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Abstract
Carbon nanotube (CNT) mechanical resonators are unique systems

because they combine remarkable mechanical properties with rich charge
transport characteristics. Thanks to their intrinsically low-dimensional
nature, their mass is extremely low. The mechanical resonance fre-
quency reaches the GHz regime, can be widely tunable and they show
quality factor as high as several million. Nanotubes hold great promise
for sensing applications. Nanotubes are an excellent system to study
quantum electron transport, which range from Fabry-Pérot interfer-
ence to Coulomb blockade. These completely opposite regimes can
be very efficiently coupled to the mechanics, since the two degrees of
freedom, electrons and phonons, are embedded in the same system.
In the first section of this thesis we develop a detection scheme uti-
lizing a RLC resonator together with a low-temperature HEMT am-
plifier. This allows us to lower the current noise floor of the setup
and carry out sensitive electrical noise measurements, demonstrating
a displacement sensitivity of 0.5 pm/

√
Hz and a force sensitivity of

4.3 zN/
√

Hz. This surpasses what has been achieved with mechani-
cal resonators to date and paves the way for the detection of individ-
ual nuclear spins. We also improve the device fabrication enhancing
the capacitive coupling between mechanical vibrations and electrons
flowing though the nanotube.
In the second part of this work, we study the electron-phonon cou-
pling in CNT resonators in the Coulomb blockade regime and report
on the long-sought-after demonstration of the ultra-strong coupling
regime. Mechanical vibrations and electrons are so strongly coupled
that it no longer makes sense to think of them as distinct entities, but
rather as a quasi-particle: a polaron. First, we demonstrate that the po-
laronic nature of charge carriers modifies the quantum electron trans-
port through the device. In previous electromechanical devices, the
coupling was too weak to have any effect on the DC electrical conduc-
tance. Second, we show high tunability of polaron states by electro-
static means. This is something not possible to do with polarons in
other systems, such as bulk crystals. Notably, this interaction creates
a highly nonlinear potential for the phonon mode which establishes
nanotube resonator as a possible platform for the demonstration of
mechanical qubits.





Abstracto
Los resonadores mecánicos de nanotubos de carbono (CNT) son

sistemas únicos porque combinan propiedades mecánicas notables con
ricas características de transporte de carga. Gracias a su naturaleza in-
trínsecamente de baja dimensión, su masa es extremadamente baja. La
frecuencia de resonancia mecánica alcanza el régimen de GHz, puede
ser ampliamente ajustable y muestra un factor de calidad de hasta
varios millones. Los nanotubos son muy prometedores para las apli-
caciones de detección. Los nanotubos son un excelente sistema para
estudiar el transporte cuántico de electrones, que van desde la inter-
ferencia Fabry-Pérot hasta el bloqueo de Coulomb. Estos regímenes
completamente opuestos se pueden acoplar de manera muy eficiente
a la mecánica, ya que los dos grados de libertad, electrones y fonones,
están integrados en el mismo sistema. En la primera sección de esta
tesis desarrollamos un esquema de detección que utiliza un resonador
RLC junto con un amplificador HEMT de baja temperatura. Esto nos
permite reducir el ruido de fondo actual del setup y realizar medi-
ciones de ruido eléctrico sensibles, demostrando una sensibilidad de
desplazamiento de 0.5 pm/

√
Hz y una sensibilidad de fuerza de 4.3

zN/
√

Hz. Esto supera lo que se ha logrado con resonadores mecáni-
cos hasta la fecha y allana el camino para la detección de espines nu-
cleares individuales. También mejoramos la fabricación del disposi-
tivo mejorando el acoplamiento capacitivo entre vibraciones mecáni-
cas y electrones que fluyen a través del nanotubo. En la segunda parte
de este trabajo, estudiamos el acoplamiento de electrones y fonones
en resonadores CNT en el régimen de bloqueo de Coulomb e infor-
mamos sobre el tan buscado después de la demostración del régimen
de acoplamiento ultra fuerte. Las vibraciones mecánicas y los elec-
trones están tan fuertemente acoplados que ya no tiene sentido pen-
sar en ellos como entidades distintas, sino más bien como una cuasi
partícula: un polaron. Primero, demostramos que la naturaleza po-
larónica de los portadores de carga modifica el transporte cuántico
de electrones a través del dispositivo. En dispositivos electromecáni-
cos anteriores, el acoplamiento era demasiado débil para tener algún
efecto sobre la conducción eléctrica continua. En segundo lugar, mostramos
una alta capacidad de sintonización de los estados de Polaron por
medios electrostáticos. Esto es algo que no es posible hacer con los po-
larones en otros sistemas, como los cristales a granel. Notablemente,
esta interacción crea un potencial altamente no lineal para el modo
de fonón que establece el resonador de tubos de resonancia como una
posible plataforma para la demostración de qubits mecánicos.
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Chapter 1

Introduction

Miniaturized mechanical resonators have been proven to have a major
impact both on technological advancement and fundamental physical
research [1]. Micro-electromechanical resonators (MEMS) are widely
present in our everyday life. Gyroscopes and antennas in our smart-
phones (Fig.1.1(a)), accelerometers that trigger airbags in our cars (Fig.
1.1(b)), blood pressure sensors in hospitals are all MEMS-based de-
vices. Micro resonators have become nowaday essential tools to carry
out basic science research. A great example is the atomic force mi-
croscope (AFM) [2]. It consists of a micro-machined cantilever, with
an extremely sharp tip used to perform surface imaging. It is based
on resonance frequency shifts and amplitude oscillation modulations
which are induced by the surface local forces. This technique is one of
the most powerful imaging tools with the resolution pushed down to
subatomic scale [3]. Because of its versatility and the fact that it can be
easily operated in different temperature and pressure conditions, one
microscope was even sent to Mars to examine the fine detail structure
of soil and water ice samples (Fig.1.1(c)).

a b c

FIGURE 1.1: Examples of commercially available MEMS devices. (a) Part of a
gyroscope system embedded inside iPhone4 smartphones. (b) An accelerom-
eter sensor forming part of airbag systems present in every car. (c) The eight

sharp tips of the NASA’s Phoenix Mars Lander’s AFM sent to Mars.

The strength of micro- and nano-electromechanical resonators (NEMS)
is the possibility to couple them with other degrees of freedom with
an extreme efficiency. Mechanical resonators have been coupled to
charges in single-electron transistors (SETs) (Fig.1.2(a)) [4–12], microwave
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electromagnetic radiation [13, 14] (Fig.1.2(b)), superconductive qubits
[15], superconducing films [16] and superfluids [17–19]opening new
horizons in quantum science and technology. In a ground-breaking
experiment of the group of Cleland, a mechanical resonator was cooled
in the quantum regime, that is, into its ground state [20], and was cou-
pled to a qubit, which was used to measure the quantum state of the
resonator.
On the other hand, the exceptional sensitivity of mechanical resonators
found a logical application in sensing experiments. These range from
mass detection [21, 22], to cantilever magnetometry [23, 24], to charge
sensing [4] and force-detected magnetic resonance (MRFM) [25]. In
this last class of experiments the physics of nuclear magnetic reso-
nance (NMR) is combined with the techniques of scanning probe mi-
croscopy.
In a typical MRFM experiment, a cantilever is used to detect mechani-
cally the very small magnetic force due to electron or nuclear spins in
the sample, which is generated by the interaction between these spins
and a strong magnetic field gradient. This force can be probed follow-
ing different read-out schemes, which include periodically flipping
the spins by the means of an oscillatory magnetic field using typical
NMR protocols. In a milestone experiment Rugar and collaborators
mechanically detected a single electron spin with an ultra-soft silicon
cantilever [26] (Fig.1.2(c)). Advances in micro- and nano-fabrication
of these ’top-down’ resonators enables the improvement of their force
sensitivity [27], spacial resolution [28] and nanoscale magnetic reso-
nance imaging (MRI) [29].

FIGURE 1.2: Examples of nanomechanical resonators. (a) Scanning electron
micrograph of a device based on GaAs and aluminium structures, where the
mechanical resonator is coupled to a single-electron transistor[5]. (b) An alu-
minium electromechanical circuit consisting of a vibrating membrane coupled
to superconducting microwave cavity [14]. (c) Magnetic resonance force mi-
croscopy of a single electron spin with a NEMS cantilever containing a mag-

netic tip [26]

The push towards even smaller mechanical oscillators generated
close attention because of the outstanding mechanical properties of
these objects. Recently, extremely small and light nanoscale systems,
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such as levitated nanoparticles [30, 31] and carbon nanotubes (CNTs)
[32, 33], have shown unprecedented force noise sensitivities approach-
ing 1zN/

√
Hz (1zN=10−21N). In Fig.1.3(a), a CNT mechanical res-

onator in the doubly-clamped geometry is shown.
This value would be exactly the magnitude of the force generated by
a single nuclear spin in a typical MRFM experiment [34].

Carbon nanotube mechanical resonators have attracted consider-
ably attention in recent years. The high strength, the extremely low
mass and the rich transport physics enabled the realization of res-
onators with very interesting characteristics. Their mechanical reso-
nance frequency can be pushed in the GHz regime [35, 36], the quality
factor can reach very high values [32, 37] and the resonance frequency
is highly tunable [38] .
Moreover, it’s known that for thermally limited mechanical force trans-
ducers the minimum detectable force is limited by the force noise spec-
tral density SF = 4kBT Mωm

Q associated to the Brownian fluctuation of
the resonator’s position, where kB is the Boltzmann constant, T is the
modal temperature, M the effective mass, ωm the resonance frequency
and Q the quality factor. This expression indicates that resonators with
a small mass tend to be endowed with a weak thermal force noise. Be-
cause of their small mass, CNT resonators have been utilized as sen-
sors for mass [22, 39] and force [40]. Together with these exciting me-
chanical properties, carbon nanotubes possess unique electrical char-
acteristics. The ambipolar transport, in which the electrical current
is carried by either holes or electrons, have been coupled to mechan-
ics. Striking effects in such devices due to single-electron tunnelling
events, in the so-called Coulomb blockade regime [41], have been re-
ported for almost 20 years [6–8, 10, 42–45]. In the opposite regime,
where the electrical conductance shows Fabry-Pérot electron interfer-
ence patterns [46], the dissipation is extremely low due to the ballistic
nature of the charge carriers enabling to reach very high mechanical
quality factor [32] (the two transport regimes are shown in Fig.1.3(b)).
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FIGURE 1.3: A CNT electro-mechanical resonator. (a) Scanning electron mi-
croscopy image of a CNT mechanical resonator clamped between two metal
electrodes and suspended and vibrating above a gate electrode. (b) Electri-
cal conductance as a function of the DC gate voltage measured at the base

temperature of our dilution refrigerator.

My Ph.D thesis work finds his motivation in all these intriguing
experimental phenomena. In this dissertation we want to explore the
vast possibilities offered by CNT mechanical resonators at low tem-
peratures. First, we develop a read-out scheme that allows us to carry
out ultra-sensitive measurements, and to demonstrate the great per-
formances of CNT resonators as force sensors. Secondly, we investi-
gate the electron-phonon interaction in a new regime where the cou-
pling between vibrations and electrons is ultra-strong, and the restor-
ing mechanical potential is highly nonlinear near the quantum regime.
An outline of the thesis is given below:

• Chapter 2 gives a brief introduction on the main theoretical con-
cepts to understand the basic dynamical properties of nanome-
chanical resonators.

• Chapter 3 provides a basic introduction of the electron transport
in carbon nanotube based quantum dots.

• Chapter 4 discusses the implementation of the low-noise read-
out scheme and the measurement of force and displacement noise
performances in CNT mechanical resonators.

• Chapter 5 investigates the formation of polarons in CNT-based
SET mechanical resonators and the related effects on the me-
chanics and electron transport.
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Chapter 2

Basics of nanomechanics

In this chapter we briefly review the basics of nanomechanics and in-
troduce essential concepts to understand the mechanical properties of
nanoresonators. First, we start with the model of a simple harmonic
oscillator with an external coherent drive. We then describe its re-
sponse to incoherent fluctuating thermal forces. We mention the non-
linear response of a Duffing oscillator. We conclude discussing the
mechanics of a double clamped beam in the context of continuum me-
chanics model, which is a good approximation for the description of a
carbon nanotube mechanical resonator.

2.1 The linear harmonic oscillator with coher-
ent driving

The simplest way to describe the motion of a mechanical resonator,
with an arbitrary geometry, is to use the concept of a harmonic oscilla-
tor. In absence of damping and external driving a harmonic oscillator
is subject to the force: F = −kz(t), where z(t) is the displacement and
k is the mechanical spring constant.
According to the Newton’s second law, we get:

F = meff
d2z(t)

dt2 = −kz(t), (2.1)

where meff is the effective mass of the nanomechanical oscillator. The
effective mass can be lower than the physical mass of the resonator.
The solution of the equation 2.1 results in:

z(t) = z0 exp(−iωmt + iφ) (2.2)

where ωm is the mechanical angular resonance frequency of the oscil-

lator, also given by ωm =
√

k
meff

, z0 and φ are the initial values for the
amplitude and the phase of the motion.
However, in a realistic situation the interaction with the environment
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has to be taken into account. This interaction expresses itself through
a force δF and dissipation Γm. The equation 2.1 can be written as:

meff
d2z(t)

dt2 + kz(t) + meffΓm
dz(t)

dt
= δF(t) (2.3)

where Γm and δF are related through the fluctuation-dissipation theo-
rem. In the case of a coherently driven harmonic oscillator, assuming
a weak sinusoidal drive δF(t) = Fd cos(ωdt) with Fd the driving am-
plitude and ωd the driving frequency, the equation can be solved with
the ansatz in the equation 2.2 where φ is now the phase difference be-
tween the mechanical motion and the driving force. The driving fre-
quency dependent amplitude and phase response take the following
forms:

z(ωd) =
Fd

meff

1√
(ω2

m −ω2
d)

2 + (Γmωd)2
(2.4)

φ(ωd) = arctan

(
Γmωd

ω2
m −ω2

d

)
(2.5)

The amplitude of the motion is maximum at resonance (ωd = ωm).
There the mechanical motion and the drive acquire a phase difference
of π/2 (see Fig.2.1). Before finishing this section, we want to intro-
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FIGURE 2.1: Amplitude and phase response of a harmonic oscillator as a func-
tion of coherent driving force. At resonance (ω = ωm) the amplitude reaches
a maximum and it is π/2 out of phase with the driving force. Panel is adapted

from [47]

duce a very important figure of merit that characterizes a mechanical
resonator, the quality factor Q. It quantifies the interaction between
the resonator and its environment, which induces the damping of the
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motion. The quality factor is defined as the total energy Etot stored in
the resonator divided by the energy lost per cycle of vibration ∆Ecycle:

Q = 2π
Etot

∆Ecycle
(2.6)

For small damping, Γm << ωm, the quality factor reads:

Q =
ωm

Γm
(2.7)

2.2 The linear harmonic oscillator with inco-
herent driving: thermomechanical motion

The coupling of the mechanical resonator to a thermal bath leads to
dissipation, quantified by the quality factor. Moreover, this coupling
also manifests itself as a statistical random driving force δF acting on
the resonator. This induces the so-called thermal Brownian motion.
Basically, the dissipative term meffΓm

dz
dt in equation 2.3 represents the

thermalization process of the resonator with its environment. This is
well described by the fluctuation-dissipation theorem [48], which as-
serts that, in thermal equilibrium, the dissipation of the resonator is
directly linked to the fluctuating thermal forces acting on it. Let’s de-
rive it.
Inserting in the equation 2.3 this statistical random force, it gives us
the equation of motion for a resonator driven by random thermal fluc-
tuating forces. For the sake of convenience, we perform the Fourier
transform of this equation in frequency space and it reads:

z(ω) = χ(ω) · δF(ω) (2.8)

where χ(ω) is the mechanical susceptibility given by:

χ(ω) =
1

meff(ω2
m −ω2 − iΓmω).

