
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Programa de Doctorat:
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Abstract

This PhD thesis presents a methodology to detect, estimate and locate water leaks

(with the main focus in the localization problem) in water distribution networks

using hydraulic models and machine learning techniques. The actual state of the

art is introduced, the theoretical basis of the machine learning techniques applied

are explained and the hydraulic model is also detailed. The whole methodology

is presented and tested into different water distribution networks and district me-

tered areas based on simulated and real case studies and compared with published

methods.

The focus of the contributions is to bring more robust methods against the un-

certainties that affects the problem of leak detection, by dealing with them using

the self-similarity to create features monitored by the change detection technique

intersection-of-confidence-interval, and the leak localization where the problem is

tackled using machine learning techniques. By using those techniques, it is expected

to learn the leak behavior considering their uncertainty to be used in the diagnosis

stage after the training phase.

One method for the leak detection problem is presented that is able to estimate

the leak size and the time instant when the leak has been produced. This method

captures the normal, leak-free, behavior and contrast it with the new measurements

in order to evaluate the state of the network. If the behavior is not normal, it is

checked if it is due to a leak. To have a more robust leak detection method, a specific

validation is designed to operate specifically with leaks and in the temporal region

where the leak is most apparent.



The proposed technique is compared with other published methods providing a more

reliable detection, specially with small leaks, as long as more information can be used

later in the leak localization stage to improve it but at the cost of slower detection

time than the other methods.

A methodology to extend the current model-based approach to localize water leaks

by means of classifiers is proposed where the non-parametric k-nearest neighbors

classifier and the parametric multi-class Bayesian classifier are proposed.

The proposed model-based leak localization using classifiers allows to better handle

the uncertainty surrounding the data used for the diagnosis which derives in an

improved precision of the localization result. The main drawback relies on the

computational cost, in an off-line stage, of the data required by the classifier to learn

the dispersion of the data. Also, the method is highly dependent of the hydraulic

model of the network.

A new data-driven approach to localize leaks using a multivariate regression tech-

nique without the use of hydraulic models is also introduced. This method presents a

clear benefit over the model-based techniques by removing the need of the hydraulic

model despite of topological information is still required. Also, the information of

the expected leaks is not required since information of the expected hydraulic be-

havior with leak is exploited to find the place where the leak is more probable. This

method has a good performance in practice, but it is very sensitive to the number

of sensors in the network and their location.

The performance of leak localization methods is highly sensitive to the sensor place-

ment. Additionally, it must be noticed that the optimal for different leak localization

methods can be different. With the aim of maximizing the performance of the pro-

posed leak localization methods, several sensor placement approaches are presented

and evaluated since the combinatorial problem can not be handled by trying each

possible sensor configuration except for the smallest networks with only few sen-

sors to install. The proposed approaches exploit the potential of feature selection

techniques to perform the desired sensor placement task.

The proposed sensor placement techniques reduce the computational load required to
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take into account the amount of data needed to model the uncertainty compared with

other optimization approaches while are designed to work with the leak localization

problem. More precisely, the proposed hybrid feature selection technique for sensor

placement is able to work with any leak localization method that can be evaluated

using a confusion matrix and still being optimum for that method. This last method

is good for a few sensors, but lacks of precision when the number of sensors to place

is large. To overcome this problem, an incremental sensor placement is proposed

which is better for a larger number of sensors to place but worse when the number

is small.
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Resum

Aquesta tesi presenta una nova metodologia per a localització de fuites en xarxes

de distribució d’aigua potable. Primer s’ha revisat l’estat del art actual i les bases

teòriques tant de les tècniques de machine learning utilitzades al llarg de la tesi

com els mètodes existents per a la localització de fuites. La metodologia presentada

s’ha provat en diferents xarxes d’aigua simulades i reals, comparant el resultats amb

altres mètodes publicats.

L’objectiu principal de la contribució aportada és el de desenvolupar mètodes més

robustos enfront les incerteses que afecten a la localització de fuites. En el cas de

la detecció i estimació de la magnitud de la fuita, s’utilitza la tècnica self-similarity

per crear els indicadors que es monitoritzen amb la tècnica de detecció de canvis

(”intersection-of-confidence-intervals”). En el cas de la localització de les fuites,

s’han fet servir les tècniques de classificadors i interpoladors provinents del machine

learning. A l’utilitzar aquestes tècniques s’espera captar el comportament de la fuita

i de la incertesa per aprendre i tenir-ho en compte en la fase de la localització de la

fuita.

El mètode de la detecció de fallades proposat és capaç d’estimar la magnitud de

la fuita i l’instant en que s’ha prodüıt. Aquest mètode captura el comportament

normal, sense fuita, i el contrasta amb les noves mesures per avaluar l’estat de la

xarxa. En el cas que el comportament no sigui el normal, es procedeix a comprovar

si això és degut a una fuita. Per tenir una mètode de detecció més robust, es fa

servir una capa de validació especialment dissenyada per treballar espećıficament

amb fuites i en la regió temporal en que la fuita és més evident.



La tècnica proposada s’ha comparat amb altres mètodes ja publicats donant com

a resultat una detecció més fiable, especialment en el cas de les fuites més petites.

Al mateix temps dona més informació que pot ser utilitzada desprès en la fase de

localització de la fuita per tal de millorar-la. L’únic inconvenient d’aquest mètode,

és que és més lent en la detecció que els altres mètodes analitzats.

Per tal de millorar l’actual metodologia de localització de fuites mitjançant models

hidràulics s’ha proposat l’ús de classificadors. Per una banda es proposa el classifi-

cador no paramètric k-nearest neighbors i per l’altre banda el classificador Bayesià

paramètric per múltiples classes.

Les tècniques de localització de fuites basades en models i classificadors permeten

controlar millor la incertesa associada a les dades utilitzades en la diagnosi que

resulta en una millora de la precisió en la localització de la fuita. El principal

problema recau en el cost computacional, tot i que no cal que és realitzi en temps

real, de les dades necessàries per entrenar el classificador de forma que aprengui bé

la dispersió de les dades. També, destacar que els mètodes són molt dependents del

model hidràulic que descriu la xarxa.

En el camp de la localització de fuites, també s’ha desenvolupat un nou mètode de

localització de fuites basat en models de dades mitjançant la regressió de múltiples

paràmetres sense l’ús del model hidràulic de la xarxa. Aquest mètode presenta

uns beneficis clars respecte a les tècniques basades en models hidràulics a l’eliminar

el model hidràulic tot i que la informació topològica encara és necessària. També

representa un avantatge el fet que la informació de cada fallada contemplada no és

necessària, ja que s’utilitza el coneixement hidràulic que s’espera quan hi ha una

fuita en un determinat lloc de la xarxa. Aquest mètode ha donat bons resultats a

la pràctica, però és especialment sensible al nombre de sensors utilitzats i a la seva

disposició en la xarxa.

Finalment, s’ha tractat el problema de la col·locació de sensors. El rendiment de

la localització de fuites està relacionada amb la col·locació de sensors i és particu-

lar per a cada mètode de localització. Amb l’objectiu de maximitzar el rendiment

dels mètodes de localització de fuites presentats anteriorment, es presenten i aval-
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uen tècniques de col·locació de sensors espećıficament dissenyats ja que el problema

combinatori no es pot tractar avaluant cada possible combinació de sensors excepte

en les xarxes més petites amb pocs sensors per instal·lar. Aquestes tècniques de

col·locació de sensors exploten el potencial de les tècniques de selecció de variables

per tal de realitzar la tasca desitjada.

Les tècniques proposades de col·locació de sensors redueixen el cost computacional

necessari, al tenir en compte les dades necessàries per tal de modelar la incertesa,

comparat amb altres tècniques d’optimització al mateix temps que està dissenyat

per treballar espećıficament per la tasca de localització de fuites. Més concretament,

la proposta de la tècnica h́ıbrida de selecció de variables és capaç de treballar amb

qualsevol mètode de localització de fuites que és pugui avaluar amb la matriu de con-

fusió de tal forma que continuarà sent òptim per a aquesta tècnica. Aquest mètode

té un bon comportament quan s’han de col·locar pocs sensor, però li falta precisió

quan el nombre de sensors a col·locar augmenta. Per resoldre aquest problema, s’ha

proposat mètode incremental de col·locació de sensors que té millors resultats en cas

d’un gran nombre de sensors a col·locar però pitjor quan el nombre de sensors és

petit.
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Resumen

Esta tesis doctoral presenta una nueva metodoloǵıa para detectar, estimar el tamaño

y localizar fugas de agua (donde el foco principal está puesto en el problema de la

localización de fugas) en redes de distribución de agua potable. La tesis presenta

una revisión de el estado actual y las bases de las técnicas de machine learning que

se aplican aśı como una explicación del modelo hidráulico de las redes de agua. El

conjunto de la metodoloǵıa se presenta y prueba en diferentes redes de distribución

de agua y sectores de consumo con casos de estudio simulados y reales, y se compara

con otros métodos ya publicados.

La contribución principal es la de desarrollar métodos más robustos frente a la

incertidumbre de los datos. En la detección de fugas, la incertidumbre se trata

con la técnica del self-similarity para la generación de indicadores que luego son

monitoreados per la técnica de detección de cambios conocida como intersection-of-

confidece-interval. En la localización de fugas el problema de la incertidumbre se

trata con técnicas de machine learning. Al utilizar estas técnicas se espera aprender

el comportamiento de la fuga y su incertidumbre asociada para tenerlo en cuenta en

la fase de diagnóstico.

El método presentado para la detección de fugas tiene la habilidad de estimar la

magnitud y el instante en que la fuga se ha producido. Este método captura el

comportamiento normal, sin fugas, del sistema y lo contrasta con las nuevas medidas

para evaluar el estado actual de la red. En el caso de que el comportamiento no sea

el normal, se comprueba si es debido a la presencia de una fuga en él sistema. Para

obtener un método de detección más robusto, se considera una capa de validación



especialmente diseñada para trabajar espećıficamente con fugas y durante el periodo

temporal donde la fuga es más evidente.

Está técnica se compara con otras ya publicadas proporcionando una detección más

fiable, especialmente en el caso de fugas pequeñas, al mismo tiempo que proporciona

más información que puede ser usada en la fase de la localización de la fuga permi-

tiendo mejorarla. El principal problema es que el método es más lento que los otros

métodos analizados.

Con el fin de mejorar la actual metodoloǵıa de localización de fugas mediante mod-

elos hidráulicos, se propone la utilización de clasificadores. Concretamente, se pro-

pone el clasificador no paramétrico k-nearest neighbors y el clasificador Bayesiano

paramétrico para múltiples clases.

La propuesta de localización de fugas mediante modelos hidráulicos y clasificadores

permite gestionar la incertidumbre de los datos mejor para obtener un diagnóstico

de la localización de la fuga más preciso. El principal inconveniente recae en el

coste computacional, aunque no se realiza en tiempo real, de los datos necesarios

por el clasificador para aprender correctamente la dispersión de los datos. Además,

el método es muy dependiente de la calidad del modelo hidráulico de la red.

En el campo de la localización de fugas, se a propuesto un nuevo método de lo-

calización de fugas basado en modelos de datos mediante la regresión de múltiples

parámetros sin el uso de modelo hidráulico. Este método presenta un claro beneficio

respecto a las técnicas basadas en modelos hidráulicos ya que prescinde de su uso,

aunque la información topológica de la red es aún necesaria. Además, la información

del comportamiento de la red para cada fuga no es necesario, ya que el conocimiento

del efecto hidráulico de una fuga en un determinado punto de la red es utilizado

para la localización. Este método ha dado muy buenos resultados en la práctica,

aunque es muy sensible al número de sensores y a su colocación en la red.

Finalmente, se trata el problema de la colocación de sensores. El desempeño de la lo-

calización de fugas está ligado a la colocación de los sensores y es particular para cada

método. Con el objetivo de maximizar el desempeño de los métodos de localización

de fugas presentados, técnicas de colocación de sensores espećıficamente diseñados
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para ellos se han presentado y evaluado. Dado que el problema de combinatoria

que presenta no puede ser tratado analizando todas las posibles combinaciones de

sensores excepto en las redes más pequeñas con unos pocos sensores para instalar.

Estas técnicas de colocación de sensores explotan el potencial de las técnicas de

selección de variables para realizar la tarea deseada.

Las técnicas de colocación de sensores propuestas reducen la carga computacional,

requerida para tener en cuenta todos los datos necesarios para modelar bien la in-

certidumbre, comparado con otras propuestas de optimización al mismo tiempo que

están diseñadas para trabajar en la tarea de la localización de fugas. Más concre-

tamente, la propuesta basada en la técnica h́ıbrida de selección de variables para la

colocación de sensores es capaz de trabajar con cualquier técnica de localización de

fugas que se pueda evaluar con la matriz de confusión y ser a la vez óptimo. Este

método es muy bueno para la colocación de sensores pero el rendimiento disminuye

a medida que el número de sensores a colocar crece. Para evitar este problema, se

propone método de colocación de sensores de forma incremental que presenta un

mejor rendimiento para un número alto de sensores a colocar, aunque no es tan

eficaz con pocos sensores a colocar.
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Notation

The following notation is used along the PhD thesis.

Variables, Vectors and Matrices

a: exponential flow coefficient

c, c̃ and c̄: actual, measured and generated boundary conditions

cd: operational conditions

cl: class

di, d̂i and d̄i: actual, estimated and generated demand at node i

d
(u)
i : amplitude of nodal demand uncertainty at node i

d̃WDN , d̂WDN and d̄WDN : measured, estimated and generated global consumption

d̃
(T )
WDN : reference global consumption

d
(u)
WDN : amplitude of global demand consumption uncertainty

e: squared relative error

e(H): vector with historical squared relative errors

ec: elite count value

fi: sum of flow that pass through node i

f li,j : flow between nodes i and j

fun(·): function

funp(·): polynomial function

func(·): correlation function

hi: head (pressure taking into account the geodesic level) at node i

k: number of nearest neighbors used in the k-Nearest Neighbors algorithm

li, l̂i and l̄i: actual, estimated and generated leak at node i
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l
(u)
i : amplitude of leak size uncertainty at node i

l(0): leak without uncertainty

lmin: minimum detectable leak

∆l: leak size estimation error

m: dimension of the variagrom in the Kriging interpolation

mT : samples in the training data set for each class

mV : samples in the validation data set for each class

maxg: maximum number of generations

nb: number of boundary conditions

nc: number of classes

nf : number of features

n
(R)
f : reduced number of features

nn: number of nodes

ns: number of measurements

nsp: number of sensor already placed

pi, p̂i and p̄i: actual, estimated and generated pressure at node i

p̂
(0)
i and p̂

(lj ,0)
i : estimated pressure without leak and with leak and both without

uncertainties

ps: population size

q: vector with the sensor configuration

q(H): vector of historical sensor configurations for each number of sensors

r: vector of residuals

r(+): vector of processed (to make them all positive) residuals

s: current self-similarity patch

t: continuous time

tol: stopping tolerance criteria

u: order of the polynomial function in the Kriging interpolation

w: vector of values used in the Wilcoxon’s test

x: vector of inputs (to a machine learning technique)

xT : vector of training inputs (to a machine learning technique)
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y: vector of outputs (from a machine learning technique)

yT : vector of training outputs (from a machine learning technique)

C: roughness of the pipe

D: diameter of the pipe

D: minimum topological distance matrix

F: feature space

F(R): reduced feature space

I: matrix of population members in the genetic algorithm

L: length of the pipe

N : time horizon

Nr: number of valid samples in the Wilcoxon’s test

P : probability

Q: matrix with different sensor configurations in the genetic algorithm

Q(H): matrix with historic sensor configurations for each number of sensors in the

genetic algorithm

R: vector of relevance values of each feature

RR: vector of relevance values ranked starting with the most relevant

T: training data set

T(R): reduced training data set

T ∗: leak starting time

T̂ ∗: estimated leak starting time

T̂ : detection time

V: validation data set

V(R): reduced validation data set

W : Wilcoxon’s test result before the application of the reference tables to obtain

the test statistic

α: demand pattern coefficient

β: size of the repetitive pattern

γ: user defined threshold

δ: number of samples used to validate a detected change
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ε(·): function part of the Kriging interpolation

2ζ + 1: self-similarity patch size

θ: vector of correlation parameters for the Kriging interpolation

ϑ: user defined threshold

ι: number of samples for the creation of a confidence interval

λi: i
th row of the average training matrix

µ: mean of the current self-similarity features

µT : mean of the self-similarity features training data set

ν and ν̄: actual and generated noise

ν(u): amplitude noise uncertainty

ξ: indicator of the position of patch centers inside the self-similarity training data

set

π: most similar patch to the current one inside the self-similarity training data set

$: estimated parameter in the Kriging interpolation

ρ: Pearson’s correlation coefficient

%: self-similarity feature

σ: standard deviation of the current self-similarity features

σT : standard deviation of the self-similarity features training data set

ς: estimated parameter in the variable part in the Kriging interpolation

τ : estimated parameter for the constant part in the Kriging interpolation

ϕ: user defined threshold based on y value

χ: vector of polynomial coefficients for the Kriging interpolation

Γ: confusion matrix

Λ: average training matrix

Υ: confidence parameter for the creation of intervals-of-confidence

Φ: matrix with the correlation distance between each pair of features

Φ(B): matrix with the allowed pairs of combinations

Ψ: data distribution

Ω: sensitivity matrix

I: interval of confidence
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I(+): upper bound of a confidence interval

I(−): lower bound of a confidence interval

R: vector with the weight of the samples used in the Wilcoxon’s test

ai: discrepancy between the simulated and real measurement i

a
(c)
i : centered to zero discrepancy between the simulated and real measurement i

di: i
th row of the matrix D

f: position of the actual measurement inside the repetitive pattern considered

r: coefficient of the pipe resistance

s: ith row of the sensitivity matrix

y: average value of Φ matrix without the diagonal

Ai: vector of measurements of attribute i for a time period

D: matrix with the minimum pipe distance between nodes

Ds: submatrix of D with the minimum pipe distance between nodes with sensors

installed

H: constant part of the Kriging interpolation

S: normalized r(+)

Smax: maximum possible value of S

Smin: minimum possible value of S

Z: user defined parameter in the residual normalization process

Acronyms

Ac: Accuracy

AIS: Artificial Immune System

AL: Acoustic Logging

AMR: Automatic Meter Reader

ANN: Artificial Neural Network

ApEn: Approximate Entropy

ARX: AutoRegressive with eXogenous terms

BFS: Backward Feature Selection

BN: Bayesian Network
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BR: Bayesian Reasoning

CCM: Consumers Contact Model

CDT: Change Detection Test

CFPD: Comparison of Flow Pattern Distributions

CPS: Cyber Physical System

CUSUM: CUmulative SUMmation

DD: Detection Delay

DMA: District Metered Area

DMOD: Distance to MODel

DPCA: Distributed Principal Component Analysis

DTD: Difference Time Detection

EA: Evolutionary Algorithm

EM: Expectation Maximization

EN: Elman Network

EPR: Evolutionary Polynomial Regression

ER: Evidential Reasoning

ES: Exhaustive Search

FCBF: Fast Correlation-Based Filter

FDI: Fault Detection and Isolation

FFT: Fast Fourier Transform

FNR: False Negative Rate

FPR: False Positive Rate

FRM: Frequency Response Analysis

FS: Feature Selection

FSM: Fault Signature Matrix

GA: Genetic Algorithm

GMM: Gaussian Mixture Model

GPR: Ground Penetrating Radar

HLR: Head Loss Ratio

HMM: Hidden Markov Model
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IA: Inverse Analysis

ICI: Intersection of Confidence Interval

IDW: Inverse Distance Weighted interpolation

i.i.d.: independent and identically distributed

IRA: Inverse Response Analysis

ITA: Inverse Transient Analysis

JTFA: Joint Time frequency Analysis

KF: Kalman Filter

k-NN: k-Nearest Neighbors

KPCA: Kernel Principal Component Analysis

LNC: Leak Noise Correlator

LP: Local Polynomial interpolation

LPV: Linear Parameter Varying

LRM: Leak Reflection Method

MDN: Mixture Density Model

MLP: Multi-Layer Perception

MNF: Minimum Night Flow

NKF: Non-linear Kalman Filter

NOP: Normal Operating Patterns

NN: Nearest Neighbor

NPW: Negative Pressure Wave

NRW: Non-Revenue Water

OC: Ordinary Cokriging

OK: Ordinary Kriging

PBMP: Pipe Burst Model Prediction

PCA: Principal Component Analysis

PDF: Probability Density Function

PF: Particle Filter

PGM: PiG-Mounted acoustic

PRV: Pressure Reducing Valve
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PSO: Particle Swarm Optimization

RBF: Radial Basis Function

RF: Random Forest

SCEM-UA: Shuffled Complex Evolution Metropolis

SFFS: Sequential Forward Floating Selection

SOM: Self Organized Map

SPC: Statistical Process Control

SPE: Squared Prediction Error

SS: Self-Similarity

STFT: Short-Time Fourier Transform

SVD: Single Value Decomposition

SVM: Support Vector Machines

SVR: Support Vector Regression

SWDM: Standing Wave Difference Method

TGT: Tracer Gas Technique

WDN: Water Distribution Network
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1. Introduction

This chapter introduces the topic addressed in the PhD thesis as well as the moti-

vations to elaborate it. The structure of the PhD thesis is also presented.

1.1. Motivation

Water Distribution Networks (WDNs) are one of the most important infrastructures

in cities nowadays. The concern of their efficient management has been increasing

with the aim of reducing the water loss due to the need to fulfill the demand of the

growing population.

This kind of infrastructure has been presenting a lower performance in practice

(Kingdom et al., 2006), with an estimated loss of water, called Non-Revenue Water

(NRW), around 27 % Worldwide average according to the Global Water Intelligence

survey in 2008 (Global Water Intelligence, 2008).

This NRW is composed of two factors, water losses and unbilled authorized con-

sumption (e.g., consumption through fire hydrants by firefighters). The water losses

are divided into “real losses” and “apparent losses”. The apparent losses are formed

by errors in the measurements and measurements under-registration (e.g., consump-

tion made by illegal connections). The real losses are the leakage in the WDN. In

(Lambert, 2003), these concepts are further explained. To reduce water losses some

methodologies can be applied in terms of pressure control (Mutikanga et al., 2012).

On the one hand, there is the “background leakage”, which is the amount of water

loss due to small leaks (e.g., water loss trough pipe junctions, undetectable leaks or
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small leaks that are not worth to be repaired). On the other hand, there are the

leaks that are relevant and need to be repaired.

With the aim of reducing the amount of leakage in WDNs, different lines of research

are open in the field of leak detection, leak isolation (leak localization) and leak

estimation (quantifying the leak size). For leak isolation, two kinds of objective

methodologies exists: the methods used to detect the existence of a leak in an area

and the methods which allow determining the exact location. In practice, both are

used in combination to find the leaks. Since the WDN are large systems, the water

companies used to divide the network into District Metered Areas (DMAs), where

the flow and the pressure are measured and to maintain a permanent leakage control-

system: leakages in fact increase the flow and decrease the pressure measurements

at the DMA entrance.

1.2. Objectives

WDNs are large scale systems which are very difficult to model with accuracy. More-

over, also some relevant parameters like the consumer demands or the leak size usu-

ally are not available, so they must be estimated or treated as uncertainty. Apart

from these problems, the budget constraints limit the number of sensors that can

be installed inside the WDN.

By using the model of the WDN, it is possible to generate residuals (i.e., differences

between estimations provided by the model and measurements provided by sensors

installed) that are indicative of leaks. Unfortunately, all the problems commented

above, together with the difficult manipulation of the WDN model equations (im-

plicit non-linear equations), limit the application of the classical Fault Detection

and Isolation (FDI) structured residual framework, where it is assumed that there

is a clear binary relation between faults (leaks) and residuals. In practice, all the

leaks affect all the residuals to some extent and this complicates the analysis of the

residuals. In this context, the techniques developed in the machine learning field are

potentially useful.

2
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The objective of this PhD thesis is to research new techniques to locate the leaks

in WDNs using a model-based approach and machine learning techniques with the

aim of achieving accuracy and robustness against the associated uncertainties (not

precisely known nodal demands, unknown leak size, noise in the measurements,

WDN parameter uncertainties, etc.). Moreover, a data-driven approach where the

model is not needed is studied. Additionally, the problem of optimal sensor location,

in accordance with the proposed leak localization methods, is also studied. Finally,

a leak detection technique is developed to enhance the leak localization approach

while reducing the uncertainties and maximizing the use of the available data in the

diagnosis.

1.3. Outline of the PhD Thesis

This PhD thesis has been organized in seven chapters. Chapter 2 presents the water

distribution network model, the state of the art regarding to the leak detection and

localization tasks and the introduction of the machine learning techniques used in the

following chapters. Then, the case studies where the proposed methods are tested

are introduced in Chapter 3. Chapter 4 presents a leak detection method. Chapter 5

presents a model-based leak localization approach while in Chapter 6 a data-driven

leak localization approach is proposed. The problem of sensor placement for the

proposed leak localization approaches is addressed in Chapter 7. Finally, Chapter 8

draws the conclusions, the contributions of this PhD thesis and the future work.

1.3.1. Chapter 2: Background

Chapter 2 presents the theory of the modeling of WDNs and how the models are used

to generate data for the proposed methods presented later. The past and current

leak detection and localization approaches in the literature are revised as well as

the sensor placement techniques available for them. Finally, a brief introduction

to the machine learning terminology and the techniques used in the proposed leak

3
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detection and localization methods are theoretically described.

1.3.2. Chapter 3: Case Studies

In Chapter 3, the different case studies where the proposed methods have been

applied, including some real cases, are described.

1.3.3. Chapter 4: Leak Detection

Chapter 4 presents a leak detection technique based on a data-driven method that

makes use of the self-similarity and an improved intersection-of-confidence-interval

change detection test to work specifically with the detection of leaks, which is able

to estimate when the leak has started and to estimate the leak size.

Related publications:

Soldevila, A., Boracchi, G., Roveri, M., Tornil-Sin, S., & Puig, V. (2018). Method-

ology for Leak Detection and localization in Water Distribution Networks. To be

submitted at the IEEE Transactions on Systems, Man and Cybernetics: Systems.

1.3.4. Chapter 5: Model-Based Leak

Localization

Chapter 5 presents a model-based leak localization methodology that combines the

use of hydraulic models with machine learning techniques, particularly the non-

parametric k-NN algorithm and the parametric multi-class Bayesian classifier, to

deal with the uncertainties that exist in practice and, therefore, improve robustness.

Related publications:

Ferrandez-Gamot, L., Busson, P., Blesa, J., Tornil-Sin, S., Puig, V., Duviella, E., &

Soldevila, A. (2015). Leak localization in water distribution networks using pressure

residuals and classifiers. IFAC-PapersOnLine, 48 (21), 220-225.

Soldevila, A., Fernandez-Canti, R. M., Blesa, J., Tornil-Sin, S., & Puig, V. (2016,
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June). Leak localization in water distribution networks using model-based Bayesian

reasoning. In European Control Conference (ECC), 2016 (pp. 1758-1763). IEEE.

Soldevila, A., Blesa, J., Tornil-Sin, S., Duviella, E., Fernandez-Canti, R. M., &

Puig, V. (2016). Leak localization in water distribution networks using a mixed

model-based/data-driven approach. Control Engineering Practice, 55, 162-173.

Soldevila, A., Fernandez-Canti, R. M., Blesa, J., Tornil-Sin, S., & Puig, V. (2017).

Leak localization in water distribution networks using Bayesian classifiers. Journal

of Process Control, 55, 1-9.

Soldevila, A., Tornil-Sin, S., Blesa, J., Fernandez-Canti, R. M., & Puig, V. (2017).

Leak Localization in Water Distribution Networks Using Pressure Models and Clas-

sifiers. In Modeling and Monitoring of Pipelines and Networks (pp. 191-212).

Springer International Publishing.

1.3.5. Chapter 6: Data-Driven Leak

Localization

Chapter 6 presents a new methodology for leak localization without the use of hy-

draulic models. This is done by means of an interpolation technique and the Bayes

rule to infer from the new measurements information that is present when leaks are

in a particular location inside the network.

Related publications:

Soldevila, A., Blesa, J., Fernandez-Canti, R. M., Tornil-Sin, S., & Puig, V. (2018).

Data-Driven Approach for Leak Localization in Water Distribution Networks. Sub-

mitted to the Water Resources Management.
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1.3.6. Chapter 7: Sensor Placement

Chapter 7 presents different sensor placement methods for the different leak local-

ization approaches presented in the two previous chapters. The use of a genetic

algorithm and feature selection techniques are used standalone and in combination

with other approaches to retrieve suitable sensor placement to enhance the leak

localization performance.

Related publications:

Soldevila, A., Tornil-Sin, S., Fernandez-Canti, R. M., Blesa, J., & Puig, V. (2016,

September). Optimal sensor placement for classifier-based leak localization in drink-

ing water networks. In 3rd IEEE Conference on Control and Fault-Tolerant Systems

(SysTol), 2016 (pp. 325-330).

Soldevila, A., Blesa, J., Tornil-Sin, S., Fernandez-Canti, R. M., & Puig, V. (2017).

Sensor Placement for Classifier-Based Leak Localization in Water Distribution Net-

works. In Modeling and Monitoring of Pipelines and Networks (pp. 213-233).

Springer International Publishing.

Soldevila, A., Blesa, J., Tornil-Sin, S., Fernandez-Canti, R. M., & Puig, V. (2018).

Sensor placement for classifier-based leak localization in water distribution networks

using hybrid feature selection. Computers & Chemical Engineering, 108, 152–162.

Soldevila, A., Blesa, J., Fernandez-Canti, R. M., Tornil-Sin, S., & Puig, V. (2018).

Data-Driven Approach for Leak Localization in Water Distribution Networks. Sub-

mitted to Water Resources Management.

1.3.7. Chapter 8: Conclusions

Chapter 8 presents the conclusions of this PhD thesis, and highlights the main

contributions made during its elaboration. Finally, some future work to be done in

line of this PhD thesis is proposed.

6



2. Background

This chapter introduces the concept of WDNs and their modeling. The past and

recent leak detection and localization techniques are presented. Finally, the basic

terminology of machine learning and the methods of that field used in this PhD

thesis are explained.

