
Doctorado en Ciencias del Mar 

 

 

 

 

Distribution and drivers of transparent 

exopolymer particles (TEP) and 

Coomassie stainable particles (CSP) in 

the ocean 

 

 

Marina Zamanillo Campos 

 

 

 

 

 

Barcelona, 2019 



 
 
 

Distribution and drivers of 
transparent exopolymer particles 

(TEP) and Coomassie stainable 
particles (CSP) in the ocean 

 
Marina Zamanillo Campos 

 
ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l 
UPCommons       (http://upcommons.upc.edu/tesis)      i      el      repositori      cooperatiu      TDX   
( h t t p : / / w w w . t d x . c a t / ) ha estat autoritzada pels titulars dels drets de propietat intel·lectual 
únicament per a usos privats  emmarcats en activitats d’investigació i docència. No s’autoritza 
la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc 
aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra  
o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació 
de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom 
de la persona autora. 

 
 

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons 
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale- 
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual 
únicamente para usos privados enmarcados en actividades de investigación y docencia. No  
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde  
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una 
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al 
resumen de presentación de la tesis como a sus  contenidos. En la utilización o cita de partes     
de la tesis  es obligado  indicar  el nombre de la    persona autora. 

 
 

WARNING On having consulted this thesis you’re accepting the following use conditions: 
Spreading this thesis by the i n s t i t u t i o n a l r e p o s i t o r y UPCommons 
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale- 
attribute=en) has been authorized by the titular of the intellectual property rights only for private 
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not 
authorized neither its spreading nor availability from a site foreign to the UPCommons service. 
Introducing its content in a window or frame foreign to the UPCommons service is not authorized 
(framing). These rights affect to the presentation summary of the thesis as well as to its contents. 
In the using or citation of parts of the thesis it’s obliged to indicate the name of the author. 

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en


 

Distribution and drivers of transparent 

exopolymer particles (TEP) and Coomassie 

stainable particles (CSP) in the ocean 

 

Distribución y factores de regulación de partículas exopoliméricas 

transparentes (TEP) y partículas teñibles con Coomassie (CSP) en 

el océano 

 

Marina Zamanillo Campos 

Barcelona, septiembre 2019 

 

Tesis doctoral presentada por Marina Zamanillo Campos para obtener el 

título de Doctora por la Universidad Politécnica de Cataluña 

 

Programa de Doctorado en Ciencias del Mar 

Departamento de Ingeniería Civil y Ambiental 

 

Tesis por compendio de publicaciones 

 

 

La Doctoranda                                   El Director                              La Codirectora 

Marina Zamanillo Campos                Rafel Simó Martorell             Eva Ortega-Retuerta 



  



“Distribution and main drivers of transparent exopolymer particles (TEP) and 

Coomassie stainable particles (CSP) in the ocean” 

 

 “Distribución y factores de regulación de partículas exopoliméricas transparentes 

(TEP) y partículas teñibles con Coomassie (CSP) en el océano” 

 

“Distribució i factors de regulació de partícules exopolimèriques transparents (TEP) i 

partícules tenyibles amb Coomassie (CSP) a l’oceà” 

 

 

 

 

 

 

 

The author was supported by a FI-DGR grant (ECO/1639/2013) from the Agència de 

Gestió d’Ajuts Universitaris i de Rcecerca (AGAUR) (Generalitat de Catalunya) and a 

FPU grant (FPU13/04630) from the Spanish Ministry of Education and Culture. The 

research work presented in this thesis was founded by the projects PEGASO 

(CTM2012–37615) and BIOGAPS (CTM2016–81008–R), supported by the Spanish 

Ministry of Economy and Competivity (MINECO), and the Antarctic Circumnavigation 

Expedition (ACE), carried out under the auspices of the Swiss Polar Institute, and 

supported by funding from the ACE Foundation and Ferring Pharmaceuticals. 

The studies were carried out at the Institut de Ciències del Mar de Barcelona (ICM, 

CSIC; Barcelona, Spain), and at the GEOMAR Helmholtz Centre for Ocean Research 

Kiel (Kiel, Germany) thanks to three grants the author received: EST15/00512, 

EST16/00003, Erasmus+. 



  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A mi familia, amigos/as y todos los que me han acompañado durante este viaje 



  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"Todos somos muy ignorantes. Lo que ocurre es que no 

 todos ignoramos las mismas cosas" 

 (Albert Einstein) 

 

 

 

 

 



  



CONTENT 

Abstract/Resumen/Resum                                                                                              1 

Introduction                                                                                                                     5 

Aims of the thesis                                                                                                           37 

Chapter 1. Main drivers of transparent exopolymer particle distribution across the 

surface Atlantic Ocean                                                                                                    43 

 

Chapter 2. Distribution of transparent exopolymer particles (TEP) in distinct  

regions of the Southern Ocean                                                                                        73            

                                                                                    

Chapter 3. Seasonal variability of transparent exopolymer particles (TEP) and 

Coomassie stainable particles (CSP) in the coastal NW Mediterranean Sea                111 

 

Chapter 4. Distribution of transparent exopolymer particles (TEP) and  

Coomassie stainable particles (CSP) in the Southern Ocean around Antarctica           153      

                   

General discussion and future perspectives                                                              175                              

Conclusions                                                                                                                  189 

References                                                                                                                    193 

Acknowledgments/ Agradecimientos                                                                       229 

 

 



 

  



 
1 

ABSTRACT 

Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) are 

operationally defined as organic particles > 0.4 µm that are stainable with the dyes 

Alcian Blue (specific for acidic polysaccharides) and Coomassie Brilliant Blue (specific 

for proteins), respectively. They are ubiquitous in the ocean, where they play important 

roles in biogeochemical processes such as the carbon cycle and sea-air gas and particle 

exchanges. However, there is a lack of large-scale studies of TEP and CSP distributions 

in the ocean, particularly in the open ocean, as well as temporal studies following their 

dynamics over more than one complete seasonal cycle. In addition, it is not clear yet 

whether these particles represent independent particle fractions or not and which are 

their main drivers, with a particular lack of information on CSP. In this thesis, TEP and 

CSP distributions were characterized, combining the horizontal and vertical scales 

whenever possible, in distinct regions of the ocean: Atlantic Ocean (October-November 

2014), Southern Ocean (January 2015 and January-March 2017) and the NW 

Mediterranean Sea (October 2015). Besides, a time series study was conducted in two 

coastal stations in the NW Mediterranean Sea for two complete seasonal cycles (2015-

2017). In all cases, a number of physical, chemical and biological variables were 

determined in parallel in order to explore the main drivers of TEP and CSP 

distributions. TEP concentrations ranged from below detection limit to 446 µg XG eq L
-

1
, whereas CSP concentrations ranged between 0.3 and 52.2 µg BSA eq L

-1
. The highest 

TEP concentrations were found in the edge of the Canary Coastal Upwelling, the 

Southwestern Atlantic Shelf and some regions of the Southern Ocean, whereas the 

highest CSP concentrations were found in the Southern Ocean. Phytoplankton biomass, 

and not heterotrophic prokaryotic biomass or activity, is the best predictor of the 

concentration of both particle types, yet no single taxonomic group of phytoplankton 

stand as the universally dominant producer.  Other variables that play important roles 

are the daily solar radiation dose in the mixed layer, surface irradiance, sea ice melt, 

nutrients and phytoplankton mortality in the case of TEP, and phytoplankton mortality 

for CSP. Our results suggest that TEP and CSP are independent particles, since they 

follow different dynamics in the temporal and spatial scales. The estimated contribution 

of TEP to the particulate organic carbon (POC) pool varies widely among regions and 

exceeds that of living phytoplankton biomass in some areas (Atlantic Ocean) and 

seasons (Mediterranean sea during summer). 
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RESUMEN 

Las partículas exopoliméricas transparentes (TEP) y las partículas teñibles con 

Coomassie (CSP) se definen operacionalmente como aquellas partículas > 0.4 µm que 

se tiñen con las tinciones azul alcián (específico para polisacáridos ácidos) y azul de 

Coomassie (específico para proteínas), respectivamente. Ambos tipos de partículas 

están presentes en todo el océano y juegan un papel fundamental en varios procesos 

biogeoquímicos como el ciclo del carbono y el intercambio de gases y partículas entre el 

océano y la atmósfera. Sin embargo, existen pocos estudios que describan sus 

distribuciones en el océano a gran escala, o sus dinámicas temporales a lo largo de más 

de un ciclo estacional completo. En esta tesis, hemos caracterizado la distribución de 

TEP y CSP, combinando las escalas horizontal y vertical cuando ha sido posible, en 

diferentes regiones del océano: El océano Atlántico (octubre-noviembre 2014), el 

océano Antártico (enero 2015 y enero-marzo 2017), y el Mar Mediterráneo 

noroccidental (octubre 2015). Además, se llevó a cabo un estudio temporal en dos 

estaciones costeras del Mar Mediterráneo noroccidental, tomando muestras mensuales 

durante dos ciclos estacionales completos (2015-2017). En todos los casos se analizaron 

variables físicas, químicas y biológicas en paralelo a las medidas de TEP y CSP, con el 

fin de explorar los principales factores de regulación de sus distribuciones. Las 

concentraciones de TEP oscilaron entre valores bajo del límite de detección y 446 µg 

XG eq L
-1

, mientras que las concentraciones de CSP oscilaron entre 0.3 y 52.2 µg BSA 

eq L
-1

. Las concentraciones más altas de TEP se encontraron en un extremo del 

afloramiento de la costa canaria, la plataforma continental al suroeste del océano 

Atlántico y en algunas regiones del océano Antártico, mientras que las concentraciones 

más elevadas de CSP se observaron en el océano Antártico. La biomasa del 

fitoplancton, y no la biomasa ni la actividad de los procariotas heterótrofos, es el mejor 

predictor de la concentración de ambos tipos de partículas. Sin embargo, no se encontró 

ningún grupo taxonómico concreto de fitoplancton que explicase universalmente su 

distribución. Otras variables que juegan papeles importantes son la dosis diaria de 

radiación solar en la capa de mezcla, la irradiancia superficial, los aportes por deshielo 

marino, la disponibilidad de nutrientes y la mortalidad del fitoplancton en el caso de 

TEP, y sólo esta última (la mortalidad del fitoplancton) con respecto a CSP. Nuestros 

resultados sugieren que TEP y CSP son partículas independientes, puesto que siguen 

dinámicas diferentes tanto en las escalas espacial como temporal. La contribución 
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estimada de TEP al conjunto total de carbono orgánico particulado (POC) varía 

ampliamente entre regiones, excediendo la contribución por parte de la biomasa de 

fitoplancton en algunas áreas (océano Atlántico) y estaciones del año (Mar 

Mediterráneo durante el verano). 
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RESUM 

Les partícules exopolimèriques transparents (TEP) i les partícules tenyibles amb 

Coomassie (CSP) es defineixen operacionalment com aquelles partícules > 0.4 µm que 

es tenyeixen amb les tincions blau alcian (específic per polisacàrids àcids) i blau de 

Coomassie (específic per proteïnes), respectivament. Aquestes partícules son ubiqües a 

l’oceà i juguen un paper important en processos biogeoquímics com el cicle del carboni 

i l’intercanvi de gasos i partícules entre el mar i l’atmosfera. No obstant això, hi ha pocs 

estudis que descriguin les distribucions a gran escala de TEP i CSP a l’oceà, 

particularment a l’oceà obert, o la seva variació temporal al llarg de més d’un cicle 

estacional complet. En aquesta tesis hem caracteritzat les distribucions de TEP i CSP, 

tot combinant les escales horitzontal i vertical quan ha estat possible, en diferents 

regions de l’oceà: l’oceà Atlàntic (octubre-novembre 2014), l’oceà Antàrtic (gener 2015 

i gener-març 2017), i el Mar Mediterrani nord-occidental (octubre 2015). A més, hem 

dut a terme un estudi temporal en dos estacions costaneres del Mar Mediterrani nord-

occidental durant dos cicles estacionals complets (2015-2017). En tots els casos es van 

mesurar variables físiques, químiques i biològiques en paral·lel, amb la finalitat 

d’explorar els principals factors de regulació de les distribucions de TEP i CSP. Les 

concentracions de TEP varen oscil·lar entre per sota del límit de detecció i 446 µg XG 

eq L
-1

, mentre que les concentracions de CSP oscil·laren entre 0.3 i 52.2 µg BSA eq L
-1

. 

