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Abstract

Sensory neurons use sequences of electrical pulses (known as
action potentials or spikes) to encode and transmit information
of external temporal stimuli. Neural coding is the research
field that studies the relationship between external stimuli and
neuronal responses. Since there is not a unique relationship
between them, the mechanisms underlying neural coding are
not yet fully understood. However, it is known that neurons
use different mechanisms to encode external stimuli, which
can be complementary or functional under different situations.
An important issue is how neural noise (stochastic electrical
fluctuations which do not carry any information) influences
neural coding. Here we focus on the response of noisy neurons
to a weak and periodic external input. The signal is considered
weak enough to be sub-threshold, i.e., by itself it does not
induce spikes. However, neural noise triggers spikes, which
encode the information of the weak signal. In this situation
a encoding mechanism based on symbolic spike patterns has
been been proposed for single (uncoupled) neurons; here we
aim to determine if this mechanism is plausible for coupled
neurons.

First, we use the FitzHugh-Nagumo model to study two
coupled neurons. We consider the situation in which only one
neuron perceives the weak signal (named as neuron 1). We
characterize the role of the coupling on the encoding of the
signal and we analyze the sequences of inter-spike-intervals of
neuron 1 using the symbolic method (known as ordinal anal-
ysis), which can capture preferred and infrequent spike pat-
terns (defined by the time interval between spikes). Indeed,
we demonstrate that the encoding mechanism is robust to cou-
pling: the neuron that perceives the signal fires a spike train
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that has preferred and infrequent spike patterns which carry
information about the signal’s amplitude and frequency.

Second, we apply ordinal analysis to the sequences of inter-
spike-intervals generated by two coupled Morris-Lecar neu-
rons. We investigate if different neuron types (regarding class
1 or class 2 excitability) generate similar spike sequences, and
characterize the differences in signal encoding and transmis-
sion when changing the type of coupling (electrical or excita-
tory chemical synapses). We find that depending on the signal
frequency, specific combinations of neuron/class and coupling
type allow a more effective encoding, or a more effective trans-
mission of the signal.

Third, we analyze the activity of an ensemble of neurons,
when they all perceive the weak signal. We apply ordinal anal-
ysis to the spike sequences of all neurons and we demonstrate
that a neuronal ensemble can also encode information of the
signal in the form of preferred or infrequent spikes patterns,
as one or two coupled neurons do. Also, we show that neu-
ronal coupling is beneficial for signal encoding (because the
neuronal ensemble detects signals of weaker amplitude) and
that just few links among neurons can significantly improve
signal encoding (because the probabilities of the preferred and
the infrequent patterns take extremer values).

Taken together, the results presented in this thesis suggest
that a temporal code based not on the precise timing but on
the relative timing of the spikes of individual neurons is a plau-
sible mechanism for encoding the information of weak periodic
external stimuli.
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Resum

Les neurones sensorials disparen seqüències d’impulsos elèc-
trics (coneguts com a potencials d’acció) per codificar i trans-
metre informació d’estímuls temporals externs. La codificació
neuronal és el camp d’investigació que estudia la relació entre
els estímuls externs i les respostes neuronals. Atès que no hi
ha una relació única entre ells, els mecanismes subjacents a
la codificació neural encara no es comprenen plenament. No
obstant això, se sap que les neurones utilitzen diferents meca-
nismes per codificar els estímuls externs, que poden ser com-
plementaris en diferents situacions. Una qüestió important és
com el soroll neuronal (fluctuacions elèctriques estocàstiques
que no transmeten cap informació) influeix en la codificació
neuronal.

Aquí ens centrem en com les neurones responen a un senyal
feble i periòdic. El senyal es considera prou feble com per
ser subumbral, és a dir, per si sol no indueix a les neurones
a disparar. No obstant això, el soroll neuronal desencadena
potencials d’acció que codifiquen la informació del senyal feble.
En aquesta situació s’ha proposat un mecanisme de codificació
basat en patrons simbòlics per a neurones desacoblades; en
aquesta tesis tractarem de determinar si aquest mecanisme és
plausible per a neurones acoblades.

Hem fet servir, primerament, el model neuronal Fitzhugh-
Nagumo per estudiar dues neurones acoblades. Hem conside-
rat la situació en la qual només una neurona percep el senyal
feble (l’anomanem neurona 1). Hem caracteritzat el paper de
l’acoblament en la codificació del senyal i hem analitzat les
seqüències d’intervals entre potencials d’acció de la neurona 1
utilitzant el mètode anàlisi simbòlic, el qual pot capturar pa-
trons d’impulsos elèctrics preferits i infreqüents (definits pel
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temps relatiu entre impulsos). De fet, hem demostrat que el
mecanisme de codificació és robust a l’acoblament: la neurona
que percep el senyal dispara una seqüència d’impulsos elèc-
trics, la qual conté patrons preferits i infreqüents que depenen
de l’amplitud i freqüència del senyal.

En segon lloc, hem aplicat l’anàlisi simbòlic a les seqüències
d’intervals entre potencials d’acció generats per dues neurones
acoblades simulades amb el model neuronal Morris-lecar. Hem
investigat si diferents tipus de neurones (pel que fa al tipus
d’excitabilitat neuronal, classe 1 o classe 2) generen seqüències
de potencials d’acció similars, i hem caracteritzat les diferènci-
es en la codificació i transmissió del senyal en canviar el tipus
d’acoblament (sinapsis elèctriques o químiques excitatòries).
Podem establir que depenent de la freqüència del senyal, com-
binacions específiques de neurona/classe i tipus d’acoblament
permeten una codificació més efectiva, o una transmissió més
efectiva del senyal.

En últim lloc, hem analitzat l’activitat d’un conjunt de
neurones, quan totes elles perceben el senyal feble. L’anàlisi
simbòlic l’hem aplicat a les seqüències d’accions de potencials
de totes les neurones i hem demostrat que un conjunt neuro-
nal també codifica la informació del senyal en forma de patrons
d’accions de potencials preferits o poc freqüents, com ho fan
una sola o dues neurones acoblades. A més, hem establert
que l’acoblament neuronal és beneficiós per a la codificació de
senyals (ja que el conjunt neuronal detecta senyals d’ampli-
tud més febles) i que amb només pocs enllaços entre neurones
podem millorar significativament la codificació de senyals (ja
que les probabilitats dels patrons preferits i dels poc freqüents
prenen valors més extrems).
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En conjunt, els resultats presentats en aquesta tesi sugge-
reixen que un codi neuronal temporal basat no en el temps
precís sinó en el temps relatiu dels potencials d’acció de les
neurones individuals és un mecanisme plausible per codificar
la informació dels estímuls externs periòdics febles.
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Chapter 1

Introduction
1.1 Neuronal dynamics

The nervous system regulates and controls the activity and
functions of the body through the central nervous system and
the peripheral nervous system. The peripheral nervous sys-
tem connects through nerves (bundles of long fibers) the cen-
tral nervous system to organs and limbs. The central nervous
system processes external and internal information and coordi-
nates the activity of all parts of the body. The two main parts
of the central nervous system are the brain and the spinal
cord. The brain controls motor and sensory functions (such
as eye movement after a visual stimuli) and it performs high
cognitive functions (such as language processing, reasoning or
memory tasks). On the other hand, the spinal cord is respon-
sible for carrying signals from the brain to other parts of the
body and vice versa, it is responsible for many of our quick
and involuntary reflexes and it also controls movements of the
limbs and the trunk.1

Neurons are the fundamental units of the brain and the
spinal cord. Camilo Golgi (1843-1926) and Santiago Ramón y
Cajal (1852-1934) gave the first detailed descriptions of neu-
rons. In particular, Golgi developed a method of staining ner-
vous tissue (called Golgi’s method) which allowed to observe in
detail the morphology of individual neurons. Besides, Ramón
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y Cajal studied and later described the morphology of neu-
rons (see Fig. 1.1). He was one of the first scientists that
defended the neuron doctrine, which states that neurons are
the anatomical, physiological, genetic and metabolic units of
the nervous system.2,3 Golgi and Ramón y Cajal jointly re-
ceived the Nobel Prize in Physiology of Medicine in 1906 in
recognition of their work on the structure of the nervous sys-
tem.

Figure 1.1: Drawing of a Purkinje cell of an adult man by Ramón y Cajal.
Purkinje cell is a neuron located in the cerebellum (part of the human
brain). From.3

A neuron has three differentiated regions: the dendrites,
the soma and the axon (see Fig. 1.2). Dendrites are the ex-
tensions of the neural cell that receive electrical signals from
other neurons and propagate to the cell body, i.e., the soma, of
the neuron. The axon is the part of the neuron that propagates
electrical signals from the cell body to the dendrites of other
neurons. These electrical signals are called action potentials
(or spikes) and are the language neurons use to communicate
among them: once a neuron fires an action potential (due to
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an external stimuli or due to an action potential of another
neuron), it might elicit, in turn the generation of another ac-
tion potential in another neuron.

Figure 1.2: Structure of a neuron: the dendrites, the soma and the axon.
A neuron is connected to other neurons via a synapse. The inset shows
an example of an action potential. From.4

There are many types of neurons (regarding morphology,
physiology, function and dynamics) both in the brain and the
spinal cord. While in the brain the distinction between types
of neurons is quite complex, in the spinal cord is straightfor-
ward; we can easily differentiate three types of neurons regard-
ing their functionality: sensory neurons, motor neurons and
interneurons. Sensory neurons are sensitive to external per-
turbations: they fire an action potential to the central nervous
system when they receive sensory input from the environment,
motor neurons control our muscle movements and glandular
output by transmitting action potentials from the central ner-
vous system and interneurons connect neurons to one another:
they transmit electrical signals from motor neurons to sensory
ones.5
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Between two neurons there is a gap called synapse, which is
responsible for signal transmission. Each neuron has approx-
imately 10.000 synapses, but some may have up to 150.000.
Synapses pass a signal from one neuron (presynaptic) to the
next neuron (postsynaptic). Synapses can be electrical or
chemical.6

Electrical synapses

Electrical synapses directly connect through gap junctionsa

the citoplasm of the presynaptic neuron to the citoplasm of
the postsynaptic one, which allows electrical current to pass
in both directions.6 Yet, in some cases electrical synapses are
not bidirectional symmetric: the efficacy of transmission in one
direction is lower than in the other one; as for example, the
giant motor synapse of the crayfish.7 Electrical synapses allow
for a rapid and bidirectional conduction of electrical signals
from neuron to neuron, which easily synchronizes the activity
among connected neurons.7

Chemical synapses

Chemical synapses are synapses that use chemical messen-
gers (known as neurotransmitters) to transmit signals from
a presynaptic neuron to a postsynaptic neuron. When an ac-
tion potential arrives at the synapse it leads to the release of
a neurotransmitter, which binds to receptors located in the
membrane of the postsynaptic neuron. In turn, ion channels
open and allow the flow of ions into the postsynaptic cell. The

aGap junctions are inter-cellular connections that establish a bidirec-
tional communication between cells by allowing small molecules, ions or
electrical impulses to pass through a regulated gate between cells. They
occur in almost all animal cells that touch each other.
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ion flow can be positively or negatively charged, thus chemical
synapses can have either an excitatory effect (i.e., depolarizing
effect: positive flow of ions into the neuron) or an inhibitory
effect (i.e., hyperpolarizing effect: negative flow of ions into
the neuron) on the postsynaptic neuron.8

1.1.1 Neuronal excitability

Action potentials are the result of the excitability of neurons.
Excitability is characteristic of many systems in nature: car-
diac tissues, chemical reactions and ion channels, to mention
just a few examples.9 Three states describe the dynamics of
excitable systems: a rest state, an excited state and a re-
fractory state. Excitable systems have a well-defined thresh-
old. The system can only perform a particular action (i.e.,
leave the rest state and go through the excited state) for a
sufficiently strong external perturbation which allows the sys-
tem to exceed the threshold, otherwise for small perturbations
the system responds with small damped oscillations (i.e., sub-
threshold oscillations). After the system performs the action,
it needs some time to be ready to perform a second action in
response to a second stimulus. This time is known as the re-
fractory period: the system resides in the refractory state. If a
second stimulus arrives during the refractory time, the system
is incapable of repeating the action. An important character-
istic of an excitable system is that the strength of the system’s
response is independent of the strength of the stimulus.

In the case of a neuron, the resting state of the membrane
potential is about −70 mV (relative to the surrounding extra-
cellular medium, which is defined to be 0 mV). In order to sup-
port this membrane potential difference, there are ion pumps
all along the cell membrane which keep potential concentra-
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Figure 1.3: The different states of a neuron’s excitability. (a) An in-
put below the threshold results in small oscillations around the system’s
stable state; (b) and (c) an input above the threshold (no matter its am-
plitude) results in a spike; (d) a second stimulus can lead to a second
spike if it takes place after the system’s refractory period; (e) if the sec-
ond stimulus takes place right after a previous stimulus, the neuron will
not respond. From.9

tion gradients. For example, there is a larger concentration of
K+ inside the neuron than in the extracellular medium, on the
other hand, Na+ concentration is much higher outside than in-
side the neuron.8 When small perturbations arrive (i.e., flow
of ions in and out of the neuron) the membrane potential can
rise or decrease, performing damped oscillations around the
rest state [Fig. 1.3(a)] . If the perturbation is large enough
(large influx of positive ions inside the neuron) the membrane
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potential rapidly rises (depolarization of the cell) and falls (hy-
perpolarization of the cell); performing the action potential, a
process that is schematically shown in Fig. 1.3(b).

The amplitude of the action potential does not depend
on the strength of the stimulus [Fig. 1.3(c)]. The neuron
needs some time before it can fire another action potential
[Fig. 1.3(d) and (e)].

While all neurons are excitable, the response to an exter-
nal input varies from neuron to neuron. Two neurons can be
morphological identical but they might respond differently to
a same synaptic input because of each cell’s intrinsic state and
properties.10 Indeed, Hodgkin (1948)11 injected a DC-current
to isolated axons from the same crustacean Carcinus maenas
and found out that while some of them responded to inputs
of arbitrarily low frequency with sustained spikes sensitive to
the input frequency, others responded only to inputs of larger
frequencies with sustained spikes in a certain frequency band.4
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Figure 1.4: Example of neuronal response for class 1 (a) and class 2 (b)
excitability to an external input that grows linearly in time I. Class 2
neurons need larger strength to perform sustained spikes. To perform the
simulations we used the Morris-Lecar model, see Chapter 2 for details.
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He identified three classes of responses, which lead to the
Hodgkin classification:

Class 1 excitability: The frequency of the action poten-
tials can be very low and depends on the amplitude of the
applied current. Indeed, we can observe the sequences of
spikes in Fig. 1.4(a) where we simulated the response to
the injection of a ramp current I into a neuron of class
1 (modeled with Morris-Lecar model, see Chapter 2 for
details).

Class 2 excitability: The frequency of the generated ac-
tion potentials is limited to a certain band and the fre-
quency is relative insensitive to the amplitude of the ap-
plied current. Simulated in Fig. 1.4 (b).

Class 3 excitability: The neuron does not fire sustained
spikes but single-spikes. Hodgkin named this class sick
or unhealthy.