2.1. Water Distribution Networks

WDNs, usually organized in DMAs, are large scale systems formed by inlets (that

typically correspond to reservoirs) that feed the network with water, pipes that

distribute the water across the network and nodes which can be junctions between

pipes or points where the consumer users are connected with the network. An

example of a DMA network is depicted in Figure 2.1. Reservoirs are placed in an

elevated place to assure a good pressure service for the costumer where Pressure

Reducing Valves (PRVs) can be used to regulate pressure with the aim of reducing

the background leakage and extent the life of the network.

WDNs can be modeled with the non-differential Hazen-Williams equation as a static

system considering that the changes in demands and flows are slow enough to con-

sider the system operating in steady-state. The Hazen-Williams equation describes

the flow in the pipes by

fli,j =

(
hi − hj

r

)a−1

(2.1)

where fli,j is the flow in the pipe between the nodes i and j in [m3/s] which is positive

7



Chapter 2. Background

X coordinate [m]
0 2000 4000 6000 8000

Y
co
o
rd
in
a
te

[m
]

2000

4000

6000

8000

10000

12000

Reservoir

Node

Pipe

Figure 2.1: Limassol topological DMA network.

from i to j, hi and hj are the head (pressure taking into account the elevation of

the node) of nodes i and j respectively in [m], r is a adimensional coefficient that is

depends on the physical characteristics of the pipe

r = 1.2216 · 1010 L

CaD4.87
(2.2)

where L is the length of the pipe in [m], C is the roughness of the pipe, D is the

diameter of the pipe in [mm], a is the flow exponent coefficient, which is equal to

1.852 and the values .

Additionally to (2.1), the flow balance can be established in the nodes by the energy

conservation law, which is described as 1.2216 · 1010 and 4.87 are the values are

characteristic of the function.

fi − di = 0 (2.3)

where di is the demand at node i and fi is the sum of the flows that pass through

the node i, both in [m3/s]. The signs of the flow at every pipe are defined in (2.1).

The demands of every node can be calculated using the total inflow water and a

pattern distribution. Usually the demands at each node are estimated using the

billing records. These records are used to calculate the daily average consumption
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of each node with respect to the global consumption that is shaped with a low time

scale pattern distribution of the WDN water consumption. Then, the demands in

the nodes are considered that have this fixed pattern distribution (i.e., every node

always has the same proportion of the total water inflow into the WDN), then the

demand in every node is computed as

d̂i = αid̃WDN (2.4)

where d̂i is the estimated demand at the node i in [m3/s], αi is the normalized

proportional outflow in node i and d̃WDN is the total inflow water in the WDN in

[m3/s], which is a measured value.

Deriving from (2.4) the following condition is fulfilled

nn∑
i=1

αi = 1 (2.5)

where nn is the total number of nodes in the WDN.

Considering (2.1), (2.4) and (2.3), the knowledge of the demand pattern distribution

and the hydraulic characteristics (i.e., pipe shape, length, etc.), and the measure-

ment of the boundary conditions c̃ (Pressure Reducing Valves (PRVs), total water

consumption, etc.), the WDN hydraulic system can be simulated by means of a

hydraulic simulator that provides a numerical solution using as e.g., the Newton-

Raphson method. In this PhD thesis, the hydraulic simulator Epanet 2 (Rossman,

2000) is used.

2.1.1. Modeling the Leak as an Extra Demand

As it will be discussed later, it is a common approach to consider that leaks can

only occur at nodes (note that a virtual node placed in pipes can be created with a

demand equal to zero). Thus, the leak can be modeled as an extra demand. This

leads to a new pattern distribution to accommodate that new leak considered as an

extra demand.
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To adjust the measured total water consumption d̃WDN with the leak and the esti-

mated demand pattern distribution, a new demand pattern distribution where the

leak amount is removed from all nodes (except from those that the consumption is

already zero) in a proportional way according to their average consumption level,

and the leak is added to the node where it is simulated. The new demand pattern

distribution is calculated as

α
(lj)
i =


αi − αi lj

d̃WDN
i 6= j

αi − αi lj
d̃WDN

+
lj

d̃WDN
i = j

(2.6)

where lj is the leak (with leak size l in [l/s]) at the node j and α(lj) is the new

demand pattern distribution with a simulated leak l at node j.

2.1.2. Uncertainty Modeling Using Artificial Data

With the aim of developing robust methods, demand and leak uncertainties are

generated and artificial noise is added to the measurements. These uncertainties are

artificially generated using the methodology presented in (Cugueró-Escofet et al.,

2015b), which is described in the following. First, the noise in the measurements is

added to the pressure values as

p̄i = pi + ν̄ (2.7)

where

ν̄ = ν(u)rand (2.8)

and p̄i is the generated pressure at the node i with noise in [m], ν(u) is the amplitude

of the noise and rand is a random value in the range [-0.5,0.5]. For the demand

uncertainty, the demand pattern distribution is modified as

ᾱi = αi +
αiα

(u)rand

100
(2.9)

10



Chapter 2. Background

where ᾱi is the demand in the node i with uncertainty in [m] and α(u) is the ampli-

tude of the demand uncertainty in [%] and rand is a random value with Gaussian

distribution in the range [-0.5,0.5]. But, to accomplish that all the normalized de-

mands satisfies (2.5), a normalization is performed

ᾱi =
ᾱi∑nn
j=1 αj

(2.10)

Then, the new generated demands with uncertainty can be computed as

d̄i = ᾱid̃WDN (2.11)

where d̄i is the demand at node i considering the uncertainty. Finally, to generate

the leak size uncertainty, the following equation is used

l̄i = li +
lil

(u)rand

100
(2.12)

where l̄i is the leak in the node i with uncertainty in [l/s], l(u) is the amplitude of

the leak uncertainty in [%] and rand is a random value with Gaussian distribution

in the range [-0.5,0.5].

Moreover, to have more realistic data sets, sequences of daily global demands are

artificially generated. The demand pattern distribution is usually considered fixed

in time (Wu et al., 2011), and only changes the magnitude of the total WDN con-

sumption, that is commonly measured in practice and presents a daily pattern. To

create a daily pattern in simulation a filtered real data pattern from another WDN

is used then a Gaussian noise is added in this pattern to create daily patterns as

follows

d̄WDN = d̂WDN + d
(u)
WDNrand (2.13)

where d̄WDN is the total consumption instantaneously with uncertainty in [l/s],

d̂WDN is the estimated total consumption obtained from historic records in [l/s],

d
(u)
WDN is the amplitude of the uncertainty in [l/s] and is a random value with Gaus-
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sian distribution in the range [-0.5,0.5].

2.1.3. Uncertainty Modeling with Real Data

When real data is available, another approach can be used to generate a more ac-

curate model of the uncertainties that uses this real data in combination with the

hydraulic model, where the demand uncertainty, the noise in the measurements and

the modeling error are taken into account. In this case, the discrepancy between

the real measurements available and the estimated ones generated with a hydraulic

simulator under the same conditions (i.e., measured boundary conditions c̃, mea-

sured global consumption d̃WDN and estimated nodal demands d̂) is used. So, for

the pressure sensors can be described as

ai = p̃i − p̂i (2.14)

where ai is the discrepancy between the estimated values and the real measurements

in [m].

Once (2.14) is applied to all the data, the result is a cloud of points supposed to be

around zero where the mismatches corresponds to the uncertainty of the hydraulic

model, the noise of the measurements and the nodal demand uncertainty. Usually,

these mismatches are not around zero due to some offset of the values provided by

the difference of the sensors and the hydraulic simulator. To deal with this, the ai

values previously computed are corrected using the average value of the discrepancy

as

a
(c)
i = ai −mean(Ai) (2.15)

where a
(c)
i is the centered (offset removed) discrepancy and Ai is the vector of dis-

crepancies for the measurement i.

Then, the hydraulic model is used to generate the sensitivity matrix, where the

offsets between the estimated and the real measurements are removed using the
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average discrepancy of each measurement. After that, the discrepancy a
(c)
i is added

to the values of the sensitivity matrix (i.e., centered from zero to each leak value

in the residual space). In this way, each leak fault simulated without uncertainty,

which is a point in the residual space, now has a cloud of points around them that

represents the uncertainties of model, noise and nodal demand.

This kind of approach is useful when the network is really large and time-consuming

for obtaining these data allowing to catch the model uncertainty. But, this approach

has the drawback of not representing as good as the other approaches the particular

nodal demand uncertainty of each node.

2.2. Leak Detection and Localization

In the field of leak detection, estimation and isolation in WDNs, several techniques

are applied and more are in development. In (Fanner et al., 2007; Puust et al., 2010;

Mutikanga et al., 2012), recent reviews are presented about the most widely used

methods and techniques presented so far. Another interesting review is presented in

(Li et al., 2015), where the methods are classified as hardware based and software

based. In (Wu and Liu, 2017), data-driven approaches, focused mainly in the leak

detection problem, are reviewed. In this section, the current and past techniques

related with this PhD thesis are revised.

These techniques are grouped into different types according their nature, but some

of them can be classified into more than one group. The selection of one or another

group is made here according with the emphasis made by the author of the original

work into the corresponding field.

Due to the different approaches to the considered problem, different areas of appli-

cation are involved. Some of them are applicable to the entire WDN, others are

applicable to DMAs and finally, some of them applicable to single pipes.
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2.2.1. Leak Assessment

To know the efficiency of a WDN there are three generalized methods to estimate the

total real losses of water (Puust et al., 2010). The Top-down method uses the inflow

water into the WDN and removes the outflow water registered and an estimation

of the apparent losses leaving the system. The remaining amount of water is the

estimated real losses. On the other hand, the Bottom-up method (Mazzolani et al.,

2015) does the same but using the Minimum Night Flow (MNF) which is the period

of the day when the customers demands are minimum and the leakage is higher

(in percentage), and then the result is extrapolated to the diurnal time. Finally,

the method based on Principal Component Analysis (PCA) that uses all the data

available (as, e.g., water reports, annual flows and patterns, state of the WDN) to

find the principal indicators to get the most accurate estimation. Usually, all of the

three methods are used in combination to get the best possible performance.

Other approaches (Roma et al., 2015) use the WDN calibration to assess the amount

of background leakage in a network using the discrepancies between the real network

and the a hydraulic model of the system. In (Almandoz et al., 2005), the hydraulic

model is used along with the historical data of the flow at the inlet. In this method,

the real losses are considered since they are only ones that depend on the pressure

allowing the separation from the apparent losses and quantify the different water

losses.

2.2.2. Step Testing

With this technique, the WDN is divided into several areas by means of valves, and

by closing the water in some areas, usually at night, the leak can be found in the

area with the abnormal water consumption. The problem with the application of

this technique is that the WDN needs to be built with the idea of applying this

technique or otherwise it will be difficult to be used successfully. Another drawback

of this approach is that some parts of the WDN will experiment water cuts (with
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the corresponding cut of the service for the clients) during the test.

2.2.3. Acoustic and Vibration Techniques

A large variety of techniques using the sound (or the vibration) generated by the

friction between pressure water waves and pipe walls and the particular sound (and

vibration frequencies) that appears when a leak exists are developed and used with

success in the field. This type of methods are commonly used to find the exact

location of the leak once another method had pointed the area in which the leak is.

A common drawback is the different performance of the method related to the pipe

materials, for example in (Zhang and Guo, 2011) a study of the acoustic emissions

in cast iron pipes is presented.

Acoustic Logging (AL)

This technique uses hydrophones placed all over the WDN to detect the particular

sound emitted by leaks to localize the leak in the area where the hydrophone detected

the suspicious sound. The drawbacks of this technique (and also for all the acoustic

techniques) is that the noise provided by external factors (e.g., generated by traffic)

can deeply affect the measurement. Also, it should be noted that in this case the

leak is not exactly localized but the area where it exists is reduced.

Leak Noise and Vibration Correlators (LNC)

In this technique, the sound generated by the leak is registered by two (at least)

microphones (or hydrophones) attached to pipe stems. The sound can be replaced

by vibrations, and detected using accelerometers (Khulief et al., 2012; Martini et al.,

2015; Zhong et al., 2015). Then, the specific sound of the leak is detected and the

time delay to reach all the microphones is calculated by correlating the specific sound

pattern caused by the leak. The leak can be located knowing the time delay, the

distance between the microphones and the speed of the sound in the pipe by means

of triangulation. The drawbacks of this approach are that every pipe needs to be
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tested until the leak is found. This can be a very time-consuming task. Moreover,

the performance of this technique changes with the pipe materials (Gao et al., 2009),

and the distance between sensors is required with precision although there exist some

techniques to avoid the necessity of this information (Yang et al., 2008). Since the

surrounding environment can effect the measurements due some undesired added

sound that can difficult the task, some efforts are made to reduce their impact

(Ionel et al., 2010).

Pig-Mounted Acoustic (PGM)

In this technique, a device is inserted into the WDN which contains a microphone to

detect the leak. Then, from outside the WDN, with the recorded sound along with

the position in the WDN where the device has been moved, the leak can be located

and the leak size estimated by the intensity of the sound (Mergelas and Henrich,

2005). This technique is only applicable to pipe mains.

Similar approach is presented in (Adhikari, 2014) where a listening device is carried

over (at the surface) the network, where the acoustic measurements are analyzed

using Fast Fourier Transform (FFT) to identify frequency peaks emitted by leaks.

In this case, this technique is applicable only in networks (or portion of networks)

where the device can record the sound emitted by the leak.

2.2.4. Surface Analyzer Methods

Different approaches use different characteristics that change when leak appear and

that can be monitored from the surface of the network by carrying an apparatus

over the network to analyze those particular characteristics.

Tracer Gas Technique (TGT)

The TGT is one of the techniques with better performance. This method uses a gas

with the particularity that it is lighter than air. This gas is injected into the WDN

and it escapes through the leaks existing in the WDN, even the smallest ones, going

16



Chapter 2. Background

to the surface. Then, with a gas detector on the surface the leaks can be located

exactly (Hunaidi et al., 2000). The drawbacks are that is very expensive to fill the

entire WDN, and its time-consuming to carry the detector all over the network until

the leak is found. On the other hand, it has the benefit that not qualified personnel

is required.

Ground Penetrating Radar (GPR)

This technique uses an emitter of electromagnetic waves that are propagated through

the ground and scattered back to an electromagnetic detector. The different elec-

tromagnetic properties in the ground are shown with the detector, and one of the

reasons that can produce a change in these properties is the water in the ground

escaped through the leaks (Hunaidi and Giamou, 1998; Stampolidis et al., 2003;

Farley and Hamilton, 2008). This technique performs well with all the pipe materi-

als, being non-intrusive and not expensive. However, it requires an expert operator

to analyze the image produced by the detector. And even with this, it is easy to

obtain false positives (e.g., junctions or valves that change the image). Thus, it can

be difficult to use it in all places (e.g., a pipe which passes under a highway) and the

need of moving across all the network makes this technique very time-consuming.

Thermography

When leaks occur and the ground surrounding the pipe is affected by the water

leaked, the temperature of the ground can change. Thus, by using an infrared

camera, the area affected by the water loss through the leak can be seen as a cooler

or warmer area through the camera (Hunaidi et al., 2000; Fahmy and Moselhi, 2010;

Shakmak and Al-Habaibeh, 2015). This technique has the same drawbacks as the

GPR technique.
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2.2.5. Hydraulic Analysis

Other kinds of techniques use the hydraulic properties of the WDNs, such as the

pressure or the flow rate, and several parameters of the hydraulic model.

The hydraulic model of WDNs is highly studied (Wu et al., 2011) but usually the

model obtained is not accurate enough (e.g., the roughness of pipes changes with

use). So a model calibration is needed to obtain adjusted results with the real WDN

behavior (Walski et al., 2003; Savić et al., 2009; Ostfeld et al., 2012). Even with the

calibration, the hydraulic model simulations can not reproduce perfectly the WDN

behavior. Furthermore, the problem of numerical errors added in the simulation

process can appear.

The hydraulic analysis can be done in steady state or in transient. In both cases,

there are benefits and drawbacks. Usually when the WDN has low pressures and

higher flows the transient analysis could work better. On the contrary, the steady

state analysis works better with high pressures and lower flow rates (Ferrante et al.,

2014).

Steady State Analysis

These methods use the hydraulic model in steady state (with the assumption that

the WDN stays in steady state in a short period of time) to obtain and work with

the hydraulic information. It is usually assumed that the leak must occur only in

nodes.

Inverse Analysis (IA)

The techniques based on IA use the hydraulic model equations which describe the

WDN but with unknown added parameters to be estimated, which are the diameter

of the leak hole in every node along with the parameter of roughness coefficients of

every pipe in the network. With the measurements available from the WDN, the

estimation of those parameters is done, usually with the objective of minimizing the

difference between the measurements and the predicted ones by the hydraulic model

(i.e., pressure and flow rate) (Pudar and Liggett, 1992; Sala and Ko, 2014).
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This technique has several drawbacks: the hydraulic model (as e.g., pipe parameters

and nodal demands) must be accurate, and the leak hole can have several types of

shapes which in practice correspond to different coefficients in the standard leak

model since the shape of the hole is not known, and its behavior changes depending

on the pipe material (Greyvenstein and van Zyl, 2007).

In (Puust et al., 2006), the problem is solved using the Shuffled Complex Evolution

Metropolis (SCEM-UA) algorithm that poses the problem of leak hole estimation

(the pipe roughness coefficients in this case are not estimated) as probability to be

maximized. More recently, the problem is solved using simulated annealing (Sousa

et al., 2015), where also a sensor placement based on graph theory is proposed.

Sensitivity Analysis

The use of sensitive analysis has been used in large variety of techniques usually

combined with pressure and flow measurements.

One of these techniques is based on the use of the residuals, which are the differences

between real and expected values obtained by simulation using the hydraulic model

in steady state. Usually a sensitivity matrix with information about the leak signa-

ture of every leak case is obtained using the hydraulic model (that is, by simulating

the WDN with a leak in every node). Then, the residual obtained with the real

measurements is compared with the information stored in this matrix.

Several approaches have been developed using this approach. In (Pérez et al., 2010;

Pérez et al., 2011), the matrix is binarized using a threshold that allows obtaining a

binary leak signature for each (where the complete set of signatures is called Fault

Signature Matrix (FSM)). Analogously, the residual obtained is compared with the

columns in the matrix that contains the signature of each node, the most similar

(using some metric as the Hamming distance) signature is where the leak is assumed

to be located. In (Quevedo et al., 2012), the matrix is not binarized and the node

candidate is the one that has the most correlated signature with the residual. This

work was extended by taking into account the demand uncertainty in (Pérez et al.,

2016). In (Casillas et al., 2012), the angle between every leak signature in the

sensitivity matrix and the residual is calculated, and the closest one (minimum
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angle) is the node candidate. Additionally, a time horizon is introduced into the

analysis. An improved technique (Casillas et al., 2015a) to reduce the impact of

the non-linearity leak behavior one residual is used to normalize the others and

then, by means of the Euclidean distance, the leak is located finding the minimum

distance between the residual obtained and the different columns of the sensitivity

matrix. An alternative to the use of the sensitivity matrix approach, it is based on

the application of the structural analysis as explained in (Rosich et al., 2014).

In (Blesa et al., 2012), the demand uncertainty and noise are modeled as zonotopes

in the residual space using Linear Parameter Varying (LPV) parity equations. Then

if the residual obtained is out of the zonotpes, the network has a leak. For the

localization task, the residuals are binarized and compared against to the FSM in a

time horizon.

In (Sanz et al., 2015), the profile demands are calibrated using a discretitzation

of the network (according to the sensors placement of the network), and then the

water demand profile of every node is calibrated according to their basic demand

estimation and adding a function of the components of every discretized zone (the

weight of every demand component is determined by their geographical location).

For the detection, the demands obtained are compared against a threshold, in order

to check if the demand is large enough with respect to the normal consumption

to consider the presence of a leak. Two different leak localization techniques are

proposed, the discretized zone with the biggest increment of demand is one, and

the other one uses Pearson correlation to search the node with the most different

behavior compared with the nominal.

In (Verde, 2005), a multi-leak detection and localization approach is presented, which

is able to detect and locate up to two leaks in a pipe main using flow and pressure

sensors at the end of the pipe. The technique divides the pipe in three subsystems

and try to identify (by estimating parameters using the measurements) the positions

where the system (i.e., the leak locations are the limits of each subsystem) must be

splitted. This is only applicable to pipe mains.

In (Escalera et al., 2012), a multi-leak scheme for leak detection and localization is
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used, where the residual sensitivity matrix (obtained using a hydraulic simulator) is

transformed using Complex Shannon wavelets and then is demodulated using phase-

quadrant demodulation to extract its information phase, which is able to separate

the different phases for each leak in the network. Then, the node with the residual in

the sensitivity matrix with the most similar phase with the residual being analyzed

is the leak node candidate.

In (Narayanan et al., 2014b), only the flow measurement in the inlet is used to

detect, localize and estimate the leak size. For the detection, the current flow is

compared against historical records. If the discrepancy is high in a time window,

then is considered that the leak exists, and the amount of discrepancy is considered

as the leak size. For the localization, a simplified hydraulic model is created without

calibration, where the connected nodes by pipes with low flow resistance are grouped

to simplify the number of nodes of the simplified network. Finally, the amount of

flow is used to determine which are the groups of nodes that can produce that

amount of leak. The result is improved with a time horizon giving the groups of

nodes in which are possible that the leak is placed over the time.

In (Ishido and Takahashi, 2014), a new indicator is presented called Head Loss

Ratio (HLR), which is obtained combining the heads (pressure taking to account

the elevation) measurements. This indicator is more sensitive to leaks than the raw

measurements. The drawback of this indicator is that its only applicable in networks

with specific characteristics (only one reservoir, no pumps, etc.).

In (Meseguer et al., 2014), an hybrid approach is presented where the sensitivity

approach is combined with the IA approach to deal with the multi-leak case. In this

method, the FSM is generated in two ways, on the one hand using the real mea-

surements and the hydraulic simulator without artificial leaks, and the other hand

by using the IA and the hydraulic model without leaks. The aim o the difference

of these two FSM, by using a genetic algorithm to solve the identification problem.

This method provides the leak or leaks localization along with their estimated size.

In (Bakker et al., 2014), a simplified hydraulic model (uses simpler equations to

describe the relation between the inlet flow and pressure and the pressure inside
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the network) is created using past data from the same points characterized with the

model. Then, the output of the model is compared with the current measurements

to generate residuals. The last residuals (moving window) are compared against a

threshold to detect a leak.

In (Jensen and Kallesøe, 2016), a reduced model of the network is proposed where

the sensors are placed such that the leaks only can affect one pressure sensor, and

at the same time, the sensors sensitivity must cover all the network. Then, for

the detection each pressure measurement is contrasted against the prediction of the

reduced model. If the residual value exceed a threshold, then the leak is detected, and

from the zone (nodes) that cover the sensitivity of that sensor the node candidates

are proposed.

Transient Analysis

One of the most active areas of research in the leak monitoring is the transient

analysis. A review of this approach is presented in (Colombo et al., 2009). This

family of methods uses the transient information generated by an event (e.g., a

change in a valve) to collect information to infer the diagnosis. The advantage

compared with the steady state methods is the amount of information obtained in

a short period of time. In general, transient analysis is used only in pipe segments

or small networks.

Some of these approaches have the drawback that it is necessary (in most of the

available techniques) to create a repetitive pressure wave (to have the same input

to the system that allows to accurately analyze the output) in the WDN capable of

showing the specific characteristics needed to analyze specific parameters. This can

be difficult to do and dangerous for the WDNs infrastructure health.

Inverse Transient Analysis (ITA)

This technique, introduced for the first time in (Liggett and Chen, 1994), is the

same as the one in steady state approach but using a transient model instead. The

drawbacks of this technique are the same than the steady state method. In this case,

the identification requires a lot of time to achieve an optimal solution. Some research
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efforts in this area are focused on developing suboptimal solutions (Vı́tkovský et al.,

2000), and improving and extending the hydraulic model parameters (Covas et al.,

2004; Wu and Sage, 2006; Covas and Ramos, 2010).

In (Srirangarajan et al., 2013), the pressure signals are analyzed by a multi-scale

wavelet analysis to remove noise and decompose the original signal into four levels to

be analyzed, more precisely, the coefficients of the levels three and four are analyzed

by the CUmulative SUMmation (CUSUM) for detection purposes. Once a leak

detection is raised, the estimated leak starting time can be obtained searching for

the moment that the peak in the signal that provoked the alarm started raising.

Finally, a leak localization is proposed by triangulation using the difference in the

estimated leak starting time into each sensor.

In (Delgado-Aguiñaga et al., 2016), a multi-leak (the leaks must occur at different

times) detection and localization method is proposed in pipe mains where sensors of

flow and pressure are installed at the ends of the main. Then, the dynamic model

of the system is used to identify the leak (by the mismatch between the current

measurements and the model prediction). Once the leak is detected, a Kalman

Filter (KF) is used to update the states of the system and incorporate the leak.

Then, a new leak can be detected using the updated system.

Leak Reflection Method (LRM)

When a wave (artificially generated) arrives at a leak, part of this wave is reflected

and then knowing the wave velocity and the difference in time between the original

wave and the reflection generated by the impact with the leak hole permits to know

the localization of the leak. The relationship between the two wave magnitudes

(the original and the reflected) can be used to estimate the leak size (Beck et al.,

2005; Lee et al., 2007; Soares et al., 2012). This technique is only applicable in pipe

segments and has the drawback that it is very important to know with precision the

scenario without leak, because other reflections can be produced by other factors in

the pipe (as e.g., pipe junctions) and can be wrongly identified as leaks.

In (Nguyen et al., 2018), a special methodology for the generation of the transient

events is proposed using pseudo random binary sequences to minimize the correlation
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of the different events than leaks with the aim to increase the signal to noise ratio,

and therefore, improve the localization.

Impulse Response Analysis (IRA)

IRA (Ferrante and Brunone, 2003a,b; Misiunas et al., 2004; Ferrante et al., 2007) uses

the continuous monitoring (high sampling frequency) state of the WDN using at least

two pressure sensors with the aim of detecting an abrupt change in the pressurized

state (i.e., transient effect produced by a Negative Pressure Wave (NPW), which

is due to a sudden pipe burst). Then, the leak can be located using the transient

signal obtained (the time arrival to the sensors and the pressure variation to perform

triangulation). The benefit of this technique is that it is not necessary to produce

an artificial transient event, but has the drawback that it is necessary to monitor

the WDN continuously which can be difficult with the standard sensor placement

methodologies (i.e., the sensors usually work using batteries and consequently have

limited autonomy).

In (Zan et al., 2014), a Joint Time Frequency Analysis (JTFA) is proposed, where the

pressure measurements are sampled at a high frequency. Then, a one-dimensional

wavelet is used to filter high frequency noise, then a Short-Time Fourier Transform

(STFT) is applied to obtain the spectrogram of the signal. A Gabor Transform is

used to remove the unnecessary part of the spectrogram and the remaining part is

processed by a moving average function. Finally, the obtained indicator is compared

against a threshold (obtained from historical data without leak). For the localiza-

tion of the leak, an attenuation function between the leak position and the sensors

position is used to estimate the expected distance values for each potential leak lo-

cation. Then, the nodes are ranked using the Johnson’s algorithm by minimizing

the difference between the expected and the computed distances values. The node

on top of the rank is the node candidate.

More recently, in (Lee et al., 2016), a variant of the previous method is presented

where the measurements are denoised and decomposed to different levels using a

wavelet transform. Then, the CUSUM technique is applied in these levels to detect

the negative wave of pressure, the NPW, to detect the leak. For the localization,
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the difference in the time that this negative wave is detected by the sensors is used

to triangulate the leak position.

Frequency Response Method (FRM)

This technique uses induced transient events (e.g., a predefined change in the state

of a valve) and the information obtained from these events are analyzed in the

frequency domain. When a leak exists in the WDN, particular frequencies appear

in the frequency domain that do not exist in the leak free scenario. Considering

this fact, the leak can be detected in the WDN. The information of localization and

size can be also obtained from the frequency domain. However, it is a difficult task

to localize the leak and even more to estimate the leak size (Mpesha et al., 2001).

Thus, it is only realistic to apply this technique in small networks or pipe segments.

Other approaches are based on the analysis in the frequency domain of the transient

damping effect (the damp of a pressure wave is produced by the effect of friction

with pipe walls, and when leaks exist this damp effect is augmented). Then, using

the difference between the state of the harmonics in a leak-free scenario and in the

leak scenario, the leak can be detected, located and the leak (hole) size estimated

(Wang et al., 2002). However, this technique is only applicable to pipe segments

or small networks. In (Nixon et al., 2006), the range of validity of the method is

studied.

In (Covas et al., 2005), a Standing Wave Difference Method (SWDM) is used and

consists on generating a steady oscillatory flow with the particularity that the fre-

quency oscillation is chosen based on the leak resonant frequency (i.e., the time of

wave pressure to reach the leak and return is an odd multiple of the half wavelength

of the excitation frequency). Then, the frequency domain is analyzed to find the

difference in the harmonics to detect and localize the leak. This method only works

when the wave generator and the pressure sensor are close to the leak.
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2.2.6. Analysis Using Statistical Methods

The analysis of different measurements of the WDNs and their comparison against

historical records or the evaluation of signals through statistical methods are used

to detect leaks, estimate their size, estimate the time that leak has appeared and

assess where the leak is located.

In (Buchberger and Nadimpalli, 2004), the historic data of the flow measurements

at the inlet is analyzed where the biggest value of the hourly mean and standard

deviation is searched. Then, it is checked if the new measurements exceed those two

indicators and if this is the case in one of them the leak is detected. The leak size

is estimated when the leak is detected by computing the difference in both means.

In (Misiunas et al., 2006), a leak detection is presented using the measured flow rate

at the inlet and the CUSUM technique. Once a detection is raised, the difference

with the nominal flow rate is used to estimate the leak size, and the moment that

the CUSUM feature started to raise until the detection is made is used to estimate

the leak starting time. This leak starting time is used then, along with the pressure

measurements inside the network, to extract the difference in the measurements with

the values expected with a normal behavior. These differences in the pressure values

are then compared with the ones obtained through simulations where the estimated

leak size is added at every node. The case of a node with the artificial leak that

provides the most similar output to the measured ones, is the node candidate.

In (Ye and Fenner, 2011), a Kalman Filter (KF) is used to generate residuals (using

flow or pressure measurements at the inlet), if the residual exceeds a threshold, then

a leak is detected. This method is able to detect new leaks even if there are already

other leaks in the network. Also, this work concludes that flow is a better variable

to detect leaks than the pressure.

In (Eliades and Polycarpou, 2012), the historical flow measurements at the inlet

is used to construct Fourier series for prediction purposes. Then, the actual mea-

surements are used to generate residuals to be analyzed by the CUSUM technique.