Les concentracions més altes de TEP es van trobar a la vora del aflorament de la costa 

canària, a la plataforma continental del suroest atlàntic i en algunes regions de l’oceà 

Antàrtic. La biomassa del fitoplàncton, i no la biomassa ni la activitat dels procariotes 

heteròtrofs, és el millor predictor de la concentració d’ambdós tipus de partícules. 

Tanmateix, cap dels grups taxonòmics de fitoplàncton ha resultat ser el productor 

universalment dominant. Altres variables que juguen papers importants són la dosi de 

radiació solar diària a la capa de barreja, la irradiància superficial, la fosa del gel marí, 

la disponibilitat de nutrients i la mortalitat del fitoplàncton en el cas de les TEP, i només 

aquesta última (la mortalitat del fitoplàncton) per a les CSP. Els nostres resultats 

suggereixen que TEP i CSP són partícules independents, ja que segueixen dinàmiques 

diferents en les escales temporal i espacial. La contribució estimada de TEP al conjunt 

de carboni orgànic particulat (POC) varia àmpliament entre regions, i fins i tot excedeix 

la de la biomassa de fitoplàncton viu en algunes regions (oceà Atlàntic) i estacions de 

l’any (Mar Mediterrani durant l’estiu). 



 
5 

 

 

 

 

 

 

 

 



 
6 

  



Introduction 

 
7 

 

 

 

 

 

 

Adélie penguins in the Weddell Sea 

 

INTRODUCTION 

 

 

 

 

 



Introduction 

 
8 

 

  



Introduction 

 
9 

1. The carbon cycle on Earth and its alteration by anthropogenic activities 

Carbon forming either organic or inorganic compounds is found in different reservoirs 

on Earth: the atmosphere, the ocean, the land, continental waters, sediments of water 

bodies and geological deposits. The fluxes of these compounds among the reservoirs are 

commonly termed altogether the global carbon cycle (Fig. 1). The main natural fluxes 

between land and atmosphere are driven by the primary production and respiration of 

the land biosphere, while physical air-sea exchange governs fluxes between the 

atmosphere and the ocean. These fluxes are usually balanced, but even tiny imbalances 

can affect atmospheric CO2 concentration over years to centuries. The land biosphere 

produces organic matter from atmospheric CO2 through photosynthesis, and respires it 

back as CO2. A fraction of this matter ends up in the inert soil and is either buried 

forming geological reservoirs, or exported, in the form of dissolved organic carbon 

(DOC), by rivers or groundwater to the ocean (Schlesinger, 1990). Rivers also export 

inorganic carbon (DIC) in the form of CaCO3, dissolved by weathering. Fluxes of DOC 

and DIC together through riverine transport comprise 0.8 Pg C yr
-1

. Organic carbon 

compounds can also be added to the ocean by the activity of marine microbes, the 

atmospheric transport of organic matter from the continents, and the release of organic 

matter from the benthic boundary layer (Jurado et al., 2008; Bauer and Bianchi, 2011; 

Hansell, 2013). Carbon compounds in the ocean can be released again to the atmosphere 

in the form of CO2, or buried in deep-sea sediments, precursors of geological reservoirs 

such as carbonate rocks or fossil organic carbon (including fossil fuels). These 

geological deposits can be released to the atmosphere as CO2 through tectonic processes 

(Bicke, 1994) (Fig. 1).  

Over the last 200 years, the global carbon cycle has been altered significantly by human 

activities. This has been due to the global utilization of fossil fuels, but also by the 

production of cement and land-use changes, such as deforestation (Boden et al., 1999; 

Houghton and Nassikas, 2017) (Fig. 1). These activities have caused the rise of 

greenhouse gases in the atmosphere, which absorb the infrared radiation emitted from 

the earth and cause the warming of the lowest layer of the atmosphere (troposphere) 

(Sabine and Tanhua, 2010). Carbon dioxide (CO2) is the largest contributor to climate 

change due to its large increase in the atmosphere, but other gases such as 

chlorofluorocarbons, methane and nitrous oxide have higher specific greenhouse effect 

(Arrhenius, 1896; Mitchell et al., 1995). Some of the expected effects of the increase of 
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the average global temperature are extreme weather events (Curry and Mauritzen, 

2005), spread of tropical diseases, species extinctions (Pounds et al., 2006) and changes 

in ecosystems (Barnett et al., 2005; Field and Timothy R. Baumgartner, 2006).  

 

Figure 1. The global carbon cycle, main components of the natural cycle (black) and human perturbation 

(red): storages (Pg C) and fluxes (Pg C/yr) estimated for the 1980s. The thick arrows denote the most 

important fluxes from the point of view of the contemporary CO2 balance of the atmosphere. Dashed lines 

denote fluxes of carbon as CaCO3. Figure based on Pentice et al. (2001).  

 

In order to minimize the predicted negative consequences of the carbon cycle alteration 

on mankind, there is a need to develop and implement strategies to reduce CO2 

emissions and to adapt to these adverse consequences. To take the best decisions in the 

economic, energy, technology, trade, and security policies, it is necessary to have a 

good understanding of the global carbon cycle to predict the distribution of carbon 

compounds under different future CO2 emission scenarios. However, there are 

significant gaps in our knowledge and understanding of the fluxes through the global 

carbon cycle and the quantification of these fluxes and reservoirs, since there are 

interactions among physical, chemical and biological processes that hinder their 

accurate assessment (Honjo et al., 2014). Consequently, this limits our ability to predict 

the magnitude of changes in the carbon cycle. We require both continuous global 
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observations and modelling studies to improve our knowledge on the global carbon 

cycle. 

 

2. Carbon in the ocean    

In the ocean, carbon compounds also flux among different reservoirs, driven by 

physical, chemical and biological processes, within the so-called ocean carbon cycle. 

Oceanic carbon is mainly connected to atmospheric carbon through the CO2 exchange 

(Fig. 1). The ocean is mainly a carbon sink: it has taken up 118 ± 18 Pg of 

anthropogenic carbon from the atmosphere during the period between the beginning of 

the industrial revolution and the mid-1990s (Gruber, 2019). This has prevented even 

higher atmospheric CO2 concentrations at present (Falkowski et al., 2000; Sabine and 

Tanhua, 2010). However, the increase of CO2 in the atmosphere and the associated 

global warming are having a great impact in the ocean. For example, the CO2 increase in 

the atmosphere also causes an increase of dissolved CO2 in the ocean. This increase is 

causing ocean acidification, through which the pH of seawater is predicted to decline to 

7.8 by the year 2100 (Doney et al., 2009). This will hamper some organisms (pteropods, 

foraminifera, coccolithophores) to build their CaCO3 shells, and will dissolve coastal 

corals (Orr et al., 2005; Doney et al., 2009). On the other hand, global warming is 

causing sea level rise, increased sea surface temperature and intensified stratification, 

which also affect mean irradiance levels and nutrient availability in the upper water 

column of the ocean (Millero, 2007). 

2.1 Ocean carbon pumps 

Four main processes cause a net flux of inorganic carbon from the atmosphere to the 

ocean, accounting for the sequestration of CO2 and therefore contributing to the ocean’s 

buffering capacity for global warming. It must be noticed that sequestration concerns 

the removal of dissolved inorganic CO2 from the atmosphere and the surface waters for 

periods of interest to global warming (i.e. at least a few hundred years) (Legendre and 

Le Fèvre, 1995). These four processes involved in carbon sequestration are named the 

ocean carbon pumps, and consist of the “solubility pump”, the “carbonate pump”, the 

“microbial pump” and the “biological pump”  (Sarmiento and Bender, 1994): 
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-The “solubility pump” consists of the dissolution of CO2 in the surface water and its 

posterior transport to its interior driven by the thermohaline circulation. Most of the 

CO2 that enters the oceans reacts with seawater, forming carbonic acid, bicarbonate and 

carbonate (H2CO3, HCO3
−
 and CO3

2−
, respectively) (Sabine and Tanhua, 2010) (Fig. 2). 

In fact, only 1% of the dissolved inorganic carbon (DIC) pool in the ocean is in the form 

of CO2, the molecule required for photosynthesis. 

CO2(atmos) →←CO2(aq) +H2O→←H2CO3 →←H
+
 +HCO3

−
 →←2H

+
 +CO3

2− 

Water mass sinking and hence CO2 sequestration by physical processes prevail at high 

latitudes where cold dense water masses are formed, since CO2 is more soluble in colder 

than warmer seawater (Broecker and Peng, 1992; Stocker, 1998) (Fig. 3). The carbon 

removed from the surface to deep waters takes hundreds of years to re-enter the 

atmosphere. 

-The “carbonate pump” consists of the sinking of the biomineral calcium carbonated 

(CaCO3) shells (and to a lesser extent magnesium (MgCO3)) formed by phytoplankton 

and zooplankton species into the interior of the ocean such as coccolithophores and 

foraminifera. Foraminifera sink up to 2500 m d
-1

 (Takahashi and Be, 1984) and 

coccoliths can be carried in faecal pellets (Honjo, 1980). Half of this carbon is buried in 

sediments while the other half is dissolved at depth, forming DIC, that will finally 

return to the atmosphere (Legendre and Le Fèvre, 1995; Falkowski et al., 2000). 

-The “biological pump” is the collection of processes that transport organic carbon from 

the surface euphotic zone to the ocean’s interior, where the material is mineralized and 

returned to its original dissolved inorganic forms (Hansell et al., 2009; Giering and 

Humphreys, 2018), being the primary means of removing carbon from the atmosphere 

and surface ocean on timescales greater than millenia (Honjo et al., 2014). The main 

pathway of organic carbon formation in the ocean is through photosynthesis by 

phytoplankton from a fraction of DIC in the euphotic zone, fixing approximately 50 Gt 

carbon year
-1

 (Field et al., 1998; Hugler and Sievert, 2011; De La Rocha and Passow, 

2014). The compounds produced by phytoplankton mainly consist of carbohydrates, 

lipids, proteins and nucleic acids (Giering and Humphreys, 2018), and they can be in the 

form of particulate (POC) or dissolved (DOC) organic carbon. This organic matter can 

follow different pathways: the majority of the organic biomass is transformed back to 

CO2 by respiration (remineralization) in the surface or consumed by protists and 
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metazoans, being transferred up the marine food web trough predation; 11- 27 % is 

exported to the dark ocean, below the euphotic zone (Field et al., 1998; Henson et al., 

2011), which is called the “biological pump”. This export flux maintains a permanent 

surface-to-depth CO2 gradient that is responsible, according to models, of a lower 

atmospheric CO2 concentration that would be without ocean biology and the “biological 

pump” (Volk and Hoffert, 1985; Parekh et al., 2006). 

The “biological pump” is driven by three mechanisms: 1) gravitational sinking of POC, 

mainly formed by phytoplankton, heterotrophic prokaryotes (HP), fecal pellets and gels, 

2) downwelling (sinking of higher-density water beneath lower-density water) of POC 

and DOC 3) active vertical migration of zooplankton (Ducklow et al., 2001; Hansell and 

Carlson, 2001; Steinberg et al., 2008). The first mechanism is considered the most 

important pathway, although it is still debatable (Steinberg and Landry, 2017; Stukel et 

al., 2018; Boyd et al., 2019; Hernández-León et al., 2019). The different methods to 

determine the efficiency of the “biological pump” through gravitational sinking are 

reviewed in Bach et al. (2019).  

