [Q!(&*[g[1]^g[2] : g in f]) : f in I]>;

187 if Ideal then return ConvertToIdeal(Ibar, R); else return Ibar; end if;

188 end intrinsic;

189

190 // Computes a set of maximal contact elements of an element f.

191 intrinsic MaxContactElements(f::RngMPolLocElt) -> []

192 { Computes a set of maximal contact elements of a plane curve f }

193

194 P, e, c := ProximityMatrix(f : Coefficients := true); R := Parent(f);

195 Q<x, y> := LocalPolynomialRing(Parent(c[1][2]), 2); Pt := Transpose(P);

196 return [R!fi[1][1][1] : fi in MaxContactElements(P, e*Pt^-1, c, Q)];

197 end intrinsic;

198

199 // Computes generators for \pi^* O_{X’}(-D)_O

200 intrinsic GeneratorsOXD(P::Mtrx, v::Mtrx, c::SeqEnum[Tup], R::RngMPolLoc) -> []

201 { Computes monomial generators for the stalk at zero of the ideal

202 associated to the divisor D given by the values in v}

203 require Ncols(P) eq Ncols(v) and Ncols(P) eq #c: "Dimensions do not agree";

204

205 // Compute the maximal contact elements of the morphism.

206 Q<x, y> := LocalPolynomialRing(Parent(c[1][2]), 2, "lglex");

207 Cv := MaxContactElements(P, v, c, Q); e := P*Transpose(v);

208 // Sort max. contact elements by increasing intersection multiplicity with D.

209 Sort(~Cv, func<x, y | (y[3]*e - x[3]*e)[1][1]>); n := Ncols(P);

210 // Compute the maximal ideal values.

211 max := ZeroMatrix(IntegerRing(), 1, n); max[1][1] := 1;

212 max := max*Transpose(P)^-1;

213

214 // Compute systems of generators of irreducible cluster.

215 Is := [IntegralClosureIrreducible(P, P*Transpose(v_i), v_i, Cv, max, Q) :

216 v_i in ClusterFactorization(P, v)];

217 // Multiply all the ideals together, add the affine part and clean gens.

218 Ibar := [g[1] : g in ProductIdeals(Is) | &or[g[2][1][i] lt

219 (v + max)[1][i] : i in [1..n]]];

220

221 ConvertToIdeal := func<I, Q | [Q!(&*[g[1]^g[2] : g in f]) : f in I]>;

222 return ConvertToIdeal(Ibar, R);

223 end intrinsic;

Jacobian.m

1

2 // MilnorNumber not available for local polynomial rings.

3 intrinsic MilnorNumber(f::RngMPolLocElt) -> RngIntElt

4 { The Milnor number of f }

5 R := Parent(f); J := JacobianIdeal(f); RJ := R/J;

6 if HasFiniteDimension(RJ) then return Dimension(RJ);

7 else return Infinity(); end if;

8 end intrinsic;

9

10 // The Milnor number of the singularity defined by a plane curve semigroup.

11 intrinsic MilnorNumber(G::[RngIntElt]) -> RngIntElt

12 { The Milnor number of a semigroup }

13 require IsPlaneCurveSemiGroup(G): "Argument must be a plane curve semigroup";
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14

15 E := [i gt 1 select Gcd(Self(i - 1), G[i]) else G[1] : i in [1..#G]];

16 N := [E[i - 1] div E[i] : i in [2..#G]]; g := #G - 1; n := G[1];

17 return &+[(N[i] - 1) * G[i + 1] : i in [1..g]] - n + 1;

18 end intrinsic;

19

20 // The Milnor number of the singularity defined by a plane curve char. seq.

21 intrinsic MilnorNumber(n::RngIntElt, M::[RngIntElt]) -> RngIntElt

22 { The Milnor number of a characteristic sequence }

23 G := SemiGroup(n, M); return MilnorNumber(G);

24 end intrinsic;

25

26 // TjurinaNumber not available for local polynomial rings.

27 intrinsic TjurinaNumber(f::RngMPolLocElt) -> RngIntElt

28 { The Tjurina number of f }

29 R := Parent(f); Jf := JacobianIdeal(f) + ideal<R | f>; RJf := R/Jf;

30 if HasFiniteDimension(RJf) then return Dimension(RJf);

31 else return Infinity(); end if;

32 end intrinsic;

33

34 // A monomial basis for the finite dimension algebra R/(J(f) + f)

35 intrinsic TjurinaAlgebra(f::RngMPolLocElt) -> []

36 { Monomial basis for the Tjurina algebra }

37 tau := TjurinaNumber(f); R := Parent(f); g := Rank(R);

38 require tau ne Infinity(): "Argument must be an isolated singularity.";

39

40 Jf := JacobianIdeal(f) + ideal<R | f>; RJf := R/Jf;

41 F := hom<RJf -> R | [R.i : i in [1..g]]>;

42 return Reverse(Setseq(F(MonomialBasis(RJf))));

43 end intrinsic;

44

45 // A monomial basis for the finite dimension algebra R/J(f)

46 intrinsic MilnorAlgebra(f::RngMPolLocElt) -> []

47 { Monomial basis for the Milnor algebra of an isolated singularity }

48 mu := MilnorNumber(f); R := Parent(f); g := Rank(R);

49 require mu ne Infinity(): "Argument must be an isolated singularity.";

50

51 J := JacobianIdeal(f); RJ := R/J; F := hom<RJ -> R | [R.i : i in [1..g]]>;

52 return Reverse(Setseq(F(MonomialBasis(RJ))));

53 end intrinsic;

54

55 // By the Briancon-Skoda theorem, for every every hypersurface defining

56 // an isolated singularity there exists a minimal kappa such that

57 // f^kappa belong to the Jacobian ideal.

58 intrinsic JacobianPower(f::RngMPolLocElt) -> RngIntElt

59 { Computes the minimal kappa s.t. f^kappa \in J(f), f an isolated singularity }

60 mu := MilnorNumber(f);

61 require mu ne Infinity(): "Argument must be an isolated singularity.";

62

63 J := JacobianIdeal(f); kappa := 1;

64 while NormalForm(f^kappa, J) ne 0 do kappa +:= 1; end while;

65 return kappa;

66 end intrinsic;

67

68 // The gaps in the Tjurina filtration of the curve.

69 intrinsic TjurinaGaps(f::RngMPolLocElt) -> []

70 { The gaps of the Tjurina ideal of an irreducible plane curve }

71 R := Parent(f); g := Rank(R); tau := TjurinaNumber(f);

72 require tau ne Infinity(): "Argument must be an isolated singularity.";
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73

74 M := CharExponents(f); n := M[1][2]; M := [m[1] : m in M[2..#M]];

75 G := SemiGroup(n, M); c := Conductor(G);

76

77 // Elements nu < c + min(n, m1) - 1 s.t nu \in Gamma.

78 Nu1 := [i : i in [0..(c + Min(n, M[1]) - 1) - 1] | SemiGroupMembership(i, G)];

79 FJf := TjurinaFiltration(f); // i is a gap iff FJf[i] eq FJf[i+1].

80 Nu2 := [i - 1 + (c + Min(n, M[1]) - 1) : i in [1..#FJf-1]

81 | FJf[i][1] eq FJf[i+1][1]]; return Nu1, Nu2;

82 end intrinsic;

83

84 // An special adapted basis for the finite dimension algebra R/(J(f) + f)

85 intrinsic TjurinaAlgebraAdapted(f::RngMPolLocElt) -> []

86 { An adapted basis for the Tjurina algebra }

87 R := Parent(f); g := Rank(R); G := SemiGroup(f);

88 Nu1, Nu2 := TjurinaGaps(f); Cv := MaxContactElements(f); B := [];

89 for alpha in Nu1 cat Nu2 do

90 _, b := SemiGroupMembership(alpha, G); B cat:= [b];

91 end for; assert(#B eq TjurinaNumber(f));

92 S := [&*[Cv[i]^beta[i] : i in [1..#G]] : beta in B];

93 return S;

94 end intrinsic;

95

96 // An ’adapted’ basis of the Milnor algebra constructed from any basis

97 // of the Tjurina algebra.

98 intrinsic MilnorAlgebraAdapted(f::RngMPolLocElt, RJf::[RngMPolLocElt]) -> []

99 { Constructs an adapted basis of the Milnor algebra of an isolated singularity f

100 from a given basis of the Tjurina algebra by successive multiplication by f }

101 R := Parent(f); J := JacobianIdeal(f); kappa := JacobianPower(f);

102 for i in [2..kappa] do

103 Ji := J + ideal<R | f^i>; tau_i := Dimension(R/Ji);

104 Ii := [R | f^(i-1) * gi : gi in RJf | not (f^(i-1) * gi) in Ji];

105 RJf cat:= Ii[1..(tau_i - #RJf)];

106 end for; return RJf;

107 end intrinsic;

LocalPolynomialRing.m

1 // SquarefreePart not available for local polynomial rings.