1.1.2 Neural noise

Noise is present in nerve cells, since neuronal activity has an
intrinsic stochastic character: synapses may randomly release
some neurotransmitters, ion channels can switch on and off
arbitrarily, random input arriving from the activity of other
neurons, intrinsic excitability of a neuron, etc. Noise influ-
ences the encoding and transmission of external signals or sig-
nals from other neurons, as well as the firing activity of sin-
gle neurons.12,13 Remarkably, noise in excitable systems can
result in an oscillatory behavior: stochastic oscillations arise
in excitable systems due to noise perturbations.9 Yet, these
noise-induced oscillations can have a most regular motion for
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an optimal noise intensity; this phenomenon is known as co-
herence resonance.14–22 In the same manner, noise can have
a constructive role on the transmission of input signals in ex-
citable systems: an optimal noise intensity enhances the detec-
tion of weak periodic or aperiodic signals; this phenomenon is
known as stochastic resonance.23–31 In particular, experiments
on motor control in humans show that input noise provides a
functional benefit in balance control. Specifically, weak me-
chanical noise applied to the feet can reduce significantly the
postural sway in individuals.32

1.2 Neural coding
Sequences of action potentials are the language that the ner-
vous system (and thus the central nervous system) uses to
communicate. When we touch, the central nervous system de-
codes the sequences of spikes (or train of spikes) which thou-
sands of sensory neurons emitted as a result of the change of
pressure in our skin. When we hear, the central nervous sys-
tem decodes the sequences of spikes which auditory neurons
emitted as a result of the incoming pressure waves. Any kind
of perception results in sequences of spikes (see Fig. 1.5 for an
example) which the central nervous system processes.

Figure 1.5: Train of spikes after a current injection in a cat cortical
neuron. From.33
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In turn, if there is the need of a response, the nervous sys-
tem sends out other spike sequences to the motor neurons.34
Although spikes are the information bits of the neural code,35
there are other mechanisms than can play important roles in
information processing. Sancristóbal and collaborators have
shown that subthreshold oscillations influence the precise tim-
ing of action potentials.36 Figure 1.6 shows the neuronal re-
sponse to two synaptic inputs arriving at different times: ei-
ther a spike is fired (blue solid line) or not, (red dashed line)
depending on the phase of the subthreshold oscillation at the
time when the synaptic input was received.36

Figure 1.6: Schematic representation of subthreshold oscillations that
influence the precise timing of action potentials: depending on their phase
at the moment of the input, the neuron will fire or not. From.36

The other mechanism which has an important role in infor-
mation transmission is bursting. A burst is composed by two
or more spikes followed by a period of quiescence,4 see Fig.
1.7. According to Krahe and Gabbiani37 bursting can opti-
mize the reliability of sensory information transmission across
unreliable synapses.

This section focuses on how neurons encode and transmit
inputs in the sequence of action potentials. Neurons can en-
code information of different types of signals using different
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Figure 1.7: Schematic representation of bursting behavior. Neurons can
fire either single spikes or bursts of spikes depending on the external
perturbation and the intrinsic neuronal characteristics. From.4

encoding mechanisms. Next, we summarize some well-known
mechanisms:

Single-cell coding
Single-cell coding states that the activity of single neu-
rons is enough to encode and process information.38 Back
in the 1960s, Hubel and Wiesel39–41 performed single-
unit recordings in the visual cortexb of a cat which showed
that single neurons were much more sensitive and selec-
tive to an external input than it was previously thought.42
Jerry Lettvin43 in 1969 coined the well-known term grand-
mother cell44–48 to illustrate how neurons represented
complex and specific conceptsc. The grandmother cell
would only respond to a highly specific, complex and
meaningful stimulus such as the image of one’s grand-
mother.49 Although it is the term grandmother cell
which exemplifies the concept of single-cell coding, some

bIn mammals the brain is composed by the cerebrum, cerebellum and
the brainsteam. The outer layer of the cerebrum is the cerebral cortex,
where the visual cortex is located.6

cIn 1969 Jerry Lettvin was a professor at the Massachusetts Institute
of Technology. He had to give at short notice a course on biological
foundations and wanted to illustrate how a neuron could represent a quite
complex concept and came up with the idea of grandmother cells.49
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years earlier to Lettvin’s course, Konorski50 already in-
troduced a similar concept known as gnostic neurons. A
gnostic neuron is a single neuron sensitive to complex
stimuli such as faces, hands, emotions and animate ob-
jects. Gnostic neurons exemplify in a similar manner the
concept of single-cell coding as the grandmother cells do.
In 1992, Salzman and collaborators correlated the deci-
sion behavior and neuronal activity of a monkey when
the monkey had to decide between random and coherent
movement of a external stimulus. They showed that the
external signal was encoded on the spike count produced
by one neuron.51 Also, Bialek and collaborators showed
that individual spikes carried information about the time
variation of a sensory stimulus.34 Quiroga and collabora-
tors reported that different pictures of celebrities, land-
marks and objects selectively activated neurons of the
human temporal lobe: a single neuron responded only
to images of The Beatles; another neuron (from another
patient) responded only to pictures of Jennifer Aniston,
other neurons responded to images of Halle Berry, Julia
Roberts and Kobe Bryant.52

Population coding
On the other hand, population coding states that the
spikes fired by large population of neurons encode infor-
mation. These neurons are broadly tuned, which means
that they respond to a large variety of attributes of an
stimulus, not only to one in particular.53 Desimone and
Gross reported face-selective cells which responded not
only to a unique face but to other faces with similar
sizes, orientations and colors.54,55 Georgopoulos and col-
laborators analyzed an ensemble of 282 motor cortical
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neurons of a subject while varying the direction of the
subject’s arm.56 They found out that 80% of the neu-
rons were broadly tuned: the activity of each neuron
ranged over all arm’s directions. Neuron activity was
highest with movements in the preferred direction and
lowest with movements on the opposite direction. This
coding scheme is illustrated in Fig. 1.8, where the firing
rate activity for three hypothetical neurons is plotted in
function of the direction of movement. Each cell has a
broad firing rate curve, yet if cell 1 and cell 2 are active,
and cell 3 inactive, the direction of movement will be
given by the overlapping region of cells 1 and 2, narrow-
ing down the preferred direction of movement.57

Figure 1.8: Scheme of population coding. From.57

Hybrid (or sparse) coding
While single-cell coding involves highly specialized neu-
rons, population coding involves a large population of
neurons broadly tuned. Instead, sparse coding involves
a small number of neurons which respond to a specific
and narrow range of attributes of the external stimuli.44
For example, each cone photoreceptor is sharply tuned
to light’s location.53 Another example of sparse cod-
ing comes from recordings of songbirds, where a sparse
population of neurons underlies the generation of neu-
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ral sequences. Each of those neurons only burst when a
specific vocal element of the song is repeated.58,59

Cell assemblies coding
Cell assemblies are overlapping sets of neurons which
code different information. An individual neuron can
belong to different cell assemblies. The neurons are in-
terconnected by flexible synapses, allowing for a dynamic
reconstruction and deconstruction of the cell assembly.38
Sakuray analyzed single neuronal activity from the rat
hippocampal formationd and temporal cortex during the
performance of auditory, visual, and auditory-visual
tasks.61 Of the total number of task-related neurons
(i.e., neurons that showed activity during one of the
tasks) almost 70% showed activity during more than one
task, suggesting that each individual neuron is involved
in more than one processing tasks.

Regardless of whether neurons use a single-cell code or a pop-
ulation code to encode information, they can encode informa-
tion either in the number of spikes they fire (i.e., rate coding)
or in the timing when the spikes are fired (i.e., temporal code).

Rate coding
In this coding scheme, the number of spikes a neuron
fires in a given time window (known as firing rate) rep-
resents an attribute of the external stimulus. For a single
neuron, the rate code is the firing rate; for a population
of neurons, the rate code is the average of the individual
firing rates. McAdams and Maunsell presented a bar of

dThe hippocampal formation is a region in the temporal lobe of the
brain that comprises the hippocampus and related structures. Memory,
spatial navigation and control of attention take place in the hippocampal
formation. It has a similar organization in all mammals.60
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light to two subjects (two rhesus monkeys) and measured
the firing rate of individual neurons from the visual cor-
tex while varying the orientation of the bar of light. The
firing rate of each neuron was higher or lower depending
on the bar orientation, thus the firing rate encoded the
orientation of the bar.62

Temporal coding
Temporal codes use the time of neural firing to encode
the information about the stimulus.63,64 For example,
two different stimuli can elicit the same firing rate to a
single neuron, however the evolution of the spike num-
ber over time for both stimuli can be different.65 Rich-
mond and collaborators recorded the activity of a cor-
tex neuron of a monkey during the presentation of two
different visual stimuli. The neuron elicited the same
number of spikes over the whole counting interval, yet
the number of spikes at each unit of time was not the
same for both stimuli suggesting that precise timing en-
coded information about the stimulus. Mainen and Se-
jnowski66 demonstrated that while neocortical rat neu-
rons responded with imprecise spike trains to a flat stim-
ulus, their response to weak input fluctuations was spike
trains with precise time firing patterns. Berry and col-
laborators63 measured retinal (tiger salamander and rab-
bit retina) responses to repeated visual stimuli. They
demonstrated that the precise timing of a firing event
carried several times more information than the spike
count.
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Another example of a temporal code is present in song-
birds: high vocal center (HVC)e neurons burst at the
precise time a specific song syllabus takes place.58

Rate coding and temporal coding are the two major cod-
ing schemes in single cells and in populations of neurons, yet
there are other coding mechanisms, which may be plausible in
situations in which rate coding or temporal coding might not
function.68 Neural noise affects the encoding and transmission
of information13 and efforts have been focused on understand-
ing its role in the neural code.69–75

As we will see in Chapter 3, for low neural noise rate coding
encodes the period of an external weak signal applied to two
coupled neurons, yet for intermediate and larger noise it does
not: here we will propose another encoding mechanism (first
proposed in76), which states that information can be encoded
in the relative timing of the spikes (i.e., the sequence of time
intervals between consecutive spikes: the sequence of inter-
spike intervals).

1.3 Objectives and outline of the
thesis

This thesis is devoted to the understanding of neural encoding
and transmission of external, sub-threshold signals in the pres-
ence of noise. The starting point is the encoding mechanism
Reinoso and collaborators presented in a recent work.76 They
showed that temporal patterns in the sequence of the inter-
spike intervals of a neuron carry information about a weak ex-
ternal and periodic signal. By using this encoding mechanism,

eThe HVC is a nucleus in the brain of songbirds which is in part
responsible for acquisition and production of learned songs.67
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the first objective of this thesis is to understand how a second
neuron, which does not perceive the signal, affects the detec-
tion and the encoding of the signal, done by the first neuron.
A second objective is to check the robustness of the encoding
mechanism depending on (1) the class of neuron (class 1 or
class 2), (2) the neuron model and on (3) the type of synapse
(electrical and excitatory chemical) between two neurons. A
third objective is to understand how the signal features (am-
plitude and frequency) are transmitted to the second neuron.
The last objective is to investigate if this encoding mechanism
is plausible also for neuronal ensembles.

The outline of the thesis is as follows. Chapter 2 presents
the models used to simulate neuronal spike sequences and the
methods used to analyze them. In Chapter 3 we show that the
encoding mechanism proposed in76 is robust to the coupling of
a second neuron. In Chapter 4 we analyze how the encoding
mechanism is affected by the class of neuron and the type
of synapse. In Chapter 5 we analyze the activity of a group
of neurons, when they all perceive a weak periodic signal. We
show that neuronal coupling is beneficial for signal encoding as
a group of neurons is able to encode a small-amplitude signal,
which could not be encoded when it is perceived by just one
or two coupled neurons. Finally, Chapter 6.2 presents our
conclusions and discusses future research.
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Chapter 2

Models and methods
2.1 Models

The biophysical mechanisms responsible for neural activity
provide a basis for the design of neuronal models. Neuronal
models can either give detailed descriptions of these mecha-
nisms (such as the generation and propagation of action poten-
tials, or the time-evolution of membrane currents) by involving
several differential equations. Or they can just focus on the
mathematical properties of neural excitation by just involv-
ing one or two differential equations.8 Back in 1952 Hodgkin
and Huxley77 studied the flow of electric current through the
surface membrane of a giant squid nerve fiber and succeeded
to model the dependencies of the membrane potential with
the membrane currents and vice versa.4 Hodgkin and Huxley
jointly received the 1963 Nobel Prize in Physiology or Medicine
for their discoveries concerning the ionic mechanisms involved
in excitation and inhibition in the peripheral and central por-
tions of the nerve cell membrane. The Hodgkin-Huxley model
is now an important model in computational neuroscience, it
is a four-dimensional dynamical system, which describes mem-
brane potential, activation and inactivation of sodium current
and activation of potassium current78 (equations are not in-
cluded here, for a detailed description see8,78). Figure 2.1(a)
reproduces the original numerical solution given by Hodgkin
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and Huxley77 and Fig. 2.1(b) depicts the trace of a recorded
action potential of the giant squid axon.

Figure 2.1: (a) Numerical solution for the Hodgkin-Huxley equations for
initial depolarization at 15 mV. (b) Trace of a recorded action potential.
From.77

The Hodgkin-Huxley model can exhibit (under parame-
ter tuning) the most prominent features of biological spik-
ing neurons (such as tonic spiking and bursting). It is a
conductance-base model which allows to study the dependence
of the neuronal behavior on measurable physiological param-
eters (such as maximal conductances) but it is computation-
ally expensive to implement. Richard FitzHugh analyzed the
Hodgkin-Huxley model and demonstrated that one can cap-
ture mathematically the properties of excitation and propa-
gation of the sodium and potassium currents with only two
dimensionless differential equations which do not have neither
conductances nor currents dependencies.79 Nagumo and col-
laborators electronically simulated the proposed equations us-
ing tunnel diodes,80 since tunnel diodes have a current-voltage
curve similar to the cubic shape FitzHugh implemented. From
then on these equations are named as the FitzHugh-Nagumo
(FHN) equations.81 On the other hand, Cathy Morris and
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Harold Lecar studied the excitability of a giant muscle fiber of
a huge barnacle and presented a conductance-based model (all
the different parameters in the equations are experimentally
measurable) but only two-dimensional.82 This model is a sim-
plification of the conductance processes in the barnacle, but
allows to correctly mimic the different oscillation phenomena
that Morris and Lecar observed experimentally: they could
model the three main classes of neuron excitability (see Section
1.1 for details) by changing model parameters.83 Since these
early studies, many models have been proposed in the litera-
ture, which have either higher or lower degree of complexity.78
In this thesis we use these two models (FitzHugh-Nagumo and
Morris-Lecar) because they offer a good compromise between
realistic spike-generation modeling and computational cost.

2.1.1 FitzHugh-Nagumo model
One common representation of a single and deterministic FitzHugh-
Nagumo oscillator is as followsa:

εu̇ = u− u3

3 − v, (2.1)

v̇ = u+ a.

