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ABSTRACT 

The development of synthetic bone substitutes with enhanced osteogenic properties is urged by 

the global ageing population. Sintered calcium-phosphate (CaP) ceramics are the most widely 

used synthetic biomaterials for bone regeneration. However, their clinical performance is inferior 

to those of autografts, which are still considered the gold standard, despite the serious drawbacks 

associated with the need of a harvesting surgery. 

This thesis aims at providing new insights in the development of CaP biomaterials with intrinsic 

osteoinductive properties, that is, with the capacity to foster the differentiation of mesenchymal 

stem cells to bone forming cells, without the need of adding exogenous growth factors. Previous 

studies pointed to chemical composition, macropore architecture, microstructural topography and 

specific surface area (SSA) as critical factors in the intrinsic osteoinduction of biomaterials. 

However, only sintered ceramics with a limited range of porosities and low SSAs had been 

analyzed so far. In the present thesis, we were able to extend this range to the nanoscale by using 

biomimetic low-temperature processing routes. Foaming and 3D-printing methods allowed 

producing biomimetic CaP scaffolds with tailored macropore architectures together with 

controlled micro and nanoporosity and, hence, high SSAs. 

In order to evaluate the intrinsic osteoinduction of this new family of biomimetic bone 

substitutes, nanostructured calcium deficient hydroxyapatite (CDHA) scaffolds with needle-like 

crystal morphology were implanted intramuscularly in a canine model, and compared with two 

sintered ceramics, namely biphasic calcium phosphate and beta-tricalcium phosphate (Study I). 

The results showed that the high reactivity of nanostructured biomimetic CDHA, combined with 

a spherical concave macroporosity of foamed scaffolds, accelerated and enhanced the 

osteoinduction potential beyond the limits of conventional, microstructured, sintered ceramics. 

As a second step, the effect of macropore geometry of nanostructured CDHA on the bone 

healing capacity was analyzed. The same foamed and 3D-printed CDHA scaffolds were 

implanted intraosseoulsy in a canine model (Study II). Whereas nanostructured CDHA was 

shown to be highly osteoconductive irrespective of macropore geometry, a superior osteogenic 

capacity was observed in the foamed scaffolds, which correlated well with the higher intrinsic 

osteoinductive potential demonstrated previously. Moreover, foams showed a higher cell-

mediated degradation than the 3D-printed constructs, with a simultaneous and progressive 

replacement of the scaffold by new bone, demonstrating that the control of macropore 

architecture allows tuning both material degradation and new bone formation. 

Finally, aiming to further mimic the natural bone apatite, the effect of nanocrystal morphology 

(plate vs. needle) and carbonate doping on the intrinsic bioactivity of biomimetic CDHA was 

investigated. To this end, CDHA foams with different nanostructures (Coarse/Fine-CDHA) and 

carbonated CDHA foams were compared, both in canine ectopic and orthotopic implantation 

models (Study III). Fine-CDHA foams showed a superior osteoinduction and bone healing 

potential, as well as a higher degradation than Coarse-CDHA foams, suggesting that there is a 

threshold value in terms of SSA necessary to activate the cell-mediated resorption and the 

associated osteoinduction, which determines in turn the osteogenic capacity of the materials in a 

bony enviroment. Moreover, carbonate dopping of CDHA accelerated both intrinsic 

osteoinduction and bone healing, simultaneously increasing the cell-mediated resorption. Thus, 

the increased biomimetism of CDHA allowed the material to enter the natural bone remodelling 

cycle, this resulting in a tight synchronization between material degradation and bone formation, 

and ultimately, obtaining bone substitutes with enhanced bone regeneration potential. 
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RESUM 

L’envelliment global de la població exigeix el desenvolupament de nous substituts ossis sintètics 

amb capacitats osteogèniques optimitzades. Tot i que les ceràmiques de fosfats de calci (CaP) 

sinteritzades són els biomaterials sintètics més utilitzats en regeneració òssia, la seva eficiència 

és inferior a la dels empelts d’os autòleg, els quals continuen sent el tractament de primera 

elecció malgrat presentar inconvenients importants associats a la necessitat d’una segona 

cirurgia.  

Aquesta tesi té com a objectiu optimitzar el desenvolupament de biomaterials de CaP amb 

propietats osteoinductives, fet que estimula la diferenciació de cèl·lules mare mesenquimals a 

cèl·lules osteogèniques, sense l’ús de factors de creixement exògens. Estudis recents han 

identificat diferents factors crítics en l’osteoinducció intrínseca dels biomaterials com ara la 

composició química, la macroporositat, la microestructura i la superfície específica (SSA). Fins 

al moment, només s’han analitzat ceràmiques sinteritzades amb un rang limitat de porositats i 

SSAs. Tanmateix, en la present tesi s’ha aconseguit augmentar aquest rang a la nanoescala per 

mitjà de rutes de processament biomimètiques a baixes temperatures. L’escumat i la impressió 

3D de CaP biomimètics, ha permès l’obtenció d’implants amb arquitectures macroporoses 

específicament modulades conjuntament amb micro i nanoporositats controlades, i per tant, amb 

SSAs significativament superiors. 

Per tal d'avaluar l'osteoinducció intrínseca d'aquests nous materials biomimètics, es van 

implantar intramuscularment materials nanoestructurats (cristalls tipus agulla) de hidroxiapatita 

deficient en calci (CDHA) en un model caní, i es van comparar amb dues ceràmiques 

sinteritzades (Estudi I). Els resultats van mostrar que la gran reactivitat de la CDHA 

nanoestructurada, combinada amb una macroporositat esfèrica còncava de les escumes, van 

incrementar el potencial d'osteoinducció més enllà dels límits oferts per les ceràmiques 

sinteritzades microestructurades. 

El segon pas va consistir en l’anàlisi de l'efecte de la geometria de la macroporositat dels 

materials de CDHA sobre la seva capacitat de consolidació òssia, implantant els materials 

escumats i els impresos en 3D a nivell intraossi en un model caní (Estudi II). Tot i que la CDHA 

nanoestructurada va demostrar ser altament osteoconductiva independentment de la geometria 

macroporosa, les escumes van mostrar una capacitat osteogènica superior, correlacionant-se 

directament amb el major potencial osteoinductiu intrínsec demostrat anteriorment. A més, les 

escumes van mostrar una reabsorció cel·lular superior als implants obtinguts per impressió 3D, 

substituint progressivament el material per nou os i, demostrant així que el control de 

l'arquitectura de la macroporositat permet adequar tant la degradació del material com fomentar 

la regeneració òssia. 

Finalment, amb l'objectiu de mimetitzar encara més la fase mineral òssia, es va investigar 

l’efecte de la morfologia dels nanocristalls (placa vs. agulla) i del dopatge amb ions carbonat 

sobre la bioactivitat intrínseca de la CDHA biomimètica, implantant escumes de CDHA amb 

diferents nanoestructures (Coarse/Fine-CDHA) i escumes carbonatades a nivell ectòpic i 

ortotòpic en gos (Estudi III). Les escumes Fine-CDHA van mostrar un potencial osteoinductiu i 

osteogènic superiors, i una degradació incrementada respecte a les escumes Coarse-CDHA, 

suggerint que existeix una SSA mínima per activar la degradació cel·lular dels materials i la 

conseqüent resposta osteoinductiva, fet que determina  la capacitat osteogènica dels materials en 

un defecte ossi. La carbonatació de la CDHA va accelerar tant el potencial osteoinductiu i 

osteogènic, com la degradació cel·lular dels materials, suggerint que l’increment del 

biomimetisme de la CDHA afavoreix la introducció del material dins del cicle de remodelació 

òssia, sincronitzant la seva degradació amb la neformació òssia, i obtenint així substituts ossis 

més eficaços.     
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SCOPE AND AIM OF THE THESIS 

Bone has a high capacity for regeneration. However, it is not unlimited. Several conditions such 

as trauma, infection, cyst or tumour resection, bone resorption around implants, corrective 

ostectomies, avascular necrosis, osteoporosis and some specific systemic diseases hinder the 

natural potential of bone regeneration. In general, when a bone defect exceeds a critical size, it 

requires the use of a substrate (bone graft) to serve as a support and guide the action of bone 

regenerating cells. Nowadays, the progressive increase of life expectancy has led to a higher 

incidence of impaired healing situations due to osteoporosis, bone cancer and other degenerative 

bone diseases, which, moreover, are predicted to increase significantly over the coming years. In 

consequence, the number of bone-grafting procedures has also increased, becoming a remarkable 

public health issue.  

Autologous bone grafting is still considered the gold standard treatment for bone regeneration. 

However, autografts present important drawbacks associated with the need of a harvesting 

surgery such as higher risk of side effects (infections, donor site pain), higher operative time and 

cost and the limited availability of bone graft. 

To overcome these limitations and to tackle the high demands of a global ageing population, 

current efforts in the field of bone regeneration are centered in developing synthetic bone 

substitutes with enhanced performance. Calcium phosphates (CaPs) have been used since the 

1970s as synthetic bone grafts due to their chemical resemblance to the inorganic fraction of 

bone tissue, showing a suitable biocompatibility, as well as, a good osteoconductivity. However, 

the bone healing capacity of the CaPs developed so far is still inferior to that of autologous bone 

grafts in terms of initiation of bone growth. 

The combination of CaP scaffolds with either cells or growth factors has attracted much attention 

lately as a strategy to enhance their clinical performance. However, it raises safety, ethical, 

logistic and economic concerns, besides suffering from poor reproducibility and patient 

variability, making this strategy ineffective in the daily clinical practice. An attractive alternative 

lies in endowing intrinsic osteoinductive properties to these biomaterials by tuning their 

physico‐chemical and structural properties. Although the mechanisms underlying CaPs material-

associated osteoinduction are still not fully understood, there are some physico‐chemical 

properties that are believed to play a key role, such as chemical composition, macropore 

architecture, microstructural topography and high SSA. However, most in vivo studies on 

osteoinduction of CaPs have been performed with sintered ceramics, where the high temperature 

processing precludes the introduction of nanoporosity and, hence, low specific SSAs are 

obtained. This leaves the hypothesis without a complete verification, and establishes the need to 

provide a full picture of the situation, by assessing the osteoinductive properties of CaP-based 

biomaterials with nanostructured features and higher SSA.  

In this respect, we propose the use of biomimetic routes based on the self-setting reaction of 

calcium phosphate cements (CPCs) to obtain nanostructured CDHA scaffolds at physiological 

temperature, which do not simply mimic the composition and morphology of the bone mineral 

phase better than sintered ceramics, but also generate a porous structure with controlled micro 

and nanoporosity (needle-like or plate-like nanocrystals), and consequently, much higher SSAs. 

One additional advantage of CPCs is their simplicity in processing, which makes them extremely 

versatile and compatible with many techniques, such as 3D-printing technology or foaming 
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method. This allowed fabricating scaffolds with different macropore geometries and dimensions 

in a controlled way, while preserving the specific nanostructure typical of biomimetic ceramics. 

Moreover, crystal structure of CDHA allows for many ionic substitutions. Therefore, in order to 

further mimic biological apatite, CDHA can be synthesized incorporating the ion substitutions 

present in bone, such as carbonate. 

The originality of this PhD Thesis is based on the possibility to tailor porosity at different levels 

(from the nano- to the macroscale) of biomimetic CaPs scaffolds, which significantly extends the 

range of textures analyzed so far, addressing more in-depth the effect of the nanostructure and 

macropore architecture on the intrinsic osteoinduction of CaPs. 

Therefore, the main aim of this PhD Thesis is the in vivo evaluation of the intrinsic 

osteoinductive capacity of a new family of biomimetic nanostructured CaP-based biomaterials 

with different macropore architectures in a canine ectopic implantation model and to asses if 

there is a direct correlation with their capacity for repairing bone defects in a canine orthotopic 

implantation model. 

The specific objectives to achieve the aforementioned goal are: 

 Assess the effect of nanostructural features and SSA of CDHA scaffolds on the 

intrinsic osteoinduction capacity and the material resorption, by comparing them with 

sintered BCP and β-TCP ceramics with the same macrostructure (spherical concave 

macropores) but absence of nanostructure and significantly lower SSAs, in a canine 

intramuscular implantation model (Study I). 

 Study the role of macropore architecture on the intrinsic osteoinduction capacity and 

material resorption, of nanostructured CDHA scaffolds with different macropore 

geometries (prismatic convex macropores vs. spherical concave macropores) and 

dimensions in a canine intramuscular implantation model (Study I); and to correlate these 

results with their bone healing capacity and material degradation patterns when implanted 

orthotopically (Study II). 

 Assess the role of nanocrystal morphology and SSA on the osteoinduction capacity and  

material resorption of nanostructured scaffolds of CDHA with the same macropore 

architecture (spherical concave macropores) but with different nanocrystal morphologies 

(needle-like vs. plate-like nanocrystals) and different SSA, in a canine intramuscular 

implantation model; and to correlate these results with their bone healing capacity and 

material degradation patterns when implanted orthotopically (Study III). 

 Investigate the effect of carbonate doping of nanostructured CDHA scaffolds on the 

intrinsic osteoinduction and degradation behaviour by comparing them with undoped 

nanostructured CDHA constructs with the same macrostructure (spherical concave 

macropores) in a canine ectopic implantation model; and to correlate these results with 

their bone healing capacity and material degradation patterns when implanted 

orthotopically (Study III). 
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INTRODUCTION 

Bone is a remarkable organ, as it has an inherent self-healing capacity without a fibrous scar 

formation under physiological conditions (when the defect size is not critical). The standard 

treatment for bone defects such as fractures consists of reduction and fixation of the fracture, 

acting as secondary aid to the self-regeneration process.
1
 However, the treatment of critical-sized 

bone defects, defined as the defects with the minimum size that cannot be spontaneously healed, 

is still an unresolved clinical challenge in orthopedics, affecting over 20 million people annually 

worldwide. This leads to about 5 million orthopedic interventions every year, of which about 

60% require bone grafting therapies.
2
 Therefore, bone grafting has become a common procedure, 

bone being the most frequently transplanted tissue after blood.
3
  

Moreover, improvement of life quality and the consequent increase in life expectancy are 

accompanied by an expanding demand for the repair of damaged and degraded organs and 

tissues. In connection to this, some experts predict that 30% of hospital beds will soon be 

occupied by osteoporosis patients
4
 and consequently delayed healing and non-unions will occur 

more frequently as a result of the global ageing of the population.
5
 Hence the imperative 

necessity to improve the existing strategies for bone regeneration.   

In this context, biomimicry, defined as the creative innovation of specific solutions to human 

challenges by emulating nature’s time-tested patterns and strategies, has been proven as a 

powerful approach in the development of bone substitutes. Biomimetic biomaterials can form 

intimate and functional interfaces with neighboring bone, fostering specific physiological 

processes required for bone regeneration such as angiogenesis, osteoclastogenesis, 

osteoinduction and osteoconduction.
6
 The following sections will provide an overview of the 

basic concepts of bone tissue in order to better understand the rationale behind the design of 

biomimetic biomaterials to be used as bone substitutes. Moreover, the current strategies for bone 

regeneration will be presented, focusing especially on the osteoinductive biomaterials and, 

particularly, on the osteoinductive properties of calcium phosphate-based biomaterials (CaPs).    

 

1.1 Bone function  

Bone tissue provides structural support to the body for locomotion, serves as a protective cage 

for internal organs, and it also plays a key role in a wide number of physiological functions. 

Associated to this physiological workload, bone has been estimated to receive 10-20% of total 

cardiac output. The main physiological functions include haematopoiesis, endocrine regulation, 

acid-base balance, mineral reserve (mainly calcium and phosphate) and ion homeostasis. Bone 

also serves as storage for mesenquimals stem cells (MSCs) and growth factors that are essential 

for vital physiological events, such as bone healing among others.
1,7,8

   

 

1.2 Bone composition 

Bone is a complex and intimate biocomposite of a mineral phase and an organic phase. The 

inorganic to organic ratio is approximately 75 to 25 by weight (Fig. 1.1A) and 65 to 35 by 

volume.
2
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Figure 1.1. (A) Bone composition.1 (B) Scanning electron microscope image of plate-shaped crystals of bone 

carbonate hydroxyapatite.15 

 

Inorganic phase 

The inorganic fraction of bone, also called dahlite, consists of a non-stoichiometric, carbonated 

calcium-deficient (Ca/P molar ratio lower than 1.67) and low-crystalline form of hydroxyapatite 

(HA).
10

 Bone HA has an open crystal structure which allows several ionic substitutions such as 

Mg
2+

, Fe
2+

, Zn
2+

, K
+
, Na

+
, (HPO4)

2-
, F

-
 and Cl

-
, the most abundant being carbonate (CO3

2-
) 

substitution,
11,12

 which accounts for 2-8 wt% depending on the age.
13

 Specifically, the carbonate 

ions can substitute both hydroxyl or phosphate groups in the HA crystal lattice, originating the 

A-type and B-type carbonation, respectively. The B-type carbonate substitution prevails in the 

biological apatites of the different species.
13

 Therefore, the bone apatite can be described as a 

carbonated calcium deficient hydroxyapatite (CO3-CDHA) approximated by the formula: 

(Ca,X)10(PO4,HPO4,CO3)6(OH,Y)2, where X are cations (Mg
2+

, Fe
2+

, Zn
2+

, K
+
, Na

+
) that can 

substitute for the calcium ions, and Y are anions (F
-
 and Cl

-
) that can substitute for the hydroxyl 

group.
9
 As above-mentioned, biological apatites are often described as poorly crystalline and 

non-stoichiometric since the presence of these ionic substitutions causes a decrease in the 

crystallite size, and a decrease in the Ca/P ratio below 1.67, which is the stoichiometric value of 

pure HA.
14

 More specifically, bone apatite consists of nanometer-sized and irregularly shaped 

plate-like crystals (Fig.1.1B) of variable lengths (30-45 nm) and thickness (1.5-5 nm) 

discontinuously incorporated within the collagen fibrils of the organic matrix and mainly 

oriented with the c-axis in the direction of the fibril.
15

 Bone inorganic phase also contains 9% of 

water.
15 
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Organic phase 

The organic matrix, also known as osteoid, is mainly composed of collagen type-I (80%). The 

remaining 20% is constituted by proteoglycans (PGs) and non-collagenous structural proteins 

such as osteocalcin (OCN), osteonectin (ONN), osteopontin (OPN), fibronectin (FN), 

glycoproteins, and bone sialoproteins (BSP).
16,17

 Many of the proteins contained in the organic 

matrix are glycosylated, partially due to the presence of glycosaminoglycans (GAG). GAGs, 

which are assembled into PGs through a core protein, are long negatively charged 

heteropolysaccharides that occupy large areas providing many sites for interaction with various 

molecules such as growth factors and cytokines, crucial for several signaling pathways.
16,17

 The 

bone organic phase also contains phospholipids, cells and growth factors. 

 

1.3 Bone structure 

Bone is a highly specialized form of connective tissue structured in a distinct hierarchical 

fashion. Weiner and Wagner described extensively the hierarchy of bone structure and 

established seven levels from the nano to the macroscale,
18

 as shown in Fig. 1.2. The smallest 

scale level corresponds to tropocollagen molecules, which form collagen fibrils that are later 

mineralized by nanocrystals of CO3-CDHA and arranged together forming a mineralized 

collagen fiber. These mineralized collagen fibers are then self-arrayed originating a twisted 

plywood-like structure called lamellae, which eventually wrap into concentric layers around a 

central canal called Haversian canal that contains blood vessels and nerves. Each Haversian 

canal is surrounded by varying number (5-20) of concentrically arranged lamellae of bone matrix 

forming an osteon or Harversian system, which is the fundamental functional unit of compact 

bone. Osteons are around 200 to 250 µm in diameter and run parallel to the long axis of bone.
19  

 

Figure 1.2. Hierarchical structure of bone.20  

Recently, some studies revealed that besides the previously described ordered arrays of 

mineralized collagen fibrils, lamellar bone is also composed of a minor component being a 

relatively disordered material consistent of individual collagen fibrils with no preferred 

orientation, with crystals inside, and extensive ground mass, where the cellular components of 

bone are confined.
15
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This hierarchical structure is responsible for its high mechanical performance, and specifically 

for its inherent capacity to arrest crack propagation. Although bone is a relatively light weight 

material, the mineral phase provides it with strength under compressive loads. The collagen 

found in the organic matrix renders the bone with relatively high elastic modulus, which 

provides it with a significant degree of flexibility.
19

 However, bone is still liable to fracture at 

high tensile loads, tensional forces or shear strengths.
1,21

 The mechanical properties are 

dependent on the anatomic location and type of bone (Fig. 1.3),
22,23

 and are influenced among 

others by the porosity and percentage of the mineral content.
24

  

Finally, at a macrostructural level, we can differentiate between compact bone and cancellous 

bone, as depicted in Fig. 1.3. Compact bone, also known as cortical bone, is found in the hard 

outer layer of long and flat bones surrounding the marrow cavity and is organized in a lamellar 

cylindrical osteon system. It is a dense tissue with a total porosity around 5 to 10%. This porosity 

is constituted by Haversian canals, Volkmann’s canals and resoprtion cavities.
9
 Pore size in 

cortical bone ranges from 10 to 300 µm.
9
 Compact bone possesses a high resistance to tensile 

and bending forces and it shows a low remodeling rate.
21 

 

Figure 1.3. Compact bone and cancellous bone in long and flat bones and their mechanical properties, adapted.1,21  
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Cancellous bone, also known as trabecular or spongy bone, is mainly found inside the epiphyseal 

areas of long bones and within flat and irregular bones. It presents a three-dimensional structure 

of longitudinally arranged lamellae irregularly interconnected, known as trabecuale (200 µm of 

thickness), with a total porosity between 75 and 95%. The interconnected pores in trabecular 

bone range from 200 to 600 µm and are filled with bone marrow. The size and interconnection of 

bone porosity is essential for vascularization, diffusion of nutrients and cells, and tissue 

ingrowth. It has a larger surface area than cortical bone to respond to metabolic demands, thus is 

more active and can remodel quicker. Moreover, this structure gives high compression resistance 

to the cancellous bone.
21

 The human skeleton has a total of 213 bones, where 80% consist of 

cortical bone and 20% of trabecular bone. Moreover, based on the different mechanisms during 

embryonic development, bones can be classified in five families: long bones (i.e. femur, tibia), 

short bones (i.e. carpus, tarsus), flat bones (i.e. scapula, rib), irregular bones (i.e. vertebrae) and 

sesamoid bones (i.e. patella).
25 

The sophisticated architecture and composition of bone and the high organization level of the 

bone matrix not only account for its optimized mechanical performance, but also provide the 

adequate niche for bone cells migration, attachment, proliferation and differentiation, which 

allows for bone repair and regeneration.
26

  

 

1.4 Bone biology  

Bone is a dynamic tissue which is produced as a result of a series of complex events rigorously 

orchestrated by different types of bone cells interacting with each other and with the extracellular 

matrix. The cells constituting the bone tissue are mainly four subsets: osteoblasts, osteoclasts, 

osteocytes and bone-lining cells (Fig. 1.4). Osteoblasts, osteocytes and bone lining cells are 

originated from local stromal osteoprogenitor cells, whilst osteoclasts have an hematopoietic 

origin and derive from the fusion of mononuclear precursors, from the monocyte-macrophage 

lineage.
7,27

  

 

Figure 1.4. Bone cell types. Hematopoietic stem cells (HSC) and Mesenquimal stem cells (MSC).28 
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Bone lining cells have been suggested as a quiescent population of cells that cover inactive (non-

remodeling) bone surfaces. They can be induced to proliferate and differentiate into osteogenic 

cells and represent a major source of mature osteoblasts during adulthood.
27,29 

Osteoblasts differentiate from the mesenchyme; i.e. from MSCs, as depicted in Fig. 1.5. The 

microenvironment of MSCs will dictate the differentiation into the bone lineage cells or 

alternatively, into chondrocytes, myioblasts or adipocytes. Osteoblasts differentiation can be 

activated by different pathways, being runt-related transcription factor 2 (Runx2), bone 

morphogenetic proteins (BMPs) and osterix (Osx) the main regulators. Osteoblasts are polarized, 

mononuclear, bone-forming cells. Their primary function is the synthesis and mineralization of 

the osteoid matrix. As such, they are always found lining the layer of bone matrix they are 

producing. They produce several substances such as GAGs (chondroitin sulfate and hyaluronic 

acid) and matrix proteins that include collagen (mostly collagen type-I, Col I), alkaline 

phosphatase (ALP), OPN, BSP, ONN, FN and OCN. Osteoblasts also secrete growth factors like 

transforming growth factors (TGFs), Runx2 or BMPs before mineral deposition. Mineralization 

of the organic matrix begins approximately 10 days after production. Once trapped inside 

mineralized matrix they become osteocytes, by down-regulation of ALP and Col I expression.
7,27

  

 

Figure 1.5. Model of osteoblast and osteocyte differentiation, adapted.30 

Osteocytes are terminally differentiated osteoblasts, star-shaped cells (Fig. 1.5) that form the 

largest cellular constituent of bone, being ten times more numerous than osteoblasts. Osteocytes 

principally act as mechano-sensors and thus convert the stimulus of mechanical loading into 

biochemical signals by guiding both osteoblasts and osteoclasts activity during bone remodeling. 

These cells occupy lacunae (pits) embedded in the bone matrix and are interconnected via 

cytoplasmic extensions (filopodia) running through a canalicular network (canaliculi). Gap 

junctions between filopodia of different cells allow transfer of small intercellular signaling 

molecules, for example nitric oxide and prostaglandins.
27

  

Osteoclasts are responsible for bone resorption. They are able to resorb the extracellular bone 

matrix by generating an acidic environment to dissolve the mineral phase of bone, and by 

secreting specific enzymes (matrix metalloproteinases-MMP and cathepsins) to degrade the 

organic components.
26

 Osteoclasts are multinucleated cells formed by fusion of cells of the 

monocyte-macrophage lineage upon stimulation with proteins secreted by bone marrow stromal 
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cells or cells of the osteoblastic lineage. In fact, during maturation, osteoclasts resemble foreign 

body giant cells.
31

  

Each type of cell exerts different functions during embryonic osteogenesis, bone remodeling and 

bone healing processes by a tight cross-talk, based on a complex protein-protein receptor 

network. These biological mechanisms will be described in the following sections. 

 

1.4.1 Osteogenesis during skeletal development  

Bone embryonic development occurs during determination of the dorsoventral axis through 

intramembranous and endochondral pathways, a complex multistep process of growth and 

development, which is completed only in adulthood.
32,33

  
 

1.4.1.1 Intramembranous ossification 

Intramembranous ossification generates flat bones and it entails direct differentiation of MSCs 

into osteoblasts. In the formation of the skeleton, MSCs from the neural crest (embryonic 

ectoderm cell layer) aggregate and form condensates of loose mesenchymal tissue, prefiguring 

the skeletal elements. Within these aggregates MSCs differentiate into the osteoblastic linage 

when in association with adequate vascularization and upon expression of Runx2, which induces 

another bone differentiation transcription factors (Osx, BMPs and Wnt). Runx2 is considered by 

many to be the ‘master gene’ for osteoblast differentiation, because it regulates the 

differentiation of MSCs to pre-osteoblasts and is required for the expression of non-collagenous 

proteins such as BSP and OCN. Subsequently, osteoblasts lay down new osteoid in a 

disorganized fashion, which is lately mineralized forming woven bone. Finally, woven bone is 

remodeled to well-organized lamellar bone resulting in either compact or cancellous bone.
32,33 

 

1.4.1.2 Endochondral ossification 

Alternatively, in the endochondral ossification, condensates of MSCs can differentiate into 

chondrocytes in an avascular environment, producing a cartilage mold which is eventually 

replaced by bone. Endochondral ossification originates most of the bones of the body, such as 

the long bones. It begins when neural crest MSCs proliferate and condense, forming a cartilage 

mold surrounded by the perichondrium, a primary source of chondroblasts. Directed by 

transcription factors Sox9 and, then, Runx2, these cells differentiate into chondrocytes and begin 

to secrete extracellular matrix components that are rich in aggrecan and collagen IIa1 (hyaline 

cartilage). Runx2 expression in a specific chondrocyte population generates a hypertrophic zone. 

Hypertrophic chondrocytes secrete collagen X, promote direct mineralization of the cartilage, 

and induce the adjacent perichondrial cells to differentiate into osteoblasts, a key step in 

endochondral bone formation. Blood vessels producing vascular endothelial growth factor 

(VEGF) and other factors invade the mineralized cartilage mold, allowing for migration of 

osteoclasts to digest the calcified matrix synthesized by the hypertrophic chondrocytes. Then, 

osteoblast precursor cells deposit bone on the degraded matrix scaffold formed after death of the 

hypertrophic chondrocytes. In the perichondrium, important autocrine and paracrine factors, such 

as BMPs 2, 4, and 7, Indian hedgehog (Ihh), and parathormone related protein (PTHrP), are 

expressed to sustain differentiation and mature bone formation.
32-34 
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1.4.2 Bone remodeling  

Bone tissue shows the inherent capacity for continuous remodeling lifelong by removing old 

bone from the skeleton and forming new bone. It is a key process during which the newly 

formed bone grows adjusting to the mechanical demands and the activity of the person while 

maintaining the total bone volume, its structural integrity and metabolic functions. In the mature 

adult skeleton approximately 2 to 5% of cortical bone undergoes turnover annually, while 

trabecular bone is even more actively remodeled, up to 10% per year, due to the much larger 

specific surface area (SSA).
7,32 

The remodeling cycle of the corticocancellous bone requires the interaction of many cells which 

respond to mechanical stimuli and are tightly regulated by several bone-related proteins and 

paracrine and autocrine growth factors. The fundamental unit responsible for the remodeling 

process is called basic multicellular unit (BMU). It consists in a complex and unique structure 

made up of osteoblasts and osteoclasts organized into a cutting cone with osteoclastic resorption 

at the apex and osteoblasts laying down new osteoid at the base with blood vessels (endothelial 

cells) filling the cavity (Fig. 1.6). A BMU is an elongated cylindrical structure that burrows 

trough cortical bone, in a direction generally aligned with the long axis of the bone. It measures 

approximately 2 mm of length and 200 µm of diameter. The total number of these units and thus 

the rates of resorption and new bone formation are relatively constant at any given time.
7
 In the 

cancellous bone, a BMU travels across the surface of a trabecuale excavating a trench rather than 

a tunnel with cross-sectional geometric cues of concavities after cyclic episodes of 

osteoclastogenesis (Fig. 1.6).
35

  

 

Figure 1.6. Schematic representation of a BMU, the fundamental unit of the remodeling cycle of the 

corticocancellous bone.36  
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The remodeling process entails five phases: quiescence, activation, resorption, formation, and 

mineralization, as shown in Fig. 1.7.  

 

Figure 1.7. Schematic representation of the bone remodeling cycle.37  

 

Quiescence/Activation 

The quiescent bone (i.e not undergoing remodeling) starts the remodeling process usually 

activated by paracrinal signals such as parathyroid hormone (PTH). Remodeling is initiated at 

points beneath the canopy of cells lining trabecular bone and within cortical bone Haversian 

canals (Fig. 1.6). The first step is the separation of the lining cells to expose the bone surface and 

the recruitment of osteoclast precursor cells. Then, osteoclastogenesis is regulated by a host of 

factors such as osteoprotegerin (OPG), receptor activator of nuclear factor kappa B (RANK), 

RANK ligand (RANKL) and colony-stimulating factor (CSF) what is known as the 

RANK/RANKL/OPG pathway, illustrated in Fig. 1.8.  

 

Figure 1.8. Model of osteoclast differentiation and activation, adapted.27,38 

Specifically, RANK-RANKL interactions lead to osteoclast maturation, while OPG is a decoy 

receptor inhibiting RANK-RANKL interactions. Fusion of macrophages or mononuclear 
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osteoclasts under the stimulation with CSF and RANKL, among others, generates mature 

osteoclasts, which express high amounts of tartrate-resistant acid phosphatase (TRAP). Other 

environmental stimuli can regulate osteoclastic activity such as prostaglandin E2 (PGE2), 

vitamin D, calcitonin, or cytokines such as interleukin 11 (IL-11), tumor necrosis factor 

stimulated gene-6 (TSG-6) and tumor necrosis factor alpha (TNF-α).
31,39,40

   

Resorption 

During the resorption phase, differentiated osteoclasts form a cutting cone and degrade the bone 

matrix. Osteoclasts attach to bone by polarizing their membrane forming a ‘ruffled border’ 

typical from this type of cells. Once attached and sealed by the ruffled membrane, osteoclasts 

release hydrogen ions and transport acidifying vesicles to degrade bone. Thus, bone resorption 

by osteoclasts takes places under acidic conditions, normally at pH around 4.5. 