Organic matter in the deep ocean can be remineralized again, although remineralization 

rates are substantially slower than in surface waters (Ducklow et al., 2001; Ducklow and 

Doney, 2013). About 0.3 % of the surface production is buried in marine sediments 

(Dunne et al., 2007), some of which will form rocks or organic rich deposits that will 

persist for hundreds of millions of years. Ultimately, DIC formed by remineralization of 

the organic matter in deep water is upwelled and returned to the atmosphere. It is 

estimated that the “biological pump” transports 5-20 Gt carbon annually from the 

surface into the ocean interior (below the euphotic zone) (Henson et al., 2011). 

Depending of the depth reached by organic carbon and where remineralization occurs 

(remineralization depth), it can take from months to centuries to be returned to the 

surface for exchange with the atmosphere (Hansell et al., 2009; Kwon et al., 2009). This 

remineralization depth depends on the balance between particle sinking speeds and their 

rate of decay (Kwon et al., 2009). It is difficult to predict the response of the pump to 

ongoing and future changes in the temperature, pH, and oxygen content of the ocean 

(Henson et al., 2015; Stukel et al., 2015; Siegel et al., 2016).  

Part of the organic carbon formed by phytoplankton is used by microbes and 

transformed in recalcitrant dissolved organic matter. This process is called the 
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“microbial pump”, since it causes carbon sequestration due to the resistance of this 

matter to microbial degradation for months to millennia (Jiao et al., 2010; Stone, 2010). 

The production of refractory DOM is an efficient mechanism of carbon sequestration 

due to the relatively higher carbon:nitrogen:phosphorus ratio than labile DOM and POC 

(Hopkinson and Vallino, 2005). 

 

Figure 2. Carbon cycling in the ocean and ocean carbon pumps. The main entrance of carbon to the 

ocean is through CO2, that is dissolved and it can be found in three main forms (H2CO3, CO3
2− and 

HCO3
−), the sum of which is called dissolved inorganic carbon (DIC). DIC is transported in the ocean by 

physical and biological processes. Figure done by Marina Z, based on Steinberg and Landry (2017), 

Pentice et al. (2001), Buchan et al. (2014) and Carlson and Hansell (2015).  

 

2.2 Organic carbon in the ocean 

The estimated quantity of organic carbon in the ocean is 1000 Pg C (Falkowski et al., 

2000). Most of it (662 Pg) exists in the form of dissolved organic carbon (DOC) 

(Hansell et al., 2009), the same order of magnitude as the total amount of carbon in the 

atmosphere (750 Pg) (Fasham et al., 2001; Brooks and Thornton, 2018). DOC is 

operationally defined as the fraction of organic carbon smaller than 0.7 µm (although 

the size cutoff can vary between 0.1 to 1 µm) (Filella, 2008; Carlson and Hansell, 
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2015). The organic carbon reservoir in the ocean is complex, containing estimated 10
12

-

10
15

 different organic compounds (Hedges et al., 2002). Thus, the ocean organic carbon 

pool can be classified depending on properties such as size, chemical composition, 

lability, physical structure or origin. 

-Size: DOM in the ocean can occur as low molecular weight organic matter (LMW-

DOM) and high molecular weight organic matter (HMW-DOM, 1-kDa molecular 

weight cutoff). The rest of organic carbon in the ocean is found in the form of 

particulate organic carbon (POC), this is, the fraction retained by filters with pore sizes 

of approximately 0.7 µm. They can reach sizes > 10 cm and tend to sink in the water 

column. Only a small fraction of the POC pool is formed by living organisms (1-2 Pg 

C), such as phytoplankton ((Falkowski et al., 2000). The rest occur as non-living 

components, such as detritus, fecal matter generated by zooplankton and fish, larvacean 

houses, exuvia, carcasses and plankton hardparts, among others. POC can also occur as 

organic aggregates that are formed by the adhesion of smaller particles after collision. 

Organic aggregates are distinguished by size: microscopic aggregates (1 to 500 µm) and 

macroscopic aggregates or marine, lake, or river snow (> 500 µm in diameter), which 

fall between 5 and 200 meters per day (Fowler and Knauer, 1986; Alldredge and Silver, 

1988; Turner and Millward, 2002). The existence of aggregation and disgregation 

processes within the organic matter pool in the ocean makes the division of organic 

matter into DOC and POC too simplistic. Instead, there is a dynamic continuum of 

organic matter in different sizes that span the truly dissolved, colloidal, and particulate 

phases (Verdugo et al., 2004)  (Fig. 3). 

-Biochemical composition: Three major groups are distinguished; carbohydrates, amino 

acids and lipids, that together comprise approximately 80 % of the POC and 30 % of the 

DOC fraction, although the percentage varies with depth. Several studies have tried to 

characterize organic matter by its elemental composition (Aluwihare et al., 2002; 

Ogawa and Tanoue, 2003; Görs et al., 2007; Shimotori et al., 2016; Cao et al., 2018), 

but most of it is not chemically characterized (Williams and Druffel, 1987; Hedges et 

al., 2000; Hansell and Carlson, 2002; Tang et al., 2006).  

 

-Lability: Labile organic matter is the DOM fraction that turns over in time scales of 

minutes to days. It represents only 1 % of the global DOC (< 0.2 Pg) and is present in 

surface waters mainly. The semilabile DOC turns over in months to years (Cherrier et 
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al., 1996) and it accumulates in and immediately below the euphotic zone, contributing 

3 % of the marine DOC reservoir (50 Gt C) (Carlson et al., 2002; Hansell and Carlson, 

2002; Hansell et al., 2009). The refractory DOC is the most abundant fraction (624 Gt 

C) (Hansell et al., 2009), which turns over in centuries to millennia (Williams and 

Druffel, 1987), since it does not degrade via the typical microbial and chemical 

processes that recycle labile and semi-labile DOM. Instead, they can be removed by 

UV-mediated photolysis at the ocean surface (Mopper et al., 1991), and by 

transformation to and/or interaction with suspended particles (Druffel et al., 1992) 

-Structure: Marine gels or hydrogels (Fig. 3) are a distinct group of organic carbon 

particles due to their structure and behaviour. They are three-dimensional polymer 

networks embedded in seawater that result from the interaction of organic molecules 

through physical or chemical connections (Chin et al., 1998; Orellana and Verdugo, 

2003; Verdugo et al., 2004; Verdugo, 2012). They are estimated to account for 

approximately 70 Pg of C in the ocean (Verdugo, 2012). Marine gels can be classified 

as physical or chemical gels, depending on the type of connections. Physical gels are 

made up of organic molecules connected physically by low energy ionic forces, 

hydrophobic linkages, or entanglement, which are continuously being made and broken 

(Ding et al., 2008). Chemical gels present high-energy covalent bonds and assembly is 

largely irreversible (Tanaka et al., 1992). Their size can range from ~1 nm to several 

millimetres (macro gels). In the context of the polymer gel theory, two classes of non-

living organic particles have been described based on their stainability, and therefore, 

their main composition: Transparent exopolymer particles (TEP) and Coomassie stained 

particles (CSP). 

-Origin: In pelagic systems, allochtonous organic matter is that whose sources come 

from external inputs such as the surrounding terrestrial ecosystems, the deep ocean and 

dust deposition. In contrast, the source of autochthonous organic matter is local primary 

production (Hunt et al., 2010).  

Within the autochthonous organic matter, extracellular exopolymeric substances (EPS) 

are organic matter compounds of high molecular weight that are excreted by a wide 

variety of microorganisms (Passow, 2002b; Engel, 2009; Decho and Gutierrez, 2017), 

such as cyanobacteria (Decho et al., 2005; Han et al., 2014), PH (Grossart et al., 2007; 

Thavasi and Banat, 2014), and eukaryotic phytoplankton (Myklestad, 1977, 1995; 
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Mishra and Jha, 2009; Klein et al., 2011; Raposo et al., 2013). EPS contribute ca. 10-25 

% of total oceanic dissolved organic matter (DOM) (Verdugo, 1994; Aluwihare et al., 

1997). Some of the functions of EPS are to concentrate nutrients around the organism 

(Flemming and Wingender, 2001), cell fixation mechanisms (Welch et al., 1999) cell 

protection (Shimada et al., 1997; Ding et al., 2008) and to solubilise hydrophobic 

organic chemicals (Decho, 1990). EPS are predominantly composed by polysaccharides 

(Hoagland et al., 1993), but also contain proteins, lipids, and nucleic acids (Flemming 

and Wingender, 2001; de Carvalho and Fernandes, 2010; Decho and Gutierrez, 2017). 

Depending on their source, composition and properties vary; for example, EPS 

produced by marine PH are sticky, in contrast with those excreted by freshwater/marine 

eukaryotic phytoplankton and non-marine PH (Kennedy and Sutherland, 1987). The 

reason is that the former are generally richer in uronic acids that render these 

macromolecules polyanionic (negatively charged) (De Jong et al., 1979; Kennedy and 

Sutherland, 1987; Majumdar et al., 1999; Bhaskar and Bhosle, 2005). These sticky 

macromolecules can form aggregates, such as marine snow (Wotton, 2004). A fraction 

of EPS are TEP and CSP, classified by their stainability and gel properties. Although 

TEP and CSP are present as discrete particles, EPS can also be found as cell-surface 

attached or dissolved molecules (Meng et al., 2013). 

Figure 3. Size scale of organic carbon components in seawater. Particulate organic carbon (POC) is 

considered the material retained in 0.2-μm pore filters, and dissolved organic carbon (DOC) that that 

percolates through the filter. Figure modified from Verdugo (2012).   
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3. Transparent exopolymer particles (TEP) and Coomassie stainable particles 

(CSP): Fractions of marine organic matter with an important role in the 

carbon cycle 

From all the components of organic matter in the ocean, some specific fractions have 

received interest as they play important roles in biogeochemical processes such as 

microbial diversity, carbon cycling and carbon exports to the deep ocean and the 

atmosphere, with further implications in the global carbon cycle. These components are 

TEP and CSP, and efforts have been made in the latest decades to better understand 

their role in these processes and to better predict their distribution in the ocean. In the 

following section, the state of the art about TEP and CSP is described: 

Transparent exopolymer particles (TEP) 

-What are TEP? How are they measured? Where are they found?  

Although the presence of gel-like substances suspended in seawater was noticed in the 

1970’s  (Gordon, 1970), transparent exopolymer particles (TEP) were first described by 

Alldredge et al. (1993) after sample staining with Alcian Blue, a specific dye for 

carboxylated and sulphated acidic polysaccharides, since it binds ionically with –COOH 

and O-SO3 groups (Ramus, 1977; Alldredge et al., 1993; Passow and Alldredge, 1995). 

TEP are operationally defined as gel particles that are retained on 0.4 µm (sometimes 

0.2 µm; Mari and Robert (2008); Mari et al. (2012); Mari (2008))  polycarbonate filters 

and stained with the cationic copper phthalocyanine dye Alcian Blue 8GX at pH 2.5 

(Fig. 4). Those that occur in sizes between 0.05 and 0.4 µm have been classified as 

colloidal TEP (Villacorte et al., 2009b; Villacorte et al., 2009a), while in the particulate 

phase they can reach sizes > 100 µm (Passow, 2002b).  

The first method to measure TEP was a microscopic method. It consisted of the 

filtration of seawater through 0.4 µm Nuclepore filters, which was subsequently stained 

with Alcian Blue and transfered to a slide to observe and count TEP under a standard 

light microscopy (Alldredge et al., 1993; Engel et al., 2015). To avoid interference from 

the filter pores under white light, semitransparent glass slides (CytoClear), that are 

glazed on one side, can be used (Logan et al., 1994; Engel, 2009; Engel et al., 2015), or 

TEP can be transferred to transparent glass slides using a freeze-transfer technique 
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(Hewes and Holm-Hansen, 1983). The advantage of using CytoClear slides is that the 

particles can be directly viewed on the filter. TEP need to be quantified and sized one 

by one, manually or automatically, using different microscope magnifications (Fig. 5). 

