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Abstract 
Genome-wide association studies (GWAS) have been proven useful for identifying 

thousands of associations between genetic variants and human complex diseases and 

traits. However, the identified loci account for a small proportion of the estimated 

heritability (i.e., the proportion of variance for a particular phenotype that can be 

explained by genetic factors). 

The usually small effect size of common variants and the low frequencies of some 

variants with potentially larger effect sizes limit the statistical power of GWAS. The 

identification of common variants with small effects and low-frequency variants with 

large effects can be overcome with the analysis of larger sample sizes and imputing 

genotypes using dense reference panels. However, there is still room for improvement 

beyond increasing the sample size and the number of variants. As current GWAS are 

predominantly focused on the autosomes and only test the additive model, current 

strategies still constrain the full potential of GWAS.  

In this thesis, we hypothesized that performing a comprehensive analysis improving 

current GWAS strategies by 1) implementing the analysis of the X chromosome 

alongside the autosomes, 2) including genetic variants from a broader allele frequency 

spectrum and type of variants, such as small insertions and deletions (INDELs) 

through genotype imputation using multiple reference panels, and 3) testing different 

models of inheritance in the association test, would improve our understanding of the 

genetic architecture of complex diseases.  

To test these hypotheses we developed an integrated framework including our 

methodology, called GUIDANCE. Hence, GUIDANCE integrates state-of-the-art 

tools for GWAS analysis, including the analysis of X chromosome, a two-step 

imputation with multiple reference panels, the association testing including additive, 

dominant, recessive, heterodominant and genotypic inheritance models, and cross-

phenotype association analysis when more than one disease is available in the cohort 

under study. 

We used GUIDANCE to analyze the Genetic Epidemiology Research on Adult Health 

and Aging (GERA) cohort, a publicly available cohort that includes 62,281 subjects 
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from European ancestry with an average age of 63 years for 22 diseases, representing 

the largest cohort for age-related diseases to date. 

After quality control, we analyzed 56,637 subjects from European descendant 

populations. Following our methodology, we imputed genotypes using 1000 Genomes 

Project (1000G) phase 3, the Genome of the Netherlands project (GoNL), the UK10K 

project22, and the Haplotype Reference Consortium (HRC) as reference panels.  

Using this strategy, we identified 26 new associated loci for 16 phenotypes (p < 5 × 

10-8), with 13 showing significant dominance deviation (p < 0.05).  

Importantly, we identified three recessive loci with large effects that could not have 

identified by the additive model. This include a region let by an INDEL associated 

with cardiovascular disease in CACNB4 (rs201654520, minor allele frequency [MAF] 

= 0.017, odds ratio [OR] = 19.02, p = 4.32 × 10-8), a lous near PELO associated with 

type 2 diabetes with the greatest odds ratio for type 2 diabetes in Europeans reported 

to date (rs77704739, MAF= 0.036, OR = 4.32, p = 1.75 × 10-8), and a rare INDEL 

associated with age-related macular degeneration near THUMPD2 (rs557998486, 

MAF= 0.009, OR = 10.5, p = 2.75 × 10-8).   

Despite the phenotype discrepancies and different demographical characteristics of 

the GERA cohort and UK Biobank, four of the novel loci were replicated with an 

equivalent phenotype in UK Biobank, and we found additional supporting 

associations in related traits, treatments or biomarkers in UK Biobank for the 

remaining novel loci.  

Of note, PELO and THUMPD2 recessive loci were replicated using the recessive 

model in UK Biobank (combined results: PELO, rs77704739, OR = 2.46, p = 4.68 × 

10-11, and THUMPD2, rs557998486, OR = 26.51, p = 3.29 × 10-8), which could not 

have been found with the additive model.  

Overall, these results highlight the importance of performing a comprehensive 

analysis of the full spectrum of genetic variation and considering non-additive models 

when performing GWAS, especially with well-powered biobanks and the increasing 

ability to impute low-frequency variants.  
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For the benefit of the research community, we make available both GUIDANCE to 

boost the analysis of existing and ongoing GWAS projects, and the GERA cohort 

results, which constitute the largest non-additive genetic variation association 

database to date, through the Type 2 Diabetes Knowledge Portal 

(http://www.type2diabetesgenetics.org).  
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Complex diseases are the result of the combination of genetic factors, environmental 

exposures, and lifestyle choices, and they are also known as “common diseases” since 

they are spread medical problems worldwide (King et al., 1992). In fact, complex 

diseases are the leading cause of mortality worldwide, and compromise economies 

and life quality due to their chronic nature (WHO, 2018). For these reasons, after the 

successful health policies towards controlling and even eradicating infectious diseases 

by vaccination and antibiotics, current health care policies are predominantly focused 

on complex diseases.  

Between prevention and treatment, prevention is the most cost-effective approach to 

address complex disease, and fortunately, many of them are potentially preventable at 

different levels. Hence, adopting healthy lifestyles, and even higher levels of 

education, which can influence decision-making patterns (e.g., smoking and obesity 

are inversely related to education), have been associated with population health 

(Cutler, 2007). Nevertheless, the genetic background that each person carries from 

birth (i.e., germline variations) also modifies the risk of developing a complex disease, 

and the identification of individuals at higher risk due to genetic factors will 

ultimately lead to better health prevention policies for them.  

Even before the beginning of “genetics” as a discipline, many have wondered how 

traits and diseases are inherited since many of them seem to run in families. For some 

diseases, called Mendelian, monogenic or rare diseases, the answer did not take long. 

However, the observations and methods applied to Mendelian diseases were not 

equally successful for complex, polygenic, common diseases. Even so, significant 

progress has been made in the field, and nowadays, we have methods to explore, and 

we better understand, which regions of the human genome (i.e., loci) compromise our 

health in the long run.  

The introduction of this thesis will explain the necessary concepts to understand the 

theoretical framework on which this thesis has been developed. The introduction 

begins with an explanation of the concept of heritability and the utility and 

misconceptions of this measure of the genetic component behind complex diseases 

(Chapter 1). Right after, there is an historical overview that seeks to explain basic 

concepts that appear countless times throughout this thesis as well as to put in context 
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how the study of the genetics behind complex diseases began, from the first 

description of the Mendelian laws of inheritance in 1866 until the first complete 

genome-wide association study (GWAS) in 2007 (Chapter 2). Chapter 3 starts with a 

summary about what we have learned from GWAS since 2007 and continues 

describing the current scenario of these analyses, specifying and detailing the steps 

that constitute a current GWAS. Finally, Chapter 4 is focused on GWAS results, 

explaining their interpretation, and exploring possible further analysis after GWAS to 

clarify the mechanisms through which associated loci might be influencing complex 

diseases risk. 

1 The genetic basis of human traits and disease  

1.1 Why family members look alike and its relation with 
diseases 

Independently of environmental factors and lifestyle choices, relatives tend to be more 

alike compared to random individuals within the same population. The offspring tend 

to resemble their progenitors, their siblings, and their extended family to a lesser 

degree. By observing the height, the eye colors, and the hair types of some 

progenitors, one can make a good guess about the height, the eye color, and the hair of 

the offspring. In the same way, many common complex diseases are known to run in 

families (Lobo, 2008), and related individuals display a major risk of developing the 

same diseases compared to other individuals for a given population.  

Shared environmental factors can explain many resemblances between the offspring 

and parents, but many can also be explained to some extent by genetics. During 

conception, half of the genetic information of each progenitor is passed to the 

offspring. Therefore, even though in the presence of the same environment, identical 

genetic twins look more alike than siblings or adopted children. If a trait can be 

inherited from the progenitors, it is heritable. Some traits, such as blood type, are fully 

heritable, but most of the traits and complex diseases are partially heritable, and the 

environment also contributes to them (King et al., 1992). Hence, up to what extent 

does genetics influences complex disease risk? 
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1.2 The variability explained by genetic factors; Heritability 
To distinguish between genetic and environmental contributions to a trait, the concept 

of “heritability” was first introduced by Sewall Wright (1889-1988) and Ronald 

Fisher (1890-1962) a century ago (Fisher, 1918; Wright, 1920). Heritability is defined 

as the proportion of variation in a particular trait that is attributable to genetic factors 

(Visscher et al., 2008). In other words, heritability measures how much of the 

variability of a specific trait (e.g., a complex disease) can be explained by genetic 

differences. However, since some genetic factors may indirectly affect the phenotype 

through environmental factors, heritability has to be carefully interpreted.  

Heritability is formally defined as a ratio of variances, where the dominator contains 

the total observed variation, usually excluding fixed factors and covariates such as age 

and sex, and the numerator contains the variation that is due to additive genetic values 

in the population, traditionally called “breeding values” (Falconer and Mackay, 1996).  

Although shared environmental factors in related individuals can lead to inflated 

estimates (Zaitlen et al., 2013) and novel approaches have been developed to 

estimates heritability based on unrelated and admixed individuals (Zaitlen et al., 

2014), most heritability estimates are based on family and twin studies (Visscher et 

al., 2008).  

1.3 Pits and falls of the heritability estimation 
As it is an estimate, heritability has many limitations since it is a simplification that 

does not accurately reflect the complex nature of phenotype-genotype interaction. The 

complexity and misconception of heritability have led to erroneous assumptions 

(Visscher et al., 2008). If a trait is difficult to measure or if it depends on who 

measures it (e.g., self-reported, physician-reported, or empirically measured), the 

heritability estimate can be lower than the real one. In addition, heritability is 

population-specific, and the heritability for a particular trait in a population does not 

predict its heritability in a different one in theory (Visscher et al., 2008). However, in 

practice, the heritability of similar traits are often similar in different populations 

(Visscher et al., 2008). 
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A high heritability implies a strong correlation between genotype and phenotype, i.e., 

the observed variation is mainly due to genetic factors. Hence, the genetic contributors 

for a disease with a high heritability can be more easily identified. However, a high 

heritability does not mean that the genotype can predict the phenotype (i.e., genetic 

determination) since environmental factors can modify the phenotype (Visscher et al., 

2008).  

The misconception of the heritability estimates can lead to unfair conclusions trying to 

justify differences by genetics. An example of this is the controversy about the 

heritability of intelligence quotient (IQ), a measurement of the performance in a series 

of mental ability tests. Beyond the problems of measuring cognitive ability, it can be 

perceived that intelligence could not be modifiable by intervention strategies since its 

heritability estimate is high (in the range of 0.50 - 0.80) (Visscher et al., 2008). 

However, it has been demonstrated that the heritability estimate of IQ increases when 

increasing the socioeconomic status of the group under study (Turkheimer et al., 

2003), which demonstrates the importance of environmental factors and to do not 

extrapolate heritability estimations from one group to others. 

In summary, heritability depends on the complexity of the trait under study, how and 

who measures it, and it is specific to the group under study, including its environment. 

Hence, it is not valid to use heritability as evidence for “inherited” differences 

between groups or populations or to predict the individual predisposition to a 

particular trait. However, heritability is a crucial parameter that puts an upper limit on 

the efficiency of the possible prediction of the genetic risk of a trait (e.g., a disease).  

1.4 What is the heritability of complex diseases? 
Heritability ranges between 0 (genetics explains nothing about the trait) and 1 

(genetics explains everything). In complex diseases, heritability estimates can be as 

low as 0.01 for stomach cancer to values as high as 0.81 for schizophrenia (Table 1).  

These heritability estimates justify projects to study the genetics behind complex 

diseases, and these projects lead to a better understanding of the genetic architecture 

and the pathways involved, for better prevention policies, and better treatments.  
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Table 1. Heritability estimates for common diseases.  

Disease Heritability Population Reference  

Schizophrenia 0.81 European Sullivan et al. (2003) 

Chronic Obstructive 
Pulmonary Disease 0.60 Danish and Swedish Ingebrigtsen et al. (2010) 

Alzheimer 0.58-0.79 Swedish Gatz et al. (2006) 

Melanoma Skin Cancer 0.58 Nordic Mucci et al. (2016) 

Prostate Cancer 0.42-0.57 Nordic Lichtenstein et al. (2000); 
Mucci et al. (2016) 

Thyroid Cancer 0.53 Swedish Czene et al. (2002) 

Coronary Artery Disease 

0.53 Black-defined ancestry 
from USA Katzmarzyk et al. (2000) 

0.34-0.49 
White-defines 
ancestry from USA 
and Germany 

Katzmarzyk et al. (2000); 
Fischer et al. (2005) 

Macular Degeneration 0.49-0.71 Dutch Klaver et al. (1998) 

Ovarian Cancer 0.39-0.40 USA and Nordic Schildkraut et al. (1989); 
Mucci et al. (2016) 

Stroke 0.32 Danish Bak et al. (2002) 

Type 2 Diabetes 0.26 Danish Poulsen et al. (1999) 

Breast Cancer 0.25-0.56 USA and Nordic 

Czene et al. (2002);  
Mucci et al. (2016); 
Schildkraut et al. (1989); 
Lichtenstein et al. (2000) 

Lung Cancer 0.08 Swedish Czene et al. (2002) 

Leukemia  0.08 Swedish Czene et al. (2002) 

Stomach Cancer 0.01 Swedish Czene et al. (2002) 

Nevertheless, even though hundreds of genetic regions have been associated with 

complex diseases during the last decade, they only account for a small fraction of the 

heritability estimates (Manolio et al., 2009). Fortunately, there is room for 

improvement in the current methods.  

To boost our knowledge about the genetics behind complex diseases, find new 

therapeutic targets or predict their risk by improving current methodologies, we first 

have to set up what is the genetic material we are made of, how have we learned what 

it is, and how are we studying the genetic factors that modify diseases risk from birth. 
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2 Historical overview † 

2.1 How are traits inherited by the offspring? The early years 
of genetics 

The history of genetics consensually starts with Gregor Mendel (1822-1884). In 1866, 

this Augustinian monk from the Austro-Hungarian Empire, who was trained in 

physics, mathematics and philosophy, published his study, “Experiments in Plant 

Hybridization” (originally “Versuche über Pflanzenhybriden”), on how certain traits 

are inherited following certain rules based on his observation on pea plants. However, 

the “Mendelian Laws of Inheritance” were put aside until the 20th century. The reason 

is a contemporary novel theory about evolution and the inability to adequately 

reconcile both theories at that time (Charlesworth and Charlesworth, 2009).  

Nevertheless, in 1900, everything took a turn when Mendel’s work was 

“rediscovered” by Hugo de Vries (1848-1935) in Holand, Carl Correns (1864-1933) 

in Germany and Erik Tschermak (1871-1962) in Austria through independent works 

that pointed out to Mendel’s studies.   

The rediscovery of Mendel’s work originates a new debate about inheritance since 

some inherited traits, such as human height, cannot be explained by Mendelian 

principles. On the one hand, “biometricians”, such as Francis Galton (1822-1911) and 

Karl Pearson (1857-1936), developed statistical methods to estimate the genetic 

component of the phenotypic variance of traits, to further decompose genetic variance 

into additive and non-additive components, which would explain the inheritance of 

                                                
† Before entering into the heart of the matter, I would like to clarify that, beyond the 
names of the prominent scientists that will appear in this chapter, the important thing 
to highlight is their ideas, not their names. Probably, their works were the result of a 
team. Unfortunately, little is known about the researchers with whom they worked and 
their contributions since their names have been diluted with the storytelling. Unfairly, 
many names have been forgotten, paving the way to the collective prototype of the 
white-male scientist (Richmond, M.L. (2007). Opportunities for women in early 
genetics. Nat Rev Genet 8, 897-902.). I am afraid, and I apologize, that my summary 
of the story will not be an exception. 
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traits such as human height. On the other hand, “Mendelians”, such as William 

Bateson (1961-1926), worked on estimating the effects and models of inheritance of 

strong effects (e.g., dominant/recessive) (Stranger et al., 2011).  

Between 1903 and 1905, Walter Sutton (1877-1916) and Theodore Bovery (1862-

1915) independently described in their works the chromosome theory of inheritance, 

describing chromosomes as the physical carriers of the heredity units that Mendel 

described (Dahm, 2005). The word “genetics” was used by Bateson in 1905, meaning 

the study of heredity and variation (Bateson, 2002). In addition to that, in 1905, 

Bateson and Reginald Punnet (1875-1967) realized that a physical coupling 

mechanism connected genetic characters increasing the occurrence of purple-long and 

red-round peas compared to other possible combinations, which contradicts the 

Mendelian law of independent segregation (Griffiths, 2000). In 1910 Thomas Hunt 

Morgan (1856-1945) further confirmed this physical coupling mechanism when he 

found a similar deviation studying Drosophila (white-eyed phenotype tied to males) 

(Griffiths 2000). In later works, Morgan correctly proposed that the strength of 

linkage between two genes depends on the distance between the genes on the 

chromosome (Lobo and Shaw, 2008). This is the basis of why we were able to map 

genes to specific chromosomes long before sequencing, and the beginning of gene-

mapping and human genome maps. 

In 1908, Godfrey Harold Hardy (1877-1947) and Wilhelm Weinberg (1862-1937) 

independently hypothesized what it is now known as the “Hardy-Weinberg 

Equilibrium” (HWE). This principle states that frequencies of the different forms of a 

genetic unit (alleles) do not vary over time in a population in the absence of 

evolutionary forces (Griffiths, 2000).  

Finally, in 1918, Ronald Fisher reconciled biometricians and Mendelians in the article 

“The Correlation between Relatives on the Supposition of Mendelian Inheritance”, 

showing that the debate could be solved by assuming that multiple genes obeying 

Mendelian rules contribute to variation in a population (Visscher and Goddard, 2019).  

During the earlier years of the 20th century, the succession of publications and the 

iteration of different opinions build up the scientific work that fostered the foundation 

of population genetics as a discipline (Figure 1). 
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2.2 The (re)discovery of DNA as the substance of heredity 
It is commonly considered in the collective thinking that Watson and Crick discovered 

the deoxyribonucleic acid (DNA) in 1953. However, we certainly have to go back to 

1869, when the Swiss chemist Friedrich Miescher (1844-1895) isolated DNA 

accidentally while studying the proteins in leucocytes. Hence, he noticed that there 

was something, which he called “nuclei”, that did not match protein’s properties 

(Miescher, 1871). Between 1884 and 1885, Oscar Hertwig (1849-1922), Albrecht von 

Kölliker (1817-1905), Eduard Strasburger (1844-1912) and August Weismann (1834-

1914) independently provide evidence that the cell nucleus contains the basis for 

inheritance (Dahm, 2005). Unfortunately, DNA was dismissed as the “substance of 

heredity” until the middle years of the 20th century for not being complex enough 

compared to proteins (Dahm, 2005; Hargittai, 2009). Until the mid-1940s and early 

1950s, when Oswald T. Avery (1877-1955), Colin MacLeod (1909-1972), and 

Maclyn McCarthy (1911-2005) (Avery et al., 1944), and Al Hershey (1908-1997) and 

Martha Chase (1927-2003) (Hershey and Chase, 1952) demonstrated that DNA is 

indeed the carrier (Dahm, 2005).  

At this point James Watson (1928- ) and Francis Crick (1916-2004), based on the 

work in crystallography of Maurice Wilkins (1916-2004) and Rosalind Franklin 

(1920-1958), and putting all the evidences together, including those from Phoebus 

Levene (1869-1940) (Levene, 1919) and Erwin Chargaff (1905-2002) (Chargaff, 

1950), wrote the famous article describing the molecular structure of DNA, published 

in Nature on April 25, 1953.  

Their description of the double helix and the hydrogen bonds provided the first insight 

into how DNA works (Watson and Crick, 1953). Shortly after, Marshall W. Nirenberg 

(1927-2010) and J. Heinrich Matthaei (1929-) “cracked” the genetic code (Nirenberg 

and Matthaei, 1961), deciphering how every three nucleotides, i.e., a codon, build the 

blocks of proteins, i.e., the amino acids. By 1970s, knowing that genes encode 

proteins through transcription and translation, and by mimicking the mechanism by  
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which cells read the information in genes to translated it into proteins, researchers 

were able to clone genes for known proteins using recombinant DNA technologies of 

cloning and sequencing (Lander et al., 2001). This technology was used to find genes 

for known proteins. 

However, for the majority of diseases, the pathways and genes involved were 

unknown. How we identified genes associated with diseases without any prior 

knowledge about the etiology? 

2.3 The Linkage Studies in family pedigrees  
The fact that co-located genes are linked and inherited together (co-segregate) was 

firstly described for sex-linked traits since they are easier to track through pedigree 

analysis (Morgan, 1910). This principle allows us to map genes to chromosomes by 

following co-segregating traits (or phenotypes, e.g., diseases) in family pedigrees 

(Donahue et al., 1968).  

Hence, using the DNA recombination technology to define a locus, linkage analysis 

map genetic regions, or loci, by observing the segregation of a single-gene trait or 

disease through related individuals (Botstein et al., 1980).  

The gene for cystic fibrosis (a Mendelian monogenic disease) was mapped at 

chromosome 7 in 1985 by linkage analysis (Knowlton et al., 1985), and ultimately 

found in 1989 (Kerem et al., 1989; Riordan et al., 1989; Rommens et al., 1989). The 

identification of the Huntington disease gene took even longer. The Huntington 

disease gene was mapped on chromosome 4 in 1983 (Gusella et al., 1983). However, 

HD was not identified until 1993 (MacDonald et al., 1993).  

By 1991, about 1,900 genes were already mapped to specific chromosomes 

(McKusick, 1991). However, it was estimated that the human genome could have 

between 50,000 - 100,000 expressed genes based on density and gene sizes 

(McKusick, 1991). At that time, it was hypothesized that the complete sequencing of 

the human genome, a technic under development, would be the best way to find the 

remaining genes and linked them to diseases. The interest of deciphering genes of 

entire genomes, and mapping genes to their chromosome location, laid the 

foundations of the Human Genome Project (HGP), the ultimate map (McKusick, 
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1991), to precisely locate every human gene into a particular region of a human 

chromosome. The access to that map would have considerably reduced the time and 

cost that was required to find the cystic fibrosis gene (Tsui and Dorfman, 2013).  

2.4 The Human Genome Project 
With the sequencing techniques under development, the HGP was a big challenge. It 

required the contribution of numerous people and considerable financial support, and 

doing so, the HGP also laid the foundations of international collaboration and data 

sharing to achieve common goals.  

The first draft of the human genome was published in 2001 (Lander et al., 2001; 

Venter et al., 2001), and the HGP officially ends in 2003 with the reference sequence 

completed for almost every human chromosome.  

The HGP was a monumental achievement, and it changes biology and medicine 

irrevocably. After the completion of the HGP, we learned that, in fact, in our more 

than 3 billion base-pair, we “only” have between 20,000 and 25,000 protein-coding 

genes, far from the 50,000-100,000 proposed a decade before (McKusick, 1991). 

Since other organisms, including plants such as the sunflower (Badouin et al., 2017), 

seem to have more protein-coding genes than humans, these findings suggested new 

layers of complexity.  

Nowadays, estimates about the number of genes in the human genome continue to 

fluctuate, and we still do not know how many genes the human genome actually has 

(Willyard, 2018). In addition, little is known about the non-coding regions, which 

accounts for most of the human genome and was once controversially called “junk 

DNA” (Pennisi, 2012).  

Although the completion of the sequencing of a human reference genome was a 

milestone in the history of science, it was just the beginning.  

As a result of the HGP, other international efforts arise, such as ENCODE (or  “The 

Encyclopedia of DNA elements”), which aims to identify the functional elements of 

the human genome (Encode Project Consortium, 2012), or HapMap (that stands for 
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“Haplotype Map”), with the goal of determining the common patterns of human 

genetic variation in the human genome (International HapMap Consortium, 2003). 

While focused on around 99.9% of the human genome that is equal between 

individuals, the HGP revealed millions of genetic variants. Concretely, the initial draft 

sequence identified around 1.42 million Single Nucleotide Polymorphisms (SNPs) 

distributed throughout the human genome (Sachidanandam et al., 2001). In this 

scenario, the international HapMap project raised as a logical next-step (Manolio et 

al., 2008). 

2.5 The International HapMap Project 
Launched in 2002, the HapMap project aimed to characterize the 0.1% genetic 

differences between humans and to boost the understanding of complex diseases that 

do not follow a full Mendelian inheritance (International HapMap Consortium, 2003).  

At the end of the 20th century, the location of genes linked to diseases improves both 

the diagnosis and the understanding of the pathogenesis for a vast number of 

monogenic (i.e., Mendelian) diseases. However, due to the inner complexity of 

common diseases, the reliable results for complex diseases (i.e., non-Mendelian) were 

anecdotes (Altmuller et al., 2001). Therefore, it was hypothesized that moving the 

analytical approaches from localized genome sections (reverse genetics; from gene to 

phenotype) to the whole genome (forward genetics; from phenotype to genes) would 

lead to a higher yield in the analysis of complex diseases (Risch and Merikangas, 

1996; Risch, 2000).  

Testing 1 million SNP alleles (i.e., genotyping) in 270 samples from four populations 

with diverse geographic ancestry, and analyzing patterns of association among SNPs 

(i.e., linkage), the HapMap project phase I produced a human haplotype (i.e., SNP 

alleles located in a chromosome that are associated and inherited together more often 

than expected by chance) map.  

Hence, providing a public genome-wide database of common human variation and 

linkage patterns, HapMap was a shortcut to carry out genome-wide association studies 

(GWAS), which were unfeasible before the HapMap project completion (International 

HapMap Consortium, 2005) because, to do so, it was needed a catalog of human 
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genetic variation and the quantification of the correlation structure (Linkage 

Disequilibrium or LD) of the genetic variants.  

2.5.1 Cataloguing the different types of human genetic variation 
Unlike mutations, genetic variants occurred in the population at or above a minimal 

frequency (Kruglyak and Nickerson, 2001). According to its frequencies, genetic 

variants can be classified as common variants (minor allele frequency (MAF) ≥�5%), 

low frequency variant (5% <�MAF ≥ 1%), rare variants (1% < MAF�≥ 0.1%), and 

very rare variants (MAF ≤�0.1%) (Figure 2a).  

The sequencing of the human genome estimated 7.1 million of common single 

nucleotide polymorphisms (SNPs), (i.e., with a MAF of at least 5% across the entire 

human population) in a 3.2 billion base pair sequence (Kruglyak and Nickerson, 

2001). Shortly after that, a significant fraction (1.6 million SNPs) was identified and 

genotyped among population samples (Hinds et al., 2005; International HapMap 

Consortium, 2005).   

Beyond their frequency, variants can also be classified according to their impact. 

Broadly, genetic variants can be coding or non-coding if they affect or not a protein-

coding gene (Figure 2b). Coding variants tend to have larger effects since they may 

alter the structure, and therefore the function, of the resulting protein. Not 

surprisingly, coding variants with large effects are typically rare as a result of 

purifying selection (International HapMap et al., 2007). In contrast, the effects of non-

coding variants tend to be smaller, and the characterization of their consequences is 

not straightforward. As most of the genome does not contain genes that code for 

proteins, non-coding variants are the most common (International HapMap et al., 

2007). 

However, although SNPs are the most abundant form of variation in the human 

genome (Kruglyak and Nickerson, 2001), there are genetic variations involving more 

than a single base pair, which can be broadly grouped as “structural variants” (Feuk et 

al., 2006) (Figure 2c). Based on the patterns of DNA sequence and their sizes, 

structural variations include insertions and deletions (INDELs), inversions, 

duplications and translocations of DNA sequences, including copy number variants 

(CNVs) (Hinds et al., 2005).  
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Figure 2. The landscape of human genome variation.  

a Genetic variation can be classified according to the affected tissue as germline or somatic. Germline 

variations are in germ cells and are therefore transferred to the offspring. In contrast, somatic mutations 

are in somatic cell lines, and can not be transmitted to the progeny. As a result of this, germline variants 

are found in the population at or above minimal frequency. Although it is a continuum, germline 

variants are typically classified as common, low-frequency or rare. b Genetic can also be classified 

according to their impact as coding or non-coding if they occur or not in protein-coding genes. Coding 

variants may truncate proteins, and therefore the interpretation of their consequences is usually more 

straightforward than the consequences of non-coding variants. c According to the DNA sequence 

pattern and the number of nucleotides involved, genetic variants can be broadly classified as single 

nucleotide polymorphisms or structural variants. The genomic variation ranges from Single Nucleotide 
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Polymorphisms (SNPs), affecting only a base pair, to structural variation than can involved few base 

pairs or large chromosomal rearrangements such as translocations.  

2.5.2 Studying the correlation structure of the genome and tag SNPs  
HapMap genotyped data allowed the examination of linkage disequilibrium (LD). The 

LD is defined as a property of genetic variants on a genomic sequence that describes 

the degree of correlation between two variants within a population (Bush and Moore, 

2012). The rationale behind the LD is related to the chromosomal linkage already 

observed by Bateson, Punnet, and Morgan in the early years of genetics, where genes 

on chromosomes remain physically attached over generations (Figure 3). 

Hence, recombination events break chromosomal segments during meiosis, and all the 

variants in each of the segments are inherited together (i.e., linked). Therefore, in a 

population of fixed size and random mating, the chromosomes would be continuously 

breaking into fragments until all the variants are in linkage equilibrium (i.e., they are 

independently inherited) (Bush and Moore, 2012). This correlated with the 

observation that the most ancestral populations (i.e., African-descendent populations) 

have smaller regions of LD segments than European, Chinese, and Japanese –

descendent populations (International HapMap Consortium, 2005).  

In genetic analysis, LD is commonly reported as r2, a statistical measure of 

correlation. Hence, high r2 reports a high correlation between variants, and thus only 

one variant is needed to capture all the allelic information in that segment. These 

selected variants that capture the variation in the nearby sites are called tag variants 

(usually “tag SNPs”) (Bush and Moore, 2012).  

The HapMap project determined that > 80% of common SNPs in European-

descendant populations can be captured using a subset of 500,000 to 1 million SNPs 

scattered across the genome (Bush and Moore, 2012; Li et al., 2008). Therefore, the 

tag SNPs that capture most of the common genetic variation in the human genome 

enabled the production of SNP arrays, and thus the GWAS era began (Visscher et al., 

2012). 
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Figure 3. Linkage disequilibrium between variants. 

Haplotype blocks in the population are the result of recombination during meiosis. Over generations, 

chromosomes are continuously breaking into fragments (haplotype blocks), and the variants inside 

these fragments remain physically attached (i.e., linked). 

2.6 The Genome-Wide Association Studies Era  
The study of affected families for a particular disease, and examining how the genetic 

variants segregate with the diseases in multiple families-trees, was successful for rare 

disorders. By 2003, around 1,400 genes affecting diseases were already known 

(Botstein and Risch, 2003). 

However, the analysis has not fared as well when applied to complex common 

diseases. The reason is that the underlying mechanisms that influence complex  

common diseases are different from those causing rare diseases (Hirschhorn and Daly, 

2005). By 2003, linkage studies only identified eight associated regions with modest 

effect sizes (typically between 1.1 and 2) for complex diseases (Lohmueller et al., 

2003), in contrast with the around 1,400 genes with large effects found in Mendelian 

diseases at that time.  
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Single genes with high penetrance variants usually cause rare diseases, which means 

that the presence of a particular genetic variation is highly correlated with the 

presence of the phenotype (i.e., diseases). However, this does not apply to common 

diseases.  

This makes sense in light of natural selection. Hence, deleterious mutations with high 

effects tend to be rare by purifying selection. In contrast, common diseases have a 

typically late onset, which means that the genetic variants behind those diseases do 

not affect, or modestly affect, the reproduction fitness of the individuals carrying them 

(Altshuler et al., 2008) and, therefore, those variants tend to be common.  

For that reason, the first hypothesis was that common diseases were mainly influenced 

by common variants with low penetrance (common disease/common variant [CD/CV] 

principle) (Reich and Lander, 2001) (Figure 4). That would explain why the presence 

of associated variants is not always correlated with the presence of the disease, and 

this suggested that multiple common variants may influence disease risk with small 

effect sizes (Bush and Moore, 2012). 

These observations pointe out that family-based linkage analyses were not appropriate 

for complex diseases, and promote the shift toward population-based association 

studies (Bush and Moore, 2012) using genetic markers to recognize common ancestor 

linked segments of DNA, or haplotypes (Lander and Botstein, 1986).  

Following the HapMap project, the first GWAS, focused on age-related macular 

degeneration, was published in 2005 (Klein et al., 2005). Nevertheless, the publication 

of the Wellcome Trust Case Control Consortium (WTCCC) (Wellcome Trust Case 

Control, 2007) is considered the starting point, since it was the first well-designed 

GWAS using SNP arrays with high coverage (Visscher et al., 2012).  

During the following decade, more than 50,000 associations between genetic variants 

and complex traits were reported (MacArthur et al., 2017).   
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3 The present: Genome-Wide Association Studies 

3.1 What have we learned from GWAS? 
GWAS have revolutionized the study of the genetics of complex diseases over the 

past decade (Visscher et al., 2012; Visscher et al., 2017). Beyond variant-trait 

associations, many conclusions about the genetic architecture of complex diseases 

have emerged from GWAS.  

For example, it is unambiguously accepted that many loci contribute to the genetic 

variation for almost any complex disease that has been studied. Therefore, complex 

diseases are polygenic, and many genes play a role in the final outcome, but also each 

individual carries a unique pattern of variants, with a mixture of alleles that increase 

and decrease the disease risk. Hence, since GWAS measure the effect sizes across an 

averaged background, the effect sizes are found to be small (Visscher et al., 2017). 

Increasingly larger sample sizes are needed to find new associated regions with small 

effects (Visscher et al., 2017).  

Figure 4. Genetic variants frequencies and their effect size in human 
disease. 

Large effect sizes are expected for rare Mendelian diseases, while the common 

diseases / common variant hypothesis have been the most accepted for complex 

diseases with few exceptions. GWA = genome-wide association (Obtained from 

Assimes and Roberts (2016)). 
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Throughout the years, it has been demonstrated that the number of discovered variants 

in GWAS is strongly correlated with the sample size (Tam et al., 2019; Visscher et al., 

2012). Since 2005, GWAS have evolved from 146 individuals included in the first 

GWAS (Klein et al., 2005), which found one locus associated with age-related 

macular degeneration, to some current GWAS including over 1 million of samples 

(Karlsson Linner et al., 2019), identifying hundreds of associated loci. 

Since the number of genetic variants in the human genome is large but finite, and as it 

was seen in Mendelian diseases (Bamshad et al., 1997; Hodgkin, 1998; Paul, 2000), 

the same genetic variants contribute to multiple phenotypes (Sivakumaran et al., 

2011), a phenomenon known as “pleiotropy” (McKusick, 1976). In addition, studies 

about the genetic correlation between traits using GWAS results have also 

demonstrated that many variants affect the same trait consistently (Bulik-Sullivan et 

al., 2015a; Pickrell et al., 2016).   

Despite the success of GWAS identifying genes and pathways involved in complex 

disease, there is still some level of misunderstanding about the purpose of GWAS and 

the value of GWAS results. However, many criticisms go beyond the GWAS means, 

unfairly underestimating its contribution (Visscher et al., 2012). The following section 

will describe what is the rationale behind GWAS, thus clarifying the interpretation of 

GWAS results.  

3.1.1 What we can expect from GWAS and what we cannot 
The general goal of GWAS is to find disease-associated regions to disentangle the 

genetics behind complex diseases. Very briefly for now, the GWAS rationale is the 

comparison of allele frequencies between cases and controls for a particular disease, 

seeking for genetic differences that may explain the phenotypic variance seen in a 

particular population (i.e., heritability) (Figure 5) (see section 3.3.3 for a detailed 

explanation of the association test in GWAS). 

GWAS do not inform about the specific gene or biological mechanism that links the 

associated loci with the disease. The association can be both direct (i.e., the associated 

variant is the causal one) and indirect (i.e., the associated variant is in LD with the 

causal one) (Bush and Moore, 2012). Hence, “association” does not mean “causality”, 

and the path from GWAS to biology is not straightforward. 
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Figure 5. The rationale behind GWAS for complex diseases. 

Comparing the allele frequencies between a group of cases and controls, GWAS point out 

discrepancies in the allele frequencies between the two groups, assessing the allele frequency 

differences of millions of variants for thousands of individuals. The final plot (i.e., the Manhattan plot), 

display the –log10(p-value) (y-axis) across the genome (x-axis), highlighting (in red) all the variants 

above the p-value threshold (in general p-value < 5 ×�10-8 for genome-wide analysis), which are 

considered associated with the disease.  

Furthermore, some criticisms argued that GWAS did not explain the heritability 

observed for complex diseases (Manolio et al., 2009). However, GWAS aim to detect 

loci-trait associations, not to explain all the genetic variation. Despite explaining the 
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total heritability is not the main objective of GWAS, their findings have contributed to 

explaining a substantial proportion of the genetic variation behind complex traits. For 

example, in 2012, the heritability explained for type 2 diabetes, multiple sclerosis and 

Crohn disease was 10%, 20%, and 20%, respectively, while before GWAS it was 

essentially zero (Visscher et al., 2012).    

GWAS have delivered meaningful biological knowledge, not only theoretical but of 

utility. Through little more than a decade, GWAS findings have been shown to be 

useful for preventing diseases through the identification of individuals at higher risk 

as well as to apply better treatments through classifying and subtyping diseases, 

delivering biomarkers for diagnosis, and informing drug development and prognosis 

(Tam et al., 2019; Visscher et al., 2012; Visscher et al., 2017). Hence, powerfully 

contributing to the emerging field of “personalized medicine” (Hamburg and Collins, 

2010). 

3.2 Current GWAS scenario: From the HapMap Project to the 
availability of sequenced catalogs of human genetic 
variation and biobanks 

The scenario in which GWAS are performed today has completely changed compared 

to the scenario in 2005. The incorporation of High-Performance Computing (HPC) 

into the genetic field, as well as public initiatives to generate new catalogs of human 

genetic variation and biobank, has boosted GWAS and constitute the basis of any 

current GWAS today. 

3.2.1 Bioinformatics as an essential tool to study the human genome 
Sequencing technologies were under development when the HGP started, and the 

whole project required millions of dollars and years to reach completion during the 

earlier 2000s. With the development of the next-generation sequencing (NGS) 

technologies, sequencing a human genome in 2019 cost $1,301 (Wetterstrand, 2019) 

and takes less than a week (Gauthier et al., 2018). 

Computation and biology are nowadays highly connected. “Bioinformatics”, broadly 

defined as the discipline to develop and use computational tools to answer biological 

questions, is now needed in almost any field in biology and is essential in genomics.  
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Moreover, the massive genotyping and sequencing of thousands of genomes and the 

accumulation of their analytical results stressed the need for large-scale storage. Not 

surprisingly, genomics is considered today a Big Data science and has been defined as 

a “four-headed beast”, where acquisition, storage, distribution, and analysis are highly 

computational demanding (Stephens et al., 2015). For that reason, HPC was 

incorporated into the genetic field. HPC, such as clusters and clouds, allows the 

execution of workflows (sequential tasks involving multiple tools) taking profit of the 

parallelism in distributed computational environments (Spjuth et al., 2015).  

GWAS are not an exception to this. The combination of whole-genome sequencing 

(WGS) data and genotyping arrays with the increasing sample sizes and the number of 

variants to be analyzed in current GWAS, makes HPC essential. Hence, the study of 

genomes, sequenced or genotyped, ranging from one genome to thousands, becomes 

feasible only with computers. 

3.2.2 Data availability: data sharing and “biobanks” 
Another direct benefit from the HGP was the popularization of data sharing. The HGP 

was about sharing data immediately among the participating groups to achieve the 

final goal of sequencing the human genome, as well as making the results from the 

project publicly available (Hood and Rowen, 2013).  

Although sharing data is not yet the general way of proceeding, it is increasingly 

becoming popular to share the data, results, and computational codes with the 

community. 

Several initiatives have recently emerged promoting data sharing, such as the database 

of Genotype and Phenotypes (dbGAP) (Tryka et al., 2014) and the European Genome-

Phenome Archive (EGA) (Lappalainen et al., 2015). The availability of these 

resources boosts research by making data accessible to third investigators, who can 

apply new methodologies to existing data. Although some researchers complained 

about data sharing, even calling third investigators “research parasites” (Longo and 

Drazen, 2016), the whole society benefits from it. Besides, if public funding has been 

used to generate new genomic data, after an embargo time to give enough credit to 

those who generated the data, and always taking into account ethical concerns, data 

must be of public use.  
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GWAS can be largely benefited from data sharing, increasing discoveries with little 

cost. As demonstrated in a recent study, the re-analysis of publicly available cohorts 

for type 2 diabetes, including 70K individuals, identified seven new associated loci 

(Bonas-Guarch et al., 2018). In 2014, 924 publications registered a secondary use of 

dbGaP data, and 25% of them appeared in journals with an impact factor greater than 

10 (Paltoo et al., 2014).  

Moreover, the access to the increasing number of catalogs of human genetic variation, 

such as the HapMap project (International HapMap Consortium, 2003, 2005), or the 

newer sequencing-based ones, such as the 1000 Genome Project (1000G) (1000 

Genomes Project Consortium et al., 2010; 1000 Genomes Project Consortium et al., 

2012; 1000 Genomes Project Consortium et al., 2015; Sudmant et al., 2015), The 

UK10K project (UK10K Consortium et al., 2015), the GoNL project (The Genome of 

the Netherlands Consortium, 2014) or the Haplotype Reference Consortium (HRC) 

(McCarthy et al., 2016), enables the analysis of millions of genetic variation for a 

broad frequency spectrum in GWAS (Table 2)  

Table 2. The evolution of reference panels of human genetic variation.  

Cohort Release Sample 
Size Depth Number of 

variants Ancestry 

HapMap 2005 269 Genotyped 1.1M Multi-Ethnic (4 populations) 

HapMap 2 2007 270 Genotyped 3.8M  Multi-Ethnic (4 populations) 

HapMap 3 2008 1,115 Genotyped 1.6M Multi-Ethnic (11 populations) 

1000G phase 1 2012 1,029 5x/Exome 39.5M Multi-Ethnic (14 populations) 

UK10K 2015 3,781 7x/Exomes 26.6M European (British) 

GoNL 2014 250 13x 21.6M European (Dutch) 

1000G phase 3 2015 2,504 7.4x/Exome 88M Multi-Ethnic (26 populations) 

HRC 2016 32,488 Diverse 39,2M Multi-Ethnic (mainly European) 

TopMED 2019? 53,831 30x 240M Multi-Ethnic (60% non-European) 

The availability of these catalogs of human genetic variation based on sequenced data 

have taken GWAS one step further. Hence, even though GWAS were designed to test 

common SNPs, today GWAS can identify SNPs at lower frequencies as well as small 

structural variants that contribute to susceptibility (Tam et al., 2019).   

In addition to the availability of these sequence-based catalogs, population-based 

“biobanks” have recently emerged to link genetics and epidemiological factors to 

diseases risk (Bahcall, 2018). These long-term prospective cohorts contained genetic 
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data associated with extensive phenotypic information for hundreds of thousands of 

individuals (Price et al., 2015). As state in previous sections, GWAS will be directly 

benefited from such larger sample sizes. Moreover, since biobanks collect data in a 

more clinical context than in case-control studies, they make possible more accurate 

analyses about side effects and diseases interaction or comorbidities (Price et al., 

2015). Enrolling 500,000 volunteers, UK Biobank is the first publicly available 

biobank with genetic data (Bycroft et al., 2018), and has already demonstrated its 

utility from the very beginning (Elliott et al., 2018). UK Biobank’s genetic 

information is based on genotyping arrays. However, it was recently announced that 

UK Biobank will sequence the 500,000 volunteers as well (UK Biobank, 2019). 

Besides UK Biobank, a new initiative will integrate WGS data from more than 

100,000 individuals from different populations with extensive phenotypic 

information: The Trans-Omics for Precision Medicine (TOPMed) program. Doing so, 

TOPMed aims to improve our understanding of the genetic architecture and disease 

biology of heart, lung, blood, and sleep disorders (Taliun et al., 2019).  

Other biobanks have been created, such as the China Kadoorie Biobank (Chen et al., 

2011), the Biobank Japan (Nagai et al., 2017), the Finngen Project (Tabassum et al., 

2019), the Estonian Biobank (Leitsalu et al., 2015), the Million Veteran Program 

biobank (Gaziano et al., 2016), the All of Us Research Program biobank from the 

National Institute of Health (NIH), the BioVU from the Vanderbilt University, and the 

BioMe biobank from the Icahn School of Medicine at Mount Sinai.  

In addition, large cohorts have also been created and are of public domain, such as 

The Resource for Genetic Epidemiology Research on Aging (GERA) (Hoffmann et 

al., 2017), available at dbGaP, which integrates individual data from 78,419 

participants of diverse ancestry and 22 diseases.  

Furthermore, beyond the direct benefits of genotyped and sequenced data from 

databases repositories, GWAS can also be largely benefited from interactive portals. 

Projects such as the Genome Browser (Kent et al., 2002), the NIH Roadmap 

Epigenomics Mapping Consortium (Bernstein et al., 2010), The Genotype-Tissue 

Expression (GTEx) project (GTEx Consortium, 2013) or the eQTLgen (Võsa et al., 

2018), allow the integration of –omics data for a better interpretation of the underlying 
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mechanisms behind the variants identified by GWAS. In addition, disease-specific 

portals, such as the T2D Knowledge Portal, the Cardiovascular Disease Knowledge 

Portal, Cerebrovascular Disease Knowledge Portal and Sleep Disorder Knowledge 

Portal from the Knowledge Portal Network, or the Oxford Brain Imaging Genetics 

(BIG) Server (Elliott et al., 2018), which includes GWAS results from UK Biobank 

for multiple disease, allow browsing human genetic data. 

Therefore, making data accessible to the broad research community enhances 

collaboration, which is essential for the rapid discovery of new associations between 

genetic variants and diseases as well as to fill the gap between genetics and clinical 

outcomes.  

However, despite the benefits of data sharing for the entire community, the majority 

of research initiatives remain reluctant to make data accessible, including many of the 

projects already mentioned in this section, thus limiting the scientific progress.   

3.3 Current GWAS workflow  
GWAS have taken great advantage of the changes and improvements made in the 

field during the following years after the completion of the human genome. 

GWAS have mainly evolved towards increasing the sample size to gain statistical 

power to detect new signals and introducing a higher number of variants with 

different frequencies and types, such as INDELs, to achieve a better understanding of 

the genetic architecture of complex traits. Moreover, and taking into account the 

lessons learned from population genetics, GWAS have increased their accuracy and 

reliability implementing methods to avoid false positives and spurious associations. 

Several protocols and techniques have been developed to do so, and the following 

sections will describe the pillars of any current GWAS. 

3.3.1 Pre-GWAS Quality Control to avoid systematic bias 
Many errors can emerge if the input data of a GWAS (in general, genotyping data) is 

not accurate since it will introduce a systematic bias. Therefore, data have to be 

quality controlled (QCed) to avoid errors at the level of both variants and individuals 

before GWAS. 
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The main purpose of the QC is to remove any systematic difference between controls 

and cases that may lead to false associations compromising the true ones 

(confounding) (Anderson et al., 2010). A clear situation where this occurs is when 

cases and controls are from different populations. Population stratification is a major 

source of spurious associations (Anderson et al., 2010; Campbell et al., 2005; Price et 

al., 2006; Zeng et al., 2015). Since genetic variant depends on the mutation rate, 

recombination, and immigration (Griffiths, 2000), people from nearby geographical 

areas have a similar profile of genetic variants. Therefore, if we compare cases from a 

particular population against controls from a different one, most of the associations 

will be due to population structure, and will not be related to the disease or trait of 

interest. Conventional methods to identify and remove individuals with divergent 

ancestries are principal component analysis (PCA) and multidimensional scaling 

(MDS) (Anderson et al., 2010; Zeng et al., 2015).  

Moreover, individuals with a high proportion of variants unsuccessfully genotyped 

(missing rates > 1-5%) (Zeng et al., 2015), duplicated or hidden related individuals, 

and the discordance between the estimated and the reported sex information, which 

may indicate sample mix-ups, have to be carefully assessed before GWAS.  

At the variant level, variants with a high proportion of individuals without called 

genotypes are removed. Similarly, variants with MAF < 0.1% are removed as well. 

Moreover, variants that show a large deviation from HWE are excluded. However, 

some departure from HWE is expected from variants in cases that are truly associated 

with the diseases (Wittke-Thompson et al., 2005). Therefore, only controls are usually 

filtered (e.g., HWE controls p-value < 1 × 10-6) (Anderson et al., 2010; Zeng et al., 

2015). Besides, if more than one disease is available in the cohort, a looser threshold 

for the whole cohort is recommended (e.g., HWE cohort p-value < 1 × 10-20) (Bonas-

Guarch et al., 2018). 

3.3.2 Two-step genotype imputation to increase the power of GWAS 
GWAS are based in commercial genotyping arrays that mainly typed common 

variation. In the earlier 2000s, it was thought that this would be sufficient, 

hypothesizing than common variants are the cause of common diseases following the 

CD/CV principle (Reich and Lander, 2001). However, it has been suggested that rare 
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variants may have greater consequences than common variants (Bodmer and Bonilla, 

2008; Pritchard, 2001; Pritchard and Cox, 2002; Schork et al., 2009), thus explaining 

part of the missing heritability (Gibson, 2012). Although rare variants can be analyzed 

using WGS given sufficient coverage (e.g., > 20x) (Alioto et al., 2015; Cirulli and 

Goldstein, 2010), again, its use is still prohibitively expensive (Goodwin et al., 2016). 

Nowadays, the most cost-efficient strategy to analyze rare variants (as rare as MAF = 

0.001) is genotype imputation (Li et al., 2009; McCarthy et al., 2016), a method of 

estimating genotypes that have not been directly genotyped using reference 

haplotypes (Figure 6).  

Briefly, imputation methods are based on the principle behind identity by descent 

(IBD) to identify related individuals, where shared haplotype blocks are used to 

describe the genealogical tree. Therefore, imputation methods identify shared 

haplotypes between the study individuals and the haplotypes in a reference set, and 

use these shared haplotypes to impute the missing alleles in the study individuals 

(Marchini and Howie, 2010) (Figure 6).  

Hence, genotype imputation fills the gaps in the genotypes from SNP arrays adding 

more variants, thus increases the chances of finding a causal variant in GWAS. 

Besides, imputing genotypes is useful for fine mapping since imputation provides a 

higher resolution of the genomic regions. In addition, genotype imputation is useful 

for meta-analysis since it facilitates the combination of results across studies with 

different genotyping arrays generating a common set of variants. 

Imputation has been a key step in GWAS (Marchini and Howie, 2010). Since the first 

studies using genotype imputation were published (Scott et al., 2007), many tools 

have been developed for genotype imputation, including IMPUTE (Bycroft et al., 

2018; Howie et al., 2012; Howie et al., 2011; Howie et al., 2009; Marchini and 

Howie, 2010; Marchini et al., 2007) and MINIMAC (Das et al., 2016) among the 

most popular.  

Nevertheless, genotype imputation is highly computational demanding. For that 

reason, the concept of “pre-phasing” was introduced in 2012, demonstrating that 

estimating (i.e., phasing) the haplotypes for each individual prior imputation reduces 

the computational cost without compromising the accuracy (Howie et al., 2012). To 
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that end, phasing tools, such as SHAPEIT (Delaneau et al., 2013a; Delaneau et al., 

2014; Delaneau et al., 2011; Delaneau et al., 2013b; O'Connell et al., 2014) and Eagle 

(Loh et al., 2016a; Loh et al., 2016b), have been developed.  

 
Figure 6. The rationale behind genotype imputation.  
a Using the tag SNPs from the genotype data as a backbone, b and matching the haplotypes with those 

in a sequenced-based reference panel, c non-genotyped variants are inferred. The graphs show the 

increased resolution for a particular genomic region after genotype imputation, which was crucial to 

find this region as associated with genome-wide significance (p < 5 × 10-8).   

Moreover, and beyond technological and methodological improvements (Das et al., 

2016; Howie et al., 2012; van Leeuwen et al., 2015), genotype imputation has been 

benefitted notably from publicly available datasets over the years. The first 

widespread reference panel used for genotype imputation was HapMap 2, but over the 

years, it has been surpassed by sequence-based reference panels such as 1000G, 
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UK10K, GoNL, HRC and soon TopMED (Table 2). The development of NGS 

technologies has rapidly increased the size of the reference panels that are 

continuously growing, ranging from 210 genotyped individuals in HapMap 2 (Huang 

et al., 2009) to the expected 100,00 sequenced individuals of TopMED. Therefore, 

genotype imputation using sequence-based reference panels enables GWAS to 

identify associations with rare variants using common SNP arrays (Das et al., 2018). 

Of note, nowadays, imputation using large reference panels is reasonably accurate for 

variants with MAFs as low as 0.1% (McCarthy et al., 2016). 

Overall, current GWAS are commonly based on SNP arrays combined with genotype 

imputation using sequence-based reference panels. As the WGS cost decreases and 

more complete catalogs of genetic variation are released, including more variants and 

populations, the imputation of genotypes is constantly improving GWAS in a cost-

effective manner (Tam et al., 2019).   

3.3.3 The association testing 
The core of GWAS when analyzing a disease is the comparison of allele frequencies 

between unrelated groups of balanced cases and controls. If the genetic background 

for both groups is the same (e.g., population), any frequency difference is assumed to 

be due to the disease status and is, therefore, associated with it. Hence, GWAS 

systematically analyze allele frequency discrepancies between groups all over the 

genome (hypothesis-free) to point out a genomic region associated with the diseases 

under study. A GWAS is a series of single-locus tests, examining each variant 

independently (Bush and Moore, 2012). 

The necessary statistics proceeds by analyzing each SNP individually to test the null 

hypothesis of no association (H0: βi=0) (Zeng et al., 2015). However, the statistical 

tests are different for quantitative (continuous) or dichotomous (i.e., case/control) 

traits. Hence, for quantitative traits, such as height or blood pressure, the standard 

method is, in general, the linear regression following the equation  

!!" = !! + !!"!!"  , 

where for a given SNP (j  =  1, 2, 3, …, m) on a particular individual (i  =  1, 2, 3, …, 

n), Yij is the trait value for the individual i, and Xij is 1 if the individual has the effect 
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allele A or 0 otherwise. Therefore, it tests the mean differences between A and not-A 

individuals, thus comparing the trend in the trait to the trend in the genotypes for each 

marker. 

However, for case-control studies, the common statistical method is logistic 

regression since linear regression cannot be applied directly to the case-control status 

(Balding, 2006). Therefore, logistic regression estimates the probability of an outcome 

when it is binary, such as disease states.  

Where the possible genotypes are AA, Aa, and aa (!!"), and “a” is the minor allele 

(lowest frequency), and “A” is the major allele (highest frequency), the logistic 

regression is 

!"#$% !!" =  !"# !!" 1−  !!" =  !!  +  !!"!!"  , 

where pij is the disease risk (probability) for the j SNP on the i individual.  

To reduce spurious associations, the association test should be adjusted for known 

influential factors such as age, sex or clinical measures such as body mass index 

(BMI), and logistic regression can accommodate these covariates. Besides, adjusting 

for genetic principal components is one of the most important covariates to take into 

account in order to adjust for any underlying population substructure (Balding, 2006; 

Bush and Moore, 2012).   

When a logistic regression is calculated, the exponential function of the regression 

coefficient (eβ1) is the odds ratio (OR) associated with a one-unit increase in the 

exposure. The ORs are used to compare the relative odds of the occurrence of the 

outcome (e.g., disease), given exposure to the variable of interest (e.g., genotype). 

Therefore, the odds determine whether a particular exposure is a risk factor for a 

particular outcome and can be used to compare the magnitude of various risk factors 

for that outcome (Szumilas, 2010). Hence, 

OR=1; Exposure does not affect odds of disease 

OR>1; Exposure associated with higher odds of the disease 

OR<1; Exposure associated with lower odds of the disease 
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In addition to the effect size (OR for logistic regression or β for linear regression) and 

the standard error, which explains the variability in the β estimate, the basic output of 

a test of association includes the p-value to asses the significance of the association.  

Even after adjusting with known influential factors adding covariates to the 

association test, a fundamental problem in GWAS has always been how to distinguish 

between true and false associations. Thus, taking into account the size of the human 

genome, many associations could be found by chance (Balding, 2006). Moreover, 

genotyping errors, cryptic relationship between individuals and unrecognized 

population stratification can lead to spurious associations (Campbell et al., 2005; de 

Bakker et al., 2008; Hinrichs et al., 2009; Price et al., 2006; Wittke-Thompson et al., 

2005; Yang et al., 2011) even though after the QC. Luckily, many approaches have 

been developed to address these concerns and ensure the GWAS results reliability. 

3.3.4 Minimizing false positive associations. 
There is a serious multiple comparison problem in GWAS than can inflate the Type I 

errors (false positives) if no measure is taken (Zeng et al., 2015). For instance, setting 

a significance level (p-value) α = 0.05, which means that 5% of the time the null 

hypothesis will be rejected when it is true (false positive), if 500,000 SNPs are tested 

for association, it is expected that about 25,000 false positive will be observed by 

chance.  

In other to solve this, Bonferroni correction offers a way to control the Type I error 

inflation by dividing α by the number of independent tests (Zeng et al., 2015). Hence, 

after the completion of the HapMap project in 2005, it was estimated that the number 

of common  (MAF > 5%) independent variants were 150 per 500 kilobase pairs (kb) 

in European, Japanese and Chinese population (International HapMap Consortium, 

2005). Taking into account the whole genome (∼3.3 Gb), this suggests a p-value 

threshold of 5 ×�10-8 for these populations. However, some authors argued that the 

Bonferroni correction is too conservative (Bush and Moore, 2012) (Balding, 2006; 

Zeng et al., 2015) as it assumes that each association test for each variant is 

independent, an assumption that is in general untrue due to de LD among variants 

(Bush and Moore, 2012). However, some others suggested more stringent p-value for 

low frequency and rare variants recently added to GWAS (Fadista et al., 2016), but it 
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is a discussion that remains unsolved. Nevertheless, the standard GWAS significant 

threshold has been established at 5 ×�10-8 (Welter et al., 2014). Hence, any variant 

with a p-value lower than the adjusted significance level (p-value < 5 ×�10-8) is 

considered to be associated with genome-wide significance.  