The model consist of two dimensionless variables, named voltage-
like variable u, or excitation variable, which is responsible for
the upstroke of the spike. It mimics the depolarization of the
neuron, and the recovery variable v, which is responsible for
the downstroke of the spike. It mimics the repolarization of
the neuron. Mathematically, it provides a negative feedback
to the voltage-like variable.

aThe general form of the FitzHugh-Nagumo includes a linear v-
dependence in the second equation.81
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When modeling the neuronal dynamics, variables u and v
need to have different time-scales: in order to perform a spike
the increment of u has to be faster than the increment of v,
thus the parameter ε it is usually ε � 1. For this reason,
usually u is known as the fast variable whereas v is called the
slower variable. In this thesis we use the value ε = 0.01, which
has been frequently used in the literature.9,17,22 The parame-
ter a is the so called bifurcation parameterb. The FitzHugh-
Nagumo system undergoes a supercritical Hopf bifurcation at
a = 1: it changes from a stable fixed point (for a > 1 it
displays no activity) into an unstable one (for a < 1 the sys-
tem displays self-sustained regular oscillations).84 Figure 2.2
shows the evolution of the voltage-like variable while increas-
ing the bifurcation parameter a. In the excitable regime, the
system resides on the rest state, yet if a strong enough pertur-
bation happens, the system leaves the stable state and goes
through the firing and the following refractory state, perform-
ing a spike.9

Figure 2.2: Voltage-like variable u as a function of the bifurcation param-
eter a for ε = 0.01. At a = 1 the system undergoes the Hopf bifurcation.

bBifurcations are qualitative changes in the dynamics of a system, the
parameter values at which they occur are named bifurcation parameters.84
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In this thesis we will consider excitable, stochastic and cou-
pled FitzHugh-Nagumo oscillators. The FitzHugh-Nagumo
model has been extensively used to investigate the phenomena
of stochastic resonance and coherence resonance17,22–25,27–31,85,86
(see subsection 1.1.2). It has also been widely employed to
model neuronal ensembles87 and other excitable systems such
as cardiac cells.88–93

2.1.2 Morris-Lecar model
In this thesis we also consider the Morris-Lecar model:4,94

CV̇ =m∞(V ) · gf · (ENa − V )+ (2.2)
+W · gs · (Ek − V ) + gl · (El − V ) + gpo,

Ẇ = φW
W∞(V )−W

τW (V ) , (2.3)

m∞(V ) = 0.5
[
1 + tanh

(
V − βm
γm

)]
, (2.4)

w∞(V ) = 0.5
[
1 + tanh

(
V − βw
γW

)]
, (2.5)

τw(V ) = 1
cosh

(
V−βw

2γW

) . (2.6)

where V is the fast activation variable and W is the slower
recovery variable. The parameters Ek, ENa and Eleak represent
the equilibrium potentials of Na+ (fast), K+ (slow) and of leak
currents; gf , gs and gl denote the maximal conductances for
Na+, K+ and leak currents, respectively. The main parameters
of the model are (the same as those used in94): ENa = 50 mV,
EK = −100 mV, El = −70 mV, gf = 20mS/cm2, gs = 20
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mS/cm2, gl = 2 mS/cm2, φW = 0.15, C = 2 µF/cm2, γm = 18
mV, βW = −10 mV and γW = 13 mV. Varying βm allows to
change from class 1 to class 2 (see subsection 1.1.1): for class
1, beta=-12; for class 2, beta=0. The synaptic conductance
gpo regulates the intensity of an external source of noise, which
follows a Poisson distribution with rate R and it is responsible
for the spiking of the neurons. It mimics n-excitatory pre-
synaptic neurons, not included in the model, with a spiking
rate of R/n.

Figure 2.3: Current-frequency curve for (a) class 1 (βm = −12 mV) and
(b) class 2 (βm = 0 mV).

Qualitatively, the distinction between class 1 and class 2
neurons is given by the response to an external current. The
frequency of class 1 neurons increases continuously while in-
creasing an external current; whereas for class 2 neurons, the
frequency increases discontinuously, as we can see in Fig. 2.3.
For each class of excitability the Morris-Lecar model under-
goes a different type of bifurcation. For class 1 excitability
the system performs a saddle-node on invariant cycle (SINC)
bifurcation (the system’s fixed point is destroyed), whereas for
class 2 the system performs a subcritical Hopf bifurcation (sys-
tem’s fixed point is destabilized); yet for both bifurcations the
neurons changes from remaining at a stable and sub-threshold
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voltage to regular firing.94 Table 2.1 summarizes the parame-
ters used for each class.

Parameters Class 1 Class 2
ENa(mV ) 50 50
EK(mV ) -100 -100
Eleak(mV ) -70 -70

gfast(mS/cm2) 20 20
gslow(mS/cm2) 20 20
gleak(mS/cm2) 2 2
C(µF/cm2) 2 2
φw(mS/cm2) 0.15 0.15
βw(mV ) -10 -10
γw(mV ) 13 13
γm(mV ) 18 18
βm(mV ) -12 0

Table 2.1: Parameters of the Morris-Lecar model used for the
simulation of class 1 and 2 neurons.

2.1.3 Model simulations and spike detection
For the FitzHugh-Nagumo model we used the simplest numer-
ical method for solving an stochastic rate equation (also known
as Euler-Maruyama method95), with an integration step of
dt = 10−3. The integration was computed until 105 spikes
were generated for each set of parameters. The temporal in-
terval between two subsequent spikes is ISIi = Ti+1 − Ti with
Ti defined with the condition u(Ti) = 0 (considering just the
ascensions).

For the Morris-Lecar model we used the numerical method
Runge-Kuta of order 4 with an integration step of dt = 0.01
ms. The integration was computed until 15000 spikes were
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generated for each set of parameters. Here, Ti was defined
with the condition V (Ti) = 20 mV.

2.2 Time-series analysis of spike se-
quences

2.2.1 Spike regularity

The regularity of the inter-spike interval (ISI) sequence is char-
acterized by the coefficient R,17 also known as coefficient of
variation (Cv), which has been extensively used to detect both
stochastic resonance and coherence resonance:

R =

√
〈ISI2〉 − 〈ISI〉2

〈ISI〉 , (2.7)

where 〈ISI〉 and 〈ISI2〉 are the mean and the variance of the
sequence of inter-spike intervals: {ISI1, ..., ISIi, ..., ISIN} where
ISIi = Ti+1 − Ti with Ti and Ti+1 being the times when two
consecutive spikes occur.

Linear correlations between ISIs are quantified by the serial
correlation coefficients (SCCs):

Cj = 〈(ISIi − 〈ISI〉)(ISIi−j − 〈ISI〉)〉
〈ISI2〉 − 〈ISI〉2

(2.8)

where j is an integer number. The serial correlation coefficient
Cj measures if ISIi and ISIi+j are correlated (i.e., if ISIi influ-
ences the value of ISIi+j). For example, for j = 1 a negative
value of C1 indicates that a short ISIs tends to be followed by
a short one and vice versa (if ISIi is larger than the average, it
implies that ISIi+1 will tend to be smaller than the average and
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vice versa). On the other hand, if Cj = 0, it implies that any
given ISI for all j 6= 0 is independent of the previous ISIs.73 A
drawback of the SCCs is that they only detect linear relations
and therefore, nonlinear analysis tools are needed in order to
detect nonlinear correlations.

2.2.2 Ordinal analysis
Ordinal analysis96 is a symbolic methodology which has been
demonstrated to be well suited for detecting nonlinear corre-
lations in spike trains.76,97,98 In this approach the actual ISI
values {ISI1, ..., ISIi, ..., ISIN} are not taken into account, in-
stead, their relative temporal ordering is considered. Ordinal
analysis transforms a time series into a sequence of symbols,
which are known as ordinal patterns. Here, ordinal analysis
is used to study the spike trains of neurons and the ordinal
patterns are defined by the relative order of L consecutive ISI
values. We will apply ordinal analysis to the sequence of ISI
values {ISI1, ..., ISIi, ..., ISIN}. For each interval ISIi the sub-
sequent L − 1 intervals are considered and compared. The
total number of possible order relations (i.e., ordinal patterns
of length L) is equal to the number of permutations L!. If we
set L = 2 we have only two patterns: 12 and 21 for ISI1 < ISI2
and ISI1 > ISI2, respectively; if we set L = 3, we have 3! = 6
possible ordinal patterns, which are listed in Table 2.2.

For example, if we consider the following sequence of in-
tervals {4.9, 3.4, 3.3, 3.2, 5.0, ...}. The first value ISI1 = 4.9 >
ISI2 = 3.4 > ISI3 = 3.3 and consequently the ordinal pattern
is 210. In the next pattern ISI2 > ISI3 > ISI4 and the ordinal
pattern 210 repeats. But when starting with ISI3 we get the
pattern 102 because ISI3 > ISI4 but ISI5 > ISI3.
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When comparing two ISIs which are equal, a small random
noise is added in one of them.

In this thesis we have used L = 3, which allows to investi-
gate the order relation among 3 inter-spike intervals, i.e., four
consecutive spikes. This choice is motivated by the fact that
we focus on sub-threshold signals and the neuron’s firing ac-
tivity is driven by noise (without noise, there are no spikes).
Therefore, ISI correlations among consecutive spikes are ex-
pected to be short range. In addition, as the number of possi-
ble patterns increases as L!, we would need to perform much
longer simulations in order to obtain longer ISI sequences that
would the reliable detection of longer correlations.

Symbol Relation
012 ISI3 > ISI2 > ISI1
021 ISI2 > ISI3 > ISI1
102 ISI3 > ISI1 > ISI2
120 ISI2 > ISI1 > ISI3
201 ISI1 > ISI3 > ISI2
210 ISI1 > ISI2 > ISI3

Table 2.2: Ordinal patterns for L = 3.

The symbolic sequence of ordinal patterns is computed us-
ing the function perm indices defined in.99 Then, the ordinal
probabilities are estimated as pi = ni/M where ni denotes the
number of times the i-th pattern occurs in the sequence, and
M = N − (L− 1) denotes the total number of patterns (N is
the length of the ISI sequence). If the patterns are equiproba-
ble one can infer that there are no preferred order relations in
the timing of the spikes. On the other hand, the presence of
frequent (or infrequent) patterns will result into a non-uniform
distribution of the ordinal patterns. A binomial test will be
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used to analyze the significance of preferred and infrequent
patterns: if all the ordinal probabilities are within the interval
[p − 3σp, p + 3σp] (with p = 1/L! and σp =

√
p(1− p)/M),

the probabilities are consistent with the uniform distribution
(with 99.74% confidence level) else, if at least one probability
value lies outside the interval, there are significant deviations
which reveal the presence of over expressed and/or less ex-
pressed patterns. In order to quantify at once these deviations
we compute the permutation entropy H ,96 defined as

H = −
∑
i pi log pi

logL! . (2.9)

We normalize H to its maximum value Hmax = logL!. H
ranges between 0 (regular and deterministic behavior) and 1
(completely noisy and random behavior). Already small devi-
ations from H = 1 can be used to identify deviations from a
fully noisy behavior. As explained before, because we consider
parameters such that the signal and the coupling terms are
subthreshold and the spikes are noise-induced, a large number
of spikes are needed to precisely estimate the ordinal probabil-
ities (see Fig. 2.4, reproduced from76). In this thesis the total
number of spikes is set to 15000 (chapter 4) and 105 (chapter
3 and chapter 5).

Time-series of ordinal patterns

Given a sequence of N + 1 spikes that occur at times
{T1, ..., TN+1}, the sequence of inter-spikes intervals is
{ISI1, ..., ISIi, ..., ISIN}. As stated before we can transform it
into a sequence of M = N − (L − 1) ordinal patterns and
analyze the frequency of occurrence of the different patterns.
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Figure 2.4: Probabilities of the six ordinal patterns in function of the
number of spikes M for the single and stochastic FitzHugh-Nagumo neu-
ron coupled to a weak external signal. We used Eq. 3.1 with the pa-
rameters σ = 0, a0 = 0.05, D = 10−5, and T = 10. Figure reproduced
from.76

However, these probabilities do not provide information about
the time evolution of the ordinal patterns.

Here, we introduce the time-series of the ordinal patterns
s(t), which keeps track of the ordinal patterns at each time
step. Setting L = 3, s(t) ∈ {012, 021, 102, 120, 201, 210}. The
temporal order among the first three inter-spike intervals (i.e.,
four spikes) {ISI1, ISI2, ISI3} defines the first ordinal pattern
s1 and the time of occurrence of the 4th spike sets the initial
time t0 of the time-series. The first ordinal pattern s1 will be
kept along time until a new spike will occur at time ti, then
the second ordinal pattern s2 will be defined at time ti with
the sequence {ISI2, ISI3, ISI4}. We will apply this procedure
for the M − 1 ordinal patterns. The time step between the
spiking times Ti and Ti+1 and the number of ordinal patterns
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M determines the length of the time-series. In Fig. 2.5 we
have an example of the correspondent s1(t) for a given u1(t)
(where subscript 1 refers to neuron index).

Figure 2.5: (a) Time-series of the voltage-like variable u1(t) and (b) the
correspondent ordinal time-series s1(t) for neuron 1. The parameters are
a0 = 0.05, D = 2.5 · 10 · 10−5, σ = 0.05 and T = 10. See Eqs. 3.1 for
parameter definition.

In this thesis, we will use the time-series of ordinal patterns
to compute the mutual information between two time-series;
which it can be regarded as a synchronization measure.

2.2.3 Synchronization measures

Cross-correlation function

The cross-correlation function between two discrete variables
is a linear measure of synchronization. We will apply it to the
time-series of the voltage-like variable of neuron 1 {u11 , ..., u1N

}
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and to the time-series of the voltage-like variable of neuron 2
{u21 , ..., u2N

}. The cross-correlation function is defined as

cu1u2 = 〈(ui − 〈u〉)(ui−j − 〈u〉)〉
〈u2〉 − 〈u〉2

(2.10)

where 〈u1〉 and 〈u2〉, are the mean of the voltage-like variable
of neuron 1 and neuron 2, respectively. The absolute value of
the cross-correlation function ranges from zero (u1 and u2 are
asynchronous) to one (complete synchronization).

Mutual information

Synchronization can be also measured with information theory
concepts. The mutual information of two random variables
X and Y indicates the amount of information shared by X
and Y.100 We will use this concept to measure the amount of
information shared by the spike trains of two neurons, using
the time-series of ordinal patterns, previously introduced.

The mutual information I is

I = H1 +H2 −H1,2 (2.11)

where H1 and H2 are the entropies computed from the time-
series of the ordinal patterns and H1,2 is the join permutation
entropy, defined as

H1,2 = −
∑
i

∑
j p

12
ij log p12

ij

logL! , (2.12)

where p12
ij is the probability that the i-th pattern in neuron 1

occurred at the same time as the j-th pattern in neuron 2, and
M is the length of the ordinal pattern time-series.
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If the time-series of ordinal patterns are independent from
each other H1,2 = H1 + H2, and thus I = 0 (in the limit of a
very long time series), which is the minimum value the mutual
information can take. On the other hand, if both time-series
are equal, the mutual information reaches its maximum value
at I = H1 = H2. We can regard the mutual information as
a synchronization measure, since it quantifies the information
we can gain about one variable from the other. The more infor-
mation we obtain, the more synchronized they are. Since the
mutual information computed from finite time series returns
a positive number, it is necessary to analyze if the obtained
result is statistically significant. This can be done by using
surrogate data.101
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Chapter 3

Signal encoding and
transmission by two
FitzHugh-Nagumo
neurons
In this chapter we consider two FitzHugh-Nagumo neurons79,80
(see Sec. 1.3), mutually coupled (as indicated in Fig. 3.1), with
a weak periodic signal applied to one of them (referred to as
neuron 1). We study how neuron 1 encodes the weak signal
and how it is transmited to neuron 2 (how the spikes fired by
neuron 2 contain the signal information). The results of the
analysis of signal encoding were published in.102 The model
equations are:

ε1u̇1 = u1 −
u3

1
3 − v1 + a0 cos(2πt/T ) + σ1u2 +

√
2Dξ1(t),

v̇1 = u1 + a1,

ε2u̇2 = u2 −
u3

2
3 − v2 + σ2u1 +

√
2Dξ2(t)

v̇2 = u2 + a2 (3.1)

where ui and vi are a voltage-like and a recovery-like vari-
ables, for neuron i. The coupling is assumed to be linear and
instantaneous and it is characterized by the coupling strength
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σ. The weak periodic signal has amplitude a0 and period T .
The external perturbation is modeled as Gaussian white noise,
with amplitude D. White noise forces ξi(t) and ξi(t′) for t 6= t′

are statistically independent, thus 〈ξi(t)ξi(t′)〉 = δ(t − t′). As
well, Gaussian white noise fullfills that 〈ξi(t)〉 = 0 . Here we
have to consider the coupling term σ for which the intrinsic
dynamics of the system changes. With coupling the supercrit-
ical Hopf bifurcation will take place at a2 = 1 + σ, thus for
a2 > 1 + σ the system be on the excitable regime. There-
fore, the bifurcation parameter is set to a = 1.05 and coupling
strength is within the interval σ ∈ [0, 0.1]. The modulation
amplitude and period are varied such that the input signal is
kept subthreshold (without noise there are no spikes but only
subthreshold oscillations).