TEP concentration is expressed as the number of particles or total surface area covered 

by TEP per millilitre of water sample. Some disadvantages of the microscopic methods 

is that stained particles usually do not have strong enough a contrast for subsequent 

image analysis systems (Passow and Alldredge, 1995), so it is largely time consuming 

and labour-intensive, which precluded the advance of TEP descriptions in the field. 

Another disadvantage is that the number of particles in a given water sample may not 

directly correlate to the mass concentration and quantity of TEP, due to the wide size 

distribution of TEP. Finally, it is likely that TEP particles harvested for microscopic 

examination are not all present in a monolayer, so, it is plausible that TEP numbers and 

the surface area covered by TEP are underestimated (Meng et al., 2013). 

 

Figure 4. Microscopic view of seawater sampled during the ACE cruise on a 0.4 µm membrane filter 

using a CytoClear slide, and stained with the dye Alcian Blue. TEP appear as blue-stained particles. 

Phytoplankton cell surfaces are also stained with Alcian Blue. Photo: Marina Z.  

In 1995, a spectrophotometric method to measure TEP was developed (Passow and 

Alldredge, 1995), which was based on the colorimetric determination of the amount of 

dye complexed with extracellular particles, after being soaked with sulfuric acid to 

redissolve the dye bound to the particles. This method is a semiquantitative technique, 

since it uses the relationship between Alcian Blue staining capability with the weight of 

a polysaccharide (the calibration standard or reference material), and because the 

staining of TEP is a proxy of TEP acidity, rather than its mass. Many factors influence 

the measured concentration of TEP, such as the calibration standard (Gum Xanthan or 

Alginic Acid, Hung et al. (2003a)), the fixation of samples, or the composition (e.g. 

sulfated or carboxilated) and structure (e.g. linear or branched) of extracellular 
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polysaccharides. As a consequence, caution must be taken when comparing numerical 

values of TEP concentrations in natural environments. In addition,  pH of the Alcian 

Blue solution influences the peak of absorbance wavelength (Robinson et al., 2019c). 

The quantification of TEP relies on calibration against a reference material because the 

exact TEP chemical composition is unknown and the Alcian Blue staining capacity can 

be variable for the same weight of Alcian Blue powder. Gum Xanthan (XG) is the most 

commonly used reference material. The amount of Alcian Blue absorbed to the XG (or 

another reference material) is directly related to the weight of the XG, so the slope of 

the linear relationship between the weight of the standard and amount of stain absorbed 

yields the calibration factor (Engel, 2009). Alcian Blue does not stain cell interiors or 

colony matrices. The TEP concentration is finally expressed as micrograms of Gum 

Xanthan equivalent (XG eq.) per liter of water. Lately, some problems have been found 

doing the calibration (Kuznetsova et al., 2005; Kahl et al., 2008; Harlay et al., 2009; 

Vardi et al., 2012; Discart et al., 2014), and Bittar et al. (2018) found to be related with 

the currently available XG powder, that no longer exhibits the same solubility properties 

as the used in the original method. Consequently, they provided a new protocol for the 

calibration, using the new, commercially available XG powder (Bittar et al., 2018). 

There are also some challenges related with the spectrophotometric method. The 

staining capacity of Alcian Blue is related to its concentration (Passow and Alldredge, 

1995) and it undergoes self-coagulation over time, causing a significant reduction of 

dye concentration. For this reason, the dye solution must be filtered before use and it 

must be calibrated with high frequency. It has been proposed to express TEP level 

relative to a referenced TEP concentration, but it would make the quantitative 

interpretation of the results difficult and uncertain (Villacorte et al., 2009b).  

The choice between the microscopic or the spectrophotometric method depends on the 

purpose of the study. The advantage of the microscopic method is that allows the 

observation and quantification of individual TEP particles, as well as their size 

distribution and total area. 

The FlowCAM method has been developed recently by Cisternas-Novoa et al. (2015). It 

consists of the addition of Alcian Blue to aqueous samples and the later visualization of 

in-situ particles with the FlowCAM flow-imaging microscope. The method allows to 

measure parameters as shape, size and transparency of the particles and their total 
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concentration. It measures TEP (defined as > 0.4 µm), but also acidic polysaccharides 

(< 0.04 µm), without distinguishing if they are free or attached to cells. In the case of 

seawater samples, a previous dialysis step to desalt marine samples is required for 

quantitative applications. Otherwise, salts present in seawater interfere with the direct 

staining of marine samples (Passow and Alldredge, 1995; Hayat, 2000), and only a 

qualitative study is possible. 

Another method is the centrifugation method (Arruda Fatibello et al., 2004), only usable 

for freshwater samples. It consists of the filtration of water through 70 µm to remove 

large particles such as zooplankton and phytoplankton and subsequent tangential 

filtration through 0.45 µm to concentrate TEP. Alcian Blue is added into harvested TEP 

sample, and the insoluble pigments produced after the reaction between acidic group of 

polysaccharides and Alcian Blue are separated by centrifugation. Finally, the excess of 

Alcian Blue remaining in the sample is measured at 602 nm and the difference between 

total Alcian Blue added to the sample and that left after centrifugation represents the 

quantity of TEP in the samples. The units are micrograms of XG eq mL
-1

. A drawback 

of this method is that TEP larger than 70 µm are removed, even though the size range of 

TEP tipically is 2-200 µm (Berman and Passow, 2007). Finally, the method cannot 

distinguish TEP form other dissolved acid polysaccharides in terms of their sizes (Meng 

et al., 2013). 

A general disadvantage of all these methods is that Alcian Blue can form insoluble 

pigments with dissolved substrates in aqueous solution or to be adsorbed by many inert 

substances other than TEP present in water samples (Horobin, 1988). As a consequence, 

this leads to a remarkable uncertainty in the determination of TEP by the Alcian Blue -

based staining methods. The combination of Alcian Blue with other analyses, such as 

LC-OCD (liquid chromatography-organic carbon detection), could be useful for a better 

interpretation of TEP results (Meng et al., 2013). Another drawback is that depending 

on the presence and the number of acidic groups –COOH and O-SO3 “available” to bind 

with Alcian Blue, the staining efficiency of TEP varies. Consequently, the staining is a 

proxy of an inherent TEP property (its acidity), rather than its mass, and therefore the 

technique provides only a semiquantitative assessment of TEP concentration (Bittar et 

al., 2018).  
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TEP are ubiquitous in aquatic systems, including freshwater and seawater. TEP 

abundance is usually in the order of 10
6
 particles L

−1
, although during phytoplankton 

blooms, higher abundances have been reported (in the order of 10
8
 particles L

−1 
or 1000 

µg XG eq L
-1

). TEP concentrations are generally higher in the euphotic zone and 

surface mixed layer than below it, in coastal areas compared to the open ocean, and in 

vernal seasons than out of them (Passow, 2002b). 

-What are the sources of TEP? How are they formed? 

The main sources of TEP are microorganisms, due to algal exudation, bacterial mucus 

and the gelatinous envelopes that surround phytoplankton (Hong et al., 1997; Berman-

Frank et al., 2007). Until nowadays, the phytoplankton groups that have been found to 

produce TEP are cyanobacteria (Grossart et al., 1998; Mazuecos, 2015; Deng et al., 

2016), diatoms (Passow and Alldredge, 1994; Mari and Kiorboe, 1996; Passow, 2002a), 

dinoflagellates (Passow and Alldredge, 1994), Prymnesiophyceae (Riebesell et al., 

1995; Engel, 2004; Leblanc et al., 2009) and Cryptomonads (Kozlowski and Vernet, 

1995; Passow et al., 1995a). They are thought to be the primary source of TEP due to 

the general positive relationship between TEP and Chl a concentration on a global scale 

(Passow, 2002a; Kodama et al., 2014). In addition, heterotrophic prokaryotes 

(Biddanda, 1986; van Loosdrecht et al., 1989; Stoderegger and Herndl, 1998; Passow, 

2002a; Cho et al., 2004; Radic et al., 2006; Ortega-Retuerta et al., 2010; Ortega-

Retuerta et al., 2019), seagrass (Iuculano et al., 2017b), macroalgae (Ramaiah et al., 

2001; Thornton, 2004), zooplankton (Prieto et al., 2001) and benthic suspension feeders 

(Heinonen et al., 2007) are also able to produce TEP.  

There are two pathways for the formation of TEP (Fig. 5): In the direct pathway (Fig. 

6A), TEP (0.4 µm-300 µm) are directly released by organisms to the aquatic 

environment, for example via sloughing and lysis of senescent colonies (Hong et al., 

1997; Beauvais et al., 2003; Berman-Frank et al., 2007). In the indirect pathway (Fig. 

6), the organisms release TEP precursors in the form of dissolved polymers, particularly 

certain classes of dissolved polysaccharides, that self-assemble abiotically forming TEP 

by coagulation, gelation or annealing (Passow and Alldredge, 1994; Logan et al., 1995; 

Passow, 2000, 2002b; Thuy et al., 2015). The abiotic processes promoting TEP 

assembly include Brownian motion, laminar shear and water turbulence (Passow, 2000; 

Burd and Jackson, 2009). TEP self-assembly process has been described as an 
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alternative pathway to from particulate organic carbon from DOM, hence a DOM sink 

that is alternative to DOM consumption by microorganisms (Engel et al., 2004b). 

 

Figure 5. TEP formation pathways; A. Abiotic and B. Biotic. Figure from Bar-Zeev et al. (2015). 

-What are the composition and properties of TEP?  

TEP are mainly composed of acidic polysaccharides, enriched in deoxysugars and 

covalently bound sulfate (Mopper et al., 1995). However, their exact chemical 

composition is not known, and can be highly variable depending on the species that 

release them and the prevailing growth conditions (Mopper et al., 1995; Myklestad, 

1995; Zhou et al., 1998; Aluwihare and Repeta, 1999; Passow, 2002b). It is known that 

TEP present similar composition to EPS, containing polysaccharides, proteins, lipids 

and amino acids (Passow, 2002b). They present gel properties, like high flexibility, high 

stickiness (defined as the probability that two particles remain attached after collision) 

(Engel, 2000; Engel, 2004) and their volume to mass ratios depend on environmental 

factors, like pH, temperature, pressure and ion density (reviewed in Passow (2002b)). 

Their stickiness is due to their highly content of active polysaccharides that tend to form 

strongly metal ion bridges and hydrogen bonds (Mopper et al., 1991; Passow, 2002b). 

Their stickiness is about 2 to 4 orders of magnitude higher than those of phytoplankton 

or mineral particles (Passow, 2002b; Engel et al., 2004b; Mari and Dam, 2004), and 

consequently, they trigger aggregation of various organic and mineral solid particles 

form natural or anthropogenic origin (Passow and De La Rocha, 2006; Long et al., 

2015; Mari et al., 2017; Zhao et al., 2017). They are deformable particles and appear in 
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various forms, e.g., amorphous blobs, strings, films, sheets, clumps or clouds. TEP often 

have a density significantly lower than seawater (Azetsu-Scott and Passow, 2004). 

-What are the sinks of TEP? 

TEP can be captured and ingested by protists and small zooplankton (Decho and 

Moriarty, 1990; Shimeta, 1993; Tranvik et al., 1993; Dilling et al., 1998; Passow and 

Alldredge, 1999; Ling and Alldredge, 2003), but also larval stages of metazoans 

(Bochdansky and Herndl, 1992) and fish (Grossart et al., 1998), when TEP form marine 

snow. PH can also utilize TEP, although it depends heavily on their chemical 

composition, since not all the components of TEP are labile (Zhou et al., 1998; 

Aluwihare and Repeta, 1999; Passow et al., 2001; Simon et al., 2002; Taylor and 

Cunliffe, 2017). TEP are also colonized by PH (Alldredge et al., 1993; Schuster and 

Herndl, 1995; Mari and Kiorboe, 1996), which can release exopolymeric enzymes 

(mainly fucosidase, β-glucosidase and esterase) that converts high-molecular-weight 

organic matter into smaller substrates (Weiss et al., 1991; Bar-Zeev and Rahav, 2015), 

that can be transported into the cells (Arnosti, 2011).  