(2.9)

This represents the linear response of the displacement z(ω) to the
random fluctuating force. What is often measured in the lab is the
power spectral density (PSD) Szz(ω) of the displacement z(t). We now
introduce the autocorrelation function of z(t):

Cz(τ) = 〈z∗(t)z(t + τ)〉 =
∫ ∞

−∞
z(t)∗z(t + τ)dt (2.10)

where z∗(t) is the complex conjugate of z(t) and 〈...〉 denotes the sta-
tistical average. From the Wiener-Khinchin theorem we know that the
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Fourier transform of the autocorrelation function of z(t) and its PSD
Szz(ω) are Fourier transform 1 pair:

Szz(ω) =
∫ ∞

−∞
dτ〈z∗(t)z(t + τ)〉eiωt (2.11)

The unit of PSD is [(m)2/Hz]. Using this relation in equation 2.8 we
can make a connection between the PSD of the force SFF(ω) and PSD
of the displacement Szz(ω), via the mechanical susceptibility χ(ω):

Szz(ω) = |χ(ω)|2 SFF(ω) (2.12)

This equation is the equivalent of equation 2.8, but expressed in exper-
imentally measurable quantities.
According to the linear response theory [49], the single-sided PSD of
the thermal force noise reads as:

Sth
F (ω) = −4kBT

ω
Im
(

1
χ(ω)

)
(2.13)

where kB is the Boltzmann constant and T is the temperature. In the
classic limit and for weak damping, the fluctuation-dissipation theo-
rem can be written as:

Sth
F = 4kBTmeffΓm (2.14)

The thermal force noise Sth
F is white. It is similar to the Johnson-

Nyquist noise used to express the voltage noise of a resistor. Com-
bining equations 2.14 and 2.12 we get the PSD of the thermal displace-
ment:

Sth
z (ω) =

4kBTΓm

meff[(ω2
m −ω2)2 + (Γmω)2]

(2.15)

From the equipartition theorem for a harmonic oscillator in thermal
equilibrium we know:

1
2

meff〈ż2
th〉 =

1
2

k〈z2
th〉 =

1
2

kBT (2.16)

This equation, together with the fact that the variance of the displace-
ment 〈z2

th〉 can be estimated from the area under the single-sided PSD
of the thermal displacement Sth

z (ω), give us:

〈z2
th〉 =

kBT
meffω2

m
=
∫ ∞

0

1
2π

Sth
z (ω)dω (2.17)

This last observation allows us to extract the modal temperature of a
resonator by simply integrating over the resonance, as schematized in
Fig.2.2

1We use the following convention z(t) = 1
2π

∫ ∞
−∞ z(ω)eiωtdω and z(ω) =∫ ∞

−∞ z(t)eiωtdt
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z

z

FIGURE 2.2: Thermal noise displacement power spectrum. The area under the
displacement PSD is proportional to the modal temperature. Panel is adapted

from [47]

2.3 Nonlinear response: Duffing oscillator

When a nanomechanical resonator is driven to large displacement am-
plitude its behaviour deviates from the harmonic oscillator approxi-
mation. In this case nonlinear restoring forces have to be taken into
account; their origin can be geometrical or due to external nonlinear
potentials. The equation of motion has an additional term which is
proportional to the cubic displacement of the resonator:

meff
d2z(t)

dt2 + kz(t) + meffΓm
dz(t)

dt
+ αz3(t) = Fd(t) (2.18)

with α the Duffing nonlinear constant. In the limit of small amplitude,
we obtain:

z(ωd) ≈
Fd

2meffω2
m

1√(
ωd−ωm

ωm
− 3

8
α

meffω
2
m

z2
)2

+ (2Qm)−2

(2.19)

It can be demonstrated that above a critical amplitude the equation has
three solutions, two of which are stable. The appearance of bistable
and hysteretic behaviour when sweeping back and forth the driving
frequency is a consequence of the nonlinear contribution in the motion
of the resonator. The amplitude response below and above this critical
driving is shown in Fig.2.3. As we already showed for low driving,
the amplitude response is described by a Lorentzian function while,
for high driving, the resonance frequency shifts to higher (α > 0) or
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lower (α < 0) values leading to hardening or softening of the effective
mechanical spring constant.

2

1

4

20-10-20

3

10

Amplitude

Frequencyf0

FIGURE 2.3: Amplitude response of a Duffing oscillator versus frequency for
increasing driving amplitudes. Figure adapted from [50]

For a long time, nonlinearity in nanoresonators has been the sub-
ject of many theoretical [50] and experimental [51, 52] works and, be-
cause of its great importance to the understanding of ultimate nanome-
chanical resonators behaviour, it still attracts considerable attention
[53, 54].
To conclude this part, we just mention that nonlinearity can also ap-
pear in the damping due to mechanisms whose microscopic origin is
not yet clear. This effect can be taken into account by adding in the
equation of motion a term ηz2(t) dz(t)

dt . Nonlinear damping has been
observed recently in graphene and carbon nanotubes [55], and in dia-
mond nanoelectromechanical resonators [56].

2.4 Mechanics of a double clamped beam: the
case of a carbon nanotube

In this last section of the chapter we want to discuss the mechanics of
a double clamped beam using the continuum mechanics model. This
is interesting because carbon nanotube can be modeled as a double
clamped beam with a tubular cross section. This model allows us to
extract, for example, the tension T of the resonator and its effective
mass me f f .

In the continuum model that we are discussing, only flexural modes
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of vibration are considered. This means that only displacement in z-
direction is taken into account (see Fig.2.4(a)). The nanotube is ori-
ented in the x-direction and a tension T in the beam is induced by the
clamping electrodes. The total elastic energy reads [57, 58]:

U =
1
2

∫ L

0

(
EI

∂2z
∂x2 + T0 +

1
2

EA
(

∂z
∂x

)2
+ Kz

)
dx (2.20)

where E is the Young’s modulus, I the moment of inertia, A the uni-
form circular cross sectional area, T0=Aσ the in-built tension with σ
being the stress and finally K a constant downward force in the x-z
plane.
Minimizing U leads to following equilibrium equation:

EI
∂4z
∂x4 − T

∂2z
∂x2 − K = 0 (2.21)

where the tension is given by T = T0 +
EA
2L
∫ L

0

(
∂z
∂x

)2
dx. Equation 2.21

can be solved in two limits.
In the first limiting case, called bending limit, the tension is smaller
than the bending rigidity (T � EI) and the resonance frequency of
the first mode is given by:

ω =
22.4
L2

√
EI
µ

+ 0.28T

√
1

µEI
(2.22)

where L is the length and µ is the linear mass density.
In the opposite limit, called the tension limit, the tension is larger than
the bending rigidity (T � EI) and the resonance frequency is:

ω =
π

L

√
T
µ
+

2π

L2

√
EI
µ

. (2.23)

The effective mass me f f of an eigenmode depends on the mode shape.
Following the derivation in [59], in the bending regime we get for the
effective mass of the fundamental mode me f f = m · 0.3965 (where m
is the mass of the resonator). Instead, in the tension regime, we get
me f f =

m
2 .

Finally, we consider the case of a nanotube resonator subject to an
electrostatic force induced by an applied DC gate potential VDC

g (like
in Fig.2.4(a)). A tension T (beside the pre-existing one T0) can arise
from the electrostatic force that reads:

FDC
el =

1
2

C′g(V
DC
g −V0)

2 (2.24)
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where V0 is the effective charge neutrality voltage of the nanotube and
C′g the derivative of the gate-nanotube capacitance Cg with respect to
the displacement in z-direction. From [57], we assume that the tension
depends on the electrostatic force as T ≈ FDC

el /
√

24s, where s is the
slack 2 in the nanotube beam.
For low enough gate voltage, we are in the bending regime. From
equation 2.22 we obtain:

∆ωbend ∼ ∆T ∼ (VDC
g −V0)

2 (2.25)

For high gate voltage, we are in the tension regime and using 2.23 we
get:

∆ωtens ∼
√

∆T ∼ VDC
g −V0 (2.26)

In Fig.2.4(b) both regimes are shown. The transition between the two
behaviours occurs for T = EI/L2, at the gate voltage V∗g :

V∗g ≈

√
2EI
√

24s
C′g

(2.27)

2The slack s is given by the ratio L−L0
L where L is the length of the beam and L0 is the

distance between the two clamping points.
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w

bending regime w    Vg 

tension regime w    Vg 

FIGURE 2.4: Double clamped carbon nanotube mechanical resonator. (a) A
suspended carbon nanotube resonator with a length L. A constant electrical
force FDC

el , generated by a gate voltage, induces a tension T in the beam. (b)
Dependence of the resonance frequency of double clamped beam on the static
gate voltage. In the bending regime, the force is small and the frequency has a
quadratic dependence. In the tension regime, the frequency increases linearly

with the gate voltage.
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Chapter 3

Electron transport in
carbon nanotube quantum
dots

In this section we introduce essential concepts of electron transport
in zero-dimensional systems, with a special focus on carbon nanotube
based quantum dots. First, we give a rapid review on the band-structure
of carbon nanotube which will help us to understand the peculiar fea-
tures of transport experiments at low temperatures. A large part of
this chapter is dedicated to Coulomb blockade physics. The quanti-
zation effect of the charge and the main energy scales are introduced.
The constant interaction model (CI) is used to explain the origin of the
well known Coulomb blockade stability diagrams. Finally, we briefly
present the cases of co-tunnelling and Fabry-Pèrot interference which
are important effects in CNT electron transport, but not the focus of
this dissertation.

3.1 From graphene band-structure to carbon
nanotubes

3.1.1 Graphene

A carbon nanonotube (CNT) can be described as a sheet of graphene,
a single atomic layer of graphite, rolled up into a cylinder with a ra-
dius of about one nanometer. Because of this, it is helpful to start from
the graphene band-structure to understand the electronic properties
of a CNT. Graphene consists of a two-dimensional honeycomb lattice
in which every carbon atom has three nearest neighbors with a C-C
bond length of a0 = 1.42 Å. In Fig.3.1(a) the unit cell is represented. It
is defined by the two lattice vectors~a1 and~a2 and contains two carbon
atoms.
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FIGURE 3.1: Lattice and band-structure of graphene. (a) Honeycomb lattice
of a graphene sheet with an inter-atomic distance of a0=1.42 Å. The unit cell
is determined by the two lattice vectors ~a1 and ~a2 and contains two atoms.
(b) The band-structure with the π∗ and π orbitals merging at the K and K’
corner points of the exagonal first Brillouin zone. (c) The linear dispersion of

graphene at Dirac-like low energy points [60]

Every carbon atom has four covalent electrons, three of them hy-
bridize in a strong covalent sp2 bond which determines the binding
energy and the elastic properties of the sheet of graphene. The fourth
electron is in a pz orbital which forms delocalized π (bonding) and π∗

(antibonding) orbitals. They can overlap with their neighboring or-
bitals and determine the conductivity of the graphene.
Using the tight binding model the energy-momentum relation can be
written as follow [61]:

E(~k) = ±γ

√
3 + 2 cos(~k ·~a1) + 2 cos(~k ·~a2) + 2 cos(~k · (~a2 −~a1))

(3.1)
where γ is the overlap integral and the positive and negative solutions
are for π∗ and π orbitals, respectively.
The band-structure is depicted in Fig.3.1(b). It consists of the two sub-
bands π and π∗ which meet at the so-called charge neutrality points,
or Dirac points, forming cone shaped structures, located at the ver-
tices of the hexagonal Brillouin zone. Because of symmetry reasons,
only two of these six points are non-equivalent and they are denoted
as K and K’ valleys. Near the Dirac point (at low energy, where the
Fermi energy EF = 0), the energy dispersion is linear (Fig.3.1(c)). This
means that all charge carriers have the same velocity and the disper-
sion relation can be expressed as:

E(~κ) = ±h̄vF|~κ| (3.2)

with~κ =~k− ~K and vF = 3γa0/2h̄ ≈ 106 m/s for γ = 3 eV [62].
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3.1.2 Rolling up a graphene sheet to obtain a carbon
nanotube

A CNT can be visualized as a layer of graphene rolled up into a seam-
less tube. The electronic properties of a CNT depend on its circum-
ferential, or the so-called chiral vector ~C = n~a1 + m~a2 with n, m ∈ N

depicted in Fig.3.2(a). This chiral vector together with the translation
vector ~T define the surface area of the carbon nanotube (yellow and
orange areas in the figure).

T

T

FIGURE 3.2: Rolling-up a graphene sheet: a carbon nanotube. (a) The chiral
vector ~C and the translation vector ~T define the surface area and the electronic
properties of a CNT. (b) Representation of a (4,4) armchair and a (7,0) zig-zag

CNTs with the chiral indices (n, m).