2 intrinsic SquarefreePart(f::RngMPolLocElt) -> RngMPolLocElt

3 { Return the squarefree part of f, which is the largest (normalized)

4 divisor g of f which is squarefree. }

5

6 P := Parent(f); Q := PolynomialRing(CoefficientRing(P), Rank(P));

7 return P!SquarefreePart(Q!f);

8 end intrinsic;

9

10 // SquarefreeFactorization not available for local polynomial rings.

11 intrinsic SquarefreeFactorization(f::RngMPolLocElt) -> SeqEnum

12 { Factorize into squarefree polynomials the polynomial f. }

13

14 P := Parent(f); Q := PolynomialRing(CoefficientRing(P), Rank(P));

15 return [<P!g[1], g[2]> : g in SquarefreeFactorization(Q!f)];

16 end intrinsic;

17

18 // JacobianMatrix not available for local polynomial rings.

19 intrinsic JacobianMatrix(poly_list::[RngMPolLocElt]) -> GrpMat

20 { Returns the matrix with (i,j)’th entry the partial derivative of the i’th

21 polynomial in the list with the j’th indeterminate of its parent ring. }
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22

23 P := Parent(poly_list[1]); Q := PolynomialRing(CoefficientRing(P), Rank(P));

24 return ChangeRing(JacobianMatrix([Q | f : f in poly_list]), P);

25 end intrinsic;

26

27 // Jacobian ideal not available for local polynomial rings.

28 intrinsic JacobianIdeal(p::RngMPolLocElt) -> RngMPolLoc

29 { Returns the ideal generated by all first partial derivatives

30 of the polynomial. }

31

32 R := Parent(p); n := Rank(R);

33 return ideal<R | [Derivative(p, i) : i in [1..n]]>;

34 end intrinsic;

35

36 // Polynomial not available for local polynomial rings.

37 intrinsic Polynomial(C::SeqEnum[RngElt], M::SeqEnum[RngMPolLocElt]) -> RngMPolLocElt

38 { The multivariate polynomial whose coefficients are C and monomials are M

39 (so that Polynomial(Coefficients(f), Monomials(f))) equals f. }

40

41 P := Parent(M[1]); Q := PolynomialRing(CoefficientRing(P), Rank(P));

42 return P!Polynomial(C, ChangeUniverse(M, Q));

43 end intrinsic;

Misc.m

1 import "ProximityMatrix.m": ProximityMatrixImpl;

2 import "SemiGroup.m": Euclides;

3

4 intrinsic MonomialCurve(G::[RngIntElt]) -> []

5 { Computes the monomial curve assocaited to a semigroup of a

6 plane curve }

7 require IsPlaneCurveSemiGroup(G): "G is not the semigroup of a plane curve";

8

9 E := [i gt 1 select Gcd(Self(i - 1), G[i]) else G[1] : i in [1..#G]];

10 N := [E[i - 1] div E[i] : i in [2..#G]];

11

12 R := PolynomialRing(RationalField(), G); I := [R | ];

13 AssignNames(~R, ["u" cat IntegerToString(i) : i in [0..#G - 1]]);

14 for i in [1..#G - 1] do

15 _, L_i := SemiGroupMembership(N[i] * G[i + 1], G[[1..i]]);

16 I cat:= [R.(i + 1)^N[i] - &*[R.j^L_i[j] : j in [1..i]]];

17 end for; return I;

18 end intrinsic;

19

20 intrinsic MonomialCurve(n::RngIntElt, M::[RngIntElt]) -> []

21 { Computes the monomial curve associated to a characteristic sequence }

22

23 G := SemiGroup(n, M);

24 return MonomialCurve(G);

25 end intrinsic;

26

27 intrinsic DeformationCurve(G::[RngIntElt]) -> []

28 { Computes the deformations of the monomial curve associated to the

29 semigroup G }

30

31 I := MonomialCurve(G); g := #I; R := Universe(I); ZZ := Integers();

32 Ei := [i gt 1 select Gcd(Self(i - 1), G[i]) else G[1] : i in [1..#G]];

33 Ni := [0] cat [ZZ!(Ei[i] div Ei[i + 1]) : i in [1..g]];

34 nB := [-Ni[i+1] * G[i+1] : i in [1..g]];
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35

36 M := EModule(R, nB); N := ideal<R | I> * M;

37 J := Transpose(JacobianMatrix(I));

38 T_1 := N + sub<M | [M ! m : m in RowSequence(J)]>;

39

40 Groebner(T_1); LT := [LeadingTerm(m) : m in Basis(T_1)]; D_mu := [];

41 for i in [1..g] do

42 LT_i := ideal<R | [m[i] : m in LT | m[i] ne 0]>;

43 M_i := [M.i * m : m in MonomialBasis(quo<R | LT_i>)];

44 D_mu cat:= [m : m in M_i | WeightedDegree(m) gt 0];

45 end for;

46

47 RR := LocalPolynomialRing(RationalField(), Rank(R) + #D_mu, "lglex");

48 AssignNames(~RR, ["t" cat IntegerToString(i) : i in [0..#D_mu - 1]] cat

49 ["u" cat IntegerToString(i) : i in [0..g]]);

50 phi := hom<R -> RR | [RR.i : i in [#D_mu + 1..Rank(RR)]]>;

51 II := [RR | phi(f) : f in I];

52 for i in [1..#D_mu] do

53 e_i := Column(D_mu[i]);

54 II[e_i] +:= RR.i * phi(D_mu[i][e_i]);

55 end for; return II;

56 end intrinsic;

57

58 intrinsic ESufficiencyDegree(f::RngMPolLocElt) -> RngIntElt

59 { Computes the E-sufficiency degree of a plane curve }

60 require Evaluate(f, <0, 0>) eq 0: "Curve must be non-empty";

61

62 branches := PuiseuxExpansion(f); P, E, _ := ProximityMatrixImpl(branches);

63 ZZ := IntegerRing(); VS := RSpace(ZZ, Ncols(P));

64

65 require &+[ZZ | Gcd(Eltseq(e)) : e in E] eq #E: "Curve must be reduced";

66

67 Pt := Transpose(P); N := Ncols(P); isSat := &+[VS | Pt[i] : i in [1..N]];

68 // Construct subset T of free points of K.

69 freePoints := [p : p in [1..N] | isSat[p] eq 0]; T := []; exc := &+E*P;

70 for p in freePoints do

71 // Points proximate to ’p’.

72 prox_p := [i : i in [p + 1..N] | Pt[p][i] eq -1];

73 // Points proximate to ’p’ that are satellites.

74 prox_p_sat := [q : q in prox_p | isSat[q] eq -1];

75 // Select ’p’ if all its proximate points in K are

76 // satellite and its excess is equal to 1.

77 if #prox_p eq #prox_p_sat and exc[1][p] eq 1 then T cat:= [p]; end if;

78 end for;

79 // Apply theorem 7.5.1 (Casas-Alvero)

80 QQ<n> := PolynomialRing(RationalField()); Pt := ChangeRing(Pt, QQ);

81 e := ChangeRing(&+E, QQ); i_O := ZeroMatrix(QQ, 1, N); i_O[1][1] := 1;

82 u := (i_O*n - e)*Pt^-1; ns := [ZZ | ];

83 for p in [1..N] do

84 a := Roots(u[1][p])[1][1]; b := Ceiling(a);

85 ns cat:= [p in T select b else (a eq b select a + 1 else b)];

86 end for; E := Max(ns); return E;

87 end intrinsic

88

89 intrinsic PolarInvariants(f::RngMPolLocElt) -> []

90 { Computes the polar invariants of a plane curve }

91 require Evaluate(f, <0, 0>) eq 0: "Curve must be non-empty";

92

93 branches := PuiseuxExpansion(f); P, E, _ := ProximityMatrixImpl(branches);
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94 ZZ := IntegerRing(); VS := RSpace(ZZ, Ncols(P));

95

96 require &+[ZZ | Gcd(Eltseq(e)) : e in E] eq #E: "Curve must be reduced";

97

98 Pt := Transpose(P); N := Ncols(P); isSat := &+[VS | Pt[i] : i in [1..N]];

99 Pinv := P^-1; e := Transpose(&+E); exc := Pt*e; R := [1];

100 for p in [2..N] do // Construct the set of rupture points.

101 // Points proximate to ’p’ that are free.