The main part of the chapter focuses on two identical neu-
rons, i.e., ε1 = ε2 = ε and a1 = a2 = a. Thus, unless otherwise
stated, ε = 0.01 and a = 1.05. In Section 3.4.1 we analyze two
coupled non-identical neurons.

As explained before, the model equations are simulated,
from random initial conditions, using the Euler-Maruyama
method with an integration step of dt = 10−3. For each
set of parameters, the voltage-like variable of each neuron ui
is analyzed and the sequence of inter-spike-intervals (ISIs) is
computed, {ISIj i; ISIj i = (tj+1 − tj)i} with tj defined by the
condition ui(tj) = 0, considering only the ascensions.

Figure 3.2 displays the voltage-like variable of neuron 1, u1,
in different situations. When there is no noise, no signal and
no coupling, the neuron is in the rest state and when the sub-
threshold signal is applied, u1 displays small sub-threshold os-
cillations [panel (a)]; when noise is added, noise-induced spikes
are observed, which carry information about the applied sub-
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Figure 3.1: Schematic representation of two mutually coupled neurons,
one of which (neuron 1) perceives a periodic input signal. σ1 and σ2
represent the strength of the coupling of neuron 2 to neuron 1, and of
neuron 1 to neuron 2, respectively.

threshold signal [panel (b)]; and when the coupling to neuron
2 is added, a noticeable effect is the increase of the firing rate
[panel (c)]. The differences that are qualitatively observed in
these time series are going to be quantitatively addressed by
using the methods of analysis presented in Chapter 2.

3.1 Sub-threshold region in the pa-
rameter space (ao, T )

We first have to distinguish between a sub-threshold and a
super-threshold signal, as we are interested in the encoding
of weak signals. The first one refers to a signal which, in
the absence of noise, it does not induce any spike [u1 displays
small oscillations, as in Fig. 3.2(a)], while the second one is a
signal that is strong enough to induce spikes. A periodic signal
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Figure 3.2: Time series of the voltage-like variable of neuron 1 when (a)
the signal is applied, and there is no noise and no coupling; (b) the signal
is applied and there is noise but no coupling and (c) the signal is applied
and there is noise and coupling. The parameters are a0 = 0.05, T = 10
and (a) D = 0, σ2 = 0; (b) D = 2 · 10−6, σ = 0; (c) D = 2 · 10−6,
σ = 0.05.

can be either sub-threshold or super-threshold depending on
both, the period and the amplitude. Thus, to identify the
parameters where the signal is sub-threshold, in Fig. 3.3 we
plot in color code the spike rate (i.e., the inverse of the mean
ISI, 1/〈ISI〉), as a function of a0 and T for both situations
D = 0 and D 6= 0. In panel (a) neuron 1 is isolated (σ2 = 0),
while in panel (b) it is coupled to neuron 2 (σ1 = σ2 = 0.05)
and for both panels D = 0.

For no noise, when the neuron is uncoupled, for large am-
plitude and/or small period the signal is super-threshold, oth-
erwise is sub-threshold. When the neuron is coupled to neuron
2, we note that the super-threshold region is slightly larger in
the parameter space (a0, T ), as compared to the uncoupled
case.
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Figure 3.3: Influence of the signal parameters in the spike rate. The
spike rate of neuron 1 in color code is plotted as a function of the signal
amplitude, a0, and period, T . Panels (a) and (b) display the deterministic
spike rate (D = 0) without coupling (σ1 = σ2 = 0) and with coupling
(σ1 = σ2 = 0.05), respectively. In panels (c) and (d) the noise is included
(D = 2 · 10−6).

When we include noise, Figs. 3.3(c) and (d), we first note
that in the super-threshold region (yellow) the spike rate does
not change significantly (it is about the same as for D=0).
This is due to the fact that in this region the spikes are mainly
induced by the signal. In contrast, in the sub-threshold region,
comparing the uncoupled (panel c) and the coupled (panel d)
situations, we note that coupling significantly increases the
spike rate (it almost doubles). Therefore, in this region cou-
pling plays the role of an extra source of noise.
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3.2 Influence of coupling coefficients
on the spike rate

Having identified the sub-threshold region in the parameter
space (a0, T ), we next turn our attention to the influence of
the coupling coefficients. Figure 3.4 displays the spike rate
as a function of σ1 and σ2 in different situations. In panel (a)
there is no signal and no noise. We observe that when both |σ1|
and |σ2| are large enough, the coupling induces spikes. Positive
coupling coefficients result in a higher spike rate, in comparison
with negative coefficients. In panel (b), the noise is still zero
but a weak signal is applied. Because the signal is subthreshold
[a0 = 0.05 and T = 10, which are in the sub-threshold region
in Figs. 3.3(a),(b)], we note only small variations with respect
to panel (a).

In Figures 3.4 (c) and (d) noise is included; in (c) there is
no signal while in (d) the weak signal is applied. To show how
the spike rate changes with the coupling, Figs. 3.4 (c) and (d)
display the relative variation of the spike rate (with respect to
the spike rate when neuron 1 is uncoupled). Without signal
(panel c), positive coupling coefficients result in larger spike
rate as compared to negative ones, however, when the signal
is applied (panel d) these differences are washed out. The
vertical line in panels (c) and (d) is due to the fact that when
σ1 = 0 neuron 1 is uncoupled from neuron 2, and thus its spike
rate does not depend of σ2.

In order to limit the number of parameters, in the following
we assume σ1 = σ2 = σ and fix (unless otherwise stated)
σ = 0.05, a0 = 0.05 and T = 10. For these parameters the
signal and the coupling act as sub-threshold perturbations:
without noise neuron 1 does not fire spikes.
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Figure 3.4: Influence of the coupling strengths in the spike rate. In (a)
and (b) the deterministic (D = 0) spike rate of neuron 1 is plotted in
color code, as a function of σ1 and σ2, when the signal is not applied
(a0 = 0) and when it is applied (a0 = 0.05 and T = 10), respectively.
Panels (c) and (d) display the relative increase of the spike rate (with
respect to the uncoupled neuron), when noise is included (D = 2 · 10−6).
In (c) a0 = 0 while in (d), a0 = 0.05 and T = 10.

3.3 Influence of noise and modula-
tion parameters on the spike rate

To further characterize the role of noise, Fig. 3.5 displays the
mean ISI, 〈ISI〉, as a function of noise intensity for different
periods of the applied signal. In panel (a) σ = 0, while in panel
(b), σ = 0.05. For both cases there is clearly a noise dominated
regime, where 〈ISI〉 is the same, regardless of the coupling and
of the period of the signal. In contrast, for low noise levels
the coupling and the period affect the 〈ISI〉. In panel 3.5 (a)
(σ = 0) we can also compare the mean ISI when the signal is
applied (solid symbols indicate a0 6= 0 and different periods)
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Figure 3.5: Influence of the noise strength in the mean ISI and in the
regularity of the spikes. (a), (b) Mean ISI, 〈ISI〉, of neuron 1 as a function
of the noise strength, D, for different periods, T , of the signal; (c), (d)
〈ISI〉 vs. T and (e), (f) ISI normalized standard deviation, R, as a function
of D. Panels (a), (c) and (e) are without coupling (σ = 0), while (b), (d)
and (f) are with coupling (σ = 0.05).

and when the signal is not applied (empty circles): we see
that, when a0 6= 0 the neuron fires at lower noise intensities
as compared to a0 = 0. Comparing panel 3.5 (a) with panel
3.5 (b) (σ = 0.05) we note that when neuron 1 is coupled to
neuron 2, it starts firing at even lower noise intensities.
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Regarding the role of the period of signal, when the noise
level is low, the larger T is, the larger 〈ISI〉 is. There is a
linear relation, as shown in Figs. 3.5(c) and (d), which holds
for both, the coupled and the uncoupled cases. For stronger
noise, 〈ISI〉 remains constant when increasing T .

Noise-induced regularity in the spike train17,103,104 is char-
acterized in panels (e) and (f), where the normalized standard
deviation of the ISI distribution, R, is plotted against the noise
intensity for different T , without and with coupling, respec-
tively. In both panels, two minimums are observed. Whereas
the first one indicates stochastic resonance,105–107 as it occurs
when T ∼ 〈ISI〉, the second one reveals the coherence reso-
nance phenomenon,17,108 which is independent from the pe-
riod of the signal. It occurs for an intermediate value of the
noise amplitude for which noise-induced oscillations become
most coherent. For some periods T a maximum appears for
very small values of the intensity of the noise. Such maxima
are a signature of anticoherence resonance.109

Next, we discuss how the shape of the ISI distribution de-
pends on the amplitude and on the period of the signal, and
how it is affected by the coupling.

Figure 3.6 and Fig. 3.7 display the ISI distribution for
different values of the period and of the amplitude of the signal,
respectively. In both figures the left panel corresponds to the
individual neuron, and the right panel, to the coupled neuron.
The ISI distribution of the individual neuron has a main peak
at the period of the signal, T , which becomes more pronounced
as the amplitude of the signal, a0, increases. When the neuron
is coupled to a second neuron that does not perceive the signal,
the peak at T becomes broader and less pronounced.
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Figure 3.6: Interspike-interval distribution for different periods. The
parameters are a0 = 0.05, D = 2 · 10−6 and (a) σ = 0; (b) σ = 0.05.

Figure 3.7: Interspike-interval distribution for different modulation am-
plitudes. The parameters are T = 10, D = 2 · 10−6 and (a) σ = 0; (b)
σ = 0.05.

Thus, the coupling to the second neuron tends to wash out
the peak, and thus, if the peak encodes the information of the
period of the signal, the coupling to neuron 2 degrades the
signal encoding.
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Figure 3.8: Influence of the noise strength and the coupling strength in
the ordinal probabilities. In panels (a) and (b) the probabilities of the six
ordinal patterns are plotted as a function of D (for σ = 0) and as function
of σ (for D = 2 · 10−6), both for a0 = 0. Panels (c) and (d) are as (a)
and (b), but a sub-threshold signal is applied (a0 = 0.05 and T = 10). In
all the panels the blue region indicates the interval of probability values
that are consistent with the uniform distribution with 99.74% confidence
level.

3.4 Detection and characterization of
spike patterns

After having characterized the effects of the weak signal, of
the coupling, and of the noise in the neuron’s spike rate and
in the regularity of the spikes, we next turn our attention to
the timing of the spikes. We use symbolic ordinal analysis
(see Chapter 2) to investigate the possible presence, in the
ISI sequence, of over expressed and of less expressed spike
patterns.
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We begin by considering the situation in which no signal
is applied and analyze the effect of increasing the noise level
or the coupling strength: Figs. 3.8 (a) and (b) display the
ordinal probabilities as a function of D and σ, respectively.
We note that neither the noise nor the coupling induce tem-
poral order in the spike sequence (as all the probabilities are
within the blue region that indicates values consistent with
equal probabilities). When the signal is applied, panels (c)
and (d), we note that there is temporal order in the spike se-
quence, as the ordinal probabilities reveal the presence of over
expressed and less expressed spike patterns (the probabilities
are not in the blue region and thus, are not consistent with the
uniform distribution). Moreover, we note that the variation of
the probabilities with D or σ is qualitatively similar.

Next, we analyze how the coupling coefficients affect the
encoding of the signal features (the amplitude and period):
we compare how the ordinal probabilities vary with a0 and T ,
when neuron 1 is isolated [Figs. 3.9 (a) and (c)] and when it
is coupled to neuron 2 [Figs. 3.9 (b) and (d)]. In both cases,
when a0 increases (within the sub-threshold region) the prob-
abilities monotonically increase or decrease. This variation is
consistent with the results reported in.76 While in76 the sub-
threshold signal was applied to the slow variable, v, here it is
applied to the fast variable, u. In both cases, the probabilities
encode information of the amplitude of the signal. Neverthe-
less, coupling to neuron 2 changes the preferred and infrequent
patters, i.e., modifies the temporal order in the spike sequence.
For instance, for σ = 0.05 the probability of the ordinal pat-
tern 012 monotonically increases with a0, whereas for σ = 0.05
monotonically decreases.
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Figure 3.9: Influence of neuron 2 on the encoding of the signal by neuron
1. (a), (b) Ordinal probabilities vs. the signal amplitude, a0, when the
signal period is T = 10; (c), (d) probabilities vs. T , when a0=0.05.
Panels (a), (c) are without coupling (σ = 0), while (b), (d) are with
coupling (σ = 0.05). In all the panels the noise strength is D = 2 · 10−6.

In panels 3.9 (b) and 3.9 (d) we note that, with or without
coupling, the preferred and infrequent patterns depend on the
period of the signal, confirming the results reported in.76

Comparing Figs. 3.9 (c) and (d) we note that the cou-
pling can either improve or degrade the signal encoding with
respect to the uncoupled situation: for T = 6 and T = 10
with coupling (panel d) the probabilities have extreme values
(maximum or minimum depending of the ordinal pattern), and
thus, the coupling enhances the signal encoding. In contrast,
for T ∼ 17 with coupling (panel d) all the probabilities are
close to the blue region (while without coupling they are not),

47



which means that with coupling the probabilities do not en-
code information of the signal.

Next, we investigate if there is an optimal combination of
the signal period, T , and the coupling coefficients, σ1 and σ2,
for signal encoding. To quantify the information content of
the spike train (represented by symbolic ordinal patterns) we
calculate the permutation entropy (see Chapter 2).

Figure 3.10 (a), (b) and (c) display the normalized per-
mutation entropy in color code as a function of σ1 and σ2 for
T = 6, T = 10 and T = 14, respectively.
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Figure 3.10: Influence of the coupling strengths on the information con-
tent of the spike sequence. The information content is quantified by the
normalized permutation entropy that is plotted in color code, as a func-
tion of the coupling strengths, σ1 and σ2, for three periods of the signal:
T = 6, 10 and 14, panel (a), (b) and (c), respectively. Other parameters
are: a0 = 0.05 and D = 2 · 10−6.