Furthermore, beyond minimizing spurious associations through Bonferroni correction, 

any associated variant must also be replicated in independent cohorts when possible 

(Chanock et al., 2007; Price et al., 2015; Zeng et al., 2015). To do so, an equivalent 

independent cohort must be tested following the same association analysis to ensure 

consistency (Zeng et al., 2015). To this end, several criteria to ensure proper 

replication has been established (Chanock et al., 2007), including the need for enough 

sample size for the same population and identical phenotype criteria (Bush and 

Moore, 2012). However, it is challenging to find multiple studies that match perfectly. 

Nevertheless, even though there are many reasons for non-replication (Chanock et al., 

2007; Zeng et al., 2015), any replicated variant will have additional evidence of its 

association. 

The analysis of multiple GWAS results through meta-analysis (Evangelou and 

Ioannidis, 2013) is also a useful approach to examine and refine the significance and 

effects of the original study (Bush and Moore, 2012). Since only statistical results are 

needed to perform a meta-analysis (i.e., there is no need to share sensitive data), large 

consortia have been benefited from meta-analysis, increasing the sample size, and 

therefore the statistical power. However, as it happens with replication, all the studies 

in a meta-analysis have to examine the same hypothesis, and a perfect match is 

difficult to ensure. For that reason, meta-analysis usually quantifies the heterogeneity 

between studies as a guide to understand the different results from different studies. A 

popular measure to study the heterogeneity is the I2, and I2>75 are considered high 

(Bush and Moore, 2012). Several tools are available for meta-analysis, being METAL 

(Willer et al., 2010) among the most popular. 

An additional measure of quality in GWAS is the “genomic control” (GC) (Yang et 

al., 2011). The logic behind GC relies on the fact that only a small fraction of variants 

are truly associated with the disease. Hence, most of the variants should follow the 

distribution under the null hypothesis of no association. Therefore, the observed 
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median value of the χ2 statistic divided by the expected median value of the χ2 statistic 

(∼0.456 for 1 degree of freedom) is the inflation factor or lambda (λ) (Hinrichs et al., 

2009; Zeng et al., 2015) as shown in the following equation:  

! = !"#$%&(!!)
0.456  

If λ ≤ 1, there is no inflation and no adjustment is necessary. However, if λ > 1, all the 

following χ2 statistics for the candidate variants have to be divided by λ (Hinrichs et 

al., 2009). In general, λ is used as an indicator of systematic bias, since it will be 

inflated if there are differences in the alleles frequencies due to unrecognized 

population stratification, cryptic relatedness and genotyping artifacts (de Bakker et al., 

2008; Yang et al., 2011).  

However, λ can also be inflated due to true associations in GWAS with large sample 

sizes (Lango Allen et al., 2010; Speliotes et al., 2010). A solution to this is the LD 

Score regression, which allows distinguishing between confounding biases or 

polygenicity (Bulik-Sullivan et al., 2015b). In fact, it has been demonstrated that 

polygenicity accounts for the majority of observed genomic inflation in large GWAS 

cohorts using the LD Score regression (Bulik-Sullivan et al., 2015b). 

3.3.5 Graphical representation of GWAS results 
Due to the inner complexity of GWAS results, visual presentation is undoubtedly 

useful to facilitate the interpretation of the results from a GWAS (Zeng et al., 2015). 

Such is the case that GWAS are always accompanied by graphical representations 

(Figure 7). Besides, graphs allow the visualization of any possible issue that could 

compromise the reliability of the results and needs to be addressed. Hence, many tools 

have been developed to generate quantile-quantile (Q-Q) plots and Manhattan plots 

(Turner, 2018) as well as regional association plots (Pruim et al., 2010).  

A Q-Q plot is focused on discarding any systematic bias and is related to the GC 

described in the previous section. The Q-Q plot displays the observed distribution of 

the p-values to test if it follows the expected (null) distribution (Zeng et al., 2015), and 

it is always accompanied by the inflation factor λ (Figure 7a). 
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Figure 7. The typical graphical representations in GWAS.  

a Q-Q plot showing the expected –log10 p-value under the null hypothesis of no association in the x-

axis versus the observed –log10 p-value in the y-axis. The genomic inflation factor λ accompanied the 

plot as a measure of the extent of the false-positive rate. b Manhattan Plot highlighting the GWAS 

findings across the entire genome. The chromosomes are displayed along the x-axis, while the y-axis 

represents the –log10 p-value from the association test. Each variant (dot) above the red line (p-value 

threshold, and typically 5 × 10-8) is considered a region of interest for further analysis. c An example of 

a regional association plot for the associated loci at chromosome 5. The x-axis represents the 

chromosomal location, and the y-axis shows the –log10 p-value from the association test. The colors 

displayed in the legend quantify and represents the linkage structure of the region. 

In addition, after the association test of millions of variants, Manhattan plots facilitate 

the visualization of GWAS hits across the whole genome (Gibson, 2010). Briefly, a 

Manhattan plot is a scatter plot representing the –log10 p-values against chromosomal 

location (Zeng et al., 2015), named “Manhattan” as its typical shape for the whole 

genome reminds the skyline of Manhattan (Alder and Kass, 2017) (Figure 7b).  

Finally, to properly inspect associated regions, graphical representation of locus-

specific association results have been implemented in user-friendly tools such as 

LocusZoom (Pruim et al., 2010). These plots allow the visual inspection of the 
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strength of the association and its extent as they include the LD information with 

nearby variants (Figure 7c). Moreover, it includes the position of the associated 

variants relative to genes, and it can also display previously described associations.  

3.4 Future work needed in GWAS  
Beyond continuously enlarging the sample sizes to gain statistical power to detect new 

associations, there are many gaps in current GWAS strategies and workflows that 

need to be addressed.  

From strategic aspects, such as including more diversity in GWAS, to implementing 

innovative analyzes for existing and ongoing data, there is still a long way to go to 

fully squeeze the potential of GWAS.  

3.4.1 The lack of diversity and its impact in GWAS findings 
GWAS are biased towards wealthy European-descendant populations for both sample 

collection and authors. As a starting point, even the genotyping array designs are 

primarily based on European ancestry (Schaid et al., 2018). 

Recently, a scientometric study reviewed GWAS publications from 2005 to 2018, and 

pointed out potential gaps in the current research that may impact GWAS findings 

(Mills and Rahal, 2019). In particular, participants of European populations account 

for 86.03% discovery, 76.69% replication, and 83.19% combined in GWAS.  

Not representing human diversity have an obvious impact on research findings since it 

will not provide globalize prevention and therapeutic targets. Therefore, the field is 

increasingly aware of that problem (Bustamante et al., 2011; Editorial, 2017; 

Guglielmi, 2019a; Guglielmi, 2019b; Lariviere et al., 2013; Popejoy and Fullerton, 

2016; Tam et al., 2019), and undergoing initiatives like TopMED have a more varied 

ancestry profile, with ∼60% individuals of non-European ancestry (Taliun et al., 

2019). However, the diversity in GWAS ancestry may decrease even further with the 

release of UK Biobank (94.23% participants from European ancestry) or the 

availability of 23andMe data (77% of European ancestry) (Mills and Rahal, 2019).  

The study of diverse populations has demonstrated to be extremely useful in 

identifying critical variants (Wojcik et al., 2019). The advantage of not only analyze 
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non-European populations is especially important for rare variants that are likely to be 

population-specific (Gravel et al., 2011). In fact, isolated-populations with higher 

frequencies for rare variants (including European-descendant populations such as the 

Finns) boosted the discovery of new associations with clinical relevance (Estrada et 

al., 2014; Gudmundsson et al., 2012; Han et al., 2016; Kenny et al., 2012; Manning et 

al., 2017; Moltke et al., 2014; Sidore et al., 2015).  

On top of that, not representing human diversity leads to increased disparities in 

disease prevalence and healthcare. 

3.4.2 Including non-additive models of inheritance 
For both quantitative and qualitative traits, there are a variety of ways to encode the 

genotypes for the association testing, and the choice of how to encode the data can 

have implications for the statistical power (Bush and Moore, 2012). Hence, the 

association test examines the association between genotypic groups (AA, Aa, aa) and 

the phenotype.  

The genotypes can be grouped in models, and each model makes a different 

assumptions about the genetic effect, such as additive (AA = 2k and Aa =k), dominant 

(AA and Aa > risk (k) than aa), recessive (AA > k than Aa and aa), heterodominant or 

heterozygote (Aa > k than AA and aa) and genotypic or general (which is 

parameterized with an additive effect and a heterozygote effect) (Table 3).  

A general practice in GWAS is to examine the additive model only assuming a 

uniform, linear increased risk. As explained, if A is the allele of risk (k), the genotype 

aa has no risk, Aa genotype has k risk, and AA doubles its risk (2k). The usual choice 

of the additive model as the unique way of encoding the genotypes is partially 

explained by the fact that, for most common associations, the genetic model of 

inheritance is unknown a priori, and the additive model can capture most of the 

signals, especially for variants with dominant effect. Hence, typically the choice of a 

particular model of inheritance is not discussed since the additive model can capture 

most of the signals for common variants even in the case of non-additive effect, and 

global estimates indicate that the majority of effects may be additive (Zhu et al., 

2015).  
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Table 3. Inheritance models and the coding of the possible genotypes for A and a 
alleles to study their effect 

Inheritance Model aa Aa AA 

Additive 0 1 2 
Dominant 0 1 1 
Recessive 0 0 1 
Heterodominant  0 1 0 

Genotypic (Additive + 
Heterodominant) 

0 1 2 
0 1 0 

However, the importance of non-additive models has been shown for Mendelian 

diseases, where risk variants can have a dominant or recessive model of inheritance. 

For complex diseases, few examples have been reported, such as recessive effects in 

FTO for obesity (Wood et al., 2016), in ITGA1 (Grarup et al., 2018), TBC1D4 

(Moltke et al., 2014) and CDKAL1 (Steinthorsdottir et al., 2007; Wood et al., 2016) 

for type 2 diabetes, and widespread non-additive effects in HLA for autoimmune 

diseases (Lenz et al., 2015), including an heterodominant effect for ulcerative colitis 

(Goyette et al., 2015). Hence, it is likely that exclusive non-additive associations will 

be missed by the conventional additive approach, since it has been demonstrated that 

the additive model has limited statistical power to detect associations with complex 

traits showing a recessive effect (Lettre et al., 2007; Salanti et al., 2009) especially at 

lower frequencies since fewer homozygous are observed.  

Rather than analyzing only one model (i.e., the additive), as it is a common practice in 

GWAS, the analysis of multiple models with an appropriate correction for multiple 

testing may lead to new findings (Tam et al., 2019).  

3.4.3 The underestimated X chromosome 
Beyond only performing additive association tests, the vast majority of GWAS 

exclude the sex chromosomes (Khramtsova et al., 2019; Wise et al., 2013). As they 

have been systematically ignored from GWAS, it is likely that variants on the sex 

chromosomes contribute to the missing heritability (Tukiainen et al., 2014), especially 

on the X chromosome (Figure 8).  

There are no GWAS reporting signals in the Y chromosome (GWAS Catalog, 2019), 

although some studies found that the Y chromosome haplogroups contribute to 
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diseases phenotypes (Charchar et al., 2012; Krementsov et al., 2017; Lu et al., 2016; 

Sezgin et al., 2009). However, Y chromosome is confined to males and contains the 

smallest number of genes (∼80 coding-protein genes; chromosome 22, similar in size, 

contains ∼400 coding-protein genes), most of which locate in the “male-specific 

region” (MSR) that constitutes 95% of the Y chromosome (Skaletsky et al., 2003). 

Moreover, and in contrast with the rest of the genome, there is no recombination with 

a partner chromosome in the MSR during meiosis. Thus, MSR is inherited unaltered. 

Hence, due to its haploid nature and the difficult to build linkage maps in it, the Y 

chromosome is routinely ignored in GWAS (Maan et al., 2017). 

 
Figure 8. GWAS catalog diagram associations (p-value < 5 × 10-8) on May 2018 for 
chromosome 7, chromosome X and chromosome 22.  

Although chromosome 7 and chromosome X are comparable in size, few associations have been 

reported for chromosome X. Even the chromosome 22, one of the smallest chromosomes in the human 

genome, has a larger number of reported associations than chromosome X. 

More remarkable is the systemic exclusion of the X chromosome in GWAS. With a 

size comparable to chromosome 7, the X chromosome contains more than 1,500 genes 

representing 5% of the genes in the human genome (Tukiainen et al., 2014; Wise et 

al., 2013). Since there is a correlation between the chromosome size and the number 

of reported associated loci, it is expected that analyzing the X chromosome, or re-
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analysis existing data that did not originally account for it, would lead to the discovery 

of new associations (Khramtsova et al., 2019). As an example of this, in a recent study 

that re-analyzed public available GWAS data for type 2 diabetes, including the X 

chromosome, a rare new variant that doubles the risk in men was identified (Bonas-

Guarch et al., 2018).  

Moreover, several Mendelian diseases are known to be X-linked (Wise et al., 2013). 

This provides evidence of the importance of the X chromosome in human diseases. 

Besides, for complex diseases, there is a broad appreciation that some disorders, 

including autism (Robinson et al., 2013) and autoimmune diseases (Kantarci et al., 

2006; Ngo et al., 2014), are more diagnosed in one sex than in the other. In addition, 

even though several well-powered studies found largely similar heritability estimates 

for males and females for most traits (Ge et al., 2017; Polderman et al., 2015; Stringer 

et al., 2017; Traglia et al., 2017), there are notable exceptions such as post-traumatic 

stress disorder, hypertension, rheumatoid arthritis and allergic rhinitis (Duncan et al., 

2018; Ge et al., 2017).  

Taking all this into account, the X chromosome may influence disease risk directly or 

indirectly, and it is an open area of research with many opportunities. Therefore, this 

raises the question: why are researchers so discouraged to analyze the X 

chromosome?  

First, biological sex is defined by the sex chromosomes that primarily determine the 

sexual differentiation of gonads (ovaries and testes) and the expression of sex 

hormones. Hence, women are typically XX and men XY. Therefore, men have half 

the dosage of women for the X chromosome. However, X chromosome complexity 

goes beyond this observation. The X chromosome is divided into the 

pseudoautosomal regions (PAR) and the non-pseudoautosomal region (non-PAR). As 

these names indicate, the PAR regions (PAR1 and PAR2) are homologous sequences 

between the X and the Y chromosomes that remind of the sequences in autosomes 

(men and women have two copies). Nevertheless, these regions are substantially 

smaller than the non-PAR, where there is indeed a difference in dosage between men 

and women since there is no homologous region in the Y chromosome. Hence, to 

ensure dosage compensation between both sexes, females have one copy silenced. 
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This process, called the X chromosome inactivation, results in approximately half of 

the cells expressing one copy and half expressing the other. Besides, this characteristic 

makes men more susceptible to some conditions than women, since men do not have 

the possibility of an alternative copy that may compensate a deleterious one. This is 

the case of hemophilia, Duchenne muscular dystrophy, Rett syndrome, fragile X 

syndrome, red-green color blindness and male-pattern baldness (Khramtsova et al., 

2019). Moreover, to make matters more complicated, the X chromosome inactivation  

is not complete and around 23% of the X chromosome genes may escape from it, 

resulting in sex-biased gene expression of escape genes (Carrel and Willard, 2005; 

Tukiainen et al., 2017).  

The common approaches used in GWAS, starting from genotyping platforms until 

association testing tools, have been mainly designed focused in the autosomal 

characteristics (Khramtsova et al., 2019; Wise et al., 2013), and as it has already been 

pointed out, specific considerations are needed to deal with the sex chromosomes 

(Konig et al., 2014). However, X-chromosome specific tools have been developed 

since 2007 (Gao et al., 2015; Marchini et al., 2007), but the availability of these tools 

has not increased the overall studies that include the X chromosome analysis (Wise et 

al., 2013).  

The inner characteristics of the X chromosome make it difficult to analyze. Besides, 

there is a lack of power to detect GWAS significant associations in the X 

chromosome. The different dosage between males and females and male-female ratios 

in imbalanced cohorts impairs the statistical power to detect associations. Moreover, 

some imputation tools, such as MINIMAC (Das et al., 2016), cannot impute the X 

chromosome directly and need to be run separately for males and females. This 

hinders the incorporation of the X chromosome analysis together with the autosomes 

and impairs the statistical power by dividing the sample size in two in males-females 

balanced cohorts.  

In summary, the X chromosome is routinely omitted from GWAS, mainly due to their 

unique characteristics that make its analysis challenging and requires additional 

expertise. Besides, important findings, and thus high-profile publications, can be 

achieved when analyzing autosomal chromosomes only (Wise et al., 2013). 
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Altogether, this partially explained why researches are discouraged about the 

incorporation of the X chromosome into the analysis. Nevertheless, in light of the 

evidence that highlights its importance in human diseases, the X chromosome 

deserved more attention and should be analyzed despite being more difficult.  

4 Beyond GWAS results: Post-GWAS analysis to 
study the genetics behind complex diseases 

4.1 Interpreting significant variants from GWAS 
As explained in previous sections, GWAS results are commonly represented with 

Manhattan plots followed by regional association plots for the loci of interest. In 

general, all the variants with a p-value < 5 × 10-8 are considered associated at a 

genome-wide significant level, even though some researches use a weaker threshold 

of p-value < 10-6 to highlight suggestive regions for further analysis (Schaid et al., 

2018).  

As stated before, since GWAS evaluate variants individually, the captured associated 

signal can be indirectly associated with the trait due to the complex LD patterns 

among variants. That is to say, associated variants from GWAS results can be merely 

correlated with the causal one, and it is challenging to determine which one is actually 

the casual variant for each associated region. One might think that the variant with the 

smallest p-value in a region, usually called lead or top variant, is the causal one. 

Nonetheless, the causal variant is not likely to be the one with the smallest p-value 

partially due to the small effects sizes of variants on complex traits (Schaid et al., 

2018; Schaub et al., 2012), and to determine which variant in each region is the most 

likely to be functional, and therefore, causal, it is not straightforward.  

In order to undergo costly and time-consuming lab functional studies to translate 

GWAS results into clinics, it is crucial to properly prioritize the variants that deserved 

to be further evaluated among the number of variants associated after a GWAS. This 

is when fine-mapping, functional annotations, gene expression associations, and 

pathway and gene enrichment analysis, can help. 
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4.1.1 Fine-mapping GWAS regions 
Given statistical evidence of the association of a genomic region with a complex trait, 

and assuming that there is at least one causal variant there, fine-mapping is a 

statistical approach that seeks to elucidate the genetic variant (or variants) responsible 

for that trait (Schaid et al., 2018).  

To improve the fine-mapping resolution, meta-analyzing multiple cohorts or 

increasing variants density through genotype imputation is crucial (Li et al., 2009; 

Marchini and Howie, 2010; Schaid et al., 2018). However, imputation quality depends 

on the LD structure, and low-frequency and rare variants, which are not in strong LD 

with neighboring variants, might require additional genotyping to evaluate their 

association and reduce measurement errors properly. Custom arrays or those targeting 

specific diseases, such as the OncoArray (Amos et al., 2017), the Metabochip (Voight 

et al., 2012) or the Immunochip (Parkes et al., 2013), may help to increase the sample 

size and the density of variants in a particular region in a cost-effective manner.  

One of the most straightforward approaches to disentangle independent regions 

among the associated GWAS loci is conditioning on the lead variant, also called 

“forward stepwise conditional regression”. Hence, independent regions inside the 

associated locus can be found by treating the top variant as an adjusting covariate in a 

regression model and testing the remaining variants in that region. However, multiple 

conditional tests might need to be done for multiple variants until no test is significant 

to point out all the independent regions, thus increasing the chance of a false-positive 

result or requiring the use of stringent thresholds. This situation can occur, for 

example, when the correlation between the variants is very high, diminishing the 

probability of finding secondary signals (Schaid et al., 2018).  

To determine the causal variants for each independent region, credible sets determined 

through Bayesian methods are among the most used approaches. A credible set is 

defined as the minimum set of variants that contains all causal variants with 

probability α (e.g., α = 99%) (Hormozdiari et al., 2014; Schaid et al., 2018).  
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4.1.2 Functional annotations 
Selected variants by fine-mapping can be classified as protein-coding or non-protein-

coding depending on whether they are in a protein-coding sequence or not. When a 

variant is inside a gene that encodes a protein, genomic annotations are focused on the 

impact of this variant in the resulting protein. These variants are the easiest to 

interpret, and follow-up functional laboratory-based analyses are quite 

straightforward. However, most GWAS associations, are found in non-protein coding 

sequences often involved in gene regulation (Encode Project Consortium et al., 2007; 

Maurano et al., 2012; Schaid et al., 2018; Schaub et al., 2012). Some examples of 

non-coding annotations are promoters, enhancers, long non-coding RNAs, 

transcription factor binding sites, histone modifications, and DNAse I hypersensitivity 

sites. Further increasing complexity, gene regulation is highly tissue/cell-specific, 

varies through developmental stages, and environmental factors influence it. 

Moreover, variants in a particular position might modify the expression of a distant 

gene, even when it is not the nearest one (Figure 9). 

 Our limited knowledge about the regulatory networks impairs our functional 

interpretation of GWAS results. However, many efforts to facilitate a direct and 

systematic interpretation have emerged. Hence, large public initiatives have increased 

the available databases for genomic annotation, including Gene Ontology (Rhee et al., 

2008), GENCODE (Harrow et al., 2012), ENCODE (Encode Project Consortium, 

2004), FANTOM5 (Andersson et al., 2014), The Roadmap Epigenomics Project 

(Roadmap Epigenomics et al., 2015) and GeneHancer (Fishilevich et al., 2017). 

Integrating multiple tissues and cell types, it is estimated that current functional 

annotation covers around 80% of the human genome (Pennisi, 2012; Schaid et al., 

2018).  

Although such data might not be perfect, functional annotation can help to prioritize 

variants for follow-up analysis after assigning a biological function to them.  
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4.1.3 Expression quantitative trait loci  
Variants associated with complex diseases or traits are likely to be expression 

quantitative trait loci (eQTLs) (Nicolae et al., 2010). That is, they influence the 

amount of expression of genes, ultimately influencing the trait. Hence, identifying 

associations between GWAS significant variants and gene expression may help to 

point out the most plausible gene behind the condition. Variants can be associated 

with gene expression in cis or trans, where cis-eQTLs affect nearby genes, while 

trans-eQTLs affect distant genes, even in other chromosomes (Figure 9).  
 
Figure 9. Cis- and trans- eQTLs and the expression distribution of genotypes.  

a eQTLs are classified according to the distance of the associated gene. cis-eQTLs affect gene 

expression of local genes near the genetic variants (“Gene 1” in the figure) while trans-eQTLs alter the 

expression of distant genes (“Gene 2” in the figure) in the same chromosome (in blue) or even genes 

(“Gene 3” in the figure) located in different chromosomes (in orange). b Example of a violin plot from 

GTEx v8 data, showing the expression distributions of the three genotypes for AP4B1 

(ENSG00000134262.12) and rs10858023 (chr1_113906130_C_T_b38) in muscle skeletal tissue. chr = 

chromosome, Norm.Expression = normalized expression.  

As gene expression is highly tissue-specific, a critical step when integrating GWAS 

and eQTLs results is the tissue where the expression was measured. To that end, the 

GTEx project facilitates the exploration of gene expression in multiple tissues, 
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including data for 449 human donors across 44 tissues (GTEx Consortium, 2013). In 

addition, a recently released catalog of genetic effects on gene expression after 

analyzing 31,684 blood samples from the eQTLGen Consortium has been generated 

(Võsa et al., 2018). 

However, in the GTEx project, 92.74% of common variants were found associated 

with the expression level of at least one nearby gene with a p-value < 0.05, and after 

controlling for the multiple tissues tested, 48.45% remain associated (GTEx 

Consortium, 2013). Therefore, coincidental overlaps are very likely. As some authors 

have pointed out, the abundance of eQTLs data and strong LD structures have 

increased the false positive rate of causal hypotheses for GWAS results (Liu et al., 

2019; Nica et al., 2010). Hence, an overlap between an eQTL and a GWAS signal can 

lead to an incorrect causal hypothesis. Moreover, when a locus contains multiple 

eQTLs for different genes, a GWAS signal may not be caused by the most significant. 

To address this issue, colocalization analysis has been developed (Giambartolomei et 

al., 2014; Hormozdiari et al., 2016; Nica et al., 2010; Zhu et al., 2016), including tools 

for visualizing colocalization events (Liu et al., 2019). Briefly, colocalization 

compares the distribution of summary statistics from two association signals 

accounting for the LD structure of the region, thus mitigating the false-positive 

findings by analyzing multiple variants at a time. 

4.1.4 Pathway and functional enrichment analyses 
An additional methodology to link GWAS results to their likely biological function is 

to identify causal genes and pathways involved in the pathophysiology of complex 

diseases by functional enrichment analysis. Traditional approaches explored protein 

interaction maps, gene expression data and constructed gene networks with predefine 

genes and key pathways for the diseases (Raychaudhuri et al., 2009). Hence, the 

traditional approaches limit the discovery of new genes and pathways.  

To fill this gap, computational approaches that allow the exploration of genes and 

pathways without preconceived hypotheses have been developed. Among the most 

used tools there is GRAIL, a gene prioritization framework based on text-mining from 

PubMeD abstracts (Raychaudhuri et al., 2009), MAGENTA (Segre et al., 2010), a 

gene-set enrichment framework that explores pathways from public databases, and 



 

 

	  Introduction  	
	 	

64 

recently DEPICT (Pers et al., 2015), based on predicted gene functions. DEPICT 

enables the exploration of poorly annotated genes and outperforms both GRAIL and 

MAGENTA in the prioritization of genes and the analysis of gene set enrichment, 

thus generating more accurate testable genes and pathways hypotheses from GWAS 

results.  

 

In summary, the associated variants in a GWAS require further analyses to elucidate 

the ones that deserve cost and time consuming laboratory-based follow-up analysis. 

Due to the amount of information and the complicated LD structure of the human 

genome, the identification of the causal variant and genes, and its biological function, 

is not easy and unequivocal. Luckily, fine-mapping, large consortia of eQTLs, gene 

expression in multiple tissues in combination with colocalization analyses, and gene 

set enrichment analysis with the identification of potentially relevant pathways, are 

disentangling the complex world of GWAS associated variants, moving from the 

association signal to the biological function influencing the disease.  
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This thesis has the following objectives: 

I. To increase the amount of genetic variation to be tested for association 

after genotype imputation combining the results from multiple sequence-

based reference panels.  

 

II. To analyze the X chromosome alongside with the autosomes. 

 

III. To include additive and non-additive inheritance models for the association 

test to study their contribution. 

 

IV. Develop GUIDANCE, an integrated pipeline with our GWAS strategy to 

facilitate, and thus promote, a comprehensive GWAS of the existing and 

the newly generated GWAS datasets. 

 

V. To apply our approach to a large publicly available cohort; The Resource 

for Genetic Epidemiology Research on Aging (GERA) cohort.  
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This chapter has been split into two major blocks; the first one focused on 1) the 

programming framework on top which GUIDANCE was developed and its technical 

advantages, and the second one related to 2) the analysis of the GERA cohort and the 

posterior follow-up analyses done to date. 

1 Genome-wide imputation and association testing 
for parallel computing (GUIDANCE) 

1.1 GUIDANCE developed on top of COMPSs 
Current GWAS workflows are sequential and require constant intervention between 

each step. However, some steps in GWAS, such as genotype imputation, can run in 

parallel after splitting each chromosome into chunks. This also represents a significant 

effort from the researcher since it requires manually managing the different 

computations in parallel using threads or another parallel environment. GUIDANCE, 

however, can execute in parallel without requiring a broad background in parallel 

environments. For that, GUIDANCE was implemented on top of the COMP 

Superscalar Programming Framework (COMPSs) (Lordan et al., 2014), which makes 

it feasible for non-HPC experts. 

Therefore, we developed GUIDANCE by combining and integrating state-of-the-art 

GWAS analysis tools into COMPSs, releasing users from the responsibility of dealing 

with the computational complexity of the whole process. 

COMPSs is a programming framework that aims to make more accessible the 

development of parallel workflows in computing platforms such as clusters or clouds, 

keeping the workflow code agnostic of the actual computing platform. Therefore, 

while COMPSs programs are expressed as sequential code in Java, Python or C/C++, 

the runtime can parallelize the code and make decisions such as scheduling the 

different workflow nodes and transferring the data to the nodes where the computing 

will take place.  

With COMPSs, GUIDANCE workflow was implemented as a sequential Java 

program. The code contains the calls to the GWAS tools encapsulated in Java 
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methods and selected as tasks (see Results chapter, section 1, for detailed information 

of GUIDANCE workflow). As a result of executing the workflow, a task dependency 

graph is dynamically generated by COMPSs (Figure 10), which controls the execution 

of those tasks on the underlying parallel infrastructure. 

1.1.1 COMPSs runtime system 
The COMPSs runtime system is in charge of controlling the parallelization of the 

application and managing its execution on a set of distributed resources. Hence, the 

runtime system interacts with the underlying infrastructure on behalf of GUIDANCE.  

The main functionalities provided by the runtime system from which GUIDANCE 

benefits are the following: 

• Data dependency analysis and task scheduling: the runtime system detects and 

enforces task dependencies. For example, as shown in Figure 10, genotype imputation 

cannot start before the haplotype phasing step has finished. Tasks are scheduled and 

submitted to the available resources, trying to exploit data locality when possible.  

 

Figure 10. A representative example of task distribution and dependencies from a 
GUIDANCE execution corresponding to chromosome 22.  

Each node represents a particular task, and each link represents a dependency between tasks. The type 

of task is defined by the color-code displayed below. 

• On-demand resource allocation: the runtime system can work in cloud 

environments, where it exploits the elastic capabilities of the infrastructure. In 

particular, new resources are requested depending on the task load that the application 
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generates at every moment. Hence, the number of resources is dynamically adapted to 

face the peaks and valleys of such load.  

• Fault-tolerance: the runtime system implements fault-tolerance mechanisms 

for task submission and file transfer that ensure that the execution will continue even 

in the case of partial failure, thus guaranteeing the proper completion of the workflow 

execution.  

• Monitoring and results collection: users can follow the progress of the 

GUIDANCE workflow execution, obtaining the resources usage information and a 

real-time execution graph. Additionally, results are collected as tasks generate them, 

so the user can verify the correctness of such results without waiting until the whole 

application ends. For example, when the association test for a chunk finishes, the 

outputs are written, and a file summarizing the task is generated. 

• Performance analysis: users can generate execution traces, which graphically 

represent the execution behavior of the workflow. In such traces, the user can see 

which tasks ran and where, as well as data transferred between resources. Traces are 

useful to analyze the performance of the application and find possible improvement 

opportunities or performance issues.  

2 The analysis of GERA cohort 

2.1 GERA cohort description 
The access to the Resource for Genetic Epidemiology Research on Aging (GERA) 

cohort data was obtained through dbGaP (phs000674.v1.p1).  

GERA cohort was created by an RC2 "Grand Opportunity" awarded by the Kaiser 

Permanente Research Program on Genes, Environment, and Health (RPGEH) and the 

UCSF Institute for Human Genetics (AG036607; Schaefer/Risch, PIs). The RC2 

project enables the genotyping of over 110,266 saliva samples from adults who are 

members of the Kaiser Permanente Medical Care Plan, Northern California Region 

(KPNC), and participating in its RPGEH.  
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The resulting cohort have an average age of 63 years, ranging from 18 to over 100 

years old at the time of the survey (2007), with 42% of males and 58% of females. 

The cohort is described as generally well-educated individuals with above-average 

income and ethnically diverse. However, only 19% (20,925) individuals are from non-

European ancestry, while 81% (89,341) are described as white non-Hispanic 

participants.  

In order to accurately capture the genetic variability in this multi-ancestry cohort, four 

custom genotyping arrays were designed using the Affymetrix Axiom array, one for 

each of the four majors ancestries in the cohort, i.e., African Americans, East Asians, 

Latinos, and Non-Hispanic Whites. Description of the array designs has been 

provided in two publications (Hoffmann et al., 2011a; Hoffmann et al., 2011b).  

Health conditions in the participants are derived from summarizing ICD-9 coded 

diagnoses in Kaiser Permanente Electronic Medical Records. The criteria of inclusion 

as a case for a particular disease is the requirement of at least two diagnoses in a 

disease category recorded on separate days to reduce false positives. 

After an explicit requirement of consent by email, data from 78,486 participants 

(Table 4) was deposited in dbGaP, with similar demographic characteristics to those 

of the initial genotyped cohort. 

2.2 Quality control 
A subset of 62,281 subjects from European ancestry from the GERA cohort was 

QCed before GWAS. For the QC, a QC pipeline for genotyped data that was 

previously applied in a Type 2 Diabetes study (Bonas-Guarch et al., 2018) was used. 

Briefly, the QC pipeline is a 3-step quality control protocol using PLINK, which 

includes two stages of SNP removal and an intermediate step in between for sample 

exclusion. The QC pipeline is described below in detail.  

2.2.1 Variant based filtering 
First, using PLINK, variants were filtered according to their proportion of missingness 

(--missing), the deviance of HWE (--hardy) and MAF (--freq). In case-control studies, 

the deviance of HWE is generally tested for the whole cohort as well as controls (e.g., 
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a HWE cohort threshold of 1×10-20 and 1×10-6 for controls). However, since the 

GERA cohort includes multiple diseases, neither a filter for controls deviance of 

HWE nor a missingness test to analyze variant differences between cases and controls 

were applied. 

Table 4. GERA diseases and sample size before QC. 

Disease Cases Controls 

Asthma 13,110 65,376 
Allergic Rhinitis 19,939 58,547 
Cardiovascular 19,963 58,523 
Cancer 21,536 56,950 
Major Depressive Disorder 9,732 68,754 
Dermatophytosis 10,768 67,718 
Type 2 Diabetes 10,572 67,914 
Dyslipidaemia 41,587 36,899 
Hypertensive 39,291 39,195 
Hemorrhoids 12,574 65,912 
Hernia Abdominopelvic Cavity 8,267 70,219 
Insomnia 5,276 73,210 
Iron Deficiency 3,429 75,057 
Irritable Bowel 4,089 74,397 
Macular Degeneration 4,624 73,862 
Osteoarthritis 26,823 51,663 
Osteoporosis 7,050 71,436 
Peripheral Vascular  5,641 72,845 
Peptic Ulcers 1,309 77,177 
Psychatric 11,835 66,651 
Stress 6,147 72,339 
Varicose Veins 3,196 75,290 

Hence, the filters and thresholds applied in this step were the following: 

-MAF < 0.001 

-Miss ≥ 0.05   

-HWE cohort ≤ 1e-10 

-HWE controls ≤ 0 

-HWE cases ≤ 0 
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2.2.2 Sample based filtering 
For sample exclusion, we considered the following criteria: gender discordance (--

check sex) and variant call rates ≥ 2% (--mind 0.02) using PLINK.  

Related subjects were also excluded following a published protocol (Anderson et al., 

2010). After generating an identity by state (IBS) pair-wise comparison matrix for all 

the samples to determine the degree of shared ancestry from each pair of individuals, 

the identity by descent (IBD) was estimated. After that, we removed the individual 

with the highest proportion of missingness for third-degree relatives (pairs with PI-

HAT > 0.125).  

For IBS calculation, data was pruned to remove variants in LD, and these independent 

variants were merged with HapMap to study the population structure in the cohort 

under study. Hence, individuals showing more than four standard deviations within 

the distribution of the study population were also removed according to the first seven 

principal components (PCs). To generate the 7 PCs, the pipeline uses a 

multidimensional-scale analysis with PLINK (--read-genome --cluster --mds-plot 7). 

These PCs were then added to the regression model as covariates in the association 

test. In addition, a plot based on the first 4 PCs was generated (Figure 11), to 

manually inspect the data before GWAS.  

Finally, an additional variant filtering was performed as described in the previous 

section. 

This automatic QC pipeline ended with a summary report displaying all the thresholds 

applied and the number of variants and samples excluded in each step, pointing out 

the reason for their exclusion (Figure 12).  

After applying this QC to the 62,281 subjects from European ancestry from the GERA 

cohort, 56,637 subjects remained for the GWAS (Figure 12 and Table 5).  
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Figure 12. Summary report of the GERA QC.  

Summary of the thresholds used, and the variants and samples removed in each step. 

Table 5. GERA diseases and sample size for European populations after QC. 

Disease Cases Controls 

Asthma 9,209 47,428 
Allergic Rhinitis 13,936 42,701 
Cardiovascular 15,009 41,628 
Cancer 17,131 39,506 
Major Depressive Disorder 7,264 49,373 
Dermatophytosis 7,676 48,961 
Type 2 Diabetes 6,967 49,670 
Dyslipidaemia 30,244 26,393 
Hypertensive 28,391 28,246 
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Hemorrhoids 9,129 47,508 
Hernia Abdominopelvic Cavity 6,291 50,346 
Insomnia 3,972 52,665 
Iron Deficiency 2,439 54,198 
Irritable Bowel 3,117 53,520 
Macular Degeneration 3,685 52,952 
Osteoarthritis 20,212 36,425 
Osteoporosis 5,399 51,238 
Peripheral Vascular  4,301 52,336 
Peptic Ulcers 920 55,717 
Psychatric 8,624 48,013 
Stress 4,314 52,323 
Varicose Veins 2,483 54,154 

 

2.3 Running GUIDANCE to analyze GERA 
Using GUIDANCE, genotypes were pre-phased into whole haplotypes with 

SHAPEIT2 and, after that, genotypes were imputed independently for each reference 

panel, i.e., 1000G phase 3, UK10K, GoNL and HRC, using IMPUTE2.  

After excluding variants with an info score < 0.7 and MAF < 0.001, the imputed 

genotypes from each panel were tested for assotiacion separately using SNPTEST. 

For autosomes, additive, dominant, recessive, heterodominant and genotypic 

inheritance models were assessed. Seven principal components, sex and age were 

added as covariates in the logistic regression. 

For chromosome X, the analysis was restricted to the non-pseudoautosomal (non-

PAR) region and males and females were analyzed separately as well as in 

conjunction, but stratifying the association analysis by sex in order to account for 

hemizygosity for males, while allowing an autosomal model for females. We assumed 

the random X chromosome inactivation model by using the method “newml” from 

SNPTEST.  

To maximize power and accuracy, the association results from the four reference 

panels were combined by choosing for each variant, the reference panel that provided 

the best IMPUTE2 info score. This final set of variants was then filtered for HWE in 

controls p ≤ 1 × 10−6.  
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Further details about the analysis of GERA can be found in the configuration file from 

this GUIDANCE execution (Figure 15, Results chapter). As a large part of this thesis 

was focused on the development of GUIDANCE, detailed information on the pipeline 

used to analyze GERA can be found in the Results chapter. Likewise, details about the 

definition of each phenotype in the GERA cohort can be found in the following link: 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetPdf.cgi?id=phd004308.1. 

2.3.1 Identification of known and new associated loci 
After the association testing, GUIDANCE provided a list of variants that passed the p-

value threshold specified in the configuration file (i.e., 5 × 10-8). Using “IRanges” R 

package, all the genome-wide significant variants are collapsed into ranges that define 

each associated locus.  

To distinguish between known or new associated regions, a general and systematic 

approach was applied since an in-deep analysis for all the diseases included in this 

study would have required an exhaustive screening outside the scope of this thesis. 

Therefore, for each top variant we looked for any proxy variant with an LD r2 > 0.35 

in the GWAS catalog (accession 5 September 2019) associated with the same 

phenotype or a related one (for example, bone mineral density, cholesterol levels or 

diastolic/systolic blood pressure phenotypes for osteoporosis, dyslipidemia or 

hypertension, respectively). HLA regions at chromosome 6 were excluded since the 

particularities of these regions required further detailed studies on their LD pattern to 

clarify if our findings constitute new regions or not. Proxies were selected using 

LDlink (https://ldlink.nci.nih.gov/) (Machiela and Chanock, 2015). 

2.4 Follow-up analysis 

2.4.1 Dominance deviation test 
The additive model can detect non-additive variants, and non-additive models can 

capture additive signals. To detect genuine differences between additive and non-

additive signals, we performed a dominance deviation test for all the 93 autosomal 

genome-wide significant loci.  
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Dominance deviation was tested by a logistic regression analysis using PLINK. Sex, 

age and the first 7 PCs were included as covariates. 

2.4.2 Replication using UK Biobank 
When collecting and analyzing phenotypes from the UK Biobank (application 

number: 31063 and 27892), the curation and harmonization of the vast array of 

categorizations, variable scaling, and follow-up responses is a central challenge. In 

order to generate meaningful, interpretable phenotypes, we use the PHEnome Scan 

ANalysis Tool or PHESANT (https://github.com/MRCIEU/PHESANT) (Figure 13).  

We performed the association testing for the curated phenotypes using SNPTEST for 

additive, dominant, recessive, heterodominant and genotypic inheritance models.  

For each of the novel loci, we searched for equivalent phenotypes or for traits related 

to the phenotype where the novel association was discovered. 

With the association testing results of both the GERA cohort and UK Biobank, we 

meta-analyzed the results using METAL when equivalent phenotypes were found in 

UK Biobank. For the meta-analysis, we use the inverse variance-weighted fixed-effect 

model for all the variants except for the rs557998486 variant associated with age-

related macular degeneration since its beta, calculated with the “em” method from 

SNPTEST, was inflated. Therefore, we performed a sample size based meta-analysis, 

which converts the direction of the effect and the p-value into a Z-score. In order to 

compute the most accurate estimate of the odds ratio, we performed a mega-analysis, 

by merging the genotypes of the GERA cohort with the UK Biobank and testing the 

association with the “ expected” method from SNPTEST. 

To explore the assciations with biomarkers in UK Biobank, only the results from the 

first visit were taken into account since less than 10% of the cases were present in the 

second visit, and again, we assessed additive and non-additive inheritance models 

using SNPTEST.  
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Figure 13. Phenotype curation pipeline. 
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2.4.3 Definition of 99% credible sets of GWAS significant loci 
For each genome-wide significant region, the fraction of aggregated variants that have 

a 99% probability of containing the causal one was identified. The 99% credible set of 

variants for each region were defined with a Bayesian refinement approach 

(Wellcome Trust Case Control Consortium et al., 2012), considering variants with an 

r2>  0.1 with the leading one. 

For each variant within a particular associated locus, the credible set provides a 

posterior probability of being the causal one (Wellcome Trust Case Control 

Consortium et al., 2012). The approximate Bayes factor (ABF) for each variant was 

estimated as 

!"# = 1− ! !(!!!/!)  , 

where 

! =  0.04
(!"! + 0.04) , 

! = β
!" . 

The β and the SE result from a logistic regression model testing for association. The 

posterior probability for each variant was calculated as 

!"#$%&'"& !"#$%$&'&()! =
!"#!
!  ,  

where ABFi corresponds to the approximate Bayes’ factor for the marker i, and T 

represents the sum of all the ABF values enclosed in the interval. As commonly 

employed by SNPTEST, this calculation assumes that the prior of the β is a Gaussian 

with mean 0 and variance 0.04.  

Finally, the cumulative posterior probability was calculated after ranking the variants 

according to the ABF in decreasing order. Variants were included in the 99% credible 
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set of each region until the cumulative posterior probability of association got over 

0.99. 

2.4.4 Functional annotation of novel findings 

The eQTLGen Consortium (https://www.eqtlgen.org/cis-eqtls.html, last access on 

July 2019) and GTEx portal (https://gtexportal.org/, last access on July 2019) were 

used to find associations between our novel findings and gene expression. When the 

variant was not available in these resources, a proxy SNP from LDlink 

(https://ldlink.nci.nih.gov/?tab=ldproxy) was used instead. 

Colocalization analysis was performed to determine whether the overlap between 

GERA associated loci and GTEx eQTLs was due to a true-shared association signal. 

Colocalization was assessed by a Bayesian test using summary statistics from the two 

studies (Giambartolomei et al., 2018); summary statistics from the GTEx study were 

downloaded from the GTEx portal (https://gtexportal.org/, last access on July 2019). 

The test was performed using the R package coloc v3.2-1 (https://cran.r-

project.org/web/packages/coloc/). For each pair of GWAS locus-eQTL, the test 

provided a posterior probability for the two loci to share the same causal variants.  

For the functional characterization of rs77704739 and rs557998486, we used the 

WashU EpiGenome Browser (http://epigenomegateway.wustl.edu/browser/, last 

access on July 2019). Public data from the reference human epigenomes from the 

Roadmap Epigenomics Consortium track hubs and the Roadmap Epigenomics 

Integrative Analysis Hub were used. These data were released by the NIH Roadmap 

Epigenomics Mapping Consortium. 
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Following the hierarchy of topics in the previous section, the results have been split 

into two blocks; the first one related to 1) the development of GUIDANCE, including 

a detailed explanation of the workflow, and the second one focused on 2) the 

association findings as a result of the analysis of GERA cohort using GUIDANCE. 

1 Genome-wide imputation and association testing 
for parallel computing 

1.1 Developing GUIDANCE: An overview 
As current GWAS workflows are computationally demanding and time-consuming, 

we developed GUIDANCE as an integrated framework to analyze genome-wide 

genotyped data in a single execution in parallel computing infrastructures without the 

need for extensive computational expertise or constant user intervention. 

 

Integrating state-of-the-art tools with in-house code written in java, bash and R (Table 

6), GUIDANCE efficiently performs large-scale GWAS, including 1) the pre-phasing 

of haplotypes, 2) the imputation of genotypes using multiple reference panels, 3) the 

association testing for different inheritance models and 4) cross-phenotype analysis 

when more than one phenotype is available in the cohort, to finally, 5) generate 

summary statistics tables and graphic representations of the results (Figure 14), for 

both the autosomes and the X chromosome.  

1.1.1 First steps before phasing haplotypes 
GUIDANCE starts splitting the QCed PLINK input files into the chromosomes 

specified in the configuration file as shown in the following command line:  

 
 

 

plink –bed clean_snps_subjects_aut_hg19_chr1_chr23_final_for_impute.bed --bim 
clean_snps_subjects_aut_hg19_chr1_chr23_final_for_impute.bim --fam 
clean_snps_subjects_aut_hg19_chr1_chr23_final_for_impute.fam --chr 23 --out 
mixed_GERA_ASTHMA_chr_23 --make-bed 
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Table 6. Tools and versions included in GUIDANCE. 

Software Version 

Plink 1.9 

SHAPEIT v2 r727 

Eagle 2.4 

IMPUTE 2.3.2 

Minimac 4 

Qctool 1.4 

SNPTEST 2.5 

Tabix 1.9 

Bgzip 1.9 

Samtools 1.5 

Bcftools 1.8 

R ≥ 3.5.0 

If the X chromosome analysis is required in the configuration file, the commands  

 

 

split the X chromosome, encoded as “23” in the PLINK files, into males and females 

to allow the analysis of both males and females separately and together. From now on, 

X chromosome for both males and females, X chromosome for males and X 

chromosome for females, are treated as if they were three independent chromosomes 

through the pipeline. 

In order to avoid strand orientation problems, the user can specify in the configuration 

file if C/G A/T SNPs need to be removed from genotyping data. The command 

 

creates a list of A/T and C/G SNPs from the .bim file using a method written in java. 

/usr/bin/plink --noweb --bed mixed/Chr_23/mixed_GERA_ASTHMA_chr_23.bed –bim 

mixed_GERA_ASTHMA_chr_23.bim --fam mixed_GERA_ASTHMA_chr_23.fam --filter-females --
out mixed_GERA_ASTHMA_chr_23_females --make-bed 

plink --noweb --bed mixed_GERA_ASTHMA_chr_23.bed --bim mixed_GERA_ASTHMA_chr_23.bim 
--fam mixed/Chr_23/mixed_GERA_ASTHMA_chr_23.fam --filter-males --out 
mixed_GERA_ASTHMA_chr_23_males --make-bed 

java createRsIdList mixed_GERA_chr_23.bim YES mixed_chr_23.pairs BED 
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Figure 14. Schematic representation of GUIDANCE compared to current GWAS 
workflows.  

At both sides of the workflow, the steps that typically require manual intervention in the case of current 

strategies are displayed (right) and compared with GUIDANCE requirements of user intervention (left), 

which allows an automatic execution. Starting with Quality Controlled genetic data (top), through 

phasing and imputation using multiple panels, and association testing considering multiple phenotypes 

and inheritance models. GUIDANCE finishes with summary statistics and graphical representation of 

the results (bottom). Multiple genotypes displayed correspond to those found in GERA.  

 
Once data have been split, pre-phasing is conducted using SHAPEIT2 or Eagle as 

required by the user in the configuration file (Figure 15). Each chromosome is phased 

in independent nodes, and an extra level of parallelization is achieved using the --

thread flag in the SHAPEIT2 command line and the --numThreads flag in the Eagle 

command line.  

1.1.2 Phasing haplotypes using SHAPEIT2 
The following command line corresponds to the autosomes when using SHAPEIT2: 

 

To set up SHAPEIT2 for the X chromosome, --chrX flag is required to only phase 

female samples and impute missing data in male samples as shown in the following 

command line: 

 

Although males do not require phasing the genotypes for the X chromosome, the 

commands  

shapeit.v2.r727.linux.x64 --input-bed mixed_GERA_chr_1.bed mixed_GERA_chr_1.bim 
mixed_GERA_chr_1.fam --input-map genetic_map_chr_1_combined_b37.txt.gz --output-max 

mixed_phasing_chr_1.haps.gz mixed_phasing_chr_1.sample --thread 48 --effective-size 
20000 --output-log mixed_phasing_chr_1.log 

shapeit.v2.r727.linux.x64 --input-bed mixed_GERA_chr_23.bed mixed_GERA_chr_23.bim 

mixed_GERA_chr_23.fam --input-map genetic_map_chrX_nonPAR_combined_b37.txt.gz --
chrX --output-max mixed_phasing_chr_23.haps.gz mixed_phasing_chr_23.sample --thread 
48 --effective-size 20000 --output-log mixed_phasing_chr_23.log 
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Figure 15. GUIDANCE configuration file for chromosome 21 to chromosome X 
(encoded 23) for GERA cohort.  

All the thresholds and pathways are specified in advance to free the user from constant intervention. Of 

note, no additional handling is needed to include the analysis of the X chromosome. 
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perform a separately pre-phasing for males and females to avoid format issues in 

further steps. 

1.1.3 Generating a new sample file 
After phasing the genotypes into haplotypes, a new sample file is generated since after 

splitting the X chromosome into males and females the number of individuals is 

different than in the original sample file. However, since it is not computational 

demanding as well to ensure consistency, a sample file is also generated for the 

autosomes and the X chromosome with males and females together. This is performed 

using a method written in java as shown in the following command lines: 

 

 

shapeit.v2.r727.linux.x64 --input-bed mixed_GERA_chr_23_males.bed 

mixed_GERA_chr_23_males.bim mixed_GERA_chr_23_males.fam --input-map 
genetic_map_chrX_nonPAR_combined_b37.txt.gz --chrX --output-max 
mixed_phasing_chr_23_males.haps.gz mixed_phasing_chr_23_males.sample --thread 48 --
effective-size 20000 --output-log mixed_phasing_chr_23_males.log 

shapeit.v2.r727.linux.x64 --input-bed mixed_GERA_chr_23_females.bed 
mixed_GERA_chr_23_females.bim mixed_GERA_chr_23_females.fam --input-map 
genetic_map_chrX_nonPAR_combined_b37.txt.gz --chrX --output-max 
mixed_phasing_chr_23_females.haps.gz mixed_phasing_chr_23_females.sample --thread 

48 --effective-size 20000 --output-log mixed_phasing_chr_23_females.log 

java newSample.jar GERA.sample mixed_phasing_chr_23.sample 

new_mixed_phasing_chr_23.sample PC1,PC2,PC3,PC4,PC5,PC6,PC7,sex,BIRTHYEARCAT 
INSOMNIA,MACDEGEN,DERMATOPHYTOSIS,VARICOSE_VEINS,HEMORRHOIDS,PSYCHIATRIC,PEPTIC_ULC
ERS,HYPER,OSTIOA,CANCER,CARD,ALLERGIC_RHINITIS,IRON_DEFICIENCY,DEPRESS,HERNIA_ABDOM
INOPELVIC,DIA2,ASTHMA,STRESS,IRRITABLE_BOWEL,OSTIOP,DYSLIPID,PVD 

java newSample.jar GERA.sample mixed_phasing_chr_23_males.sample 
new_mixed_phasing_chr_23_males.sample PC1,PC2,PC3,PC4,PC5,PC6,PC7,sex,BIRTHYEARCAT  

INSOMNIA,MACDEGEN,DERMATOPHYTOSIS,VARICOSE_VEINS,HEMORRHOIDS,PSYCHIATRIC,PEPTIC_ULC
ERS,HYPER,OSTIOA,CANCER,CARD,ALLERGIC_RHINITIS,IRON_DEFICIENCY,DEPRESS,HERNIA_ABDOM
INOPELVIC,DIA2,ASTHMA,STRESS,IRRITABLE_BOWEL,OSTIOP,DYSLIPID,PVD 
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1.2  Imputing genotypes using multiple reference panels 
Genotype imputation is performed using IMPUTE2 or MINIMAC4 as required by the 

user in the configuration file. To maximize the parallelization without compromising 

the accuracy of the imputation, chromosomes are split into chunks of the size 

specified by the user in the configuration file. In the command line examples in the 

1.2.1 section, chunks of 1,000,000 base pairs are analyzed.  

Moreover, if the user has specified multiple reference panels in the configuration file, 

the imputation runs for each panel separately in parallel. As different panels required 

different memory constraints this can also be pre-set in the configuration file (e.g., 

“HIGH” for HRC, “MEDIUM” for 1000 G phase 3 and “LOW” for UK10K and  

GoNL) to ensure the proper utilization of the available resources. Memory and CPU 

usage for each step can be modified in an additional file that facilitates its 

manipulation by non-expert users. 

1.2.1 Imputing genotypes using IMPUTE2 
As stated in previous sections, no additional handling is required when using 

IMPUTE2 for genotype imputation, since both SHAPEIT2 and Eagle outputs are in 

the Oxford HAPS/SAMPLE format. 

Hence, autosomes are imputed using the pre-phased haplotypes as input, excluding 

A/T and C/G SNPs from the phased data to avoid strand orientation issues, (therefore, 

A/T and C/G SNPs will be imputed) as shown in the following command line:  

java newSample GERA.sample mixed_phasing_chr_23_females.sample 

new_mixed_phasing_chr_23_females.sample 
PC1,PC2,PC3,PC4,PC5,PC6,PC7,sex,BIRTHYEARCAT  
INSOMNIA,MACDEGEN,DERMATOPHYTOSIS,VARICOSE_VEINS,HEMORRHOIDS,PSYCHIATRIC,PEPTIC_ULC
ERS,HYPER,OSTIOA,CANCER,CARD,ALLERGIC_RHINITIS,IRON_DEFICIENCY,DEPRESS,HERNIA_ABDOM
INOPELVIC,DIA2,ASTHMA,STRESS,IRRITABLE_BOWEL,OSTIOP,DYSLIPID,PVD 
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For the X chromosome, IMPUTE2 requires the -chrX flag as well as the sample file 

with the sex information. 

 

1.2.2 Imputing genotypes using MINIMAC4 
The command 

 
 

performs the imputation using MINIMAC4. The outputs, in VCF format, will be in 

estimated most likely genotype (GT), estimated alternate allele dosage (DS) and 

estimated posterior genotype probabilities (GP). GP is the same estimate from 

IMPUTE2, thus giving comparable results.  

 

impute2 -use_prephased_g -m mixed_genetic_map_chr_22.txt -h 

EGAZ00001017893_UK10K_COHORT.REL-2012-06-
02.chr22.beagle.anno.csq.shapeit.20160215.haps.gz -l 
EGAZ00001017893_UK10K_COHORT.REL-2012-06-
02.chr22.beagle.anno.csq.shapeit.20160215.legend.gz -known_haps_g 
mixed_phasing_chr_22.haps.gz -int 1 1000000 -exclude_snps_g mixed_chr_22.pairs -

impute_excluded -Ne 20000 -o chr_22_mixed_uk10k_1_1000000.impute.gz -i 
chr_22_mixed_uk10k_1_1000000.impute_info -r 
chr_22_mixed_uk10k_1_1000000.impute_summary -w 
chr_22_mixed_uk10k_1_1000000.impute_warnings -no_sample_qc_info -o_gz 

impute2 -use_prephased_g -m genetic_map_chrX_nonPAR_combined_b37.txt.gz -h 
EGAZ00001239292_HRC.r1-1.EGA.GRCh37.chrX_PAR2.hap.gz -l EGAZ00001239292_HRC.r1-
1.EGA.GRCh37.chrX_PAR2.legend.gz -known_haps_g mixed_phasing_chr_23.haps.gz -
sample_g new_mixed_phasing_chr_23.sample -int 1 1000000 -chrX -exclude_snps_g 

mixed_chr_23.pairs -impute_excluded -Ne 20000 -o chr_23_mixed_HRC_1_1000000.impute 
-i chr_23_mixed_HRC_1_1000000.impute_info -r 
chr_23_mixed_HRC_1_1000000.impute_summary -w 
chr_23_mixed_HRC_1_1000000.impute_warnings -no_sample_qc_info -o_gz 

minimac4 --refHaps EGAZ00001017893_UK10K_COHORT.REL-2012-06-
02.chr22.beagle.anno.csq.shapeit.20160215.m3vcf.gz --haps 
mixed_phasing_filtered_chr_22.vcf.gz --start 1 --end 1000000 --chr 22 --window 
500000 --prefix chr_22_mixed_uk10k_1_1000000_minimac --log --allTypedSites --
noPhoneHome --format GT,DS,GP --nobgzip 
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Unfortunately, MINIMAC (neither 3 nor 4) cannot be used to impute the X 

chromosome since we detect an inconsistency in how males are coded. Therefore, 

even when selecting MINIMAC4 as the tool for imputation, if the X chromosome is 

in the analysis, this will be imputed using IMPUTE2 instead.  