102 prox_p_free := [i : i in [p + 1..N] | Pt[p][i] eq -1 and isSat[i] ne -1];

103 if (isSat[p] eq -1 and (#prox_p_free ge 1 or exc[p][1] gt 0)) or

104 (isSat[p] ne -1 and #prox_p_free ge 2) then R cat:= [p]; end if;

105 end for; I := [];

106 // For each rupture point compute the polar invariant.

107 for p in R do

108 i_p := ZeroMatrix(ZZ, 1, N); i_p[1][p] := 1;

109 e_p := i_p*Pinv; I cat:= [(e_p*e)[1][1] / e_p[1][1]];

110 end for; return I;

111 end intrinsic;

112

113 intrinsic ASufficiencyBound(f::RngMPolLocElt) -> RngIntElt

114 { Computes a lower-bound for the A-sufficiency degree of a plane curve }

115

116 I := PolarInvariants(f);

117 a := 2*Max(I); b := Ceiling(a);

118 return a eq b select a + 1 else b;

119 end intrinsic;

120

121 intrinsic Spectrum(G::[RngIntElt]) -> []

122 { The singularity spectrum of an irreducible plane curve singularity }

123 require IsPlaneCurveSemiGroup(G): "G is not the semigroup of a plane curve";

124

125 E := [i gt 1 select Gcd(Self(i - 1), G[i]) else G[1] : i in [1..#G]];

126 N := [E[i - 1] div E[i] : i in [2..#G]]; g := #G - 1; n := G[1]; S := [];

127

128 for i in [1..#G - 1] do

129 Mi := G[i+1] div E[i+1];

130 S cat:= [(Mi*j + N[i]*k + r*N[i]*Mi)/(N[i]*G[i+1]) :

131 j in [1..N[i] - 1], k in [1..Mi - 1], r in [0..E[i+1] - 1] |

132 Mi*j + N[i]*k lt N[i]*Mi];

133 end for; return S cat [2 - s : s in S];

134 end intrinsic;

135

136 intrinsic Spectrum(n::RngIntElt, M::[RngIntElt]) -> []

137 { The singularity spectrum of an irreducible plane curve singularity }

138

139 return Spectrum(SemiGroup(n, M));

140 end intrinsic;

141

142 intrinsic Spectrum(f::RngMPolLocElt) -> []

143 { The singularity spectrum of an irreducible plane curve singularity }

144

145 return Spectrum(SemiGroup(f));

146 end intrinsic;

147

148 intrinsic GenericBExponents(n::RngIntElt, M::[RngIntElt]) -> RngSerPuisElt

149 { Computes the generating sequence for the generic b-exponents

150 from the characteristic sequence using Yano’s formula }

151

152 G := SemiGroup(n, M); M := [n] cat M;
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153 E := [i gt 1 select Gcd(Self(i - 1), G[i]) else G[1] : i in [1..#G]];

154

155 Rk := [i gt 1 select (E[i - 1] div E[i]) * (Self(i - 1) + M[i] - M[i - 1])

156 else n : i in [1..#G]];

157 rk := [(M[i] + n) div E[i] : i in [1..#G]];

158 Rk_ := [n] cat [(Rk[i] * E[i]) div E[i - 1] : i in [2..#G]];

159 rk_ := [2] cat [(rk[i] * E[i]) div E[i - 1] + 1 : i in [2..#G]];

160

161 P<t> := PuiseuxSeriesRing(RationalField());

162 s := &+[P | t^(rk[i]/Rk[i]) * (1 - t)/(1 - t^(1/Rk[i])) : i in [2..#Rk]] -

163 &+[P | t^(rk_[i]/Rk_[i]) * (1 - t)/(1 - t^(1/Rk_[i])) :

164 i in [1..#Rk_]] + t;

165 return ChangePrecision(s, Infinity());

166 end intrinsic;

167

168 intrinsic GenericBExponents(G::[RngIntElt]) -> RngSetPuisElt

169 { Computes the generating sequence for the generic b-exponents

170 from the semigroup using Yano’s formula }

171

172 C := CharExponents(G); n := C[1][2]; C := [C[i][1] : i in [2..#C]];

173 return GenericBExponents(n, C);

174 end intrinsic;

MultiplierIdeals.m

1 import "ProximityMatrix.m": ProximityMatrixImpl;

2 import "IntegralClosure.m": IntegralClosureIrreducible, Unloading, ProductIdeals,

3 ClusterFactorization;

4

5 // Reference: Naie - "Jumping numbers of a unibranch curve on a smooth surface"

6 intrinsic JumpingNumbers(G::[RngIntElt]) -> []

7 { Compute the Jumping Numbers < 1 of an irreducible plane curve

8 from its semigroup }

9 require IsPlaneCurveSemiGroup(G): "G must be the semigroup of a plane curve";

10

11 E := [i gt 1 select Gcd(Self(i - 1), G[i]) else G[1] : i in [1..#G]];

12 RSet := func<p, q | [a*p+b*q : a in [1..q], b in [1..p] | a*p+b*q lt p*q]>;

13

14 g := #G - 1; JN := [];

15 for i in [1..g] do

16 p := E[i] / E[i + 1]; q := G[i + 1] / E[i + 1]; R := RSet(p, q);

17 Rmj := [k*p*q + alpha : k in [0..E[i+1] - 1], alpha in R];

18 JN cat:= [[beta / Lcm(E[i], G[i + 1]) : beta in Sort(Rmj)]];

19 end for; return JN;

20 end intrinsic;

21

22 // Reference: Naie - "Jumping numbers of a unibranch curve on a smooth surface"

23 intrinsic JumpingNumbers(n::RngIntElt, M::[RngIntElt]) -> []

24 { Compute the Jumping Numbers < 1 of an irreducible plane curve from its

25 char. exponents }

26

27 G := SemiGroup(n, M); return JumpingNumbers(G);

28 end intrinsic;

29

30 intrinsic MultiplierIdeals(f::RngMPolLocElt : MaxJN := 1) -> []

31 { Computes the Multiplier Ideals and its associated Jumping Number for an

32 plane curve in a smooth complex surface using the algorithm

33 of Alberich-Alvarez-Dachs }

34
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35 P, E, C := ProximityMatrix(f: Coefficients := true); QQ := Rationals();

36 EQ := ChangeRing(E, QQ); PQ := ChangeRing(P, QQ); PQTinv := Transpose(PQ)^-1;

37 N := Ncols(P); F := EQ*PQTinv; K := Matrix([[QQ | 1 : i in [1..N]]]);

38 K := K * PQTinv; ZZ := Integers(); k := Parent(f);

39

40 JN := 0; S := [];

41 while JN lt MaxJN do

42 D := Unloading(PQ, Matrix([[QQ | Floor(ei) : ei in Eltseq(JN*F - K)]]));

43 lastJN := JN;

44 JN, i := Min([(K[1][i] + 1 + D[1][i])/F[1][i] : i in [1..N]]);

45 S cat:= [<GeneratorsOXD(P, ChangeRing(D, ZZ), C, k), lastJN>];

46 end while; return S;

47 end intrinsic;

48

49 intrinsic MultiplierIdeals(I::RngMPolLoc : MaxJN := 1) -> []

50 { Computes the Multiplier Ideals and its associated Jumping Number for an

51 m-primary ideal in a smooth complex surface using the algorithm

52 of Alberich-Alvarez-Dachs }

53 require Gcd(Basis(I)) eq 1: "Ideal must be m-primary";

54

55 P, F, _, C := LogResolution(I: Coefficients := true); QQ := Rationals();

56 F := ChangeRing(Matrix(F), QQ); PQ := ChangeRing(P, QQ); ZZ := Integers();

57 PQTinv := Transpose(PQ)^-1; k := Universe(Basis(I)); N := Ncols(P);

58 // Compute relative canonical divisor

59 K := Matrix([[QQ | 1 : i in [1..N]]]); K := K * PQTinv;

60

61 JN := 0; S := [];

62 while JN lt MaxJN do

63 D := Unloading(PQ, Matrix([[QQ | Floor(ei) : ei in Eltseq(JN*F - K)]]));

64 lastJN := JN;

65 JN, i := Min([(K[1][i] + 1 + D[1][i])/F[1][i] : i in [1..N]]);

66 S cat:= [<GeneratorsOXD(P, ChangeRing(D, ZZ), C, k), lastJN>];

67 end while; return S;

68 end intrinsic;

69

70 intrinsic TopologicalRootsBS(G::[RngIntElt]) -> []

71 { Compute the topological roots of the Bernstein-Sato polynomial of a

72 topological class given by the semigroup G }

73

74 P, E := ProximityMatrix(G); QQ := Rationals(); ZZ := Integers();

75 N := Ncols(P); P := ChangeRing(P, QQ); Pt := Transpose(P);

76 E := ChangeRing(E, QQ); PTinv := Pt^-1; F := E*PTinv;

77 K := Matrix([[QQ | 1 : i in [1..N]]]); K := K * PTinv;

78

79 VS := RSpace(ZZ, N); R := []; isSat := &+[VS | Pt[i] : i in [1..N]];

80 for p in [2..N] do // Construct the set of rupture points.