The chiral indices (n, m) determine the type of CNT. A nanotube
is armchair if (n, m = n) and zig-zag if (n, 0). CNTs with arbitrary
values for the indices (n, m) are called chiral. Two examples are illus-
trated in Fig.3.2(b). The zone-folding approximation introduces peri-
odic boundary conditions in the circumferential direction, which im-
plies quantization of the wave vector component κ⊥ perpendicular to
the axial direction of the tube. The longitudinal wave vector κ‖ can
instead be considered continuous since electrons can move freely in
this direction. The quantization of~k along ~C gives the allowed values
for κ⊥:

~C ·~κ = πdκ⊥ = 2π

(
m− n

3
+ p

)
(3.3)
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where p ∈ Z [63]. This generates a series of one-dimensional sub-
band for each κ⊥ mode (as showed in Fig.3.3(a)). The contribution
to the charge transport comes from the states in sub-bands with E(κ)
close to EF (similarly to graphene with K and K’ valleys) and the way
κ states and K points are aligned is set by the chiral indices and de-
termines the electrical properties: if one subband goes through the
Dirac point, the density of states will be finite (see Fig.3.3(b)). Such
nanotubes are defined as metallic. Otherwise, the nanotube is semi-
conducting (see Fig.3.3(c)).

FIGURE 3.3: Sub-bands and dispersion curves at low energy. (a) The zone-
folding approximation gives rise to one-dimensional sub-bands via the cir-
cumferential boundary conditions [64]. (b,c) Energy dispersion for a metallic
nanotube and a semiconducting nanotube. Examples for a metallic with (6,0)

chiral indices and semiconducting with (7,0) zig-zag CNTs are shown.

By putting together equations 3.2 and 3.3 it is possible to obtain the
energy dispersion:

E(κ‖) = ±
2h̄vF

d

√(
m− n

3
+ p

)2
+

(
κ‖d
2

)2

(3.4)

where d is the diameter of the tube. It is clear that E(κ‖ = 0) = 0 if
(m− n)/3 = −p, so that all armchair tubes are metallic. Note that a
small band gap can be created in metallic nanotubes due to nanotube
curvature and the strain [65, 66].

3.2 Charge quantization in carbon nanotubes

A quantum dot (QD) is a zero-dimensional system, where electron
wave functions are confined in the three directions. For this reason
the energy states of this quantum island have only discrete values and
often QD are referred to as artificial atoms. The energy-level spacing
is given by the interference condition ∆E = hvF

2L , where L is the length
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of the nanotube dot and vF is the Fermi velocity.

As we just saw in the previous section, a CNT can be considered
as a one-dimensional conductor. By contacting a CNT with a source
(S), drain (D) and gate (G) metallic contacts, tunnel barriers form at
the interfaces. This further reduces the dimensionality of the system,
creating a QD in the CNT (see Fig 3.4).

tot

D

e

e e

e

FIGURE 3.4: Schematic drawing of the equivalent circuit. A single quantum
dot, characterized by quantized states, is capacitively coupled to source, drain
and gate electrodes through the capacitances Cs, Cd and Cg. The coupling is
parametrized by the tunnelling rate Γe and the tunnelling barrier resistance

Rt.

Electrodes can be described as electron reservoirs, from where charges
can tunnel in and out of the QD at the tunnelling rate Γe. This pa-
rameter reflects the coupling between the electrodes and the dot. It
depends on the electronic density in the leads and the overlap of the
lead and the dot wavefunctions; the latter can be partially tuned with
the gate voltage. We must also consider that confining electrons in
this small island costs energy because of Coulomb repulsion. To over-
come this repulsion when adding one electron, the so-called charging
energy Ec = e2

Ctot
has to be provided. Here Ctot = Cs + Cd + Cg is the

total capacitance of the dot which is the sum of the source, drain and
gate capacitances to the QD.

When the temperature of the system as well as the coupling of
source and drain leads to the dot are sufficiently low, an effect called
Coulomb blockade emerges in transport measurements. Indeed there
are two major conditions for this effect to take place:

1. The temperature of the system has to be sufficiently low in order
to suppress thermally induced fluctuations of the charge number
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in the dot. This leads to the following condition:

Ec =
e2

Ctot
� kBT (3.5)

2. The number of charges has to be well defined inside the dot. This
means that the time for charging and discharging the dot has to
be long enough. The typical time to charge or discharge is ∆t =
Rt · Ctot, where Rt is the resistance of the tunnelling barrier. Us-
ing the Heisenberg uncertainty relation, ∆E∆t = e2

Ctot
· RtCtot =

e2 · Rt > h. Coulomb blockade emerges when the condition for
the tunnelling resistance is:

Rt � RK =
h
e2 (3.6)

where RK = 25.813 kΩ is the Von Klitzing constant.

These two conditions are necessary to observe Coulomb blockade. It
consists in the blockage of the current flow through the quantum dot,
unless extra energy is paid externally to accommodate another elec-
tron in the next level of the dot.
This scenario was first suggest by Gorter [67] and then by Kulik [68]
to explain an anomalous resistance increase of thin granular metallic
films at low temperature [69]. Fulton and Dolan [70] later observed
Coulomb blockade signature in microscopic metallic devices. More
recently Tans [41] showed it for the first time in a carbon nanotube
based QD.

3.3 The constant interaction model

The simplest model that explains the energy spectrum of a quantum
dot is the constant interaction model (CI). The CI model is based on
two main assumptions: (1) electronic interactions inside the dot and
between the dot and its environment are constant and parameterized
by the total capacitance of the dot Ctot, and (2) the single-particle energy-
level spectrum (εi) holds independently of the number of the electrons
N [71, 72].
We start by considering that the QD is coupled to the source and drain
electrodes via tunnel barriers. (see Fig.3.4). The charge on a conductor
i (quantum dot) surrounded by m conductors (source, drain and gate)
can be written as:

Qi =
m

∑
j=0

CijVj (3.7)
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where Cij is the capacitance between the quantum dot i to the contact
j, and Vj is the electrostatic potential of the contact j.
Defining the dot as i = 0, its electrostatic potential reads as:

V0(Q0) =
1

Ctot

(
Q0 −

m

∑
j=1

C0jVj

)
(3.8)

using the self-capacitance of the dot Ctot = C00, that is equal to the
negative sum of all capacitances to the quantum dot C00 = −∑j 6=0 C0j.
For the total electrostatic energy of the quantum dot charged with N
electrons (Q0 = −eN), we can write:

U(N) =
∫ −eN

0
V0(Q0)dQ0 =

e2N2

2Ctot
+ eN

(
m

∑
j=1

C0j

Ctot
Vj

)
(3.9)

To compute the total energy E(N) of the dot, we need to sum U(N)
to the values of the single-particle energy (εi) to take into account the
quantum confinement (in the CI model they are independent of N, so
they are constant).

E(N) = U(N) +
N

∑
i=1

εi (3.10)

We can now define the electrochemical potential (µN) as the energy
required to add the Nth electron to the dot. Accordingly µN can be
written:

µN = E(N)− E(N + 1) = εN +
e2

Ctot

(
N − 1

2

)
− e

(
m

∑
j=1

αjVj

)
(3.11)

where we have introduced the lever arm αj = −
C0j
Ctot

of the contact j.
Specifically, αg is the gate-lever arm and can be used to convert gate
voltage in energy scales. It quantifies the influence of the gate voltage
on the electrochemical potential of the dot.
Finally, we can introduce the addition energy Eadd(N) that represents
the change in electrochemical potential once the Nth electron is added
to the dot:

Eadd(N) = µN − µN−1 = εN − εN−1 +
e2

Ctot
= ∆E + Ec (3.12)

Here we recognize the electrostatic contribution given by the charging
energy Ec and the energy-level spacing ∆E, both introduced previ-
ously.
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At this point it is very useful to look at energy diagrams, which are
commonly used to visualize what we said so far. In Fig.3.5, the en-
ergy diagram of a quantum dot surrounded by source, drain and gate
electrodes is shown. In the left panel no level is aligned within the
bias window (eVsd, gray area), so that the system is in the Coulomb
blockade regime with N electrons in the dot and no single-electron
tunnelling event is allowed. However, the dot energy level can by
pulled down by means of the gate. In the right panel an energy level
falls inside the bias window. A current can flow through the quan-
tum dot as a sequential tunnelling of electrons. The number of charge
carriers oscillates between N and N + 1. By tuning the gate voltage
electrons can be added into the dot one by one. For this reason this
kind of devices are also known as single-electron transistors (SET).

sd sd

FIGURE 3.5: Schematic diagram of the electrochemical potential levels of a QD
coupled to source and drain with their electrochemical potential (µD and µS).
In the left panel the dot is in a stable configuration with N − 1 electrons. A
small bias Vsd is applied but there is no current through the dot. In the right
panel, by means of the gate voltage, a dot level is shifted down in the bias
window. The number of electrons in the dot oscillates between N − 1 and N,

so that conduction is established.

If we measure the current flowing through such a device, while
sweeping the gate voltage Vg (with a small bias Vsd), the result is a se-
ries of oscillations, referred as Coulomb oscillations, see Fig.3.6. Typ-
ically, for a CNT single quantum dot device the conductance is mod-
ulated by the gate voltage with two different values. This reflects the
degeneracy of the spin and the valley (K and K’). In Fig.3.6(a) a four-
fold periodicity is shown. This is due to the valley (K and K’) and
spin (up and down) degeneracy which, in this case, are not lifted. In
Fig.3.6(b) instead, the valley degeneracy is lifted. This may happen
because of the scattering at the electrodes, which induce a orbital mis-
match (between K and K’) in the CNT band-structure.
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FIGURE 3.6: Schematic representation of the dot conductance G as a function
of the gate voltage Vg. (a) In this case each electronic shell contains four levels
due to spin and valley degeneracies. (b) Two fold symmetry is due to spin

degeneracy while the orbital one is lifted.

3.3.1 Quantum dot spectroscopy: stability diagrams and
Coulomb diamonds

In order to perform a precise spectroscopy of a quantum dot, a finite
voltage bias Vsd is often applied in transport measurements. We as-
sume a symmetric bias to the source and drain contacts, which means
µS = µ0 + eVsd/2 and µD = µ0 − eVsd/2 (where µ0 is the electro-
chemical potential in both contacts without bias). We now estimate
the conditions to have Coulomb blockade current, that is, when the
charge number remains constant in time. For Vsd > 0:

µN < µ0 − eVsd/2
µN+1 > µ0 + eVsd/2

and for Vsd < 0:

µN < µ0 + eVsd/2
µN+1 > µ0 − eVsd/2
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Plugging this group of inequalities in the equation 3.11 we get the so-
called Coulomb diamonds in the measurement of G as a function of
Vsd and Vg (white areas, see Fig.3.7) where there are no tunnelling
events. We want to note that imposing µ(N, Vg, Vsd = 0) = 0 in
equation 3.11 we obtain that the distance between two consecutive
Coulomb peaks (points of the Coulomb diamonds at zero-bias) are
spaced by Eadd/αg. The borderlines cross at eVsd = Eadd (half-height of
the diamond). Diamond slopes are related to source and drain capaci-
tances. The positive one is Cg

Cg+Cd
(when the drain is grounded) and the

negative one is−Cg
Cs

. The gate capacitance can be determined from the
separation in gate voltage ∆Vg between two Coulomb blockade peaks
when the two associated levels are separated by Ec only. This can be

done using Cg = e
∆Vg

=
e2αg
Ec

. Additional lines in the non blockade
regions can appear alongside the borderline (blue dashed lines in the
dark purple areas). This occurs when an excited state enters in the bias
window.
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FIGURE 3.7: Schematic illustration of a charge stability diagram. Assuming
spin degeneracy for free electrons in a system without valley degeneracy. In
the white areas, known as Coulomb diamonds, the system is in the Coulomb
blockade regime and the number of electrons in the dot is fixed. In the dark
and purple areas the levels of the dot are in the bias window so that the elec-
tron number can fluctuate. Points from A to F are associated to different con-

figurations in the electrochemical potential diagrams.
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3.4 Coulomb oscillation lineshape

The lineshape of a Coulomb blockade peak in the measurement of G
as a function of Vg depends on three different quantities: the tempera-
ture T, the tunnelling rate Γe and the electronic level spacing ∆E. The
Fermi-Dirac distribution in the source and drain reservoirs at finite
T can lead to a broadening of the measured lineshape. The intrinsic
linewidth h̄Γe of the energy level is set by the Heisenberg’s uncertainty
relation containing the finite lifetime τ ≈ 1/Γe of the dot.

3.4.1 Weak coupling: Thermal broadening (h̄Γe � kBT �
Ec, ∆E)

In this regime, the thermal broadening of the Fermi-Dirac distributed
electrons in the electrodes determines the lineshape. Following the
treatment of Beenaker [71], the energy levels in the dot are treated as
delta functions and a master equation for the probability of the system
pi(t) to be in the state i at the time t can be written. It gives us an
expression for the conductance G for a single level:

G(i) =
e2

h
ΓSΓD

ΓS + ΓD

1

4kBT cosh2
(

αg(V
(i)
g −Vg)

2kBT

) (3.13)

where V(i)
g is the position of the Coulomb peak on the gate voltage

axis, and Γe = ΓS + ΓD, where S and D stand for source and drain.
We can notice many things. When increasing the temperature the con-
ductance height of the peak decays with 1/T. The full width at half
maximum (FWHM) in energy units is FWHM= 4kBT(

√
2) ≈ 3.5kBT.

Another peculiar feature of this regime is the random conductance
height of the different Coulomb peaks as the gate voltage is swept.
This is because the peak height reflects the overlap between the wave
function of the electron state in the dot and that in the electrodes [73].
In the high temperature limit when h̄Γe, ∆E � kBT � Ec, the thermal
energy is larger than the single level spacing so that several single-
particle levels contribute to transport. In this high temperature regime
the FWHM remains proportional to the temperature but with a differ-
ent factor, FWHM ≈ 4.5kBT.

3.4.2 Strong coupling: Tunnelling broadening (kBT �
h̄Γe � Ec, ∆E)

This regime cannot be treated as the previous one. The transport
mechanism is related to the one of resonant transmission through a
double barrier [74]. The lineshape of the conductance can be described
with the Breit-Wigner expression [75]:
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G =
4e2

h̄

(
1

ΓS
+

1
ΓD

)−1 h̄2Γe

α2
g(V

(i)
g −Vg)2 + (h̄Γe/2)2

(3.14)

Neither the height nor the width of the conductance peak are temper-
ature dependent. In this case the FWHM is given by the tunnelling-
rate-induced level broadening h̄Γe.

