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Chapter 3

Quantum liquid droplets in

a mixture of Bose-Einstein

condensates

Abstract

Quantum droplets are small clusters of atoms self-bound by the balance of attrac-

tive and repulsive forces. Here, we report on the observation of droplets solely

stabilized by contact interactions in a mixture of two Bose-Einstein condensates.

We demonstrate that they are several orders of magnitude more dilute than liquid

helium by directly measuring their size and density via in situ imaging. We show

that the droplets are stablized against collapse by quantum fluctuations and that

they require a minimum atom number to be stable. Below that number, quantum

pressure drives a liquid-to-gas transition which we map out as a function of in-

teraction strength. These ultradilute isotropic liquids remain weakly interacting

and constitute an ideal platform to benchmark quantum many-body theories.

Since the work explained in this chapter was detailed in the thesis

from my predecessor C. R. Cabrera [65] and was published in reference

[29], in the following chapter I will reproduce large fractions of the
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article and its supplementary material without major modifications.

3.1 Introduction

In this chapter, we study the formation of composite quantum droplets stabilized

by beyond mean field effects in a Bose-Einstein condensate with competing inter-

actions [28]. In this system, repulsive intra-component interactions and attractive

inter-component interactions can be adjusted so that the residual mean field in-

teractions remain weakly attractive and comparable to the repulsive contribution

stemming from quantum fluctuations. Strikingly, this leads to the formation of an

ultra-dilute self-bound quantum liquid droplet in the weakly interacting regime,

as proposed in 2015 by D. S. Petrov [28].

Previously the study of quantum liquids had been restricted to liquid Helium.

For small particle numbers Helium forms nanometer-sized liquid droplets with a

density such that the mean inter-particle distance is comparable to the effective

range of the inter-atomic potential. Understanding their properties, which di-

rectly reflect their quantum nature, is challenging and requires a good knowledge

of the short-range details of the inter-atomic potential [113, 114]. Interestingly,

ultracold atomic droplets are 8 orders of magnitude more dilute and their prop-

erties can be described universally with the inter and intra-component scattering

lengths to first approximation [28]. Therefore, these ultra-dilute systems enable a

much simpler microscopic description, while remaining in the weakly interacting

regime. They are thus amenable to well controlled theoretical studies of beyond

mean field effects.

Shortly after the proposal from D. S. Petrov, ultra-dilute liquid droplets were

observed in ultracold dipolar systems by the groups of T. Pfau, with Dysprosium

(164Dy), and F. Ferlaino, with Erbium (166Er) atoms. In this system, repulsive

s-wave interactions and attractive dipolar interactions can be tuned, depending

on the trapping geometry, so that the residual mean field attraction is balanced

with the repulsion stemming from quantum fluctuations. These experiments were

followed by our observation of quantum droplets in a Bose-Bose mixture formed

by two internal states of 39K in a quasi-2D and quasi-1D geometries [29, 30] at

first, and in a 3D geometry by the LENS group shortly afterwards [31]. Whereas
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for dipolar systems, the anisotropic character of the magnetic dipole-dipole force

leads to the formation of filament-like self-bound droplets with highly anisotropic

properties [50, 115, 116], for Bose-Bose mixtures the contact character of the

interactions makes the droplets isotropic [28].

This chapter is organized as follows. In section 3.2, we will introduce the

theoretical framework to understand the beyond mean field origin responsible

for the stabilization of quantum liquid droplets in composite mixtures. Then, in

section 3.3 we will introduce the state of the art on another type of ultracold

quantum liquids: dipolar droplets. Subsequently, in section 3.5 we will present

our work on the observation of composite quantum liquid droplets in a mixture

of Bose-Einstein condensates in a quasi-2D geometry. The conclusions that we

obtained from the comparison between experiment and theory will be introduced

in section 3.6 and contrasted in section 3.7 to the experiments performed at LENS

and the possible beyond LHY effects [117–119]. Finally, in section 3.8 we present

the possibility of future experiments opened up by our work.

3.2 Theoretical framework

3.2.1 Stabilization of composite quantum droplets

through quantum fluctuations

The stabilization of attractively interacting gases requires the existence of a

repulsive force which prevents the system from collapsing. To illustrate the

stabilization mechanism of quantum droplets we will start by introducing the

physics of homogeneous Bose gases with attractive interactions. For a single

component BEC with attractive interactions the mean field energy per unit

volume EMF = EMF/V = 1
2gn

2 is reduced when the density increases, where

g = 4π~2a/m is the interaction strength. Thus, the condensate will tend to

collapse into a single point with infinite density. Before the BEC reaches an in-

finite density, three-body recombination processes induce losses at high densities

[120, 121] and the BEC will be lost.

The collapse of the condensate can also be understood from the excitation

spectrum of the system, also known as the Bogoliubov spectrum. When the
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interactions in a BEC are attractive, the Bogoliubov spectrum at low momen-

tum is imaginary and therefore the system becomes mechanically unstable. As

a consequence, very small fluctuations in the density of the condensate grow

exponentially due to the attractive non-linearity and induce the collapse of the

BEC.

For a two-component BEC with repulsive inter-component and attractive

intra-component interactions, the mean field energy density of the system is

EMF = 1
2g↑↑n

2
↑ + 1

2g↓↓n
2
↓ + g↑↓n↑n↓, where we have identified the two compo-

nents as ↑ and ↓ and g↑↑, g↓↓ and g↑↓ correspond to the inter-component and

intra-component interaction strengths respectively. The mean field energy of

the system can be rewritten in such a way that there is a contribution de-

pending on the sum and difference of the density of the components EMF ∝
g(n↑−n↓)2+ δg

2 (n↑+n↓)
2, where we have considered the case where g↑↑ = g↓↓ = g

for simplicity and δg = g↑↓+
√
g↑↑g↓↓. When δg < 0, the minimization of the en-

ergy of the system has two consequences. To reduce the energy of the sum term,

the system tends to lock the ratio between the densities. Generally, the density

ratio is locked to n↑/n↓ = (g↓↓/g↑↑)
1/2. To reduce the energy of the difference

term, the system tends to increase the density until collapse is reached.

The same phenomena can be understood from the Bogoliubov spectrum. For

a two component BEC, the spectrum contains two sound branches. The lowest

energy branch is known as the soft branch and corresponds to the density ex-

citations. The highest energy branch, known as the hard mode, corresponds to

the spin excitations. To minimize spin excitations the density ratio adjusts to

n↑/n↓ = (g↓↓/g↑↑)
1/2. When δg < 0 the soft branch becomes imaginary at low

momenta and the BEC tends to collapse.

Up to now we have only considered the physics of attractive condensates at

the mean field approximation. What happens if we take into account beyond

mean field corrections? The first correction to the mean field energy corresponds

to the zero point motion energy of the Bogoliubov excitations. In other words,

the vacuum of Bogoliubov phonons in a condensate has a finite energy due to

the presence of quantum fluctuations. This correction to the energy was first

computed for a single component BEC by T.D Lee, K. Huang and C. N. Yang

[122], and is commonly known as the Lee-Huang-Yang (LHY) energy. In the
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single component case the LHY energy density is proportional to (gn)5/2, and

thus for small gas parameters na3 � 1, the LHY energy is really small and not

able to prevent the collapse of an attractive BEC.

In this case of a two-component BEC the interaction energy for the attrac-

tive two-component BEC contains two contributions. The residual mean field

attraction EMF ∝ δg n2, and the repulsive contribution from quantum fluctu-

ations ELHY ∝ (gn)5/2, which is also known as the LHY correction. Although

this correction to the mean field energy is a very small correction in the weakly

interacting regime, it scales with the interaction strength g, whereas the MF

energy density scales with δg. Therefore, both terms can stabilize the system

into a self-bound quantum droplet. In other words, although the soft branch

induces a mechanical instability, the spin branch remains hard and the LHY cor-

rection is able to prevent the collapse of the condensates and stabilize the system

into a quantum liquid droplet. In analogy to classical liquids, these droplets are

self-bound even in the absence of a trapping container.

In the weakly interacting regime, the equilibrium density of the system at

which the two contributions balance is such that neq ∝ (δg)2/g5. Typical equi-

librium densities of these droplets are orders of magnitude much more dilute than

liquid Helium and are denser than common BECs.

Up to now we have only discussed the stabilization of quantum droplets in

homogeneous systems. But what happens if we put quantum droplets in a trap?

If the harmonic oscillator length is bigger than the size of the droplets, the system

is in 3D and the physics of the droplets are essentially described by the high atom

number limit where trapping and kinetic energies can be neglected. Indeed, in

this regime, the density of quantum droplets shows a flat-top profile followed by

a surface with a thickness on the order of the density healing length ξd.

For smaller atom numbers the flat-top density profile disappears and the

droplet has a gaussian shape with a size on the order of ξd, see Fig. 3.1 (a). In

this regime, the kinetic energy of the droplet must be taken into account. Indeed,

for very small atom numbers the system cannot be self-bound anymore. While

ELHY ∝ N5/2 and EMF ∝ N2, the kinetic energy density EK ∝ N . Hence, at very

low atom numbers the kinetic energy becomes more relevant and drives a liquid

to gas phase transition.
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If the mixture is strongly confined we can reduce the dimensionality of the

system. Since composite quantum droplets have two excitation branches, there

are two healing lengths associated with the droplets. The density and spin healing

lengths ξd = ~/
√

2mcd and ξs = ~/
√

2mcs, where cd and cs are the corresponding

density and spin velocities. Therefore, the mixture can have a different dimension-

alities for the density and spin degrees of freedom. In the experiments described

in this chapter, we work in a trapping geometry which is in the quasi-2D regime

with respect to the density degrees of freedom and 3D with respect to the spin

degrees of freedom. This is because for δg ∼ 0, the density branch softens and

the associated healing length ξd becomes large. Instead, the spin branch remains

hard. Hence, we will take into account the LHY correction in 3D.

To do a proper analysis of the phase diagram of quantum droplets we will in-

troduce a variational calculation of an extended Gross-Pitaevskii equation where

we have included the effect of quantum fluctuations as an effective potential. Be-

fore doing so, let us introduce the particular excitation spectrum of homogeneous

droplets.

3.2.2 Excitation spectrum

The composite quantum droplets are predicted to have a peculiar excitation spec-

trum. In figure 3.1 (b) the different modes ω̃l are shown as a function of the total

atom number above the critical atom number, where l represents the angular

momentum. The l = 0 mode, in red, represents the breathing mode and the

modes with l > 1 represent the surface modes. The l = 1 mode corresponds to

the dipole/center-of-mass mode. The spectrum was computed in the absence of

a trap. Hence, ω̃l=0 = 0.

Together with the excitation spectrum, the chemical potential is represented

in blue. For energies above this limit, it is energetically more favorable to re-

move particles from the droplet than exciting a particular mode. For this reason,

the chemical potential sets the particle emission threshold. This has particular

consequences for the range of atom numbers denoted with the gray area, where

no modes are present below the particle emission threshold. Therefore, in this

regime, it is not possible to excite the quantum droplet since any excitation will

result in the evaporation of particles in order to minimize the energy. Hence,
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quantum droplets can be regarded as true zero temperature macroscopic objects

in this regime. Just above the no-excitation regime, the excitation of the breath-

ing mode is not possible since the compressibility of this liquid phase is very small

and it requires a lot of energy to modify the density of the droplets. It is not until

larger atom numbers when the excitation of the breathing mode is comparable

in energy with very high angular momentum modes.
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Figure 3.1: Figures taken from [65] which were reproduced from ref. [28]. (a) For
large atom number a flat-top density profile, an inherent property of a liquid, is
expected to occur. For low atom number, if the saturation density is not reached,
the density profile is mainly dominated by surface effects. (b) The excitation
spectrum of an isotropic droplet. The different modes are sketched. The dashed
blue line represents the boundary between discrete modes and the continuum.
The gray area represents the region where no excitations exist. The axes are
presented in rescaled units, see [28] for details.

In the next section, we study the properties of these quantum droplets using

an extended Gross-Pitaevskii equation which we have solved variationally. Since

our experiments have been performed with composite mixtures with equal mass,

we will focus on this regime.
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3.2.3 Extended Gross-Pitaevskii equation with quantum

fluctuations

Following ref. [28] and the supplementary material from ref. [30], we can de-

scribe a weakly interacting Bose-Bose mixture with balanced repulsive intra-

component and attractive inter-component interactions with an extended single

particle Gross-Pitaevskii equation (eGPE). This equation includes the effect of

quantum fluctuations as an effective repulsive potential and assumes an identi-

cal spatial wavefunction φ for both components (modulo a normalization factor).

Since we will work with equal mass components, from now on we will describe

the physics of the interacting system in terms of the intra and inter-component

scattering lengths a↑↑, a↓↓ and a↑↓. It is important to remark that the eGPE

equation that we will introduce is only valid under the following approximations.

• The weakly interacting approximation na3
↑↑, na

3
↓↓, n|a↑↓|

3 � 1.

• The balanced regime where
√
a↑↑a↓↓ ≈ −a↑↓ and a↑↑ ≈ a↓↓ ≈ −a↑↓.

• The density ratio condition n↑/n↓ ≈
√
a↓↓/a↑↑.

Here, we assume identical spatial modes for the two components
(
Ψ↑ =

√
n↑φ

and Ψ↓ =
√
n↓φ

)
, and the density ratio n↑/n↓ =

√
a↓↓/a↑↑ which minimizes the

energy of the hard branch [28, 123]. For this reason, the problem is simplified

into a single-particle eGPE and thus spin excitations cannot be described with

this model.

The energy density functional of the system reads

E = EP + EK + EMF + ELHY

= Vextn0|φ|2 +
~2

2m
n0|∇φ|2 +

4π~2δa

m

√
a↓↓/a↑↑

(1 +
√
a↓↓/a↑↑)2

n2
0|φ|

4

+
256
√
π~2

15m

(
n0
√
a↑↑a↓↓

1 +
√
a↓↓/a↑↑

)5/2

f

(
1,

a2
↑↓

a↑↑a↓↓
,

√
a↓↓
a↑↑

)
|φ|5

(3.2.1)

where n0 = n↑ + n↓ and EP, EK, EMF and ELHY denote the potential, ki-

netic, mean-field and quantum fluctuation (Lee-Huang-Yang) contributions to
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the energy density of the mixture, respectively. Here the equal mass factor is

f(1, x, y) =
∑
±

[
1 + y ±

√
(1− y)2 + 4xy)

]5/2
/4
√

2. This energy functional re-

sults in an extended Gross-Pitaevskii equation given by

i~φ̇ =

[
− ~2

2m
∇2 + Vext + αn0|φ|2 + γn

3/2
0 |φ|

3

]
φ, (3.2.2)

where α and γ of the two last terms are defined as

α =
8π~2δa

m

√
a↓↓/a↑↑

(1 +
√
a↓↓/a↑↑)2

,

γ =
128
√
π~2

3m

( √
a↓↓a↑↑

1 +
√
a↓↓/a↑↑

)5/2

f

(
1,

a2
↑↓

a↑↑a↓↓
,

√
a↓↓
a↑↑

)
.

(3.2.3)

In the following section we describe the variational approach that we used to

solve the eGPE including quantum fluctuations.

Variational Gaussian ansatz

The variational calculations developed in this section were performed by P. Cheiney,

C. R. Cabrera and L. Tarruell.

To obtain the ground state phase diagram given by Eq. (3.2.1) we use a

variational technique. As we will show in section 3.5 the droplets that we have

been able to observe experimentally are not in the high atom number regime,

and neither the kinetic nor the potential energies can be neglected. Therefore,

the droplets that we have observed do not show a flat-top profile and are well

described by a gaussian ansatz:

ψ(x, y, z) =
√
n0φ(x, y, z) =

√
n0 exp

(
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)
(3.2.4)

where n0 is the peak density of the system normalized through the condition

n0 = N/π3/2σxσyσz.

Thus, the functional for the total energy E =
∫
Ed3r per particle that we
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obtain is:

E(σx, σy, σz)

N~ωz
=

1

N~ωz
(EP + EK + EMF + ELHY)

=
1

4

(
λ2
xσ

2
x

a2
ho,z

+
λ2
yσ

2
y

a2
ho,z

+
σ2
z

a2
ho,z

)
+

1

4

(
a2

ho,z

σ2
x

+
a2

ho,z

σ2
y

+
a2

ho,z

σ2
z

)

+
1√
2π

Na3
ho,z

σxσyσz

 2
√
a↓↓/a↑↑δa(

1 +
√
a↓↓/a↑↑

)2

aho,z


+

√
2

5

512

75π7/4

N3/2a
9/2
ho,z

(σxσyσz)3/2

( √
a↑↑a↓↓

aho,z(1 +
√
a↓↓/a↑↑)

)5/2

f

(
1,

a2
↑↓

a↑↑a↓↓
,

√
a↓↓
a↑↑

)
,

(3.2.5)

where λx = ωx/ωz, λy = ωy/ωz and we have normalized the total energy by

the harmonic oscillator aho,z =
√
~/mωz without loss of generality. To obtain

the ground state of the droplets for particular interaction strengths and atom

numbers, we should minimize the energy E vs. σx, σy and σz.

Ground state phase diagram

To show the liquid character of quantum droplets we will compute the ground

state phase diagram in the absence of a trap. In such situation the system is

isotropic and therefore σx = σy = σz = σ. With this assumption we minimize

numerically Eq. (3.2.5) using the relevant interaction parameters in the mixture

of 39K as an example (see section 3.5 for details). In Fig. 3.2, we show the

energy of the mixture as a function of σ (green line). For a total atom number

N = N↑ + N↓ and interaction strength δa < 0 the cloud does not collapse,

as expected from mean-field theory, but instead minimizes the energy forming a

system with finite size. This self-bound phase in the absence of trapping potential

is what we identify as quantum liquid droplet.

Without the presence of the BMF contribution (yellow line), the energy is
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Figure 3.2: Figures taken from [65]. The green line represents the total energy
of the system for N = 5 · 105 and δa = −2.88 a0 as a function of the size σ. We
observe that a local minimum appears for a given width. The stabilization of a
self-bound state in the absence of a trap is what we call quantum droplet.

minimized for zero size and thus the mixture would collapse. Due to the compe-

tition of the kinetic and beyond mean field repulsion (yellow line) and mean field

attraction (blue line), a stable minimum appears.

In Fig. 3.3 (a) we depict the droplet energy as a function of the total atom

number. We find that the droplet becomes metastable Edroplet > 0 (shaded

area) by decreasing the atom number. For a critical value Nc the minimum in

energy disappears. In Fig. 3.3 (b) we show the minima in energy for a stable

droplet (green) and metastable droplet (red). Below Nc, the minimum in energy

disappears and there is a liquid-to-gas phase transition.

Following refs. [28, 33, 49, 124], we attribute this liquid-to-gas phase transi-

tion to the effect of quantum pressure, which acts as a repulsive force. As the

atom number decreases, the relative weight between kinetic (EK) and interac-

tion energies (EMF, ELHY) changes. Each energy term scales differently with N :

EK ∝ N , EMF ∝ N2 and ELHY ∝ N5/2. Below a critical atom number, kinetic

effects become sufficiently strong to drive this transition. For a fixed atom num-

ber, if we reduce the attraction strength the kinetic energy also drives a liquid to

gas transition. The larger the attraction the more stable droplets are, and thus

the critical atom number is reduced for increasing attraction. These effects can
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Figure 3.3: Figures taken from [65]. (a) Droplet energy as a function of atom
number. We observe that for low atom number the droplet becomes metastable
(Edroplet > 0) and then unstable for a critical atom number Nc. (b) Droplet
minima for three different values of N . For large atom number (N > Nc) the
droplet is stable (green line). Close to the critical atom number N ∼ Nc the
droplet becomes metastable (red line). Finally for low atom number (N < Nc)
the droplet dissociates into a gas.

be seen from the density landscape that we plot in Fig. 3.4 (a) as a function of

the total atom number N and residual attraction δa. In Fig. 3.4 (b) we show

the evolution of the droplet width as a function of atom number for two different

interaction strengths δa. For a critical atom number Nc (depicted as a shaded

area) the width of the droplet diverges.

For smaller atom numbers the stable phase is a gas which is interesting on its

own. Although the LHY repulsion is not able to stabilize the system into a droplet

the mean field attraction is not able to make the gas collapse. Instead a single

component attractive BEC would collapse in the absence of a trap. Therefore

the absence of collapse of the gas is a signature of the effect of the beyond mean

field stabilization.
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Figure 3.4: Figures modified from ref. [65](a) Phase diagram of a 39K Bose-
Bose mixture for δa < 0. Depending of the critical atom number and interaction
strength the system could form a quantum liquid droplet or remain in the LHY
gas phase. Notice that the δa(a0) axis is not in a linear scale. For comparison we
show the corresponding magnetic field in the top axis (see also Fig. 3.5(a)). (b)
For a critical atom number Nc the system dissociates into a gas. This is depicted
in the shaded area where the width of the droplet diverges.