1.2.3 Filtering imputed variants according to the imputation accuracy  
After imputation, variants ID from the genotyping array and each panel are substitute 

for a new ID based on the chromosome, the position and the alleles, using a bash 

command line.  

Moreover, a list of variants that pass the imputation quality threshold (info score for 

IMPUTE or Rsq for MINIMAC4), as specified by the user in the configuration file, is 

created using a java method following the command line 

 

Thereafter, QCTOOL is used to keep these variants from the imputed genotypes 

alongside those that pass the MAF threshold specified in the configuration file.  

 

The same command can be used with MINIMAC4 results, as QCTOOL accepts VCF 

with genotype probabilities as input, specifying it with the “-vcf-genotype-field GP” 

flag in the command line. 

The QCTOOL usefulness goes beyond filtering variants as it allows the 

homogenization of the different formats for later analysis using SNPTEST. After 

QCTOOL, both HAPS/SAMPLE from IMPUTE2 and VCF from MINIMAC4 are 

converted to GEN format. 

java filterByInfo impute chr_23_mixed_HRC_1_1000000.impute_info 
chr_23_mixed_HRC_1_1000000_filtered_rsid.txt 0.7 

qctool1.4 -g chr_23_mixed_HRC_1_1000000.impute.gz -og 
chr_23_mixed_HRC_1_1000000_filtered.impute.gz -incl-rsids 

chr_23_mixed_HRC_1_1000000_filtered_rsid.txt -omit-chromosome -force -log 
chr_23_mixed_HRC_1_1000000_filtered.impute.log -maf 0.001 1 
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1.3 The association testing including non-additive 
inheritance models 

In GUIDANCE, the association test is performed using SNPTEST as it allows single-

variant logistic regression adjusting for multiple covariates for both the autosomes and 

the X chromosome, and it allows multiple models of inheritance.  

Hence, the command 

 

allows the analysis of five different models coded as 1=Additive, 2=Dominant, 

3=Recessive, 4=General and 5=Heterozygote using an EM algorithm to estimate the 

parameters in the missing data likelihood for the model when analyzing the 

autosomes. The user specifies in the configuration file which inheritance models 

wants in the association test, and the command is consequently generated. 

For the X chromosome, the command  

 

uses -method newml to ignore samples with missing sex or males encoded wrongly 

(males should be coded 0 / 1, as homozygote females), and to assume a model of full 

X inactivation. Hence, the logistic regression model assumes a complete inactivation 

of one allele in females and equal effect size between males and females.  

snptest_v2.5 -data chr_1_mixed_1kgphase3_1_1000000_filtered.impute.gz 
new_mixed_phasing_chr_1.sample -o 
chr_1_ALLERGIC_RHINITIS_1kgphase3_1_1000000_snptest.out.gz -pheno ALLERGIC_RHINITIS 
-cov_names PC1 PC2 PC3 PC4 PC5 PC6 PC7 sex BIRTHYEARCAT -hwe -log 

chr_1_ALLERGIC_RHINITIS_1kgphase3_1_1000000_snptest.log -method em -frequentist 1 2 
3 4 5 

snptest_v2.5 -data chr_23_mixed_HRC_1_1000000_males_filtered.impute.gz 
new_mixed_phasing_chr_23_males.sample -o 

chr_23_ALLERGIC_RHINITIS_HRC_1_1000000_males_snptest.out.gz -pheno 
ALLERGIC_RHINITIS -cov_names PC1 PC2 PC3 PC4 PC5 PC6 PC7 sex BIRTHYEARCAT -hwe -log 
chr_23_ALLERGIC_RHINITIS_HRC_1_1000000_males_snptest.log -method newml -
assume_chromosome X -stratify_on sex -frequentist 1 
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Therefore, in order to allow for heterogeneity between males and females and to allow 

a complete inactivation of the X chromosome in females, the -stratify_on option is 

used to separate the effects and the baselines for males and females specifying the 

same variable (i.e., “sex”) as a covariate into the -cov_names flag. 

1.3.1 Filtering the results from the association test 
After running SNPTEST, an additional filtering step is applied by chunk using a java 

method. The command 

 
filters by the thresholds specified by the user in the configuration file, such as MAF < 

0.001 and HWE for controls ≤ 1 × 10-6 in this example.  

1.3.2 Combining the results from different reference panels to get the 
final set of variants 

One of the main features of GUIDANCE is the integration of the results from multiple 

reference panels after filtering the association testing results. To do so, when a variant 

is found in more than one reference panel, GUIDANCE selects the one from the 

reference panel with the best imputation accuracy (Figure 16). 

To maximize the parallelization, this is done by chunk, and this method was primarily 

implemented in R, and finally in java, into the GUIDANCE framework as shown in 

the following command line:  

 
 

java filterByAll minimac chr_22_ALLERGIC_RHINITIS_uk10k_1_1000000_summary.txt.gz 
chr_22_ALLERGIC_RHINITIS_uk10k_1_1000000_summary_filtered.txt.gz 0.001 0.0 -1.0 -
1.0 1.0E-6 uk10k 

java combinePanelsComplex  
chr_22_ALLERGIC_RHINITIS_HRC_1_1000000_summary_filtered.txt.gz 
chr_22_ALLERGIC_RHINITIS_1kgphase3_1_1000000_summary_filtered.txt.gz 

chr_22_ALLERGIC_RHINITIS_uk10k_1_1000000_summary_filtered.txt.gz 
chr_22_ALLERGIC_RHINITIS_gonl_1_1000000_summary_filtered.txt.gz 
filteredByAll_results_ALLERGIC_RHINITIS_GERA_300_HRC_1kgphase3_uk10k_gonl_chr_22_1_
1000000_combined.txt.gz 1 1000000 
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1.4 Summary statistics tables and graphical representation 
After obtaining the filtered association testing results for each chunk from each panel, 

and the combined final set of variants if requested, chunks are merged into a final file 

containing all the chromosomes to facilitate the management of the results. For the 

same reason, an additional file containing only the top variants, including a list of the 

inheritance models for which those variants pass the p-value threshold specified in the 

configuration file, is provided.  

Moreover, to simplify the interpretation of the results, Q-Q plots and Manhattan plots, 

both in TIFF and PDF format, are generated using R as shown in the following 

command line:  

(Previous steps)

Phasing haplotypes

Imputation with
reference panel 1

Imputation with
reference panel 2

Does the
SNP appear

in both
panels?

Keep the SNP of
the panel with

highest accuracy

Keep the SNP
of the panel in

which it appears

(Next steps)

Yes No

Final combining panels

Figure 16. Flow-chart of how the results from several reference panels are 
combined.  

In case a given variant is only imputed in one panel, the genotypes are selected from that panel. 

However, if a variant is present in more than one panel, the genotype from the reference panel with 

the best imputation score is selected. All the variants must have an imputation score higher than the 

threshold that is specified in the configuration file. 
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1.5 Cross-phenotype association 
As emerging cohorts are usually encompassing multiple phenotypes, we implemented 

a cross-phenotype association test in GUIDANCE to assess if any top variant for a 

particular disease is also associated with an additional one. This is implemented in R. 

The following command, 

 

results in a summary table taking into account the most significant inheritance models 

used for each variant. The p-value (i.e., 5 × 10-8) is used to select the significant 

variants. However, to avoid false positives due to multiple testing, a new p-value 

threshold is internally calculated taking into account the number of regions and 

diseases analyzed.  

Rscript qqplot_manhattan_all_models.R 

ALLERGIC_RHINITIS_uk10k_condensed_chr_22_to_23.txt.gz 
QQplot_ALLERGIC_RHINITIS_GERA_300_uk10k_add.pdf 
manhattan_ALLERGIC_RHINITIS_GERA_300_uk10k_add.pdf 
QQplot_ALLERGIC_RHINITIS_GERA_300_uk10k_add.tiff 
manhattan_ALLERGIC_RHINITIS_GERA_300_uk10k_add.tiff frequentist_add_pvalue 5e-8 

Rscript crossphenotype_crossmodel.R 
tophits_merge_ALLERGIC_RHINITIS.txt,tophits_merge_ASTHMA.txt, 

tophits_merge_MACDEGEN.txt,tophits_merge_CARD.txt,tophits_merge_DIA2.txt 
cross_pheno_all.txt 5e-8 add,rec 
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In this section, there are the results of a manuscript in preparation describing our 

findings after applying our methodology, described in the previous section, to analyze 

the GERA cohort, the largest public cohort for age-related diseases to date.  
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2.1 Imputation using multiple reference panels 
After applying quality control, 56,637 individuals of European Ancestry from the 

GERA cohort were analyzed using GUIDANCE (see Methods).  

We imputed GERA genotypes using IMPUTE2 and GoNL, UK10K, 1000G Phase 3 

and HRC reference panels, obtaining 22,1 M, 25,8 M, 88,3 M and 41,5 M variants, 

respectively. After applying an info score ≥ 0.7 and a minor allele frequency (MAF) > 

0.001 filters, 11,2 M, 11,4 M, 13,1 M, and 11,7 M good quality variants remained for 

each panel, respectively (Figure 17a).  

When combining the results from the four reference panels, we were able to test 

16,059,686 variants for association, including 5,5 M of high quality rare variants (0.01 

> MAF > 0.001), while only 2.3 M, 2.9 M, 3.2 M and 3.8 M rare variants were tested 

for association when using GoNL, UK10K, 1000G phase 3 and HRC alone (Figure 

17a).  

Among the four reference panels, HRC had higher imputation scores, as 10 M out of 

the 16 M final variants had the highest imputation accuracy when imputed with HRC 

(Figure 17b). However, more than 1.5 M variants from the 16 M obtained when 

combining the results were INDELs than could only be imputed by the other reference 

panels since HRC panel does not include INDELs. 

2.2 Association testing for additive and non-additive 
inheritance models 

By testing 16 M variants for association considering multiple inheritance models 

using GUIDANCE for 22 diseases, we found 94 associated loci at the genome-wide 

significance level (p < 5 × 10-8) (Supplementary Table 1, Supplementary Figure 1-22). 

Interestingly, the model with the most significant result for 37 out of these 94 variants 

was a non-additive model, and 20 loci were only genome-wide significant when non-

additive models were tested (Figure 18 and Supplementary Table 1).  

From these 94 associated loci, 68 loci had been previously reported. Of note, some of 

the well-known variants for certain diseases could be identified only by combining the 

results from several reference panels. In particular, only 67 of 94 loci were found with 
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Figure 17. Graphical representation illustrating the benefits of combining the results 
from different reference panels.  

a Comparison of the number of variants after the imputation with the four reference panels, covering 

common, low frequency and rare variants in different colors (info score ≥ 0.7). INDELs are also 

represented with the corresponding darker color depending on the MAF. As shown in the bar plot, the 

combination increases the final set of variants for association testing when compared with the results 

for each of the panels alone (GoNL, UK10K, 1000G Phase 3 or HRC), especially in the low and rare 

frequency spectrum. b Comparison of the contribution of each reference panel in the combined results. 

Each bar represents the number of variants that had the best imputation accuracy for a given reference 

panel. As seen in the figure, HRC shows the highest imputation accuracy for most of the variants. 

Nevertheless, all the reference panels contribute to the final result, especially for INDELs since HRC 

does not include them. All variants have an info score ≥ 0.7, MAF ≥ 0.001 and HWE for controls > 1 × 

10-6. c Venn Diagram illustrating the genome-wide significant loci that could be identified by each 

reference panel. Novel associations are depicted in bold. As shown in this figure, only 67 of the 94 

GWAS significant loci were identified by the four reference panels, while 27 of them (28.7%) were 

only identified by one, two or three of the four panels. 

all the four reference panels (71%) while 16 significant loci (17%) were identified 

only by one of the four reference panels (Figure 17c). In fact, only 81, 77, 74, and 77 

loci would have been identified by using only HRC, 1000G Phase 3, UK10K or 

GoNL, respectively. 
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We identified 26 GWAS loci for 16 phenotypes that had not been reported before 

(Table 7). Among them, 15 would have not been identified by the four reference 

panels (Figure 17c). For example, the CACNB4 loci was better imputed, and only 

genome-wide significant, by GoNL. Among the 26 novel loci, 11 (55%) out of 20 had 

a significant dominance deviation (p < 0.05) (Table 7).  

In addition, three low-frequency and rare variants have large recessive effects (Table 

7 and Supplementary Figure 23). We found an INDEL associated with cardiovascular 

disease in CACNB4 (rs201654520, MAF = 0.017, OR [CI 95%] = 19.02 [5.50-65.84], 

p = 4.32 × 10-8), a gene previously associated with idiopathic dilated cardiomyopathy 

in African American (Xu et al., 2018), a variant near the PELO gene associated with  

Figure 18. Venn Diagram showing the loci that could be identified after analyzing 
multiple inheritance models.  

As seen in the Venn Diagram, the analysis of non-additive models was crucial for the identification of 

13 novel (in bold) associated loci. 
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type 2 diabetes with the greatest odds ratio for type 2 diabetes in Europeans reported 

to date (rs77704739, MAF=0.036, OR [CI 95%] = 4.32 [2.70-6.92], p = 1.75 × 10-8), 

and a rare INDEL associated with age-related macular degeneration near THUMPD2 

(rs557998486, MAF= 0.009, OR = 10.5, p = 2.75 × 10-8).  

2.3 Replication with UK Biobank and supporting evidence 
We sought replication of previously unreported loci in UK Biobank, a prospective 

cohort of ~500,000 individuals aged between 40 to 69 years when recruited in 2006-

2010, and genotyped with a high-density array (Bycroft et al., 2018).  

We noted that the available phenotypes for the GERA cohort are collapsed by groups 

of diseases. For example, the condition cancer includes a variety of cancer conditions. 

Therefore, an association can be driven by a specific type of cancer, which we may be 

able to disentangle by analyzing various related phenotypes in UK Biobank. Likewise, 

some of the conditions may not be ascertained or have later age at onset than the 

average age at ascertainment in UK Biobank (56,52 years) (Hewitt et al., 2016), 

which could affect the replication success.  

Despite these differeces between UK Bioank and GERA, among these 26 new 

associated loci, we replicated 4 of the novel associations for which we had an 

equivalent phenotype in UK Biobank (Table 8). Among them, 2 recessive associations 

in GERA cohort replicated in UK Biobank, including the loci associated with type 2 

diabetes near PELO (rs77704739, meta-analysis OR [CI 95%] = 2.46 [1.88 - 3.21], 

meta-analysis p = 4.68 × 10-11), and the INDEL associated with age- related macular 

degeneration near THUMPD2 (rs557998486, mega-analysis OR [CI 95%] = 26.51 

[7.57-92.85], meta-analysis p =  3.29 × 10-8). This variant could not be tagged by the 

HRC reference panel, which does not have INDELs, since the most correlated SNP 

was in very weak linkage disequilibrium with the lead INDEL (rs724682, LD r2 = 

0.37).  

Two autosomal variants were also found associated using the additive model and 

further replicated with UK Biobank, including a variant associated with hernia 

abdominopelvic (rs2494196, MAF=0.28, meta-analysis with ICD10 code K42 

[Umbilical hernia] OR [CI 95%] = 1.19 [1.15 - 1.22], meta-analysis p = 2.94 × 10-22)  
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and a rare variant associated with cancer near DSC3 (rs2014497, MAF=0.008, meta-

analysis with self-reported kidney/renal cell cancer OR [CI 95%] = 1.51 [1.32 - 1.73], 

meta-analysis p = 1.49 × 10-9).  

For the majority of novel loci, including those that did not replicate with an equivalent 

phenotype in UK Biobank, we found additional evidences from related conditions, 

treatments or biomarkers in UK Biobank (Supplementary Table 2). As examples, the 

rs10858023 variant associated with cardiovascular disease with a dominant effect was 

associated with insulin treatment (OR [CI 95%]= 1.15 [1.05-1.25], p= 1.88 × 10-3) and 

with hypothyroidism/myxoedema (OR [CI 95%]= 1.19 [1.16-1.23], p= 9.64 × 10-28) 

as well as levothyroxine sodium treatment (beta [CI 95%]=1.18 [1.14-1.22], p= 2.67 × 

10-20). Both type 2 diabetes and hypothyroidism are well-established risk factors for 

cardiovascular disease (Biondi and Klein, 2004; Martin-Timon et al., 2014). The 

recessive variant associated with hypertension, rs1446802 (MAF=0.5, OR [CI 95%]= 

1.13 [1.08-1.17], p= 4.42 × 10-8), was also associated with kidney failure (MAF=0.5, 

OR [CI 95%]= 1.50 [1.09-2.06], p= 0.015, cases= 171), as hypertension is one of the 

leading causes of chronic kidney disease (Jha et al., 2013). A rare additive variant, 

rs139959245, associated with osteoporosis (MAF= 0.007, OR [CI 95%]= 1.91 [1.53-

2.37], p= 4.79 × 10-8) was also associated with spine fracture (OR [CI 95%]= 1.72 

[1.09-2.71], p= 0.034, cases= 812), and vertebrae fractures have been long regarded as 

osteoporotic (Cummings and Melton, 2002). In addition, this variant was also 

associated with arthrotec tablet (OR [CI 95%]= 2.06 [1.23-3.45], p=0.015, cases= 

518), a treatment for osteoarthritis and rheumatoid arthritis, and calcichew forte 

treatment (OR [CI 95%]= 2.37 [1.34-4.21], p= 9.51 × 10-3, cases = 357), and adjunct 

to specific osteoporosis treatment of patients with calcium deficiency. The variant 

rs77704739, near PELO, which we replicated with type 2 diabetes in UK Biobank, 

was also associated with metformin, a well-known treatment for type 2 diabetes 

(Knowler et al., 2002), and only for the recessive model in UK Biobank as well (OR 

[95% CI] = 2.34 [1.63 - 3.36], p = 3.77 × 10-5). Further evidence are also found for the 

recessive INDEL associated with age-related macular degeneration and replicated in 

UK Biobank, as it was also associated with eye surgery only for the recessive model 

(beta [CI 95%] = 1.60 [1.83-13.42], p = 1.17 × 10-3). 
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We also sought additional evidence among the data for biomarkers available at UK 

Biobank (Supplementary Table 2). Remarkable associations include the recessive 

variant rs154073 associated with asthma in the GERA cohort (OR [CI 95%] = 1.18 

[1.12-1.25], p = 4.23 × 10-9) that was also associated with testosterone for the 

recessive model in UK Biobank (beta [CI 95%] = -0.01 [-0.01- -0.01], p = 4.42 × 10-

7). Testosterone is known to attenuate group 2 innate lymphoid cells (ILC2) that are 

increased in asthmatic patients thus contributing to the sexual dimorphism observed 

for asthma (Cephus et al., 2017). Finally, the novel recessive rare INDEL associated 

with age-related macular degeneration, rs557998486, was found associated with C-

reactive protein only when testing the recessive model (beta [CI 95%] =1.11 [0.70-

1.53], p = 1.15 × 10-4). C-reactive protein is a known biomarker for macular 

degeneration (Molins et al., 2018). 

2.4 New variants effects in gene expression and their 
functional characterization 

We tested the effect of all novel variants on expression to identify their possible 

effector genes by interrogating eQTLGen Consortium (Võsa et al., 2018) and GTEx  

(GTEx Consortium, 2013; GTEx Consortium et al., 2017) data. Through this analysis, 

18 out of 26 variants were found to be associated with the expression of a gene 

(Supplementary Table 3). Of note, 3 out of 4 replicated loci in UK Biobank are among 

these associations, including the two recessive variants for PELO and THUMPD2.  

In particular, for the rs77704739 SNP, associated with type 2 diabetes, we found an 

association with the expression of PELO in blood in the eQTLGen Consortium and 

across multiple tissues in GTEx, including pancreas (p = 1.00 × 10-6) (Supplementary 

Table 3).  

Through this exploratory analysis, we also found a variant in moderate linkage 

disequilibrium (LD) with the rare recessive INDEL rs557998486 associated with age-

related macular degeneration (rs116649730, LD r2= 0.32) associated with reduced 

expression of its nearest gene, THUMPD2 (Z-score = -4.85, p = 1.25 × 10-6), 

according to eQTLGen Consortium data.   



 

 

	 Results	 	
	 	

110 

We further interrogated the PELO and THUMPD2 loci analyzing available 

epigenomic data sets (Roadmap Epigenomics et al., 2015), since they displayed an 

exclusive association under the recessive model with large effects. Through this 

exploratory analysis, we found that the variants in the credible set of PELO locus 

associated with type 2 diabetes are in a regulatory element in pancreatic islets, 

including active enhancers and promoters bounded by pancreatic islet specific 

transcription factors (Figure 19). For THUMPD2, we found DNAse I signals in retinal 

and iris tissues, suggesting an open chromatin state in the THUMPD2 variant (Figure 

20). However, there was not available data for H3K27Ac marks in eye tissues, neither 

in ENCODE data (Encode Project Consortium, 2012) nor in the Epigenome 

Roadmap, to confirm the possible regulatory effect of the rs557998486 variant in 

THUMPD2. 

2.5 Cross-phenotype analysis 
After analyzing all the phenotypes available at GERA cohort independently, GWAS 

significant variants were selected for a cross-phenotype association analysis in 

GUIDANCE based on the most significant model of inheritance according to the 

association results. In this analysis, 8 genome-wide associated loci were found 

significant (p ≤ 2.58 × 10-5) for at least one additional disease (Supplementary Table 

4). 

Of note, HLA regions were associated with many complex diseases, including asthma, 

type 2 diabetes, dyslipidemia, cancer and age-related macular degeneration. 

Additionally to the known comorbidity at TSLP/WDR36 locus (rs252716) that was 

associated with an increased risk of asthma (OR [CI 95%]= 1.10 [1.07-1.14], p-value= 

3.53 × 10-9) and allergic rhinitis (OR [CI 95%] = 1.07 [1.04-1.1], p-value = 2.79× 10-

6) (Ferreira et al., 2014), the new rs154073 variant at ETF1 locus associated with an 

increased risk of asthma (OR [CI 95%] = 1.18 [1.12-1.25], p-value = 4.23 × 10-9) was 

also associated with an increased risk of irritable bowel following the recessive model 

(OR [CI 95%] = 1.22 [1.12-1.34], p-value = 1.30 × 10-5).  

Moreover, 5 up to 8 loci, including HLA, associated dyslipidemia with cancer, asthma, 

age-related macular degeneration, hypertension, peripheral vascular disease, 

osteoarthritis, type 2 diabetes and cardiovascular disease.  
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The TRIB1 locus was associated with a protective effect for both dyslipidemia 

(rs2954038, OR [CI 95%] = 0.88 [0.86-0.91], p-value  = 2.53 × 10-19) and 

hypertension (rs2954038, OR [CI 95%]= 0.94 [0.91-0.97], p-value = 2.40 × 10-5), and 

ABO locus at chromosome 9 is associated with an increased risk of dyslipidemia 

(rs532436, OR [CI 95%] = 1.16 [1.13-1.2], p-value = 8.10 × 10-21), peripheral 

vascular disease (rs8176685, OR [CI 95%] = 1.20 [1.13-1.27], p-value= 4.91 × 10-10) 

and osteoarthritis (rs9650778, OR [CI 95%] = 1.11 [1.06-1.16], p-value = 2.34 × 10-

5).   

Furthermore, the NECTIN2/PVRL2 locus was associated with an increased risk of 

dyslipidemia (rs66626994, OR [CI 95%] = 1.26 [1.21-1.31], p-value = 4.55 × 10-31) 

and cardiovascular disease (rs66626994, OR [CI 95%] = 1.11 [1.06-1.16], p-value = 

1.44 × 10-5), but with a protective effect in type 2 diabetes (rs34342646, OR [CI 95%] 

= 0.89 [0.84-0.94], p-value = 1.03 × 10-5).  

In addition, the rs4722756 variant at JAZF1 locus was associated both type 2 diabetes 

(p-value = 4.36 × 10-8) and asthma (p-value= 6.87 × 10-6) for the genotypic model.  

Finally, the rs3764261 variant at CETP locus at chromosome 16 was associated with a 

protective effect for dyslipidemia (OR [CI 95%] = 0.91 [0.88-0.93], p-value = 2.85 × 

10-12) but an increased risk of age-related macular degeneration (OR [CI 95%] = 1.12 

[1.07-1.19], p-value = 1.94 × 10-5). 
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Figure 19. Functional characterization of rs77704739.  

Signal plot for chromosome 5 region surrounding rs77704739. Each point represents a variant, with 

its p-value from the discovery stage on a −log10 scale in the y-axis. The x-axis represents the genomic 

position (hg19). For the 5 SNPs in the credible set, the tracks show open chromatin sites in pancreatic 

islets, two of them classified as active promoters and one bounded by pancreatic islet specific 

transcription factors, such as PDX, NKX and FOXA2.  
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Figure 20. Functional characterization rs557998486. 

Signal plot for chromosome 2 region surrounding rs557998486. Each point represents a variant, with 

its p-value from the discovery stage on a −log10 scale in the y-axis. The x-axis represents the 

genomic position (hg19). DNAse I signals in eye tissues suggest an open chromatin site in the 

rs557998486 locus. 
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After almost 15 years of GWAS, thousands of loci have been identified for a vast 

number of complex diseases, including type 2 diabetes, coronary artery disease, 

schizophrenia, major depressive disorder and subtypes of cancer, among others (Tam 

et al., 2019). However, initial studies did not have the necessary statistical power to 

find common associated variants with small effects, which are responsible for a large 

fraction of the heritability (i.e., the variance explained by genetic factors) (Yang et al., 

2010). This fact pointed at the sample size as the first limiting factor for finding 

regions associated with complex diseases. Another explanation that limits the 

statistical power of GWAS is the incomplete LD that can exist between the causal 

variant and genotyped variants, especially for variants with low MAFs (Yang et al., 

2010). Therefore, low frequency and rare variants, and their possible associations, 

remain elusive. Hence, the lack of enough sample sizes and the inability to detect loci-

trait associations lead by low-frequency and rare variants or common variants with 

small effects, contribute to the missing heritability (Wainschtein et al., 2019).  

With the need for increasing sample sizes, next-generation sequencing is still 

prohibitive as a common strategy, mostly due to its elevated cost. Although moving 

from genotyping data to next-generation sequencing is perceived as the natural 

evolution of GWAS, still the cost of sequencing far exceeds the cost of genotyping. 

Some examples of initiatives that have sequenced thousands of individuals are of an 

extensive utility for the community, such as UK10K (UK10K Consortium et al., 

2015) or TopMED (Taliun et al., 2019). However, these initiatives represent titanic 

efforts and cannot constitute the default procedure yet to study the genetics behind 

complex diseases. Hence, even though sequencing would resolve the limitation of 

including low-frequency and rare variants into the analysis, the affordable small 

sample sizes would be unpowered to detect new associations with small effects. 

For that reason, GWAS are still mainly based on genotyping array data, and GWAS 

have remarkably enlarged the number of known associated loci by 1) increasing the 

sample sizes and 2) including genotype imputation to increment the number of 

variants to analyze. However, as some authors argued (Tam et al., 2019), GWAS 

findings to date only represent the tip of the iceberg, and many opportunities to 

improve and increment novel findings are still ahead. Beyond increasing the sample 
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size, expanding the range of phenotypes, the populations studied and including 

different analyses may lead to additional findings and may build a better picture of the 

genetic landscape behind complex diseases (Tam et al., 2019).  

In brief, this thesis sought to widen and deepen the analysis of the genetics behind 

complex diseases by improving current GWAS strategies.  

In the next pages, the results from this thesis that we devoted to boost GWAS are 

discussed. To improve GWAS, we implemented genotype imputation using multiple 

reference panels to cover more variants, including variants with a MAF as low as 

0.1% and INDELs. In addition, we significantly increased the number of discoveries 

from GWAS by including the X chromosome and all the possible inheritance models 

in the association test. To bring a complete GWAS tool to a broader community, we 

integrate this methodology into an easy-to-use GWAS workflow called GUIDANCE.  

Finally, during the development of GUIDANCE, we have applied its methodology to 

different cohorts contributing to multiple studies (Appendix 1-5), with particular focus 

on the GERA dataset, a large cohort for age-related diseases. After the analysis of 

GERA cohort using GUIDANCE, the identification of novel genetic variants that 

modify risk of complex diseases, including rare variants, INDELs and non-additive 

associations, we demonstrated the importance of performing a comprehensive analysis 

of the data to better understand the genetic architecture behind complex diseases, as 

well as a way to take full advantage of the existing and newly generated GWAS data. 

1 Comparison of GUIDANCE with previous efforts to 
collect and organize GWAS steps into single 
applications 

Current workflows to perform GWAS are complex and time-consuming. The large 

sample sizes partly explain this. However, GWAS steps have to manage tasks 

dependencies and different configuration parameters, computing requirements, levels 

of parallelism, disk and memory usage as well as different file formats.  
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Some efforts have been done to collect and organize some GWAS steps into single 

applications, such as GRIMP (Estrada et al., 2009), a web-based interface and 

application to run the association testing, or GWASpi (Muniz-Fernandez et al., 2011), 

a tool that integrates a QC pipeline and the association testing. Of note, the authors of 

these applications already expressed the need for these automatized pipelines and the 

complexity of manually handling a GWAS, even without taking into account 

genotype imputation. Integrated today by default in every single GWAS pipeline, 

genotype imputation takes GWAS complexity and its computational requirements one 

step further.  

During the development of GUIDANCE, online imputation servers (Michigan 

Imputation Server, https://imputationserver.sph.umich.edu/index.html, and Sanger 

Imputation Server, https://imputation.sanger.ac.uk/) that host the largest reference 

panels to date, both the HRC and TOPMed, were released. These servers allow 

accurate and efficient imputation with these sequence-based reference panels. 

Nevertheless, they still do not constitute a solution for many current analysis 

scenarios, as users are required to upload their individual-level genotyped data, cannot 

use and integrate their in-house reference panels, and cannot perform medium or 

large-scale analysis due to intrinsic limitations of the resources. In addition, even 

when using these servers is possible, there are still several steps needed beyond the 

imputation, such as post-imputation quality filtering and association testing, which are 

not yet covered by these servers, as it would require uploading sensitive phenotype 

data. 

Recently, during this thesis, the Pan-African bioinformatics network, H3ABioNet, has 

developed a workflow for association and imputation on top of NextFlow (Baichoo et 

al., 2018), which has direct support for Amazon EC2 and Google Cloud. H3ABioNet  

pipelines include Eagle 2 and MINIMAC4, as well as a linear mixed-model 

association testing with GEMMA (Zhou and Stephens, 2012), BOLT-LMM (Loh et 

al., 2015) or FaST-LMM (Lippert et al., 2011).  

In addition, RICOPILI, which stands for “Rapid Imputation for COnsortias 

PIpeLIne”, has been developed (Lam et al., 2019). RICOPILI includes QC and 

genotype imputation through Michigan or Sanger imputation servers as well as a post-
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imputation module, including association using PLINK, graphical representation of 

the results, meta-analysis using METAL, and conditional analysis among others.  

Moreover, Hail (Hail Team, 2016), a Python-based genomic data analysis tool that 

can be executed in Google Cloud, has been developed. This multi-purpose Python 

library, implemented in Scala, Spark (Zaharia et al., 2012), and C++, includes QC and 

GWAS among its features, and have been widely adopted in academia. However, it 

still not constitute an easy-to-use integrated solution for a complete GWAS, and some 

studies using Hail have also used additional tools for GWAS, such as SNPTEST, R, 

PLINK (Roselli et al., 2018) or BOLT-LMM (Kerminen et al., 2019). 

Compared to existing pipelines, we wanted an integrated pipeline that executes in a 

single run all the main steps in any current GWAS workflow, and not running 

separated scripts that can be integrated, even though GUIDANCE can also run in 

modules if needed. For that reason, we did not include QC as part of the workflow 

since we consider that manually checking the QC results before any analysis is 

essential to avoid dragging errors throughout the pipeline, thus reducing the 

possibility of spurious associations. Besides, separating QC from the actual pipeline is 

important because pre-phasing and genotype imputation are highly computational 

demanding, and checking the data before executing those steps can prevent 

unnecessary waste of resources. 

Due to its nature, the X chromosome requires additional handling, and autosomal 

pipelines are not accurate methods to analyze it. Some pipelines, such as XWAS (Gao 

et al., 2015), have been developed for analyzing the X chromosome in GWAS. 

However, conceiving the analysis of the X chromosome and the analysis of autosomes 

as pipelines that run separately had not helped to integrate the X chromosome analysis 

in GWAS by default (Wise et al., 2013).  

H3ABioNet, RICOPILI and Hail pipelines constitute an enormous effort to make 

current GWAS steps more feasible. We include GUIDANCE as an additional pipeline 

for GWAS that covers in a single run all the steps included in any current GWAS 

workflow without user intervention, from QCed files to graphical representation (i.e., 

haplotypes phasing, genotype imputation, post-imputation filters, association testing, 
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post-association filtering, and summary reports and graphical representation). Besides, 

GUIDANCE offers several methodological advantages over the other pipelines. Those 

advantages, which will be fully discussed in further sections, include the imputation of 

genotypes using multiple reference panels, the integration of the X chromosome’s 

analysis, and the association testing with non-additive inheritance models.  

2 Developing GUIDANCE 

2.1 The programming framework behind GUIDANCE 
GUIDANCE has been developed on top of COMPSs (Lordan et al., 2014), a 

programming framework that, similarly to NextFlow, aims to make the development 

of parallel workflows in computing platforms such as clusters or clouds, easier (see 

Methods, section 1.1, for a detailed description of COMPSs). Other options of 

different Big Data frameworks are available, such as Hadoop (D. Cutting, 2006), used 

by the Michigan Imputation Server, or Spark (Zaharia et al., 2012). However, these 

frameworks require their own defined operators and specific data types, while 

GUIDANCE is based on the use of external binaries and the exchange of files, which 

requires the flexibility of a more generic programming model, like the one offered by 

COMPSs. By combining and integrating state-of-the-art GWAS analysis tools 

employing COMPSs, GUIDANCE frees users from the responsibility of dealing with 

the computational complexity of the whole process. 

However, all the advantages and plasticity offered by COMPSs have a counterpoint. 

As COMPSs is still in constant development, the lack of a stable version of COMPSs 

might limits GUIDANCE utility. Nevertheless, working together has offered us the 

possibility of improving both COMPSs itself and, therefore, also the capabilities of 

GUIDANCE, making it more efficient and portable. We are already working on 

running GUIDANCE on Google Cloud, and we were able to run GUIDANCE outside 

the MareNostrum III, with LSF queue system, and Marenostrum IV, with Slurm 

queue system. Specifically, we run GUIDANCE using SuperMUC, a supercomputer 

from the Leibniz Supercomputing Centre with a Loadleveler queue system, thus 

demonstrating the possibilities of GUIDANCE’s portability. 
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2.2 State-of-the-art GWAS tools integrated in GUIDANCE 

GUIDANCE includes SHAPEIT2 and Eagle2, and IMPUTE2 and MINIMAC4 for 

pre-phasing and genotype imputation, respectively, to suit users’ demands.  

However, during the development of GUIDANCE, SHAPEIT3 an IMPUTE4 have 

been developed and applied to large cohorts. Concretely, IMPUTE4 uses the same 

method behind IMPUTE2; thus the results from both methods are identical but 

reducing memory usage and increasing speed using compact data structures (Bycroft 

et al., 2018). Hence, the integration of IMPUTE4 in GUIDANCE will improve its 

performance without compromising accuracy. Recently, IMPUTE5 was also released 

(Rubinacci et al., 2019). 

For SHAPEIT3, the developers recommend to use it when the sample size is larger 

than 20,000 since SHAPEIT2 is more accurate at least for that sample size (the 

authors did not run SHAPEIT2 in larger sample sizes due to computational 

limitations) (O'Connell et al., 2016).  

Lately, SHAPEIT4 has also been released (Delaneau et al., 2018). Applied to UK 

Biobank, it demonstrated to be faster than SHAPEIT3, Eagle2 and Beagle5 

(Browning et al., 2018), with an improved memory usage compared to SHAPEIT3 

and similar performance compared to Eagle2 and Beagle5 (Delaneau et al., 2018). In 

terms of accuracy, all methods showed low error rates that decrease as the sample size 

increase (Delaneau et al., 2018). No accuracy comparison between SHAPEIT2 and 

SHAPEIT4 has been made. Nevertheless, even if the accuracy were better when using 

SHAPEIT2, phasing increasingly large sample sizes would not be feasible with 

SHAPEIT2 at some point. Hence, the integration of SHAPEIT4 in GUIDANCE 

would be necessary to deal with the continuously increasing sample sizes.  

To date, GUIDANCE uses SNPTEST for the association test. A limitation of 

SNPTEST is that it cannot handle related individuals, thus limiting the analysis to 

case-control or unrelated population samples. For case-control studies with unrelated 

individuals, population stratification can be mitigated with an adequate QC before 

GWAS and adding PCA as covariates for the associatin test. However, the new trend 
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of collecting thousands of data from volunteers in Electronic Health Records and 

biobanks, make cryptic relatedness and population stratification harder to account for. 

To that end, methods based on linear mixed models (LMM), such as GEMMA (Zhou 

and Stephens, 2012), FaST-LMM (Lippert et al., 2011) and BOLT-LMM (Loh et al., 

2015), have received an increasing attention since they account for relatedness and 

population structure. In a comparison of 1) excluding related samples in UK Biobank 

and performing linear regression, which implies losing around 30% of the sample 

size, or 2) using LMM with minimal sample removal, the authors demonstrated that 

the second option doubles the statistical power (Loh et al., 2018). However, these 

methods also have limitations since LMM can be applied to case-control studies but it 

has not been designed to test binary traits. For example, methods such as BOLT-

LMM can produce a loss of power and inflate false positive rates in unbalanced case-

control cohorts, especially for low frequency and rare variants (Loh et al., 2018). 

SAIGE, developed for binary traits with a logistic mixed model, copes with 

unbalanced case-control ratios for any MAF (Zhou et al., 2018). However, SAIGE 

comes too with its own limitations. SAIGE may experience a loss of power since it 

assumes an infinitesimal model (the effect sizes are normally distributed, i.e., all 

variants are causal with small effect sizes). Hence, it may not have power in non-

infinitesimal genetic architectures (Zhou et al., 2018), and it has been estimated that 

complex diseases have, in fact, a limited number of causal loci (Stahl et al., 2012). 

Conversely, BOLT-LMM models non-infinitesimal genetic architectures (Loh et al., 

2015), but does not produce accurate estimates of effect sizes (i.e., odds ratios) for 

binary traits. 

There is no single solution for all possible scenarios, and the quantity of high-quality 

tools that are continually emerging makes it difficult to cover them all. Nevertheless, 

the actual version of GUIDANCE is limited to SNPTEST and the analysis of cases-

controls cohorts, and does not have the most efficient tools that are currently available 

for the analysis of current and ongoing GWAS datasets such as UK Biobank. Adding 

new versions of the already included tools, such as SHAPEIT4 or IMPUTE5, adapting 

the pipeline to handle quantitative traits using SNPTEST or including LMM tools for 

the association, have to be considered as next development steps for GUIDANCE.  
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Finally, none of the methods described above except SNPTEST allow the association 

using different models of inheritance. 

2.3 Unique features included in GUIDANCE 
GUIDANCE integrates unique features that are not available when using other 

GWAS workflows describe above, which will be described in the following sections. 

2.3.1 The benefits of genotype imputation using multiple reference 
panels 

A common practice today is to impute genotypes using HRC, a set of large reference 

panels of nearly ~30,000 individuals predominantly from European populations. In 

contrast, GUIDANCE allows the combination of different reference panels. 

The greatest benefit of HRC is its sample size, which allows imputing low-frequency 

and rare variants (MAFs as low as 0.001) with high accuracy (McCarthy et al., 2016). 

However, HRC does not include INDELs since INDELs have been inconsistently 

called through the studies that compose HRC. Hence, the inclusion of additional 

reference panels provides INDELs into the analysis, which are more likely to have a 

causal effect.  

Besides, the sample size is not the only factor to take into account to gain genotype 

imputation accuracy. A similar ancestry for both the study samples and the reference 

panel increases haplotype matches, thus improving the imputation accuracy of rare 

variants. Hence, population-based panels outperformed 1000G and HRC, even though 

1000G includes more variant and HRC includes more samples (Mitt et al., 2017).  

Due to these facts, and to get full advantage of existing panels, we designed 

GUIDANCE to run genotype imputation with an unlimited number of reference 

panels simultaneously. GUIDANCE ultimately combines the results into a final set of 

variants, selecting for each variant the imputation result from the panel with the 

highest accuracy, without the need of merging the reference panels in advance. A 

different approach to combine reference panels is already included in IMPUTE2. 

However, this method is based on cross-imputing two reference panels to obtain a 

merged reference panel, and the evaluation of this method did not demonstrate its 
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usefulness, giving similar results for the combined panel (i.e., UK10K + 1000G phase 

1) in the presence of a large population-based panel (i.e., UK10K) (Huang et al., 

2015).  

In contrast, we demonstrated the usefulness of our method since imputing with 

different reference panels was determinant to identify 28.7% of all the GWAS 

significant associations in the GERA analysis. An additional study has also benefited 

from this feature during GUIDANCE development; the 70KforT2D project, a 

reanalysis and meta-analysis of ~70,000 type 2 diabetes cases and controls from 

European ancestry, gained up to 41% of INDELs after combining the imputation 

results from 1000G phase3 and UK10K (Bonas-Guarch et al., 2018).  

The availability of computational resources is a limiting factor when deciding which 

and how many panels will be used for imputation. We have been able to perform an 

analysis on such a scale due to the privileged computational environment at the 

Barcelona Supercomputing Center (BSC). Imputing with four reference panels 

simultaneously, as we did, is highly computational demanding, and possibly more 

than imputing with a large cross-imputed reference panel. Nevertheless, a proper 

comparison of both approaches would be necessary to determine their advantages and 

disadvantages. 

2.3.2 Including non-additive inheritance models in the association 
testing 

Although most of the genetic variance is expected to be additive (Zhu et al., 2015), 

non-additive genetic associations might be missed in the conventional only-additive 

approach. Among the advantages of using SNPTEST to test for single-variant 

associations, there is the possibility of testing different models of inheritance. Using 

GUIDANCE, our analysis of GERA demonstrated that the analysis of non-additive 

models of inheritance was determinant to identify 21.3% of associated loci at a 

genome-wide significance level, and 50% of the novel variants.  

The models of inheritance that can be analyzed using SNPTEST are additive, 

dominant, recessive, heterozygote and general, as they are defined by SNPTEST 

developers.  



 

 

	 Discussion	 	
	 	

126 

A technical limitation when including non-additive association tests using SNPTEST 

is the required computational time, as it increases with the number of models to be 

analyzed. An additional limitation is that users have to be aware that correction by 

multiple testing has to be adjusted properly when including multiple inheritance 

models into the analysis. This can be counterproductive, diminishing the power to find 

new associations. To adjust the code to users’ preferences and needs, the user can 

specify which inheritance models want to analyze in the configuration file, selecting 

from one to all of them. This represents a unique feature in GUIDANCE, which 

accommodates downstream analysis to the selected inheritance models, thus 

facilitating the interpretation and management of the results.  

2.3.3 Summary statistics, graphical presentation, and cross-phenotype 
analysis 

After the association test, GUIDANCE generates easy-to-read tables from the 

summary statistics and its graphical representation, including Q-Q plot and Manhattan 

plots for each disease and inheritance model analyzed (see Supplementary Figures 1-

22 to see the plots from the analysis of GERA). Therefore, the user can quickly focus 

on the results, detect possible errors in the data and consider future analyzes 

efficiently. Among the future improvements that could be of interest in GUIDANCE, 

it would be including the generation of regional plots for significant loci, since it is 

probably the next step that the user will perform, and it is a relatively easy step to 

integrate in GUIDANCE using tools such as LocusZoom.  

GUIDANCE also includes a cross-phenotype analysis when more than one disease is 

available in the study to interrogate the association of multiple phenotypes for the 

same variant. The cross-phenotype analysis is performed only for the inheritance 

model with the lowest p-value. However, a variant can be found associated with a 

significant p-value following both additive and an additional non-additive model. In 

this case, if the non-additive p-value is lower than the additive p-value, the non-

additive model is used for cross-association with the other phenotypes. Nevertheless, 

non-additivity is not defined by the model that shows the lowest p-value, but by the 

deviation from additivity (Wood et al., 2016; Zhu et al., 2015), a test that can be 

performed using PLINK. Including the dominance deviation test into GUIDANCE 
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will further help in the interpretation of the results, properly differentiating truly non-

additive variants from those that are additive but are found non-additive by a matter of 

statistical power. 

A limitation of the cross-phenotype analysis is that it does not account for overlapping 

samples between diseases. Therefore, in cohorts including multiple diseases, such as 

GERA or large biobanks, where thousands of individuals might be classified as cases 

for multiple phenotypes (e.g., cardiovascular, hypertension and dyslipidemia), it may 

be difficult to distinguish the truly cross-phenotype associations from the spurious 

ones due to sample overlap.  

2.3.4 Including the X chromosome analysis alongside the autosomes 
As explained in previous sections, one of the main gaps in GWAS is the systematic 

omission of the X chromosome. The X chromosome analysis is promising because it 

has been understudied, is a relatively large chromosome, and many diseases show 

different prevalence between males and females. However, it requires additional 

handling compared to autosomes for a proper analysis. Even in the existence of efforts 

to collect the tools required for its analysis, such as XWAS (Gao et al., 2015), its 

exclusion is still systematic. This could be partially explained because, from a user 

point of view, it still represents a separate analysis from the autosomes that will 

require additional handling. Besides, the analysis of the autosomes had been enough 

for high impact publications. Nevertheless, the X chromosomes deserved more 

attention, and there is no reason to keep on its exclusion from GWAS.  

In order to fill this gap, we integrated the X chromosome analysis in GUIDANCE. 

Thus, the user can effortlessly analyze the X chromosome. Hence, even though it has 

its own sequence of tasks accounting for its particularities, the analysis itself remains 

agnostic for the user, being as easy as to run any of the autosomes. That is, while for 

the user the analysis of the X chromosome does not differ from the analysis of the 

autosomes specified in the configuration file, GUIDANCE has an alternative and 

specific sequence of tasks for chromosome X along the code. Hence, the analysis of X 

chromosome occurs in parallel with the autosomes through its alternative route, from 

the starting point (i.e., PLINK files) until the end (i.e., summary statistics and 

graphical representation), without any additional handling from the researcher.  
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We hypothesize that the availability of public data containing the X chromosome that 

has not been analyzed, combined with GUIDANCE, which fully integrates its 

analysis, is a promising way to mine GWAS’ existing data. In addition, the integration 

of the chromosome X analysis as it has been done in GUIDANCE will prevent this 

situation from happening again, and we expect that future GWAS will all include the 

analysis of the X chromosome by default.  

In summary, for a large proportion of this thesis we focused our efforts on building a 

unique integrated framework that not only facilitates GWAS and its interpretation but 

also promotes a complete an comprehensive analysis of genotyped data. 

3 The importance of analyzing the wide spectrum of 
allele frequencies and non-additive inheritance 
models; GERA results 

3.1 Combining panels to cover low-frequency, and rare 
variants as well as INDELs 

Using GUIDANCE to analyze the GERA cohort, the largest publicly available cohort 

for age-related diseases to date, and combining the results of 1000G phase 3, UK10K, 

GoNL and HRC, we were able to test for association 16,059,686 variants with high 

imputation accuracy (info score > 0.7). 

Through this study, we showed that imputing with different reference panels was 

critical to identify 28.7% (27 out of 94 loci) of all the GWAS significant associations 

since different panels have a different power to properly impute certain variants.  

As a known example, the well-known IL33 locus associated with asthma (Bonnelykke 

et al., 2014; Ferreira et al., 2014; Ferreira et al., 2017; Pickrell et al., 2016) was found 

associated only when imputing with 1000G phase 3 as the reference panel. However, 

the full locus was excluded when imputing with the other reference panels.  



 

    

	 Discussion	 	
	 	

129 

Besides, we also demonstrated that genotype imputation using multiple reference 

panels allowed us to identify new associated regions led by low-frequency (0.05 > 

MAF > 0.01) and rare variants (0.01 > MAF > 0.001). In our analysis of the GERA 

cohort, including reference panel with large sample sizes or large number of variants 

(i.e., HRC and 1000G phase 3, respectively) as well as population-specific reference 

panels (i.e., UK10K and GoNL) allowed the identification of 15 out of 26 (57.7%) 

novel findings led by low-frequency and rare variants (Figure 17c). 

In addition, three out of 26 novel associations were led by INDELs (Table 7). 

INDELs, the second most common type of variants after SNPs in the human genome 

(1000 Genomes Project Consortium et al., 2015), have been largely associated with 

human disease in other studies (Dai et al., 2019). This demonstrates that using only 

one reference panel that does not include them, i.e., the HRC, will hinder our 

understanding of the genetic architecture of complex diseases. For example, the novel 

recessive INDEL associated with age-related macular degeneration (rs557998486) 

could not have been well tagged by the HRC reference panel, as the SNP with the 

highest LD shows a modest linkage disequilibrium and significance way beyond the 

INDEL (rs724682, LD r2 = 0.3728, p = 0.0057). 

In addition to that, when looking for the causal variant in order to design future 

functional studies, using only one reference panel such as HRC will be misleading 

since the most likely causal variant according to the credible sets from HRC will 

ignore INDELS, which can result in useless follow-up functional experiments based 

on a non-functional variant. 

In summary, the combination of multiple reference panels using our approach has 

demonstrated to cover a wider spectrum of variant frequencies and different forms of 

genetic polymorphisms, which best characterizes the genetic architecture of complex 

diseases, also increasing the association findings.  
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3.2 Obtaining a better profile of the genetic architecture of 
complex diseases by analyzing all inheritance models 

To further improved our understanding of the genetics behind complex diseases, the 

inclusion of non-additive inheritance models has been proven to be crucial through 

our analysis of the GERA cohort.  

After the association test of 16,059,686 variants for the 22 diseases in GERA, 13 out 

of 26 novel associations (50%) were only found when non-additive models were 

tested (Figure 18), which emphasizes the importance of including non-additive 

association tests to find new associations in GWAS. Besides, the fact that 13 top 

variants deviate from the additivity significantly (Table 7) suggests that analyzing the 

additive model alone,  not only reduces the number of new associations but also limits 

what we know about the genetic architecture of complex diseases, which also obey 

non-additive models of inheritance. 

As a key step to validate our findings, we sought for replication in UK Biobank. 

However, the differences between UK Biobank and the GERA cohort limited our 

possibilities of replication. For example, we could not find an equivalent phenotype in 

UK Biobank for most of the novel findings.  

One of the reasons for this mismatch is that the GERA cohort has some general 

phenotypes encompassing multiple diseases, such as cancer, cardiovascular or 

psychiatric, which makes the interpretation of the results challenging.  

Furthermore, the GERA cohort is based on age-related conditions, and participants 

have an average age of 63, while UK Biobank cohort is a prospective cohort with 

substantially healthier and younger participants, with an average age of 56.52 years 

(Fry et al., 2017; Hewitt et al., 2016). For instance, while 12.3% of participants in the 

GERA cohort have type 2 diabetes (6,967 from 56,637 samples), only 3.9% of UK 

Biobank participants do (14,114 from 361,141 samples). Besides, individuals 

considered as controls in UK Biobank may develop age-related conditions once they 

reach the age of onset. Even for diseases like asthma, which can occur at any age, it 

has also been suggested that the etiology of childhood and adult-onset differ, despite 

the existence of some shared genetic risk factors (Ferreira et al., 2019; Pividori et al., 
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2019). Therefore, the differences between the GERA cohort and UK Biobank make 

the use of UK Biobank for replication of binary traits limited, and highlight the 

importance and utility of aging cohorts like GERA.  

Replication is necessary to confirm novel findings, but many reasons could explain 

the lack of replication when using UK Biobank. Exploring additional cohorts with 

similar demographic characteristics to GERA, or properly adjusting the replication 

analysis in UK Biobank, for example, filtering controls younger than the age at onset 

for each disease, as it has been successfully proven in other studies (Bonas-Guarch et 

al., 2018), or using a better definition of the phenotypes for UK Biobank, are 

promising further steps to confirm our novel associated loci.  

Despite the utility of using non-additive models to discover new associations, the 

correction for multiple testing results in an experiment-wide significant p-value cutoff 

of p < 9 × 10-10 after the Bonferroni correction for 22 diseases and five inheritance 

models (2.5 effective tests). With this experiment-wide p-value cutoff, two out of four 

novel replicated loci are still significant. Applying this threshold, which may be too 

conservative since the 22 diseases are not fully independent, only the additive rare 

SNP rs2014497 (MAF = 0.008), associated with cancer, and the recessive INDEL 

rs557998486 (MAF = 0.009), associated with age-related macular degeneration, did 

not pass the p-value threshold accounting for multiple testing. The replication of 

rs2014497 may have required a larger sample size to have enough statistical power to 

confirm a rare variant association since all cancer types that replicate in the UK 

Biobank have a number of cases below 500. In addition, the replication of the rare 

INDEL rs557998486 associated with macular degeneration may have required a 

larger sample size as well since there are only 2,726 cases for age-related macular 

degeneration in UK Biobank compared to the 3,685 cases in the GERA cohort, which 

implies that GERA has a larger effective sample size than UK Biobank (13,780 and 

10,652, respectively). Moreover, the lower average age in the UK Biobank 

participants compared to that in GERA can also impair the statistical power to identify 

this association with age-related macular degeneration.  
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However, additional findings provides support for the majority of our novel disease-

associated loci, including the association with biomarkers or related traits in UK 

Biobank and further lines of evidence in previous studies. 

To give an example, three loci were associated in our study with cardiovascular 

disease (“any” cardiovascular disease, according to GERA cohort description). Two 

out of three associated loci have never been associated with related traits. The known 

locus, leaded in our study by the common additive variant rs2466455 (MAF = 0.213, 

p = 9.44 × 10-9, OR = 0.90), was previously associated with ischemic stroke (LD r2 > 

0.90) (Malik et al., 2018; Ninds Stroke Genetics Network and International Stroke 

Genetics Consortium, 2016; Traylor et al., 2012) and atrial fibrillation (LD r2 > 0.90) 

(Christophersen et al., 2017; Ellinor et al., 2010; Low et al., 2017; Nielsen et al., 

2018; Roselli et al., 2018), which points out that, despite the vague definition of the 

phenotype in GERA, our study is still powerful for finding new associations.  

In UK Biobank, the most similar phenotype with the largest number of cases is 

“Vascular/heart problems diagnosed by doctor: Stroke” with 5,587 cases. Hence, UK 

Biobank might be unpowered to replicate our novel findings if they are also related to 

ischemic stroke or atrial fibrillation.  

Nevertheless, we found additional evidence for our new associations with 

cardiovascular disease. Among the two new loci, one is led by the intronic 

rs10858023 common variant (MAF = 0.349) at the DCLRE1B gene. This variant it is 

significant under the additive model (p = 3.26 × 10-8, OR [CI 95%] = 1.09 [1.06-

1.12]) but showed a highest significant p-value and a higher effect size when the 

dominant model was tested (p = 2.11 × 10-9, OR [CI 95%] = 1.14 [1.09 – 1.19]) and, 

in addition, it deviates from the additivity according to the dominance deviation test (p 

= 0.019). Interestingly, this variant is associated in UK Biobank with 

hypothyroidism/myxoedema (OR [CI 95%]= 1.19 [1.16-1.23], p= 9.64 × 10-28) as 

well as levothyroxine sodium treatment (beta [CI 95%]=1.18 [1.14-1.22], p= 2.67 × 

10-20). Hypothyroidism is a well-established risk factor for cardiovascular disease 

(Biondi and Klein, 2004). In addition, this variant is associated with insulin-like 

growth factor-1 (IGF-1) (beta [CI 95%]= -0.01 [-0.02--0.01], p = 3.95 × 10-4) and 
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triglycerides (beta [CI 95%]= -0.01 [-0.02--0.005], p = 4.95 × 10-4), both related to 

hypothyroidism as well as cardiovascular disease. Interestingly, low levels of IGF-1 

have been associated with a higher risk of atrial fibrillation (Busch et al., 2019) and 

ischemic stroke (Saber et al., 2017). For triglycerides, a high level of triglycerides in 

plasma is associated with an increased risk of cardiovascular disease (Miller et al., 

2011; Nordestgaard and Varbo, 2014), and the coexistence of dyslipidemia and 

hypothyroidism is linked to the development of coronary heart disease (Duntas and 

Brenta, 2018).  