3.5 Co-tunnelling and Fabry-Pérot interference

In the previous section, we considered only first-order tunnelling events
in the transport through a quantum dot. Now we deal with higher-
order processes leading to additional features in the dot spectroscopy.
When the tunnel barriers become more transparent, the dot starts to
be more coupled to the leads, so that the tunnelling rate Γe onto and
off the dot increases. The Coulomb interaction is still important but
co-tunnelling events start to kick in. The term co-tunnelling generally
refers to ridges of conductance appearing in the blockade regions of
the Coulomb diamond. Cotunneling processes can be either elastic or
inelastic. The first involves the ground state of the QD while the latter
appear at finite Vsd and involves ground and excited states of the QD.
Another important higher-order process is the Kondo effect.
A detailed analysis of this phenomenon would go far beyond the scope
of this chapter. During many decades, it was the subject of consider-
able theoretical [76, 77] and experimental [78–80] works. The Kondo-
spin version involves the formation of a spin singlet between an elec-
tron in the dot and another one in the lead, with a spin-flip of the
dot-electron at the end of the process. Similarly, the valley version
produces a flip from K to K’. The Kondo effect in CTN exists in three
versions: SU(2)-spin, SU(2)-orbital and SU(4) including the flip of both
degrees of freedom. It remains a very open and interesting many-body
problem, largely investigated in the community [81].

To conclude this chapter, we briefly mention the Fabry-Pèrot elec-
tron interference regime. When the tunnelling rate h̄Γe becomes much
larger than the charging energy Ec, the dot can be considered "open"
and interference effects emerge. Assuming ballistic transport along
the nanotube, interference between right- and left- moving electron
waves lead to peculiar oscillating patterns in transport measurements
[46].
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Chapter 4

Ultra-sensitive
displacement noise
measurements

Parts of this chapter have been published in:
Ultrasensitive displacement noise measurement of carbon nanotube
mechanical resonators
S. L. De Bonis*, C. Urgell*, W. Yang, C. Samanta, A. Noury, J. Vergara-
Cruz, Q. Dong, Y. Jin and A. Bachtold
Nano Letters, 18, 5324, (2018)

In this chapter, we report on an ultra-sensitive scheme based on a
RLC resonator and a low-temperature amplifier to detect nanotube vi-
brations. We also show a new fabrication process of electromechanical
nanotube resonators to reduce the separation between the suspended
nanotube and the gate electrode down to ∼ 150 nm. These advances
in detection and fabrication allow us to reach 0.5 pm/

√
Hz displace-

ment sensitivity. Thermal vibrations cooled cryogenically at 300 mK
are detected with a signal-to-noise ratio as high as 17 dB. We demon-
strate 4.3 zN/

√
Hz force sensitivity, which is the best force sensitivity

achieved thus far with a mechanical resonator. Our work is an im-
portant step towards imaging individual nuclear spins and studying
the coupling between mechanical vibrations and electrons in different
quantum electron transport regimes.

*Equal contribution
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4.1 Introduction

The smallest operational mechanical resonators are based on low-dimensional
materials, such as carbon nanotubes [38], graphene [82–84], semicon-
ducting nanowires [85–88], and levitated particles [30, 89]. Such res-
onators are fantastic sensors of external forces [40, 90–92] and the ad-
sorption of mass [22, 93, 94]. They also provide a versatile platform
for fundamental science, including the study of noise [53, 95, 96], non-
linear phenomena [54, 55, 97–99], electron-phonon coupling [7–9, 42,
100], and light-matter interaction [101, 102]. The greatest challenge
with these tiny resonators is to transduce their mechanical vibrations
into a measurable electrical or optical output signal. Novel detection
methods have been continuously developed over the years [32, 37,
103–116]. This effort has often been paid off with the improvement
of sensing capabilities and the measurement of unexpected phenom-
ena.

Care has to be taken to avoid heating when improving the detec-
tion of the motion. The transduction of the motion is achieved by ap-
plying some input power to the resonator. In the case of nanotube
resonators, the input power is usually related to the oscillating volt-
age applied across the nanotube [38] or the laser beam illuminating
the nanotube [107, 116]. The displacement sensitivity becomes better
when increasing the input power. However, the input power has to
be kept low enough to avoid electrical Joule heating and optical ad-
sorption heating. Heating is especially prominent in tiny objects, such
as nanotubes, because of their small heat capacity. Heating is detri-
mental, because it deteriorates the force and the mass sensitivity and
increases the number of quanta of vibrational energy.

In this chapter, we report on a novel detection method that allows
us to measure the mechanical vibrations of nanotube resonators with
an unprecedented sensitivity. The detection consists in measuring the
electrical signal employing a RLC resonator and a high electron mobil-
ity transistor (HEMT) amplifier cooled at liquid-helium temperature.
In order to further improve the detection, we optimize the fabrica-
tion process to enhance the capacitive coupling between the ultraclean
carbon nanotube and the gate electrode. This allows us to achieve
1.7 pm/

√
Hz displacement sensitivity and 4.3 zN/

√
Hz force sensi-

tivity when the temperature of the measured eigenmode is 120 mK. At
higher vibration temperature, the resonator can be probed with larger
input power, so that the sensitivity reaches 0.5 pm/

√
Hz at 300 mK.

4.2 Fabrication

We use a new fabrication process to grow ultraclean carbon nanotube
resonators suspended over shallow trenches. Figure 4.1 shows a ∼
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1.3 µm long nanotube contacted electrically to two electrodes and sep-
arated from the local gate electrode by∼ 150 nm. The electrodes made
from platinum with a tungsten adhesion layer are evaporated on top
of silicon dioxide grown by plasma-enhanced chemical vapour depo-
sition. Nanotubes are grown by the ‘fast heating’ chemical vapour
deposition method in the last fabrication step [117] (see AppendixC).
This method consists in rapidly sliding the quartz tube through the
oven under a flow of methane, so that the sample moves from a posi-
tion outside of the oven to the center of the oven, whose temperature
is Tgrowth = 820 ◦C. This growth process has two assets compared
to the usual growth of nanotube resonators[32]. It allows us to sus-
pend nanotubes over wide trenches. In addition, the electrodes are
less prone to melt and change shape.

FIGURE 4.1: False-colour scanning electron microscopy image of a typical
nanotube resonator fabricated with the ‘fast heating’ chemical vapour deposi-
tion method. The ∼ 20 nm high ridges at the edges of the gate electrodes are

attributed to resist residues. The scale bar is 1 µm.
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4.3 Detection of mechanical vibrations

Mechanical vibrations are detected electrically using a RLC resonator
and a HEMT amplifier cooled at liquid-helium temperature (Fig.4.2(a)).
Displacement modulation is transduced capacitively into current mod-
ulation by applying an input oscillating voltage Vac

sd across the nan-
otube [32, 38, 40]. The frequency ωsd/2π of the oscillating voltage is
set to match ωsd = ωm ± ωRLC, where ωm/2π is the resonance fre-
quency of the nanotube resonator and ωRLC/2π = 1.73 MHz the reso-
nance frequency of the RLC resonator. Driven vibrations are measured
with the two-source method [38]. Thermal vibrations are measured
by recording the current noise at ∼ ωRLC [32, 40]. These current noise
measurements are similar to those recently carried out on quantum
electron devices [118–120]. The RLC resonator and the HEMT ampli-
fier [121] allow us to reduce the current noise floor at ∼ ωRLC down
to 38 fA/

√
Hz below ∼ 100 mK (Fig.4.2(b)). The current noise floor

is temperature dependent above ∼ 100 mK because of the Johnson-
Nyquist noise of the impedance of the RLC resonator. Below∼ 100 mK,
the Johnson-Nyquist noise becomes vanishingly small. The noise floor
is then given by the current noise (21.6 fA/

√
Hz) and the voltage noise

(0.125 nV/
√

Hz) of the HEMT amplifier and the voltage noise of the
room temperature amplifier. The gain of the HEMT amplifier is set
at 6.4. The inductance of the circuit is given by the 66 µH inductance
soldered onto a printed-circuit board (PCB). The 129 pF capacitance
measured from the RLC resonance frequency comes from the capac-
itance of the radio-frequency cables and the low-pass filter VLFX-80
between the device and the HEMT. The 7.79 kΩ resistance obtained
from the 156 kHz line-width of the RLC resonator is attributed to the
10 kΩ resistance soldered onto the PCB and the input impedance of
the HEMT amplifier.
The details of the noise characterization are presented in the AppendixA.
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FIGURE 4.2: Electrical circuit for the detection of the vibrations. (a) Schematic
of the measurement of the nanotube vibrations using the RLC resonator and
the HEMT amplifier cooled at 3.2 K. The base temperature of the cryostat is
∼ 20 mK. An oscillating voltage with amplitude Vac

sd is applied between elec-
trodes S and D, and a constant voltage Vdc

G is applied to electrode G. (b)
Temperature dependence of the current noise floor of the circuit measured at

ωRLC

4.4 Measurements of the fundamental mechan-
ical mode

The lowest-lying flexural eigenmodes are identified by capacitively
driving the resonator with an oscillating force and measuring the mo-
tion with the two-source method [38]. The dependence of the reso-
nance frequency as a function of the static voltage Vdc

G applied to the
gate electrode demonstrates that the measured resonance is related
to a mechanical eigenmode of the nanotube (Fig.4.3(a)). The ampli-
tude of the lowest-frequency resonance is much larger than that of the
second detected resonance (Fig.4.3(b)). We conclude that the detected
eigenmodes are polarized in the direction perpendicular to the surface
of the gate electrode to a good approximation, and that eigenmodes
polarized in the parallel direction cannot be detected. The thermal
vibrations are recorded at the base temperature of the dilution cryo-
stat (Fig.4.3(c)). We switch off the driving force, and the displacement



44 Chapter 4. Ultra-sensitive displacement noise measurements

noise is recorded with the method described in Refs. [32, 40]. The
quality factor is Q =627,000 with the gate voltage set at Vdc

G =-0.21 V.
We choose this gate voltage so that the electron transport is not in the
Coulomb blockade regime. The Q-factor becomes lower at more nega-
tive gate voltages because of electrical losses [122] and at positive gate
voltages due to Coulomb blockade [7].
We now recall in more details the important relations for the trans-
duction of current into displacement [32]. We use the fact that the me-
chanical eigenmode is polarized in the direction perpendicular to the
surface of the gate electrode, as just discussed. The current δI at the
frequency close to the difference between the mode eigenfrequency
and the frequency of the source-drain voltage is

δI = βδz, (4.1)

β =
1
2

dG
dVG

Vdc
G Vac

sd
C′G
CG

. (4.2)

Here, δz is the displacement of the nanotube, dG/dVG is the transcon-
dutance, Vdc

G is the static gate voltage, Vac
sd is the amplitude of the os-

cillating source-drain voltage, CG is the capacitance between the nan-
otube and the gate electrode, and C′G is the derivative of CG with re-
spect to z. We measure dG/dVG = 1.4× 10−3 S/V at the gate voltage
Vdc

G =-0.21 V.
We estimate the capacitance CG from the separation ∆Vdc

G = 16.8±
0.6 mV between two conductance peaks in the Coulomb blockade
regime at large positive Vdc

G values. We obtain CG = e/∆Vdc
G = 9.5±

0.3× 10−18 F. We quantify C′G using the relation

C′G =
CG

d ln(2d/r)
= (1.11± 0.17)× 10−11F/m, (4.3)

with d = 150± 10 nm for the separation between the nanotube and
the gate electrode and r = 1± 0.3 nm for the radius of the nanotube.

We measure the dependence of the variance of the displacement〈
δz2〉 on the cryostat temperature T (Fig.4.3(d)). The linear depen-

dence is in agreement with the equipartition theorem mω2
m
〈
δz2〉 =

kbT, where m is the effective mass of the resonator and ωm/2π is the
resonance frequency of the eigenmode. We obtain m = 8.6± 3.6 ag
from the slope, which is consistent with the mass expected for a ∼
1.3 µm long nanotube. Below ∼ 120 mK the eigenmode does not
thermalize well with the cryostat (see again Fig.4.3(d)). The origin of
this poor thermalization at low temperature may be related to a non-
thermal force noise, such as the electrostatic force noise related to the
voltage noise in the device [123].
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FIGURE 4.3: Driven and thermal vibrations of the nanotube resonator. (a) Gate
voltage dependence of the resonance frequency of the fundamental eigen-
mode. The small positive offset voltage Voff = 0.119 V due to the work func-
tion difference between the nanotube and the gate electrode is subtracted from
the applied Vdc

G value. The red line is a parabolic fit. (b) Driven response of
the two lowest-frequency detected mechanical eigenmodes as a function of
the drive frequency measured with the two-source method. The resonances
are indicated by two red arrows. (c) Spectrum of the displacement noise of
the fundamental eigenmode measured at the base temperature of the cryo-
stat when applying Vdc

G =-0.21 V and Vac
sd = 40 µV. The resonance frequency

ωm/2π is given in the figure. The red line is a Lorentzian fit. (d) Variance of
the displacement measured as a function of cryostat temperature.

4.5 Force sensitivity and displacement sensi-
tivity

The force sensitivity derived from the noise spectrum in Fig.4.3(c) is√
SFF = 4.3± 2.9 zN/

√
Hz. The force sensitivity is given by the sum

of the thermal force noise Stherm
FF and the imprecision force noise of

the detection Simp
FF , SFF = Stherm

FF + Simp
FF . Because the thermal reso-

nance is described by a Lorentzian line shape, the force sensitivity is
quantified from the total displacement noise at resonance frequency
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using SFF = Szz(ωm)/|χ(ωm)|2 1 with the mechanical susceptibility
|χ(ωm)| = Q/mω2

m. The force sensitivity is given to a large extent

by the thermal force noise of the resonator
√

Sth
FF =

√
4kbTmωm/Q =

4.0 zN/
√

Hz, which is the fundamental limit of the force sensitivity set
by the fluctuation-dissipation theorem. The noise of the imprecision
in the detection contributes to the force sensitivity by a low amount.
The error bar in the estimation of the force sensitivity originates es-
sentially from the uncertainty in the nanotube diameter and the sepa-
ration between the nanotube and the gate electrode. Table 4.1 shows
that the force sensitivity measured here is better than what is reported
with resonators micro-fabricated from bulk material [124–126], and
resonators based on nanotube [40], semiconducting nanowire [91, 92,
127], graphene [123], and levitating particles [53]. In [32], the reported
thermal force noise is lower, but the cross-correlation noise measure-
ment does not quantify the force noise due to the imprecision in the
detection, so that the total force noise cannot be quantified.

We now look at how the displacement noise is affected by the in-
put power related to the oscillating voltage Vac

sd . The variance of the
displacement increases abruptly above Vac

sd ' 80 µV when the cryo-
stat is at base temperature (see Fig.4.4(c)). This indicates the rise of
the thermal vibration amplitude due to Joule heating. By contrast, the
variance of the displacement remains constant over the whole range
of Vac

sd that we apply when the cryostat temperature is set at 300 mK
(see Fig.4.4(d)).