We observe values very close to 1, which indicate that the
timing of the spikes is almost random (the ordinal probabilities
are almost equal). This is expected as the signal parameters
and the coupling strengths are sub-threshold, i.e., the spiking
activity is due to the presence of noise (without noise, the neu-
ron displays sub-threshold oscillations). However, for T = 10
(panel b) we see that when σ1σ2 > 0 the entropy slightly de-
creases, which indicates that there are more and less expressed
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patterns in the spike sequence, i.e., the spike sequence carries
information about the signal.

Figure 3.11: Probability of the ordinal symbol 012 in function of the
noise amplitude for different modulation periods (see figure inset). (a)
012 ordinal probability for σ = 0 and for (b) σ = 0.05. For comparison
(c) and (d) display respectively 〈ISI〉 for σ = 0 and σ = 0.05 for the same
modulation periods as in (a) and (b).

It is interesting to compare the results obtained with non-
linear ordinal analysis, with those obtained with linear analy-
sis. Figure 3.11 and 3.12 compare respectively, ordinal pattern
probabilities with the mean inter-spike interval and the serial
correlation coefficients. Panels 3.11(a) and 3.11(b) display the
probability P(012) for neuron 1 and neuron 2 for different pe-
riods (see figure inset) as a function of the noise intensity, and
panels 3.11(c), 3.11(d) display the corresponding 〈ISI〉. We
see that, for intermediate and large noise intensities, P(012)
depends on the period (i.e. contains information about the
period of the signal) while 〈ISI〉 does not (is only determined
by the level of noise). The 〈ISI〉 depends on the period of the
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Figure 3.12: (a) Ordinal probabilities and (b) serial correlation coeffi-
cients, C1 and C2, as a function of the mean ISI, 〈ISI〉, when the noise
strength is varied within the range 10−6 6 D 6 10−3. Other parameters
are a0 = 0.05, T = 8, and σ = 0.05.

signal only for small noise amplitudes (which is reduced for
neuron 2).

Linear correlations between inter-spike intervals are de-
tected in Fig. 3.12(b) by the serial correlation coefficients (SCCs,
see Chapter 2), where they are plotted vs. the mean ISI, 〈ISI〉,
which is tuned by changing the noise strength [increasing D
decreases 〈ISI〉 as shown in Figs. 3.5(a) and (b)]. We see that
both measures capture the noise-induced resonance observed
by Reinoso and collaborators:76 both 012 and 210 probabili-
ties reach a minimum when the noise intensity is such that the
mean ISI is equal to half of the period (indeed in Fig. 3.12
the period is T = 8 and the minimum is observed at 〈ISI〉 =
4). The same happens with the serial correlation coefficients,
for this noise intensity, C1 is minimum and C2 undergoes is
maximum.

Another relevant issue to discuss is how the coupling terms
are implemented. While we have presented model simulations
where the terms σ2u1 and σ1u2 couple neuron 1 to neuron 2
and vice versa,110 we have also simulated the model with i)
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the coupling in the recovery-like variable (i.e., σ2v1 and σ1v2

added to the rate equations of v2 and v1 respectively) and ii)
with differential coupling (i.e., σ(u1−u2) and σ(u2−u1) added
to the rate equations of u1 and u2 respectively).

We have consistently found that the probabilities of the or-
dinal patterns vary with both, the period and the amplitude of
the signal, in a similar way as with non diffusive coupling (see
Fig. 3.13). The noise induced-resonance is robust to the type
of coupling, panels Fig. 3.13(c) and Fig. 3.13(d) show ordi-
nal patterns probabilities in function of 〈ISI〉 for two different
periods, T = 6 and T = 8, respectively. For both periods
we observe that both 012 and 210 probabilities are minimum
when 〈ISI〉 = T

2 .

3.4.1 Analysis of two coupled non-identical
neurons

In order to check the robustness of our findings when the neu-
rons are not identical, we consider two neurons that have dif-
ferent spike rates, which are controlled by the parameters ε1

and ε2, and different spike thresholds, controlled by the pa-
rameters a1 and a2.

Figure 3.14 displays the ordinal probabilities as a function
of modulation period, T , for different values of ε1, while keep-
ing constant ε2 (as in the previous sections, here ε2 = 0.01).
We note that the ordinal probabilities depend on the value of
ε1 (for example, for large T , patterns 012 and 210 are more
expressed for ε1 = 0.008, but they are less expressed for ε2

= 0.012). For higher ε1, the probabilities encode information
only if the period T is short, for large T , the probabilities
are all in the gray region (consistent with equally probable
patterns).
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Figure 3.13: Influence of diffusive coupling on the signal encoding. Panels
(a) and (b) display the ordinal probabilities as a function of a0 (with
T = 10) and as a function of T (with a0 = 0.07). Other parameters are
σ = 0.05 and D = 5 ·10−6. Panels (c) and (d) display the ordinal pattern
probabilities as a function of the mean ISI when noise strength is varied
within the range 10−6 6 D 6 10−3 for T = 6 and T = 8, respectively.
Other parameters are σ = 0.05 and a0 = 0.07.

In contrast, as seen in Fig. 3.15, the ordinal probabilities
remain unchanged when σ2 is varied in the range 0.005-0.02,
while keeping constant ε1 (as in the previous sections, here
ε1 = 0.01). One can therefore think that there is no effect
of the coupling, however, as Fig. 3.14(c) shows, the ordinal
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Figure 3.14: Influence of ε1 in the ordinal patterns probabilities. (a)
ε1 = 0.008, (b) ε1 = 0.01 (as in the previous sections), (c) ε1 = 0.012
and (d) ε1 = 0.02. The other parameters are ε2 = 0.01, a1 = a2 = 1.05,
a0 = 0.05, D = 2 · 10−6 and σ = 0.05.

Figure 3.15: Influence of ε2 in the ordinal patterns probabilities. (a)
ε2 = 0.005 and (b) ε2 = 0.02. The other parameters are ε1 = 0.01,
a1 = a2 = 1.05, a0 = 0.05, D = 2 · 10−6 and σ = 0.05. In panel (c) the
parameters are as in (a) but with σ = 0.

probabilities are very different when neuron 1 is not coupled
to neuron 2.

Similar results are found when changing the values of a1

and a2, see Figs. 3.16, 3.17. Taken together our simulations
demonstrate that, even when the coupled neurons are not iden-
tical, the values of the ordinal probabilities can encode infor-
mation about period of the weak signal.
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Figure 3.16: Influence of a1 in the ordinal patterns probabilities. (a)
a1 = 1.03, (b) a1 = 1.05 (as in the previous sections), (c) a1 = 1.07 and
(d) ε1 = 0.02. The other parameters are a2 = 1.05, ε1 = ε2 = 0.01,
a0 = 0.05, D = 2 · 10−6 and σ = 0.05.

Figure 3.17: Influence of a2 in the ordinal patterns probabilities. (a)
a2 = 1.03, (b) a2 = 1.05 (as in the previous sections), (c) a2 = 1.07. The
other parameters are a1 = 1.05, ε1 = ε2 = 0.01, a0 = 0.05, D = 2 · 10−6

and σ = 0.05.

3.4.2 Signal transmission
So far we have studied how neuron 1 encodes the weak signal
when coupled to neuron 2 (which does not perceive the signal).
Here, we study how the signal is transmitted to neuron 2 while
varying the coupling strength and the modulation period (for
a0 and D fixed) with differential coupling (i.e., σ(u1−u2) and
σ(u2 − u1) added to the rate equations of u1 and u2 respec-
tively).
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Figure 3.18 displays ordinal pattern probabilities and per-
mutation entropy as a function of the coupling strength for
T = 8 [panels (a), (b) and (c)] and T = 10 [panels (d), (e) and
(f)]. Panels (a) and (d) display ordinal pattern probabilities
for neuron 1, panels (b) and (e) for neuron 2; panels (c) and
(f) display the corresponding permutation entropy.

Figure 3.18: Ordinal patterns probabilities for neuron 1 and neuron 2 for
T = 8, (a) and (b); and for T = 10, (d) and (e), respectively. Permutation
entropy for neuron 1 and neuron 2 for T = 8 (c) and T = 10 (f). The
other parameters are a0 = 0.07 and D = 5 · 10−6.

As the coupling strength increases, neuron 1 transmits the
signal to neuron 2 [ordinal patterns probabilities of neuron
2 separate from the equiprobable region, Fig. 3.18(b)]. We
quantify this effect by plotting the permutation entropy of
neuron 1 and neuron 2 in function of the coupling strength for
T = 8 [Fig. 3.18 (c)] and T = 10 [Fig. 3.18 (f)]. For both
periods, permutation entropy of neuron 2 decreases in a cer-
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tain range of σ, which indicates that the spikes of neuron 2 are
not fully random. As already shown in the previous section,
coupling to a second neuron which does not perceive the signal
can either improve or deteriorate signal encoding (it depends
on the selected parametersD, T and a0). Here we observe that
while for T = 8 for some coupling strengths signal encoding
improves (permutation entropy of neuron 1 decreases while in-
creasing σ) for T = 10, coupling deteriorates it (increasing σ
increases permutation entropy). Yet, for both periods (above
σ = 0.05) the ordinal pattern probabilities and the permuta-
tion entropy are almost equal for both neurons, suggesting that
coupling synchronizes the activity of both neurons. In order
to confirm this we compute in Fig. 3.19 the cross-correlation
function and the mutual information between neuron 1 and
neuron 2 for different modulation periods.

Figure 3.19: Cross-correlation function (a) and mutual information (b)
as a function of coupling strength for a0 = 0.07 and different modulation
periods (see figure inset), computed also for a0 = 0. For both panels
D = 5 · 10−6. For the mutual information plot we added errors bars
(for most of the values are smaller than the plot markers). We divided
the time-series of ordinal patterns into 30 segments, each one of 10000
patterns long, and computed the mutual information with the average
for each segment. We computed the error bars as two times the standard
deviation of the mean of the mutual information.
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As already mentioned in Section 2 the cross-correlation
function (Eq. 2.10) captures the linear synchronization be-
tween two signals; here we apply it to the time-series of neuron
1 and time-series of neuron 2. It ranges from zero (no synchro-
nization) to 1 (complete synchronization). On the other hand,
the mutual information captures the amount of information
contained in the time-series of ordinal patterns for neuron 1
and neuron 2 (see chapter 2). Mutual information will range
from zero (the random variables are independent between each
other, thus not synchronized) from a maximal positive value
(they have identical information, thus they are fully synchro-
nized) which equals to the permutation entropy of either neu-
ron 1 or neuron 2. We normalize the mutual information to the
maximal value permutation entropy can take Hmax = logL!
(with L = 3).

We observe in Fig. 3.19 that both measures, cross-correlation
function and mutual information, capture synchronization be-
tween both neurons while increasing σ. The cross-correlation
function indicates a strong synchronization already for σ =
0.025 (cu1u2 ≈ 0.98). Mutual information ranges from zero to
a maximum value which is close to the maximal value of the
permutation entropy either for neuron 1 or neuron 2 (since we
normalize it to the maximal value of the permutation entropy)
for that coupling strength, indicating that both sequences of
temporal ordinal patterns are similar, thus synchronized. Re-
garding the cross-correlation function, the period of the sig-
nal does not influence synchronization: for the four studied
cases, we obtain the same cross-correlation function. On the
other hand, mutual information captures small differences that
depend on the period, for an intermediate range of coupling
strength 0.02 6 σ 6 0.075: in that range we observe slightly
different values of the mutual information for T = 6 and

57



T = 10. A significance analysis is needed in order to determine
the significance of these rather small differences.101

Figure 3.20: Permutation entropy as a function of the modulation period
and the modulation amplitude for neuron 1 (panels a, c) and neuron 2
(panels b, d) for L = 3 (panels a, b) and L = 4 (panels c, d). Other
parameters D = 5 · 10−6 and σ = 0.05.

Figure 3.20 displays the permutation entropy for neuron 1
and neuron 2, for σ = 0.05 and vary both a0 and T for the
same D as in Fig. 3.19. We obtain similar values for neuron
1 and neuron 2 for all a0 and T suggesting that both neurons
are synchronized. As already mentioned in section 2.2.2, the
relative order among L consecutive ISI values determines the
number of ordinal patterns that we can get. So far, we have
only used L = 3 and to analyze the robustness of the results,
here we also consider L=4.
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We observe that the permutation entropy takes smaller
values than for L = 3, yet the information we obtain either
using L = 3 or L = 4 is the same: (i) for that coupling strength
(σ = 0.05) the signal is transmitted to neuron 2 for all a0 and
T for which neuron 1 encodes the signal and (ii) the signal is
encoded for large enough a0 and for a T which is between the
mean ISI and about three times the mean ISI (in the absence
of the external signal, and for this level of noise and coupling
strength 〈ISI〉 = 5.53, for both neurons).

3.5 Discussion
We have studied two coupled neurons with a weak periodic
signal applied to one of them. We have analyzed how the fir-
ing activity of the neuron that perceives the signal encodes
the signal information, and the role of another neuron that
does not perceive the weak signal. We have shown that when
the neuron that perceives the signal is coupled to the second
neuron, the spike rate increases and the noise level needed for
firing spikes decreases, with respect to the uncoupled neuron.
We have used symbolic ordinal analysis to investigate tempo-
ral ordering in the timing of the spikes fired by the neuron
that perceives the signal. We have shown that the spike se-
quence has over expressed and less expressed ordinal patterns
whose probabilities carry information about the features of the
signal (the amplitude and the period). We have also shown
that, when the noise is strong, the ordinal probabilities can
still encode information about the weak signal, which is not
encoded in the spike rate (that is independent of the period of
the signal) and is not detected by linear correlation analysis
(as the serial correlation coefficients at lags 1 and 2 vanish).
We verified that these findings are robust when neurons are

59



not identical. Finally, we analyzed the activity of the neuron
that does not perceive the signal and we have shown that the
weak signal is transmitted if the coupling is strong enough.
We also quantified signal transmission using linear and non-
linear measures. While both measures captured synchronized
behavior with increasing coupling strength, only mutual infor-
mation seems to detect small differences that depend on the
period of the weak signal that is perceived by neuron 1.