3.3 State of the art on dipolar droplets

The first observation of dipolar droplets was performed with 164Dy atoms in a

regime where a mechanical instability should occur and a collapse of the con-

densate was expected. Instead, the ”crystallization” of a dipolar condensate into

structured dipolar drops was reported [32]. This self-organized structure was

made of several long-lived dipolar droplets that repelled each other, in analogy

to classical ferrofluids [125]. Indeed, the observation of dipolar droplets at the

time was unexpected, and the origin of the stabilization mechanism was not clear.

Different stabilization mechanisms had been proposed so far for the stabiliza-

tion of ultradilute liquid droplets, including a repulsion stemming from three-

body correlations [126] and quantum fluctuations [28]. The observation of a

single stable dipolar droplet was reported [127] in a study where they measured

the density scaling of the droplets as a function of the interaction strength to

distinguish between the two stabilization mechanisms. The experiments showed
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that the stabilization of dipolar droplets could not be explained by considering a

three-body repulsion and that the repulsion stemming from quantum fluctuations

were compatible with the experimental observations.

This dilute liquid phase has been characterized thoroughly in terms of the

total atom number, interaction strength and trap geometry. Depending on the

aspect ratio of the trap λ = ωz/ωρ (where dipoles are oriented along z), the Bose-

Einstein condesate can adiabatically connect into a single self-bound droplet for λ

above a critical value λc [49, 50] as shown in [128, 129] with 164Dy and with 166Er

[34]. Below λc a modulation instability can lead to the formation of a structured

array of dipolar droplets as previously observed in [32]. An experimental study

analyzing the phase diagram for the different interaction strengths and trapping

geometries regimes was reported in reference [130].

The stability of dipolar quantum droplets also depends on the atom num-

ber. Below a critical atom number, quantum pressure can dissociate the liquid

droplets into a gas. In reference [33] the liquid-to-gas phase diagram for λ > λc

was explored with droplets formed by ∼ 1000 atoms. Although the results agreed

qualitatively with the extended Gross-Pitaevskii description including the LHY

correction, the quantitative fit to the experiment revealed a background scatter-

ing length abg = 62.5a0 which was not compatible with previous measurements

(abg = 122(10)a0) [131].

The peculiar excitation spectrum of ultra-cold quantum droplets is one of the

properties which are objects of attention [28]. However, it has been shown theo-

retically that dipolar droplets do not exhibit the no-excitation regime proposed

originally for composite droplets [50, 132]. Nevertheless, the collective modes of

an 166Er droplet have been measured to confirm the importance of the LHY re-

pulsion as a key stabilization mechanism [34]. Experiments performed with 164Dy

have also explored the collective modes of the droplet. Here they focused in par-

ticular in the scissor mode [133]. By measuring the frequency of the scissor mode

they extracted the background scattering length of 164Dy to be abg = 69(4)a0.

Currently, the study of dipolar droplets has been focusing on the search for

a supersolid phase. This phase is characterized by the spontaneous symmetry

breaking of phase and translational invariance, meaning that a periodic array

of dipolar superfluid droplets sharing a common global phase could be formed.
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The existence of such phase involves a very subtle balance of the softening of the

roton mode. Although the initial observations of a ”crystalline” droplet phase

were pointing at the presence of a supersolid, the experimental evidence showed

no phase coherence between the different drops [32]. However, later on, L. Tanzi

et al. showed in reference [134] with 162Dy that a metastable striped dipolar sys-

tem with a global phase coherence can be formed by tuning the interactions in a

narrow range near the roton instability. Since then, several works have been pub-

lished on the study of the supersolid phase with dipolar droplets. This includes

the observation of the in situ density modulation together with the measurement

of global phase coherence [119] and the measurement of its excitation spectrum

[135, 136].

Although the stabilization mechanism of dipolar and composite quantum

droplets has the same origin, the anisotropy of dipolar interactions has strong

implications on the physics of dipolar droplets. Complementary, our work repre-

sents the study of isotropic quantum droplets which are only stabilized by contact

s-wave interactions.

3.4 Experimental challenges

In order to observe composite quantum liquid droplets, there are several chal-

lenges which must be overcome. First of all, we need to find the appropriate

atomic species where g↑↑ > 0, g↓↓ > 0, g↑↓ < 0 and δg < 0. There are several

mixtures which satisfy this condition, including heteronuclear mixtures: 41K-
87Rb [137, 138],39K-87Rb [139], 39K-23Na [140]; and homonuclear mixtures of
39K and 41K [75]. In our experiment, we initially observed a hint of quantum

droplets in 41K but decided to perform the experiments with a spin mixture of
39K in the mF = 0 and mF = −1 states of the F = 1 manifold since the magnetic

field range where δg < 0 is broader as pointed out in ref. [65].

Another challenge to observe quantum droplets is that their size is on the

order of 1 µm. Therefore we need to use a high resolution imaging system to

observe them, and we need to levitate them to keep them within the depth of

focus of the objective.

The high resolution imaging system which we have used to characterize the
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composite quantum droplets has been described in section 1.4. Moreover, we

have developed a technique to image both spin states at high field, as described

in chapter 2. This technique is crucial since in our steel science chamber we

cannot switch off the magnetic fields to image at zero field fast enough so that

the atomic losses and the modification of the droplets size do not smear out the

features of the system.

To levitate the mixture we cannot use a magnetic field gradient due to the

difference in the magnetic dipole moment between both spins. For homonuclear

mixtures we do not have a differential gravitational sag, and it is enough to

levitate the cloud with a single optical potential. In our case, we load the atoms on

a single plane of a blue detuned optical lattice [29, 77]. This optical potential not

only levitates the atoms against gravity but also provides a small anticonfinement

in the transverse plane.

The last important challenge to observe the self-bound quantum droplets is

to distinguish them from other types of self-bound states, such as bright solitons.

In the presence of a trap, bright solitons can be stabilized due to the interplay

between the repulsive quantum pressure and the residual mean field attraction.

In this experiment, the anticonfinement produced by the blue detuned optical

potential does not allow us to stabilize bright solitons [48, 141]. Therefore, the

observation of a self-bound state in this trapping potential is a clear signature of

the existence of a beyond mean field stabilization mechanism. In other trapping

geometries, like in quasi-1D, both bright solitons and quantum droplets can be

stabilized. In chapter 4 we show a detailed experimental study on the interplay

between these two self-bound states.

In the following section we show our results on the experimental realization

of composite quantum liquid droplets in a quasi-2D geometry.



Chapter 3. Quantum liquid droplets 109

56.0 56.5 57.0 57.5
-100

0

100

200

-7.5

0

7.5

15

a 
(a

0)

d
a (a

0 )

B (G)

da > 0 da < 0 

a↑↓

a↓↓

a↑↑

1 5 9 13 17 21
t (ms)

da > 0
Gas ↑↓

a < 0
Collapse ↓ 50 mm

da < 0 
Liquid ↑↓

Bz

B´z

 

↑

↓

50 mm

(a) (b)

(c)

Figure 3.5: Observation of quantum droplets. Figures taken from [29]. (a) Scat-

tering lengths a (solid lines) and parameter δa = a↑↓ +
√
a↑↑a↓↓ (dashed line)

vs. magnetic field B for a 39K mixture in states |↑〉 ≡ |F = 1,mF = −1〉 and

|↓〉 ≡ |F = 1,mF = 0〉. The condition δa = 0 (dashed vertical line) separates

the repulsive (δa > 0, grey area) and attractive (δa < 0, white area) regimes.

(b) Schematic view of the experiment. Atoms are prepared in a plane of a blue-

detuned optical lattice created by two beams intersecting at a small angle, and

imaged in situ with a high numerical aperture objective (≤ 0.97(4) µm mea-

sured resolution, 1/e Gaussian width). The spin composition of the system is

verified independently via Stern-Gerlach separation by a magnetic field gradient

during time-of-flight expansion. (c) Typical in situ images taken at time t after

removal of the radial confinement but in the presence of the lattice potential. Top

row: expansion of a gaseous mixture (B = 56.935(9)G and δa = 1.2(1) a0 > 0).

Central row: formation of a self-bound mixture droplet (B = 56.574(9) G and

δa = −3.2(1) a0 < 0). Bottom row: collapse of a single-component |↓〉 attrac-

tive condensate (B = 42.281(9)G and a = −2.06(2) a0 < 0). In our geometry,

quantum pressure cannot stabilize bright solitons. Therefore, the existence of

self-bound liquid droplets is a direct manifestation of beyond mean-field effects.
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3.5 Experimental realization of quantum liquid

droplets in quasi-2D

In this work, we have observed for the first time ultracold atomic droplets in a

mixture of two Bose-Einstein condensates with competing contact interactions.

We demonstrated the self-bound character of mixture droplets and directly mea-

sured their ultra-low densities and micrometer-scaled sizes. Moreover, by com-

parison to a single-component condensate with only contact interactions, we con-

firmed that their stability stems from quantum fluctuations. Similarly to the

dipolar case [33], we observed that for small atom numbers kinetic energy (which

scales with density as EK ∝ n) dissociates the droplets and drives a liquid-to-gas

transition. We mapped out the corresponding phase transition line as a func-

tion of interaction strength and compared it to the theoretical model described

in section 3.2. Our measurements have demonstrated that dipolar and mixture

droplets share fundamental features despite the different nature of the underly-

ing interactions. Given the simpler microscopic description of mixture droplets,

which includes only well-known contact interactions, they constitute ideal sys-

tems to benchmark the validity of complex quantum many-body theories beyond

the mean-field approximation.

3.5.1 Methods

We perform experiments with two 39K Bose-Einstein condensates in internal

states |↑〉 ≡ |mF = −1〉 and |↓〉 ≡ |mF = 0〉 of the F = 1 hyperfine manifold.

An external magnetic field allows us to control the interactions parameterized

by the intra- and inter-state scattering lengths a↑↑, a↓↓ and a↑↓ (see Fig. 3.5

(a)). These have been computed by A. Simoni according to the model of ref.

[142]. The residual mean-field interaction is proportional to δa = a↑↓+
√
a↑↑a↓↓.

The condition δa = 0 separates the repulsive (δa > 0) and attractive (δa < 0)

regimes.

The experiment starts with a pure condensate of 8.0(8)× 104 atoms in state

|↑〉 which we produced with the sequence described in chapter 1. Subsequently,

we load the atoms into a single plane of a vertical blue-detuned optical lattice of
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10.7µm spacing (see inset of Fig. 3.5 (b)). It is created by the interference of two

532 nm laser beams crossing at 1.43◦. The fraction of atoms loaded into other

planes remains below 10%, as verified using a matter-wave focusing technique

[96]. The lattice yields a trapping frequency ωz/2π = 635(5) Hz along the vertical

direction and a weak anti-confinement in the horizontal plane (estimated to be

∼ 1 Hz in the most anti-confined direction). The vertical confinement is such that

the atoms are levitated against gravity. The vertical harmonic oscillator length

aho = 0.639(3) µm is smaller than the typical droplet sizes along the z direction

and the density healing length. Thus, the system is in quasi-2D with respect

to the density degrees of freedom. However, the vertical harmonic oscillator

length exceeds the characteristic length of the spin Bogoliubov excitation branch

ξs by typically a factor of 3 and we can consider the LHY correction in the

3D regime. The horizontal anti-confinement is used to avoid the stabilization

of bright solitons in this trapping geometry. During the droplet preparation

sequence the atoms are radially confined by a red-detuned 1064 nm optical dipole

trap. The value of the radial trapping frequency is adjusted for each magnetic

field in order to avoid exciting collective modes of the droplets.

In order to prepare a balanced mixture of the two states, we apply a radio-

frequency pulse at B ≈ 57.3 G, which lies in the miscible regime (δa ≈ 7 a0,

where a0 denotes the Bohr radius) [54]. For all measurements, we verify in-

dependently the spin composition of the mixture via Stern-Gerlach separation

during time-of-flight expansion (see Fig. 3.5 (b)). The same pulse is used to

calibrate the magnetic field with an uncertainty of 9 mG, given by the linewidth

of the rf transition. The result is corrected for the mean-field interaction shift by

comparison to a thermal gas. Subsequently, we perform an 8 ms linear ramp to

B ≈ 56.9 G, corresponding to δa ≈ 0.8 a0. Finally, we ramp down the magnetic

field at a constant rate of 59 G/s and enter the attractive regime δa < 0. We then

switch-off the vertical red-detuned optical dipole trap while keeping the lattice

confinement, allowing the atoms to evolve freely in the horizontal plane. The

integrated atomic density is imaged in situ at different evolution times. We use

the high numerical aperture objective (< 1µm resolution, 1/e Gaussian width1)

1Notice that this resolution does not correspond to the Rayleigh criterion. However, all the
sizes described on the chapter correspond to the 1/e Gaussian width. For this reason, we have
fitted the point spread function with a Gaussian to define a resolution which can be directly
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presented in chapter 1 along the vertical direction and a phase-contrast polar-

ization scheme [102] which detects both states with almost equal sensitivity. We

image the cloud at high field with a 3 µs pulse at a detuning such that the Fara-

day coefficients for both components are very similar cF↑ = −1.1 · 10−15rad ·m2

and cF↓ = −1.4 · 10−15rad ·m2 (for more details see chapter 2). In this way, we

avoid any expansion and atomic losses of the cloud due to a switch off sequence

of the magnetic field. Moreover, the imaging pulses are so short that the atomic

blurring due to photon scattering is negligible.

3.5.2 Proof of principle observation: Beyond mean field

stabilization of quantum droplets

Typical images of the mixture time evolution in the repulsive and attractive

regimes are displayed in Fig. 3.5 (c). For δa = 1.2(1) a0 > 0 (top row) 2,

the cloud expands progressively in the plane, as expected for a repulsive Bose

gas in the absence of radial confinement. In contrast, in the attractive regime

δa = −3.2(1) a0 < 0 (central row), the dynamics of the system are remarkably

different and the atoms reorganize in an isotropic self-bound liquid droplet. Its

typical size remains constant for evolution times up to 25 ms. We perform an

analogous experiment with a single-component attractive condensate. For the

single-component experiments, we instead transfer all the atoms to |↓〉 using a

Landau-Zener sweep centered around B ≈ 46.85 G. The magnetic field is sub-

sequently ramped down in 10 ms to its final value. Below B = 44.19 G, the

scattering length a↓↓ becomes negative and gives access to a weakly attractive

single-component Bose gas. At a scattering length a = −2.06(2) a0 < 0 the

system collapses (bottom row).

In our experimental geometry, quantum pressure can never stabilize bright

solitons due to the presence of weak anti-confinement in the horizontal plane.

At the mean-field level, the two-component attractive case has a description

equivalent to the single-component one, provided that the scattering length a is

compared to the results of this chapter. The relation between both gives a factor of 2.9.
2Here and in the following, error bars for the scattering lengths correspond to the 9 mG

experimental uncertainty of the magnetic field and do not take into account the systematic
uncertainties of the scattering length model.
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replaced by ∼ δa/2 and the density ratio between the two components is fixed to

n↑/n↓ =
√
a↓↓/a↑↑. However, the role of the first beyond mean-field correction

is very different in the two systems, explaining their very different behavior. In

the single-component case, the Lee-Huang-Yang energy depends on a and in the

weakly interacting regime constitutes a negligible correction to the mean-field

term. Therefore, its contribution is most easily revealed in strongly interacting

systems [143]. In contrast, in the mixture the mean-field and Lee-Huang-Yang

energy densities scale as EMF ∝ δa n2 and ELHY ∝ (
√
a↑↑a↓↓ n)5/2, respectively as

introduced in section 3.2. Since
√
a↑↑a↓↓ � |δa|, for typical experimental param-

eters they balance at accessible atomic densities and stabilize liquid droplets [28].

Therefore, the existence of liquid droplets is a striking manifestation of beyond

mean-field effects in the weakly interacting regime.

To further characterize the mixture, we perform a quantitative analysis of

the images fitting the integrated atomic density profiles with a two-dimensional

Gaussian. We extract the atomic density profiles from the raw images taking

into account the intensity of the probe beam and the transfer function of the

polarizer as explained in chapter 2. In order to obtain the atom number N and

radial size σr of the system3, we fit the images with a two-dimensional Gaussian

Ne−x
2/σ2

x−y
2/σ2

y/(πσxσy). We find σx/σy ≈ 1 for all our measurements and

therefore we define σr =
√
σxσy. As depicted in Fig. 3.6, this fitting function

is chosen to simplify the comparison to the theoretical model. Since we do not

observe the size along the vertical direction σz, we assume it to be identical to

the corresponding harmonic oscillator length aho =
√

~/(mωz). This assumption

is supported by our theoretical model.

3.5.3 Liquid to gas phase transition and phase diagram

In Fig. 3.7 (a) (top and central panel) we show the time evolution of N and σr

measured for the interaction parameters of Fig. 3.7 (c). For δa > 0 (red circles)

the gas quickly expands while its atom number does not vary. Instead, for δa < 0

(blue circles) the system is in the liquid regime and the radial size of the droplet

remains constant at σr ≈ 6µm. Initially its atom number is N = 24.5(7)× 103,

3We have verified that the zeroth and second moments of raw images give compatible results
for the atom number and radial size, respectively.
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Figure 3.6: Figures taken from [29]. Experimental density profiles. In situ column
density profile of a quantum droplet integrated along the imaging direction z, for
N = 1.7(4)× 104 and B = 56.574(9) G (δa = −3.2(1) a0). The right and bottom
panels depict the corresponding doubly-integrated density profiles n̄ (solid lines),
together with the two-dimensional Gaussian fit used to analyze the data (dashed
lines). Both are normalized to the peak value n̄0.

corresponding to a peak density of n0 = 1.97(8)× 1014 atoms/cm3. We attribute

the subsequent decay of the droplet atom number shown in the top panel of Fig.

3.7 (a) to three-body recombination. The observed timescale is compatible with

the measured density and effective three-body loss rate Keff
3 = 7.5× 10−28cm6/s

(for more details see ref. [65]). By directly measuring the density of our droplets

we confirm that they are more than 8 orders of magnitude more dilute than liquid

helium and remain very weakly interacting. Indeed, the interaction parameters

of each component are extremely small (n↑a
3
↑↑, n↓a

3
↓↓,
√
n↑n↓a

3
↑↓ ∼ 10−5).

A closer view of the droplet size is displayed in the bottom panel of Fig.

3.7 (a). At t ∼ 25 ms, σr starts to increase and the system behaves like the

δa > 0 gas. Following refs. [28, 33, 49, 124], we attribute the dissociation of

the droplet to the effect of quantum pressure, which acts as a repulsive force.
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Figure 3.7: Liquid-to-gas transition. Figures taken from [29]. (a) Atom numberN
and radial size σr of the mixture for different evolution times t. The measurements
are taken in the repulsive (δa = 1.2(1) a0 > 0, red circles) and attractive (δa =
−3.2(1) a0, blue circles) regimes. Top panel: while for δa > 0 the atom number in
the gas remains constant, for δa < 0 it decreases on a timescale compatible with
three-body recombination. Central panel: the radial size of the droplet remains
constant at σr ≈ 6µm, demonstrating its self-bound nature. In contrast, the size
of the gas increases continuously with time. Bottom panel: closer view of σr for
δa < 0. For t > 25 ms the droplet dissociates and a liquid-to-gas transition takes
place. The inset displays images corresponding to t = 25 − 35 ms. (b) Radial
size σr (top panel) and peak density n0 (bottom panel) vs. N . For δa < 0 and
large atom number both remain approximately constant, as expected for a liquid.
For a critical atom number we observe that σr diverges and n0 drops suddenly,
signalling the liquid-to-gas transition. In the gas phase, the δa < 0 system
behaves as the δa > 0 one. Inset (top panel): sketch of the phase diagram.
In the liquid phase (blue region), observing the mixture at variable evolution
times gives access to different values of N (black arrow). Error bars represent
the standard deviation of 10 independent measurements. If not displayed, error
bars are smaller than the size of the symbol. Additionally, N has a calibration
uncertainty of 25% .
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As the atom number decreases, the relative weight between kinetic (EK) and

interaction energies (EMF, ELHY) changes, for each energy term scales differently

with N : EK ∝ N , EMF ∝ N2 and ELHY ∝ N5/2. Below a critical atom number,

kinetic effects become sufficiently strong to drive a liquid-to-gas transition. To

support this scenario, Fig. 3.7 (a) depicts the radial size and atomic density

as a function of atom number. For δa < 0 (blue circles) we observe that both

size (top panel) and density (bottom panel) remain constant at large N . For

decreasing atom number, we observe a point where the size diverges and the

density drops abruptly. This indicates a liquid-to-gas transition, which takes

place at the critical atom number Nc. Below this value, the attractive gas is still

stabilized by quantum fluctuations but expands due to kinetic effects, similarly

to the repulsive mixture (δa > 0, red circles).