Our detection scheme allows us to reach an excellent displacement
sensitivity for input powers below the onset of Joule heating. The dis-
placement sensitivity is given by the noise floor of the spectrum of
thermal vibrations. In Figures 4.4(e,f) it is evident that the displace-
ment sensitivity gets better when increasing Vac

sd . The displacement
sensitivity at base temperature is 1.7 pm/

√
Hz at Vac

sd = 80 µV before
that Joule heating starts to increase the variance of the displacement.
When the cryostat temperature is set at 300 mK, the displacement sen-
sitivity is 0.5 pm/

√
Hz at the largest Vac

sd value that we apply. The
corresponding signal-to-noise ratio in the spectrum of thermal vibra-
tions is 17 dB (see Fig.4.4(b)).
The measured displacement sensitivity Simp

zz scales as (1/Vac
sd )

2 (see

Figures 4.4(e,d)), indicating that Simp
zz is limited by the noise of the

detection circuit and not by the electron shot noise through the nan-
otube [128].
The Q-factor in Fig.4.4(a) is lower than that in Fig.4.3(c) due to an un-
known reason while cycling the cryostat through room temperature;

1The spectral density Szz of the displacement noise is obtained from the measured
spectral density of the current noise using equations 4.1 and 4.2. The displacement
sensitivity Simp

zz is estimated from the current noise floor Simp
II in the measured spectrum

using Simp
zz = 1

β2 Simp
II .
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the resonance frequency and the mass are not modified by the thermal
cycling.√

Sth
FF

(N/
√

Hz)

√
Simp

FF

(N/
√

Hz)

√
SFF

(N/
√

Hz)
Description

4.0 · 10−21 1.6 · 10−21 4.3 · 10−21 Nanotube (this work)
2.0 · 10−20 negligible 2.0 · 10−20 levitating particle [53]
2.7 · 10−19 2.7 · 10−19 3.9 · 10−19 Graphene [123]
1.0 · 10−18 negligible 1.0 · 10−18 Silicon nanowire [127]
5.0 · 10−18 negligible 5.0 · 10−18 GaAs/AlGaAs nanowire

[92]
1.6 · 10−19 1.0 · 10−19 1.9 · 10−19 Microfabricated ladder

[126]
5.1 · 10−19 negligible 5.1 · 10−19 Microfabricated beam

[124]
2.0 · 10−17 negligible 2.0 · 10−17 Microfabricated trampo-

line [125]
1.2 · 10−20 unknown unknown Nanotube [40]
∼ 1 · 10−21 unknown unknown Nanotube [32]

TABLE 4.1: Thermal force noise Sth
FF, force noise

due to the imprecision of the detection Simp
FF , and to-

tal force sensitivity SFF for different resonators. The
three force noises are related by Sth

FF + Simp
FF = SFF.
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FIGURE 4.4: Spectrum of the displacement noise modified by the oscillating
voltage with amplitude Vac

sd applied across the nanotube. (a) Spectrum of the
displacement noise of the fundamental eigenmode measured at the base tem-
perature of the cryostat when applying Vdc

G =-0.255 V and Vac
sd = 70 µV. (b)

Same as (a) but with the cryostat temperature set at 300 mK and Vac
sd = 400 µV.

The red lines are Lorentzian fits. (c,d) Dependence of the variance of the
displacement on Vac

sd measured at the base temperature of the cryostat and
300 mK. (e,f) Dependence of the displacement sensitivity on Vac

sd measured at
the base temperature of the cryostat and 300 mK.

4.6 Conclusions and outlook

In conclusion, we report on a detection scheme of nanotube resonators
with an unprecedented displacement sensitivity. It allows us to reach
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4.3 zN/
√

Hz force sensitivity, which surpasses what has been achieved
with mechanical resonators to date. This high force sensitivity is an
important step towards detecting individual nuclear spins with nu-
clear magnetic resonance measurements [28, 29]. The coupling be-
tween mechanical vibrations and spins can be achieved by applying
a gradient of magnetic field that is generated with the current biased
through the gate electrode in Fig.4.1 [127]. In this context, the new
fabrication process of nanotube resonators presented here is useful
for increasing the gradient of the magnetic field, since it reduces the
separation between the current-carrying electrode and the nanotube
down to∼ 150 nm. The device layout might also allow us to carry out
magnetic resonance force microscopy (MRFM) measurements to im-
age the location of individual nuclear spins adsorbed along the nan-
otube. Imaging can be done by periodically applying radio-frequency
pulses though the current-carrying electrode [129]. Moreover, the ad-
vances in fabrication and detection described in this chapter offer new
possibilities for studying the strong coupling between electrons and
vibrations in nanoscale resonators [12, 130–132]. In the Coulomb block-
ade regime, the system has been predicted to feature a transition to-
wards a mechanically bistable and blocked-current state [132–135].
This hitherto unobserved transition is expected to occur at higher tem-
perature for shorter separation between the nanotube and the gate
electrode [132]. The high quality displacement noise spectra reported
here might allow us to study this transition in details [132] as well as
the different cooling schemes that have been proposed theoretically
using different quantum electron transport regimes [136–140].
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Tunable polarons in a
carbon nanotube
electromechanical
resonator

Parts of this chapter will be submitted in:
Tunable polarons in a carbon nanotube electromechanical resonator
S. L. De Bonis*, C. Samanta*, W. Yang, C. Urgell, B. Stamenic, B. Thibeault,
F. Pistolesi and A. Bachtold

In the work described in this chapter, we strongly couple the fun-
damental phonon mode of a suspended nanotube to the two electron
states involved in single-electron tunnelling (SET). The resulting po-
tential of the phonon mode is highly nonlinear at the lowest measured
temperature, which corresponds to ' 78 quanta. This enables us to
demonstrate the formation of polarons in a nanotube electromechan-
ical resonator. The polaronic nature of charge carriers results in the
reduction of the electrical conductance by up to about half its value.
The electron-phonon interaction suppresses the resonance frequency
of the fundamental phonon mode by up to 25%. Our device is in the
so-called ultra-strong coupling regime, where the electromechanical
coupling per phonon is one order of magnitude larger than the reso-
nance frequency. Our work establishes nanotube resonator as a possi-
ble platform for the demonstration of mechanical quantum bits.

*Equal contribution
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5.1 Introduction to polaron physics in
electromechanical resonators

Polarons are quasiparticles introduced by Landau and Pekar to de-
scribe electrons coupled to phonons [141]. An electron moving in a
crystal lattice is dressed by a phonon cloud due to the electrostatic in-
teraction between the electron and the crystal ions (Fig.5.1(a)). This
tends to increase the electron mass and to lower the device mobil-
ity. Polarons account for transport measurements in a large number
of bulk crystals [141], but the electron-phonon interaction is difficult
to modify in these systems.

Polarons are expected to emerge in a single-electron tunnelling
(SET) device strongly coupled to a mechanical (phonon) mode [132–
134, 142, 143]. The two states with N and N + 1 electrons in a SET
island are associated with two different equilibrium positions, as de-
picted in Fig.5.1(b). We tune the average charge in the island to N + 1

2
using the voltage Vdc

G applied to the gate electrode, so that the system
fluctuates between the N and N + 1 electron states. We consider that
the corresponding electronic rate Γe is much faster than the mechan-
ical resonance frequency ωm. In this adiabatic regime, the nanotube
moves much slower than electrons. This effectively results in a sym-
metric double-well potential for the mechanical displacement at low
temperature, with the minima given by the equilibrium positions as-
sociated to the N and N + 1 states (Fig.5.1(c), top). The mechanical
displacement experiences thermal fluctuations around the two min-
ima. The probability distribution of the position consists of two Gaus-
sians with the width given by the equipartition theorem (Fig.5.1(c),
bottom). Upon increasing the temperature, there is a transition from
a double-well potential to the usual harmonic potential of mechanical
resonators (see Fig.5.1(c), top). This occurs when the width of the two
Gaussians becomes similar to the separation between the two equilib-
rium positions, that is, when the thermal energy kBT becomes compa-
rable to the polaronic energy εp = F2

e /k (Fig.5.1(c)). Here, εp is the
relevant parameter to quantify the strength of the electron-phonon in-
teraction, Fe is the additional electrostatic force acting on the resonator
when adding one electron onto the island (see AppendixB (B.2)), and
k is the spring constant of the mechanical mode. A hallmark of elec-
tromechanical SET devices is that the electron-phonon interaction strength
can be widely tuned by electrostatic means. More importantly, the
experimental realization of a nonlinear mechanical potential as de-
scribed here with the resonator approaching the quantum regime has
been a long-sought-after goal in electro- and optomechanics [144].

The nature of polarons in SET devices can have a strong effect on
both the electrical conductance of the device and the resonance fre-
quency of the mechanical vibrations. The electronic level of the nan-
otube fluctuates in energy because of the combination of the thermal
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fluctuations of the mode displacement z and the electron-phonon cou-
pling described by the Hamiltonian H = −Fenz, where n is the charge
operator of the SET island (see AppendixB). At high temperature, the
energy distribution of the electronic level features one broaden peak at
the Fermi energy. When reducing the temperature through the tran-
sition εp ∼ kBT, the peak is split in two Gaussians (see Fig.5.1(d)),
so that the electron transmission through the device is reduced com-
pared to the transmission with no electron-phonon interaction. There
is also a strong suppression of the mechanical resonance frequency
at the transition. Indeed, the potential curvature near zero displace-
ment goes to zero at the transition when εp ∼ kBT (Fig.5.1(c), top).
Despite a large number of experimental studies [5, 7–9, 12, 15, 42–
44, 145, 146], the renormalisation of the electrical conductance has not
been observed thus far. Moreover, the reduction of the resonance fre-
quency has always been modest, indicating that measurements have
been carried out in the weak electron-phonon interaction regime when
εp/kBT � 1.
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FIGURE 5.1: Electrical and mechanical properties of polarons. (a) Polaron
quasi-particle formed by an electron in an ionic crystal lattice. (b) The N
and N + 1 electron states are associated with two different equilibrium po-
sitions of the nanotube due to the electrostatic interaction with the gate (G).
(c) Double-well potential of the mechanical displacement at low temperature.
The separation between the two equilibrium positions is ∆ze = Fe/k. The
probability distribution of the position in the bottom panel consists of two
overlapping Gaussians with variance δz2 = kBT/k. There is a crossover from
a double-well potential to a harmonic potential via a quartic potential when√

δz2 ∼ ∆ze, that is, when εp/kBT ∼ 1. (d) Charge transfer between the
source (S) and drain (D) electrodes when εp/kBT � 1. The energy probability

distribution of the electrons in the nanotube features two Gaussians.

5.2 Characterization of the device

We reach the strong electron-phonon interaction regime by measuring
a device with short nanotube-gate separation in a dilution fridge. We
employ the new fabrication process introduced in the Chapter4 (4.2)
to reduce the nanotube-gate separation down to ∼ 150 nm, while the
nanotube is ∼ 1.3 µm long (Fig. 5.2(a)). The nanotube is grown by
chemical vapour deposition (CVD) in the last fabrication step to min-
imise surface contamination, and using the ‘fast heating’ CVD method
to avoid the nanotube to collapse onto the gate electrode [33] (see Ap-
pendixC).

We measure driven and thermal mechanical vibrations with a high-
sensitivity capacitive transduction method using a RLC resonator and
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FIGURE 5.2: Characterization of the nanotube electro-mechanical resonator.
(a) Scanning electron microscopy image of the device studied in this work.
The red arrows indicate the clamping points of the suspended nanotube. (b)
Spectrum of the displacement noise of the fundamental eigenmode at base
temperature in the hole-side regime when applying Vdc

G =-0.07 V. The red line
is a Lorentzian fit. (c) Variance of the displacement as a function of cryostat
temperature at Vdc

G =-0.07 V. (d) Gate voltage dependence of the resonance fre-
quency. The offset voltage Voff = 0.204 V due to the nanotube-gate work
function difference is subtracted from the applied Vdc

G value. (e) The gate
voltage dependence of the conductance measured at base temperature. The
gap region with G ' 0 S separates the hole-side region from the electron-side
region. (f) Differential conductance measured as a function of the source-drain
voltage Vdc

SD and the gate voltage Vdc
G at base temperature. The dashed lines

indicate the Coulomb diamonds where the current is suppressed.
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a HEMT amplifier cooled at liquid-helium temperature [33, 43]. Set-
ting Vdc

G in the hole-side regime where the electron-phonon interaction
is weak [32], the resonance line-width of the noise of the fundamen-
tal mode is narrow, Γwidth

m = 2π × 190 Hz (Fig.5.2(b)). The temper-
ature dependence of the variance of the displacement shows that the
mechanical mode temperature saturates at about 100 mK (Fig.5.2(c)),
probably because of the noise generated by the HEMT amplifier. The
resonance frequency is highly tunable when sweeping Vdc

G due to the
strong electrostatic coupling between the nanotube and the gate (Fig.5.2(d)).
Similarly to what showed in the previous chapter and using Fig.5.2(c
and d), we estimate that the effective mass is m ' 8.9 ag and the spring
constant is k = mω2

m ' 4− 7 · 10−4 N/m depending on the gate volt-
age.

In Fig.5.2(e) we show the gate voltage dependence of the conduc-
tance. The measurement is typical of ultraclean, small-gap semicon-
ductor nanotubes [32]. For large positive Vdc

G values, p− n junctions
are formed near the metal electrodes, forming a SET island along the
suspended nanotube. For gate voltage values below Vdc

G ≈ 0.2 V, the
nanotube is p-doped along the whole tube, resulting in a larger con-
ductance. The charge stability diagram measurement in the electron-
side regime further points to strong electrostatic coupling, since the
lever arm of the Coulomb diamonds reaches 0.78 (Fig.5.2(f)). The
charge stability diagram indicates even-odd filling upon sweeping Vdc

G .
We quantify the charging energy EC ' 14 meV and the level spacing
∆E ≈ 2 meV. The estimated level spacing is consistent with what is ex-
pected for a ∼ 1.3 µm long nanotube [147]. All the data shown in this
chapter are in the regime kBT � ∆E, EC. The charge stability diagram
allows us to quantify the capacitance between the nanotube island and
the three electrodes CS ' 1.2 aF, CD ' 1.2 aF, and CG ' 9.1 aF. The
large capacitive coupling between the nanotube and the gate electrode
CG � CS, CD is achieved thanks to the short separation between the
nanotube and the gate electrode.