Adenosintriphosphatase (ATPase) and carbonic anhydrase are some of the proteases mediating 

this acidification which degrades bone mineral matrix (low pH dissolves the crystal content of 

the matrix). Then, organic matrix is degraded via the release of lysosomal enzymes (cathepsin K 

and MMP) by osteoclasts and by the action of mononuclear cells, which clean the resorbed 

surfaces (reversal phase). The final step of this phase is the apoptosis of osteoclasts.
35

  

Formation 

Subsequently, the resulting pit cut by osteoclastogenesis, known as Howship’s lacunae, is 

colonized by MSCs which differentiate to preosteoblasts and finally to mature osteoblasts. The 

stimulation and control of the osteoblastic differentiation process is governed by a complex 

pathway of interactions between transcriptional regulators, growth factors, hormones and 

signaling molecules. For instance, during osteoclastogenesis calcium and phosphate ions are 

released from bone matrix. This causes a local increase in the ion concentration to supra-

physiological levels, which has a significant impact on the proliferation and differentiation of 

osteoblasts, as well as on the subsequent bone formation process.
35

 High calcium concentrations 

have been shown to stimulate pre-osteoblast chemotaxis to the resorption site via the activation 

of calcium sensing receptors.
41,42

 Besides the effect on cell chemotaxis, the release of 

extracellular calcium also plays an important role in controlling the proliferation (via c-fos 

transcription factor expression) and differentiation (via dephosphorylation of NFAT transcription 

factor) of osteoblasts near the Howship’s lacunae, through the calcium/calmodulin signaling.
42

 

Moreover, the release of phosphate ions at the resorption site also plays a role in osteoblast 

proliferation and differentiation through different signal pathways such as Fos-related antigen-1 

and extracellular signal-regulated kinase (matrix Gla protein).
43 

On the other hand, the most 

important cytokines involved in the osteoblastic differentiation during this formation phase are 

osteoclastic BMPs, platelet derived growth factor (PDGF), TGF-β, VEGF, fibroblast growth 

factor (FGF), and insulin-like growth factors (IGF). The Wnt group of proteins has also been 

shown to have a role in increasing bone mass through a number of pathways including 

osteoblastogenesis and inhibition of osteoblast apoptosis. Once differentiated, osteoblasts start 

the new bone formation by producing the organic matrix (osteoid).
7,35

  

Mineralization 

Osteoblasts also control the mineralization process of the bone matrix which is the last step of 

the remodeling cycle.
7,35

 The matrix mineralization process is also regulated by specific 
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cytokines. For instance, ALP is a periplasmic enzyme that hydrolyses pyrophosphate (a 

mineralization inhibitor), thereby providing phosphate ions to promote mineralization.
44 

Thus, 

ALP is considered an early marker of osteoblast differentiation. PHOSPHO1 is another 

phosphatase highly expressed in bone, which plays a role in the initiation of mineral formation.
45 

On the other hand, OCN and ONN regulate the size and speed of crystal formation,
46 

BSP acts as 

a crystal nucleator, whereas OPN influences the type of crystal formed.
47

 Moreover, BMP-2 is 

involved in the control of ALP expression and osteoblast mineralization via a Wnt autocrine 

loop,
48

 as well as in the enhancement of phosphate ion transportation into cells for matrix 

mineralization.
49

 Eventually, expression of molecules such as sclerostin bind to osteoblasts and 

bone formation ceases.
7,35

  

The maintenance of bone mass across the cycles is achieved through the balance between bone 

resorption and formation. Indeed, osteoblast-osteoclast relationships are mediated through 

OPG/RANKL and Wnt/BMP signaling pathways. Specifically, osteoblasts are crucial in the 

osteoclastogenesis through a mechanism involving cell-to-cell contact with osteoclast 

progenitors. The rate of osteoclastic activity is reduced by OPG. Osteoblasts secrete OPG, which 

binds to RANKL to inhibit both osteoclast stimulation and the resultant rate of bone turnover.
50

  

In the opposite direction, it has been reported the secretion of BMPs and other osteogenic growth 

factors (Wnt, S1P, OSM, PDGF-BB and CTHRC1) by osteoclasts, which stimulated osteoblast 

differentiation of local precursors.
51-54

 The discovery of these relationships has confirmed the 

idea that osteoblasts are involved in the processes of osteoclast pathways and viceversa. 

Moreover, the balance between bone resorption and formation is under control of several factors 

as genetic, vascular, nutritional, hormonal and mechanical. For example, BMU can be activated 

when an appropriate mechanical solicitation exists; a phenomenon called mechano-transduction 

and governed by the Wolff’s law. This allows bones to adapt in both size and shape to the 

mechanical stresses suffered.
35,55

  

 

1.4.3 Bone healing  

It is known that bone is one of the few tissues that can heal without forming a fibrous scar. As 

such, the process of fracture healing recapitulates bone development and can be considered a 

form of tissue regeneration.
56

 Bone healing is comprised of a well-organized series of biological 

process of bone induction and conduction that requires the synergistic action of cells, cytokines, 

and growth factors through a definite temporal and spatial sequence, in an effort for optimization 

of skeletal repair and restoration of skeletal function.
57

 Whilst normal bone turnover and the 

mechanisms by which fractured bone is repaired are entirely separate processes, they share a 

number of common features.
7
 Following the initial trauma and depending on both mechanical 

and biological microenvironments of the bone defect, it can be repaired by either direct or 

indirect fracture healing. 

 

1.4.3.1 Direct bone healing 

Direct or primary bone healing consists of intramembranous bone healing and it does not 

commonly occur in the natural process of fracture healing. It requires a correct anatomical 

reduction of the fracture ends, without any or minimal gap formation and a rigid fixation 

resulting in a substantial decrease in the interfragmentary strain. When these requirements are 
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achieved, direct bone healing can occur by direct remodeling of lamellar bone. Depending on the 

species, it usually takes from a few months to a few years, before complete healing is achieved. 

Primary healing of fractures can either occur through contact healing or gap healing, as depicted 

in Fig. 1.9. Both processes involve an attempt to directly re-establish an anatomically correct and 

biomechanically competent lamellar bone structure.
56

  

 

Figure 1.9. Primary healing of fractures can either occur through contact healing or gap healing.57 

Contact healing 

If the gap between bone ends is less than 0.01 mm and interfragmentary strain is less than 2%, 

the fracture unites by so-called contact healing. It occurs in the presence of perfect anatomical 

fracture reduction fixed with compression at the fracture site. Under these conditions, cutting 

cones are formed at the ends of the osteons closest to the fracture site. Osteoclasts cross the 

fracture line, generating longitudinal cavities at a rate of 50-100 μm/day, which are later filled by 

concentric lamellae produced by osteoblasts residing at the rear of the cutting cone (Fig. 1.9). 

This results in the simultaneous generation of a bony union and the restoration of Haversian 

systems formed in an axial direction. The re-established Haversian systems allow for penetration 

of blood vessels carrying osteoblastic precursors. The bridging osteons later mature by direct 

remodelling into lamellar bone resulting in fracture healing without the formation of periosteal 

callus.
56

 

Gap healing 

If the gap is between 0.01 mm to 1 mm, the fracture unites by so-called gap healing. In this 

process the fracture site is primarily filled by osteoid matrix elaborated by surrounding 

osteoblasts creating woven bone oriented perpendicular to the long axis. This initial process 

takes approximately 3 to 8 weeks, after which a secondary remodelling resembling the contact 

healing cascade with cutting cones takes place. Although not as extensive as endochondral 

remodelling, this second phase is necessary in order to fully restore the anatomical and 

biomechanical properties of the lamellar bone. Thus, gap healing differs from contact healing in 

that bony union and Haversian remodelling do not occur simultaneously.
56
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1.4.3.2 Indirect bone healing 

Indirect or secondary bone healing is the most common form of fracture healing and it consists 

mainly of endochondral ossification. It does not require anatomical reduction or rigidly stable 

conditions. On the contrary, it is enhanced by axial micromotion and weight-bearing. However, 

too much motion and/or load is known to result in delayed healing or even non-union. Indirect 

bone healing typically occurs in non-operative fracture treatment and in certain operative 

treatments in which some motion occurs at the fracture site such as external fixation, 

intramedullary pinning, interlocking nailing or internal fixation of complicated comminuted 

fractures with locking plates.
56

 Indirect bone healing process consists of three main phases: i) a 

primary acute inflammatory response with an hematoma formation surrounding the ridges of the 

fracture site, followed by ii) a repair phase where the hematoma is converted into a fibro-

cartilage callus that evolves to woven bone callus, and finally iii) a remodeling phase where 

woven bone is converted into lamellar bone to meet mechanical demands (Fig. 1.10)
.7

  

 

Figure 1.10. Schematic representation of the indirect bone healing process, adapted.58   

 

Acute Inflammatory phase  

Immediately after the trauma, disruption of periosteal and endosteal blood supply, and damage to 

peripheral vascularized tissues causes local necrosis, exudation of proteins, fluids and blood cells 

at the injured site
 
leading to a clot formation.

59
 The clot of platelets and blood cells initiates an 

inflammatory response with the recruitment of inflammatory cells from the immune system by 

means of several interleukins and specific cytokine-proteins (such as platelet factor 4 and 

PDGF), which are necessary for the healing to progress.
59-62

 The acute inflammatory response 

peaks within the first 24 h and is complete after 7 days, when the clot is coagulated in between 

and around the fracture ends forming an hematoma, which will serve as a template for callus 

formation.
56

  

Immune cells arriving at the injured site during the acute inflammatory reaction are responsible 

for degrading and phagocytizing any pathogen or injured tissue, as well as signaling the 

pathways for cells to resolve inflammation and restore tissue. Leukocytes, connective tissue cells 

and extracellular matrix components are the main factors regulating the chemical signaling to 

resolve inflammation. Initially, a provisional matrix is formed consisting mainly of fibrin which 
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furnishes structural and biochemical components to the process of wound healing.
 
Neutrophils 

and monocytes arrive at this provisional network and release chemotactic factors over different 

time periods activating in turn, different cell functions. The first released chemical factors are 

reactive oxygen species (ROS) which generate oxidative stresses into the microenvironment. 

ROS levels dictate the effect on cellular mechanisms; high concentrations are deleterious to cells 

due to their oxidizing effect on cell proteins, lipids and DNA. Low ROS concentrations instead, 

function as signaling molecules for cell growth, adhesion, differentiation and apoptosis.
63

 

Neutrophils are short-life cells and undergo apoptosis within hours or few days. On the contrary, 

when monocytes adhere to tissue, they transform into different types of macrophages depending 

of the microenvironment stimuli. According to these stimuli, macrophages release cytokines
 
to 

help address healing by signaling other cell types such as fibroblast, endothelial cells and 

mesenchymal cells.
64

  

Macrophages assume diverse and context dependent profiles (known as macrophage 

polarization) between pro-inflammatory and anti-inflammatory phenotypes,
64

 as summarized in 

Fig. 1.11. They are classified as M1 and M2, according to their pro- or anti-inflammatory 

phenotypes, respectively.
65

 The early stage of the healing process is dominated by the pro-

inflammatory M1 phenotype where cytokines such as TNF-α, IL-1β, IL-6, IL-11 and IL-18 are 

released. These factors recruit other necessary inflammatory cells and MSCs, stimulate the 

VEGF production and angiogenesis, promote the production of the primary cartilaginous callus 

and induce the differentiation of osteoblasts and osteoclasts.
56

 In an ideal scenario after the first 

hours, M1 cytokines would be down-regulated by the release of anti-inflammatory cytokines 

such as IL-4, IL-10, IL-13 or TGF-β restraining inflammation and initiating tissue repair.
66

  

 
Figure 1.11. Macrophage polarization and their associated functions and cytokines released, adapted.64  
 

This tight interrelation between the immune and the skeletal system has led to a new emerging 

field called osteoimmunology that seeks to understand and benefit from the tight crosstalk 

between both systems. Leukocytes and macrophages release proteins which can activate for 

instance osteoclast maturation, such as IL-1, IL-6, IL-11 and TNF-α, known as osteolytic 

cytokines, or promote osteogenesis by the regulation of BMPs.
67,68

 Even though a brief and 

highly regulated secretion of proinflammatory molecules following the acute injury is critical to 

start bone repair, a chronic exposure to inflammatory cytokines can have a negative effect on 

bone healing (with or without bone grafting) leading to fibrotic tissue encapsulation and tissue 

granulation. Thus, a balance between pro-inflammatory and pro-healing cytokines is 

fundamental.
56
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Repair phase 

Following the formation of the primary hematoma, a fibrin-rich granulation tissue is formed. 

Within this tissue, endochondral formation occurs in between the fracture ends and external to 

periosteal sites. These regions are also mechanically less stable and the cartilaginous tissue forms 

a soft callus which gives the fracture a stable structure. If the soft cartilaginous callus provides 

enough stability, it will be calcified, increasing thus the interfragmentary stability of the fracture. 

In order for bone regeneration to progress, the calcified cartilaginous callus needs to be resorbed 

and replaced by a hard woven bone callus. This step of fracture healing recapitulates 

embryological endochondral bone development,
69

 described previously. The connection between 

bone regeneration and bone development has been further strengthened by a recent 

understanding of the role of the Wnt-family of molecules, which is of great importance in 

embryology and has also been shown to have an important role in bone healing. The Wnt-family 

is thought to regulate the differentiation of pluripotent MSCs into osteoblastic lineage 

(osteoinduction) and, at later stages of development, to positively regulate osteoblastic bone 

formation.
70

 As the hard callus formation progresses and the calcified cartilage is replaced with 

woven bone, the callus becomes more solid and mechanically rigid.  

At the same time and only under optimal vascular and mechanical conditions, an 

intramembranous ossification response could occur subperiostally directly adjacent to the distal 

and proximal ends of the fracture, generating a hard callus (Fig. 1.10).
7
 This phenomenon has 

been controversial since some other authors disclaimed the presence of intramembranous 

ossification during the indirect bone healing process. In contrast, a short step consisting of the 

formation of chondroid tissue preceding the formation of woven bone was identified.
71,72

  

Extracellular matrix of chondroid tissue contains both type 1 and type II collagens 

simultaneously and possesses a higher rate of mineralization compared with cartilaginous 

tissues. It promotes the early formation of a calcified callus which acts as a support and thus 

permits the rapid apposition of woven bone.
71,72

 The different calcified tissues in different 

locations of the fracture site can be explained by biological and mechanical factors. Proliferation 

of osteoprogenitor or chondroid cells occurs in areas of increased oxygen tension and decreased 

strain resulting in the early formation of woven bone, whereas areas of low oxygen tension or 

higher strain will result in cartilage production from differentiation of chondrocytes and the 

subsequent endochondral ossification process.
7
  

The generation of these callus tissues is dependent on the recruitment of MSCs from the 

surrounding soft tissues, cortex, periosteum, bone marrow and the systemic mobilization of stem 

cells into the peripheral blood from remote hematopoetic sites. Moreover, pericytes, which are 

mural cells that lie on the albuminal side of blood vessels, have been shown to be a 

supplementary source of activated MSCs as osteoprogenitors in the periosteal osteogenesis.
73,74

 

The exact origin of MSCs is not fully understood. Although most data indicate that these MSCs 

are derived from surrounding soft tissues and bone marrow, some authors demonstrate that a 

systemic recruitment of circulating MSCs to the injured site might be of great importance for an 

optimal healing response.
75,76

 Moreover, the precise molecular mechanisms that govern MSCs 

migration to sites of injury are also under debate.
77

 In this regard, some authors reported that the 

release of pro-inflammatory cytokines such as TNF‑α, PDGF, IL‑1, and IL‑6 from 

inflammatory cells can enhance MSCs migration and proliferation,
33,59,78

 whereas others found 

that an anti‑inflammatory effect through TGF‑β1 release is beneficial for MSC recruitment.
79
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Recent data suggested that stromal cell-derived factor-1(SDF-1) and its G-protein-coupled 

receptor CXCR-4 form an axis (SDF-1/CXCR-4) that is a key regulator of recruiting and homing 

specific MSCs to the site of trauma.
75,76

 These reports show that SDF-1 expression is increased 

at the fracture site, and especially in the periosteum at the edges of the fracture, which 

demonstrates that SDF-1 has a specific role in recruiting CXCR-4 expressing MSCs to the 

injured site during endochondral fracture healing. Transplanted MSCs only home to the fracture 

site if they express CXCR-4, whereas CXCR-4 negative MSCs do not have this ability. The 

importance of this axis was further verified since the treatment with a SDF-1 antagonist or the 

genetic manipulation of SDF-1 and CXCR-4 impaired fracture healing.
75,76

  

Once recruited, MSCs secrete autocrine and paracrine differentiation factors, such as Runx2, 

Osx, VEGF, FGF, Ihh, Wnt, and BMPs, inducing differentiation and maturation of these cells 

into active chondrocytes and osteoblasts and stimulating angiogenesis and vasculogenesis.
69

 

TGF-β superfamily members have been shown to be of great importance in this process. More 

specifically, TGF-β2, -β3 and Growth/differentiation factor 5 are involved in chondrogenesis and 

endochondral ossification, whereas BMP-5 and -6 have been suggested to induce cell 

proliferation in intramembranous ossification at periosteal sites.
80,81

 In addition, BMP-2 has been 

shown to be crucial for initiation of the healing cascade.
82

  

Remodeling phase 

Although the hard callus is a rigid structure providing biomechanical stability, it does not fully 

restore the biomechanical properties of mature lamellar bone. In order to achieve this, the 

fracture healing cascade initiates a second resorptive phase, this time to remodel the woven bone 

callus into a lamellar bone structure with a central medullary cavity,
69

 similar to the physiologic 

bone turnover described in a previous section. Collagen fibers of woven bone are structured in a 

disorganized fashion, making woven bone less resistant to deforming forces compared with 

lamellar bone, in which collagen fibers are arranged in parallel forming the typical longitudinal 

fibrils. This phase is biochemically orchestrated by IL-1 and TNF-α, which show high 

expression levels during this stage, as opposed to most members of the TGF-β family which 

have diminished in expression by this time. However, some BMPs such as BMP-2, are 

seemingly also involved in this phase with reasonably high expression levels.
59

  

The remodelling process is carried out by a balance of hard callus resorption by osteoclasts, and 

lamellar bone deposition by osteoblasts. Although the process is initiated as early as 3-4 weeks 

in animal and human models, the remodelling may take years to be completed to achieve a fully 

regenerated bone structure. This process may occur faster in animals and younger patients.
56

  

 

1.4.3.3 Bone healing failure 

For bone healing to be successful, an adequate blood supply and a gradual increase in 

mechanical stability is crucial. In this respect, when the soft cartilaginous callus does not provide 

enough interfragmentary stability, it cannot be calcified and, hence, the physiologic bone healing 

cascade is interrupted. This scenario results in a hypertrophic non-union, also known as 

pseudoarthrosis. This is often due to inadequate fixation of the fracture, and treated with rigid 

immobilization. On the other hand, when the bone healing is impaired due to vascular (impaired 

blood supply to the bone fragments) or metabolic causes (e.g. diabetes), no callus is formed 

resulting in an atrophic non-union.
56
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On the other hand, the innate self-healing capacity of bone is significantly reduced as size of the 

bone defect increases. Several conditions such as trauma, infection, cyst or tumour resection, 

bone resorption around implants, corrective ostectomies, avascular necrosis, osteoporosis and 

some specific systemic diseases may produce large bone defects leading also to non-unions 

scenarios.
1,83

 In such situations, the bone self-regeneration capacity is not sufficient and bone 

grafting surgical procedures are required in order to improve bone regeneration and to avoid the 

failure of bone repair.  

 

1.5 Strategies for bone grafting  

Bone grafting is a surgical procedure by which new bone or a replacement material is placed into 

spaces between or around broken bone to aid in healing.
84

 The use of bone grafting dates back to 

the prehistoric period. The practice of cremation in many societies allowed only limited evidence 

for identifying substitute materials for replacement of missing bones and teeth. From the Fifth 

and Fourth centuries BC until the First or Second century AD, archeological findings showed 

that materials used then included ox teeth, shells, corals, ivory (elephant tusk), wood, human 

teeth from corpses, and metals (gold or silver).
26

 Nowadays, the progressive increase of life 

expectancy has lead to a higher incidence of pathologic bone fractures due to osteoporosis and 

other degenerative bone diseases, becoming a significant public health issue.
85

 The number of 

bone-grafting procedures has increased consequently placing a larger demand on the healthcare 

system to replace and restore lost bone.
86

 Approximately, 2.2 million bone graft procedures are 

performed worldwide annually at an estimated global cost approaching $ 2.5 billion yearly.
3
 

Moreover, impaired bone healing situations are still associated with significant patient morbidity, 

psychological stress, functional disability, decreased life expectancy and a remarkable economic 

cost to society, which is predicted to increase significantly over the coming years.
4
 Therefore, the 

treatment of these large bone defects remains an important clinical challenge in orthopedics.  

The following sections will provide an overview of the most commonly used bone grafting 

strategies for the surgical treatment of critical-seized bone defects.  

 

1.5.1 Autografts 

In fresh autologous bone grafting, cortical or trabecular bone or a combination of both, are 

transplanted from one site in the body, such as the iliac crest, to the bone defect within the same 

patient. Since bone is taken from the same patient, it is both histocompatible and non-

immunogenic.
87

 Autologous bone grafting or autograft is still considered the gold standard 

clinical treatment and the most effective method for bone regeneration due to its outstanding 

biological performance in terms of osteoconduction, osteoinduction and osteogenesis.
3
  

 

Osteoconduction 

Autografts provide a three dimensional network that promotes cell migration and vascular 

infiltration through its macroporous internal structure leading to new bone formation by direct 

bone bonding, process known as osteoconduction.
5,88
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Osteoinduction 

Autografts also induce local MSCs differentiation towards mature osteoblastic cell lineage 

thanks to its microstructure and due to the presence of endogenous growth factors (i.e BMPs), 

phenomena called osteoinduction.
5,89

   

Osteogenesis 

Finally, fresh autologous bone grafts are also considered to have a significant osteogenic 

potential since they are a source of undifferentiated MSCs and mature bone forming cells.
5,88

  

However, the use of autografts is associated with important drawbacks such as limited 

availability of bone volume (particularly in children and elderly patients), higher risk of side 

effects associated with an additional invasive surgical procedure (increased intra-operative blood 

loss, infections, transfer of cancer cells to donor site, bone fracture, nerve/vascular injury, donor 

site morbidity, hypersensitivity and chronic pain), high volumetric change due to a too rapid 

resorption and higher operative time and cost.
4,5,90,91

  

 

1.5.2 Allografts and xenografts 

Some of the main disadvantages showed by autografting (associated with the harvesting surgery) 

can be overcome by using allografts or xenografts.  

The allograft consists in cortical or trabecular bone harvested from a donor subject of the same 

species. Allografts are usually harvested from sections of the pelvis from cadavers or from 

removed femoral heads at primary total hip replacements. Then, allogenic bone grafts have to 

undergo processing techniques such as lyophilization, irradiation or freeze-drying to remove all 

immunogenic proteins, in order to avoid any risk of immunogenic reaction. In turn, these 

processing techniques have a negative impact on the osteoinductive potential and decrease their 

biological performance as compared with autografts. Thus, allografts possess only 

osteoconductive properties, since they preserve the original mineral interconnected 

macroporosity and when used as fresh frozen they also present limited osteoinductivity.
92

  

The use of demineralized bone matrix (DBM) is a further alternative. DBM is made from 

allograft bone in which the inorganic mineral has been removed, leaving behind the organic 

matrix (collagen, non-collagenous proteins and growth factors). Therefore, DBM preserves 

certain degree of osteoinductivity, but with limited osteoconductive properties due the lack of a 

three-dimensional mineral network.
92

  

The xenograft is based on bone harvesting from other animal species, generally corals, bovine, 

porcine or equine. Because of the high probability of immune rejection or contamination by viral 

proteins, the material extracted is treated either chemically or at high temperature to keep 

exclusively the mineral part of bone. The final result is equivalent to an allograft, meaning that it 

provides an osteoconductive framework for bone ingrowths with a negligible osteoinductive 

capacity.
9
  

In addition to limited supply and high processing costs, other complications associated with 

allogenic and xenogenic bone grafts such as viral disease transmission or bacterial infections are 

of serious concern.
9
 Furthermore, differences in graft preparation techniques lead to varying 

levels of immune response (donor incompatibility and graft rejection) and impaired healing 
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situations (fractures and non-unions) due to differences in the bone quality between the donor 

and the patient. Moreover, implanting human- or animal-derived grafts may generate ethical or 

religious concerns depending on both culture and religion of the patients.
92 

 

1.5.3 Synthetic bone grafts  

The above-mentioned drawbacks of natural bone grafts have driven research efforts to focus on 

developing alternative bone repair strategies. A large number of synthetic bone substitutes have 

been developed presenting attractive features like unlimited availability, avoidance of second 

surgery, absence of risk of disease transmission and injectability or freedom of conformation.  

Based on their chemical composition, synthetic bone grafts can be divided into four main groups: 

i) metallic implants, such as titanium and its alloys, stainless steel and cobalt-chromium alloys; 

ii) ceramics, such as calcium phosphate, alumina, carbon and glass ceramics; iii) polymers, such 

as poly(methyl-methacrylate), poly(urethane), ultra-high molecular weight polyethylene, silicon, 

polylactide and poly(lactic-co-glycolic acid), and iv) composites of the first three groups, such as 

calcium phosphate–ceramic coatings on metallic implants and polymer–ceramic composites.
5,9,84

 

Regardless of the strategy taken, it is obvious that the bone regenerative capacity of new bone 

graft substitutes needs to match that of the natural grafts, in order to be fully accepted as a 

comprehensive alternative.  

A synthetic bone graft should fulfill the following requirements:
84,93

  

- To provide an osteoconductive matrix by presenting a three-dimensional network with 

open and interconnected macropores that serves as a scaffold or template to guide and 

direct cell migration, cell attachment and cell proliferation along material’s surface.  

- To enhance angiogenesis and capillary infiltration, with the corresponding oxygen and 

nutrient supply, and the easy access of cells (inflammatory cells, stem cells) and soluble 

proteins, including signaling molecules and osteogenic growth factors. 

- To be biomechanically stable when needed but biodegradable after bone substitution and 

within an appropriate time frame to avoid a second surgery to remove the implant. It is 

critical to show a tight synchronization between graft resorption and new bone deposition 

to allow a gradual and entire replacement of the material by the newly formed autologous 

bone tissue, avoiding a mechanically weakened stage during the bone defect healing 

process.  

- To be non-immunogenic, free of transmission diseases and biocompatible.  

- To possess easy clinical manageability, be amenable to contouring for optimal adaptation 

to the various shapes of bone defects and/or be suitable for minimally invasive surgery 

applications. 

- To be an affordable product, in order to meet an ever‐growing need without presenting a 

heavy burden on our health care system. 

However, the biological performance of synthetic bone grafts developed so far are inferior to 

those of autologous bone grafts in terms of initiation and support of bone growth.
2
 In this 

context, endowing osteoinductive properties to a synthetic bone substitute, i.e. the ability to 

induce MSCs differentiation into mature bone-forming cells, is one of the most challenging and, 



CHAPTER 1  Introduction 

21 
 

at the same time, promising tasks for the development of an ideal bone graft substitute that can 

replace autografts. Strategies towards this aim are diverse, varying from addition of 

osteoinductive growth factors or MSCs/osteogenic cells to appropriate carrier materials 

(engineered osteoinductive biomaterials), to the development of smart synthetic biomaterials 

capable of triggering de novo bone formation in vivo, by tuning their physico‐chemical and 

structural properties (intrinsic osteoinductive biomaterials).
2
 In summary, it is evident that 

continuing research efforts in the field of biomaterials and tissue engineered constructs for bone 

regeneration are urgently needed to find more effective bone-healing therapeutic modalities.
2 

 

1.6 Osteoinductive biomaterials  

Osteoinduction, initially defined by Friedenstein as the process of the "induction of 

undifferentiated inducible osteoprogenitor cells that are not yet committed to the osteogenic 

lineage to form osteoprogenitor cells"
94

 is often considered the most critical property in order for 

the clinical performance of bone substitutes to match that of natural bone grafts.
2
 Osteoinduction 

is a basic biological mechanism that occurs regularly as part of natural bone healing and is 

responsible for the majority of newly formed bone during fracture repair. Even if pre-existing 

osteoblasts may help to form new bone, it is generally agreed that such pre-existing cells only 

contribute a minor portion of the new bone needed in a fracture-healing situation.
84,95

 In fact, it is 

difficult to differentiate between bone induction and bone conduction in an orthotopic site. Thus, 

the safest way to demonstrate the osteoinductive capacity of a biomaterial is by its ability to 

stimulate new bone formation when implanted ectopically (subcutaneously/intramuscularly) in a 

host animal.
96

 Alternatively, the osteoinductive potential of a biomaterial can be assessed in vitro 

by studying the osteogenic differentiation of undifferentiated MSCs in contact with candidate 

bone graft substitutes. However, it has been demonstrated that while such in vitro tests give an 

indication of the potential osteoinductivity of a given material, confirmation of in vivo bone 

formation in ectopic sites is absolutely necessary before a material is classified as 

osteoinductive.
96 

The earliest proof of osteoinduction was observed in auto-implantation of transitional epithelium 

of the urinary bladder to the abdominal wall muscles in dogs as early as the beginning of the 

twentieth century.
97

 The osteoinductive phenomenon was then reported by other authors after 

implantation of devitalized tissue and tissue extracts in heterotopic sites (muscles or the anterior 

chamber of the eye).
98-101

 At that time, however, consistent results were rarely obtained and little 

was known about the elements involved in this process. Urist et al. set a landmark in the research 

on osteoinduction by publishing a report in which ectopic bone formation by hydrochloric acid-

decalcified diaphyseal bone was consistently shown in the muscles of rabbits, rats, mice and 

guinea pigs.
89

 Later work by Urist and Strates led to the conclusion that a discrete, soluble, low-

molecular-weight glycoprotein, named bone morphogenetic protein (BMP), was involved in the 

cascade of chemotaxis, mitosis, differentiation, callus formation and finally bone formation.
102

 

BMP was then purified in 1984
103

 and cloned in 1988 by using the recombinant gene technology, 

based on its potential to be used as therapeutic molecules for bone formation.
104 

Since Urist’s discovery, at least 20 different BMPs have been identified in humans; however, not 

all of them are truly osteogenic molecules.
105,106

 Apart from BMP-1 (a metalloprotease which 

modulate BMPs activities), BMPs are multifunctional cytokines belonging to the TGF-β 
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superfamily, comprised of approximately 50 genes. While BMP-2, BMP-4, BMP-5, BMP-6, 

BMP-7 (also called osteogenic protein-1 or OP-1), BMP-8 (OP-2), BMP-9, and BMP-10 

contribute to bone formation, BMP-3 and BMP-13 act as BMP inhibitors. They are secreted by 

chondrocytes, osteoblasts and osteoclasts playing pivotal roles throughout embryonic 

skeletogenesis and in postnatal bone formation and endogenous repair mechanisms, as described 

in the previous sections. The rest of BMP members are involved in developmental activities of 

not only the musculoskeletal tissue (bone, cartilage, and tendon) but also of many other tissues 

such as teeth, nervous system, eye, lung, heart, pancreas, liver, kidney, ovary, and testis.
106

  
 

1.6.1 Engineered osteoinductive biomaterials 

The emergence field known as tissue engineering combines engineering and life sciences 

technologies toward the development of biological substitutes that restore, maintain, or improve 

tissue function.
107

 Particularly, bone tissue engineering is an interdisciplinary research field that 

applies principles of materials engineering and biology to create a favorable osteoinductive 

environment that promotes local bone repair and aims to offer a better solution for the healing of 

large bone defects and non-unions,
1
 as described in the following sections.  