The liquid-to-gas transition is also expected to depend on δa, as sketched in

the inset of Fig. 3.7 (b) (top panel). We explore the phase diagram by tuning

the interaction strengths with magnetic field (see Fig. 3.5 (a)). Fig. 3.8(a)

displays the measured size as a function of the atom number for magnetic fields

corresponding to δa between −5.5(1) a0 and −2.4(1) a0. The critical number Nc

shows a strong dependence on the magnetic field. The top panel of Fig. 3.8 (b)

presents our experimental determination of the phase transition line. We observe

that Nc increases when the attraction decreases, confirming that weakly bound

droplets are more susceptible to kinetic effects and require a larger atom number

to remain self-bound. Fig. 3.8 (a) also shows the droplet size as a function of

atom number and magnetic field. In the bottom panel of Fig. 3.8 (b) we display

the measurements obtained at a fixed atom number N = 1.5(1) × 104, always

larger than Nc for our interaction regime. As expected, the droplet size decreases

as the attraction increases.

We theoretically describe the system using the zero-temperature model pre-

sented in equation (3.2.1) of section 3.2. It is based on an extended Gross-

Pitaevskii equation which includes both the vertical harmonic confinement and

an additional repulsive Lee-Huang-Yang term. The latter is obtained assum-

ing the Bogoliubov spectrum of a three-dimensional homogeneous mixture. At

the mean-field level equation (3.2.1) is equivalent to a single-component Gross-
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Pitaevskii equation provided one makes the replacement:

δa→ a(1 +
√
a↑↑a↓↓)

2/2
√
a↑↑a↓↓ (3.5.1)

Additionally, it includes the beyond mean-field term – negligible for a single-

component condensate – which stabilizes the mixture against collapse and is

responsible for the formation of quantum droplets.

We compute the ground state of the system by solving equation (3.2.1) nu-

merically using the three-dimensional MATLAB toolbox of ref. [144]. These

calculations were performed by B. Naylor. In this case we only consider the

vertical confinement4 mω2
zz

2/2. Even for the densest droplets realized in the ex-

periment, we find that their density profile is well approximated by a Gaussian.

Indeed, for the atom numbers and magnetic fields considered in the experiment,

the bulk density of the liquid is not reached and the droplet size is comparable to

the surface thickness [28]. We compare the numerical results to the variational

minimization presented in section 3.2, where we use a Gaussian ansatz for the

spatial mode of the two components determined by the parameters σr = σx = σy

and σz. As depicted in Fig. 3.9, we find excellent agreement between the two

approaches, with deviations that remain well below the experimental error bars

for the complete parameter range explored in the measurements. We use the

variational results to compare the experimental data with the theory for simplic-

ity.

In Fig. 3.8 (b) we compare the experimental results to the predicted critical

atom number and droplet size (solid lines). We find qualitative agreement for

the complete magnetic field range with no adjustable parameters. In the weakly

attractive regime the agreement is even quantitative, similarly to the dipolar

Erbium experiments of ref. [34]. In contrast, when increasing the effective at-

traction, the droplets are more dilute than expected. In particular, their size

exceeds the theoretical predictions by up to a factor of three. This is almost one

order of magnitude larger than our imaging resolution, excluding finite-resolution

effects. Furthermore, the critical atom number is a factor of two smaller than

the theoretical value. Interestingly, a similar discrepancy was reported for dipo-

4We have verified that including the residual anti-confinement of the optical lattice does not
modify appreciably the theoretical predictions.
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Figure 3.9: Theoretical density profiles. Figures taken from [29]. Density profiles
predicted by the extended Gross-Pitaevskii model along the radial (left panel) and
vertical (right panel) directions, for N = 25000 and B = 56.57 G (δa = −3.20 a0).
Blue circles: full numerical solution. Red lines: variational calculation with a
Gaussian ansatz. The excellent agreement between both, even for the densest
droplets realized in the experiment, justifies the Gaussian fitting function used
to analyze the measured density profiles.

lar Dysprosium droplets, with a critical atom number one order of magnitude

smaller than expected [33]. In this case, the deviation was attributed to an insuf-

ficient knowledge of the background scattering length. This explanation seems

unlikely in the case of potassium, where excellent interaction potentials are avail-

able [72, 142, 145].

3.6 Conclusions

Other physical mechanisms might be responsible for the diluteness of the observed

droplets. Although our system is three-dimensional, the confinement along the

vertical direction might affect the Lee-Huang-Yang energy, modifying its den-

sity and interaction dependence or introducing finite-size effects. A description

of quantum fluctuations in the dimensional crossover between two and three di-

mensions is challenging, and goes beyond the scope of this experimental work.

Interestingly, the almost perfect cancellation of the mean-field energy could re-

veal other corrections besides the Lee-Huang-Yang term. Higher-order many-
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body terms might play a role, as proposed in ref. [126] for single-component

systems. Taking them into account analytically requires a good knowledge of the

three-body interaction parameters of the mixture, which are non-universal and

difficult to estimate in our interaction regime. Alternatively, our results could be

compared to ab initio quantum Monte Carlo simulations, as recently performed

in references [117, 118, 146]. Given the ultra-dilute character and simple mi-

croscopic description of our system, a direct comparison to different theoretical

approaches could give new insights on yet unmeasured many-body effects.

3.7 Discussion on recent related work

During the completion of our work, we learned that similar experiments were

performed by the LENS group [31]. These experiments where carried out by

optically levitating the mixture with a linear optical gradient. The optical gradi-

ent was produced by modulating the position of an elliptical gaussian beam fast

enough so that the atoms only saw an averaged potential. With this method, they

were able to levitate the atoms with residual trapping frequencies (ωx, ωy, ωz) 5

2π × (2.2, 7, 16) Hz. Thus, their experiment was very close to that of free space

droplets. Hence it became really interesting to corroborate the existence of quan-

tum droplets in atomic mixtures in a regime where the system is in 3D both for

the density and spin degrees of freedom.

Their results were obtained with the same 39K mixture that we used. The

preparation of quantum droplets was performed by starting with the BEC in

state |↑〉 at a magnetic field corresponding to δa < 0. Then they applied an

rf pulse to produce a balanced mixture and observe the formation of droplets.

Although this results in a quench of the interactions, by adjusting the trapping

frequencies during the preparation sequence they were able to produce droplets

with a residual breathing. Afterwards, they observed the droplets being self-

bound for a few milliseconds in free space while losing atoms and the subsequent

evaporation into a gas after reaching a critical atom number. The critical atom

number, size and population ratio was measured and the experiments showed an

agreement with the D. S. Petrov predictions [28].

In summary, both experiments represent a smoking gun of the liquid-to-gas
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phase transition in Bose-Bose mixtures in two different scenarios. However, our

experimental results do not show the same agreement with the theory presented

in [28]. Several possibilities have been proposed for explaining the mismatch

between the theory and our experiment.

3.7.1 Assessing the mismatch

Two main differences exist between our experiments. The trapping geometry and

the slow/fast preparation of the droplet state. Concerning the trapping geometry,

the trapping frequencies are such that the harmonic oscillator length is smaller

than the density healing length, and we are in the quasi-2D regime with respect

to the density degrees of freedom. Instead, the shortest interaction length scale,

corresponding to the spin branch, is just 3 times the spin healing length, and thus

we include the theoretical prediction of the LHY correction in 3D. However, the

system might be close to the quasi-2D limit with respect to the spin degrees of

freedom. In this hypothetical case, the beyond mean field correction needs to be

properly computed. The calculation of this correction was out of the scope of our

theoretical capabilities and we started discussing with L. Santos and D. Petrov

to ask for advice. After the publication of our work, they performed a theoretical

study of the dimensional crossover for the beyond mean field correction in Bose

gases [147]. The calculations in the quasi-2D regime are only developed for a slab

and preliminary estimations from our group indicate that this does not explain

the mismatch between theory and experiment.

Another possibility could be that the validity of the local density approxi-

mation would be different for the trapping geometries of the different levitation

schemes from references [29, 31]. In the very low atom number limit, the eGPE is

not expected to be valid and finite size effects might come into play. To address

this question full Monte Carlo simulations of our system are required. We got

in contact with the UPC group led by J. Boronat, since they are experts on this

topic. Their work led to the publication of related papers on liquid Bose-Bose

mixtures [118, 146] studying the limits of the theory presented in ref. [28]. In

these works they show that for high enough number of particles (on the order

of 800 particles) and a negligible effective range (R) of the interaction potentials

(nR3 ∼ 10−5) the energy per particle vs. the gas parameter converges to the
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theory presented in ref. [28]. Therefore our discrepancies cannot be explained by

the presence of finite size effects. For the sake of completeness, and although we

are very far from the high atom number regime, references [118, 146] show that

for strong residual attraction δa � 0 the equilibrium density obtained from the

numerical simulation of the full Hamiltonian deviates from the zero-temperature

theory described in ref. [28].

Up to now we have only considered that the interactions between the particles

in the BEC are well described by s-wave contact interactions [75]. Thus the only

parameters that we use in the theory described in ref. [28] are the intra and

inter-component scattering lengths. In this sense, the quantum liquid droplets

would be universal. However, as pointed out initially in ref. [117], the equilib-

rium densities of quantum droplets differ for strong attraction depending on the

effective range potential. In particular, the effective ranges in our mixture at B

= 56.5 G are predicted to be R↑↑ = 603a0, R↓↓ = −1148a0 and R↑↓ = 1024a0

by our model from ref. [75]. Thus, nR3 ∼ 10−2 and the effective range could

play an important role. To extend the validity of the model presented in ref.

[28] beyond the universal regime, the energy per particle vs. gas parameter was

computed for various intra and inter-state scattering length and effective ranges.

From those results, an energy functional describing the Bose-Bose mixture in

terms of scattering lengths and effective range was obtained in ref. [146]. Pre-

liminary results from the J. Boronat group point at a reduction of the critical

atom number for strong attraction which is enhanced by the vertical confine-

ment [148]. This could explain the mismatch that we observe between theory

and experiments. Indeed, very recent results comparing 162Dy and 164Dy dipolar

droplets [119] were published to contrast the discrepancies observed between the

scattering length measurements and the retrieved scattering lengths assuming

that quantum droplets can be described by a zero-temperature model including

quantum fluctuations. In the dipolar case the modeling of the interaction poten-

tials is much more challenging and it is very complicated to predict the correct

scattering lengths. A complete analysis of the problem is developed in reference

[35], where they show that the zero-temperature model is not able to describe

completely the physics of dipolar droplets.

Although the modification of the theoretical predictions due to the inclusion
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of the effective range might explain the observation of our critical atom numbers,

the measured sizes at N = 15000 cannot be accounted for with this effect. Pre-

liminary estimations from the J. Boronat group point at a deviation of the density

imbalance between the two components. Indeed, during the slow magnetic ramp

to reach the droplet field we have three-body losses from the |↓〉 state. Although

a departure from the optimum density ratio would lead into evaporation of one

of the components [117], this is a dynamical process (for more details see chapter

4). Therefore it could be that the observed droplets are not in the ground state.

In summary, the discrepancies observed in our experiment are still under

investigation. The hypothesis of reduced dimensionality and finite size effects do

not seem to match our results. Instead, the hypothesis of an enhanced effect of the

finite interaction range for strong attraction under the presence of confinement,

and the density ratio imbalance seem to be plausible. The study of this hypothesis

remains as future work.

3.8 Outlook

Future research directions include the exploration of low-dimensional systems,

where the enhanced quantum fluctuations make droplets ubiquitous [123]. In this

direction, a study in the dimensional crossover [147] could connect the results from

our group [29] and the LENS group [31] to the study of low dimensional systems.

Preliminary preparation of the experimental setup to study lower dimensional

systems is being carried out by A. Frölian, and will be described in her Ph.D.

thesis . Moreover, a proper study of the droplet vs. spin composition could

be performed by combining either scalar or polarization phase contrast imaging

to measure the total atom number non-destructively and absorption imaging of

one state to be able to extract the density ratio difference. A very interesting

perspective concerns the study of the spectrum of collective modes of the droplets

[28]. Its unconventional nature not only provides a sensitive testbed for quantum

many-body theories, but should also give access to zero-temperature quantum

objects [28] which are not present in the dipolar case [132]. However, for these

studies longer-lived droplets would be required. This could be realized in our

system by selecting different spin states, or in low dimensions (where the droplet
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densities are predicted to be lower).



Chapter 4

Bright solitons and quantum

droplets in a mixture of

Bose-Einstein condensates

Abstract

Attractive Bose-Einstein condensates can host two types of macroscopic self-

bound states: bright solitons and quantum droplets. Here, we investigate the

connection between them with a Bose-Bose mixture confined in an optical waveg-

uide. We show theoretically that, depending on atom number and interaction

strength, solitons and droplets can be smoothly connected or remain distinct

states coexisting only in a bi-stable region. We measure their spin composition,

extract their density for a broad range of parameters and map out the boundary

of the region separating solitons from droplets.

The work described in this chapter was explained in the thesis of

my predecessor C. R. Cabrera [65] and was published in [30]. For this

reason, in the following chapter of the thesis I will reproduce the main

results without major modifications.
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4.1 Introduction

Self-bound states are ubiquitous in nature, and appear in contexts as diverse

as solitary waves in channels, optical solitons in non-linear media and liquid He

droplets [44, 45, 114]. Their binding results from a balance between attractive

forces, which tend to make the system collapse, and repulsive ones, which stabilize

it to a finite size.

Bose-Einstein condensates (BECs) with attractive mean-field interactions con-

stitute ideal model systems to explore in the same setting self-bound states stabi-

lized by repulsive forces of different classes. In the previous chapter we introduced

the physics of quantum droplets, self-bound states which are stabilized due to the

balance between a residual mean field attraction and a repulsion stemming from

quantum fluctuations. However, another type of self-bound states, bright soli-

tons, were previously observed with attractively interacting single component

BECs in a quasi-1D geometry with 7Li [36–38], 85Rb [39–41], 39K atoms [42]

and 133Cs [43, 149]. They are stabilized due to the balance between attractive

interactions and the repulsive quantum pressure. That is, by the dispersion along

the unconfined direction. Whereas the stabilization of quantum droplets stems

from a quantum many-body origin [28], the stabilization of bright solitons stems

from a quantum pressure, which is a single particle effect.

Bright solitons and quantum droplets are a priori distinct states which exist

in very different regimes. Solitons require the gas to remain effectively one-

dimensional, which limits their maximal atom number [46–48]. In contrast,

droplets are three-dimensional solutions that exist even in free space and require

a minimum atom number to be stable [28, 29, 33, 34, 49, 50]. Until our work was

published, quantum droplet experiments focused exclusively on systems where

solitons were absent, enabling an unambiguous identification of the droplet state.

Therefore, they could not provide any insights on their connections to solitons.

Using composite mixture with intra-component repulsion and inter-component

attraction in the regime where δa < 0 we have an ideal setting to explore the

similarities and differences between both self-bound states. In section 4.2.1 we

will introduce the stabilization of single-component and composite bright solitons

in the mean field approximation using a variational approach. Then, in section
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4.2.2, we will explore the effects of the LHY correction on the phase diagram of

attractive Bose-Bose mixtures in quasi-1D, putting emphasis on the similarities

and differences between droplets and bright solitons. Afterwards in section 4.3

we will present our experimental study with spin mixtures of 39K. Then, in sec-

tion 4.4 we will conclude by summarizing the main experimental observations. In

section 4.5, we discuss the recent results on droplet collisions [150] and heteronu-

clear self-bound states [151]. Finally, in section 4.6, we present future possible

experiments.

4.2 Theoretical framework

To understand the interplay between the bright soliton and quantum droplet

phases in a composite mixture in the following section we will start by introducing

the physics of the stabilization of bright solitons in single component attractive

BECs in the mean field regime. The same stabilization principle applies for a

mixture of BECs with residual mean field attraction δa < 0 at the mean field

level and composite bright solitons can be formed. Afterwards, in section 4.2.2,

we take into account the LHY correction and describe the interplay between

composite quantum droplets and bright solitons.

4.2.1 Bright solitons in the mean field regime

Solitons are localized self-bound solutions which can propagate through a non-

linear media without modifying their shape [44]. In Bose-Einstein condensates

there exist mainly two types of solitons in quasi-1D: dark solitons and bright

solitons. Whereas dark solitons exist in repulsive BECs and are characterized by a

density dip and a sharp phase change [152, 153], bright solitons exist in attractive

BECs and are characterized by a density maximum [37]. The stabilization of

single component attractive BECs into bright solitons at the mean field level

depends on the dimensionality of the problem. In 3D, as already explained,

attractive condensates collapse. However in the quasi-1D regime, bright soliton

solutions exist. A bright soliton is stabilized due to the balance between the

attractive non-linearity and repulsive kinetic dispersion, also known as quantum
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Figure 4.1: Image taken from reference [88]. Energy of a single component BEC in
a trap vs. size computed using a gaussian variational ansatz for different Na/aho.
Here b corresponds to the radial size r and aosc corresponds to the harmonic
oscillator aho. For positive and small Na/aho there is a stable minimum with a
size very similar to the harmonic oscillator length. For very negative Na/aho the
energy is minimized for zero size and thus the BEC would collapse. For small
negative Na/aho there is a metastable minimum showing the existence of a bright
soliton solution. The dashed line shows the extremal case where Na/aho = −0.67
and the soliton solution disappears.

pressure. To be in the quasi-1D regime the chemical potential of the BEC in an

optical waveguide needs to be smaller than the trapping frequency energy. This

condition can be expressed in terms of length scales, so that if N |a|/aho < ηc a

bright soliton can be stabilized, where ηc is a numerical value of order 1.

We have solved the GPE for a single component BEC with attractive interac-

tions using the Gaussian variational principle presented in section 3.2, considering

σx = σy = σz = σr as it was done in reference [88]. In figure 4.1 we plot the

energy as a function of σr for different N |a|/aho. As it can be observed, for

attractive interactions, there exists a metastable minimum with the size of the

harmonic oscillator length for small enough N |a|/aho. For attractive interac-

tions and N |a|/aho > 0.67 the metastable minimum disappears and the BEC
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collapses as it has been shown in references [120, 121, 154–156]. Similar results

were obtained in references [157, 158] by solving the GPE numerically, obtaining

ηc = 0.57.

The stabilization for a composite BEC with residual mean field attraction

δa < 0 is essentially equivalent to the single component case. As introduced in

section 3.2 the GPE equation for the two component BEC, excluding the LHY

correction, can be simplified into an effective single component equation with the

difference that we substitute

a→
2δa
√
a↓↓/a↑↑(

1 +
√
a↓↓/a↑↑

)2 . (4.2.1)

We have solved the effective single component GPE numerically in the two

component case and have obtained the quasi-1D condition:

N
2|δa|

√
a↓↓/a↑↑

aho

(
1 +

√
a↓↓/a↑↑

)2 < 0.6268. (4.2.2)

The implication of this result is that for a certain δa, bright solitons cannot

be stabilized above a critical atom number at the mean field level. However, this

is not the case if we consider the LHY correction.

4.2.2 Bright solitons and quantum droplets

As already explained in the previous chapters, quantum droplets can be stabi-

lized due to the interplay between the attractive mean field energy EMF and the

repulsion induced by the LHY correction ELHY. For very high atom numbers

and/or very strong attraction the kinetic and potential energy terms can be ne-

glected and droplets can be stabilized. On the other hand, for small enough atom

numbers and/or very small attraction the LHY correction is very small and the

attractive mean field energy EMF can be stabilized by the kinetic energy EK in a

quasi-1D geometry, and composite bright solitons can be formed. But what hap-

pens in a quasi-1D geometry in the regime where all energy scales are relevant?

And how do the different regimes connect between each other?
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To address this questions we have numerically solved the eGPE equation

(3.2.5) presented in section 3.2 for different atom numbers and interaction strengths

below δa < 0. We have considered a cigar shapped trapping geometry with the

trapping frequencies from the experiment and the scattering lengths correspond-

ing to the 39K spin mixture (for more details see section 4.3). In this situation

the system is in 3D with respect to the spin degrees of freedom (as described in

chapter 3) and in quasi-1D with respect to the density degrees of freedom. Note

that although equation (3.2.2) bears strong similarities with the cubic-quintic

non-linear Schrödinger equation employed in optics to describe high-order mate-

rial non-linearities in the optical soliton community [45], the repulsive term has

an unusual quartic dependence. This is the scaling corresponding to quantum

fluctuations in three-dimensional condensates [122], which is the regime explored

experimentally.

Ground state Phase diagram

To compute the ground state of the system we find numerically the stationary

solutions of eq. (3.2.2) as in the previous chapter [144]. These calculations were

performed by P. Cheiney and B. Naylor. For each δa we first solve the eGPE

for N = 1000, using as initial guess for φ a three-dimensional Gaussian of size

aho. We subsequently compute the solution for increasing values of N , choosing

as initial guess the function φ determined in the previous step.