81 // Points proximate to ’p’ that are free.

82 prox_p_free := [i : i in [p + 1..N] | Pt[p][i] eq -1 and isSat[i] ne -1];

83 if (isSat[p] eq -1 and (#prox_p_free ge 1)) then R cat:= [p]; end if;

84 end for; R cat:= [N];

85

86 JN := [];

87 Ei := [i gt 1 select Gcd(Self(i - 1), G[i]) else G[1] : i in [1..#G]];

88 for i in [1..# G - 1] do

89 JNi := 0; Si := []; r := R[i]; lct := (K[1][r] + 1)/F[1][r];

90 Fi := Matrix([[QQ | 0 : j in [1..N]]]); Fi[1][r] := F[1][r];

91 while JNi lt 1 + lct do

92 D := Unloading(P, Matrix([[QQ | Floor(ei) : ei in Eltseq(JNi*Fi - K)]]));

93 JNi := (K[1][r] + 1 + D[1][r])/F[1][r];
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94 if Denominator(Ei[i]*JNi) ne 1 and Denominator(G[i + 1]*JNi) ne 1 then

95 Si cat:= [JNi];

96 end if;

97 end while; JN cat:= [Si[1..#Si - 1]];

98 end for; return JN;

99 end intrinsic;

NewtonPolygon.m

1 // Hack to return 0 when 0 * Infinity() is computed.

2 MyProd := function(a, b)

3 if a eq 0 or b eq 0 then return 0;

4 else return a * b; end if;

5 end function;

6

7 // Counter clockwise turn.

8 CcwTurn := function(p1, p2, p3)

9 return (MyProd(p2[1] - p1[1], p3[2] - p1[2]) -

10 MyProd(p2[2] - p1[2], p3[1] - p1[1])) le 0;

11 end function;

12

13 // Magma’s NewtonPolygon function does not work in our case.

14 intrinsic NewtonPolygon(f::RngMPolLocElt) -> SeqEnum

15 { The newton polygon for the bivariate polynomial f. }

16 require Rank(Parent(f)) eq 2: "Argument must be a bivariate polynomial";

17

18 NP := [];

19 for p in Sort([Exponents(m) : m in Monomials(f)]) cat [[Infinity(), 0]] do

20 while #NP ge 2 and CcwTurn(NP[#NP - 1], NP[#NP], p) do

21 Prune(~NP);

22 end while; NP cat:= [p];

23 end for; Prune(~NP); return NP;

24 end intrinsic;

25

26 NewtonSide := procedure(p, q, ~f, ~S)

27 g := Gcd(p[2] - q[2], q[1] - p[1]);

28 n := (p[2] - q[2]) div g;

29 m := (q[1] - p[1]) div g;

30 k := (p[2] * q[1] - p[1] * q[2]) div g;

31

32 // Select which exponents are on the side generated by p & q.

33 Q<X, Y> := PolynomialRing(IntegerRing(), 2);

34 side := n * X + m * Y - k;

35 C, M := CoefficientsAndMonomials(f);

36 onSide := [C[i] * M[i] : i in [1..#M] |

37 Evaluate(side, <Exponents(M[i])[1], Exponents(M[i])[2]>) eq 0];

38

39 // Construct the equation associated with the pq side.

40 P<Z> := PolynomialRing(CoefficientRing(Parent(f)));

41 h := Evaluate(&+onSide, <1, Z>);

42 E, _ := Support(h); C := Coefficients(h);

43 beta0 := Reverse(Sort([Exponents(m) : m in onSide]))[1][2];

44 S cat:= [<n, m, &+[C[e + 1] * Z^((e - beta0) div n) : e in E]>];

45 end procedure;

46

47 intrinsic NewtonSides(f::RngMPolLocElt, NP::SeqEnum) -> SeqEnum

48 { Returns the sides of the Newton polygon. }

49 require Rank(Parent(f)) eq 2: "Argument must be a bivariate polynomial";

50
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51 S := [];

52 for i in [1..#NP-1] do

53 NewtonSide(NP[i], NP[i+1], ~f, ~S);

54 end for; return S;

55 end intrinsic;

ProximityMatrix.m

1 import "SemiGroup.m": Euclides, TailExponentSeries;

2

3 PuiseuxInfo := function(s)

4 if Type(s) eq RngMPolLocElt then return [<[<0,0>], [0, Infinity()]>]; end if;

5 E := CharExponents(s); T := TailExponentSeries(s);

6 I := []; E cat:= [T]; n := E[1][2];

7 // For each characteristic exponent...

8 for i in [2..#E] do

9 mj := E[i - 1][1]; nj := E[i - 1][2]; mi := E[i][1]; ni := E[i][2];

10 h0 := (mi - mj) div nj; sat := Euclides(mi - mj, nj)[1];

11 free := [<e, Coefficient(s, e)> : e in [(mj + k*nj)/n : k in [0..h0]]];

12 Append(~I, <free, sat>);

13 end for; return I;

14 end function;

15

16 ContactNumberExp := function(expInfoA, expInfoB)

17 ContactNum := 0;

18 // Free points associated with the char. exponent.

19 freeA := expInfoA[1]; freeB := expInfoB[1];

20 // Satellite points associated with the char. exponent.

21 satA := expInfoA[2]; satB := expInfoB[2];

22 // Compare free points.

23 for i in [1..Min(#freeA, #freeB)] do

24 if freeA[i] eq freeB[i] then ContactNum := ContactNum + 1;

25 else return ContactNum, false; end if;

26 end for;

27 // If the num. of free points is not the same, no more points can be shared.

28 if #freeA ne #freeB then return ContactNum, false; end if;

29 // Compare satellite points.

30 satA[#satA] := satA[#satA] - 1; satB[#satB] := satB[#satB] - 1;

31 for i in [2..Min(#satA, #satB)] do

32 ContactNum := ContactNum + Min(satA[i], satB[i]);

33 if satA[i] ne satB[i] then return ContactNum, false; end if;

34 end for;

35 // If the number of stairs is not the same, no more points can be shared.

36 if #satA ne #satB then return ContactNum, false; end if;

37 // Otherwise, all the points are shared.

38 return ContactNum, true;

39 end function;

40

41 ContactNumber := function(branchInfoA, branchInfoB)

42 ContactNum := 0;

43 // For each characteristic exponent...

44 for r in [1..Min(#branchInfoA,#branchInfoB)] do

45 // Get the contact num. of this char. exponent and wheter

46 // or not we should compare more points.

47 C, cont := ContactNumberExp(branchInfoA[r], branchInfoB[r]);

48 ContactNum := ContactNum + C;

49 if not cont then break; end if;

50 end for; return ContactNum;

51 end function;
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52

53 ContactMatrix := function(branches)

54 //Add a dummy term so compare exact branches is easier.

55 max := Max([0] cat [s[1] eq 0 select 0 else

56 Ceiling(Degree(s[1])) : s in branches]) + 1;

57 branches := [* <s[1] + (Parent(s[1]).1)^max, s[2]> : s in branches *];

58 info := [PuiseuxInfo(s[1]) : s in branches];

59 contact := ScalarMatrix(#branches, 1);

60 // For each pair of branches compute their contact number.

61 for i in [1..#branches] do

62 for j in [i+1..#branches] do

63 contactNum := ContactNumber(info[i], info[j]);

64 contact[i][j] := contactNum; contact[j][i] := contactNum;

65 end for;

66 end for; return contact;

67 end function;

68

69 ProximityMatrixSemiGroup := function(H, maxContact : ExtraPoint := false)

70 // Smooth inverted branches could have 2 char exps.

71 if #H eq 2 and #H[1] eq 2 and H[1][1] eq 0 then Prune(~H); end if;

72 // Dimension of the proximity matrix.

73 N := Max(&+[IntegerRing() | &+h : h in Prune(H)], maxContact);

74 if ExtraPoint then N := N + 1; end if;

75 // Construct a proximity matrix with free points only.

76 P := ScalarMatrix(N, 1);

77 for i in [2..N] do P[i][i - 1] := -1; end for;

78 // Fill in satellite points proximities.

79 for i in [1..#H] do

80 // Inverted axis case.