 

1.6.1.1 Osteoinductive biomaterials by adding exogenous BMPs 

In the last decades, BMPs have been extensively studied within the field of bone tissue 

engineering in order to be used as therapeutic molecules for bone regeneration. Among the 

different identified BMPs, BMP-2 and BMP-7 seemed to be the strongest inducers of novo bone 

formation via the endochondral pathway when implanted in ectopic sites in different animal 

models, as a recapitulation of embryonic development.
106,108,109

 A great number of experimental 

preclinical research projects involving these two types of BMPs were conducted confirming the 

expected potential to regenerate bone, which led to their investigation in human clinical 

trials.
106,108,109,110

 The impressive reported outcomes of the clinical studies resulted in the FDA-

approval of two recombinant human BMPs (rhBMPs), rhBMP-7 and rhBMP-2 for clinical use 

with restrictions. They were delivered specifically for spinal fusion, open tibial fractures, non-

unions and oral maxillofacial applications via bone-derived collagen particles or an absorbable 

collagen sponge.
106,108,111

  

Unfortunately, with the increased use of these commercial available rhBMPs in the different 

surgical procedures some dose-related complications showed up. Basically, the impressive and 

convincing results seen in animal models were difficult to reproduce in humans when using 

equivalent doses. While in vitro effects were evident at concentrations at femtomolar and 

nanomolar ranges, and histologically discernible bone formed in several mammalian species at 

microgram ranges, clinically significant induction of bone in humans was only achieved at doses 

in the milligram range. The extrapolation of data from animal models was unreliable, as dose 

seems to be species specific. Therefore, the result was that predicted BMPs doses in animal 

models were ineffective in clinical contexts. The clinical effective doses resulted to be several 

folds higher than those suggested by the results in animal models and at the same time exceeded 

one million times the physiological protein amount, produced in nanograms under normal bone 

repair conditions. These clinical, supraphysiological doses suggested ineffective or limited 
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biological activity of BMPs after the recombination process in DNA. Alternatively, some authors 

also related it to rhBMPs’ short biological half life (7-16 min) in vivo.
106,111,112

  

Moreover, with the application of these rhBMPs supraphysiological doses in human patients, 

reports started to emerge regarding a series of safety concerns and undesirable side effects that 

were not published in the early clinical trials. Due to these problems and because of the high 

proportion of surgical procedures performed with BMPs deviating from the original approved 

indications, the FDA released them for orthopedic treatments, keeping the FDA-approval only 

for lumbar interbody fusion procedures.
33

 The most frequently reported side effects were 

exaggerated inflammatory response in surrounding soft tissues (local edema, erythema and 

generalized hematomas), inflammatory vessel fibrosis, compartment syndrome, local bone 

resorption, pseudoarthrosis, osteolysis, unicameral bone cysts, ectopic bone formation, 

dysphagia and dyspnea in cervical spinal fusions (due to mechanical or inflammatory pressure on 

the esophagus or trachea), postoperative radiculitis and nerve root compression, male sterility, 

retrograde ejaculation (due to mechanical or inflammatory injury to the superior hypogastric 

plexus), cancerogenicity (when using a BMP-high dose product, Amplify™: rhBMP-2, 40 mg) 

and brain injury, resulting some of them in life threatening injuries.
113-115

  

These adverse events were associated with the receptor saturation due to the supraphysiological 

doses used or the limited availability of responding cells, leading the stimulation by these BMPs 

at undesirable locations.
113

 Some other authors suggested that the collagen-based delivery system 

used for BMPs clinical applications caused a too rapid release, which besides inducing bone 

formation at the target site, also caused these critical side effects. Basically, the main drawback 

of the absorbable bovine collagen sponge carrier was the little affinity of BMPs for collagen and 

its too fast degradation during the initial days after surgery, as a consequence of the 

inflammatory response caused by the surgical procedure.
113,114

  

The concept that optimal induction of bone formation is dependent on the combinatorial action 

of an osteogenic-soluble molecular signal (e.g. BMPs), and a complementary substratum 

(carrier) is of paramount importance for future therapeutic applications.
116

 Thus, an attractive 

approach in order to improve the current uncontrollable release kinetics of BMPs and decrease 

their effective dose in humans, avoiding systemic diffusion and, therefore, the risk of the above-

mentioned side effects, would be to investigate carriers that may favor spatio-temporal 

physiological protein release; i.e maintain a critical threshold concentration of BMP at the 

implantation site (spatial distribution: local effect) for the required period of time (temporal 

distribution).
106

  

The ideal carrier, apart from providing a controlled and localized sustained release of the 

incorporated growth factor, should maintain its biological properties during the releasing period, 

possess certain affinity for growth factor binding, adapt easily to the bone defect, provide 

immediate structural support to the reconstructed bone (adequate mechanical properties), possess 

a macroporous matrix of interconnected pores in order to allow first the infiltration of cells and 

then vascular in-growth (osteoconductive) and elicit a suitable and commensurate 

immunological response.
1,109

 It should be also biodegradable with a resorption kinetics closely 

connected with the advancing osteogenetic front. By this way, it may protect BMPs from 

degradation for a sufficient period of time.
106

  

Overall, the prevalence of the reported adverse events and complications related to the use of 

rhBMPs has raised many ethical and legal concerns for surgeons.
117

 Therefore, the attempt for an 



CHAPTER 1  Introduction 

24 
 

alternative treatment strategy is still required. MSCs that have the potential to differentiate into 

bone-forming cells and secrete a wide range of growth factors can be considered as an attractive 

option to fabricate a promising tissue-engineered construct with the aiming to improve its 

osteoinductivity and accelerate healing of bone defects.
118

 

 

1.6.1.2 Osteoinductive biomaterials by adding MSCs 

One of the above-mentioned reasons for the low clinical efficiency of the current commercial 

available BMP devices relate to the lack of sufficient numbers of responding cells at the site of 

implantation in the host.
119

 Therefore, MSCs-based therapy has been postulated as a promising 

option to explore in the bone tissue engineering field.    

Over 40 years ago, Friedenstein first reported evidence of multipotential MSCs that were 

isolated from bone marrow and formed fibroblast-like colonies with potential to differentiate into 

adipocytes, chondrocytes, osteoblasts, and myocytes.
120

 Originally, MSCs were believed to 

derive from the mesodermal germ layer and to build up the major part of the skeleton during 

embryogenesis.
121

 Then, they were also identified in various adult tissues as local self-renewing 

cells that had the ability to serve as long-lasting progenitor cells maintaining and restoring 

tissues like bone. Since then, research focused on stem cells has gathered tremendous momentum 

for bone tissue engineering strategies.  

MSCs have now been identified not only in mesodermal tissues (bone marrow, trabecular bone, 

synovium, cartilage, fat, muscle, and tonsil) but also in endoderm (thymus, liver)- and ectoderm 

(skin, hair follicle, duramater, and dental pulp)- derived tissues.
122

 In fact, MSCs are a 

heterogeneous population of pluripotent progenitor cells capable of differentiating into 

osteoblasts, chondrocytes, adipocytes, myocytes, cardiomyocytes, fibroblasts, myofibroblasts, 

epithelial cells, and neurons.
23

 Since MSCs do not have any specific and unique surface markers 

that would simplify their enrichment and characterization, the International Society for Cellular 

Therapy have proposed minimal criteria to define these cells: i) the ability to adhere to plastic in 

culture, ii) the expression and coincident absence of a variety of clusters of differentiation 

(positive for: CD105, CD73, CD90; negative for: CD34, CD45, CD14 or CD11b, CD79a or 

CD19, HLA-DR) and iii) the capability to differentiate into osteoblasts, chondrocytes and 

adipocytes in vitro.
124 

However, to determine if cultured MSCs are also able to form bone in vivo, they have to be 

combined with a suitable three dimensional scaffold, which promotes cell adhesion and 

differentiation, and transferred into an orthotopic or ectopic environment. Human MSCs seeded 

on different carriers have been shown to induce bone formation when implanted ectopically into 

immunocompromized animals, as well as, to enhance the repair of experimentally induced large 

bony defects in different experimental animal models.
118

 Beside their multipotency, MSCs have 

been shown to exhibit immunomodulatory properties and to act in a trophic way by secreting 

bioactive factors, which make them additionally attractive for possible bone therapeutic 

applications.
125

  

For their clinical therapeutic application, MSCs can be isolated from organs and tissues 

including adult bone marrow, trabecular bone, synovial membrane, periosteum, adipose tissue, 

fetal bone marrow, the umbilical cord and umbilical cord blood.
86,118

 However, there is no 

consensus as to which source is optimal. More recently, several studies have demonstrated that 
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isolated MSCs exhibit characteristic features of perivascular cells, which encircle small blood 

vessels within diverse tissues, leading to the assumption that the perivascular niche is now 

believed to be a common stem cell microenvironment for MSCs populations.
126,127

  

To date, there are still few clinical trials describing the transplantation of human autologous 

MSCs for bone regeneration procedures
128-136

. These preliminary clinical studies demonstrate the 

potential use of human autologous MSCs for cell-based bone tissue engineering strategies. 

However, due to existing discrepancies in the way human MSCs are harvested, isolated and 

cultured ex vivo, in addition to donor-dependent variability regarding the bone forming potency; 

further investigations are needed to standardize the production and quality of these rare 

progenitor cells for therapeutic applications.
137-141 

 

1.6.1.3 Alternative bone tissue-engineering strategies 

Other commonly used strategies grouped within the bone tissue engineering techniques in order 

to enhance the osteoinductive capabilities of biomaterials include the use of platelet rich plasma 

(PRP). PRP has been considered as an easily derivable alternative to BMPs since it contains 

TGF-β1, FGF, IGF, VEGF and PDGF among other growth factors. However, its efficacy in bone 

regeneration is not yet established beyond doubt and comprehensive comparative analyses 

between clinical performance of BMPs and PRPs are still awaited.
142,143

  

In addition, icariin flavonoid, a flavonol glycoside extracted from Herba Epimedii, has been 

postulated as a potential candidate to substitute BMPs, since it is cheaper and safer than BMPs 

and other osteogenic growth factors, as well as, it has demonstrated a remarkable osteoinductive  

and angiogenic potential.
144,145

  

Another option to increase osteoinductive capabilities of biomaterials is the addition of 

simvastatin. As a member of statins it has been shown to increase the expression of BMP-2 and 

VEGF and by these mechanisms it has been shown to endow biomaterials with significant 

osteoinductive properties.
146,147

  

Finally, gene therapy-based strategies have been also introduced to improve BMPs and other 

growth factors delivery and their effectiveness at the target site.
148,149

 Research into genetic 

manipulation of bone healing is based on the hypothesis that gene transfer could achieve more 

satisfactory osteoinductive and osteogenic promotion. The advantages of gene delivery include 

the ability to establish a local and constant endogenous synthesis of proteins at the site of 

deterioration or injury, whereby therapeutic substances are produced directly by local cells.
150

 

The concept is to transfer genes encoding osteogenic factors to cells in the location of osseous 

lesions. Unlike the recombinant protein, the growth factor synthesized in situ as a result of gene 

transfer undergoes authentic post-translational processing and is presented to the surrounding 

tissues in a natural, cell-based manner. Unfortunately, cells do not spontaneously take up and 

express exogenous genes. Moreover, delivery of foreign genes to recipient cells is limited by 

normal extracellular and intracellular protective mechanisms.
151

 For this reason, successful gene 

transfer requires vectors, which can be viral or non-viral. Gene transfer with viral vectors is 

known as transduction, whereas gene transfer with non-viral vectors is known as 

transfection.
152,153 

However, all of the above-mentioned tissue-engineering approaches have been associated with 

critical drawbacks for their clinical application. The production of recombinant growth factors, 
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the high or repeated dose injections of BMPs required to be effective, the undesirable side effects 

and variable efficacy of the exogenous applied bioactive molecules, the collection and transport 

of the biopsies and culture of autologous MSCs are some of the factors that make tissue 

engineering time-, money- and labour consuming. Moreover, they are often subject to increased 

regulatory scrutiny due to safety and ethical concerns which limits their clinical applicability. 

Therefore, it is a general agreement that these high costs and safety drawbacks must be 

decreased or prevented by finding a viable alternative strategy in the challenging field of 

osteoinductive materials, for its clinical application. 
 

1.6.2 Intrinsic osteoinductive biomaterials 

At the time of Urist’s discovery of BMPs as osteoinductive factors, the phenomenon of 

osteoinduction triggered by a completely synthetic biomaterial, by no means resembling the 

composition of implants used in Urist’s studies, was also reported. In 1960, Selye and coworkers 

implanted Pyrex® glass tubes subcutaneously in rats. Histological analysis of tissue formed 

inside the glass tubes 60 days after implantation, revealed the presence of bone, cartilage and 

hemopoietic tissue.
154

 In 1968, Winter and Simpson reported an observation of bone induction 

by a sponge made of polyhydroxyethyl methacrylate (poly-HEMA) in the soft tissue of pigs, 

which was at that time used, for example, for breast augmentations.
155

 The authors observed that 

the implanted sponge became calcified prior to bone formation. The observed phenomenon of 

bone induction by the glass tubes or by the polymeric sponge could not be explained by Urist’s 

theory, as these materials neither contained nor produced BMPs. The first reports on heterotopic 

bone formation triggered by a synthetic biomaterial that did not contain BMPs or any other 

osteogenic factors caused both disbelief and excitement, considering important advantages of 

synthetics versus biologics, such as generally lower cost of production and better stability. 

However, it was not until 1990s that researchers actively started searching for synthetic 

biomaterials with intrinsic osteoinductive potential.
4 

Indeed, in the past three decades, some CaP ceramics have been found to exhibit an intrinsic 

osteoinductive capacity when implanted ectopically in various animal models.
96

 Besides CaP 

biomaterials, osteoinduction has been also observed in alumina ceramic
156

 and glass ceramics.
157

 

In the family of metals, porous titanium have shown osteoinductivity, alone,
158,159

 coated with a 

thin layer of CaP
160

 or in a construct with CaP ceramic.
161

 Finally, composites, consisting of 

polylactide and HA particles have shown to be osteoinductive too.
162,163

  

To date, however, scientists still lack fundamental understanding of the biological mechanism 

underlying the phenomenon of osteoinduction by biomaterials. Initially, some authors proposed 

that these smart materials act as solid substrata for the adsorption of BMPs, for which probably a 

concentration threshold has to be reached in order to induce bone formation.
96

 These ideas were 

shared by De Groot, who proposed the rational design and development of BMP concentrators 

that, after implantation in the patient, were capable of concentrating and immobilizing the 

endogenous BMP complex.
164

 Instead, other theories concentrate on the material’s ability to 

trigger cellular secretion of factors leading to bone formation, rather than to their ability to 

accumulate them on the surface. For instance, the expression of BMP-2, BMP-4 and BMP-7 has 

been shown to be markedly upregulated in response to inflammatory stresses,
75,165,166

 just like 

caused by surgical implantation of a biomaterial.
167

 In this regard, some authors have suggested 

that first, inflammatory cell-mediated resorption of the osteoinductive substrate occurs, 
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accompanied with the release of growth factors, that in turn stimulate angiogenesis and 

osteogenic differentiation of stem cells. Upon osteogenic differentiation, stem cells are then 

suggested to express and secrete more BMPs which are incorporated into the biomaterial surface 

to eventually induce heterotopic bone formation.
168

  

It is furthermore unknown whether the mechanisms of engineered osteoinduction by BMPs and 

intrinsic osteoinduction by biomaterials are related and, if so, to which extent. The four apparent 

differences in osteoinduction by BMPs or by biomaterials are that: i) bone induced by 

biomaterials is mainly intramembraneous, while BMP-induced bone is mostly formed via the 

endochondral pathway; ii) in small animals such as rodents, bone is very rarely induced by 

biomaterials but easily by BMPs; iii) bone induction by BMPs takes place as early as 2-3 weeks 

upon heterotopic implantation whereas osteoinduction by biomaterials is rather slow, requiring 

weeks to months after their ectopic implantation; and iv) while bone is never observed on the 

periphery of the biomaterials and it is always formed inside their pores, bone formation by BMPs 

is regularly seen on the outside of the carrier and even in the soft tissue distant from the carrier 

surface.
5,96

  

Given the disadvantages associated with exogenous application of BMPs or MSCs, further 

improvement of biomaterials is needed in order to make tissue engineering more successful and, 

ideally, even unnecessary.
5
 Hence, the future design of new osteoinductive biomaterials should 

aim to erect synthetic matrices that instruct the endogenous expression of the osteogenic-soluble 

molecular signals of the TGF-β superfamily.
116

 Thus, the implanted patients would provide their 

own locally expressed and secreted osteogenic gene products to be embedded into these smart 

scaffolds instead of adding expensive megadoses of exogenous growth factors with the above-

mentioned associated complications. Although the exact underlying phenomenon is not known, 

it has been suggested that CaPs might play an important role in the process of intrinsic 

osteoinduction of biomaterials.
96

 Therefore, CaP-based biomaterials constitute an ideal platform 

to reach this goal being the most promising avenue for the future research in this field. 

Moreover, CaPs can be produced in large quantities, their production and storage are inexpensive 

as compared to growth factors or cells-based strategies and they are stable and therefore readily 

available off-the-shelf, all together simplifying the regulatory path towards their clinical 

application.
4,169

  

 

1.7 Intrinsic osteoinduction of calcium phosphates biomaterials 

Following the rationale that damaged tissue can be best repaired by something with close 

resemblance, CaP-based biomaterials were already proposed for fracture treatment in 1920.
170

 

However, CaP biomedical research did not soar until the 1970s and it was only in the late 1990s 

that their clinical use spread out as a consequence of the appearance of diseases such as acquired 

immune deficiency syndrome (AIDS),
171

 and bovine spongiform encephalopathy (BSE)
172

 and, 

hence, a stricter regulation for nature-derived products (xeno- and allografts).
4
 Since then, CaP 

biomaterials have traditionally been used for a broad range of orthopedic and dental applications 

due to its strong resemblance to the inorganic phase of bone tissue.
26

  

Nowadays, CaP-based bone substitutes are the most widely applied synthetic biomaterials for 

repair and regeneration of damaged and diseased bone, and their use is expected to further 

increase. Synthetic CaP biomaterials are commercially-available in different physical forms such 
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as particulates/granules, blocks, cements, coatings on metal implants and composites with 

polymers.
26

 As previously mentioned, an increasing need exists for effective and affordable bone 

graft substitutes, and CaPs have the potential to play a pivotal role in a socially responsible bone 

tissue engineering.
169

 This is justified by their outstanding biocompatibility and bioactivity, 

which means that they are easily recognized by the body due to their biomimetic features, and 

they are able to elicit or modulate specific biological processes of paramount importance for 

bone healing. The bioactivity of CaPs encompasses their biodegradability (various CaPs are 

resorbed by a cell-mediated process), bone-bonding capacity (thus forming a uniquely direct, 

adherent and strong interface with the bone tissue), osteoconductivity, and in some cases, 

intrinsic osteoinductivity, constituting all of them ideal properties for an optimal bone graft 

substitute.
1,169

 

However, their use is also associated with drawbacks, with poor mechanical properties being 

probably the most relevant one for application in orthopedics and dentistry. Therefore, CaP 

biomaterials are not suitable for load-bearing areas, unless being coupled with an appropriate 

complementary bone fixation system.
173

 In this respect, a paradigm shift occurred at the turn of 

the millennium: instead of designing load-bearing bone graft substitutes, researchers aimed for 

CaP bone graft substitutes providing a fast healing response, that is a fast turnover from a bone 

defect to mature bone and, hence, mechanically competent. Strategies have included a change in 

composition and an improvement of the material architecture and textural properties, as 

discussed in the following sections.
4 

Some distinct clinical successes have been achieved with CaPs,
1,4

 and in a few studies, the bone 

regenerative potential in vivo has been shown even comparable to that of autologous bone.
174,175

 

However, it is worth mentioning that the combination of all the desirable properties into one 

material requires a tight control on the processing techniques and a thorough understanding of 

the necessary physicochemical properties of the material that effectively trigger cellular cascades 

towards bone regeneration. Still now, this control is not easy and efficient enough.
4,169

  

In this context, improvement of the intrinsic osteoinductivity of CaP biomaterials is probably one 

of the most promising landmarks in the bone regeneration field. The underlying mechanisms 

influencing this intrinsic osteoinductive capacity are still largely unknown. While it may seem 

straightforward that their chemical composition is one of the key factors for their osteoinductive 

capacity, it should be emphasized that CaPs are complex functional biomaterials, with a set of 

largely intertwined physico-chemical and structural properties, many of which are believed to 

play a role in the intrinsic osteoinduction of these materials.
169

 The next section will provide an 

overview of the key factors that have been reported to affect the intrinsic osteoinduction of CaP 

biomaterials.    

 

1.7.1 Parameters affecting the intrinsic osteoinduction of CaP biomaterials  

In contrast to the limited number of reports on osteoinduction by polymers and metals, a large 

number of publications have illustrated intrinsic osteoinduction by diverse CaP-based 

biomaterials: HA,
168,176-190 

β-tricalcium phosphate (β-TCP),
190-196

 biphasic calcium phosphate 

(BCP), that designates the mixture of HA and β-TCP,
185,186,189,190,197-202

 carbonated 

apatite,
186,201,203

 dicalcium phosphate anhydrous (DCPA),
204

 dicalcium phosphate dihydrate 
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(DCPD),
204

 calcium deficient HA (CDHA),
205

 calcium pyrophosphates
206

 and HA/calcium 

carbonate (CC) mixtures.
168,181

  

These studies suggested that CaP biomaterials can show intrinsic osteoinductive properties when 

they exhibit specific chemical and structural characteristics, since this osteoinductive capacity 

was observed only in some CaP materials but not in others of similar compositions. However, 

the exact processes involved in the mechanism of osteoinduction by CaP biomaterials are still 

incompletely understood. Various attempts have been made to describe the biological 

mechanisms behind the phenomenon of intrinsic osteoinduction by CaPs, as well as to 

understand which material properties are essential for rendering a ceramic osteoinductive.
4
 The 

most critical material properties which so far have been suggested to play a role in 

osteoinduction are: the chemical composition, the macropore architecture (total porosity, size 

and geometry of macropores) and the microstructural properties (microporosity, surface 

roughness/topography, SSA and crystallinity), as summarized in Fig. 1.12.
5,96,116

  
 

 

Figure 1.12. Schematic diagram summarizing the physico-chemical properties of CaP biomaterials and the 

associated mechanisms which so far have been suggested to play a role in their intrinsic osteoinduction, adapted.96 
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1.7.1.1 Influence of chemical composition 

The majority of synthetic biomaterials so far shown intrinsic osteoinduction contained CaP. 

Moreover, the rest of synthetic materials reported as osteoinductive that do not contain CaP, such 

as titanium
158,159

 or poly-HEMA
155

 have been shown to calcify when exposed to body fluid, 

before heterotopic bone formation occurred. These data suggest the importance of calcium and 

phosphate ions in the process of osteoinduction by biomaterials.
96

  

On the one hand, osteoinductive proteins such as BMPs and TGF-β are known to have a high 

affinity to CaP.
103,190

 Therefore, it has been hypothesized that CaP-based biomaterials may act as 

an in vivo affinity column/concentrator of the endogenous osteoinductive molecules upon 

implantation, which then renders the biomaterial osteoinductive.
1
 Moreover, it has been shown 

that, apart from osteogenic growth factors, CaP-based biomaterials are sensitive to absorb 

binding proteins such as FN and vitronectin, which provide an optimal matrix for MSCs 

attachment, proliferation and osteogenic differentiation via mechanotransduction trough a focal 

adhesion process.
110,190,207,208

 Once differentiated into bone forming cells, they produce 

extracellular matrix, which is biomineralized leading eventually to the new bone formation.
5,26

  

On the other hand, CaP biomaterials elicit an inflammatory response after implantation that 

attracts the infiltration of mono- and multinucleated cells (macrophages and osteoclasts), which 

results in the partial dissolution of the CaP ceramics due to the acidic environment associated 

with this cellular activity. The effect of the cellular degradation by mineral-resorbing cells has 

been also suggested to be critical in the process of heterotopic bone formation by CaP 

biomaterials.
209,210

 Osteoclastic activity triggers a direct effect onto MSCs inducing their 

proliferation and differentiation into bone-forming cells through intracellular signalling 

pathways.
209

 Specifically, the osteoclastic inference on the osteogenic differentiation of MSCs 

has been ascribed to the secretion of osteogenic growth factors by active osteoclasts,
51-54 

196,202,210-212
 as well as due to the high concentration of calcium and phosphate ions resulting from 

the osteoclastic resorption of CaP materials.
41-43,193,213-215

 Moreover, the liberated ions increase 

the supersaturation condition of the biologic fluid, which causes their precipitation triggering the 

biomineralization of the newly formed organic bone matrix. In addition to the calcium and 

phosphate ions, other ions (carbonate, magnesium, sodium) from the biologic fluid become 

incorporated in the mineralized bone matrix. Accordingly, it has been reported a reduced ectopic 

bone formation and a decreased BMP expression in osteoinductive CaP biomaterials when 

treated with bisphosphonate, an osteoclast inhibitor.
209,210,215

  

Indeed, the osteoinductive potential of CaP biomaterials has been directly related to the 

solubility of the material.
26

 It is well known that dissolution properties of CaPs are phase-

dependent,
216

 and in some studies, a direct comparison was made between implants with varying 

chemical composition. For instance, for synthetic sintered ceramics, the extent of dissolution in 

acidic buffers is the greatest for, tetracalcium phosphate, followed by α-TCP, β-TCP, and is the 

least for HA. For unsintered CaPs the solubility decreases in the order: amorphous calcium 

phosphate (ACP) > DCPD > octacalcium phosphate (OCP) > CDHA.
9,216

 However, the role of 

CaP phase composition and the associated degradation behavior in osteoinduction is still 

controversial. In this regard, it is generally agreed that certain degree of degradation is desirable, 

since it provides the calcium and phosphate ions needed for the collagen biomineralization, as 

well as to stimulate angiogenesis
217,218

 and osteogenic differentiation of MSCs through 

intracellular signaling pathways.
41-43,193,213-215 

However, a too high degradation may impair 
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osteoinduction due to the lack of a stable surface where the new bone has to be deposited.
201

 In 

this context, a few studies comparing HA and β-TCP or HA and BCP with similar macro- and 

microstructures demonstrated that the presence of a more soluble phase (β-TCP) is beneficial for 

the amount of induced bone.
185,190,199

 Instead, other studies showed that the addition of β-TCP 

negatively affected bone induction.
198

  

Since both, a high solubility and a high osteoclastic resorption have been associated with an 

enhanced osteoinductivity of CaPs,
96

 a promising strategy to foster osteoinductive biological 

cascade would be ionic substitution.
219

 CaPs admit the substitution of a portion of calcium and 

phosphate ions in the crystal lattice by other ions with therapeutic potential, usually called 

bioinorganics (carbonate, magnesium, strontium, silicate, cobalt, fluoride, copper and zinc).
169

 In 

fact, the incorporation of ions such as carbonate or magnesium into the crystal structure of 

synthetic apatites does not only impart chemical similarity to natural bone but also decreases 

their crystallinity (reduction in crystal size) which increases their chemical reactivity.
26

  

In this respect, in vitro studies have demonstrated that doping the crystal lattice of HA with 

carbonate ions enhances its solubility
220-224 

and promotes the osteoclastic resorption,
225-227

 which 

could potentially enhance the osteoinduction properties of carbonated apatites. In addition, 

carbonated hydroxyapatite-based biomaterials have already been reported as more bioactive and 

soluble when evaluated in orthotopic implantation models than stoichiometric sintered HA.
228-230

 

However, in some in vivo ectopic implantation studies the osteoinductive capacity of sintered 

carbonated apatites were shown to be negatively affected by a too fast resorption rate and, hence, 

by the loss of a stable three-dimensional macrostructure, which is required for the onset of bone 

formation.
186,201,203

 

Finally, it is worth mentioning that by substituting a calcium, a phosphate, or, in the case of HA, 

a hydroxide ion by a guest ion, it does not only change the chemical composition of the ceramic, 

but it also modifies many other physico-chemical properties, such as the micro/nanostructure. 

Consequently, when investigating the behavior of cells or tissues on such ceramics, it is difficult 

to attribute an effect solely to the change in chemistry, i.e. the addition of a new ion.
169 

  

1.7.1.2 Influence of macropore architecture 

Macropore architecture has been also suggested to be a key factor for the osteoinductive capacity 

of synthetic CaP bone grafts.
5,9,26,96

  

It is generally agreed that macroporous scaffolds with open-interconnected macropores ranging 

from 50 to 500 µm in size and a total porosity around 70% are beneficial for the intrinsic 

osteoinductive properties of CaP biomaterials.
169,199,231

 This is associated to the need of body 

fluid flow and vascular infiltration (angiogenesis), with the corresponding oxygen and nutrient 

supply, metabolic waste removal and the easy access of cells (inflammatory cells, MSCs, 

perycites) and soluble proteins, including signaling molecules and osteogenic growth factors.
199-

231-233
  

In the above-mentioned osteoinductive CaP biomaterials, ectopic bone formation was always 

observed within the macropores and never on the implant periphery. This emphasizes the 

importance of a porous structure that provides protective areas required to reach an optimal 

microenviroment for the differentiation of MSCs to osteoblasts. In other words, macroporous 

scaffolds provide confined spaces for the concentration of calcium and phosphate ions 
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facilitating the supersaturation of microenviroment, as well as the retention of osteogenic growth 

factors. These confined spaces within macropores are protected from high body fluid flows and 

mechanical forces due to implant movements, which enhance the angiogenic and osteoinductive 

capabilities of these materials.
96,116

  

Besides the presence of interconnected macropores with suitable dimensions, geometry of the 

macroporosity has been also shown to be a driving cue for MSCs differentiation into osteogenic 

cells, but there is still controversy in this matter.
187,231,234-236

 Some authors suggested that 

concave surfaces of macropores are required to promote the expression of the osteogenic 

phenotype
199,231

 since they biomimetize the nature’s structural geometries involved in the bone 

remodelling phenomena.
231

 Instead, other authors reported a better osteoinductive potential for 

HA-based biomaterials with channel-like architectures with convex surfaces when compared to 

scaffolds with honeycomb-like architectures with concave surfaces.
187

  

In this context, there are several conventional methods to introduce interconnected macropores 

similar to that of bone, to CaP scaffolds. These include particulate (fibers and meshes) leaching, 

freeze drying, gas/chemical foaming, emulsion and polymeric foaming (positive replica) 

amongst others.
237

 However, by these methods it is challenging to have a precise control on the 

pore shape (geometry), pore size, pore interconnectivity, pore distribution and pore volume 

fraction. Moreover, they have poor reproducibility and offer a lack of variety of pore 

structures.
237

  

To overcome these limitations, rapid prototyping (RP) techniques, also known as solid free form 

fabrication, have attracted a great deal of attention in the last years. RP is an emerging tool that 

allows a fast fabrication of individual complex geometrical scaffolds with high precision on the 

internal architecture and on the outer shape with a high reproducibility.
232,237,238

 Different 

strategies have been explored within the RP technology field to create scaffolding materials with 

controlled macroporosity including direct and indirect extrusion free forming, selective laser 

sintering, stereolithohraphy, fused deposition modelling, multiphase jet solidification and 

microextrusion.
232,238

 This last technique, also known as 3D-printing or robocasting, has several 

advantages over the rest like a high resolution and a high degree of control over complex 

geometry.
239-241

  

 

1.7.1.3 Influence of microstructural properties 

In addition to chemical composition and macropore architecture, microstructural properties have 

been also shown to play a determining role in osteoinduction of CaP biomaterials.
5,96

  

Recent publications pointed to microporosity and SSA as essential elements for the CaPs-

associated osteoinduction.
186,195,196,199-202,210,242

 Several in vivo studies have evaluated CaP 

biomaterials with different microstructures, consistently showing the best results in terms of 

osteoinduction in the CaPs with higher levels of microporosity and higher SSA.
186,195,196,199-

202,210,242
 The results obtained in these studies suggested that some mechanisms relevant for 

intrinsic osteoinduction, such as the dissolution/reprecipitation events occurring on the ceramic 

surface, as well as, mineral deposition from the body fluids, in combination with the adsorption, 

and retention of binding proteins and osteogenic growth factors are promoted in microstructured 

materials with increased SSAs.
243

 It is worth mentioning, however, that some authors have 
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hypothesized that there is a limit in the increase of SSA of biomaterials that positively influences 

osteoinduction, adducing that materials with a SSA above the optimum might degrade too fast.
201 

Furthermore, some researchers have proposed that the induction of bone formation by 

microporous ceramics may be related with the inflammatory response.
200

 It has been 

hypothesized that particles smaller than 5 μm are released from the ceramics and provoke an 

inflammatory reaction, with the consequent promotion of macrophagic activity and release of 

cytokines that trigger the chemotaxis of MSCs and their differentiation into osteoblasts.
200

 For 

instance, it has been reported an increased release of PGE2, a factor that is produced by 

macrophages, in response to micro-rough surfaced HA as compared to cells cultured on smooth 

HA surfaces.
244

 PGE2 has shown to be chemotactic for MSCs and to stimulate their osteogenic 

differentiation.
244

 Similarly, it has been observed the promotion of osteoclastic activity by 

submicrometric microstructures of CaP biomaterials and, thus, the enhancement of their 

osteoinductive potential.
196,202,210

 Based on these findings, it has been suggested that the 

enhanced heterotopic bone formation by microstructured ceramics lies in a specific inflammatory 

reaction upon implantation which triggers the invasion of the material by macrophages and 

osteoclasts-like cells, which in turn cause chemotaxis of MSCs, their osteogenic differentiation 

and eventually new bone formation, as described previously. 

Apart from this indirect effect of microstructure and large SSA in osteoinduction related to the 

increased ionic dissolution kinetics, the increased entrapment ability of relevant proteins, as well 

as the enhanced macrophagic/osteoclastic activity; the size and shape of crystals have been 

shown to exert a direct physical effect on cells involved in osteoinduction. In this regard, the 

osteogenic differentiation of MSCs in vitro has been reported to be fostered by micro and 

nanosized surface features of CaPs.
245-252

 Moreover, it has been also observed that 

nanostructured surfaces facilitate cell attachment and proliferation,
246,248,253,254

 as well as protein 

adsorption (particularly low molecular weight proteins such as osteogenic growth factors) and 

longer protein retention times.
255-257

  

However, the main limitation in this matter is that most in vivo studies evaluating the intrinsic 

osteoinduction of CaPs have been performed with sintered ceramics (including HA, β-TCP, and 

the mixtures of the two, BCP), in which the high temperature (1000-1300ºC) processing 

precludes the introduction of nanoporosity, as shown in Fig. 1.13. Consequently, low SSAs are 

obtained, normally in the range of 0.2-2 m
2
/g.

96
  

 

Figure 1.13. SEM images of a BCP scaffold obtained at different sintering temperatures: A:1200ºC; B: 1150ºC, and 

C:1100ºC. Lower sintering temperature results in an increase of micropores and a decrease in the crystal size, but 

the high temperature of sintering processing precludes the introduction of nanoporosity in all three cases.199  

Although different strategies have been explored to overcome this limitation, such as reducing 

the sintering temperature (Fig. 1.13),
195,196,199

 using spark plasma sintering to avoid grain 
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coarsening,
246,254

 or covering the surface of sintered ceramics with nano-hydroxyapatite coatings 

obtained by hydrothermal routes,
248

 these strategies did not manage to increase substantially the 

SSA of the materials, reaching values only around 6-10 m
2
/g. The discovery of biomimetic 

routes based on the self-setting reaction of CaP cements (CPCs) at physiological temperature 

opened up new possibilities in this respect, since they allow obtaining nanostructured CaP 

scaffolds with significantly higher SSAs,
237 

which is, in fact, the objective of the present thesis, 

as described in more detail in the last section of this chapter.   