The second new locus associated with cardiovascular disease in the GERA cohort has 

a low-frequency deletion as the top variant, rs201654520 (MAF = 0.017), an intronic 

recessive INDEL at CACNB4. Due to its low MAF, the replication of this variant in 

the UK Biobank is even harder than for rs10858023 at DCLRE1B. However, 

additional evidence is also found for this association. An intronic variant in CACNB4 

has been previously associated with idiopathic dilated cardiomyopathy in African 

Americans in a recent GWAS (Xu et al., 2018). However, the variant described is in 

linkage equilibrium with our low-frequency INDEL (rs150793926, LD r2 = 0.0016), 

and this association has never been reported in European populations. In addition to 

its low MAF, this variant was only found genome-wide significant when the recessive 

model was tested (OR [CI 95%] = 19.02 [5.50-65.84], p = 4.32 × 10-8) and could not 

have been found with the additive model (OR [CI 95%] = 1.10 [0.98-1.22], p = 1.10 × 

10-1, dominance deviation p = 4.36 × 10-6). More evidence is found at the Target 

Validation Platform (https://www.targetvalidation.org/, accession in September 2019), 

where two vasodilator drugs in phase IV targeting CACNB4, Suloctidil and Bepridil, 

are linked to cardiovascular disease. Interestingly, among the 20 adverse effects for 

Bepridil, it is included cardiac failure (second position), torsades de pointes (a 

polymorphic ventricular tachycardia) (third position), and atrial fibrillation (fourth 

position).  

Nevertheless, despite the limitations of replication for GERA findings using UK 

Biobank, the exclusively recessive variant rs77704739 near PELO replicates with UK 

Biobank (OR meta-analysis = 2.46 [1.88 – 3.21], p meta-analysis = 4.68 × 10-11). 

Further lines of evidence for this association are also found in previous studies, where 
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an independent region near PELO was previously associated to type 2 diabetes in 

Greenlandic population with a large recessive impact, but in a variant that is not in LD 

with our discovery top variant (rs870992, p = 1.8 × 10-8, OR = 2.79, LD r2 = 0.0009) 

(Grarup et al., 2018).  

Also, the recessive INDEL rs557998486 associated with age-related macular 

degeneration replicated with UK Biobank. However, the meta-analysis p-value does 

not pass the multiple testing threshold correction when considering several diseases 

and models of inheritance (p meta-analysis = 3.29× 10-8). In summary, further 

analysis, such as interrogating additional cohorts that are more similar to GERA than 

UK Biobank, or filtering young controls in UK Biobank, are needed to confirm its 

association. 

Our exploratory functional annotation analysis for these two variants with a recessive 

effect, rs77704739 and rs557998486, suggested that rs77704739 locus contains active 

promoters and an active enhancer bounded by pancreatic islet-specific transcription 

factors, and rs557998486 might be a regulatory region in an open chromatin site in 

eye tissues. Hence, these results highlight the importance that non-additive variants 

may have in the etiology of complex diseases, such as type 2 diabetes and age-related 

macular degeneration. 

Overall, after considering all the supporting evidence illustrated with many examples 

for the novel associations findings in this study, we consider that all our novel 

findings deserve future validations and follow-up analyses, and demonstrate the 

importance of a comprehensive analysis including non-additive models when 

performing GWAS. Hence, our findings suggest that future analyses, including those 

involving large scale biobanks and large meta-analyses consortia, should consider 

analyzing, or re-analyzing existing data, using different models of inheritance and 

multiple reference panels.  

In our commitment to share our results with the scientific community, a public 

searchable database including non-additive effects for 16 M of variants and 22 

phenotypes is available at the Type 2 Diabetes Knowledge Portal 

(http://www.type2diabetesgenetics.org). 
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I. Imputing genotypes using 1000G phase 3, UK10K, GoNL and HRC as 

reference panels, instead of using a single panel, was crucial to identify 28.7% 

(27 out of 94) of all the GWAS significant associations, and 57.7% (15 out of 

26) of the novel GWAS findings. 

 

II. The integration of the results from multiple reference panels allows a better 

characterization of a wide spectrum of allelic frequencies as well as INDELs 

since HRC does not include them. 

 

III. By analyzing non-additive inheritance models, we identified 20 loci out of 94 

(21.3%) that reached the genome-wide significant threshold only when non-

additive models were tested, and 13 out of the 26 (50%) novel loci were only 

identified by non-additive models. This highlights the importance of 

incorporating non-additive models into the association test.  

 

IV. The development of GUIDANCE represents a step forward to promote 

comprehensive GWAS including the use of multiple panels for genotype 

imputation, non-additive models in the association testing and the X 

chromosome analysis.  

 

V. There is a need for making data and results publicly available. As it has been 

demonstrated in this study, the use of public individual-level genotype data, 

tools, and sequence-based reference panels is a cost-effective manner to 

exploit GWAS data.  
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Supplementary Figure 2. Q-Q plots and Manhattan plots for asthma. 
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Supplementary Figure 3. Q-Q plots and Manhattan plots for cancer. 
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 Supplementary Figure 4. Q-Q plots and Manhattan plots for cardiovascular 

disease. 
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 Supplementary Figure 5. Q-Q plots and Manhattan plots for major depressive 
disorder. 
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Supplementary Figure 6. Q-Q plots and Manhattan plots for dermatophytosis. 
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Supplementary Figure 7. Q-Q plots and Manhattan plots for type 2 diabetes. 
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Supplementary Figure 8. Q-Q plots and Manhattan plots for dyslipidemia. 
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Supplementary Figure 9. Q-Q plots and Manhattan plots for hemorrhoids. 
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 Supplementary Figure 10. Q-Q plots and Manhattan plots for hernia 

abdominopelvic cavity. 
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Supplementary Figure 11. Q-Q plots and Manhattan plots for hypertension. 
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Supplementary Figure 12. Q-Q plots and Manhattan plots for insomnia. 



 

    153 
 
Supplementary Figure 13. Q-Q plots and Manhattan plots for iron deficiency 
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Supplementary Figure 14. Q-Q plots and Manhattan plots for irritable bowel. 
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 Supplementary Figure 15. Q-Q plots and Manhattan plots for macular 
degeneration. 
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Supplementary Figure 16. Q-Q plots and Manhattan plots for osteoarthritis. 
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Supplementary Figure 17. Q-Q plots and Manhattan plots for osteoporosis. 
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.  

Supplementary Figure 18. Q-Q plots and Manhattan plots for peptic ulcers. 
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 Supplementary Figure 19. Q-Q plots and Manhattan plots for psychiatric 
disorders. 
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 Supplementary Figure 20. Q-Q plots and Manhattan plots for peripheral 

vascular disease.   
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 Supplementary Figure 21. Q-Q plots and Manhattan plots for acute reaction 
to stress. 
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 Supplementary Figure 22. Q-Q plots and Manhattan plots for varicose veins. 
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Supplementary Table 1. Genome-wide significant top variants for each region. 
          Lowest P-value Model Additive Model  

Disease rsID CHR Position Allele A Allele B MAF Info 
Score  

GW Significant 
Models 

Lowest  
P-value 
Model 

P-Value OR P-Value OR Dominance 
deviation 

Allergic Rhinitis rs2160203 2 102,960,824 A G 0.245 1.00 add,gen add 2.68E-09 0.91 2.68E-09 0.91 1.83E-01 
Allergic Rhinitis rs2399472 3 112,911,615 C T 0.073 1.00 add,rec add 1.55E-08 1.17 1.55E-08 1.17 6.66E-01 
Allergic Rhinitis rs13166760 5 110,424,583 C T 0.454 0.99 add,gen add 5.62E-10 0.92 5.62E-10 0.92 9.90E-01 
Allergic Rhinitis rs10112506 8 13,164,746 A G 0.390 1.00 dom dom 1.54E-08 0.89 8.61E-06 0.94 2.86E-04 

Asthma rs252716 5 110,425,063 G C 0.430 0.99 add,gen add 3.53E-09 1.10 3.53E-09 1.10 9.21E-01 
Asthma rs154073 5 137,858,067 C T 0.429 1.00 rec,gen rec 4.23E-09 1.18 6.06E-08 1.09 9.28E-03 
Asthma rs9272521 6 32,606,479 G A 0.437 0.84 add,dom,rec,gen,het add 6.43E-15 1.15 6.43E-15 1.15 8.37E-02 
Asthma rs142807069 9 6,213,820 A G 0.189 0.95 add,dom add 1.22E-08 1.13 1.22E-08 1.13 6.20E-01 
Asthma rs67053006 9 98,344,866 C G 0.139 0.88 add add 4.14E-08 0.87 4.14E-08 0.87 8.10E-01 
Cancer rs6675912 1 17,769,290 T G 0.351 0.99 add,dom,gen add 2.47E-11 1.10 2.47E-11 1.10 4.12E-01 
Cancer rs3769823 2 202,122,995 A G 0.300 1.00 add,rec,gen add 8.47E-11 0.91 8.47E-11 0.91 3.16E-01 
Cancer rs16891982 5 33,951,693 C G 0.038 0.98 add,dom,rec,gen,het add 2.32E-08 1.24 2.32E-08 1.24 9.69E-01 
Cancer rs12203592 6 396,321 C T 0.177 1.00 add,dom,rec,gen,het add 9.74E-50 1.30 9.74E-50 1.30 5.86E-01 
Cancer rs41263822 6 32,632,447 C A 0.421 0.87 add,dom,rec,gen,het add 1.86E-10 1.10 1.86E-10 1.10 2.24E-01 
Cancer rs11445081 9 16,913,836 T A 0.430 0.97 add,gen add 9.71E-09 1.08 9.71E-09 1.08 2.93E-01 
Cancer rs1126809 11 89,017,961 G A 0.279 1.00 add,rec,gen gen 7.48E-13 1.15/0.92 8.81E-11 1.10 2.36E-04 
Cancer rs138646839 13 112,115,591 C T 0.005 0.83 gen gen 3.54E-08 80.11/0.02 1.45E-07 1.68 NA 
Cancer rs34659644 16 89,796,017 G A 0.079 0.91 add,dom,rec,gen,het dom 9.20E-17 1.26 1.08E-15 1.23 3.95E-02 
Cancer rs2014497 18 28,442,343 A G 0.008 0.99 add,dom add 2.44E-08 1.50 2.44E-08 1.50 6.00E-01 
Cancer rs6059655 20 32,665,748 A G 0.079 0.97 add,dom,rec,gen,het add 1.15E-12 0.83 1.15E-12 0.83 6.07E-01 
Cancer rs75653149 20 34,726,973 C A 0.071 0.92 add,dom,gen,het dom 7.32E-09 1.18 2.57E-08 1.16 9.68E-02 

Cardiovascular Disorders rs10858023 1 114,448,752 C T 0.350 0.99 add,dom,rec,gen dom 2.11E-09 1.14 3.26E-08 1.09 1.94E-02 
Cardiovascular Disorders rs201654520 2 152,912,244 CT C 0.017 0.97 rec rec 4.32E-08 19.02 1.10E-01 1.10 4.36E-06 
Cardiovascular Disorders rs2466455 4 111,685,615 C T 0.213 1.00 add,gen add 9.44E-09 0.90 9.44E-09 0.90 1.23E-01 

Depression rs76025409 5 103,783,801 G C 0.365 0.97 add add 2.74E-08 1.11 2.74E-08 1.11 7.31E-01 
Depression rs56978738 12 128,551,715 GT G 0.281 0.90 gen,het het 3.15E-09 1.18 3.00E-03 0.94 1.10E-06 

Dyslipidemia rs11591147 1 55,505,647 G T 0.014 0.83 add,dom,rec,gen,het dom 2.49E-28 0.52 4.21E-28 0.52 1.13E-01 
Dyslipidemia rs3832016 1 109,818,158 C CT 0.208 0.87 add,dom,rec,gen,het add 2.14E-30 1.21 2.14E-30 1.21 1.29E-01 
Dyslipidemia rs1367117 2 21,263,900 G A 0.314 1.00 add,dom,rec,gen,het add 8.61E-40 1.20 8.61E-40 1.20 6.73E-01 
Dyslipidemia rs1260326 2 27,730,940 T C 0.424 1.00 add,dom,rec,gen add 1.67E-11 0.92 1.67E-11 0.92 9.95E-01 
Dyslipidemia rs6544713 2 44,073,881 T C 0.320 1.00 add,dom,rec,gen,het add 1.79E-12 0.91 1.79E-12 0.91 9.58E-01 
Dyslipidemia rs113346874 3 135,846,911 T G 0.233 0.99 add,dom,rec,gen add 2.63E-09 1.09 2.63E-09 1.09 6.17E-01 
Dyslipidemia rs12916 5 74,656,539 T C 0.409 1.00 add,dom,rec,gen,het add 4.02E-18 1.12 4.02E-18 1.12 8.13E-01 
Dyslipidemia rs6882076 5 156,390,297 T C 0.371 0.99 add,rec,gen add 5.68E-12 1.10 5.68E-12 1.10 8.80E-01 
Dyslipidemia rs55651120 6 32,619,835 C T 0.105 0.91 add,dom,rec,gen,het dom 5.30E-12 1.18 4.51E-11 1.15 3.10E-02 
Dyslipidemia rs140570886 6 161,013,013 T C 0.014 0.94 add,dom,rec,gen,het het 8.13E-20 1.69 4.63E-19 1.66 3.75E-02 
Dyslipidemia rs28601761 8 126,500,031 C G 0.417 0.98 add,dom,rec,gen add 7.08E-29 0.86 7.08E-29 0.86 6.34E-02 
Dyslipidemia rs532436 9 136,149,830 G A 0.194 1.00 add,dom,rec,gen,het add 8.10E-21 1.16 8.10E-21 1.16 1.38E-01 
Dyslipidemia rs66505542 11 116,623,213 TA T 0.153 1.00 add,dom,rec,gen,het add 3.34E-30 0.82 3.34E-30 0.82 2.18E-01 
Dyslipidemia rs72085277 11 126,241,852 TTCTG T 0.141 0.91 dom dom 2.96E-08 1.13 5.71E-08 1.11 4.33E-01 
Dyslipidemia rs2649999 12 121,380,544 T C 0.346 0.97 add,gen add 8.38E-09 0.92 8.38E-09 0.92 6.90E-01 
Dyslipidemia rs3764261 16 56,993,324 C A 0.317 1.00 add,dom,rec,gen add 2.85E-12 0.91 2.85E-12 0.91 1.80E-01 
Dyslipidemia rs34042070 16 72,101,525 C G 0.200 0.99 add,dom,gen,het add 4.53E-17 1.15 4.53E-17 1.15 9.52E-01 
Dyslipidemia rs75003668 17 64,195,431 A G 0.034 0.96 add,dom,gen,het het 2.13E-10 1.27 1.14E-09 1.25 5.56E-02 
Dyslipidemia rs17248720 19 11,198,187 C T 0.118 0.98 add,dom,rec,gen,het add 1.02E-61 0.72 1.02E-61 0.72 1.43E-01 
Dyslipidemia rs118147862 19 45,319,631 G A 0.038 0.89 add,dom,rec,gen,het het 1.30E-55 0.56 2.48E-52 0.58 1.74E-05 
Dyslipidemia rs681343 19 49,206,462 C T 0.482 1.00 add,dom,rec,gen rec 2.58E-10 1.15 4.65E-08 1.07 1.27E-03 
Dyslipidemia rs1012167 20 39,159,119 T C 0.387 1.00 add,het add 2.92E-08 0.93 2.92E-08 0.93 9.77E-01 
Dyslipidemia rs67648651 23 109,693,274 T C 0.420 0.99 add add 1.21E-10 0.83 1.21E-10 0.83 - 
Hemorrhoids rs186102686 13 76,281,808 C T 0.004 0.90 add,dom,het het 2.03E-08 1.99 2.18E-08 1.98 NA 

Hernia Abdominopelvic rs2494196 1 219,762,581 C A 0.274 1.00 add add 2.03E-08 1.13 2.03E-08 1.13 6.87E-01 
Hernia Abdominopelvic rs3791679 2 56,096,892 A G 0.237 1.00 add,dom,rec,gen add 7.21E-14 0.84 7.21E-14 0.84 0.6564 
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Hernia Abdominopelvic rs113180595 4 27,019,359 T C 0.004 0.87 add,dom,het het 1.27E-08 2.18 1.59E-08 2.17 NA 
Hernia Abdominopelvic rs66798575 11 32,451,920 T G 0.364 0.97 add,dom,gen add 5.02E-10 0.88 5.02E-10 0.88 2.69E-01 

Hypertension rs1275923 2 26,932,796 C T 0.391 0.96 add,dom,rec,gen add 6.24E-14 0.90 6.24E-14 0.90 9.20E-02 
Hypertension rs1446802 2 176,532,019 A G 0.500 1.00 rec rec 4.42E-08 1.13 1.66E-06 1.07 6.85E-03 
Hypertension rs72375069 3 27,427,821 CAATT C 0.354 1.00 dom dom 2.37E-08 0.90 1.04E-07 0.93 5.64E-02 
Hypertension rs16998073 4 81,184,341 A T 0.290 0.99 add,dom,gen add 3.01E-09 1.09 3.01E-09 1.09 8.40E-01 
Hypertension rs56012466 7 151,406,788 G A 0.279 0.93 rec rec 4.22E-08 1.23 2.23E-05 1.07 3.74E-04 
Hypertension rs72850439 11 10,274,381 T A 0.286 0.82 dom dom 2.93E-08 1.12 1.12E-07 1.09 5.07E-02 
Hypertension rs7174250 15 81,018,587 C T 0.463 1.00 add add 4.01E-08 1.08 4.01E-08 1.08 8.06E-01 
Hypertension rs28792763 15 90,081,905 G A 0.462 0.96 dom dom 4.42E-08 0.88 4.14E-06 0.94 4.80E-03 
Hypertension rs57515981 15 91,412,850 A AAAGGCAG 0.482 0.83 rec rec 3.20E-08 1.15 7.56E-06 1.07 9.19E-04 
Hypertension rs112963849 17 1,959,826 C A 0.082 0.92 add,dom add 1.71E-08 1.15 1.71E-08 1.15 8.01E-01 

Iron Deficiency rs79798837 7 67,292,424 C T 0.118 0.94 dom dom 3.80E-08 0.74 1.69E-07 0.77 8.92E-02 
Macular Degeneration rs488380 1 196,664,505 C T 0.377 1.00 add,dom,rec,gen,het gen 4.05E-86 0.59/0.87 1.88E-84 0.60 1.77E-04 
Macular Degeneration rs557998486 2 40,010,523 T TG 0.009 0.90 rec rec 2.75E-08 > 100 6.28E-01 1.07 NA 
Macular Degeneration rs556679 6 31,894,355 C T 0.111 1.00 add,dom,rec,gen,het dom 3.27E-22 0.63 4.83E-21 0.66 1.45E-02 
Macular Degeneration rs3750847 10 124,215,421 C T 0.215 1.00 add,dom,rec,gen,het gen 1.41E-77 1.91/0.78 7.85E-73 1.72 1.15E-07 
Macular Degeneration rs550946885 19 6,722,832 GTTTTT G 0.217 0.85 add,dom,gen add 7.10E-10 1.23 7.10E-10 1.23 7.25E-01 

Osteoporosis rs4869744 6 151,908,012 T C 0.292 1.00 add,dom,gen add 4.06E-09 1.15 4.06E-09 1.15 2.12E-01 
Osteoporosis rs10242100 7 120,983,343 A G 0.277 1.00 add,dom add 2.62E-08 0.87 2.62E-08 0.87 3.07E-01 
Osteoporosis rs56154705 11 68,211,378 C T 0.143 0.99 add,dom,gen add 9.09E-10 1.21 9.09E-10 1.21 3.60E-01 
Osteoporosis rs7308105 12 54,424,123 T C 0.365 0.99 add add 4.64E-08 1.13 4.64E-08 1.13 7.41E-01 
Osteoporosis rs139959245 22 27,772,054 C T 0.007 0.90 add add 4.79E-08 1.91 4.79E-08 1.91 NA 

Peripheral Vascular Disease rs6025 1 169,519,049 T C 0.028 1.00 add,dom,rec,gen,het add 4.40E-12 0.64 4.40E-12 0.64 4.84E-01 
Peripheral Vascular Disease rs587729126 9 136,138,765 GCGCCCACCACTA G 0.192 0.99 add,dom,gen add 4.91E-10 1.20 4.91E-10 1.20 9.44E-01 
Peripheral Vascular Disease rs80274406 11 33,391,655 A G 0.091 0.92 gen gen 4.26E-08 0.51/2.26 1.76E-01 1.06 6.32E-06 
Peripheral Vascular Disease rs146399108 11 47,031,734 G A 0.013 0.96 add add 4.42E-08 1.67 4.42E-08 1.67 2.87E-01 
Peripheral Vascular Disease rs2932761 19 48,403,215 A G 0.289 1.00 gen gen 3.55E-08 0.87/1.27 3.04E-01 0.97 1.35E-08 

Psychiatric Disorders rs12712961 2 46,278,720 T A 0.452 1.00 add add 1.66E-08 1.10 1.66E-08 1.10 2.57E-01 
Psychiatric Disorders rs4736253 8 140,354,986 C T 0.251 1.00 het het 4.65E-08 0.87 4.60E-04 1.07 2.42E-05 

Stress rs577242570 2 184,407,101 T G 0.004 0.85 add add 4.56E-08 2.33 4.56E-08 2.33 NA 
Type 2 Diabetes rs1801282 3 12,393,125 C G 0.120 1.00 dom,het dom 2.27E-08 0.84 1.05E-07 0.86 7.07E-02 
Type 2 Diabetes rs547194177 3 185,507,515 ATTT A 0.314 0.99 add,dom,gen add 3.84E-10 1.13 3.84E-10 1.13 9.52E-01 
Type 2 Diabetes rs77704739 5 52,080,909 T C 0.036 1.00 rec rec 1.75E-08 4.32 2.80E-03 1.15 1.92E-07 
Type 2 Diabetes rs3891173 6 32,634,675 A T 0.287 0.80 add,dom,rec,gen rec 7.27E-11 1.42 5.25E-08 1.14 5.69E-04 
Type 2 Diabetes rs849133 7 28,192,280 C T 0.498 1.00 add,rec,gen add 3.11E-11 0.89 3.11E-11 0.89 1.24E-01 
Type 2 Diabetes rs13266634 8 118,184,783 C T 0.304 1.00 add,gen add 8.96E-10 0.88 8.96E-10 0.88 5.86E-01 
Type 2 Diabetes rs10811662 9 22,134,253 G A 0.176 1.00 add add 3.92E-08 0.87 3.92E-08 0.87 4.01E-01 
Type 2 Diabetes rs34872471 10 114,754,071 T C 0.295 0.98 add,dom,rec,gen,het add 1.03E-52 1.36 1.03E-52 1.36 9.92E-01 
Varicose Veins rs62250779 3 32,652,184 G A 0.073 0.92 gen gen 2.13E-08 0.36/3.61 5.60E-03 1.17 9.58E-04 
Varicose Veins rs2383896 8 74,284,818 A G 0.479 0.99 add add 5.00E-08 1.17 5.00E-08 1.17 9.88E-01 
Varicose Veins rs117798068 13 88,346,617 T C 0.011 0.80 add,dom,het het 8.41E-09 2.07 1.59E-08 2.03 NA 

 
CHR = Chromosome, Position = Position Hg19, Alleles A= Non-effect Allele, Allele B= Effect Allele, MAF=Minor Allele Frequency, GW= Genome Wide, OR= Odds Ratio 

add= Additive, dom=Dominant, rec= Recessive, het= Heterodominant, gen= Genotypic  
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Supplementary Table 2. UK Biobank biomarkers associated with new regions 
        

Field 

Additive Lowest P-value Model 

Phenotype (Cases/Controls) Nearest Gene rsID CHR position Alleles MAF Lowest P-value 
Model beta (CI 95%) P-value beta (CI 95%) P-value 

Asthma (9,209/47,428) ETF1 rs154073 5 137,858,067 C/T 0.429 Recessive IGF-1 (357,380)  0.01 ( 0.01-0.02)  5.20 × 10-8  0.01 ( 0.01-0.02)  1.20 × 10-3 
Testosterone (325,662)  -0.005 (-0.01--0.003)  1.01 × 10-5 -0.01 (-0.01--0.01)  4.42 × 10-7 

Cancer (17,131/39,506) TEX29 rs138646839 13 112,115,591 C/T 0.005 Genotypic Alanine aminotransferase (359,162) -0.01 (-0.04-0.03)  7.59 × 10-1  9.62 ( 8.71-10.54)  1.58 × 10-88 

Cardiovascular (15,009/41,628) DCLRE1B rs10858023 1 114,448,752 C/T 0.35 Dominant IGF-1 (357,380) -0.01 (-0.01--0.003)  2.34 × 10-3 -0.01 (-0.02--0.01)  3.95 × 10-4 
Triglycerides (359,009) -0.01 (-0.01--0.003)  1.72 × 10-3 -0.01 (-0.02c)  4.95 × 10-4 

Type 2 Diabetes (6,967/49,670) PELO rs77704739 5  52,080,909 T/C 0.036 Recessive 

Apolipoprotein A (327,072)  0.02 ( 0.01-0.03)  1.36 × 10-3 -0.18 (-0.25--0.1)  5.54 × 10-6 
Albumin (329,051)  0.04 ( 0.02-0.05)  4.81 × 10-9  0.38 ( 0.30-0.46)  5.69 × 10-19 
Apolipoprotein B (357,546) -0.06 (-0.07--0.05)  2.15 × 10-26 -0.39 (-0.47--0.31)  1.19 × 10-20 
C-reactive protein (358,524) -0.02 (-0.04--0.01)  1.65 × 10-5 -0.18 (-0.26--0.1)  1.50 × 10-5 
HDL cholesterol (328,906)  0.02 ( 0.01-0.03)  3.22 × 10-3 -0.25 (-0.32--0.17)  4.23 × 10-11 
LDL direct (358,623) -0.05 (-0.06--0.04)  1.56 × 10-15 -0.39 (-0.47--0.31)  1.46 × 10-20 
Triglycerides (359,009)  0.01 ( 0.00-0.02)  1.56 × 10-2  0.36 ( 0.28-0.44)  3.09 × 10-20 
Lipoprotein A (286,064) -0.01 (-0.02-0.004)  2.10 × 10-1 -0.17 (-0.26--0.07)  4.64 × 10-4 
Cholesterol (359,307) -0.03 (-0.05--0.02)  3.88 × 10-9 -0.37 (-0.45--0.29)  3.85 × 10-19 

Hernia Abdominopelvic (6,291/50,346) LOC102723886 rs2494196 1 219,762,581 C/A 0.274 Additive 

Total protein (328,694) -0.02 (-0.02--0.01)  3.13 × 10-12 -0.02 (-0.02--0.01)  3.13 × 10-12 
Apolipoprotein A (327,072)  0.01 ( 0.01-0.02)  6.98 × 10-10  0.01 ( 0.01-0.02)  6.98 × 10-10 
HDL cholesterol (328,906)  0.02 ( 0.01-0.02)  3.13 × 10-15  0.02 ( 0.01-0.02)  3.13 × 10-15 
Calcium (328,933) -0.01 (-0.01--0.003)  1.29 × 10-3 -0.01 (-0.01--0.003)  1.29 × 10-3 
Albumin (329,051) -0.02 (-0.03--0.02)  3.39 × 10-16 -0.02 (-0.03--0.02)  3.39 × 10-16 
Glucose (328,681) -0.01 (-0.02--0.01)  3.32 × 10-5 -0.01 (-0.02--0.01)  3.32 × 10-5 
Triglycerides (359,009) -0.02 (-0.03--0.02)  1.12 × 10-19 -0.02 (-0.03--0.02)  1.12 × 10-19 
Urate (358,855) -0.01 (-0.01--0.004)  2.22 × 10-4 -0.01 (-0.01--0.004)  2.22 × 10-4 
SHBG (325,845)  0.02 ( 0.01-0.02)  2.86 × 10-11  0.02 ( 0.01-0.02)  2.86 × 10-11 
Alanine aminotransferase (359,162) -0.01 (-0.02--0.01)  1.12 × 10-5 -0.01 (-0.02--0.01)  1.12 × 10-5 
Phosphate (328,407)  0.01 ( 0.00-0.01)  3.78 × 10-4  0.01 ( 0.00-0.01)  3.78 × 10-4 
IGF-1 (357,380) -0.01 (-0.01--0.005)  1.32 × 10-4 -0.01 (-0.01--0.005)  1.32 × 10-4 

STIM2 rs113180595 4  27,019,359 T/C 0.004 Heterodominant Calcium (328,933) -0.10 (-0.15--0.05)  2.31 × 10-4 -0.10 (-0.15--0.05)  2.42 × 10-4 

Hypertension (28,391/28,246) 

LNPK rs1446802 2 176,532,019 A/G 0.5 Recessive SHBG (325,845) -0.01 (-0.01--0.01)  1.33 × 10-5 -0.01 (-0.02--0.01)  2.38 × 10-5 

HIC1 rs112963849 17   1,959,826 C/A 0.082 Additive 
Calcium (328,933) -0.01 (-0.02--0.01)  1.15 × 10-3 -0.01 (-0.02--0.01)  1.15 × 10-3 
Total protein (328,694) -0.02 (-0.03--0.01)  2.19 × 10-6 -0.02 (-0.03--0.01)  2.19 × 10-6 
Triglycerides (359,009) -0.01 (-0.02--0.01)  1.81 × 10-4 -0.01 (-0.02--0.01)  1.81 × 10-4 

Macular Degeneration (3,685/52,952) THUMPD2 rs557998486 2  40,010,523 T/TG 0.009 Recessive C-reactive protein (358,524) -0.01 (-0.03-0.02)  6.63 × 10-1  1.11 ( 0.70-1.53)  1.15 × 10-4 
Psychiatric (8,624/48,013) PRKCE rs12712961 2  46,278,720 T/A 0.452 Additive C-reactive protein (358,524)  0.01 ( 0.00-0.01)  1.62 × 10-3  0.01 ( 0.00-0.01)  1.62 × 10-3 

Peripheral Vascular Disease (4,301/52,336) SNAR-A12 rs2932761 19  48,403,215 A/G 0.289 Genotypic IGF-1 (357,380)  0.01 ( 0.01-0.01)  4.82 × 10-5  0.01 ( 0.00-0.02)  2.58 × 10-4 
Vitamin D (343,604)  0.03 ( 0.03-0.04)  2.09 × 10-40  0.03 ( 0.03-0.04)  2.63 × 10-39 

 

 

CHR = Chromosome, Position = Position Hg19, Alleles = Non-effect Allele / Effect Allele, MAF=Minor Allele Frequency, CI= Confidence Interval 
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Supplementary Table 3.	Colocalization	between	GWAS	results	and	eQTL	loci 
       GTEx 

rsID CHR Position MAF Phenotype (cases/controls) Alleles Nearest gene eQTL Gene p-value Tissue Colocalization 
probability* 

rs2399472 3 112,911,615 0.073 ALLERGIC RHINITIS (13,936/42,701) C/T LINC02044 CCDC80 4.10E-05 Heart - Left Ventricle 0.07 
rs10112506 8  13,164,746 0.39 ALLERGIC RHINITIS (13,936/42,701) A/G DLC1 DLC1 5.00E-08 Testis 0.89 

rs154073 5 137,858,067 0.429 ASTHMA (9,209/47,428) C/T ETF1 ETF1 2.30E-07 Esophagus - Mucosa 0.97 

rs10858023 1 114,448,752 0.35 CARDIOVASCULAR DISORDERS (15,009/41,628) C/T DCLRE1B 
AP4B1 1.80E-11 Muscle - Skeletal 0.98 

PTPN22 1.60E-09 Colon - Transverse 0.71 
1.60E-09 Pancreas 0.93 

rs77704739 5  52,080,909 0.036 TYPE 2 DIABETES (6,967/49,670) T/C ITGA1 / PELO PELO 

9.10E-20 Whole Blood 0.98 
9.10E-19 Cells - Transformed fibroblasts 0.98 
2.80E-18 Skin - Not Sun Exposed (Suprapubic) 0.98 
3.30E-17 Skin - Sun Exposed (Lower leg) 0.98 
9.50E-11 Esophagus - Mucosa 0.98 
2.60E-10 Nerve - Tibial 0.94 
1.20E-07 Adipose - Subcutaneous 0.91 
1.00E-06 Pancreas 0.50 
1.20E-06 Stomach 0.54 
2.80E-06 Cells - EBV-transformed lymphocytes NA 
4.20E-06 Muscle - Skeletal 0.83 
5.00E-06 Artery - Aorta 0.27 

rs2494196 1 219,762,581 0.274 HERNIA ABDOMINOPELVIC (6,291/50,346) C/A LOC102723886 RP11-392O17.1 2.60E-06 Skin - Not Sun Exposed (Suprapubic) 3.05E-03 
5.00E-05 Skin - Sun Exposed (Lower leg) 0.06 

rs28792763 15  90,081,905 0.462 HYPERTENSION (28,391/28,246) G/A LINC00928 TICRR 

1.20E-08 Cells - Transformed fibroblasts 0.04 
4.10E-08 Thyroid 0.04 
5.50E-08 Artery - Aorta 0.81 
6.10E-06 Nerve - Tibial 1.58E-03 
7.80E-06 Artery - Tibial 0.11 

rs112963849 17   1,959,826 0.082 HYPERTENSION (28,391/28,246) C/A HIC1 DPH1 

6.30E-08 Cells - Transformed fibroblasts 0.0000563 
1.40E-07 Adipose - Subcutaneous 0.0000553 
3.10E-07 Nerve - Tibial 0.0000505 
1.80E-06 Esophagus - Mucosa 0.0000504 
6.00E-06 Adipose - Visceral (Omentum) 0.32 

SRR 1.90E-05 Artery - Aorta 1.15E-03 
rs12712961 2  46,278,720 0.452 PSYCHIATRIC DISORDERS (8,624/48,013) T/A PRKCE EPAS1 1.50E-05 Cells - Transformed fibroblasts 0.57 
rs80274406 11  33,391,655 0.091 PERIPHERAL VASCULAR DISEASE (4,301/52,336) A/G HIPK3 KIAA1549L 5.60E-06 Cells - Transformed fibroblasts 0.05 

rs2932761 19  48,403,215 0.289 PERIPHERAL VASCULAR DISEASE (4,301/52,336) A/G SNAR-A12 
CTD-3098H1.2 6.60E-08 Adrenal Gland NA 

1.40E-06 Liver NA 
SULT2A1 2.90E-06 Adrenal Gland NA 

CTD-3098H1.2 8.00E-06 Small Intestine - Terminal Ileum NA 

            

CHR= chromosome; Position= genomic position hg19, MAF= minor allele frequency, Alleles= Non-effect allele / Effect allele  

*Colocalization probability corresponds to the Bayesian posterior probability of colocalization between the GWAS and the eQTL loci         
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Supplementary Table 4. Cross-phenotype associations results 

     Disease A Disease B 

Locus CH
R Variant ID Disease A vs Disease B Lowest P-value 

Model OR (CI 95%)   p-value OR (CI 95%)  p-value 

ABO 9 

chr9:136138765:D Peripheral Vascular Disease-
Dyslipidemia Additive 1.20 (1.13-1.27) 4.91 × 10-10 1.16 (1.13-1.2) 1.09 × 10-20 

9:136151806_T_C Dyslipidemia-Peripheral 
Vascular Disease Dominant 1.16 (1.12-1.21) 2.79 × 10-16 1.18 (1.11-1.27) 4.46 × 10-7 

9:136184798_C_T Dyslipidemia-Osteoarthritis Heterodominant 1.16 (1.11-1.21) 1.66 × 10-10 1.11 (1.06-1.16) 2.34 × 10-5 

CETP 16 rs3764261 Dyslipidemia-Macular 
Degeneration Additive 0.91 (0.88-0.93) 2.85 × 10-12 1.12 (1.07-1.19) 1.94 × 10-5 

ETF1 5 chr5:137858067 Asthma-Irritable Bowel Recessive 1.18 (1.12-1.25) 4.23 × 10-9 1.22 (1.12-1.34) 1.30 × 10-5 

HLA 6 

6:31930441_G_T Macular Degeneration-
Dyslipidemia Additive 1.18 (1.12-1.25) 4.69 × 10-9 1.07 (1.04-1.1) 1.39 × 10-6 

rs33941037 Cancer-Dyslipidemia Additive 1.13 (1.08-1.17) 1.39 × 10-8 1.11 (1.07-1.15) 1.81 × 10-7 
rs62406303 Dyslipidemia-Asthma Additive 1.12 (1.08-1.15) 1.46 × 10-10 0.91 (0.87-0.95) 8.04 × 10-6 

rs9274639:32636146:T:C Asthma-Macular Degeneration Additive 1.11 (1.07-1.15) 1.20 × 10-8 1.14 (1.08-1.2) 6.98 × 10-6 
rs55651120 Dyslipidemia-Cancer Dominant 1.18 (1.13-1.24) 5.30 × 10-12 1.15 (1.09-1.21) 5.60 × 10-8 

rs9272266:32603416:G:A Asthma-Dyslipidemia Dominant 0.86 (0.82-0.9) 2.55 × 10-10 1.10 (1.06-1.14) 8.66 × 10-8 
rs75351515:32635420:G:A Asthma-Type 2 Diabetes Genotypic 1.13 (1.09-1.17) 6.64 × 10-13 1.08 (1.04-1.12) 7.00 × 10-6 
rs3210176:32627850:T:C Type 2 Diabetes-Asthma Genotypic 1.15 (1.10-1.29) 3.89 × 10-9 1.10 (1.06-1.15) 2.20 × 10-6 

JAZF1 7 7:28154822_A_G Type 2 Diabetes-Asthma Genotypic 0.89 (0.86-0.93) 4.36 × 10-8 0.92 (0.89-0.95) 6.87 × 10-6 
NECTIN2 / 

PVRL2 19 19:45388130_G_A Dyslipidemia-Type 2 Diabetes Additive 1.23 (1.19-1.28) 8.99 × 10-30 0.89 (0.84-0.94) 1.03 × 10-5 
19:45428234_G_A Dyslipidemia-Cardiovascular Additive 1.26 (1.21-1.31) 4.55 × 10-3 1.11 (1.06-1.16) 1.44 × 10-5 

TRIB1 8 8:126507389_C_A Dyslipidemia-Hypertension Additive 0.88 (0.86-0.91) 2.53 × 10-19 0.94 (0.91-0.97) 2.40 × 10-5 

WDR36 5 rs252716:110425063:G:C Asthma-Allergic Rhinitis Additive 1.10 (1.07-1.14) 3.53 × 10-9 1.07 (1.04-1.1) 2.79 × 10-6 
rs367937013:110424583:C:T Allergic Rhinitis-Asthma Additive 0.92 (0.89-0.94) 5.62 × 10-10 0.92 (0.89-0.95) 2.19 × 10-7 

 

CHR = Chromosome 
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Appendix 1.  Re-analysis of public genetic data reveals a rare X-

chromosomal variant associated with type 2 diabetes. 
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ARTICLE

Re-analysis of public genetic data reveals a rare
X-chromosomal variant associated with type 2
diabetes
Sílvia Bonàs-Guarch et al.#

The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to

gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2

diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we

identify seven novel associated regions, five driven by common variants (LYPLAL1, NEUROG3,

CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare

variant in chromosome Xq23, rs146662075, associated with a twofold increased risk for T2D

in males. rs146662075 is located within an active enhancer associated with the expression of

Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits

allelic specific activity in muscle cells. Beyond providing insights into the genetics and

pathophysiology of T2D, these results also underscore the value of reanalyzing publicly

available data using novel genetic resources and analytical approaches.
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During the last decade, hundreds of genome-wide associa-
tion studies (GWAS) have been performed with the aim
of providing a better understanding of the biology of

complex diseases, improving their risk prediction, and ultimately
discovering novel therapeutic targets1. However, the majority of
the published GWAS have only reported primary findings, which
generally explain a small fraction of the estimated heritability.
To examine the missing heritability, most strategies involve
generating new genetic and clinical data. Very rarely are new
studies based on the revision and reanalysis of existing genetic
data by applying more powerful analytic techniques and resources
after the primary GWAS findings are published. These cost-
effective reanalysis strategies are now possible, given emerging
(1) data-sharing initiatives with large amounts of primary genetic
data for multiple human genetic diseases, as well as (2) new
and improved GWAS methodologies and resources. Notably,
genotype imputation with novel sequence-based reference
panels can now substantially increase the genetic resolution of
GWASs from previously genotyped data sets2, reaching good-
quality imputation of low frequency (minor allele frequency
[MAF]: 0.01 ≤MAF< 0.05) and rare variants (MAF< 0.01),
increasing the power to identify novel associations, and fine
map the known ones. Moreover, the availability of publicly
available primary genetic data allows the homogeneous integra-
tion of multiple data sets from different origins providing more
accurate meta-analysis results, particularly at the low ranges
of allele frequency. Finally, the vast majority of reported GWAS
analyses omits the X chromosome, despite representing 5% of the
genome and coding for more than 1,500 genes3. The reanalysis of
publicly available data also enables interrogation of this
chromosome.

We hypothesized that a unified reanalysis of multiple
publicly available data sets, applying homogeneous standardized
quality control (QC), genotype imputation, and association
methods, as well as novel and denser sequence-based reference
panels for imputation would provide new insights into the
genetics and the pathophysiology of complex diseases. To test
this hypothesis, we focused this study on type 2 diabetes (T2D),
one of the most prevalent complex diseases for which
many GWAS have been performed during the past decade4.
These studies have allowed the identification of more than
100 independent loci, most of them driven by common variants,
with a few exceptions5. Despite these efforts, there is still a large
fraction of genetic heritability hidden in the data, and the role of
low-frequency variants, although recently proposed to be minor6,
has still not been fully explored. The availability of large
T2D genetic data sets in combination with larger and more
comprehensive genetic variation reference panels2, provides
the opportunity to impute a significantly increased fraction
of low-frequency and rare variants, and to study their contribu-
tion to the risk of developing this disease. This strategy also allows
us to fine map known associated loci, increasing the chances
of finding causal variants and understanding their functional
impact. We therefore gathered publicly available T2D GWAS
cohorts with European ancestry, comprising a total of 13,857
T2D cases and 62,126 controls, to which we first applied
harmonization and quality control protocols covering the
whole genome (including the X chromosome). We then perfor-
med imputation using 1000 Genomes Project (1000G)7 and
UK10K2 reference panels, followed by association testing.
By using this strategy, we identified novel associated
regions driven by common, low-frequency and rare variants,
fine mapped and functionally annotated the existing and
novel ones, allowing us to describe a regulatory mechanism
disrupted by a novel rare and large-effect variant identified at the
X chromosome.

Results
Overall analysis strategy. As shown in Fig. 1, we first gathered all
T2D case-control GWAS individual-level data that were available
through the EGA and dbGaP databases (i.e., Gene Environment-
Association Studies [GENEVA], Wellcome Trust Case Control
Consortium [WTCCC], Finland–United States Investigation of
NIDDM Genetics [FUSION], Resource for Genetic Epidemiology
Research on Aging [GERA], and Northwestern NuGENE project
[NuGENE]). We harmonized these cohorts, applied standardized
quality control procedures, and filtered out low-quality variants
and samples (Methods and Supplementary Notes). After this
process, a total of 70,127 subjects (70KforT2D, 12,931 cases, and
57,196 controls, Supplementary Data 1) were retained for
downstream analysis. Each of these cohorts was then imputed to
the 1000G and UK10K reference panels using an integrative
method, which selected the results from the reference panel that
provided the highest accuracy for each variant, according to
IMPUTE2 info score (Methods). Finally, the results from each of
these cohorts were meta-analyzed (Fig. 1), obtaining a total of
15,115,281 variants with good imputation quality (IMPUTE2 info
score ≥ 0.7, MAF ≥ 0.001, and I2 heterogeneity score < 0.75),
across 12,931 T2D cases and 57,196 controls. Of these, 6,845,408
variants were common (MAF ≥ 0.05), 3,100,848 were low-
frequency (0.01 ≤MAF< 0.05), and 5,169,025 were rare
(0.001 ≤MAF< 0.01). Merging the imputation results derived
from the two reference panels substantially improved the number
of good-quality imputed variants, particularly within the low-
frequency and rare spectrum, compared to the imputation results
obtained with each of the panels separately. For example, a set of
5,169,025 rare variants with good quality was obtained after
integrating 1000G and UK10K results, while only 2,878,263 rare
variants were imputed with 1000G and 4,066,210 with UK10K
(Supplementary Fig. 1A). This strategy also allowed us to impute
1,357,753 indels with good quality (Supplementary Fig. 1B).

To take full advantage of publicly available genetic data, we
used three main meta-analytic approaches to adapt to the three
most common strategies for genetic data sharing: individual-level
genotypes, summary statistics, and single-case queries through
the Type 2 Diabetes Knowledge Portal (T2D Portal) (http://www.
type2diabetesgenetics.org/). We first meta-analyzed all summary
statistics results from the DIAGRAM trans-ancestry meta-
analysis8 (26,488 cases and 83,964 controls), selecting 1,918,233
common variants (MAF ≥ 0.05), mostly imputed from HapMap,
with the corresponding fraction of non-overlapping samples in
our 70KforT2D set, i.e. the GERA and the NuGENE cohorts,
comprising a total of 7,522 cases and 50,446 controls (Fig. 1,
Supplementary Data 1). Second, the remaining variants
(13,197,048), which included mainly non-HapMap variants
(MAF< 0.05) or variants not tested above, were meta-analyzed
using all five cohorts from the 70KforT2D resource (Supplemen-
tary Data 1). Finally, low-frequency variants located in coding
regions and with p ≤ 1 × 10−4 were meta-analyzed using the non-
overlapping fraction of samples with the data from the T2D
Portal through the interrogation of exome array and whole-
exome sequence data from ~80,000 and ~17,000 individuals,
respectively6.

Pathway and functional enrichment analysis. To explore whe-
ther our results recapitulate the pathophysiology of T2D, we
performed gene-set enrichment analysis with all the variants with
p ≤ 1 × 10−5 using DEPICT9 (Methods). This analysis showed
enrichment of genes expressed in pancreas (ranked first in tissue
enrichment analysis, p= 7.8 × 10−4, FDR< 0.05, Supplementary
Data 2) and cellular response to insulin stimulus (ranked second
in gene-set enrichment analysis, p = 3.9 × 10−8, FDR = 0.05,
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Supplementary Data 3, Supplementary Fig. 2, Supplementary
Fig. 3), in concordance with the current knowledge of the
molecular basis of T2D.

In addition, variant set enrichment analysis of the T2D-
associated credible sets across regulatory elements defined in
isolated human pancreatic islets showed a significant enrichment
for active regulatory enhancers (Supplementary Fig. 4), suggesting
that causal SNPs within associated regions have a regulatory
function, as previously reported10.

Fine-mapping and functional characterization of T2D loci. The
three association strategies allowed us to identify 57 genome-wide
significant associated loci (p ≤ 5 × 10−8), of which seven were not
previously reported as associated with T2D (Table 1). The
remaining 50 loci have been previously reported and included, for
example, two low-frequency variants recently discovered in
Europeans, one located within one of the CCND2 introns
(rs76895963), and a missense variant within the PAM5 gene.
Furthermore, we confirmed that the magnitude and direction of
the effect of all the associated variants (p ≤ 0.001) were highly
consistent with those reported previously (ρ = 0.92, p= 1 × 10
−248, Supplementary Fig. 5). In addition, the direction of effect
was consistent with all 139 previously reported variants, except
three that were discovered in east and south Asian populations
(Supplementary Data 4).

The high coverage of genetic variation ascertained in this study
allowed us to fine-map known and novel loci, providing more
candidate causal variants for downstream functional interpreta-
tions. We constructed 99% credible variant sets11 for each of
these loci, i.e. the subset of variants that have, in aggregate, 99%
probability of containing the true causal variant for all 57 loci
(Supplementary Data 5). As an important improvement over
previous T2D genetic studies, we identified small structural
variants within the credible sets, consisting mostly of insertions
and deletions between 1 and 1,975 nucleotides. In fact, out of the
8,348 variants included within the credible sets for these loci, 927
(11.1%) were indels, of which 105 were genome-wide significant
(Supplementary Data 6). Interestingly, by integrating imputed
results from 1000G and UK10K reference panels, we gained up to
41% of indels, which were only identified by either one of the two
reference panels, confirming the advantage of integrating the
results from both reference panels. Interestingly, 15 of the 71
previously reported loci that we replicated (p ≤ 5.3 × 10−4 after
correcting for multiple testing) have an indel as the top variant,
highlighting the potential role of this type of variation in the
susceptibility for T2D. For example, within the IGF2BP2 intron, a
well-established and functionally validated locus for T2D12, we
found that 12 of the 57 variants within its 99% credible set
correspond to indels with genome-wide significance (5.6 × 10−16

< p< 2.4 × 10−15), which collectively represented 18.4% posterior
probability of being causal.

Quality control

Association test

Haplotype phasing

Imputation

PROX1 / 1p32.3

BCL11A / 2p16.1

UBE2E2 / 3p24.3

ST6GAL1 / 3q27.3

TMEM154 / 4q31.3

POU5F1 / 6p21.33-p21.32

CENPW / 6q22.32-q22.33

KLF14 / 7q32.2-q32.3

TP53INP1 / 8q22.1

TLE4 / 9q21.31

KCNQ1 / 11p15.5-15.4

ARAP1 / 11q13.4

KLHDC5 / 12p11.23-p11.22

HMG20A / 15q24.3

PRC1 / 15q26.1

HNF1B / 17q12

Known loci
Novel loci

MACF1 / 1p34.3-p34.2

THADA / 2p21

IRS1 / 2q36.3

PPARG / 3p25.2

IGF2BP2 / 3q27.2

ANKRD55 / 5q11.2

PAM / 5q21.1

CDKAL1 / 6p22.3

MHC / 6p21.32

JAZF1 / 7p15.1

SLC30A8 / 8q24.11

CDKN2B / 9p21.3

CDC123 -CAMK1D / 10p13

TCF7L2 / 10q25.2

HHEX / 10q23.33

CCND2 / 12p13.32

KAISER-GERA / NuGENE / DIAGRAM
1,918,233 variants

(34,010 cases / 134,410 controls)

NON-HAPMAP VARIANTS

KAISER-GERA / FUSION /
NuGENE / GENEVA / WTCCC

13,197,048 variants
(12,931 cases / 57,196 controls) 

CO

RE ANALYSIS PIPELINE

Known loci
Novel loci

Chr 10
rs2642587
p -value = 8.45×10–9

MAF = 0.22 
OR = 1.12 
10q22.1
NEUROG3

rs115884658
p -value = 3.00×10–10

MAF = 0.02
OR = 1.21

6p21.33/6p21.32
EHMT2

Chr 6

Chr X
rs146662075
p -value = 7.85×10–9

MAF = 0.008
OR = 1.95
Xq23
AGTR2

Chr 12
rs3794205
p -value = 4.11×10–8

MAF = 0.34
OR = 1.07
12q24.31
CAMKK2

Chr 17
rs12453394
p -value = 3.23×10–8

MAF = 0.47
OR = 1.07 
17q21.32
UBE2Z

Chr 9
rs505922
p -value = 4.94×10–8

MAF = 0.34
OR = 1.06 
9q34.2
ABO

Chr 1

rs2820443
p -value = 2.56×10–8

MAF = 0.28
OR = 1.07
1q41
LYPLAL1

FAF1 / 1p32.3

GCKR / 2p23.3-p23.2

COBLL1 / 2q24.3

ADCY5 / 3q21.1

WFS1 / 4p16.1

ARL15 / 5q11.2

VEGFA / 6p21.1

DGKB / 7p21.2

ANK1 / 8p11.21

GLIS3 / 9p24.2

ZMIZ1 / 10q22.3

ABCC8 / 11p15.1

MTNR1B / 11q14.3

SPRY2 / 13q31.1

AP3S2 / 15q26.1

BCAR1 / 16q23.1

GIPR / 19q13.32

HNF4A / 20q13.12

KAISER-GERA
NuGENE

(7522 cases
50,446 controls)

15,115,281 variants

70,127 individuals
12,931 cases / 57,196 controls

GENEVA
phs000091.v2.p1

(2,614 cases / 3,061 controls)

WTCCC
EGAS00000000005

(1,894 cases / 2,917 controls)

FUSION
phs000100.v4.p1

(901 cases / 772 controls)

GERA
phs000674.v1.p1

(6,995 cases / 49,845 controls)

NuGENE
phs000237.v1.p1

(527 cases / 601 controls)

1000 Genomes UK10K

DIAGRAM
Trans-ethnic T2D GWAS

(26,488 cases / 83,964 controls)

70K T2DFor

HAPMAP VARIANTS

Fig. 1 Discovery and replication strategy. Publicly available GWAS datasets representing a total of 12,931 cases and 57,196 controls (70KforT2D) were first
quality controlled, phased, and imputed, using 1000G and UK10K separately. For those variants that were present in the DIAGRAM trans-ethnic meta-
analysis, we used the summary statistics to meta-analyze our results with the cohorts that had no overlap with any of the cohorts included in the
DIAGRAM trans-ethnic meta-analysis. With this first meta-analysis, we discovered four novel loci (within magenta panels). For the rest of the variants, we
meta-analyzed all the 70KforT2D data sets, which resulted in two novel loci (in blue panels). All the variants that were coding and showed a
p-value of ≤ 1 × 10−4 were tested for replication by interrogating the summary statistics in the Type 2 Diabetes Knowledge Portal (T2D Portal)
(http://www.type2diabetesgenetics.org/). This uncovered a novel low-frequency variant in the EHMT2 gene (highlighted with a green panel)
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To prioritize causal variants within all the identified associated
loci, we annotated their corresponding credible sets using the
Variant Effector Predictor (VEP) for coding variants13 (Supple-
mentary Data 7), and the Combined Annotation-Dependent
Depletion (CADD)14 and LINSIGHT15 tools for non-coding
variation (Supplementary Data 8 and 9). In addition, we tested
the effect of all variants on expression across multiple tissues by
interrogating GTEx16 and RNA-sequencing gene expression data
from pancreatic islets17.

Novel T2D-associated loci driven by common variants. Beyond
the detailed characterization of the known T2D-associated
regions, we also identified seven novel loci, among which, five
were driven by common variants with modest effect sizes (1.06<
OR< 1.12; Table 1, Fig. 2, Supplementary Fig. 6 and 7).

Within the first novel T2D-associated locus in chromosome
1q41 (LYPLAL1-ZC3H11B, rs2820443, OR = 1.07 [1.04–1.09], p
= 2.6 × 10−8), several variants have been previously associated
with waist-to-hip ratio, height, visceral adipose fat in females,
adiponectin levels, fasting insulin, and non-alcoholic fatty liver
disease18–23. Among the genes in this locus, LYPLAL1, which
encodes for lysophospholypase-like 1, appears to be the most
likely effector gene, as it has been found to be downregulated in
mouse models of diet-induced obesity and upregulated during
adipogenesis24.

Second, a novel locus at chromosome 9q34.2 region (ABO,
rs505922, OR = 1.06 [1.04–1.09], p= 4.9 × 10−8) includes several
variants that have been previously associated with other
metabolic traits. For example, the variant rs651007, in linkage
disequilibrium (LD) with rs505922 (r2 = 0.507), has been shown
to be associated with fasting glucose25, and rs514659 (r2 with top
= 1) is associated with an increased risk for cardiometabolic
disorders26. One of the variants within the credible set was the
single base-pair frame-shift deletion defining the blood group
O27. In concordance with previous results that linked O blood
type with a lower risk of developing T2D28, the frame-shift
deletion determining the blood group type O was associated with

a protective effect for T2D in our study (rs8176719, p = 3.4 × 10−4,
OR = 0.95 [0.91–0.98]). In addition, several variants within this
credible set are associated with the expression of the ABO gene in
multiple tissues including skeletal muscle, adipose tissue, and
pancreatic islets (Supplementary Data 9, Supplementary Data 10).

Third, a novel locus at chromosome 10q22.1 locus (NEUROG3/
COL13A1/RPL5P26, rs2642587, OR = 1.12 [1.08–1.16], p= 8.4 ×
10−9) includes NEUROG3 (Neurogenin3), which is an essential
regulator of pancreatic endocrine cell differentiation29. Mutations
in this gene have been reported to cause permanent neonatal
diabetes, but a role of this gene in T2D has not been yet
reported30.

The lead common variant of the fourth novel locus at
chromosome 12q24.31 (rs3794205, OR = 1.07 [1.04–1.10], p=
4.1 × 10−8) lies within an intron of the CAMKK2 gene, previously
implicated in cytokine-induced beta-cell death31. However, other
variants within the corresponding credible set could also be
causal, such as a missense variant within the P2RX7, a gene
previously associated with glucose homeostasis in humans and
mice32, or another variant (rs11065504, r2 with lead variant =
0.81) found to be associated with the regulation of the P2RX4
gene in tibial artery and in whole blood, according to GTEx
(Supplementary Data 9).

The fifth novel locus driven by common variants is
located within 17q21.32 (rs12453394, OR = 1.07 [1.05–1.10],
p= 3.23 × 10−8). It includes three missense variants located
within the CALCOCO2, SNF8, and GIP genes. GIP encodes for
glucose-dependent insulinotropic peptide, a hormonal mediator
of enteral regulation of insulin secretion33. Variants in the GIP
receptor (GIPR) have been previously associated with insulin
response to oral glucose challenge and beta-cell function34,
proposing GIP as a plausible candidate effector gene of this
locus35.