Fig. 4.2 depicts the peak density of the ground state n0 as a function of

the total atom number N = N↑ + N↓ and δa (corresponding to a particular

magnetic field B)1. For large attraction we find two distinct behaviors: a high-

density solution (n0 ∼ 1016 atoms/cm3) for large N , and a low-density one

(n0 ∼ 1013 atoms/cm3) for small N . In between, the gray region corresponds to a

bi-stable regime where both solutions are possible. Its boundaries are signaled by

a discontinuity of the density. This behavior disappears above a critical δa < 0

(which corresponds to the magnetic field Bc ∼ 55.85 G for our experimental

confinement). For smaller attraction, the system supports a single solution whose

density increases progressively with N .

1For all parameters considered in 4.2, we find that the density profile of the system is well
approximated by a Gaussian.
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Figure 4.2: Figure taken from ref.[30]. Soliton-to-droplet density diagram.
Ground state peak density as a function of atom number N and magnetic field B
computed numerically from the effective single-component eGPE. Solitons and
droplets are distinct solutions, which coexist in a bi-stable region (shaded area)
and become smoothly connected in the crossover above Bc ∼ 55.8 G.

In summary, for strong attraction the situation is analogous to a quantum

(T = 0) first order liquid-to-gas phase transition: the bi-stable regime contains

metastable regions surrounding a transition line, and for small attraction, above

a critical δa a crossover region appears.

Energy landscape

To gain further insight on the phase diagram, we perform a variational analysis

[159] in analogy to what we presented in section 3.2. These calculations were

performed by P. Cheiney, C. R. Cabrera and L. Tarruell. In this case we have

considered that the atoms are in a cigar shaped trap with a trapping frequency

ωy = ωz = ωr and we have neglected the trapping frequency along the axial

direction. Hence, we use a gaussian ansatz with the parameters σx and σy =

σz = σr. We have solved the problem for different atom numbers and interaction

strengths below δa < 0 using the parameters corresponding to our experiments

with a 39K spin mixture (for more details see section 4.3).

Fig. 4.3 displays the energy landscapes obtained at a fixed δa below the
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Figure 4.3: Figure taken from ref.[30]. Energy E of the Gaussian ansatz as a
function of the radial σr and longitudinal σz sizes, for B = 55.6 G and N = 9000
(top, droplet), N = 4000 (center, bi-stable region) and N = 2500 (bottom,
soliton). Right panel: one-dimensional cuts along σx, for σr minimizing E. All
panels, solid lines: complete model; top panel, dashed line: no optical waveguide;
bottom panel, dotted line: no quantum fluctuations.
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critical point (corresponding to the magnetic field B = 55.6 G). For small values

of N (bottom row), the energy has a single minimum corresponding to a dilute

and elongated cloud: a composite bright soliton. Its size corresponds to the

harmonic oscillator length aho and its energy per particle E are similar to those

obtained in a mean-field treatment without quantum fluctuations (bottom right

panel, red dotted line). In this case E/N = ~ω because of the two trapped degrees

of freedom. For large values of N (top row) the minimum corresponds to a dense

and isotropic solution with σr � aho: a quantum liquid droplet. Its properties

are not affected by the trapping potential, and it exists in its absence (top right

panel, red dashed line). As it can be observed, the energy per particle vs. σx is

only different by ~ω for large sizes between the trapped and free cases. Moreover,

its stable solution has a negative energy, which confirms that it corresponds to a

liquid-like solution2. In the bi-stable region (central row) both composite bright

solitons and liquid droplets exist simultaneously. In this situation we can have

either metastable droplets or solitons depending on the atom number.

Above the critical interaction strength a crossover takes place, and the energy

landscape has a single minimum which evolves from soliton-like to droplet-like

upon increasing the atom number. A related behavior, involving a bi-stable

region and a crossover regime, has been studied in harmonically trapped dipolar

gases [49, 50]. In this case, the low- and high-density solutions correspond to a

BEC and a quantum droplet.

4.3 Experimental results

In our experiment we have explored a system that can host both bright solitons

and quantum droplets: a mixture of two BECs in an optical waveguide. We

observe that, as soon as the mean-field interactions become effectively attractive,

self-bound states of well-defined spin composition appear. As we have shown

theoretically, their nature evolves from soliton-like to droplet-like upon increase

of the atom number. Depending on the interaction strength, both regimes can

be smoothly connected, or remain distinct states that coexist only in a bi-stable

region. We determine experimentally their density for a broad range of atom

2The zero of energy corresponds to an infinitely large cloud in the absence of a trap.
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numbers and interaction strengths, and map out the boundary of the bi-stable

region that separates bright solitons from quantum droplets.

4.3.1 Methods

We perform experiments with a mixture of 39K BECs in Zeeman states |↑〉 ≡
|mF = −1〉 and |↓〉 ≡ |mF = 0〉 of the F = 1 hyperfine manifold in an optical

waveguide. The optical waveguide is created by a red-detuned optical dipole

trap of radial trapping frequency ω/2π = 109(1) Hz, see inset of Fig. 4.5(a). The

system is imaged in situ with a spatial resolution of the order of the harmonic

oscillator length aho =
√
~/mω ' 1.5µm, with ~ the reduced Planck constant

and m the mass of 39K. We exploit the phase-contrast polarization scheme to

image both states with the same sensitivity as presented in chapters 1 and 3.

The interactions are tuned via magnetic Feshbach resonances and parameterized

by the intra- and inter-component scattering lengths a↑↑, a↓↓ > 0 and a↑↓ < 0

[142]. Assuming that both components occupy the same spatial mode, the overall

mean-field interaction is proportional to δa = a↑↓ +
√
a↑↑a↓↓, which is attractive

for B < 56.84 G. Fig. 4.4 summarizes the values of a↑↓, a↑↑, a↓↓ and δa predicted

by the 39K model interaction potentials of refs. [72, 142, 160]. We have verified

that the model potentials of ref. [145] yield equivalent results [161].

The experiment starts with a pure BEC in state |↑〉 confined in a crossed

optical dipole trap of frequencies ωx,y,z/2π = [49(1), 109(1), 119(1)] Hz. A radio-

frequency (rf) pulse is used to prepare a controlled mixture of the two compo-

nents3. The pulse is performed at B ∼ 57.2 G, where δa > 0 and the system is

in the miscible regime [54]. Subsequently the magnetic field is ramped down at a

constant rate of 11.8 G/s while reducing the longitudinal confinement. The lat-

ter is removed in 5 ms at the final magnetic field, leaving the system unconfined

along the x direction4. Finally, in situ images of the mixture are taken. The

vast majority of the measurements performed in the δa < 0 regime correspond

to self-bound states smaller or on the order of the imaging resolution.

3The system decoheres rapidly after the rf pulse, forming a two-component mixture.
4Although the waveguide beam also creates a longitudinal confinement of frequency ωx/2π .

1 Hz along its propagation direction, it is insufficient to trap the atoms due to a residual tilt
with respect to the horizontal axis.
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Figure 4.4: Figure taken from ref. [30]. Scattering lengths a↑↑, a↓↓, a↑↓, and
parameter δa = a↑↓ +

√
a↑↑a↓↓ (expressed in units of the Bohr radius a0) as a

function of magnetic field B for a 39K mixture in states |↑〉 ≡ |F = 1,mF = −1〉
and |↓〉 ≡ |F = 1,mF = 0〉.

4.3.2 Observation of composite self-bound states

In Fig. 4.5 we fit the experimental density profiles with a two-dimensional Gaus-

sian in order to extract their 1/e width σx, which could be strongly affected by

lens aberrations. Thus, we do not use this quantity to characterize the system

size quantitatively but only to indicate its self-bound character.

Fig. 4.5(b) shows typical in situ images of the time evolution of the mixture

after release in the optical waveguide. Fig. 4.5(a) displays its longitudinal size σx

as a function of magnetic field, for three different evolution times. In the repulsive

regime (δa > 0) σx increases with δa, reflecting the increase of the released energy

of the gas. In contrast, in the attractive regime (δa < 0) the absence of expansion

indicates the existence of self-bound states. Experimentally, we only observe this

behavior below δa ∼ −2a0, where a0 denotes the Bohr radius. As in ref. [42], we

attribute this effect to the initial confinement energy of the system.
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Figure 4.5: Figure taken from ref. [30]. Self-bound states. (a) Gaussian 1/e width
σx of the mixture as a function of the magnetic field B (corresponding to different
values of δa), for various evolution times after release in the optical waveguide
(inset). For B < 56.6 G the system becomes self-bound and σx saturates to the
imaging resolution (in this case the imaging was not properly aligned and the
imaging resolution was worse than what is shown in chapters 1 and 3). Solid
lines are linear fits to the data in the expanding regime and error bars denote the
standard deviation of 10 independent measurements. (b) Typical in situ images
for increasing evolution times, corresponding to a self-bound state (expanding
gas) in the attractive (repulsive) regime with δa < 0 (δa > 0) and initial atom
number N ∼ 7000 (N ∼ 30000).

4.3.3 Self-bound state composition

The observed self-bound states are intrinsically composite objects, involving both

|↑〉 and |↓〉 atoms. To probe this aspect, we prepare mixtures of different com-

positions by varying the rf pulse time τ . Large population imbalances between

the two states result in bi-modal density profiles in the in situ images, see left

panel of Fig. 4.6(a). They consist of a self-bound state surrounded by a wider

and expanding cloud of atoms of the excess component. We extract the fraction

of self-bound atoms from bi-modal Gaussian fits to the density profiles. We find

that the fraction of self-bound atoms is maximized for an optimal pulse time, see

central panel.

To determine its spin composition we perform a complementary set of mea-

surements, modifying the detection sequence. We dissociate the self-bound state

by increasing the magnetic field to the repulsive regime (B ∼ 57.3 G) in 1 ms,
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similary to ref. [32]. We then measure the atom number per spin component N↑

and N↓ via Stern-Gerlach separation during time-of-flight expansion, see right

panel of Fig. 4.6.

We extract the optimal composition as a function of B by combining the in

situ and time-of-flight measurements, see Fig. 4.6(b). The optimal pulse time τop

is extracted from a lorentzian fit to the NSB/N curve. Its error ∆τ corresponds

to the standard error of the mean extracted from the fit. To extract the optimal

spin ratio from Fig. 4.6(b), after determining N↑/N↓ from time-of-flight images,

we fit it in the vicinity of τop with a second order polynomial that we evaluate

at τop. To extract the error of the ratio we evaluate the prediction bounds of the

fit at τop ±∆τ considering a confidence interval of σ.

As explained in the previous chapters the interaction energy of the system is

minimized by maximizing the spatial overlap of the two components [28, 123].

The theoretical prediction assuming that both occupy the same spatial mode

yields N↑/N↓ =
√
a↓↓/a↑↑ (solid line), which is in fair agreement with the data.
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Figure 4.6: Spin composition. Figure taken from ref. [30]. (a) Left panel: in
situ images of the mixture for various rf pulse times τ and B = 56.35(1) G. Away
from an optimal value the density profile is bi-modal, with a self-bound state
surrounded by atoms of the excess component. Central panel: fraction of self-
bound atoms NSB/N (red squares) and spin composition N↑/N↓ (blue circles)
as a function of τ . Error bars denote the standard deviation of 4 measurements.
Right panel: corresponding time-of-flight (ToF) Stern-Gerlach analysis of the
spin composition. (b) Optimal ratio N↑/N↓ as a function of magnetic field B.
Error bars correspond to the confidence interval of the fit. The solid line depicts
the theoretical prediction N↑/N↓ =

√
a↓↓/a↑↑.
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Figure 4.7: Soliton-to-droplet diagram. Figure taken from ref. [30]. (a) Evolution
of the self-bound atom number Ncrop, determined from the zeroth moment of the
cropped region (insets), as a function of time t. Solid lines: empirical fit for
extracting the decay rate. Error bars: standard deviation of 4 measurements.
(c) Left panel: peak density extracted from the decay of the self-bound atom
number, see (a). Self-bound states are stabilized by beyond mean-field effects
well above the mean-field collapse threshold for composite bright solitons (dashed
line). Right panel: ground state peak density vs. atom number N and magnetic
field B computed numerically from the eGPE. Solitons and droplets are distinct
solutions, which coexist in a bi-stable region (gray area) and become smoothly
connected in the crossover above Bc ∼ 55.85 G.
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4.3.4 Experimental phase diagram in quasi-1D

To clarify the nature of the self-bound states and their relation to the well-

known bright soliton and quantum droplet limits, we explore experimentally the

phase diagram of the system preparing self-bound states at different interaction

strengths, starting with high atom number. We record the atom number in the

self-bound region as seen in the inset from Fig. 4.7(c). We determine quanti-

tatively the atom number of the self-bound states from the in situ images by

evaluating the zeroth moment of the images N = M00 =
∑
x,z nc(x, z), which is

independent of optical aberrations [102]. In order to count only the self-bound

atoms we crop the images around the maximal column density and extract N

from this observation region. We have verified that increasing the crop size in

the direction perpendicular to the waveguide does not modify the results. The

longitudinal crop size needs to be adjusted more carefully to avoid counting ex-

cess atoms that are expanding in the waveguide. We fix its value by comparing

the atom number extracted from in situ images with no excess component with

time-of-flight measurements. We find that for all the data, possible errors in N

associated to incorrect choices of the longitudinal crop size remain < 10%, below

the systematic error of the N calibration (25%).

We observe that the atom number decreases in time due to inelastic processes,

see Fig. 4.7(c). For our experimental parameters these are completely dominated

by three-body recombination in the ↓↓↓ channel. Similarly to recent experiments

on dipolar 166Er droplets [34], we extract the density of the self-bound state by

measuring the decay of its atom number. The latter allows us to map out the

density as a function of N from a single decay curve, overcoming the limits set

by the imaging resolution5.

Describing the decay of the self-bound states requires taking into account

simultaneously two effects: (i) real loss of |↓〉 atoms, since K↓↓↓ is much larger

than the three other rates; (ii) expulsion (and subsequent expansion along the

waveguide) of |↑〉 atoms, in order to maintain the optimal spin composition of

the self-bound state as expected from ref. [28, 117]. Modelling accurately the

dynamics of these combined loss, expulsion and expansion processes goes beyond

5For all the measurements, the droplet and soliton sizes remain below (or are comparable
to) the spatial resolution of the imaging system.
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the scope of this work. Note that under these conditions it is not clear that

the eGPE model (derived neglecting explicitly spin excitations [28]) or simple

extensions of it remain valid. We instead simplify considerably the problem by

assuming that |↓〉 losses are instantaneously accompanied by the disappearance

of |↑〉 atoms required to maintain N↑/N↓ fixed in the self-bound state. The decay

of the self-bound atom number is then given by the rate equation

Ṅ

N
= −Keff

3 〈n2〉,

where 〈n2〉 = 1
N

∫
drn3 and the effective three-body loss coefficient is Keff

3 =

K↓↓↓

/(
1 +

√
a↓↓
a↑↑

)2

. In summary, the effective coefficient that we have consid-

ered in the model for the decay of the BEC is Keff
3 = 7.5 × 10−28cm6/s. More

details on the measurement of this coefficient can be found in the thesis from C.

R. Cabrera [65].

To extract Ṅ/N from the decay curves, we fit them with the empirical function

N(t) = N∞ + pN0e−(t−T0)/T1 + (1− p)N0e−(t−T0)/T2 ,

where N0, N∞, T0, T1, T2 and p are free parameters. We finally determine the

peak density of the system from

n0 = 33/4
√
〈n2〉 = 33/4

√√√√ 1

Keff
3

∣∣∣∣∣ṄN
∣∣∣∣∣.

Here, we have assumed a Gaussian density profile to relate the peak and average

densities to facilitate the comparison to the theoretical model.

We have verified that the results obtained using a different experimental fitting

function are well below the uncertainties introduced by the K↓↓↓ systematic error.

In any case, we expect our determination of the density to be dominated by the

simplifications of the decay model. Considering only the effect of |↓〉 losses would

reduce the determined densities by a factor of 2.

The right panel of Fig. 4.7(a) displays the determined peak densities as a

function of atom number and magnetic field. Interestingly, a large fraction of
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the measurements lies well above the mean-field bright soliton collapse thresh-

old. At the theoretical optimum for N↑/N↓ it corresponds to the condition

Nc = 0.6268 aho

(
1 +

√
a↓↓/a↑↑

)2

/
(

2|δa|
√
a↓↓/a↑↑

)
(dashed line) as seen from

equation (4.2.1). The absence of collapse in our measurements shows the exis-

tence of a stabilizing beyond mean-field mechanism.

In the deeply bound regime the measured peak densities agree only qualita-

tively with the eGPE predictions, see left and right panels of Fig. 4.7(a). The

discrepancies might stem from two sources. First, we have considered that the

spin composition of the system adjusts to N↑/N↓ =
√
a↓↓/a↑↑ while we have seen

experimentally that population imbalances are possible. Second, our decay model

is very simplified and assumes that the |↓〉 losses are immediately accompanied

by the disappearance of |↑〉 atoms when, in reality, these require a finite time to

exit the observation region.

4.3.5 Soliton to droplet transition

In a last series of experiments we explore the phase diagram by approaching the

bi-stability region from the soliton regime, see left inset of Fig. 4.8(a). We prepare

the system in the crossover region at B ∼ 56.3 G and hold it in the crossed optical

dipole trap for a variable time (1 to 120 ms). Owing to three-body recombination,

this results in atom numbers N = 3000 to 7000. We then remove the vertical

trapping beam, rapidly decrease B to its final value at a rate of 93.8 G/s, and take

an in situ image 3.5 ms after the end of the ramp. At the boundaries of the bi-

stable region, the density of the system becomes discontinuous. Experimentally,

we observe that the self-bound state cannot adjust to this abrupt change and

fragments, see right panel.

To locate the fragmentation point, we record the atom number in the initially

self-bound region and observe an abrupt drop at a critical magnetic field, see

right panel from Fig. 4.8(a). We also determine quantitatively the atom number

of the self-bound states by evaluating the zeroth moment of the images as done

to explore the phase diagram. As shown in the left panel of Fig. 4.8(a) for two

exemplary initial atom numbers Ni, the critical magnetic field depends on Ni.

To extract the critical magnetic field for fragmentation Bc corresponding to the
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Figure 4.8: Figure taken from ref. [30]. Soliton-to-droplet transition. (a) Left
panel: Atom number in the self-bound region Ncrop as a function of magnetic field
B when approaching the bi-stable region from the soliton regime, see inset. Top
right panel: initial soliton image (S) and corresponding doubly-integrated density
profile. Bottom right panel: fragmentation observed when entering the droplet
regime (D). (b) Measured fragmentation point vs. N and B. Error bars: system-
atic error in N and magnetic field width of the fragmentation curve. Colored area:
bi-stable region computed numerically from the eGPE. Lines: variational model,
indicating the boundaries of the bi-stable region (dashed) and the transition line
where solitons and droplets have identical energies E (solid). Insets: sketch of E
vs. σz for the metastable soliton and droplet regions and the transition line.

initial atom number Ni we fit the experimental data shown in Fig. 4.8(a) with

an error function

Ncrop =

(
Ni −Nf

2

)
erf

(
−B −Bc√

2σ

)
+Nf ,

where Ni, Nf , and Bc are free parameters. The horizontal error bars of the

fragmentation points correspond to σ, and the vertical ones to the 25% system-

atic error on the atom number calibration. We summarize the position of the

fragmentation point in the N −B plane in Fig. 4.8(b).

We exploit the variational model to interpret our observations. According to

it, although in the bi-stable region both solitons and droplets exist, their ener-

gies coincide only along a transition line (solid line). Above (below) it, solitons

(droplets) become metastable, and only disappear at the upper (lower) bound-

ary (dashed lines). The three situations are depicted in the right panel of Fig.

4.8(b). Experimentally, we prepare the mixture in a regime where only solitons
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exist. Therefore, when entering the bi-stable region we expect it to follow pref-

erentially the metastable soliton solution, with which it connects smoothly. At

the upper boundary the metastable soliton disappears and only dense droplets

are possible. Hence, the system is expected to fragment and form an excited

state with identical total energy (a similar behavior is observed in trapped dipo-

lar gases [32, 49, 124, 162]). Our experimental results support this hypothesis:

within error bars, the fragmentation point agrees with the upper boundary of the

bi-stable region predicted by the variational (solid line) and numerical eGPE (col-

ored area) calculations without any fitting parameters. Moreover, since the atom

number in each of the fragments is typically below the atom number required to

form a droplet we expect that, after some relaxation dynamics, the system will

evolve into a soliton train. Thus, although the fragmentation point corresponds

to the onset of a modulation instability in the system and allows to map out the

boundary of the bi-stable region, the final state is the result of complex non-linear

dynamics and is not directly related to the ground state droplet solution.

4.4 Conclusions

In conclusion we have shown that an attractive mixture of BECs confined in an

optical waveguide always hosts self-bound states, which correspond to composite

bright solitons, quantum liquid droplets, or interpolate smoothly between both

limits depending on the values of the atom number, interaction strength and

confinement. We have characterized their spin composition and density, and

mapped out the upper boundary of the bi-stable region separating solitons and

droplets.