 

1.7.1.4 Influence of animal model  

Besides the intrinsic physicochemical properties of CaPs, there are other important factors that 

can determine their osteoinductive potential when evaluated in vivo.  

It has been reported that ectopic bone formation is a species-dependent phenomenon, being more 

significant and frequent in large animals (dog, sheep, goat and pig) than in small species (mouse, 

rat and rabbit).
183,185,197,211

 Trying to explain these interspecies variations would be at best 

speculative as long as the exact mechanism behind osteoinduction by biomaterials is 

incompletely understood, but physiological and genetic differences are expected to play a role,
96

 

such as differences in the osteoclastic activity between species.
211

  

Large animal models are generally considered of first choice when testing bone grafts materials 

for orthopedic applications since they closely represent the biomechanics and physiology of 

human bone
258-260

 and they allow the implantation of large scaffolds. In fact, this is another 

factor that has been shown to stimulate the new ectopic bone formation compared to smaller 

constructs, probably due to the larger tissue-implant.
201

 However, the use of large species is one 

of the delaying factors in the fully comprehension at the molecular and cellular levels of the 

mechanism behind biomaterials-associated osteoinduction since essential biological research 

tools, such as antibodies, are far less available than for smaller species.
96

 On the other hand, 

despite the better adapted research tools and the high reproducibility of small animal models, 

rodents and rabbits possess significant dissimilarities in terms of bone tissue 

macro/microstructure (structure) and metabolic rate compared with human bone tissue, as well as 

important limitations of size.
259,260

  

Among large animal models, differences are also present since studies involving dogs were in 

general more successful than those performed in the rest of large species, with the exception of 

non-human primates.
96,183

 Although being a rough comparison as no other factors regarding the 

material or animal model were considered, this suggests that a material tested in a dog has higher 

chances of inducing ectopic bone formation than in a goat, for instance.
197

 Moreover, dogs have 

been described as having the most similar characteristics (bone composition, microstructure, 

density) to human bone tissue.
259-262

 On the other hand, working with other large species such as 

sheep, goats and pigs represents important handling, housing, and economic issues, although it 

does not have such ethical implications as experimenting with dogs.
259,260

  

Apart from inter-species variation, large differences among individuals of the same species have 

been observed when evaluating the osteoinductive potential of a given material.
186,199,201,204,263

 

Whereas mice, rats, rabbits and sometimes minipigs can be obtained with similar or identical 

genetic make ups, larger animals (dogs, sheep and goats) are relatively heterogeneous with 

respect to strain, age and body weight.
96,260

 Therefore, osteoinduction experiments should be 
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performed with animals of similar characteristics in order to limit the effect of age, sex and 

weight. However, it has been reported large variations in the amount and timing of bone 

induction in different individuals, despite keeping as many parameters of the animal model 

constant as possible.
201

 It could be explained due to intra-specific different basal levels of 

endogenous growth factors,
26

 and especially due to genetic factors that origins different 

responses to BMPs,
264

 as happens in humans.
199,265

  

Finally, several authors have also investigated the osteoinductive capacity of a material, 

depending on the implantation site.
197,201

 These studies suggested that at intramuscular locations, 

ectopic bone formation occurs more frequently or, at least, at a higher rate than subcutaneous 

implantations. The higher vascularisation of muscle compared to subcutaneous tissue is probably 

the reason why subcutis has been shown to be a less inductive implantation site than muscle.
201

  

Based on the above-mentioned considerations, the intrinsic osteoinductive potential of 

biomaterials should be assessed by means of their intramuscular implantation in a large animal 

model, using an homogenous group of animals (with controlled sex, age, weight and breed) and 

applying a block design (one sample of each biomaterial per animal) with paired comparisons in 

order to reduce the noise of the large intra-specific variations. 

 

1.7.2 Correlation of CaPs osteoinduction with the bone healing capacity  

Overall, while a growing number of studies confirmed that osteoinductivity can be an intrinsic 

property of some CaP ceramics, the clinically relevant question remained whether such ceramics 

would also result in an improved healing capacity of challenging bone defects for their clinical 

application.
4
 The real interest in intrinsically osteoinductive biomaterials, therefore, lies in the 

hypothesis that a material that is able to induce bone ectopically will also perform better at 

orthotopic sites than those that are merely osteoconductive.
5
  

Due to the lack of understanding of the biological mechanism behind osteoinduction by CaPs, 

many studies still focus on ectopic implantations, as this is the only way to give real evidence of 

osteoinductivity.
5
 Thus, the number of studies in which osteoinductive potential of a material is 

directly linked to its performance in clinically relevant orthotopic defects is very 

limited.
175,203,266,267 

The few published reports so far, proved that materials showing a better 

intrinsic osteoinductive potential when implanted ectopically were also able to increase the 

amount of bone at clinically more relevant orthotopic sites.
175,203,266,267 

While the depth of bone 

penetration within the porous spaces via osteoconduction was confined to the peripheral regions 

of the bone defect in the non-osteoinductive ceramics, newly generated bone was also detected in 

the central areas of bone defects treated with osteoinductive ceramics. Therefore, these studies 

suggested that osteoinductive ceramics possess a higher bone healing capacity than non-

osteoinductive CaPs.  

 

1.7.3 Biomimetic CaPs as potential osteoinductive biomaterials  

The use of biomimetic routes based on the self-setting reaction of CPCs allows obtaining 

nanostructured CaP scaffolds, with controlled micro and nanoporosity, and, hence, with high 

SSAs.
237

 CPCs are made of one or more calcium orthophosphate powders, which upon mixing 

with a liquid phase, usually water or an aqueous solution, form a paste able to harden and set 
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through a dissolution and precipitation process in physiological conditions. Monocalcium 

phosphate monohydrate, monocalcium phosphate anhydrous, OCP, DCPD (brushite), DCPA 

(monetite), ACP, and CDHA can all be produced through biomimetic dissolution-precipitations 

reactions at or close to room temperature, this resulting in SSAs up to two orders of magnitude 

higher than the values exhibited by sintered ceramics.
4
  

By far, the most interesting low temperature biomimetic CaP is CDHA, which can be obtained 

by hydrolysis of α-TCP (Fig. 1.14). As a result of the setting reaction, an entangled network of 

CDHA nanocrystals can be obtained at physiological temperature (37ºC), which not only mimic 

the composition and morphology of the natural bone apatite better than sintered HA (non-

stoichiometric, calcium-deficient - Ca/P molar ratio lower than 1.67 and poor crystallinity) but 

also consist of a porous network of crystals with high nano/micro porosity, and consequently, 

high SSAs (20-40 m
2
/g) (Fig. 1.14). Since cementitious reactions involve mixing a powder with 

a liquid phase, this simple reaction offers a wide range of tunable parameters such as the particle 

size of the reactants, the liquid phase composition, the liquid to powder ratio (L/P) or the setting 

environment.  

Specifically, the total porosity increases when the L/P ratio is increased due to the higher 

distance between particles (Fig. 1.14). Moreover, by changing the starting size of the α-TCP 

powder size from fine to coarse, a change in the morphology of the precipitated nanocrystals 

from needles to plates occurs with a consequent change in the SSA. The use of starting powders 

with larger particle sizes (coarse) makes them less reactive and this favors the formation of a few 

nuclei leading to the precipitation of a lower number of larger crystals (plates) (Fig. 1.14).
268

 

Figure 1.14. (A) Hydrolysis reaction of α-TCP to CDHA. (B) By changing the initial L/P ratio the total porosity can be 

modified. (C) By changing the starting α-TCP powder size from fine to coarse, a change in the morphology of the 

precipitated nanocrystals from needles to plates occurred, adapted.268 

The nanoporosity (pores > 0.1 µm) of CDHA is ascribed to the voids generated within the 

precipitated entangled nanocrystals while the microporosity (1-10 µm) is assigned to the voids 

formed between crystal aggregates (Fig. 1.15). Moreover, in addition to the intrinsiccally porous 

nature of this biomimetic CaPs with pores in the nano- and micrometric ranges, another property 

that can be modulated is the macroporosity. Recently, our group has optimized the 3D-

microextrusion technology,
269,270

 as well as the foaming method
271,272

 to make them compatible 

with the low-temperature biomimetic routes. This allowed fabricating scaffolds with different 

macropore geometries and dimensions in a controlled way, while preserving the specific 
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nanostructure typical of biomimetic ceramics and hence, high SSAs. The multiscale porosity 

levels achievable with these biomimetic CaPs are depicted in Fig. 1.15. 

 

Figure 1.15. Pore entrance size distribution associated to the nano-, micro- and macrostructure in CDHA scaffolds.  

Nanoporosity: voids generated within the precipitated entangled plate/needle-like nanocrystals due to setting 

reaction. Microporosity: voids formed between crystal aggregates due to L/P ratio. Macroporosity: macropores 

generated due to foaming and 3D-microextrusion processes, adapted.273 

 

Moreover, in order to further mimic biological apatite, CDHA can be synthesized incorporating 

ionic substitutions present in bone, such as carbonate, magnesium or strontium.
268

  

The biomimetic chemical composition and nanostructured morphology of these low temperature 

CaPs in conjunction with their associated high SSAs are expected to stimulate protein 

adsorption, osteoclastic resorption, ionic dissolution and osteogenic differentiation of MSCs, as 

summarized in Fig. 1.16. Therefore, we hypothesize that this novel family of biomimetic CaPs 

will present superior biological properties compared with sintered CaP ceramics. 

Although nowadays it is possible to produce almost any type of CaP in almost any shape, in vivo 

studies proving the superior biological behavior of CaP phases obtained at body temperature are 

still missing.
4
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Figure 1.16. Schematic diagram summarizing the new strategies (red frames) proposed in the present thesis in order 

to enhance the intrinsic osteoinductive potential of CaP biomaterials and the hypothesized associated mechanisms 

(red arrows and text) and the expected consequences. 
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OSTEOINDUCTION BY FOAMED AND 3D-PRINTED CALCIUM PHOSPHATE 

SCAFFOLDS: EFFECT OF NANOSTRUCTURE AND PORE ARCHITECTURE 

 

2.1 Introduction  

Some biomaterials are able to instruct cells and by driving cell fate, they are able to modulate the 

regenerative potential of specific tissues. A good example is what has been called material-

associated osteoinduction, i.e., the capacity of some biomaterials to induce the differentiation of 

MSCs into the osteoblastic lineage, even in absence of exogenously applied BMPs. This 

property, which was discovered in the early 1990s in CaPs,
1,2

 is of paramount importance when 

designing synthetic bone grafts. Intrinsic osteoinduction can bestow the biomaterial with the 

capacity to regenerate bone even in compromised clinical situations, avoiding the detrimental 

side effects associated with the use of BMPs.
3,4

 The relevance of this topic is linked to the high 

incidence of bone grafting procedures, around 2.2 million worldwide annually.
5
 In this context, 

the development of synthetic bone substitutes with enhanced performance, which are able to 

outperform autologous bone grafts and to avoid their intrinsic drawbacks (e.g., limited 

availability, donor site pain and risk of infection or disease transmission)
6
 is an urgent challenge. 

Great attention has been paid in the last years to the parameters leading to biomaterial-associated 

osteoinduction. Some CaP ceramics have been found to exhibit an intrinsic osteoinductive 

capacity when implanted ectopically in several animal models.
7
 This capacity is associated with 

a higher bone healing capacity when implanted orthotopically, compared with nonosteoinductive 

ceramics.
8
 It has also been reported that osteoinductive ceramics perform similarly to both 

autologous bone grafts and rhBMP2-impregnated collagen sponges in repairing critical-size bone 

defects.
9
 Although the mechanism underlying bone induction is still not fully understood, the 

textural properties of the material are believed to play a key role.
10-13

 However, most studies on 

osteoinduction of CaPs have been performed with sintered ceramics, in which the high-

temperature processing precludes the introduction of nanoporosity. Consequently, low SSAs are 

obtained, normally in the range of 0.2-2 m
2
/g. This leaves the hypothesis about the role of 

textural properties without a complete verification and establishes the need to provide a full 

picture of the situation, by assessing the osteoinductive properties of CaP biomaterials with 

nanostructured features and higher SSA.  

The recent biomimetic routes, based on the self-setting reaction of CPCs, have opened up new 

possibilities in this respect, because they allow the obtaining of nanostructured CaP scaffolds, 

with controlled micro- and nanoporosity, together with a tailored architecture.
14

 As a result of the 

setting reaction, an entangled network of hydroxyapatite nanocrystals is obtained at 

physiological temperature. This does not simply mimic the composition and morphology of the 

bone mineral phase better than sintered CaP biomaterials, but it also generates a porous structure 

with specific nano- and microporosities, and consequently generates much higher SSAs than 

sintered ceramics. 

One additional advantage of CPCs is their simplicity in processing, which makes them extremely 

versatile and compatible with many techniques. Nanostructured hydroxyapatite foams with open 
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interconnected macropores can be obtained by adding small amounts of a surfactant to the liquid 

phase of the CPC and applying mechanical stirring.
15,16

 Moreover, biomimetic processing of 

hydroxyapatite is compatible with additive manufacturing strategies. Self-setting CaP inks have 

been designed
17

 that allow the fabrication of nanostructured hydroxyapatite scaffolds with 

controlled pore architecture, using 3D-microextrusion techniques, also known as robocasting.
18

 

Taking advantage of these technologies, scaffolds with diverse pore architectures can be 

obtained that preserve the specific textural properties typical of biomimetic ceramics. The 

possibility to tailor porosity at different levels, from the nano- to the macroscale, significantly 

extends the range of the textures analyzed so far and allows scientists to address more in-depth 

the effect of the nanostructure on the osteoinductive properties of CaPs. The aim of this study 

was to assess the relative importance of nanostructural features and scaffold architecture to the 

osteoinduction of CaP-based biomaterials in a canine ectopic model. Biomimetic CDHA 

scaffolds with different pore architectures were compared to two sintered CaP ceramics, i.e., 

BCP and β-TCP. 

 

2.2 Materials and Methods 

 

2.2.1 Calcium phosphate materials  

2.2.1.1 Synthesis of alpha-tricalcium phosphate 

Alpha-tricalcium phosphate (α-Ca3(PO4)2) was the solid phase of the cement used for the 

fabrication of the scaffolds. Briefly, α-TCP was obtained by heating calcium hydrogen phosphate 

(CaHPO4, Sigma-Aldrich, St. Louis, MO) and calcium carbonate (CaCO3, Sigma-Aldrich, St. 

Louis, MO) at a 2:1 molar ratio for 15 h at 1400°C, followed by quenching in air. Subsequently, 

the powder was milled in an agate ball mill (Pulverisette 6, Fritsch GmbB, Markt Einersheim, 

Germany) with 10 balls (d = 30 mm) for 60 min at 450 rpm, followed by a second milling for 40 

min at 500 rpm with 10 balls (d = 30 mm) and a third one for 60 min at 500 rpm with 100 balls 

(d = 10 mm), in order to attain a mean powder particle size of 2.8 µm. 

 

2.2.1.2 Preparation of foamed scaffolds 

To obtain the CDHA foams (CDHA-Foam), a solid phase consisting of 98 wt% α-TCP and 2 

wt% precipitated hydroxyapatite (PHA, Merck KGaA, Darmstadt, Germany) was mixed with an 

aqueous solution of 1 wt% Polysorbate 80 (Tween 80, Sigma-Aldrich, St. Louis, MO) at a liquid 

to powder ratio of 0.65 mL/g. The mixture was foamed with a domestic food mixer for 30 s at 

7000 rpm and then transferred to Teflon cylindrical molds (5 mm diameter and 10 mm height). 

After keeping the samples in 100% relative humidity for 8 h to ensure cohesion, they were 

immersed in deionized water at 37°C for 10 days, to allow for the hydrolysis reaction of α-TCP 

to CDHA to take place, according to the following reaction: 

3 Ca3(PO4)2 + H2O → Ca9(PO4)5(HPO4)OH     
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To obtain the biphasic HA/β-TCP foams (BCP-Foam), instead of immersing the foams in water 

at 37ºC, they were unmolded, immersed in a 1 wt% sodium bicarbonate solution (NaHCO3, 

Sigma-Aldrich, St. Louis, MO) and autoclaved at 120ºC and 1 atm for 30 min. Subsequently, 

they were sintered at 1100°C for 9 h to obtain a BCP with a 80:20 HA:β-TCP ratio. Additional 

information on this protocol is provided in the Appendix (Fig. A2.1). The β-TCP foams (β-TCP-

Foam) were obtained by sintering the CDHA foams at 1100°C for 9 h. 

For the in vitro studies, discs (5 mm diameter x 0.3 mm height) of CDHA (CDHA-disc), β-TCP 

(β-TCP-disc) and BCP (BCP-disc) were prepared following the procedures described above for 

the foamed scaffolds, except for the foaming step, which was substituted with a mortar mixing 

for 1 min. 

 

2.2.1.3 Preparation of robocast scaffolds 

To prepare the CDHA self-setting ink, a 30 wt% aqueous solution of poloxamer 407 (P2443 - 

Pluronic F-127, Sigma-Aldrich, St. Louis, MO) was mixed with the α-TCP powder at a liquid to 

powder ratio of 0.65 g/g. A cylindrical CAD model of the scaffolds (5 mm diameter and 10 mm 

height) was designed (Solidworks 2014, Dassault Systèmes SolidWorks Corp., Waltham, MA) 

and converted to an STL 3D mesh, with a rectilinear pattern and an infill of 0.45. Nozzles with 

inner diameters of 450 and 250 μm were used for CDHA-Rob-450 and CDHA-Rob-250, 

respectively. To print the scaffolds, the self-setting ink was introduced immediately after mixing 

into the cartridge of the robocasting device (Pastecaster, BCN3D Technologies, Barcelona, 

Spain). The scaffolds were left overnight in an incubator at 100% relative humidity at 37ºC and 

subsequently immersed in deionized water at 37ºC for a 10 day hardening period.  

 

2.2.1.4 Materials characterization 

The scaffolds were characterized in terms of phase composition, microstructure, SSA and 

porosity. Phase characterization was performed by X-ray diffraction using a diffractometer (D8 

Advance, Bruker, Billerica, MA) equipped with a Cu Kα anode operated at 40 kV and 40 mA. 

Data were collected in 0.02° steps over the 2θ range of 10°-80° with a counting time of 2 s per 

step. Phase identification was accomplished by comparing the experimental patterns to those of 

HA (JCPDS 09-0432), α-TCP (JCPDS 09-0348) and β-TCP (JCPDS 09-0169). Quantitative 

phase-composition analyses were carried out using DIFFRAC.EVA software, (Bruker, Billerica, 

MA). The morphology of the scaffolds was assessed by microcomputed tomography (micro-CT, 

SkyScan 1172, Bruker microCT, Kontich, Belgium) at a voltage of 90 kV and a current of 112 

µA and with a Cu-Al filter. Images were acquired using an isotropic pixel size of 5 µm. 

Reconstruction of cross sections was done using software package NRecon (Bruker microCT, 

Kontich, Belgium). Calculations of macroporosity were performed with CTAn (Bruker microCT, 

Kontich, Belgium). The microstructure was characterized by scanning electron microscopy 

(Zeiss Neon40 EsBCrossBeam, Zeiss, Oberkochen, Germany). Prior to imaging, samples were 

coated with carbon to enhance conductivity. The SSA was determined by nitrogen adsorption 

using the Brunauer-Emmett-Teller (BET) method (ASAP 2020, Micrometrics Instrument Corp., 

Norcross, GA). Porosity and pore-entrance-size distribution were measured by mercury-intrusion 

porosimetry (MIP, AutoPore IV, Micrometrics Instrument Corp., Norcross, USA). All samples 

were dried at 100°C for 2 h prior to measurement.  
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2.2.2 In vivo study 

2.2.2.1 Animal model and intramuscular implantation 

The capacity of the scaffolds to form ectopic bone was evaluated in a standardized, 

intramuscular implantation canine model. Twelve adult beagle dogs (body weight 14-17 kg) 

were purchased from a professional stock breeder (Isoquimen S.L., Barcelona, Spain). All 

animal procedures were in compliance with the Guide for Care and Use of Laboratory Animals
19

 

and the European Community Guidelines (Directive 2010/63/EU) for the protection of animals 

used for scientific purposes.
20

 Ethical approval for the procedures was obtained from the local 

ethic committee (CEAAH 2338). On reception, animals were randomly divided into two groups 

of six dogs each, corresponding to two different sacrificial times (6 weeks or 12 weeks). 

Afterward, the animals were acclimatized to their local environment for 2 weeks prior to surgery.  

For the surgical procedure, dogs were preanesthetized using an intramuscular injection of 

medetomidine and methadone. Anesthesia was induced by intravenous injection of propofol and 

diazepam and maintained with inhaled isoflorane in an oxygen carrier. During surgery, the 

animals received an intravenous saline isotonic solution and intravenous injection of cefazolin. 

For the intramuscular implantation, animals were placed in sternal recumbency and the lumbar 

areas were shaved and scrubbed with a chlorhexidine gluconate solution for an aseptic 

preparation of the surgical field. Subsequently, one skin incision was performed on the lumbar 

region and fascia incisions were created in the paraspinal muscles bilaterally by scalpel. Using 

blunt dissection, intramuscular pockets were created in a cranio-caudal direction 4 cm lateral to 

the spinal axis. Each intramuscular pocket was filled with one of the above-mentioned 

cylindrical scaffolds (5 mm diameter x 10 mm height): CDHA-Foam, CDHA-Rob-450, CDHA-

Rob-250, BCP-Foam or β-TCP-Foam. Implant position was assigned according to a rotatory 

allocation system using a block designed. Therefore, one construct of each material was 

implanted in each dog, resulting in five scaffolds implanted per animal, leaving a distance of 5 

cm between implants. All scaffolds had been previously sterilized by Gamma irradiation at a 

dose of 25 kG. Table 2.1 shows the list of implanted materials. Finally, muscular fasciae were 

closed with monofilament synthetic nonresorbable sutures for identification at harvest and 

subcutaneous tissue and skin incisions were closed layer by layer with monofilament, synthetic, 

absorbable sutures. Immediately after surgery, the animals received a prophylactic long-acting 

antibiotic (cefovecin) and pain relievers (methadone and meloxicam). 

 

Table 2.1. Summary of implanted samples                                                

   Intramuscular implantation 

Architecture Composition Codes 6 weeks 12 weeks 

Foams 

Calcium-deficient hydroxyapatite CDHA-Foam 6 6 

80:20 Hydroxyapatite:β-TCP BCP-Foam 6 6 

β-TCP β-TCP-Foam 6 6 

Robocast 
Calcium-deficient hydroxyapatite CDHA-Rob-450 6 6 

Calcium-deficient hydroxyapatite CDHA-Rob-250 6 6 
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During the postoperative period, a nonsteroidal anti-inflammatory drug (NSAID) was given 

subcutaneously to the animals for 7 days to prevent pain and inflammation. The animals were 

euthanized at 6 and 12 weeks postimplantation, by an intravenous injection of an overdose of 

pentobarbital sodium. A pre-euthanasia sedation of medetomidine was used for animal welfare 

reasons. 

 

2.2.2.2 Sample harvest and histological processing 

Immediately after euthanasia, the samples were harvested with their surrounding muscular tissue 

and fixed in 4% neutral buffered formalin solution for 72 h. After fixation, they were dehydrated 

in an increasing series of ethanol solutions and embedded in four different graded mixtures of 

ethanol and methyl methacrylate resin (Technovit 7200, HeraeusKulzer GmbH, Hanau, 

Germany) under vacuum conditions. The specimens were subsequently photopolymerized with 2 

h of white light and 4 h of ultraviolet light, resulting in blocks that were scanned by X-ray micro-

CT. After micro-CT scanning, each block was divided transversally, perpendicular to the long 

axis of the implant, into two equal pieces. One piece was sectioned and polished (EXAKT 

Cutting and Grinding System, EXAKT Advanced Technologies GmbH, Norderstedt, Germany) 

prior to the sputtering of the surface with carbon to enhance conductivity for backscattered 

scanning electron microscopy analysis (BS-SEM). The other piece was sliced into 500 μm thick 

sections, followed by a subsequent thinning to 50 μm by grinding (Cutting and Grinding System, 

EXAKT Advanced Technologies GmbH, Norderstedt, Germany). The sections were then stained 

with Goldner-Masson trichrome and toluidine blue for histological observation using light 

microscopy.  

 

2.2.2.3 Histology and histomorphometry 

The micro-CT analysis (SkyScan 1172, Bruker microCT, Kontich, Belgium) of the tissue 

samples was performed using the same settings as those for the scaffold scanning described 

above. The 3D quantification of new bone formation and scaffold degradation was performed 

following a previously established protocol,
21

 in which the BS-SEM images were used as a 

reference in the determination of the gray-scale intensity thresholds, which were used to 

differentiate bone and CaP biomaterial in the micro-CT images. The following parameters were 

quantified: 

a) Percentage of newly formed bone within the available macropore space: 

 % newly formed bone = (bone volume / available macropore volume) * 100 

b) Percentage of scaffold degradation, calculated by subtracting the remaining scaffold 

volume from the initial scaffold volume prior to implantation: 

 % scaffold degradation = [(initial scaffold volume – final scaffold volume) / initial scaffold volume] * 100 

Moreover, the radius of each implanted scaffold was divided into five equal segments, which 

define five concentric volumes of interest (VOIs). The percentage of newly formed bone was 

calculated in each VOI to assess the distribution of the new ectopic bone formation. 

The BS-SEM observations (Zeiss Neon40 EsBCrossBeam, Zeiss, Oberkochen, Germany) were 

made at 20 kV to assess the presence, localization and maturity of the newly formed bone tissue 
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and to assess the scaffold degradation based on its morphology and the different contrast levels. 

The number of samples that showed any bone formation per the total number of samples 

implanted (bone incidence rate) was recorded. 

Stained histological sections were scanned using a light microscope (Nikon Eclipse E800, Nikon 

Corp.,Tokyo, Japan) fitted with a digital camera (ProgRes, Jenoptik AG, Jena, Germany) for a 

qualitative evaluation, which focused on fibrous tissue infiltration, the presence of bone cells 

(osteoblasts, osteocytes and osteoclasts), the grade of neovascularization and the grade of the 

peri-implant inflammatory reaction. Digital images were captured using an image analysis 

software (ProgRes CapturePro, Jenoptik AG, Jena, Germany). 

 

2.2.3 In vitro study 

2.2.3.1 Cell culture 

To better understand the mechanisms leading to osteoinduction, rat mesenchymal stem cells 

(rMSCs) were cultured in direct contact with the different materials used in the in vivo study. 

rMSCs were isolated from tibias and femurs of Lewis rats and characterized by flow cytometry 

as described elsewhere.
22

 Cells were expanded in Advanced Dulbecco’s Modified Eagle Medium 

(AdvDMEM) supplemented with 10% fetal bovine serum (FBS), 20 mM4-(2-

hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) buffer, 2 mM L-glutamine (50 U/mL) 

and penicillin/streptomycin (50 µg/mL), all from Thermo Fisher Scientific Inc. (Waltham, MA). 

Cells at passages 3-4 were used in all experiments. 

Discs were sterilized by immersion in 70% ethanol and rinsed three times with phosphate 

buffered saline (PBS, Gibco, Thermo Fisher Scientific Inc., Waltham, MA). Afterward, samples 

were placed in 24-well plates and incubated with 2.5 mL medium/well overnight. 

 

2.2.3.2 Cell differentiation: Real-time quantitative PCR 

Cells were seeded on the samples (300 cells/mm
2
) and incubated for different time periods. The 

differentiation to osteoblastic phenotype was assessed by measuring gene expression of 

osteogenic markers (Table 2.2) by real-time quantitative polymerase chain reaction (RT-qPCR). 

Total RNA was extracted at 6 h and 1 and 3 days using an RNeasy Mini Kit (Qiagen GmbH, 

Hilden, Germany), according to the recommendations of the manufacturer. For OCN, a late 

osteogenic marker, RNA at 7 and 14 days was also monitored. Prior to RNA extraction, samples 

were transferred into new well plates and rinsed with PBS (Gibco, Thermo Fisher Scientific Inc., 

Waltham, MA). Total RNA was quantified by NanoDrop ND-1000 spectrophotometer 

(NanoDrop Products, Thermo Fisher Scientific Inc., Waltham, MA), and 120 µg were used for 

synthesis of complementary DNA (cDNA) using the QuantiTect Reverse Transcription Kit 

(Qiagen GmbH, Hilden, Germany). cDNA templates were amplified using specific primers 

(Table 2.2) in SYBR Green RT-qPCR analyses using the QuantiTect SYBR Green RT-PCR Kit 

(Qiagen GmbH, Hilden, Germany) in an RT-PCR StepOnePlus (Applied Biosystems, Thermo 

Fisher Scientific Inc., Waltham, MA). The specificity of primers was ensured by melt-curves 

analysis in all RT-qPCR runs. To verify the absence of contamination and genomic DNA, a no-

RNA control and a no-RT-enzyme control were evaluated in parallel. The expression of the 

studied genes was normalized to expression of β-actin (a housekeeping gene), and relative fold 
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changes (FC) were related to tissue-culture polystyrene (TCPS) at 6 h of culture. The following 

formula was used: FC = Etarget
∆Cq target (TCPS 6 h – sample)

 / Ehousekeeping
∆Cq housekeeping (TCPS 6 h – sample)

, 

where Cq is the median value of the quantification cycle of the triplicate of each sample, and E 

corresponds to the efficiency of amplification and is determined from the slope of the log-linear 

portion of the calibration curve, as E=10
(-1/slope)

. The experiment was performed in two 

independent runs. 
 

Table 2.2. Primers’ sequences used for RT-qPCR 

Gene 
Gene 

symbol 

Forward primer sequence 

(5’ to 3’) 

Reverse primer sequence 

(5’ to 3’) 

β-actin ACTB CCCGCGAGTACAACCTTCT CGTCATCCATGGCGAACT 

Bone morphogenetic protein-

2 
BMP-2 CCCCTATATGCTCGACCTGT AAAGTTCCTCGATGGCTTCTT 

Alkaline phosphatase ALP GCACAACATCAAGGACATCG TCAGTTCTGTTCTTGGGGTACAT 

Collagen I Col I CATGTTCAGCTTTGTGGACCT GCAGCTGACTTCAGGGATGT 

Osteonectin ONN GTTTGAAGAAGGTGCAGAGGA GGTTCTGGCAGGGGTTTT 

Osteopontin OPN CGGTGAAAGTGGCTGAGTTT GGCTACAGCATCTGAGTGTTTG 

Osteocalcin OCN ATAGACTCCGGCGCTACCTC CCAGGGGATCTGGGTAGG 
 

 

2.2.4 Statistical analysis 

The histomorphometric and in vitro results are presented as mean values ± standard error. All 

analyzed data were normally distributed according to Anderson-Darling and Kolmogorov-

Smirnov tests and showed homogeneity of variances according to Levenne’s and Barralet’s tests. 

Statistical comparisons among experimental groups were performed using One-way repeated 

measures ANOVA followed by Tukey’s post hoc test in GraphPad Prism software (GraphPad 

Software Inc., La Jolla, CA). A pairwise comparison result of p<0.05 was considered statistically 

significant. 

 

2.3 Results 
 

2.3.1 Materials characterization 

The textural properties of the different scaffolds, including total porosity, macroporosity and 

SSA are summarized in Table 2.3. The architecture of the foamed and 3D-printed scaffolds, as 

well as the microstructure of the different materials can be seen in the SEM images in Fig. 2.1A 

and the pore size distribution, measured by MIP, is shown in Fig. 2.1B. Similar microstructures 

were observed for CDHA-Foam, CDHA-Rob-450 and CDHA-Rob-250, with the typical 

entangled network of needle-like CDHA nanocrystals (Fig. 2.1A), which resulted in a high SSA, 

around 35 m
2
/g (Table 2.3). As a consequence, the three CDHA groups presented nanosized 

pores (Fig. 2.1B). Whereas the robocast samples displayed a nanopore size distribution ranging 

from 0.006 to 0.1 µm, the CDHA-Foam group showed a wider and more continuous distribution, 

covering both the nano- and the microscale. In contrast, the two sintered ceramics (BCP-Foam 

and β-TCP-Foam) consisted of polyhedral crystals with smooth faces (Fig. 2.1A), displayed low 

SSA values (Table 2.3), had an absence of nanoporosity, and instead had micropores centered 

around 1 µm for the β-TCP-Foam group and at 1.2 µm for the BCP-Foam group.  
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Figure 2.1. (A) Scanning electron micrographs of the five implanted materials: CDHA-Foam, BCP-Foam and β-TCP-
Foam groups showed similar architecture, consisting of open and interconnected, spherical, concave macropores, 
whereas the robocast scaffolds presented open and interconnected, prismatic, convex macropores. The 
microstructure of the CDHA scaffolds consisted of the typical network of entangled, needle-like nanocrystals, 
whereas the sintered ceramics showed polyhedral smooth crystals. (B) Pore entrance size distribution of the five 
implanted materials as determined by MIP.  
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Table 2.3. Porosity and SSA of the different scaffolds 

  Porosity  

Materials 
% Total 

Porosity by 
MIP 

% Macroporosity 
by MIP (>10 µm) 

% Macroporosity 
by micro-CT 

Macropore 
entrance size 
by MIP (µm)* 

Macropore size 
by micro-CT 

(µm)* 

SSA 
(m2/g) 

CDHA-Foam 76.5 49.5 52.3 70 227.0 38.49 

CDHA-Rob-450 64.8 46.5 47.4 350 409.7 32.02 

CDHA-Rob-250 65.4 48.7 54.1 200 288.7 32.35 

BCP-Foam 71.8 47.2 47.4 50 214.8 0.42 

β-TCP-Foam 64.6 43.2 48.9 40 232.0 0.46 

*Whereas the value measured by MIP provided the average entrance size of the macropores, the value measured by 
micro-CT corresponds to the average pore size itself.  