To conclude this section we want to come back to the tempera-
ture of phonons and electrons. We attribute the saturation shown in
Fig.5.2(c) to the voltage noise produced by the HEMT amplifier. The
device is connected to the HEMT amplifier using a semi-rigid coaxial
cable with the RLC resonator as the sole filter. We try different con-
nection cables and filter configurations to minimise the current noise
floor of the circuit, which is essential to resolve thermal vibrations with
a reasonable signal to noise ratio. The electron temperature can be de-
termined by the full width ∆VSET

G at half maximum of the SET conduc-
tance peak. Indeed, our model shows that ∆VSET

G scales linearly with
temperature to a good approximation, independent of the electron-
phonon interaction strength (see Fig.5.5(b) in the next section). Our
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measurements at the first Coulomb blockade peak show that the elec-
tron temperature saturates at about≈ 110 mK. Lower electron temper-
ature has been reached with similar electrical circuits using devices in
the quantum Hall regime, but such devices are less sensitive to elec-
tromagnetic fluctuations [118, 119, 148, 149]. To simplify the analysis
of our measurements, we assume that phonons and electrons have the
same temperature, i.e. 100 mK, at the base temperature of the cryostat.

5.3 Measurement of polaron effects

We now probe the nature of the polaron state. We set Vdc
G in the region

of a conductance peak where the system fluctuates between the N and
N + 1 states at high rate (Fig.5.3(a)). Concomitantly, the resonance fre-
quency gets reduced by a large amount, up to 25% (Fig.5.3(b)), which
is at least one order of magnitude larger than the values reported in
previous works [7–9, 12, 15, 42–44, 145, 146]. Examples of the spec-
trum of driven vibrations are shown in Fig.5.4(a,b). These are two of
the spectra used to quantify the resonance frequency in Fig.5.3(b). The
resonance cannot be described by a Lorentzian, as expected for driven
spectrum measurements with the mixing technique [38].
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FIGURE 5.3: Electrical and mechanical measurements of polarons at one con-
ductance peak (I). (a,b) Gate voltage dependence of the conductance and the
mechanical resonance frequency at base temperature. The red lines are the
results of the polaron model estimated with the effective temperature set at

100 mK (for the model, see AppendixB(B.1)).
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FIGURE 5.4: Spectra of driven vibrations. (a,b) Response of driven vibrations
to the drive frequency using the mixing technique at base temperature. The
spectra are recorded with Vdc

G set at 527.2 mV and 526.98 mV. The red lines
correspond to fits expected with the mixing technique [38]

Figure5.5(a) shows that the temperature dependence of the peak
conductance deviates significantly from the 1/T behaviour (gray dashed
line) expected in the regime when the electron-phonon interaction is
negligible, and when the temperature is lower than the level spac-
ing ∆E and the charging energy EC (see AppendixB(B.1)). The mea-
sured conductance at 100 mK is about half the value expected in this
non-interacting regime. We compare the data to a model treating the
electron-phonon interaction non-perturbatively exploiting the time scale
separation Γe � ωm in the incoherent tunnelling regime h̄Γe � kBT.
The effect of the fluctuating force induced by the electrons transmit-
ted through the nanotube is described by a Fokker-Planck equation
that is solved numerically. The agreement between measurements and
theory is satisfactory (Figs.5.5(a-d)), especially when considering that
only two free parameters are used. We obtain that these two parame-
ters are εp = 31 µeV and Γe = 2π × 260 MHz. This is consistent with
εp = F2

e /k = 33 µeV estimated from the independent measurements
of k and

Fe = C′G∆Vdc
G

EC

e
, (5.1)

where C′G ' 1.1 x 10−11 F/m is the derivative of the nanotube-gate
capacitance with respect to z, ∆Vdc

G is the gate voltage applied with
respect to the offset due to the nanotube-gate work function difference,
and e is the charge of an electron.
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FIGURE 5.5: Electrical and mechanical measurements of polarons at one con-
ductance peak (II). (a-d) Temperature dependence of the peak conductance,
the full width at half maximum of the conductance peak, the mechanical reso-
nance frequency, and the mechanical resonance line-width. The red and grey
lines are the results of the theoretical model above and below 100 mK, respec-

tively. The grey dashed line is the prediction of the non-interacting regime.

The electron-phonon interaction is tunable by electrostatic means.
Figures 5.6(a-f) show the polaron properties at two other conductance
peaks. The extracted polaronic energy significantly varies when chang-
ing Vdc

G (Fig.5.6(g)). The tunability of the electron-phonon interaction
is limited by the gate voltage range over which polarons states emerge,
that is, when the gate dependent electron rate satisfies εp ≥ h̄Γe ≥
h̄ωm [132].
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FIGURE 5.6: Electrical and mechanical measurements of polarons at two other
conductance peaks. (a-c) Gate voltage dependence of the conductance, the
mechanical resonance frequency, and the mechanical resonance line-width at
base temperature. The red lines are the results of the polaron model esti-
mated with the effective temperature set at 100 mK. (d-f) Same as a-c but at
another gate voltage. (g) Polaron energy as a function of gate voltage (circles).
The squared symbol corresponds to zero polaron energy at the nanotube-gate
work function offset. The red line is a parabolic fit expected from εp = F2

e /k
and Eq. 5.1. (h) Restoring potential Emechanical(z) of mechanical vibrations at
100 mK (black line), estimated from the data in Fig.5.5 and 5.3. For compar-
ison, the parabolic potential of the resonator in the non-interaction regime is

shown (green dashed line).

The weak interaction regime can be reached by increasing the gate
voltage, so that h̄Γe � εp [132]. The gate voltage controls Γe, which
is given by the transmission through the p− n junctions formed near
the two metal electrodes. By increasing the gate voltage to Vdc

G '



5.3. Measurement of polaron effects 61

761 mV with the cryostat set at base temperature, the conductance
peak broadens (see Fig.5.7(a)), indicating that the electronic tunneling
rate increases to Γe ' 2π × 75 GHz. The suppression of the reso-
nance frequency associated to the conductance peak is modest (see
Fig.5.7(b)), as measured previously in the weak electron-phonon in-
teraction regime [5–9, 12, 15, 42–44, 97, 145, 146, 150–153].

m
G

 (

760 761 762 763
0.00

0.05

0.10

0.15

a

760 761 762 763

p
G

  mw
id

th

10
-1

10
-2

c

760 761 762 763

w
p

m

36.7

36.9

37.1

37.3

b

FIGURE 5.7: Electrical and mechanical measurements in the weak electron-
phonon interaction regime. (a-c) Gate voltage dependence of the conductance,
the mechanical resonance frequency, and the mechanical resonance line-width

at base temperature.

Polarons are in the strong interaction regime with εp/kBT ' 3.6
at 100 mK in Fig.5.3. The corresponding restoring potential of me-
chanical vibrations deviates strongly from a harmonic potential (Fig.
5.6(h)), whereas the phonon population is only'78 quanta. The quar-
tic potential contributes to the total energy of the resonator by a size-
able amount, 34% at 100 mK. We cannot reach the nonlinear Duffing
regime in the response of driven vibrations because of the low quality
factor and the weak gate voltage modulation amplitude that we apply;
this amplitude has to remain small compared to the width in VG

dc of
the conductance peak. This strong nonlinearity generates dephasing
of mechanical vibrations, since the curvature of the potential changes
with the displacement of thermal vibrations. Our model shows that
dephasing contributes by 35% to the mechanical resonance line-width
Γwidth

m ' 2π × 2.4 MHz in Fig.5.6(f). Dephasing rapidly decreases
to zero when lowering εp/kBT (see AppendixB(B.1)). The remaining
contribution to the mechanical line-width comes from the energy de-
cay created by the out-of-phase force of the electron dynamics. All the
other sources of mechanical dissipation are negligible, since Γwidth

m in
Fig.5.6(f) is four orders of magnitude larger than that measured in the
hole-side regime (Fig.5.2(b)).

Another interesting figure-of-merit of the device is the coupling
strength between the mechanical vibrations and the two-level system
associated to the N and N + 1 electron states. It sets the device deep
in the ultra-strong coupling regime, since the coupling strength per
phonon g0 = Fezzp/h̄ = 2π × 348 MHz is much higher than ωm =
2π × 35.1 MHz in Fig.5.3; the zero-point motion is zzp = 5.2 pm.
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This coupling strength is also larger than the electron rate Γe = 2π ×
260 MHz. The ratio pair g0/ωm and g0/Γe compare favourably with
the best values reported thus far with electro- and optomechanical sys-
tems [154–156].

The physics of the polarons described here is somewhat connected
to the Frank-Condon blockade [157, 158] and the excitations of phonon
modes [159, 160] in SET devices, where the electron-phonon interac-
tion also modifies the electrical conductance. However, the frequency
of the phonon modes in such devices is comparatively much higher, so
that their dynamics and their spectra cannot be measured. The decay
time of these phonon modes is also extremely short, so that they can-
not be manipulated electrically. Finally, the tunability of the electron-
phonon interaction has not been demonstrated in these devices.

5.4 Conclusions and outlook

Tunable polarons with strong mechanical nonlinear properties hold
promise for a whole series of new electromechanics experiments. Fur-
ther increasing the interaction strength εp/kBT may enable the demon-
stration of polaron-blockade, where the conductance is suppressed to
zero [132–134]. Moreover, transport measurements in this regime is
expected to reveal giant low-frequency electron noise, which arises
from the fluctuations of the system between the two minima of the
double well potential [132], as observed in phase transitions of sys-
tems when the potential is tuned from the single-well to the double-
well configurations. In addition, the strong nonlinearity of mechani-
cal vibrations could be used to produce mechanical qubits [161]. This
might be achieved by operating the device at εp ∼ kBT when the po-
tential with one minimum is nearly quartic. The mechanical levels are
then unequally spaced in energy, similar to what happens in supercon-
ducting qubits. An interesting approach to improve the mechanical
line-width is to use the second mechanical mode coupled to a double
quantum dot formed along the suspended nanotube [42, 43], where a
large coupling could be achieved with narrow mechanical line-width
[162]. Mechanical qubits might be formed when kBT < h̄ωm by e.g.
cooling a 300–600 nm long nanotube at 10 mK with a cryostat.
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Chapter 6

Conclusions

6.1 Summary

In this dissertation, we studied properties of carbon nanotube electro-
mechanical resonators at very low temperature. At dilution tempera-
tures, this class of devices showed their vast capabilities, both in terms
of force sensitivity, but also as a very promising platform to investigate
ultra-strong coupling related effects.

In Chapter 4, we first presented the implementation of a low noise
detection scheme, which consists in a RLC resonator combined with
a low temperature HEMT amplifier. It allowed us to lower the setup
current noise floor down to 38 fA/

√
Hz. Moreover, the improved fab-

rication technique utilized here, helped us to ulteriorly decrease the
separation between the carbon nanotube resonator and the underly-
ing metal gate. This increased their coupling while keeping an ultra-
high level of cleanness. By employing this new read-out setup, we
examined the noise performances of a CNT resonator. We reported
on force sensitivity of 4.3 zN/

√
Hz and displacement sensitivity of

0.5 pm/
√

Hz, solely limited by Joule heating. We benchmarked the
performance of our device with other micro- and nano-resonators, re-
sulting in a favourable comparison with them, and further confirming
the extremely high sensitivity of carbon nanotube resonators.

In Chapter 5, we investigated the electron-phonon coupling in a
carbon nanotube based vibrating quantum dot. Measuring such de-
vice at dilution temperatures, we demonstrated that our system is in
the ultra-strong coupling regime, where the coupling strength is one
order of magnitude larger than the resonance frequency. More impor-
tantly, for the first time in a mechanical resonator close to the quantum
regime, this interaction effectively creates a highly nonlinear potential
for the phonon mode. In this system, mechanical vibrations and elec-
trons are so strongly coupled that they need to be treated as a single
entity: a quasi-particle called polaron. We showed that the formation
of polarons in the device has a strong impact, both on the electron
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transport and mechanical properties. For the first time in this kind of
devices, we measured a suppression of the electrical conductance by
up to about half its value, and the resonance frequency decreased by
25%, a softening at least one order of magnitude bigger than all pre-
viously reported experiments. Furthermore, we showed that polaron
states can be significantly tuned by electrostatic means.

6.2 Outlook

The work presented in this thesis offers possibilities for studying a
whole series of new experiments employing carbon nanotube resonators.

The reported high force sensitivity in Chapter 4 is an important
step towards detecting individual nuclear spins with nuclear mag-
netic resonance measurements [28, 29]. The experiment can be car-
ried out producing a gradient of magnetic field with a current bi-
ased through the gate electrode [127], which will generate and exert
a coherent force on the nanotube resonator. Magnetic resonance force
microscopy (MRFM) measurements, to image the location of individ-
ual nuclear spins adsorbed along the nanotube, can be done by peri-
odically applying radio-frequency pulses though the current-carrying
electrode [129]. An even more promising approach to detect nuclear
spins with a nanotube resonator is to couple them resonantly with
mechanical vibrations [163]. Matching the mechanical resonance fre-
quency with the Larmor frequency of the spins by external magnetic
field tuning, and driving at resonance the oscillator in the presence
of a gradient of magnetic field, would create a resonant coupling be-
tween vibrations and spins. Due to the frequency matching condition,
this protocol is particularly suitable for nanotube resonators since both
frequencies are typically of the order of tens of MHz. Moreover, gener-
ating the gradient of the magnetic field with a ferromagnetic nanopar-
ticle, would allow us to perform this experiment with no need for con-
stant or oscillating currents, which would be detrimental to nanotube
noise performances.

If the interaction strength εp/kBT presented in Chapter 5 will be
further increased, the system could go through a transition towards a
mechanical bistability. That may enable the demonstration of polaron-
blockade, where the conductance is suppressed to zero [132–135]. In
addition as we already anticipated, the strong nonlinearity of mechan-
ical vibrations could be used to engineer mechanical qubits [161]. This
might be achieved by tuning the coupling strength such that εp ∼ kBT
when the potential with one minimum is nearly quartic. The mechan-
ical levels are then unequally spaced in energy, similar to what hap-
pens in superconducting qubits. Cooling a 300–600 nm long nanotube
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at 10 mK with a cryostat, mechanical qubits might be formed in their
quantum ground state, when kBT < h̄ωm. In a long-term vision, this
scheme could be advantageous also because mechanical qubits could
be coupled to many other quantum degrees of freedom, such as spins,
photons, and atoms.
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Appendix A

Additional information on
Chapter 4

In this section we describe the read-out line, presenting the implemen-
tation of the HEMT amplifier together with the RLC resonator.
We present the modelling of the system and the noise characterization,
which allows us to quantify the noise generated by all the different
sources.