4.5 Discussion on related work

A way to distinguish between quantum droplets and bright solitons would be to

produce two self-bound states and make them collide. This experiments have

been performed using single-component bright solitons [43, 163], and they either

cross each other or bounce depending on their relative phase. Using dipolar

quantum droplets, collision experiments have been performed in a setting where
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the collision axis is perpendicular to the dipole moment [128]. In this case the

repulsive character of magnetic dipoles makes them bounce. Instead, theoretical

studies of the collision between two composite quantum droplets in 1D [164],

2D [165] and 3D [166, 167] show that droplets might merge depending on the

interactions, atom number and velocity.

In the LENS group, collisions between composite quantum droplets have been

experimentally observed [150]. They prepare two independent BECs separated

by a potential barrier to produce two independent droplets which can collide

with different velocities after removing the barrier. For velocities below a critical

value vc, the quantum droplets merge, as expected also for classical liquid drops.

Instead, if the kinetic energy is very high the surface tension cannot hold the

two droplets together and they split. By performing experiments with different

atom numbers and collision velocities they map out the merging and separation

regimes. The experimental observations show that the critical velocity increases

for small atom numbers and decreases for high atom numbers. Their experimen-

tal results are contrasted with a simple theoretical model in which critical velocity

is defined by comparing the excess kinetic energy of the colliding droplets to the

energy of the merged droplet using the liquid-drop model [168]. This model

predicts that for high atom numbers, when the liquid-droplets become incom-

pressible, the critical velocity should decrease. Therefore, their study shows a

transition between the compressible and incompressible flat-top droplet regime.

In this experiments, the phase between the colliding droplets is not equal in each

run. Further experiments where the phase between droplets is controlled could

show interesting insights on the differences with bright solitons.

Very recently, composite self-bound states in a quasi-1D geometry have been

observed using heteronuclear mixtures of 41K and 87Rb for a critical δg < 0

[151]. Interestingly, the three body losses in this mixture are reduced due to

their larger intra-species interaction strengths (neq ∼ δg2/g5). Moreover, they

are able to measure the ratio of atom numbers between both atomic species,

finding excellent agreement with the theoretical (gRb/gK)1/2. However, as we

previously noticed in the experiments from chapter 3 [29] and explained in this

chapter [30], kinetic energy plays an important role in the stabilization of attrac-

tive self-bound mixtures together with the LHY repulsion. For this reason, the
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observation of a self-bound state in a quasi-1D geometry in an attractive mixture

is not a ”smoking-gun” of the existence of quantum droplets. Indeed, quantum

droplets and bright solitons can either be smoothly connected by a crossover or be

distinct states separated by a transition depending on their interaction strength

and atom number. Therefore, in my opinion, further experimental evidence is

needed to distinguish whether the observed heteronuclear self-bound states are

bright solitons, quantum droplets or they are in a crossover between both.

4.6 Outlook

Future experimental directions include the study of metastability and hysteresis

when crossing the soliton-to-droplet transition from different directions. This is

experimentally challenging because of two reasons. First, because it is hard to

prepare droplets with high density above the metastability region. And second,

because the size of the metastability region for small attraction is on the order

of our atom number uncertainty.

Other possible directions are the study of spin imbalanced systems offer the

possibility to explore finite temperature effects [169] in a well controlled setting,

exploiting the excess component as a thermal bath. Finally, a coherent cou-

pling between the two components [170] is expected to yield effective three-body

interactions [171] and provide control over the density dependence of the Lee-

Huang-Yang term [172] in the weak coupling regime. However, it is experimen-

tally challenging to achieve a magnetic field stability which allows us to observe

beyond mean field effects in 3D in such setting. For this reason, in the following

chapter, we study the modification of the interactions and the existence of bright

solitons in a quasi-1D geometry with two coherently coupled BECs in the strong

coupling limit.
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Chapter 5

Coherently coupled

interacting Bose-Einstein

condensates

Abstract

In this chapter, we demonstrate fast control of the interatomic interactions in a

Bose-Einstein condensate by coherently coupling two atomic states with intra-

and inter-state scattering lengths of opposite signs. We measure the elastic and

inelastic scattering properties of the system and find good agreement with a the-

oretical model describing the interactions between dressed states. In the attrac-

tive regime, we observe the formation of bright solitons formed by dressed-state

atoms. Finally, we study the response of the system to an interaction quench

from repulsive to attractive values, and observe how the resulting modulational

instability develops into a bright soliton train.

Since the work explained in this chapter was detailed in reference

[173], in the following chapter I will reproduce large fractions of the

article without major modifications.

147
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5.1 Introduction

The ability to control the interactions in a many-body system opens the door

to study a wide range of phenomena. Primary examples are the study of the

BEC to BCS crossover in Fermi gases [17], the study of the Fermi [174] and

Bose polarons [19] and the observation of quantum droplets in a two-component

incoherent mixture (see chapters 3 and 4). A key phenomena in the ultracold

atom community is the existence of Feshbach resonances [16], which allow to

tune the interactions from the weakly to the strongly interacting regime and

from attractive to repulsive interactions.

A Feshbach resonance occurs when there is a coupling between the scatter-

ing continuum and a weakly bound molecular state [16]. The energy difference

between both states can be tuned magnetically or optically (see reference [16]

and references therein). So far, this has allowed the observation of magnetic

[175] and optical Feshbach resonances [176, 177]. For magnetic Feshbach reso-

nances the temporal control is limited technically by the inductance of the coils.

Instead, for optical resonances, the main limitation comes from light-induced in-

elastic collisions. To overcome this limitations, magnetic Feshbach resonances

can be shifted optically [178–182]. A periodical modulation of interactions was

used to observe the stimulated emission of matter-wave jets in a Bose-Einstein

condensate [183–185] and has been proposed as a tool to study Floquet driven

systems [186, 187]. Moreover, while magnetic fields can modify the interactions

globally, spatial control of interactions has been demonstrated with optical shifts

of Feshbach resonances [177, 180, 182].

Another alternative to control the interactions is to use coherently coupled

states. The phase diagram of an incoherent two-component BEC depends on the

bare state intra and inter-component scattering of the mixture (see references

[65, 88] and chapters 3 and 4). By coherently coupling both components we can

modify the interaction strength between the dressed states and modify the phase

diagram of the system. The resulting interaction strength of the dressed states

is a linear combination of the bare state interaction strengths which depends on

the parameters of the coupling field [51, 52]. Hence, by controlling the frequency

and power of the coupling field, the interactions between the coherently coupled
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states can be modified.

The experimental study of coherently coupled states in a Bose-Einstein con-

densate was pioneered by the Cornell group using 87Rb [54, 170]. These studies

were motivated by the analogy of such system with the Josephson effect in super-

conductors [188] and Helium [189, 190]. Later on, the Oberthaler group exploited

the coherent coupling between two internal states of a 87Rb Bose-Einstein con-

densate to explore the different dynamics and transition between the Rabi and

Josephson regimes, where the coupling and interaction energies dominate respec-

tively [53]. Further experiments focused on the study of the phase separation

dynamics of a coherently coupled BEC (which were initially observed in a non-

coherent mixture in reference [54]) due to the modification of the interactions in

the presence of coherent coupling [55–57] and spin orbit coupling [58–60].

All the experiments performed so far with coherently coupled Bose-Einstein

condensates have been performed with two components with repulsive and almost

equal intra and inter-component scattering lengths. In this case, the interaction

strength of the coherently coupled states are not strongly modified. Therefore,

using 39K mixtures with unequal interactions under the presence of coherent

coupling offers a wide tunability of the interactions, going from the repulsive

to the attractive regime. As introduced in previous chapters, during the last

decade, attractive Bose-Einstein condensates have enabled the observation of

single component bright solitons [36, 37], the study of bright soliton collisions

[163], the realization of quantum droplets in incoherent mixtures [29, 31] and its

interplay with bright solitons [30], the observation of quantum droplet collisions

[150], and the characterization of the modulational instability that leads to the

formation of bright soliton trains [191, 192].

In this chapter, we present the first direct measurements of the effective elas-

tic and inelastic scattering lengths using BECs with unequal interactions in the

strong coupling limit. This system allows us to explore the attractive regime

and observe the existence of bright solitons formed by dressed atomic states.

This technique presents an advantage to modify the dressed state interactions

with coherent coupling in a time dependent manner. It is only limited by the

speed needed to perform reversible Landau-Zener sweeps between internal states

to remain in a single dressed state and does not introduce any additional loss
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mechanism as compared to the optical Feshbach resonances. To proof its poten-

tial we have studied the mechanical instability which occurs when the effective

interactions of the dressed states are quenched into the attractive regime. After

a sudden interaction change, fluctuations of the density of the condensate are

exponentially enhanced due to the attractive non-linear interactions, causing the

formation of a bright soliton train formed by dressed states.

The experiments presented in this chapter have been performed together with

A. Frölian, C. S. Chisholm and C. R. Cabrera.

This chapter is organized as follows. In section 5.2, we introduce the theoret-

ical framework of coherently coupled interacting Bose-Einstein condensates. In

section 5.2.1, we start by presenting the single particle dressed state picture. In

section 5.2.2, we solve the scattering problem for two particles in coherently cou-

pled dressed states. Then, in section 5.2.3, we show how the elastic and inelastic

interactions are modified in a Bose-Einstein condensate in the strong coupling

limit. Afterwards, in section 5.3.2, we present the experimental measurements

on the modification of the elastic and inelastic scattering lengths . In section

5.3.3, we present the observation of dressed bright solitons using an adiabatic

preparation and the formation of soliton trains after performing a quench of the

interactions. Finally, in section 5.4 we draw the conclusions extracted from our

experimental study and present future perspectives.

5.2 Theoretical framework: Coherently coupled

interacting Bose Einstein Condensates

In this chapter we will explore the study of two Bose Einstein condensates with

coherent coupling. The Hamiltonian H = H0 + Hint describing the physics of

cold gases under the presence of coherent coupling can be split between a single

particle contribution H0 and a many body contribution stemming from two-body

contact s-wave interactions Hint. The single particle contribution H0 in second

quantization reads:
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H0 =
∑
p

[(
p2

2m + Vext + ~δ
2

)
a†↑pa↑p +

(
p2

2m + Vext − ~δ
2

)
a†↓pa↓p

]
+

+
∑
p

~Ω
2 (a†↑pa↓p + a†↓pa↑p), (5.2.1)

where in addition to the kinetic p2/2m and potential term Vext, we have included

a coupling field with frequency ω between two states. We have labeled them for

convenience as |↑〉 and |↓〉. The coupling field has a Rabi frequency Ω which is

detuned from the |↓〉 → |↑〉 transition by δ = ω−ω0, where ω0 corresponds to the

bare frequency of the |↓〉 → |↑〉 transition, see Fig. 5.1(a). The creation a†spi and

annihilation aspi operators create and destroy particles in state |s, pi〉 ≡ |s〉⊗|pi〉,
where |s〉 corresponds to the spin state in the {↑, ↓} basis1. These operators

satisfy the common commutation relations [a†spi , arpj ] = δs,rδi,j , [aspi , arpj ] = 0

and [a†spi , a
†
rpj ] = 0.

The interaction Hamiltonian Hint in second quantization reads:

Hint = 1
2V

∑
pi+pj=pk+pl

[
g↑↑a

†
↑pia

†
↑pja↑pka↑pl + g↓↓a

†
↓pia

†
↓pja↓pka↓pl +

+2g↑↓a
†
↑pia

†
↓pja↑pka↓pl

]
(5.2.2)

where the intra and inter-component interaction strengths correspond to g↑↑ =

4π~2a↑↑/m, g↓↓ = 4π~2a↓↓/m and g↑↓ = 4π~2a↑↓/m respectively.

To describe the physics of the coherently coupled Bose-Einstein condensates

in the mean field approximation, we consider that all the atoms are in the zero

momentum state. In consequence, we can substitute the creation and annihilation

operators by complex numbers such that as,p=0 → zs =
√
Nse

iθs and we obtain

the Gross-Pitaevskii Hamiltonian HGP:

1Although we will work with multi-level atoms the detuning to other states will be large
enough to neglect all the other transitions. Thus we often would refer to the pseudo-spin 1/2
states as spins for the sake of simplicity.
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Figure 5.1: (a) Two-level atom with bare frequency ω0 coupled by a field with
frequency ω. The detuning is δ = ω − ω0. (b) Solid lines: Energy E of dressed
states |−〉 and |+〉 vs. detuning δ, normalized to the Rabi frequency Ω. Dashed
lines: Energy E of the bare states |↑〉 (in red) and |↓〉 (in blue) vs. detuning δ,
normalized to the Rabi frequency Ω. Colorscale: state composition in terms of
P = δ/Ω̃. Here ↑ and ↓ are the bare atomic states, and ~Ω̃ the energy splitting
of the dressed states.

HGP =
[
− ~2

2m∇
2 + Vext

]
(N↑ +N↓) +

+~δ
2 (N↑ −N↓) + ~Ω

√
N↑N↓ cos (θ↑ − θ↓) +

+ 1
2V

[
g↑↑N

2
↑ + g↓↓N

2
↓ + 2g↑↓N↑N↓

]
. (5.2.3)

To understand the physics of the system, in section 5.2.1 we will start by

describing the dressed state picture of a single two-level atom with coherent cou-

pling. Then, in section 5.2.2, we will follow with the resolution of the scattering

problem in the presence of coherent coupling to extract the elastic and inelastic

scattering lengths of the dressed atoms. Finally, in section 5.2.3 we will study

the zero-temperature many-body problem in the strong coupling limit by trans-

forming the Gross-Pitaevskii Hamiltonian in the dressed state basis. We put

particular emphasis on the modified elastic and inelastic interactions due the

presence of the coupling field.
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5.2.1 Coherently coupled dressed states

Let us consider the case where two states |↑〉 =̇[0 1]T and |↓〉 =̇[1 0]T are coherently

coupled, see Fig. 5.1a. The Hamiltonian describing the system is:

H =
~
2

[
δ Ω

Ω −δ

]
. (5.2.4)

The eigenstates and eigenenergies of the Hamiltonian which satisfy H |±〉 =

E± |±〉 are:

|+〉 = cos θ |↓〉+ sin θ |↑〉

|−〉 = sin θ |↓〉 − cos θ |↑〉 ,

and:

E± = ±~
2

Ω̃ = ±~
2

√
δ2 + Ω2 (5.2.5)

respectively. Here the mixing angle θ is such that cos θ = (1 + P )1/2/
√

2 where

P = δ/Ω̃ is the polarization and Ω̃ =
√

Ω2 + δ2 is the generalized Rabi frequency.

We will call the states |+〉 and |−〉 as higher and lower dressed states respectively.

As it can be seen from the energy spectrum in Fig. 5.1b, an avoided crossing

between the dressed states appears as a result of the coupling between the bare

states. The energy gap at resonance corresponds to the Rabi frequency energy

~Ω. The color code in Fig. 5.1b shows the composition of the dressed states. For

δ � Ω, the lower (higher) dressed state corresponds to the ↑ (↓) bare state as

seen from the energy and composition of the states. Similarly for δ � −Ω, the

lower (higher) dressed state corresponds to the ↓ (↑) bare state.

5.2.2 Scattering of coherently coupled dressed states

The scattering of two particles in the ultra-cold atomic limit can be described by

a single parameter, the scattering length. In our mixtures, as seen in Fig. 5.2a,

the intra and inter-component scattering lengths correspond to a↑↑, a↓↓ and a↑↓.

But what happens when two coherently coupled particles collide? What is the

scattering length corresponding to the collision of two dressed states? To address
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this question we will solve the scattering problem including the driving from an

external field.

Before solving this problem, we will make a brief reminder of the scattering

theory in the ultracold limit. The scattering between two particles has been

widely studied and a complete description of the problem can be found in refer-

ence [193].

Basic scattering theory in the ultracold limit

To describe the collisional properties between two particles (1 and 2) with mass

m, we have to solve the time-independent Schrödinger equation of the relative

motion between the two particles:[
~p2

2mr
+ V (r)

]
ψq = Eqψq, (5.2.6)

where ~p = (~p1 − ~p2) /2 is the relative momentum between the particles, mr =

m/2 is the reduced mass, V (r) is a central interaction potential between the

particles (r = |~r1 − ~r2|), Eq = ~2q2/2mr and ψq is the stationary scattering

state. Here, we have assumed that the interaction potential has a range of action

r0, and that it tends to 0 when r → ∞. In the ultracold limit the de Broglie

wavelength λT associated to the particles is much larger than r0. In this limit,

the asymptotic limit of the stationary scattering states resulting from equation

(5.2.6) can be described as the sum of an incoming plane wave, and an outgoing

spherical wave such that:

lim
r→∞

ψq = eiqz + f(q)
eiqr

r
(5.2.7)

where f(q) = −a/(1 + iqa) is the s-wave scattering amplitude, a is the s-wave

scattering length and we have chosen the relative momentum of the incident wave

to be arbitrarily, and without loss of generality, in the z direction.

Let us now solve the scattering problem in the presence of coherent coupling.
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(a) (b)

Figure 5.2: (a) Schematic representation of the intra- and inter-component bare
scattering lengths a↑↑, a↓↓ and a↑↓ vs. the effective scattering length aeff of a

dressed state. (b) Two particle dressed state energy levels separated by ~Ω̃.

The scattering problem for coherently coupled dressed states

To solve the scattering problem in the presence of coherent coupling we will

consider the two particle dressed states |++〉, |−−〉 and (|+−〉+|−+〉)/
√

2. Since

we will consider the collision between bosons, the two particle dressed states need

to be symmetrical under exchange of two particles. Hence, we do not consider

the (|+−〉 − |−+〉)/
√

2 state. The two particle states are split by an energy ~Ω̃

as shown in Fig. 5.2. Using the definitions from section 5.2.1, we can rewrite the

two particle dressed states in terms of the two particle bare states:

|++〉 = cos2 θ |↓↓〉+
sin 2θ√

2

[ 1√
2

(|↑↓〉+ |↓↑〉)
]

+ sin2 θ |↑↑〉

1√
2

(|+−〉+ |−+〉) =
sin 2θ√

2
|↓↓〉 − cos 2θ

[ 1√
2

(|↑↓〉+ |↓↑〉)
]
− sin 2θ√

2
|↑↑〉

|−−〉 = sin2 θ |↓↓〉 − sin 2θ√
2

[ 1√
2

(|↑↓〉+ |↓↑〉)
]

+ cos2 θ |↑↑〉 .

(5.2.8)

In the following, we introduce the calculation of the scattering problem with

the dressed two particle channels. This calculation follows from discussions with

D. S. Petrov, and is analogous to the calculations developed in references [51,

171]. After that we can obtain the elastic and inelastic scattering lengths for all
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channels.

We shall remark that in the following calculation we have done an abuse

of the notation of the out-going scattering amplitudes denoted as C and the

normalization factors denoted as D. Although the notation has been repeated

for each channel, they must be considered as independent for each scattering

channel.

Scattering of the |−−〉 channel: Let us consider the scattering of two par-

ticles in state |−〉. Since the collision are in the ultracold limit, the only open

channel corresponds to the two particle state |−−〉. In this case, the two particle

states |++〉 and (|+−〉+ |−+〉) /
√

2 are closed channels. We can describe the

wavefunction of the two body scattered state in the relative coordinate system

as outgoing spherical waves. The contribution of all these waves into the differ-

ent channels plus the non-scattered wavefunction makes the stationary scattering

wavefunction read:

∣∣ψsc−−〉 ≈ (1+f−−
eiqr

r
) |−−〉+C+−

eik+−r

r

[
1√
2

(|+−〉+|−+〉)
]
+C++

eik++r

r
|++〉 ,

(5.2.9)

where f−− is the scattering amplitude of the lower dressed state |−〉, and C+−

and C++ is correspond to the scattering amplitude into the closed channels.

Here q is the relative momentum between the particles and k+− =
√
q2 −mΩ̃/~

and k++ =
√
q2 − 2mΩ̃/~ the relative momentum of particles scattered into

the 1√
2
(|+−〉 + |−+〉) and |++〉 channels. Since the relative momentum of the

particles q is much smaller than the gap to the 1√
2
(|+−〉+ |−+〉) and |++〉 states,

k+− = iκ+− and k++ = iκ++ are purely imaginary. It is for this reason that

they are called closed channels. From now on we will denote the wavefunction of

scattered atoms into open channels as eikr/r and into closed channels as e−κr/r,

such that:
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∣∣ψsc−−〉 ≈ (1 + f−−
eiqr

r
) |−−〉 + C+−

e−κ+−r

r

[
1√
2

(|+−〉+ |−+〉)
]

+ C++
e−κ++r

r
|++〉 . (5.2.10)

By applying the zero-range Bethe-Peierls boundary conditions [194] we get

that:

lim
r→0

〈
σσ′
∣∣ψsc−−〉 ∝ 1− aσσ′/r, (5.2.11)

where |σσ′〉 is a state from the two-body bare state basis {|↑↑〉 , 1√
2
(|↑↓〉+|↓↑〉), |↓↓〉}.