 

All scaffolds presented similar amounts of macroporosity and total porosity, as shown in Table 

2.3, but different pore sizes and, more markedly, different pore entrance sizes (Fig. 2.1, Table 

2.3), which were larger for the robocast scaffolds. Moreover, as observed in Fig. 2.1A, the 

foamed scaffolds presented very similar architecture of interconnected spherical macropores, 

irrespective of their biomimetic or sintered nature.  

As shown by the X-ray diffraction (XRD) patterns (Appendix, Fig. A2.2), the CDHA-Foam and 

the CDHA-Rob scaffolds consisted of poorly crystalline apatitic phases, as indicated by the 

broad peaks, typical of biomimetic apatites. Small amounts of unreacted α-TCP were detected, 

and quantified to be 2 and 3% for CDHA-Foam and CDHA-Rob scaffolds, respectively. The 

sintered scaffolds exhibited sharper peaks, typical of highly crystalline materials. β-TCP-Foam 

scaffolds consisted of phase-pure β-TCP, and BCP-Foam consisted of a mixture of 82.7% HA 

and 17.3% β-TCP. 
 

2.3.2 Intramuscular implantation 

All surgeries were uneventful, all animals had normal recoveries after surgery, and their 

postoperative courses proceeded without any complications. No clinical evidence of 

inflammatory responses or adverse tissue reactions around implants were observed during the 

experimental period or at retrieval. Histology showed low-grade peri-implant inflammatory 

reactions at both time points for all scaffolds, which were surrounded by well-vascularized 

muscle tissue. A small number of inflammatory cells, mainly limphoplasmocitary cells, were 

found and no fibrous-capsule formation was observed, indicating the good biocompatibility of 

the different scaffolds. At 6 weeks, fibrous tissue infiltration with abundant neovascularization 

was observed within the interconnected macropores, both in the foamed and in the robocast 

scaffolds. Collagen fibers appeared to be oriented following the walls of the macropores (Fig. 

2.2). 

The results for new ectopic bone formation in the different scaffolds are summarized in Fig. 2.3. 

At 6 weeks, new bone was detected only in the CDHA-Foam group, in 4 out of 6 animals, while 

no signs of bone formation were found either in the sintered ceramic foams or in the biomimetic 

robocast scaffolds. In the CDHA-Foam group, although no statistically significant differences 

among the five concentric VOIs were noted, the ectopic bone was mainly found in the outer and 

middle regions (Appendix, Fig. A2.3). No ectopic bone was observed on the outside surfaces of 

the cylinders.  
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Figure 2.2. Backscattered scanning electron micrographs (A,B) and micrographs of undecalcified Goldner-Masson 
trichrome stained sections (C,D) of a representative foam scaffold (A,C) and of a robocast scaffold (B,D), 6 weeks 
after implantation. All foams and robocast materials showed fibrous tissue infiltration and blood vessels (arrow 
heads) within the interconnected macropores at 6 weeks. M=Material, FT=Fibrous Tissue.  
 

 

 

Figure 2.3. (A) Bone incidence 6 and 12 weeks after implantation. (B) Histomorphometrical results: percentage of 
newly formed bone within the available macropore spaces at 6 and 12 weeks postimplantation, as measured by μ-
CT. The mean value for the CDHA-Rob-450 group is 0.01 ± 0.01%, which is not appreciable in the graphic.              
(*) denotes groups with statistically significant differences (p < 0.05). (C) Histomorphometrical results: percentage of 
newly formed bone in the available macropore spaces within the five VOIs, 12 weeks after implantation in CDHA-
Foam and BCP-Foam scaffolds. The bone was uniformly distributed over the entire implant in the CDHA-Foams, 
whereas in the BCP-Foams, there was very little bone in the outer VOI and it was concentrated mostly in the middle 
VOIs.  (*) denotes groups with statistically significant differences (p < 0.05). 
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The newly formed bone was predominately located in the concavities of the macropores and in 

direct contact with the biomaterial, as shown in Fig. 2.4B, and consisted of a mineralized bone 

matrix, with osteocytes inside lacunae and aligned osteoblasts laying down new osteoid (Fig. 

2.4D). The newly deposited bone was basically woven bone, with some areas of lamellar bone 

and a few Haversian structures (Fig. 2.4C). No endochondral ossification was detected during 

the ectopic bone formation process. 

 

Figure 2.4. (A,B,C) Backscattered scanning electron micrographs of undecalcified section of a CDHA-Foam scaffold 
6 weeks after implantation. (B) The newly formed bone (white arrow heads) was arranged concentrically to the 
concave surface of the scaffold macropores and was always in direct contact with the material. Note the formation of 
a well-mineralized bone matrix with some lacunae (white arrows). (C) The new ectopic bone (white arrow heads) was 
basically woven bone with some osteon-like structures (white arrows). M=Material, ST=Soft tissue (in black). (D) 
Micrograph of an undecalcified Goldner-Masson trichrome stained section of a CDHA-Foam scaffold after 6 weeks of 
implantation showing a well-mineralized bone matrix (in green), with osteocytes inside the lacunae (white arrows) 
and aligned osteoblasts (black arrows) laying down new osteoid (in pink). M=Material. 
 

At 12 weeks, a significant amount of new ectopic bone was observed in the macropores of the 

CDHA-Foam scaffolds in 6 out of 6 animals (27.98 ± 4.80% ectopic bone) and in the 

macropores of the BCP-Foam scaffolds, in 4 out of 6 animals (28.30 ± 10.11% ectopic bone) 

(Fig. 2.3A/B). The bone was uniformly distributed over the entire implant in CDHA-Foams, and 

no significant differences among the five concentric VOIs at this time point were observed (Fig. 

2.3C and Fig. 2.5A). However, BCP-Foams exhibited a repetitive pattern: almost no bone 

formation was in the outer VOI (VOI 5), and most of the bone was concentrated in the middle 

VOI (VOI 3) (Fig. 2.3C and Fig. 2.5B). Moreover, distinctive bone formation patterns were 

observed in these two groups, as shown in Fig. 2.5. Whereas in the BCP-Foam group, the new 

bone was deposited on top of the surface of the scaffold and was filling the macropore space 

(Fig. 2.5B), in the CDHA-Foam group, the bone seemed to replace the scaffold (Fig. 2.5A). This 

observation was confirmed when the amounts of pore volume before and after implantation in 

these two groups were compared. Thus, even if both groups showed a similar amount of new 

ectopic bone formation, the fraction of total pore volume at 12 weeks decreased to 4.56% in the 

BCP-Foam group and it increased to 4.77% in the CDHA-Foam group, when compared with the 

original scaffolds. 
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Figure 2.5. Backscattered scanning electron micrographs 12 weeks after implantation of studied scaffolds:  
(A) CDHA-Foam, (B) BCP-Foam, (C) β-TCP-Foam and (D) CDHA-Rob-450 robocast scaffold.  



CHAPTER 2  Study I 
  

68 
 

The new ectopic bone was observed within macropores from 10 to 300 µm in diameter in both 

groups, and it consisted of mature lamellar bone with some areas of osteonal bone following a 

Haversian pattern (Fig. 2.5A/B and Fig. 2.6A/B/D/E). Moreover, abundant extracellular 

calcified bone matrix was observed within the micropores (<10 µm) of these two groups, as 

shown in Fig. 2.6G/H. 

 

Figure 2.6. (A,B,C) Micrographs of undecalcified Goldner-Masson trichrome stained sections of the CDHA-Foam, 
BCP-Foam and CDHA-Rob-450 scaffolds 12 weeks after implantation, showing well-mineralized bone matrix (in 
green), osteocytes inside lacunae (white arrows), and aligned osteoblasts (black arrows) laying down new osteoid 
(pink). M=Material, Asterisk=blood vessel. (D,E,F) Micrographs of undecalcified toludine blue stained sections of the 
CDHA-Foam, BCP-Foam and CDHA-Rob-450 scaffolds 12 weeks after implantation, showing well-mineralized bone 
matrix (in purple), osteocytes inside lacunae (black arrows) and bone canaliculi. In the CDHA-Rob-450, bone is 
mostly found in the corners, which are the only parts of the robocast samples with concave-like regions. M=Material, 
Asterisk=blood vessel. (G,H) Backscattered scanning electron micrographs of the CDHA-Foam and BCP-Foam 
scaffolds 12 weeks after implantation, showing calcified bone matrix (asterisk) within micropores and an osteocyte 
(white arrow) located within a nearby macropore. M=Material. (I,J,K) Micrographs of undecalcified toluidine blue 
stained sections of the CDHA-Foam, BCP-Foam and CDHA-Rob-450 scaffolds 12 weeks after implantation, showing 
multinucleated osteoclast-like cells (black arrows) resorbing the material and displaying intracellular scaffold 
particles. M=Material, Asterisk=Bone matrix.  
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In the CDHA-Rob-450 and β-TCP-Foam groups, new ectopic bone was found in just 1 animal 

out of 6 and in small amounts (Fig. 2.3A/B and Fig. 2.5C/D). In CDHA-Rob-450, bone was 

mostly found in the corners, which are the only parts of robocast samples with concavities (Fig. 

2.5D and Fig. 2.6C/F). CDHA-Rob-250 scaffolds did not show any ectopic bone formation at 12 

weeks (Fig. 2.3A/B and Appendix, Fig. A2.4). 

Some multinucleated osteoclast-like cells were consistently observed resorbing the materials in 

all scaffolds. However, a qualitative histological assessment identified a greater number of 

osteoclast-like cells in the CDHA-Foam and BCP-Foam scaffolds (Fig. 2.6I/J, respectively) than 

in the CDHA-Rob and β-TCP-Foam samples at both time points. 

The results concerning scaffold resorption in the different groups are summarized in Fig. 2.7A. 

Higher degradation was observed for the CDHA-Foam scaffolds compared with the other groups 

at 6 weeks, whereas at 12 weeks, CDHA-Foam and β-TCP-Foam showed similar degradation, 

both significantly higher than that in CDHA-Rob-450 and 250, and the BCP-Foam groups (Fig. 

2.7A). Importantly, the degradation of the CDHA-Foam scaffolds was progressive and 

homogeneous, whereas that showed by the β-TCP-Foam scaffolds was more heterogeneous, 

leaving big holes within the constructs, as revealed by the micro-CT images (Fig. 2.7B). 

 

Figure 2.7. (A) Histomorphometry results: percentage of scaffold degradation 6 and 12 weeks after implantation.    

(*) denote groups with statistically significant differences (p < 0.05). (B) Micro-CT 3D reconstructions of implanted 

scaffolds 12 weeks after implantation.  
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2.3.3 In vitro study: cell differentiation (RT-qPCR) 

The expression profiles of the osteogenic markers of rMSCs were analysed in planar discs of the 

different materials used to fabricate the scaffolds, namely, CDHA, BCP and β-TCP. The 

physicochemical properties of the discs are summarized in the Appendix (Fig. A2.5). The results 

obtained by RT-qPCR analysis are displayed in Fig. 2.8.  

 

 

Figure 2.8. Gene expression, measured by RT-qPCR, of osteogenic markers of rMSCs cultured on planar discs of 
the different materials used to fabricate the scaffolds (CDHA, BCP and β-TCP). TCPS was used as a reference. 
Cells were cultured in a basic medium. Statistical comparisons were performed between CaP materials. (*) denote 
groups with statistically significant differences (p < 0.05). 
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The expression profiles of BMP-2, OPN and OCN were significantly higher at all time points for 

cells cultured on CDHA compared with those of sintered ceramics with the exception of OCN at 

6 h. ALP, Col I and ONN expression followed similar trends, presenting the highest values at 6 h 

and decreasing over time. Specifically, the expression of ALP at 6 h in cells cultured on CDHA 

was significantly higher than that of sintered ceramics, whereas cells cultured on β-TCP showed 

significantly higher levels at 3 days compared with those on CDHA and BCP. Col I gene 

expression at day 1 was significantly higher for cells cultured on CDHA compared with that on 

BCP. The expression of ONN at 6 h by cells cultured on CDHA was significantly higher than 

that on β-TCP and also significantly higher than that on the two sintered ceramics at day 1. 

Finally, for OCN, a late osteogenic marker, the analysis was prolonged until 7 and 14 days, 

resulting in a higher overexpression of OCN when the cells were cultured on CDHA compared 

with that on the sintered ceramics at 7 days. At 14 days, similar values were found on CDHA 

and BCP, and both were higher than on β-TCP. 

 

2.4 Discussion 

The main goal of the present study was to obtain a better understanding of the role of textural 

properties and macropore architecture in osteoinduction, aiming to shed light on the behavior of 

biomimetic nanostructured materials as compared with conventional sintered ceramics. Previous 

results pointed to microporosity and SSA as critical factors for the material-associated 

osteoinduction, although only a limited range of porosities and SSA had been analyzed up to this 

moment. In this work, we have been able to extend this range to nanoscale porosities, in 

combination with different macropore architectures. The results showed that both parameters are 

relevant, as foams induced ectopic bone formation to a much higher extent than robocast 

scaffolds, and among the foams, biomimetic nanostructured CDHA produced a higher incidence 

and accelerated bone formation when compared with microstructured sintered CaPs. Moreover, 

different patterns of bone formation were observed, as discussed below. 

 

2.4.1 Animal model and surgical protocol 

The intrinsic osteoinductive potential of a biomaterial, i.e., its capacity to trigger the 

differentiation of MSCs to the osteoblastic lineage, can be proved by its ability to stimulate new 

bone formation when implanted ectopically in a host animal. In the present study, intramuscular 

implantation in a canine model was chosen, because ectopic bone formation is a species-

dependent phenomenon, being more frequent in large animals (dogs, sheep and goats) than in 

small animals (mice, rats and rabbits).
23-26

 The higher vascularization of muscle compared with 

that of subcutaneous tissue was the reason for choosing this implantation site.
24,26

  

Concerning the surgical protocol, it is worth mentioning that in our study a NSAID was 

administered to the animals postoperatively. This was done both for ethical reasons and in an 

attempt to be close to real clinical situations, in which NSAIDs, combined with opioid drugs, are 

routinely used for 7 to 10 days after orthopedic surgeries to control pain and inflammation. This 

is relevant because it is well-known that NSAIDs inhibit cyclooxygenase-2 function, thereby 

impairing bone formation at early stages.
27

 Moreover, it has been suggested that a certain degree 

of inflammation might foster osteoinduction, through the local release of inflammatory cytokines 
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produced by monocytes and macrophages; the cytokines may then stimulate circulating stem 

cells to differentiate into the osteoblastic lineage.
28-31

 For this reason, most studies on 

biomaterial-associated osteoinduction just used opioid drugs postoperatively
12,13,26,32,33

 or no pain 

relievers or analgesic drugs.
9,11,34-38

 

Interestingly, the use of NSAIDs did not impair nor reduce the incidence of ectopic bone 

formation compared with its use in other studies. Although it is difficult to make direct 

comparisons because of the various animal models and different characteristics of the materials 

(granules, cement pastes, blocks, etc.), we found similar or even larger amounts of ectopic bone 

that found in previous studies with analogous designs (i.e., intramuscular implantations in large 

species).
9,11,12,23,26,32-34,36,38-42 

 

2.4.2 Effect of macropore geometry on osteoinduction 

The presence of interconnected macropores is considered to be a prerequisite for osteoinduction 

by biomaterials.
1,12,35,43

 This is associated with the need for body fluid flow and vascular 

infiltration, which corresponds with oxygen and nutrient supply and the easy access of cells 

(inflammatory cells, stem cells) and soluble proteins, including signaling molecules and 

osteogenic growth factors.
1,11

 

However, the results obtained in this work showed that the interconnected macroporosity is 

necessary but not sufficient. Instead, the shape of the macropores seems to be critical for 

osteoinduction. Three groups of CDHA scaffolds with the same chemical composition, similar 

percentages of interconnected macroporosity and similar nanostructures and SSAs but with 

different macropore architectures were analyzed. It was decided to keep constant the total 

porosity of the foamed and robocast scaffolds, and this resulted in different pore entrance sizes 

(Table 2.3). CDHA-Foam exhibited concave macropores with bottleneck morphologies, pore 

diameters between 10 and 300 µm and pore entrance sizes around 70 µm. In contrast, the 

robocast scaffolds presented prismatic, convex macropores with pore dimensions around 350 µm 

for CDHA-Rob-450 and 200 µm for CDHA-Rob-250 (Fig. 2.1 and Table 2.3). Ectopic bone was 

formed in the CDHA-Foam in 4 out of 6 animals at 6 weeks and in all animals at 12 weeks, 

whereas in the CDHA-Rob-450 group, bone was formed in a very small amount in just 1 out of 

the 6 animals at 12 weeks, and no signs of bone formation were observed in the CDHA-Rob-250 

at both time points (Fig. 2.3A/B). Remarkably, ectopic bone in the CDHA-Rob-450 group was 

found only in the corners, where robocast scaffolds show concave-like regions (Fig. 2.5D and 

Fig. 2.6C/F). It is worth mentioning that no correlation was found between angiogenesis and 

ectopic bone formation, because abundant neovascularization, homogeneously distributed 

throughout the constructs, was observed both in the foams and in the robocast scaffolds (Fig. 

2.2).  

Although most authors recognize the positive effect of concave porosity on osteoinduction,
12,43

 

there is still controversy. Wang et al.
41

 reported a better osteoinductive potential for HA-based 

biomaterials with channel-like architectures and convex surfaces compared with that for 

scaffolds with honeycomb-like architectures and concave surfaces. However, in our case the 

results pointed quite categorically to the need of concave macropores to trigger osteoinduction. 

This suggests that the spherical macropores provide confined spaces, which acted as niches with 

the adequate microenvironment for the differentiation of MSCs to osteoblasts. This 
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microenvironment includes the adequate concentration of calcium and phosphate in the vicinity 

of the scaffold and the presence and retention of osteoinductive growth factors. This 

microenvironment is not preserved in the more open structure of the robocast scaffolds, where 

both ions and proteins easily diffuse instead of being retained locally. 

Moreover, recent studies have shown that, in addition to triggering osteoinduction, geometry is a 

factor that contributes to the control of the kinetics of tissue deposition by osteoblastic cells.
44-46

 

Specifically, these authors demonstrated that bone matrix deposition by osteoblasts happened in 

concave surfaces rather than on convex or flat surfaces, and moreover, the local growth rate of 

tissue formed in a concave space was proportional to the concave curvature. This is in good 

agreement with the higher amount of bone found in the foamed scaffolds and with the 

localization of bone in the corners of the robocast scaffolds (Fig. 2.5D and Fig. 2.6C/F). 

 

2.4.3 Effect of micro- and nanostructural parameters on osteoinduction 

Foamed scaffolds with similar percentages of spherical concave macroporosity but different 

chemical compositions, microstructures and SSAs were compared. The analysis of the micro-CT 

images, together with the BS-SEM images, allowed us to precisely calculate the volume of 

newly formed bone in each scaffold.
21

 CDHA-Foam was the only group that showed ectopic 

bone formation at 6 weeks, whereas no signs of bone formation were observed in the sintered 

ceramics (BCP and β-TCP foams) at this time point. Moreover, CDHA-Foam was the only group 

showing a significant amount of ectopic bone formation in all animals at 12 weeks, whilst at this 

time point, bone formation was observed in only 4 out of the 6 animals in the BCP-Foam group 

and in 1 out of the 6 animals in the β-TCP-Foam group. 

These results point in the same direction as previous studies that clearly showed that the 

microstructure of CaP-based biomaterials plays a determinant role in stimulating osteoinduction. 
2,10-13,33,42,47-49

 Several in vivo studies have evaluated CaP-based biomaterials with different 

microstructures, consistently showing the best results in terms of osteoinduction in the CaPs that 

have higher levels of microporosity and higher SSAs.
12,13,26,32,33,42,48,49

 However, only sintered 

ceramics, which have the limitation of lacking nanoporosity, have been analyzed in this respect 

so far. Although different strategies have been explored to overcome this limitation, such as 

reducing the sintering temperature,
26,33,42

 using spark plasma sintering to avoid grain 

coarsening,
50,51

 or covering the surface of sintered ceramics with nanohydroxyapatite coatings 

obtained by hydrothermal routes,
52

 these strategies do not manage to increase substantially the 

SSA of the materials, reaching values only around 6-10 m
2
/g. In contrast, the biomimetic 

processing used in this work allowed the obtaining of foamed CDHA scaffolds which exhibited 

interconnected macropores, porosity on the micro- and nanoscale, and a SSA as high as 38 m
2
/g. 

The results obtained suggest that some mechanisms relevant for osteoinduction, such as the 

release of calcium and phosphate ions and the entrapment or attraction of relevant proteins and 

growth factors (e.g., BMPs)
7,12

 are promoted in nanostructured biomimetic materials. 

It is worth mentioning that poor results in terms of ectopic bone formation were obtained in 

previous studies of CPCs with similar compositions to the CDHA used in the present work.
36,53

 

However, this could be attributed to the lack of interconnected macroporosity in the cement 

pastes and prehardened scaffolds. In contrast, the foaming and 3D-printing techniques used in 
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the present study allowed the combination of the required interconnected macroporosity and the 

micro- and nanoporosities relevant for the osteoinductive processes. 

Besides the acceleration and promotion of the process of osteoinduction, clear differences were 

observed in the pattern of bone formation when comparing CDHA and BCP Foams (Fig. 

2.5A/B). Whereas bone was deposited on the surface of the scaffold in the BCP-Foam, resulting 

in the progressive filling of the macropores, in the CDHA-Foam bone replaced the pre-existing 

scaffold structure, meaning that bone formation was preceded by the resorption of the scaffold. 

This trend was confirmed by the higher degradation rate measured for the CDHA-Foams (Fig. 

2.7), as discussed below.     

To better understand the role that nanostructure and phase composition played in the 

differentiation of MSCs, rMSC were cultured on the surfaces of the discs of the different 

materials used in the in vivo study, without adding osteogenic factors in the culture medium. 

Overexpression of some osteogenic genes, namely, BMP-2, ONN, OPN and OCN was found to 

be more pronounced on CDHA discs than on the sintered BCP and β-TCP groups, indicating that 

biomimetic CDHA triggered the osteogenic differentiation of rMSCs (Fig. 2.8). The calcium and 

phosphate fluctuations registered in the cell culture medium in contact with the different 

materials during the cell culture study were not statistically significant (Appendix, Fig. A2.5E). 

Therefore, the osteogenic differentiation produced was mostly attributed to the topographical 

features, which had been identified as a parameter controlling differentiation of MSCs.
54,55

 This, 

in fact, was in agreement with previous studies in which osteogenic differentiation of rMSC 

cultured on CDHA or in other nanostructured substrates like octacalcium phosphate was 

observed.
56,57

 Similarly, other authors reported higher osteogenic differentiation of MSCs on 

low-temperature nanocrystalline HA compared with that on sintered HA, suggesting that 

nanoporosity, surface roughness and nanocrystal morphology are responsible for osteoinduction 

of MSCs.
58,59

  

In this study, besides the bone formed within concave macropores from 10 to 300 µm in 

diameter in CDHA-Foam and BCP-Foam (Fig. 2.6A/B), abundant extracellular calcified bone 

matrix was observed within the micropores (<10 µm) of both groups (Fig. 2.6G/H). Other 

authors previously reported the presence of calcified bone matrix within micropores. In some 

cases, it had been associated with the osteoid produced by nearby cells being able to flow and 

penetrate into small micropores.
49,60,61

 In contrast, other authors claimed that this calcified tissue 

might be produced by the invasion of the micropores by bone cells,
62,63

 through pore 

interconnections smaller than their diameter (4-12 µm).
64

 Although in our case no cells were 

seen within the micropores, immuno-histochemical staining using, for example, an osteocyte 

marker like sclerostin
63

 would have been needed to conclusively exclude the presence of cells. 

Unfortunately, this was not possible since the samples were embedded in resin, which did not 

allow this type of immuno-histochemical investigation.    

Regarding spatial distribution, bone was found only inside the foamed constructs but not on the 

external surface of the cylinders. As displayed in Fig. 2.5A, bone was uniformly distributed 

within the CDHA-Foam scaffolds with no significant differences between the five concentric 

VOIs (Fig. 2.3C). However, BCP-Foams consistently showed minimal bone formation in the 

outer VOI (VOI 5), and most of the new bone concentrated in the middle VOI (VOI 3) (Fig. 

2.3C and Fig. 2.5B). This pattern for the BCP-Foams agreed with previous studies in which bone 
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induction was observed only in the center of the implant and not in the implant periphery. This 

was attributed to the fast diffusion of the released calcium and phosphate ions at the peripheral 

regions of the scaffolds, which prevented the attainment of the supersaturation required for 

ectopic bone formation and, also to the shear stresses on the outer regions of the ceramic blocks, 

which might have prevented bone tissue formation.
12

 However, in the case of CDHA-Foams, the 

presence of bone uniformly distributed within the entire construct, including the periphery, can 

be explained by the higher reactivity of the substrate, associated with both its chemical 

composition and its textural properties, which led to higher implant degradation, resulting in 

higher levels of calcium and phosphate released in the whole volume of the construct. 

 

2.4.4 Degradation patterns and osteoinduction 

The role of CaP-based materials degradation in osteoinduction is still unknown. Some authors 

claim that whereas certain degree of degradation is desirable because it provides the calcium and 

phosphate ions needed to stimulate MSC differentiation and foster mineralization, too much 

degradation may impair osteoinduction because of the lack of stable surfaces where the new 

bone can be deposited.
7
 This is the argument used to explain the higher osteoinduction found in 

BCP ceramics compared to both the hardly soluble sintered stoichiometric HA and the more 

soluble β-TCP.
12,26,32,35,37,47

 The analysis of the micro-CT data obtained in this work allowed the 

quantification in 3D of the resorption of the different scaffolds, showing different patterns when 

looking at sintered ceramics and biomimetic CDHA. 

When comparing the foamed scaffolds, the results showed that the material presenting the 

highest osteoinduction, CDHA-Foam, was also the one showing the highest degradation, which 

was above that of the sintered foams (BCP and β-TCP) at 6 weeks and above that of the BCP-

Foam but was similar to that of the β-TCP-Foam at 12 weeks (Fig. 2.7). The high degradation 

rate of CDHA, compared particularly with the more soluble β-TCP, agrees with previous 

studies
65

 and can be explained by its specific features, i.e., its nanosized crystals and 

consequently high SSA, its low crystallinity and its lack of stoichiometry. The degradation rate 

of the BCP-Foam, which presented a high amount of ectopic bone formation at 12 weeks, was 

significantly smaller. This can be associated with the low solubility of sintered HA together with 

its low SSA and can be the reason for its delayed ectopic bone formation compared with that of 

the CDHA-Foam. In the BCP-Foam, a longer time is probably required to achieve the 

supersaturation of the local environment with calcium and phosphate ions, which precedes new 

ectopic bone formation. On the other hand, the bone formation pattern described in the previous 

section is in good agreement with this lower degradation of the BCP-Foam, as bone was 

deposited on the surface of the scaffold instead of replacing the biomaterial (Fig. 2.5). 

The results obtained demonstrate that the high resorption rate of CDHA-Foam, far from being an 

obstacle for osteoinduction, clearly promote it. Considering that the physiological fluid is 

supersaturated with respect to CDHA, the homogeneous and progressive degradation of the 

CDHA-Foam scaffolds suggest that the high degradation profile of the CDHA-Foam scaffolds 

was mainly due to the activity of multinucleated osteoclast-like cells (Fig. 2.6G), as also 

reported by Yuan et al.
36

 These results are in good agreement with previous studies, which 

emphasized the promotion of osteoclastic activity by submicrometric microstructures of CaP and 

its close relation with osteoinduction.
13,25,33,48,66

 The secretion of BMPs and other osteogenic 



CHAPTER 2  Study I 
  

76 
 

growth factors by osteoclasts is able to trigger MSC differentiation toward the osteogenic 

lineage, leading eventually to bone formation through intramembranous ossification,
7,34,66-69

 as 

observed in the present study. It is noteworthy, however, that previous studies reported a lack of 

osteoinductive properties in carbonated hydroxyapatites with a SSA between 7 and 10 m
2
/g.

26,70
 

Therefore, it was hypothesized that there was a limit in the increase of SSA of biomaterials that 

positively influences osteoinduction, deducing that a material with a SSA above the optimum 

might degrade too fast.
26

 In contrast, the present results demonstrate that it is possible to couple 

degradation and bone formation in an ectopic site. 

The situation with the β-TCP foams was different. Although the degradation percentage at 12 

weeks was similar to those of CDHA foams, the degradation pattern was very heterogeneous, 

leaving big holes within the constructs (Fig. 2.7B). The loss of a stable, three-dimensional 

macrostructure, which is required to facilitate new bone growth, was probably the main reason 

why this group did not show significant ectopic bone formation (Fig. 2.3A/B and Fig. 2.5C), 

despite having the same macroporosity, microstructure and SSA as the BCP-Foam group (Fig. 

2.1 and Table 2.2). 

Remarkably, pore architecture also had a significant effect on the degradation of the scaffolds. 

CDHA-Foam scaffolds showed higher degradation than the biomimetic robocast scaffolds at 

both time points (Fig. 2.7), in spite of having identical chemical compositions, and very similar 

nanostructures and SSAs, which should entail similar dissolution rates. Importantly, a higher 

number of osteoclast-like cells were identified in the concave macropores of the CDHA-Foam 

compared with in the convex, prismatic macropores of the robocast scaffolds. These findings 

suggested that osteoclast-like cell activity and consequently cell-mediated degradation were 

enhanced by the microenvironment created inside the concave macropores. Likewise, the lack of 

osteoinduction by the robocast scaffolds confirmed in turn the close relation between osteoclastic 

activity and osteoinduction.   

Overall, besides providing additional information about the role of structural parameters in 

osteoinduction and the biological mechanisms behind it, the enhanced osteoinduction of the 

biomimetic CDHA-Foams may have a direct clinical application in the repair of large bone 

defects. Some studies have demonstrated the clinical utility of osteoinductive bone substitutes for 

the treatment of critical-sized bone defects, showing that these materials are better bone-void 

fillers than those that are merely osteoconductive.
8,9,37,70

 Thus, the next step will be to confirm 

this hypothesis by evaluating these novel biomimetic CaP scaffolds in an orthotopic model. 

 

2.5 Conclusions 

The results obtained in this study show that both pore architecture and reactivity of the substrate 

play a crucial role in osteoinduction. The high reactivity of biomimetic CDHA, which resulted 

from its poor crystallinity, nanostructured nature and high SSA combined with the concave 

macroporosity produced by a foaming process, resulted in accelerated osteoinduction when 

compared with conventional sintered BCP ceramics with the same macropore architecture. 

Different bone formation patterns were exhibited by sintered and biomimetic scaffolds. Whereas 

CDHA scaffolds were progressively resorbed and replaced by new ectopic bone, in the BCP 

scaffolds, bone was deposited on the surface of the material, progressively filling the pore space. 
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Conversely, very limited osteoinduction was found in the 3D robocast scaffolds with prismatic 

pore geometries. In conclusion, we have shown that tailoring both the nanostructure and the 

macropore geometry of biomimetic CDHA obtained by a low-temperature self-setting reaction 

allows us to push the osteoinduction potential beyond the limits obtained for the microstructured 

CaP ceramics. 

 

2.6 Appendix 

Further characterization of materials, such as XRD patterns of implanted scaffolds and BCP 

foams, as well as complete physicochemical characterization of planar discs used in the in vitro 

study are provided in this section. Moreover, additional results of the in vivo study, such as 

ectopic bone distribution in CDHA-Foam scaffolds at 6 weeks and backscattered electron 

micrographs of CDHA-Rob-250 scaffolds at 12 weeks of implantation are also included.  
 

2.6.1 XRD patterns of BCP foams 

The biphasic hydroxyapatite/β-TCP foams (BCP-Foam) were obtained by immersing the as-

prepared α-TCP foams in a sodium bicarbonate solution (NaHCO3, Sigma-Aldrich, St. Louis, 

USA), autoclaving them at 120ºC and 1 atm for 30 min and subsequently sintering them at 

1100°C for 9 h. The HA:β-TCP ratio can be tuned by adjusting the concentration of the sodium 

bicarbonate solution, as shown in the Fig. A2.1. 