A new T2D signal driven by a low-frequency variant. Fur-
thermore, we selected all low-frequency (0.01 ≤MAF< 0.05)
variants with p ≤ 1 × 10−4 in the 70KforT2D meta-analysis that

Table 1 Novel T2D-associated loci

OR (95% CI) P-value

Novel Locus Chr rsID––Risk Allele Stage1 Discovery Meta-
analysis

Stage2 Replication
Meta-analysis

Stage1 + Stage2
Combined Meta-
analysis

MAF

LYPLAL1/ZC3H11B
(1q41)

1 rs2820443-T 1.08 (1.04–1.13)
2.94 × 10−4 a

1.06 (1.03–1.09)
2.10 × 10−5 b

1.07 (1.04–1.09)
2.56 × 10−8 c

0.28

EHMT2
(6p21.33–p21.32)

6 rs115884658-A 1.34 (1.18–1.53)
1.00 × 10−5 a

1.17 (1.09–1.26)
2.90 × 10−6 c, d

1.21 (1.14–1.29)
3.00 × 10−10 c

0.02

ABO
(9q34.2)

9 rs505922-C 1.07 (1.03–1.11)
6.93 × 10−4 a

1.06 (1.03–1.09)
1.90 × 10−5 b

1.06 (1.04–1.09)
4.94 × 10−8 c

0.34

NEUROG3
(10q22.1)

10 rs2642587-G 1.12 (1.08–1.16)
8.45 × 10−9 e

- - 0.22

CAMKK2
(12q24.31)

12 rs3794205-G 1.09 (1.05–1.14)
4.18 × 10−5 a

1.06 (1.03–1.09)
1.60 × 10−4 b

1.07 (1.04–1.10)
4.11 × 10−8 c

0.32

CALCOCO2/ATP5G1/
UBE2Z/SNF8/GIP
(17q21.32)

17 rs12453394-A 1.08 (1.04–1.12)
7.86 × 10−5 a

1.07 (1.03–1.11)
9.60 × 10−5 b

1.07 (1.05–1.10)
3.23 × 10−8 c

0.47

AGTR2
(Xq23)

X rs146662075-T 3.09 (2.06–4.60)
3.24 × 10−8 f

1.57 (1.19–2.07)
1.42 × 10−3 g

1.95 (1.56–2.45)
7.85 × 10−9

0.008

Chr chromosome, OR odds ratio, MAF minor allele frequency
aImputed based public GWAS discovery meta-analysis (NuGENE + GERA cohort, 7,522 cases and 50,446 controls)
bTransancestry DIAGRAM Consortium (26,488 cases and 83,964 controls)cMeta P-value estimated using a weighted Z-score method due to unavailable SE information from Stage 2 replication
cohortsdT2D Diabetes Genetic Portal (Exome-Chip + Exome Sequencing, 35,789 cases and 56,738 controls)eFull imputed based public GWAS meta-analysis (NuGENE + GERA cohort + GENEVA +
FUSION +WTCCC, 12,931 cases and 57,196 controls)
f70KforT2D Men Cohort (GERA cohort + GENEVA + FUSION, 5,277 cases and 15,702 controls older than 55 years)
gReplication Men Cohort SIGMA UK10K imputation + InterAct + Danish Cohort (case control and follow-up) + Partners Biobank + UK Biobank (18,370 cases and 88,283 controls older than 55 years and
OGTT> 7.8 mmol l−1, when available)
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were annotated as altering protein sequences, according to VEP.
This resulted in 15 coding variants that were meta-analyzed with
exome array and whole-exome sequencing data from a total of
~97,000 individuals6 after excluding the overlapping cohorts
between the different data sets. This analysis highlighted a novel
genome-wide association driven by a low-frequency missense
variant (Ser58Phe) within the EHMT2 gene at chromosome
6p21.33 (rs115884658, OR = 1.21 [1.14–1.29], p = 3.00 × 10−10;
Fig. 2, Supplementary Figures 6 and 7). EHMT2 is involved in the
mediation of FOXO1 translocation induced by insulin36. Since
this variant is less than 1Mb away from HLA-DQA1, a locus
reported to be associated with T2D37, we performed a series of
reciprocal conditional analyses and excluded the possibility that
our analysis was capturing previously reported T2D8, 37 or
T1D38–40 signals (Supplementary Data 11). Beyond this missense
EHMT2 variant, other low-frequency variants within the corre-
sponding credible set may also be causal. For example,
rs115333512 (r2 with lead variant = 0.28) is associated with the
expression of CLIC1 in several tissues according to GTEx (mul-
titissue meta-analysis p= 8.9 × 10−16, Supplementary Data 9). In
addition, this same variant is associated with the expression of the
first and second exon of the CLIC1 mRNA in pancreatic islet
donors (p(exon 1) = 1.4 × 10−19, p(exon 2) = 1.9 × 10−13, Supple-
mentary Data 10). Interestingly, CLIC1 has been reported as a
direct target of metformin by mediating the antiproliferative
effect of this drug in human glioblastoma41. All these findings
support CLIC1, as an additional possible effector transcript, likely
driven by rs115333512.

A novel rare X chromosome variant associated with T2D.
Similar to other complex diseases, the majority of published large-
scale T2D GWAS studies have omitted the analysis of the X
chromosome, with the notable exception of the identification of a
T2D-associated region near the DUSP9 gene in 201042. To fill this
gap, we tested the X chromosome genetic variation for association
with T2D. To account for heterogeneity of the effects and for the
differences in imputation performance between males and
females, the association was stratified by sex and tested separately,
and then meta-analyzed. This analysis was able to replicate the
DUSP9 locus, not only through the known rs5945326 variant
(OR = 1.15, p = 0.049), but also through a three-nucleotide dele-
tion located within a region with several promoter marks in liver
(rs61503151 [GCCA/G], OR = 1.25, p = 3.5 × 10−4), and in high
LD with the first reported variant (r2 = 0.62). Conditional analyses
showed that the originally reported variant was no longer sig-
nificant (OR = 1.01, p = 0.94) when conditioning on the newly
identified variant, rs61503151. On the other hand, when con-
ditioning on the previously reported variant, rs5945326, the effect
of the newly identified indel remained significant and with a
larger effect size (OR = 1.33, p = 0.003), placing this deletion, as a
more likely candidate causal variant for this locus (Supplementary
Data 14).

In addition, we identified a novel genome-wide significant
signal in males at the Xq23 locus driven by a rare variant
(rs146662075, MAF = 0.008, OR = 2.94 [2.00–4.31], p = 3.5 × 10−8;
Fig. 3a). Two other variants in LD with the top variant,
rs139246371 (chrX:115329804, OR = 1.65, p = 3.5 × 10−5, r2 =
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Fig. 2 Manhattan and quantile–quantile plot (QQ-plot) of the discovery and replication genome-wide meta-analysis. The upper corner represents the QQ-
plot. Expected −log10 p-values under the null hypothesis are represented in the x axis, while observed −log10 p-values are represented in the y axis.
Observed p-values were obtained according to the suitable replication dataset used (as shown in Fig. 1) and were depicted using different colors. HapMap
variants were meta-analyzed using the trans-ethnic summary statistics from the DIAGRAM study and our meta-analysis based on the Genetic
Epidemiology Research on Aging (GERA) cohort and the northwestern NuGENE project, and that resulted in novel associations depicted in magenta. The
rest of non-HapMap variants meta-analyzed using the full 70KforT2D cohort are represented in gray, and the fraction of novel GWAS-significant variants
is highlighted in light blue. Coding low-frequency variants meta-analyzed using the 70KforT2D and the T2D Portal data that resulted in novel GWAS-
significant associations are depicted in green. The shaded area of the QQ-plot indicates the 95% confidence interval under the null and a density function
of the distribution of the p-values was plotted using a dashed line. The λ is a measure of the genomic inflation and corresponds to the observed median χ2
test statistic divided by the median expected χ2 test statistic under the null hypothesis. The Manhattan plot, representing the −log10 p-values, was colored
as explained in the QQ-plot. All known GWAS-significant associated variants within known T2D genes are also depicted in red. X chromosome results for
females (F), males (M), and all individuals (A) are also included

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02380-9 ARTICLE

NATURE COMMUNICATIONS | �(2018)�9:321� |DOI: 10.1038/s41467-017-02380-9 |www.nature.com/naturecommunications 5



 

 200 

 

 

 

0.37 with the top variant) and rs6603744 (chrX:115823966,
OR = 1.28, p = 1.7 × 10−4, r2 = 0.1 with the top variant), comprised
the 99% credible set and supported the association. We
tested in detail the accuracy of the imputation for the
rs146662075 variant by comparing the imputed results from the
same individuals genotyped by two different platforms (Methods)
and found that the imputation was highly accurate in
males only when using UK10K, but not in females, nor
when using 1000G (R2[UK10K,males] = 0.94, R2[UK10K,females] = 0.66,
R2[1000G,males] = 0.62, and R2[1000G,females] = 0.43; Supplementary
Fig. 8). Whether this association is specific to men, or whether it
also affects female carriers, remains to be clarified with datasets
that allow accurate imputation on females, or with direct
genotyping or sequencing.

To further validate and replicate this association, we next
analyzed four independent data sets (SIGMA6, INTERACT43,
Partners Biobank44, and UK Biobank45), by performing imputa-
tion with the UK10K reference panel. In addition, a fifth cohort
was genotyped de novo for the rs146662075 variant in several
Danish sample sets. The initial meta-analysis, including the
five replication data sets did not reach genome-wide significance
(OR = 1.57, p = 1.2 × 10−5; Supplementary Fig. 9A), and revealed a
strong degree of heterogeneity (heterogeneity phet = 0.004), which
appeared to be driven by the replication cohorts.

As a complementary replication analysis, within one of the
case-control studies, there was a nested prospective cohort study,
the Inter99, which consisted of 1,652 nondiabetic male subjects
genotyped for rs146662075, of which 158 developed T2D after 11
years of follow-up. Analysis of incident diabetes in this cohort
confirmed the association with the same allele, as previously seen
in the case-control studies, with carriers of the rare T allele having
increased risk of developing incident diabetes, compared to the C
carriers (Cox-proportional hazards ratio (HR) = 3.17 [1.3–7.7], p
= 0.011, Fig. 3b). Nearly 30% of carriers of the T risk allele
developed incident T2D during 11 years of follow-up, compared
to only 10% of noncarriers.

To understand the strong degree of heterogeneity observed
after adding the replication datasets, we compared the clinical and
demographic characteristics of the discovery and replication
cohorts, and found that the majority of the replication datasets
contained control subjects that were significantly younger than 55
years, the average age at the onset of T2D reported in this study
and in Caucasian populations46. This was particularly clear for
the Danish cohort (age controls [95%CI] = 46.9 [46.6–47.2] vs.
age cases [95%CI] = 60.7 [60.4–61.0]) and for INTERACT (age
controls [95%CI] = 51.7 [51.4–52.1] vs. age cases [95%CI] = 54.8
[54.6–55.1]; Supplementary Fig. 10). Given the supporting results
with the Inter99 prospective cohort, we performed an additional
analysis using a stricter definition of controls, to minimize the
presence of prediabetics or individuals that may further develop
diabetes after reaching the average age at the onset. For this, we
applied two additional exclusion criteria: (i) subjects younger
than 55 years and (ii), when possible, excluding individuals with
measured 2- h plasma glucose values during oral glucose
tolerance test (OGTT) above 7.8 mmol l−1, a threshold employed
to identify impaired glucose tolerance (prediabetes)47, or controls
with family history of T2D, both being strong risk factors for
developing T2D. While the application of the first filter alone did
not yield genome-wide significant results (Supplementary Fig. 9B),
upon excluding individuals with prediabetes or a family history of
T2D, the replication results were significant and consistent with
the initial discovery results (OR = 1.57 [1.19–2.07], p = 0.0014).
The combined analysis of the discovery and replication cohorts
resulted in genome-wide significance, confirming the association
of rs146662075 with T2D (OR = 1.95 [1.56–2.45], p = 7.8 × 10−9,
Fig. 3c).

Allele-specific enhancer activity of the rs146662075 variant. We
next explored the possible molecular mechanism behind this
association, by using different genomic resources and experi-
mental approaches. The credible set of this region contained three
variants, with the leading SNP alone (rs146662075), showing 78%
posterior probability of being causal (Supplementary Fig. 7,
Supplementary Data 5), as well as the highest CADD (scaled C-
score = 15.68; Supplementary Data 8), and LINSIGHT score
(Supplementary Data 9). rs146662075 lies within a chromosomal
region enriched in regulatory (DNase I) and active enhancer
(H3K27ac) marks, between the AGTR2 (at 103 kb) and the
SLC6A14 (at 150 kb) genes. The closest gene AGTR2, which
encodes for the angiotensin II receptor type 2, has been pre-
viously associated with insulin secretion and resistance48–50.
From the analysis of available epigenomic data sets51, we found
no evidences of H3K27ac or other enhancer regulatory marks in
human pancreatic islets; whereas a significant association was
observed between the presence of H3K27ac enhancer marks and
the expression of AGTR2 across multiple tissues (Fisher test p =
4.45 × 10−3), showing the highest signal of both H3K27ac and
AGTR2 RNA-seq expression, but not with other genes from the
same topologically associated domain (TAD), in fetal muscle
(Fig. 4a; Supplementary Figure 11).

We next studied whether the region encompassing the
rs146662075 variant could act as a transcriptional enhancer and
whether its activity was allele-specific. For this, we linked the
DNA region with either the T (risk) or the C (non-risk) allele, to a
minimal promoter and performed luciferase assays in a mouse
myoblast cell line. The luciferase analysis showed an average 4.4-
fold increased activity for the disease-associated T allele,
compared to the expression measured with the common C allele,
suggesting an activating function of the T allele, or a repressive
function of the C allele (Fig. 4b). Consistent with these findings,
electrophoretic mobility shift assays using nuclear protein extracts
from mouse myoblast cell lines, differentiated myotubes, and
human fetal muscle cell line, revealed sequence-specific binding
activity of the C allele, but not the rare T allele (Fig. 4c). Overall,
these data indicate that the risk T allele prevents the binding of a
nuclear protein that is associated with decreased activity of an
AGTR2-linked enhancer.

Discussion
Through harmonizing and reanalyzing publicly available T2D
GWAS data, and performing genotype imputation with two
whole-genome sequence-based reference panels, we are able to
perform deeper exploration of the genetic architecture of T2D.
This strategy allowed us to impute and test for association with
T2D more than 15 million of high-quality imputed variants,
including low-frequency, rare, and small insertions and deletions,
across chromosomes 1–22 and X.

The reanalysis of these data confirmed a large fraction of
already-known T2D loci, and identified novel potential causal
variants by fine mapping and functionally annotating each locus.

This reanalysis also allowed us to identify seven novel asso-
ciations, five driven by common variants in or near LYPLAL1,
NEUROG3, CAMKK2, ABO, and GIP; a low-frequency variant in
EHMT2, and a rare variant in the X chromosome. This rare
variant identified in Xq23 chromosome was located near
the AGTR2 gene, and showed nearly twofold increased risk for
T2D in males, which represents, to our knowledge, the
largest effect size identified so far in Europeans, and a magnitude
similar to other variants with large effects identified in other
populations52, 53.

Our study complemented other efforts that also aim at unra-
veling the genetics behind T2D through the generation of new
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Fig. 3 Discovery and replication of rs14666075 association signal. a Forest plot of the discovery of rs146662075 variant. Cohort-specific odds ratios are
denoted by boxes proportional to the size of the cohort and 95% CI error bars. The combined OR estimated for all the data sets is represented by a
diamond, where the diamond width corresponds to 95% CI bounds. The p-value for the meta-analysis (Meta P) and for the heterogeneity (Het P) of odds
ratio is shown. b Kaplan–Meier plot showing the cumulative incidence of T2D for a 11 years follow-up. The red line represents the T carriers and in light
blue, C carriers are represented (n= 1,652, cases= 158). c Forest plot after excluding controls younger than 55 years, OGTT >7.8 mmol l−1, and controls
with family history of T2D in both the discovery and replication cohorts when available
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genetic data6, 54. For example, we provided for the first time a
comprehensive coverage of structural variants, which point to
previously unobserved candidate causal variants in known and
novel loci, as well as a comprehensive coverage of the X chro-
mosome through sequence-based imputation.

This study also highlights the importance of a strict classifi-
cation of both cases and controls, in order to identify rare variants
associated with disease. Our initial discovery of the Xq23 locus
was only replicated when the control group was restricted to
T2D-free individuals who were older than 55 years (average age
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at the onset of T2D), had normal glucose tolerance, and no family
history of T2D. This is in line with previous results obtained for a
T2D population-specific variant found in Inuit within the
TBC1D4 gene, which was only significant when using OGTT as
criteria for classifying cases and controls, but not when using
HbA1c52. Our observation that 30% of the rs146662075 risk allele
carriers developed T2D over 11 years of follow-up, compared to
10% of noncarriers, further supports the association of this var-
iant and suggests that an early identification of these subjects
through genotyping may be useful to tailor pharmacological or
lifestyle intervention to prevent or delay the onset of T2D.

Using binding and gene-reporter analyses, we demonstrated a
functional role of this variant and proposed a possible mechanism
behind the pathophysiology of T2D in T risk allele carriers, in
which this rare variant could favor a gain of function of AGTR2 ,
previously associated with insulin resistance48. AGTR2 appears,
therefore, as a potential therapeutic target for this disease, which
would be in line with previous studies showing that the blockade
of the renin–angiotensin system in mice55 and in humans56

prevents the onset of T2D, and restores normoglycemia57, 58.
Overall, beyond our significant contribution toward expanding

the number of genetic associations with T2D, our study also
highlights the potential of the reanalysis of public data, as a
complement to large studies that use newly generated data. This
study informs the open debate in favor of data sharing and
democratization initiatives4, 59, for investigating the genetics and
pathophysiology of complex diseases, which may lead to new
preventive and therapeutic applications.

Methods
Quality filtering for imputed variants. In order to assess genotype imputation
quality and to determine an accurate post-imputation quality filter, we made use of
the Wellcome Trust Case Control Consortium (WTCCC)40 data available through
the European Genotype Archive (EGA, https://www.ebi.ac.uk/ega/studies/
EGAS00000000028). The genotyping data and the subjects included in the fol-
lowing tests were filtered according to the guidelines provided by the WTCCC,
whose criteria of exclusion are in line with standard quality filters for GWAS60. We
used the 1958 British Birth cohort (~3,000 samples, 58C) that was genotyped by
Affymetrix v6.0 and Illumina 1.2M chips. After applying the quality-filtering cri-
teria, 2,706 and 2,699 subjects from the Affymetrix and Illumina data, respectively,
were available for the 58C samples, leaving an intersection of 2,509 individuals
genotyped by both platforms. After variant quality filtering and excluding all the
variants with minor allele frequency (MAF) below 0.01, 717,556, and 892,516
variants remained for 58C Affymetrix and Illumina platforms, respectively.

We used a two-step genotype imputation approach based on prephasing the
study genotypes into full haplotypes with SHAPEIT261 to ameliorate the
computational burden required for genotype imputation through IMPUTE262. We
used the GTOOL software (http://www.well.ox.ac.uk/~cfreeman/software/gwas/
gtool.html, version 0.7.5) to homogenize strand annotation by merging the
imputed results obtained from each set of genotyped data. To ensure that there
were no strand orientation issues, we excluded all C/G and A/T SNPs. To perform
genotype imputation, we used two sequence-based reference panels: the 1000G
Phase1 (June 2014) release7 and the UK10K2.

We evaluated genotype imputation for each reference panel considering 2,509
58C individuals that were genotyped by both independent genotyping platforms.
Four scenarios were considered: (a) fraction of variants originally genotyped (GT)
by both Illumina (IL) and Affymetrix (Affy) platforms (both GT), (b) variants
genotyped by Affy, but not present in IL array (Affy GT), (c) variants genotyped by
IL, but not present in the Affy array (IL GT), and (d) variants not typed in IL nor in
the Affy arrays, and therefore, imputed from IL and Affy data sets (d). This last
scenario comprised the largest fraction of variants.

As the individuals typed (and imputed) using Affy and IL SNPs as backbones
were the same, we expected no statistical differences when comparing the allele and
genotype frequencies with any of the variants. The quality of the imputed variants
was evaluated using the allelic dosage R2 correlation coefficient, between the
genotype dosages estimated when imputing using Affy or IL as the backbone. The
Affy GT and IL GT SNPs were used to evaluate the correspondence between the
allelic dosage R2 scores and the IMPUTE2 info scores for the imputed genotypes.
The linear model, between the allelic dosage R2 and the IMPUTE2-info, was used
to set an info score threshold of 0.7, which corresponds to an allelic dosage R2 of
0.5. The correlation between R2 and info score was uniform across all reference
panels and platforms.

The 70KforT2D resource. We collected genetic individual-level data for T2D
case/control studies from five independent datasets, Gene Environment-
Association Studies initiative [GENEVA], Wellcome Trust Case Control Con-
sortium [WTCCC], Finland–United States Investigation of NIDDM Genet-
ics [FUSION], Resource for Genetic Epidemiology Research on Aging [GERA],
and the Northwestern NUgene project [NuGENE] publicly available in the dbGaP
(http://www.ncbi.nlm.nih.gov/gap) and EGA (https://www.ebi.ac.uk/ega/home)
public repositories, comprising a total of 13,201 cases and 59,656 controls (for the
description of each cohort, see Supplementary Note 1 and Supplementary Data 1).

Each dataset was independently harmonized and quality controlled with a
three-step protocol, including two stages of SNP removal and an intermediate stage
of sample exclusion. The exclusion criteria for variants were (i) missing call rate
≥ 0.05, (ii) significant deviation from Hardy–Weinberg equilibrium (HWE) p ≤ 1 ×
10−6 for controls and p≤ 1 × 10−20 for the entire cohort, (iii) significant differences
in the proportion of missingness between cases and controls p ≤ 1 × 10−6, and (iv)
MAF < 0.01 (for the GERA cohort, we considered a MAF of 0.001). The exclusion
criteria for samples were i) gender discordance between the reported and
genetically predicted sex, ii) subject relatedness (pairs with π ≥ 0.125 from which
we removed the individual with the highest proportion of missingness), iii) missing
call rates per sample ≥ 0.02, and iv) population structure showing more than four
standard deviations within the distribution of the study population according to
the first four principal components.

We performed genotype imputation independently for each cohort by
prephasing the genotypes to whole haplotypes with SHAPEIT2 and then, we
performed genotype imputation with IMPUTE2. We tested for association with
additive logistic regression using SNPTEST, seven derived principal components
sex, age, and body-mass index (BMI), except for WTCCC, for which age and BMI
were not available (Supplementary Data 1). To maximize power and accuracy, we
combined the association results from 1000G Phase1 integrated haplotypes (June,
2014)7 and UK10K (http://www.uk10k.org/) reference panels by choosing for each
variant, the reference panel that provided the best IMPUTE2 info score. For
1000G-based genotype imputation in chromosome X (chrX), we used the “v3.
macGT1” release (August, 2012). For chrX, we restricted the analysis to non-
pseudoautosomal (non-PAR) regions and stratified the association analysis by sex
to account for hemizygosity for males, while for females, we followed an autosomal
model. Also, we did not apply HWE filtering in the X chromosome variants.
Finally, for the GERA cohort due to the large computational burden that comprises
the whole genotype imputation process in such a large sample size, we randomly
split this cohort into two homogeneous subsets of ~30,000 individuals each, in
order to minimize the memory requirements.

We included variants with IMPUTE2 info score ≥ 0.7, MAF ≥ 0.001, and for
autosomal variants, HWE controls p> 1 × 10−6. Further details about genotype
imputation and covariate information used in association testing are summarized
in Supplementary Data 1.

70KforT2D and inclusion of previous summary statistics data. We meta-
analyzed the different sets from the 70KforT2D data set with METAL63, using the
inverse variance-weighted fixed effect model. We included variants with I2 het-
erogeneity < 75. This filter was not applied to the final X chromosome data set,
after meta-analyzing the results from males and females separately (which were
already filtered by I2< 75).

For the meta-analysis with the DIAGRAM trans-ethnic study8, we excluded
from the whole 70KforT2D datasets those cohorts that overlapped with the
DIAGRAM data. Therefore, we meta-analyzed the GERA and NuGENE cohorts
(7,522 cases and 50,446 controls) from the 70KforT2D analysis with the trans-
ethnic summary statistics results. As standard errors were not provided for the

Fig. 4 Functional characterization of rs146662075 association signal. a Signal plot for X chromosome region surrounding rs146662075. Each point
represents a variant, with its p-value (on a −log10 scale, y axis) derived from the meta-analysis results from association testing in males. The x axis
represents the genomic position (hg19). Below, representation of H3K27ac and RNA-seq in a subset of cell types is shown. The association between RNA-
seq signals and H3K27ac marks suggests that AGTR2 is the most likely regulated gene by the enhancer that harbors rs146662075. b The presence of the
common allelic variant rs146662075-C reduces enhancer activity in luciferase assays performed in a mouse myoblast cell line. c Electrophoretic mobility
shift assay in C2C12 myoblast cell lines, C2C12-differentiated myotubes, and human fetal myoblasts showed allele-specific binding of a ubiquitous nuclear
complex. The arrows indicate the allele-specific binding event. Competition was carried out using 50- and 100-fold excess of the corresponding unlabeled
probe
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DIAGRAM trans-ethnic meta-analysis, we performed a sample size based meta-
analysis, which converts the direction of the effect and the p-value into a Z-score.
In addition, we also performed an inverse variance-weighted fixed effect meta-
analysis to estimate the final effect sizes. This approach required the estimation of
the beta and standard errors from the summary statistics (p-value and odds ratio).

For the meta-analysis of coding low-frequency variants with the
Type 2 Diabetes Knowledge Portal (T2D Portal)6, we included from the
70KforT2D data set the NuGENE and GERA cohorts (7,522 cases and 50,446
controls), to avoid overlapping samples. Like in the previous scenario, standard
errors were not provided for the T2D Portal data and we used a sample size based
meta-analysis with METAL. However, to estimate the effect sizes, we also
calculated the standard errors from the p-values and odds ratios, and we performed
an inverse variance-weighted fixed effect meta-analysis.

See further details about the cohorts in Supplementary Note 1.

Pathway and enrichment analysis. Summary statistics that resulted from the
70KforT2D meta-analysis were analyzed by Data-driven Expression-Prioritized
Integration for Complex Traits (DEPICT)9 to prioritize likely causal genes, to
highlight enriched pathways, and to identify the most relevant tissues/cell types;
DEPICT relies on publicly available gene sets (including molecular pathways) and
leverages gene expression data from 77,840 gene expression arrays, to perform gene
prioritization and gene-set enrichment based on predicted gene function and the
so-called reconstituted gene sets. A reconstituted gene set contains a membership
probability for each gene and conversely, each gene is functionally characterized by
its membership probabilities across 14,461 reconstituted gene sets. As an input to
DEPICT, we used all summary statistics from autosomal variants with p< 1 × 10−5

in the 70KforT2D meta-analysis. We used an updated version of DEPICT, which
handled 1000G Phase1-integrated haplotypes (June 2014, www.broadinstitute.org/
depict). DEPICT was run using 3,412 associated SNPs (p < 1 × 10−5), from which
we identified independent SNPs using PLINK and the following parameters:
--clump-p1 5e-8, --clump-p2 1e-5, --clump-r2 0.6, and --clump-kb 250. We used
LD r2> 0.5 distance to define locus limits yielding 70 autosomal loci comprising
119 genes (note that this is not the same locus definition that we used elsewhere in
the text). We ran DEPICT with default settings, i.e., using 500 permutations to
adjust for bias and 50 replications to estimate false discovery rate (FDR). We used
normalized expression data from 77,840 Affymetrix microarrays to reconstitute
gene sets9. The resulting 14,461 reconstituted gene sets were tested for enrichment
analysis. A total of 209 tissue or cell types expression data assembled from 37,427
Affymetrix U133 Plus 2.0 Array samples were used for enrichment in tissue/cell-
type expression. DEPICT identified 103 reconstituted gene sets significantly enri-
ched (FDR< 5%) for genes found among the 70 loci associated to T2D. We did not
consider reconstituted sets in which genes of the original gene set were not
nominally enriched (Wilcoxon rank-sum test), as these are expected to be enriched
in the reconstituted gene set by design. The lack of enrichment makes the inter-
pretation of the reconstituted gene set challenging because the label of the
reconstituted gene set will not be accurate. Hence, the following reconstituted gene
sets were removed from the results (Wilcoxon rank sum and P-values in par-
entheses): MP:0004247 gene set (p = 0.73), GO:0070491 gene set (p = 0.14),
MP:0004086 gene set (p = 0.17), MP:0005491 gene set (p = 0.54), GO:0005159 gene
set (p = 0.04), MP:0005666 gene set (p = 0.05), ENSG00000128641 gene set (p =
0.02), MP:0006344 gene set (p = 0.42), MP:0004188 gene set (p = 0.22),
MP:0002189 gene set (p = 0.02), MP:0000003 gene set (p = 0.08),
ENSG00000116604 gene set (p = 0.13), GO:0005158 gene set (p = 0.07), and
MP:0001715 gene set (p = 0.01). After applying the filters described above, there
were 89 significantly enriched reconstituted gene sets. We used the affinity pro-
pagation tool to cluster related reconstituted gene sets (network diagram script
available from https://github.com/perslab/DEPICT).

We also used the VSE R package to compute the enrichment or depletion of
genetic variants comprised in the 57 credible sets listed in Supplementary Data 5
across regulatory genomic annotations, as described in64. Each GWAS lead variant
from the final meta-analysis was considered as a tag SNP and variants from the
corresponding 99% credible set (Supplementary Data 5) in LD with the tag SNP
(R2 ≥ 0.4), as a cluster or associated variant set (AVS). In order to account for the
size and structure of the AVS, a null distribution was built based on random
permutations of the AVS. Each permuted variant set was matched to the original
AVS, cluster by cluster using HapMap data by size and structure. This Matched
Random Variant Set (MRVS) was calculated using 500 permutations. Significant
enrichments or depletions were considered when the Bonferroni-adjusted p-value
was < 0.01. Human islet regulatory elements (C1–C5) were obtained from10.

Definition of 99% credible sets of GWAS-significant loci. For each genome-
wide significant region locus, we identified the fraction of variants that have, in
aggregate, 99% probability of containing the causal T2D-associated variant. By
using our 70KforT2D meta-analysis based on imputed data (NuGENE, GERA,
FUSION, GENEVA, and WTCCC data sets, comprising 12,231 cases and 57,196
controls), we defined the 99% credible set of variants for each locus with a Bayesian
refinement approach11 (we considered variants with an R2> 0.1 with their
respective leading SNP).

Credible sets of variants are analogous to confidence intervals as we assume that
the credible set for each associated region contains, with 99% probability, the true

causal SNP if this has been genotyped or imputed. The credible set construction
provides, for each variant placed within a certain associated locus, a posterior
probability of being the causal one11. We estimated the approximate Bayes’factor
(ABF) for each variant as

ABF ¼
ffiffiffiffiffiffiffiffiffiffiffi
1" r

p
e rz2=2ð Þ;

where

r ¼ 0:04
SE2 þ 0:04ð Þ

;

z ¼ β
SE

:

The β and the SE are the estimated effect size and the corresponding standard
error resulting from testing for association under a logistic regression model. The
posterior probability for each variant was obtained as

Posterior Probabilityi ¼
ABFi
T

;

where ABFi corresponds to the approximate Bayes’factor for the marker i and T
represents the sum of all the ABF values from the candidate variants enclosed in
the interval being evaluated. This calculation assumes that the prior of the β
corresponds to a Gaussian with mean 0 and variance 0.04, which is also the same
prior commonly employed by SNPTEST, the program being used for calculating
single-variant associations.

Finally, we ranked variants according to the ABF (in decreasing order) and from
this ordered list, we calculated the cumulative posterior probability. We included
variants in the 99% credible set of each region until the SNP that pushed the
cumulative posterior probability of association over 0.99.

The 99% credible sets of variants for each of the 57 GWAS-significant regions
are summarized in Supplementary Data 5.

Characterization of indels. We examined whether indels from the 99% credible
sets were present or absent in the 1000G Phase1 or UK10K reference panels, and
also checked whether they were present or not in the 1000G Phase3 reference
panel. All the information has been summarized in Supplementary Data 6. We also
visually inspected the aligned BAM files of the most relevant indels from both
projects to discard that they could be alignment artifacts.

Functional annotation of the 99% credible set variants. To determine the effect
of 99% credible set variants on genes, transcripts, and protein sequence, we used
the variant effect predictor (VEP, GRCh37.p13 assembly)13. The VEP application
determines the effect of variants (SNPs, insertions, deletions, CNVs, or structural
variants) on genes, transcripts, proteins, and regulatory regions. We used as input
the coordinates of variants within 99% credible sets and the corresponding alleles,
to find out the affected genes and RefSeq transcripts and the consequence on the
protein sequence by using the GRCh37.p13 assembly. We also manually checked
all these annotations with the Exome Aggregation Consortium data set (ExAC,
http://exac.broadinstitute.org) and the most updated VEP server based on the
GRCh38.p7 assembly. All these annotations are provided in Supplementary Data 7.

We used combined annotation-dependent depletion (CADD) scoring function
to prioritize functional, deleterious, and disease causal variants. We obtained
the scaled C-score (PHRED-like scaled C-score ranking each variant with respect to
all possible substitutions of the human genome) metric for each 99% credible set
variant, as it highly ranks causal variants within individual genome sequences14

(Supplementary Data 8). We also used the LINSIGHT score to prioritize functional
variants, which measures the probability of negative selection on noncoding sites
by combining a generalized linear model for functional genomic data with a
probabilistic model of molecular evolution15. For each credible set variant, we
retrieved the precomputed LINSIGHT score at that particular nucleotide site, as
well as the mean LINSIGHT precomputed score for a region of 20 bp centered on
each credible set variant, respectively (https://github.com/CshlSiepelLab/
LINSIGHT). These metrics are summarized in Supplementary Data 9.

In order to prioritize functional regulatory variants, we used the V6 release from
the GTEx data that provides gene-level expression quantifications and eQTL results
based on the annotation with GENCODE v19. This release included 450 genotyped
donors, 8,555 RNA-seq samples across 51 tissues, and two cell lines, which led to
the identification of eQTLs across 44 tissues16. Moreover, RNA-seq data from
human pancreatic islets from 89 deceased donors cataloged as eQTLs and exon use
(sQTL) were also integrated with the GWAS data to prioritize candidate regulatory
variants17 but in pancreatic islets, which is a target tissue for T2D. Both analyses
are summarized in Supplementary Data 10 and Supplementary Data 11,
respectively.

Conditional analysis. To confirm the independence between novel loci and pre-
viously known T2D signals, we performed reciprocal conditional analyses (Sup-
plementary Data 5, Supplementary Data 12, Supplementary Data 13, and
Supplementary Data 14). We included the conditioning SNP as a covariate in the
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logistic regression model, assuming that every residual signal that arises corre-
sponds to a secondary signal independent from this conditioning SNP. We applied
this method to the EHMT2 locus (less than 1Mb away from the HLA where T2D
and T1D signals have been identified), to confirm that this association was inde-
pendent of previously reported T2D signals and also to discard that this association
is also driven by possible contamination of T1D diagnosed as T2D cases. We
conditioned on the top variant identified in this study and the top variant from the
99% credible set analysis, but also on the top variants previously described for T2D
and T1D8, 38–40. For this purpose, we used the full 70KforT2D resource (NuGENE,
GERA, FUSION, GENEVA, and WTCCC cohorts imputed with 1000G and
UK10K reference panels). Finally, all the results were meta-analyzed as explained in
previous sections. These analyses are provided in Supplementary Data 13. This
approach was also applied to confirm that the novel CAMKK2 signal at rs3794205
is independent of known T2D signals at the HNF1A locus (rs1169288, rs1800574,
and chr12:121440833:D)54, which is summarized in Supplementary Data 12.
Moreover, this approach confirmed known secondary signals in the 9p21 locus65

which allowed us to build 99% credible sets based on the results from the condi-
tional analyses (included in Supplementary Data 5), and allowed us to identify the
most likely causal variant for the DUSP9 locus (Supplementary Data 14).

Replication of the rare variant association at Xq23. To replicate the association
of the rs146662075 variant, we performed genotype imputation with the UK10K
reference panel in four independent data sets: the InterAct case-cohort study43, the
Slim Initiative in Genomic Medicine for the Americas (SIGMA) consortium
GWAS data set6, the Partners HealthCare Biobank (Partners Biobank) data set44,
and the UK Biobank cohort45. Phasing was performed with SHAPEIT2 and the
IMPUTE2 software was used for genotype imputation.

The current UK Biobank data release did not contain imputed data for the X
chromosome, for which phasing and imputation had to be analyzed in-house. The
data release used comprises X chromosome QCed genotypes of 488,377
participants, which were assayed using two arrays sharing 95% of marker content
(Applied BiosystemsTM UK BiLEVE AxiomTM Array and the Applied
BiosystemsTM UK Biobank AxiomTM Array). We included samples and markers
that were used as input for phasing by UK Biobank investigators. At the sample
level, we also excluded women, individuals with missing call rate > 5% or showing
gender discordance between the reported and the genetically predicted sex. At the
variant level, we excluded markers with MAF< 0.1% and with missing call rate
> 5%. The final set of 16,463 X chromosome markers and 222,725 male individuals
was split into six subsets due to the huge computational burden that would require
phasing into whole haplotypes the entire data set. We also excluded indels, variants
with MAF< 1%, and variants showing deviation of Hardy–Weinberg equilibrium
with p < 1 × 10−20 before the imputation step. In addition, from those pairs of
relatives reported to be third degree or higher according to UK Biobank, we
excluded from each pair the individual with the lowest call rate. We then tested the
rs146662075 variant for association with type 2 diabetes using SNPTEST v2.5.1 and
the threshold method. To avoid contamination from other types of diabetes
mellitus, we excluded from the entire sample data set, individuals with ICD10
codes falling in any of these categories: E10 (insulin-dependent diabetes mellitus),
E13 (other specified diabetes mellitus), and E14 (unspecified diabetes mellitus).
Then, we designated as T2D cases those individuals with E11 (non-insulin-
dependent diabetes mellitus) ICD10 codes, and the rest as controls. Moreover, we
only kept as control subjects those individuals without reported family history of
diabetes mellitus and older than 55 years, which is the average age at the onset of
T2D.

We also genotyped de novo the rs146662075 variant with KASPar SNP
genotyping system (LGC Genomics, Hoddeson, UK) in the Danish cohort, which
comprises data from five sample sets (Supplementary Note 2 also for the
genotyping and QC analysis for this variant).

We used Cox-proportional hazard regression models to assess the association of
the variant with the risk of incident T2D in 1,652 nondiabetic male subjects
genotyped in the Inter99 cohort (part of the Danish cohort) that were followed for
11 years on average. The follow-up analysis was restricted to male individuals
younger than 45 years who were 56 years old after 11 years of follow-up.
Individuals with self-reported diabetes at the baseline examination and individuals
present in the Danish National diabetes registry before the baseline examination
were also excluded. To include the follow-up study as a part of the replication
cohorts, we used a meta-analysis method that accounts for overlapping samples
(MAOS)66, as we had to control for the sample overlap between the follow-up and
the case-control study from the Danish samples.

See Supplementary Note 2 for a larger description of each of the five replication
cohorts and how they have been processed.

We meta-analyzed the association results from these five replication data sets
with the 70KforT2D data sets. In the final meta-analysis, we excluded whenever it
was possible (a) controls younger than 55 years and (b) with OGTT > 7.8 mmol l
−1 or with family history of T2D.

In silico functional characterization of rs146662075. This variant is located in
an intergenic region, flanked by AGTR2 and SLC6A14 genes, and within several
DNase I hypersensitive sites. We searched for regulatory marks (i.e., H3K4me1 and
H3K27ac marks) through the HaploReg web server (http://archive.broadinstitute.

org/mammals/haploreg/haploreg.php), in order to assess which type of regulatory
element was associated with the rs146662075 variant.

To further evaluate the putative regulatory role of rs146662075, we used the
WashU EpiGenome Browser (http://epigenomegateway.wustl.edu/browser/, last
access on June 2016). We used the following public data hubs: (1) the reference
human epigenomes from the Roadmap Epigenomics Consortium track hubs and
(2) the Roadmap Epigenomics Integrative Analysis Hub. These data were released
by the NIH Roadmap Epigenomics Mapping Consortium51. RNA-seq data were
used to evaluate whether gene expression of any of the closest genes (AGTR2 and
SLC6A14 genes, fixed scale at 80 RPKM) correlated with the presence of the
H3K27ac enhancer marks (a more strict mark for active enhancers in contrast with
H3K4me167, which were highlighted by the HaploReg search) at the rs146662075
location. For visualizing the H3K27ac marks around rs146662075, we focused on a
region of 8 kb and we used a fixed scale at 40 −log10 Poisson p-value of the counts
relative to the expected background count (λlocal).

The NIH Roadmap Epigenomics Consortium data from standardized
epigenomes also allowed us to further interrogate which target gene within the
same topologically associating domain (TAD) was more likely to be regulated by
this rs146662075 enhancer. We used H3K27ac narrow peaks from 59 tissues called
using MACSv2 with a p-value threshold of 0.01 from 98 consolidated epigenomes
to seek for enhancer marks in a given tissue (the presence of H3K27ac peak). To
assess gene expression for any of the putative target genes within TAD, we used the
RPKM expression matrix for 57 consolidated epigenomes (http://egg2.wustl.edu/
roadmap/data/byDataType/rna/) and gene expression quantifications for fetal
muscle leg, fetal muscle trunk, and fetal stomach provided by ENCODE (https://
www.encodeproject.org/). With this, we were able to test for each of the genes, the
association between gene expression and enhancer activity in 31 tissues with a
Fisher’s exact test.

Allele-specific enhancer activity at rs146662075. The mouse C2C12 cell line
(ATCC CRL-1772) was grown in DMEM medium supplemented with 10% FBS
and was induced to differentiate in DMEM with 10% horse serum for 4 days.

The human fetal myoblast cell line was established by Prof. Giulio Cossu
(Institute of Inflammation and Repair, University of Manchester)68. The authors
played no role in the procurement of the tissue. Cells were cultured in DMEM
medium supplemented with 10% fetal calf serum and was induced to differentiate
in DMEM with 2% horse serum for 4 days.

To perform an electrophoretic mobility shift assay, nuclear extracts from mouse
myoblast C2C12 cells and the human myoblast cell line (ATCC CRL-1772) were
obtained as described before69. Double-stranded oligonucleotides containing either the
common or rare variants of rs146662075 were labeled using dCTP [α-32P] (Perkin
Elmer). Oligonucleotide sequences are as follows (SNP location is underlined): probe-
C-F: 5′-gatcTTTGAACACcGAGGGGAAAAT-3′ and R:5′-gatcATTTTCCCCTC
gGTGTTCAAA-3′ and probe-T-F: 5′- gatcTTTGAACACtGAGGGGAAAAT-3′ and
R: 5′-gatcATTTTCCCCTCaGTGTTCAAA-3′. Assay specificity was assessed by
preincubation of nuclear extracts with 50- and 100-fold excess of unlabeled wild-type
or mutant probes, followed by electrophoresis on a 5% nondenaturing polyacrylamide
gel. Findings were confirmed by repeating binding assays on separate days.

For evaluating if the activity of the rs146662075 enhancer was allele specific, we
performed a luciferase assay. A region of 969 bp surrounding rs146662075 was
amplified from human genomic DNA using F: 5′-
GCTAGCATATGGAGGTGATTTGT-3′ and R: 5′-
GGCACTTCCTTCTCTGGTAGA-3′ oligonucleotides and cloned into pENTR/D-
TOPO (Invitrogen). Allelic variant rs146662075T was introduced by site-directed
mutagenesis using the following primers: F: 5′-
CCTTTTTTTACTTTGAACACTGAGGGGAAAATCATGCTTGGC-3′ and R: 5′-
GCCAAGCATGATTTTCCCCTCAGTGTTCAAAGTAAAAAAAGG-3′.
Enhancer sequences were shuttled into pGL4.23[luc2/minP] vector (Promega)
adapted for Gateway cloning (pGL4.23-GW, 2) using Gateway LR Clonase II
Enzyme mix (Invitrogen). Correct cloning was confirmed both by Sanger
sequencing and restriction digestion.

C2C12 (ATCC CRL-1772) and 293T (ATCC CRL-3216) cells were transfected
in quadruplicates with 500 ng of pGL4.23-GW enhancer containing vectors and 0.2
ng of Renilla normalizer plasmid. Transfections were carried out in 24-well plates
using Lipofectamine 2000 and Opti-MEM (Thermo Fisher Scientific) following the
manufacturer’s instructions. Luciferase activity was measured 48 h after
transfection using Dual-Luciferase Reporter Assay System (Promega). Firefly
luciferase activity was normalized to Renilla luciferase activity, and the results were
expressed as a normalized ratio to the empty pGL4.23[luc2/minP] vector backbone.
Experiments were repeated three times. Statistical significance was evaluated
through a Student’s t-test.

Data availability. The association results are available at the Type 2 Diabetes
Knowledge portal (www.type2diabetesgenetics.org/) and the complete summary
statistics are available for download at http://cg.bsc.es/70kfort2d/
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Cytokinetic abscission facilitates the irreversible separation of
daughter cells. This process requires the endosomal-sorting com-
plexes required for transport (ESCRT) machinery and is tightly
regulated by charged multivesicular body protein 4C (CHMP4C), an
ESCRT-III subunit that engages the abscission checkpoint (NoCut) in
response to mitotic problems such as persisting chromatin bridges
within the midbody. Importantly, a human polymorphism in CHMP4C
(rs35094336, CHMP4CT232) increases cancer susceptibility. Here, we
explain the structural and functional basis for this cancer association:
The CHMP4CT232 allele unwinds the C-terminal helix of CHMP4C, im-
pairs binding to the early-acting ESCRT factor ALIX, and disrupts the
abscission checkpoint. Cells expressing CHMP4CT232 exhibit increased
levels of DNA damage and are sensitized to several conditions that
increase chromosome missegregation, including DNA replication
stress, inhibition of the mitotic checkpoint, and loss of p53. Our data
demonstrate the biological importance of the abscission checkpoint
and suggest that dysregulation of abscission by CHMP4CT232 may
synergize with oncogene-induced mitotic stress to promote geno-
mic instability and tumorigenesis.

abscission checkpoint | ESCRT pathway | cancer | genome instability |
CHMP4C

Cytokinetic abscission is the final stage of cell division when
the newly formed daughter cells are irreversibly separated.

Abscission is a multistep process that culminates in the resolution
of the midbody, the thin intercellular bridge that connects dividing
cells following mitosis (1–3). The final membrane fission step of
abscission is mediated by the endosomal-sorting complexes re-
quired for transport (ESCRT) pathway (4–7). The ESCRT ma-
chinery comprises membrane-specific adaptors and five core
factors/complexes (ALIX, ESCRT-I, ESCRT-II, ESCRT-III, and
VPS4), which are recruited sequentially (8–10). During cytokine-
sis, the midbody adaptor protein CEP55 initially recruits the early-
acting ESCRT factors ALIX and ESCRT-I (4, 5, 11, 12). These
factors, in turn, promote the recruitment and polymerization of
essential ESCRT-III subunits, such as CHMP4B, to form fila-
ments within the midbody. These membrane-associated filaments
collaborate with the AAAATPase VPS4 to constrict and sever the
midbody (4–6, 11, 13).
Abscission is tightly coordinated with earlier stages of mitosis to

ensure faithful inheritance of genetic material during cell division
(14). In particular, cytokinetic abscission is temporally regulated
by a conserved mechanism known as the “abscission checkpoint”
(NoCut in yeast), which delays abscission in response to mitotic
problems such as incomplete nuclear pore reformation or chro-
matin bridges within the midbody (15–19). The abscission check-
point is governed by the master regulator, Aurora B kinase, which
inhibits ESCRT-III activity in response to mitotic problems. Two

key intersecting signaling nodes within this pathway are the
ESCRT-III subunit CHMP4C and the regulatory ULK3 kinase.
CHMP4C is a specialized ESCRT-III subunit that is dispensable
for cytokinetic membrane fission, viral budding, and endosomal
sorting but plays an essential role in executing the abscission
checkpoint (20–22). CHMP4C is directly phosphorylated by Au-
rora B and is further phosphorylated by ULK3, which also phos-
phorylates other ESCRT-III subunits such as IST1. CHMP4C
phosphorylation and ULK3 activity, together with the actions of
other ESCRT-III–associated factors such as ANCHR, collectively
prevent ESCRT-III polymerization and sequester VPS4 away
from abscission sites, thereby delaying abscission (20, 23, 24).

Significance

The final step of cell division, abscission, is temporally regulated
by the Aurora B kinase and charged multivesicular body protein
4C (CHMP4C) in a conserved pathway called the “abscission
checkpoint” which arrests abscission in the presence of lingering
mitotic problems. Despite extensive study, the physiological
importance of this pathway to human health has remained
elusive. We now demonstrate that a cancer-predisposing poly-
morphism in CHMP4C disrupts the abscission checkpoint and
results in DNA damage accumulation. Moreover, deficits in this
checkpoint synergize with p53 loss and generate aneuploidy
under stress conditions that increase the frequency of chromo-
some missegregation. Therefore, cells expressing the cancer-
associated polymorphism in CHMP4C are genetically unstable,
thus suggesting an oncogenic mechanism that may involve the
dysregulation of abscission.
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Despite recent advances in identifying key components of the
abscission checkpoint, the biological functions of the checkpoint
and its contributions to human health are not yet known. Here, we
have addressed these questions by analyzing the biochemical and
abscission checkpoint activities of rs35094336, a human CHMP4C
polymorphism (minor allele frequency = 0.04) associated with in-
creased susceptibility to ovarian cancer (25). rs35094336 encodes
an amino acid substitution of A232 (CHMP4CA232; reference al-
lele) to T232 (CHMP4CT232; risk allele). Here, we show that the
A232T substitution induces structural changes that impair ALIX
binding and that cells expressing the CHMP4CT232 risk allele lack
an abscission checkpoint and accumulate genetic damage. The
CHMP4CT232 allele also sensitizes cells to chromosome mis-
segregation and induces aneuploidy when the spindle-assembly
checkpoint is weakened. These observations demonstrate the
importance of the abscission checkpoint in maintaining genetic
stability and suggest an oncogenic mechanism in which disruption
of the abscission checkpoint by CHMP4CT232 may contribute to
tumorigenesis by synergizing with oncogenic mutations that in-
crease mitotic stress.

Results
CHMP4CT232 Is Associated with Multiple Cancer Types.The CHMP4CT232

allele was initially identified in a meta-analysis of two genome-wide
association studies (GWAS) of SNPs associated with ovarian cancer
(25). To test for an association of the CHMP4CT232 polymorphism
with other cancers, we mined data from 337,208 individuals in the
UK Biobank search engine (26). Our analysis of this independent
cohort confirmed the previously identified association with ovar-
ian cancer, and revealed statistically significant associations with
multiple other types of cancer, including male genital tract,
prostate, and skin cancers (Table 1). Although the odds ratios
(ORs) for these associations are relatively modest (1.04–1.17), the
association of the variant with increased risk for multiple different
cancers suggests that this allele could be involved in a general
pathway of genetic instability and tumorigenesis.

CHMP4CT232 Exhibits Reduced ALIX Binding. Position 232 is the pen-
ultimate CHMP4C residue, and A232 lies within a C-terminal
helix that forms the ALIX-binding site (27). We therefore tested
whether the A232T amino acid substitution affected ALIX binding
and found that this substitution significantly reduced the interaction
between full-length CHMP4C and ALIX (but not CHMP4C and
itself) in a yeast two-hybrid assay (Fig. 1A). This substitution simi-
larly inhibited the ability of a GST-fused C-terminal CHMP4C
peptide (residues 216–233) to pull down endogenous ALIX from
HeLa cell lysates (SI Appendix, Fig. S1A) and reduced the affinity
of the terminal CHMP4C peptide for the pure recombinant ALIX
Bro1 domain (residues 1–359) by 13-fold as measured in a com-
petitive fluorescence polarization binding assay (Fig. 1B). In each

case, we observed complete loss of ALIX binding to well-
characterized control CHMP4C mutants that lacked key hydro-
phobic contact residues (L228A alone or with W231A) (27).
To determine the molecular basis for this reduction in ALIX-

binding affinity, we determined high-resolution crystal structures
of terminal CHMP4CA232 and CHMP4CT232 peptides (residues
216–233) bound to the ALIX Bro1 domain (residues 1–359) (Fig.
1C and SI Appendix, Fig. S1 B and C and Table S1) (27). Com-
parison of the structures revealed that although both peptides
bound the same surface groove of the Bro1 domain, the A232T
substitution disrupted several key ALIX interactions (Fig. 1D).
Specifically, the A232T substitution unwound the C-terminal end
of the terminal CHMP4C helix (Fig. 1C and SI Appendix, Fig.
S1D), altered the position of CHMP4C residue W231, and dis-
rupted intermolecular hydrogen bonds between the W231 car-
bonyl oxygen and indole nitrogen with ALIX residues D143 and
K147, respectively (Fig. 1D). These structural analyses suggested
that the A232T substitution might induce CHMP4C helix un-
winding by introducing a beta-branched amino acid (which re-
duces helical propensity) and/or by prematurely capping the
CHMP4C C-terminal helix (28). Indeed, both effects appeared to
be operative, because mutant CHMP4C peptides that selectively
retained only beta-branching (CHMP4CA232V) or capping poten-
tial (CHMP4CA232S) exhibited intermediate (three- to fourfold)
reductions in ALIX peptide-binding affinity (Fig. 1B). Together,
these analyses demonstrate that the CHMP4CT232 risk allele alters

Table 1. Significant association results for the
rs35094336 genetic variant with multiple cancer types

Cancer type OR (95% CI) P value No. cases Cancer code

Family prostate* 1.04 (1.01–1.08) 0.007 34,359 FH1044
Male genital tract 1.12 (1.03–1.23) 0.012 3,449 1038
Skin 1.05 (1.01–1.09) 0.018 19,170 1003
Prostate 1.08 (1.01–1.16) 0.023 6,460 1044
Nonmelanoma skin 1.05 (1.01–1.10) 0.024 16,791 1060
Ovarian 1.17 (1.01–1.36) 0.037 1,208 1039

Individuals from UK Biobank (n = 337,208) were analyzed, and results
show the association with the A (rs35094336) risk allele (CHMP4CT232) com-
pared with the G (CHMP4CA232) reference allele. Data were obtained from
Global Biobank Engine (https://biobankengine.stanford.edu/) accessed Octo-
ber 2017.
*Association with family history of prostate cancer.
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ular distances (in angstroms) for different atoms of CHMP4C residueW231. See
also SI Appendix, Fig. S1 and Table S1.
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the structure of the CHMP4C C-terminal helix, removes key ALIX
interactions, and reduces ALIX-binding affinity by more than an
order of magnitude.

ALIX–CHMP4C Interactions Are Required for Abscission Checkpoint
Activity. ALIX is a key initiator of the cytokinetic abscission
cascade (4, 5, 11, 29), and CHMP4C plays an essential role in
maintaining the abscission checkpoint (20, 21). We therefore
tested whether abscission checkpoint activity was affected by
CHMP4C mutations that impaired ALIX binding, including the
CHMP4CT232 risk allele. In these experiments, siRNA treatment
was used to deplete endogenous CHMP4C from HeLa cells
engineered to stably express different siRNA-resistant HA-
CHMP4C proteins (Fig. 2 and SI Appendix, Fig. S2). Partial
depletion of nuclear pore components Nup153 and Nup50 was
used to activate the abscission checkpoint (30). As expected, con-
trol cells that expressed endogenous CHMP4C stalled during ab-
scission, as indicated by elevated midbody connections, whereas
cells depleted of CHMP4C did not exhibit elevated levels of
midbody connections (Fig. 2A and SI Appendix, Fig. S2A) (20, 30).
Importantly, checkpoint activity was rescued in cells that expressed
HA-CHMP4CA232 but not in cells that expressed HA-CHMP4CT232,
implying that the CHMP4CT232 risk allele does not support the
abscission checkpoint. The HA-CHMP4CL228A,W231A mutant also
failed to support the abscission checkpoint, further indicating that
the CHMP4C–ALIX interaction is required to sustain the check-
point. Notably, the loss of checkpoint activity for both HA-
CHMP4CL228A,W231A and HA-CHMP4CT232 was comparable to
the defective response observed in cells that expressed an inactive
control CHMP4C mutant lacking the amino acid insertion phos-
phorylated by Aurora B (HA-CHMP4C−INS) (20, 21). Similarly,
cells expressing only HA-CHMP4CT232, HA-CHMP4CL228A,W231A,
or HA-CHMP4C−INS also proceeded through abscission more
rapidly under normal growth conditions, implying that they were
insensitive to steady-state abscission checkpoint activity, likely in-
duced by midbody tension (Fig. 2B, SI Appendix, Fig. S2B, andMovies
S1–S6) (24, 31). Despite these defects, HA-CHMP4CA232, HA-
CHMP4CT232, HA-CHMP4CL228A, W231A, and HA-CHMP4C−INS

were all recruited to the midbody at normal levels, whether or not
nucleoporins were depleted (Fig. 2D and E). Additionally, CHMP4C
ALIX-binding mutants and wild-type CHMP4C proteins were mi-
totically phosphorylated at comparable levels (SI Appendix, Fig. S2D),
indicating that the CHMP4C mutations did not disrupt recogni-
tion by Aurora B or ULK3 kinases and that ALIX binding is not
required for these activities. These observations imply that abscis-
sion checkpoint activity requires ALIX binding to CHMP4C. We
find, however, that CHMP4C midbody localization does not require
ALIX binding, in contrast to a previous report (29).
To test CHMP4CT232 activity when the abscission checkpoint was

activated by a different trigger, we used live-cell imaging to measure
the resolution times of intercellular chromatin bridges, as visualized
using the nuclear envelope marker lamina-associated polypep-
tide 2β fused to YFP (YFP-LAP2β). As expected (20), chromatin
bridges were resolved prematurely in CHMP4C-depleted cells
compared with cells that expressed endogenous CHMP4CA232

(median resolution time = 250 vs. 685 min) (Fig. 2C, SI Appendix,
Fig. S2C, and Movies S7–S12). Importantly, prolonged midbody
resolution times were restored by expression of siRNA-resistant
HA-CHMP4CA232 (800 min) but not by HA-CHMP4CT232 (200 min),
HA-CHMP4CL228A,W231A (300min), or HA-CHMP4C−INS (340 min).
Thus, cells expressing the cancer-associated CHMP4CT232 risk
allele lack an appropriate abscission checkpoint response under
multiple different conditions that activate this checkpoint.