Finally, the features are compared with a threshold for the leak detection purposes.
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The leak size estimation is done by comparing the actual flow consumption and the

Fourier series prediction.

In (Fusco and Ba, 2012), the nodal demands are estimated using the model and the

measurements available (inverse analysis in steady state), and the Z-test is performed

over those estimations using the historical demand values and a threshold is used to

decide if a demand in a node is large enough to indicate that is due to a leak.

The detection of leaks using the inlet flow measurements and a KF to predict the

measurements to compute residuals, which are matched against a threshold obtained

using the mean and the standard deviation of the measurements, is presented in (Ye

and Fenner, 2014a).

In (van Thienen, 2013), a method to compare the current inlet flow measurements

with the historical ones, called Comparison of Flow Pattern Distribution (CFPD),

is used to create a graph with the aim of facilitating the decision for an expert

(although it is not an automated method) the detection of a leak and their size

estimation.

In (Romano et al., 2012), an abnormal (leak among other events) detection technique

is presented. First, the data is preprocessed selecting only some daily patterns

(three statistical tests are used in parallel, all using the daily mean and standard

deviations and user-defined thresholds, and the remaining patterns are stored in

a data set called NOP (Normal Operating Patterns)). Then, an Artificial Neural

Network (ANN) is created using the NOP data set for training and testing. From

the discrepancies between the training and testing data, the mean and the standard

deviation is computed for evaluating a statistical test. The outputs of the three

indicators feed to two inference systems (both Bayesian Networks (BNs)). One is

used to assess the probability that something has occurred using the outputs and

the daily average difference between the stored values and the current ones (which

can also be used to estimate the leak size). The other one is used to raise an alarm

(event detection) by taking into account the three outputs of the subsystems of this

DMA, and also the signals from others DMA belonging in the same WDN. Then,

the output of the BN is compared with an user-defined threshold to rise or not the
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alarm. This work was improved by the application of Expectation Maximization

(EM) for the BNs calibration in (Romano et al., 2013a).

In (Jung and Lansey, 2014), a Non-linear Kalman Filter (NKF) is used in combina-

tion with pressure and flow measurements inside the network to estimate the nodal

demands, which are compared with the values estimated using the NKF. The dif-

ference is analyzed using the CUSUM technique and a threshold for leak detection

purposes.

In (Ye and Fenner, 2014b), polynomial models are proposed to predict the total

weekly water consumption for each measurement using the last week measurements.

To make the parameter estimation for these models, an EM algorithm and weighed

least squares are used. The residual obtained using the actual measurement is

compared with a threshold calculated using the standard deviation when there are

no leaks. Once the leak is detected, the difference between the prediction and the

real measurement is computed to estimate the leak size.

In (Anjana et al., 2015), a Particle Filter (PF) is used (with a hydraulic model) to

reduce the noise in the measurements and then, the CUSUM is applied to detect

abnormal consumption (leaks among other events).

In (Hutton and Kapelan, 2015), a polynomial model is calibrated with past mea-

surements of the network water consumption and is used to predict the actual water

consumption. Also, the mismatches from the past data (residuals) without leaks

are used to create two probabilistic models (one Gaussian, the other heavy tailed,

heteroscedastic quantification) for checking (by means of thresholds) if the actual

residuals fall into these two models without leaks.

In (Romano et al., 2017), the difference between the current pressure measurements

inside the network and the historical ones is compared by using three different sta-

tistical methods based on Statistical Process Control (SPC). The outputs of the

three tests are then unified in one indicator used to rank the sensors to the most

affected until the least. The area surrounding the most affected sensor is the leak

area candidate.
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2.2.7. Analysis Using Machine Learning

Different approaches to analyze the state of the WDN using the existent machine

learning techniques have been studied studied, where usually the analysis tool is

trained (not necessary for all techniques) with data (real or artificial). Then, the

state of the WDN is compared by the machine learning technique with the trained

data (or extracted characteristics) and analyzed.

Several approaches using machine learning have been developed. In (De Silva et al.,

2011; Mashford et al., 2012), the pressure or flow measurements are used to classify

the new measurements to perform leak localization, size estimation and if leaks exist

or not using a classifier based on the Support Vector Machine (SVM) technique with

Radial Basis Function (RBF) kernels.

In (Bicik et al., 2011), the evidence theory is used to localize the leak. To do

this, the information of three independent sources is used: the Pipe Burst Model

Prediction (PBMP) which provides an estimation of the frequency of burst for every

pipe, the Consumers Contact Model (CCM) which uses the information provided by

the consumers report and the information provided by hydraulic model simulations.

After that, the Dempster’s rule is used to fuse the output of these three sources and

to provide a probability of leak at each pipe where the most probable is the node

candidate.

In (Poulakis et al., 2003), the Bayesian reasoning (BR) is used to detect and localize

the leak in a benchmark network. Different characteristics are studied (e.g., the

effectiveness with pressure or flow measurements, the effects of the different uncer-

tainties and the effects produced by the sensor placement). To do this, IA method

is applied, but the estimation of the leak parameters is done by maximizing the

probabilities using BR.

In (Xu et al., 2007), a belief rule-based expert system made by experts and trained

with past data to improve their performance using Evidential Reasoning (ER) is

used to detect leaks in pipe mains using the flow and pressure measurements in the

outputs of the pipe main and some pressure sensors inside the pipe main. In (Zhou
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et al., 2011), BR is used to update a rule-based expert system parameters instead.

In (Nasir et al., 2010), a Cyber Physical System (CPS) framework is applied to

WDNs where the use of Hidden Markov Models (HMM) built with historical data

through Bayesian inference allows to evaluate the state of the network (to decide if

a leak exists, and if contaminants and water demand are in nominal state).

In (Mounce et al., 2011), Support Vector Regressions (SVRs) are created using

pressure and historical flow measurements at the inlet. Then, the prediction of

the SVR and the actual measurements are compared and if the occurrence rule is

fulfilled, an abnormal behavior (may be a leak) is detected.

In (Goulet et al., 2013), a leak detection and localization method is proposed using

model falsification. Different scenarios are created using artificial data (one for each

potential leak location taking into account the model uncertainties and noise), and

then it is checked if these scenarios are compatible with the current measurements.

The ones that are not possible given those measurements are removed from the set

of candidate nodes, which at the end (if any remain in the set) provide the detection

and the localization result (remaining set of node candidates).

In (Alippi et al., 2013), an ensemble of CDTs is used to detect the time that the

leak appears by considering that in healthy conditions the flow measurements at the

inlet of the WDN follow an unknown distribution. But, when the leak occurs, then

the distribution changes to another one. This approach uses an ensemble of CDTs

to be robust against false alarms. In (Boracchi et al., 2013), a similar approach is

applied, but instead of using an ensemble a hierarchy of CDTs is used.

In (Boracchi and Roveri, 2014), the periodicity of the water consumption (measure-

ment of the flow at the inlet) is used to apply Self-Similarity (SS) between a set

of stored recorded data which represents the current behavior of the WDN in a

healthy state and the recent measurements. Over these features, the Intersection-

of-Confidence-Interval (ICI) Change Detection Test (CDT) is performed in order to

detect a change. If a change is detected, it is assumed that it is due to a leak.

In (Tao et al., 2014), an Artificial Immune System (AIS) network is created using

artificial data obtained from a hydraulic simulator and then, the Nearest Neighbor
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(NN) method is used to classify the actual data (flow and pressure measurements).

Finally, AIS optimization is used to detect and localize the leak.

In (Candelieri et al., 2014), the leaks are considered that occur in the pipes and

the number of potential leaks is reduced using flow and pressure measurements

(obtained from a hydraulic simulator) and spectral clustering. Then, SVM trained

with the clustered data are used to classify the current measurements and perform

the leak localization task. A sensor placement method for this specific technique is

also presented.

In (Romano et al., 2013b), a model-free technique is presented for the leak lo-

calization problem, where four geostatistical techniques including Inverse Distance

Weighted (IDW) interpolation technique, Local Polynomial (LP) interpolation, Or-

dinary Kriging (OK) and Ordinary Cokriging (OC) are presented and tested. These

techniques use the pressure measurements inside the network to predict the pressure

of each node of the network. Then, the probability that a leak has happened at each

node is calculated. Finally, the probability of a leak in each pipe is calculated by

computing the average value of the nodes connected by the leak, and the pipe with

the largest probability is the node candidate to have the leak.

In (Laucelli et al., 2016), all the measurements (flow and pressure) are used to

develop a data model based on the multi-case Evolutionary Polynomial Regression

(EPR) to predict the measurements and match them to the current measurements,

and then the residuals are compared with thresholds to detect leaks.

In (Mounce et al., 2014), a database of normalized inlet flow patterns coming from

different networks is used to retrieve the most similar pattern using k-Nearest Neigh-

bors (k-NN), to compare the degree of similarity against a threshold for abnormal

consumption detection. This approach was extended in (Mounce et al., 2015) to

exploit the measurements coming from Automatic Meter Readers (AMRs) with the

use of Big Data and Cloud computing technologies.

In (Kim et al., 2015), a leak detection and localization technique is proposed. The

detection uses the inlet flow measurements at a high sampling rate where a KF

is applied to remove the noise. Then, the mean of the signals is removed using a
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time window and a floor function, for finally, comparing the resulting value against

a threshold and check if it is overpassed a determinate number of times in a short

period of time. After that, a leak starting time is estimated using the same indicator

but using instead the pressure measurements placed inside the network and searching

for the moment where the curvature in the function is maximum. The different leak

starting time along with the position of the sensors are used to triangulate the leak

location.

In (Rajeswaran et al., 2017), a leak localization technique is proposed using a graph

portioning algorithm. The WDN, which is considered that all the water inflows and

outflows are measured (except the leak), is modeled as a graph. Then, when the

measured sum of water inflows and outflows mismatch, the leak is detected and the

graph algorithm finds the best partition of the network to have two zones as equal

size as possible, but at the same time with as fewer connections possible. Then, flow

meters are placed in pipes that connects the two zones and the zone with the leak

can be identified with those measurements. Once this is done, half of the network is

discarded as a potential leak location zone, and the process is repeated again until

the leak is localized in a pipe.

Principal Component Analysis (PCA) Techniques

In the field of leak detection, the PCA technique is applied (see (Palau et al., 2012))

using the historical flow measurements at the inlet of the DMA to compute the PCA

model with the aim of reducing the historical data to the most relevant components.

Then, the PCA model with the new flow measurements is analyzed by the application

of a statistic test (T2 Hotelling and Distance to MODel (DMOD) are presented) and

analyze if the new data differs enough to determine if a leak exists or not.

In (Nowicki and Grochowski, 2011), a Kernel Principal Component Analysis (KPCA)

is used to detect the non-linear patterns of the pressure and flow measurements in

the WDN, and then is evaluated if the new measurements differ enough to consider

that a leak is present in the WDN.

Another PCA approach (Gertler et al., 2010) uses the WDN measurements (flow
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and pressure at the inlet and pressure inside) to build a PCA model, which is used

with the current measurement to check if any load exceed a predefined threshold,

which will mean that a leak is detected.

In (Sánchez-Fernández et al., 2015), four different PCA approaches are proposed to

detect a leak (and contaminants in the water) in WDNs using pressure and flow mea-

surements. The network is discretizated in several zones. One of the PCA technique

uses the classical PCA scheme, which consider all the network (the sectorization is

not used in this case) to perform the analysis. The others use the zones created and

different Distributed PCA (DPCA) techniques to analyze them. The output of the

PCA model with the new measurements is analyzed by the T2 and the Q statistic,

which are also compared, to perform the task of leak detection.

In (Quiñero Grueiro et al., 2016), the repetitive flow pattern consumption is ex-

ploited to create a cyclic PCA (different PCA models are build depending on the

different hourly pattern consumption of water) technique using the pressure sensors

inside the network, where the statistics T2 and the Squared Prediction Error (SPE)

are used and compared, to detect leaks.

Fuzzy-Based Techniques

In (Wachla et al., 2015; Moczulski et al., 2016), neuro-fuzzy classifiers are used to

detect and localize the leaks in a discretized network (i.e., the networks are reduced

to discrete zones) using flow measurements. Similar approach is considered in (Sanz

et al., 2012) using pressure measurements instead.

In (Li and Li, 2010), pressure measurements are used to perform pipe clustering

depending on the similarity of the pressure at the area (to know the pressure a

hydraulic simulator is used). Then, using the mismatch with those expected values

and the current pressure measurements, a fuzzy recognition system is applied to

detect and localize the leak into the area that mismatch the expected behavior.

In (Islam et al., 2011), the measurements (flow and pressure at the inlet and pressure

inside the WDN) are fuzzyficated using historical records. Then, the new measure-

ments are compared with these values to detect if the limits are crossed over time,
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what allows to detect the leak. The sensor that indicates the leak (or the sensor

most affected if the threshold of more than one measurement is crossed) is used to

localize the leak in the area where the sensor is placed.

Artificial Neural Networks (ANN) Techniques

In (Daoudi et al., 2005), the leak is detected using the information extracted from

acoustic measurements and wavelets, then PCA is applied to reduce dimensionality,

and finally, measurements are classified using a Multi-Layer Perception (MLP) ANN

(before that, the ANN is trained with representative data measurements) as leak or

not leak.

In (Mounce et al., 2003), an ANN with feedforward MLP is used to build a model

of Gaussian Mixture Models (GMMs), which results in a network that provides the

conditional probability density of the output data, which is called Mixture Density

Network (MDN). This is done for every sensor data. At the output of the MDN,

a rule-based expert system is applied to classify the output as being in normal or

abnormal state. This system is presented in a WDN with some DMAs with flow

sensors in the inlets. This approach is able to detect and localize the affected DMA

with the flow measurements, and the node affected in a DMA with the pressure

sensors.

In (Caputo and Pelagagge, 2003), a MLP back propagation ANN (trained with

simulated data, considering that there are flow sensors at every pipe and pressure

sensors at every node) is used in a hierarchical way. First, the leak is detected, and

in the second step the leak is localized and their size estimated.

In (Yang et al., 2008), a leak detection method is proposed where the SS and the

Approximate Entropy (ApEn) algorithm are used to extract features from acoustic

measurements coming from different sources (leak, cars, machines, etc.). These

extracted features are used to train a two layer ANN Elman Network (EN) (back

propagation training) to classify the features from new measurements. This is only

applicable to pipe segments. Later, in (Yang et al., 2010) a leak detection in pipe

mains is proposed using the acoustic sound measurements, which are processed to
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extract features using ApEn algorithm. Historical records of leak and no leak events

are used to train a two layer ANN EN which classifies the current measurements

into leak or no leak classes.

The problem of leak detection is treated using an ANN of type Self-Organized Map

(SOM) using data with and without leaks (the data is not labeled) and a function

that describes the leak. The output provided the probability of the leak in the range

from 0 to 1, where a threshold is used to decide if there is enough evidence to raise

an alarm. This approach is presented in (Aksela et al., 2009).

In (Mounce et al., 2010), a MDN ANN is trained using flow measurements at the

inlet through back propagation. The mismatch of the ANN prediction with the

current measurements (in a time horizon) is fed to a fuzzy inference system, which

classifies the current flow consumption as normal or abnormal (possible leak).

In (Zhang and Wang, 2011), the Bayesian theory is used to model the leaks (which

for each potential leak location, considered at pipes, the probability of leak at the

pipe and the leak size are estimated) as a Probability Density Function (PDF) with

Gaussian distribution, where the Gaussian parameters are estimated using Fisher’s

Law in order to minimize the difference with respect of the considered measurements,

flow and pressure measurements inside the network. If any modeled leak present a

large probability over the others, the detection alarm is raised, and it is assumed

that the leak is at the pipe that activates the alarm. Then, a leak prediction using

a back propagation ANN is used to estimate the leak size computing the difference

between expected water consumption predicted by the ANN and the measured total

water inflow.

In (Rojek and Studziński, 2014), two different ANN for leak localization using flow

measurements are compared. On the one hand, MLP ANN with back propagation

network (the work concludes that is the best of the two) and, on the other hand,

an ANN Kohonen network. The two ANNs are trained and fed with the residu-

als generated with the measurements and the expected values obtained through a

hydraulic simulator.
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2.2.8. Summary of Leak Detection and

Localization Techniques

The leak detection and localization techniques presented in this section can be

grouped and summarized in the following scheme.

Leak Detection

and

Localization Techniques



Leak Assessment1

Step Testing2

Acoustic and Vibration Techniques


Acoustic Logging

Leak Noise Correlators

Pig-Mounted Acoustic2

Surface Detector Methods2


Tracer Gas Technique

Ground Penetrating Radar

Thermography

Hydraulic Analysis



Steady State Analysis

 Inverse Analysis

Sensitivity Analysis

Transient Analysis



Inverse Transient Analysis

Leak Reflection Method

Impulse Response Analysis

Frequency Response Analysis

Analysis Using Statstical Methods

Analysis Using Machine Learning



Principal Component Analysis Techniques

Fuzzy-Based Techniques

Artificial Neural Networks Techniques

Other Methods

where the superscript 1 means that the technique is only applicable in the leak

detection task while the superscript 2 that the technique is only applicable for leak

localization purposes.

2.2.9. Sensor Placement Techniques

Due to the budget restrictions, the number of sensors that can be deployed into the

networks is limited (usually, the pressure sensors are placed at nodes and the flow

rate sensors at pipes). So, the sensor placement techniques aim to obtain the best

leak localization (and in some cases also detection) performance given the method

by placing the sensors into the WDN in an intelligent and efficient way.

The main approach to sensor placement is by formulating an optimization problem

that involves minimizing (or maximizing) an objective function that includes some

criteria related to the method which is designed for. The objective function is
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usually a non-linear integer problem and the application of an exhaustive solver is

not realistic in practice because of the computational cost.

One way to overcome this difficulty is by using Genetic Algorithms (GAs), see (Casil-

las et al., 2013) for the case of the angle method, and a more elaborate procedure,

using Particle Swarm Optimization (PSO), in (Casillas et al., 2015b). An example of

the different approaches in the optimal sensor placement can be seen in (Vı́tkovský

et al., 2003) where different approaches are considered by including different ob-

jectives, the amount of data used and the sampling rate. In (Blesa et al., 2014),

the uncertainties of the model are handled using a clustering technique (Evidential

c-means) that is applied over the FSM to reduce the potential number of places to

install the sensors by clustering sensors with similar behavior. Then, for each cluster

a representative is chosen and the optimization problem is solved using the Branch

and Bound algorithm. In (Steffelbauer and Fuchs-Hanusch, 2016), the leak sensi-

tivity matrix is improved by taking into account the demand uncertainty through

Monte Carlo simulations, to find the best sensor locations using GA.

In (Pérez et al., 2014), the impact of adding more sensors for the correlation FSM

method proposed in (Quevedo et al., 2012) is discussed.

In (Sarrate et al., 2012), a sensor placement for the structural model-based diagnosis

is proposed, where a leak isolation index is optimized by means of the Branch and

Bound algorithm.

In (Wysogla̧d and Wyczó lkowski, 2007), a case of leak detection and classification

using ANN is presented along with a sensor placement for the proposed technique

using GA and the classification accuracy as objective function.

In (Narayanan et al., 2014a), a method for the case that the hydraulic model is not

known is presented, but instead an estimated graph model is used considering only

the topological information and central metrics. From this graph model, the pressure

in the nodes, the flow rate in the pipes and the burst probability in the pipes are

calculated and ranked. Then, some sensors are placed on the nodes appearing the

highest positions of the ranking.

In (Giorgio Bort et al., 2014), two pressure sensor placement methods are presented
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for the sensitivity analysis in steady sate by using the percentage of pressure change

in every node for each considered leak. Then, the features of the hourly and daily

mean and variance of the percentage of pressure change are obtained. The first

method is to apply PCA on those features and use the coefficients of the first com-

ponent to rank the nodes where the sensors must be placed (i.e., if there are five

sensors to place, the first five nodes in the ranking according to the weights of the

first principal component are the ones chosen to place the sensors). The second ap-

proach uses the positive coefficients of the PCA to perform an optimization problem

where the fitness function is the minimum correlation between them.

In (Cugueró-Escofet et al., 2015a), an index to evaluate the quality of sensor place-

ment based on the confusion matrix is presented to take into account the clustering

of similar leaks by their geographical location, and then using the GA to solve the

posterior optimization problem.

In (Meseguer et al., 2015), a real sensor placement is carried out, where a sensor

placement for the correlation method (the technique is presented in (Quevedo et al.,

2012)) solved using GA is done in a real network is presented and evaluated. An-

other real sensor placement is presented in (Farley et al., 2013), for the method

presented in (Farley et al., 2010), where a sensitive matrix with the information of

all sensors (obtained using a hydraulic simulator) is exploited by the GA to solve

the optimization problem.

In (Sanz and Pérez, 2015), a WDN calibration work based on the Single Value

Decomposition (SVD) is presented for the estimation of the parameters and the

demand components. But the SVD is further exploited to detect the locations where

the sensors have large sensitivity to one demand and low for the others, which are

good places to install the sensors for the leak detection and localization method

presented in the same work and in (Sanz et al., 2015).

In (Sarrate et al., 2016), metrics related to the leak localization Angle method are

used to cluster the nodes in a few zones. Then, a small set of representatives nodes

for each cluster are selected using a semi-exhaustive search. While the combination

of sensors is evaluated, if at any moment the indicator of this current placement has
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no options to be better than the best tested so far, the procedure is stopped and

the next combination is evaluated.

In (Perelman et al., 2016), a sensor placement that maximizes the leak isolation of

the FSM is presented where an augmented greedy minimum set cover is proposed

to find the best suitable places to install the sensors.

2.3. Validation and Evaluation

Indicators

In this section, different indicators will be introduced to evaluate the performance

of the methods presented, focused on the problem of leak detection and localization.

2.3.1. Leak Detection Indicators

To assess whether a fault detection method is working properly the Type I and Type

II errors are used, also known as False Positive Rate (FPR) and False Negative Rate

(FNR). Here the sequences to test the leak detection performance are composed by

several days of measurements without leak and some more days with leak, so, in

every sequence there is a leak after some time without leak. The FPR tells us the

percentage of erroneous detections, i.e., no leak is present in the network when the

detection is raised, of the total number of sequences analyzed. The FNR tells us

the percentage of omitted detections, i.e., when a sequence with a leak has occurred

ends without raising a detection, of the total number of sequences analyzed.

Apart of these two indicators, the Detection Delay (DD) is one of the more impor-

tant, which tell us how long (in hours) the detection method requires, in average, to

raise a correct detection.

Since the leak detection method presented in Chapter 4 has the ability to estimate

the time instant in the time series where the leak has started, the Difference Time

Detection (DTD) is used. This indicator measures the time in hours between the
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real moment when the leak has start and the estimated one by the leak detection

technique tested.

Finally, the leak size is estimated as a part of the leak detection procedure, from

which we define ∆l as the difference between the estimated leak size by the leak

detection method tested and the real leak size in [l/s].

2.3.2. Leak Localization Indicators

One of the most used indicators in Fault Detection and Isolation (FDI) that sum-

merizes the results of the application of a given method to a complete set of leak

scenarios is the Confusion matrix (nc × nc) depicted in Table 2.1, where nc is the

number of classes (assuming that each class corresponds to a different kind of fault

(leak l)). The rows represents the leak scenario and the column corresponds to the

leak is localized (l̂) by the considered approach.

Table 2.1: Confusion matrix Γ.

l̂1 · · · l̂i · · · l̂nc

l1 Γ1,1 · · · Γ1,i · · · Γ1,nc

...
...

...
...

...
...

li Γi,1 · · · Γi,i · · · Γi,nc

...
...

...
...

...
...

lnc Γnc,1 · · · Γnc,i · · · Γnc,nc

In case of a perfect classification, the confusion matrix should be diagonal, with

Γi,i = mV , for all i = 1, . . . , nc being mV the size of the validation data set (number

of examples in each class) and nc the number of classes. In our case, according to

the previous section, the number of classes nc is the number of places of the WDN

where a leak is considered, i.e., the number of network nodes nn. But this number

could be changed for example removing the data from nodes that are very close to

others and reducing the number of potential leaks (classes).

In practice, non-zero coefficients will appear outside the main diagonal of matrix Γ.

For a leak in node i, the coefficient Γi,i indicates the number of times that the leak

li is correctly identified as l̂i, while
∑nc

j=1 Γi,j − Γi,i indicates the number of times
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that it is wrongly classified. The overall accuracy Ac of the classifier is defined as

Ac =

∑nc
i=1 Γi,i∑nc

i=1

∑nc
j=1 Γi,j

(2.16)

The term “node relaxation”, used later, refers to the minimum number of nodes in

topological distance between the node with the real leak and the node where the

classifier predicts the leak for which the diagnosis is still considered correct.

Since the accuracy value (2.16) only provides a reference of the classification good-

ness and not how good it is the leak localization, the Average Topological Distance

(ATD) is the indicator used to assess the overall performance. The ATD is the

average value of the the minimum distance in nodes between the node with the

leak and the node candidate proposed by the leak localization method. The ATD is

computed as follows

ATD =

∑nc
i=1

∑nc
j=1 Γi,jDi,j∑nc

i=1

∑nc
j=1 Γi,j

(2.17)

where D is a symmetric square matrix with size nc such that each element Di,j

contains the minimum topological distance in nodes between the nodes referred by

indices i and j.

2.4. Machine Learning

In this section, a brief introduction to machine learning and their basic terminology

is presented, along with the techniques of this field applied in this PhD thesis.

There are many descriptions of what machine learning is, for example, “Machine

learning is a method of data analysis that automates analytical model building. It

is a branch of artificial intelligence based on the idea that machines should be able

to learn and adapt through experience”1.

1https://www.sas.com/en us/insights/analytics/machine-learning.html
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2.4.1. Basic Terminology

Some of the basics concepts and terms used in this PhD thesis and related to machine

learning are summarized and introduced here (Mohri et al., 2012):

• Examples: are the instances of data used in the learning and evaluation

stages.

• Attributes: are the set of variables or features used to learn from the data.

• Labels: are the different classes where the new instances (or examples) may

be assigned.

• Training data set: is the set of examples used to train the algorithm.

• Validation data set: is the set of examples used to select the appropriated

free parameters in the algorithm.

• Test (or testing) data set: is the set of examples used to evaluate the

performance of the algorithm.

2.4.2. Kinds of Techniques and Learning

Methods

The machine learning techniques can be divided taking into account the objective

in (Mohri et al., 2012):

• Classification: assign instances to labels (categories).

• Regression: predict a real value for each instance.

• Ranking: order instances using some criteria.

• Clustering: grouping instances into labels.
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• Dimensionality reduction: reduce the initial representation of instances

into one with lower dimensionality while preserving some properties at the

same time.

When considering the method used to learn, the following methods exist:

• Supervised learning: the learner receives labeled examples as training data

and make prediction for new unlabeled instances.

• Unsupervised learning: the learner receives unlabeled examples and make

predictions for new unlabeled instances.

• Semi-supervised learning: the learner receives labeled and unlabeled ex-

amples and predict for new unlabeled instances.

• Transductive inference: the learner receives labeled and unlabeled examples

and predict only for the unlabeled examples introduced.

• On-line learning: the learner receive an unlabeled example, then makes a

prediction and receives the true label of this example, calculate the error to

adapt the algorithm and the process is repeated until the training samples are

finished or the error criterion is achieved.

• Reinforcement learning: the learner evolves in time gaining experience by

receiving a reward according to their actions giving instance (i.e., output of

the technique).

• Active learning: the learner continuously adds new examples in their train-

ing data set using the new instances labeled by an oracle.

2.4.3. Semi-Supervised Learning

The semi-supervised learning deals with a training data set of labeled data, in which

the new unlabeled instances are revived to assess if this new instance has enough

evidence to belong to the classes in which the learner has been trained, or belongs

to a new class.
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Intersection-of-Confidence-Interval Change Detection Test

The ICI CDT technique uses data from an unique class, also known as in control,

where the characteristics of the observed signals are considered in normal state,

which in the case of the ICI CDT means that are in an stationary state. Then, the

new measurements are evaluated to decide if they belong to the same class or into

a new one, which this new class is known as out of control.

The ICI CDT uses the intersection of intervals to assess if a change has occurred.

These intervals are computed using the mean and the standard deviation, which

first are computed using the training data set as

µT =

mT∑
t=1

x(t)

mT
(2.18)

where µT is the mean for the training data set, mT is the training data set size

and x(t) is the feature to monitor. It is considered that the time instant where the

technique starts to analyze the new data is t = mT + 1. One the other hand, the

standard deviation for the training data set σT is obtained computing

σT =

√√√√mT∑
t=1

(x(t)− µT )2

mT − 1
(2.19)

Once the initials µT and σT are computed, the recursivity updated values of µ and

σ are calculated as

µ(t) =
(t− ι)µ(t− 1) +

∑ι
i=1 x(t− ι+ i)

t
(2.20)

where ι is the size of the data added (i.e., the window size to calculate a new interval)

to calculate the updated µ(t) at time t for any t > mT . Note that in the first interval

after the training (t = mT + 1), µ(t− 1) = µT . And

σ(t) =
σT√
t

(2.21)

again, for any t > mT .
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Then, the interval I(t) is computed using these two values, where the upper bound

is

I(+)(t) = µ(t) + Υσ(t) (2.22)

where the Υ is a user defined value (usually between one and five depending on the

desired trade-off between the FPR and the FNR), and the lower bound

I(−)(t) = µ(t)−Υσ(t) (2.23)

So, the ICI CDT detects a change when the the new computed interval does not

intersect with at least one of the previously computed intervals. Once the detection

is raised, the time instant where the change has started can be estimated. To do that,

the same technique is applied over the same feature x(t) but using a smaller Υ value.

This allows to detect an incipient change in the time series, and by knowing that

there is a change in them, assume that this new detected changes is the estimated

change starting time.

One example of the ICI CDT technique can be seen in Figure 2.2. Note that the

change detection time is at the end of the interval where the interval do not intersect

with the others while for the estimated change starting time is at the beginning.

This technique is used to catch the behavior of nominal conditions of the total flow

consumption. Then, it detects when a new behavior appears and analyzes if it is

due to the presence of a leak inside the network or not.

2.4.4. Supervised Learning

This kind of machine learning techniques uses labeled data (training data set) to

find a function of mapping (classification) or to search relations among variables

(regression).

Formally speaking, the supervised learning uses a training data set 〈xi, yi〉 where xi

is an array of input values and yi is the output to find a function fun : X → Y .