 

Figure A2.1. XRD patterns of the biphasic materials obtained after immersing the α-TCP foams in solutions with 

different concentrations of NaHCO3, followed by autoclaving and subsequent  sintering at 1100ºC for 9h. 
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2.6.2 XRD patterns of implanted scaffolds 

 

Figure A2.2. XRD patterns of implanted scaffolds: the CDHA-Foam and the CDHA-Rob scaffolds consisted of a 
poorly crystalline apatitic phases, as indicated by the broad peaks, typical of biomimetic apatites. Small amounts of 
unreacted α-TCP were detected, and quantified to be 2 and 3% for CDHA-Foam and CDHA-Rob scaffolds, 
respectively. The sintered scaffolds exhibited the sharp XRD peaks, typical of highly crystalline materials. β-TCP-
Foam scaffolds consisted of phase-pure β-TCP and BCP-Foam consisted of a mixture of 82.7% HA and 17.3%        
β-TCP. 
 

 

2.6.3 Ectopic bone distribution of CDHA-Foam scaffolds at 6 weeks 

 

Figure A2.3. Histomorphometrical results: percentage of newly formed bone in the available macropore spaces 
within the five volumes of interest (VOIs), 6 weeks after implantation in the CDHA-Foam scaffolds. Although no 
significant differences among the five concentric VOIs were noted, the ectopic bone was mainly found in the outer 
and middle regions. 
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2.6.4 Backscattered electron micrographs of CDHA-Rob-250 scaffolds at 12 weeks 

 
Figure A2.4. Backscattered electron micrographs of CDHA-Rob-250 scaffolds 12 weeks after implantation. CDHA-

Rob-250 scaffolds did not show ectopic bone formation in any animal. 

 

2.6.5 Physicochemical characterization of planar discs used in the in vitro study   

The planar discs were characterized in terms of phase composition, microstructure, SSA and 

porosity using the same techniques as described for the scaffolds characterization. In order to 

analyse ionic exchanges on cell culture medium after incubation of materials in presence of 

rMSCs, Ca
2+

 levels were quantified by O-cresolphtaleincomplexone method,
71,72

 whereas Pi 

levels were quantified using Phosphate Colorimetric Kit (Sigma-Aldrich, St. Louis, USA). In 

both cases, a calibration curve with decreasing concentration of either calcium or phosphate was 

prepared to express the results. The absorbance was read spectrophotometrically at 570 nm and 

650 nm, respectively. 

 
Figure A2.5. Physicochemical characterization of the planar discs used in the in vitro study. (A) Pore entrance size 

distribution of the three samples determined by MIP: CDHA discs exhibited a clear bimodal pore size distribution, 

intra aggregate pores (10-200 nm range) and inter aggregate pores (centered around 0.6-0.8 µm). Thermal 

treatment removed the nanoscale porosity and, as a result, the microscale porosity increased leading to a sharp 

monomodal pore size distribution in β-TCP and BCP samples, centered at 1.5 and 2.5 µm, respectively. 
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Figure A2.5 (cont.). (B) XRD patterns of the three CaP materials: the CDHA discs consisted of a poorly crystalline 

apatitic phases, as indicated by the broad peaks, typical of biomimetic apatites. The sintered ceramics exhibited the 

sharp XRD peaks, typical of highly crystalline materials. The β-TCP discs consisted of phase-pure β-TCP, and the 

BCP discs consisted of a mixture of 82.7% HA and 17.3% β-TCP. (C) Total porosity (%) and SSA (m2/g) of the three 

samples: although all materials presented similar values of total porosity, the CDHA discs presented a high SSA 

value, whereas sintered materials showed lower SSA values (<1 m2/g). (D) Scanning electron micrographs of the 

three materials: the microstructure of the CDHA discs consisted of the typical network of entangled needle-like 

nanocrystals, while the sintered ceramics showed polyhedral smooth crystals. 

 

 

 

 

 

 

 

 

 



CHAPTER 2  Study I 
  

81 
 

 

 

Figure A2.5 (cont.). (E) Ca2+ and Pi levels of cell culture medium after incubation of the three materials in presence 
of rMSCs in advDMEM for 6 h, 3 days, 7 days and 14 days: all materials kept Ca2+ and Pi concentrations in tested 
culture medium constant and followed similar behaviour at each time compared to TCPS. No significant differences 
were noted among groups at any time. Experimental concentrations of Ca2+ and Pi for advanced DMEM are 1.87 mM 
and 1.16 mM, respectively.  
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OSTEOGENESIS BY FOAMED AND 3D-PRINTED NANOSTRUCTURED CALCIUM 

PHOSPHATE SCAFFOLDS: EFFECT OF PORE ARCHITECTURE 

 

3.1 Introduction  

Bone has a high capacity for regeneration that is not, however, unlimited. When a bone defect 

exceeds a critical size, bone is not able to regenerate itself, it requires the use of a substrate, 

which can be natural or synthetic, to serve as a support and guide the action of bone regenerating 

cells.
1
 While autograft is still the gold standard, the serious drawbacks associated with the need 

of a second surgery to harvest it and the limited availability,
2
 has prompted the search for 

alternatives within synthetic materials. CaPs have been used since the 1970s for this application. 

They are osteoconductive materials and perform well in many situations. However, in very 

demanding situations they do not promote osteogenesis sufficiently. The combination of 

scaffolds with cells or growth factors has attracted much attention lately, although it raises 

ethical, logistic and economic concerns, besides suffering from poor reproducibility and patient 

variability.
3
 An attractive alternative lies in having a deeper knowledge of the material-tissue 

interaction, which allows designing cell instructive biomaterials, capable of triggering the 

biological mechanisms behind the bone healing process. 

In this context, endowing intrinsic osteoinductive properties to a synthetic bone substitute by 

tuning its physico‐chemical and structural properties is one of the most challenging and, at the 

same time, promising tasks for the development of an ideal bone graft substitute that can replace 

autografts.
4
 The design of new osteoinductive biomaterials should aim to develop biomimetic 

matrices that trigger the endogenous expression of osteogenic growth factors instead of adding 

expensive doses of exogenous growth factors
5
 with the well-known associated risks.

6-9 

Although sintered CaP ceramics, including HA, β-TCP and BCP, have traditionally been the 

most widely used synthetic bone substitutes, their biological performance is still inferior to 

autografts, especially in terms of initiation of bone growth and simultaneous, synchronized 

material resorption.
4,10

 This is probably associated with the high crystallinity and lack of 

nanostructure of sintered ceramics, which significantly differ from the non-stoichiometric, 

calcium-deficient (Ca/P molar ratio lower than 1.67) and low-crystalline form of the natural bone 

apatite.
11,12 

To overcome these limitations, biomimetic routes based on the self-setting reaction of CPCs 

constitute an ideal platform to mimic the composition and morphology of the bone mineral phase 

much better than sintered ceramics, obtaining low-crystalline, non-stoichiometric and 

nanostructured CDHA.
13

 Moreover, our group has developed processing methods to obtain 

scaffolds with defined macroporous architectures while preserving the biomimetic nanostructure 

of the CDHA, such as 3D-printing by robocasting
14,15

 or foaming.
16,17

  

In the previous chapter (Chapter 2), we demonstrated in an in vivo canine study that both 

nanostructure and macropore geometry play a critical role in osteoinduction of CaPs.
18

 Bone 

formation was significantly accelerated and stimulated when the scaffolds were implanted 
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intramuscularly in the shape of nanostructured biomimetic foams compared with the high-

temperature microstructured counterparts. Moreover, in agreement with other studies that have 

highlighted the importance of geometrical factors like curvature in bone tissue regeneration,
19-21

 

we demonstrated that foamed scaffolds, with concave pores, induced a significantly higher 

amount of ectopic bone than 3D-printed scaffolds with orthogonal-shaped struts and therefore 

prismatic pores.
18 

The present study moves one step forward, since it aims at analyzing the effect of the 

geometrical features of nanostructured CaPs on their osteogenic potential and resorption 

behaviour in a bony environment. To this end, biomimetic CDHA scaffolds, with identical 

chemical composition and nanostructure but different macropore geometries and dimensions 

were evaluated in a canine orthotopic model. We hypothesized that the high osteoinductive, 

spherical, concave, macroporous, foamed scaffolds (CDHA-Foam) would have a superior bone 

healing capacity compared with the poorly osteoinductive prismatic, convex, macroporous, 

robocast scaffolds (CDHA-Rob). 

 

3.2 Materials and Methods 

 

3.2.1 Calcium deficient hydroxyapatite scaffolds 

CDHA scaffolds were prepared according to previously described methods (Chapetr 2), based on 

the hydrolysis of α-TCP (α-Ca3(PO4)2).
18

  

Briefly, α-TCP was obtained by heating calcium hydrogen phosphate (CaHPO4, Sigma-Aldrich, 

St. Louis, MO) and calcium carbonate (CaCO3, Sigma-Aldrich, St. Louis, MO) at a 2:1 molar 

ratio for 15 h at 1400°C followed by quenching in air. Subsequently, the powder was milled in 

an agate ball mill (Pulverisette 6, Fritsch GmbB, Markt Einersheim, Germany) to a mean particle 

size of 2.8 µm. 

The CDHA-Foams were obtained by foaming a mixture of a solid phase, consisting of 98 wt% 

α-TCP and 2 wt% of precipitated hydroxyapatite (PHA, Merck KGaA, Darmstadt, Germany), 

and an aqueous solution of 1 wt% Polysorbate 80 (Tween 80
®
,Sigma-Aldrich, St. Louis, MO) at 

a liquid to powder ratio of 0.65 mL/g using a customized hand mixer. The foam was transferred 

to Teflon cylindrical moulds (5 mm diameter and 10 mm height).  

To obtain the robocast scaffolds, a CDHA self-setting ink was prepared containing a 30 wt% 

aqueous solution of poloxamer 407 (P2443 - Pluronic
®

 F-127, Sigma-Aldrich, St. Louis, MO) 

and α-TCP powder, at a liquid to powder ratio of 0.65 g/g. A cylindrical CAD model of the 

scaffolds (5 mm diameter and 10 mm height) was designed (Solidworks 2014, Dassault 

Systèmes SolidWorks Corp., Waltham, MA) and converted to a STL 3D mesh, with a rectilinear 

pattern and an infill of 0.45. Scaffolds were printed using a robocasting device (Pastecaster, 

BCN3D Technologies, Barcelona, Spain) with two different nozzle diameters, 450 and 250 μm 

for the CDHA-Rob-450 and CDHA-Rob-250, respectively.  



CHAPTER 3  Study II 

90 
 

The transformation to CDHA, which results in the hardening of the scaffolds, was achieved by 

immersion of both the foams and the robocast scaffolds in deionized water at 37°C for 10 days, 

to allow for the hydrolysis reaction of α-TCP, according to the following reaction: 

3 Ca3(PO4)2 + H2O   → Ca9(PO4)5(HPO4)OH     

The architecture of the foamed and 3D-printed scaffolds was determined by micro-CT (SkyScan 

1172, Bruker microCT, Kontich, Belgium) at a voltage of 90 kV and a current of 112 μA and 

with a Cu−Al filter. Images were acquired using an isotropic pixel size of 5 μm. Reconstruction 

of cross sections was done using software package NRecon (Bruker microCT, Kontich, 

Belgium). Calculations of macroporosity were performed with CTAn software (Bruker microCT, 

Kontich, Belgium). The microstructure was characterized by scanning electron microscopy 

(Zeiss Neon40 EsBCrossBeam, Zeiss, Oberkochen, Germany). 

The compressive strength of the different scaffolds (n = 6 specimens per group) was measured 

using a Universal Testing Machine (Instron 8511, Instron, Norwood, MA) at a cross-head speed 

of 1 mm/min until fracture. 

 

3.2.2 In vivo study 

3.2.2.1 Animal model  

All animal procedures in this study were performed in compliance with the Guide for Care and 

Use of Laboratory Animals
22

 and the European Community Guidelines (Directive 2010/63/EU) 

for the protection of animals used for scientific purposes
23

, and under the permission of the local 

animal ethics committee (CEAAH 2338). The study was performed on 12 adult beagle dogs 

(body weight 14-17 kg) purchased from a professional stock breeder (Isoquimen S.L., Barcelona, 

Spain). Animals were randomly divided into 2 groups of 6 dogs each, corresponding to two 

different experimental times (6 or 12 weeks), and acclimatized for 2 weeks prior to surgery.  

Surgical procedures were carried out under standard anesthetic and analgesic protocols, as 

described in the previous chapter (Chapter 2).
18

 For the orthotopic implantation, animals were 

placed in lateral recumbence and the left hind limb was clipped, scrubbed and draped for an 

aseptic surgery. Subsequently, the lateral aspect of the femur was approached by blunt 

dissection. Three round monocortical bone defects (5 mm diameter) were drilled under 

continuous irrigation of physiological saline and one of the above-mentioned scaffolds (5 mm 

diameter x 10 mm height) was inserted in each defect by press-fit. All scaffolds had previously 

been sterilized by gamma irradiation at a dose of 25 kG. One scaffold of each series was 

implanted in each dog (Table 3.1), the implant position being assigned according to a rotatory 

allocation system using a block design. The surgical wound was finally closed in layers. 

Table 3.1. Summary of implanted scaffolds  

Architecture Codes 6 weeks 12 weeks 

Foams CDHA-Foam 6 6 

Robocast 
CDHA-Rob-450 6 6 

CDHA-Rob-250 6 6 
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 Animals were allowed to full weight bearing and received a normal diet immediately after 

surgery. During the postoperative period, a NSAID, routinely used after orthopedic surgeries, 

was given to the animals for 7 days to prevent pain and inflammation. The animals were 

euthanized at 6 and 12 weeks postimplantation by an overdose of pentobarbital sodium, after 

sedation with medetomidine. 

 

3.2.2.2 Sample harvest and histological processing 

After explantation, samples were fixed in 4% neutral buffered formalin solution for 72 h and 

analyzed by micro-CT. After micro-CT scanning, tissue samples were dehydrated in an 

increasing series of ethanol solutions and embedded in four different graded mixtures of ethanol 

and methyl methacrylate resin (Technovit 7200, HeraeusKulzer GmbH, Hanau, Germany) under 

vacuum conditions. The specimens were subsequently photopolymerized resulting in blocks, 

which were divided along the longitudinal axis of the implant, and transverse to the femur in 

order to evaluate the full thickness of the cortical bone defect. One piece was sectioned and 

polished (EXAKT Cutting & Grinding System, EXAKT Advanced Technologies GmbH, 

Norderstedt, Germany) prior to sputtering the surface with carbon for BS-SEM analysis. The 

other piece was sliced and ground (Cutting & Grinding System, EXAKT Advanced 

Technologies GmbH, Norderstedt, Germany) to obtain histological sections (50 μm), which were 

stained with Goldner-Masson trichrome and toluidine blue for histological evaluation using light 

microscopy. 

 

3.2.2.3 Histology and histomorphometry 

Micro-CT analysis (SkyScan 1172, Bruker microCT, Kontich, Belgium) of bone-tissue samples 

was performed as described above with the exception of an isotropic pixel size of 10 µm. The 

micro-CT 3D quantification of new bone formation and scaffold degradation was performed 

following a previously established protocol,
24

 using BS-SEM images as a reference for 

establishing the gray-scale intensity thresholds to differentiate bone and calcium phosphate 

biomaterials. The following parameters were quantified: 

c) Percentage of newly formed bone within the monocortical bone defect: 

 % newly formed bone = (bone volume / initial available macropore volume) * 100 

d) Percentage of scaffold degradation within the monocortical bone defect: 

 % scaffold degradation = [(initial scaffold volume – final scaffold volume) / initial scaffold volume] * 100 

Both parameters were quantified only in the monocortical bone defect volume, without 

considering the intramedullarly portion of the scaffold. Moreover, the radius of each scaffold 

was divided into three equal segments, which define three concentric VOIs: outer, middle and 

inner VOI. The percentage of newly formed bone was calculated in each VOI, to assess the 

distribution of the new bone formation. 

The BS-SEM observations (Zeiss Neon40 EsBCrossBeam, Zeiss, Oberkochen, Germany) were 

made at 20 kV to assess the localization and maturity of the newly formed bone based on 

morphology and the different contrast levels. 
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Stained histological sections were observed using a light microscope (Nikon Eclipse E800, 

Nikon Corp., Tokyo, Japan) fitted with a digital camera (ProgRes, Jenoptik AG, Jena, Germany) 

for a qualitative histological evaluation focused on the grade of peri-implant inflammatory 

reaction, fibrous-tissue infiltration and angiogenesis, as well as on the search for cell-mediated 

scaffold resorption evidences. Digital images were analyzed using an image analysis software 

(ProgResCapturePro, Jenoptik AG, Jena, Germany). 

 

3.2.3 Statistical analysis 

Histomorphometric results are presented as mean values ± standard error. All analyzed data were 

normally distributed according to Anderson-Darling and Kolmogorov-Smirnov tests and showed 

homogeneity of variances according to Levenne’s and Barralet’s tests. Statistical comparisons 

among experimental groups at each time point were performed using one-way repeated measures 

ANOVA followed by Tukey’s post hoc test in GraphPad Prism software (GraphPad Software 

Inc., La Jolla, CA). A pair-wise comparison result of p <0.05 was considered statistically 

significant. 

 

3.3 Results 
 

3.3.1 Materials characterization 

The micro-CT reconstructions of the different scaffolds, as well as the nanostructures observed 

by SEM are shown in Fig. 3.1A. Similar nanostructures were observed for the CDHA-Foam, 

CDHA-Rob-450 and CDHA-Rob-250 with the typical entangled network of needle-like CDHA 

nanocrystals, which resulted in high SSA (Fig. 3.1B). All scaffolds presented similar 

macroporosity and total porosity, determined by MIP and micro-CT, although different pore 

sizes and, more markedly, different pore entrance sizes, which were larger for the robocast 

scaffolds, as determined in the previous study (Chapter 2) and summarized in Fig. 3.1B.
18

 

Moreover, similar compression strength values (around 5 MPa) were found for all scaffolds 

irrespective of their architecture (foamed vs. robocast) and the strand diameter in the robocast 

constructs (Fig. 3.1C). 

 

3.3.2 In vivo results  

Surgeries were uneventful and all animals completed a normal postoperative period without any 

clinical complication. All implanted scaffolds were retrieved and processed for histological 

evaluation. Histology showed mild peri-implant inflammatory reactions at both time points for 

all scaffolds. The cortical bone tissue became closely connected to all three types of scaffolds 

and no fibrous capsules were observed at the host cortical bone-material interfaces (Fig. 

3.2A/B/C). All scaffolds showed a certain degree of loose fibrous-tissue infiltration within 

interconnected macropores, minimal in the foams and more pronounced in the robocast 

scaffolds, especially in the central areas of the defects (Figure 3.2D/E/F). A rich widespread 

blood vessel network was found in the macropores of all three groups, from small capillaries to 

medium size vessels, as shown in the Goldner-Masson trichrome stained sections (Fig. 

3.2G/H/I). 
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Figure 3.1. (A1,A2,A3) Micro-CT 3D reconstructions of the three implanted materials showing the different 
macropore shapes and sizes. Note the open and interconnected, spherical, concave macropores of different sizes in 
the CDHA-Foam group, whereas both robocast scaffolds present open and interconnected, prismatic, convex 
macropores with different strand diameters between groups and, hence, different pore sizes. (A4,A5,A6) Scanning 
electron micrographs of the three implanted materials showing similar nanostructures for all groups with the typical 
entangled network of needle-like CDHA nanocrystals. (B) Textural properties of the three implanted scaffolds: total 
porosity and macroporosity determined by mercury intrusion porosimetry (MIP), macroporosity measured by micro-
CT, average entrance size of the macropores by MIP, average macropore size measured by micro-CT and specific 
surface area (SSA) determined by nitrogen adsorption.18 (C) Compressive strength of the studied scaffolds.  
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Figure 3.2. Micrographs of undecalcified sections of CDHA-Foam, CDHA-Rob-450 and CDHA-Rob-250 scaffolds 
after 6 weeks of implantation. (A,B,C) Toluidine blue stained sections showing the absence of fibrous-tissue 
interposition between the host cortical bone (HB) and material (M) in all three groups. Note the formation of well-
mineralized bone matrix (asterisks) in close contact to all three materials. (D,E,F) Toluidine blue stained sections 
showing loose fibrous-tissue (FT) infiltration in the central regions of both robocast scaffolds, whereas no fibrous-
tissue was detected within the macropores of the same region in the foams. M is material, and asterisks denote 
calcified bone matrix. (G,H,I) Goldner-Masson trichrome stained sections showing a rich widespread blood vessel 
(black arrows) network within the macropores of all three scaffolds. M is material, and asterisks denote calcified bone 
matrix.  
 
 

The morphology of newly deposited bone, which consisted of a mix of woven bone with some 

areas of well organized lamellar bone following a Haversian pattern, was also similar for all 

groups (Fig. 3.2 and Fig. 3.3). The main finding, however, was that CDHA-Foams promoted a 

higher penetration of the cortical bone, with new bone present in the centre of the scaffold 

already at 6 weeks, in contrast to the robocast scaffolds in which at this time point the new bone 

was penetrating into the scaffold only from the margin of the defect (Fig. 3.3).  
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Figure 3.3. Micro-CT 3D images and BS-SEM micrographs of the different scaffolds after 6 weeks of implantation. 
(A) Micro-CT 3D reconstruction, (B) Micro-CT section and (C) BS-SEM micrograph of a CDHA-Foam scaffold. Note 
the presence of newly formed bone in direct contact to the concave surfaces of spherical macropores in the centre of 
the defect aside from the centripetal new bone formation coming from the margins of the cortical defect. (D) Micro-CT 
3D reconstruction, (E) Micro-CT section and (F) BS-SEM micrograph of a CDHA-Rob-450 scaffold. (G) Micro-CT 3D 
reconstruction, (H) Micro-CT section, and (I) BS-SEM micrograph of a CDHA-Rob-250 scaffold. Note the absence of 
new bone in the central region of the defect in the two robocast scaffolds, in which the newly formed bone is 
restricted to the peripheral areas of the scaffold, in the edges of the cortical defect.  
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These histological findings were confirmed by the histomorphometric results, summarized in 

Fig. 3.4. At 6 weeks the percentage of newly formed bone was significantly higher in the 

CDHA-Foam group than in the robocast groups (Fig. 3.4A). Regarding bone distribution within 

the scaffolds (Fig. 3.4B), the percentage of newly formed bone at 6 weeks was superior in all 

three VOIs for the foamed scaffolds compared with the robocast counterparts (Fig. 3.4C). The 

main difference was that small amounts of bone were detected in the robocast scaffolds within 

the middle and, especially, within the inner VOIs, whereas in the foamed scaffolds bone 

distribution was more homogeneous (Fig. 3.4C).  

 

Figure 3.4. (A) Histomorphometrical results: percentage of newly formed bone within the monocortical bone defect at 
6 and 12 weeks postimplantation, as measured by micro-CT. (*) denotes groups with statistically significant 
differences at the same time points (p < 0.05). (B) Diagram of the three volumes of interest (VOIs). The radius of 
each implanted scaffold was divided into three equal segments, which define three concentric VOIs: outer, middle 
and inner VOI. (C) Histomorphometrical results: percentage of newly formed bone within the three VOIs 6 weeks 
after implantation. Small amounts of bone were detected in the middle and inner VOIs in both robocast scaffolds, 
whereas in the foamed scaffolds bone distribution was more homogeneous, regardless of the VOIs. (D) 
Histomorphometrical results: percentage of newly formed bone within the three VOIs after 12 weeks of implantation. 
 

The same trend was observed at 12 weeks, with newly formed bone increasing both in quantity 

and maturity for all groups (Fig. 3.4A and Fig. 3.5). CDHA-Foams showed a full-thickness 

cortical bone bridging while some gaps were still observed in the central regions of the bone 

defects in most robocast scaffolds (Fig. 3.5). The histomorphometrical results showed a 

significantly larger amount of newly formed bone in the CDHA-Foam group than in CDHA-

Rob-450 and CDHA-Rob-250 groups (Fig. 3.4A). No significant differences were found 

between the two robocast groups despite the different macropore sizes, similarly to what 

happened at 6 weeks. Bone distribution between the inner, middle and outer VOIs was more 

homogeneous than it was at 6 weeks for all scaffolds, including the robocast ones (Fig. 4D). 
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Figure 3.5. Micro-CT 3D images and BS-SEM micrographs of the different scaffolds after 12 weeks of implantation. 
(A) Micro-CT 3D reconstruction, (B) Micro-CT section and (C) BS-SEM micrograph of a CDHA-Foam scaffold 
showing a full-thickness cortical bone bridging and a significant resorption of the scaffold. (D) Micro-CT 3D 
reconstruction, (E) Micro-CT section and (F) BS-SEM micrograph of a CDHA-Rob-450 scaffold. Note the gap in the 
central region of the cortical defect. (G) Micro-CT 3D reconstruction, (H) Micro-CT section and (I) BS-SEM 
micrograph of a CDHA-Rob-250 scaffold showing the incomplete bone bridging after 12 weeks of implantation.  
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Additionally, new bone formation was observed also in the intramedullary portion of the scaffold 

in the case of CDHA-Foam, while no bone was observed in the robocast scaffolds, as shown in 

Fig. 3.6. 

 

Figure 3.6. BS-SEM micrographs of a CDHA-Foam scaffold (A) and of a CDHA-Rob-250 (B) after 12 weeks of 

implantation. Note the presence of new bone formation in close contact to the concave surfaces of the central 

macropores in the intramedullary portion of the foamed scaffold (C), whereas no bone is observed within the central 

macropores of the same region in the robocast scaffold (D).  
 

The micro-CT quantitative analysis of scaffold degradation is summarized in Fig. 3.7A. A 

significantly higher degradation was found for the CDHA-Foams compared with the robocast 

scaffolds at 12 weeks postimplantation, while no significant differences were found at 6 weeks. 

The resorption of robocast scaffolds did not progress among the 6 and 12 week time point (Fig. 

3.7A). Histological images showed that both foamed and robocast scaffolds sustained cell-

mediated degradation as revealed by the presence of cutting cones in close contact with the 

materials and the consistent observation of multinucleated osteoclast-like cells eroding the 

materials in all groups (Fig. 3.7B). Morphologies compatible with typical Howship’s Lacunae 

were clearly observed in the three scaffolds, as shown in Fig. 3.7B. A greater amount of 

osteoclast-like cells were observed in the CDHA-Foams than in the robocast samples, especially 

12 weeks after implantation.   



CHAPTER 3  Study II 

99 
 

 

Figure 3.7. Scaffold degradation. (A) Histomorphometry results: percentage of scaffold degradation after 6 and 12 

weeks of implantation. (*) denotes groups with statistically significant differences at the same time point (p < 0.05). 

(B) Micrographs of undecalcified toluidine blue stained sections after 12 weeks of implantation of studied scaffolds: 

(B1) CDHA-Foam, (B2) CDHA-Rob-450, (B3) CDHA-Rob-250. Note the presence of the typical resorption pits (black 

arrow heads) in the material surfaces, known as Howship’s Lacunae, eroded by active multinucleated osteoclast-like 

cells (black arrows) in all three groups, being more numerous in the CDHA-Foam. M is material, and asterisks denote 

calcified bone matrix.  

 

3.4 Discussion 

The aim of the present study was to assess the relevance of macropore geometry in the 

osteogenic potential and degradation of nanostructured biomimetic CaP scaffolds. The interest of 

these materials was highlighted in the previous study (Chapter 2),
18

 in which we demonstrated a 

synergistic effect between nanostructure and pore architecture with regards to osteoinduction, 

i.e., the capacity to produce bone in a non-osseous environment, which is associated with the 

differentiation of progenitor cells to the osteogenic lineage. Therein, nanostructured CDHA-

Foams, with concave macropores, exhibited an accelerated and enhanced osteoinduction when 

compared with nanostructured 3D-printed CDHA scaffolds (CDHA-Rob).
18

 The correlation 

between the intrinsic osteoinduction and the osteogenic potential in an osseous environment was 

also the subject of the present study. 
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3.4.1 Biocompatibility and angiogenesis 

The histological evaluation of the samples showed the host cortical bone directly connected to all 

scaffolds with no evidence of fibrous encapsulation neither foreign body reaction (Fig. 

3.2A/B/C), which confirmed the good biocompatibility of the CDHA-based biomaterials, as 

observed in previous ectopic
18,25

 and orthotopic
12,25-31

 studies.  

However, a certain degree of loose fibrous-tissue infiltration, coming from the soft tissues in 

contact with the external surface of the scaffold was observed in all groups since guided bone 

regeneration membranes were not used to protect the bone defect from soft tissue invasion. It is 

worth mentioning, however, that fibrous-tissue infiltration was significantly more extensive 

within the central macropores of the robocast samples than that observed in the foams (Fig. 

3.2D/E/F). This finding can probably be associated with the linear geometry and larger 

macropore entrance size of these scaffolds (Fig. 3.1B) compared with the foamed scaffolds, and 

suggests that the smaller pore entrance size of the CDHA-Foam scaffolds (70 µm) together with 

their more tortuous morphology prevent fibrous tissue colonization into the bone defect guiding 

the bone healing more effectively. This could partly explain the lower values of newly formed 

bone and, especially, the lack of new bone formation in the central regions of the robocast 

scaffolds compared with the CDHA-Foam group at 6 weeks.  

Abundant neovascularization was found, homogeneously distributed within the macropores of all 

three scaffolds (Fig. 3.2G/H/I), enabled by the open and highly interconnected macroporosity 

both in the foamed and the robocast scaffolds. Angiogenesis is in fact one of the top priorities in 

bone tissue engineering, since it provides oxygen and nutrient supply to the bone forming cells, it 

represents the main access pathway of cells (inflammatory cells, stem cells) and soluble proteins 

(signalling molecules and osteogenic growth factors), and it is a source of undifferentiated cells 

called vascular pericytes, that can potentially differentiate into osteogenic lineage cells.
5,10

  

 

3.4.2 Effect of macropore architecture on osteoinduction and osteoconduction 

The histomorphometrical results showed a significantly higher percentage of new bone 

formation in the CDHA-Foams than in the robocast scaffolds at both time points (Fig. 3.4A). 

Considering that the foamed and the robocast scaffolds shared the same chemical composition 

(CDHA), a similar percentage of total porosity (around 70%), a similar nanostructure (needle-

like crystals) and a similar SSA (around 35 m
2
/g) (Fig. 3.1), the differences observed in their 

bone healing capacity can be attributed to the different macropore architectures (Fig. 3.1A).  

It is worth noting that, while abundant bone ingrowth was observed in the outer VOI in all three 

groups, proving excellent osteoconductive properties, very small amounts of bone were detected 

in the central macropores of the robocast scaffolds at 6 weeks (Fig. 3.3 and Fig. 3.4C). However, 

a significant amount of new bone was observed in the central areas of the CDHA-Foams at this 

time point (Fig. 3.3 and Fig. 3.4C). Likewise, new bone was found within the central 

macropores of the intramedullary portion of CDHA-Foams (Fig. 3.6A), far from the host cortical 

bone regeneration front, whereas no bone was observed within the prismatic macropores of the 

intramedullary portion of robocast scaffolds (Fig. 3.6B). Although, it cannot be ruled out that the 

better performance of foamed scaffolds could derive from an increased osteoconductive capacity, 

the higher osteoinductive potential demonstrated previously
18

 (Chapter 2) for the foamed 
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scaffolds compared with the robocast scaffolds suggest that osteoinduction could be the 

underlying mechanism of bone formation in these specific sites. The osteoinductive phenomena, 

thus, would contribute directly to the higher osteogenesis of the CDHA-Foams when implanted 

in a bony site. A similar correlation between osteoinduction and osteogenic capacity was 

previously reported by other authors evaluating sintered ceramics.
32-35

  

Although the same trend was observed at 12 weeks, the differences among the outer VOI versus 

the middle and inner VOIs in the robocast scaffolds were less pronounced than those observed at 

6 weeks (Fig. 3.4C/D), probably because the high osteoconductivity of the robocast scaffolds 

compensated for the lack of osteoinductive capacity, highlighting the contribution of both 

osteoconduction and osteoinduction in the total bone formation. 

Regarding the role of pore geometry on bone formation, our results seem to be in contradiction 

with previous studies that reported better bone healing capacities for scaffolds with prismatic 

macropores with convex
36

 or flat
37

 surfaces, obtained by rapid prototyping techniques 

(robocasting and microstereolithography) than for constructs with spherical macropores with 

concave surfaces obtained by conventional processing methods like salt leaching or gas foaming 

processes.
36,37

 However, in both orthotopic studies the authors attributed the lower bone healing 

capacity of the scaffolds with concave macropores to their limited interconnectivity, and 

consequently their lower osteoconductive potential. Therefore, the different macropore 

interconnectivity and the lack of characterization of other parameters such as microstructure and 

the surface topography in those studies prevented the identification of the real role of macropore 

geometry on the osteogenic capacity of these scaffolds.  

Regarding the role of pore size on bone healing capacity, it is difficult to compare foamed and 

robocast scaffolds due to the different pore geometry. Whereas in the foams pore entrance size is 

much smaller than pore size (bottle neck effect), this is not the case in robocast scaffolds. When 

comparing CDHA-Rob-450 and CDHA-Rob-250, which had different pore sizes, no differences 

were found in terms of the amount and distribution of newly formed bone. In accordance to these 

findings, some authors reported bone ingrowth in 3D-printed scaffolds with pore sizes in the 

same range to the ones tested in the present study to be largely independent of the rod 

diameter
38,39

 and the distance between rods.
38

  

 

3.4.3 Effect of macropore architecture on scaffold resorption and osteoclastogenesis 

Pore architecture also had a significant effect on the degradation of the biomimetic scaffolds. 