Our findings could be relevant for neuronal sensory sys-
tems composed by coupled noisy neurons, when only one is
affected by external inputs. The encoding and transmission
mechanisms demonstrated here, by which the period and the
amplitude of the applied sub-threshold signal are encoded in
the values of the ordinal probabilities, are very slow if the
probabilities are computed from the spike train of a single neu-
ron, because a large number of spikes are needed in order to
compute the patterns’ probabilities. However, if the encoding
is performed by neuronal populations, then, the probabilities
can be computed from the spikes of many neurons, and in this
case, only few spikes per neuron would be enough to compute
the probabilities. This ensemble-based encoding mechanism
will be studied in Chapter 5.
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Chapter 4

Signal encoding and
transmission by two
Morris-Lecar neurons

In this chapter we consider two coupled Morris-Lecar neurons
and analyze the role of the class of neuronal excitability (class
I or II) and the role of the type of coupling: chemical or elec-
trical; birectional or unidirectional. The work presented in
this chapter was done in collaboration with Cristian Estarel-
las and Claudio Mirasso and the results have been accepted
for publication in the journal Chaos; a preprint is available in
Arxiv.111 The single neuron Morris-Lecar model was described
in Chapter 2. The equations for two coupled neurons with a
sinusoidal signal applied to neuron 1 are:

CV̇1 =m∞(V1) · gf · (ENa − V1) +W · gs · (Ek − V1)+ (4.1)
+ gl · (El − V1) + a0 cos(2πt/T ) + gpo + I1,

Ẇ1 = φW
W∞(V1)−W1

τW (V1)
, (4.2)
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CV̇2 =m∞(V2) · gf · (ENa − V2) +W · gs · (Ek − V2) (4.3)
+ gl · (El − V2) + gpo + I2,

Ẇ2 = φW
W∞(V2)−W2

τW (V2)
, (4.4)

The parameter Ii refers to the synaptic input (either chem-
ical or electrical) that neuron i receives. The parameters a0

and T represent the amplitude and period of the external sig-
nal and are chosen such that the signal is sub-threshold. The
other parameters were defined in chapter 2. As previously
stated, we will consider two types of connections, electrical
and excitatory chemical synapses. The synaptic input Ii for
neuron i due to an electrical synapse is given by,

Ii = ggap(Vj − Vi), (4.5)

where the electrical conductance ggap regulates its intensity.
On the other hand, the synaptic input for neuron i due to an
excitatory chemical synapse can be written as

Ii = −gArA(V − EA), (4.6)

where EA is the reversal potential which equals to EA = 0 for
excitatory synapses. The parameter gA is the maximal con-
ductance and scales the magnitude of the input. It is set to
obtain a phase locking 1:1 regime between the two coupled
neurons: each spike of neuron 1 (that perceives the signal)
triggers an spike in neuron 2 (that does not perceive the sig-
nal). The variable rA ranges from 0 ≤ rA ≤ 1 and it represents
the probability that a synaptic receptor channel is in an open,
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conducting state. This probability depends on the presence
and concentration of neurotransmitter released by the presy-
naptic neuron.112

We model its dynamics as in reference:113

τA
drA
dt

= −rA +
∑
k

δ(t− tk), (4.7)

The summation over k stands for the pre-synaptic neurons
that fired an action potential at time tk. The time decay is
taken as τA = 5.6 ms.

We will study the dependency of signal encoding and trans-
mission on neuron’s excitability class (class 1 and class 2) and
on the synapse’s type (electrical or chemical). As well, we are
going to consider two types of possible connections, unidirec-
tional and bidirectional, schematically represented in Fig. 4.1
(a) and Fig. 4.1 (b), respectively. They can be either chemical
or electrical. In the case of electric coupling, due to the diffu-
sive effect of the gap junction, the more plausible situation is
the bidirectional case. However, to compare the two classes of
excitability in this study the electrical coupling is used for the
unidirectional model as well.

Parameter values

In order to compare excitable class 1 and class 2 neuron types
we first analyze how the firing rate of an individual neuron
varies with the external noise [Fig. 4.2 (a) and 4.2 (b)]. When-
ever we fix the noise intensities, we will use those values that
lead to the firing rate of fr = 8.6 Hz. For that firing rate, the
noise needed it is neither too strong (it would overtake the dy-
namics of the system) nor too low (it would not make fire the
neurons). For class 1 we will use gpI

= 6 µS/cm2 and for class
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Figure 4.1: Scheme of the unidirectional (a) and bidirectional (b) models.
Both neurons receive a Poisson noise but the neuron 1 (blue) also receives
an external modulation; neuron 2 (red) is coupled to neuron 1. In the
unidirectional case, neuron 1 is coupled to neuron 2.

2 gpII
= 38 µS/cm2. The amplitude of the external signal, a0

in Eq. 4.2, is normalized such that we have the same signal to
coupling ratio in both classes,

a0mI

gpI

=
a0mII

gpII

= A0 (4.8)

We will vary the normalized modulation amplitude for both
neuronal classes from 0 to 2 mV/(µS/cm2); it is important
to remark that for class 1 neurons the modulation is sub-
threshold in the whole range, while for class 2 the signal is
supra-threshold for A0 ≥ 1.625 mV/(µS/cm2). Whenever it is
fixed, its value will be A0 = 1.25 mV/(µS/cm2).
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Similarly, as it is shown in equation (4.9), the electrical
(ggapI,II

) and chemical (gAMPAI,II
) conductances are also nor-

malized for both class 1 and class 2 neurons, ggapnorm and
gAMPAnorm .

ggapI

gpI

= ggapII

gpII

= ggapnorm

gAMPAI

gpI

= gAMPAII

gpII

= gAMPAnorm (4.9)

Whenever the conductance values are fixed, we take
ggapnorm = 50 (for both unidirectional and bidirectional cases),
gAMPAnorm = 83 (for the unidirectional case) and gAMPAnorm =
50 (for the bidirectional case). As mentioned before, those pa-
rameters lead to a phase locking 1:1 regime between the two
coupled neurons.

Figure 4.2: Firing rate of neuron 1 (uncoupled and without external
modulation) as a function of the synaptic Poisson noise conductance gp

for class 1 (a) and class 2 (b) classes. The constant currents are I = 14µA
and I = 46µA for class 1 and 2, respectively.
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4.1 Signal encoding
In Fig. 4.3 we see that the signal encoding mechanism dis-
cussed in Chapter 3 can also occur when the neurons are mod-
eled with the Morris-Lecar model, and it is robust with respect
to the coupling type and excitability class.

Figure 4.3: Ordinal patterns probabilities as a function of the spike rate
for neuron 1 for the bidirectional coupling case. Panels (a) and (b)
correspond to class 1 and class 2, respectively, with chemical coupling
gAMP Anorm = 50. Panels (c) and (d) correspond to class 1 and class 2,
respectively, with electrical coupling ggapnorm

= 50. Other parameters:
f = 10 Hz and A0 = 1.25 mV/(µS/cm2). Noise amplitude was within
the range 2 µS/cm2 < gp < 100 µS/cm2.

Figure 4.3 displays the ordinal patterns probabilities as a
function of the firing rate. In the four panels, we see that the
ordinal pattern probability 210 P(210) has a minimum when
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the firing rate is close to 20 Hz, twice the value of the applied
modulation frequency.

Next, we will quantify information encoding for the uni-
directional/bidirectional setting and neuron class by means of
the ordinal pattern probabilities and permutation entropy. We
will study the encoding of the signal regarding the sequences
of spikes of neuron 1. We first consider the unidirectional cou-
pling, which allows us to study signal encoding for a single
neuron regarding its excitability class (for the unidirectional
set-up, neuron 1 its not coupled to neuron 2). In Fig. 4.4(a)
we plot ordinal patterns probabilities of neuron 1 for class 1
in function of the modulation frequency f for a given modula-
tion amplitude A0. We see that P(012) (blue symbol) exhibits
two maxima between 0 − 10 and 17 − 25 Hz and a minimum
between 10−17 Hz. Thus, the neuron encodes three ranges of
external modulation frequencies. Similarly, for the excitability
class 2, the neuron encodes three ranges of frequencies [Figure
4.4(c)]. Yet, the encoding is better in class 2 since the differ-
ence between the maximal and the minimal ordinal pattern
probabilities for a given frequency is larger than for class 1.

In Fig. 4.4(b) we display the permutation entropy of neu-
ron 1 for class 1 while changing the modulation frequency
and the modulation amplitude. We observe that the per-
mutation entropy decreases for intermediate frequency signals
(7 . f . 22 Hz). On the contrary, for class 2 neurons, per-
mutation entropy decreases for high–frequency signals (f & 20
Hz), as can be seen in Figure 4.4(d), note that for class 2 neu-
rons for A0 > 1.625 mV

µS/cm2 the signal becomes supra-threshold,
marked with a dotted grey line. However, both classes of neu-
rons start to encode information for a similar minimum am-
plitude of the external modulation (A0 ≈ 1 mV

µS/cm2 ).
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Figure 4.4: Ordinal pattern probabilities vs. the modulation frequency
for A0 = 1.25 mV/(µS/cm2) and permutation entropy in color code as
a function of the modulation frequency and the normalized modulation
amplitude for neuron 1. (a) and (b) correspond to class 1, (c) and (d)
to class 2; the four cases to the single neuron. (e) and (f) correspond to
class 1 electrical, (g) and (h) to class 1 chemical, (i) and (j) to class 2
electrical and (k) and (l) to class 2 chemical; all eight panels correspond
to the bidirectional coupling. For specific values see section 4.
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Figure 4.5: Ordinal pattern probabilities vs. the modulation frequency
for A0 = 1.25 mV/(µS/cm2) and permutation entropy in color code as
a function of f and a0 for neuron 2. (a) and (b) correspond to class 1
electrical, (c) and (d) to class 1 chemical, (e) and (f) to class 2 electrical
and (g) and (h) to class 2 chemical; the eight cases correspond to unidi-
rectional coupling. (i) and (j) correspond to class 1 electrical, (k) and (l)
to class 1 chemical, (m) and (n) to class 2 electrical and (h) and (p) to
class 2 chemical; all eight panels correspond to the bidirectional coupling.
For specific values see section 4.
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Likewise, the permutation entropy decreases gradually as
the amplitude increases. A closer look at the permutation en-
tropies and the ordinal pattern probabilities in Fig. 4.4(a),
(b) and Fig. 4.4(c), (d) reveals that already small deviation
from 1 from the permutation entropy quantify signal encod-
ing. These deviations correspond to the difference between the
maximal and minimal ordinal pattern probabilities for a given
amplitude and frequency when ordinal patterns probabilities
lie outside the equiprobable region (marked as blue).

Next, we study the bidirectional case. In this case the
neuron that perceives the external signal is affected by the
coupling to the second neuron. Since we have electrical or
chemical coupling, we will be able to qualify signal encoding
regarding the type of coupling. For the electrical coupling, for
class 1 neurons the response of the neuron 1 for the bidirec-
tional system, Fig. 4.4(e), (f) does not have significant differ-
ences when compared to the unidirectional case, Fig. 4.4(a),
(b). This is reflected in both the ordinal patterns probabili-
ties and the permutation entropy. Thus, electrical coupling for
class 1 does not influence signal encoding. On the contrary,
for class 2 neurons the bidirectional electrical coupling dete-
riorates the encoding of the signal [compare Fig. 4.4(c) with
Fig. 4.4(i) and Fig. 4.4(d) with Fig. 4.4(j)].

Chemical coupling, for class 1 neurons strongly influences
the encoding of the signal, see Fig. 4.4 (g), (h): it changes the
preferred and infrequent ordinal patterns, and interestingly it
improves the quality of the encoding. In Fig. 4.6(a) we display
the spiking dynamics of neuron 1 (blue, top) and neuron 2 (red,
bottom) for this particular case: when the best encoding is
achieved for A0 = 1.25 mV

µS/cm2 . For comparison, in Fig. 4.6(b)
we plot the dynamics for both neurons for the parameters as
in panel (a) but without modulation.
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Figure 4.6: Dynamics of neuron 1 (blue, top) and neuron 2 (red, bottom)
when (b) the best encoding is achieved when A0 = 1.25 mV/(µS/cm2)
(neuron 1, class 1 and chemical bidirectional coupling; it corresponds to
the observed maxima of 012 probability in Fig. 4.5(g) for f = 10 Hz).
For comparison, panel (a) displays the neurons dynamics for the same
parameters as panel (b) without modulation.

On the other hand, for class 2 neurons chemical coupling
deteriorates signal encoding: permutation entropy increases
on the (A0, f) plane and the values of the probabilities are
closer to the equiprobable region, see Fig. 4.4 (k) and (l).

The effect of chemical coupling for class 1 neurons is char-
acterized in Fig. 4.7 where we display the permutation entropy
for neuron 1 (blue line) and neuron 2 (red line) while increasing
the chemical coupling: we start with the unidirectional case
(neuron 2 is coupled to neuron 1, but not vice versa) and we
increase gAMPAnorm for neuron 1 until both neurons are bidirec-
tionally coupled. While increasing coupling strength the per-
mutation entropy of both neurons increases, which indicates
an increment of stochasticity, meaning that the codification of
the signal deteriorates.
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Figure 4.7: Permutation entropy as a function of the chemical coupling
strength (bidirectional) for neuron 1 (blue) and neuron 2 (red) for class
2. Parameters: f = 23 Hz and A0 = 1.25 mV/(µS/cm2). The coupling
from neuron 1 to neuron 2 is constant (gAMP Anorm = 10), whereas the
conductance gAMP Anorm from neuron 2 to neuron 1 increases gradually;
going from the unidirectional coupling to totally bidirectional.

4.2 Signal transmission

Here we will study by means of ordinal analysis how the sig-
nal is transmitted to the second neuron, i.e., if the ordinal
pattern probabilities of neuron 2 are similar to those of neu-
ron 1. We will focus on the influence of the excitability class
and type of synapses, electrical and chemical, on signal trans-
mission. While the chemical synapses can be unidirectional or
bidirectional, the electrical are mostly bidirectional, although
in certain cases a preferred direction for the information flow is
established.114 In any case, both kinds of synapses contribute
in a way or another to the communication in the brain.

We first focus on signal transmission for the the unidirec-
tional case. Figures 4.5(a), (c) display ordinal patterns prob-
abilities of neuron 2 in function of the modulation frequency
for class 1 for the electrical and chemical synapse, respectively.
We observe how neuron 1 transmits the signal regardless of
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the coupling type: ordinal pattern probabilities lie outside the
equiprobable region. As well, for class 1 and for both cou-
plings ordinal pattern probabilities for neuron 2 vary similarly
as for neuron 1 while changing the frequency of the signal [see
Fig. 4.4(a)], suggesting that for class 1 and for both unidirec-
tional couplings neurons are synchronized. Yet with electri-
cal coupling we obtain a better transmission and synchroniza-
tion: ordinal pattern probabilities are further away from the
equiprobable region. Comparing Fig. 4.4(b) with Fig. 4.5(b)
and Fig.4.5(d), where we display the permutation entropy in
the (A0, f) plane, we observe that this result is also valid for
other modulation amplitudes: the darker region in the (A0,f)
plane is really similar for neuron 1 and neuron 2 with electrical
coupling.

For class 2 neurons we obtain similar results. If we com-
pare Fig. 4.4(c) with Fig. 4.5(e) and Fig. 4.5(g) we note that
the evolution of ordinal pattern probabilities while changing f
is almost the same for neuron 1 than for neuron 2 with elec-
trical or chemical coupling. Interestingly, chemical coupling
for a certain frequency range (1 6 f < 15) improves signal
transmission since ordinal pattern probabilities take extremer
values compared to neuron 1 and to neuron 2 with electrical
coupling. Yet, for the frequency range 15 6 f < 30 we obtain
the best transmission with electrical coupling. This result is
also captured in panels 4.4(d), 4.5(f) and 4.5(h), where the
permutation entropy is plotted in the plane (A0, f) for neuron
1, neuron 2 with chemical coupling and neuron 2 with electri-
cal coupling, respectively and for lower frequencies (f < 15)
chemical coupling transmits better the signal (the permutation
entropy takes lower values) while for larger ones 15 6 f < 30,
the electrical synapse does. Figure 4.8(b) displays the spiking
dynamics of neuron 1 (blue, top) and neuron 2 (red, bottom)
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for the case where the best transmission is achieved (fixing A0

to 1.25 mv/(µS/cm2)) for class 2 neurons for a frequency of
the external signal f = 20 Hz [it corresponds to the minima
of 210 probability in Fig. 4.5(g)]. For comparison Fig. 4.6(a)
shows the dynamics for both neurons for the same regime as
in panel (a) but without modulation.