45



Chapter 2. Background

t [s]
200 250 300 350 400 450 500

I
[-
]

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Real starting change time

Estimated starting change time

Change detection

Figure 2.2: Example of the procedures of change detection (black intervals) and
estimated change starting time (blue intervals).

In this PhD thesis, three techniques of supervised learning are used. On the one

hand, two classification techniques which are the k-Nearest Neighbors and the multi-

class Bayesian classifier are used. On the other hand, the Kriging interpolation is

used as a regression technique.

The k-Nearest Neighbors Classifier

One of the well accepted and established method for classification is the k-Nearest

Neighbors (k-NN) algorithm (Alpaydin, 2010), which is available in most of the

numerical packages (e.g., Matlab, R, etc.). Its basic version works as follows. When

a new data instance has to be classified, the distances2 to all the instances in the

training data set are computed. Then, the k nearest neighbors are selected and a

voting procedure is applied, where each neighbor votes for its own class and the class

with more votes is chosen as the associated class for the new data instance. The

process is illustrated in Figure 2.3, where a value k = 3 is used and the new data

instance is associated to the class cl3 since two of the three minimal distances are

associated to training instances in that class.

The use of a value for k bigger than one improves the robustness against outliers

2Typically, the Euclidean distance is used, but many other metrics can be used.
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Figure 2.3: The k-NN algorithm.

(with k = 1 the class of the nearest neighbor is selected, which seems a good choice,

but the obtained classifier is really sensitive to outliers). On the other hand, the

value for k must be smaller than the minimum number of instances associated to a

single class inside the training data set.

Temporal reasoning

The classification problem deals with a specific instance to be classified each time,

and instances from different time instants does not have to belong to the same class.

But in the specific problem of leak localization, the leak does not change the place in

the networks where it has been generated. This means that the stream of instances

to be classified belong to the same class. This particular fact can be exploited with

a temporal reasoning to enhance the diagnosis performance since the performance

of the classification with a direct application can provide poor classification results

if the classes have uncertainties that lead to overlap their space with other classes.

To smooth the effect of this overlapping, the classification in a time horizon with

length N is proposed.

A simple temporal reasoning can be based on taking into account the estimations
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provided by the classifier inside the time horizon and applying a voting scheme,

concluding that the candidate is the class that more times has been selected by the

classifier.

A second and more sophisticated option could be to use the information contained in

the confusion matrix. Hence, at each time instant t, when the classifier is providing

a class candidate as an explanation for the instances in the current time instant

t, the whole column j of the confusion matrix is stored. This column provides an

estimation of the probabilities P (cli|ĉlj), i.e. the probabilities that the true class i

is classified as class j, according to the available information available for current

time instant t. Then the sum of column vectors stored along the time horizon N as

t−N + 1, . . . , t is computed. In the obtained vector, the position of the coefficient

with highest value indicates the most probable class according to the information

provided by the data in the whole time horizon t−N + 1, . . . , t.

The Multi-Class Bayesian Classifier

The Bayesian reasoning gives the probabilities that the instance analyzed belongs

to every possible class using the Bayes rule at every time instant t

P (cli | x(t)) =
P (x(t) | cli)P (cli)

P (x(t))
for i = 1, . . . , nc (2.24)

where nc is the number of classes, P (cli | x(t)) is the posterior probability that

the new instance x(t) belongs to the class cli, P (x(t) | cli) is the likelihood of the

instance x(t) assuming that the class is cli, P (cli) is the prior probability for the

class cli, and P (x(t)) is a normalizing factor given by the Total Probability Law

P (x(t)) =

nc∑
i=1

P (x(t) | cli)P (cli) (2.25)

Without previous information, the prior probabilities used are considered to be equal

for all classes. This assumption changes when taking into account a time horizon

N diagnosis. Then, the prior probability in the time instant t is the posterior

probability of the previous instant (t − 1) except the first diagnosis, which can be
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formulated as

P (cli | r(t−N + j)) =
P (x(t−N + j) | cli)P (cli | x(t−N + j − 1))

P (x(t−N + j))

for i = 1, . . . , nc and j = 1, . . . , N

(2.26)

where a starting point with all classes with the same prior probability P (cli | x(t−

N)) = 1
nc

for i = 1, . . . , nc.

One drawback of using this time horizon analysis is related to the fact that one class

can take a probability value close to one, and then the rest of probabilities remain

close to zero. To prevent this, the posterior probabilities are forced to a maximum

value, such that if one result overpasses that value, then the difference is equally

distributed to the others classes.

These techniques are used to better infer the diagnosis using the residuals generated

in the model-based leak localization methodologies. Also, the Bayesian temporal

reasoning is used to improve the diagnosis in the proposed data-driven leak local-

ization approach.

Kriging Interpolation

The Kriging interpolation is a multi-variate regression that uses a few measured

points with their position in the space to find a spatial model that exploits the

relations among different points using their locations. There are different Kriging

models in the literature, here the on implemented in the DACE toolbox (Lophaven

et al., 2002) is used. So, a new point in the same space can be estimated given a

new location x and the estimated spatial model as

ŷ(x) = H + ε (χ,θ, s) (2.27)

where ŷ is the value of the interpolation, H is a constant that represents the constant

part of the interpolation and function ε(χ,θ,x) is the spatially correlated part of

the variation. Both terms Constant H and function ε(·) are obtained in the fitting
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process as well as function parameters χ and θ. On the other hand, x is the location

of the new point where the interpolation is made. The fitting process consists in

a least square error minimization problem considering available locations with data

yT and their locations xT . Function ε(·) has two parts to be estimated in the fitting

process

ε (χ,θ, s) = τ (ςfunp(χ,x) +$func(θ, l)) (2.28)

On the one hand, the polynomial function funp(·) whose arguments are χ ∈ <u

where u is the polynomial order plus one and di(q). And on the other hand, the

correlation function func(·) whose arguments are θ ∈ <m where m is the dimension

of the variogram, i.e., the number of the dimensional space of the interpolation map

and also x. Finally, τ is a scaling factor obtained in the fitting process as H, ς and $.

The last two parameters are estimated constants to balance between the polynomial

and the correlation functions.

The other supervised learning technique is used for the leak localization task but

avoiding the use of hydraulic models to create a purely data-driven approach.

2.4.5. Feature Selection

Feature Selection (FS) is one of the dimensionally reduction problems, where by

using a subset of features of the total set, the feature selection algorithm aims

to preserve the maximum amount of information contained in the original set of

features.

There are four main categories of FS techniques recognized in the literature (Saeys

et al., 2007; Bolón-Canedo et al., 2013): filter based methods, wrapper methods,

embedded methods and, finally, hybrid methods, i.e., combination of filters with

wrappers. The methods of the first type, filter based methods (Vergara and Estévez,

2014), directly work with the data, without interacting in any way with the model

to be built. Hence, individual features or feature sets are evaluated according to

some metrics that are assumed to be fast to be computed. Some of the most com-

50



Chapter 2. Background

mon indicators are the relevance, i.e., the information contained in a given feature

(according to the final application) (Guyon and Elisseeff, 2003; Chandrashekar and

Sahin, 2014), and the redundancy, i.e., how much of the information in a given fea-

ture is repeated in others (Salmerón et al., 2016; Liu et al., 2016). Many existing

filter methods combine these two indicators (Yu and Liu, 2004; Peng et al., 2005).

The main advantage of this type of methods is their low computational cost, while

the main drawback is that the selection does not take into account the posterior use

of the data by the model. The second type of methods, wrapper methods (Chan-

drashekar and Sahin, 2014), need to build and use the model to score selected feature

subsets that are generated within the framework of an heuristic search. Some meth-

ods in this category are based on the use of GAs (Oreski and Oreski, 2014) and

on PSO methods (Xue et al., 2013), among others. Due to the search and to the

fact that a new model has to be trained (build) for each subset, these methods

are computationally demanding, but they usually provide the best results for the

particular type of model used. Embedded methods are the third type of methods,

and they combine the use of the model that ranks the features in a priority order

to be selected. In this group, there are techniques such as Backward Feature Selec-

tion (BFS) (Guyon and Elisseeff, 2003), Random Forest (RF) (Dı́az-Uriarte and De

Andres, 2006) and, in general, Evolutionary Algorithms (EA) (Xue et al., 2016). Fi-

nally, the most recent approaches are the hybrid methods, which typically combine

a filter that reduces the initial number of features with a wrapper that provides an

additional refinement (Inbarani et al., 2014; Hu et al., 2015; Apolloni et al., 2016).

The latter approach is considered in the present work due to the obtained good

compromise between optimality and computation time for the classifier-based leak

localization techniques while a embedded method is used for the data-driven leak

localization approach.

Fast Correlation-Based Filter (FCBF)

The FCBF presented in (Yu and Liu, 2004) is a feature selection algorithm used to

select a subset of features that takes into account the relevance of the features and
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the redundancy between each pair of features in an efficient way. An example of this

technique is depicted in Figure 2.4.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

Most Relevant Features                                                                                                 Less Relevant Features

Not Redundant Pair of Features

Redundant Pair of Features

Figure 2.4: Example of the fast correlation-based filter.

First, the relevance of each feature is evaluated according to a particular metric.

Once the relevance of each feature could be calculated, the redundancy of each pair

of features is evaluated, but to avoid the necessity of assessing the redundancy of

each pair of features, the FCBF algorithm is applied to avoid unnecessary compu-

tations. Starting from the most relevant, this feature is compared with the rest in a

descending order of relevance, with the other features to evaluate their redundancy.

If their redundancy is larger than a predefined threshold, then the less relevant of the

two features is discarded. Once the most relevant feature is compared with all the

features, the next most relevant and not discarded feature is compared with all the

remaining features less relevant than them which are not discarded yet. This process

is repeated until all the remaining features are evaluated with each other. The sur-

viving set of features has the properties of being the most relevant and present low

redundancy between them. Note that the final number of features can be controlled

with the predefined threshold.

Sequential Forward Floating Selection (SFFS)

The SFFS is a feature selection technique presented in (Pudil et al., 1994) that

adds in an incremental way a new feature that best improves the current subset
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of features according to an objective function. This particular algorithm has the

ability of move backwards (i.e., remove features if a new, smaller that the actual,

subset can be obtained that the one obtained before by that number of features).

The SFFS has two main parts at every iteration that are computed in a sequential

manner. In the first part, a forward selection of one step is done, meanwhile in the

second part, a backward selection of one or more steps is done if the conditions are

fulfilled. This process is depicted in Figure 2.5.

Step 1: Inclusion

Step 2: Conditional Exclusion

Step 3: Continuation of Conditional Exclusion
(Applied only if a exclusion is made in step 2 and 
repeated until the exclusion condition is not fulfilled) 

At every iteration until the desired number of features to be selected is reached

Figure 2.5: Sequential Forward Floating Selection.

At every iteration, first all the potential features to be added to the actual subset

are individually tested by adding them to the actual subset and by computing the

fitness function. The feature that provides the best performance is then added to the

subset of features. Then, in the second part of the algorithm and if at least there are

two features in the subset, all the features that are in the subset of selected features

are removed individually (i.e., one at a time) and the fitness function is tested. If

the best value according to the fitness function obtained is better (note that by

better means that the last added sensor never will be removed in the first step of

the second part of the iteration) than the best one obtained before for that number

of features, the feature is removed, and the process of trying to remove features is

continued until there is no better subset of features than the ones obtained before

or there is only one feature in the subset. The algorithm ends when the at the end

of the iteration there are the number of features that is wanted to be selected.

These different methods are applied to the problem of sensor placement to tackle

the combinatorial problem leading to a feasible approach.
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2.4.6. Optimization

Optimization algorithms aim to learn from previous optimization iterations to apply

an intelligent change on the parameters being optimized to obtain closer values to

the optimum given a fitness function until one of the criteria to stop the optimization

process is reached.

Genetic Algorithm

A GA provides an optimization engine based on the genetic evolution, where start-

ing from a seed population (first generation) with a fixed population size ps, each

member of the population is evaluated according to a fitness (or objective) function

and ranked. The best ones (their number is determined by the elite count parameter

ec) survive to the next generation, and the remaining members of the new generation

(until the ps number) are members derived from the ones that have survived. The

process is repeated until one of the stopping criteria is accomplished, for instance,

the maximum number of generations maxg is reached, or no best member has been

found from one generation to the next (i.e., the difference is less than a tolerance

tol).

The GA implementation works as follows. The members of the first generation of

population are randomly created by the GA (also can be introduced by the user)

with the specified population size ps and then evaluated to select the best ones. The

next generation of population is obtained from the elite members of the previous

one, which directly pass from one generation to the next, and a number of filling

members created by a pool onto the former best members. These filling members are

identified by means of a bit string and are chosen by a tournament selection with the

application of Laplace crossover (fusion of two members by swapping parts of their

bit strings) and power mutation (when a bit in the string that define the members is

changed) with a truncation process to ensure integer members. For further details

see (Deep et al., 2009). This technique is graphically explained in Figure 2.6.

It should be noted that the objective function that is wanted to be minimized is
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Figure 2.6: Genetic algorithm.

not the one that the implemented version in Matlab and used here does. This

implementation first prioritize that the combination tested fulfill the constraints.

If any member of the population achieves this goal, then the objective function

introduced by the user is the one that is applied.

Like the feature selection techniques, the proposed optimization approach is used to

solve an integer optimization problem in the sensor placement task.
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In this chapter, the case studies used along the PhD thesis are presented. In par-

ticular, the WDN and DMA networks are detailed and the real cases associated to

them are also described.

First, the Barcelona DMAs with only flow measurements at the inlets are presented,

which are the ones used to test the proposed leak detection technique proposed in

Chapter 4.

Then, the Hanoi benchmark WDN is presented, where the leak localization and

sensor placement techniques are illustrated due to their small size. Then, the Li-

massol network, where some of the proposed sensor placement techniques presented

in Chapter 7, is presented. Finally, the Nova Icària DMA and the Pavones DMA

where real leak cases are used to evaluate the proposed leak localization techniques

presented in Chapter 5 and Chapter 6.

3.1. Barcelona DMAs

Flow measurements from the inlet of several DMAs from the Barcelona WDN are

recorded in two sequences of measurements. Notice that this is a raw data and in

consequence there are outliers and missing data intervals.

On the one hand, the first sequence of measurements starts at the 1st of January

of 2013 until the 18th of May of 2013, which are 132 complete days. This sequence

includes the Bellamar DMA, the Gavà centre DMA, the Parc de la Muntanyeta DMA

and the Can Roca DMA. On the other hand, the second sequence of measurements
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starts at the 31st of August of 2013 until the 3th of March of 2014, which are 185

complete days. This last sequence includes the Gavà centre DMA, the Parc de la

Muntanyeta DMA and the Canyars DMA. The sampling rate in all of these DMAs

is ten minutes.

Some of these DMAs have more than one reservoir, thus multiple flow measurements

are taken. Here, the result of the addition of these flows is depicted for each DMA.

All of these DMAs networks are placed next to or near the coast so they are, in

general, quite flat in terms of elevation.

3.1.1. Bellamar DMA

The Bellamar DMA is a large network with two reservoirs without any PRV to

control the pressure. This network has a total number of 1523 nodes and a total

number of 1544 pipes. The topology of the network is depicted in Figure 3.1a.

This network has one sequence of flow measurements at the inlet with a total wa-

ter consumption that varies from 2 to 18 [l/s] approximately. This sequence of

measurements is shown in Figure 3.1b.
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Figure 3.1: Bellamar DMA network and flow measurements.
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3.1.2. Canyars DMA

The Canyars DMA is a medium size network composed by one reservoir without

PRV, 692 consumer nodes and 717 pipes. The network is depicted in Figure 3.2a.

The total water consumption flow in the sequence of measurements varies from 5

and 40 [l/s] approximately and it is shown in Figure 3.2b.
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(b) Flow measurements at the Canyars
DMA.

Figure 3.2: Canyars DMA network and flow measurements.

3.1.3. Parc de la Muntanyeta DMA

The Parc de la Muntanyeta DMA is a large network as the Bellamar DMA with

two reservoirs without PRVs, 1507 consumer nodes and 1553 pipes. The network is

depicted in Figure 3.3a. This network has two sequences of measurements. In the

first one, the total water consumption varies from 10 to 70 [l/s] approximately. This

flow is shown in Figure 3.3b. The second sequence of flow measurements varies from

8 to 30 [l/s] approximately and is shown in Figure 3.3c.
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(b) Flow measurements of the first se-
quence at the Parc de la Muntanyeta
DMA.
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Figure 3.3: Parc de la Muntanyeta DMA network and flow measurements.

3.1.4. Gavà Centre DMA

The Gavà Centre DMA is a very large network formed by two reservoirs without

PRVs, 3373 consumer nodes and 3482 pipes as depicted in Figure 3.4a. This network

has two sequences of measurements. In the first one, the total water consumption

varies from 8 to 50 [l/s] approximately. This flow is shown in Figure 3.4b. The
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second sequence of flow measurements varies from 5 to 50 [l/s] approximately and

is shown in Figure 3.4c.
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quence at the Gavà Centre DMA.
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(c) Flow measurements of the second se-
quence at the Gavà Centre DMA.

Figure 3.4: Gavà Centre DMA network and flow measurements.

3.1.5. Can Roca DMA

The Can Roca DMA has a total number of 1427 consumer nodes, 1473 pipes and the

DMA is feed through an unique reservoir. The topology of the network is depicted

in Figure 3.5a. The total flow consumption of this network varies from 2 to 25 [l/s]
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approximately. This sequence is plotted in Figure 3.5b.

X coordinate [m] ×10
4

1.35 1.4 1.45 1.5 1.55 1.6

Y
co
o
rd
in
a
te

[m
]

×10
4

7.1

7.15

7.2

7.25

Reservoir

Node

Pipe

(a) Can Roca DMA network.

Time [days]
5 10 15 20 25 30

F
lo
w

[l
/s
]

0

10

20

30

Time [days]
35 40 45 50 55 60 65

F
lo
w

[l
/s
]

0

10

20

30

Time [days]
70 75 80 85 90 95

F
lo
w

[l
/s
]

0

10

20

30

Time [days]
100 105 110 115 120 125 130

F
lo
w

[l
/s
]

0

10

20

30

(b) Flow measurements at the Can Roca
DMA.

Figure 3.5: Can Roca DMA network and flow measurements.

3.2. Hanoi WDN

The Hanoi WDN is a simplified version of the real WDN placed in Hanoi, Vietnam.

This network is one of the benchmarks available in the Epanet 2 software (Rossman,

2000). This WDN consists of one reservoir, 34 pipes and 31 nodes as depicted in

Figure 3.6. No PRV is placed inside the network. The Hanoi WDN benchmark has

set a fixed nodal demand pattern distribution and a fixed total water consumption

at 2991.1 [l/s].
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Figure 3.6: Hanoi WDN.
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3.3. Limassol DMA

The Limassol (Cyprus) DMA network, presented in Figure 3.7, is a real network with

a medium size and consists in one reservoir, 197 consumer nodes and 236 pipes. No

PRV is placed in the network. The network has a fixed demand pattern obtained

form billing records and a fixed total water consumption of 492.2 [l/s].
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Figure 3.7: Limassol DMA network.

3.4. Nova Icària DMA

The Nova Icària network is one of the DMAs of the Barcelona WDN. This network

consists of 3377 nodes, 3442 pipes, two reservoirs and two Pressure Reducing Valves

(PRVs), each one located after the reservoirs with the aim of maintaining a certain

pressure control level. The number of nodes and pipes of this network is reduced by

means of the skeletonization process described in (Pérez and Sanz, 2017) resulting in

a network with 1520 nodes and 1664 pipes depicted in Figure 3.8. Measurements of

five pressure sensors (the pressure transducers used are the IMP-S-004-010S model1

1http://www.impress-sensors.co.uk/products/sensor-products/pressure-
measurement/industrial-pressure-transducers-transmitters/standard-range-pressure-
transmitter/imp-industrial-pressure-transmitter.html
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with a resolution of 0.1 [m]) installed in nodes 3, 4, 5, 6 and 7 (highlighted in

Figure 3.8), measurement of the flow of the network entering the DMA and the

set points for the PRVs are available every 10 minutes using the logger MultiLogS

GSM/SMS2 device. The nodal demand pattern distribution is obtained using billing

records.
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Figure 3.8: Nova Icària DMA network.

3.4.1. Real Case

For this case study, real data provided by the water company both under normal

operation conditions and under the presence of a real leak have been used. The

leak was created by the water company that operates the network by opening a fire

hydrant. The experiment took place on December 20, 2012 at 00:30 hour and lasted

around 30 hours with a leak size about 5.6 [l/s], being the total demand of water in

the range between 23.5 and 78 [l/s] approximately. Moreover, real sensor data for the

network in a normal operation scenario of five days before the leak scenario occurred.

The relevant data used to perform the leak localization is shown in different figures:

Figure 3.9a shows the DMA input flow; Figure 3.9b show the pressure references for

the two PTVs; and, finally, Figure 3.9c shows the measurements provided by the five

2http://hinco.com.au/shop/type/data-loggers/multilog/
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internal pressure sensors. In all these figures, the red line indicates the time instant

where the leak is introduced. Finally, an accurate Epanet model of the Network and

node demand estimations was provided as well.
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(a) Nova Icària flow measurements under
nominal conditions (before red line) and
faulty conditions (after red line).
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(b) Nova Icària PRVs set point values un-
der nominal conditions (before red line)
and faulty conditions (after red line).
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(c) Nova Icària pressure measurements under nominal
conditions (before red line) and faulty conditions (after
red line).

Figure 3.9: Nova Icària real case measurements.
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3.5. Pavones DMA

Pavones DMA is part of Madrid WDN. Its topology is depicted in Figure 3.10,

formed by one reservoir, 608 demand consumer nodes and 638 pipes. The number

of pressure inner sensors is ten, and are placed as depicted in Figure 3.10, with

sampling rate of two minutes, which is the same for the pressure and flow sensors

placed at the inlet.
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Figure 3.10: Pavones DMA network and their sensor placement.

3.5.1. Real Case

Data under nominal conditions is recorded from the 25th of November of 2016 at

03:00 pm to the 29th of November of 2016 ta 00:58 am. A leak artificially created

using a fire hydrant with an approximated size of 1.4 [l/s]. Data from this experiment

is recorded starting the 29th of November at 04:00 am until the 1st of December of

2016 at 09:58 am, which is 54 hours of data under leaky conditions.

The measurements of flow and pressure at the inlet under nominal and leaky con-

ditions and also the total leak flow are depicted in Figure 3.11a. The ten pressure

measurements inside the network under nominal and leaky conditions are depicted

in Figure 3.11b and Figure 3.11c.
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(a) Measurements at the Pavones DMA inlet under
nominal conditions (before red line) and faulty condi-
tions (after red line).
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(b) Pressure measurements (part I) in the
Pavones DMA under nominal conditions
(before red line) and faulty conditions (af-
ter red line).
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(c) Pressure measurements (part II) in
the Pavones DMA under nominal condi-
tions (before red line) and faulty condi-
tions (after red line).

Figure 3.11: Pavones DMA real case measurements.
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In this chapter, a leak detection technique is presented using the ICI CDT technique

presented in Section 2.4 with the purpose of learning from the nominal conditions,

specially about the variability of the consumption profile, for determining if the new

measurements can be considered as nominal or not.

Usually, the WDNs or DMAs inlets (normally corresponding to the reservoirs) are

monitored by means of a flow sensor and a pressure sensor. The latter can be

substituted by a PRV whose pressure set-point can be considered as the pressure at

that point. A common approach when the leak detection problem is addressed is to

analyze the current set of measurements coming from the total water consumption

d̃WDN and compare them with the past values obtained in normal conditions (or

operations) or by predictions made by a data model. Then, the differences in the

comparison are analyzed to see if there is enough evidence to consider a leak inside

the network.

Some of these techniques are proposed to be applied only in the period of time

known as the Minimum Night Flow (MNF), since is the time region where the water

consumption by users is in their minimum value and in consequence, the part of

the consumption due to the leak is in the maximum percentage of the total water

entering into the network.

Due to population habits, the profile of the total water consumption presents repeti-

tive patterns on daily basis, that can be altered by the change of habits in weekends,

holidays, weather or leaks. Leaks appear as a persistent alteration in the consump-

tion pattern by increasing the consumption of water, which can be detected by
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Figure 4.1: Leak detection and starting time estimation scheme.

monitoring the inlet flow. Let us define T ∗ as the time instant when the leak starts

(depicted in Figure 4.1a). The goal of the leak detection technique is to detect the

leak as soon as possible. T̂ ∗ is an estimation of the time instant where the change

(leak) has been produced (depicted in Figure 4.1b) and T̂ the moment where the

leak has been detected (see Figure 4.1c). Let us also consider that the real leak has

a size l, and the estimated leak size of l̂, both in [l/s]. So, we define the unknown

distributions before and during the leak as

d̃WDN (t) ∼

 Ψ(t) t < T ∗

Ψ(t) + l t ≥ T ∗
(4.1)

where Ψ is the distribution in nominal conditions and Ψ + l the new distribution

due to the existence of a leak inside the network.

It is a common assumption to consider that only one leak can occur at a time (Pérez

et al., 2011) being also considered in the proposed leak detection technique.
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4.1. Leak Detection Scheme

The problem of leak detection, leak starting time estimation and leak size estimation

is addressed as a change point detection problem by means of a sequential monitoring

technique. In particular, we design a two layered scheme to deal with leaks in WDNs,

which is applied to the total water consumption of the network d̃WDN .

The scheme of the two layered leak detection technique is depicted in Figure 4.2.
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Figure 4.2: Proposed methodology.

4.2. First Layer: Detection

The application of a change detection test provides the detection of an abrupt change

in a time series, which in this application is the leak, and the estimated leak starting

time as the estimated time where the change has started in the time series.

Change detection methods are typically meant for data streams that are composed

of i.i.d. (independent and identically distributed) realizations. This is not the case

of the d̃WDN signal analyzed here. As stated in the previous section, the total flow

consumption pattern has a daily repetitive pattern, which is exploited here in con-

junction with the self-similarity (Boracchi and Roveri, 2014) on the observation of

d̃WDN to produce a feature that can be well approximated as an i.i.d. realization.
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Chapter 4. Leak Detection

When the system is not in nominal conditions, for example when a leak occurs in

the WDN, then the distribution of the measurements changes (notice that the dis-

tribution is unknown in nominal and not nominal conditions) presenting then a new,

and in consequence, different distribution, as described in (4.1). It is on this change

of distribution, that change point methods are designed to work with. But not only

leaks can produce this change of distributions, also abnormal consumption or sea-

sonal drifts can produce it, so further analysis over the cause of detection must be

done. So, in the first layer the features are extracted and monitored by a sequential

monitoring technique to detect subtle changes in the consumption patterns that may

be indicative of detected leaks, and the second layer is used to check if the change

features the characteristics expected by a change produced by a leak.

From the daily repetitive pattern, only the most stable consumption region, i.e., the

part of the daily repetitive pattern where there is less change from day to day due

to abnormal consumption is used to apply the proposed two layered leak detection

scheme to infer whether a leak in the WDN exists or not.

The Self-Similarity (SS) (Boracchi and Roveri, 2014) approach is used to extract the

features to be monitored by the change detection test, in this case, the intersection-

of-confidence-interval CDT is used (Basseville and Nikiforov, 1993). The ICI CDT

generates an interval of confidence using the past data, the training data set, and

a new segment of data along with a user defined parameter Υ to determine the

confidence. If the new interval does not intersect with at least one of the previous

intervals, a change is detected. This technique is introduced in Section 2.4.

The self-similarity compares a current patch of measurements with the ones in the

same position in the reference patterns (as it has been said before, in WDNs every

day the same pattern of water consumption is repeated) stored in a training data set

recorded under normal, leak-free, conditions (the training data set is called T and

has size mT ), where the most similar patch, according to the `2 norm, in the training

data set is selected, and the difference between centers is computed to create the

features. Let us define a patch s(t) of the actual flow data stream to be monitored
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as

s(t) = {d̃WDN (t− ζ), . . . , d̃WDN (t), . . . , d̃WDN (t+ ζ)} (4.2)

where, ζ is the number of samples taken at each side of the patch center to create

the patch and 2ζ + 1 is the patch size.

This patch s(t) is compared with others patches from the same position in the

pattern from the self-similarity training data set, where the most similar patch π(t)

inside the training data set is selected to compute the features. The most similar

patch is then calculated as

π(t) = argmin
ξ
‖s(t)− s(ξ)‖2 (4.3)

for ξ = {h, β + h, . . . ,mT − β + h}, where h is the position of the time instant t

(the center of the patch) inside the period of the repetitive pattern, β the size of the

repetitive pattern and ‖ · ‖2 the `2 norm computed as

‖s(t)− s(ξ)‖2 =

√√√√ ζ∑
i=−ζ

(
d̃WDN (t+ i)− d̃WDN (ξ + i)

)2

(4.4)

We define %(t) as the distance between patch centers (i.e., features to monitor) at

time instant t. This feature %(t) is computed as

%(t) = s(t)− π(t) (4.5)

where s(t) is the value of the center of the vector s(t) and π(t) the value of the center

of the most similar patch π(t) in the training data set T.

Then, reformulating the presented ICI CDT in Section 2.4 to the current self-

similarity features we have the mean from the training data set T computation

as

µT =

mT∑
t=1

%(t)

mT
(4.6)
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and the standard deviation as

σT =

√√√√mT∑
t=1

(%(t)− µT )2

mT − 1
(4.7)

Then, the updated values of µ and σ are recursively calculated as

µ =
(t− ι)µ+

∑ι
i=1 %(t− ι+ i)

t
(4.8)

and

σ =
σT√
t

(4.9)

Then, the upper bound of the interval is

I(+) = µ+ Υσ (4.10)

and the lower bound

I(−) = µ−Υσ (4.11)

The intervals-of-confidence share some region with the others when the system is in

nominal conditions, in this case, the network is leak-free. But, when a leak is present

in the network, the mean changes and the center of the interval changes which leads

to the case that one of the intervals does not share any region with at least one

of the previous intervals. This trigger the detection of a change in the monitoring

features %(t).

4.2.1. Leak Starting Time Estimation

To estimate the time instant T̂ ∗ in the data stream where the leak has started, the

same mechanism as in the first layer is performed, i.e., the ICI CDT, but using a

lower confidence value Υ to trigger a detection at the minimum reasonable change in
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the time series since the lower Υ used to create the interval makes their amplitude

smaller thus, the not intersection of a new interval with any of the previous can

happen with a smaller change in the monitoring features.