CDHA-Foams underwent a four times greater degradation than the biomimetic robocast 

scaffolds after 12 weeks of implantation (Fig. 3.7A), which was in line with the previous study 

where the same scaffolds were implanted intramuscularly (Chapter 2).
18

 Interestingly, this high 

degradation rate was coupled with the high osteogenic potential of the CDHA-Foams, allowing a 

synchronization that led to the progressive replacement of the scaffold by new bone (Fig. 3.5 and 

Fig. 3.6). This explains why at 12 weeks the percentage of newly formed bone within the initial 

macropore volume was over a hundred per cent (Fig. 3.4A), since the final macropore volume 

was larger than the initial macropore volume and it was almost completely filled with new bone. 

In contrast, the new bone in the robocast scaffolds was deposited on the surface of the scaffold 

struts, with limited degradation, which did not increase between 6 and 12 weeks (Fig. 3.5).  
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The fact that the physiological fluid is supersaturated with respect to CDHA, together with the 

presence of cutting cones in close contact with the scaffolds and the consistent observation of 

multinucleated osteoclast-like cells eroding the materials in all groups point to a cell-mediated 

degradation rather than a passive degradation (chemical physiologic dissolution), which is in 

agreement with previous in vivo studies with CDHA-based biomaterials.
18,25-28,31

 Moreover, it is 

worth highlighting that the histological assessment identified a higher number of osteoclast-like 

cells in the concavities of the CDHA-Foams compared to the prismatic convex macropores of 

the robocast scaffolds. These results are again in agreement with the previous ectopic 

implantation study
18

 (Chapter 2) and demonstrate that osteoclast-like cells activity and 

consequently, the degradation rate, are strongly influenced by the geometry of the macropores. 

The superior osteoclast activity observed in the CDHA-Foams could also be an explanation for 

their superior osteoinductive potential and, hence, the superior bone healing capacity compared 

with the robocast scaffolds. The active involvement of osteoclasts in osteoinduction has been 

demonstrated in previous studies by the reduced ectopic bone formation and a decreased BMP 

expression by osteoinductive CaP biomaterials when treated with bisphosphonate, an osteoclast 

inhibitor.
40-42 

The fostering of bone formation by CDHA-Foams can, therefore, be associated with the concave 

macropores, with small entrance sizes and nanostructured walls, which provide the adequate 

microenvironment that may act as a powerful attractant for macrophages and trigger 

osteoclastogenesis. In turn, the retention within this volume of both osteogenic growth factors 

secreted by active osteoclasts (BMPS, Wnts, S1P, OSM, PDGF-BB and CTHRC1)
42-48

 and 

calcium and phosphate ions resulting from the osteoclastic resorption of CaP materials
49-54

 are 

known to trigger not only the activity of osteoblasts but also the differentiation of MSCs into 

bone-forming cells, leading eventually to de novo bone formation. 

The results obtained in this study, far from going against 3D-printing, a technology that enables 

the fast fabrication of patient-specific complex bone grafts, stress the importance of pushing the 

enormous possibilities of this technique in the right direction. Its great versatility allows exerting 

a superior control of the architecture of the constructs that are obtained. It is important to take 

advantage of this feature to design the right pore geometry, looking for concave surfaces that 

allow having the optimum microenvironment to trigger the bone healing mechanisms. While in 

the present work we chose the simplest pattern with orthogonal struts, the osteogenic potential of 

other patterns, with more complex internal geometries should be assessed in future studies.  

 

3.5 Conclusions 

Pore geometry plays a crucial role in the in vivo performance of biomimetic CDHA-based bone 

substitutes. Both bone formation and material degradation of chemically identical materials with 

the same nanostructure and similar pore volumes were drastically affected by the macropore 

architecture of the scaffolds. Whereas CDHA was highly osteoconductive both in the robocast 

and foamed scaffolds, the superior bone healing capacity of the foamed scaffolds with spherical 

concave macropores correlated well with their higher intrinsic osteoinductive potential. The 

contribution of both osteoconduction and osteoinduction accelerated the complete healing of the 

bone defects. Moreover, the foamed scaffolds showed a superior resorption to the robocast 
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constructs, triggering the simultaneous and progressive scaffold replacement by new bone. The 

different macropore size between the two robocast scaffolds did not have a significant effect 

neither on new bone formation nor on degradation. Overall, the high osteogenic potential of this 

new family of biomimetic nanostructured CDHA foams makes them a very attractive alternative, 

safer and more affordable than the use of exogenous growth factors and cell-based therapies. The 

next step towards the clinical application would be to test its efficacy in a large segmental bone 

defect. 
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OSTEOINDUCTION AND OSTEOGENESIS BY NANOSTRUCTURED CALCIUM 

PHOSPHATE SCAFFOLDS: EFFECT OF NANOCRYSTAL MORPHOLOGY AND 

CARBONATE DOPING  

 

4.1 Introduction  

Bone is a nanocomposite material whose major constituents are collagen microfibrils and 

nanocrystallites of a CaP with apatite structure. The mineral phase represents, in fact, around 65 

wt% of the bone extracellular matrix.
1
 This is the reason why CaPs have been the preferred 

option when designing synthetic bone grafts, most bone substitutes currently in the market being 

either HA, β-TCP or a combination of both (BCP).
2,3

  

However, although it is true that in a broad sense these materials bear some resemblance with the 

bone mineral, a closer look reveals major differences.
1
 The bone apatite is a highly carbonate-

substituted, calcium deficient form of hydroxyapatite (Ca10(PO4)6(OH)2), with a high vacancy 

content,
4,5

 and containing, in addition to carbonate, other trace elements such as Mg
2+

, Fe
2+

, 

Zn
2+

,K
+
, Na

+
, (HPO4)

2-
, F

-
 and Cl

-
.
1,6

 This results in a distorted network with poor crystallinity.
1
 

The carbonate ions can substitute both hydroxyl or phosphate groups in the apatite crystal 

structure, originating the A-type and B-type carbonation, respectively, B-type being the preferred 

form in biological apatite.
4,5,7,8

 Bone mineral is produced by precipitation from the 

supersaturated extracellular fluids, resulting in plate-shaped nanocrystals of variable lengths (30-

50 nm) and thickness (average about 5 nm), located both within the collagen fibres, and also in 

the extrafibrillar space.
9
 Recent studies, moreover, have shown evidence that the extrafibrilar 

mineral has the form of elongated plates about 5 nm thick, 60 nm wide and several hundreds of 

nm long.
10-13

  

This is in contrast to conventional CaP bone substitutes, which are commonly obtained by high 

temperature sintering processes, resulting in a lack of nanostructure, and of a chemical 

composition far from biological apatites.
1
 In this work, we propose mimicking much more 

closely the chemical and nanostructural properties of biological apatite as a strategy to enhance 

the performance of synthetic bone grafts. In fact, there is an imperative necessity to find more 

effective synthetic bone grafts
14

 since their biological performance is still inferior to that of 

autografts, especially regarding the initiation of bone growth and the synchronized graft 

resorption.
3,15

 This is evidenced by the fact that autologous bone grafts are still considered the 

gold standard treatment, despite the serious drawbacks associated to the need of a second 

harvesting surgery.
16 

The relevance of nanostructure for the in vivo performance of CaPs was demonstrated in the 

previous study (Chapter 2).
17

 Nanostructured CDHA foams, obtained through a biomimetic 

process, were shown to possess superior osteoinductive properties than conventional sintered 

ceramic foams, fostering the differentiation of MSCs to bone forming cells. This was a clear 

indication that biomimicry is a promising strategy for the design of bone substitutes. However, 

only one nanostructure and chemical composition was analyzed. In the present work, we intend 

to exploit the versatility of the biomimetic process used to produce the above mentioned 
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scaffolds, which allows tuning the size and shape of the CDHA crystals.
18,20

 Moreover, in order 

to increase the chemical similarity to natural bone, carbonate can be introduced in the apatite by 

a novel biomimetic process to obtain carbonated nanostructured CDHA foams. 

Although different in vitro studies have highlighted that the size and shape of nanocrystals in 

nanostructured biomaterials exert a direct effect on cells involved in osteoinduction,
21-26

 little is 

known about the role of nanocrystal shape and size in terms of the in vivo performance of these 

materials. Similarly, the presence of carbonate in the apatite structure is known to increase the 

chemical reactivity of HA by disturbing its crystal lattice,
7,27-31

 and it has been shown to foster 

osteoclastogenesis,
32-36

 a critical event in the intrinsic osteoinduction cascade of 

biomaterials.
17,37-40

 However, most in vivo studies investigating the behavior of carbonated 

apatites have focused on high temperature ceramics, with absence of nanostructure and limited 

carbonate content,
7,8,41-50

 as the sintering process, in addition to fusing the nanometric crystals, 

causes a severe thermal decomposition of carbonate into CO2 resulting in high carbonate 

losses.
43,51-57 

The aim of the present work was to investigate the role of nanocrystal morphology (plate vs. 

needle) and the effect of carbonate doping of nanostructured CDHA foamed scaffolds on their 

intrinsic osteoinduction and degradation behaviour in vivo, and to assess if there is a direct 

correlation with their bone healing capacity. To this end, the performance of nanostructured 

CDHA foams with two different crystal sizes and morphologies were compared using canine 

ectopic and orthotopic implantation models. Plate-shaped nanocrystals were compared with 

needle-shaped CDHA foams evaluated in our previous studies (Chapter 2 and 3).
17,58

 To further 

mimic bone mineral, carbonated CDHA nanostructured foams obtained under biomimetic 

conditions were included as a third group. Moreover, the in vitro response of rMSCs cultured in 

direct contact with the same biomaterials used in the in vivo assays was investigated.  

 

4.2 Materials and Methods 
 

4.2.1 Calcium phosphate materials 

4.2.1.1 Synthesis of alpha-tricalcium phosphate 

α-TCP (α-Ca3(PO4)2,) was used as precursor of the CDHA foams. Briefly, α-TCP was obtained 

by heating calcium hydrogen phosphate (CaHPO4, Sigma-Aldrich, St. Louis, MO) and calcium 

carbonate (CaCO3, Sigma-Aldrich, St. Louis, MO) at a 2:1 molar ratio. The powder mixture was 

heated up to 1400ºC for 15 h and quenched in air. The α-TCP obtained was milled in an agate 

ball mill (Pulverisette 6, Fritsch GmbB, Markt Einersheim, Germany), using two different 

milling protocols in order to obtain two different sizes of α -TCP powder. A coarse powder (5.2 

μm median size) was obtained by milling with 10 balls (d = 30 mm) for 15 min at 450 rpm, and a 

fine powder (2.8 μm median size) by milling first with 10 balls (d = 30 mm) for 60 min at 450 

rpm followed by a second milling for 70 min at 500 rpm with 100 balls (d = 10 mm). 

 

4.2.1.2 Preparation of foams and discs 

CDHA foams were obtained by hydrolysis of α-TCP foams. They were prepared by mixing a 

solid phase consisting of 98 wt% of α-TCP and 2 wt% of precipitated hydroxyapatite (PHA, 
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Merck KGaA, Darmstadt, Germany) with a liquid phase consisting of an aqueous solution of 1 

wt% Polysorbate 80 (Tween 80
®
, Sigma-Aldrich, St. Louis, MO) as foaming agent.

59
 Fine or 

coarse α-TCP powders were used to obtain Fine-CDHA or Coarse-CDHA foams, respectively. 

The liquid to powder ratio was adjusted to obtain similar macroporosities for both type of foams, 

being ratios of 0.65 and 0.55 mL/g for fine and coarse α-TCP powders, respectively. Foaming 

was performed with a customized hand mixer for 30 s at 7000 rpm and the resulting foams were 

transferred to Teflon cylindrical moulds (5 mm diameter and 10 mm height), which were left in 

humid atmosphere at 37 ºC for 8 h to ensure cohesion of the foamed structures. Afterwards, the 

scaffolds were immersed in water for 10 days at 37 ºC to allow for the hydrolysis of α-TCP to 

CDHA. The carbonated CDHA foams (CO3-CDHA) were obtained by immersing the coarse α-

TCP foams in a saturated sodium bicarbonate (NaHCO3, Sigma-Aldrich, St. Louis, MO) solution 

instead of water, in this case for 17 days to complete the hydrolysis reaction.
26

  

For the in vitro studies, 5 mm diameter x 0.3 mm height discs were prepared of all three groups, 

following the procedure described above for the foamed scaffolds, except for the foaming step, 

which was substituted by mixing in a mortar for 1min. 

 

4.2.1.3 Materials characterization 

Phase characterization of the different samples was performed by X-ray diffraction (D8 

Advance, Bruker Corp., Billerica, MA) using a Cu Kα anode operated at 40 kV and 40 mA. Data 

were collected in 0.02° steps over the 2θ range of 10°-80° with a counting time of 2 s per step. 

The experimental patterns were compared to those of HA (JCPDS 09-0432) and α-TCP (JCPDS 

09-0348). Samples were analysed also by Attenuated Total Reflectance Fourier-transform 

infrared spectroscopy analysis (ATR-FTIR, Nicolet 6700FTIR, Thermo Fisher Scientific Inc., 

Waltham, MA). Data were acquired in 64 scans with a resolution of 4 cm
-1

 from 4000 to 575 cm
-

1
 with a Germanium crystal. Carbonate quantification was performed by bulk combustion 

element analyzer (TC/EA, Thermo EA 1108, Thermo Fisher Scientific Inc., Waltham, MA) as 

previously reported.
26

 The SSA was determined by nitrogen adsorption (ASAP 2020, 

Micrometrics Instrument Corp., Norcross, GA), using the BET method. Porosity and pore 

entrance size distribution were measured MIP (AutoPore IV, Micrometrics Instrument Corp., 

Norcross, GA). The microstructure was characterized by SEM (Zeiss Neon40 EsBCrossBeam, 

Zeiss, Oberkochen, Germany). Prior to imaging, samples were coated with carbon to impart 

conductivity. Finally, the macroporosity of the foamed scaffolds was assessed by micro-CT 

(SkyScan 1172, BrukermicroCT, Kontich, Belgium) at a voltage of 90 kV and a current of 112 

μA, with a Cu−Al filter. 

 

4.2.2 In vitro study 

4.2.2.1 Cell culture 

To better understand the role of nanocrystal morphology and carbonate doping, rMSCs were 

cultured on the surface of discs of all three materials. The discs, previously sterilized by 

immersion in 70% ethanol and rinsed three times with PBS (Gibco, Thermo Fisher Scientific 

Inc., Waltham, MA), were placed in a 24-well plate and incubated with 2.5 mL medium/well 

overnight. rMSCs were isolated from tibias and femurs of Lewis rats and characterized by flow 
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cytometry.
60

 Afterwards, cells were expanded in AdvDMEM supplemented with 10% FBS, 20 

mMHEPES buffer, 2 mM L-glutamine and penicillin/streptomycin (50 U/mL and 50µg/mL, 

respectively), all from Thermo Fischer Scientific Inc. (Waltham, MA). Cells at passages 3-4 

were used in all experiments. 
 

4.2.2.2 Cell proliferation 

For the proliferation assay, all samples were tested at 6 h, 3, 7 and 14 days. The experiments 

were performed with three replicates of each sample and TCPS was used as control. Cells were 

seeded at a density of 300 cells/mm
2
. Samples were changed into another plate at each specified 

time and cell lysis was performed using 300 µl of M-PER® (Mammalian Protein Extraction 

Reagent, Thermo Scientific Inc., Waltham, MA). Subsequently, cell number was evaluated using 

the Cytotoxicity Detection KitPLUS (Hoffmann-La Roche, Basel, Switzerland) and lactate 

dehydrogenase (LDH) activity was measured spectrophotometrically at 492 nm (Synergy HTX, 

BioTek Instruments Inc., Winooski, VT). A calibration curve with decreasing number of cells 

was prepared to express the results. The values were normalized by total seeded area. 
 

4.2.2.3 Cell morphology 

Cell seeded discs were observed by SEM (Zeiss Neon40 EsBCrossBeam, Zeiss, Oberkochen, 

Germany) after 14 days. Samples were washed with PBS three times and fixed for 1 h at 4ºC in a 

2.5% glutaraldehyde (Sigma-Aldrich, St. Louis, MO) solution in PBS. Subsequently, fixed 

samples were washed three times with PBS and dehydrated in increasing series of ethanol 

solutions. Complete dehydration was performed in hexamethyldisilazane (HMDS,Thermo 

Scientific Inc., Waltham, MA) and discs were stored in desiccator. Dried disks were covered 

with a thin gold-palladium layer using vapor deposition. 

Cell morphology was further analyzed by confocal microscopy using immunofluorescent 

staining to visualize nuclei, actin stress fibres and osteocalcin after 14 days of culture. The 

attached cells were rinsed with PBS (x3) and fixed in 4% paraformaldehyde (PFA, Sigma-

Aldrich, St. Louis, MO) solution in PBS. Afterwards, cells were permeabilized with 0.1% Triton 

X-100 (Sigma-Aldrich, St. Louis, MO) in PBS for 15 min and blocked with 1% bovine serum 

albumin (BSA, Sigma-Aldrich, St. Louis, MO) in PBS for 1 h. Then, discs were incubated for 1 

h with rabbit anti-osteocalcin (G-5, Santa Cruz Biotechnology Inc., Dallas, TX) (1:100 in 1% 

BSA in PBS). Subsequently, Alexa Fluor 488 chicken anti-rabbit and Alexa Fluor 546 phalloidin 

(Thermo Scientific Inc., Waltham, MA) were added and incubated for 1 h (1:1000 and 1:300 in 

0.1% Triton X-100 in PBS, respectively). For nuclei staining, discs were incubated with 4’,6-

diamidino-2-phenylindole (DAPI) for 2 min. Three rinses of 5 min each in 0.15 % glycine 

(Sigma-Aldrich, St. Louis, MO) in PBS were done between all steps. Sample discs were 

mounted in Mowiol 4-88 (Sigma-Aldrich, St. Louis, MO) and visualized in a confocal 

microscope (Leica TCS SPE, Leica Microsystems, Wetzlar, Germany). Digital images were 

processed using an image analysis software (Fiji/Image-J package, open source software). 
 

 

4.2.2.4 Cell differentiation 

The osteoblastic differentiation was assessed by measuring the expression of osteogenic genes 

by RT-qPCR. Cells were seeded on the discs (300 cells/mm
2
) and incubated for 6 h and 1 and 3 

days. Additionally, for OCN late marker, 7 and 14 days were also monitored. Prior to RNA 



CHAPTER 4  Study III 

112 
 

extraction, samples were transferred into a new well plate and rinsed with PBS (Gibco, Thermo 

Fisher Scientific Inc., Waltham, MA). Total RNA was extracted using RNeasy Mini Kit (Qiagen 

GmbH, Hilden, Germany) and quantified by NanoDrop ND-1000 spectrophotometer (NanoDrop 

Products, Thermo Fisher Scientific Inc., Waltham, MA). Equal amounts of RNA (120 ng) were 

retrotranscribed to cDNA using the QuantiTect Reverse Transcription Kit (Qiagen GmbH, 

Hilden, Germany) and then specifically amplified using selective primers (Table 4.1) by 

QuantiTect SYBR Green RT-PCR Kit (Qiagen GmbH, Hilden, Germany) in an RT-PCR 

StepOnePlus (Applied Biosystems, Thermo Fisher Scientific Inc., Waltham, MA). The 

expression values of studied genes were normalized by expression of β-actin (housekeeping 

gene) and relative fold changes (FC) were related to TCPS at 6 h of culture. The following 

formula was used: FC = Etarget
∆Cq target (TCPS 6h – sample)

 / Ehousekeeping
∆Cq housekeeping (TCPS 6 h – sample)

, 

where Cq is the median value of the quantification cycle of the triplicate of each sample and E 

corresponds to the efficiency of amplification and is determined from the slope of the log-linear 

portion of the calibration curve, as E=10
(-1/slope)

. The experiment was performed in two 

independent runs. 

 

Table 4.1. Primers’ sequences used for RT-qPCR 

Gene 
Gene 

symbol 

Forward primer sequence 

(5’ to 3’) 

Reverse primer sequence 

(5’ to 3’) 

β-actin ACTB CCCGCGAGTACAACCTTCT CGTCATCCATGGCGAACT 

Bone morphogenetic protein-2 BMP-2 CCCCTATATGCTCGACCTGT AAAGTTCCTCGATGGCTTCTT 

Alkaline phosphatase ALP GCACAACATCAAGGACATCG TCAGTTCTGTTCTTGGGGTACAT 

Collagen I Col I CATGTTCAGCTTTGTGGACCT GCAGCTGACTTCAGGGATGT 

Osteonectin ONN GTTTGAAGAAGGTGCAGAGGA GGTTCTGGCAGGGGTTTT 

Osteopontin OPN CGGTGAAAGTGGCTGAGTTT GGCTACAGCATCTGAGTGTTTG 

Osteocalcin OCN ATAGACTCCGGCGCTACCTC CCAGGGGATCTGGGTAGG 

 
 

4.2.3 In vivo study 

Ethical approval for the animal procedures was obtained from the local ethic committee 

(CEAAH 2338) and all procedures were performed in compliance with the Guide for Care and 

Use of Laboratory Animals
61

 as well as the European Community Guidelines (Directive 

2010/63/EU) for the protection of animals used for scientific purposes.
62

  

Twelve adult beagle dogs (body weight 14-17 kg) were purchased from a professional stock 

breeder (Isoquimen S.L., Barcelona, Spain). The animals were randomly divided into 2 groups of 

six dogs each, corresponding to two different experimental times (6 weeks/12 weeks) and 

acclimatized for 2 weeks prior to surgery. All surgical procedures were carried out under 

standard anesthetic and analgesic protocols. 

 

4.2.3.1 Intramuscular implantation 

The intrinsic osteoinductive potential of the materials was evaluated in a standardized 

intramuscular canine model (described in Chapter 2). Briefly, once the animals were 

anesthetized, one skin incision was performed on the lumbar region and fascia incisions were 
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created in the paraspinal muscles bilaterally. Subsequently, three intramuscular pockets were 

created on each dog, which were filled with one of the three above-mentioned cylindrical foamed 

scaffolds (5 mm of diameter x 10 mm of length).  

 

4.2.3.2 Intraosseous implantation 

To study the bone healing capacity of the same scaffolds, their potential to repair a femoral 

monocortical bone defect was evaluated in a standardized intraosseous canine model (described 

in Chapter 3), in the same group of animals. Briefly, the lateral aspect of the femur was 

approached and three round monocortical bone defects (5 mm of diameter) were drilled on the 

mid-shaft femoral diaphysis. Then, one scaffold (5 mm of diameter x 10 mm of length) was 

inserted in each defect by press-fit. 

During the postoperative period, the animals received a long-acting antibiotic and a non steroidal 

anti-inflammatory drug for 7 days, which is routinely prescribed after orthopedic surgeries. The 

animals were euthanized at 6 and 12 weeks post-implantation respectively, by an overdose of 

pentobarbital sodium, after sedation of medetomidine for animal welfare reasons. 

To sum up, one scaffold of each group was implanted intramuscularly and intraosseously in each 

dog, resulting in three intramuscular and three intraosseous scaffolds per animal (Table 4.2). 

 

Table 4.2. Summary of implanted foamed scaffolds 

 Intramuscular implantation Intraosseous implantation 

Materials 6 weeks 12 weeks 6 weeks 12 weeks 

Fine-CDHA 6 6 6 6 

Coarse-CDHA 6 6 6 6 

CO3-CDHA 6 6 6 6 
 

 

 

 

4.2.3.3 Sample harvest and histological processing 

After euthanasia, samples were immediately harvested and fixed in a buffered formalin solution 

for 72 h.  The specimens were then dehydrated in a graded ethanol series, and embedded in 

ascending graded mixtures of ethanol and methylmethacrylate resin (Technovit 7200, Heraeus 

Kulzer GmbH, Hanau, Germany) under vacuum conditions that photopolymerized under white 

and ultraviolet light for 2 and 4 h, respectively. The resulting blocks were analyzed by X-ray 

micro-CT. After micro-CT scanning, each block was divided into two equal pieces. 

Intramuscular samples were divided transversally and intraosseous samples longitudinally to 

evaluate the full thickness of the cortical bone defect. One half of each sample was polished 

(EXAKT Cutting & Grinding System, EXAKT Advanced Technologies GmbH, Norderstedt, 

Germany) and subsequently coated with carbon for BS-SEM. The other half was sliced and 

grinded (Cutting & Grinding System, EXAKT Advanced Technologies GmbH, Norderstedt, 

Germany) to obtain histological sections (50 μm). Sections were then stained with Goldner-

Masson trichrome (GMT) and toluidine blue (TB) for histological evaluation under light 

microscopy.  
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4.2.3.4 Histology and histomorphometry 

The samples were analyzed by micro-CT (SkyScan 1172, Bruker Corp., Billerica, USA) using 

the same settings as for the scaffolds scanning described above. The specimen was rotated 

through 180º with a rotation step of 0.40º, an acquisition time of 2.1 s per scan and anisotropic 

pixel size of 5 µm for the intramuscular samples and 10 µm for the intraosseous samples. The 3D 

evaluation of the samples was performed following a previously established protocol
63

 and the 

same histomorphometric parameters were measured in both groups of samples:  

a) Percentage of newly formed bone within the initial available macropore space: 

 % newly formed bone = (bone volume / initial available macropore volume) * 100 

b) Percentage of scaffold degradation, calculated by subtracting the remaining scaffold 

volume from the initial scaffold volume prior to implantation:   

 % scaffold degradation = [(initial scaffold volume – final scaffold volume) / initial scaffold volume] * 100 

For the intramuscular samples, both parameters were quantified in the entire scaffold volume, 

whereas for the intraosseous samples they were quantified only in the monocortical bone defect 

volume, without considering the intramedullarly portion of the scaffolds. 

The localization and maturity of the newly formed bone were determined based on tissue 

morphology and the different gray levels by BS-SEM imaging (Zeiss Neon40 EsBCrossBeam, 

Zeiss, Oberkochen, Germany) at a voltage of 20 kV. 

The stained histological sections were observed under light microscopy (Nikon Eclipse E800, 

Nikon Corp.,Tokyo, Japan) to evaluate histological qualitative parameters such as the degree of 

peri-implant inflammatory reaction, neovascularization, fibrous-tissue infiltration and 

osteoclastic activity. 
 

4.2.4 Statistical analysis 

The histomorphometric and in vitro results are presented as mean values ± standard error. All 

analyzed data were normally distributed according to Anderson-Darling and Kolmogorov-

Smirnov tests and showed homogeneity of variances according to Levenne’s and Barralet’s tests.  

Statistical comparisons among experimental groups at each time point were performed using 

one-way repeated measures ANOVA followed by Tukey’s post hoc test in GraphPad Prism 

software (GraphPad Software Inc., La Jolla, CA). A pair-wise comparison result of p<0.05 was 

considered statistically significant. 

 

4.3 Results 
 

4.3.1 Materials characterization 

XRD analysis showed that both the foamed cylinders and the discs consisted of low crystallinity 

hydroxyapatite containing in some cases small amounts of unreacted α-TCP (less than 2%) (Fig. 

4.1A). The ATR-FTIR spectra showed the typical phosphate bands at 570, 600, 960 and 1030 

cm
-1 

for all three groups (Fig. 4.1B).
64,65

 The detection of bands at 1471 and 1419 cm
-1

in the 

CO3-CDHA samples proved the B-type carbonate substitution in the apatite crystal lattice in 

these specimens.
5,66,67 
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The pore entrance size distribution of the different samples, as determined by MIP, is displayed 

in Fig. 4.1C. The presence of open macroporosity centered at 70 µm was confirmed in the three 

foamed scaffolds, together with pores in the micrometric and nanometric range. As expected, the 

discs, which had not been subjected to the foaming step, showed only submicrometric and 

nanometric pores. SEM images in Fig. 4.1D revealed similar pore size and spherical geometry of 

the macropores in the three foamed materials, and marked differences in micro- and 

nanostructure. Whereas Fine-CDHA scaffolds showed the typical network of entangled needle-

like nanocrystals, Coarse-CDHA and CO3-CDHA showed entangled plate-like crystals, 

significantly smaller in the latter. 

A detailed quantification of the textural properties as well as carbonate incorporation levels is 

given in Table 4.3. SSA values varied in accordance with the nanocrystal morphology, being the 

highest for Fine-CDHA samples and the lowest for the Coarse-CDHA group due to the larger 

crystal size (Fig. 4.1D). The carbonate content reached 11-12 wt% in the carbonated samples 

regardless of their dense or foamed nature, being almost negligible for the non-carbonated 

counterparts (Fine-CDHA and Coarse-CDHA). 

 

Figure 4.1.  Physicochemical characterization of Fine-CDHA, Coarse-CDHA and CO3-CDHA foams and discs: (A) 
XRD patterns. (B) ATR-FTIR spectra (C) Pore entrance size distributions determined by MIP. (D) Low magnification 
SEM images of the implanted foams showing the interconnected spherical concave macropores in all groups and 
high magnification images showing the nanostructure consisting of the typical network of entangled needle-shaped 
nanocrystals for the Fine-CDHA foams and the plate-shaped nanocrystals for the Coarse-CDHA and CO3-CDHA 
foams, significantly smaller in the carbonated samples. 
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Table 4.3. Porosity, SSA and carbonate content of the different samples  

   Porosity   

Materials  

Total 
Porosity 
by MIP 

(%) 

Macroporosity 
by MIP  

(%) 

Macroporosity 
by micro-CT 

(%) 

Macropore 
entrance 
size by 

MIP (µm) 

Macropore 
size by 

micro-CT 
(µm) 

SSA 
(m2/g) 

CO32-

content 
(wt%) 

Fine-CDHA 
Disc 57.7  - - - - 40.18 0.05 

Foam 76.5  49.5 52.3 70 227.0 38.49 0.03 

Coarse-CDHA 
Disc 51.8 - - - - 21.96 0.05 

Foam 71.1 47.6 49.3 70 302.1 19.26 0.02 

CO3-CDHA 
Disc 48.0 - - - - 29.81 11.33 

Foam 69.7 46.7 49.1 70 264.0 30.33 12.33 

 

 

4.3.2 In vitro results  

4.3.2.1 Cell adhesion and proliferation 

rMSC adhesion after 6 h was very similar in all groups (Fig. 4.2A). However, from this time 

point cell number progressively decreased on Fine- and Coarse-CDHA, whereas it significantly 

increased on CO3-CDHA, with statistically significant differences between groups at 3, 7 and 14 

days of culture.  
 

4.3.2.2 Cell morphology 

Morphological studies performed by SEM after 14 days of culture showed that the cells seeded 

on all three substrates had similar morphologies and were well spread in all cases (Fig. 4.2B). 

The main difference between groups was the density of cells, in accordance with the results 

obtained in the proliferation assay, with lower cell density on the Coarse- and Fine-CDHA 

groups compared with CO3-CDHA samples. 

Immunofluorescence assays performed at 14 days revealed that actin filaments were not well 

developed in the cells seeded on the Coarse- and Fine-CDHA discs (Fig. 4.2B). In contrast, cells 

seeded on the CO3-CDHA discs showed clearly defined actin filaments, as well as a superior 

osteocalcin activity (Fig. 4.2B), suggesting improved cell differentiation compared with the 

Fine- and Coarse-CDHA groups.  
 

4.3.2.3 Cell differentiation 

The results obtained by RT-qPCR analysis are displayed in the Appendix (Fig A4.1). In general 

terms, cells seeded on all three materials showed a superior osteogenic gene expression 

compared to those cultured on TCPS, showing significant differences at 6 h for BMP-2, Col I 

and OPN, at 1 day for all osteogenic markers except for ALP, and at 3 days for OPN and OCN. 

Moreover, the expression of OCN at 7 and 14 days was significantly higher for the cells cultured 

on the three CDHA discs than for those cultured on TCPS. Among the three nanostructured 

CDHA materials, the non-carbonated CDHA groups showed a slightly superior osteogenic gene 

expression than CO3-CDHA samples, although no statistically significant differences were 

consistently found between groups. 
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Figure 4.2. (A) LDH assay: rMSCs proliferation after 6 h, 3, 7 and 14 days. (*) denotes groups with statistically 
significant differences (p < 0.05). (B) Morphology of rMSCs at 14 days observed by SEM (first column) and by 
confocal microscopy (second and third columns). Nuclei in blue, actin fibers in red and osteocalcin in green.  
 
 

 

4.3.3 In vivo results  

There were no surgical and postoperative complications. All the intramuscular and orthotopic 

implanted scaffolds were retrieved and processed for histological evaluation and no adverse 
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foreign body reaction was observed in any case, confirming the good biocompatibility of all 

scaffolds in both implantation sides.  

 

4.3.3.1 Intramuscular implantation 

At 6 weeks, loose connective-tissue infiltration and abundant blood vessel ingrowth were 

observed within the interconnected macropores of all three groups (Fig. 4.3). However, 

significant differences were noted regarding new ectopic bone formation.  