81 if i eq 1 and H[1][1] eq 0 then j0 := 3; else j0 := 2; end if;

82 Hi := H[i]; Hi[#Hi] := Hi[#Hi] - 1;

83 for j in [j0..#Hi] do

84 l := &+[IntegerRing() | &+H[k] : k in [1..i - 1]] + &+Hi[1..j - 1];

85 for k in [1..Hi[j]] do P[l + k + 1, l] := -1; end for;

86 end for;

87 end for; return P;

88 end function;

89

90 ProximityMatrixBranch := function(s, maxContact : ExtraPoint := false)

91 // If the branch is the y-axis.

92 if Type(s) eq RngMPolLocElt then

93 if ExtraPoint then maxContact := maxContact + 1; end if;

94 // Construct a proximity matrix with free points only.

95 P := ScalarMatrix(maxContact, 1);

96 for i in [2..maxContact] do P[i][i - 1] := -1; end for;

97 return P;

98 end if; // Otherwise, the branch is represented by a Puiseux series.

99 H := [charExps[2] : charExps in PuiseuxInfo(s)];

100 return ProximityMatrixSemiGroup(H, maxContact : ExtraPoint := ExtraPoint);

101 end function;

102

103 MultiplicityVectorBranch := function(s, maxContact: ExtraPoint := false)

104 // If the branch is the y-axis.

105 if Type(s) eq RngMPolLocElt then

106 if ExtraPoint then maxContact := maxContact + 1; end if;

107 return Vector([1 : i in [1..maxContact]]);

108 end if; // Otherwise, the branch is represented by a Puiseux series.

109 M := []; E := CharExponents(s);

110 for i in [2..#E] do
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111 mj := E[i-1][1]; nj := E[i-1][2]; mi := E[i][1]; ni := E[i][2];

112 Hs := Euclides(mi - mj, nj)[1]; Ns := Euclides(mi - mj, nj)[2];

113 for j in [1..#Hs] do M cat:= [Ns[j] : k in [1..Hs[j]]]; end for;

114 end for;

115 M cat:= [1 : i in [1..(maxContact - #M)]];

116 if ExtraPoint then M cat:= [1]; end if;

117 return Vector(M);

118 end function;

119

120 CoefficientsVectorBranch := function(s, maxContact)

121 // If the branch is the y-axis

122 R := CoefficientRing(Parent(s));

123 if Type(s) eq RngMPolLocElt then

124 return [<1, R!0>] cat [<0, R!1> : i in [1..maxContact]];

125 end if; // Otherwise, the branch is represented by a Puiseux series.

126 I := PuiseuxInfo(s); C := [];

127 for i in [1..#Prune(I)] do

128 C cat:= [<1, freePoint[2]> : freePoint in I[i][1]];

129 Hi := I[i][2]; Hi[#Hi] := Hi[#Hi] - 1;

130 C cat:= [<0, R!1> : j in [1..&+Hi[2..#Hi]]];

131 end for;

132 C cat:= [<1, freePoint[2]> : freePoint in I[#I][1]];

133 if #C lt maxContact then

134 C cat:= [<1, R!0> : i in [1..(maxContact - #C)]];

135 end if;

136 // The 0 Puiseux series must be treated separately.

137 if s eq 0 then C cat:= [<1, R!0>]; end if;

138 return C;

139 end function;

140

141 function ProximityMatrixImpl2(contactMat, branchesProx)

142 if #branchesProx eq 0 then return <ScalarMatrix(0, 0), []>; end if;

143 /////////////////////////// Base case ////////////////////////////////

144 // If there is only branch, return its prox. matrix.

145 if #branchesProx eq 1 then

146 return <branchesProx[1], [[i : i in [1..Ncols(branchesProx[1])]]]>;

147 end if;

148 ////////////////////// Compute the splits /////////////////////////////

149 // Substract one to all the contact numbers except the diagonal ones.

150 N := Nrows(contactMat); ZZ := IntegerRing();

151 contactMat := contactMat - Matrix(N, [ZZ | 1: i in [1..N^2]])

152 + ScalarMatrix(N, 1);

153 // Identify each current branch with an ID from 1 to #branches.

154 C := contactMat; remainingBranches := [i : i in [1..N]]; S := [];

155 // Splits will contain lists of branches ID, where two branches will

156 // be in the same list iff they do not separate in the current point.

157 while #remainingBranches ne 0 do

158 // Get the contact number of the first remaining branch.

159 branchCont := ElementToSequence(C[1]);

160 // Get the positions of the branches with contact > 1 & contact = 1.

161 sameBranchIdx := [i : i in [1..#branchCont] | branchCont[i] ne 0];

162 otherBranchIdx := [i : i in [1..#branchCont] | branchCont[i] eq 0];

163 // Save the branches with contact > 1 together and remove them since they

164 // have been splitted from the rest of branches.

165 Append(~S, remainingBranches[sameBranchIdx]);

166 remainingBranches := remainingBranches[otherBranchIdx];

167 // Compute the contact matrix of the remaining brances.

168 C := Submatrix(C, otherBranchIdx, otherBranchIdx);

169 end while;
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170 ///////////// Compute the prox. matrix of each subdiagram /////////////

171 // Substract one to all the contact numbers and erase the

172 // first point of the proximity matricies of the current

173 // branches since we are moving down the Enriques diagram.

174 newBranchProx := [*RemoveRowColumn(branchP, 1, 1) : branchP in branchesProx*];

175 // Traverse each sub-diagram recursivaly.

176 splitResult := [* ProximityMatrixImpl2(Submatrix(contactMat, split, split),

177 newBranchProx[split]) : split in S *];

178 ///////////////// Merge the prox. matrix of each split ////////////////

179 // Create the matrix that will hold the proximity branch of this subdiagram.

180 numPoints := &+[ZZ | Ncols(X[1]) : X in splitResult] + 1;

181 P := ScalarMatrix(numPoints, 1); rowPoint := []; k := 1;

182 // For each set of branches that splits in this node...

183 for s in [1..#S] do

184 // Get the proximity matrix & the position of the points

185 // (relative to that prox. matrix) of the s-th subdiagram.

186 X := splitResult[s]; M := X[1]; splitRowPoint := X[2];

187 // Copy the submatrix M inside P with the top left entry in (k+1, k+1)

188 InsertBlock(~P, M, k + 1, k + 1);

189 // Sum k+1 and add the new point ({0}) to the position of the

190 // points relative to the prox. matrix of the subdiagram.

191 splitRowPoint := [[1] cat [p + k : p in pp] : pp in splitRowPoint];

192 rowPoint cat:= splitRowPoint;

193 // Use the information in splitRowPoint to set the proximities of

194 // the current point into the new prox. matrix (P):

195 // For each branch in this subdiagram...

196 for i in [1..#S[s]] do

197 Q := branchesProx[S[s][i]];

198 // For each element int the first column...

199 for j in [1..Ncols(Q)] do P[splitRowPoint[i][j]][1] := Q[j][1]; end for;

200 end for;

201 k := k + Ncols(M);

202 end for;

203 // Make sure rowPoint is returned in the original order.

204 SS := []; for split in S do SS cat:= split; end for;

205 SS := [Position(SS, i) : i in [1..#SS]];

206 return <P, rowPoint[SS]>;

207 end function;

208

209 function ProximityMatrixImpl(branches: ExtraPoint := false)

210 // Compute the proximity matrix, the contact matrix, the mult.

211 // vector of each branch and its coefficients.

212 contactMat := ContactMatrix(branches);

213 branchProx := [* ProximityMatrixBranch(branches[i][1],

214 Max(ElementToSequence(contactMat[i])) :

215 ExtraPoint := ExtraPoint) : i in [1..#branches] *];

216 branchMult := [* branches[i][2] * MultiplicityVectorBranch(branches[i][1],

217 Max(ElementToSequence(contactMat[i])) :

218 ExtraPoint := ExtraPoint) : i in [1..#branches] *];

219 branchCoeff := [ CoefficientsVectorBranch(branches[i][1],

220 Max(ElementToSequence(contactMat[i])) + 1) : i in [1..#branches] ];

221 // Get the proximity matrix of f and the position of each infinitely

222 // near point inside the prox. matrix.

223 X := ProximityMatrixImpl2(contactMat, branchProx);

224 // Finally, rearrange each point’s multiplicity so its position is coherent

225 // coherent with the prox. matrix P.