Disruption of the Abscission Checkpoint Leads to Accumulation of
DNA Damage. Although the biological consequences of abscis-
sion checkpoint loss are not well understood, increased DNA
damage is one possible outcome (20). We therefore compared

DNA damage accumulation in cells that expressed the different
CHMP4C mutants. In these experiments, CRISPR-Cas9 was
used to delete the CHMP4C locus from HCT116 cells (SI Ap-
pendix, Fig. S3), a near diploid cell line that exhibits low levels of
chromosomal instability and DNA damage (32). Genetic damage
was then assessed by scoring the number of nuclear foci formed by
the DNA damage response marker 53BP1. As expected, cells with
low levels of DNA damage (fewer than two foci per cell) pre-
dominated in the wild-type cultures (HCT116WT) (Fig. 3 A and B).
In contrast, cells lacking CHMP4C (HCT116δCHMP4C) exhibited
heightened DNA damage (more than six foci per cell) with sig-
nificantly greater frequency. Crucially, DNA damage in the
HCT116δCHMP4C cells was reduced to control levels upon reex-
pression of HA-CHMP4CA232 but not HA-CHMP4CT232, HA-
CHMP4CL228A,W231A, or HA-CHMP4C−INS. Hence, the loss of
the CHMP4C-dependent abscission checkpoint increases the ac-
cumulation of 53BP1-associated DNA damage foci.

CHMP4C Is Not Required for Maintenance of Nuclear Integrity, DNA
Damage Responses, or Mitotic Checkpoint Signaling. To determine
whether observed phenotypes were specifically due to abscission
checkpoint failure, we examined other mechanisms that might
underlie the elevated levels of DNA damage in HCT116δCHMP4C

cells. We ruled out ESCRT-dependent loss of nuclear envelope
integrity (33, 34) because nuclear envelope compartmentalization
was not compromised during telophase in cells lacking CHMP4C,
as assayed by nuclear morphology and retention of a GFP-NLS
reporter (SI Appendix, Fig. S4 and Movies S13–S15). Similarly,
loss of CHMP4C did not globally impair DNA damage responses
because the efficiency of G2/M cell-cycle arrest in response to
genotoxic stress induced by the DNA cross-linker mitomycin C
was normal in HCT116δCHMP4C cells (SI Appendix, Fig. S5).
Furthermore, in contrast to another report (35), we did not ob-
serve a failure of HCT116δCHMP4C cells to arrest in response to
spindle poisons such as nocodazole, indicating that the spindle-
assembly checkpoint remains largely intact in these cells (SI Ap-
pendix, Fig. S6). Therefore, the increased DNA damage in cells
lacking CHMP4C activity and a functional abscission checkpoint
does not reflect the loss of nuclear integrity, improper DNA
damage responses, or defective mitotic spindle-assembly check-
point signaling but rather a loss of the abscission checkpoint.

CHMP4CT232 Sensitizes Cells to Replication Stress.We next examined
the possibility that cells lacking CHMP4C activities had in-
creased levels of DNA damage because they were unable to
respond properly to DNA replication stress. This is an attractive
model because (i) a significant fraction of 53BP1 nuclear bodies
originate from lesions generated by DNA replication stress (36),
(ii) elevated replication stress triggers the abscission checkpoint
in a CHMP4C-dependent manner (Fig. 3C) (18), and (iii) the ab-
scission checkpoint plays a key role in protecting anaphase bridges
that arise from replication stress (37), thereby reducing damage
when they persist during cytokinetic abscission (38). In agreement
with this model, inducing replication stress with ultra-low doses
(30 nM) of the DNA polymerase inhibitor aphidicolin reduced the
proliferation of HCT116δCHMP4C cells nearly twofold compared with
HCT116WT cells (Fig. 3D). Importantly, the HCT116δCHMP4C

growth defect was again rescued by expression of HA-CHMP4CA232

but not by the abscission checkpoint-defective HA-CHMP4CT232,
HA-CHMP4CL228A,W231A, or HA-CHMP4C−INS mutants. Thus, the
abscission checkpoint can play a protective role in cell survival when
cells are subjected to increased replication stress.

CHMP4CT232 Sensitizes Cells to Chromosome Missegregation and
Induces Aneuploidy. To examine the functions of the abscission
checkpoint in the context of another mitotic stress, we tested
whether a defective abscission checkpoint also sensitized cells to
weakening of the spindle-assembly checkpoint, a condition that
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induces anaphase chromosomal segregation errors. The spindle-
assembly checkpoint was selectively weakened by treatment with
low doses (0.1 μM) of the MPS1 kinase inhibitor reversine (39),
which doubled the frequency of anaphase chromosome mis-
segregation (Fig. 4A, SI Appendix, Fig. S7B, and Movies S16–S19)
and activated the abscission checkpoint in a CHMP4C-dependent
fashion (SI Appendix, Fig. S7A). Karyotyping of metaphase spreads
revealed that HCT116WT cells only rarely displayed extreme aneu-
ploidy (1% of DMSO-treated cells had <37 or >48 chromosomes)

(Fig. 4 B and C). Reversine treatment alone increased this per-
centage, but cells with extreme aneuploidy were still rare (7%). In
contrast, DMSO-treated HCT116δCHMP4C cells exhibited a higher
basal level of extreme aneuploidy (4%), and this percentage in-
creased notably upon reversine treatment (23%). Reexpression of
HA-CHMP4CA232, but not HA-CHMP4CT232, protected against
reversine-induced increases in aneuploidy (SI Appendix, Fig. S8A).
Importantly, reversine treatment in cells with a defective abscis-
sion checkpoint did not induce a multinucleation phenotype, but
these cells did display a higher proportion of micronuclei (SI
Appendix, Fig. S8 B and C).
In a complementary set of experiments, we monitored cell growth

rates in reversine-treated cultures, where the high levels of chro-
mosomal instability and aneuploidy are detrimental to cell survival
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and growth (Fig. 4E, Upper Row) (40). In agreement with the kar-
yotype analyses, reversine treatment reduced HCT116WT cell growth
only modestly but reduced HCT116δCHMP4C cell growth by at least
70% over a 7-d period. Robust growth in the presence of reversine
was restored by the expression of HA-CHMP4CA232 but not HA-
CHMP4CT232, HA-CHMP4CL228A,W231A, or HA-CHMP4C−INS

(Fig. 4E, Upper Row). Thus, the CHMP4C-dependent abscission
checkpoint becomes more critical for cell growth under conditions
that increase chromosome-segregation defects.

CHMP4CT232 Synergizes with p53 Loss. Our observations that
CHMP4C mutations can abolish the abscission checkpoint and
that these mutations synergize with increases in chromosome
missegregation raised the intriguing possibility that such muta-
tions might also synergize with genetic alterations known to be
associated with ovarian cancer development. We focused our
studies on TP53, the most frequently mutated gene in a wide
range of cancers, including >96% of high-grade serous ovarian
tumors (41). In addition to its classical role in inducing cell-cycle
arrest in response to DNA damage, p53 also functions directly in
DNA damage repair and chromosomal stability, and its absence is
associated with increased replicative stress (42). As expected, stable
depletion of p53 increased DNA damage levels as measured by
increased numbers of 53BP1 foci (SI Appendix, Fig. S9 B and C) and
increased frequencies of chromosomal segregation defects during
anaphase (Fig. 4D, SI Appendix, Fig. S7C, and Movies S20–S23). As
with reversine treatment, these defects significantly compromised
HCT116 cell growth only when CHMP4C was absent (Fig. 4E,
Lower Row and SI Appendix, Fig. S9A). This synergistic effect was
again reversed upon reexpression of CHMP4CA232 but not HA-
CHMP4CT232, HA-CHMP4CL228A,W231A, or HA-CHMP4C−INS

(Fig. 4E, Lower Row and SI Appendix, Fig. S9A). Thus, the loss of
the CHMP4C-dependent abscission checkpoint also synergizes with
the loss of functional p53. This effect can again be explained by an
inability of cells to cope with the increased burden of chromosomal
segregation defects, perhaps compounded further by dysfunction of
the p53-mediated G1 checkpoint (43).

Discussion
Our study demonstrates that the abscission checkpoint plays a
critical role in human health by protecting the genome against
DNA damage and chromosomal instability. We have shown that a
human polymorphism in CHMP4C, previously associated with
increased susceptibility to ovarian cancer, is also associated with
increased risk for several other cancers, thus suggesting that the
CHMP4CT232 allele contributes to tumor development in a global
fashion. Importantly, cells that express the cancer-associated
CHMP4CT232 allele show elevated levels of 53BP1 foci, suggest-
ing that increased DNA damage may account, at least in part, for
increased cancer susceptibility in individuals who carry this allele.
Furthermore, cells that express CHMP4CT232 are particularly
sensitized to genomic instability under conditions that increase the
burden of chromosomal segregation defects, such as DNA repli-
cation stress and weakening of the spindle-assembly checkpoint.
At the mechanistic level, the A232T substitution unwinds the C-

terminal CHMP4C helix, impairs ALIX binding affinity, and leads
to the loss of abscission checkpoint activity. Hence, in addition to
the previously documented requirements for CHMP4C phos-
phorylation by Aurora B and ULK3 (20, 21, 24), CHMP4C must
also be able to interact with ALIX (and possibly other Bro
domain-containing proteins) to support the abscission checkpoint.
We found, however, that altered CHMP4C midbody localization
could not explain the loss of checkpoint activity because point
mutations that specifically abolished ALIX binding did not reduce
CHMP4C midbody localization or mitotic phosphorylation. In
contrast, others have observed reduced midbody localization of a
C-terminally truncated CHMP4C construct (29). It is therefore
possible that the C-terminal region of CHMP4C dictates midbody

localization independently of ALIX binding, perhaps through in-
teractions with MKLP1 or the chromosomal passenger complex
(20, 44). Alternatively, removal of 18 terminal CHMP4C residues
could have relieved CHMP4C autoinhibition, thereby impairing
midbody localization indirectly. This idea is consistent with the
observation that autoinhibition of Snf7p, the yeast ortholog of
CHMP4, can be relieved by removing its terminal Bro1p (ALIX)-
binding helix (45–47). We do not yet know for certain why
CHMP4C–ALIX binding is required to support the abscission
checkpoint, but one intriguing possibility is that CHMP4C binding
may competitively inhibit CHMP4B from occupying its over-
lapping binding site on ALIX (27), thereby sustaining the abscis-
sion checkpoint by preventing nucleation of CHMP4B-containing
ESCRT-III filaments within the midbody.
Another striking finding of our study is that increasing chro-

mosomal segregation defects in cells lacking a functional ab-
scission checkpoint specifically induces high levels of aneuploidy
and chromosomal instability. Although complete inhibition of
Aurora B leads to cleavage furrow regression and binucleation
when chromatin is present in the intracellular bridge (17), this
mechanism does not appear to explain the increases in aneu-
ploidy when CHMP4C is impaired. Depletion of CHMP4C (or
other abscission checkpoint components downstream of Aurora
B such as ULK3) induces premature resolution of chromatin
bridges, not furrow regression (20, 24). Moreover, reversine
treatment in cells lacking CHMP4C does not lead to multi-
nucleation but does induce micronuclei formation. Our data are
consistent with chromosomal instability resulting from chromo-
some breakage and refusion events and/or the failure to rein-
corporate lagging chromosomes into the main nuclei. It has been
suggested that even very mild aneuploidy has consequences be-
yond chromosome gains or losses, resulting in DNA damage and
replication stress which have severe effects on subsequent mi-
toses, and that the gain of even a single chromosome can result
in further chromosomal aberrations and complex karyotypes in
subsequent cell cycles (48–50). We suggest that DNA damage
acquired over a number of cell cycles in cells lacking a functional
abscission checkpoint may have cumulative effects that are ulti-
mately detrimental in subsequent cell cycles. Consistent with this
idea, damage acquired during mitosis can lead to p53-dependent
quiescence in daughter cells (51, 52). Thus, the coordinated ac-
tion of the abscission checkpoint and p53 may protect against
aneuploidy. In this model, the abscission checkpoint provides
additional time to retrieve, repair, and/or protect lagging chro-
mosomes, thereby protecting cells and preventing catastrophic
DNA damage during mitosis. Disruption of the abscission
checkpoint could also induce aneuploidy via a mechanism that is
reminiscent of the checkpoint adaptation phenomenon, in which
cells continue to proceed through the cell cycle despite not
having completely resolved DNA damage arising from the pre-
vious mitosis (50). Such checkpoint-adapted cells are charac-
terized by severe chromosomal segregation defects that give rise
to micronuclei containing lagging chromosomes (or chromosome
fragments), which then contribute to further chromosome dam-
age and instability in subsequent divisions.
Chromosomal segregation errors are a hallmark of many can-

cers and often arise in response to oncogenic mutations that in-
crease mitotic stress (40). In particular, loss of p53 is the most
common genetic abnormality in many tumor types and can lead to
increased DNA damage, chromosomal instability, and increased
replicative stress (41, 42, 53). These phenotypes suggest a poten-
tial mechanism by which loss of the abscission checkpoint could
contribute to genetic instability and cancer development, partic-
ularly as we observed synthetic lethality between loss of p53 and
the CHMP4CT232 risk allele. Our data suggest the possibility that
homozygous germline expression of the CHMP4CT232 allele or the
loss of heterozygosity of CHMP4CA232-encoding allele expression
in somatic cells where the T232-encoding allele is present could
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contribute to tumorigenesis by increasing genomic instability and
aneuploidy, particularly when chromosome missegregation events
are elevated. We speculate that although an impaired abscission
checkpoint combined with genetic alterations such as p53 loss is
detrimental to overall cell growth, the subset of cells that ultimately
survive may accumulate further adaptations that promote tumori-
genicity. These cells may nevertheless remain sensitive to further
perturbations of chromosome segregation or DNA-damaging
agents, and this sensitivity could, in principle, be exploited thera-
peutically. In this regard, it is noteworthy that CHMP4C depletion
increases the effectiveness of irradiation-induced apoptosis in hu-
man lung cancer cells (54) and that many common chemothera-
peutic drugs, such as paclitaxel, act, at least in part, by increasing
chromosome missegregation (40). Hence, we speculate that such
chemotherapeutics may be particularly effective in patients who
carry the CHMP4CT232 allele.

Methods
Plasmids and Antibodies. Details of plasmids and antibodies used in this study
are described in SI Appendix, Table S2.

Fluorescence Polarization Binding Experiments. Fluorescence polarization was
measured using a BioTek Synergy Neo Multi-Mode plate reader (BioTek) with
excitation at 485 nm and detection at 528 nm. For competitive binding experi-
ments, the wild-type CHMP4C peptide (residues 216–233) was synthesized with
a nonnative cysteine at the N terminus (CQRAEEEDDDIKQLAAWAT) and was
labeled with Oregon Green 488 (Life Technologies/Molecular Probes 06,034)
following the manufacturer’s instructions. The labeled peptide was quantitated
by the absorbance of Oregon Green 488 at 491 nm (extinction coefficient
83,000 cm·M−1 in 50 mM potassium phosphate, pH 9). Different concentrations
(as determined by absorbance at 280 nm) of unlabeled N-terminally acetylated
CHMP4C peptides were titrated against a CHMP4CA232-ALIX Bro1-V com-
plex created by mixing 5 μM ALIX Bro1-V and 0.5 nM fluorescently labeled
CHMP4CA232 peptide in binding buffer [20 mM sodium phosphate (pH 7.2),
150 mM NaCl, 5 mM β-mercaptoethanol, 0.01% Tween-20, and 0.2 mg/mL BSA].
IC50s were calculated from binding curves using KaleidaGraph (Synergy Software)
and were converted to Ki values (55). Competitive binding curves were measured
independently seven or more times for each peptide and are expressed asmean ±
SD. Ki values are reported. All peptides were synthesized by the University of Utah
Peptide Synthesis Core Facility and were verified by mass spectrometry.

GST Pull-Downs.GST-fused CHMP4C peptides spanning the ALIX-binding helix
(residues 216–233) from CHMP4CA232 or from the CHMP4CL228A,W231A or
CHMP4CT232 mutants were purified, immobilized on glutathione-Sepharose
agarose beads, and incubated with clarified HeLa cell lysates. Bound mate-
rial was analyzed by SDS/PAGE followed by immunoblotting or Coomassie
staining. A detailed description is provided in SI Appendix, Methods.

Cell Culture. HEK293T, HeLa, and HCT116 cells were cultured and maintained
in DMEM supplemented with 10% FBS and 20 μg/mL gentamycin. To gen-
erate stable cell lines, 293T cells were transfected with retroviral packaging
vectors (SI Appendix, Table S2), MLV-GagPol/pHIV 8.1, and pHIT VSVg at a
ratio of 3:2:1 for 48 h. 293T supernatant was filtered through a 0.2-μm filter
and was used to transduce the indicated cell lines; antibiotic selection was
carried out 48 h later. MycoAlert (Lonza) was used to screen for mycoplasma
contamination. HCT116 CRISPR cell lines were generated by transfection
with retroviral Cas9 expression plasmids containing specific guide RNAs
targeting CHMP4C; full details are available in SI Appendix, Methods.

siRNA Transfections. Cells were transfected with siRNA for 72 h using Dhar-
maFECT 1 (Dharmacon) or Lipofectamine RNAiMax (Thermo Fisher Scientific)
according to the manufacturers’ instructions. Cells received two transfec-
tions, one at 0 h and another at 48 h. For HeLa cells, CHMP4C and non-
targeting siRNA were used at 100 nM, and Nup50 and Nup153 siRNA were
used at 10 nM. For HCT116 cells, all siRNA was used at 10 nM. Cells were
fixed or imaged 24 h after the second siRNA transfection. For GFP-NLS nu-
clear fluorescence recovery experiments HCT116 cells were imaged 8 h after
the second transfection. The siRNA sequences used in this study have been
described (20, 22, 24, 30, 31) and are available in SI Appendix, Table S2.

Immunoblotting. Cell lysates were denatured in Laemmli buffer, resolved by
SDS/PAGE, and transferred to nitrocellulose membranes. Membranes were
blocked with 5% skim milk in 0.1% Tween 20/Tris-buffered saline (TBS) and

were incubated with primary antibodies in either 1% or 5% skim milk in
blocking solution for 3 h at room temperature or overnight at 4 °C. Membranes
were washed in 0.1% Tween 20/TBS, incubated with the corresponding sec-
ondary antibodies conjugated with HRP or near-infrared fluorescent dyes in
blocking solution for 1 h at room temperature, and washed again. Proteins
were detected and quantified using a Li-Cor Odyssey Infrared scanner and
software (Li-Cor Biosciences) or Image Quant LAS 400 (GE Healthcare). Details
on antibodies and dilutions can be found in SI Appendix, Table S2.

Immunofluorescence. Cells were grown on coverslips, washed once in PBS, and
fixed for 10–20 min in ice-cold methanol. Cells were blocked with 3% FCS
and 0.1% Triton X-100 in PBS for 20 min. Primary antibodies were applied
for at least 1 h. After four washings with PBS, secondary antibodies were
applied for 1 h, and nuclei were stained with either Hoechst or DAPI. Cov-
erslips were mounted with ProLong Gold Antifade Reagent (Invitrogen) on a
microscope slide. Images were acquired using a Leica SP8 Confocal (Fig. 2D)
or Nikon Ti-Eclipse wide-field inverted microscope (Fig. 3 and SI Appendix,
Figs. S2, S4, S8, and S9). Scoring was conducted blind. Where indicated,
deconvolution was performed using HyVolution Pro-Automatic deconvolution
software. Quantification of fluorescence staining intensity was carried out
with ImageJ (NIH). The freehand selection tool was used to outline the region
of interest, and staining intensity within this area was measured. Signals were
background corrected using measurements from adjacent regions. Details on
antibodies and dilutions can be found in SI Appendix, Table S2.

Live-Cell Imaging. Cells were seeded on glass-bottomed 24-well plates
(MatTek) and transfected with siRNA or shRNA or were subjected to the
specified drug treatments. Imaging was carried out for 24–72 h on a Nikon Ti-
Eclipse wide-field inverted microscope (Nikon 40 × 0.75 N.A. dry objective lens)
equipped with Perfect Focus system and housed in a 37 °C chamber (Solent
Scientific) fed with 5% CO2. Multiple fields of view were selected at various x
and y coordinates, and three z slices were captured at 1.25-μm spacing for
HeLa cells and 1.8-μm spacing for HCT116 cells. Images were acquired using a
Hamamatsu Orca Flash 4.0 camera (Hamamatsu Photonics) controlled by NIS-
Elements software. For abscission time measurements, images were acquired
every 10 min for 48 h, and abscission time was measured as the time from
midbody formation to disappearance. For resolution timing for YFP-Lap2β–
positive bridges, images were acquired every 20 min for 72 h, and resolution
time was measured from the time of the appearance to the disappearance of
YFP-Lap2β–positive intercellular bridges. For nuclear accumulation of GFP-NLS
and analysis of anaphase defects, images were acquired every 5 min for 24 h.
The nuclear GFP signal was identified through colocalization with H2B-
mCherry and was normalized to the cytoplasmic signal. Signals were back-
ground corrected using measurements from adjacent regions. Measurements
were taken 10 frames before and 50 frames after nuclear envelope break-
down, with cells depleted of CHMP7 serving as a positive control (56).

Protein Expression and Purification. The human ALIX Bro1 domain (residues 1–
359) (Fig. 1 C and D and SI Appendix, Fig. S1) and ALIX Bro1-V domains (res-
idues 1–698) (Fig. 1B) were expressed and purified as previously described with
minor modifications (27, 57). A detailed description is provided in SI Appendix,
Methods. Plasmids for bacterial expression of ALIX proteins are available from
the Addgene plasmid repository (www.addgene.org; see SI Appendix, Table S2
for accession numbers).

Crystallization and Data Collection. ALIX Bro1 crystallized in complex with
CHMP4CA232 or CHMP4CT232 peptides (residues 216–233; N-terminally acet-
ylated) at 20 °C from sitting drops that contained 1.2 μL of protein (200 μM
ALIX Bro1 and 220 μM CHMP4C peptide) and 0.7 μL of reservoir solution
[CHMP4CA232: 10% PEG 20,000, 100 mM MES, pH 6.5; CHMP4CT232: 15% PEG
8,000, 100 mM MES (pH 6.5), 200 mM sodium acetate]. Crystals were flash
frozen in nylon loops in cryo-protectant composed of reservoir solutions
containing 30% glycerol. Data were collected remotely (58) (0.9794-Å
wavelength, 100 K) at the Stanford Synchrotron Radiation Lightsource
(SSRL) on beamline 12-2 using a Dectris Pilatus 6M detector. Data were in-
tegrated and scaled using AutoXDS (59–61). Both complexes crystallized in
space group C121 with one ALIX-Bro1:CHMP4C complex in the asymmetric
unit. The crystals diffracted to 1.91-Å resolution (ALIX Bro1-CHMP4CA232)
and 1.87-Å resolution (ALIX Bro1-CHMP4CT232). For data collection and re-
finement statistics, see SI Appendix, Table S1.

Structure Determination and Refinement. A model for molecular replacement
was generated from the previously determined structure of the ALIX Bro1-
CHMP4CA232 complex (Protein Data Bank ID code 3C3R) (27) by removing the
coordinates for the CHMP4C peptide and using the ALIX Bro1 structure as a search
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model (PHASER in PHENIX) (62, 63). CHMP4C helices were built de novo into the
electron density for both structures using Coot (64) and were further refined in
PHENIX (65, 66) using TLS refinement strategies (67). Final models had no outliers
in the Ramachandran plot. Comparison of CHMP4C backbone atoms from both
structures reveal that the N termini (residues 221–229) superimpose with a 0.223-Å
rmsd, whereas the C termini (residues 229–233) superimpose with a 1.14-Å rmsd.
Structures were analyzed and compared using PyMOL Molecular Graphics System
version 1.3. Structure coordinates have been deposited in the Research Collabo-
ratory for Structural Bioinformatics (RCSB) Protein Data Bank with accession codes
5V3R (ALIX Bro1-CHMP4CA232) and 5WA1 (ALIX Bro1-CHMP4CT232).

Cell Growth Assays. For assays examining the effect of low-dose aphidicolin
and reversine on cell growth, cells were seeded at a density of 2.5 × 104 cells
per well in a 24-well plate in duplicate and in a 12-well plate, were treated
8 h later with DMSO, 0.1 μM reversine, or 30 nM aphidicolin, and were left
undisturbed for 2 or 4 d (in 24-well plates) or for 7 d (in 12-well plates),
except that medium was refreshed after 4 d. Cell number was determined by
manual counting at the indicated time points. For analysis of cell growth
following p53 depletion, cells were transduced with either control or
p53 shRNA for 48 h and then were antibiotic-selected for a further 48 h.
Transduced cells were seeded at a density of 2.5 × 104 cells in a single well of
a 24-well plate, and cell number was determined at 2, 4, or 7 d. Cell number
was determined by manual counting, and cells were reseeded into 12-well
plates on day 2 or into six-well plates on day 4.

Karyotyping. HCT116WT or HCT116δCHMP4C cells were cultured for 48 h in the
presence of DMSO or 0.1 μM reversine and were arrested in metaphase by
overnight treatment with 50 ng/mL nocodazole. Cells were harvested, washed,
treated in hypotonic buffer (10% FCS in double-distilled H2O) for 30 min at
37 °C, and were fixed in methanol:acetic acid (3:1 ratio). The fixation solution
was replaced four times, and spreads were produced by dropping 16 μL of
solution onto a glass slide from a height of 10 cm in a humid environment.
Chromosomes from >90 metaphase-arrested cells were counted.

Mitotic Arrest Assays. To examine the role of CHMP4C in mitotic spindle
function, HCT116WT or HCT116δCHMP4C cells were treated with 50 ng/mL
nocodazole, and all cells were collected and analyzed by flow cytometry and
Western blotting. To examine the mitotic phosphorylation of CHMP4C, HeLa
cells stably expressing the indicated HA-CHMP4C constructs were treated
with 2 mM thymidine for 24 h, washed, and treated with 50 ng/mL noco-
dazole overnight. All cells were collected, and phosphorylation of HA-
CHMP4C was determined by Western blotting.

Flow Cytometry Analysis. Cells treated overnight with 200 ng/mLmitomycin C,
50ng/mLnocodazole, or DMSOwere harvested,washed in PBS, and fixed in 1%
paraformaldehyde. Cells were washed again and incubated with 50 μg/mL
propidium iodide, 100 μg/mL RNase in PBS, and 0.1% Triton X-100. Cell-cycle

analysis profiles were acquired using FACS Canto II (BD Biosciences). Twenty
thousand cells were counted per condition, and data were analyzed using
FlowJo (Tree Start, Inc.). All gating was applied manually. For mitotic arrest
experiments all conditions were performed in duplicate, and samples were
retained for immunoblotting analysis.

Analysis of Publicly Available Cancer GWAS in the UK Biobank. To determine
whether the CHMP4C rs35094336 variant is also associated with other cancer
types, we analyzed the publicly available data from 337,208 individuals in the
UK Biobank engine. Results were obtained from Global Biobank Engine
(https://biobankengine.stanford.edu/; accessed October 2017). We used the
following procedure to define cases and controls for cancer GWAS. Individual
level ICD-10 codes from the UK Cancer Register, Data-Field 40006, and the
National Health Service, Data-Field 41202 in the UK Biobank were mapped to
the self-reported cancer codes, Data-Field 20001, as described previously (68).
Positive associations are displayed in Table 1. A full review of the resource is
available in ref. 26.
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Appendix 3. A functional IFN-λ4-generating DNA polymorphism could 

protect older asthmatic women from aeroallergen sensitization and 

associate with clinical features of asthma. 

Chinnaswamy S, Wardzynska A, Pawelczyk M, Makowska J, Skaaby T, Mercader 

JM, Ahluwalia TS, Grarup N, Guindo-Martinez M, Bisgaard H, Torrents D, 

Linneberg A, Bønnelykke K, Kowalski ML. Scientific Reports 7, 10500 (2017). 

 

Contribution: 

• Replication of rs12979860 and rs8099917 variants for allergic rhinitis in 

GERA cohort, after imputing genotypes using 1000G phase 3, U10K and 

GoNL as reference panels. Only the additive model was analyzed in the 

association test.  
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A functional IFN-λ4-generating 
DNA polymorphism could protect 
older asthmatic women from 
aeroallergen sensitization and 
associate with clinical features of 
asthma
Sreedhar Chinnaswamy1,7, Aleksandra Wardzynska2, Malgorzata Pawelczyk2, Joanna 
Makowska2,3, Tea Skaaby  4, Josep M. Mercader5, Tarunveer S. Ahluwalia  6, Niels Grarup  11,  
Marta Guindo-Martinez5, Hans Bisgaard6, David Torrents5,10, Allan Linneberg  4,8,9, Klaus 
Bønnelykke6 & Marek L. Kowalski2,7

Lambda interferons (IFNLs) have immunomodulatory functions at epithelial barrier surfaces. IFN-λ4, 
a recent member of this family is expressed only in a subset of the population due to a frameshift-
causing DNA polymorphism rs368234815. We examined the association of this polymorphism with 
atopy (aeroallergen sensitization) and asthma in a Polish hospital-based case-control cohort comprising 
of well-characterized adult asthmatics (n = 326) and healthy controls (n = 111). In the combined 
cohort, we saw no association of the polymorphism with asthma and/or atopy. However, the IFN-
λ4-generating ∆G allele protected older asthmatic women (>50 yr of age) from atopic sensitization. 
Further, ∆G allele significantly associated with features of less-severe asthma including bronchodilator 
response and corticosteroid usage in older women in this Polish cohort. We tested the association 
of related IFNL locus polymorphisms (rs12979860 and rs8099917) with atopy, allergic rhinitis and 
presence/absence of asthma in three population-based cohorts from Europe, but saw no significant 
association of the polymorphisms with any of the phenotypes in older women. The polymorphisms 
associated marginally with lower occurrence of asthma in men/older men after meta-analysis of data 
from all cohorts. Functional and well-designed replication studies may reveal the true positive nature of 
these results.

Type III interferons (IFNs) or IFN-λs (or IFNLs) are known to play critical roles in innate and adaptive immune 
responses to viral infections. Several recent reports have implicated IFN-λs as the ‘guardians’ of the epithelial 
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barrier surfaces that encompass large regions of the human body that include respiratory, gastrointestinal and 
reproductive tracts1. Single nucleotide polymorphisms (SNPs) at the IFNL locus on human chromosome 19 were 
discovered a few years ago to be associated with chronic hepatitis C virus (HCV) infections2–4. These SNPs, dis-
covered initially by genome-wide association studies (GWAS) to be associated with treatment-induced clearance 
of HCV, got widely validated and were subsequently found to be associated with different human diseases, both 
viral and non-viral in origin (reviewed in 5). The immunomodulatory role of IFN-λs is thought to be the molecu-
lar mechanism behind these associations5. Among the different SNPs at the IFNL locus, that are in strong linkage 
disequilibrium (LD) in most populations, a dinucleotide polymorphism rs368234815 (TT/∆G) has emerged as 
the ‘causal’ variant5, 6. The ∆G allele of the variant causes a shift in the open reading frame of the IFNL4 gene, giv-
ing rise to a new IFN-λ called IFN-λ46. IFN-λ4 has undergone purifying selection during human evolution with 
highest frequency of the functional IFN-λ4-generating ∆G allele in the African population (0.78) and lowest in 
the East Asian population (0.06)6, 7; 50-60% of the European population carries at least one copy of the functional 
gene8. IFN-λ4 is a potent antiviral cytokine with structural and functional similarity to IFN-λ1, 2 and 38, 9. The 
latter are known to modulate adaptive immunity favoring a Th1 predominant response10–12. Even though there 
is no direct evidence yet, IFN-λ4 is also expected to participate in shaping and maintaining innate and adaptive 
immune responses at the epithelial lining of the respiratory tract owing to its similarities with other IFN-λs. 
The interactions of IFN-λs with the newly discovered innate lymphoid cells (ILCs)13 are likely to hold the key to 
improving our understanding of diseases like allergy and asthma5.

Atopy, defined as increased predisposition to generate specific IgE to common allergens, and diagnosed in 
an individual subject by presence of aeroallergen sensitization, may lead to Th2-driven immune response to 
harmless allergens resulting in development of allergic diseases including asthma. Exacerbations in asthma are 
commonly associated with respiratory virus infections, and impaired innate immune responses have been doc-
umented in asthma patients14, 15. Since both the development of atopic predisposition and asthma exacerbations 
may involve respiratory viral infections, we undertook this study with the hypothesis that these complex disorders 
are influenced by the IFN-λ4-generating polymorphism.

Results and Discussion
∆G allele of rs368234815 protects older women asthmatics from atopy in a Polish hospi-
tal-based case-control cohort. We used a Polish discovery cohort that included 326 well-characterized 
adult bronchial asthmatics recruited from the university asthma clinic, medical university of Lodz. Cases were 
heterogeneous with respect to the disease control and severity. Controls comprised of 111 volunteers without 
any chronic respiratory disorders representing a sample of general population. Information on atopic sensitiza-
tion (determined by skin prick test or SPT to a panel of inhalant allergens) was available for 384 subjects (273 
asthmatics and 111 controls). The patient and control group characteristics are shown in Table 1. Owing to its 
functional nature we chose and genotyped the functional IFN-λ4-generating polymorphism rs368234815 in this 
cohort. Power calculations showed that we had enough sample size to give >80% power (at a significance level of 
p = 0.05) to detect an effect size of 1.55 and 1.6 in atopy and asthma, respectively.

The Minor Allele Frequency (MAF) in the combined population of controls and asthma patients (cases) was 
0.34; the distribution of genotypes was: 38%, 53%, 9% and 44%, 44%, 12% for TT/TT, TT/ ∆G and ∆G/∆G in 
controls and cases respectively. Both controls and cases were in Hardy-Weinberg equilibrium (HWE) (P > 0.05) 
either individually or as a combined group. In the combined group analysis there was no association of the pol-
ymorphism with asthma or atopy under either dominant or recessive models of inheritance (Table 2). However, 
by using log-linear regression we observed statistically significant interactions between the polymorphism, atopy, 
age and gender (interactions up to three factors; polymorphism, age and gender p = 0.037; polymorphism, gender 
and atopy p = 0.035). To dissect these interactions further, we stratified our atopy data into several groups based 
on age and gender (Table 3) and applied bonferroni correction to avoid false positives arising due to multiple 
testing. Since our study group had a majority of women (Table 1), we chose 50 years as a divider of age in the 
combined cohort for our stratified analysis as it is also the age of attainment of menopause16 (overall median age 
at natural menopause in Poland is 51.25 years17,). Only among the >50 yr sub-group of women (older women) we 
saw a significant association of the polymorphism with atopy after multiple testing correction under a dominant 
model of inheritance for the minor allele. The ∆G allele conferred protection from allergic sensitization in older 
asthmatic women. The significance of association was retained in both the asthmatic older women and in the 
combined group of asthmatic and control older women, but not in the control older women’s sub-group when 
tested alone, in both univariate and multivariate analysis (Table 4).

Even though the association was significant in the older women’s sub-group, small sample sizes may have pre-
vented us from appreciating the effect of the polymorphism on atopy in the remaining sub-groups. In addition, a 
validation of the observed effect on the older women’s sub-group is required from other populations and/or geo-
graphical regions. To examine this and to investigate the association of the IFNL locus SNPs with atopy, asthma 
and related illnesses, we used data from the Genetic Epidemiology Research on Adult Health and Aging (GERA, 
dbGaP Study Accession: phs000674.v1.p1)18, Inter9919, Health200620 and COPSAC21, 22 cohorts. The characteris-
tics of the different study cohorts are briefly described in Table 5. The GERA cohort consisted of predominantly 
older participants (average age 63 yr, range 18 to over 100 yr) and hence all participants in this cohort were con-
sidered as being older (>50 yr) for analysis.

Genotype information for a related IFNL polymorphism rs129798605 was available in the other European 
cohorts, hence, we tested the association of atopy with rs12979860 in the Inter99, Health2006 and the COPSAC 
cohorts in four different sub-groups based on both age and gender and did a meta-analysis using a random-effects 
model on all the cohorts where atopy data was available including the Polish cohort (Fig. 1). Even though, the 
Polish cohort tested for rs368234815 and the other cohorts for rs12979860 the data could be compared since a 
strong LD (r2 = 0.98) between them in the European population has been recorded6; furthermore, the MAFs in 
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the cohorts were similar (Table 5). Moreover, recent data shows that the SNP rs12979860 is the ‘best tag-SNP’ for 
the functional polymorphism rs368234815 due to a common underlying linkage structure at the IFNL locus23. 
The results show that we failed to replicate our findings from the older women’s sub-group of the Polish cohort, 
in other cohorts (Fig. 1). Further, except for a nominal association (p = 0.04) with an additive genetic model in 
the COPSAC younger men’s cohort no other sub-group in any of the remaining cohorts showed any significant 
association with atopy (Fig. 1). The older women’s and younger men’s sub-groups had significant heterogeneity in 
the effect of the polymorphisms (p = 0.008 and p = 0.028 respectively) between the different cohorts and no sig-
nificant association was seen after meta-analysis. Even in the other sub-groups where there was no significant het-
erogeneity between the studies, no significant effect of the polymorphism on atopy was noted in the meta-analysis 
(Fig. 1). Similar results were seen using the fixed-effect model (Suppl. Figure 1)

asthma, N = 326 controls, N = 111
age, years* 59.2 ± 15.9 (18–94) 52.3 ± 18.3 (24–81)
gender, women, n (%) 201 (61.7%) 72 (64.9%)
Men > 50 yr average age (range)/n 67.3 ± 9.8 (50–87)/92 65.2 ± 9.7 (50–80)/18
Men < 50 yr average age (range)/n 34.2 ± 7.5 (18–48)/33 32.9 ± 5.9 (24–48)/21
Women > 50 yr average age (range)/n 67.3 ± 9.3 (50–94)/144 67 ± 7.2 (51–81)/47
Women < 50 yr average age (range)/n* 40 ± 6.6 (24–49)/57 34.1 ± 6.5 (26–49)/25
Atopy, n/N tested (%)* 141/273 (51.6%) 39/111 (35.1%)
FEV1% pred. 75.3 ± 24.1 (17.5–129.5) –
FEV1%/FVC 68 ± 13.1 (25.6–99.4) –
ACT, points 17.8 ± 5.5(4–25) –
FeNO (ppb) 30.6 ± 17.8 (2–184) –
Asthma control (according to GINA 2016)
  Controlled, n (%) 72 (22%) –
  partly controlled, n (%) 96 (30%) –
  Uncontrolled, n (%) 156 (48%) –
Current asthma treatment
  ICS, n (%) 240 (73.6%) –
  low dose**, n (%) 28 (8.6%)
  medium dose**, n (%) 120 (36.8%)
  high dose dose**, n (%) 92 (28.2%)
  Oral steroids, n (%) 23 (7.1%) –
  LABA, n (%) 197 (60.4%)
  Leukotriene antagonists, n (%) 64 (19.6%)
  at least 1 exacerbation/last year, n (%) 170 (52.1%) –

Table 1. Characteristics of the study subjects in the Polish cohort. Values are presented as arithmetic 
means + SD, (range); *statistically significant difference between groups, p < 0.05; values shown in bold; 
**according to GINA 2016.

Genotype (n, %)
Dominant model (TT/
∆G + ∆G/∆G) vs TT/TT

Recessive model ∆G/∆G 
vs (TT/∆G + TT/TT)

TT/TT TT/∆G ∆G/∆G Total OR (95% CI); p-value OR (95% CI); p-value
Asthma 145, 44.5 142, 43.5 39, 12 326, 100

0.75 (0.48–1.18); 0.26 1.37 (0.66–2.85); 0.48
Controls 42, 37.8 59, 53.2 10, 9 111, 100
Atopy + 81, 45 80, 44.4 19, 10.6 180, 100

0.72 (0.48–1.09); 0.14 0.84 (0.44–1.59); 0.63
Atopy − 76, 37.2 103, 50.5 25, 12.3 204, 100
Asthma*
Atopy+ 64, 45.4 61, 43.3 16, 11.3 141, 100

0.75 (0.46–1.22); 0.27 0.81 (0.39–1.66); 0.58
Atopy− 51, 38.6 63, 47.7 18, 13.7 132, 100
Controls
Atopy+ 17, 43.6 19, 48.7 3, 7.7 39, 100

0.68 (0.31–1.52); 0.41 0.77 (0.18–3.17); 1
Atopy− 25, 34.7 40, 55.5 7, 9.7 72, 100

Table 2. Association of the functional IFN-λ4-generating polymorphism rs368234815 with asthma and atopy 
in the Polish cohort. *Skin prick test was not carried out for 53 asthmatics as they were under treatment with 
antihistamines, antidepressants or there were other contraindications.
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Next, we tested if the IFNL polymorphisms associated with presence of asthma in different cohorts, again by 
stratification analysis based on both age and gender and by meta-analysis using random-effects model (Fig. 2). 
No significant heterogeneity in the effect between different cohorts in the sub-groups was noted. None of the 
sub-groups from any of the cohorts including the Polish cohort, showed any significant association with asthma. 
Interestingly, the older men’s sub-group showed a significant effect of the polymorphism(s) on presence/absence 
of asthma after meta-analysis. The minor allele (which gives rise to/linked to the allele that can express a func-
tional IFN-λ4) had a protective effect on asthma in the older men. However, given the large sample size involved 
in the GERA cohort such low significance of association suggests a very small effect on the phenotype and/or 
phenotypic heterogeneity. Similar results were seen with a fixed-effects model (Suppl. Figure 2).

Since the GERA cohort also included data on allergic rhinitis (AR) we tested if rs12979860 and another related 
SNP rs8099917 associated with it (Table 6) in gender-stratified sub-groups. No significant association of either 
SNP with AR was evident in males or females.

We extended our meta-analysis to see if the IFNL polymorphisms associated with atopy and asthma in: 1) all 
individuals irrespective of age and gender and 2) gender-specific and age-specific strata from the other European 
cohorts. All the cohorts included for this meta-analysis had the same SNP rs12979860 either directly genotyped 
or imputed and the MAFs in each of the cohorts were similar (Table 5). All studies were homogenous for the effect 
of the polymorphism except for the all men’s group when testing for atopy (Fig. 3A). A significant association with 
asthma was detected only in the sub-group of ‘all men’ (Fig. 3B) similar to the effect seen for asthma in the older 
men’s sub-group in Fig. 2. Since, we did not have enough participants in the younger men’s group compared to the 
large sample size of older men from the GERA cohort, the modifying effect of age, if any, on the association of the 
polymorphism with asthma could not be reliably tested.

In conclusion, the results from the Polish cohort on the association of the polymorphism(s) with atopy could 
not be replicated in other European cohorts while a significant association of the polymorphism(s) was seen with 
asthma in men/older men when data was meta-analyzed. In instances where a significant association was seen, 
the minor allele showed a protective phenotype.

Functional IFN-λ4-generating ∆G allele associates with less severe features of asthma in the 
older women’s sub-group of the Polish cohort. We refocused our interest on the Polish older wom-
en’s sub-group where we saw a significant association of the IFN-λ4-generating polymorphism with atopy. We 
observed that this sub-group which comprised of both asthmatic and control older women had a majority (75%) 
of asthmatics (Table 4). Therefore we were interested to examine if any of the clinical features of asthma are 
also associated with the polymorphism (Table 7 and Table 8) in the older asthmatic women. We saw a signif-
icant association between the polymorphism and positive bronchial reversibility (or bronchodilator response, 
BDR) test and usage of corticosteroids (CS) for treatment (Table 8). Older women with at least one copy of the 
IFN-λ4-generating ∆G allele were less likely to be treated with iCS (inhaled CS) (OR = 0.35) and oCS (oral 
CS) (OR = 0.16) but were more likely to show a positive BDR (OR = 2.58) by univariate analysis. To test for 

Group Sub-group N OR (95% CI) p-value p-value*

All
All ages 384 0.72 (0.48–1.09) 0.123 1
>50 yr 261 0.51 (0.31–0.85) 0.009 0.081
<50 yr 123 1.26 (0.59–2.68) 0.548 1

Men
All ages 145 1.28 (0.66–2.47) 0.458 1
>50 yr 94 0.81 (0.35–1.88) 0.394 1
<50 yr 51 1.53 (0.41–5.73) — —

Women
All ages 239 0.51 (0.3–0.86) 0.012 0.108
>50 yr 167 0.37 (0.19–0.72) 0.002 0.018
<50 yr 72 1.01 (0.39–2.62) 1 1

Table 3. The ∆G allele of rs368234815 associates with protection from atopy in older women in the Polish 
cohort. *After bonferroni correction; A dominant model of inheritance for the minor allele (TT/∆G + ∆G/∆G 
vs TT/TT) was used to compute OR.

Group
Dominant Model (TT/∆G + ∆G/∆G) vs TT/TT
OR (crude) 95% CI p OR (adjusted)* 95% CI p

1Women (Asthma) > 50 yr N = 128; atopy, n = 55 0.398 0.188–0.841 0.016 0.402 0.184–0.877 0.021
2Women (Controls) > 50 yr N = 39; atopy, n = 11 0.400 0.098–1.631 0.202 0.366 0.083–1.605 0.171
3Women (Asthma + Controls) > 50 yr N = 167; 
atopy, n = 66 0.379 0.198–0.724 0.003 0.409 0.208–0.803 0.016

Table 4. Association of the functional IFN-λ4-generating polymorphism rs368234815 with atopy in older 
women in the Polish cohort. *1, *2 for age; *3 for asthma status and age. A dominant model of inheritance is 
shown with significant results (p < 0.05) in bold. No significant association under any group/sub/group was 
seen using the recessive model of inheritance.
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confounders we carried out multivariate regression analysis and found that atopy could be partly mediating the 
association between the polymorphism and BDR (Table 8).

In summary, results from the Polish cohort demonstrated that IFN-λ4-generating ∆G allele protected a sub-
population of asthmatic patients, specifically older women, from allergic sensitization. The IFN-λ4-generating 
∆G allele also associates with less inhaled and oral CS usage, suggesting that it may be related with lesser disease 
severity in this group of severe asthmatics (78% of overall cases had either partially controlled or uncontrolled 
asthma, Table 1). Further, it goes on to suggest that the ∆G allele carriers possibly had reduced airway inflamma-
tion compared to the pseudogenizing TT/TT genotype carriers.

Inherent differences between the discovery and replication cohorts may have been responsible 
for non-replication of our results from the Polish cohort. The association of IFNL polymorphism 
with atopy in the Polish older women’s cohort survived correction for multiple testing that was carried out as a 
measure to negate the limitation of post-hoc analysis of data (Table 3). Further, the results from the Polish study 
are not due to a ‘cohort effect’ since the association of the polymorphism with atopy is within the older women’s 
‘cohort’ and not between an older and a younger ‘cohort’. The association of the polymorphism in older women 
was not just with atopy but also translated to association with some important determinants of severity of asthma 
like BDR and CS usage. Even though we did not carry out multiple testing correction for our association tests 
with the polymorphism and clinical features of asthma (Table 8) we feel the phenotypes are not independent of 
the atopic sensitization phenotype that we identified during our initial analysis (Tables 3 and 4), and therefore 
less likely to be false positives. For example, atopy-related eosinophilic inflammation and increased CS usage 
frequency among patients may be correlated24; this is apart from the fact that atopy was a confounder with the 
association involving bronchial reversibility tests (Table 8). Therefore the results from the Polish study regarding 
association of the polymorphism with atopy and clinical features of asthma in older women, seem to be consistent 
with each other.

It is important to analyze and interpret our results from the Polish study in the context that they were not rep-
licated in other cohorts of the European population. It should be noted that the replication study had several lim-
itations. Firstly, the findings we made in the Polish cohort were from a hospital-based case-control design while 
all the three replication cohorts (except COPSAC cohort) were population-based (Table 5). Secondly, 72% of the 
Polish cohort (among the 384 subjects with information on atopy) were asthma cases and specifically the older 
women’s sub-group in this cohort had substantially more (75%) asthmatics than controls while the replication 
cohorts had 16% asthmatics among older men and women in GERA cohort (10% in AR-negative controls and 
34% in AR-positives; AR-negative controls were 77% and AR -positive were 33% in the cohort); 9.6% and 11.6% 
of older women had asthma in the Inter99 and Heath2006 cohorts respectively. It is possible that the association 
with atopy in the Polish cohort had an underlying link with asthma that could not be accounted for in the repli-
cation study. In support of this, significance of association decreased when data was adjusted for asthma status 
in the older women’s sub-group in the Polish study (Table 4). Thirdly, the Polish cohort was enriched with severe 
asthmatics (22% controlled, 30% partly controlled and 48% uncontrolled according to GINA 2016; up to 65% of 
patients were in medium or high dose iCS; 60% were on long acting β-agonists; Table 1) while this information 
was not available for the replication cohorts. Fourthly, similar methods were not used to test for the phenotypes 
in all the cohorts (Ex. SPT in the Polish cohort and serum specific IgE in the Danish cohorts to test atopy). While 
in the discovery cohort that had a hospital-based case-control design, we saw a significant association of the 

Cohort Type Genotype* tested MAF
Phenotype data 
available

Total no. of 
participants Ref. Remarks

Inter 99 Population-based rs12979860 (g) 0.34 Atopy Asthma 5341 19

Atopy 
determined 
by serum 
specific IgE; 
self-reported 
doctor-
diagnosed 
asthma

Health 2006 Population-based rs12979860 (g) 0.34 Atopy Asthma 3134 20

COPSAC Case-control (hospital-based; 
parents of asthmatic children) rs12979860 (g) 0.30 Atopy Asthma 551 21

All 
participants 
below 50 yr 
of age; Atopy 
determined by 
serum specific 
IgE

GERA Population-based rs12979860 (i); 
rs8099917 (i) 0.32; 0.19 Allergic rhinitis, 

Asthma 56637 18
Average age 
63 yr (range18 
to over 100 yr)

Polish Hospital-based Case-control rs368234815 (g) 0.34 Atopy, asthma 437 —

Atopy 
determined by 
SPT; asthma 
treated and 
monitored

Table 5. Characteristics of the different study cohorts used in the study. *g-genotyped; i-imputed; MAF-minor 
allele frequency.
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polymorphism with atopy (in an asthma-enriched background) and severe asthma features in older women, in 
the replication study we tested for association with atopy, allergic rhinitis and presence/absence of asthma in a 
population-based cohort. These discrepancies in endpoint phenotypes and the intrinsic differences in the compo-
sition of the Polish and the replication cohorts may have led to non-replication of the findings.

Our findings from the Polish cohort need to be further validated in well-designed replication studies and func-
tional studies. It is likely that the functional IFN-λ4-generating dinucleotide variant rs368234815 may associate 
with a specific endotype of severe asthma in older patients. It is possible that a sustained course of inflammation of 
the airways that happens in older asthmatics, likely in response to viral infections over a period of time, will lead 
to an environment conducive for the penetrance of the genetic effect of IFNL variants in asthma. Since the Polish 
cohort had >60% women asthma patients and was enriched with older women (Table 1) we saw strong associ-
ation in the older women’s sub-group (Fig. 1 and Table 3). We hypothesize that presence of IFN-λ4-generating 
∆G allele may be beneficial for an elderly female asthma patient by protecting the airways from increased inflam-
mation associated with virus-induced asthma exacerbations. Although, no direct association of the allele with 
history of asthma exacerbations or hospitalizations was revealed (data not shown), it should be noted that the 
Polish asthma cohort represented a group of difficult-to-control asthmatics (only 22% had well-controlled disease 
according to GINA criteria; Table 1). Along these lines, association of the allele with the presence of acute airway 
reversibility in response to inhaled beta2- agonists may indirectly reflect less severity of the disease and/or lower 
airway remodeling in those patients that carry an IFN-λ4-generating ∆G allele. It remains to be established if 
the effect of the functional IFN-λ4-generating variant on asthma control and severity is also valid in older men. 
We did see a protective effect of the minor allele rs12979860 (which tags the IFN-λ4-generating allele) against 
asthma in older men/all men after meta-analysis of data (Figs 2 and 3). However, the significance of association 
is low given the large sample size tested.

Figure 1. Forest plots showing association of IFNL polymorphisms and atopy in sub-groups based on age and 
gender in different cohorts. The tag-SNP rs12979860 was used in all other cohorts except the Polish cohort that 
tested for functional polymorphism rs368234815. A dominant model of inheritance for the minor allele (Ex. 
TT/ ∆G + ∆G/ ∆G vs TT/TT for rs368234815) was used in all cohorts except in the COPSAC cohort that 
used an additive model to obtain Odds Ratios (OR) shown as a forest plot. p-value < 0.05 was considered as 
significant and is in bold. For stratification based on age 50 yr was used as a cut-off mark. Het.-heterogeneity.
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Further, it remains to be verified if rs368234815 is the functional variant behind this association in atopy/
asthma or other IFNL SNPs may also contribute to the phenotype by altering the levels of IFN-λ3 expression 
similar to recent observations in hepatic inflammation and fibrosis25. Future studies aimed at understanding the 
functional role of IFN-λ4 in regulating inflammation of the airways are required to understand the mechanism 
behind the association that we identified in the Polish study. Alternately, this finding could be a false positive 

Figure 2. Forest plots showing association of IFNL polymorphisms and asthma in sub-groups based on age and 
gender in different cohorts. The polymorphisms tested are similar to Fig. 1. A dominant model of inheritance 
for the minor allele (Ex. TT/ ∆G + ∆G/ ∆G vs TT/TT for rs368234815) was used in all cohorts to obtain Odds 
Ratios (OR) shown as a forest plot. p-value < 0.05 was considered as significant and is in bold. Meta-analysis 
was performed using a random-effects model.  For stratification based on age 50 yr was used as a cut-off mark. 
Het.-heterogeneity.

GERA cohort Allergic Rhinitis

SNP Model tested
Group/sub-
group

N, total; n, cases; 
n, controls

OR (95% 
CI) p-value

rs12979860 (C/T)
Dominant 
(CT + TT vs 
CC)

All 56637; 13936; 
42701

1.01 (0.97, 
1.05) 0.62

Men 22716; 4859; 
17857

1 (0.94, 
1.07) 0.96

Women 33921; 9077; 
24844

1.02 (0.97, 
1.07) 0.51

rs8099917 (C/T)
Dominant 
(TG + GG vs 
TT)

All Same as above 1 (0.96, 
1.04) 0.91

Men 1 (0.94, 
1.07) 0.95

Women 1 (0.95, 
1.05) 0.93

Table 6. Association of IFNL locus SNPs with allergic rhinitis in the GERA cohort. GERA cohort consisted of 
predominantly older participants (average age 63 yr, range 18 to over 100 yr).
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result, which also has to be confirmed by doing a well-designed replication study first in another Polish cohort 
and later in other populations. Nevertheless, our comprehensive analysis with sufficiently large sample sizes has 
established that an important candidate gene locus consisting of the immunomodulatory type III IFNs does not 
associate with atopy and AR in the general population (Fig. 3A and Table 6). The association could be more subtle 
and with specific endotypes related to inflammation of the airways in asthma. The protection to asthma seen in 
men/older men (Figs 2 and 3) is nominal and further studies can aim at validation of this result in more specific 
endotypes based on severity of asthma. A fully functional IFN-λ4 may be associated with protecting the airways 
from inflammation in certain endotype(s) of the disease, specifically in older asthmatics. While further studies are 
needed to understand this association, whether these endotypes are a result of virus-induced stimuli, also remains 
to be examined. A previous report documented a strong positive association of allergy26, interestingly more pro-
nounced in females than males, with the minor allele of rs12979860 (which is in strong LD with rs3682348156) in 
a pediatric cohort. Our results from the Polish cohort, in contrast, show that the IFN-λ4-generating ∆G minor 

Figure 3. Forest plots showing the summary estimates obtained from all the participants or from different 
groups based on age and gender after meta-analysis of data from different cohorts for (A) atopy and (B) asthma. 
The association was tested with atopy or asthma and rs12979860 using a dominant model for the minor allele 
(CT + TT vs CC) in all cohorts except for atopy in the COPSAC cohort where an additive model (for minor 
allele T) was used. The cohorts included in each of the meta-analysis and the effect heterogeneity between 
different cohorts is shown. p-value < 0.05 was considered as significant and is in bold. Meta-analysis was 
performed using a random-effects model, while the results were similar using the fixed-effects model too.   
For stratification based on age 50 yr was used as a cut-off mark. Het.-heterogeneity.