 

Figure 4.3. Undecalcified Goldner-Masson trichrome stained sections (A,B,C) and backscattered scanning electron 
micrographs (D,E,F) after 6 weeks of intramuscular implantation. All groups showed loose fibrous-tissue (FT) 
infiltration and abundant blood vessel (arrow heads) ingrowth within the interconnected macropores. Note the new 
osteoid in pink and the well-mineralized bone matrix in dark green in the GMT stained sections. In BS-SEM images 
the calcified bone appears in light grey. Interestingly, only Fine-CDHA and CO3-CDHA groups showed new ectopic 
bone formation (arrows) at this time point, always in direct contact with the material (M) concave surfaces. (G,H,I) 
Backscattered scanning electron micrographs showing some haversian structures (white arrows), in which new bone 
is arranged concentrically surrounding a central blood vessel replicating the osteonic structure of cortical bone. 
ST=Soft tissue, M=Material. 
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Whereas newly formed bone was observed in the Fine-CDHA group in four out of six animals 

and in the CO3-CDHA group in five out of six animals, no signs of bone formation were found in 

the Coarse-CDHA scaffolds (Fig. 4.3 and Fig. 4.4). The bone found at 6 weeks mainly consisted 

in woven bone firmly attached to the concave surfaces of scaffold macropores. Moreover, a few 

haversian structures were observed, in which the lamellar bone was arranged concentrically 

surrounding a central blood vessel, replicating the osteonic structure of cortical bone (Fig. 4.3). 

  

Figure 4.4. (A) Bone incidence after 6 and 12 weeks of intramuscular implantation. (B) Histomorphometrical results: 

percentage of newly formed bone within the available macropore space after 6 and 12 weeks of intramuscular 

implantation, as measured by micro-CT. (*) denotes groups with statistically significant differences at the same time 

point (p < 0.05). 

 

A similar trend was observed after 12 weeks of implantation when a significant amount of new 

ectopic bone was observed in all animals for Fine-CDHA and CO3-CDHA groups, while in the 

Coarse-CDHA group a small amount of bone was observed only in two out of six animals (Fig. 

4.4). At this time point mature lamellar bone was formed on the Fine-CDHA and CO3-CDHA 

scaffolds while mainly woven bone was observed in Coarse-CDHA constructs (Fig. 4.5). No 

chondrocytes or any evidence of endochondral ossification was detected during ectopic bone 

formation in either group. 

Histological evaluation also showed the presence of multinucleated osteoclast-like resorbing 

cells in all groups (Fig. 4.6C). However, a larger amount of osteoclast-like cells were observed 

at both time points in the Fine-CDHA scaffolds, and especially in the CO3-CDHA scaffolds, than 

in the Coarse-CDHA ones. This was in agreement with the superior degradation rate shown by 

the CO3-CDHA and Fine-CDHA foams compared with the Coarse-CDHA (Fig. 4.6A), which 

was more pronounced in the carbonate-containing scaffolds (Fig. 4.6A/B), although in all cases 

the differences were statistically significant only after 12 weeks of implantation. It is worth 

noting that, contrary to the other two groups, the degradation of Coarse-CDHA constructs did 

not progress overtime (Fig. 4.6A). 
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Figure 4.5. Histological images of the studied scaffolds after 12 weeks of intramuscular implantation. (A,B,C) 
Backscattered scanning electron images. (D,E,F) Undecalcified Goldner-Masson trichrome stained sections. (G,H,I) 
Toluidine blue stained sections. A significant amount of well-calcified bone matrix (grey in the BS-SEM, green in 
GMT and purple in TB) and some osteon-like structures (arrows) with the characteristic haversian canals (asterisks) 
in the centre were indentified in the Fine-CDHA and CO3-CDHA foams. In contrast, small amounts of ectopic bone 
were observed in the Coarse-CDHA scaffolds. Note the new osteoid (pink in GMT and blue in TB) and osteocytes 
inside lacunae (light green in GMT and blue in TB). M=Material.   
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Figure 4.6. (A) Histomorphometrical results: percentage of scaffold degradation 6 and 12 weeks after intramuscular 
implantation, as measured by micro-CT. (*) denotes groups with statistically significant differences at the same time 
point (p <0.05). (B) Micro-CT 3D reconstructions of studied foams 12 weeks after intramuscular implantation. (C) 
Undecalcified toluidine blue stained sections of implanted scaffolds after 12 weeks of intramuscular implantation 
showing multinucleated osteoclast-like cells and macrophages resorbing the materials (arrows). Note intracellular 
material particles visible in some resorbing cells (C1,C3). M=Material, Asterisk=Ectopic bone 

 

4.3.3.2 Intraosseous implantation 

Histological analysis of the scaffolds implanted orthotopically revealed new bone tissue 

ingrowth within open macropores of all three scaffolds, in close contact with the material 

surfaces and without any intervening layer of fibrous tissue at the host cortical bone-material 

interface (Appendix, Fig. A4.2A/B/C). Moreover, all groups showed a high degree of 

neovascularization, as observed in the Goldner-Masson trichrome stained sections (Appendix, 

Fig. A4.2D/E/F).  

The main histological finding, however, was that Fine-CDHA and CO3-CDHA scaffolds 

stimulated bone ingrowth further, with newly formed bone present in the centre of the scaffolds 

already at 6 weeks postimplantation (Fig. 4.7A1/A3). Conversely, in the Coarse-CDHA 

scaffolds at this early time point new bone was formed only in the peripheral areas of the defects 

(Fig. 4.7A2).  
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Figure 4.7. Backscattered scanning electron micrographs of a section of the femoral diaphysis, showing the cortical 
bone containing the studied scaffolds, after 6 (A) and 12 weeks (B) of implantation. 
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After 12 weeks, complete bridging of bone defects were found for the Fine-CDHA and CO3-

CDHA scaffolds (Fig. 4.7B1/B3), whereas bone formation was more limited in Coarse-CDHA 

scaffolds and some empty pores were still observed in the central regions of the defects (Fig. 

4.7B2).  

These histological observations were confirmed by the histomorphometric results obtained by 

micro-CT (Fig. 4.8). The percentage of newly formed bone was significantly higher in the Fine-

CDHA and CO3-CDHA groups than in the Coarse-CDHA group, at both time points, as shown 

in Fig. 4.8A. Moreover, Fine-CDHA and CO3-CDHA groups showed a significantly higher 

degradation than the Coarse-CDHA scaffolds at 12 weeks (Fig. 4.8B). Similarly to what 

happened intramuscularly, the CO3-CDHA scaffolds showed a higher resorption than Fine-

CDHA constructs, especially at 12 weeks, and the resorption of Coarse-CDHA scaffolds did not 

progress significantly overtime (Fig. 4.8B). 

 

Figure 4.8.  Histomorphometrical results obtained by micro-CT after 6 and 12 weeks of intraosseous implantation: 
(A) Percentage of newly formed bone within the monocortical bone defect. (B) Percentage of scaffold degradation. 
(*) denotes groups with statistically significant differences at the same time point (p < 0.05).  

The consistent observation of cutting cones and multinucleated osteoclast-like cells in all groups 

was a clear indication of cell-mediated scaffold resorption and the integration of the material in 

the bone remodelling process (Appendix, Fig. A4.2G/H/I). However, similarly to the 

intramuscular study, a larger number of osteoclast-like cells was observed in the Fine-CDHA, 

and especially in the CO3-CDHA scaffolds, than in the Coarse-CDHA foams at both time points. 

  

4.4 Discussion 

The fabrication of CaP scaffolds using biomimetic routes, based on the hydrolysis of α-TCP to a 

CDHA at body temperature, and avoiding high temperature sintering processes, allowed 

mimicking the properties of bone mineral. As shown in Fig. 4.1, it was possible to tune the 

microstructure and the chemical composition of the biomimetic CDHA, modifying crystal shape 

and size, and consequently the textural properties of the materials. Using α-TCP powders of 

different sizes, either fine or coarse, allowed obtaining CDHA nanocrystals with different 

morphologies, either thin needles several hundreds of nm long or thin submicrometric plates 

respectively, with a consequent change in the SSA from 40 m
2
/g to 20 m

2
/g (Fig. 4.1D and 

Table 4.3). Although the crystals obtained were still slightly larger than the ones found in the 

bone mineral, the biomimetic route allowed approaching closely the size and morphology of 

biological apatite. 
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Concerning chemical composition, in order to increase the biomimetism of the foams, 

carbonation of the scaffolds was achieved by performing the setting reaction of the coarse α-TCP 

foams in a carbonate-containing solution. This resulted in the incorporation of carbonate in the 

CDHA structure as revealed by the displacement of the XRD peaks and the appearance of the 

bands in the ATR-FTIR spectra corresponding to B-type carbonated CDHA, the preferred type 

of carbonate substitution in bone apatite.
 4,5,7,8

 The amount of carbonate introduced in the CDHA 

was 11-12%, slightly higher than the amount contained in bone apatite, which ranges between 4 

and 8% 
4-6

 depending on the age.
68

 This was accompanied with a change in microstructure, since 

small plate-like nanocrystals with intermediate SSA (around 30 m
2
/g) were obtained (Fig. 4.1D 

and Table 4.3), in agreement with previous studies.
26 

The effects of both nanostructure and carbonate substitution in terms of osteoinduction and bone 

healing potential are discussed in the following sections. 
 

4.4.1 Effect of nanostructure and carbonate doping on osteoinduction 

The foams analyzed in the present study presented similar macropore architecture, that is, similar 

percentage of total porosity, macropore volume, macropore architecture, macropore entrance size 

and macropore size values (Fig. 4.1D and Table 4.3). The good macropore interconnectivity 

fostered a fast neovascularization in all scaffolds (Fig. 4.3). In contrast, very different trends 

were observed in terms of osteoinduction depending on nanostructure and chemical composition. 

After the intramuscular implantation of the scaffolds for 6 weeks, Coarse-CDHA scaffolds did 

not show any sign of ectopic bone formation, while both Fine-CDHA and CO3-CDHA exhibited 

high incidences of ectopic bone formation, being slightly higher for the carbonated foams (Fig. 

4.3 and Fig. 4.4). Moreover, at 12 weeks postimplantation, these two groups showed a 

significant amount of ectopic bone formation in all animals, whereas only a small amount of 

newly formed ectopic bone was observed in 2 out of 6 animals in the Coarse-CDHA group (Fig. 

4.4 and Fig. 4.5). Considering that the three groups shared the same macropore features, the 

significant differences observed in their osteoinductive potential should be ascribed to the 

nanostructure and composition of the materials. The smaller nanocrystals of the Fine-CDHA and 

CO3-CDHA scaffolds, with the associated larger SSAs compared to the Coarse-CDHA scaffolds, 

are known to enhance surface reactivity increasing the capacity to release calcium and phosphate 

ions upon cell-mediated degradation. The reactivity is moreover further promoted by the 

presence of carbonate ions. These findings go in the same direction as previous in vivo 

studies,
40,69-72

 in which it was shown that increasing the microporosity fostered osteoinduction of 

CaPs, although the range of SSAs analyzed were significantly smaller than the ones studied in 

the present work. 

The in vitro study with rMSCs showed some contradictory results. A higher cell proliferation 

(Fig. 4.2A) and more mature cell morphology (Fig. 4.2B) was observed for the cells cultured on 

CO3-CDHA discs compared with both Fine- and Coarse-CDHA discs. However, the RT-qPCR 

analysis showed, as a general trend, higher expression of osteogenic genes for the cells cultured 

on Fine- and Coarse-CDHA than on CO3-CDHA samples, with no significant differences 

between the two undoped CDHA substrates (Appendix, Fig. A4.1). 

These results, which can seem contradictory when compared with the ectopic bone formation, 

are a clear indication of the limitations of the static in vitro cell cultures to model the in vivo 

scenario, and reveal that the mechanism leading to osteoinduction cannot be reduced to a simple 
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and direct interaction between material and MSCs. The mechanism is in fact far more complex 

and involves numerous intermediate processes and interactions, which are overlooked in a 

simple in vitro MSC cell culture study.
73

 The active involvement of macrophages and osteoclasts 

in osteoinduction has been demonstrated in previous studies.
37-40,70,74,75 

The osteogenic growth 

factors secreted by these cells,
76-80

 together with the release of calcium and phosphate ions when 

resorbing the materials,
80-84

 are deemed to trigger the osteogenic differentiation of MSCs.  

In this respect, large differences were observed in the degradation behavior of the different 

foams, despite the identical or similar chemical composition between groups. Coarse-CDHA 

foams, with the lowest SSA, were the least resorbable scaffolds, being the only group where 

scaffold resorption did not progress overtime (Fig. 4.6). In contrast, Fine-CDHA and CO3-

CDHA scaffolds showed a superior and progressive resorption, with statistically significant 

differences at 12 weeks compared with Coarse-CDHA constructs (Fig. 4.6). Since the 

physiological fluid is supersaturated with respect to CDHA and CO3-CDHA, the degradation 

observed should be attributed to cell activity. In fact, a larger number of osteoclast-like cells was 

identified in both groups compared with that observed in Coarse-CDHA samples.  

Two different parameters can contribute to a higher cell-mediated degradation of a scaffold: i) 

the presence of a larger number of bone-resorbing cells, in this case osteoclast-like 

multinucleated cells; ii) the higher sensitivity of the material to the acidic pH produced by the 

bone-resorbing cells. Regarding the first factor, a higher number of osteoclast-like cells were 

observed both in the Fine- and CO3-CDHA foams compared with the Coarse-CDHA scaffolds in 

the histological analysis, which would contribute to the higher degradation rate observed in that 

groups. On top of this, the susceptibility of the biomaterial to acidic degradation is clearly 

dependent on the chemical composition and SSA of the substrate. The foams with higher SSA 

(Fine-CDHA) and carbonate content (CO3-CDHA) are more reactive, and therefore more 

susceptible to acidic degradation.
7,8,28,30,85-86

 In this respect, it is clear that the presence of 

carbonate contributed to the highest degradation observed in the carbonate containing foams, 

since the SSA of the CO3-CDHA was smaller than that of Fine-CDHA and in spite of this the 

degradation was higher. Previous in vitro32-34,36,87 and in vivo
7,35,43,45,48,88

 studies already reported 

the promotion of the osteoclastic activity by natural or synthetic carbonated apatites. The results 

found in the present work demonstrate that both carbonate content and SSA can be used to tune 

degradation. However, the fact that carbonate doping entails also a change in crystal size and 

SSA precludes the possibility to evaluate independently the effect of carbonate doping and 

textural properties.  

Interestingly, the higher activity of osteoclastic-like cells observed in the Fine- and CO3-CDHA 

foams was associated to a superior osteoinductive potential compared to the Coarse-CDHA 

constructs. This in fact is in contrast to previous studies, in which the high resorption rate 

showed by carbonated apatite scaffolds, far from being beneficial for osteoinduction, clearly 

hindered it.
8,46,47

 Carbonated apatites with a SSA of 7-10 m
2
/g and 3-8 wt% of carbonate were 

claimed to lack the stable three-dimensional macrostructure required to facilitate new bone 

growth,
 8,46,47

  and it was hypothesized that there was a limit in the increase of SSA to positively 

influence osteoinduction.
46

 In contrast, the nanostructured Fine- and CO3-CDHA analyzed in this 

work, with much higher SSA values (30-40 m
2
/g), as well as a higher carbonate content (12 

wt%)  in the case of CO3-CDHA, simultaneously presented high rates of resorption and large 

amounts of bone formation in an ectopic site. 
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4.4.2 Effect of nanostructure and carbonate doping on bone healing 

In order to assess the correlation between the osteoinductive potential and bone healing capacity, 

the same biomaterials were implanted orthotopically in the same dogs used for the intramuscular 

implantation study. Histological evaluation indicated that all scaffolds were well integrated in the 

cortical bone without any inflammatory adverse reaction (Appendix, Fig. A4.2). Similarly to 

what was observed intramuscularly, all groups showed a rich widespread blood vessel network 

within the constructs (Appendix, Fig. A4.2), which confirmed the appropriate pore 

interconnectivity, as well as the good biocompatibility of all three types of scaffolds, as 

previously reported in similar in vivo studies were CDHA
89-94

 and carbonated 

hydroxyapatite
8,35,43,45,47-49,88

 were evaluated orthotopically.  

The main finding was that the scaffolds with higher osteoinductivity, namely Fine-CDHA and 

CO3-CDHA, accelerated and promoted osteogenesis orthotopically (Fig. 4.7), as demonstrated 

by the significantly higher percentage of newly formed bone after 6 and 12 weeks compared with 

the poorly osteoinductive Coarse-CDHA constructs (Fig. 4.8A). Interestingly, whereas 

considerable bone ingrowth was observed in the peripheral regions of all scaffolds, as a result of 

their excellent osteoconductive properties triggered by the open and interconnected macropores, 

negligible amounts of bone were detected in the centre of the Coarse-CDHA scaffolds at 6 weeks 

(Fig. 4.7A2). In contrast, the early presence of new bone formation in the centre of the bone 

defects treated with the Fine- and CO3-CDHA scaffolds (Fig. 4.7A1/A3) could be ascribed to the 

high intrinsic osteoinductive capacity of these materials, demonstrated in the ectopic 

implantation experiment, although, it cannot be ruled out that the better performance of these 

two scaffolds could derive also from an increased osteoconductive capacity besides their higher 

intrinsic osteoinductive potential.
46

 At 12 weeks, the results followed the same trend, as Fine- 

and CO3-CDHA scaffolds showed a full-thickness cortical bone bridging, with the complete 

repair of the bone defects, whereas bone formation was significantly inferior in the Coarse-

CDHA scaffolds (Fig. 4.7B and Fig. 4.8A). It is worth mentioning that a good correlation 

between osteoinduction and osteogenic capacity was previously reported by other authors for 

sintered ceramics.
8,95-98 

A good match was found also when comparing the resorption behaviour in orthotopic and 

ectopic sites (Fig. 4.6A and Fig. 4.8B). Fine-CDHA scaffolds showed a significantly higher cell-

mediated resorption than Coarse-CDHA scaffolds after 12 weeks of implantation, being even 

higher in the CO3-CDHA group (Fig. 4.8B). The resorption of Coarse-CDHA constructs 

implanted intraosseously did not progress overtime (Fig. 4.8B), as already observed 

intramuscularly. The high cell-mediated resorption exhibited by the Fine-CDHA and, especially, 

by the CO3-CDHA scaffolds, in conjunction with their high osteoconductive and osteoinductive 

properties enabled an excellent synchronization between biomaterial resorption and new bone 

formation. The simultaneous degradation and bone formation is the reason for having a 

percentage of newly formed bone at 12 weeks over a hundred per cent in these two groups (Fig. 

4.8A), since the percentage was calculated over the initial macropore volume, and the final 

macropore volume was larger than the initial one and it was almost completely filled with new 

bone. 

Overall, the present results highlight on one side the importance of the nanocrystal morphology 

and SSA and suggest that there is a threshold value in terms of SSA necessary to activate the 

cell-mediated resorption and the associated osteoinductive potential, which determine the 
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osteogenic capacity of the materials in a bony environment. Regarding the effect of carbonate 

doping, although it is not possible to separate it from the textural properties since its inclusion in 

the apatite entails also a change in crystal morphology and an increase in SSA, it clearly 

increases degradation without impairing the osteoinductive properties.   

 

4.5 Conclusions 

The results obtained in the present study demonstrate that the idea of mimicking the mineral 

phase of bone is a very powerful approach to design bone substitutes with enhanced 

performance. The size and morphology of the nanocrystals, as well as the presence of carbonate, 

allow tuning the osteoinductive and osteogenic properties as well as the degradation profile of 

the CDHA. Moreover, the materials with textural and compositional properties closer to the 

biological apatite exhibited better results in terms of the synchronization between bone formation 

and material degradation. This suggests that biomimetic CDHA is able to enter the natural bone 

remodeling process, being transformed by the cells using the same mechanisms by which they 

remodel the extracellular matrix. Further studies are required in order to verify this hypothesis 

and clarify the underlying mechanisms, and the interactions of the material with the host tissue at 

a cellular and molecular level. 
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4.6 Appendix 
 

4.6.1 Gene expression of osteogenic markers of rMSCs cultured on planar discs 

 
 

Figure A4.1. Gene expression of osteogenic markers of rMSCs cultured on planar discs of the different materials 

used to fabricate the scaffolds (Fine-CDHA, Coarse-CDHA, CO3-CDHA) and measured by RT-qPCR. TCPS was 

used as a reference. Cells were cultured in basic medium. Statistical comparisons were performed between CaP 

materials. (*) denotes groups with statistically significant differences at the same time point (p < 0.05). 
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4.6.2 Histological images of the intraosseoulsy implanted scaffolds 

 

Figure A4.2. Histological images of studied scaffolds after 6 (A,B,C,D,E,F) and 12 weeks (G,H,I) of intraosseous 

implantation. (A,B,C) Toluidine blue stained sections showing the absence of fibrous capsules at the host cortical 

bone (HB) and material (M) interfaces in all groups. Note the newly formed bone (asterisks) tight bonded to material 

surfaces in all three groups of scaffolds. (D,E,F) Goldner-Masson trichrome stained sections showing abundant blood 

vessel (arrows) neoformation within the macropores of materials (M). Asterisks denote newly formed calcified bone 

matrix. (G,H,I) Toluidine blue stained sections showing multinucleated osteoclast-like cells (black arrows), which 

were consistently observed in all groups, as a clear indication of cell-mediated material (M) resorption. Asterisks 

denote newly formed calcified bone matrix. 
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GENERAL CONCLUSIONS 

This thesis was devoted to investigate the role of different intrinsic physicochemical parameters 

of CaP scaffolds on their osteoinductive, osteoconductive and osteogenic properties, as well as 

on their resorption profile in order to enhance their clinical performance as bone substitutes. The 

main conclusions are summarized below: 

 

Chapter 2. Osteoinduction by foamed and 3D-printed calcium phosphate scaffolds: effect 

of nanostructure and pore architecture 

 Nanostructure and reactivity of the CaP substrate were critical factors for osteoinduction and 

material degradation of the foamed scaffolds implanted intramuscularly. 

 The high reactivity of biomimetic CDHA, which resulted from its chemical composition, 

poor crystallinity, nanostructured nature (needle-like nanocrystals) and high SSA 

combined with the concave macroporosity produced by a foaming process, resulted in 

accelerated osteoinduction when compared with conventional sintered ceramics with the 

same macropore architecture, but with higher crystallinity, lack of nanostructure and 

significantly lower SSAs, due to the high temperature processing.  

 The high cell-mediated resorption of CDHA foams, contrary to being an obstacle for 

osteoinduction, clearly promoted it. The progressive scaffold resorption resulted in a 

simultaneous replacement by new ectopic bone, homogeneously distributed within the 

entire construct, including the periphery. 

 A different ectopic bone formation pattern was found when comparing BCP and CDHA 

foams. Contrary to what was found in the CDHA scaffolds, where ectopic bone replaced 

the biomaterial, in the BCP scaffolds bone was deposited on the surface of the material, 

progressively filling the pore space, and mainly concentrated in the centre of the 

constructs with minimal bone formation in the peripheral regions. This was attributed to 

the slower degradation of BCP foams, which could also explain the delayed ectopic bone 

formation compared to the CDHA foams. 

 The β-TCP foams showed a high and heterogeneous degradation pattern. The loss of a 

stable three-dimensional macrostructure was probably the main reason for the poor 

intrinsic osteoinduction showed by this group, despite having the same macroporosity, 

microstructure and SSA than BCP foams. 

 Pore architecture also played a crucial role in osteoinduction and material resorption of 

CDHA scaffolds implanted intramuscularly.  

 The concave macropores with small entrance sizes of the foamed scaffolds stimulated the 

intrinsic osteoinduction of CDHA when compared with the prismatic macropores with 

convex surfaces and large entrance sizes of the robocast scaffolds. This was associated to 

the distinct microenvironments created in the different scaffolds. 



CHAPTER 5  General conclusions 
 
 

138 
 

 Pore geometry had also a significant effect on material degradation. Foamed scaffolds 

showed a higher cell-mediated resorption than the robocast counterparts, suggesting that 

osteoclastic activity was influenced by the different microenvironments created by the 

distinct macropore architectures. This, in turn, confirmed the close connection between 

osteoclastic activity and osteoinduction.  

 Within the ranges analyzed in the present study (200-400 µm), macropore size of the 

robocast scaffolds was not a critical parameter, since no differences were found between 

the robocast scaffolds with different pore dimensions. 

 Tailoring both nanostructure and macropore geometry is a good strategy to enhance the 

osteoinduction of calcium phosphates. Specifically, designing nanostructured biomimetic 

CDHA with convex macropores allowed pushing the osteoinduction potential beyond the 

limits obtained for the microstructured CaP ceramics. 

  

Chapter 3. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate 

scaffolds: effect of pore architecture 

 Pore geometry played a crucial role in the in vivo performance of biomimetic CDHA 

scaffolds implanted intraosseously. Both bone healing capacity and material degradation of 

chemically identical materials (CDHA) with the same nanostructure (needle-like 

nanocrystals) and similar SSAs (≈35 m
2
/g) and pore volumes (≈70%) were drastically 

affected by the macropore architecture of the scaffolds.  

 Although CDHA was highly osteoconductive both in the robocast and foamed scaffolds, 

CDHA foams showed a superior bone healing capacity than the robocast counterparts. 

 Foamed scaffolds showed an early presence of new bone formation in the centre of bone 

defects, whereas very small amounts of bone were detected in the central macropores of 

the robocast scaffolds at six weeks. The superior bone healing capacity of the foamed 

scaffolds correlated well with their higher intrinsic osteoinductive potential, demonstrated 

previously in the ectopic implantation experiment. 

 Fibrous-tissue infiltration was significantly more extensive within the central macropores 

of the robocast samples than in the foams. This could partly explain the lower values of 

newly formed bone and, especially, the lack of new bone formation in the central regions 

of the robocast scaffolds compared with the CDHA-Foam group at 6 weeks. 

 The contribution of both osteoconduction and osteoinduction accelerated the complete 

healing of the bone defects in the foamed group. 

 The foamed scaffolds showed a superior cell-mediated resorption than the robocast 

constructs, triggering the simultaneous and progressive scaffold replacement by new 

bone, which correlated well with the degradation results obtained intramuscularly.  

 Within the ranges analyzed in the present study (200-400 µm), the different macropore 

size between the two robocast scaffolds did not have any significant effect neither on new 

bone formation nor on degradation, as observed in the intramuscular implantation study.  
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 The control of macropore architecture of CDHA nanostructured bone susbtsitutes allows 

tuning both material degradation and new bone formation. Specifcally, the foamed scaffolds 

showed a superior bone regeneration potential and higher resorption than the 3D-printed 

scaffolds. 

 

Chapter 4. Osteoinduction and osteogensis by nanostructured calcium phosphate scaffolds: 

effect of nanocrystal morphology and carbonate doping 

 Nanocrystal morphology and the associated SSA played a key role in the in vivo 

performance of biomimetic CDHA-based bone substitutes. 

 Fine-CDHA foams with needle-like nanocrystals and a high SSA (40 m
2
/g) showed a 

higher osteoinductive potential and a superior cell-mediated resorption than Coarse-

CDHA foams with plate-shaped crystals and a SSA of 20 m
2
/g. 

 The early presence of new bone formation in the centre of bone defects and the superior 

bone healing capacity showed by the Fine-CDHA scaffolds correlated well with their 

superior osteoinduction observed ectopically. Moreover, they were progressively 

resorbed and simultaneously replaced by new bone when implanted intraosseously. 

 In contrast, the Coarse-CDHA foams implanted intraosseously showed a limited bone 

healing capacity and their resorption did not progress overtime, similarly to that observed 

intramuscularly. 

 These findings suggested that there is a threshold in terms of SSA that is required to 

activate the cell-mediated resorption and the associated osteoinductive potential, which 

determine the osteogenic capacity of the materials in a bony environment. 

 Carbonate dopping of CDHA, which resulted in small plate-shaped crystals and a SSA of 30 

m
2
/g, enhanced the biological performance of scaffolds. 

 Carbonation of CDHA accelerated both the intrinsic osteoinduction and the bone healing 

capacity compared with the Fine-CDHA scaffolds despite having a lower SSA.   

 The carbonation of CDHA significantly increased the cell-mediated resorption of 

scaffolds despite having a lower SSA than Fine-CDHA scaffolds in both ectopic and 

orthotopic implantation sites.  

 These findings demonstrated that it is possible to have simultaneously high rates of 

resorption with large amount of bone formation, which allows for a gradual replacement 

of the material by the newly formed autologous bone tissue. 

 Developing materials that mimic the mineral phase of bone allows introducing the material 

in the physiological bone remodelling cycle, this resulting in a tight synchronization of 

material degradation and bone formation, and ultimately, obtaining bone substitutes with 

enhanced bone regeneration capacities. 
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FUTURE PERSPECTIVES 

The results obtained in the present thesis showed that biomimetic routes based on the self-setting 

reaction of CPCs represent a promising platform to obtain synthetic bone grafts with enhanced 

biological performance. 

The enhanced osteoinductive potential and, hence, the accelerated bone healing capacity of the 

nanostructured CDHA foams with needle-like crystals and the carbonated CDHA foams, 

together with their progressive and homogenous resorption behaviour, make them better 

candidates as bone substitutes than sintered CaPs. 

The next step toward the clinical application of these novel biomimetic bone substitutes would 

be to perform a comparative critical-seized orthotopic implantation study with a positive control 

(autograft), a negative control (empty defect) and the most widely used commercial bone grafts 

(sintered ceramics and allografts). In the proposed study would be critical also to evaluate their 

mechanical stability, since a too rapid scaffold resorption may be detrimental for bone 

regeneration, especially in the centre of the bone defect. The optimization of the mechanical 

properties of these biomimetic, macroporous foams would represent a significant benefit towards 

their clinical application.  

Although we used a standardized animal model, establishing direct comparisons with other 

studies and drawing general conclusions was challenging due to the differences found in the 

experimental protocols, including different animal models, implantation sites, implantation 

times, evaluation techniques and histomorphometrical analysis. To solve these problems, 

standardized experimental protocols for the in vivo evaluation of bone substitutes should be 

established enabling the direct comparison between preclinical studies. Eventually, only 

prospective randomized clinical trials will be able to provide the conclusive evidence that these 

novel biomimetic bone substitutes can act as a valid alternative to autologous bone grafts in 

human patients. 

Moreover, in future in vivo studies would be also interesting to work with decalcified tissue 

samples embedded in paraffin, which allow performing several immuno-histochemical tests (e.g. 

TRAP for osteoclasts, inflammatory markers, osteogenic markers) in order to shed further light 

on the cellular signaling occurring at the bone-biomaterials interface, and to better understand 

the underlying mechanisms responsible for bone induction. In the present thesis, it was not 

possible since the high temperature resin-embedding and polymerization procedures did not 

allow for this type of immuno-histochemical investigation. However, it is a line of research that 

deserves further attention to compose a larger picture of what is the exact biological response of 

such biomimetic substrates. 

Another advantage of these novel biomimetic foams compared with the conventional sintered 

ceramics is that through a setting reaction at body temperature they are able to harden in vivo 

while preserving their hierarchical porosity. Thus, they can be obtained as an injectable paste-

like material suitable for minimally invasive surgery applications. In this context, it would be 

crucial to investigate if they preserve the observed intrinsic osteoinductive potential and the 

enhanced bone healing capacity when used as an injectable foaming paste in an ectopic and 

orthotopic implantation models, respectively. 
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The design of biomimetic smart matrices able to instruct the endogenous expression of 

osteogenic growth factors, as those developed in the present thesis, has been proposed as one of 

the most promising approaches to obtain effective, affordable, safe and readily available off-the-

shelf synthetic bone substitutes to replace autografts. However, their intrinsic osteoinductive and 

osteogenic capacities could be insufficient in certain compromised clinical scenarios. Moreover, 

depending on the clinical problem different types of substitutes or combinations (polytherapy) 

are necessary. Therefore, this new family of low-temperature biomimetic bone grafts emerges as 

a promising starting point to find the ideal carrier for drugs, bioactive molecules or even cells 

without protein thermal denaturalization or loss of activity associated with the high-temperature 

processing techniques. For instance, their high SSAs, their increased protein entrapment 

capacity, and their boosted intrinsic osteoinduction could avoid the use of expensive and unsafe 

megadoses of exogenous growth factors and may simplify the regulatory path towards the 

clinical application of these bone tissue engineering strategies.  

Finally, although the optimized robocast scaffolds showed a limited osteoinductive potential, 

they demonstrated excellent osteoconductive capacities. Moreover, 3D printing technology 

enables a fast fabrication of individual complex geometrical scaffolds with high precision on the 

internal architecture and on the outer shape and with a high reliable reproducibility, which 

constitute a remarkable clinical advantage. Robocast scaffolds can be built in the shape of the 

pacient-specific bone tissue defect given by the computer-aided design specifications based on 

computerized tomography or magnetic resonance imaging 3D data files of patients. This 

matching of the shape should help to reduce the surgical time, as well as the bone healing time. 

On the other hand, the superior control on the internal architecture allows exploring new insights 

into the cell-material interactions, such as the importance of macropores surface curvature.While 

in the present work we chose the simplest geometrical pattern with orthogonal struts, the 

osteoinductive and osteogenic potentials of other patterns, with more complex internal 

architectures should be assessed in future studies. An alternative strategy to improve the 

biological performance of these biomimetic robocast scaffolds would be to combine them with 

bioactive molecules and MSCs during the 3D-printing process thanks to the beneficial low-

temperature setting reaction, which avoids the harmful sintering step. Therefore, the results 

obtained in the present thesis, far from going against 3D-printing, stress the importance of 

pushing the enormous possibilities of this technique in the right direction.   
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