Figure 4.8: Dynamics of neuron 1 (blue, top) and neuron 2 (red, bottom)
when (b) the best transmission is achieved when A0 = 1.25 mV/(µS/cm2)
(neuron 2, class 2 and electrical unidirectional coupling; it corresponds
to the observed minima of 210 probability in Fig. 4.5(e), for f = 20 Hz).
For comparison, panel (a) displays the neurons dynamics for the same
parameters as panel (b) without modulation.

We proceed with the bidirectional coupling. We observe
that ordinal pattern probabilities and permutation entropy for
neuron 2 are similar to the ones obtained for neuron 1 with
electrical coupling for class 1 [compare panels 4.4(e) and 4.4(f)
with 4.5(i) and 4.5(j), respectively] and class 2 [compare panels
4.4(i) and 4.4(j) with 4.5(m) and 4.5(n)], suggesting that elec-
trical coupling synchronizes the activity of both neurons. Yet,
for the electrical coupling the best transmission is achieved for
class 1, since is for class 1 that we obtain already the best
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encoding. Within the same class, if we compare signal trans-
mission regarding coupling type we observe that for class 1
chemical coupling does not transmit the signal [compare pan-
els 4.4(g) with 4.5(k) and 4.4(h) with 4.5(l)]. On the other
hand, for class 2 for a given modulation amplitude chemi-
cal coupling transmits the signal [compare Fig. 4.4(k) with
4.5(o)]. Nevertheless, if we change A0 signal transmission for
class 2 and chemical coupling its not achieved for all values of
f [compare Fig. 4.4(l) with 4.5(p)].

4.3 Discussion
We have studied the neuronal encoding and transmission of a
weak periodic external signal using the Morris-Lecar model,
which allows us to vary the neuron’s excitability class. We
have considered two neurons, one that perceives the weak sig-
nal and another that does not perceive it. The two neurons
interact through different types of coupling (unidirectional or
bidirectional, chemical or electrical). To quantify the encoding
and the transmission of the signal we have applied symbolic
ordinal time series analysis to the sequences of inter-spike-
intervals of each neuron. Analyzing the probabilities of sym-
bolic spike patterns, and the permutation entropy computed
from the symbolic probabilities, we have studied how infor-
mation encoding and transmission depend on the excitability
class of the neurons, and of the type of connection.

The single neuron class I (class II) encodes low frequencies
(higher frequencies) [see Figs. 4.4(b) and 4.4(d)].

75



When the neurons are class 1, the bidirectional chemical
coupling can significantly improve the encoding of the signal.
As it can be seen by comparing Figs. 4.4(b) and 4.5(h), the
chemical coupling increases the range of frequencies that can
be encoded. Instead, the electric coupling has no significant
effect in the signal encoding [compare Figs. 4.4(b) and 4.5(f)].
In class 2 neurons, both couplings deteriorate the encoding of
the signal, in particular electrical coupling [Figures 4.4(d), 4.4
(j) and 4.4(l)].

Regarding the transmission of the signal, for both excitabil-
ity classes and connectivity models, electric coupling is the
best mechanisms to transmit the information, as the second
neuron expresses the symbolic patterns with nearly the same
probabilities as the neuron that perceives the signal. Elec-
trical coupling tends to synchronize both neurons due to the
diffusive effect from the first neuron to the second one.

In the case of chemical and unidirectional coupling, the
information is better transmitted for class 2 neurons [compare
Figs. 4.4(d) with Figs. 4.5(d) and Figs. 4.4(d) with Figs.
4.5(h)]. For the bidirectional chemical coupling, neuron 2 does
not express the same patterns as those expressed by neuron 1
[for both excitability classes, as seen in Figs. 4.5(l) and 4.5(p)].
Therefore, the information is not properly transmitted.

In general, information transmission is higher with electri-
cal coupling, perhaps due to the fact that electric coupling acts
continuously (in contrast, chemical coupling only acts when
the neurons fire spikes) due to its diffusive properties. On the
contrary, for the case of chemical bidirectional coupling there
are changes in the dynamics of both neurons, that potentially
provides a new way of encoding the signal features.
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Chapter 5

Ensemble of
FitzHugh-Nagumo
neurons
In this chapter we will investigate if the proposed encoding
mechanism (by which preferred and infrequent patterns in the
time-series of a neuron carry information about a weak exter-
nal signal) can be employed by a population of coupled neu-
rons. We consider the stochastic FitzHugh-Nagumo model to
simulate the activity of an ensemble of neurons, when they all
perceive the weak and periodic signal. The results we present
in this chapter are published in.115 The model equations are:

εu̇i =ui −
u3
i

3 − vi + a0 cos(2πt/T )

+ σ

ki

N∑
j

aij(uj − ui) +
√

2Dξi(t), (5.1)

v̇i =ui + a.

The parameter N refers to the number of neurons. As
stated in chapter 2, vi is the inhibitor variable and ui is the
activator variable of neuron i. The parameters a and ε are
taken as in chapter 3: a = 1.05 and ε = 0.01. As in the previ-
ous chapters the parameters a0 and T represent the amplitude
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and period of the external signal and are chosen such that
the signal is sub-threshold. Dξi(t) represents the stochastic
term of strength D, which is taken as Gaussian distributed,
uncorrelated temporally and across the neuronal ensemble:
〈ξi(t)ξj(t′)〉 = δijδ(t− t′) with 〈ξi(t)〉 = 0 and 〈ξ2

i (t)〉 = 1.
The neurons are mutually coupled with gap-junction con-

nections, characterized by symmetric links (aij = aji = 1 if
neurons i and j are connected, else aij = aji = 0). The cou-
pling strength of each link is σ; to keep the total coupling
strength uniform for all neurons, it is normalized by number
of connections, ki = ∑

j aij. Regarding the coupling topology,
we focus on all-to-all coupling (in this case ki = N − 1 for all
i), but we also consider random connections. This allows us
to analyze the influence of the number of links, as neurons i
and j are connected with probability p that is varied between
0 and 1.

In this chapter, we consider ensembles of up to 50 neurons.
We have analyzed the role of the number of neurons, and we
expect that our findings will hold for larger ensembles. We will
apply ordinal analysis to the sequence of inter-spike intervals
generated by the group of neurons. The simulations are done
for a time long enough to obtain a total number of 105 spikes.
Here, we use also L = 3. The ordinal pattern probabilities of
the ensemble are computed with the sequences of the ordinal
patterns of each neuron.
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5.1 Influence of the signal’s ampli-
tude and frequency

The neuronal ensemble displays different dynamical regimes,
depending on the coupling strengh, the signal amplitud and
period, the noise strength, and the coupling topology. Fig-
ures 5.1 and 5.2 display several examples of the dynamics of a
group of 50 neurons under different conditions.

Figure 5.1: Spiking activity of a neuron when no signal is applied (a0 = 0)
and the neuron (a) is uncoupled (σ = 0), (b) is coupled to a group of
50 neurons (all to all coupling, σ = 0.05). Activity of the neuron when
it is coupled and a sinusoidal signal of amplitude a0 = 0.1 and period
(c) T = 10, (d) T = 20, (e) T = 40 is applied. The noise level is
D = 2.5 · 10−6.

Figure 5.1 shows the activity of an individual neuron (the
voltage-like variable of neuron 1), while Fig. 5.2 displays the
raster plot of the ensemble. In panels 5.1(a) and 5.2(a) the
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neurons are uncoupled and no signal is applied, therefore, ran-
dom spiking activity occurs due to the noise. In panels 5.1(b)
and 5.2(b) the neurons are mutually coupled, still no signal is
applied. Now we see synchronized spiking activity superposed
with random spikes. When the periodic signal is applied, we
see in panels 5.1(c)-(f) and 5.2(c)-(f) that the neurons either
fire regular and synchronized spikes, or there is more irregular
firing, depending on the period of the signal.

Figure 5.2: Raster plots displaying the spiking activity of the group of
50 neurons for the same parameters as in Fig. 5.1.

In this section we analyze the influence of the amplitude
and the period of the modulation. To stress the role of the
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number of neurons, we compare the results obtained for 50
neurons with those obtained for only two coupled neurons.

We begin by characterizing the role of the signal amplitude,
presented in Fig. 5.3 that displays probabilities of the six
ordinal patterns as a function of a0 for N = 50 [Fig. 5.3 (a)]
and for N = 2 [Fig. 5.3 (b)]. Here a0 is kept within the range
of values for which, in the absence of noise, the neurons do not
fire spikes.

Figure 5.3: Probabilities of the ordinal patterns as a function of the signal
amplitude, a0, for (a) an ensemble of 50 neurons, all-to-all coupled, and
for (b) two mutually coupled neurons. The parameters are: T = 10,
D = 2.5 · 10−6 and σ = 0.05.

We note that, if the signal amplitude is small enough, as
expected, the ordinal probabilities are within the blue region
that indicates values that are consistent with equal probabili-
ties, with 99.74% confidence level (this region is calculated as
explained in chapter 2).

As the signal amplitude increases we note that, while for
the two coupled neurons, ordinal probabilities gradually in-
crease (or decrease), for the ensemble of 50 neurons their vari-
ation is more pronounced. Interestingly, the same codification
(i.e., same ordinal patterns probabilities) is obtained forN = 2
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and larger a0. This is shown in Fig. 5.4, where we analyze the
effect of the signal period (T is kept within the range of values
for which, in the absence of noise, the neurons only display
sub-threshold oscillations).

Comparing Figs. 5.4 (a) and 5.4 (d), or Figs. 5.4 (c)
and 5.4 (f), we see that for two neurons and larger signal am-
plitudes we find a very similar set of ordinal probabilities as
for 50 neurons and lower a0. We see that the variation of
the ordinal probabilities with the period is very similar for
a0 = 0.025, N = 50 and a0 = 0.05, N = 2 [in Figs. 5.4
(a) and 5.4 (d), respectively] and for a0 = 0.05, N = 50 and
a0 = 0.1, N = 2 [Figs. 5.4 (c) and5.4 (f), respectively]. There-
fore, these results suggest that 50 neurons encode a weak signal
in a very similar way as 2 neurons encode a stronger signal.

Regarding how the encoding of the signal depends on its
period, in Fig. 5.4 we verify that the probabilities of the pat-
terns expressed in the spike sequences depend on the period
of the signal (consistent with the observations in76,102). Com-
paring the left and right columns of Fig. 5.4, we note that
neuronal coupling is beneficial for signal encoding because for
N = 50 (left column) the ordinal probabilities take higher or
lower values, and the resonances with the period become more
pronounced, as compared to N = 2 (right column).

Interestingly, for N = 50 and a0 = 0.1 the probabilities are
nearly constant in the interval 10 ≤ T ≤ 15 and patterns 012
and 210 have very low or zero probability. The corresponding
neuronal activity for T = 10 was displayed in Figs. 5.1(c) and
5.2(c). We see an alternation of long and short intervals be-
tween spikes, while three consecutive increasing or decreasing
intervals do not occur (which would be represented by patterns
012 and 210 respectively).
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Figure 5.4: Probabilities of the ordinal patterns as a function of the signal
period, T , for (a,b) a0 = 0.025, (c,d) a0 = 0.05 and (e,f) a0 = 0.1 with
N = 50 (a,c,e) and N = 2 (b,d,f). In panels (e) and (f) we consider T ≥ 8
because for T < 8 the signal by itself triggers spikes. Other parameters
are: D = 2.5 · 10−6 and σ = 0.05.
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5.2 Influence of noise strength

In Ref.76 it was shown that the ordinal patterns displayed
a noise-induce resonance, as 012 and 210 reached minimum
values when the noise intensity was such that the mean ISI,
〈ISI〉, was approximately equal to half the signal period. In
Ref.102 it was demonstrated that this encoding mechanism
persisted when the neuron was coupled to a second neuron that
did not perceive the signal. Here, we show in Fig. 5.5(a) that
the mechanism is robust and the resonance is more pronounced
when the signal is perceived by a group of 50 neurons: ordinal
patterns 012 and 210 are not expressed (have zero probability)
when D = 5 · 10−6, and for this noise strength, 〈ISI〉 = T/2.
For comparison Fig. 5.5(b) shows the ordinal probabilities
as a function of D for N = 2. Ordinal patterns 012 and
210 are minimum for almost the same noise strength (D =
8 · 10−6) which gives 〈ISI〉 = T/2. Yet, the minimum is less
pronounced, as compared to the group of 50 neurons.

Figure 5.5: Probabilities of the ordinal patterns as a function of the
noise strength, D, for (a) 50 neurons and for (b) two neurons. Other
parameters are: a0 = 0.05, T = 10, and σ = 0.05.
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5.3 Influence of the network struc-
ture

So far we have seen that for 50 neurons the encoding of the
signal is, in general, improved in comparison with that of only
two neurons. Yet, how is the variation of the ordinal proba-
bilities with the network size? Next, we fix the period and the
amplitude of the signal and we characterize the influence of i)
the number of neurons, N , when they are all-to-all coupled; ii)
the number of links (from zero links to all-to-all coupling, ran-
domly adding links) and iii) the strength of the coupling, σ, in
the all-to-all configuration, from 0 (uncoupled neurons) to the
same coupling strength considered in steps i) and ii). We keep
the coupling level low enough such that, without signal and
noise, there are no spikes. We note that the starting and final
points in the three steps are the same: from the uncoupled
neurons to 50 all-to-all coupled neurons.

Figure 5.6 presents the results: panels (a, b) display the
ordinal probabilities as a function of N ; (c, d) as a function
of the percentage of total links; and (e, f) as a function of
the coupling strength. To investigate if these parameters can
play different roles for weak or strong signals, we consider two
signal amplitudes: a0 = 0.05 in panels (a, c, e) and a0 = 0.1
in panels (b, d, f).

In Fig. 5.6(a) we note that for a0 = 0.05 the probabilities
gradually vary, increasing or decreasing, as N increases up to
N = 10. With further increase of N they remain nearly con-
stant. The signal is encoded (the probabilities are not in the
blue region) but, at least for these parameters, the encoding
only slightly improves when increasing N .
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Figure 5.6: Probabilities of the ordinal patterns as a function of the
number of neurons, N (a, b), of the percentage of links (c, d), and of
the coupling strength (e, f) for a0 = 0.05 and a0 = 0.1, respectively. In
panels (a, b, e, f) the neurons are all-to-all coupled, in panels (c, d) the
coupling topology is random (starting from uncoupled neurons, links are
randomly added until the neurons are all-to-all coupled). In panels (c, d,
e, f) N = 50, in all the panels: D = 2.5 · 10−6 and T = 10.
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In contrast, for a0 = 0.1 [Fig. 5.6(b)] we observe that the
encoding is significantly improved, compared to Fig. 5.6(a),
as the probabilities of the ordinal patterns 012 and 210 gradu-
ally decrease to zero. An interesting observation is that above
a certain number of neurons (which depends on the parame-
ters) the probabilities saturate and remain stable with further
increase of N .

In Fig. 5.6(c) and 5.6(d) we note that for the lower signal
amplitude, the probabilities vary gradually when increasing
the number of links, and with just few links (∼ 10 %) they
take the most extreme values, i.e., the encoding is optimal. In
contrast, for the higher signal amplitude the probabilities in-
crease or decrease fast, and then saturate. Next, in Fig. 5.6(e)
and 5.6(f) we evaluate the effect of the coupling strength. We
notice that increasing σ tends to improve the encoding of the
signal (the ordinal probabilities tend to higher or lower values),
and the effect is more pronounced if the signal amplitude is
high. We also note a saturation effect, as for the high sig-
nal amplitude, patterns 012 and 210 have zero probability for
coupling strengths above σ = 0.02.