Aggregates containing TEP can also be fragmented by organisms such as euphausiids 

(Dilling and Alldredge, 2000), or under UVB radiation  (Orellana and Verdugo, 2003; 

Ortega-Retuerta et al., 2009a).  

Another loss process of TEP is sedimentation and burial in sediments; TEP can 

associate with other particles and sink into the deep ocean (Passow et al., 2001; Engel, 

2004), where they will be respired, converted back to CO2, or buried in the sediments. 

TEP favour aggregate-formation by two mechanisms; they increase bulk particle 

volume concentration and hence collision rates between particles, and they raise the 

bulk stickiness of particles (Engel, 2004). However, since TEP by themselves are low 

dense, the proportion of TEP with respect to other particles in aggregates will determine 

their sinking rates (Mari et al., 2017). 
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Figure 6. Conceptual model of TEP cycling in the ocean. TEP are released through exudation, grazing 

and lysis (A). TEP can form aggregates with other components (C) or be recycled via grazing 

(zooplankton consume TEP, potentially releasing TEP precursors) and lysis (E, P, O). TEP that forms 

aggregates can sink in the deep ocean (D, F). TEP can also ascend in the column water, by itself due to 

the low density (H), or through bubble adsorption (B). TEP can also be formed in the SML (K), grow, and 

sink back into the water column (I). The sinking versus ascending velocities of TEP ((H) and (I)) are 

affected by the relative proportions of POC, TEP, and interstitial water within aggregates and by the 

density of the surrounding water. TEP in the SML can also be released to the atmosphere via bubble 

bursting (J). In the SML, UV radiation can stimulate TEP production by microorganisms as a protection 

mechanism, but it can also produce photolysis (L). Ice is a source of TEP in the ocean (M). Figure from 

Wurl et al. (2011a). 

TEP present in the surface microlayer (SML) can be released to the atmosphere by 

bubble bursting (Aller et al., 2005; Kuznetsova et al., 2005; Leck and Bigg, 2005; Bigg 

and Leck, 2008; Russell et al., 2010; Orellana et al., 2011; O'Dowd et al., 2015; Rastelli 

et al., 2017). The SML is operationally defined as the top 50-10 µm of the ocean surface 

(Wurl et al., 2009; Cunliffe and Wurl, 2014) and it is usually enriched in TEP (Wurl et 

al., 2016). TEP can ascend in the column water due to their low density when they are 

not ballasted by detritus or other organic matter, at rates of 0.1-1 m d
-1

 (Passow, 2002a). 

The ascension is greatly enhanced by bubble-associated scavenging (Zhou et al., 1998; 

Azetsu-Scott and Passow, 2004; Robinson et al., 2019a; Robinson et al., 2019c), which 

can be formed by wind, density gradients, respiration of marine organisms and the 

release of trapped bubbles from within melting ice (Norris et al., 2011). TEP can also be 

produced directly at the microlayer (Wurl et al., 2011a). It is not known to what extent 
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transferred TEP remain in the atmosphere or return back to the SML, which is likely 

dependent on atmospheric features (Fig. 6).  

-What influences the sources and sinks of TEP? 

There are many factors that influence TEP production. Regarding production by 

phytoplankton, different species generate different amounts of TEP. For example, it was 

observed with batch cultures that Chl a-related TEP production by Emiliana huxleyi 

(coccolithophorid) was smaller than that produced by Phaeocystis antarctica 

(prymnesiophyte) (Hong et al., 1997; Passow, 2002a). However, it has been observed 

that TEP production by the same species can also vary widely depending on a number 

of variables. One of the variables is the physiological state, since the release of TEP is 

usually different depending of the growth phase of the cycle, and varies among species 

(Passow, 2002a). For example, Phaeocystis antarctica generate TEP during growth, 

stationary phase and senescence (Hong et al., 1997), whereas other species (i.e. colonial 

cyanobacteria) only release TEP during senescence, despite the fact that a cell surface 

mucus coat can be formed during growth (Grossart and Simon, 1997; Grossart et al., 

1998). Along this same line, it has been observed that nutrient depletion usually favours 

TEP production due to dissolved inorganic carbon overconsumption, although its effect 

can vary depending on the major inorganic nutrient that is first depleted (nitrogen or 

phosphorus): In concrete, P over N limitation enhances TEP production by microbes 

(Chen; Corzo et al., 2000; Staats et al., 2000; Engel et al., 2002a; Passow, 2002a; 

Underwood et al., 2004; Mari et al., 2005; Beauvais et al., 2006; Radic et al., 2006; 

Berman-Frank et al., 2007; Schartau et al., 2007; Pedrotti et al., 2010). However, large 

TEP production also occur under nutrient-replete conditions (Claquin et al., 2008). 

Temperature can also modulate TEP production by phytoplankton, although it is 

species-specific (Claquin et al., 2008). For example, in Thalassiosira pseudonana, TEP 

production increases with temperature until a maximum TEP release rate at ~25 ºC and 

then decreases. However, in Emiliania huxleyi, no relationship was found between 

temperature and TEP production (Claquin et al., 2008). CO2 concentrations also affect 

TEP production by phytoplankton; a positive relationship was observed on most 

occasions by Engel (2002) and Pedrotti et al. (2012). Viral infection is promotor of TEP 

production by several phytoplankton taxa, such as Emiliania huxleyi (Vardi et al., 2012; 

Nissimov et al., 2018), Phaeocystis globosa (Grossart et al., 1998; Brussaard et al., 
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2005; Mari et al., 2005) and Micromonas pusilla (Lønborg et al., 2013). Interactions 

between microbes also influence TEP production (Guerrini et al., 1998). For example, 

under in vitro conditions, the attachment of specific bacterial strains to Thalassiosira 

weissflogii is necessary for TEP production (Grossart et al., 2006; Gärdes et al., 2011). 

PH influence TEP production by Emiliania huxleyi (Van Oostende et al., 2013) and by 

Prochlorococcus (Cruz and Neuer, 2019), and they can also increase the stickiness of 

phytoplankton-derived EPS (Grossart et al., 2006; Rochelle-Newall et al., 2010; Cruz 

and Neuer, 2019) 

However, it must be noted that under nutrient limitation, the influence of PH on TEP 

production may also differ. In fact, the presence of associated PH may have a role in 

algal TEP production except under stressing conditions such as nitrogen limitation 

(Pannard et al., 2015) or nutrient inbalances (Gärdes et al., 2012). 

Oxidative stress caused by ultraviolet radiation (UVR), high photosynthetic active 

radiation (PAR) and hydrogen peroxide (H2O2) stress can also induce TEP production 

by Synechococcus (Callieri et al., 2019). High solar radiation has also been observed to 

favour TEP release due to Prochlorococcus cell decay (Iuculano et al., 2017c). 

Turbulence can increase TEP due to the enhancement of autotrophic production 

(Pedrotti et al., 2010). 

The formation of TEP by heterotrophic prokaryotes and other organisms such as 

macroalgae also varies between species, growth conditions and activity (Schuster and 

Herndl, 1995; Grossart, 1999; Stoderegger and Herndl, 1999; Ramaiah et al., 2001). For 

example, the production of polysaccharide by PH is increased under P limitation 

(Mohamed et al., 1998) . 

The formation of TEP through abiotic assembly and the dissolution/fragmentation of 

TEP also depend on a number of variables. For example, light can favour the abiotic 

self-assembly of dissolved precursors into TEP (Shammi et al., 2017), but it can also 

cause TEP photolysis (UVB radiation specifically) (Ortega-Retuerta et al., 2009a) and 

inhibit the self-assembly of TEP precursors (Orellana and Verdugo, 2003). PH may also 

facilitate self–assembly, e.g., through the release of amphiphilic exopolymers that 

induce microgel formation (Ding et al., 2008). Turbulence has been shown to favour 

TEP assembly due to the enhancement of encounter rates of TEP-precursors 
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(Stoderegger and Herndl, 1999; Burns et al., 2019). Dust deposition has also been 

suggested to trigger the abiotic formation of TEP, leading to the formation of organic-

mineral aggregates (Louis et al., 2017). 

The sink of TEP through degradation by organisms can be influenced by the nutrient 

availability, since nutrient limitation has been observed to impede prokaryotic 

consumption of TEP (Bar-Zeev and Rahav, 2015). It also depends on the chemical 

composition of TEP as long as it influences their lability. 

Regarding the release of TEP to the air into small droplets of sea spray (Andreae, 2009) 

(Zhou et al., 1998; Leck and Bigg, 2005), it is affected by wind friction, bubble bursting 

and breaking waves (Andreae, 2009), which are the main factors that affect sea spray 

production. 

-Why are TEP important?    

TEP play important roles in ecosystem properties and biogeochemical processes such as 

microbial diversity, carbon cycling and carbon exports to the deep ocean and the 

atmosphere, with implications in the global carbon cycle.  

On the one hand, TEP play an important role in the biological carbon pump, which 

eventually affects the long-term ocean-atmosphere CO2 exchanges. The influence of 

TEP in the biological pump is due to two reasons. TEP comprise by themselves around 

5-10 % of the planktonic primary production (Mari et al., 2017), which can sink into the 

deep ocean through the biological carbon pump. In addition, TEP promote the 

formation of larger aggregates of organic matter such as marine snow and the vertical 

export of carbon from surface to deep waters (Passow et al., 2001; Passow, 2002b; 

Verdugo et al., 2004), thereby enhancing the biological carbon pump. Thanks to the 

sinking of the carbon fixed in the upper ocean favoured by TEP, this carbon can stay in 

the deep oceans for hundreds to millions of years before returning to the atmosphere, 

constituting a powerful way of carbon sequestration. Consequently, there is a need to 

better predict the role of TEP in the biological carbon pump. 

TEP present in the SML, where they are usually enriched (Azetsu-Scott and Passow, 

2004; Aller et al., 2005; Kuznetsova et al., 2005; Wurl and Holmes, 2008; Cunliffe et 

al., 2009; Wurl et al., 2009; Wurl et al., 2011b; Gao et al., 2012; Karavoltsos et al., 



Introduction 

 
29 

2015; Wurl et al., 2016), also affect air-sea gas exchange. Some studies, reviewed in 

Cunliffe et al. (2013), show the influence of surface active components of the SML 

(including biogenic polysaccharides, TEP among them) on air-sea gas exchange, either 

acting as a physicochemical barrier or modifying sea surface hydrodynamics, which in 

turn results in a suppression of air-water gas exchange, such as CO2 (Calleja et al., 

2009; Jenkinson et al., 2018). 

TEP also seem to affect the chemistry and physics of the Earth’s atmosphere, 

influencing cloud formation and climate. Consequently, marine organic matter in the 

surface ocean should be included in aerosol climate models (Orellana et al., 2011; 

Brooks and Thornton, 2018). The reason is that TEP present in the SML can be released 

to the atmosphere and form aerosols (solid or liquid particles suspended in the air) 

(Aller et al., 2005; Kuznetsova et al., 2005; Bigg and Leck, 2008; Russell et al., 2010; 

Orellana et al., 2011; Leck et al., 2013; Wilson et al., 2015; Rastelli et al., 2017). 

Aerosols influence the radiation balance of the earth since they scatter and absorb solar 

radiation, either directly or acting as cloud condensation nuclei (CCN) and ice-

nucleating particles (INPs) (Slingo, 1990; O'Dowd et al., 1999; Wilson et al., 2015). 

CCN are aerosol particles that have the potential to nucleate liquid droplets, forming 

clouds (Andreae and Rosenfeld, 2008). It must be taken into account that although TEP 

are operationally defined as particles with sizes > 0.4 µm, smaller TEP can also act as 

CCN and INP, and they are more abundant. Aerosols with a largest contribution to the 

CCN and INPs pools are those with a size range of 0.05-1 µm (Simó, 2011), due to their 

highest abundance, although larger particles are more efficient as CCN.  