A.1 Read-out line characterization: low
temperature HEMT and RLC resonator

The high electron mobility transistor (HEMT) acts as the active ele-
ment into the amplifier circuit [164]. This transistor is based on a two-
dimensional electron gas formed at the interface of a AlGaAs/GaAs
heterostructure obtained by molecular beam epitaxy [121] and pro-
vided by our collaborators at the Center de Nanosciences et de Nan-
otechnologies (CNRS), Univ. Paris-Sud.
In Fig.A.1 the scheme of the HEMT, together with all the passive ele-
ments needed to build the amplifier circuit, is illustrated. All the com-
ponents are soldered onto a oxygen-free copper made PCB, which is
thermally anchored at the 3K plate of the cryostat.
Capacitors and resistors placed around the HEMT help to filter high
frequency noise. They also fix and stabilize the voltages used to po-
larize the transistor. The HEMT is polarized at Vdd and Vs which are
further filtered with some π-filters soldered onto the PCB.
The signal from the nanotube device, filtered by the RLC resonator at
the mixing chamber, enters into the amplifier circuit through the gate
of the HEMT and gets amplified by a factor GHEMT, then is collected
at the drain of the transistor.
The gain GHEMT has a strong dependency on the operating point of
the transistor.
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We chose a low noise operating point with a source drain voltage dif-
ference of 100mV and a current Isd =1mA at 3.2K. Accordingly, the
polarization voltages are Vdd =326mV and Vs =77mV.

FIGURE A.1: Schematic of the circuit of the HEMT amplifier. Courtesy of
Quan Dong and Yong Jin, Centre de Nanosciences et de Nanotechnologies,

CNRS, Univ. Paris-Sud.

The RLC resonator is fabricated soldering on a separated PCB the
surface mount components, then physically attached at the mixing
chamber of the cryostat, just after the carbon nanotube device.
A resistor of 10kOhm and an inductor of 66µH provide the R and L
of the resonator. We don’t add any capacitor onto the PCB since the
capacitance offered by the RF-lines of the fridge is already sufficient to
set an high enough resonance frequency for the RLC tank.
In Fig.A.2 is shown the schematic of the RLC resonator and HEMT
amplifier with all the noise sources contributing.
The total impedance Ztot of the system is not only due to the resistance
R of the RLC, but also to the input impedance of the HEMT ZHEMT
and, since they are in parallel, we can write 1

Ztot
= 1

R + 1
ZHEMT

.
The input impedance of the HEMT is due to the Miller capacitance
of the amplifier, which is related to the capacitance between the input
and the output of the transistor. For the impedance of the RLC, we
only consider R and not the resistance r of the inductor because at low
temperature it is around 1 Ohm.
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FIGURE A.2: Schematic of the read-out line with all the different noise sources.
The thermal noise is due to the the parallel of the RLC impedance and the one
of the HEMT. The HEMT contributes also with its input current noise and

input voltage noise to the total noise.

In the MHz range r � LΩ, so that the power spectral density (PSD)
of the thermal noise of the system reads [164]:

SJN
V =

G2
HEMT4kBTRe(Ztot)

1 + 4(ZtotC)24π2( f − fRLC)2 (A.1)

with C the capacitance of the RLC tank. We measure the PSD and
then we fit it with the following equation:

SJN
V =

2A
π∆ fRLC

1
1 + 4( f − fRLC)2/∆ f 2

0
(A.2)

where A is the area under the Lorentzian and ∆ fRLC its linewidth.
A typical Lorentzian response is shown in FigA.3(a), where the RLC
tank temperature is 4K. From this fit, we obtain the RLC parameters
given the Chapter 4(4.3).
Using the nominal value of L and the value of fRLC =1.73MHz from
the fit, we get C = 1

4π2 f 2
RLC L

=129pF. Using the fact that the quality fac-

tor of the RLC is Q = Re(Ztot)
√

C
L and knowing ∆ fRLC =156kHz from

the fit we obtain the real part of the total impedance Re(Ztot) =7.79kΩ.
Finally, the Lorentzian has an offset from the zero noise level that

comes from the input voltage noise of the HEMT
√

SHEMT
V,in =0.125nV/

√
Hz,

which we also obtain from the fitting.
The Johnson-Nyquist noise is given by 4kBTRe(Z2

tot)/R. From the
temperature dependence of the normalized area under the Lorentzian
curve of the thermal noise, the gain of the HEMT GHEMT and the input

current noise of the HEMT
√

SHEMT
I,in can be extracted. In Fig.A.3(b)
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this dependence is shown1.
The fact that the whole system is a parallel of the HEMT amplifier and
RLC resonator allow us to perform a linear fit of the experimental data
with the following equation:

2A
π∆ fRLC

= G2
HEMT4kB

Re(Z2
tot)

R
T + SHEMT

I,in Re(Z2
tot)G

2
HEMT (A.3)

Finally, we obtain the gain of the HEMT amplifier GHEMT =6.4 and

the input current noise of the HEMT
√

SHEMT
I,in =21.6fA/

√
Hz.

To conclude, we point out that the total voltage noise measured at
the output of the HEMT (as shown in Fig.A.3(a)) is summarized in the
following expression:

Stot
V = G2

HEMT [4kBTRe(Z2
tot)/R + SHEMT

I,in Re(Z2
tot) + SHEMT

V,in ] (A.4)

to
t 

2
S

(V
/H

z
)

v

FIGURE A.3: The noise of the read-out line. (a) The total voltage noise of the
setup meausured after the amplification through the HEMT with the RLC at
4K. The response has a typical Lorentzian shape and the offset is due to the
input voltage noise of the HEMT. A is the area under the Lorentzian curve
without the contribution of the input voltage noise of the HEMT. (b) The nor-
malized area under the Lorentzian 2A/π∆ fRLC as a function of the tempera-
ture. The red trace is a fit of the point obtained with the Lorentzian fit of the

measured voltage noise.

1We want to note that the gain of the HEMT is not affected by the change of the
temperature of the mixing chamber, since it is thermally anchored at the 3K stage
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Additional information on
Chapter 5

Here, we present the model (fully developed by our collaborator Fabio
Pistolesi) used to describe the system in the strong coupling regime.

B.1 The model

B.1.1 Assumptions and model describing the electrome-
chanical device

We discuss in this Appendix the model to describe the electronic trans-
port and the mechanical dynamics in the regime h̄ωm � h̄Γe � kBT �
∆E, EC, where ωm/2π is the (bare) mechanical frequency, Γe the typi-
cal electronic tunnelling rate, EC the Coulomb charging energy of the
quantum dot, ∆E the electronic energy spacing, and T the tempera-
ture. In the limit h̄ωm � h̄Γe � kBT the oscillator is slower than
the hopping electrons and is classical. The oscillator displacement,
z, will then enter the electronic Hamiltonian as a classical parameter.
One obtains the standard description of incoherent sequential trans-
port in presence of spin degeneracy [165, 166] with tunnelling rates
(Γ±α ) to add/remove one electron to/from the dot from/to the lead
α (where α takes the values S/D for source/drain lead). The rates
read Γ+

α = Γα fα and Γ−α = Γα(1 − fα), with Γα the maximum tun-
neling rate and fα = fF(Eα − Fez). Here fF(ε) = 1/(eε/kBT + 1)
is the Fermi function, Fe is the variation of the force acting on the
nanotube when one electron is added, and Eα is the electronic en-
ergy variation induced by the capacitive coupling to the electrodes.
In our setup they read: ES = −e[CGVe

G + (CD + CG)Vdc
SD]/CΣ and

ED = −e[CGVe
G − CSVdc

SD]/CΣ, where CS, CD, CG are the source, drain,
and gate capacitances, Vdc

SD is the source-drain bias voltage, Ve
G is the

voltage difference between the gate and the drain electrodes measured
from the charge degeneracy point for vanishing Vdc

SD and z. In the fol-
lowing we use the notation ε0 = −eCGVe

G/CΣ.



72 Appendix B. Additional information on Chapter 5

B.1.2 Vanishing electron-phonon coupling (Fe = 0)

We assume that only three electronic states participate to transport.
We label these by 0, σ =↑, ↓. They correspond to the states with N
electrons (0) and N + 1 electrons with spin projection σ (↑,↓). The
master equation for the occupation probabilities of these states read
[165]

Ṗ0 = −2Γ+P0 + Γ−∑
σ

Pσ (B.1)

Ṗσ = −Γ−Pσ + Γ+P0 (B.2)

where Γ± = Γ±S + Γ±D . By symmetry P↑ = P↓ = Pσ and we obtain
Pσ = Γ+/(Γ− + 2Γ+). The stationary current then reads

I =
2eΓSΓD( fS − fD)

ΓS + ΓD + ΓS fS + ΓD fD
, (B.3)

with the conductance for Vdc
SD → 0:

G = GTh(ε0/kBT), (B.4)

where GT = (e2/kBT)ΓSΓD/(ΓS + ΓD) and h(y) = ey/(ey + 1)(ey + 2)
gives the shape of the conductance as a function of the gate voltage.
The function h has a maximum value of 3− 2

√
2 at y = (ln 2)/2, lead-

ing to a full-width half-height of the conductance peak of 3.56kBT.
Expression B.4 gives the standard 1/T dependence for the conduc-
tance maximum that is expected to hold for Γα � kBT � EC, ∆E,
assuming that the energy dependence of the tunnelling rates is neg-
ligible. In normal conditions it allows thus to extract the value of
ΓSΓD/(ΓS +ΓD) from the fit of the 1/T dependence of the conductance
maximum. This is no longer the case in the strong electro-phonon in-
teraction regime.

B.1.3 Equilibrium description of the oscillator

We begin the discussion of the interacting case by considering the
equilibrium state (Vdc

SD = 0). In this case we can obtain an exact de-
scription of the mechanical oscillator statistical properties. The classi-
cal Hamiltonian is

H(z, pz, n) =
p2

z
2m

+
k
2

z2 + (ε0 − Fez)n (B.5)

where pz is the momentum of the oscillator and n is the electronic
occupation. n takes the values 0 or 1; the latter is realized with double
multiplicity. Using n2 = n we can re-write the Hamiltonian as

H(z, pz, n) =
p2

z
2m

+
k
2
(z− nFe)

2 + (ε0 − εp/2)n (B.6)
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where we introduced the polaronic energy εp = F2
e /k. The partition

function Z = ∑n=0,1,1
∫

dpz
∫

dze
−H(z,pz ,n)

kBT can be readily evaluated giv-
ing

Z =
2πωm

kBT

[
1 + 2e−(ε0−εp/2)/kBT

]
. (B.7)

The probability of finding the oscillator at position z traced over the
dot states and the momentum is Peq(z) = ∑n

∫
dpze−H(z,pz ,n)/kBT/Z .

It reads
Peq(z) = G(z)W− + G(z− Fe/k)W+, (B.8)

with G(z) = e−kz2/2kBT(k/2πkBT)1/2 and

W± = 1/(1 + e±(ε0−/2−kBT ln 2)/kBT), (B.9)

the weights for the two occupation states, 1 and 0, respectively. Peq(z)
is thus given by the sum of two gaussians of width ∼

√
kBT/k cen-

tered at the equilibrium position of the oscillator z = 0 for n = 0
or z = Fe/k for n = 1 (See Fig.5.1(c)). The square of the ratio of
the gaussians width over the distance of the two equilibrium posi-
tions gives εp/kBT, which thus constitutes the crucial dimensionless
coupling constant of the problem. The probability Peq(z) describes
the interplay of the thermal fluctuations with the electron-phonon in-
teraction. For εp/kBT � 1 one finds that the oscillator features the
usual gaussian fluctuations around the equilibrium position. On the
opposite regime for εp/kBT � 1 one has instead two well separated
gaussians distributions. For ε0 − εp/2− kBT ln 2 = 0 the weights are
equal (W+ = W−) and the oscillator spends the same time on the two
equilibrium positions. In the limit of ωm � Γe the force acting on the
oscillator due to the electron charge fluctuations can be averaged for
any given value of z: F(z) = Fe〈n〉(z). It makes then sense to define
an effective potential U(z) = −

∫ z dz′F(z′) from this average force,
or equivalently, from Peq(z) = e−U(z)/kBTN with N a normalization
factor. Using the expression B.8 one obtains:

U(z) = −kBT ln
[
1 + 2e−(ε0−Fez)/kBT

]
+

kz2

2
. (B.10)

This is the potential discussed in the introduction of the Chapter 5
(Fig.5.1(c)). It evolves from a single parabolic well for εp/kBT � 1 to
a double well in the opposite limit. One can find the position ze where
the maximum and the minimum merge: U′(ze) = 0 and U′′(ze) = 0.
This leads to e(ε0−Feze)/kBT = 2Fe/kze − 2 and kze/Fe − (kze/Fe)2 −
kBT/εp = 0. We thus have kze/Fe = (1±

√
1− 4kBT/εp)/2. This im-

plies that in order to have a bistable behaviour one needs εp > 4kBT.
As discussed in the chapter the critical value of εp for the bistability
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to appear is of the order of kBT, here we derived the numerical coeffi-
cient.

From these results one can derive an expression for the zero-bias
conductance that reads:

G =
∫

dzPeq(z)G(z), (B.11)

where G(z) is just the non-interacting expression B.4 for the conduc-
tance with ε0 → ε0 − Fez and Peq(z) is given by B.8. This expression
can be evaluated numerically and the result is shown in Fig.B.1 where
we plot the peak conductance Gmax (thick line) in units of
(2e2/εp)ΓSΓD/(ΓS + ΓD) as a function of kBT/εp. One observes an ex-
ponential suppression for strong coupling and a power law reduction
in the weak coupling.
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FIGURE B.1: Predicted conductance. Maximum of the conductance as a func-
tion of temperature from the numerical integration of B.11 (thick line), non-
interacting prediction (dashed blue line), first order correction in the weak
coupling limit (dotted blue line), and strong coupling exponential approxima-

tion (dashed red line).