In order to understand the effect of the coupling strength,
Fig. 5.7 displays the spiking activity of the neurons for differ-
ent values of σ. Here we see that when the neurons are un-
coupled (σ = 0) their spiking activity is partially synchronized
due to the periodic signal that is perceived by all the neurons.
As σ increases, the spikes gradually become even more syn-
chronized. A similar behavior is found (not shown) when the
number of existing links increases, keeping σ constant. For
future work, it will be interesting to investigate the synchro-
nization transition using synchronization measures based on
the ordinal probabilities.116
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Figure 5.7: Raster plots displaying the spiking activity of the group of
50 neurons all-to-all coupled over time for (a) σ = 0, (b) σ = 0.01, (c)
σ = 0.015 and (d) σ = 0.03. In all the panels: D = 2.5 · 10−6, T = 10
and a0 = 0.1.

5.4 Discussion

We have analyzed a plausible neuronal mechanism for en-
coding a weak periodic signal exploiting neural noise. We
have simulated the dynamics of a neuronal ensemble using the
stochastic FitzHugh-Nagumo model with mutual gap-junction
type of coupling, and a sinusoidal signal that is perceived by
all the neurons. We applied the ordinal symbolic method to
the spike sequences generated by all the neurons. Considering
the variation of the ordinal probabilities with the amplitude of
the signal, we have found that a group of 50 neurons encodes
a weak amplitude signal in a similar way (similar probabil-
ities) as two neurons encode a signal of stronger amplitude.
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We confirmed the results reported in Refs.:76,102 the ordinal
probabilities depend on the period and the amplitude of the
signal and thus, they encode the signal information. We have
found that the probabilities have resonances with the period
or with the noise level, which become more pronounced for
the neuronal ensemble. Regarding the influence of the num-
ber of neurons, N , we have found that increasing N enhances
the signal encoding, but above a certain N (which depends
on the parameters), the ordinal probabilities saturate and re-
main nearly constant. We have also investigated the role of
the number of links and found that signal encoding can be
enhanced by just a few links. We have also found a gradual
similar effect when increasing the coupling strength.

In sum, this work concludes that the neuronal ensemble
improves signal encoding, in comparison with single or two
coupled neurons. We have studied an homogeneous group
of neurons as a first step to understand the ensemble coding
mechanism.
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Chapter 6

Conclusions and
Perspectives
6.1 Conclusions
In this thesis we have used well-known neuronal models to
analyze the encoding and transmission of weak (sub-threshold)
periodic signals. Regarding each chapter, we can summarize
the main results as follows.

Signal encoding and transmission by two FitzHugh-
Nagumo neurons (Chapter 3)

In this chapter we have demonstrated that the encoding mech-
anism suggested by Reinoso and collaborators76 (which states
that a weak and periodic signal can be encoded in the proba-
bilities of symbolic spike patterns) is robust to linear coupling
and diffusive coupling. It can also hold for non-identical neu-
rons. We have also shown that information extracted using
ordinal analysis is complementary to that contained by the
analysis of the ISI distribution. Both, the frequency of occur-
rence of symbolic spike patterns and the ISI distribution can
encode the signal information.
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The conclusions are:

- If the noise is not too strong ordinal patterns probabil-
ities encode the period of the signal, for both uncou-
pled and coupled neurons. In contrast, strong noise pro-
duces spikes which are too fast, the time interval be-
tween spikes is mainly determined by the noise level and
therefore the spike sequence does not encode signal’s in-
formation [Fig. 3.8(c)].

- Coupling can either degrade and enhance signal encod-
ing, depending on the signal parameters [Fig. 3.8(d) and
Fig. 3.10].

- Ordinal pattern probabilities encode information of the
amplitude of the signal for both coupled and uncoupled
neurons: when a0 increases, the probabilities monotoni-
cally increase or decrease [Fig. 3.9(a) and Fig. 3.9(b)].

- For weak noise the mean ISI contains information of the
period T of the signal: mean ISI increases with T [Fig.
3.5(c) and Fig. 3.5(d)].

- The coupling to the second neuron increases the width
of the ISI distribution (i.e., the variability of the inter-
spike-interval). Therefore, if the signal is encoded in the
spike rate, the coupling degrades the encoding of the
signal [Fig. 3.6].

- The signal is transmitted to the second neuron if the
coupling is strong enough. There seems to be an optimal
coupling strength for signal transmission (Fig. 3.18).
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Signal encoding and transmission by two Morris-Lecar
neurons (Chapter 4)

In this chapter we demonstrated that temporal order in the
sequences of spikes is robust to the type of neuronal excitabil-
ity and synaptic connection. The results are summarized as
follows:

- Class 1 neurons are more sensitive to low frequency sig-
nals: ordinal pattern probabilities are extremer for lower
frequencies [Fig. 4.4(a) and Fig. 4.4(b)]. Class 2 neu-
rons are more sensitive to higher frequencies: ordinal
pattern probabilities are extremer for higher frequencies
[Fig. 4.4(c) and Fig. 4.4(d)].

- For class 1, bidirectional chemical coupling improves the
encoding of the signal: it increases the range of frequen-
cies that neuron 1 can encode [Fig. 4.4(g) and Fig.
4.4(h)]. On the other hand, the bidirectional electric
coupling has almost no effect on the range of encoded
frequencies. [Fig. 4.4(e) and Fig. 4.4(f)]. For class 2,
both bidirectional couplings (chemical and electrical) de-
teriorate signal encoding, but most notably bidirectional
electrical coupling [Fig. 4.4(i), 4.4(j) and 4.4(k), 4.4(l)].

- For the parameters considered, electrical coupling seems
to be the best mechanism to transmit information: ordi-
nal pattern probabilities are nearly the same for neuron
2 than for neuron 1, for class 1 and class 2 [Fig. 4.5(a),
Fig. 4.5(b), Fig. 4.5(e), 4.5(f), Fig. 4.5(i) and Fig.
4.5(j), Fig. 4.5(m) and Fig. 4.5(n)].

- For chemical coupling the signal is transmitted for all
cases except for the bidirectional coupling for class 1:
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neuron 2 did not express the same ordinal patterns as
neuron 1 [Fig. 4.5(k) and 4.5(l)]. Regarding the other
cases, the best signal transmission is achieved for the uni-
directional coupling for class 2 [Fig. 4.5(g) and 4.5(h)].

Ensemble of FitzHugh-Nagumo neurons (Chapter 5)

In this chapter we demonstrated that a neuronal ensemble can
encode the information of a weak periodic signal in the form of
preferred and infrequent symbolic spike patterns, as one and
two coupled neurons do. We found that:

- The probabilities of the symbolic spike patterns (i.e., or-
dinal patterns) depend on both the signal’s amplitude
and period (Fig. 5.3 and Fig. 5.4).

- Neuronal coupling is beneficial for signal encoding: (i)
the neuronal ensemble encodes a weak signal in a similar
way as two coupled neurons encode a stronger signal
(Fig. 5.3 and Fig. 5.4) and (ii) the neuronal ensemble
has extremer resonances with the period of the signal
(Fig. 5.4) or with the noise amplitude (Fig. 5.5), in
comparison with one or two coupled neurons.

- Few links among the neurons (∼ 10%) are enough to
improve signal encoding [Fig. 5.6(c) and Fig. 5.6(d)].

6.2 Future perspectives
- Throughout this thesis we have studied periodic signals.
It would be interesting to investigate the encoding and
transmission of non periodic inputs, where the amplitude
and/or the frequency changes in time.
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- We studied how chemical excitatory coupling influenced
signal encoding and transmission for two coupled neu-
rons. A more realistic scenario would be to consider a
sparse network of coupled neurons with excitatory and
inhibitory synapses.

- We analyzed separately the FitzHugh-Nagumo and the
Morris-Lecar models, in the future it would be inter-
esting to compare the predictions of these models using
parameters for which the relations between the signal pe-
riod and the mean ISI, as well as the signal amplitude,
noise level and coupling strengths are similar.

- We have studied a neuronal ensemble with random cou-
pling topology, however, real neural networks are orga-
nized in a modular manner.117 Thus, we believe that
it would be interesting to study the impact of modu-
lar organization on signal encoding and transmission. In
particular, it would be interesting to study how a signal
is encoded by one module and transmitted to the oth-
ers. On going work is focused in heterogeneous modular
networks.

- It would be interesting to analyze how neurons encode
two different periodic signals. Chialvo and collabora-
tors118–120 have shown that ghost stochastic resonance
occurs in neural systems. When signals with two fre-
quencies are perceived simultaneously, a third frequency
is often heard and this is known as missing fundamental
illusion. Interestingly, ghost stochastic resonance occurs
when the frequency that is absent is enhanced.

- The study of experimental data (spike trains recorded
from biological neurons) is of course needed. There are
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freely available datasets, such as the one of Deweese and
Zador121 (where the voltage response to tones of different
frequencies from 40 neurons in the primary cortex of a
rat is recorded) which would allow for such a comparison.
Also, we could compare the synthetic spike sequences
of two coupled neurons with other excitable systems, a
particular interesting area is the spiking output intensity
of two coupled semiconductor lasers with weak external
forcing and feedback (in a similar manner Tiana and col-
laborators122 did for one semiconductor laser with weak
external forcing).
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Appendix A

List of publications and
research activities
Publications

M. Masoliver, N. Malik, E. Schöll, and A. Zakharova, Co-
herence resonance in a network of FitzHugh-Nagumo sys-
tems: Interplay of noise, time-delay, and topology, Chaos
27, 101102 (2017). Unrelated to this thesis (work done dur-
ing Master degree at the Tecnische Universität Berlin).

M. Masoliver and C. Masoller, Sub-threshold signal encoding
in coupled FitzHugh-Nagumo neurons, Sci. Rep. 8, 8276
(2018).

C. Estarellas, M. Masoliver, C. Masoller and C. Mirasso,
Characterizing signal encoding and transmission in class I
and class II neurons via ordinal time-series analysis, ac-
cepted in Chaos (2019). Avaliable at arXiv:1908.01548 (2019).

M. Masoliver and C. Masoller, Neuronal coupling benefits
the encoding of weak periodic signals in symbolic spike pat-
terns, Communications in Nonlinear Science and Numerical
Simulation 82, 105023 (2020).
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Conferences
Jornada d’investigadors predoctorals interdisciplinària. Poster
contribution: Numerical study of the interplay of noise and
a subthreshold periodic signal in the output of two coupled
neurons. Barcelona, February, 2017.

International Workshop on Computational Neurosciences and
Optical Dynamics. Talk contribution: Subthreshold signal
encoding and transmission in coupled Fitzhugh-nagumo neu-
rons. Institut de Physique de Nice, Sophia Antipolis, May,
2017.

Crossroads in complex systems conference. Poster contri-
bution: Interplay of noise and a subthreshold signal in the
dynamics of two coupled neurons. Mallorca, June 2017.

Barcelona Computational, Cognitive and Systems Neuro-
science conference (BARCCSYNC). Talk contribution: Sub-
threshold signal encoding and transmission in coupled Fitzhugh-
nagumo neurons. Barcelona, June 2017.

17 National Congress of the Spanish Society of Neuroscience.
Poster contribution: Subthreshold signal encoding and trans-
mission in coupled Fitzhugh-nagumo neurons. Alacant, Septem-
ber 2017.

Deutsche Physicallishes Gesellschaft Conference. Talk con-
tribution: Coherence resonance in a network of FitzHugh-
Nagumo systems: Interplay of noise, time-delay, and topol-
ogy. Berlin, March 2018.

Deutsche Physicallishes Gesellschaft Conference. Poster con-
tribution: Subthreshold signal encoding in coupled FitzHugh-
Nagumo neurons. Berlin, March 2018.
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Analysis and Modeling of Complex Oscillatory Systems (AM-
COS) Conference. Poster contribution: Subthreshold signal
encoding in coupled FitzHugh-Nagumo neurons. Barcelona,
March 2018.

Barcelona Computational, Cognitive and Systems Neuro-
science conference (BARCCSYNC). Poster contribution: Sub-
threshold signal encoding in coupled FitzHugh-Nagumo neu-
rons. Barcelona, May 2018.

VII Jornada complexitat.cat: Complex systems, from the-
ory to data science. Poster contribution: Characterizing
spike sequences generated by different neuronal models via
ordinal time-series analysis. Barcelona, May 2018.

International conference on Mathematical Neuroscience. Poster
contribution: Characterizing spike sequences generated by
different neuronal models via ordinal time-series analysis.
Juan les Pins, France, June 2018.

FisEs Conference: XXI Congreso de Física Estadística. Poster
contribution: Information transmission in random and mod-
ular neuronal networks. Madrid, October 2018.

Jornada d’investigadors predoctorals interdisciplinària. Talk
contribution: Information encoding in a neuronal network.
Barcelona, February 2019.

VIII Complexitat Day. Talk contribution: Information en-
coding in an ensemble of globally coupled noisy FitzHugh-
Nagumo neurons. Barcelona, May 2019.

Barcelona Computational, Cognitive and Systems Neuro-
science conference (BARCCSYNC). Poster contribution: Neu-
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ronal coupling benefits the encoding of weak periodic signals
in symbolic spike paterns. Barcelona, May 2019.

New trends in biomedical imaging and data analysis. Be-
Optical Final conference. Talk contribution: Dynamics of
weakly forced excitable systems. Göttingen, Germany, July
2019.

Workshops and Summer schools
IBERSINC Network congress. Universitat Rovira i Virgili,
Tarragona. October 2016.

1rst School Be-optical. Max Plank Institute for Dynamics
and Self-organization. November 2016.

VII GEFENOL Summer School on statistical phyisics of
complex systems. Institut de física interdisciplinar i sis-
temes complexes, Universitat de les Illes Balears. 19th -
31th June 2017.

Com millorar l’impacte de la recerca. Gestió de la identitat
digital, Universitat Politècnica de Catalunya. Terrassa, 5th
July 2017.

IBERSINCWinter school. Universitat Pompeu Fabra. Barcelona,
23th-24th November 2017.

SINC2 one-day workshop on brain connectivity analysis from
neural data Entitat organitzadora. Universitat Pompeu Fabra.
Barcelona, 23th May 2018.

Summer School UPC-UB. Universitat Politècnica de Catalunya
- Universitat de Barcelona. Barcelona, 2nd - 6th July 2018.

Curs de formació del programa educatiu STEAM Barcelona.
Universitat de Barcelona, 20th March - 1rst July 2019.
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Research stays
Institut de Física interdisciplinar i sistemes complexes, Uni-
versitat de les Illes Balears, July 2018 and October 2018.
Collaboration with Claudio Mirasso and Cristian Estarellas
on the dynamics of two Morris-Lecar Neurons.

Tecnische Universität Berlin. Theoretical Physics. July and
August 2019. Collaboration with Anna Zakharova on the
dynamics of neuronal networks with multiplex structure.

Teaching
Laboratory of Physics I

- 1rst semester of the academic year 2016-2017.
- 1rst semester of the academic year 2017-2018.
- 1rst semester of the academic year 2018-2019.
- 1rst semester of the academic year 2019-20120.

Laboratory of Physics II

- 2nd semester of the academic year 2016-2017.

Robotic mentor within the educational program STEAM
Barcelona. March – June 2019.
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