As a result we get three equations by projecting on |↑↑〉:

cos2 θ

(
1 + f−−

(
1

r
+ iq

))
− C+− sin 2θ√

2

(
1

r
− κ+−

)
+

+ C++ sin2 θ

(
1

r
− κ++

)
= D↑↑

(
1− a↑↑

r

)
, (5.2.12)

by projecting on |↓↓〉:

sin2 θ

(
1 + f−−

(
1

r
+ iq

))
+
C+− sin 2θ√

2

(
1

r
− κ+−

)
+

+ C++ cos2 θ

(
1

r
− κ++

)
= D↓↓

(
1− a↓↓

r

)
, (5.2.13)

and by projecting on 1√
2
(|↑↓〉+ |↓↑〉):

− sin 2θ√
2

(
1 + f−−

(
1

r
+ iq

))
− C+− cos 2θ

(
1

r
− κ+−

)
+

+
C++ sin 2θ√

2

(
1

r
− κ++

)
= D↑↓

(
1− a↑↓

r

)
. (5.2.14)

A system of 6 equations and 6 unknowns {f−−, C+−, C++, D↑↑, D↓↓, D↑↓} is

obtained by gathering the terms which are proportional to 1/r and the terms

which are not.
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Scattering of the |++〉 channel: Let us consider the scattering of two par-

ticles in state |++〉 in the ultracold limit. In this case all the channels are open

and the stationary scattering state reads:

∣∣ψsc++

〉
≈ (1+f++

eiqr

r
) |−−〉+C+−

eik+−r

r

[
1√
2

(|+−〉+|−+〉)
]
+C−−

eik−−r

r
|−−〉 ,

(5.2.15)

where f++ is the scattering amplitude of the higher dressed states |+〉, and C+−

and C−− correspond to the scattering amplitude into the 1√
2
(|+−〉+ |−+〉) and

|−−〉 channels. Here k+− =
√
q2 +mΩ̃/~ and k−− =

√
q2 + 2mΩ̃/~ correspond

to the momentum of particles scattered into the 1√
2
(|+−〉 + |−+〉) and |−−〉

channels.

Similarly, applying the zero-range boundary conditions to the
∣∣ψsc++

〉
state,

we project on the |↑↑〉, |↓↓〉 and (|↑↓〉+ |↓↑〉) /
√

2 states respectively:

sin2 θ

(
1 + f++

(
1

r
+ iq

))
− C+− sin 2θ√

2

(
1

r
+ ik+−

)
+

+ C−− cos2 θ

(
1

r
+ ik−−

)
= D↑↑

(
1− a↑↑

r

)
, (5.2.16)

cos2 θ

(
1 + f++

(
1

r
+ iq

))
+
C+− sin 2θ√

2

(
1

r
+ ik+−

)
+

+ C−− sin2 θ

(
1

r
+ ik−−

)
= D↓↓

(
1− a↓↓

r

)
, (5.2.17)

sin 2θ√
2

(
1 + f++

(
1

r
+ iq

))
− C+− cos 2θ

(
1

r
+ ik+−

)
−

− C−− sin 2θ√
2

(
1

r
+ ik−−

)
= D↑↓

(
1− a↑↓

r

)
, (5.2.18)

A system of 6 equations and 6 unknowns {f++, C+−, C−−, D↑↑, D↓↓, D↑↓} is

obtained by gathering the terms which are proportional to 1/r and the terms

which are not.
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Scattering of the 1√
2

(|+−〉+ |−+〉) channel: Finally we consider the scat-

tering of two particles in state 1√
2

(|+−〉+ |−+〉) in the ultracold limit. In this

case the |−−〉 is an open channel and the |++〉 channel is closed. Hence, the

stationary scattering wavefunction reads:

∣∣ψsc+−〉 ≈ (1 + f+−
eiqr

r
)

[
1√
2

(|+−〉+ |−+〉)
]

+ C++
e−κ++r

r
|++〉+

+ C−−
eik−−r

r
|−−〉 , (5.2.19)

where f+− is the scattering amplitude between the states |+〉 and |−〉, and C++

and C−− correspond to the scattering amplitude into the |++〉 and |−−〉 chan-

nels. Here κ++ =
√
mΩ̃/~− q2 and k−− =

√
mΩ̃/~ + q2 correspond to the

momentum of particles scattered into the |++〉 and |−−〉 channels.

Applying the zero-range boundary conditions to the
∣∣ψsc+−〉 state, we project

on the |↑↑〉, |↓↓〉 and 1√
2
(|↑↓〉+ |↓↑〉) states respectively:

− sin 2θ√
2

(
1 + f+−

(
1

r
+ iq

))
+ C++ sin2 θ

(
1

r
− κ++

)
+

+ C−− cos2 θ

(
1

r
+ ik−−

)
= D↑↑

(
1− a↑↑

r

)
, (5.2.20)

sin 2θ√
2

(
1 + f+−

(
1

r
+ iq

))
+ C++ cos2 θ

(
1

r
− κ++

)
+

+ C−− sin2 θ

(
1

r
+ ik−−

)
= D↓↓

(
1− a↓↓

r

)
, (5.2.21)

− cos 2θ

(
1 + f+−

(
1

r
+ iq

))
+
C++ sin 2θ√

2

(
1

r
− κ++

)
−

− C−− sin 2θ√
2

(
1

r
+ ik−−

)
= D↑↓

(
1− a↑↓

r

)
, (5.2.22)

A system of 6 equations and 6 unknowns {f+−, C++, C−−, D↑↑, D↓↓, D↑↓} is

obtained by gathering the terms which are proportional to 1/r and the terms
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which are not.

From all these equations, we can obtain the elastic scattering in each channel

and the inelastic scattering between different channels. We will start with the

description of the elastic scattering.

Figure 5.3: Elastic scattering properties. Exemplary scattering lengths a−− com-
puted with (1) equation (5.2.23) (magenta dashed lines) and (2) equation (5.2.24)
(black solid line) describing the interaction on the |−−〉 channels vs. δ consider-
ing a↑↑ = 32.5a0, a↓↓ = 109a0 and a↑↓ = −52.9a0 and Ω/2π = 20kHz. Here a0

corresponds to the Bohr radius.

Elastic scattering

By solving the systems of equations {(5.2.12),(5.2.13),(5.2.14)}, {(5.2.16),(5.2.17),

(5.2.18)} and {(5.2.20), (5.2.21),(5.2.22)} we can obtain the scattering ampli-

tudes of the dressed state scattering channels f−−, f++ and f+− respectively.

In this section we focus on the elastic scattering, which corresponds to the neg-

ative real part of the scattering amplitude. In the limit where q → 0, we have

that the elastic scattering length a = −Re{f}. In particular, we focus on the
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scattering between particles on the ground dressed state |−〉. From equations

{(5.2.12),(5.2.13),(5.2.14)} we obtain:

a−− = a↓↓ sin4 θ + a↑↑ cos4 θ +
1

2
a↑↓ sin2 2θ +O(κ), (5.2.23)

where κ = (~Ω̃/m)1/2. Indeed, as we will show in section 5.2.3, a similar

result was obtained in reference [52] by transforming the interaction Hamiltonian

from equation 5.2.2 into the dressed state basis:

a−− = a↓↓ sin4 θ + a↑↑ cos4 θ +
1

2
a↑↓ sin2 2θ. (5.2.24)

The correction in κ is due to the admixture of the closed channels and it converges

to the results obtained in reference [52] for Ω̃ → 0. In particular, in reference

[171] the scattering amplitude of the |−−〉 channel, was computed in the case

where a↑↑ = a↓↓ = a and θ = π/4 (δ = 0), obtaining:

f(q) = −
(

2− (a+ a↑↓)κ

a+ a↑↓ − 2a↑↓aκ
+ iq

)−1

. (5.2.25)

In this case, it is easy to observe that for q → 0 and κ → 0, the scattering

length a−− = −Re{f(q)} from equation (5.2.25) converges to the result from

equation (5.2.24) for a↑↑ = a↓↓ = a. In Fig. 5.3 we plot both results for typical

experimental parameters. As it can be observed, the correction is very small.

Inelastic scattering

We will focus on the description of the inelastic decay from colliding particles in

the excited dressed state |+〉. In this case, particles can decay into the open chan-

nels 1√
2

(|+−〉+ |−+〉) and |−−〉 with a momentum k+− and k−−. The scattering

amplitudes C+− and C−− obtained from equations {(5.2.16),(5.2.17),(5.2.18)}
give the probability to decay into the 1√

2
(|+−〉+ |−+〉) and |−−〉 channels. We

can characterize them by an inelastic scattering length ain = −Re{C} In Fig. 5.4

we plot the scattering length associated to the decay of |++〉 into other channels.

The corresponding inelastic cross-section for identical bosons is then given by

σin = 8πain
2
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Figure 5.4: Inelastic scattering properties. Exemplary elastic scattering length
associated to the decay on the |++〉 → |−−〉 (−Re{C−−}) and |++〉 →
1√
2

(|+−〉+ |−+〉) channels (−Re{C+−}) vs. δ considering a↑↑ = 32.5a0,

a↓↓ = 109a0 and a↑↓ = −52.9a0 and Ω/2π = 20kHz.

Up to now we have studied the modification of the two-body scattering be-

tween particles in the presence of coherent coupling. Let us now, solve the many-

body problem. In particular, we will focus on the modification of the interactions

in a two-component Bose-Einstein condensate in the presence of a strong coherent

coupling.

5.2.3 The strong coupling limit in composite Bose Einstein

condensates

In this section, we will introduce how the effective interactions are modified due to

the presence of the coupling in a two-component BEC. This problem was studied

in detail in reference [52] in the strong coupling limit ~Ω� p2

2m , g↑↑n, g↓↓n, g↑↓n.

In this limit, we can approximate the eigenstates of the Hamiltonian to be N

particles in the dressed states |+〉 and |−〉 with modified interactions. Hence, we

can conveniently rewrite the interaction hamiltonian Hint from equation (5.2.2)
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in the dressed state basis:

Hint = 1
2V

∑
pi+pj=pk+pl

g1a
†
+pia

†
+pja+pka+pl +

+g2a
†
−pia

†
−pja−pka−pl + g3a

†
+pia

†
−pja+pka−pl +

+g4(a†+pia
†
+pja−pka−pl + a†−pia

†
−pja+pka+pl) +

+g5(a†+pia
†
+pja+pka−pl + a†−pia

†
+pja+pka+pl) +

+g6(a†+pia
†
−pja−pka−pl + a†−pia

†
−pja−pka+pl),

(5.2.26)

where the first three-terms preserving the two-particle dressed state of the col-

liding atoms correspond to the elastic scattering between |−〉 ↔ |−〉, |+〉 ↔ |+〉
and |+〉 ↔ |−〉 atoms respectively. Instead, the last three terms modify the two-

particle dressed state of the colliding atoms. They correspond to inelastic dressed

state changing collisions between the |++〉 ↔ |−−〉, |++〉 ↔ 1√
2

(|+−〉+ |−+〉)
and |−−〉 ↔ 1√

2
(|+−〉+ |−+〉) channels respectively. By doing the proper alge-

bra, the g1−6 coefficients can be rewritten in terms of the bare state interaction

strengths g↑↑, g↓↓ and g↑↓:

g1 = g↓↓ cos4 θ + g↑↑ sin4 θ +
1

2
g↑↓ sin2 2θ (5.2.27)

g2 = g↓↓ sin4 θ + g↑↑ cos4 θ +
1

2
g↑↓ sin2 2θ (5.2.28)

g3 = (g↓↓ + g↑↑) sin2 2θ + 2g↑↓ cos2 2θ (5.2.29)

g4 =
1

4
(g↓↓ + g↑↑ − 2g↑↓) sin2 2θ (5.2.30)

g5 = sin 2θ
(
g↑↑ sin2 θ − g↓↓ cos2 θ + g↑↓ cos 2θ

)
(5.2.31)

g6 = sin 2θ
(
g↑↑ cos2 θ − g↓↓ sin2 θ − g↑↓ cos 2θ

)
(5.2.32)

If g↑↑ = g↓↓ = g↑↓ = g then g1 = g2 = g, g3 = 2g and g4 = g5 = g6 = 0.

Thus, the elastic terms are not modified by the presence of the coherent coupling

and the dressed state changing collisions are suppressed by the symmetry of the

interactions. Instead, if the bare state interaction strengths are different both
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elastic and inelastic collisions might be relevant and modified by the presence

of the coupling. For a BEC in state |−〉, inelastic collisions are energetically

forbidden and only elastic processes remain. In contrast, for a BEC in state |+〉
both elastic and inelastic processes are relevant. As seen from equations (5.2.27)

- (5.2.32) the interaction properties depend on the interaction strengths of the

bare states and on the composition of the system.

Elastic scattering

The elastic g1−3 coefficients are related with the dressed state interaction strengths

as seen from the symmetric case. Thus the dressed state elastic scattering lengths

are:

a++ = a↓↓ cos4 θ + a↑↑ sin4 θ +
1

2
a↑↓ sin2 2θ (5.2.33)

a−− = a↓↓ sin4 θ + a↑↑ cos4 θ +
1

2
a↑↓ sin2 2θ (5.2.34)

a+− =
1

2
(a↓↓ + a↑↑) sin2 2θ + a↑↓ cos2 2θ (5.2.35)

As commented before, re-expressing HMF
int in the dressed state basis gives the

correct scattering lengths modulo corrections of O(κ). This result is however only

valid for small values of a, whereas the scattering result presented before is more

general.

In our experiment we will explore a system where all the bare state scattering

lengths are different, the intra-state scattering lengths a↑↑, a↓↓ > 0 and the inter-

state scattering length a↑↓ < 0. In this situation, the scattering lengths for large

detunings |δ| � Ω correspond to the bare state scattering length and get modified

for |δ| ∼ Ω, as it can be observed from Fig. 5.5a and Fig. 5.5b.

For instance, if we focus on the interactions between the lower dressed states

|−〉, we can observe that: for δ � Ω → P = 1 and a−− → a↑↑, for δ �
−Ω → P = −1 and a−− → a↓↓, and for δ = 0 → P = 0 and a−− =

(a↓↓ + a↑↑ + 2a↑↓) /4. The minimum effective scattering length amin
−− corresponds

to:
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Figure 5.5: Elastic scattering properties. (a) Exemplary effective scattering
lengths a−− (solid black), a++ (dashed green) and a+− (dashed brown) describ-
ing the interaction on the |−−〉, |++〉 and 1√

2
(|+−〉+ |−+〉) channels vs. δ/Ω

considering a↑↑ = 32.5a0, a↓↓ = 109a0 and a↑↓ = −52.9a0. Here a0 corresponds
to the Bohr radius. (b) Polarization of the |−〉 (solid black) and |+〉 (dashed
green) vs. δ/Ω.

amin
−− =

a↓↓a↑↑ − a2
↓↑

a↓↓ + a↑↑ − 2a↓↑
(5.2.36)

which is met at a polarization P = (a↓↓ − a↑↑)/(a↓↓ + a↑↑ − 2a↑↓). Since we

have broad tunability of the scattering lengths, we can make amin
−− < 0 in order

to explore attractively interacting dressed state systems (see section 5.3).

Inelastic scattering

The inelastic g4−6 coefficients indicate the strength of the dressed state changing

collisions. But are all the dressed state changing collisions allowed? Since ~Ω�
p2

2m , g↑↑n,

g↓↓n, g↑↓n, the following transitions are energetically forbidden:

|−−〉 → 1√
2

(|+−〉+ |−+〉)

|−−〉 → |++〉
1√
2

(|+−〉+ |−+〉) → |++〉 (5.2.37)
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(a) (b)

Figure 5.6: Inelastic decay of the higher dressed state. (a) Sketch of possible
dressed state changing collisions 1©: |+,+〉 → |−−〉 (orange, solid arrows) and
2©: |++〉 → (|+−〉+ |−+〉) /

√
2 (green, dashed arrows). Single particle energy

dispersion E and momentum k are expressed in terms of Ω̃ =
√

Ω2 + δ2 and

kΩ̃ =
√

2mΩ̃/~, respectively. (b) Decay rate Γi→f vs. δ considering typical
experimental Rabi frequency Ω/2π = 20 kHz and density of a BEC ni = 1.3 ×
1020m−3.

Instead all the other transitions are allowed, resulting in a transformation

from the coupling energy into kinetic energy. Hence, the kinetic energy is not

conserved in this process and the dressed state changing collision processes are

inelastic. In particular, we will focus on the inelastic decay from the |++〉 → |−−〉
and |++〉 → 1√

2
(|+−〉+ |−+〉) transitions, which are sketched in figure 5.6 as

the process 1© and 2© respectively. To compute the transition rate Γi→f to lowest

order between the initial and final states |i〉 and |f〉 we can use the Fermi-golden

rule:

Γi→f =
2π

~
|〈f |Hint |i〉|2ρ(Ef ), (5.2.38)

where 〈f |Hint |i〉 is the transition matrix element and ρ(Ef ) corresponds to

the density of states of the final state. Since the collision process is a two-body

process the decay is described by the loss rate equation:

ṅi = −2Γi→f (ni)ni, (5.2.39)

where ni is the atomic density and the 2 takes into account the loss of two atoms.
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From the Fermi-golden rule and equation (5.2.39) we obtain that:

ṅi = −g(2)σfvfn
2
i , (5.2.40)

where g(2) is the two-body correlation function (which is equal to 1 for a BEC and

2 for a thermal gas), σf is the inelastic scattering cross section, vf is the velocity

of the final states and we have taken into account the density of atomic pairs

n2
i /2. From the results of equation (5.2.30) and (5.2.31) taken from reference

[52], or equivalently, from the the scattering amplitude into the open channels

computed in section 5.2.2, we obtain an inelastic cross-section:

σ1 =
π

2

[
(a↑↑ + a↓↓ − 2a↑↓) sin2 2θ

]2
, (5.2.41)

for the |++〉 → |−−〉 process and:

σ2 = 4π
[(
a↑↑ sin2 θ − a↓↓ cos2 θ + a↑↓ cos 2θ

)
sin 2θ

]2
, (5.2.42)

for the |++〉 → 1√
2

(|+−〉+ |−+〉) process, where we have taken into account

the symmetrization of identical bosons to compute the scattering cross-section.

The final velocities for the two processes are vf1 =
√

2~Ω̃/m and vf2 =
√
~Ω̃/m

respectively.

In figure 5.6(b) we show typical decay rates for a BEC for both processes.

We can see that the scattering rates can be strongly modified depending on the

detuning. Whereas the 1© process is symmetric with respect to the resonance the

2© process is not. In section 5.3.2 we will explore the |++〉 state decay into both

|−−〉 and 1√
2

(|+−〉+ |−+〉) by measuring the final velocities and the fraction of

scattered atoms as a function of the detuning.

5.3 Experimental realization

As introduced in the theoretical framework, the coherent coupling of two states

with unequal interactions results in an effective modification of the interactions

of the dressed states. In our experiment, we use this phenomena as an alternative

method for controlling interactions in a fast and flexible manner. In our scheme,
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two internal states of a BEC with different scattering lengths are coherently-

coupled exploiting a radio-frequency (rf) field, which modifies the scattering prop-

erties of the corresponding dressed states. Until now, this effect could only be

observed indirectly through the change of miscibility of binary BEC mixtures

[55–57]. Here we show that exploiting a system with inter- and intra-state inter-

actions of opposite signs enables large modifications of the elastic and inelastic

scattering properties of these dressed states. They can be flexibly controlled by

adjusting the parameters of the coupling field, giving also access to the attractive

regime. In this case, we demonstrate the stabilization of bright solitons formed

by dressed state atoms. Furthermore, we exploit the high temporal bandwidth of

this technique to quench the interactions from repulsive to attractive values, and

observe how the resulting modulational instability develops into a bright soliton

train.

1

-1

1.5

0

-1.5

-2 0 2

Adiabatic rf sweep 

P

Figure 5.7: Adiabatic preparation of the lower dressed state. (a) Energy E of
dressed states |−〉 and |+〉 vs. detuning δ, normalized to the Rabi frequency Ω.
Colorscale: state composition in terms of P = δ/Ω̃. Here ↑ and ↓ are the bare
atomic states. (b) Sketch of the adiabatic rf sweep used to prepare the |−〉 state
adiabatically. Images of the bare states |↑〉 and |↓〉 before starting the rf sweep
(left panel), after the first rf sweep to prepare |−〉 (middle panel) and after a
secon rf sweep to recover the |↑〉 taken with Stern Gerlach separation during time
of flight expansion.

5.3.1 Methods

We implement these concepts with a 39K BEC at magnetic fields B ∼ 56− 57 G.