4.3. Second Layer: Validation

As stated before, apart from leaks several situations can trigger a detection by the

CDT in the first layer since unseen patterns for the training data set can appear.

To reduce the false positive rate, this second layer assess if the detection has the

reasonable evidence to decide whether the change is due to a leak or not, which in the

leak case is a reasonable increment of the total flow consumption. This validation is

done in the last δ samples before the CDT has detected a change. To do that, the

one sided (right side) Wilcoxon’s test (Hollander et al., 2013), which is a paired test

that works with the median and does not assume equal variances, is performed. The

selection of this test is done taking into account two aspects: the use of the median

instead of the mean makes the test robust against outliers and the ability of work

with sequences of data with different variances.

This test is applied using the vector of differences between the δ measurements

before T̂ and the vector of the averaged sequences contained in the SS training data

set in the same time instants, which is the way that the leak size is estimated, plus

a minimum leak value lmin in [l/s] (i.e., a user defined offset). The test statistic is

then compared with a user defined parameter ϑ to assess whether there is enough

statistical evidence to reject the null hypothesis.

First, we define the vector d̃
(T )
WDN

d̃
(T )
WDN (t) =

1

mT /β

mT /β−1∑
i=0

T(h(t) + iβ) (4.12)

where d̃
(T )
WDN is the average daily consumption pattern inside the SS training data set

T and h(t) is the position of the current measurement in the water daily consumption

pattern given the time instant t.
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4.3.1. Wilcoxon’s Test

So, the proposed validation layer for a given minimum leak size of lmin and using

the the Wilcoxon’s test can be formulated as

W =

Nr∑
i=1

sgn(wi − lmin)Ri (4.13)

where W is the sum of signs for the valid values of the analyzed vector w; Nr

is the number of valid samples which are the samples that accomplish d̃WDN (t) −

d̃
(T )
WDN (t)−lmin 6= 0; w is the ranked valid, non-zero, values according to | d̃WDN (t)−

d̃
(T )
WDN (t)− lmin | from smaller to larger; and R is a vector with the weight of each

sample according their position in w, where the weight is the position in the ranking,

i.e., the first sample has weight one, the second has weight two, and so on. Then,

the W value is compared with the reference tables to obtain the test statistic value.

So, if the significance is enough then the detection is validated and the leak local-

ization problem is addressed next. If not, then data before the T̂ is discarded, and

a new change is searched starting at time T̂ + 1.

4.3.2. Leak Size Estimation

To estimate the leak size value, the inlet flow measurements and the leak detection

time T̂ are used. After each detection, the difference in the mean values before T̂

for a data interval δ is computed as the estimated leak size using

l̂ =
1

δ

T̂∑
t=T̂−δ+1

(
d̃WDN (t)− d̃(T )

WDN (t)
)

(4.14)

4.4. Case Study

Real flow data recorded under nominal, leak-free, operations from five DMAs from

the Barcelona WDN for two periods, the first for the DMAs Bellarmar, Gavà Centre,

74



Chapter 4. Leak Detection

Table 4.1: Different artificial leaks injected into the Barcelona DMAs in [l/s].

Network Small leak Large leak Burst

Bellamar 1 2 4
Gavà Centre (set 1) 2 3 5
Can Roca 3 5 8
Parc de la M. (set 1) 1 2 4
Gavà Centre (set 2) 2 3 5
Canyars 2 3 5
Parc de la M. (set 2) 2 3 5

Parc de la Muntanyeta and Can Roca, which starts the 1st of January of 2013 until

the 18th of May of 2013. The second period for the DMAs Gavà Centre, Parc de

la Muntanyeta and Canyars starting the 31st of August of 2013 and ending the 3th

of March of 2014. The characteristics of these DMAs are detailed in Chapter 3.

The days with missing values, with outliers (greater than three times the mean)

or negative values are removed for all sequences, giving 100 and 96 days for each

period.

Three different sequences with 35 days without leak, where 14 of them are used for

training purposes, and 20 with leak (starting at day 1, day 16 and day 31), for each

DMA sequence of measurements, different leak sizes are introduced (as a constant

increment of the consumption) depending on the total consumption of the network.

The leak sizes, in [l/s], are summarized in Table 4.1.

The time range in the repetitive pattern where the techniques are applied is from

10 pm until 8 am. The use of a extended area than the MNF (usually between

2 am and 6 am) allows a faster response, and avoid the needs of consider different

training data sets for the weekdays and the weekend, or even, between different days

of the week (i.e., consider that different patterns of water consumption exists among

different days of the week).

The proposed method has been tuned in the following way:

• The first ten days of each sequence are used as the SS training data set T.

• A patch size of 13 samples.
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• The following four days are used for the ICI CDT training data set.

• A Υ = 1.5 for the creation of the intervals of confidence.

• A Υ = 1 for the creation of the intervals of confidence in the leak starting time

procedure.

• A window size of ι = 20 samples for the creation of each interval for the ICI

CDT.

• A minimum leak size of lmin = 0.5 [l/s].

• A value of ϑ = 0.05 to reject the null hypothesis.

• A number of δ = 36 samples (six hours) for the Wilcoxon’s test and leak size

estimation.

To tune the technique, a reasonable number of sequences for the SS training data

set is chosen to have a good variability in them; a larger patch size is chosen to

catch the most similar trend; the ICI CDT data set length is selected to avoid

tardiness response; the both confidence values are set low since the validation layer

(for the detection) prevent the most false positives made in the first layer and allow

a faster detection; a window size big enough not to have outliers that can lead to

a false detection; the minimum leak size is made according to expected minimum

detectable leak size; the threshold to reject the null hypothesis is chosen bigger than

zero to minimize false rejections and the number of samples chosen to validate and

estimate the leak size has been empirically chosen.

Three other approaches already published have also been tested into these data sets

in order to compare the performance of the proposed technique. In order to have

a comparison in similar conditions, the methods are tuned to have the same false

positive rate.

The first method is the one in which the proposed method is based (Boracchi and

Roveri, 2014). However, here it is used in the detection layer of the proposed method.

It is tuned with a Υ = 4.6 (to have the same FPR as the one obtained with the pro-

posed technique), while the remaining tuning is the same as the proposed approach.
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Another approach (Palau et al., 2012) uses historical flow measurements (in this

case the training data sets used for the SS and ICI CDT) to built a PCA model

where the samples correspond to each data interval of measurements considered and

the attributes are the samples in that data interval. The data is centered to zero

and normalized using the mean and the standard deviation respectively for each

attribute. Then, the PCA model is constructed and the load of new measurements

according to the principal components (i.e., the number of principal components are

set to contain at least 95 % of the total information of the original representation)

are analyzed by an statistic. In (Palau et al., 2012), different PCA are constructed

depending on the time of the day, one for the night, one for the morning and one

for the afternoon, and then, these three PCA are built for the weekdays and the

weekend. Here, only one PCA has been built since the time range used is quite

stable and the difference between weekdays and weekends with respect to different

days in the week is not noticeable. To decide the threshold that indicates if leaks

exists or not, the mean value of the load in the training data set plus a 3.7 times

the standard deviation is used in order to have the same FPR than the proposed

approach.

Finally, in (Ye and Fenner, 2011) an approach based on a set of adaptive Kalman

filters is used. An adaptive Kalman filter for each sample measurement inside a

week is used to predict the flow and generate normalized residuals (i.e., the residual

is divided by the actual measurement) with the actual measured flow. The vector

of normalized residuals is then averaged with a moving average of one week, and

the results are compared with a threshold. If the value overpass the threshold, the

detection is made, and the leak size is estimated using the actual measurement and

the normalized residual when the detection is made. Rather than a week period,

here, the time range between 10 pm to 8 am is used, so only 48 adaptive Kalman

filters are used. The threshold used is 0.19 and the initial values are the ones

proposed in the paper.

The results for the four methods for the small leaks case are summarized in Table 4.2,

for the large leaks in Table 4.3 and for the bursts in Table 4.4. The indicators used
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are the ones detailed in Section 2.3.

Table 4.2: Comparison of leak detection performance with small leaks.

Method FPR [%] FNR [%] DD [h] DTD [h] ∆l [l]

Proposed 9.5 9.5 123.9 76.4 0.8
ICI CDT 9.5 57.1 221.7 195.6 -
PCA 9.5 33.3 124.7 - -
Kalman 9.5 47.6 146.0 - 4.2

Table 4.3: Comparison of leak detection performance with large leaks.

Method FPR [%] FNR [%] DD [h] DTD [h] ∆l [l]

Proposed 9.5 4.8 73.9 28.6 0.8
ICI CDT 9.5 23.8 268.6 221.4 -
PCA 9.5 23.8 73.7 - -
Kalman 9.5 4.8 29.4 - 2.6

Table 4.4: Comparison of leak detection performance with bursts.

Method FPR [%] FNR [%] DD [h] DTD [h] ∆l [l]

Proposed 9.5 0 49.2 3.9 1.2
ICI CDT 9.5 0 122.7 72.1 -
PCA 9.5 4.8 48.0 - -
Kalman 9.5 0 25.5 - 2.2

As it can be seen from these tables, all methods struggle to deal with small leaks,

which in some networks can be confused by abnormal consumptions. Regarding to

the proposed method, and in extension, also to the ICI CDT method, the prob-

lem of flow sensor resolution is added since in the creation of the features by the

self-similarity there is not enough granularity in some cases. This can be seen in

Figure 4.3 where variations of water consumption are not well represented due to

the low resolution. Moreover, in the the small leak the increment due to the leak is

not noticeable.

The proposed method improves with respect to the one in which is based (Boracchi

and Roveri, 2014), apart from adding the ability of estimating the leak size. In

particular, in all areas except of the estimated leak starting time which is performing

similarly, the the approach proposed in this chapter outperforms the detection results
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Figure 4.3: Self-similarity % feature in Ballamar DMA for the three leak cases, the
vertical black line marks the leak starting time.

compared to the one proposed in (Boracchi and Roveri, 2014).

Regarding to the other two methods, one the one hand, the proposed approach

presents a more robust behavior since although provides the same FPR, the FNR is

better, specially compared to the PCA method. One the other hand, the proposed

approach performs better with small leaks than the adaptive Kalman filter technique.

The drawback is that is slower than the method based on the adaptive Kalman

filters. The proposed method provides more information than the others, specially

compared with the PCA since it only provides the leak detection. In the case of

the method based on the adaptive Kalman filters, which also provides a leak size

estimation, this is far less accurate that the one provided by the proposed method.

From these results, we can state that the proposed method is the most robust but

has the drawback of being slower when performing the detection.
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In this chapter, a new model-based approach for leak localization in WDNs using

pressure models and classifiers is presented. This methodology is intended to be

used after the leak has been detected by means of the analysis of the night DMA

water demands (Puust et al., 2010) or the method proposed in Chapter 4, and

after the application of the validation and reconstruction methodology described by

(Cugueró-Escofet et al., 2016) to the sensors used for leak localization. Following

a model-based methodology successfully tested in (Pérez et al., 2011) and (Pérez

et al., 2014), a pressure model of the considered WDN is used in a first stage to

compute residuals that are indicative of leaks. In a second stage, a classifier is

applied to the obtained residuals with the aim of determining the leak location. In

particular, the k-NN classifier and the multi-class Bayesian classifier presented in

Section 2.4 are proposed and tested in this chapter. This on-line scheme relies on a

previous off-line work in which the hydraulic model is obtained and the classifier is

trained with data generated by extensive simulations of the hydraulic model. These

simulations consider three types of uncertainties: leaks with different magnitudes

in all the nodes of the network (as discussed in the Chapter 2, it is a common

approach to consider leaks only at nodes), differences between the estimated and

real consumer water demands and noise in pressure sensors. The underlying idea

is to obtain a classifier able to distinguish the leak location independently of the

unknown real leak magnitude and the presence of uncertainties associated to the

water demands and the pressure measurements.
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5.1. Principle of Model-Based Leak

Localization Approaches

Model-based approaches aim to localize leaks in a water distribution network by

comparing pressure measurements (pressure measurements are preferred by the com-

panies in charge of water networks because they are easier and cheaper to install

and maintain) with their estimations obtained by using the hydraulic network model.

Usually, this methodology is used for localizing leaks within a given leak size range

defined by the water network management company. The minimum size is related

to the sensor resolution and modelling/demand uncertainty, and the maximum size

is defined as the value such that the leak behaves as a burst such that it can be seen

in the street. Model-based leak localization methods are based on comparing the

monitored pressure disturbances caused by the current leak at certain inner nodes of

the WDN or DMA with the theoretical pressure disturbances caused by all potential

leaks obtained by using its respective model (Pérez et al., 2014). This comparison

uses the residual vector r ∈ Rns , obtained from the difference between the measured

pressure at DMA inner nodes p ∈ Rns and the pressure at these nodes calculated

by using the network model considering a leak-free scenario p̂ ∈ Rns , i.e.

r(t) = p(t)− p̂(t) (5.1)

The dimension of the residual vector r, ns, depends on the number of inner pressure

sensors installed in the network. In recent years, some optimal sensor placement

algorithms have been developed to determine where the pressure sensors should be

installed inside the DMA with minimum economical costs (number of sensors), and

guaranteeing a suitable performance regarding leak localization, see (Pérez et al.,

2011), (Casillas et al., 2013), (Sarrate et al., 2014b) among others.

The number of potential leaks li (l is the leak magnitude in [l/s]) with i ∈ Rnn , is

considered to be equal to the number of WDN or DMA nodes nn, since from the
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modeling point of view, as proposed by (Pérez et al., 2011) and (Pérez et al., 2014),

leaks are assumed to occur in these locations.

5.2. Limitations of Sensitivity Analysis

Approaches

Most model-based leak localization approaches rely on the sensitivity-to-leak analy-

sis (Pérez et al., 2011; Pérez et al., 2014) where the theoretical pressure disturbances

caused by all potential leaks are stored in the leak sensitivity matrix Ω ∈ Rns×nn

(with as many rows as DMA inner pressure sensors, ns, and as many columns as

potential leaks in all nodes nn). Then, leak isolation is based on matching the resid-

ual vector (5.1) with the columns of the sensitivity matrix by using some metrics as

for example the correlation or the angle (see (Casillas et al., 2012) for details). The

leak sensitivity matrix can be mathematically formalized as follows

Ω =


∂r1
∂l1

. . . ∂r1
∂lnn

...
. . .

...

∂rns
∂l1

· · · ∂rns
∂lnn

 (5.2)

where each element Ωi,j measures the effect of the leak lj in the residual ri asso-

ciated to the pressure at node i. In practice, it is extremely difficult to calculate

Ω analytically because a water distribution network is a large scale multivariable

non-linear system which equations can only be solved numerically. Thereby, the

sensitivity matrix is generated by simulation of the network model and evaluating

the sensitivity Ωi,j as

Ωi,j =
p̂

(l
(0)
j ,0)

i − p̂(0)
i

l
(0)
j

(5.3)

where the superscript 0 denotes the absence of noise in measurements and nodal

demand uncertainty, p̂
(l
(0)
j ,0)

i is the predicted pressure in the node when a nominal
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(fixed value) leak l
(0)
j is injected in node j and p̂

(0)
i is the predicted pressure associated

with the sensor i under a scenario free of leaks (Pérez et al., 2011). The superscript (0)

denotes the nominal conditions (i.e., the estimated demand d̂ and without artificial

noise added). Then, the sensitivity matrix is obtained by repeating this process for

all nn potential leaks.

Different techniques and metrics are used to exploit the information contained in

(5.2). First, in (Pérez et al., 2011), the sensitivity matrix (5.2) is binarized using

a threshold with the aim, if it is possible, to have a different signature for each

potential leak location. Then, leak localization is based on matching the current

binarized residual with the columns of (5.2) and selecting the node or set of nodes

with lowest Hamming distance. Later, in (Quevedo et al., 2012), the sensitivity

matrix (5.2) is not binarized and the Pearson’s correlation coefficient between the

current residual and the columns of the (5.2) is computed as

ρr,s(li) =
cov(r, s(li))√

cov(r, r)cov(s(li), s(li))
(5.4)

where r id the vector of actual residuals to analyze, s(li) is the ith column of (5.2) and

cov() is function that returns the covariance between the two vectors. The column

where the largest correlation is computed is the index of the node candidate. Similar

approach is proposed by (Casillas et al., 2012) where a metric angle, the cosine,

between the current residual and the columns from (5.2) is obtained as

cosine =
r ∗ s(li)

‖r‖2‖s(li)‖2
(5.5)

The leak (column) with a value (5.5) closest to one is the node candidate.

An important drawback of the leak sensitivity approach is that the practical eval-

uation of (5.3) depends on the nominal leak lj (Blesa et al., 2012, 2016). If the

real leak size is different from the nominal one, the real sensitivity will be different

from the one computed using (5.3). Moreover, the sensitivity is also affected by

the nodal demand uncertainty (Cugueró-Escofet et al., 2015b) since this demand

is not measured but estimated using historical records of water consumption and
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using the aggregated DMA consumption pattern. These uncertainties, besides noise

in the measurements, will deteriorate the leak localization results obtained by using

the sensitivity approach. The approach proposed in this chapter aims to overcome

these difficulties.

5.3. Basic Architecture and Operation

The method for on-line leak localization proposed in this chapter relies on the scheme

depicted in Figure 5.1, and it is based on computing pressure residuals and analyz-

ing them with a classifier. The hydraulic model is built using the Epanet hydraulic

simulator (Rossman, 2000) by considering the DMA structure (pipes, nodes and

valves) and network parameters (pipe coefficients). After the corresponding cali-

bration process using real data, it is assumed that the hydraulic model is able to

represent precisely the WDN behavior. However, it must be noted that the model is

fed with estimated water demands in the nodes (d̂1, . . . , d̂nn). In practice, nodal de-

mands (d1, . . . , dnn) are not measured (except for some particular consumers where

Automatic Metering Readers (AMRs) are available) and are typically obtained by

the total measured DMA demand d̃WDN and distributed at nodal level using his-

torical consumption records. Hence, the residuals are not only sensitive to leaks

but also to differences between the real demands and their estimated values. Ad-

ditionally, pressure measurements are subject to the effect of sensor noise ν and

this also affects the residuals. Taking all these effects into account, the classifier

must be able to localize the real leak present in the WDN, that can be in any node

and with any (unknown) magnitude, while being robust to the demand uncertainty

and the measurement noise. Finally, the operation of the network is constrained

by some boundary conditions c (such as the position of internal valves, reservoir

pressures and flows) that are known (measured) and must be taken into account in

the simulation and can also be used as inputs for the classifier.
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Figure 5.1: Leak localization scheme.

5.4. Methodology Overview

The exploitation of the architecture presented Figure 5.1 relies on a methodology

that distinguishes several off-line and on-line procedures.

5.4.1. Off-line Stage

The application of the architecture presented in Figure 5.1 relies on an off-line work

whose main goal is to obtain a classifier able to distinguish the potential leaks under

the described uncertainty conditions. In particular, the method proposed in this

chapter considers an off-line design based on the following stages:

• Modelling - A hydraulic model for the WDN is obtained, calibrated and im-

plemented with Epanet. The model is basically built by taking into account

the network structure and by applying flow balance conservation and pressure
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loss equations described in Section 2.1.

• Data generation - The model implemented is extensively used to generate

data in the residual space for each possible leak and for different operating

and uncertainty conditions.

• Classifier training and evaluation - The classifier is first trained with a subset

of the initial data set, then it is applied to the testing data in order to estimate

its performance.

The data generation stage is critical since the availability of representative data

is a necessary condition for obtaining a good classifier. Since the amount of data

collected from the real monitored WDN is limited, a way to obtain a complete

training data set is by using the hydraulic simulator. Hence, the training and testing

data are generated by applying the scheme depicted in Figure 5.2, which is similar

to the one presented in Figure 5.1 but with the main difference of substituting the

real WDN by a model that allows to simulate the WDN not only in absence but

also in presence of leaks (injected as described in Section 2.1).

The presented data generator scheme is exploited in order to:

• Generate data for all possible leak locations, i.e. for all the different nodes in

the WDN (l̄i, i = {1, 2, . . . , nn}).

• Generate data for each possible leak location with different leak magnitudes

within a given range (l̄i ∈ [l
(−)
i , l

(+)
i ]).

• Generate sequences of demands d̄ and boundary conditions c̄ that correspond

to realistic typical daily evolution in each node.

• Simulate differences between the real demands and the estimations computed

by the demand estimation module ((d̄1, . . . , d̄nn) 6= (d̂1, . . . , d̂nn)).

• Take into account the measurement noise in pressure sensors, by generating

synthetic noise (v̄).
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Figure 5.2: Residual data generation scheme.

The artificial data obtained from simulations is divided into training and testing

sets. The training stage is based on a learning procedure where the input is the

(labeled) training data set and the result is a classifier that must be able to correctly

classify new data instances into the correct class. The generalization ability of the

obtained classifier is checked in the testing stage, in which the performance indexes

are computed for the testing data set.

The details of the training stage are particular of the type of classifier used. The

results presented in the following sections have been obtained by using two differ-

ent well-known classifiers: the k-Nearest Neighbor (k-NN) classifier, which is non-

parametric, and the multi-class Bayesian classifier, which is parametric. The details

about the training of both classifiers will be provided in the next subsections.
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5.4.2. On-line Stage

Once the classifier has been trained and validated, it can be used on-line to localize

leaks. According to Section 5.3, the classifier can be directly used, once the leak has

been detected, to localize leaks based on the instantaneous values of the computed

residuals.

However, this strategy may provide limited results if there is a high level of un-

certainty. The use of a temporal reasoning that takes into account not only the

instantaneous values of the residuals but all the values within a time horizon is con-

sidered as already proposed in (Casillas et al., 2012). This idea is implemented in

different forms depending on the type of classifier that is used, details are provided

in the next subsections.

5.5. k-NN Classifier Implementation

5.5.1. The k-NN Classifier

The k-NN algorithm presented in Section 2.4 is adapted to the leak localization

problem by assuming that each potential leak location represents a different class.

Then, the artificial data with the artificial leaks injected generated by a hydraulic

simulator is directly stored in the training data set to be compared with the new

instances. If some attribute has a different scale (i.e., the magnitude of the variability

of each attribute) to the others, it is recommended to scale it to a similar values of

the rest of the attributes in order to avoid uncompensated attributes, for example,

the total water consumption has a larger variability than the residuals, so the flow

must be normalized.
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5.5.2. Time Reasoning

If the uncertainty in the demands, the leak magnitude or the noise level are large

then the direct application of the classifier can provide poor leak localization results.

To reduce the impact of the demand uncertainty, leak magnitude and noise, typically

the analysis of the residuals evolution is performed in a time horizon, i.e., the values

for the residuals in the last N time instants are considered (as applied in (Casillas

et al., 2012)).

As proposed in Section 2.4, a time reasoning is applied here, where the information

stored in the confusion matrix Γ generated using a validation data set is used to

estimate the probabilities P (li|lj) (i.e., the probabilities that given a diagnosis of

leak in node j the leak is in node i). So, the sum of the probabilities is used to infer

the diagnosis by taking the node with the largest value as the node candidate in the

time horizon [t−N + 1, t].

5.6. Bayesian Classifier Implementation

5.6.1. Bayesian Classification

The multi-class Bayesian classifier is adapted in a similar way as the k-NN case.

Each potential leak location is assumed to be a different class for the classifier.

Then, we have the following reformulation.

Given the residual vector r, the objective is to apply a Bayesian leak discrimination

procedure in order to identify which leak or leaks may occur based on the observed

behavior. Such a diagnosis procedure based on Bayesian reasoning explained in

Section 2.4 is adapted to the leak localization problem is explained next.

At every time sample t, the probability of a leak occurrence is estimated as a result

of the application of the Bayes Rule

P (li | r(t)) =
P (r(t) | li)P (li)

P (r(t))
for i = 1, . . . , nn (5.6)
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where P (li | r(t)) is the posterior probability that the leak li had caused the observed

residual vector r(t) = (r1(t), . . . , rj(t))
T , P (r(t) | li) is the likelihood of the residual

r(t) assuming that the active leak is li, P (li) is the prior probability for the leak li,

and P (r(t)) is a normalizing factor given by the Total Probability Law, which in the

proposed leak localization case is

P (r(t)) =

nn∑
i=1

P (r(t) | li)P (li) (5.7)

Regarding prior probabilities, unless we have any additional information, an unprej-

udiced starting point is to consider all the potential leak locations equally probable,

that is, P (li) = 1
nn

for i = 1, . . . , nn. To estimate the likelihood value P (r(t) | li),

we need to perform a previous calibration task in order to obtain the joint proba-

bility density function for each leak in the residual space, P (r | li) for i = 1, . . . , nn.

The calibration stage is detailed in a next section. Note that, in contrast to stan-

dard Näıve Bayesian classifiers, we do not need to assume independence between

the residuals.

The application of (5.6) produces a set of values P (li | r(t)),
∑nn

i=1 P (li | r(t)) = 1,

that can be used to decide where the leak is located. So, the leak with the highest

posterior probability is the node candidate provided by the Bayesian classifier. An-

other option could be to select a set of node candidates with the posterior probability

above a pre-specified threshold.

5.6.2. Recursivity

The results can be improved if (5.6) is recursively applied, that is, if the posterior

probability P (li | r(t)) is used as the prior probability for the next sample time. This

way, as long as new measurement data is available, the probabilities are updated

and many of the competing leaks can be discarded.

The only drawback is that if any of the leaks take the posterior probability value

of 1 at any t, then all the remaining leaks take the 0 probability value, therefore

preventing them to have a future value different from zero due to the recursive appli-
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cation of (5.6). This drawback can be easily overcomed by forcing all probabilities

to have a maximum value of, say, 0.99. When a leak li presents the probability

P (li | r(t)) > 0.99, we force it to be P (li | r(t)) = 0.99 and we can force the

remaining leaks to be P (ln | r(t)) = 1−0.99
nn−1 for n = 1, . . . , nn and n 6= i.

5.6.3. Bayesian Time Reasoning

Additionally, the results can be improved if a time horizon N is introduced. In this

case, the posterior probability can be computed on the basis of the N previous time

samples, that is, to compute P (li | r(t)), we recursively can apply the following

equation

P (li | r(t−N + j)) =
P (r(t−N + j) | li)P (li | r(t−N + j − 1))

P (r(t−N + j))

for i = 1, . . . , nn and j = 1, . . . , N

(5.8)

where an unprejudiced starting point may be all the potential leak locations equally

probable as P (li | r(t−N)) = 1
nn

for i = 1, . . . , nn.

5.6.4. Calibration of the Probability Density

Functions

Unlike the k-NN classifier, the Bayes classifier requires a more elaborated training

phase where a joint Probability Density Function (PDF) for each leak class in the

residual space, P (r | li) for i = 1, . . . , nn, has to be estimated.

The first step is to decide the probability family. The Law of Large Numbers states

that most situations lead to a Gaussian probability density function if the number of

samples is high enough. Several tests can be applied to the residual values to assess

if they are Gaussian distributed or not. For instance, we can apply the well-known

one-dimensional Kolmogorov-Smirnov (Daniel et al., 1978) or the Anderson-Darling

(Stephens, 1974) tests, among others.
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Figure 5.3 shows two leak distributions calibrated by means of Gaussian probability

function. Leak 1 is better adjusted because it takes into account the cross-correlation

between residuals r1 and r2. On the other hand, leak 2 is adjusted by assuming

statistic independence between residuals r1 and r2 and therefore the fitting is not

so accurate. Note also that other probability distribution families different from

Gaussian could be used, including multimodal and non-parametric distributions.

Figure 5.3: PDF calibration for leaks 1 and 2.

5.7. Case Studies

In this section, a simplified WDN and a DMA case studies of increasing size and

complexity (Hanoi and Nova Icària) are introduced to assess the performance of the

proposed methodology.

As already previously discussed, leaks are considered in any of the demand nodes.

The known variables are the input pressures and flows of the networks (reservoir

boundary conditions) and some pressures at the inner nodes of the networks where

92



Chapter 5. Model-Based Leak Localization

sensors would be located (see Chapter 7 for details about optimal sensor location). It

is considered that the demand pattern is known for all demand nodes but with some

uncertainty as proposed by (Cugueró-Escofet et al., 2015b). The leak magnitude is

assumed to be unknown but bounded by a known interval (minimum and maximum

leak magnitudes). Finally, noise in pressure sensors is considered too.

For the considered networks, leak localization results under different uncertainty sce-

narios are presented and discussed. Moreover, for the second (and biggest) network

the results of localizing a real leak case are also presented.

5.7.1. Hanoi WDN Case Study

The proposed methodology has been first applied to the simplified model of the

Hanoi (Vietnam) WDN, depicted in Figure 5.4. Measurements of two inner pressure

sensors arbitrary placed in nodes 14 and 30 are available.
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Figure 5.4: Hanoi topological WDN and their sensor placement.
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Uncertainty Effect in the Residual Space

Without leaks and in a scenario without uncertainty (i.e., no demand and leak

uncertainties, and no noise in measurements), the residuals should be close to zero.

However, in case of a leak, and still in a scenario without uncertainty and a fixed

total eater consumption of d̃WDN = 2991.1 [l/s], the residuals are points in the

residual space as it is shown in Figure 5.5 for a leak size of 50 [l/s].
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Figure 5.5: Residual space without any uncertainties in Hanoi WDN (each color
represents a leak in a different location).

The leak uncertainty generated by (2.12) is shown in Figure 5.6a which produces a

displacement of the residuals from the origin as the leak grows. Notice that not all

the residuals follow a linear evolution (the nodes where the leaks can change their

flow sign presents a more non-linear behavior), allowing the directional analysis of

residuals (Casillas et al., 2012). In Figure 5.6c, the demand uncertainty generated

by (2.9) is presented and produces a cloud of points around the scenario without

uncertainty which diameter depends on the level of uncertainty. It should be noted

that the demand uncertainty is the uncertainty that produces more overlapping

between different leaks. In Figure 5.6b, the noise in measurements generated by
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(2.7) is shown. It also needs to be noted that noise measurement produces the same

effect as demand uncertainty but with less impact. Finally, in Figure 5.6d, the effect

of all the uncertainties together is depicted.
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(a) Residual space with leak uncertainty
in Hanoi WDN.
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(b) Residual space with noise in Hanoi
WDN.
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(c) Residual space with demand uncer-
tainty in Hanoi WDN.
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(d) Residual space with all the uncertain-
ties in Hanoi WDN.