TEP also provide surfaces for microbial colonization (PH, algae and picocyanobacteria 

that remain attached) (Passow and Alldredge, 1994; Mari and Kiorboe, 1996; Worm 

and Søndergaard, 1998; Passow, 2002b; Azam and Malfatti, 2007; Berman and 

Parparova, 2010; Zäncker et al., 2019), serving as “hot spots” of intense microbial and 

chemical activity within the water mass, and playing an active role in the development 

of aquatic biofilms (Berman and Holenberg, 2005; Bar-Zeev et al., 2012; Meng et al., 

2013; Bar-Zeev et al., 2015). The process of attachment of PH to aggregates is not yet 

clear, but it is suggested that PH join passively to aggregates (Mari and Kiorboe, 1996), 

or that PH could actively colonize them (Kiorboe and Thygesen, 2001). In addition, 

bacterial community composition associated with TEP is different from that of free-
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living PH in the surrounding water, and attached PH express high cell-specific 

enzymatic activities (Lemarchand et al., 2006). Since predation by zooplankton of PH is 

dependent on the size of prey, TEP concentration could affect the proportion of free vs 

attached PH, and consequently the availability of PH to zooplankton (Burd and Jackson, 

2009; Deng et al., 2015). It has been demonstrated the reduction of prey availability for 

micro-grazers under high TEP concentrations due to the increase of food size spectra, 

whereas it may become available for large-particle grazers (Mari and Rassoulzadegan, 

2004).  

TEP aggregates, with their associated flora and fauna, can also serve as “food packages” 

for protists, microzooplankton and even larval fish (Grossart et al., 1998). TEP also 

affect food web dynamics in benthic and pelagic ecosystems. For example, suspension 

feeders produce TEP, that, in turn, favour particle deposition and delivery of POM to 

the benthos, strengthening the degree of benthic-pelagic coupling (Heinonen et al., 

2007). TEP have also been found in hydrothermal plumes, where they could support 

populations of attached PH and serve as a potential food source to zooplankton 

(Shackelford and Cowen, 2006).  

TEP are able to absorb trace elements and nutrients such as thorium (Th) (Guo et al., 

2002; Quigley et al., 2002; Azetsu-Scott and Niven, 2005; Santschi et al., 2006). 

Recently, it has also been detected that TEP could be a key factor affecting the fate and 

toxicity of nanoplastics on marine diatoms, since they promote the aggregation of 

nanoplastics (González-Fernández et al., 2019), and their particle size may affect their 

toxicity (Paul-Pont et al., 2018). 

Coomassie stainable particles (CSP) 

-What are CSP? How are they measured? Where are they found?  

Coomassie stainable particles (CSP) were first described and measured by Long and 

Azam (1996) off the Scripps Pier (Southern California) and in the Arabian Sea. CSP are 

defined as gel particles retained on 0.4 µm polycarbonate filters that are stained with a 

solution of Coomassie Brilliant Blue G (CCB) at pH 7.4 (Long and Azam, 1996) (Fig. 

7). This dye is amino acid-specific (Bradford, 1976), and therefore, CSP are protein-

containing particles. The average concentration of CSP in the ocean according to 
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published studies is 721 ± 2622 mm
2
 L

-1
, and in terms of particle abundance, 47 x 10

6
 ± 

61 x 10
6
 particles L

-1
 (reviewed in Thornton (2018)).  

 

Figure 7. Microscopic view of seawater sampled during the ACE cruise on a 0.4 µm membrane filter 

using a CytoClear slide, and stained with the dye Coomassie brilliant blue. CSP appear as blue-stained 

particles. Photo: Marina Z. 

The microscopic method was the first developed to measure CSP in water (Fig. 7), and 

only recently a new colorimetric method was developed, which consists of the 

extraction of a dye complexed to protein-containing particles with isopropanol. It is a 

semiquantitative technique, where several factors influence the measured concentration, 

such as the calibration standard (bovine serum albumin), or the composition of proteins. 

As a consequence, caution must be taken when comparing values of CSP concentrations 

in natural environments. The FlowCAM method developed by Cisternas-Novoa et al. 

(2015) also allows to measure CSP, as described for TEP in the previous section, but 

adding CBB instead of Alcian Blue to the water sample. 

-Which are the sources of CSP? 

Studies on the sources of CSP have only been conducted with cultures of diatoms 

(Bhaskar et al., 2005; Grossart et al., 2006; Galgani and Engel, 2013; Thornton, 2014; 

Thornton and Chen, 2017) and cyanobacteria (Endres et al., 2013; Cisternas-Novoa et 

al., 2015; Thornton and Chen, 2017), but it is likely that other phytoplankton groups, 

heterotrophic protists and PH are also sources. In fact, PH have already been thought to 

produce CSP (Radic et al., 2006). It has been suggested (Cisternas-Novoa et al., 2015), 

but not demonstrated explicitly, that CSP can also be formed through abiotic self-

assembly from precursors with divalent cations. 
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-What are the composition and properties of CSP?  

CSP are protein-enriched particles, but the exact composition of these proteins is not 

known, and CSP can also embed other classes of organics. Since it is assumed that CSP 

are largely derived from phytoplankton, the composition of CSP likely reflects the 

composition of phytoplankton proteins, since 65% in weight of phytoplankton cells are 

proteins (Hedges et al., 2002). Assuming that CSP has a C:N ratio similar to that of 

average plankton protein (3.8:1, Hedges et al. (2002)), then the nitrogen content of CSP 

is five to seven times greater than in TEP (Thornton, 2018). Efforts have been done in 

the last years to elucidate if TEP and CSP are totally different or overlapping 

components, since the stains, both blue and thus indistinguishable, cannot be combined 

in a single sample. These previous studies seem to indicate that TEP and CSP are 

different populations of exopolymer particles (Cisternas-Novoa et al., 2015; Thornton 

and Chen, 2017), as in situ measurements indicate that TEP and CSP present different 

distributions and dynamics (Cisternas-Novoa et al., 2015; Thornton et al., 2016). 

Physical properties of CSP, such as density or stickiness, remain unknown. 

-What are the sinks of CSP? 

Since microbial colonization of CSP has been observed (Long and Azam, 1996), it is 

thought, but not demonstrated, that CSP can be degraded by prokaryotes (Endres et al., 

2013; Cisternas-Novoa, 2015; Engel et al., 2015). It is also plausible that heterotrophic 

protists and mixotrophic phytoplankton may affect the breakdown of CSP. CSP have 

also been found enriched in the sea surface microlayer (Wurl et al., 2011b; Engel and 

Galgani, 2016; Galgani et al., 2016; Thornton et al., 2016; Zancker et al., 2017; Sun et 

al., 2018), thus it is likely that they are released to the atmosphere. Indeed, protein 

particles have been observed in sea spray aerosols (Kuznetsova et al., 2005; Aller et al., 

2017; Dall'Osto et al., 2017). 

-What influences the sources and sinks of CSP? 

Very few studies have looked at drivers of CSP production and degradation. Physical 

disruption of the cells, through mechanisms such as sloppy feeding by grazers (Møller 

et al., 2003; Møller, 2007)  and viral lysis (Bratbak et al., 1993; Gobler et al., 1997; 

Mojica et al., 2016), would be expected to play a significant role in CSP production. 
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However, Thornton and Chen (2017) showed that, in contrast with TEP, CSP dynamics 

did not correlate to indicators of phytoplankton stress and cell death. 

-Why are CSP important? 

The little information available on CSP in the ocean points to their importance in 

marine processes. It has been observed that CSP are usually enriched in the surface 

microlayer in a greater extent that TEP (Engel and Galgani, 2016; Galgani et al., 2016; 

Thornton et al., 2016), so they could have an impact on air-sea gas exchanges. 

In addition, CSP and protein compounds have been observed in sea spray aerosols 

(Kuznetsova et al., 2005; Aller et al., 2017; Dall'Osto et al., 2017), so it is plausible that 

CSP can be released to the atmosphere through bubble bursting, forming aerosols that 

affect the Earth’s radiative budget (Brooks and Thornton, 2018).  

CSP are also appropriate habitats for HP colonization, and the associated HP 

community composition is different from that of free-living HP in the surrounding 

water (Lemarchand et al., 2006). It has been suggested that they could be a source of 

carbon and nitrogen for bacterioplankton (Ding et al., 2008). 

 In contrast, it is believed that CSP do not enhance particle aggregation in the biological 

carbon pump context (Prieto et al., 2002; Cisternas-Novoa et al., 2015), although more 

studies are needed to confirm or reject this hypothesis. 

 

 

 

 

 

 

 



Introduction 

 
34 

Table 1. Summary of some characteristics of TEP and CSP. 

 TEP CSP 

First discover Alldredge et al. (1993) Long and Azam (1996) 

Composition Acidic polysaccharides Proteins 

Size >0.4 µm  >0.4 µm 

Used stain Alcian Blue Coomassie Brilliant Blue 

Processes affected 

-Air-sea exchanges 

-Carbon export 

-Mirobial diversity 

-Trace elements and nutrients 

-Nanoplastics fate 

 

 √ 

 

√ 

 

√ 

 

√ 

 

√ 

 

 

         √ 

? 

        √ 

? 

? 

 

4. Expanding the knowledge of TEP and CSP distributions across the ocean  

There is a need to gather in situ measurements of these particle types, in order to better 

understand and predict the different processes affected by the presence of these 

substances. However, due to the limitations of the quantification protocols, in situ 

measurements of TEP and CSP in the ocean are scarce, especially for CSP (Fig. 8). The 

development of the spectrophotometric methods has allowed processing a large number 

of samples in shorter times. Consequently, the number of measurements is gradually 

increasing. 
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Figure 8. Map showing TEP (upper panel) and CSP (bottom panel) measurements available in the 

literature (red symbols) and performed in this thesis (blue symbols):1. Iuculano et al. (2017c); 2. Wurl et 

al. (2011a); 3. Aller et al. (2017); 4. Jennings et al. (2017); 5. Cisternas-Novoa et al. (2015); 6. Passow et 

al. (1995b); 7. Corzo et al. (2005) ; 8.  Ortega-Retuerta et al. (2009b); 9. Marchant et al. (1996); 10. Engel 

(2004); 11. Leblanc et al. (2009); 12. Engel et al. (2017) ; 13. Busch et al. (2017)*; 14. Harlay et al. 

(2009); 15. Dreshchinskii and Engel (2017)*; 16. Ortega-Retuerta et al. (2010); 17. Ortega-Retuerta et al. 

(2017) ; 18. Ortega-Retuerta et al. (2018) ; 19. Ortega-Retuerta et al. (2019);20. Iuculano et al. (2017a); 

21. Bar-Zeev et al. (2011); 22. Ramaiah et al. (2000); 23. Kodama et al. (2014); 24. Hong et al. (1997); 

25. Cisternas-Novoa et al. (2019); 26. Engel and Galgani (2016) *; 27. Galgani et al. (2016)*; 28. 

Thornton et al. (2016) *; 29. Long and Azam (1996)*; 30. Robinson et al. (2019b). *microscopic method. 
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The present thesis project was conceived to provide a better knowledge of TEP and CSP 

distribution in the ocean, in a temporal and spatial scale, as well as to improve the 

knowledge on the main drivers of these particles across different ocean basins. Some of 

the study sites visited did not have any previous measurements of TEP and CSP (Fig. 

8). The main questions were: 

1) What is the distribution and main drivers of TEP in the Atlantic Ocean? 

(addressed in chapter 1) 

2) How are TEP distributed across contrasting regions of the Antarctic Peninsula 

region (Southern Ocean), and what are the main factors explaining area-specific 

TEP distributions? (addressed in chapter 2) 

3) Do TEP and CSP present similar or different seasonal variabilities in the coastal 

NW Mediterreanean Sea? Are their horizontal (coast-to-offshore) and vertical 

(surface to bottom) distributions connected? (addressed in chapter 3). 