226 P := X[1]; R := X[2]; E := [RMatrixSpace(IntegerRing(), 1, Ncols(P)) | ];

227 for i in [1..#branches] do

228 Append(~E, ZeroMatrix(IntegerRing(), 1, Nrows(P)));



146 appendix

229 for j in [1..#R[i]] do E[i][1, R[i][j]] := branchMult[i][j]; end for;

230 end for; return P, E, branchCoeff;

231 end function;

232

233 intrinsic ProximityMatrix(f::RngMPolLocElt: ExtraPoint := false,

234 Coefficients := false, Branches := false) -> []

235 { Computes the proximity matrix of the resolution of a plane curve }

236 // Get the general Puiseux expansion of f.

237 branches := PuiseuxExpansion(f);

238 P, E, C := ProximityMatrixImpl(branches: ExtraPoint := ExtraPoint);

239 if not Coefficients then

240 if not Branches then return P, &+E; else return P, E; end if;

241 end if;

242 CC := [Parent(C[1][1]) | <1, 0> : i in [1..Nrows(P)]];

243 for i in [1..#E] do

244 I := [j : j in [1..Ncols(P)] | E[i][1][j] ne 0];

245 for j in [1..#I] do CC[I[j]] := C[i][j]; end for;

246 end for;

247 if not Branches then return P, &+E, CC;

248 else return P, E, CC; end if;

249 end intrinsic;

250

251 intrinsic ProximityMatrix(G::[RngIntElt] : ExtraPoint := false) -> []

252 { Computes the proximity matrix of the resolution of a plane curve

253 with semigroup G }

254

255 ZZ := Integers(); N := Gcd(G); G := [ZZ!(g/N) : g in G];

256 require IsPlaneCurveSemiGroup(G): "Argument must be a plane curve semigroup";

257 C := CharExponents(G) cat []; n := C[1][2]; I := [];

258 // For each characteristic exponent...

259 for i in [2..#C] do

260 mj := C[i - 1][1]; nj := C[i - 1][2]; mi := C[i][1]; ni := C[i][2];

261 h0 := (mi - mj) div nj; sat := Euclides(mi - mj, nj)[1];

262 Append(~I, sat);

263 end for; I cat:= [[0]];

264 P := ProximityMatrixSemiGroup(I, 1 : ExtraPoint := ExtraPoint);

265 e := ZeroMatrix(ZZ, 1, Ncols(P)); e[1, Ncols(P)] := N;

266 return P, e*P^-1;

267 end intrinsic;

268

269 intrinsic ContactMatrix(f::RngMPolLocElt) -> []

270 { Computes de contact numbers of the branches of f }

271

272 S := PuiseuxExpansion(f);

273 P, E := ProximityMatrixImpl(S); N := Ncols(P);

274 C := ScalarMatrix(#S, 0);

275 for i in [1..#S] do for j in [i + 1..#S] do

276 C[i][j] := &+[E[i][1][k] * E[j][1][k] : k in [1..N]];

277 end for; end for;

278 return C + Transpose(C);

279 end intrinsic;

PuiseuxExpansion.m

1 xFactor := function(f)

2 return Min([IntegerRing() | Exponents(t)[1] : t in Terms(f)]);

3 end function;

4

5 yFactor := function(f)
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6 return Min([IntegerRing() | Exponents(t)[2] : t in Terms(f)]);

7 end function;

8

9 forward PuiseuxExpansionLoop;

10

11 intrinsic PuiseuxExpansion(f::RngMPolLocElt : Terms := -1,

12 Polynomial := false) -> [ ]

13 { Computes the Puiseux expansion of any bivariate polynomial }

14 require Rank(Parent(f)) eq 2: "Argument must be a bivariate polynomial";

15 // If Nf start on the right of the x-axis, we have an x-factor.

16 yBranch := (xFactor(f) gt 0) select [* <Parent(f).1,

17 [<xFactor(f), 1>], Parent(f).1> *] else [* *];

18

19 P<x, y> := LocalPolynomialRing(AlgebraicClosure(

20 CoefficientRing(Parent(f))), 2, "lglex");

21 S := yBranch cat SequenceToList(PuiseuxExpansionLoop(P!SquarefreePart(f),

22 [<P!g[1], g[2], 1> : g in SquarefreeFactorization(f)], Terms - 1));

23 if not Polynomial then return [* <s[1], s[2][1][1]> : s in S *];

24 else return [* <s[1], s[2][1][1], s[3]> : s in S *]; end if;

25 end intrinsic;

26

27 intrinsic PuiseuxExpansion(L::[RngMPolLocElt] : Terms := -1,

28 Polynomial := false) -> [ ]

29 { Computes the Puiseux expansion for the product of all the elements of L }

30 require #L gt 0: "Argument must be a non-empty list";

31 require &and[Rank(Parent(f)) eq 2 : f in L]:

32 "Elements of L must be bivariate polynomials";

33

34 f := &*L;

35 P<x, y> := LocalPolynomialRing(AlgebraicClosure(

36 CoefficientRing(Parent(f))), 2, "lglex");

37 // If Nf start on the right of the x-axis, we have an x-factor.

38 yBranch := (xFactor(f) gt 0) select [* <Parent(f).1,

39 [<xFactor(L[i]), i> : i in [1..#L] | xFactor(L[i]) ne 0], x> *] else [* *];

40

41 sqFreePart := P!SquarefreePart(f); sqFreeFact := [];

42 for i in [1..#L] do

43 sqFreeFact cat:= [<P!g[1], g[2], i>: g in SquarefreeFactorization(L[i])

44 | Evaluate(L[i], <0, 0>) eq 0];

45 end for;

46 S := yBranch cat SequenceToList(PuiseuxExpansionLoop(sqFreePart,

47 sqFreeFact, Terms - 1));

48

49 // Return the polynomial residue if requested.

50 if not Polynomial then return [* <s[1], s[2]> : s in S *];

51 else return S; end if;

52 end intrinsic;

53

54 PuiseuxExpansionLoop := function(f, L, terms)

55 Q<t> := PuiseuxSeriesRing(CoefficientRing(Parent(f)));

56 x := Parent(f).1; y := Parent(f).2;

57 // Step (i.a): Select only those factors containing the 0 branch.

58 S := yFactor(f) gt 0 select [<Q!0, [<g[2], g[3]> : g in L

59 | yFactor(g[1]) ne 0], y>] else [];

60 // Step (i.b): For each side...

61 for F in NewtonSides(f, NewtonPolygon(f)) do

62 n := F[1]; m := F[2]; P := F[3];

63 // Apply the change of variables (1).

64 C := Reverse(Coefficients(n eq 1 select f else Evaluate(f, 1, x^n), 2));
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65 CL := [<Reverse(Coefficients(n eq 1 select g[1] else

66 Evaluate(g[1], 1, x^n), 2)), g[2], g[3]> : g in L];

67 // For each root...

68 for a in [<Root(a[1], n), a[2]> : a in Roots(P)] do

69 // Apply the change of variables (2) & get the sub-solution recursively.

70 ff := [i gt 1 select C[i] + Self(i - 1) * x^m * (a[1] + y) else C[1]

71 : i in [1..#C]][#C];

72 LL := [<[i gt 1 select Cj[1][i] + Self(i - 1) * x^m * (a[1] + y) else

73 Cj[1][1] : i in [1..#Cj[1]]][#Cj[1]], Cj[2], Cj[3]> : Cj in CL];

74 // Select only those factors that contain the current branch.

75 LL := [g : g in LL | NewtonPolygon(g[1])[1][2] ne 0];

76 // If the mult. of a is greater than 1 continue.

77 R := (a[2] ne 1 and terms lt -1) or terms gt 0 select

78 PuiseuxExpansionLoop(ff, LL, terms - 1) else

79 [<Q!0, [<g[2], g[3]> : g in LL], ff>];

80 // Undo the change of variables.

81 S cat:= [<t^(m/n) * (a[1] + Composition(s[1], t^(1/n))), s[2], s[3]>

82 : s in R];

83 end for;

84 end for; return S;

85 end function;

86

87 forward PuiseuxExpansionReducedLoop;

88

89 intrinsic PuiseuxExpansionReduced(f::RngMPolLocElt : Terms := -1,

90 Polynomial := false) -> [ ]

91 { Computes the Puiseux expansion of a reduced bivariate polynomial }

92 require Rank(Parent(f)) eq 2: "Argument must be a bivariate polynomial";

93

94 P := LocalPolynomialRing(AlgebraicClosure(

95 CoefficientRing(Parent(f))), 2, "lglex");

96 // If Nf start on the right of the x-axis, we have an x-factor.