As atomic states we exploit the mF = −1 and 0 magnetic sublevels of the F = 1

hyperfine manifold |↑〉 ≡ |F,mF 〉 = |1,−1〉 and |↓〉 ≡ |1, 0〉, for which the intra-
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state scattering lenghts are repulsive (a↑↑, a↓↓ > 0), and the inter-state scattering

length is attractive (a↑↓ < 0) [29, 30]. We coherently-couple the two states with

an rf field. For all experiments its Rabi frequency Ω/2π > 8 kHz defines the

dominant energy scale of the system and the system is conveniently described by

the dressed states |−〉 = sin θ |↓〉 − cos θ |↑〉 and |+〉 = cos θ |↓〉+ sin θ |↑〉.
We prepare single dressed states through Landau-Zener sweeps, starting from

state |↑〉 (unless explicitly stated otherwise). We have crosschecked the reversibil-

ity of our Landau-Zener sweeps by ramping the detuning2 δ at a rate ≤ 1 kHz/µs.

In Fig. 5.7 we show that after preparing the |−〉 state we can invert the Landau-

Zener sweep without populating the |↓〉 state. Moreover we can observe in the

middle panel of Fig. 5.7b that the size of the BEC after time of flight is reduced.

This is a signature of the modification of the scattering length. Notice that after

the Landau-Zener sweep is inverted we have less atoms. This is because the |↓〉
state has a larger three-body recombination rate as shown in chapters 3 and 4.

Nevertheless, since the timescale of three-body losses is longer than 1/Ω, these

losses do not affect the coherence between the |↑〉 and |↓〉 states.

5.3.2 Modified interactions

Elastic scattering

In a first series of experiments we focus on the elastic scattering properties of the

lower dressed state |−〉. They are characterized by the effective scattering length

a−− = a↑↑ cos4 θ + a↓↓ sin4 θ + 1
2a↑↓ sin2 2θ as seen from equation (5.2.28) [52],

and thus depend on the state composition of the system via the detuning δ.

We experimentally probe this dependency by performing expansion measure-

ments in an optical waveguide. To this end, we prepare a BEC in state |−〉
with Ω/2π = 20.0(6) kHz and variable detuning δ using a ramp rate of 0.83

kHz/ms. The magnetic field is set to B = 57.280(2) G, for which a↑↑/a0 = 32.5,

a↓↓/a0 = 109, a↑↓/a0 = −52.9, and we always have a−− > 0. Here a0 is the Bohr

radius. After holding the gas for 5 ms at the final detuning, we switch off the

axial confinement abruptly, allowing it to expand for 21 ms along a single-beam

2The detuning uncertainty is ±1.5 kHz, limited by short-term magnetic field fluctuations
(±2 mG). This restricts the ramp rates and Rabi frequencies accessible in our setup. The latter
are calibrated independently through Rabi oscillations.
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Figure 5.8: Elastic scattering properties of the lower dressed state. (a) Atom

number N and (b) axial size σx measured after expansion of the BEC in an

optical waveguide vs. detuning. (c) Orange circles, left axis: Experimental value

of a−− obtained by scaling σ5
x/N to yield a↑↑ at large positive δ. Solid line,

left axis: Scattering length of the |−〉 state. Colorscale of the a−− curve: value

of P as seen from Fig. 5.7. Brown diamonds, left axis: numerical simulation

of the expansion. We rescale the predicted σ5
x/N to yield a↑↑ at large positive

δ. Gray squares, right axis: Polarization P vs. δ extracted from independent

measurements with Stern-Gerlach time of flight imaging (see inset). Black dashed

line: theory prediction for the polarization vs. detuning. Error bars: standard

deviation from 5 independent measurements.
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optical dipole trap (radial frequency ωr/2π = 133(1) Hz). We finally image the

gas in situ using the polarization phase contrast scheme presented in chapter

2 in the same configuration as it has been used in chapters 3 and 4. These

measurements were performed with the imaging set-up after all the improvements

described in chapter 1. We fit the column density images after expansion with

an integrated 2D Thomas-Fermi profile n(x, y) = n0

[
1− (x/σx)2 − (y/σy)2

]3/2
to extract the atom number N = 2πn0σxσy/5 and axial size σx of the cloud.

Fig. 5.8(a) shows the atom number measured vs. detuning. As it can be

observed the atom number is reduced as soon as there is some fraction of atoms

in the |↓〉 state (see Fig. 5.7(a)). This is due to the effect of three-body losses in

this state. Fig. 5.8(b) shows the axial size σx vs. detuning. We see that the size

is greatly reduced close to resonance due to the modification of the interactions.

Notice that, although the scattering length on the large negative detuning side

is bigger than on the large positive detuning side (solid line Fig. 5.8), the size is

not bigger. This is due to the reduction in atom number for negative detunings.

Since the scattering length a−− is related with the axial size and atom number

of the BEC we can infer a−− from the expansion measurements. In the Thomas-

Fermi regime a−− ∝ σ5
x/N [112] (see section 2.3.4 ). Although this approximation

is not strictly valid for all our experimental parameters, we have verified by

numerical solution of the time-dependent Gross-Pitaevskii equation (GPE) that

estimating a−− through this scaling law results in errors below our experimental

uncertainties.

Figure 5.8(c) shows our determination of a−− for various detunings (circles),

corresponding to different values of the polarization parameter P (squares). We

determine the latter by Stern-Gerlach separation of the bare states during time-

of-flight expansion, from which we extract P = (N↑ −N↓) / (N↑ +N↓). In order

to correct for systematic errors in the measurement and compare the results to

the scattering length a−−, we have scaled σ5
x/N to yield a↑↑ at large positive δ.

Whereas for large positive (negative) values of δ the effective scattering length

should approach a↑↑ (a↓↓), we expect a minimum at δ/2π = 6.5 kHz (P =

0.31) due to the attractive character of the inter-state interactions a↑↓ < 0 as

seen from equation (5.2.36). This is in good agreement with the experimental

measurements. The data at large negative δ are in fair agreement with the limit
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a↓↓. At large negative detunings the data suffers from larger uncertainties due to

residual breathing excitations induced by the detuning ramp, which is associated

to large changes of a−−, and the larger three-body recombination rate of state

|↓〉 [30], see Fig. 5.10(a).

An analogous numerical experiment has been performed by solving an effec-

tive single component time-dependent GPE for all detunings using the MATLAB

toolbox of ref. [144], where we have included the scattering length correspond-

ing to the |−〉 state. After the BEC has expanded in the waveguide for 21 ms,

we integrate the 3D density profile through the line of sight and fit it with the

2D Thomas-Fermi profile as we do with the experimental data. From the atom

number and the fitted axial size we extract σ5
x/N and rescale it to yield a↑↑ at

large positive δ, see brown diamonds in Fig. 5.8(c). The numerical experiment

shows a very good agreement on the positive detuning side. For detunings close

to resonance,a−− evaluated from σ5
x/N is underestimated by ∼ 2a0 and for large

negative detunings it is underestimated by ∼ 15% (diamonds). This discrep-

ancies come from the deviation from the Thomas-Fermi approximation for small

scattering lengths and small atom numbers. Nevertheless the observed discrepan-

cies are below our experimental uncertainty. Therefore, for simplicity we decided

to scale σ5
x/N in the plot from Fig. 5.10(c) for the complete range of explored

detunings.

In conclusion, this method provides tunability of a−− by more than 100 a0

without introducing additional loss mechanisms.

Inelastic scattering

Next, we consider the scattering properties of the higher dressed state |+〉. There,

besides elastic collisions, two-body inelastic collisions leading to a change of the

two-particle dressed state are also allowed, see section 5.2.2. For our typical

experimental parameters they limit the lifetime of the BEC to ∼ 1 ms, see Fig.

5.10(b). Fig. 5.9(a) sketches the two possible inelastic processes: 1© |++〉 →
|−−〉 and 2© |++〉 → (|+−〉+ |−+〉) /

√
2. Both lead to the creation of correlated

atom pairs with opposite momenta. They are accompanied by an energy release

of either ~Ω̃ or ~Ω̃/2 per atom, corresponding to the energy gap between the two-

particle dressed states. Similar processes occur in Raman-coupled BECs [59].
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Figure 5.9: Inelastic decay of the higher dressed state. (a) Sketch of possible

dressed state changing collisions 1©: |++〉 → |−−〉 (orange, solid arrows) and 2©:

|++〉 → (|+−〉+ |−+〉) /
√

2 (green, dashed arrows). Energy E and momentum

k are expressed in terms of Ω̃ =
√

Ω2 + δ2 and kΩ̃ =
√

2mΩ̃/~, respectively.

(b) Measured momentum distribution of the collision products showing the non-

scattered BEC in the center and scattered atoms in a Halo corresponding to the

different 1© and 2© processes. Images correspond to the average of 10 independent

measurements. The likelihood of processes 1© and 2© depends on δ. (c) We plot

the integrated linear density ρnsc(ρ) on a shell with differential radius dρ of the

Halo images (inset) vs. the radius of the integration shell ρ. Besides the central

peak corresponding to the BEC, we can distinguish additional two peaks. From

the largest to the smallest shell, they correspond to the decay of the processes 1©
and 2©. We model the halo by a spherical shell with a Gaussian profile centered

around the BEC and extract its parameters by fitting the time-of-flight images

with its forward Abel transform.
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To reveal these dressed-state changing collisions, we prepare rapidly (ramp

rate 500 kHz/ms) a pure sample of |+〉 atoms. We then immediately switch off

the trap and let the gas expand for a time texp. During the first 1 ms the rf-field is

kept on. As depicted in Fig. 5.9(b), the time-of-flight images reveal the presence

of halos of atoms expanding away from the condensate. Since atoms in a BEC

scatter with extremely low relative momenta, the halo radius RH at time texp

directly reflects the velocity of the collision products vf = RH/texp. Processes

1© and 2© can be distinguished because the velocities are given by
√

2~Ω̃/m and√
~Ω̃/m, respectively. Here m is the mass of 39K. Experimentally, we observe

that the likelihood of the two processes depends on the dressed state composition,

and therefore on δ.

We model the density of the ejected atoms as a spherical shell nsc(r) with a

Gaussian profile and centered around the condensate

nsc(r) = A exp

{[
− (r −RH)2

2σ2
H

]}
, (5.3.1)

where r =
√
x2 + y2 + z2. An absorption image of the atoms yields the integral of

the density along the z cartesian axes and, since we have assumed a function with

radial symmetry, this is equivalent to an Abel transform [195–198] . Therefore,

to extract information from the scattered halos we make two-dimensional fits to

absorption images with the forward Abel transform of Eq. (5.3.1) plus a Gaussian

function which represents the unscattered atoms. We weight the fits with the

radial coordinate ρ =
√
x2 + y2 so that the atom number N =

∫
ρnsc(ρ)dρ is

measured properly, see Fig. 5.9(c).

Figures 5.10(a), (b) and (c) present a more systematic study of these inelastic

processes as a function of the parameters of the coupling field. Figure 5.10(a)

depicts the velocity of the atoms in each halo vs. Ω̃, determined by measuring

RH for different values of texp. Figure 5.10(b) shows the measured halo radius

as a function of δ. In both figures, circles (squares) correspond to process 1©
(process 2©). The measurements are in excellent agreement with the theoretical

predictions without any fitting parameters (solid and dashed lines).
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Figure 5.10: Inelastic decay of the higher dressed state. (a) Velocity of the

scattered atoms vf vs. Ω̃. (b), (c) Radius of the halos RH for an expansion

time texp = 20.1 ms and fraction of scattered atoms Nsc/N vs. δ. Theoretical

prediction in brown. Inset: Γi→f vs. δ considering ni = 1.3 · 1020m−3. In

(a), (b) and (c) and orange circles (green squares) correspond to process 1© ( 2©)

indicated in Fig. 5.9. Lines: theory predictions. Error bars: fit error (vertical)

and uncertainty of δ and Ω (horizontal).

The scattering cross section of the two processes strongly depend on detuning.

This can be clearly seen in Fig. 5.10(c), where we plot the fraction of atoms

scattered Nsc/N in each halo as a function of δ extracted from the same set of

images as Fig. 5.10(b). As described in section 5.2.3 the loss rate equation which
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describes the scattering processes is given by Eq. (5.2.40). The scattering cross

sections corresponding to the decay of the 1© and 2© process correspond to the

Eq. (5.2.41) and (5.2.42) respectively. As seen in Fig. 5.10 (c), the measured

Nsc/N agrees qualitatively with the line shapes of both Γi→f1,f2 . To estimate

the scattered fraction we should take into account the density reduction during

the 1 ms expansion in time of flight. In general, the density decay due to the

expansion dynamics and inelastic collisions cannot be decoupled. However, on

resonance the expansion and scattering timescales are very different and we can

easily estimate the |++〉 → |−−〉 scattered fraction neglecting the expansion.

We obtain a good agreement with the experimental data, see Fig. 5.10.

5.3.3 Dressed-state bright solitons

Adiabatic preparation

Figure 5.11: Formation of a dressed-state bright soliton. (a) a−− vs. δ. Near zero
detuning a−− < 0. (b) In situ dynamics of the gas after an evolution time tg in
the optical waveguide. For δ/2π = 0 (a−−/a0 = −3.5) we observe the formation
of a self-bound bright soliton, whereas for δ/2π = ±250 kHz interactions are
repulsive and the gas expands.

After demonstration of the different collisional couplings present in dressed

BECs, we refocus on the lower dressed state |−〉 and exploit the broad tun-
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ability of its effective scattering length to explore attractively interacting sys-

tems. In optical waveguides, this situation enables the study of bright solitons:

matter-wave packets that propagate without changing their shape because at-

tractive non-linearities balance the effect of dispersion along the unconfined di-

rection. In chapter 4, we have shown that two-component incoherent mixtures

with residual mean field attraction can also form bright solitons in quasi-1D. In

coherently-coupled systems, these solitons are formed by dressed atoms: we call

them dressed-state bright solitons. As usual, they are only stable while the gas

is effectively one dimensional, with an interaction energy that remains below ~ωr
[46–48].

To observe this new type of bright soliton, we study the dynamics of a BEC

in state |−〉 after release in an optical waveguide. The magnetic field is set to

B = 56.000(2) G, where a↑↑/a0 = 35.1, a↓↓/a0 = 57.9, a↑↓/a0 = −53.5, and

a−− can take negative values, see Fig. 5.11(a). We adiabatically prepare the

system at different detunings (ramp rate 1 kHz/ms). For a−− < 0 we keep

the initial atom number below N ∼ 3000 to avoid collapse. To prepare such

small samples, we start with a BEC in state |↓〉 and exploit its large three-body

recombination rate to reduce the atom number, as it was done in the experiments

from chapter 4 [30]. We then remove the axial confinement in 15 ms, allowing

for free evolution in a waveguide. Fig. 5.11(b) shows in situ images of the gas

taken after an evolution time tg. Whereas for δ/2π = ±250 kHz the gas expands,

as expected for a repulsive BEC in states |↑〉 or |↓〉, for δ = 0 its shape remains

unchanged. Here a−−/a0 = −3.5 and we observe the adiabatic formation of a

single dressed-state bright soliton.

Quench of the interactions

In the last series of experiments, we explore the response of the system to a

quench of the effective scattering length from repulsive to attractive values. As

demonstrated in recent experiments [191, 192], this triggers a modulational insta-

bility in the BEC: a mechanical instability where fluctuations in the condensate

density are exponentially enhanced by the attractive non-linearity. Consequently,

the gas splits into several equally spaced components. The growth of the density

modulation is dominated by the most unstable Bogoliubov modes, which have
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characteristic momentum kMI ∼ 1/ξ. Here ξ = aho/
√

4 |a−−|n1D is the healing

length of the BEC in the waveguide, aho =
√
~/mωr the radial harmonic oscilla-

tor length, and n1D the line density of the system before the quench. The charac-

teristic length and time scales of this process are λ = 2π/kMI and τMI = 2m/~k2
MI,

respectively. For t > τMI, each of the components evolves into a bright soliton,

forming a soliton train [36, 199–202]. For a system of size L at the moment of the

quench, the average number of solitons is expected to be NS = L/λ from simple

length scale arguments [191, 192, 200].

quench
expansion expansion

imaging

Figure 5.12: Modulational instability and formation of bright soliton trains. (a)
Sketch of the experimental sequence and exemplary in situ images. (b) Number
of components observed per image NS vs. δ after the quench (orange circles).
Error bars: standard deviation of 4 to 6 independent measurements (vertical) and
uncertainty of δ (horizontal). Orange line, left axis: theory prediction NS = L/λ
(shaded area: uncertainty due to the systematic error in the atom number).
Colored line, right axis: a−− (colorscale: value of P ).

Our experimental sequence is summarized in Fig. 5.12(a). The starting point

of the experiment is a BEC of 65(15) × 103 atoms confined in a crossed optical
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dipole trap3. At t = 0 we switch off the axial confinement and let the atoms

expand in the waveguide (radial frequency ωr/2π = 188(1) Hz) for tg = 11 ms,

reaching a size L ∼ 112µm. At this point, we abruptly change δ (ramp rate

1 kHz/µs), effectively quenching the scattering length from 35.1 a0 to its final

value. An additional expansion time of 10 ms allows the development of the

modulational instability and the formation of a soliton train4, after which we

image the cloud in situ.

Figure 5.12(b) shows the average number of components observed per image

NS as a function of the final detuning. We determine the number of components

with an algorithm similar to the one presented in reference [192]. This algorithm

was implemented by C. S. Chisholm and counts the number of morphological

components in the image. To do so it applies a filter to remove noise and sets

a boundary on the 45% of the maximum pixel count to binarize the image5.

Then the algorithm counts the number of morphological domains6. Whereas

the initial BEC has NS = 1, for all values of δ such that a−− < 0 we measure

NS > 1. The maximum number of solitons in a train is observed at δ/2π =

2.3 kHz, which corresponds to the most attractive value of a−−. Compared

to previous experiments, where interactions were controlled using a magnetic

Feshbach resonance [191, 192], our dressed state approach enables ramp rates

orders of magnitude faster7. This ensures a clear separation of timescales between

the duration of the ramp and τMI, and allows us to perform experiments at more

attractive interaction strengths. Interestingly, our measurements show that the

prediction NS = L/λ remains valid down to a−−/a0 = −4.2 (solid line).

5.4 Conclusions and outlook

In conclusion, we have demonstrated fast temporal control of the collisional prop-

erties of rf-coupled 39K BECs. In the attractive regime, we have observed the

3The initial trap frequencies are (ωx, ωy , ωz)/2π = (26(1), 190(1), 188(1)) Hz.
4Empirically, this is a good compromise between τMI ∼ 5 ms and the reduction of atom

number at long times due to three-body recombination.
5All pixels below (above) 45% of the pixel count are 0(1).
6We set a threshold on the domain size. Domains below 8 pixels are not taken into account.
7We employ peak ramp rates −5 × 104 a0/ms vs. ∼ −6 a0/ms in Ref. [191].
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formation of dressed-state bright solitons, and studied how the modulational in-

stability triggered by an interaction quench develops into a bright soliton train.

In future experiments, we could exploit dressed-state changing collisions as a

new source of correlated atom pairs [61–64]. Another interesting direction would

be to implement the coherent coupling using instead optical Raman transitions.

This would not only provide spatial control of the effective scattering length,

but also allow engineering of higher partial wave collisions with tunable scatter-

ing amplitude [59]. Concerning attractive non-linear systems, we could exploit

the ability to perform fast interaction quenches to study soliton excitations and

breathers [149].

Moreover, in the weak coupling limit, we could study the Josephson effect with

mutual attraction [203]. In this regime, the detuning of the coupling field with

respect to the transition becomes density dependent for unequal intra-component

interaction strengths due to their differential mean field shift. Moreover, in a

similar fashion as explained in 3 and 4, we could tune the modified two-body

dressed state interaction strength close to zero to reveal additional corrections

to the energy of the system. Indeed, an effective three-body non-linearity has

been predicted in rf-coupled BECs [171], which becomes important for smaller

values of the Rabi coupling. They are expected to be attractive when arising

from differential mean-field shifts, and repulsive when stemming from quantum

fluctuations, stabilizing new types of quantum droplets [172, 204]. However, this

experiments are very challenging in 3D due to the magnetic field sensitivity of the

interaction strength which would smear out the measurement of small corrections

to the energy. Instead, this experiments could be performed either in 2D or 1D,

where the three-body non-linearities are more relevant and less prone to magnetic

field noise [171].

Finally, due to their lack of Galilean invariance, spin-orbit coupled two-

component BECs with unequal interactions should enable the observation of

chiral bright solitons due to the momentum dependent differential mean field

shifts [205].
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Conclusions and Outlook

Summary of my thesis

In conclusion, during my thesis I have participated on the development of an

experimental sequence to produce Bose-Einstein condensates of 39K and a new

two-component Bose-Einstein condensate of 39K-41K. In this period, I have up-

graded the existing experimental apparatus with two major contributions.