Variable
Genotype

p-valueTT/TT TT/∆G + ∆G/∆G
Age (years) 66 + /− 8,2 68,3 ± 9,9 0.156
age at asthma diagnosis (years) 47,3 ± 15,2 50,5 ± 18 0.253
asthma duration (years) 18,8 ± 14,4 18,6 ± 17,6 0.954
ACT sum (points) 17 ± 5,2 17,5 ± 5,7 0.574
MRC (points) 2,7 ± 0,9 2,6 ± 1 0.471
FeNO (ppb) 32,4 ± 27 24,7 ± 15,1 0.098
BMI 28,6 ± 5,3 27,5 ± 4,1 0.199
FEV1% pred. 76,4 ± 25 70,7 ± 25,4 0.189
FVC% pred. 89,8 ± 21,2 85,9 ± 25,4 0.345
FEV1%/FVC% 68,5 ± 14,5 67 ± 12,5 0.507

Table 7. Clinical features of asthma in older women according to rs368234815 genotypes in the Polish cohort. 
Values are presented as arithmetic means ± SD.
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allele may protect older women from atopy rather than contributing to it. The reasons for this paradox remain 
to be investigated but may likely involve complex epistatic effects mediated by other innate or adaptive immu-
nity genes and age-dependent changes in Th1/Th2 balance during the transition from infancy to adulthood. 
Interestingly, age and gender are known to interact and influence the association of rs12979860 with another 
inflammatory condition of Th2-origin, fibrosis, in chronic HCV infections27.

Material and Methods
Polish study. Both the controls (N = 111) and asthmatics (N = 326) belonged to same ethnicity (local Polish 
population) and geography (residents of central Poland). Asthma control was assessed according to GINA 2016 
(global initiative for asthma) guidelines and atopy was defined as presence of a positive skin response (weal diam-
eter >3 mm) to at least one of a panel of common inhalant allergens applied as a skin-prick test (SPT). Evaluation 
also included a questionnaire, FeNO (fractional exhaled nitric oxide) measurement, spirometry and reversibility 
test with 400 µg salbutamol MDI performed in 280 patients. Genomic DNA was isolated from EDTA-treated 
whole blood samples using the Qiagen blood genomic DNA mini kit. A competitive allele-specific polymerase 
chain reaction (PCR) (KASP, LGC Genomics, UK) was used to genotype the functional IFN-λ4-generating SNP 
rs368234815; the assay was carried out in a StepOnePlus real-time PCR machine (Applied Biosystems, UK). The 
study was approved by the local Bioethics Committee (document no. RNN/121/12/KE) and all study subjects 
provided an informed written consent. All methods were carried out in accordance with relevant guidelines and 
regulations stipulated by the Medical University of Lodz and/or other relevant authorities under it. Further, the 
university granted approval for all the experimental protocols performed in this study.

Since the dominant and recessive models of inheritance have been reported previously for the IFNL SNP 
association with various diseases5, we used both these models to test for association with various phenotypes 
in our study. Statistical analyses of data included log-linear (for testing interactions between different variables) 
and logistic regression (for multivariate analysis); goodness-of-fit was tested using Pearson’s chi-square test or 
two-tailed Fischer’s exact test. All statistical analyses were performed using Statistica 12.5 PL; p-value of < 0.05 
was considered statistically significant unless specified.

Inter99 and Health2006 study. The Health2006 Study took place from 2006 to 2008 and included a ran-
dom sample of 7,931 Danish (Danish nationality and born in Denmark) men and women aged 18–69 years 
invited to participate in a health examination. The Inter99 Study is a randomised controlled trial (CT00289237, 
ClinicalTrials.gov) aiming to investigate the effects of a lifestyle intervention on cardiovascular disease 
(N = 61,301). The details of these two study cohorts on genotyping and data collection on atopy and asthma are 
described elsewhere19, 20. The Health2006 Study and the Inter99 Study were approved by the Ethics Committee 
of Copenhagen County and the Danish Data Protection Agency. All participants gave their informed consent, 
and all methods were carried out in accordance with relevant guidelines and regulations. The Health2006 and 
Inter99 datasets generated during and/or analysed during the current study are not publicly available due to eth-
ical and legal reasons since public availability may compromise participant privacy, and this would not comply 
with Danish legislation. Requests for data should be addressed to Professor Allan Linneberg. Access to data will 
be provided in accordance with the Danish Data Protection Agency.

GERA study. GERA cohort data was obtained through dbGaP under accession phs000674.v1.p1. 
The Resource for Genetic Epidemiology Research on Aging (GERA) Cohort was created by a RC2 “Grand 
Opportunity” grant that was awarded to the Kaiser Permanente Research Program on Genes, Environment, 
and Health (RPGEH) and the UCSF Institute for Human Genetics (AG036607). The RC2 project enabled 
genome-wide SNP genotyping (GWAS) to be conducted on a cohort of over 100,000 adults who are members of 

BDR iCS oCS
TT/∆G + ∆G/
∆G (n/N, %) 41/64, 64.1 61/83, 73.5 2/83, 2.4

TT/TT (n/N, %) 20/49, 40.8 54/61, 88.5 8/61, 13.1
OR crude 2.583 0.359 0.163
95% CI 1.203–5.55 0.142–0.907 0.033–0.8
p 0.01 0.03 0.02
OR adjusted* 4.651 0.112 0.146
95% CI 1.414–15.15 0.02–0.619 0.013–1.594
p 0.01 0.01 0.10
OR adjusted** 2.262 0.248 0.227
95% CI 0.975–5.235 0.081–0.751 0.041–1.237
p 0.05 0.01 0.08

Table 8. Association of the functional IFN-λ4-generating polymorphism rs368234815 with clinical features 
of asthma in women > 50 yr age sub-group in the Polish cohort. Dominant model of inheritance for the minor 
allele (TT/∆G + ∆G/∆G vs TT/TT) was tested; No significant results were seen under the recessive model. 
*OR adjusted for age, age at asthma diagnosis, FeNO, BMI, FEV1% and atopy; **OR adjusted for atopy. p < 0.05 
was considered significant and is shown in bold.
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the Kaiser Permanente Medical Care Plan, Northern California Region (KPNC), and participating in its RPGEH. 
The resulting GERA cohort is composed of 42% of males, 58% of females, and ranges in age from 18 to over 100 
years old with an average age of 63 years at the time of the RPGEH survey (2007). A subset of 62,281 subjects from 
European ancestry was quality controlled (QCed) and analyzed. A 3-step QC protocol was applied using PLINK 
and included 2 stages of SNP removal and an intermediate stage of sample exclusion. The exclusion criteria for 
genetic markers consisted on: proportion of missingness ≥0.05, HWE p-value ≤ 1 × 10–20 for all the cohort, and 
MAF <0.001. This protocol for genetic markers was performed twice, before and after sample exclusion. For 
the individuals, we considered the following exclusion criteria: gender discordance, subject relatedness (pairs 
with PI-HAT ≥ 0.125 from which we removed the individual with the highest proportion of missingness), variant 
call rates ≥0.02 and population structure showing more than 4 standard deviations within the distribution of 
the study population according to the first seven principal components. After the QC analysis, 56,637 subjects 
remained for genotype imputation and association testing.

We performed a two-stage imputation procedure, which consisted in pre-phasing the genotypes into whole 
chromosome haplotypes followed by imputation itself. The pre-phasing was performed using the SHAPEIT228 
tool, IMPUTE229 for genotype imputation and the SNPTEST (https://mathgen.stats.ox.ac.uk/genetics_software/
snptest/snptest.html#introduction) for association testing. In this work we used 1000 G Phase 3 haplotypes 
(October, 2014) as a reference panel to infer ungenotyped variants. After genotype imputation, variants with info 
score < 0.7 and MAF < 0.001 were removed. Association testing with SNPTEST tool was performed using an 
additive and dominant logistic regression model adjusting by the 7 derived principal components, age distributed 
in 14 groups and sex. Moreover, variants with HWE p.value ≤ 1 × 10−6 for controls were removed. The diagnostic 
criteria for allergic rhinitis were based on the following ICD9 codes: 477, 477.0, 477.1, 477.2, 477.8, 477.9 (https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetPdf.cgi?id=phd004308).

COPSAC study. The Copenhagen Prospective Studies on Asthma in Childhood (COPSAC2000) is a clini-
cal study comprising 411 children with high risk of asthma born to asthmatic mothers. Information on Doctor 
diagnosed asthma was available for parents of COPSAC2000 study which was used in the current analyses. The 
COPSAC study is described in detail elsewhere21. Genotyping of parents was performed on the Illumina Infinium 
II HumanHap550 BeadChip and has been described previously22. All participants gave their informed consent. 
The Ethics Committee for Copenhagen and the Danish Data Protection Agency approved this study.

Meta-analysis. R programing using the function ‘rma’ from ‘metafor’ R package (R Core Team, 2015) was 
used. Pooled data were analysed by using a random-effects model (using DerSimonian-Laird’s method). The 
random-effects model was chosen even when effects were homogenous across cohorts since one cohort (GERA) 
had overwhelmingly large sample size compared to other cohorts and also the cohorts were not uniform in 
their characteristics (Ex. the Polish cohort was a hospital-based case-control study while the other cohorts were 
population-based). The significance of the pooled OR was determined by the z-test. Heterogeneity between stud-
ies was assessed using the Chi-squared based Cochran’s Q-test.
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• Genotype imputation of the GCAT cohort using 1000G phase 3, UK10K, 

GoNL and HRC as reference panels.  
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ABSTRACT 
Background Heritability estimates have revealed an 
important contribution of SNP variants for most common 
traits; however, SNP analysis by single-trait genome-
wide association studies (GWAS) has failed to uncover 
their impact. In this study, we applied a multitrait GWAS 
approach to discover additional factor of the missing 
heritability of human anthropometric variation.
Methods We analysed 205 traits, including diseases 
identified at baseline in the GCAT cohort (Genomes For 
Life- Cohort study of the Genomes of Catalonia) (n=4988), 
a Mediterranean adult population-based cohort study 
from the south of Europe. We estimated SNP heritability 
contribution and single-trait GWAS for all traits from 
15 million SNP variants. Then, we applied a multitrait-
related approach to study genome-wide association to 
anthropometric measures in a two-stage meta-analysis 
with the UK Biobank cohort (n=336 107).
Results Heritability estimates (eg, skin colour, 
alcohol consumption, smoking habit, body mass 
index, educational level or height) revealed an 
important contribution of SNP variants, ranging from 
18% to 77%. Single-trait analysis identified 1785 
SNPs with genome-wide significance threshold. 
From these, several previously reported single-trait 
hits were confirmed in our sample with LINC01432 
(p=1.9×10−9) variants associated with male baldness, 
LDLR variants with hyperlipidaemia (ICD-9:272) 
(p=9.4×10−10) and variants in IRF4 (p=2.8×10−57), 
SLC45A2 (p=2.2×10−130), HERC2 (p=2.8×10−176), 
OCA2 (p=2.4×10−121) and MC1R (p=7.7×10−22) 
associated with hair, eye and skin colour, freckling, 
tanning capacity and sun burning sensitivity and the 
Fitzpatrick phototype score, all highly correlated cross-
phenotypes. Multitrait meta-analysis of anthropometric 
variation validated 27 loci in a two-stage meta-
analysis with a large British ancestry cohort, six of 
which are newly reported here (p value threshold 
<5×10−9) at ZRANB2-AS2, PIK3R1, EPHA7, MAD1L1, 
CACUL1 and MAP3K9.
Conclusion Considering multiple-related genetic 
phenotypes improve associated genome signal 
detection. These results indicate the potential value 
of data-driven multivariate phenotyping for genetic 
studies in large population-based cohorts to contribute 
to knowledge of complex traits.

INTRODUCTION
Common disorders cause 85% of deaths in the 
European Union (EU).1 The increasing incidence 
and prevalence of cancer, cardiovascular diseases, 
chronic respiratory diseases, diabetes and mental 
illness represent a challenge that leads to extra costs 
for the healthcare system. Moreover, as European 
population is getting older, this scenario will be 
heightened in the next few years. Like complex 
traits, many common diseases are complex inher-
ited conditions with genetic and environmental 
determinants. Advancing in their understanding 
requires the use of multifaceted and long-term 
prospective approaches. Cohort analyses provide 
an exceptional tool for dissecting the architecture 
of complex diseases by contributing knowledge 
for evidence-based prevention, as exemplified by 
the Framingham Heart Study2 or the European 
Prospective Investigation into Cancer and Nutrition 
cohort study.3

In the last decades, high performance DNA geno-
typing technology has fuelled genomic research 
in large cohorts, having been the most promising 
line in research on the aetiology of most common 
diseases. Genome-wide association studies (GWAS) 
have provided valuable information for many single 
conditions.4 Despite the perception of the limitations 
of the GWAS analyses, efforts combining massive 
data deriving from whole-genome sequencing at 
population scale with novel conceptual and meth-
odological analysis frameworks have been set forth 
to explore the last frontier of the missing herita-
bility issue,5 driving the field of genomic research 
on complex diseases to a new age.6Pritchard and 
colleagues recently proposed the breakthrough idea 
of the omnigenic character of genetic architecture 
of diseases and complex traits.7 They suggested that 
beyond a handful of driver genes (ie, core genes) 
directly connected to an illness, the missing herita-
bility could be accounted for by multiple genes (ie, 
peripheral genes) not clustered in functional path-
ways, but dispersed along the genome, explaining 
the pleiotropy frequently seen in most complex 
traits. Core genes have been already outlined by the 
GWAS approach, but most of the possible contrib-
uting genes have been disregarded based on meth-
odological issues such as p value or lower minor 
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allele frequency (MAF). Pathway disturbances have also been a 
landmark in the search for genetic associations,8 but not always 
appear to the root of the mechanism of inheritance of complex 
diseases, at least for peripheral genes.7 With this challenging 
vision, a multitrait genome association analysis of the whole 
phenome9 becomes a more appropriate way to detect peripheral 
gene variation effects and new network disturbances affecting 
core genes. Multitrait analysis approaches are developed for 
research of genetically complex conditions using raw or summa-
ry-level data statistics from GWAS in order to explain the largest 
possible amount of the covariation between SNPs and traits.10–15

The contribution of total genetic variation, known as heri-
tability (broad-sense heritability, h2), is estimated now from 
genome-wide studies in large cohorts directly from SNP data 
(known as h2SNP). However, even if most disease conditions 
have a strong genetic basis, it is well known that our capacity to 
find genetic effects depends on the overall genetic contribution of 
the trait. Overall estimations differed depending on the ancestry, 
sample ascertainment, gender and age of the population under 
study. Recently, data from the UK Biobank determined genetic 
contributions with a phenome-based approach16 and identi-
fied a shared familial environment as a significant important 
factor besides genetic heritability values in 12 common diseases 
analysed.17

In this study, we present new data on phenotype-wide estima-
tion of the heritability of 205 complex traits (including diseases) 
and new insights into the genetics of anthropometric traits 
in a Mediterranean Caucasian population using a two-stage 
meta-analysis approach with multiple-related phenotypes 
(MRPs).

MATERIALS AND METHODS
Population
The methodology of the GCAT study has been previously 
described.18 Briefly, the subjects of the present study are part of 
the GCAT project, a prospective study that includes a cohort of 
a total of 19 267 participants recruited from the general popula-
tion of Catalonia, a western Mediterranean region in the North-
east of Spain. Healthy general population volunteers between 
40 and 65 years with the sole condition of being users of the 
Spanish National Health Service were invited to be part of the 
study mostly through the Blood and Tissue Bank, a public agency 
of the Catalan Department of Health. All eligible participants 
signed an informed consent agreement form and answered a 
comprehensive epidemiological questionnaire. Anthropometric 
measures and blood samples were also collected at baseline by 
trained healthcare personnel. The GCAT study was approved by 
the local ethics committee (Germans Trias University Hospital) 
in 2013 and started on 2014.

Study participants
This study analyses the GCATcore data, a subset of 5459 partici-
pants (3066 women) with genotype data belonging to the interim 
GCATdataset, August 2017 (see the URLs section). GCATcore 
participants were randomly selected from whole cohort based on 
overall demographic distribution (ie, gender, age, residence). In 
this study, in order to increase the robustness of heritability esti-
mates, only Caucasian participants with a Spanish origin (based 
on principal component analysis (PCA) analysis, see later in this 
section) and with available genetic data were finally included: 
4988 GCAT participants (2777 women). All samples passed 
genotyping quality control (QC) (see later in this section).

Phenome
Baseline variables were obtained from a self-reported epidemi-
ological questionnaire and included biological traits, medical 
diagnoses, drug use, lifestyle habits and sociodemographic 
and socioeconomic variables.18 Description of GCAT variables 
dataset is available at GCAT (see the URLs section). To keep 
as many as possible of the genotyped samples in the study, we 
imputed anthropometric missing values (<1%) from the overall 
distribution values using statistical approaches. Missing values 
(<1%) for biological and anthropometric measures (height, 
weight, waist and hip circumference, systolic and diastolic blood 
pressure and heart rate) were imputed by stratifying the whole 
GCAT cohort by gender and age and using multiple imputa-
tion by the fully conditional specification method, implemented 
in the R mice package.19 For GWAS analysis, we retained all 
variables with at least five observations (n=205). For herita-
bility estimates, only variables with at least 500 individuals per 
class were retained (n=96) for robustness. The description of 
the traits and measures included in this study is summarised in 
online supplementary table S1.

Genotyping, relatedness and population structure
Genotyping of the 5459 GCAT participants (GCATcore) was 
done using the Infinium Expanded Multi-Ethnic Genotyping 
Array (MEGAEx) (ILLUMINA, San Diego, California, USA). A 
customised cluster file was produced from the entire sample 
dataset and used for joint calling. We applied PCA to detect any 
hidden substructure and the method of moments for the estima-
tion of identity by descent probabilities to exclude cases with 
cryptic relatedness. The extensive QC protocol used for cluster 
analysis and call filtering is accessible at GCAT (see the URLs 
section) and presented as supplementary material (online supple-
mentary file S1). Briefly, GCAT participants were excluded from 
the analysis for different reasons, including poor call rate <0.94 
(n=61), gender mismatch (n=19), duplicates (n=8), family 
relatedness up to second degree (n=88) and excess or loss of 
heterozygosity (n=52). Non-Caucasian individuals detected 
as outliers in the PCA plot of the European populations from 
the 1000 Genomes Project (n=96) and born outside of Spain 
(n=147) were also excluded from the study. After QC and 
filtering, 4988 GCAT participants and 1 652 023 genetic vari-
ants were included. Genotyping was performed at the PMPPC-
IGTP High Content Genomics and Bioinformatics Unit.

Multipanel imputation
For imputation analysis, 665 592 SNPs were included (40%). 
Sexual and mitochondrial chromosomes were discarded as 
well as autosomal chromosome variants with MAF <0.01 and 
AT-CG sites. We followed a two-stage imputation procedure, 
which consists of prephasing the genotypes into whole chromo-
some haplotypes followed by imputation itself.20 The prephasing 
was performed using SHAPEIT2, and genotype imputation was 
performed with IMPUTE2. As reference panels for genotype 
imputation, we used the 1000 Genomes Project phase 3,21 the 
Genome of the Netherlands,22 UK10K23 and the Haplotype 
Reference Consortium.24 All variants with IMPUTE2 info <0.7 
were removed. After imputing the genotypes using each refer-
ence panel separately, we combined the results selecting the vari-
ants with a higher info score when they were present in more 
than one reference panel. The SNP dosage from IMPUTE2 was 
transformed to binary PLINK format by using the ‘-hard-call-
threshold 0.1’ flag from PLINK. The final core set had approx-
imately 15 million variants with MAF>0.001 and 9.5 million 

 on Septem
ber 7, 2019 by guest. Protected by copyright.

http://jm
g.bm

j.com
/

J M
ed G

enet: first published as 10.1136/jm
edgenet-2018-105437 on 30 August 2018. D

ow
nloaded from

 



 

    239  

767Galván-Femenía I, et al. J Med Genet 2018;55:765–778. doi:10.1136/jmedgenet-2018-105437

Complex traits

variants with MAF>0.01. Imputation was performed at the 
Barcelona Supercomputing Center.

Heritability
Trait SNP heritability (h2

SNP) was estimated from SNP/INDEL 
array/imputed data with the GREML-LDMS method imple-
mented in the GCTA software.25 Since this method is rela-
tively unbiased regarding MAF and linkage disequilibrium (LD) 
parameters, we considered autosomal variants with MAF>0.001 
(15 060 719 SNPs) to avoid under/overestimation of heritability 
due to the relatively small sample analysed in the core study. 
Cryptic relatedness of distant relatives was also considered, and 
individuals whose relatedness in the genetic relationship matrix 
was >0.025 were discarded (n=4717). Population stratification 
was controlled in the linear mixed model using the first 20 prin-
cipal components of the PCA derived from population genetic 
structure analysis of the GCAT. Gender and age were also 
included as covariates in the model. The h2

SNPCIs were calculated 
by using FIESTA.26

Single-trait genome-wide association analysis
We performed independent GWAs analyses for 205 selected 
traits (61 continuous and 144 binary). A total of 9 499 600 
SNPs with MAF>0.01 were considered for this purpose. 
Linear regression models for continuous traits were assessed 
with PLINK.27 For binary traits, given the unbalanced design of 
most of the traits considered, we used a scoring test with saddle 
point approximation included in the SPAtest R package.28 This 
approach compensates a slight loss of power with the inclusion 
of uncommon and rare conditions, without affecting robustness. 
All the models included the first 20 PCAs, age and gender as 
covariates. A PCA-mixed analysis was applied to approximate 
the number of independent traits29 (online supplementary figure 
S1). Based on these figures, Bonferroni correction for multiple 
traits was defined at p<5×10−10 accounting for 100 indepen-
dent traits explaining 80% of the phenome variability.

Multitrait meta-analysis for correlated traits
We applied a multitrait approach for the analysis of anthropo-
metric traits (weight, height, body mass index (BMI) and waist 
and hip circumference) in a two-stage association study using 
individuals of British ancestry from the UK Biobank cohort 
(N=336 107).30 Waist-to-hip ratio was excluded from this anal-
ysis due to its unavailability from the UK Biobank resource. UK 
Biobank summary-level statistics was calculated using linear 
regression models with the inferred gender and the first 10 
PCAs as covariates, similarly to the model applied on GCAT 
data (see the URLs section). All SNPs with suggestive association 
p<1x10−5 for any trait were retained from the GCAT GWAS 
analysis. Then, only SNPs intersecting with the UK Biobank 
resource were used for multitrait meta-analysis association 
testing in both samples, and p<5x10−9was considered signifi-
cant. The multitrait association testing was based on the distribu-
tion of the sum of squares of the z scores which is insensitive to 
the direction of the scores.31 Briefly, let Z = ( [� ,  [� , …,  [L  ) be the 
z scores for a given SNP for k phenotypes. The sum of squares of 
the z scores,  4TR �

∑L
J�� [�

J  , can be approximated by the χ2 distri-
bution ( χ

�
 ). Let Σ  be the covariance matrix of the genome-wide 

z scores from the phenotypes under analysis. And let  DJ   be the 
eigenvalues of Σ , the distribution of  4TR   is well approximated by 

 Bχ
�
E � C  , where a, b and d depend on  DJ  . Then, we calculated the 

p value as: 
 
Q
(
χ�

E �
(
4TR − C

)
�B

)

 
. To estimate the covariance 

matrix of the correlated traits, we selected independent SNPs 
(LD pruning in PLINK “--indep-pairwise 50 5 0.2”) and filtered 
out SNPs with |z scores|>1.96 to avoid possible bias in the esti-
mation of Σ  because of the difference in sample size and associa-
tion p values in the GCAT-UK Biobank. A summary flow chart of 
the methods applied in this study is shown in figure 1.

Polygenic risk score
Genetic architecture was analysed by the polygenic risk score 
(PRS). Polygenic risk score software (PRSice)32 was used to 
predict the genetic variability of the identified loci for a given 
trait. PRSice plots the percentage of variance explained for 
a trait by using SNPs with different p value thresholds (PT) 
(online supplementary figure S2). Here, we considered PT=0.05.

URLs
GCAT study, http:// genomesforlife. com;

National Human Genome Research Institute 
GWAS Catalog, http://www. genome. gov/ gwastudies/ 
(gwas_catalog_v1.0-associations_e91_r2018-02-06);

1000 Genomes Project http://www. internationalgenome. org/ 
(phase 3, v5a.20130502);

Genome of Netherland http://www. nlgenome. nl/ (Release 
5.4);

UK10K https://www. uk10k. org/ (Release 2012-06-02, 
updated on 15 Feb 2016) ;

Haplotype Reference Consortium http://www. haplotype- 
reference- consortium. org/(Release 1.1); 

UKBiobank GWAS Results; https:// sites. google. com/ 
broadinstitute. org/ ukbbgwasresults/ home? authuser= 0, 
(Manifest20170915);

GTExportal, https://www. gtexportal. org/ home/. (last data 
accession, Release V.7, dbGaP accession phs000424. v7. P2);

RESULTS
Heritability estimates
SNP heritability estimation (h2

SNP) in the GCATcore study showed 
values ranging from 77% to 18%, with height being the trait 
showing the strongest SNP contribution. The h2

SNP SE for most 
traits was high (near 10%), with wide CIs, as expected by sample 
size. However, robustness of the analysis is supported by similar 
values to those reported elsewhere (see wide summary in Genome-
wide complex trait analysis, Wikipedia. The Free Encyclopedia, 
2018). Statistically significant h2

SNP estimations for continuous and 
binary traits (cases >500) are shown in table 1. In particular, values 
for height: h2

SNP=0.77, 95% CI0.56 to 0.94 and BMI: h2
SNP=0.38, 

95% CI0.20 to 0.59 were identical to the maxima achieved in other 
European populations, using comparable genomic approaches. 
Besides the anthropometric traits, the Fitzpatrick’s phototype 
score, a numerical classification schema for human skin colour to 
measure the response of different types of skin to ultraviolet light, 
had a high genetic consistency in our sample (h2

SNP=0.63, 95% 
CI 0.4 to 0.8), and concordantly all related categories (eye colour, 
hair colour, freckling and skin sensitivity) showed high heritability 
(h2

SNP>0.3). It is worth noting that skin colour had the lowest 
value (h2

SNP=0.18, 95% CI 0.02 to 0.38), which is in concordance 
with the blurred genetic architecture of skin colour.33 Interest-
ingly, other non-biological traits showed relatively high values in 
our study. Educational level showed the third highest heritability 
value (h2

SNP=0.54, 95% CI 0.35 to 0.74). Lower estimates have 
been observed in other Caucasian populations, but this could 
be explained by the fact that this estimate is for educational 
level as a categorical variable and not as binary (higher/lower). 
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Figure 1 Flow chart of the methods and criteria used in this study. GCAT, Genomes For Life- Cohort Study of the Genomes of Catalonia; GWAS, genome-
wide association studies; MAF, minor allele frequency; QC, quality control.

Self-perceived health was similar to h2
SNP from recent data from a 

larger UK Biobank study,16 with values around 20% (h2
SNP=0.22, 

95% CI 0.04 to 0.43).

Phenome analysis
GWAS identified 6820 associations in 1785 SNPs with genome-wide 
significance threshold p<5×10−8 and 29 343 associations with a 
suggestive association p<1×10−5. Here, we report 26 genome-
wide association hits identified in our study which confirm results 
previously identified in other European ancestry samples (GWAS 
Catalog database (release V.1.0, e90, 27 September 2017)).4 In 
table 2, we show the SNP associations with the minimum p value 

for each locus, the remaining SNPs are shown in online Supple-
mentary file 5. Five genes associated with pigmentary traits were 
identified in the analysis with highly significant SNP associations: 
SLC45A2 (rs16891982, β=−0.546, SE=0.021, p=2.2×10−130), 
IRF4 (rs12203592, β=1.915, SE=0.118, p=2.8×10−57), HERC2 
(rs1667394, β=−0.608, SE=0.02, p=2.8×10−176), OCA2 
(rs11855019, β=−0.548, SE=0.022, p=2.4×10−121) and MC1R 
(rs1805007, β=3.615, SE=0.326, p=7.7×10−22) (online supple-
mentary figure S3). These genes are involved in the regulation and 
distribution of melanin pigmentation or enzymes involved in mela-
nogenesis itself within the melanocyte cells present in the skin, hair 
and eyes in Caucasian populations.33–35 Pigmentary traits (mainly 

 on Septem
ber 7, 2019 by guest. Protected by copyright.

http://jm
g.bm

j.com
/

J M
ed G

enet: first published as 10.1136/jm
edgenet-2018-105437 on 30 August 2018. D

ow
nloaded from

 



 

    241  

769Galván-Femenía I, et al. J Med Genet 2018;55:765–778. doi:10.1136/jmedgenet-2018-105437

Complex traits

Table 1 h2
SNP of the analysed traits with h2

SNP>0, SE <0.12, p<0.05 and nb>500
Questionnaire—section Description Trait name h2SNP SE 95% CI P values n nb NA

Anthropometric and blood 
pressure

Height height_c 0.77 0.11 0.56 to 0.94 2×10−12 4717 – 0

Other habits Phototype score phototype_ score 0.63 0.11 0.4 to 0.8 3.7×10−9 4664 – 56
Demographic and 
socioeconomic

Educational level education 0.54 0.10 0.35 to 0.74 1.1×10−8 4698 – 19

Other habits Fitzpatrick phototype score phototype_score categorical 0.52 0.11 0.29 to 0.74 6.0×10−7 4664 – 56
Other habits Eye colour phototype score eye_color_phototype_score 0.48 0.11 0.27 to 0.68 7.1×10−6 4716 – 1
Other habits Freckling (has freckles) freckling_binary 0.47 0.11 0.26 to 0.68 8.1×10−6 4713 590 4
Other habits Hair colour phototype score hair_color_phototype_score 0.46 0.11 0.26 to 0.68 6.7×10−6 4709 – 9
Other habits Eye colour eye_color 0.44 0.11 0.24 to 0.65 3.4×10−5 4716 – 1
Other habits Hair colour hair_color 0.41 0.11 0.21 to 0.63 4.1×10−5 4709 – 9
Other habits Hair colour (black) hair_color_black 0.39 0.11 0.22 to 0.59 0.00018 4709 952 9
Anthropometric and blood 
pressure

BMI (kg/m2) bmi 0.38 0.11 0.2 to 0.59 0.00013 4717 – 0

Anthropometric and blood 
pressure

Weight weight_c 0.37 0.11 0.19 to 0.57 0.00016 4717 – 0

Tobacco consumption Smoking habit smoking_habit 0.36 0.11 0.19 to 0.58 0.00037 4717 – 0
Tobacco consumption Smoking packs per day smoking_packs 0.35 0.11 0.17 to 0.55 0.00082 4717 – 0
Other habits Skin sensitivity to sun skin_sensitivity_to_sun 0.33 0.11 0.15 to 0.52 0.0011 4714 – 3
Anthropometric and blood 
pressure

Hip circumference hip_c 0.31 0.11 0.15 to 0.51 0.0011 4717 – 0

Occupation Working status (active) working_status_active 0.31 0.11 0.13 to 0.54 0.0014 4696 1570 23
Other habits Skin sensitivity to sun phototype 

score
skin_sensitivity_to_sun_ 
phototype_score

0.30 0.11 0.12 to 0.51 0.0022 4714 – 3

Anthropometric and blood 
pressure

BMI obesity bmi_who_obesity 0.29 0.11 0.12 to 0.51 0.0031 4717 1388 0

Physical activity Sleep duration sleep_duration 0.29 0.11 0.1 to 0.49 0.0033 4645 – 79
Other habits Freckling freckling 0.28 0.11 0.11 to 0.5 0.0043 4713 – 4
Medical history Mental health (MHI-5) sadness 0.26 0.11 0.09 to 0.48 0.0053 4717 504 0
Occupation Working last year working_last_year 0.26 0.11 0.09 to 0.47 0.0065 4685 1190 32
Other habits Freckling phototype score freckling_phototype_score 0.26 0.11 0.09 to 0.46 0.0076 4713 – 4
Other habits Eye colour (dark) eye_color_dark 0.25 0.11 0.07 to 0.47 0.012 4716 1192 1
Other habits Hair colour (brown) hair_color_brown 0.24 0.11 0.07 to 0.45 0.012 4709 1229 9
Anthropometric and blood 
pressure

Waist circumference waist_c 0.24 0.11 0.06 to 0.44 0.01 4717 – 0

Anthropometric and blood 
pressure

Waist-to-hip ratio WHO categories whr_who 0.23 0.11 0.05 to 0.45 0.016 4717 – 0

Medical history Self-perceived health self_perceived_health 0.22 0.11 0.04 to 0.43 0.024 4715 – 2
Tobacco consumption Smoking status (ever smoked) smoking_status 0.21 0.11 0.02 to 0.42 0.026 4522 1828 204
Alcohol consumption Current alcohol consumption alcohol_actual 0.20 0.11 0.03 to 0.4 0.031 4713 3670 4
Diet Predimed score predimed_score 0.20 0.11 0.03 to 0.41 0.031 4627 – 95
Women’s health No of female children offspring_female 0.19 0.11 0.02 to 0.4 0.028 4717 – 0
Anthropometric and blood 
pressure

Waist-to-hip ratio obesity whr_who_obesity 0.19 0.11 0.04 to 0.39 0.036 4717 1512 0

Women’s health No of male children offspring_male 0.19 0.11 0.02 to 0.41 0.036 4717 – 0
Medical history Self-perceived health (bad) self_perceived_health_binary 0.18 0.11 0.02 to 0.4 0.047 4715 629 2
Medical history Certain adverse effects not 

classified elsewhere
icd9_code3_995 0.18 0.11 0.01 to 0.37 0.042 4717 775 0

Demographic and 
socioeconomic

Civil status (ever been married) civil_status_ever_married 0.18 0.11 0.01 to 0.38 0.04 4703 523 15

Other habits Skin colour phototype score skin_color_phototype_score 0.18 0.11 0.02 to 0.38 0.047 4714 – 3
BMI, body mass index; h2

SNP, SNP heritability estimation; MHI-5, Mental Health Inventory 5-item questionnaire; nb,sample size of the minor category in binary traits; _c for 
Weight_c, height_c, hip_c and waist_c mean calculated-imputed  variable.

the red hair colour phenotype) are related to the defensive capacity 
of the skin in response to sun exposure (UV-induced skin tanning 
or sun burning), and it has been established as a risk factor for 
sun-induced cancers (both melanoma and non-melanocytic skin 
cancers).36 Other GWAS hits from the phenome-wide analysis vali-
dated previously reported findings in CCDC141-LOC105373766 

(rs79146658, β=2.359, SE=0.374, p=3.4×10−10), SMAR-
CA4-LDLR (rs10412048, β=−0.5, SE=0.079, p=3.2×10−10; 
rs6511720, β=−0.493, SE=0.08, p=9.4×10−10) and LINC01432 
(rs1160312, β=0.193, SE=0.03, p=1.9×10−9) loci, related with 
cardiovascular risk (heart_rate), hyperlipidaemia (icd9_code3_272) 
and male pattern baldness (hair_loss_40), respectively (see table 2).
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Multitrait meta-analysis of anthropometric traits
Anthropometric traits had a high heritability in our sample 
(height=77%, BMI=38%, weight=37%, hip circumfer-
ence=31% and waist circumference=24%), and all were highly 
correlated (online supplementary figure S1). In the first stage, from 
single-trait GWAS, we retained 606 SNPs with suggestive associa-
tion (p<1×10−5) (see figure 2). None of them reached the genome-
wide significance threshold. In the second stage, we analysed those 
476 SNPs that intersected with the UK Biobank cohort dataset. 
Multitrait meta-analysis identified 111 SNPs in 27 independent 
loci with p<5×10−9 (online Supplementary file 7). Table 3 shows 
the SNPs with the highest significance for each independent loci 
and the univariate summary statistics of the anthropometric traits 
in both cohorts.

We estimated the covariance matrix (Σ) for each dataset (GCAT, 
UK Biobank and GCAT +UK Biobank). Then, as described in 
the Materials and methods section, we selected those indepen-
dent SNPs with |z scores|<1.96, resulting in 765 646, 630 890 
and 535 860 being considered for the Σ estimation. Eigenvalues 
of Σ showed d=1.36, 1.4 and 2.72 values. Covariance matrices 
were similar in both GCAT and UK Biobank (online supplemen-
tary tables S4 and S5). One degree of freedom (GCAT and UK 
Biobank) and three (GCAT +UK Biobank) of the 2 distribution 
were considered for multitrait analysis. We identified 27 inde-
pendent multitrait loci associated in GCAT and UK Biobank 
(table 3). We intersected these SNPs with the GWAS Catalog, 
and we found that 5 SNPs had previously been reported in multiple 
GWAS, 16 loci were reported considering a ±250 000 base 
pair window from the identified SNP and 6 were new loci 
involving the following genes/SNPs: MAD1L1 (rs62444886, 
p=2.3×10−15), PIK3R1 (rs12657050, p=2.8×10−13; rs695166, 
p=8.4×10−15), ZRANB2-AS2 (rs11205277, p=1.4×10−9), 
EPHA7 (rs143547391, p=6.5×10−10), CACUL1 (rs12414412, 
p=4×10−13) and MAP3K9 (rs7151024, p=5.7×10−10). 
Regarding DPYD, DPYD-IT1 (rs140281723), GABRG3-AS1 and 
GABRG3 (rs184405367) genes/SNPs, we did not replicate asso-
ciation in UK Biobank samples (UKmulti p=0.035 and 1, respec-
tively). The risk allele, frequency and functional annotation 
using the Variant Effect Predictor tool37 of identified variants are 
shown in online Supplementary file 9.

Polygenic risk score
The skin phototype association analysis identified five loci 
accounting for a high predictive value (PRS of 15.6%) suggesting 
few main genes (oligogenic architecture) contributing to the 
phenotype (online supplementary figure S2). However, for 
anthropometric traits, 27 loci were identified in our cohort but 
with a lower PRS (2.3%) suggesting a polygenic architecture 
with multiple genes and a high environmental impact. The newly 
identified loci only increased PRS slightly over the corresponding 
single-trait analysis (2.2% to 2.5%, 2.3% to 3.3%, 2.2% to 3.5%, 
2.5% to 3.7% and 1.5% to 2.6% for height, weight, BMI and 
hip and waist circumference, respectively) pointing towards the 
multitrait approach as an effective screening strategy to identify 
new biomarkers.

DISCUSSION
Dissecting the architecture of common diseases should incorpo-
rate multitrait approaches to understand the phenome and its 
genetic aetiology, including pleiotropy and the co-occurrence 
of multiple morbidities, correlated traits and the diseasome as 
targets for genomic analysis.38 In this study, we used the GCAT 
study, a South-European Mediterranean population prospective 
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Figure 2 Manhattan plot of the anthropometric traits (BMI, height, weight and hip and waist circumference) from the GCAT. BMI, body mass index.

cohort to analyse the phenotypic variation attributable to geno-
type variability for 205 selected human traits (including diseases 
as well as biological, anthropometric and social features). Our 
results show that by considering genetic covariance matrices 
for interrelated traits, we increased the number of detected loci 
from six new loci for anthropometric traits, pointing to multi-
trait analysis as an effective strategy to gain statistical power to 
identify genetic association.

The relative importance of genetic and non-genetic factors 
varies across populations. Moreover, this is not constant in a 
population and changes with age.16 Here, we have reported heri-
tability estimates on an adult population based on SNP data. In 
the present study, h2

SNP values move in a wide range from 18% 
to 77%, being anthropometric traits (height) and skin colour-re-
lated traits (Fitzpatrick’s phototype score) the traits with the 
highest genetic determination. In our cohort, heritability of 
anthropometric traits, such as height and BMI, was likely esti-
mated as a maximum, with negligible missed heritability when 
comparing with other reported estimates in similar populations39 
and in the same way being the observed genetic variance only a 
small part of their complete variance (around 3%). In the case of 
skin colour-related traits, the portion of the explained variance 
was larger, in accordance with a less complex polygenic nature of 
this trait, and fewer genes baring stronger predictive value (IRF4, 
HERC2, OCA2, MC1R and SLC45A2) (PRS=15.6%). The vari-
ants identified in these loci associated with skin colour-related 
traits are functional and have been reported elsewhere in several 
studies. These differences in heritability and prediction values 
indicate a different genomic architecture, suggesting an exposure 
variation, the exposome,3 as a main actor for many polygenic 
traits. Higher estimates in self-perceived health heritability, and 
probably some other reported traits such as ‘smoking_habits’, 

‘smoking_packs’, or ‘sadness’ (item from the Mental-Health 
Inventory 5-item questionnaire), reflect a pleiotropic effect40 
with multiple associated loci. In this sense, a recent meta-anal-
ysis on subjective well-being revealed new loci accounting for a 
polygenic model of well-being status.41

Single-trait GWAS analysis identified a number of genetic 
variants associated with skin colour-related traits (online supple-
mentary figure S3) and other complex traits (heart rate, hyper-
lipidaemia or male pattern baldness); whereas failed to identify 
specific variants associated with any single anthropometric 
trait (at the p<5×10−8 threshold cut-off). However, we should 
observe that gender differences were not considered in this anal-
ysis even though it has been shown that genetic effects have a 
gender bias.42 Applying multitrait analyses of anthropometric 
traits, we identified 27 loci, six of which had not been reported 
previously; CALCUL1, ZRANB2-AS2, MAD1L1, EPHA7, PIK3R1 
and MAP3K9. Owing to LD and the occurrence of all identified 
variants in non-coding regions (see online Supplementary file 9), 
we cannot be certain about the genes involved. Two out of six of 
the identified associated variants, in CALCUL1 and MAP3K9, are 
putative expression quantitative trait loci (eQTL) (see the URLs 
section). Three of the variants (ZRANB2-AS2chr1:71702511, 
EPHA7chr6:94075927 and MAP3K9chr14:71268446) are 
specific of the GCAT sample (p<5×10−9) (online Supplemen-
tary files 10,11, S,12) probably due to genetic background differ-
ences between populations (ie, LD patterns) or as an expression 
of a particular genetic contribution of the Mediterranean popu-
lations to these polygenic traits. Identified variants implicate 
genes with diverse functions, involved in several pathways and 
processes. Some of them are involved in growth, developmental 
or metabolic processes.
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MAP3K9, mitogen-activated protein kinase 9, has been asso-
ciated to some rare cancers (ie, retroperitoneum carcinoma 
and retroperitoneum neuroblastoma), and GWAS studies 
have identified variants associated with reasoning ability.43  
Based on GTEx database (see URL section) we identified 
rs7151024 as an eQTL, expressed in subcutaneous adipose 
tissue (p=1.4×10−8, eQTL effect size (es)=−0.38) that may 
affect fat distribution and anthropometric traits. ZRANB2-AS2 
is a non-coding RNA, and GWAS studies have identified vari-
ants in ZRANB2-AS2 associated with facial morphology,44 
and also with general cognitive function,45 traits which are 
genetically correlated with a wide range of physical variables. 
EPHA7 belongs to the ephrin receptor subfamily of protein-ty-
rosine kinase, implicated in mediating developmental events, 
particularly in the nervous system. EPHA7 has been impli-
cated in neurodevelopment processes46 as well being as a 
tumour suppressor gene in cancer.47CACUL1, CDK2-associ-
ated cullin domain 1, is a cell cycle-dependent kinase binding 
protein capable of promoting cell progression. In the GWAS 
Catalog, any of the anthropometric traits analysed here have 
been associated with variants in CACUL1 (online Supplemen-
tary file 13). However, the associated rs12414412, reported 
as an eQTL expressed in skeletal muscle (p=1.4×10−7, 
eQTL es=−0.31), may affect body constitution. CACUL1 
suppresses androgen receptor (AR) transcriptional activity, 
impairing LSD-mediated activation of the AR,48 whose genetic 
variation is associated with longitudinal height in young 
boys.49MAD1L1, mitotic arrest deficient 1-like protein 1, is 
a component of the mitotic spindle-assembly checkpoint, and 
some cancers (prostate and gastric) have been associated to 
MAD1L1 dysfunction.50 Our study identified BMI, weight and 
hip and waist circumference single-trait association (p<10−5) 
with the intronic variant rs62444886 in the MAD1L1 locus, 
as well as a significant multitrait association in meta-analysis 
(table 3, online Supplementary file 14). GWAS analysis iden-
tified MAD1L1 as a susceptibility gene for bipolar disorder 
and schizophrenia, involved in reward system functions in 
healthy adults,51 but until now, no other study has identified 
it as a genetic contributor to weight. The higher prevalence of 
obesity and related disorders such as diabetes in schizophrenia 
patients could reflect a possible underlying common genetic 
contribution. In this sense, we observed also GWAS signifi-
cant signals in INS-IGF2 (GCAT-UKmulti p=1.5×10−21), an 
analogue of the INS gene (previously associated with diabetes 
type I and type II disorders).52 Additionally, epigenome-wide 
association studies in adults53 and children54 support a role for 
MAD1L1 in BMI–methylation association, with differentially 
methylated CpG patterns in CD4+ and CD8+ T cells between 
obese and non-obese women. PIK3R1, phosphoinositide-3-ki-
nase regulatory subunit 1, plays a role in the metabolic actions 
of insulin, and a mutation in this gene has been associated 
with insulin resistance. Moreover, common variants are asso-
ciated with lower body fat percentage as well as the control 
of peripheral adipose tissue mobilisation.55 Genetic variation 
in the GWAS Catalog is also associated with cartilage thick-
ness56 and mineral bone density,57 both related to anthropo-
metric traits. Diseases associated with PIK3R1 include SHORT 
syndrome,58 characterised by individuals with short stature 
and a restricted intrauterine growth, in addition to multiple 
anomalies. Our study identified the intronic variant (rs695166) 
associated with waist circumference association in single-trait 
analysis (p<10−6), but not in the UKdataset, which associates 
with height (p=2.3×10−14). However, analysis of the UKBio-
bank data supported a similar peak profile overlapping the 
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gene region (see online Supplementary file 12) and multitrait 
analysis association (GCAT-UK multi p=8.4×10−15) (table 3).

Multiple approaches for multitrait analysis using GWAS data 
have been successfully applied in the research of genetically 
complex conditions using raw data or summary-level data statis-
tics. Using raw data, Ferreira and Purcell11 used a test based on 
the Wilk’s lambda derived from a canonical correlation analysis. 
Korte et al13 implemented a mixed-model approach accounting 
for correlation structure and the kinship relatedness matrix. 
O’Reilly et al14 proposed an inverted regression model for each 
SNP as the response and all the traits as covariates. Regarding 
the use of GWAS summary-level data statistics, Cotsapas et al10 
developed a statistic for cross-phenotype analysis based on an 
asymptotic 2 distribution derived from p values of the SNP asso-
ciations. Zhu et al15 implemented CPASSOC that accounts for 
the genetic correlation structure of the traits and the sample size 
for each cohort. Kim et al12 proposed an adaptive association test 
for multiple traits that uses Monte Carlo simulations to approx-
imate its null distribution. Recently, Bayes factor approaches59 
have been proposed for studying multitrait genetic associations. 
Here, for meta-analysis purposes, we chose the multitrait analysis 
described by Yang and Wang.31 This test, based on the 2 distribu-
tion with ‘d’ df, depends on the genetic covariance structure of 
the traits and considers the distribution of the sum square of the 
z scores which is insensitive to the heterogeneous effect of the 
SNP. Nevertheless, this approach doesn’t allow allele effect esti-
mation. In this sense, maximum likelihood methods have been 
recently proposed to deal with this limitation41 by accounting for 
different measures of the same phenotypic trait with different 
levels of heritability.

In complex diseases research, MRPs are the common obser-
vation in genome-wide association analysis of large cohorts, and 
over simplification of extreme phenotypes or the use of stan-
dardised phenotypes for meta-analysis reduces the power to 
detect the underlying genetic contribution to complex traits. As 
an alternative, multitrait analyses help to detect additional loci 
that are missing by applying a conventional meta-analysis. Our 
results highlight the potential value of data-driven multivariate 
phenotyping for genetic studies in large complex cohorts.

Author affiliations
1GenomesForLife-GCAT Lab Group, Program of Predictive and Personalized Medicine 
of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Crta. de Can 
Ruti, Badalona, Catalunya, Spain
2Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, 
Catalan Institute of Oncology (ICO), IDIBELL and CIBERESP, Barcelona, Spain
3High Content Genomics and Bioinformatics Unit, Program of Predictive and 
Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute 
(IGTP), Badalona, Catalunya, Spain
4Life Sciences - Computational Genomics, Barcelona Supercomputing Center (BSC-
CNS), Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona, 
Spain
5Programs in Metabolism and Medical & Population Genetics, Broad Institute of 
Harvard and MIT, Cambridge, Massachusetts, US
6Diabetes Unit and Center for Human Genetic Research, Massachusetts General 
Hospital, Boston, Massachusetts, US
7Blood Division, Banc de Sang i Teixits, Barcelona, Spain
8Cancer Genetics and Epigenetics Group, Program of Predictive and Personalized 
Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), 
Badalona, Catalunya, Spain
9ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, 
Catalunya, Spain
10Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 
Barcelona, Spain

Correction notice This article has been corrected since it was published online 
first. JMM has been added to the authors list and to the ’Contributors’ section.

Acknowledgements The authors thank all the GCAT participants and all BST 
members for generously helping with this research. 

Contributors All authors contributed to the feedback of the manuscript and 
played an important role in implementing the study. IG-F, MP, VM and RdC 
conceived the study. IG-F and RdC planned the study. LP coordinated the cohort 
recruitment. AC, JV and XD prepared the samples. MO-S and XD curated the 
epidemiological data variables. DP, RP, LR, SA and LS conducted the genotyping. 
IG-F, DP and LS analysed the clustering analysis. IG-F, MG-M, JMM and DT 
conducted the imputation analysis. IG-F and RdC conducted and supervised the 
genetic analysis. IG-F, MO-S and RdC wrote the manuscript. RdC submitted and 
supervised the study. 

Funding This work was supported in part by the Spanish Ministerio de Economía 
y Competitividad (MINECO) project ADE 10/00026, by the Catalan Departament 
de Salut and by the Departament d’Empresa i Coneixement de la Generalitat de 
Catalunya, the Agència de Gestió d’Estudis Universitaris i de Recerca (AGAUR) (SGR 
1269, SGR 1589 and SGR 647). RdC is the recipient of a Ramon y Cajal grant (RYC-
2011-07822). The Project GCAT is coordinated by the Germans Trias i Pujol Research 
Institute (IGTP), in collaboration with the Catalan Institute of Oncology (ICO), and in 
partnership with the Blood and Tissue Bank of Catalonia (BST). IGTP is part of the 
CERCA Programme/Generalitat de Catalunya.

Competing interests None declared.

Patient consent Obtained.

Ethics approval http://www. ceicgermanstrias. cat/.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See: http:// creativecommons. org/ licenses/ by- nc/ 4. 0/.

REFERENCES
 1 Eurostat Statistics Explained. Mortality and life expectancy statistics, 2016. http:// ec. 

europa. eu/ eurostat/ statistics- explained/ index. php/ Mortality_ and_ life_ expectancy_ 
statistics

 2 Dawber TR, Meadors GF, Moore FE. Epidemiological approaches to heart disease: the 
Framingham Study. Am J Public Health Nations Health 1951;41:279–86.

 3 Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, Charrondière UR, Hémon 
B, Casagrande C, Vignat J, Overvad K, Tjønneland A, Clavel-Chapelon F, Thiébaut A, 
Wahrendorf J, Boeing H, Trichopoulos D, Trichopoulou A, Vineis P, Palli D, Bueno-De-
Mesquita HB, Peeters PH, Lund E, Engeset D, González CA, Barricarte A, Berglund G, 
Hallmans G, Day NE, Key TJ, Kaaks R, Saracci R. European Prospective Investigation 
into Cancer and Nutrition (EPIC): study populations and data collection. Public Health 
Nutr 2002;5:1113–24.

 4 Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, 
Manolio T, Hindorff L, Parkinson H. The NHGRI GWAS Catalog, a curated resource of 
SNP-trait associations. Nucleic Acids Res 2014;42:D1001–6.

 5 Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, 
Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, 
Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler 
EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM. Finding the missing 
heritability of complex diseases. Nature 2009;461:747–53.

 6 Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 
Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet 
2017;101:5–22.

 7 Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic to 
Omnigenic. Cell 2017;169:1177–86.

 8 Chakravarti A, Turner TN. Revealing rate-limiting steps in complex disease biology: 
The crucial importance of studying rare, extreme-phenotype families. Bioessays 
2016;38:578–86.

 9 Freimer N, Sabatti C. The human phenome project. Nat Genet 2003;34:15–21.
 10 Cotsapas C, Voight BF, Rossin E, Lage K, Neale BM, Wallace C, Abecasis GR, Barrett 

JC, Behrens T, Cho J, De Jager PL, Elder JT, Graham RR, Gregersen P, Klareskog L, 
Siminovitch KA, van Heel DA, Wijmenga C, Worthington J, Todd JA, Hafler DA, Rich 
SS, Daly MJ. FOCiS Network of Consortia. Pervasive sharing of genetic effects in 
autoimmune disease. PLoS Genet 2011;7:e1002254.

 11 Ferreira MAR, Purcell SM. A multivariate test of association. Bioinformatics 
2009;25:132–3.

 12 Kim J, Bai Y, Pan W. An Adaptive Association Test for Multiple Phenotypes with GWAS 
Summary Statistics. Genet Epidemiol 2015;39:651–63.

 13 Korte A, Vilhjálmsson BJ, Segura V, Platt A, Long Q, Nordborg M. A mixed-model 
approach for genome-wide association studies of correlated traits in structured 
populations. Nat Genet 2012;44:1066–71.

 on Septem
ber 7, 2019 by guest. Protected by copyright.

http://jm
g.bm

j.com
/

J M
ed G

enet: first published as 10.1136/jm
edgenet-2018-105437 on 30 August 2018. D

ow
nloaded from

 



 

    249  

777Galván-Femenía I, et al. J Med Genet 2018;55:765–778. doi:10.1136/jmedgenet-2018-105437

Complex traits

 14 O’Reilly PF, Hoggart CJ, Pomyen Y, Calboli FC, Elliott P, Jarvelin MR, Coin LJ. MultiPhen: 
joint model of multiple phenotypes can increase discovery in GWAS. PLoS One 
2012;7:e34861.

 15 Zhu X, Feng T, Tayo BO, Liang J, Young JH, Franceschini N, Smith JA, Yanek LR, Sun YV, 
Edwards TL, Chen W, Nalls M, Fox E, Sale M, Bottinger E, Rotimi C, Liu Y, McKnight B, 
Liu K, Arnett DK, Chakravati A, Cooper RS, Redline S; COGENT BP Consortium. Meta-
analysis of correlated traits via summary statistics from GWASs with an application in 
hypertension. Am J Hum Genet 2015;96:21–36.

 16 Ge T, Chen CY, Neale BM, Sabuncu MR, Smoller JW. Phenome-wide heritability 
analysis of the UK Biobank. PLoS Genet 2017;13:e1006711.

 17 Muñoz M, Pong-Wong R, Canela-Xandri O, Rawlik K, Haley CS, Tenesa A. Evaluating 
the contribution of genetics and familial shared environment to common disease 
using the UK Biobank. Nat Genet 2016;48:980–3.

 18 Obón-Santacana M, Vilardell M, Carreras A, Duran X, Velasco J, Galván-Femenía I, 
Alonso T, Puig L, Sumoy L, Duell EJ, Perucho M, Moreno V, de Cid R. GCAT|Genomes 
for life: a prospective cohort study of the genomes of Catalonia. BMJ Open 
2018;8:e018324.

 19 Liu Y, De A. Multiple Imputation by Fully Conditional Specification for Dealing with 
Missing Data in a Large Epidemiologic Study. Int J Stat Med Res 2015;4:287–95.

 20 Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate 
genotype imputation in genome-wide association studies through pre-phasing. Nat 
Genet 2012;44:955–9.

 21 Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, 
McCarthy S, McVean GA, Abecasis GR; 1000 Genomes Project Consortium. A global 
reference for human genetic variation. Nature 2015;526:68–74.

 22 Deelen P, Menelaou A, van Leeuwen EM, Kanterakis A, van Dijk F, Medina-Gomez C, 
Francioli LC, Hottenga JJ, Karssen LC, Estrada K, Kreiner-Møller E, Rivadeneira F, van 
Setten J, Gutierrez-Achury J, Westra HJ, Franke L, van Enckevort D, Dijkstra M, Byelas 
H, van Duijn CM, de Bakker PI, Wijmenga C, Swertz MA; Genome of Netherlands 
Consortium. Improved imputation quality of low-frequency and rare variants in 
European samples using the ’Genome of The Netherlands’. Eur J Hum Genet 
2014;22:1321–6.