97 yBranch := (xFactor(f) gt 0) select [<Parent(f).1, P.1>] else [];

98

99 S := yBranch cat PuiseuxExpansionReducedLoop(

100 P!SquarefreePart(f), Terms - 1);

101 if Polynomial then return S; else return [s[1] : s in S]; end if;

102 end intrinsic;

103

104 intrinsic PuiseuxExpansionExpandReduced(s::RngSerPuisElt, f::RngMPolLocElt

105 : Terms := 1, Polynomial := false) -> [ ]

106 { Expands the Puiseux expansion s of a reduced bivariate polynomial }

107 require Rank(Parent(f)) eq 2: "Argument f must be a bivariate polynomial";

108

109 n := ExponentDenominator(s); x := Parent(s).1;

110 m := s eq 0 select 0 else Degree(s);

111

112 S := Terms gt 0 select PuiseuxExpansionReducedLoop(f, Terms - 1)

113 else [<PuiseuxSeriesRing(CoefficientRing(Parent(f)))!0, f>];

114 P<t> := PuiseuxSeriesRing(CoefficientRing(Parent(s)));

115 if Polynomial then return [<s + t^m * Composition(si[1], t^(1/n)), si[2]>

116 : si in S];

117 else return [s + t^m * Composition(si[1], t^(1/n)): si in S]; end if;

118 end intrinsic;

119

120 intrinsic PuiseuxExpansionExpandReduced(x::RngMPolLocElt, f::RngMPolLocElt

121 : Terms := 1, Polynomial := false) -> [ ]

122 { Expands the Puiseux expansion s of a reduced bivariate polynomial }

123 require Rank(Parent(f)) eq 2: "Argument f must be a bivariate polynomial";
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124

125 if Polynomial then return [<x, x>]; else return [x]; end if;

126 end intrinsic;

127

128 PuiseuxExpansionReducedLoop := function(f, terms)

129 Q<t> := PuiseuxSeriesRing(CoefficientRing(Parent(f)));

130 x := Parent(f).1; y := Parent(f).2;

131 // Step (i.a): Select only those factors containing the 0 branch.

132 S := yFactor(f) gt 0 select [<Q!0, y>] else [];

133 // Step (i.b): For each side...

134 for F in NewtonSides(f, NewtonPolygon(f)) do

135 n := F[1]; m := F[2]; P := F[3];

136 // Apply the change of variables (1).

137 C := Reverse(Coefficients(n eq 1 select f else Evaluate(f, 1, x^n), 2));

138 // For each root...

139 for a in [<Root(a[1], n), a[2]> : a in Roots(P)] do

140 // Apply the change of variables (2) & get the sub-solution recursively.

141 g := [i gt 1 select C[i] + Self(i - 1) * x^m * (a[1] + y) else C[1]

142 : i in [1..#C]][#C];

143 R := (a[2] ne 1 and terms lt -1) or terms gt 0 select

144 PuiseuxExpansionReducedLoop(g, terms - 1) else [<Q!0, g>];

145 // Undo the change of variables.

146 S cat:= [<t^(m/n) * (a[1] + Composition(s[1], t^(1/n))), s[2]> : s in R];

147 end for;

148 end for; return S;

149 end function;

SemiGroup.m

1 Euclides := function(m, n)

2 hs := []; ns := [];

3 while n ne 0 do

4 Append(~hs, m div n); Append(~ns, n);

5 r := m mod n; m := n; n := r;

6 end while; return <hs, ns>;

7 end function;

8

9 intrinsic CharExponents(s::RngSerPuisElt) -> []

10 { Returns the characteristic exponents of a Puiseux series }

11 C, m, n := ElementToSequence(s);

12 // Exponents appearing in the series s

13 E := [m + i - 1 : i in [1 .. #C] | C[i] ne 0];

14 charExps := [<0, n>]; ni := n;

15 while ni ne 1 do

16 // m_i = min{ j | a_j != 0 and j \not\in (n_{i-1}) }

17 mi := [e : e in E | e mod ni ne 0][1];

18 // n_i = gcd(n, m_1, ..., m_k)

19 ni := Gcd(ni, mi); Append(~charExps, <mi, ni>);

20 end while; return charExps;

21 end intrinsic;

22

23 intrinsic CharExponents(f::RngMPolLocElt) -> []

24 { Returns the characteristic exponents of an irreducible bivariate polynomials }

25 S := PuiseuxExpansion(f);

26 if #S ne 1 then error "Argument must be a irreducible series"; end if;

27 if S[1][2] ne 1 then error "Argument must be a reduced series"; end if;

28 return CharExponents(S[1][1]);

29 end intrinsic;

30
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31 intrinsic CharExponents(G::[RngIntElt]) -> []

32 { Computes the characteristic exponents from the generators of the semigroup }

33 require IsPlaneCurveSemiGroup(G): "G is not the semigroup of a plane curve";

34

35 M := [G[1]]; N := [G[1]];

36 for i in [2..#G] do

37 M cat:= [ &+[j ne i select -(N[j - 1] - N[j]) div N[i - 1] * M[j]

38 else G[j] : j in [2..i]] ]; N cat:= [Gcd(M)];

39 end for;

40 return [<0, N[1]>] cat [<M[i], N[i]> : i in [2..#M]];

41 end intrinsic;

42

43 TailExponentSeries := function(s)

44 C, m, n := ElementToSequence(s);

45 // Exponents appearing in the series s

46 E := [m + i - 1 : i in [1..#C] | C[i] ne 0];

47 charExps := CharExponents(s); g := #charExps;

48 if s eq 0 then return <0, 1>; end if;

49 return [<e, 1> : e in Reverse(E) | e ge charExps[g][1]][1];

50 end function;

51

52 TailExponentMatrix := function(P)

53 E := CharExponents(SemiGroup(P)); N := Ncols(P);

54 // If last point is satellite there is no tail exponent

55 if &+Eltseq(P[N]) eq -1 then error "no free point"; end if;

56 Pt := Transpose(P); isSat := &+[Pt[j]: j in [1..N]];

57 p := ([i : i in Reverse([1..N]) | isSat[i] eq -1] cat [0])[1] + 1;

58 return <E[#E][1] + (N - p), 1>;

59 end function;

60

61 intrinsic SemiGroup(n::RngIntElt, M::[RngIntElt]) -> []

62 { Computes a minimal set of generators for the semigroup associated

63 to a set of charactetistic exponents }

64 require IsCharSequence(n, M) : "Argument must be a valid char. sequence";

65

66 E := [i gt 1 select Gcd(Self(i - 1), M[i - 1]) else n : i in [1..#M + 1]];

67 G := [i gt 2 select ( (Self(i - 1) - M[i - 2]) * E[i - 2] div E[i - 1] ) +

68 M[i - 1] + ( (E[i - 2] - E[i - 1]) div E[i - 1] ) * M[i - 2]

69 else [n, M[1]][i] : i in [1..#M + 1]];

70 return Sort(G);

71 end intrinsic;

72

73 intrinsic SemiGroup(s::RngSerPuisElt) -> []

74 { Computes a minimal set of generators for the semigroup of the

75 Puiseux series of an irreducible plane curve }

76

77 M := CharExponents(s); // (G)amma starts with <n, m, ...>

78 return SemiGroup(M[1][2], [M[i][1] : i in [2..#M]]);

79 end intrinsic;

80

81 intrinsic SemiGroup(f::RngMPolLocElt) -> []

82 { Computes a minimal set of generators for the semigroup of

83 and irreducible plane curve }

84

85 S := PuiseuxExpansion(f);

86 if #S ne 1 then error "Argument must be an irreducible series"; end if;

87 if S[1][2] ne 1 then error "Argument must be a reduced series"; end if;

88

89 return SemiGroup(S[1][1]);
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90 end intrinsic;

91

92 intrinsic SemiGroup(P::Mtrx : UseExtraPoints := false) -> []

93 { Returns the minimal set of generators for the semigroup of and irreducible

94 plane curve from its weighted cluster of singular points }

95 require Ncols(P) eq Nrows(P):

96 "Proximity matrix does not have the required dimensions";

97 require CoefficientRing(P) eq Integers():

98 "Proximity matrix must be defined over the integers";

99 require IsInvertible(P):

100 "Proximity matrix must be invertible";

101 require IsUnipotent(P):

102 "Proximity matrix must be unipotent";

103

104 if Ncols(P) eq 0 then return [1, 0]; end if;

105 N := Ncols(P); e := ZeroMatrix(Integers(), 1, N); e[1, N] := 1; e := e*P^-1;

106 Pt := Transpose(P); v := e*Pt^-1; isSat := &+[Pt[i] : i in [1..N]];

107 G := [v[1][1]]; G cat:= [v[1][i] : i in [1..N - 1] |

108 isSat[i] ne -1 and isSat[i + 1] eq -1];

109 if UseExtraPoints and &+Eltseq(P[N]) ne -1 then return G cat [v[1, N]];

110 else return G; end if;

111 end intrinsic;

112

113 forward SemiGroupMemberImpl;

114

115 SemiGroupMemberImpl := procedure(v, i, ~G, ~B, ~b, ~V)

116 if v lt 0 or i gt #G then b := 0; return; end if;

117 if B[v + 1, i] ne -1 then b := B[v + 1, i]; return; end if;

118 V[i] := V[i] + 1;

119 SemiGroupMemberImpl(v - G[i], i, ~G, ~B, ~b, ~V);

120 B[v + 1, i] := b; if b eq 1 then return; end if;

121 V[i] := V[i] - 1;

122 SemiGroupMemberImpl(v, i + 1, ~G, ~B, ~b, ~V);

123 B[v + 1, i] := b; if b eq 1 then return; end if;

124 end procedure;

125

126 intrinsic SemiGroupMembership(v::RngIntElt, G::[RngIntElt]) -> BoolElt

127 { Returns whether or not an integer v belongs to a numerical semigroup G and

128 the coordinates v in the semigroup }

129

130 V := [0 : i in [1..#G]];

131 if v lt 0 then return false, V; end if;

132 // Any semigroup is valid.