B.1.4 Fokker-Planck equation description

In order to describe the system out of equilibrium we begin by deriv-
ing a Langevin equation for the oscillator displacement. In the limit
ωm � Γα for each value of z we can obtain the average force and
the correlation function of its fluctuation by calculating the average
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〈n〉(z) = 2Pσ(z) and the correlation function

〈δn(t)δn(0)〉(z) = 2
Γ+Γ−

Γg
e−Γg |t| (B.12)

(δn = n− 〈n〉) making use of the master equations (B.1-B.2). Here
Γg = Γ− + 2Γ+ and the z dependence comes from the ε0 − Fez depen-
dence of the tunnelling rate. The small retardation of the electronic
system with respect to variations of z induces a damping term. This
term adds up to the intrinsic dissipation rate of the oscillator γ leading
to an effective dissipation rate:

γeff = γ +
2(ΓS + ΓD)εpω2

m

(Γ2
g+

2)ΓgkBT
[ΓS fS(1− fS) + ΓD fD(1− fD)]. (B.13)

We thus obtain the Langevin equation:

mz̈ = −mω2
mz−mγeffż + 2FePσ(z) + ξ(t), (B.14)

with ξ(t) the fluctuating force acting on the oscillator. The Fourier
transform at frequency ωm of the force correlation function reads:

D ≡ 〈ξ(t)ξ(0)〉ω = 2kBTγm +
4F2

e Γ+Γ−
Γg(ω2

m + Γ2
g)

, (B.15)

where we included the fluctuation-dissipation white noise contribu-
tion due to the bare dissipative term (γ). From the Langevin equation
one can derive a Fokker-Planck equation for P(z, pz, t), the probabil-
ity to observe a diplacement z and a momentum pz of the oscillator at
time t. We have ∂tP = LP with

L =

[
− pz

m
∂z − F(z)∂pz + γeff∂pz +

D(z)
2

∂2
pz

]
(B.16)

and F(z) = 2FePσ(z) − kz. This equation allows to obtain the cur-
rent and the behaviour of the oscillator also far from equilibrium for
eVdc

SD � kBT. We solved it numerically, by discretization of the vari-
ables z and pz; typically meshes of 100× 100 points are sufficient. The
operator L becomes a (sparse) matrix acting on the vector P(zi, pi, t),
with (zi, pi) the points on the mesch. One can then obtain the sta-
tionary distribution Pst by solving LPst = 0. We also obtain the dis-
placement correlation function: Szz(t) = 〈δz(t)δz(0)〉, where δz(t) =
z(t)− 〈z〉, and 〈z〉 =

∫
dzdpPst(z, p). We can then calculate its Fourier

transform as [167]

Szz(ω) = −2Tr
[

Ẑ
L

ω2 + L Ẑ
]

Pst, (B.17)
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where Ẑ is the super-operator defined by ẐP = δzP. This quantity can
be evaluated for each value of ω once the matrices Ẑ and L are known.

Knwowledge of Szz(ω) gives information on the linear response
function to a driving force [132]. In the chapter we uses this quantity
to obtain the form of the response function, the frequency at which
the response is largest, and its width. In order to have a consistent
description we use the numerical solution of the Fokker-Planck equa-
tion to obtain the zero bias conductance, the renormalized value ωR
for the resonance frequency ωm, and the full-width half-maximum of
the fluctuation spectrum Γwidth

m .

B.1.5 Fitting procedure

In order to obtain quantitative predictions with the model one only
needs the following three dimensionless parameters
λ = {ΓS/ωm, ΓD/ωm, εp/kBT}, since the bare resonating frequency
ωm is directly measured from the spectrum far from the maximum of
conductance, and the temperature is known. In practice, for a given λ
we numerically find the maximum of the conductance as a function of
the dimensionless eVdc

G /εp. At this value of Vdc
G we then calculate the

Szz(ω) spectrum, and we obtain ωR and Γwidth
m . We then perform a fit

by minimizing the function

χ2(λ) =
3

∑
i=1

(Aexp
i − Ai(λ))

2/(∆Ai)
2, (B.18)

where Ai are the following quantities {Gmax, Γwidth
m , ωR}, Aexp

i stands
for the experimental value, Ai(λ) for the model prediction for the
given λ, and ∆Ai is an estimate of the experimental incertitude for
the quantity Ai. We use ∆Ai/Ai = 0.1, implying the same weight for
the three quantities. We perform two fit procedures, one with the three
parameters free to vary and a second one with ΓS = ΓD. Both proce-
dures result in similar fit quality, so that we choose to use the fit with
ΓS = ΓD. We then use the numerical solution of the Fokker-Planck
equation to obtain the theoretical curves presented in Figs.5.3, 5.5 and
5.6, without any other adjustable parameter. In Fig.B.2 we show how
dissipation and the mechanical resonance linewidth evolve as a func-
tion of εp/kBT. Dephasing decreases to zero at high temperature.
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FIGURE B.2: Calculated dissipation and dephasing. The ratio of the effective
damping induced by the interaction (γeff) to the mechanical resonance line-
width (Γwidth

m ) is shown as a function of εp/kBT. The damping is obtained
with B.13 and averaged over the stationary distribution Pst(z, pz). The values
are calculated at the maximum of the conductance peak for Vdc

G ' 527 mV
(lower line) and Vdc

G ' 487 mV (upper line).

B.2 The single-electron force

In this section we derive the expression 5.1 for Fe that appears in the
chapter5 (5.3). We want to devote some attention to this calculation
because this force accounts for all the effects measured in this work (it
is the most relevant term in the Hamiltonian B.5).
As mentioned earlier, the nanotube and the gate electrode are capac-
itively coupled and then, since the nanotube is vibrating, this capaci-
tance will vary also (the ones respect to source and drain are assumed
constant because are parallel to the displacement of the tube).
The electromechanial force F is then given by the variation of the total
potential energy of the three capacitors with the displacement:

F(z) = −dU(z)
dz

(B.19)

where z is the direction of the motion perpendicular to the gate
plane and U(z) is the electrostatic energy. Let’s now define U(z).
We need to use the electric potential of the quantum dot φ(z) to derive
U(z). The electric potential is determined by the total charge Q such
that the first charge dQ tunnelling into the dot experiences a potential
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φ(z, Q = 0), the second one φ(z, Q = dQ), etc... In the limit of large
number of electron, we obtain:

U(z, Q) =
∫ Q

0
φ(z, Q′)dQ′ (B.20)

The charge around the island is opposite to the charge into the is-
land, because of the capacitive coupling. Then we write:

Q = −∑
i

Qi = −∑
i

Ci(Vi − φ) (B.21)

where i = g, s, d which stand for gate, source and drain, Ci is the
electrode capacitance and Vi is the electrode potential. We can finally
write an expression for the potential as a function of the charge:

φ =
∑i CiVi + Q

∑i Ci
=

q + Q
Ctot

(B.22)

where q = ∑ CiVi and Ctot = ∑ Ci. Inserting equation B.22 in equa-
tion B.20 we get:

U(z, Q) =
qQ
Ctot

+
Q2

2Ctot
(B.23)

Minimizing the potential energy in equation B.23, we obtain that
the charge at minimum is Q = −q. We must now note that so far we
considered the limit of continuous charge, but Q = −N|e| is quan-
tized and q (also called in literature control charge) can take fractional
values. Therefore, Q = q is not a general case condition.
We have to find an integer number for the charge that minimizes the
potential energy as close as possible to q. Typically, q ≈ (N + 1/2)|e|,
where N � 1, and the only relevant levels for the problem are Q =
−N|e| and Q = −(N + 1)|e|.
We can compute now the force from equation B.23, using ∂Ctot/∂z =
C′g and ∂q/∂z = C′gVg:

F(z, Q) = −∂U(z, Q)

∂z
= −

C′g
Ctot

QVg +
C′g

2Ctot

Q + 2q
Ctot

Q (B.24)

Considering that only two levels enter the dynamics (Q0 = −N|e|
and Q1 = −(N + 1)|e|), the force can be rewritten as:

F(z, Q) = F(z, Q0) + Fe(z)n (B.25)

where Fe(z) is the difference between the force in levels Q1 and Q0,
with n = 0 when the system is in the state Q0 and n = 1 otherwise.
Finally, we obtain for Fe(z):
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Fe(z) =
C′g
Ctot

e
[

Vg −
2q− (2N + 1)e

Ctot

]
≈

C′g
Ctot

eVg (B.26)

where, in the last relation, the strictly equality holds if the dot is
at the equilibrium point q = (n + 1/2)|e|. We recovered the equation
5.1).
For small displacement of the nanotube, we take for Fe(z) its equilib-
rium value Fe. Finally, the equation of the potential energy recast (as
in B.5):

U(z) ≈ −Fezn. (B.27)
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Appendix C

Device fabrication and
experimental setup

In this section, we first go through the fabrication steps necessary to
produce carbon nanotube electro-mechanical resonators. After this,
we give some details about the experimental setup used to perform
all the measurements presented in this manuscript.

C.1 Device fabrication

The type of fabrication we choose consists in the definition of the three
terminals (source, drain and gate) as a first step. At the end of the
fabrication process carbon nanotubes are grown by chemical vapour
deposition (CVD). In this way, the CNT does not see any contaminants
due to fabrication and this ensures very high level of cleanliness for
the resonator.

C.1.1 Fabrication of prepatterned chips

As a substrate, a highly resistive silicon (Si) wafer, capped with ther-
mally grown silicon dioxide (SiO2), is used to avoid that any RF signal
could leak out from the device into the substrate. A gate electrode is
defined by UV-photolithography and followed by a metal deposition
of 5nm of tungsten (W) adhesion layer and 100nm of Platinum (Pt).
After that, 150nm of plasma-enhanched chemical vapour deposited
(PECVD) SiO2 is grown all over the wafer, covering also the gate. The
thickness of this oxide layer will define the separation between the
gate electrode and the suspended CNT. Source and drain electrodes
are patterned in the same way as the gate. The metal thickness is also
in this case 5nm of W plus 100nm of Pt. The distance between source
and drain varies between 1.3µm and 2µm. Finally, the SiO2 on top of
the gate is removed via reactive ion etching (RIE) with a mixture of
argon (Ar) and CHF3 gases. The final result is illustrated in Fig.C.1(a)
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where a schematic cross section is shown. In Fig C.1(b) a scanning
electron microscope (SEM) image shows the top view.

source drain

gate

W/Pt
SiO2

Substrate

FIGURE C.1: Pre-patterned chip. (a) Schematic cross section of the different
layers. (b) Scanning electronic microscope (SEM) image of one of the chips.

C.1.2 Fabrication of ultraclean suspended carbon nan-
otube devices

Here, we proceed with the CVD growth of CNTs. Squared openings of
600nm x 600nm are patterned in PMMA by electron beam lithography
(EBL), just on top of the source electrode at a distance of 2µm from the
trench. A methanol solution containing iron/molybdenum (Fe/Mo)
based catalyst nanoparticles (with an alumina Al2O3 support) is drop-
casted on the entire chip. The nanoparticles spread everywhere, and
precipitate in the opening previously defined in the PMMA. After the
evaporation of the methanol and the lift-off of the PMMA in acetone,
catalyst nanoparticles remain attached on the electrode and define a
square (see Fig.C.2(a), whity spot highlighted in the blue square). In
the next step, the chip is exposed to oxygen plasma for few minutes to
burn away any residues of organic layer previously deposited. Finally,
the chip is transferred in a CVD oven for the growth. CNTs are grown
by a decomposition process of methane gas (CH4) into carbon and hy-
drogen where the Fe catalysts are located. Nanotubes are grown by
the "fast heating" method. Instead of placing the chip in the center
of the oven during the whole growth process, the method consists in
rapidly sliding the quartz tube, so that the sample moves from a posi-
tion outside the oven to the center, whose temperature is T = 830◦C.
This process is performed while flushing hydrogen (400 mln/min), ar-
gon (500 mln/min) and methane (550 mln/min) gases for 12 minutes.
In Fig.C.2(b) is shown a ∼ 1.8µm long CNT contacted electrically to
source and drain electrodes suspended over shallow trench (150nm
above the local gate). The "fast heating" method has an important asset
compared to the usual growth. We observe that electrodes are much
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less deformed than with the usual growth method. To conclude this
fabrication section we want to notice that the growth direction is still
random and many tubes are not bridging source and drain. For this
reason, to increase the statistic on every chip there are 40 of this kind
of devices. Moreover, the production of this chip is made in a wafer-
scale. For this we benefit of the collaboration with Nanofabrication
Facility at University of California, Santa Barbara (UCSB).

FIGURE C.2: SEM images of a suspended carbon nanotude device. (a) The
highlighted blue area is where catalyst nanoparticles are deposited. (b) Zoom-
in of the part of the device where the nanotube is contacted and suspended

(pointed by red arrows).

C.2 Measurement setup

After the growth, we measure at room temperature with a probe sta-
tion the source-drain resistance RSD. We also check if there is any
leakage between the leads electrodes and the gate. We select samples
when RSD falls between ∼ 30 kOhm and ∼ 150 kOhm. This is a good
indication that the device could exhibit nice electrical properties at low
temperatures. Figure C.3 shows a schematic of the low temperature
measurement setup. We perform the measurement in a Triton 200, a
cryogen-free dilution refrigerator from Oxford Instrument with a base
temperature of 15 mK. This system is equipped with both RF-lines (8)
and DC-lines (12). For the high frequency lines we use UT85-SS-SS
stainless steel coaxial cables from room temperature to the 700 mK
still stage. To minimize the heat conduction, superconducting UT85-
Nb-Nb coaxial cables are used from the 700 mK plate to the mixing
chamber stage. These lines (except the one used for the read-out of sig-
nals) are attenuated by cryogenic attenuators to decrease the thermal
electromagnetic noise from room temperature and also to thermally
anchor at every stage the inner conductors. The attenuation is 10 dB
at T=45K, 20 dB at T=3K, 6 dB at 700 mK and 20 db on the source line
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at the mixing chamber. For the gate at the mixing chamber we use a di-
rectional coupler, with an attenuation of 10 dB, to physically interrupt
the central part of the coaxial line. For the DC lines, we choose ther-
mocoax (at room temperature around 100 Ohm) Cu/NbTi cables fil-
tered at room temperature with π-filters. At the mixing chamber stage
powder filters further filter out high frequency noise. The thermalisa-
tion of the lines is realized by pressing them between two gold-plated
oxygen-free copper clamps thermally anchored at every stage. Bias
tees connect RF and DC lines to apply low and high frequency signals
at the same time. DC- blocks are placed between cryostat RF ports
at room temperature and RF sources to prevent that low frequency
noise is injected into the system. To apply DC voltages we use SIM928
SRS isolated voltage sources. MHz signals are generated with Agilent
E8257D PSG sources. The output signal from the device is filtered with
an RLC resonator (at the mixing chamber) and amplified at 3K with a
HEMT amplifier (calibration is described in the AppendixA). At room
temperature we amplify again the signal with a low noise amplifier
SA-220F5 NF (G=200).
We measure output signals using a UHFLI (Zurich Instruments) in
lock-in or spectrum mode, depending on the type of measurement we
want to perform.

p p
low-noise RT
   amplifier

LIA out

LIA 

bias tee

bias tee

powder
   filter

powder
   filter

FIGURE C.3: Schematic of the measurement setup with the cryogenic wiring.
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