On the one hand, I have implemented a glass cell 2D MOT which has a steady

vapor pressure of ∼ 2 × 10−7 mbar with an oven temperature below 50◦C, and

with the only pumping of the NEG pump through the differential pumping tube.

This cell has been operating successfully since its installation and allows us to

produce atomic beams to load 109 and 7 × 107 atoms of 41K and 39K in the

MOT, it could be used in the future to install a source of enriched 40K, which

would allow us to study Bose-Fermi mixtures in a system with small differential

gravitational sag.

On the other hand, I have developed a custom-made optical system which

is able to image atoms and generate optical potentials with high resolution. To

improve the performance of our imaging system, we have corrected the main

aberrations of our optical system: the large astigmatism introduced by our vac-

uum view-ports. By doing so, we have been able to measure bright solitons with

a size of 3µm and measure the point spread function of the complete optical

system to be close to the 1.1µm diffraction limit of the optical resolution. Hence,

our optical system shows state of the art performance with a simplified design

as compared to other custom made and commercial objectives. Moreover, this
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set-up could allow us to project potentials on the atoms together with a DMD.

A DMD set-up has been prepared by I. Urtiaga [89], A. Muñoz de las Heras

[90] and D. Allepuz[86] to be installed in the main experiment. In particular, I

have supervised the work of D. Allepuz on the holographic creation of arbitrary

potentials for Bose-Einstein condensates with digital micromirror devices. In the

future, we could install the DMD set-up in the main experiment and use it to-

gether with the microscope to perform different experiments. For instance, we

could generate boxes and study homogeneous systems [206–209], perform Bragg

spectroscopy in order to measure the dispersion relation of interacting Bose-Bose

gases (in a similar fashion as performed for dipolar systems [210]) and produce

moving lattices to prove the superfluidity of droplets.

Using the high resolution optical set-up, I have implemented a polarization

phase contrast technique to measure the column density of optically dense atomic

two-component BECs in situ at intermediate and high magnetic fields in open

transitions. To use this technique, I have developed a direct method to observe the

polarization phase shift introduced by the atoms in order to calibrate the effective

Faraday coefficients, finding a good agreement with our theoretical predictions.

This technique is flexible enough to measure the total column density of an atomic

cloud as well as to measure the difference in column densities. Although the

measurement of the difference remains challenging, the technique could be either

combined with scalar phase contrast or highly saturated absorption imaging in

order to probe both the total atom number and composition of the cloud. This

method presents an advantage over other techniques which include a sequence to

switch off the magnetic fields. Hence, we avoid any dynamical effect which may

occur during this process due to the change of the interactions and observe the

real distribution of the cloud without additional distortions.

These experimental upgrades, have allowed us to study the physics of two-

component Bose-Einstein condensates with repulsive intra-component and attrac-

tive inter-component interactions. This system has allowed me to study different

phases which arise with competing interactions with the help of the imaging

set-up which I have developed.

In a first experiment, we have observed for the first time the stabilization of

incoherent composite quantum droplets stabilized by beyond mean field effects
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in a system with weak attractive interactions. By performing the experiments

in a blue detuned lattice, we have been able to maintain the droplets in the

depth of focus of the objective and provide a weak anti-confinement in order

to forbid the stabilization of bright solitons in our set-up. Moreover, we have

characterized the liquid to gas phase transition which occurs for low enough

atom numbers obtaining a qualitative agreement with the theory. The mismatch

with the theoretical predictions from reference [28] cannot be explained neither

by a failure of the local density approximation nor by crossover effects towards

reduced dimensions [147]. Preliminary indications from Monte Carlo calculations

from the Boronat group indicate that large effective range of the mixture can

play an important role in the stabilization of quantum liquid droplets. Future

experimental work will be needed in order to understand the physical reasons

behind the mismatch. Although, the lifetime of composite droplets limits further

experiments in 3D with these states, our work opens the door to study quantum

liquid droplets in reduced dimensions [123, 147].

During the completion of this thesis, other type of quantum droplets have

been observed in dipolar condensates [32, 34]. Whereas dipolar droplets are

anisotropic, and their description relays on the detailed modelization of the

dipole-dipole interactions, composite quantum droplets allow for the study of

isotropic quantum liquids with well-known interaction properties. Hence, they

are promising to observe energy contributions beyond the LHY approximation.

In a second experiment, we have studied the interplay between incoherent

quantum droplets and bright solitons in a quasi-1D geometry. We have measured

the composition of the solitons and characterized the crossover and transition

between both self-bound states. This study shows the analogy between quantum

droplets and higher order non-linear solitons, such as the cubic-quintic non-linear

solitons [45].

Finally, we have implemented a technique to modify the effective interactions

in the presence of coherent coupling with a composite system with very unequal

interactions. We have performed direct measurements of the modification of the

elastic and inelastic interactions in the strong coupling limit. As compared to

other atomic species with very similar intra and inter-state scattering lengths,
39K offers a wider flexibility. Consequently, our system has allowed us to observe
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bright solitons formed by dressed states in a quasi-1D geometry and study the

modulational instability which occurs after quenching the interactions to the

attractive regime. Moreover, the study of this system could be extended in the

future on the weakly interacting limit in reduced dimensions in order to observe

effective three-body interactions stemming from the differential mean field shift

caused due to the very unequal intra-component interactions [171, 204].

Future perspectives

In chapter 5, we have studied a Bose-Einstein condensate formed by two-components

which are coherently coupled with a radiofrequency field. However, the rf-

coupling is homogeneous over the cloud. Instead, we could implement coherent

coupling with two-photon Raman transitions. This can be realized by using two

beams with frequencies ωL and ωL − ∆ω which are used to coherently couple

two states, |↑〉 and |↓〉, with an energy splitting of ~ω0 via two photon transitions

through a virtual state, see Fig. 5.13 (a). Hence, we could produce a spatially

dependent coupling. When the two beams are co-propagating the situation is

analogous to the rf-coupled system described in chapter 5. Hence, the interac-

tions can be spatially modulated in a similar fashion as performed with optical

Feshbach resonances [180, 182].

When the two beams are counter-propagating two-photon transitions result

in a kick of momentum ±2kL depending on the initial state. Therefore, there is a

coupling between the internal and external degrees of freedom, the so called spin-

orbit coupling. Pioneering experiments on spin-orbit coupling were performed by

the Spielman group [58]. The dispersion relation of a spin-orbit coupled system

presents an avoided crossing between two parabolic dispersion relations of the

bare states which are shifted by 2kL. The energy of the Raman coupled ground

state is plotted in Fig. 5.13(b) and has been measured in references [212–214]. For

Raman coupling energies ~ΩR above 4EL, the dispersion relation of the Raman

coupled ground state is described by (p − pmin(δ))2/2m∗. The minimum of the

dispersion relation is found at pmin, which depends on the detuning, and m∗ is

the effective mass of the Raman coupled ground state. Hence, in this regime,

neutral atoms behave in the same way as charged particles in a vector potential
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(a) (b)

E(
E L
)

k/kL

Figure 5.13: Figure taken from reference [211]. (a) A two-photon transition
between the states |↑〉 and |↓〉 is performed with laser beams with frequencies ωL
and ωL−∆ω. The energy splitting between the |↑〉 and |↓〉 is ω0 and the detuning
of the Raman coupling to the transition is δ = ∆ω − ω0. (b) Dispersion relation
of the Raman coupled ground state at resonance for different Raman coupling
strengths ΩR. Whereas for small couplings it displays two minima at −kL and
kL, for strong couplings it turns into a parabola. The energy and momentum are
plotted in terms of the recoil energy and momentum.

A such that pmin = qA, where q corresponds to an effective charge.

So far, this has allowed the observation of static gauge fields which can be

externally controlled by the coupling field. In all these experiments, the systems

have similar intra-component interactions a↑↑ ≈ a↓↓. However, as it was shown

in reference [205], if a↑↑ 6= a↓↓ there exists a differential mean field shift between

both states. Therefore, the Raman coupling detuning, and consequently the

vector potential A = A(0)+a1n(r), are density dependent, where a1 ∝ (g↑↑−g↓↓).
In other words, it means that there is a back-action between the field and the

matter. To understand this we can consider a time dependent variation of the

density of the system. This would lead to the generation of an electric field

E = −∂A/∂t = −a1∂n/∂t. At the same time, the system needs to satisfy the

continuity equation ∂n/∂t + ~∇ · ~j = 0, and thus a current ~j is generated which

back acts on the atomic cloud. This can lead to the asymmetric expansion of the

condensate, the existence of chiral solitons [205] and the coupling between the

center of mass and breathing modes [215].
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To date, this topic is the subject of current investigation in our team, as al-

ready described in the PhD thesis proposal from A. Frölian [211]. To perform this

experiments we use a Raman laser system [216] which was developed by M. Ballu

under my supervision. The experimental measurements have been mainly carried

out by the PhD students A. Frölian and C. S. Chisholm, and the description of

the results will be described in their thesis.

In conclusion, this shows that using two-component spin-orbit coupled 39K

BECs with unequal interactions also opens the door to perform quantum simu-

lations of interacting gauge theories.
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Appendix A

Energy spectrum vs.

magnetic field
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Figure A.1: Energy of the 2S1/2 state of 39K versus magnetic field. The zero of

energy corresponds to the 2S1/2 state fine structure energy.
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Figure A.2: Energy of the 2P1/2 of 39K state versus magnetic field. The energy

is referenced with respect to the D1 transition.
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Figure A.3: Energy of the 2P3/2 of 39K state versus magnetic field. The energy

is referenced with respect to the D2 transition.
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Appendix B

Faraday laser detuning

The D2 master laser is used for absorption imaging of 39K in time of flight on

the F = 2→ F ′ = 3 transition. To control the imaging frequency on the atoms,

we tune the frequency ∆39
AOM of a double pass acousto-optic modulator (AOM):

fMD2 − 2∆39
AOM = f2→3′ (B.0.1)

The D2 additional species laser is offset locked on the D2 master laser. The beat

between these lasers is controlled with a VCO of frequency ∆D2
BEAT:

f39
D2 = fMD2 −∆D2

BEAT (B.0.1)

The Faraday laser is offset locked on the D2 additional species laser. The beat

between these lasers is controlled with a VCO of frequency ∆FAR
BEAT:

fFAR = f39
D2 + ∆FAR

BEAT (B.0.1)

The light that we use to image the atoms with the Polarization Phase contrast

technique is switched on an off via an AOM with frequency ∆FAR
AOM:

fATOMS = fFAR + ∆FAR
AOM (B.0.1)
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From these equations we get that:

fATOMS = f2→3′ + 2∆39
AOM −∆D2

BEAT + ∆FAR
AOM −∆FAR

BEAT (B.0.1)

where ∆39
AOM = 102.2 MHz, ∆D2

BEAT = 245.2 MHz and ∆FAR
AOM = 81.8 MHz.

To reference the frequency on the D2 transition at a particular magnetic field

we use the following relation:

f2→3′ = fD2 + ∆e −∆g (B.0.1)

where ∆e and ∆g correspond to the excited and ground state shifts coming

from the hyperfine splitting and the magnetic field contribution to the energy.
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Appendix C

Technical details of

polarization phase contrast

imaging

We have performed several experimental tests to asses the validity of this tech-

nique and settle the optimum imaging parameters. In summary, we have decided

to perform dark field phase contrast imaging with a 3 µs imaging pulse of 250

mW/cm2 intensity and 1 MHz linewidth. The probe that we use for B = 57

G and B = 396 G is such that ∆FAR
BEAT = 153 MHz and ∆FAR

BEAT = −515 MHz

respectively unless stated otherwise (see appendix B). In the following sections

we describe the technical details that we have crosschecked to chose this experi-

mental parameters.

Photon recoil blurring

The scattering of photons during the imaging pulse blurs the system we want to

image, effectively reducing the imaging resolution. To estimate this effect we will

assume that the transitions that we probe are closed. The scattering rate R is
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given by:

R = Γρst
ee =

Γ

2

I/Isat

1 + (2δ/Γ)2 + I/Isat
(C.0.0)

where Γ is the natural linewidth of the transition, ρst
ee is the steady-state pop-

ulation in the excited state and Isat = 1.75 mW/cm2 is the saturation intensity

for the D2 line. This estimate represents an upper bound on the real photon

scattering because ρst
ee will get reduced due to the decay of the atom to other

states.

The root-mean square diffusion xrms induced due to photon recoil is approx-

imately given by:

xrms(t) =
1

3

√
Ns(t)vrect (C.0.0)

where Ns(t) = Rt is the number of photons scattered in a time t and vrec = ~k/m
is the velocity of recoil [97]. For B = 57 G and ∆FAR

BEAT = 153 MHz |b〉 and

|c〉 are red detuned by 17.5Γ and 12.2Γ from the closest transitions, leading to

a xrms = 45 nm and 33 nm far below our imaging resolution. The number

of scattered photons is Ns =11.4 and 6.2 respectively, and thus the imaging is

destructive. Similarly, for B = 396 G and ∆FAR
BEAT = −515 MHz |a〉 and |b〉 are red

detuned by 44.7Γ and 29.7Γ from the closest transitions, leading to a xrms = 20

nm and 13 nm and Ns = 2.3 and 1 respectively.

Depumping

The transitions that we probe with this technique are not closed. Thus, atoms

may fall into other states during the exposure. To observe this effect we measured

the signal IA for different exposure times at I = 250 mW/cm2. As it can be seen

in Fig. C.1, the signal saturates for increasing exposure times. We associate this

to an optical depumping produced by the spontaneous emission of the excited

states to other ground states. The characteristic time τ ∼ 10µs of this process

is very similar both for low field (B = 57 G, ∆FAR
BEAT = 153(1) MHz for both

states |b〉 and |c〉 ) and high field (B = 396 G, ∆FAR
BEAT = −515(1) MHz for both

states |a〉 and |b〉). We chose the exposure time1 to be 3 µs , therefore 25% of

the atoms decay are depumped from the transition. As a result, the calibrated

1Our experimental control program cannot deal with events shorter than 3 µs.
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Faraday coefficient may differ from the theoretical expectation. Nevertheless,

given that the optical depumping is a one-body process, we can calibrate the

Faraday coefficient for a particular exposure time and still be able to measure

the atom number properly.

Figure C.1: Optical depumping. Red circles: Exemplary atomic signal IA vs.
exposure time for B = 396 G and ∆FAR

BEAT = −515(1)MHz for state |a〉. Line:
Phenomenological fit to A(1− e−t/τ ).

Linearity of signal vs. intensity

In the analysis of the phase contrast imaging we have assumed that the signal

from the atomic cloud on the camera follows a linear relation with the intensity

of light as expressed in equation (2.3.1a). Nevertheless, we need to use high

intensities in order to have a reasonable signal with short exposure times and

saturation effects could play a role. However, the imaging is performed far from

resonance and thus the saturation is not really relevant. In order to prove that,

we have exposed a BEC for 3µs for different intensities. Both for low field (B =
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57 G, ∆FAR
BEAT = 153(1) MHz) and high field (B = 396 G, ∆FAR

BEAT = −515(1) MHz)

we observed a linear relation with respect to the intensity. In the top panel of

Fig. C.2, we show an exemplary measurement for high field far from resonance(B

= 396 G, ∆FAR
BEAT = −515(1) MHz). Instead if we perform the same measurement

closer to resonance (B = 396 G, ∆FAR
BEAT = −292(1) MHz) we observe that the

signal saturates (bottom panel Fig. C.2).

Provided that the IA depends on the intensity, the calibration relies on the

intensity being constant. Stabilizing the intensity of a 3 µs imaging pulse is

not a trivial task. We have crosschecked that the fluctuations of the peak pulse

intensity are smaller than 5%.
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Figure C.2: IA and IB signals vs intensity measured at B = 396 G for state |a〉.
The signal is taken as the average pixel count of a crop of 2.9µm×2.9µm around
the center of a BEC and has an offset of ∼ 500 counts. Top panel: ∆FAR

BEAT = −515
MHz. The IB signal at the smallest intensities shows the presence of atoms which
have not been scattered. Bottom panel: ∆FAR

BEAT = −292 MHz.

Atomic lensing

Cold atomic clouds can act as a little lenses. In reference [98], a simple model is

presented to evaluate the order of magnitude of this phenomenon. The atomic

cloud is considered as a spherical ball of radius R with an index of refraction
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given by the dilute media approximation as described in eq. (2.2.3). The focal

length f of the atomic lens is given by:

f =
2πR2

θS
Aλ

, (C.0.0)

where θS
A = 4πR(n− 1)/λ is the scalar phase shift introduced by the atoms and

λ is the imaging wavelength. This lens introduces a deflection angle θD:

θD = R/f = ραS/ε0. (C.0.0)

Therefore if θD was bigger than the collection angle (θC ≈ 0.43) of our imaging

system, we would lose light and the effective resolution would be reduced. Instead,

if θD < θC we can just focus the imaging system accordingly to collect all the light.

For typical imaging parameters we have that αS/ε0 ∼ 3 ·10−22m3. Assuming the

biggest peak densities that we have experimentally observed ρ ∼ 1021m−2 we

would have a deflection angle θD ∼ 0.15 < θC. Therefore our imaging resolution

does not seem limited by atomic lensing.
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and F. Ferlaino. Quantum-fluctuation-driven crossover from a dilute Bose-

Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys.

Rev. X 6 041039 (2016).
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Fotòniques (2017).

[91] P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. Eric Tai, M. Rispoli, R. Is-

lam, and M. Greiner. Ultra-precise holographic beam shaping for micro-

scopic quantum control. Opt. Express 24 13881 (2016).

[92] S. Kuhr. Quantum-gas microscopes: A new tool for cold-atom quantum

simulators. Natl. Sci. Rev. 3 170 (2016).

[93] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément,

L. Sanchez-Palencia, P. Bouyer, and A. Aspect. Direct observation of An-

derson localization of matter waves in a controlled disorder. Nature 453

891 (2008).

[94] G. Reinaudi, T. Lahaye, Z. Wang, and D. Guéry-Odelin. Strong saturation
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Politècnica de Catalunya (2014).

[101] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn. Making, probing

and understanding Bose-Einstein condensates. arXiv:cond-mat/9904034

(1999).

[102] C. C. Bradley, C. A. Sackett, and R. G. Hulet. Bose-Einstein condensation

of Lithium: observation of limited condensate number. Phys. Rev. Lett. 78

985 (1997).

[103] M. Gajdacz, P. L. Pedersen, T. Mørch, A. J. Hilliard, J. Arlt, and J. F.

Sherson. Non-destructive Faraday imaging of dynamically controlled ultra-

cold atoms. Rev. Sci. Instrum. 84 083105 (2013).

[104] H. A. Lorentz. The theory of electrons and its applications to the phenomena

of light and radiant heat. Dover Publications (2003).

[105] C. J. Foot. Atomic Phyics. Oxford University Press (2004).

[106] T. G. Tiecke. Feshbach resonances in ultracold mixtures of the fermionic

quantum gases 6Li and 40K. Ph.D. thesis, University of Amsterdam (2009).

[107] J. J. Sakurai and J. Napolitano. Modern quantum mechanics. Cambridge

University Press (2017).

[108] L. J. LeBlanc. Exploring many-body physics with ultracold atoms. Ph.D.

thesis, University of Toronto (2011).

[109] U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and

M. Zielonkowski. Simple scheme for tunable frequency offset locking of

two lasers. Rev. Sci. Instrum. 70 242 (1999).

[110] R. Meppelink, R. A. Rozendaal, S. B. Koller, J. M. Vogels, and P. Van Der

Straten. Thermodynamics of Bose-Einstein-condensed clouds using phase-

contrast imaging. Phys. Rev. A 81 (2010).

209



[111] S. Giorgini, L. P. Pitaevskii, and S. Stringari. Condensate fraction and

critical temperature of a trapped interacting Bose gas. Phys. Rev. A 54

R4633(R) (1996).

[112] Y. Castin and R. Dum. Bose-Einstein condensates in time dependent traps.

Phys. Rev. Lett. 77 5315 (1996).

[113] F. Dalfovo and S. Stringari. Helium nanodroplets and trapped Bose-Einstein

condensates as prototypes of finite quantum fluids. J. Chem. Phys. 115

10078 (2001).

[114] M. Barranco, R. Guardiola, S. Hernández, R. Mayol, J. Navarro, and M. Pi.

Helium nanodroplets: an overview (2006).

[115] D. Baillie, R. M. Wilson, R. N. Bisset, and P. B. Blakie. Self-bound dipolar

droplet: a localized matter wave in free space. Phys. Rev. A 94 021602(R)

(2016).

[116] F. Cinti, A. Cappellaro, L. Salasnich, and T. Macr̀ı. Superfluid filaments

of dipolar bosons in free space. Phys. Rev. Lett. 119 215302 (2017).

[117] C. Staudinger, F. Mazzanti, and R. E. Zillich. Self-bound Bose mixtures.

Phys. Rev. A 98 023633 (2018).
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