133 B := Matrix(v + 1, #G, [IntegerRing() | -1 : i in [1..(v + 1) * #G]]);

134 for i in [1..#G] do B[0 + 1][i] := 1; end for;

135 b := 0; SemiGroupMemberImpl(v, 1, ~G, ~B, ~b, ~V);

136 return b eq 1, V;

137 end intrinsic;

138

139 InversionFormula := function(M0, P, c)

140 // Compute the exp. of the last free pt. depending of the first char. exp.

141 N := Ncols(P); Pt := Transpose(P); isSat := &+[Pt[j]: j in [1..N]];

142 p := ([i : i in [1..N] | isSat[i] eq -1] cat [N + 1])[1] - 1;

143 m := ([i : i in [2..p] | c[i][1] ne 0] cat [0])[1] - 1;

144 // Depending on whether ’m’ is 0 or not, we have case (a) or case (b).

145 M1 := [<0, m eq -1 select M0[2][1] else Lcm(M0[1][2], m)>]; k := #M0 - 1;

146 M1 cat:= [<M0[1][2], Gcd(M1[1][2], M0[1][2])>]; i0 := m eq -1 select 2 else 1;

147 ni := M1[2][2]; // ni := gcd(n, m_1, ..., m_i)

148 for i in [i0..k] do // \bar{mi} = mi + n - \bar{n}
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149 mi := M0[i + 1][1] + M0[1][2] - M1[1][2];

150 ni := Gcd(ni, mi); M1 cat:= [<mi, ni>];

151 end for; return M1;

152 end function;

153

154 intrinsic IsPlaneCurveSemiGroup(G::[RngIntElt]) -> BoolElt

155 { Whether the semigroup is a plane curve semigroup or not }

156

157 if Gcd(G) ne 1 then return false; end if;

158 // e_i := gcd(\bar{m}_{i-1}, \bar{m}_i)

159 E := [i gt 1 select Gcd(Self(i - 1), G[i]) else G[1] : i in [1..#G]];

160 // n_i := e_i / e_{i + 1}

161 N := [1] cat [E[i] div E[i + 1] : i in [1..#G - 1]];

162 // n_i != 1 for all i (iff e_i > e_{i+1})

163 if Position(N[2..#N], 1) ne 0 then return false; end if;

164 // n_i \bar{m}_{i} \in < m_{0}, ..., m_{i-1} > &&

165 // n_i \bar{m}_i < \bar{m}_{i + 1} &&

166 if not &and[SemiGroupMembership(N[i] * G[i], G[[1..i - 1]]) : i in [2..#G]] or

167 not &and[N[i] * G[i] lt G[i + 1] : i in [1..#G - 1]] then return false;

168 end if; return true;

169 end intrinsic;

170

171 intrinsic IsCharSequence(n::RngIntElt, M::[RngIntElt]) -> BoolElt

172 { Whether the inputs is a valid characteristic sequence or not }

173 // e_i := gcd(e_{i-1}, m_i)

174 E := [i gt 1 select Gcd(Self(i - 1), M[i - 1]) else n : i in [1..#M + 1]];

175 if Sort(E) eq Reverse(E) and E[#E] eq 1 and E[#E - 1] ne 1 then

176 return true; else return false; end if;

177 end intrinsic;

178

179 intrinsic Conductor(G::[RngIntElt]) -> RngIntElt

180 { Returns the conductor of the semigroup G }

181 require IsPlaneCurveSemiGroup(G): "Argument must be a plane curve semigroup";

182

183 E := [i gt 1 select Gcd(Self(i - 1), G[i]) else G[1] : i in [1..#G]];

184 N := [E[i - 1] div E[i] : i in [2..#G]]; g := #G - 1; n := G[1];

185 return &+[(N[i] - 1) * G[i + 1] : i in [1..g]] - n + 1;

186 end intrinsic;

187

188 intrinsic Conductor(n::RngIntElt, M::[RngIntElt]) -> RngIntElt

189 { Returns the conductor of the char. exponents (n, M) }

190

191 return Conductor(SemiGroup(n, M));

192 end intrinsic;

193

194 intrinsic Conductor(s::RngSerPuisElt) -> RngIntElt

195 { Returns the conductor of the Puiseux series s }

196

197 return Conductor(SemiGroup(s));

198 end intrinsic;

199

200 intrinsic Conductor(f::RngMPolLocElt) -> RngIntElt

201 { Returns the conductor of the irreducible plane curve f }

202

203 return Conductor(SemiGroup(f));

204 end intrinsic;

205

206 forward SemiGroupCoordImpl;

207
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208 SemiGroupCoordImpl := function(v, i, G);

209 if v eq 0 then return [[0 : i in [1..#G]]]; end if;

210 if v lt 0 or i gt #G then return []; end if; CC := [];

211

212 for k in Reverse([0..(v div G[i])]) do

213 T := SemiGroupCoordImpl(v - k * G[i], i + 1, G);

214 for j in [1..#T] do T[j][i] := k; CC cat:= [T[j]]; end for;

215 end for; return CC;

216 end function;

217

218 intrinsic SemiGroupCoord(v::RngIntElt, G::[RngIntElt]) -> []

219 { Return the coordinates of an integer v in the numerical semigroup G }

220

221 return SemiGroupCoordImpl(v, 1, G);

222 end intrinsic;

223

224 intrinsic SemiGroup(L::[SeqEnum]) -> []

225 { Constructs a semigroup from the semigroup of each characteristic exponent }

226 require #L ne 0: "List must be non-empty";

227 require &and[#S eq 2 : S in L]: "Input semigroup must have two elements";

228

229 P := ProximityMatrix(L[1]); ZZ := Integers();

230 for i in [2..#L] do

231 Qi := ProximityMatrix(L[i]); N := Ncols(P); Ni := Ncols(Qi);

232 P := DiagonalJoin(P, ZeroMatrix(ZZ, Ni - 1, Ni - 1));

233 InsertBlock(~P, Qi, N, N);

234 end for; return SemiGroup(P);

235 end intrinsic;
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Lê Dũng Tráng, 30, 120

Macaulay2, 4, 9

Magma, 123

Maisonobe, 67, 69

Malgrange, 4, 18, 96, 98, 100, 119

Mattei, 71

maximal contact elements, 26, 27, 33, 35,
52, 54, 55, 57, 59–64

meromorphic connection, 16

meromorphic differential equation, 17

meromorphic Gauss-Manin connection,
17

Milnor, 9, 17, 70

Milnor fiber, 9, 111, 113, 119

Milnor fibration, 10, 12, 102, 114

Milnor number, 9, 17, 18, 25, 30, 67, 71

minimal embedded resolution, 32, 35,
37, 43, 64, 73, 74, 78, 79, 101,
115

minimal log-resolution, 20, 26, 27,
39–41, 43–45, 49, 61, 62, 64

minimal polynomial, 3, 18, 36

miniversal deformation, 29, 67, 71

modality, 72

moduli space, 68, 72

monodromy action, 13, 97–99, 112, 114,
115

Monodromy conjecture, 119

monodromy eigenvalue, 18, 35, 36, 96,
100–103, 112, 113, 116, 119

monodromy eigenvector, 98, 101, 102,
111–113

monodromy endomorphism, 99–102,
111, 112, 114

monodromy operator, 10

Monodromy Theorem, 9, 98

monomial curve, 28, 31, 68, 71, 123



168 INDEX

Mostow, 109

multiplicities of a divisor, 21

multiplier ideals, 6, 36, 37, 62, 63

multivalued form, 13, 107, 109–111

multivalued function, 97

Mustaţǎ, 5
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