Figure 5.6: Residual space with uncertainties and noise in Hanoi WDN (each color
represents a leak in a different location).

Figure 5.7 shows the results of applying (2.13) to generate sequences of daily global

water consumption demands.

Leak Localization

In order to illustrate the performance of the proposed methodology, four different

studies have been carried out under the following particular conditions:

• A leak size uncertainty study considering a leak range between 25 and 75
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Figure 5.7: Original and artificially generated daily consumption.

l/s (0.84 and 2.51 % respectively, of the average of total amount of water

demanded, which is 2991.1 [l/s]).

• A study considering noise in pressure measurements with an amplitude of ±5

% of the mean value for all pressure residuals.

• A demand uncertainty study considering an uncertainty of ±10 % of the nom-

inal demand node values.

• A study considering that all the three uncertainties previously defined are

simultaneously present in the WDN.

For each study, three complete data sets have been generated for each node (poten-

tial leak locations), one for training purposes, another used to generate the confusion

matrix used in the k-NN time reasoning and the later one to test the leak localiza-

tion performances. Each set used for testing, associated to a leak at a given node, is

called a leak scenario. The variables conforming the data are the input flow d̃WDN

and the two residuals r14 and r30 associated to the pressure measurements in nodes

14 and 30, respectively. The feature space used as input for the classifier is repre-
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sented in Figure 5.8. The sampling time used in the simulations is 10 minutes, but

hourly average values of variables are used to improve the leak location performance.

Different daily input flow patterns have been simulated like the ones depicted in Fig-

ure 5.7. Accordingly to the scheme presented in Figure 5.1, the pressure residuals

have been obtained by means of a WDN simulator (Epanet model of the network)

where the uncertainties described above have been considered.
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Figure 5.8: Residual space with uncertainties in Hanoi WDN (each color represents
a leak in a different location).

In order to determine whether the three classifier inputs (r14, r30 and d̃WDN ) follow

a Gaussian distribution, a one-dimension Kolmogorov-Smirnov test on a training

data set of 480 samples (for each of the 31 leak nodes) has been performed. As

a result, the three inputs can be considered Gaussian distributed for a significance

level of 3 %.

The results obtained by the proposed method in the four different studies have been

compared to the ones obtained by using the leak-sensitivity analysis with the angle

metric proposed by (Casillas et al., 2012) and summarized in Section 5.2. For the

Angle method only the two residuals are used because the flow measurement has a
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Table 5.1: Accuracy results in Hanoi WDN.

Study
N = 1 N = 24

k-NN Bayes Angle k-NN Bayes Angle

Leak uncertainty 60.21 83.60 76.61 77.41 83.87 77.41
Noise in measurements 69.62 83.19 73.79 83.87 83.87 70.96
Demand uncertainty 31.18 39.11 41.39 58.06 45.16 64.51
All together 32.12 48.25 36.96 74.19 83.87 54.83

great value and tends to reduce the effect of residuals in the diagnosis, thus resulting

in worse results. The sensitivity matrix (5.2) has been computed using (5.3) and

by considering nominal leak conditions in every demand node (v̄ = 0, d̄ = d̂ and

li = 50 [l/s], i = 1, ..., nn). The results obtained by using the Angle method and the

two proposed methods, in both cases considering only one sample (N = 1) and the

equivalent number of samples of one day (N = 24) in the leak localization diagnosis

are summarized in Table 5.1. The values presented in this table correspond to the

overall accuracy Ac defined in (2.16).

As it can be seen, the three methods provide good performance in the leak uncer-

tainty case because of the linear directional variation of most of the residuals for

this kind of uncertainty (Blesa et al., 2016). It must be noted that in the case that

only demand uncertainty is considered, the classifier-based methods perform worse

than when all the uncertainties are considered together. This happens because the

leak uncertainty spreads the residual data providing a better separation (and for the

Bayesian classifier the distribution tends to be more Gaussian).

When the time horizon and recursivity described in Subsection 5.6.1 are applied,

it can be seen that there is an improvement in the performance achieved in all

uncertainty cases (except for the case of the noise uncertainty for the Angle method,

where the full performance is achieved since the first sample, and then fluctuates

within the time horizon around the same values).

The effect of the horizon length N in the performance (Ac) for the three studied

methods is also analyzed using the last study (to create the figures an extended data

set, ten times larger, has been used). The results for the k-NN classifier are shown

in Figure 5.9, while the results for the Bayesian classifier are shown in Figure 5.10,
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and the results for the Angle method are shown in Figure 5.11. The term“node

relaxation” refers to the number of nodes in topological distance between the node

with the real leak and the node where the classifier predict the leak for which the

diagnosis is still considered correct.
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Figure 5.9: Accuracy results over a time horizon for the k-NN classifier in Hanoi
WDN.

As expected, the accuracy increases with the time horizon length N . It can be

observed that it reaches a steady state value when N is around twenty hours. This

result justifies the use of a time horizon corresponding to one day and it agrees with

the results already presented in (Casillas et al., 2012).

Finally, Figure 5.12 shows a comparison of the three studied methods by using

a different performance indicator, the Average topological distance, which is the

minimum distance in nodes between the node candidate and the node where the

leak exists, as defined in Section 2.4.

The results show the good performance of both classifiers, especially the Bayesian

classifier, which works better than the k-NN classifier when the data has a clear (in

this case Gaussian) distribution (if not, the k-NN performs better as it can be seen
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Figure 5.10: Accuracy results over a time horizon for the Bayesian classifier in Hanoi
WDN.
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Figure 5.11: Accuracy results over a time horizon for the Angle method in Hanoi
WDN.

100



Chapter 5. Model-Based Leak Localization

Time [h]
0 5 10 15 20 25

A
v
er
a
g
e
T
o
p
o
lo
g
ic
a
l
D
is
ta
n
ce

[n
o
d
es
]

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Angle

k-NN

Bayes

Figure 5.12: Average topological distance results in a time horizon in Hanoi WDN.

in the Table 5.1 for the demand uncertainty case), and also has a better reasoning

over time. Also, in Figure 5.12, it can be seen that the Bayesian classifier tends

to point a closer class when it fails than the k-NN classifier, but it can increase its

performance at that point by choosing a bigger k value, but with a degradation of the

exact localization (i.e., Ac) performance. To sum up, the Bayesian classifier should

be used when the classes present a Gaussian distribution, and the k-NN classifier

otherwise.

5.7.2. Nova Icària DMA Case Study

The two leak localization techniques proposed are tested in the Nova Icària DMA

considering the real leak scenario described in Chapter 3. As in the previous case

study, for all the measured variables, the average value of the six samples available

each hour is used for leak localization purposes. Single leak scenarios have been

considered in the 1520 nodes.

Here, the uncertainty modelling with real data explained in Section 2.1 is applied.
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First, the system has been simulated considering the operating conditions of the

leak-free scenario (input flow, boundary conditions and demand distributions). The

differences between the 120 hourly samples of the five inner pressure sensors and

the pressures estimated by the hydraulic model have been used to estimate the

real uncertainty of the network (demand uncertainty, modeling errors and noise

in the measurements). On the other hand, nominal hourly leak residuals r
(0)
i (t) for

i = 1, . . . , nn and t = 1, . . . , 24 have been computed as the difference of the estimated

pressures in the five inner sensors in a leak scenario and the ones estimated in the

normal operation.

A k-NN classifier (with k = 3) has been trained for leak localization and validated.

The inputs of the classifier are: the five pressure residuals, the flow that enters into

the DMA and the two set points of the valves. The data used in the training and

testing stages are the 24 samples of nominal hourly residuals directly and adding

the real uncertainty (120 samples): 96 samples for training and 48 for validation (for

the generation of the confusion matrix Γ). The same training data sets generated

are used to calibrate the PDFs (assuming Gaussian distributions) for the Bayesian

classifier.

Figure 5.13 shows the result of the two proposed methods after applying 24 hourly

samples (N = 24): the k-NN classifier indicates that the leak is in node 3 while the

real leak is in node 996, which means that the minimal topological distance is 13

nodes, and the geographical linear distance is around 184 meters. For the Bayesian

classifier, the node candidate is 403 which has a minimal topological distance of

10 nodes and a geographical linear distance of 183 meters. As a comparison, the

application of correlation method (Pérez et al., 2014) provides as node candidate

the node 1036 (this result is also depicted in Figure 5.13), which is at a minimal

distance of 17 nodes and 222 meters of the real leak location.
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Figure 5.13: Comparison of different leak localization methods in Nova Icària DMA.
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6. Data-Driven Leak Localization

In this chapter, a new data-driven method for leak localization in WDNs is proposed.

The supervised regression technique based on the Kriging interpolation presented

in Section 2.4 is used to generate estimated data from the sensed nodes and the

topological information of the network. From these estimations, it is searched for

the place the with largest evidence of leak that is proposed as the node candidate.

Therefore, the use of the Bayesian temporal reasoning used in the model-based leak

localization for the multi-class Bayesian classifier is used here to extract a unified

and enhanced diagnosis from an ensemble of them.

This method is based in three principles:

• The use of historical measurements from pressure sensors placed across the

network that are able to represent the behavior in nominal conditions of the

network (i.e., measurements without leaks inside the network).

• The use of spatial interpolation (or regression) technique, in this PhD thesis

the Kriging interpolation to estimate the pressure in the nodes where there

are not sensors placed using the measurements from the sensed nodes.

• The use of the estimated pressure at each node of the network, where compar-

ing the actual pressure measurements with leak with the historical pressure

measurements without leak in similar operational conditions. The node with

a largest fall of pressure by the leak is pinpointed as the node candidate.

From that, two main characteristics must be remarked. On the one hand, the leak

localization approach is purely a data-driven approach that does not need the use
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of a hydraulic simulator and the building and calibration of a network model. On

the other hand, the proposed method only requires data in nominal operation, in

contrast with other methods that require the data from the faulty conditions. These

two characteristics make the proposed approach a fast and straightforward to apply

in practice.

6.1. Assumptions and Basic Operation

As stated in Chapter 4 and Chapter 5, the leak detection and localization problem

posed as a FDI problem in the literature assumes that only one leak can occur at a

time. Additionally, it is also usually assumed that leaks can only occur in the nodes

of the network (e.g., assumed in (Pérez et al., 2011) or (Casillas et al., 2012)), which

makes the number of potential places that leaks can occur equal to the number of

nodes of the network. Here, as in the two previous chapters, the same assumption

is made.

We define as operating conditions cd the positions of internal valves, reservoirs pres-

sures, global consumption flow and users nodal demands. Note that here, in contrast

to the boundary conditions c used in Chapter 5, the variable operational conditions

cd besides containing the boundary conditions cd it also includes the nodal demands

cd. Consider also the presence of a leak lj with magnitude l and acting at node j. If

pressure measurements are available in all the nodes of the WDN and historical data

of these sensors is available for same operating conditions but in leak-free operation,

then a residual vector r can be computed as

r = p(cd)− p(lj)(cd) (6.1)

where r is the vector of residuals in [m], p(cd) is the vector of pressure measurements

in [m] in nodes of the WDN under operating conditions cd in an scenario free of leaks

while p(lj)(cd) is the vector pf pressure measurements in nodes of the WDN under

the same operational conditions cd but with a leak in node j with a leak size of l.
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Using the residual vector r, the leak localization can be performed by estimating the

node where the leak is as the node with the highest residual component (see (Jensen

and Kallesøe, 2016) and (Romano et al., 2017)) as

ĵ = arg max
j∈{1,...,nn}

{rj} (6.2)

where rj for j = 1, . . . , nn are the components of residual vector r defined in (6.1).

In practice, two limitations in the computation of (6.1) appear. The first limitation

is that not all the nodes of the WDN have pressure sensors installed. Indeed, due

to budget constraint only a few sensors are installed in consumer nodes inside the

WDN. The current sensor placement in a WDN can be described by a vector q

q = (q1, . . . , qnn) (6.3)

where nn is the number of potential locations where sensors can be installed (i.e.,

all the nodes of the network) and components qi are binary values that indicate if

a sensor is placed at node i (qi = 1) or not (qi = 0). We define ns as the number

of sensors installed in the network. This limitation can be faced by using spatial

interpolation techniques that starting from the available pressure measurements in

some consumer nodes are able to estimate the pressure in the other consumer nodes

without sensor.

The second limitation is due to the fact that the historical data is limited. So in

practice, when a new measurement under the operational conditions cd historical

measurements with exactly the same operational conditions are not available. To

overcome that problem, the use of a historical measurements with a closer opera-

tional conditions ĉd is considered instead. In practice, the flow and the pressure at

the inlet are measured, but the nodal demands, unless AMRs are placed, are not

measured.

Taking into account the two previous limitations, the ideal residual defined in (6.1)
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can be approximated by

r̂ = p̂(ĉd,q)− p̂(lj)(cd,q) (6.4)

where p̂(ĉd,q) is the vector that approximates the pressure map in the WDN under

boundary conditions cd and no leak scenario. The residual is computed by using

pressure values pi(ĉd) if qi = 1 or otherwise by interpolation techniques to predict

the pressure values for the unmeasured nodes. p̂(lj)(cd,q) is the vector that ap-

proximates the pressure map in the WDN under operational conditions cd and leak

scenario of magnitude l in node j. This pressure is computed using actual measured

values p
(lj)
i (cd) if qi = 1 otherwise by interpolation techniques to predict the pressure

values for the unmeasured nodes.

Then, in practice the approximated residual (6.4) will be used instead of the ideal

residual (6.1) to perform the leak localization task as (6.2)

ĵ = arg max
j∈{1,...,nn}

{r̂j} (6.5)

It should be noted that the performance of the proposed approach depends on the

number and location of the pressure sensors as long as the amount of historical data

and their similarity with the current operational boundaries.

6.1.1. Pressure Estimation by Kriging

Interpolation

To evaluate the residual (6.4), actual measured values available from the installed

sensors and interpolation techniques to predict the pressure values for the unmea-

sured nodes will be used.

Here, the interpolation technique that is proposed to be used is based on the use of

the Kriging interpolation approach, which is broadly used in the field of geostatistics

(Kleijnen, 2017), and has been described in Section 2.4. The basic idea of Kriging

interpolation is to predict the value of a function at a given point by computing a
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weighted average of the known values of the function in the neighborhood of the

point. The method can be seen as a multivariate regression approach.

The estimation of an unmeasured pressure in a node i is given by a fitted Kriging

interpolation model with parameters µ and ε(·) is

p̂
(lj)
i (cd,q) = H + ε(p(lj)(cd,q), di(q)) (6.6)

where H is a constant that represents the constant part of the interpolation and

function ε(χ,θ, di(q)) is the spatially correlated part of the variation. Both terms,

constant H and function ε(·) are obtained in the fitting process as well as function

parameters χ and θ. On the other hand, di is the ith row of a symmetric matrix

D ∈ <nn×nn whose components di,j are the minimum distance in pipe [m] from

node i to node j and (q) denotes that only the components of di associated to the

measured nodes are considered. The fitting process consist in a least square error

minimization problem considering available pressure measurements p(lj)(cd,q) and

distance matrix Ds(q) ∈ <ns×ns which is a submatrix of the matrix D but only

considering the distances between the ns sensors.

6.1.2. Bayesian Time Reasoning

With the aim of improving the performance of the leak localization approach defined

in (6.5), the residual vector (6.4) is updated at each time instant t for every leak

node candidate i = 1, . . . , nn. First, and in order to have only positive values, the

smallest residual value is added to all the residuals as

r̂
(+)
i (t) = r̂i(t)−min(r̂(t)) (6.7)

The S(t) likelihood index is then obtained for every leak node candidate i =

1, . . . , nn as the normalization of the r̂
(+)
i (t) values as follows

Si(t) =
r̂

(+)
i (t)∑nn

j=1 r̂
(+)
j (k)

(6.8)

108



Chapter 6. Data-Driven Leak Localization

The value of Si(t) is a measure of which ones of the nn nodes present the most

disturbed residuals and therefore are candidates to be the leaking node. This infor-

mation can be combined to the initial leak probabilities for each node Pi(t − 1) by

means of the Bayes rule in order to obtain updated posterior leak probabilities Pi(t)

Pi(t) =
Pi(t− 1)Si(t)∑nn
j=1 Pj(t− 1)Sj(t)

(6.9)

Then, the leak node localization can be estimated by using posterior leak probabil-

ities instead the evaluation of approximated residual vector in (6.5) by

ĵ(t) = arg max
i∈{1,...,nn}

{Pi(t)} (6.10)

The starting point can be an unprejudiced one (if no further information is available),

i.e., Pi(t) = 1/nn, and as long as new sample measurements are available and the

Si(t) are computed, the updated values of Pi(t) allow to go on discarding many of

the competing leaks.

One drawback is that if any of the leaks takes the posterior probability value of 1 at

any t, then all the remaining leaks take the 0 probability value, therefore preventing

them to have a future value different from zero due to the recursive application of

(6.9). Similarly, if a leak node takes a zero value at any time instant that will be

the result, which given the normalization process, this is the case for one node at

each time instant. To avoid this problem, a term corresponding to the average value

multiplied by the parameter Z is added in the normalization process so that (6.8) is

improved as

Si(t) =
r̂

(+)
i (t) + Z

nn

∑nn
z=1 r̂

(+)
z (t)∑nn

j=1(r̂
(+)
j (t) + Z

nn

∑nn
z=1 r̂

(+)
z (t))

(6.11)

This way the maximum value of Si(t) at any time instant t is limited to

Smax(t) = 1−
Znn−1

nn

∑nn
z=1 r̂

(+)
z (t)∑nn

j=1(r̂
(+)
j (t) + Z

nn

∑nn
z=1 r̂

(+)
z (t))

(6.12)
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and the minimum value for Si(t) at any time instant t is guaranteed to be at least

Smin(t) =
Z
nn

∑nn
z=1 r̂

(+)
z (t)∑nn

j=1(r̂
(+)
j (t) + Z

nn

∑nn
z=1 r̂

(+)
z (t))

(6.13)

6.1.3. Summary

The application of the methodology comprises both off-line and on-line stages. The

off-line stage is limited to the application of a sensor location algorithm, as the one

presented in the next Chapter 7 for determining the optimal location of a given

number of pressure sensors to be installed in internal network nodes. At the online

stage, at each time instant t, several steps are required. First, the current operating

conditions and internal pressures are determined. If the leak detection module (the

implementation of this module is out of the scope of this paper) determines that

the network is not affected by any leak, then the current operating conditions and

internal pressure values are used to actualize a database that stores an always up-to-

date historical normal operation data set. On the other hand, if the fault detection

module indicates the presence of a leak, then the leak localization procedure detailed

in the previous subsections is triggered:

• Look for leak-free historical data captured under similar operating conditions,

i.e., at the same hour of the day and with similar input pressure and flow.

• Apply Kriging spatial interpolation (6.6) to the selected historical values to

obtain the reference pressure map, i.e., a map containing the reference pressure

values for all the network nodes.

• Apply Kriging (6.6) to the measured values to obtain the current pressure

map.

• Compare the current and the reference pressure maps computing the residual

(6.4).
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• Identify the leaky node as the one for which the difference between pressure

maps is highest by using (6.5).

• Integrate the individual diagnosis in a time horizon scheme to improve the

performance by means of the Bayes rule (6.9).

6.2. Case Studies

The proposed data-driven leak localization approach is tested in three networks.

First, the Hanoi benchmark network is used to experimentally verify the assump-

tion of (6.2) by means of artificial data. Then, two real cases are presented, the

Nova Icària DMA in which the method is compared with the ones obtained in the

Chapter 5 and a new real case from the Pavones DMA network.

6.2.1. Hanoi WDN Case Study

This network, presented in Chapter 3 is used to justify the validity of (6.2) and to

test the performance using artificial data.

Leak Localization Proof of Concept

Using the Epanet hydraulic simulator data from all sensors with an artificial leak

or without the leak under the same operational conditions cd has been generated

to compute the residuals as stated in Equation 6.1. Using this data the normalized

sensitivity matrix (i.e., the columns are the residual output of the measurements of

the node with that column index and the rows the node with leak) can be build for

a leak of 100 [l/s] where it can be seen that the biggest pressure changes are at the

node where the leak is generated for all leaks as depicted in Figure 6.1. The rows of

the matrix are independently scaled to have their values from 0 to 1.

A particular case can be used to illustrate the generated pressure maps. In Fig-

ure 6.2, the reference pressure map, the current pressure map, the residual map,

and also the residual profile, for a leak in node 16 are shown.
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Figure 6.1: Normalized sensitivity matrix of the Hanoi WDN for a leak of 100 [l/s]
with all the sensors.
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(a) Pressure map without leak.
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(b) Pressure map with leak.
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(c) Residual pressure map.

Node [-]
5 10 15 20 25 30

R
es
id
u
a
l
[m

]

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(d) Residual pressure profile.

Figure 6.2: Kriging interpolation for the case of a leak of 100 [l/s] at node 16.
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Table 6.1: Leak localization results in the simplified Hanoi WDN.

Time horizon ATD

N=1 3.2
N=24 2.2

Leak Localization

Using the hydraulic simulator, data with the following uncertainties are created:

• The leak uncertainty is considered by not knowing the exact leak size, but

knowing that it is contained in the range of 25 and 75 [l/s].

• The noise in the measurements is considered, where a white noise of the am-

plitude of 0.1 (zero mean) meter water column ([mwc]) is added.

• The demand uncertainty is considered, by introducing an uncertainty of the

10 [%] of the nominal demand value.

The daily global consumption pattern is generated as described in Chapter 5 for six

sensors. The sampling rate is 10 minutes, but the measurements at each hour are

averaged to reduce the impact of the uncertainties in the diagnosis stage.

The sensor placement used here is the result of the proposed incremental feature

selection technique presented in Chapter 7. The application of the proposed leak

localization method to the testing data is summarized in the Table 6.1 for the time

horizons N = 1 (one hour) N = 24 (one day), where “ATD” is the average topolog-

ical distance (i.e., the average error of the leak localization performance) in [nodes].

The complete ATD diagnosis performance for N = 1 to N = 24 is shown in Fig-

ure 6.3.

It must be remarked that in the interpolation of the estimated pressures p̂ made by

the Kriging, the coordinates are not used to map the pressures, instead the minimum

distance in pipe is used in order to avoid closer nodes in coordinates, but connected

through a lot of meters of pipes.

Also to identify the reference map, past measurements took at the same hour are

used to try to catch the daily routine consumption of water to try to minimize the
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Figure 6.3: ATD results of the proposed leak localization approach in the Hanoi
WDN.

nodal demands differences, which are unknown. And from these measurements, the

ones with closest global consumption with respect to the actual measurements are

used.

6.2.2. Nova Icària DMA Case Study

The Nova Icària DMA network presented in Chapter 3 and already used in Chapter 5

to test the k-NN classifier and the Bayesian classifier is used to assess the data-driven

technique proposed in this chapter.

Here, the real case is used considering that the first five days of data (hourly aver-

aged) without leak are used as the historical data to create the interpolated maps

to be compared with the maps generated with the actual pressure measurements.

All the node candidates obtained for the different methods and the location of the

real leak are presented in the Figure 5.13.

The result of the diagnosis using one day of data with leak (the first 24 hours) pro-

vides as the node candidate the one with index 7, which is in a geometric distance

of 239.9 meters and a topological distance of 23 nodes from the leaky node. This

result is worst but close to the ones obtained using model-based methods, which

are, the correlation method presented in (Pérez et al., 2014) that provides as a node
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Figure 6.4: Nova Icària DMA leak localization results.

candidate the node 1036 with a linear geometric distance of 222.0 meters and a topo-

logical distance of 17 nodes. The k-NN method presented has as node candidate the

node 3, with a linear geometric distance of 184.0 meters and a topological distance

of 13 nodes. Finally, the most recent method tested in this real case, that also

use Bayesian reasoning has as node candidate the node 403 with a linear geometric

distance of 183.2 meters and a topological distance of 10 nodes.

6.2.3. Pavones DMA Case Study

The Pavones DMA network and its real case are described in Chapter 3. As proposed

earlier, the data is reduced to be hourly by averaging all the samples in each hour.

The interpolation is done using the same data model adjust as the two previous

examples. The data used for the training data set corresponds to the measurements

taken from the day 25th of November of 2016 at 03:00 pm to the 29th of November

of 2016 at 00:58 am. The data used to do the localization of the leak starts at the

29th of November of 2016 at 04:00 am and finishes the 1st of December of 2016 at

09:58 am (54 hours).

The real leak location and the node candidate resulting of the leak localization

method proposed are depicted in Figure 6.5, where the geometric distance between
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Figure 6.5: Pavones DMA leak localization results.

the two nodes is 134 meters and the topological distance is 8 nodes.
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7. Sensor Placement

Given the limited number of sensors that can be deployed inside the WDNs due

to budget constraints, their location inside the WDN is critical to achieve the best

performance possible, which usually is particular for every leak localization method.

In this chapter, the sensor placement approaches for the leak localization methods

presented in Chapter 5 and Chapter 6 are proposed with the aim of maximizing

their performance.

Three sensor placement methods based on Feature Selection (FS) techniques are

proposed in this chapter. First, a more traditional approach intented to be used

with the leak localization based on classifiers presented in Chapter 5 where a wrap-

per is applied with the aim of maximizing the classification accuracy (Ac). Then,

this approach is modified and enhanced with the use of metrics particular of leak

localization problem (ATD indicator) where a hybrid feature selection is presented

where the combination of a filter in a first stage, the FCBF presented in Section 2.4

is used, and a wrapper, the GA also presented on Section 2.4, in the second stage

is applied. Finally, an incremental feature selection method, the SFFS approach

presented in Section 2.4, more suitable in computational load terms when a large

number of sensors are needed to be placed, as e.g., in the case of the data-driven

leak localization approach presented in Chapter 6.

In this chapter, the problem of sensor placement is formulated as a FS problem

(Tang et al., 2014). Feature (or variable/attribute) selection techniques (Guyon

and Elisseeff, 2003) are used to identify a subset of relevant variables in a data set,

regarding its use to build a model with a given purpose, for instance a classifier.
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Within the framework proposed in Chapter 5, the main idea is to generate, using

a hydraulic simulation of the considered WDN, a complete data set containing all

the potential residuals associated to the network nodes and apply a FS algorithm

that determines the ones that after training the classifier will provide the best leak

localization results.

In addition to the ns selected features (pressure residuals of inner nodes), as was

described in previous chapters and as can be seen in Figure 5.1, the classifier is also

fed with the measured boundary conditions of the network c̃ that will provide nb

fixed additional features.

The simplest algorithm is to test each possible subset of features finding the one

which minimizes the error rate. However, this is an exhaustive search of the space

that is computationally intractable except for small feature sets.

As already discussed, the objective of this chapter is to develop an approach to

place a given number of sensors, ns, in a DMA of a WDN in order to obtain a sensor

configuration with a maximized leak isolability performance when using one of the

leak localization method schemes presented in the previous chapters. A feature

selection algorithm combines a search technique for proposing new feature subsets,

along with an evaluation measure which scores the different feature subsets to select

the best subset of features.

To select a configuration with ns sensors, the following binary vector, already intro-

duced in Chapter 6 is defined

q =
(
q1, . . . , qnf

)
(7.1)

where qi = 1 if the pressure in the node i is measured, and qi = 0 otherwise (i.e.,

the vector q denotes which sensors are installed). nf is the number of features, in

this case the potential locations to place sensors, which for pressure sensor is the

consumer nodes. So, in this work is assumed that nf = nn, but in practice usually

not all the nodes are suitable places to install the sensors. Thus, this number can be

reduced to a subset of these possible places determined by the WDN management

company.
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7.1. Optimal Sensor Placement for

Classifiers

In order to evaluate the quality of a sensor configuration regarding its ability to

locate a leak at node i ∈ {1, . . . , nn}, and assuming the case of a single leak, the

first performance index to optimize is the classifier accuracy described in (2.16).

This performance index depends on the configuration of sensors considered that is

parameterized in terms of the binary variable q to determine the best selection,

which is

Ac(q) =

∑nn
i=1 Γi,i(q)∑nn

i=1

∑nn
j=1 Γi,j(q)

(7.2)

Note that for a given sensor configuration q, 100Ac(q) is the percentage of correctly

localized leaks.

Based on the vector q and the performance index Ac(q), the sensor placement

problem can be translated into an optimization problem formulated as follows

max
q

Ac(q) (7.3)

s.t.

nf∑
i=1

qi = ns

where qi ∈ {0, 1} is defined in (7.1) and ns ∈ {1, . . . , nn} is the number of sensors

that we want to place.

7.1.1. Sensor Placement Using Genetic Algorithms

The optimal sensor placement problem, formulated as the classifier feature selec-

tion problem described in previous section, is solved using genetic algorithms and
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Figure 7.1: Scheme of optimization process.

implemented using the Global Optimization Toolbox of MATLAB.

The overall procedure can be seen in the Figure 7.1, where the “Nominal Sensitivity

Matrix” is a data set containing only residuals without uncertainties.

7.1.2. Sensor Distance Matrix

In order to reduce the amount of sensor configurations to be tested in the GA

heuristic search, sensor configurations (defined by q) that have at least a pair of

sensors with similar behavior in the residual space can be discarded. In order to

measure the different behavior of a pair of sensors in the residual space, the leak

sensitivity matrix defined in Chapter 5 in (5.3) can be approximately generated in

simulation for a given operating point defined by a nominal network inflow (unique

value of water consumption), nominal demand distribution (fixed nodal demand

consumption, in this case the d̂ is used) and nominal leak size (l(0)) (Blesa et al.,

2014). A difference of the sensitivity matrix presented in (5.3), here the sensor

matrix is complete (i.e., sensors in all nodes are placed).