 23 Huang J, Howie B, McCarthy S, Memari Y, Walter K, Min JL, Danecek P, Malerba G, 
Trabetti E, Zheng HF, Gambaro G, Richards JB, Durbin R, Timpson NJ, Marchini J, 
Soranzo N, Turki SA, Amuzu A, Anderson CA, Anney R, Antony D, Artigas MS, Ayub 
M, Bala S, Barrett JC, Barroso I, Beales P, Benn M, Bentham J, Bhattacharya S, Birney 
E, Blackwood D, Bobrow M, Bochukova E, Bolton PF, Bounds R, Boustred C, Breen 
G, Calissano M, Carss K, Casas JP, Chambers JC, Charlton R, Chatterjee K, Chen L, 
Ciampi A, Cirak S, Clapham P, Clement G, Coates G, Cocca M, Collier DA, Cosgrove 
C, Cox T, Craddock N, Crooks L, Curran S, Curtis D, Daly A, Inm D, Day-Williams A, 
Dedoussis G, Down T, Du Y, van DCM, Dunham I, Edkins S, Ekong R, Ellis P, Evans DM, 
Farooqi IS, Fitzpatrick DR, Flicek P, Floyd J, Foley AR, Franklin CS, Futema M, Gallagher 
L, Gasparini P, Gaunt TR, Geihs M, Geschwind D, Greenwood C, Griffin H, Grozeva 
D, Guo X, Guo X, Gurling H, Hart D, Hendricks AE, Holmans P, Huang L, Hubbard 
T, Humphries SE, Hurles ME, Hysi P, Iotchkova V, Isaacs A, Jackson DK, Jamshidi Y, 
Johnson J, Joyce C, Karczewski KJ, Kaye J, Keane T, Kemp JP, Kennedy K, Kent A, 
Keogh J, Khawaja F, Kleber ME, van KM, Kolb-Kokocinski A, Kooner JS, Lachance G, 
Langenberg C, Langford C, Lawson D, Lee I, van LEM, Lek M, Li R, Li Y, Liang J, Lin H, 
Liu R, Lönnqvist J, Lopes LR, Lopes M, Luan J, MacArthur DG, Mangino M, Marenne 
G, März W, Maslen J, Matchan A, Mathieson I, McGuffin P, McIntosh AM, McKechanie 
AG, McQuillin A, Metrustry S, Migone N, Mitchison HM, Moayyeri A, Morris J, Morris R, 
Muddyman D, Muntoni F, Nordestgaard BG, Northstone K, O’Donovan MC, O’Rahilly 
S, Onoufriadis A, Oualkacha K, Owen MJ, Palotie A, Panoutsopoulou K, Parker V, 
Parr JR, Paternoster L, Paunio T, Payne F, Payne SJ, Perry JRB, Pietilainen O, Plagnol V, 
Pollitt RC, Povey S, Quail MA, Quaye L, Raymond L, Rehnström K, Ridout CK, Ring S, 
Ritchie GRS, Roberts N, Robinson RL, Savage DB, Scambler P, Schiffels S, Schmidts M, 
Schoenmakers N, Scott RH, Scott RA, Semple RK, Serra E, Sharp SI, Shaw A, Shihab 
HA, Shin S-Y, Skuse D, Small KS, Smee C, Smith GD, Southam L, Spasic-Boskovic O, 
Spector TD, Clair DS, Pourcain BS, Stalker J, Stevens E, Sun J, Surdulescu G, Suvisaari 
J, Syrris P, Tachmazidou I, Taylor R, Tian J, Tobin MD, Toniolo D, Traglia M, Tybjaerg-
Hansen A, Valdes AM, Vandersteen AM, Varbo A, Vijayarangakannan P, Visscher PM, 
Wain LV, Walters JTR, Wang G, Wang J, Wang Y, Ward K, Wheeler E, Whincup P, Whyte 
T, Williams HJ, Williamson KA, Wilson C, Wilson SG, Wong K, Xu C, Yang J, Zaza G, 
Zeggini E, Zhang F, Zhang P, Zhang W; UK10K Consortium. Improved imputation of 
low-frequency and rare variants using the UK10K haplotype reference panel. Nat 
Commun 2015;6:8111.

 24 McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, 
Fuchsberger C, Danecek P, Sharp K, Luo Y, Sidore C, Kwong A, Timpson N, Koskinen 
S, Vrieze S, Scott LJ, Zhang H, Mahajan A, Veldink J, Peters U, Pato C, van Duijn CM, 
Gillies CE, Gandin I, Mezzavilla M, Gilly A, Cocca M, Traglia M, Angius A, Barrett JC, 
Boomsma D, Branham K, Breen G, Brummett CM, Busonero F, Campbell H, Chan A, 
Chen S, Chew E, Collins FS, Corbin LJ, Smith GD, Dedoussis G, Dorr M, Farmaki AE, 
Ferrucci L, Forer L, Fraser RM, Gabriel S, Levy S, Groop L, Harrison T, Hattersley A, 
Holmen OL, Hveem K, Kretzler M, Lee JC, McGue M, Meitinger T, Melzer D, Min JL, 
Mohlke KL, Vincent JB, Nauck M, Nickerson D, Palotie A, Pato M, Pirastu N, McInnis 
M, Richards JB, Sala C, Salomaa V, Schlessinger D, Schoenherr S, Slagboom PE, Small 
K, Spector T, Stambolian D, Tuke M, Tuomilehto J, Van den Berg LH, Van Rheenen W, 
Volker U, Wijmenga C, Toniolo D, Zeggini E, Gasparini P, Sampson MG, Wilson JF, 

Frayling T, de Bakker PI, Swertz MA, McCarroll S, Kooperberg C, Dekker A, Altshuler 
D, Willer C, Iacono W, Ripatti S, Soranzo N, Walter K, Swaroop A, Cucca F, Anderson 
CA, Myers RM, Boehnke M, McCarthy MI, Durbin R; Haplotype Reference Consortium. 
A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 
2016;48:1279–83.

 25 Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex 
trait analysis. Am J Hum Genet 2011;88:76–82.

 26 Schweiger R, Fisher E, Rahmani E, Shenhav L, Rosset S, Halperin E. Using Stochastic 
Approximation Techniques to Efficiently Construct Confidence Intervals for Heritability: 
In. Research in Computational Molecular Biology. Cham: Springer, 2017:241–56.

 27 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation 
PLINK: rising to the challenge of larger and richer datasets. Gigascience 2015;4:7.

 28 Dey R, Schmidt EM, Abecasis GR, Lee S. A Fast and Accurate Algorithm to Test for 
Binary Phenotypes and Its Application to PheWAS. Am J Hum Genet 2017;101:37–49.

 29 Chavent M, Kuentz-Simonet V, Labenne A, Saracco J. Multivariate analysis of mixed 
type data: The PCAmixdata R package, 2014.

 30 Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green 
J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman 
T, Collins R. UK biobank: an open access resource for identifying the causes of a wide 
range of complex diseases of middle and old age. PLoS Med 2015;12:e1001779.

 31 Yang Q, Wang Y. Methods for Analyzing Multivariate Phenotypes in Genetic 
Association Studies. J Probab Stat 2012;2012:1–13.

 32 Euesden J, Lewis CM, O’Reilly PF. PRSice: Polygenic Risk Score software. Bioinformatics 
2015;31:1466–8.

 33 McEvoy B, Beleza S, Shriver MD. The genetic architecture of normal variation in 
human pigmentation: an evolutionary perspective and model. Hum Mol Genet 
2006;15:R176–81.

 34 Liu F, Visser M, Duffy DL, Hysi PG, Jacobs LC, Lao O, Zhong K, Walsh S, Chaitanya 
L, Wollstein A, Zhu G, Montgomery GW, Henders AK, Mangino M, Glass D, Bataille 
V, Sturm RA, Rivadeneira F, Hofman A, van IJcken WF, Uitterlinden AG, Palstra RJ, 
Spector TD, Martin NG, Nijsten TE, Kayser M. Genetics of skin color variation in 
Europeans: genome-wide association studies with functional follow-up. Hum Genet 
2015;134:823–35.

 35 Robles-Espinoza CD, Roberts ND, Chen S, Leacy FP, Alexandrov LB, Pornputtapong 
N, Halaban R, Krauthammer M, Cui R, Timothy Bishop D, Adams DJ. Germline 
MC1R status influences somatic mutation burden in melanoma. Nat Commun 
2016;7:12064.

 36 Sturm RA. Skin colour and skin cancer - MC1R, the genetic link. Melanoma Res 
2002;12:405–16.

 37 McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F. 
The Ensembl Variant Effect Predictor. Genome Biol 2016;17:122.

 38 Wysocki K, Ritter L. Diseasome: an approach to understanding gene-disease 
interactions. Annu Rev Nurs Res 2011;29:55–72.

 39 Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Lee SH, Robinson MR, Perry JR, 
Nolte IM, van Vliet-Ostaptchouk JV, Snieder H, Esko T, Milani L, Mägi R, Metspalu A, 
Hamsten A, Magnusson PK, Pedersen NL, Ingelsson E, Soranzo N, Keller MC, Wray NR, 
Goddard ME, Visscher PM; LifeLines Cohort Study. Genetic variance estimation with 
imputed variants finds negligible missing heritability for human height and body mass 
index. Nat Genet 2015;47:1114–20.

 40 Krapohl E, Rimfeld K, Shakeshaft NG, Trzaskowski M, McMillan A, Pingault JB, 
Asbury K, Harlaar N, Kovas Y, Dale PS, Plomin R. The high heritability of educational 
achievement reflects many genetically influenced traits, not just intelligence. Proc Natl 
Acad Sci U S A 2014;111:15273–8.

 41 Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, Nguyen-Viet TA, 
Wedow R, Zacher M, Furlotte NA, Magnusson P, Oskarsson S, Johannesson M, 
Visscher PM, Laibson D, Cesarini D, Neale BM, Benjamin DJ; 23andMe Research Team, 
Social Science Genetic Association Consortium. Multi-trait analysis of genome-wide 
association summary statistics using MTAG. Nat Genet 2018;50:229–37.

 42 Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, Freathy 
RM, Perry JR, Stevens S, Hall AS, Samani NJ, Shields B, Prokopenko I, Farrall M, 
Dominiczak A, Johnson T, Bergmann S, Beckmann JS, Vollenweider P, Waterworth 
DM, Mooser V, Palmer CN, Morris AD, Ouwehand WH, Zhao JH, Li S, Loos RJ, Barroso 
I, Deloukas P, Sandhu MS, Wheeler E, Soranzo N, Inouye M, Wareham NJ, Caulfield 
M, Munroe PB, Hattersley AT, McCarthy MI, Frayling TM; Diabetes Genetics Initiative, 
Wellcome Trust Case Control Consortium, Cambridge GEM Consortium. Genome-
wide association analysis identifies 20 loci that influence adult height. Nat Genet 
2008;40:575–83.

 43 McClay JL, Adkins DE, Åberg K, Bukszár J, Khachane AN, Keefe RSE, Perkins DO, 
McEvoy JP, Stroup TS, Vann RE, Beardsley PM, Lieberman JA, Sullivan PF, van den 
Oord EJCG. Genome-wide pharmacogenomic study of neurocognition as an indicator 
of antipsychotic treatment response in schizophrenia. Neuropsychopharmacology 
2011;36:616–26.

 44 Lee MK, Shaffer JR, Leslie EJ, Orlova E, Carlson JC, Feingold E, Marazita ML, Weinberg 
SM. Genome-wide association study of facial morphology reveals novel associations 
with FREM1 and PARK2. PLoS One 2017;12:e0176566.

 45 Hill WD, Marioni RE, Maghzian O, Ritchie SJ, Hagenaars SP, McIntosh AM, Gale CR, 
Davies G, Deary IJ. A combined analysis of genetically correlated traits identifies 187 
loci and a role for neurogenesis and myelination in intelligence. Mol Psychiatry;15.

 on Septem
ber 7, 2019 by guest. Protected by copyright.

http://jm
g.bm

j.com
/

J M
ed G

enet: first published as 10.1136/jm
edgenet-2018-105437 on 30 August 2018. D

ow
nloaded from

 



 

 250  

778 Galván-Femenía I, et al. J Med Genet 2018;55:765–778. doi:10.1136/jmedgenet-2018-105437

Complex traits

 46 Wang X, Sun J, Li C, Mao B. EphA7 modulates apical constriction of hindbrain 
neuroepithelium during neurulation in Xenopus. Biochem Biophys Res Commun 
2016;479:759–65.

 47 Prost G, Braun S, Hertwig F, Winkler M, Jagemann L, Nolbrant S, Leefa IV, Offen N, 
Miharada K, Lang S, Artner I, Nuber UA. The putative tumor suppressor gene EphA7 is 
a novel BMI-1 target. Oncotarget 2016;7:58203–17.

 48 Choi H, Lee SH, Um SJ, Kim EJ. CACUL1 functions as a negative regulator of androgen 
receptor in prostate cancer cells. Cancer Lett 2016;376:360–6.

 49 Voorhoeve PG, van Mechelen W, Uitterlinden AG, Delemarre-van de Waal HA, 
Lamberts SW. Androgen receptor gene CAG repeat polymorphism in longitudinal 
height and body composition in children and adolescents. Clin Endocrinol 
2011;74:732–5.

 50 Tsukasaki K, Miller CW, Greenspun E, Eshaghian S, Kawabata H, Fujimoto T, 
Tomonaga M, Sawyers C, Said JW, Koeffler HP. Mutations in the mitotic check point 
gene, MAD1L1, in human cancers. Oncogene 2001;20:3301–5.

 51 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. 
Genome-wide association study identifies five new schizophrenia loci. Nat Genet 
2011;43:969–76.

 52 Ng MC, Shriner D, Chen BH, Li J, Chen WM, Guo X, Liu J, Bielinski SJ, Yanek LR, Nalls 
MA, Comeau ME, Rasmussen-Torvik LJ, Jensen RA, Evans DS, Sun YV, An P, Patel SR, 
Lu Y, Long J, Armstrong LL, Wagenknecht L, Yang L, Snively BM, Palmer ND, Mudgal P, 
Langefeld CD, Keene KL, Freedman BI, Mychaleckyj JC, Nayak U, Raffel LJ, Goodarzi 
MO, Chen YD, Taylor HA, Correa A, Sims M, Couper D, Pankow JS, Boerwinkle E, 
Adeyemo A, Doumatey A, Chen G, Mathias RA, Vaidya D, Singleton AB, Zonderman 
AB, Igo RP, Sedor JR, Kabagambe EK, Siscovick DS, McKnight B, Rice K, Liu Y, Hsueh 
WC, Zhao W, Bielak LF, Kraja A, Province MA, Bottinger EP, Gottesman O, Cai Q, Zheng 
W, Blot WJ, Lowe WL, Pacheco JA, Crawford DC, Grundberg E, Rich SS, Hayes MG, 
Shu XO, Loos RJ, Borecki IB, Peyser PA, Cummings SR, Psaty BM, Fornage M, Iyengar 
SK, Evans MK, Becker DM, Kao WH, Wilson JG, Rotter JI, Sale MM, Liu S, Rotimi CN, 
Bowden DW. FIND Consortium eMERGE Consortium DIAGRAM Consortium MuTHER 
Consortium MEta-analysis of type 2 DIabetes in African Americans Consortium. Meta-
analysis of genome-wide association studies in African Americans provides insights 
into the genetic architecture of type 2 diabetes. PLoS Genet 2014;10:e1004517.

 53 Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou YH, Hedman ÅK, 
Sandling JK, Li LA, Irvin MR, Zhi D, Deloukas P, Liang L, Liu C, Bressler J, Spector TD, 

North K, Li Y, Absher DM, Levy D, Arnett DK, Fornage M, Pankow JS, Boerwinkle E, ÅK 
H, Li L-A IMR. Epigenome-wide association study (EWAS) of BMI, BMI change and 
waist circumference in African American adults identifies multiple replicated loci. Hum 
Mol Genet 2015;24:4464–79.

 54 Rzehak P, Covic M, Saffery R, Reischl E, Wahl S, Grote V, Weber M, Xhonneux A, 
Langhendries JP, Ferre N, Closa-Monasterolo R, Escribano J, Verduci E, Riva E, Socha 
P, Gruszfeld D, Koletzko B. DNA-Methylation and Body Composition in Preschool 
Children: Epigenome-Wide-Analysis in the European Childhood Obesity Project 
(CHOP)-Study. Sci Rep 2017;7:14349.

 55 Lotta LA, Gulati P, Day FR, Payne F, Ongen H, van de Bunt M, Gaulton KJ, Eicher 
JD, Sharp SJ, Luan J, De Lucia Rolfe E, Stewart ID, Wheeler E, Willems SM, Adams 
C, Yaghootkar H, Forouhi NG, Khaw KT, Johnson AD, Semple RK, Frayling T, Perry 
JR, Dermitzakis E, McCarthy MI, Barroso I, Wareham NJ, Savage DB, Langenberg 
C, O’Rahilly S, Scott RA; EPIC-InterAct Consortium Cambridge FPLD1 Consortium. 
Integrative genomic analysis implicates limited peripheral adipose storage capacity in 
the pathogenesis of human insulin resistance. Nat Genet 2017;49:17–26.

 56 Castaño-Betancourt MC, Evans DS, Ramos YF, Boer CG, Metrustry S, Liu Y, den 
Hollander W, van Rooij J, Kraus VB, Yau MS, Mitchell BD, Muir K, Hofman A, Doherty 
M, Doherty S, Zhang W, Kraaij R, Rivadeneira F, Barrett-Connor E, Maciewicz RA, 
Arden N, Nelissen RG, Kloppenburg M, Jordan JM, Nevitt MC, Slagboom EP, Hart DJ, 
Lafeber F, Styrkarsdottir U, Zeggini E, Evangelou E, Spector TD, Uitterlinden AG, Lane 
NE, Meulenbelt I, Valdes AM, van Meurs JB. Novel Genetic Variants for Cartilage 
Thickness and Hip Osteoarthritis. PLoS Genet 2016;12:e1006260.

 57 Mullin BH, Walsh JP, Zheng HF, Brown SJ, Surdulescu GL, Curtis C, Breen G, Dudbridge 
F, Richards JB, Spector TD, Wilson SG. Genome-wide association study using family-
based cohorts identifies the WLS and CCDC170/ESR1 loci as associated with bone 
mineral density. BMC Genomics 2016;17:136.

 58 Dyment DA, Smith AC, Alcantara D, Schwartzentruber JA, Basel-Vanagaite L, Curry 
CJ, Temple IK, Reardon W, Mansour S, Haq MR, Gilbert R, Lehmann OJ, Vanstone MR, 
Beaulieu CL, Majewski J, Bulman DE, O’Driscoll M, Boycott KM, Innes AM; FORGE 
Canada Consortium. Mutations in PIK3R1 cause SHORT syndrome. Am J Hum Genet 
2013;93:158–66.

 59 Majumdar A, Haldar T, Bhattacharya S, Witte JS. An efficient Bayesian meta-
analysis approach for studying cross-phenotype genetic associations. PLoS Genet 
2018;14:e1007139.

 on Septem
ber 7, 2019 by guest. Protected by copyright.

http://jm
g.bm

j.com
/

J M
ed G

enet: first published as 10.1136/jm
edgenet-2018-105437 on 30 August 2018. D

ow
nloaded from

 



 

    251 

Appendix 5. Genomic profiling in advanced stage non-small-cell lung 

cancer patients with platinum-based chemotherapy identifies germline 

variants with prognostic value in SMYD2. 

Galván-Femenía I, Guindo M, Duran X, Calabuig-Fariñas S, Mercader JM, Ramirez 

JL, Rosell R, Torrents D, Carreras A, Kohno T, Jantus-Lewintre E, Camps C, Perucho 

M, Sumoy L, Yokota J, de Cid R. Cancer Treat Res Commun. 2018;15:21-31. 

 

Contribution: 

• Genotype imputation using 1000G phase 3, UK10K and GoNL as reference 

panels.  

• Statistical analysis and interpretation of data. 
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A R T I C L E I N F O
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A B S T R A C T

Objective: The aim of the study was to investigate the relationship between germline variations as a prognosis
biomarker in patients with advanced Non-Small-Cell-Lung-Cancer (NSCLC) subjected to first-line platinum-based
treatment.
Materials and Methods: We carried out a two-stage genome-wide-association study in non-small-cell lung cancer
patients with platinum-based chemotherapy in an exploratory sample of 181 NSCLC patients from Caucasian
origin, followed by a validation on 356 NSCLC patients from the same ancestry (Valencia, Spain).
Results: We identified germline variants in SMYD2 as a prognostic factor for survival in patients with advanced
NSCLC receiving chemotherapy. SMYD2 alleles are associated to a decreased overall survival and with a reduced
Time to Progression. In addition, enrichment pathway analysis identified 361 variants in 40 genes to be involved
in poorer outcome in advanced-stage NSCLC patients.
Conclusion: Germline SMYD2 alleles are associated with bad clinical outcome of first-line platinum-based
treatment in advanced NSCLC patients. This result supports the role of SMYD2 in the carcinogenic process, and
might be used as prognostic signature directing patient stratification and the choice of therapy.
Microabstract: A two-Stage Genome wide association study in Caucasian population reveals germline genetic
variation in SMYD2 associated to progression disease in first-line platinum-based treatment in advanced NSCLC
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patients. SMYD2 profiling might have prognostic / predictive value directing choice of therapy and enlighten
current knowledge on pathways involved in human carcinogenesis as well in resistance to chemotherapy.

1. Introduction

Lung cancer is the most common cancer in the world, and the
leading cause of mortality among cancer-related deaths. The Non-
Small-Cell-Lung-Cancer (NSCLC), being the most common form, has an
overall 5-years survival of less than 15% [15]. NSCLC is a histological
diverse group of tumors, with major classes being squamous (SCC),
adenocarcinoma (ADC), and large cell carcinoma (LCC). Despite the
enormous heterogeneity, these tumors have been treated homo-
geneously for a long time with cytotoxic chemotherapy as the choice
treatment [17].

Platinum-based chemotherapy is still widely used for treatment of
the vast majority of NSCLC patients with advanced-stage disease, with
the exception of cases bearing EGFR, BRAF, ROS1 or EML4-ALK tumor
mutations. The latter have greatly benefited from the advances
achieved in the last ten years in targeted therapy based on somatic
genetic/molecular profiling. While chemotherapy provides palliation,
advanced NSCLC remains incurable in most cases since acquired re-
sistance is common, response rates are only 15%–30%, and median OS
is less than 12 months. Resistance can arise from a several causes (drug
delivery, altered target, tolerance to damage, etc…) [16] and differ-
ences observed in therapy efficacy could be explained by the impact of
host genotype variants on target/resistance factors.

Customization of chemotherapy has relied on tumor cell expression
profiles of specific genes. Candidate gene studies have indicated pos-
sible association to response of genetic variants in genes of the platinum
pathway (reviewed by Hildebrandt et al. [20]) and DNA-repair genes
[32]. Genome-wide association studies (GWAS) have been used suc-
cessfully to identify germline genetic variants associated with an in-
creased risk of developing lung cancer including NSCLC, and have been
applied to identify prognostic biomarkers [22,27,49,50,54,55] as well
as to identify genetic variability associated to adverse effects to che-
motherapy [6,7]. Furthermore, re-positioning of GWAS-derived germ-
line predisposition markers as prognostic markers, have been success-
fully reported in other cancer forms.

The aim of this study was to investigate the relationship between
germline variants to identify prognosis biomarkers for clinical outcome
in patients with advanced NSCLC subjected to first-line platinum-based
treatment. In this study we report a genome-wide scan study in two
independent samples from the same ancestry (Spain).

We present evidence of germline variation in the SMYD2 affecting
the clinical outcome of advanced NSCLC patients. SMYD2 profiling
might have prognostic/predictive value directing choice of therapy and
enlighten current knowledge on pathways involved in human carcino-
genesis as well in resistance to chemotherapy.

2. Material and Methods

2.1. Patients

This study was approved by the institutional review board of the
IGTP. The recruitment of NSCLC patients in the discovery phase and
validation phase was approved by the institutional review board of each
participating institution.

2.2. Discovery sample

Patients included in the study were selected from the BREC clinical
trial study (Multicenter, Predictive, Prospective, Phase III, Open,
Randomized, Pharmacogenomic Study in Patients with Advanced Lung

Carcinoma (BREC)) [35]. BREC patients with advanced NSCLC who had
not received treatment for the disease at the time they entered the study
and had a good performance status (ECOG 0–1) and measurable disease
(at least one target lesion according to the RECIST (response evaluation
criteria in solid tumors), received six to eight chemotherapy cycles. The
94% received cisplatin 75mg/m2 combined with Docetaxel 75 mg/m2
(73%) (group 1) or Gemcitabine 1250mg/m2 (27%) (group 2), both at
day 1, in 21-day cycles. Remaining 6% received Docetaxel 75 mg/m2
(group 3), on day 1 every 3 weeks. See complete description at clin-
icaltrials.gov/show/NCT00617656.

A total of 178 patients were included in the genetic analysis. All
considered patients were EGFR-WT. The median age was 62 years
(range: 39–82), 78% males, and 92% stage IV of the disease. ADC was
the most common histological subtype (56% of patients) of NSCLC,
followed by squamous cell carcinoma (SCC) (36%) and large cell car-
cinoma (LCC) (3%), 5% were grouped in other categories. The most
frequent ECOG score was 1 (64%) (33% and 1% for 0 and 2 status).
Overall progression free survival (PFS) (calculated from the date of
randomization to progression or death) was 5.3 months (95% CI
4.71–5.88), and survival time (Overall Survival OS; calculated from the
date of randomization to death) was 10.16 months (95% CI
8.32–12.01).

2.3. Validation sample

Patients included in the validation cohort were from a Multicenter
study coordinated by the Spanish Lung Cancer Group. All patients were
with advanced NSCLC, from Caucasian ancestry and the same geo-
graphical region (Valencia, Spain) [24,25,47]. Blood samples were re-
collected from 356 NSCLC stage IIIB with pleural effusion or stage IV,
who received cisplatin (75mg/m2) and docetaxel (75mg/m2) on day 1
every 3 weeks. Among 356 patients, 323 with fulfilled response data
were considered for the analysis.

The median age was 59 years (range: 31–80), 83% males. 15% of
patients had stage III and 85% stage IV of the disease. Like in BREC
patients, ADC was the most common histological subtype (51%) of
NSCLC, followed by SCC (31%) and LCC (14%), 4% were grouped in
other categories. The most frequent ECOG score was 1 (68%) (29% and
2% for 0 and 2 status). TTP was 5.53 months (95% CI 4.93–6.33) and
OS 9.9 months (95% CI 9.17–11.07).

According to the study objectives, the clinical outcomes were di-
agnosis of NSCLC and response to treatment (according to the criteria
established in the RECIST). Patients were categorized as progressing
disease if its RECIST was assessed as PD (PD) (23% BREC, 37% vali-
dation sample) and as non-progressing if their RECIST was complete
(CR) or partial response (PR) (14%, 1% and 32%, 28%) or stable disease
(31%, 34%)(SD), in both exploratory and replication cohorts, respec-
tively. The main clinical and pathological characteristics of the dis-
covery and validation samples are shown in Table 1.

2.4. Genome scan

2.4.1. Genotyping
Genome-wide genotypes were generated for the discovery sample

using SNP-array technology. The Infinium® HTS Assay automated
protocol, was used on HumanCoreExome-24v1-0 BeadChips scanned
with a HiScan confocal scanner (ILLUMINA, San Diego, CA).
Genotyping was performed at the Genomic Units of the PMPPC-IGTP.
Genome Studio version 2011.1 was used for raw data analysis. All il-
lumina internal system controls were fulfilled. Before the genetic

I. Galván-Femenía et al. &DQFHU�7UHDWPHQW�DQG�5HVHDUFK�&RPPXQLFDWLRQV�������������²��

��



 

 256  

association analysis, we conducted systematic quality control on the
raw genotyping data to filter both unqualified samples and SNPs.
Overall call rate was 99.89%. Samples were excluded if they failed
genotyping in more than 10% of variants. Variants were excluded if
they failed genotyping in more than 10% of samples, were non-poly-
morphic, or showed departure from Hardy-Weinberg Equilibrium
(HWE) (p value>0.0001). 40% of genotyped markers were mono-
morphic in our sample. Gender control detected a mismatch in one
sample that was included in the study after database consultation. After
these quality control steps, 181 cases with 325,762 SNPs were con-
sidered. PLINK 1.9 version [9,43] was used to perform the quality
control analysis. Genotyping of candidate SNPS in the replication
sample was done at the Spanish National Centre of Genotyping (ISCIII-
CEGEN-Santiago Node) facility by using the iPLEX Sequenom Mas-
sARRAY platform (Sequenom Inc., San Diego, CA, USA) and at PMPPC-
IGTP by Real-Time PCR, using TaqManTM (ILLUMINA, San Diego, CA)
when do not fit Sequenom's basics.

2.4.2. In silico genotyping
IMPUTE2 [21] was used to impute untyped SNPs from sequence-

based reference panels (1000Genomes, UK10K, GoNL). SHAPEIT [11]
was used for haplotype estimation prior to imputation procedures.
Imputed genotypes with IMPUTE2info lower than 0.7 were discarded
for association analysis. The best IMPUTE information score was used
for those SNPs present in more than one reference panel. Finally, from
24,873,940 imputed SNPs we considered 10,307,177 unique SNPs for
association analysis.

2.5. Population structure and relatedness

All patients in the discovery sample were used to detect population
substructure and independence. Principal Component Analysis (PCA)
was applied to detect any hidden substructure, and method of moments
(MoM) for the estimation of identity by descent probabilities was ap-
plied to exclude cases with cryptic relatedness. A Spanish population
based cohort GCAT (genomesforlife.com) and public databases
(HapMap) were used to test ancestry homogeneity before imputation
analysis [2].

2.6. Statistical analysis

We perform a multivariate logistic regression model, under an ad-
ditive model, adjusted by gender, smoking (yes/no), tumor histology
(i.e. ADCA, SCC, LCC, other), pretreatment performance status (ECOG
score) (0, 1,> 2), chemotherapy treatment group (docetaxel/cisplatin,

gemcitabine/cisplatin, docetaxel) and the first seven principal compo-
nents (PC) as covariates. Genomic control inflation for the association
results was calculated from observed and imputed data (λ=1.12). All
p-values were corrected for genomic inflation factor.

For the replication analysis we considered those SNPs with cor-
rected p-values< 1×10−5 (Fig. 1). For validation purposes, due to the
relative small sample size and the inflated or deflated size effect for
SNPs with MAF<0.01 generated from imputation methods, we con-
sidered those with an effect size (OR) in the [0.05–20] range. From
suggestive signals, alternative SNPs were selected with LDlink [30] and
FINEMAP software [3]. Both tools were used for exploring possible
functional variants via linkage disequilibrium and a shotgun stochastic
search algorithm. Selected candidates are shown in Fig. 2.

We analyze all candidates SNPs in the validation sample under the
same model assumptions, but excluding smoking, since was not re-
levant in the BREC analysis, and was not available in the replication
sample. Then a joint analysis was performed. Since differences were
evident among cohorts (Table 1), a heterogeneity analysis was per-
formed and I2 measure was estimated. Heterogeneity source was in-
vestigated by a multiple correspondence analysis [26] to detect any
data structuring within BREC and Valencia sample regarding gender,
histology, stage and ECOG categorical variables (Supplementary Fig. 1).
For replication, we performed a matched analysis with resampling.
Each Valencia's individual was matched with BREC cohort by disease
progression and stage to preserve the same clinical features before as-
sociation analysis. Then, we resampled 10,000 times and p-values were
derived and ranked. A p-value representing the 5% percentile of the p-
values distribution [13] was considered for each SNP.

Cox proportional hazard regression models were used to evaluate
survival outcomes (TTP and OS) in the validation cohort, and multi-
variate analysis was performed adjusting the Cox models by age,
gender, ECOG and disease progression status. No individual data was
available from the BREC cohort. Survival curves were computed with
the Kaplan–Meier estimator. Hazard ratios (HRs) and their 95% con-
fidence intervals were assessed to evaluate the risk of death.

We used SNPtest software [31] for association analysis in the dis-
covery sample, and PLINK 1.9 version for association analysis in the
validation sample. SNPtest allows worked seamlessly with imputation
data. R software (version 3.3.1, R Core Team, 2016) was used for data
visualization (Manhattan plot, QQ plot, Kaplan-Meier and ROC curves)
and statistical analyses. Data visualization was made with LocusZoom,
for plotting chromosomal regions.

Fig. 1. Manhattan plot for genome-wide asso-
ciation results in the BREC discovery sample.
Association p-values are expressed as
-log10(p). P-values comes from multivariate
models accounting for gender, smoking status,
histology, ECOG performance status, che-
motherapy treatment and the first seven prin-
cipal components. Red circles are the selected
peaks used for replication purposes
(MAF>0.01 and 0.05>OR<20). The blue
and red lines indicate the p-value threshold for
the candidate genes at -log10(105) and
-log10(5×108) respectively.
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2.7. Pathway enrichment analysis

In order to provide biological hypotheses from our GWAS results we
performed a pathway analysis to highlight enriched pathways based on
genes in associated loci. All genes with at least one variant at p-
value<1×10−4 were included in the analysis. We used the seq2-
pathway R package [51] to select the subset of the most significant
genes within a search radius of 150 kbps from the SNPs with an asso-
ciation p-value below 1×10−4. Pathway enrichment analysis of the
889 selected genes was performed against Gene Ontology and Re-
actome annotation data with both seq2pathway and PANTHER Over-
representation Test tool (release 20160715) [34]. The significance of
the GO terms was estimated through the adjusted p-values based on the
binomial testing with Bonferroni correction for multiple hypotheses.

2.8. Fine-mapping and functional annotation

Variant Effect Predictor (VEP) tool [33] was used for the functional
characterization of identified variants (hg19). The VEP application
determines the effect of variants (SNPs, insertions, deletions, CNVs or
structural variants) on genes, transcripts, protein and regulatory re-
gions.

3. Results

3.1. Clinical and pathological characteristics of the two-stage used cohorts

Bivariate analysis of the clinical and pathological characteristics
shows differences in tumor histological type (p=0.002), stage
(p=0.0001) and progression disease (p=6.6×10−9), with more cases
of LC, stage III and PD in the validation sample than in BREC. No other
differences in gender, age, and pretreatment performance status were
statistically significant. Regarding PD, we observed differences in tumor
histological type, slightly different in the discovery sample, but not in
the replication sample, and ECOG, related to PD in the Valencia sample

but not in BREC. Concerning chemotherapy treatment group, no sig-
nificant differences were observed in BREC. All statistically significant
differences were considered as covariates in further analyses. The
clinical and pathological characteristics of the study population are
shown in Table 1.

3.2. Twenty genomic regions show association with disease progression
outcome in the discovery sample

PCA analysis indicated that the BREC as an ethnically homogenous
Caucasian. All patients except three overlapped with the CEU ancestry
reference panel from HapMap and with the geographically matched
sample from the Spanish GCAT cohort (genomesforlife.com). The three
genetically distant patients were discarded for the genomic analysis.
The first seven PCA dimensions were incorporated in the association
analysis as covariates. No cryptic relatedness was found by estimating
identity by descent (IBD) probabilities.

Association analysis was made with observed and imputed data
recovered from three public reference panels. In the discovery phase we
observed one SNP with p-value<1×10−8, two SNPs with p-value<
1×10−7, 22 SNPs with p-value<1×10−6, 147 SNPs with p-
value< 1×10−5, 864 SNPs with< 1×10−4, 8,674 SNPS with<
1×10−3 and 90,826 SNPs with p-value< 1×10−2, associated with
PD. Resulting genome-wide association results are shown by the
Manhattan plot in Fig. 1. Top hits with a p-value<1×10−5, and (OR)
[0.05–20] were selected for replication in the Valencia sample. None of
the retained SNPs reached the genome-wide threshold. Further, as
single SNP analysis results could be misleading, we plotted genotypes
500Kb around the peak together with along additional annotation from
the GWAS catalogue, recombination rates, LD measures with genotyped
or imputed SNPs in the region, and functional annotation for each SNP.
After visualization, eight regions were retained (Supplementary Fig. 2).
Observed genotype was preferentially retained when imputed signals
were also present; three derived from in silico genotyping (imputation).
We selected additional SNPs as proxies (r2=1–0.6 on average) for

Fig. 2. Forest plot diagram of the association results of the BREC discovery dataset used for replication analysis. The variants are listed by chromosome and position
(CHR:BP) showing the IMPUTE information measure (Info) and the effect size (OR) regarding the first allele of the Alleles column. BO, best observed; BI, best
imputed; BO_p, best observed proxy; BI_p, best imputed proxy.
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individual genotyping, by using FINEMAP and LDlink tools. In addition
to this selection, the genome-wide associated SNP (p-
value=2.8×10−8) at Chr18, was included in the replication step
(Supplementary Fig. 2). A total of 28 SNPs in nine chromosomal regions
were chosen for replication testing in the Valencia cohort. All of them
were in Hardy-Weinberg equilibrium (p-value>0.001). Results of the
association analysis and minor allele effect sizes for selected SNPs are
shown in Fig. 2.

3.3. SMYD2 replicated the association in an independent sample

Five variants out of 28 analyzed were associated with a PD in the
validation cohort, overlapping with the SMYD2, LARP4,
RP11–472N19.3. The observed variant effect size was in the same di-
rection in both discovery and validation samples, except for the variant
in LARP4 (Fig. 3). Variants in SMYD2 and RP11-472N19.3 were sta-
tistically significant. SMYD2 carry two variants, chr1:214502898-
rs4655246 and chr1:214503489-rs2291830, associated with a poor
outcome in both cohorts. Minor alleles at two positions (p-
value=1.9×10−3, freq.=0.31 and p-value=1.0×10−6, freq.=0.41
for BREC; p-value= 0.016, freq.=0.32 and p-value= 0.038, freq.=
0.42 for validation sample) were associated with PD in BREC and va-
lidation cohort. The rs4655246-C allele variant, and the rs2291830-T
allele variant showed a strong effect towards progressing disease;
OR=3.33 and OR=1.47 for C-allele, and OR=7.02 and OR=1.26 for
T-allele, for BREC and the validation cohort respectively. In
RP11–472N19.3, two variants, chr14:92726738-rs7142050 and
chr14:92726813-rs4904853, show a protective effect (i.e. favoring non
progressing disease) by the minor allele for both cohorts (p-
value=6.9×10−3, freq.=0.3 and p-value= 1.4×10−4, freq.=0.22 for
BREC; p-value=0.045, freq.=0.34 and p-value=0.035, freq.=0.23 for
validation sample); for the rs7142050-A allele variant the effect size
was OR=0.39 and OR=0.81, and for rs4904853-C, OR=0.23 and
OR=0.75, for BREC and the validation cohort respectively.

3.4. SMYD2 variants have an impact on survival endpoints in the validation
cohort

Survival analysis was assessed in the replicated regions, and only
reach statistical significance for SMYD2. Impact on survival outcomes
was analyzed for overall changes in survival (OS) as well as in time to
progression (TTP). We then stratified survival analysis by outcome (i.e.
disease progression) to test the impact on other aspects of survival
outcomes. Median OS and TTP was lower in the PD patients from those
with response and stable disease (non PD); OS=6 months (CI95%=
[5.1,7.1]) and 13.4 (CI95%=[12.1,15.7]) and TTP=2.8 months
(CI95%=[2.6,3.1]) and 7.9 months (CI95%=[7.5,8.4]). Summary re-
sults for SMYD2 variants are presented in Table 2.

In SMYD2, three analyzed variants (rs6665343 G/A, rs11120295 C/
T, rs2291830 T/G) were associated with a reduced survival time. OS
was shorter for the rs6665343-A, rs11120295-T, rs2291830-T allele
carriers, showing a dominant effect. Allele variant rs6665343-A carriers
had a shorter OS; 12.8 to 9.7 months (p-value= 0.020, HR= 1.370
95% (1.047–1.787)), allele variant rs11120295-T shows similar re-
duction of OS (12.5 to 9.7 months, p-value= 0.022, HR=1.368 95%
(1.047–1.787)), and rs2291830-T shows the lower effect, with a slight
reduction (10.4 to 9.8 months, p-value= 0.036, HR=1.289 95%

Fig. 3. Forest plot diagram of the replicated variants in the discovery and validation sample. Variants in SMYD2 (chr1:214502898; chr1: 214503489),
RP11–472N19.3 (chr14:92726738; chr1492726813) show the same effect direction, but it is discordant in LARP4.

Table 2
Results from survival analysis for overall survival (OS) and time to progression
(TTP) of significant variants in the validation sample.

Gene Variant HR (95% CI) p-value

(OS) SMYD2 chr1:214481630-rs6665343-A 1.370 (1.050, 1.788 0.020
chr1:214495703-rs11120295-
T

1.368 (1.047,
1.787)

0.022

chr1:214503489-rs2291830-T 1.289 (1.017,
1.633)

0.036

(TTP) chr1:214495703-rs11120295-
T

1.331 (1.020,
1.737)

0.035

Variant, chromosome position in GRch37/hg19, rs identifier and the allele ef-
fect; HR (95% CI), hazard ratio; 95% confidence interval of the hazard ratio; p-
value of the variant calculated from the Cox regression model with gender, age,
ECOG, progression disease and stage as covariates.
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(1.017–1.633). When considered survival, only rs11120295-T allele
was associated with shorter TTP with a dominant effect for the common
allele (freq.=0.53) with a reduction in 1.6 months (from 6.9 months to
5.3 months, p-value = 0.035, HR= 1.331 95% (1.020–1.737)) (Fig. 4).
In the BREC cohort, individual survival data was not available but in
concordance, rs11120295-T allele was associated with a PD outcome
(OR= 0.25, CI95%= [0.12, 0.52], p-value = 1.3 ×10−4).

3.5. Pathway analysis

From the filtered raw association signals shown in Fig. 1, we per-
formed the functional characterization of the 889 selected genes over-
lapping with genome scan signals with a nominal p-value< 1×10−4.
Nine GO pathways were significantly enriched with the overlapping
genes (Table 3). The sequence-specific DNA binding pathway (GO:
0043565) (OR=5.32, p value=0.0050) with nominal values over-
lapping ATF1, PAX7, TBX3, IRX5, IRX3 and CERS5, and the cAMP-
mediated signaling pathway (GO:0019933) (OR=13.60, p
value=0.0054) highlighted by the ADM, EIF4, EBP2, PDE4D, RAPGEF2,
PCLO genes were the most significant ones. None of the Reactome
pathways reached significant level after multiple-testing correction.

4. Discussion

To better understand the germline genetic factors modulating dis-
ease progression in advanced NSCLC with first-line platinum-based
treatment we performed a genome wide analysis in a two-stage ap-
proach, including two independent populations with the same ethnic
ancestry. Our results provide evidence for implication in disease pro-
gression and overall survival of germline genetic variants in SMYD2.

In our study, the SMYD2 variant chr1:214503489-rs2291830 T/G, is
associated with poor clinical outcome for treated patients. The effect
size observed for the rs2291830-T allele is the highest SMYD2 signal
observed in our study; OR=7.02, CI 95%=[2.88−17.12].
Furthermore, survival analysis shows that rs2291830-T carriers have a
reduction in the survival time (10.4 to 9.8 months, p-value= 0.036) in
the validation cohort. SMYD2 (SET and MYND domain containing 2)
encode for one of the SMYD methyltransferase family proteins
(SMYD1–5) [18], some of which have already been reported as candi-
date targets for anticancer drugs [48]. SMYD2 is overexpressed in

multiple cancer cells [10], and in addition to histones, methylates other
protein substrates, including RB1 and p53, leading to loss of its tumor
suppressive function [23]. There are also interesting observations,
showing that depletion of SMYD2 is linked to cancer chemotherapy
improvement, through the reduction of PARP1 activity, which is in-
volved in DNA repair, chromatin modification, transcriptional regula-
tion and genomic stability [40]. Concordantly, genetic variants in
PARP1 have been associated to a better response to platinum-based
chemotherapy in NSCLC [46]. Furthermore, a prognostic value has
been proposed for this protein, but there is contradictory data on
functionality, while SMYD2 overexpression has been reported as a bad
prognostic factor in leukemia, esophageal squamous cell carcinoma and
gastric carcinoma, low expression levels in renal tumors have been
associated with worse disease-specific survival and disease-free survival
[41]. Supporting the role in the carcinogenic process, Nakamura's
Group recently reported SMYD2-mediated ALK methylation as a new
mechanisms regulating cell growth in NSCLC ALK-fused gene cell lines
[52].

The other SMYD2 variants in close LD (rs6665343, rs4655246,
rs11120295, rs2291830, r2> 0.60) were concordant with the observed
SMYD2 association (Fig. 2), however, none of the variants had any
clinical significance. No variation effect on protein function was ob-
served using SIFT and Polyphen analysis. All variants were intronic.
Expression quantitative trait loci (eQTL) analysis was performed, a
significant cis-eQTL, on SMYD2 expression for rs2291830-T allele
(pvalue= 7.30 x10−7, eQTL effect size (es)= −0.31), as well for
rs6665343-A, rs4655246-C and rs11120295-T alleles. (pvalue=
3.3×10−5, es-0.16, pvalue= 3.7 pvalue= 3,7 × 106, es= 0.17, and
pvalue= 4.3×10−5, es=−0.17) was present in transformed samples
(fibroblasts) on the GTEx database (Release V6p (dbGaP Accession
phs000424.v6.p1), and non-transformed samples (peripheral blood
cells) (pvalue= 3.4 10−6, pvalue= 9.2 × 10–11, pvalue= 2.11 × 10−9,
pvalue= 2.6 × 10–11) from Westra et al. [53] but not in lung tissues.
However, a trans-eQTL, was observed when consider lung tissue sam-
ples on KCNK2 (potassium two pore domain channel subfamily K member
2) expression; rs6665343-A, rs11120295-T, and rs2291830-T alleles
were correlated with a higher expression of KCNK2 (pvalue=
1.1×10−2, es= 0.18). KCNK2 belongs to the two-pore-domain back-
ground potassium channel protein family, and interestingly over-
expression of the channel protein, in prostate cancer, has been

Fig. 4. Kaplan Meier plot for the validation sample: overall survival (OS) and time to progression (TTP) of patients with risk (CT-TT) and non-risk genotypes (CC) for
the rs11120295 SMYD2 variant.
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associated with a reduced survival, while knockdown inhibits cell
proliferation in vivo [56].

In order to identify possible functional haplotypes, we estimated
genewide haplotype structure of SMYD2, and haploblocks were inferred
with the CI method as implemented in Haploview. All four variants
were in the same block, the largest conserved block in the 3′-terminal
region, but interestingly rs4655246-C/G differentiate two different
haplotypes; ATCT (freq=0.315) and ATGT (freq= 0.093), suggesting a
functional role for ATCG / ATCT haplotype carriers.

Genes frequently methylated in lung cancer cells and associated
with oncogenic growth of cancer cells could be targets of SMYD2,
which is over-expressed in most cancer types. All of the validated me-
thylated substrates of SMYD2 are implicated in stress responses and
cellular checkpoints, it is possible that overexpression and dysregulated
methylation activity could lead to compromised chemotherapy re-
sponse and reduced overall survival [12,44]. Nowadays, 20 published
non-histone proteins have been reported as validated targets of SMYD2
[1]. In concrete, some authors have reported that SMYD2-methylation
mediated of RB1, HSP90, PTEN, PARP1 has a critical roles in tumor-
igenesis [10,19,36,40], and confirm, as a possible common mechanism
for SMYD2 cancer progression, a SMYD2-mediated methylation causing
the nuclear translocation of b-catenin and activation of Wnt/b catenin
signaling pathway [12], a hallmark of a large proportion of human
cancers. A higher methylation activity leads to an increased nuclear
translocation activity for b-catenin, then to a high activation of the
Wnt/b-catenin pathway and cancer cell progression. However lower
activity could produce the contrary effect, leading to cancer cell death
apoptosis, hence a higher resistance to the cisplatine action.

Identified genetic polymorphism show neighborhood enrichments
of chromatin functional annotations in rs4655246 with enhancer and
promoter functions (i.e., 11_TxEnh3, H3K4me3_Pro, H3K27ac_Enh)
(Roadmap Epigenomics Consortium, 2015). Even out of the promoter
regions, this could suggest a cryptic promoter region modulating the
expression of alternative regulatory transcripts, but to date only one
alternative transcript has been described in placenta tissues.

We do not have any available data for somatic mutations and me-
thylation in cancer cells of those patients, and further studies will be
needed to clarify the significance of SMYD2 polymorphisms.

Another interesting finding from our study is RP11–472N19.3., a
long non-coding RNA (lncRNA) locus. LncRNAs are normally found as
endogenous cellular RNAs, larger than 200nt, and lacking an open
reading frame of significant length. They are functional RNA elements,
expressed at low levels in a tissue-specific and time-restricted manner.
RP11–472N19.3. is transcribed in several tissues, including lung, but to
date no phenotype, functional annotation or eQTL have been reported

in this locus. The uncommon rs7142050-C allele was associated to a
better prognosis, suggesting RP11–472N19.3 as a possible new candi-
date therapeutic target for lung cancer treatment. Based on several
evidences (score 2b RegulomeDB, Version 1.1.) the variant rs7142050,
is likely to affect binding of several transcription factors such as IRF4
(Interferon Regulatory Factor 4), SPI1 (Spi-1 Proto-Oncogene), and ATF2
(Activating transcription factor 2). ATF2 is a transcription factor involved
in stress and DNA damage which has been recently involved in cisplatin
resistance in non-small cell lung cancer. LncRNAs are regarded with
increasing interest as new targets for cancer therapy. Dysregulation of
lncRNA expression has been implicated in lung cancer etiology, onco-
genic or tumor suppressive. Zhou et al., proposed a eight-lncRNA sig-
nature as an effective independent prognostic molecular biomarker in
the prediction of NSCLC patient survival [57]. Recent studies, using
RNAi experiments to inhibit HOTAIR (Hot Transcription Antisense
RNA), have reported a decreased migration, invasion and metastasis in
NSCLC cells along with reduced expression of genes involving and an-
tisense RNA inhibitory process. Similar results were reported for
MALAT1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) in
mouse lung cancer models [14].

In addition to the single analysis, we performed a pathway enrich-
ment analysis to analyze all excluded signals (pvalue>1×10−5) from
the replication phase. With this analysis we highlighted several path-
ways involved in differential clinical outcome. Some of the identified
signals were in primary retained regions with a suggestive profile but
were discarded prior to the replication phase (PAX7, IRX5, or ATF1).
SMYD2 has been identified in the pathway enrichment analysis be-
longing to one of the statistically significant overrepresented pathways;
GO:0006351 (OR= 2.4, p-value= 0.036), a wide functional category
that includes transcription regulator activity genes. Furthermore, it is
interesting to note two of the enriched pathways. The cAMP-mediated
signaling pathway (GO:0019933) is the second most significantly as-
sociated term (OR= 13.60, p value= 0.0054), with 5 genes out 22
associated to clinical outcome (ADM, EIF4, EBP2, PDE4D, RAPGEF2,
PCLO). Among them, EBP2 (EBNA1-binding protein (homolog)) and
PDE4D (Phosphodiesterase 4) are relevant as therapeutic targets for
lung cancer therapy. EBP2 has been reported as a novel binding partner
of c-Myc, regulating the function of nucleolar c-Myc, cell proliferation
and tumorigenesis [28], and PDE4D has been reported as a promoter of
proliferation and angiogenesis of lung cancer [42]. Moreover, the Wnt
signaling pathway (GO:0016055) was overrepresented, with 10 out 150
genes (HHEX, PITX2, TLE3, TLE4, FZD4, PYGO1, WWOX, CXXC4,
NKD2, RSPO2H)(OR=3.35 p value= 0.03). In NSCLC it has been re-
ported that Wnt ligand and Fzd are overexpressed and that Wnt an-
tagonists are downregulated [37]. The same authors suggest that

Table 3
Summary of the pathway enrichment analysis results in the discovery sample.

Method GWAs GO:ID Description Corrected p-
value

OR Intersect
count

GO count Intersect genes

PANTHER −4 GO:0019864 IgG binding 0.016 20.46 5 12 FCGR2A FCGR3B FCGR2C FCGR2B
FCGR3A

PANTHER −4 GO:0060986 Endocrine hormone secretion 0.032 22.32 5 11 GATA3 CGA GHRL TBX3 FZD4
seq2pathway −4 GO:0019933 cAMP-mediated signaling 0.005 13.60 5 22 ADM EIF4 EBP2 PDE4D RAPGEF2 PCLO
seq2pathway −4 GO:0010595 Positive Regulation Of Endothelial Cell

Migration
0.026 7.70 5 35 AGT ANGPT1 GATA3 PROX1 NRP1

seq2pathway −5 GO:0006351 Transcription, DNA-templated 0.036 2.41 10 1766 PTPN14 TBX3 IRX5 IRX3 SALL3 ESF1
SMYD2 EBF2 ING5 TLE3

seq2pathway −5 GO:0045893 Positive regulation of transcription,
DNA-templated

0.03 4.15 5 487 PROX1 TBX3 TASP1 EBF2 ING5

seq2pathway −4 GO:0016055 Wnt signaling pathway 0.03 3.35 10 150 HHEX PITX2 TLE3 TLE4 FZD4 PYGO1
WWOX CXXC4 NKD2 RSPO2

seq2pathway −5 GO:0003700 Sequence-specific DNA binding
transcription factor activity

0.018 3.11 7 990 ATF1 PAX7 TBX3 IRX5 IRX3 CERS5
PROX1

seq2pathway −5 GO:0043565 Sequence-specific DNA binding 0.005 5.32 6 500 ATF1 PAX7 TBX3 IRX5 IRX3 CERS5

Methods, PANTHER and seq. 2pathway overrepresentation methods; GWAS, p-value below 10−4 and 10−5 threshold for SNP inclusión; Corrected p-values on seq.
2pathway correspond to FDR while corrected p-values on PANTHER overrepresentation tests are adjusted with Bonferroni correction.
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elevation of the β-catenin pathway is a common mechanism for con-
ferring resistance to cancer treatment, not only to EGFR tyrosine kinase
inhibitors (TKIs), but also to other types of treatment, including che-
motherapy and radiotherapy. In NSCLC, a study reported inherited
genetic variation in the Wnt signaling pathway contributing to variable
clinical outcomes for patients with early-stage disease [8]. The in-
volvement in NSCLC, but in different stage could indicate a common
mechanism related to resistance in both phases of the disease.

In the last years, genetic analysis of somatic variation has yielded
valuable profiles for lung cancer subtype classification and prediction of
response to treatment [4,24]. Individual germline genetic configuration
could help to improve disease management and guide treatment choice
decisions. GWAS has been used successfully to identify susceptibility
genes to lung cancer, has also been used to identify prognostic and
predictive biomarkers to response in early [50,55] or advanced NSCLC
patients [22,27,45,54], as well as to analyze adverse effects of drug
treatment [6,7,49]. Any of the genes uncovered in our study has been
previously reported in advanced NSCLC patients treated with che-
motherapy. Most of the reported GWAS (GWAS catalog) are from Asian
ancestry populations (11 out 12), and, until now, only one study is from
European ancestry patients [54]. Other study using mixed ancestry data
come from a different approach using cell lines in the discovery phase.
As seen for susceptibility factors, ethnic differences could account for
these inconsistencies.

Here, using a genomewide screening approach, we have identified a
gene with potential clinical value in advanced NSCLC patients treated
with chemotherapy. It is noteworthy that our approach takes advantage
of massive variation information collected in deep sequencing derived
public panels to empower the study. Identified SMYD2 variant have
been genotyped by imputation, and inferred genotypes predicted by
IMPUTE2 info shown a highly concordance (average for all inferred
variants 96.9%) with genotyping. As widely reported elsewhere, these
results corroborate the power of SNP imputation using sequencing de-
rived panels for improving genome scanning results.

We identified 20 regions in the exploratory sample, and even if
those signals did not reach genomewide significance, we have re-
plicated one region in an independent sample. All signals remained
significant in the joint analysis, however, heterogeneity analysis for
replicated variants precluded any joint meta-analysis interpretation
(median, mean I²=92.2%, 84.9%). We can discard a genetic bias from
different ethnicity since both cohorts are from the same wide-geo-
graphical area (Spain), and share the same ancestry; or from genotyping
platform, or imputation, since a high correlation was observed in our
study among imputation panels. But slight differences were present
regarding stage, histological type, and ECOG status that could account
for these heterogeneous values. Even if clinical regimens are standar-
dized we cannot underscore the effect of these differences between
cohorts. Moreover, the treatment choices in both cohorts were slightly
different, and therefore even if we account for these differences in the
analysis, in the BREC cohort, we cannot overcome if present the distinct
effect of cisplatin and the other dual combination chemotherapies
(cisplatin-gemcitabine, cisplatin-docetaxel) in the genetic variant ef-
fects. Cisplatin enters cells via multiple pathways, and forms DNA-
platinum adducts initiating a cellular self-defense system resulting in
cancer cell destruction. Since resistance is supposed to be pleiotropic,
these differences do not invalidate the identified signals. In the same
way, a pleiotropy of alterations could be related to natural or acquired
resistance [16].

Data dimensionality in genome wide analyses is a major concern
when applied to clinical cohort series, generally composed by a small
number of patients. In order to increase the robustness of the results,
our study only considered signals with a reasonable effect in a two-
stage design. The large effect size observed for SMYD2 alleles in the
BREC cohort should be considered with caution, since overestimation of
the initial effect size could be present. In addition, we cannot discard
that other genomic mutations, further than EGFR mutations, could be

confounding the results.

5. Conclusion

In conclusion, our study identified germline genetic variation in
SMYD2 associated to bad clinical outcome (PD) in first-line platinum-
based treatment in advanced NSCLC patients. These results support the
biological significance of methylation process in human carcinogenesis,
and open up new drug targeting possibilities and patient stratification
in lung cancer therapy based on germline profiling. SMYD2 profiling
could represent an additional prognostic biomarker to better tailor
multidisciplinary treatment of patients.

Clinical practice points

• What is already known about this subject?
Tumor genomic profiling of advanced NSCLC patients determines an
increase in the overall survival rates when matched therapies are
provided compared with cytotoxic chemotherapy
In advanced NSCLC patients under first-line cytotoxic che-
motherapy, tumor profiling is always a tardy option.
Furthermore, repeat tissue biopsies should be avoided and some-
times genomic profiling is precluded due to exhausted sample.
Alternative, germline variants are identified as a valuable prognostic
marker in those patients (e.g. DNA-repair genes, CTNNB1 or
CMKLR1).

• What are the new findings?
In this article, we have show that genetic variation on SMYD2 is a
biomarker for a bad outcome and reduced overall survival of ad-
vanced NSCLC patients when risk alleles are carried at germinal
level.
Multivariate survival analysis showed that genetic variants were
independent prognostic factors.
We report evidences of SMYD2 genetic variation impact on its own
expression, and support the biological significance of methylation
process of SMYD2 in human carcinogenesis.

• How might it impact on clinical practice in foreseeable future?

Evidences for SMYD2 genetic variation lead to new drug targeting
possibilities.

SMYD2 alleles could be used as a biomarker for patient stratification
in lung cancer therapy prior to tumor genomic profiling.
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