4) What are the concentrations and distribution patterns of TEP and CSP around 

the Southern Ocean? (addressed in chapter 4). 

In order to answer these questions, we carried out four different cruises across the 

Atlantic Ocean (October-November 2014), the Southern Ocean (January 2015 and 

January-March 2017) and the NW Mediterranean Sea (October 2015). We also carried 

out a time series study in two coastal stations in the NW Mediterranean Sea for two 

complete seasonal cycles (2015-2017). During these studies, TEP, CSP and a broad 

suite of physical, chemical and biological variables were measured in parallel. 

The specific objectives of the different chapters of the thesis are the following: 

Chapter 1. Main drivers of transparent exopolymer particle distribution across the 

surface Atlantic Ocean 

This chapter describes the horizontal distribution of TEP across a north-south transect in 

the Atlantic Ocean, from 20 October to 21 November 2014, in parallel with other 

physical and biological variables. The study region included several biogeographical 

provinces, both in the open ocean and the Southwestern Atlantic Shelf (SWAS). The 

aims of this chapter were: 

- To find the main drivers of TEP distribution across contrasting environmental 

conditions. 
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- To study the contribution of TEP to the total particulate organic carbon (POC) 

pool and compare it with the contribution of phytoplankton and heterotrophic 

prokaryote biomasses to this pool. 

 

Chapter 2. Distribution of transparent exopolymer particles (TEP) in distinct 

regions of the Southern Ocean 

This chapter studies the distribution of TEP along with other physical, chemical and 

biological variables, in both the horizontal and vertical (within the euphotic layer) 

scales, in distinct regions of the Southern Ocean, in the austral summer (January) of 

2015. In addition, the short-term (diel) variability of TEP along with other biological 

variables was also described. Experimental incubations were conducted to compare TEP 

production under a natural microbial community or leaving only prokaryotes. The 

objectives of this chapter were: 

- To identify the main biological and abiotic variables that drove TEP distribution 

across contrasting environmental conditions, both in the horizontal and vertical 

scale. 

-  To examine TEP variability along short-term diel cycles and to study if they 

were related to variation of other biological variables.  

-  

Chapter 3.  Seasonal variability of transparent exopolymer particles (TEP) and 

Coomassie stainable particles (CSP) in the coastal NW Mediterranean Sea 

This chapter describes the temporal dynamics of TEP and CSP over two complete 

seasonal cycles, from June 2015 to October 2017, in two coastal sites of the NW 

Mediterranean Sea (Blanes Bay Microbial Observatory and l’Estartit Oceanographic 

Station). In one of the sites, the seasonal variation of the vertical distribution was also 

studied. In addition, a transect between the Catalan Coast and the north of Mallorca 

Island was carried out. The objectives of this chapter were: 

- To elucidate whether TEP and CSP follow similar patterns, at the surface and 

across the vertical profile, over the annual cycle (temporal scale). 

- To elucidate whether TEP and CSP follow similar patterns in a coast-offshore 

transect (spatial scale). 
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- To identify the main biological and abiotic variables that drive TEP and CSP 

dynamics over seasons.  

 

Chapter 4. Distribution of TEP and CSP across the Southern Ocean 

This chapter studies the distribution of TEP and CSP together with other physical, 

chemical and biological variables, in both the horizontal and vertical (within the 

euphotic layer) scales, in the Southern Ocean, along a circular transit around Antarctica, 

in the austral summer (January-March) of 2017. The aims of this chapter were: 

- To elucidate whether TEP and CSP present similar patterns across the horizontal 

and vertical scales. 

- To identify the main planktonic drivers of TEP and CSP distributions. 
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Abstract 

Transparent exopolymer particles (TEP) are a class of gel particles, produced mainly by 

microorganisms, which play important roles in biogeochemical processes such as 

carbon cycling and export. TEP (a) are colonized by carbon-consuming microbes; (b) 

mediate aggregation and sinking of organic matter and organisms, thereby contributing 

to the biological carbon pump; and (c) accumulate in the surface microlayer (SML) and 

affect air–sea gas exchange. The first step to evaluate the global influence of TEP in 

these processes is the prediction of TEP occurrence in the ocean. Yet, little is known 

about the physical and biological variables that drive their abundance, particularly in the 

open ocean. Here we describe the horizontal TEP distribution, along with physical and 

biological variables, in surface waters along a north–south transect in the Atlantic 

Ocean during October–November 2014. Two main regions were separated due to 

remarkable differences; the open Atlantic Ocean (OAO, n = 30), and the Southwestern 

Atlantic Shelf (SWAS, n = 10). TEP concentration in the entire transect ranged 18.3–

446.8 µg XG eq L
-1

 and averaged 117.1 ± 119.8 µg XG eq L
-1

, with the maximum 

concentrations in the SWAS and in a station located at the edge of the Canary Coastal 

Upwelling (CU), and the highest TEP to chlorophyll a (TEP:Chl a) ratios in the OAO 

(183 ± 56) and CU (1760). TEP were significantly and positively related to Chl a and 

phytoplankton biomass, expressed in terms of C, along the entire transect. In the OAO, 

TEP were positively related to some phytoplankton groups, mainly Synechococcus. 

They were negatively related to the previous 24 h averaged solar irradiance, suggesting 

that sunlight, particularly UV radiation, is more a sink than a source for TEP. Multiple 

regression analyses showed the combined positive effect of phytoplankton and 

heterotrophic prokaryotes (HPs) on TEP distribution in the OAO. In the SWAS, TEP 

were positively related to high nucleic acid–containing prokaryotic cells and total 

phytoplankton biomass, but not to any particular phytoplankton group. Estimated TEP–

carbon constituted an important portion of the particulate organic carbon pool in the 

entire transect (28 %–110 %), generally higher than the phytoplankton and HP carbon 

shares, which highlights the importance of TEP in the cycling of organic matter in the 

ocean.  
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1.1 Introduction 

Transparent exopolymer particles (TEP) are defined as a class of nonliving organic 

particles in aqueous media, mainly consisting of acidic polysaccharides, which are 

stainable with Alcian Blue (Alldredge et al., 1993). They are formed from dissolved 

precursors that self–assemble to form TEP (operationally defined as particles > 0.4 µm) 

(Passow and Alldredge, 1994; Chin et al., 1998; Thuy et al., 2015). TEP are stabilized 

by covalent links or ionic strength (Cisternas-Novoa et al., 2015) and, therefore, the 

formation and fragmentation of TEP from/to dissolved precursor material spans the 

dissolved-to-particulate continuum of organic matter in the sea. Due to their stickiness, 

TEP favor the formation of large aggregates of organic matter and organisms (typically 

named marine snow), enhancing particle ballast and sinking and thereby contributing to 

the biological carbon pump (Logan et al., 1995; Kumar et al., 1998; Passow et al., 2001; 

Burd and Jackson, 2009). The presence of TEP also affects the microbial food–web, as 

they can be used as a food source for zooplankton (Decho and Moriarty, 1990; Dilling 

et al., 1998; Ling and Alldredge, 2003) Decho and Moriarty, 1990; Dilling et al., 1998; 

Ling and Alldredge, 2003) and heterotrophic prokaryotes (HPs) (Passow, 2002a) 

through microbial colonization of aggregates (Alldredge et al., 1986; Grossart et al., 

2006; Azam and Malfatti, 2007). On their way to aggregation, and due to their low 

density, TEP and TEP–rich microaggregates formed near the surface may ascend and 

accumulate in the sea surface microlayer (SML) (Engel and Galgani, 2016), a process 

that is largely enhanced by bubble–associated scavenging (Azetsu-Scott and Passow, 

2004; Wurl et al., 2009; Wurl et al., 2011b). This accumulation in the SML, also 

contributed by local TEP production (Wurl et al., 2011b), can suppress the air–sea 

exchange of CO2 and other trace gases by acting as a physicochemical barrier or 

modifying sea surface hydrodynamics at low wind speeds (Calleja et al., 2008; Cunliffe 

et al., 2013; Wurl et al., 2016). Sea surface TEP can also be released to the atmosphere 

by bubble bursting (Zhou et al., 1998; Aller et al., 2005; Kuznetsova et al., 2005), 

contributing to organic aerosol and possibly acting as cloud condensation nuclei and 

ice-nucleating particles (Orellana et al., 2011; Leck et al., 2013; Wilson et al., 2015). 

All in all, TEP play important roles in microbial diversity, carbon cycling and carbon 

exports to both the deep ocean and the atmosphere. 
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TEP distribution in marine systems depends on the complex balance between the 

sources and the sinks (Alldredge et al., 1998; Passow, 2002b). TEP sinks include some 

of  the abovementioned processes (sinking of aggregates to the deep ocean, release to 

the atmosphere and consumption by organisms), and also photolysis by UV radiation 

(Ortega-Retuerta et al., 2009b). Regarding the sources, TEP are produced by organisms, 

mainly microorganisms, during metabolic and decomposition processes  (Hong et al., 

1997; Berman-Frank et al., 2007). Phytoplankton are major TEP producers in the ocean, 

although HPs are also able to produce TEP (Biddanda, 1986; Stoderegger and Herndl, 

1998; Passow, 2002a; Ortega-Retuerta et al., 2010). Some phytoplankton groups that 

have been shown to produce TEP include cyanobacteria (Grossart et al., 1998; 

Mazuecos, 2015; Deng et al., 2016); diatoms (Passow and Alldredge, 1994; Mari and 

Kiorboe, 1996; Passow, 2002a); dinoflagellates (Passow and Alldredge, 1994); 

Prymnesiophyceae, including coccolithophores (Riebesell et al., 1995; Engel, 2004; 

Leblanc et al., 2009); and  Cryptomonads (Kozlowski and Vernet, 1995; Passow et al., 

1995a). Other organisms such as Posidonia oceanica (Iuculano et al., 2017b), 

zooplankton (Passow and Alldredge, 1999; Prieto et al., 2001) and benthic suspension 

feeders (Heinonen et al., 2007) have also been identified as TEP producers. 

TEP sources and sinks in the ocean depend not only on the taxonomic composition of 

TEP producers, but they are also influenced by other variables such as the organism’s 

physiological state (Passow, 2002a), temperature (Nicolaus et al., 1999; Claquin et al., 

2008), light (Trabelsi et al., 2008; Ortega-Retuerta et al., 2009a; Iuculano et al., 2017c), 

carbon dioxide concentration (Engel, 2002), nutrient availability (Guerrini et al., 1998; 

Radic et al., 2006), turbulence (Passow, 2000, 2002a), microbe–microbe interactions 

(Gärdes et al., 2011), or viral infection (Shibata et al., 1997; Vardi et al., 2012). For 

example, limitation by nutrients often increases TEP production, due to dissolved 

inorganic carbon overconsumption (Corzo et al., 2000; Engel et al., 2002a; Schartau et 

al., 2007), and also impedes prokaryotic consumption of TEP  (Bar-Zeev and Rahav, 

2015). High solar radiation can stimulate TEP production by Prochlorococcus during 

cell decay (Iuculano et al., 2017c), but also can limit TEP formation inhibiting the 

aggregation of the precursor polymers (Orellana and Verdugo, 2003). HP have been 

found to stimulate TEP production by diatoms, suggesting that HP–diatom interaction is 

required for TEP formation (Guerrini et al., 1998; Gärdes et al., 2011). HP may also 

facilitate the self–assembly of dissolved TEP precursors (Sugimoto et al., 2007), e.g., 
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through the release of amphiphilic exopolymers that induce microgel formation (Ding et 

al., 2008). 