A criterion that can be used for determining the similarity between sensors is based

on comparing the rows of the sensitivity matrix as proposed by (Sarrate et al.,
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2014a). If we consider a nominal approximated sensitivity matrix

Ω =


s1

...

snn

 (7.4)

where si for i = 1, ..., nn are row vectors

si = (Ωi,1, . . . ,Ωi,nn) (7.5)

with components computed using (5.3), a sensor distance matrix Φ can be defined

as

Φi,j = ‖si − sj‖1 for i = 1, . . . , nf and j = 1, . . . , nf (7.6)

Φ is a symmetric square matrix of dimension nf and diagonal 0. A threshold ϕ can

be determined in order to decide whether two sensors have a different behavior in

the residual space or not. Then, a binary matrix Φ(B) that collects the information

of which pairs of sensor combinations are suitable to be in a sensor configuration or

not according to their dissimilarity can be computed as

Φ
(B)
i,j =

 0 if |Φi,j | < ϕ

1 if |Φi,j | ≥ ϕ
(7.7)

7.1.3. Data Format

The algorithms presented in the following subsections assume that the data gen-

erated after the simulation of the network under different conditions are organized

in a particular way. Hence, both the training T and validation V data matrices

are three-dimensional matrices, as shown in Figure 7.2. The first dimension of those

matrices is associated to the features, i.e., to the nb boundary measurements and the

nf pressure residuals computed at the different nodes of the network where pressure

sensors can be installed. The second dimension is associated to the classes (with
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Figure 7.2: Data format.

size nc), i.e., to the different possible leak locations that are considered. Finally,

the third dimension is associated to the examples: for a fixed residual and a fixed

leak location, the third dimension collects residual values that are obtained under

different leak sizes, node demand estimations, noise realizations and at different time

instants. The length of this last dimension will be denoted as mT and mV for the

training and validation matrices.

Sensor Placement Algorithm

The optimization problem (7.3) solved by the genetic algorithms has as objective

function to be optimized the accuracy defined in (2.16). The accuracy of the current

evaluated configuration of sensors will be assessed after the classifier training process

has ended by using a validation data set obtained from the hydraulic simulator as

described in Section 2.1. A training matrix T and a validation matrix V with

data from all the candidate sensors to be installed will be provided to the sensor

placement algorithm. For every sensor placement solution, the accuracy obtained

using the training and validation data corresponding with the selected sensors will
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be evaluated.

Two modifications have been included into the basic GA scheme to increase its

speed. On the one hand, the information of the objective function is stored in the

case that the members that appeared earlier appear again. In such a case the stored

value is retrieved instead of calculating the fitness function again (as proposed in

(Oh et al., 2004)). On the other hand, the matrix Φ(B) is used to avoid fitness

functions calculations. Hence, when a combination contains a not allowed pair of

features, the worst value is directly assigned without the computation of the fitness

function.

The pseudo-code of the algorithm is shown in Algorithm 1. First, we initialize the

variables of the GA (line 1) including the bit string type population, the tolerance tol,

the population size ps, the elite count ec in order to save part of the previous analyzed

results and the maximum number of generations allowed maxg. Then, we declare

the search constraints (line 2) being ns the constraint of the set of possible solutions

for each variable and the number of sensors. Then, in the optimization process (lines

4 to 24), an initial matrix with random sensor positions I is delivered by the GA

(line 5) in the first generation. This matrix is obtained from the results of the past

generation and the crossing and mutation parameters. Matrix I with the population

of configuration of sensors is passed to the matrix Q, then at each iteration in the

current generation t one configuration of this matrix (row of the matrix), the vector

qt, is evaluated. Before to proceed with the objective function optimization, it is

checked (with the function GetUsed() in line 9) if the sensor configuration has already

been considered. The stored value is retrieved with the function GetAc() (line 20).

If not yet considered, the sensor configuration is considered to be tested. If the

new sensor configuration is not tested, and if all the sensor pairs are suitable to be

in a sensor configuration according the binary sensor distance matrix (7.7) and the

function CheckCombinations() (which returns 1 if the configuration is allowed (line

10)), the sensor placement configuration is tested evaluating the objective function

(line 13) and the combination is stored as used with the function SetUsed() (line

14). Then, the Ac value obtained is also stored with the function SetAc() (line
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Algorithm 1 Sensor placement based on Genetic Algorithms.

Require: A training matrix T and a validation matrix V. The number of features
to select ns, the number of nodes nn, the population size ps, the elite count ec,
the maximum number of generations allowed maxg, the tolerance to determine
when the solution has reached tol and the binarized matrix Φ(B).

Ensure: A near-optimal sensors configuration q with error index Acmax.
1: init← InitVarGA(ps, ec, tol,maxg)
2: constraint← SetConstraints(nf , ns)

3: Inputs: init, constraint, T, V, ps, nn, Φ(B).
4: while An optimization criterion is not reached do
5: GA based search:
6: Generate I matrix of size (ps×nf ) where each row is a member of a generation.
7: Q← I
8: for t = 1, . . . , ps do
9: if GetUsed(qt) = 0 then

10: if CheckCombinations(Φ(B),qk) = 1 then
11: Classifier(qt)← Train(T(qt))
12: Γ(qt)← Validate(Classifier(qt),V(qt))

13: Ac(qt)←
∑nn

i=1 Γi,i(qt)∑nn
i=1

∑nn
j=1 Γi,j(qt)

14: SetUsed(qt)
15: SetAc(Ac(qt),qt)
16: else
17: Ac(qt) = 0
18: end if
19: else
20: Ac(qt) = GetAc(qt)
21: end if
22: end for
23: Find {q,Acmax} such that Acmax = max

q
(Ac(q1), . . . ,Ac(qps)).

24: end while

15). If there is at least one forbidden pair of sensors in the sensor configuration,

the configuration is discarded and a zero value is assigned to the objective function

(line 17). The binary vector q allows the selection of the adequate columns of the

matrices T and V in order to train (line 11), validate (line 12) and compute Ac

(line 13) for the classifier according the selected nodes to be measured. Once the Ac

value has been obtained for all members of the matrix I, we look for the maximum

value (line 23). Then, the optimization is finished and the sensor placement selected

is the one that provide the best Ac value.
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7.1.4. Hybrid Feature Selection Approach

Here, a second and more particular to the application approach of sensor placement

in WDN is proposed for the classifier-based leak localization methods presented in

Chapter 5. The proposed solution of the sensor placement problem aims at selecting

a subset of relevant and non-redundant features (variables) for use in the classifier

construction.

As it was previously discussed, we will consider that it is possible to place a sensor

in all the nodes of the network, i.e., nf = nn.

In order to evaluate the quality of a feature selection regarding the leak localization

performance, the average topological distance index (2.17) will be used here instead

of the accuracy index described in (2.16) since it is a better index to assess the

quality of the leak localization performance. This performance index depends on

the configuration of features considered and it is parameterized in terms of the q

vector (7.1) to determine the best selection

ATD(q) =

∑nf

i=1

∑nf

j=1 Γi,j(q)Di,j∑nf

i=1

∑nf

j=1 Γi,j(q)
(7.8)

Based on the vector q and the performance index ATD(q), the feature selection

problem can be translated into an optimization problem formulated as follows

min
q

ATD(q)

s.t.

nf∑
i=1

qi = ns

(7.9)

where q is defined according to (7.1) and ns ∈ {1, . . . , nf} is the given number of

sensors (features) to be selected.
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Figure 7.3: Hybrid feature selection scheme.

Overview

The proposed method is a hybrid approach with two different stages that are per-

formed in a sequential way. First, an initial reduction of the dimension is performed

by using a filter-based on evidences of the relevancy and redundancy of the variables

that additionally assesses information about suitable/unsuitable pairs of combina-

tions of features. Second, the subset of features that remains after the filter and the

additional information is taken into account by the proposed wrapper method, which

is a genetic algorithm, to tackle the combinatory problem and obtain a suboptimal

feature selection. The whole procedure is depicted in Figure 7.3.

Filtering

With the aim of reducing the computational load of the wrapper, an initial reduction

of the nf dimension of the original feature space F of inner pressure residuals is

applied. This dimensionality reduction is based on a relevance/redundancy-based

filter that removes the most irrelevant and similar features. This reduction increases

the performance of the proposed wrapper strategy which is based on the use of

genetic algorithms. The proposed filter is based on the FCBF presented in (Yu

and Liu, 2004), where first the features are ranked based on their relevance and

then a sequential procedure to remove the redundant (and less relevant) features is
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performed.

Relevance metric

Relevance is associated to the information that a given feature possesses according

to the final problem to be solved. For classification problems, relevance is associated

with the variability of the feature across the classes. Hence, in order to compute the

relevance of each feature, the average training matrix Λ with size nf×nf (considering

nf = nc) and associated to inner pressure residuals is defined with features as rows

and classes as columns

Λi,j =
1

mT

mT∑
z=1

T(nb+i),j,z for i = 1, . . . , nf and j = 1, . . . , nf (7.10)

where T(nb+i),j,z are the elements of the training matrix T associated to inner pres-

sure residuals, obtained as described in Chapter 2, with size (nb + nf ) × nc ×mT

where all the instances are stored with features as rows, classes as columns and

different instances (examples) in the third dimension.

It is considered that an indirect measure of the relevance of each feature, Rz for

z = 1, . . . , nf , can be computed as follows

Rz =
2

n2
f − nf

nf−1∑
i=1

nf∑
j=i+1

(Λz,i − Λz,j)
2 (7.11)

Redundancy metric

As an indirect measure of the redundancy of F, the similarity or proximity degree

between each pair of features is used. In (Sarrate et al., 2014a), it was proposed to

use row vectors of the leak sensitivity matrix to measure the similarity between the

behavior of two inner pressure sensors in the presence of the different leak scenarios.

In this work, we propose to use the 2-norm between the average values of each

possible pair of features. Then, considering the row vectors of the matrix

Λ =


λ1

...

λnf

 (7.12)
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where

λi = (Λi,1, . . . ,Λi,nc) for i = 1, . . . , nf (7.13)

A feature distance matrix Φ can be defined such that its components store the

measure of the redundancy between each pair of features i and j and are computed

as

Φi,j = ‖λi − λj‖2 for i = 1, . . . , nf and j = 1, . . . , nf (7.14)

where the matrix Φ is a symmetric square matrix of dimension nf where all the

diagonal elements are 0, thus indicating that each feature presents zero distance to

itself, in other words, each feature is totally redundant to itself.

Filtering process

The filtering process starts by computing the relevance for all the features, Rz for z =

1, . . . , nf , according to (7.11). The computed values are introduced in the relevance

vector R and they are sorted in descending order in RR. On the other hand, the

feature distance matrix Φ, that stores the distance between pairs of features is

computed, according to (7.14).

The core of the algorithm is an iterative process that starts by considering the feature

corresponding to the first value of RR, i.e. the most relevant feature. This feature is

first compared in terms of similarity with the next feature in the relevance ranking.

Taking into account the associated coefficient in Φ and a user defined threshold γ,

if the distance between the two considered features is lower than the threshold then

the second (and less relevant) feature is removed from the feature space F. The

comparison and elimination process is repeated until the most relevant feature has

been compared with all the other features in the list. And the whole process already

applied to the first feature is repeated for the rest of features in the list. At the end,

the feature space with the remaining features F(R) is obtained, being its dimension

n
(R)
f .

Finally, the filtering process ends with the computation of a matrix that will be used
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in the wrapper stage. According to a new user defined threshold ϕ, a binary square

matrix Φ(B) of dimension n
(R)
f is defined. This matrix collects the information of

which pairs of features of the remaining n
(R)
f features after the filtering stage are

suitable to be combined or not in the same potential feature selection group in the

wrapping stage according their dissimilarity. The components of this matrix are

computed as

Φ
(B)
i,j =

 0 if
∣∣Φi′,j′

∣∣ < ϕ

1 if
∣∣Φi′,j′

∣∣ ≥ ϕ (7.15)

where the indices i and j are related with the indices i′ and j′ with a mapping

function that maps the features of F(R) in the features of the original feature space

F.

Notice that ϕ has to be bigger than γ to have an impact on the wrapper because

pairs of features with feature distance smaller than γ are removed in the filtering

stage. Both values for ϕ and γ can be expressed in a relative way with respect to

the average of the coefficients of Φ outside the main diagonal, denoted as y and

computed as

y =
2

n2
f − nf

nf−1∑
i=1

nf∑
j=i+1

Φi,j (7.16)

The whole filter process is summarized in Algorithm 2.

Wrapper search

The wrapper used in the second stage of the hybrid feature selection proposed in

this method is a genetic algorithm.

The two modifications to the genetic algorithm proposed in the previous sensor

placement technique are also applied here.

A new training matrix T(R) is built by removing the features discarded by the filter.

This matrix has dimension (nb+n
(R)
f )×nc×mT . In a similar way, a new validation

matrix V(R) of (nb+n
(R)
f )×nc×mV dimension is created, where mV is the number
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Algorithm 2 Relevance and redundancy/distance filter.

Require: A features space F and their size nf , a training matrix T, the number of
classes nc = nf of each feature (nf is used instead of nc), the number of instances
in each class mT in the training matrix and the user defined thresholds γ and ϕ.

Ensure: Remove the redundant (and less relevant) features below H.
1: for i = 1, . . . , nf do
2: for j = 1, . . . , nf do
3: Λi,j = 1

mT

∑mT
a=1 T(nb+i),j,a

4: end for
5: end for
6: for z = 1, . . . , nf do

7: Rz = 2
n2
f−nf

∑nf−1
i=1

∑nf

j=i+1 (Λz,i − Λz,j)
2

8: end for
9: Rank in RR the features according to their value in R.

10: for i = 1, . . . , nf do
11: for j = 1, . . . , nf do
12: Φi,j = ‖λi − λj‖2
13: end for
14: end for
15: for i = 1, . . . , nf do
16: if RR,i ≥ 0 then
17: for j = i+ 1, . . . , nf do
18: if Φi,j < γ and RR,j ≥ 0 then
19: RR,j = −1
20: end if
21: end for
22: end if
23: end for
24: Removed all the features from the space F with negative argument in RR to

create the new reduced space F(R) with n
(R)
f number of features. Also create,

using ϕ and (7.15), the binarized feature distance matrix Φ(B).
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of instances of each class in the validation data set.

The pseudo-code of the algorithm is shown in Algorithm 3. First, the GA is initial-

ized by adjusting the tuning parameters (line 1) which include the population size

ps, the bit string type population, the elite count ec to maintain members between

iterations, the tolerance tol and the maximum number of generations maxg to stop

the optimization. Then, the constraints of the optimization variables are defined

(line 2), which include the number of features to select ns.

After that, the GA optimization process runs as an iterative process (lines 4 to

24), where the first step is to create the generation of members (I matrix) to be

evaluated (line 6) and then evaluate them all (lines 7 to 22). Firstly, the algorithm

checks (function GetUsed()) if the member (q vector) is new or repeated (line 9). If

the combination is repeated the stored fitness value is retrieved (function GetATD())

(line 20) instead of computing the fitness function again, and the member evaluation

finalizes, otherwise the process continues. The next step in the process is to check

if the member is an allowed combination of features according to the Φ(B) matrix

(function CheckCombinations()) (line 10). If the combination is not allowed, then

the fitness value is set to the worst result (line 17) and the member evaluation

finalizes; otherwise, if it is allowed, then the process continues.

To perform the evaluation itself, first the classifier is created by using the training

matrix T(R) (line 11) where the qt vector is used to select the adequate columns,

and the confusion matrix Γ is obtained by using the classifier and the validation

matrix V(R) (line 12). Then, the fitness indicator is computed from the confusion

matrix (line 13), the member is set to used (function SetUsed()) (line 14) and the

fitness value is stored (function SetATD()) (line 15).

Finally, the best member of the generation is evaluated against the past ones, and

it is checked if any of the required criteria to stop the optimization is reached (line

23).
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Algorithm 3 Sensor placement based on Genetic Algorithms.

Require: A training matrix T(R) and a validation matrix V(R). A feature space

F(R) and their size n
(R)
f , the number of classes nc = nf , the number of features

to select ns, the population size ps, the elite count parameter ec, the fitness
function tolerance tol, the maximum number of generations allowed maxg, the
distance matrix D and the reduced binarized matrix Φ(B).

Ensure: A near-optimal sensors configuration q with error index ATDmin.
1: init← InitVarGA(ps, ec, tol,maxg)

2: constraint← SetConstraints(n
(R)
f , ns)

3: Inputs: init, constraint, T(R), V(R), ps, nc, Φ(B).
4: while An optimization criterion is not reached do
5: GA based search:
6: Generate I matrix of size (ps × n(R)

f ) where each row is a member of a gener-

ation from the space F(R).
7: Q = I
8: for t = 1, . . . , ps do
9: if GetUsed(qt) = 0 then

10: if CheckCombinations(Φ(B),qt) = 1 then
11: Classifier(qt)← Train(T(R)(qt))
12: Γ(qt)← Validate(Classifier(qt),V

(R)(qt))

13: ATD(qt)←
∑nf

i=1

∑nf
j=1 Γi,j(q)Di,j∑nf

i=1

∑nf
j=1Γi,j(qt)

14: SetUsed(qt)
15: SetATD(ATD(qt),qt))
16: else
17: ATD(qt) = 0
18: end if
19: else
20: ATD(qt) = GetATD(qt)
21: end if
22: end for
23: Find {q,ATDmin} such that
24: ATDmin = min

q
(ATD(q1), . . . ,ATD(qps)).

25: end while
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7.2. Incremental Feature Selection

Approach

The proposed sensor placement methods presented so far have a good performance

when the number of sensors is low. But when the number of sensors ns is large there

are more efficient tools to deal with the problem. In this section a sensor placement

for a large number of sensors is presented but focused to suit with the data-driven

leak localization approach presented in Chapter 6. Therefore, an indicator to deal

with the specific problem of sensor placement in the data-driven leak localization

approach is introduced.

As stated before, for a given a fixed number ns of sensors to be placed in a WDN,

the optimal sensor placement can be formulated as an optimization problem with

binary decision variables as follows

min
q
e(q)

s.t.

nf∑
i=1

qi = ns

(7.17)

where q is the binary vector that characterizes the locations of the sensors defined in

(7.1) and e is a cost function to be minimized. The e cost function is made with the

aim of obtain the best fitting by the interpolation technique. In this case, the Kriging

interpolation is used but must be noted that any other interpolation technique is

applicable with the sensor placement presented. The sum of squares relative errors

of the interpolation in pressure values is used as cost function e considering non-leak

and leak scenarios under different operational conditions cd is computed as

e(q) =

nn∑
j=0

mT /(nn+1)∑
z=1

nn∑
i=1

(
p

(lj)
i (cd(z))− p̂

(lj)
i (cd(z),q)

p
(lj)
i (cd(z))

)2

(7.18)
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where l0 denotes no-leak scenario, mT /(nn + 1) denotes the number of data samples

in no-leak scenario and in the different leak scenarios and p̂
(lj)
i (cd,q) denotes pressure

estimations using sensor configuration defined by q. To generate the data required

here, measurements from all nodes and measurements with leaks in all the nodes, a

hydraulic simulator and the scheme depicted in Figure 7.4 is used.
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Figure 7.4: Pressure data generation scheme.

As a remark, the accuracy of the hydraulic simulator necessary to generate the data

for the sensor placement problem is not as critical as if the hydraulic simulator

was used in a model-based leak localization scheme. The purpose of the hydraulic

simulator that generates pressure values in (7.18) is to have an idea about the

pressure map in the WDN in order to determine the optimal placement of the

pressure sensors by means of the optimization problem (7.17).

In this case, the sequential forward floating search algorithm presented in (Pudil

et al., 1994) and described in Section 2.4 is proposed to solve the optimization prob-

lem (7.17) in a suboptimal but efficient way. The particularization of this algorithm

to solve the optimization problem (7.17) with cost function (7.18) is described in

Algorithm 4.

This algorithm requires the number of sensors to be installed ns and a matrix T
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where pressure simulation values p
(lj)
i (cd(z)) for i = 1, . . . , nn, j = 0, . . . , nn and

z = 0, . . . ,mT /(nn + 1) are stored. The pressure data is arranged as described in

Figure 7.2 where the added non-leak case is considered to stay in the zero index of

the second dimension. On the other hand, the algorithm returns a binary matrix

Q(H) ∈ {0, 1}ns ×{0, 1}nf that stores the optimal configurations for an incremental

number of sensors nsp = 1, . . . , ns in its rows q
(H)
nsp ∈ {0, 1}nf .

First, the variable corresponding to the number of sensors already placed nsp is

initialized to 0 (line 1), binary matrix Q(H) is set to zero and a vector e(H) ∈ <nsp

whose components ensp will store cost function associated with sensor configuration

q
(H)
nsp is also set to zero. In addition, an auxiliary vector q ∈ {0, 1}nf to store a

sensor configuration is set to zero (no sensor selected). Then, the algorithm to place

a given number of sensors is executed (lines 2-51) until nsp = ns at the end of an

iteration is accomplished. The Algorithm 4 is divided in two parts: the forward part

and the backward part.

The forward part (lines 3-23) consists in adding the new feature that taking into

account the features already selected q, minimizes the cost function (7.18). For this

purpose, a vector e ∈ <nn stores in its components ei the cost function (7.18) of

previous sensor configuration and adding sensor i. The computation of cost function

(7.18) is carried out in lines 7-13. Kriging(q, tz) denotes the Kriging interpolation

for all the pressure values using the measurements associated to variable q. If sensor

i is already placed, cost function (7.18) is not computed and component ei is set to

∞ (line 16) in order not to consider this impossible case (adding an existing sensor).

Once the nf cost functions corresponding to the different nf possible sensors have

been computed, the sensor addition that produces a minimum cost value is selected

(lines 19-20) and the sensor combination q is stored in q
(H)
nsp , i.e., nsp

th row of matrix

Q(H) (line 22). In addition, the value of the cost function of the selected sensor

configuration is stored in component nsp
th of vector e(H) (variable e

(H)
nsp in line 23).

The main advantage of the forward part is that sensors are added sequentially,

therefore the computational cost is linear with the possible number of place the

sensors. However, it is not guaranteed that the obtained solution is the best solution
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among the all possible sensor combinations. In order to minimize the effect of the

suboptimality solution of the forward part, a backward is performed.

The backward part (lines 24-50) consists in given a sensor configuration q with nsp

selected sensors, the different nsp sensor configurations of nsp−1 sensors obtained by

subtracting one sensor of the original sensor configuration q are evaluated. If the cost

function of these configuration is smaller than the one stored in e
(H)
nsp−1 the obtained

sensor configuration is stored in (nsp − 1)th row of matrix Q(H) (variable q
(H)
nsp−1 in

line 44) and the number of selected sensors is set to nsp − 1. The backward part is

executed after the forward part if the number of selected sensors is more than two

and is executed until there is not an improvement in the new sensor configurations

or the number of sensors becomes equal to two.

7.3. Case Studies

The proposed sensor placement approaches for the classifier-based leak localization

presented in Chapter 5 are tested in two different networks, while the sensor place-

ment for the data-driven approach presented in Chapter 6 is tested in one of them.

On the one hand, a small size network (Hanoi) is used since it allows to compare

the proposed approach to the results obtained using the exhaustive search method.

On the other hand, a medium size network (Limassol) shows the performance in a

more realistic scenario.

All the results have been obtained using a PC with an INTEL(R) CORE(TM) i7-

4720HQ CPU @ 2.60 [GHz], 8 [GB] of memory RAM, a Windows 10 Home 64

bits operative system and using the MATLAB 2015a software (MATLAB, 2015).

The sensor placement approaches that use genetic algorithms are coded using the

Matlab 2015a Global Optimization Toolbox software, for the considered case studies,

considering the following parameters:

• Tolerance of tol = 10−6.

• Population size ps = 5.
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Algorithm 4 Sequential forward floating search for sensor placement.

Require: The number of sensor to place ns, the training data set T and the number of samples in the
training data set mT .

Ensure: Suboptimal sensor placement for multiple number of sensors starting from 1 and ending in ns in
matrix Q(H).

1: nsp = 0, Q(H) = 0, q = 0, e(H) = 0
2: while nsp < ns do
3: for i = 1, . . . , nf do
4: ei = 0
5: if qi = 0 then
6: qi = 1
7: for j = 0, . . . , nn do
8: for z = 1, . . . ,mT /(nn + 1) do
9: p = T:,j,z

10: p̂ = Kriging(q,p)

11: ei = ei +
∑nn

k=1

(
pk−p̂k

pk

)2
12: end for
13: end for
14: qi = 0
15: else
16: ei =∞
17: end if
18: end for
19: s = argmin(e)
20: qs = 1
21: nsp = nsp + 1

22: q
(H)
nsp = q

23: e
(H)
nsp = min(e)

24: while nsp > 2 do
25: for i = 1, · · · , nf do
26: ei = 0
27: if qi = 1 then
28: qi = 0
29: for j = 0, . . . , nn do
30: for z = 1, . . . ,mT /(nn + 1) do
31: p = T:,j,z

32: p̂ = Kriging(q,p)

33: ei = ei +
∑nn

k=1

(
pk−p̂k

pk

)2
34: end for
35: end for
36: qi = 1
37: else
38: ei =∞
39: end if
40: end for
41: if e

(H)
nsp−1 > min(e) then

42: s = argmin(e)
43: qs = 0

44: q
(H)
nsp−1 = q

45: e
(H)
nsp−1 = min(e)

46: nsp = nsp − 1
47: else
48: Break while.
49: end if
50: end while
51: end while
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• Elite count of ec = 0.05ps, but at least one (ec = 1) survives (which is the case

given the ps selected).

• The maximum number of generations is maxg = 50.

The other parameters of the GA implementation used here in Matlab are left by their

default value, which include a tournament selection value of 2, a Laplace crossover

of 0.8 and a power mutation of 0.1.

7.3.1. Hanoi WDN Case Study

The Hanoi (Vietnam) WDN, presented in Chapter 3, is a simplified network of

the real one, and consists of one reservoir, 31 consumer nodes and 34 pipes. The

water consumption has a daily pattern similar to the one depicted in Figure 5.7

(all the water consumption patterns have been generated from an unique pattern

distribution obtained from the average values of five days adding an uncertainty of

± 12.5 %). Given the size of the network, it is considered the placement of only two

pressure sensors as presented by (Casillas et al., 2013). These sensors, and the flow

sensor at the inlet are considered to operate with a sampling time of 10 minutes.

For the simplified Hanoi WDN, the Exhaustive Search (ES) method can be applied.

The ES method guarantees the optimal solution by performing all the possible com-

binations among all the features, which is
nf !

ns! (nf−ns)!
. Thus, this method could

suitable in terms of computational time. Given the small size of the Hanoi WDN,

and the constraint of only two sensors to be selected (ns=2) among 31 possible

places where pressure sensors can be installed (nf=31), the ES method can be ap-

plied because the
(

31!
2! (31−2)!

)
= 465 possible combinations is a reasonable number

to be evaluated exhaustively.

To generate the data sets, three different uncertainty sources are considered in the

following way:

• The demand uncertainty source has a magnitude of ± 10 % of the nominal

node consumption value.
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• The leak size varies from 25 to 75 [l/s].

• The measurement noise magnitude is considered as the of ± 5 % of the average

value of all pressure residuals.

Sensor Placement Using Genetic Algorithms

Using all of these uncertainty levels, ten complete data sets (since the lower the

data set size, the faster the computation is and the GAs need to be executed several

times to avoid local minima, changing the data set allows to avoid strange, due to

the outliers, data sets) have been created simulating the pressure measurements at

each possible sensor location and simulating leaks at each potential leak location

(class) where data are generated with a sampling time of ten minutes. Then, the

hourly average value has been computed (with the aim to reduce the uncertainty and

remove outliers). Thus, each complete data set is composed of a training data set

with five days of data (120 samples for each class) and a validation data set with one

day of data (24 samples for each class). Finally a unique testing data set with ten

days of data (240 samples per class) is generated. For the sensitivity matrix (7.4),

one instance is generated for each class and sensor (complete sensitivity matrix) with

a value of total consumption of water of 2991.1 [l/s] and leak size of 50 [l/s].

Classifiers use as attributes the flow measurement at the inlet, and the two pressure

residuals from the node where the sensor configuration is assessed. The proposed

sensor placement method using GA and with/without the Φ(B) matrix (where it is

used a ϕ value of the average value of all the Φ except the diagonal, i.e., ϕ = y) is

compared to the exhaustive search. The results for the k-NN classifier (for a k value

equal to one, since the election of a proper k value must be done when the sensor

placement is fixed) are summarized in Table 7.1 and Table 7.2, and for the case of the

Bayesian classifier, where PDFs are calibrated assuming Gaussian distribution (as

justified in Chapter 5 by the one-dimension Kolmogorov-Smirnov test), in Table 7.3

and Table 7.4. The genetic algorithm is designed to store only the best member of

each generation, and each generation (population size) is fixed to have five members.

To compute the Ac value in both tables, the same testing data set is computed for
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each sensor placement obtained (with their respective training data set). The time

units in the tables are seconds, and the Ac values are in [%]. The best configurations

(highest accuracy performance over the testing data set) obtained are highlighted

in bold for each method.

Table 7.1: Sensor placement results using ES and GA in the Hanoi WDN for the
k-NN classifier.

Data set
Exhaustive search Genetic algorithm

Sensors Time Ac Sensors Time Ac

1 14, 27 474 39.11 9, 15 71 31.19
2 14, 29 471 38.14 14, 29 70 38.14
3 14, 28 470 38.68 14, 28 47 38.68
4 14, 28 499 41.06 14, 28 44 41.06
5 14, 28 472 39.03 1, 30 14 16.80
6 14, 27 473 38.02 10, 15 45 32.58
7 15, 28 473 38.52 15, 28 55 38.52
8 15, 28 477 38.02 26, 28 29 35.55
9 14, 27 469 38.89 5, 14 50 31.16
10 14, 28 474 38.91 15, 29 51 36.88

Average - 475 38.83 - 47 34.05

Table 7.2: Sensor placement results using GA + Φ(B) in the Hanoi WDN for the
k-NN classifier.

Data set
Genetic algorithm + Φ(B)

Sensors Time filter Time GA Ac

1 14, 27 0.06 63 39.11
2 14, 29 0.06 38 38.68
3 14, 31 0.06 19 34.34
4 14, 28 0.06 33 41.06
5 14, 28 0.06 46 39.03
6 14, 27 0.06 36 36.07
7 15, 28 0.06 43 38.52
8 15, 28 0.06 23 38.02
9 14, 29 0.06 36 37.56
10 4, 15 0.06 15 29.04

Average - 0.06 35 37.14

From these results, it can be seen that both methods present an important improve-

ment in terms of computational time when GAs are used, and the GA standalone
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Table 7.3: Sensor placement results using the ES and GA in the Hanoi WDN for
the Bayesian classifier.

Data set
Exhaustive search Genetic algorithm

Sensors Time Ac Sensors Time Ac

1 14, 28 537 51.57 9, 15 71 42.00
2 14, 28 535 51.65 14, 29 69 51.65
3 14, 28 544 52.01 14, 28 47 52.01
4 14, 28 545 52.55 14, 28 44 52.55
5 14, 28 578 51.41 1, 30 13 46.47
6 26, 27 583 46.72 10, 15 44 43.99
7 14, 28 537 52.12 14, 28 85 52.12
8 13, 28 536 47.33 13, 28 55 47.33
9 14, 28 599 52.37 5, 14 50 43.56
10 15, 28 535 46.92 6, 26 40 37.29

Average - 553 50.46 - 58 46.90

Table 7.4: Sensor placement results using GA + Φ(B) in the Hanoi WDN for the
Bayesian classifier.

Data set
Genetic algorithm + Φ(B)

Sensors Time filter Time GA Ac

1 14, 28 0.06 47 51.57
2 14, 28 0.06 57 51.65
3 14, 28 0.06 55 52.01
4 14, 28 0.06 51 52.55
5 4, 13 0.06 29 35.53
6 7, 28 0.06 32 40.13
7 14, 29 0.06 72 50.73
8 13, 28 0.06 62 47.33
9 14, 28 0.06 53 52.37
10 15, 30 0.06 50 46.57

Average - 0.06 51 48.04
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method and the GA plus Φ(B) are able to avoid the local minima and find the

global optima in some cases (the best sensor placements obtained). Moreover, note

that in average the introduction of the Φ(B) matrix not only reduces significantly

the computational time compared to the purely GA method but also increases the

accuracy. Finally, compared to the k-NN classifier, the Bayesian classifier is more

time demanding but its accuracy is better. This is probably due to the fact that the

allowed combinations are better (i.e., the criteria used to select the permitted pairs

of sensor configurations works better) for this classifier than for the k-NN classifier.

To decide the best sensor configuration, the one with highest accuracy value is

chosen. So, for the technique of the genetic algorithms plus the use of Φ(B) matrix,

in case of k-NN classifier, the best sensor placement obtained is at nodes 14 and

28. On the other hand, for the Bayesian classifier case, the best sensor placement

is also at the nodes 14 and 28. In both cases, the accuracy is assessed using a time

horizon scheme (as proposed in Chapter 5 and Chapter 6) in Figure 7.5a for the

k-NN classifier (with k = 1) and in Figure 7.5b for the Bayesian classifier, both

using the training data corresponding to the first data set and using as testing data

set of all the remaining data sets.
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(a) Accuracy curves for the k-NN classi-
fier in the Hanoi WDN with sensor place-
ment at nodes 14 and 28.
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(b) Accuracy curves for the Bayesian clas-
sifier in the Hanoi WDN with sensor
placement at nodes 14 and 28.

Figure 7.5: Accuracy curves for both classifiers using the sensor placements obtained
using GA with the objective to maximize the Ac in Hanoi WDN.

The results in this network show that the best performance is achieved with the

Bayesian classifier being in agreement with the results presented in Chapter 5. The
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sensor placement results can be seen in Figure 7.6.

X coordinate [m]
-5000 0 5000 10000

Y
co
o
rd
in
a
te

[m
]

0

2000

4000

6000

8000

10000

1
23

4

5
6

7
8

9

101112 13

14 15

16

17

18

19 20 21

22

23

24
25

26

27

28

2930

31

Figure 7.6: Sensor placement for the k-NN and Bayesian classifiers (same sensors)
in Hanoi WDN.

Hybrid Feature Selection Approach

The k-NN classifier and the Bayesian classifier are fed with the training matrix T(R)

to store the data in the case of the k-NN classifier and to calibrate the PDFs for the

Bayesian classifier, which are considered to have Gaussian distribution. Ten different

data sets (training and validation) are created to evaluate the different methods.

Each data set (note that the data sets are not the same as the ones used in the

previous GA approach) is split into a training and validation data subsets. The

training data subset consists in four days of data (96 samples for each class) and

the validation data subset consists in two days of data (48 samples for each class).

The training data subset is used in the filter stage to generate the subset of features

F(R) and in the wrapper stage to train the classifier for the current feature selection

candidate. On the other hand, the validation data subset is used to assess the

performance (ATD value) of the current feature selection candidate produced by

the wrapper. To compare the different results obtained for the different data sets, a

unique testing data set is used. This testing data set consists in 20 days of data (480

samples for each class) and is used to calculate the ATD value showed in Table 7.5

and Table 7.7 for the k-NN classifier with k = 1 and in Table 7.6 and Table 7.8 for
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Table 7.5: Results of the ES and GA methods in the Hanoi WDN for the k-NN
classifier.

Data set
Exhaustive search Genetic algorithm

Sensors Time ES ATD Time GA ATD

1 10, 15 607 1.66 10, 29 69 1.57
2 11, 29 579 1.53 11, 27 38 1.55
3 13, 27 591 1.50 10, 15 71 1.68
4 13, 27 565 1.39 13, 27 100 1.39
5 13, 29 554 1.43 13, 31 67 1.52
6 13, 29 566 1.44 11, 15 87 1.62
7 13, 29 585 1.51 10, 29 66 1.58
8 13, 29 568 1.49 26, 30 34 2.20
9 14, 27 554 1.62 13, 30 34 1.46
10 13, 28 545 1.37 10, 28 53 1.41

Average - 572 1.49 - 62 1.60

the Bayesian classifier.

The results obtained by the ES method are used to compare the efficiency of the

final solution and computation time for the proposed approach. On the other hand,

a standalone GA wrapper method that only considers the proposed wrapper stage

(Algorithm 3 without previous filtering nor the use of the matrix Φ(B)) will be

applied to illustrate the advantages in the sensor placement performance of the

proposed hybrid method (filter+wrapper).

The results for the ES method in the Hanoi WDN are summarized in Table 7.5

and Table 7.6 for the k-NN and the Bayesian classifiers respectively, where the term

“Sensors” refers to the selected node locations where the inner pressure sensors will

be placed, “ATD” is the average topological distance in [nodes] computed by (2.17)

using the testing data set, and “Time ES” is the time required to obtain the solution

by the ES method in [s].

It can be noted from Table 7.5 and Table 7.6 that different data sets lead to different

results, i.e., to different pairs of selected sensors, as it happens in the previous

method. This is due to the fact that there are sets of close nodes for which the

behavior in terms of pressure is quite similar and due to the randomness of the

data generation. Then, the results for one data set can include a given feature/node
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Table 7.6: Results of the ES and GA methods in the Hanoi WDN for the Bayesian
classifier.

Data set
Exhaustive search Genetic algorithm

Sensors Time ES ATD Time GA ATD

1 14, 28 573 1.21 14, 28 111 1.21
2 11, 28 570 1.24 11, 29 60 1.26
3 10, 27 579 1.13 9, 15 49 1.39
4 13, 27 569 1.09 26, 27 35 1.62
5 13, 27 570 1.11 10, 27 57 1.16
6 13, 27 573 1.13 11, 27 66 1.18
7 13, 29 571 1.13 10, 29 69 1.17
8 13, 27 573 1.15 13, 27 42 1.15
9 13, 28 568 1.14 11, 15 55 1.25
10 13, 28 563 1.13 13, 23 55 1.32

Average - 571 1.15 - 60 1.27

while the results for a different data set can include a different but close node. For

example, in Table 7.6, the nodes that appear as first selected node for all the 10 data

sets are nodes 10, 11, 13 and 14, which can be identified as neighbors in Figure 5.4.

And the same happens with nodes 27, 28 and 29 that appear as second selected

node. The finally selected sensors are the pair of nodes 13 and 27, highlighted in

bold in the table and obtained for the data set 4, because for this data set and

this pair of sensors the obtained ATD is the minimal one. It must be noted that

the different combinations have a very close performance and all of them are good

configurations to place the sensors, far better than the discarded configurations.

To compare the performance of the proposed approach, the same experiments as in

the ES are done using the the pure genetic algorithm, i.e., without the improvement

of the use of Φ(B).

The obtained results are summarized in Table 7.5 for the k-NN classifier and in

Table 7.6 for the Bayesian classifier, where “Time GA” is the time used by the

standalone wrapper method to select the features in [s]. Comparing with the results

obtained by exhaustive search, it can be highlighted that the selected sensors are

the same pair of nodes 13 and 27 in the k-NN case and almost the same in the

Bayesian classifier case, and that the average computing time is reduced from 571
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Table 7.7: Results of the proposed hybrid feature selection in the Hanoi WDN for
the k-NN classifier.

Data set
Filter + (Genetic algorithm + Φ(B))

Sensors Time filter Time GA n
(R)
f ATD

1 14, 22 0.032 23 21 1.72
2 11, 14 0.032 35 21 1.73
3 13, 24 0.032 52 20 1.62
4 13, 23 0.032 30 21 1.56
5 13, 25 0.032 29 20 1.61
6 13, 23 0.032 29 21 1.58
7 13, 24 0.032 46 20 1.61
8 13, 25 0.032 47 21 1.60
9 13, 24 0.032 34 21 1.53
10 13, 25 0.032 21 21 1.54

Average - 0.032 35 - 1.61

to 60 seconds in the Bayesian case (572 to 62 in the k-NN case).

Finally, the proposed hybrid feature selection method has been tested. The values

used for the thresholds has been empirically chosen according to some previous test

and with the goal of banning some combinations but still allowing a rich number

of tested combinations, those are γ = y/2 and ϕ = y/4. The obtained results are

summarized in Table 7.7 (k-NN classifier) and Table 7.8 (Bayesian classifier). In

these tables, “Time filter” refers to the time of filter computation in [s], “Time GA”

refers to the time of wrapper computation in [s] and n
(R)
f is the number of features

that pass the filter. It can be observed that the selected pair of sensors is still the

same pair of nodes for the Bayesian case while in the k-NN case is not able to reach

the optimum but stays near to it and in average their accuracy is close the purely

genetic algorithm method. With respect to the computing time, two aspects can be

highlighted: First, the computing time of the filter is negligible with respect to the

one of the wrapper (in average, 0.032 seconds versus 37 seconds). Second, the filter

helps the wrapper to be faster; in particular, a decrease from 60 to 25 seconds for

the k-NN case and 60 to 37 seconds for the Bayesian in the average computing time

is obtained.

The ATD values in a time horizon of 24 hours is depicted in Figure 7.7a for both
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Table 7.8: Results of the proposed hybrid feature selection in the Hanoi WDN for
the Bayesian classifier.

Data set
Filter + (Genetic algorithm + Φ(B))

Sensors Time filter Time GA n
(R)
f ATD

1 11, 15 0.032 37 21 1.32
2 11, 29 0.032 30 21 1.27
3 13, 29 0.032 25 20 1.13
4 13, 29 0.032 33 21 1.13
5 13, 29 0.032 33 20 1.14
6 13, 27 0.032 45 21 1.13
7 10, 27 0.032 27 20 1.14
8 10, 15 0.032 34 21 1.29
9 13, 29 0.032 39 21 1.14
10 13, 27 0.032 51 21 1.12

Average - 0.032 37 - 1.18

classifiers using the combination of selected sensors along with the training data set

with which the best ATD value at one step is obtained and the testing data set.

The resulting sensor placement for both classifiers in the Hanoi WDN is depicted in

Figure 7.7b.
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Figure 7.7: Sensor placement and the ATD curves using the hybrid feature selection
for both classifiers in Hanoi WDN.

Incremental Feature Selection Approach

Using the artificial data T with the uncertainty characteristics described earlier
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but using and addition of white noise with amplitude of 0.1 and zero mean for the

pressure measurements instead of the previous used. Using four days of data (four

days with no leak and four days with leak for each consumption node, which gives

a total of mT = 96 samples) for the training data set, and the incremental feature

selection method proposed earlier a sensor placement is obtained for a given number

of sensors ns = 31.

As it can be seen in the Figure 7.8, the leak localization improves with the increase

of the number of sensors, specially when their number is low for then, improve in a

more moderate way.
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Figure 7.8: ATD performance for the incremental feature selection sensor placement
using different number of sensors in the Hanoi WDN.

Similar to the Figure 6.1 where sensors in all the sensors are considered, in the

Figure 7.9 the impact of lower number of sensors obtained using the proposed incre-

mental feature selection method, can be seen in the normalized sensitivity matrix.

From the results depicted, the sensor placement of six sensors is chosen since the ad-

dition of more sensors does not significantly improve. The obtained sensor placement

for six sensors is shown in Figure 7.10.

It must be noted that the six sensors chosen here are not necessary the same as if the

optimization had been done for ns = 6. This is due to the nature of the incremental

method that allows backward steps, which can improve subsets of features already

148



Chapter 7. Sensor Placement

ri [m]
5 10 15 20 25 30

L
ea
k
lo
ca
ti
o
n
[−

]

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Four sensors.
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(b) Six sensors.
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(c) Eight sensors.
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(d) Ten sensors.

Figure 7.9: Normalized sensitivity matrix of the Hanoi WDN for a leak of 100 [l/s]
for some sensor placements by the incremental feature selection method.
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Figure 7.10: Sensor placement using incremental feature selection for six sensors in
the simplified Hanoi topological WDN.
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chosen. So, the use of ns in the optimization process higher than the number of

sensors that are really wanted to place could be taken into account to get better

sensor configurations.

7.3.2. Limassol DMA Case Study

The Limassol DMA network described in Chapter 3 is used to test the proposed

sensor placement based on genetic algorithms and the hybrid approach for both

classifiers. The daily water consumption pattern (depicted in Figure 7.11) is gener-

ated as in the previous case (with different scale). For this network, it is decided to

place three pressure sensors.
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Figure 7.11: Example of a daily flow consumption in the Limassol DMA network.

For the Limassol DMA network, it is not realistic to apply the Exhaustive Search

method. The total time needed to compute and evaluate the performance of all

the possible combinations for 197 nodes and select three of them (3,764,670 com-

binations) can be roughly approximated by assuming that the time of computing

each combination, estimated from the average time from 50 combinations using a

Bayesian classifier, is 240.48 seconds, providing a value of 28.7 years.

Sensor Placement Using Genetic Algorithms

The data sets are generated considering similar uncertainties (in this case the leak
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varies from 2 to 6 [l/s]) as the Hanoi WDN case, same sampling time (and computing

the hourly average value) and the same number of examples for each class used for

this method. The classifiers are built like the Hanoi case, but using four attributes:

the flow measurement at the inlet and the three pressure residuals. For the sensitivity

matrix the considered values are 492.2 [l/s] for the total water consumption and 4

[l/s] for the leak size.

The results are summarized in the Table 7.9 and Table 7.11 for the case of the k-NN

classifier (k = 1 as in the Hanoi WDN case), and in the Table 7.10 and Table 7.12

for the Bayesian classifier. In this case, the ϕ value is equal to the mean values of

the Φ matrix except the diagonal (ϕ = y). The best configurations are highlighted

in bold for each method.

Table 7.9: Sensor placement results using GA in the Limassol DMA network for the
k-NN classifier.

Data set
Genetic algorithm

Sensors Time Ac

1 15, 46, 113 8628 11.03
2 1, 7, 11 8602 10.89
3 8, 183, 195 14906 9.84
4 124, 183, 185 13957 8.09
5 3, 7, 8 5508 9.66
6 6, 8, 11 13652 10.72
7 129, 185, 190 15308 8.03
8 1, 3, 7 2010 9.07
9 87, 124, 128 12434 9.55
10 3, 166, 181 4995 7.11

Average - 9690 9.39

In this network, as in the Hanoi WDN case, the use of the Φ(B) matrix reduces the

computation time in most cases and in the average value. In this case the Ac value

is a bit worse than the one obtained using only the GA in the average performance.

This is probably due to the low value of the population size compared with the total

number of combinations possible. The best result obtained for the k-NN classifier

is to place the sensors at nodes 5, 11 and 124, and for the Bayesian classifier is

to place the sensors at nodes 17, 46 and 181. The accuracy curves (using the first
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Table 7.10: Sensor placement results using GA in the Limassol DMA network for
the Bayesian classifier.

Data set
Genetic algorithm

Sensors Time Ac

1 39, 77, 133 21348 17.35
2 7, 19, 23 18701 19.28
3 45, 110, 185 16696 16.40
4 7, 11, 110 47590 19.34
5 11, 91, 186 28032 17.43
6 39, 48, 485 28106 19.13
7 94, 133, 166 7730 19.22
8 124, 189, 192 29217 16.61
9 13, 22, 100 21904 18.86
10 40, 66, 104 15221 20.10

Average - 23454 18.37

Table 7.11: Sensor placement results using GA + Φ(B) in the Limassol DMA network
for the k-NN classifier.

Data set
Genetic algorithm + Φ(B)

Sensors Time filter Time GA Ac

1 1, 7, 195 6.4 7348 9.04
2 8, 102, 182 7.5 16154 10.19
3 52, 128, 133 6.8 8020 9.66
4 7, 195, 197 6.2 6580 9.66
5 1, 7, 195 7.1 1595 8.80
6 104, 183, 195 6.8 5909 8.36
7 1, 2, 197 6.3 479 5.38
8 13, 40, 167 6.3 8294 10.37
9 104, 124, 167 8.0 10551 10.37
10 5, 11, 124 6.2 13304 10.39

Average - 6.7 7793 9.22
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Table 7.12: Sensor placement results using GA + Φ(B) in the Limassol DMA network
for the Bayesian classifier.

Data set
Genetic algorithm + Φ(B)

Sensors Time filter Time GA Ac

1 11, 46, 133 6.3 21255 18.90
2 17, 166, 181 6.3 17845 19.60
3 40, 75, 156 6.8 14742 15.74
4 17, 46, 181 6.7 25515 19.63
5 91, 188, 190 6.5 20117 15.67
6 39, 93, 189 6.7 15775 17.23
7 100, 124, 183 6.9 15765 18.90
8 14, 167, 185 6.4 13200 17.93
9 93, 188, 190 6.4 11453 15.97
10 13, 22, 190 6.5 6416 17.63

Average - 6.5 16208 17.72

training data set and the testing data set) for both sensor placements is depicted in

Figure 7.12a and Figure 7.12b, respectively.
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(a) Accuracy curves for the k-NN classi-
fier in the Limassol DMA network with
sensor placement at nodes 5, 11 and 124.
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(b) Accuracy curves for the Bayesian clas-
sifier in the Limassol DMA network with
sensor placement at nodes 17, 46 and 181.

Figure 7.12: Accuracy curves for both classifiers using the sensor placements ob-
tained using GA with the objective to maximize the Ac in Limassol DMA network.

Finally, the resulting sensor placement for the last proposed method (Genetic algo-

rithm + Φ(B)) for both classifiers is depicted in Figure 7.13.
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Figure 7.13: Sensor placement for the k-NN and Bayesian classifiers in the Limassol
DMA network.

Hybrid Feature Selection Approach

As with the Hanoi WDN network, a simplified version of the method that just im-

plements the wrapper has been tested first. The data sets are equal to the ones

used in the Hanoi WDN case for this method and the uncertainties considered are

equal to the ones used in genetic algorithm just tested. The obtained results are

summarized in Table 7.13 for the k-NN classifier and Table 7.14 for the Bayesian

classifier. Different combinations are selected for the different data sets, but again

a further analysis shows that all the combinations are quite similar since their com-

ponents are close nodes. Applied to the k-NN case, the genetic algorithm wrapper

gives as a best result the set of nodes 1220, 172 and 194 an ATD of 3.9 nodes and

average ATD of 4.1 nodes with an average computation time of 9,669 seconds. In

the Bayesian classifier case the finally selected nodes are the set of nodes 81,133 and

169. Working with the data set 1 and using the measurements simulated for sensors

in these nodes, the obtained ATD is minimal and equal to 3.06. The average value

for the ATD for the 10 considered data sets is 3.39. Finally, the value for the average

computation time is 18,270 seconds (around five hours).

The results for the hybrid feature selection method are summarized in the Table 7.15

and Table 7.16 for the k-NN and Bayesian classifiers respectively. The more restric-
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Table 7.13: Sensor placement using only a wrapper GA method in Limassol DMA
network for the k-NN classifier.

Data set
Genetic algorithm

Sensors Time GA ATD

1 34, 110, 159 15796 3.89
2 33, 111, 138 7598 4.03
3 120, 172, 194 7512 3.9
4 133, 185, 190 5647 4.2
5 61, 86, 189 8790 4.2
6 133, 185, 190 4945 4.2
7 103, 124, 155 13908 4.1
8 10, 47, 155 11921 4.2
9 133, 156, 196 15004 3.9
10 133, 185, 190 5569 4.2

Average - 9669 4.1

Table 7.14: Sensor placement using only a wrapper GA method in Limassol DMA
network for the Bayesian classifier.

Data set
Genetic algorithm

Sensors Time GA ATD

1 81, 133, 169 19007 3.06
2 10, 43, 172 24157 3.56
3 28, 110, 170 23773 3.15
4 185, 195, 196 10515 3.64
5 132, 185, 188 13481 3.18
6 87, 189, 190 18200 3.70
7 15, 51, 152 21752 3.51
8 28, 118, 156 16565 3.17
9 87, 189, 190 17526 3.70
10 12, 36, 156 17725 3.31

Average - 18270 3.39
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Table 7.15: Sensor placements of the proposed hybrid feature selection in Limassol
DMA network for the k-NN classifier.

Data set
Filter + (Genetic algorithm + Φ(B))

Sensors Time filter Time GA n
(R)
f ATD

1 27, 120, 172 85 1.76 4448 3.9
2 33, 99, 155 85 1.74 3435 4.1
3 33, 133, 138 87 1.90 4916 3.9
4 68, 120, 159 87 1.97 9119 4.0
5 33, 133, 155 86 1.91 6906 3.9
6 68, 133, 151 87 1.73 12835 3.9
7 133, 159, 190 87 1.74 6281 3.9
8 120, 172, 188 87 1.60 4852 4.0
9 33, 133, 172 87 1.71 6459 3.9
10 29, 120, 155 87 1.63 4497 4.0

Average - 1.77 6423 - 4.0

tive value ϕ = y/20 is used for this example in order to remove a suitable number

of features in the filtering stage, while the γ = y/2 value is maintained. From Ta-

ble 7.15 and Table 7.16, it can be seen that the proposed method performance is

better in average than the standalone wrapper method in terms of the objective

indicator (ATD) and with a significant reduction in the computation time.

The selected nodes to place sensors (features) have been the nodes number 33, 133

and 172 for the k-NN classifier and 40, 152 and 166 for the Bayesian classifier. The

ATD values in a time horizon made as in the Hanoi WDN case are depicted in

Figure 7.14a. The resulting sensor placements is depicted in Figure 7.14b.
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Table 7.16: Sensor placements of the proposed hybrid feature selection in Limassol
DMA network for the Bayesian classifier.

Data set
Filter + (Genetic algorithm + Φ(B))

Sensors Time filter Time GA n
(R)
f ATD

1 82, 120, 154 1.64 15828 85 3.09
2 120, 151, 188 1.61 8834 85 3.09
3 40, 152, 166 1.67 5429 87 3.00
4 40, 194, 197 1.57 9495 87 3.43
5 38, 120, 159 1.59 25178 86 3.02
6 126, 133, 172 1.59 7177 87 3.03
7 38, 103, 172 1.54 11786 87 3.20
8 133, 194, 197 1.90 6174 87 3.50
9 7, 154, 190 1.61 9323 87 3.19
10 40, 154, 190 1.63 12790 87 3.26

Average - 1.65 11201 - 3.18
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Figure 7.14: Sensor placement and the ATD curves using the hybrid feature selection
for both classifiers in Limassol DMA network.
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8. Conclusions and Future Work

8.1. Conclusions

This PhD thesis has a whole methodology that covers the problems of leak detec-

tion, leak starting time estimation, leak size estimation, leak localization and sensor

placement in WDNs.

8.1.1. Leak Detection

The proposed leak detection technique provides a highly reliable indication if leak

exists or not in the WDN thanks to the validation layer developed. Moreover, the

proposed approach provides the estimated time instant when the leak is originated.

This information can be used to maximize the data used in the leak localization task

that has to be addressed next.

Another benefit of this technique is the leak size estimation calculated in the vali-

dation layer. The main drawback of this technique is the time needed to produce

the detection result.

8.1.2. Model-Based Leak Localization

From the model-based leak localization methods presented in Chapter 5 we can

conclude that they present a better performance than the other techniques with the

same model-based approach but without taking into account the uncertainties. It

must be remarked that the use of a well calibrated hydraulic model is a key factor

158



Chapter 8. Conclusions and Future Work

of the performance of the proposed method along with the accurate estimation of

the uncertainty values.

From the two classifiers tested, the Bayesian classifier has proven to be a more

powerful tool to localize water leaks as long as the attributes used present a close to

Gaussian distribution along with a better time reasoning. Otherwise, the use of the

k-NN classifier can be a good option since produce a better adaptation to each leak

shape in the residual space. The proposed methodology can be extended to other

classifiers.

Finally, the limited number of sensors installed in networks makes unrealistic to

expect to exactly localize the leak. So, this method has to be used to bound the

zone where the workers can start to inspect the networks with devices that are

able to locate the leak such as leak noise correlators or surface detectors to finally

pinpoint the exact location of the water leak.

8.1.3. Data-Driven Leak Localization

The data-driven leak localization approach introduced in Chapter 6 is a new method-

ology that has performed really well in the real cases. This approach has the ability

to be implemented in a fast and straightforward way given the limited amount of

off-line task to be done.

The method is less powerful compared with the model-based leak localization meth-

ods when the hydraulic model is well calibrated. But when the hydraulic model is

not well calibrated it is expected to present a better performance.

The method is very sensitive to the number of installed sensors and location. The

sensors measurements should also be sensitive to variations in the pressure in all

places with the aim to obtain the best pressure map to proved a good diagnostic.

8.1.4. Sensor Placement

In Chapter 7 sensor placement for both leak localization methods is successfully

presented and tested.
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Two sensor placements are presented for the the model-based leak localization

method using classifiers. The first one follows a more traditional approach of se-

lecting the appropriate attributes for the classifier. Here, the locations where to

install pressure sensors are decided by means of an optimization problem solved us-

ing a modified genetic algorithm that provides a suboptimal solution. While this

approach behaves good lacks of the improvement that the use of specialization can

provide. In this case, a specific indicator to optimize as long as with relevance

and redundancy metrics to maximize the sensors sensitivity at the same time that

obtains different sensitivities between leaks is presented in a hybrid approach.

For the case of the data-driven leak localization method a different approach is used,

where the aim is shifted to obtain the sensor configuration that provides the best

accuracy representation of the pressure map to enhance the prediction of pressures.

The higher number of sensors required for that leak localization method makes the

use of an incremental selection rather than the use of the proposed techniques for

classifier, since present a better trade-off that the absolute methods used there.

It should be noted that while the leak localization method did not use hydraulic

models, the sensor placement requires them.

8.2. Future Work

The proposed methods in this PhD thesis are the extension of a current line of work

and the beginning of new ones. In both cases there is still room to improve as long

as new technology and methods are developed.

8.2.1. Leak Detection

Further improvement time response of the leak detection can be achieved, since

there are faster techniques already reported in the literature. Another problem to

be addressed and not treated here is the seasonal effect which causes drifts to the

total water consumption that can lead to false positives if the drift has positive slope
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and omitted detections if the drift has negative slope.

8.2.2. Model-Based Leak Localization

Two classifiers are proposed and tested but many more are available in the literature

including ensemble methods, i.e., different classifiers that fuse their predictions, such

as boosting and bootstrapping.

Also, the future addition of automatic meter readers into water distribution networks

that can allow reducing the demand uncertainty in the residual space and therefore,

improve the performance of the classifiers. This approach has the drawback of

needing to compute the training stage in an on-line manner according to the current

demands. This is not realistic in practice for larger water distribution network

unless the problem is treated through the emerging technologies of big data and

cloud computing.

8.2.3. Data-Driven Leak Localization

The data-driven methods proposed here use the Kriging interpolation as a multi-

variate regression technique, but there are more methods that can be applied which

could perform better that the one proposed.

As suggested in the previous subsection, the use of automatic meter readers can be

exploited here to select a more appropriate historical measurements to perform the

reference map with a more similar characteristics with the actual measurements to

be compared and gain in accuracy.

To assess the pressure in new locations the use of the minimum pipe length is used

but other indicators should be studied.

8.2.4. Sensor Placement

The proposed sensor placement for classifiers both make use of the modified genetic

algorithm which shows greater performance but there are other heuristic methods
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that can perform that part, for example, the particle swarm optimization or the

firefly algorithm. Also, specific metrics developed to deal with this problem are

presented in the application of the proposed algorithm but there are many others

metrics that can be studied or developed.

The incremental feature selection approach makes use of an indirect indicator to be

optimized in order to improve the interpolation fitting. The study of a more direct

indicator regarding to the leak localization performance should be addressed. The

incremental method itself can be changed for other methods that may outperform

the proposed approach.
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evidence theory. Journal of Hydroinformatics, 13(4):596, 2011.

J. Blesa, V. Puig, and J. Saludes. Robust identification and fault diagnosis based on

uncertain multiple input-multiple output linear parameter varying parity equa-

tions and zonotopes, 2012.

J. Blesa, F. Nejjari, and R. Sarrate. Robustness Analysis of Sensor Placement for

Leak Detection and Location Under Uncertain Operating Conditions. Procedia

Engineering, 89:1553–1560, 2014.

J. Blesa, F. Nejjari, and R. Sarrate. Robust sensor placement for leak location:

analysis and design. Journal of Hydroinformatics, 18(1):136–148, 2016.

V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos. A review of feature

selection methods on synthetic data. Knowledge and information systems, 34(3):

483–519, 2013.

G. Boracchi and M. Roveri. Exploiting self-similarity for change detection. Proceed-

ings of the International Joint Conference on Neural Networks, pages 3339–3346,

2014.

164



Bibliography

G. Boracchi, V. Puig, and M. Roveri. A Hierarchy of Change-Point Methods for Es-

timating the Time Instant of Leakages in Water Distribution Networks. Artificial

Intelligence Applications and Innovations, Aiai 2013, 412:615–624, 2013.

S. G. Buchberger and G. Nadimpalli. Leak Estimation in Water Distribution Systems

by Statistical Analysis of Flow Readings. Journal of water resources planning and

management, 130(4):321–329, 2004.

A. Candelieri, D. Conti, D. Soldi, and F. Archetti. Spectral clustering and support

vector classification for localizing leakages in water distribution networks–the ice-

water project approach. In 11th International Conference on Hydroinformatics,

2014.

A. Caputo and P. M. Pelagagge. Using Neural Networks to Monitor Piping Systems.

Process Safety Progress, 22(June):119–127, 2003.
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G. Sanz and R. Pérez. Sensitivity Analysis for Sampling Design and Demand Cali-

bration in Water Distribution Networks Using the Singular Value Decomposition.

Journal of Water Resources Planning and Management, 141(1977):1–9, 2015.
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