The aforementioned importance of TEP in carbon fluxes in the pelagic ocean can be 

further stressed by considering the following rough numbers: if the percentage of 

extracellular carbon release during planktonic primary production is generally 

constrained within 10–20 % (Nagata, 2000; Mari et al., 2017), but can reach > 50 % 

(López-Sandoval et al., 2011), and half of the extracellular release is in the form of 

reactive polysaccharides (Biddanda and Benner, 1997), then the production rate of TEP 

precursors may represent 5–10 %, but can reach > 25% of planktonic primary 

production, without considering production by heterotrophs. This calls for the need to 

quantify their occurrence across the oceans, elucidate their main distribution drivers, 

and determine their contribution to the organic carbon reservoir. To date, large–scale 

studies of TEP distributions in the ocean are scarce, particularly in the open ocean. In 

this study, we describe the horizontal distribution of TEP (> 0.4 µm) in surface waters 

across a north–south transect in the Atlantic Ocean, including several biogeographical 

provinces in the open ocean as well as the highly productive Southwestern Atlantic 

Shelf (SWAS). Our aims were (a) to identify the main biological and abiotic drivers of 

TEP distribution across contrasting environmental conditions, and (b) to quantify the 

TEP contribution to the total particulate organic carbon (POC) pool and compare it with 

those of phytoplankton and heterotrophic prokaryote biomasses. 

 

1.2 Material and methods    

2.1 Study sites and sampling 

Sampling was conducted during the TransPEGASO cruise aboard the Spanish RV 

Hespérides, from 20 October to 21 November 2014. A total of 41 stations were sampled 

within a transit across the Atlantic Ocean from Cartagena (SE Spain) to Punta Arenas (S 

Chile, Fig. 1.1). During the cruise, the ship crossed six biogeographical provinces 

(Longhurst, 1998): the Northeastern Subtropical Gyre, the Canary Current Coastal, the 

North Atlantic Tropical Gyre, the Western Tropical Atlantic, the South Tropical Gyre 
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and the SWAS. Seawater was collected from 4 m depth using the ship’s underway 

pump (BKMKC–10.11, Tecnium, Manresa, Spain) and screened through a 150 µm 

Nylon mesh to remove large particles. Temperature and salinity were measured 

continuously using a SBE21 Sea Cat Thermosalinograph. Solar irradiance was also 

measured continuously using a LI–COR Biospherical PAR Sensor. The rest of the 

variables were collected twice a day (09:00:00 and 16:00:00 local time) with the ship 

moving at approximately 10 knots. 

 

Figure 1.1. Hydrographic stations (filled circles) of the TransPEGASO cruise, sampled during October–

November 2014 in the Atlantic Ocean. Chl a concentration (background color; mg m-3) values during 

November 2014 were taken from a NASA MODIS Aqua 9–km product composite.  
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1.2.2 Chemical and biological analysis 

1.2.2.1 Particulate organic matter (TEP and POC)     

TEP concentrations were determined by spectrophotometry following Passow and 

Alldredge (1995). Duplicate samples (100–500 mL each) were filtered through 25 mm 

diameter 0.4 µm pore size polycarbonate filters (DHI) using a constant low filtration 

pressure (~150 mmHg). The samples were immediately stained with 500 µL of Alcian 

Blue solution (0.02 %, pH 2.5) for 5 s and rinsed with Milli–Q water. The filters were 

stored frozen until further processing in the laboratory (within 8 months). Duplicate 

blanks (empty filters stained as stated earlier) were prepared twice a day to correct the 

interference of stained particles in TEP estimates. Both the sample and blank filters 

were soaked in 5 mL of 80 % sulfuric acid for 3 h. The filters were shaken 

intermittently during this period. The samples were then measured 

spectrophotometrically at 787 nm (Varian Cary 100 Bio). The absorbance values of 

filter blanks did not change substantially between batches of samples, suggesting 

stability in the staining capacity of the Alcian Blue solution throughout the cruise.  The 

Alcian Blue dye solution was calibrated just before the cruise using a standard solution 

of xanthan gum (XG) passed through a tissue grinder and subsequently filtered through 

two sets of filters (four points in triplicate): preweighted filters to determine the actual 

concentration of the XG solution, and filters that were subsequently stained, frozen and 

analyzed in the spectrophotometer. The detection limit was set to 0.034 absorbance 

units
 
and the mean range between duplicates was 18.7 %. We estimated the TEP carbon 

content (TEP–C) using the conversion factor of 0.51 μg TEP–C L
-1

 (µg XG eq L
-1

)
 

(Engel and Passow, 2001). 

POC was measured by filtering 1000 mL of seawater on precombusted (4 h, 450 ºC) 

GF/F glass fibre filters (Whatman). The filters were stored frozen (-20 ºC) until 

processed. Prior to analysis, the filters were dried at 60 ºC for 24 h in an atmosphere of 

HCl fumes to remove carbonates. Then filters were dried again and analyzed by high–

temperature (900 ºC) combustion in an elemental analyzer (Perkin–Elmer 2400 CHN). 

No POC replicates were run, but replication in a previous study yielded a coefficient of 

variation of around 5 %.  
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1.2.2.2 Chlorophyll a (Chl a) 

Samples for fluorometric Chl a analyses were filtered (250 mL) on glass fibre filters 

(Whatman GF/F, 25 mm diameter) and stored at -20 ºC until further processing in the 

ship’s laboratory. Pigments were extracted with 90 % acetone at 4 ºC in the dark for 24 

hours. Fluorescence of extracts was measured according to the procedure described in 

Yentsch and Menzel (1963), with a calibrated Turner Designs fluorometer. No 

“phaeophytin” correction was applied. 

1.2.2.3 Inorganic nutrients 

Samples for dissolved inorganic nutrients (nitrate, phosphate and silicate) were stored in 

10 mL sterile polypropylene bottles at -20 ºC until analysis. The samples were further 

processed in the laboratory using standard segmented flow analyses with colorimetric 

detection (Hansen and Grasshoff, 1983), using a Skalar Autoanalyzer.  

1.2.2.4 Microscopic phytoplankton identification   

We quantified phytoplankton groups by microscopy. Water was fixed with hexamine–

buffered formaldehyde solution (4 % final formalin concentration) in a glass bottle, 

immediately after collection, and then was allowed to settle for 48 h in a 100 cm
3
 

composite chamber. An inverted microscope (Utermöhl, 1958) was used to enumerate 

the smaller phytoplankton cells (< 20 µm, 312× magnification) and the larger 

phytoplankton cells (> 20 µm, 125× magnification). Micro–phytoplankton was 

identified to the species level when possible, and finally classified into four groups: 

diatoms, dinoflagellates, coccolithophores and other microplankton cells referred to 

from now on as “other microalgae”.  Cell C content was calculated using conversion 

equations of Menden-Deuer and Lessard (2000), log pg C cell
-1 

= log a (95 % 

confidence intervals) + b (95 % confidence intervals) × log volume (V; µm
3
): one for 

diatoms (log pg C cell
-1 

= log -0.541 (0.099) + 0.811 (0.028) × log V) and one for the 

other algae groups (log pg C cell
-1 

= log -0.665 (0.132) + 0.939 (0.041) × log V). Total 

carbon biomass was calculated from cell C content and cell abundance. Uncertainty 

sources for micro–phytoplankton biomass estimates are the conversion factors, 
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biovolume estimates, and proper identification based on morphological characteristics, 

harder for naked cells and those at the lower size edge (5–10 µm) (Kozlowski et al., 

2011; Cassar et al., 2015).  

1.2.2.5 Picoplankton abundance 

To enumerate picoplankton cells, samples (4.5 mL) were fixed with 1 % 

paraformaldehyde plus 0.05 % glutaraldehyde (final concentrations), for 15 min. at 

room temperature, deep frozen in liquid nitrogen and stored frozen at -80 °C. Samples 

were then analyzed 6 months after the cruise end, using a FACS Calibur (Becton and 

Dickinson) flow cytometer equipped with a 15 mW argon-ion laser emitting at 488 nm. 

Before analysis, samples were thawed and we added 10 μL per 600 μL sample of a 10
5
 

mL
-1

 solution of yellow–green 0.92 μm Polysciences latex beads as an internal standard. 

Samples were then run at high speed (approx. 75 μL min
-1

) for 4 min. with Milli–Q 

water as a sheath fluid. Three groups of phytoplankton (Prochlorococcus, 

Synechococcus and picoeukaryotic algae) were distinguished and enumerated on the 

basis of the differences in their autofluorescence properties and scattering characteristics 

(Olson et al., 1993; Zubkov et al., 1998). Abundances were converted to biomass (µg L
-

1
) using average C-to-cell conversion factors gathered in Simó et al. (2009): 51 ± 18 fg 

C cell
-1

 for Prochlorococcus, 175 ± 73 fg C cell
-1

 for Synechococcus and 1319 ± 813 fg 

C cell 
-1

 for picoeukaryotes.  

1.2.2.6 Heterotrophic prokaryotic abundance (HPA)  

Heterotrophic prokaryotic abundance (HPA) was determined by flow cytometry using 

the same fixing protocol and instrument as for picoplankton. Before analyses, samples 

were thawed, stained with SYBRGreen I (Molecular Probes) at a final concentration of 

10 µM and left in the dark for about 15 min. Samples were run at a low flow rate 

(approximately 15 μL min
-1

) for 2 min with Milli–Q water as a sheath fluid. We added 

10 µL per sample of a 10
5
 mL

-1
 solution of yellow–green 0.92 µm Polysciences latex 

beads as an internal standard. Heterotrophic prokaryotes were detected by their 

signature in a plot of side scatter versus FL1 (green fluorescence). HP were enumerated 

separately as high–nucleic–acid–containing (HNA) and low–nucleic–acid–containing 
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(LNA) cells, and the prokaryote counts presented are the sum of these two types. Data 

were gated and counted in the SSC vs FL1 plot using the BD CellQuest
TM

 software. 

HPA was expressed in cells mL
-1

. Only one replicate was analyzed since standard errors 

of duplicates are usually very low (around 1.5 % at Pernice et al. (2015)). HPA was 

converted into a carbon unit (HP–C) using the conversion factor of 12 fg C cell
-1

. 

Ducklow (2000) summarized the carbon contents of free–living marine bacteria 

reported in the literature for a number of oceanic regions, bays and estuaries. The 

average ± standard deviation for open-ocean regions was 12.3 ± 2.5 fg C cell
-1

. A factor 

of 12 fg C cell
-1

 is equivalent to use the empirical equation proposed by Norland (1993), 

fg C cell
-1

 = 0.12 (µm
3
 cell volume)

0.72
, for an average bacterial biovolume of 0.04 µm

3
. 

1.2.3 Statistical analyses       

We used R software packages lmodel2 and ggplot2 (RStudio Team, 2016) to test for 

covariations and to explore the potential controlling variables of TEP distribution across 

the Atlantic Ocean. We performed pairwise Spearman correlation analyses between 

TEP and POC concentrations. We performed bivariate and multiple regression analyses 

(ordinary least squares, OLS) between TEP concentrations and several physical, 

chemical and biological variables. Data were log transformed to fulfil the requirements 

of parametric tests. Ranged major axis (RMA) regression would have been more 

suitable since there were errors in both our dependent and independent variables. 

However, we decided to perform OLS regressions for a better comparison of slopes 

between our study and those available in the literature. The nonparametric Wilcoxon–

Mann–Whitney test was carried out to compare variables, like TEP and POC, among 

regions. Two main regions were analyzed separately due to remarkable differences in 

nutrient, Chl a and TEP concentration: the open Atlantic Ocean (OAO, n = 30), with 

exclusion of the single sample from the edge of the Canary Coastal Upwelling (CU), 

which had a much higher TEP concentration; and the SWAS (n = 10). 
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1.3 Results  

1.3.1 TEP distribution across the surface Atlantic Ocean 

TEP concentrations ranged from 18.3 to 446.8 µg XG eq L
-1

 along the entire Atlantic 

Ocean transect. Across OAO, CU included, nitrate and phosphate concentrations were 

low and relatively homogeneous (nitrate: 0.47 ± 0.51 µmol L
-1

; phosphate: 0.11 ± 0.06 

µmol L
-1

). Silicate ranged between 0.20 and 1.42 µmol L
-1

, and presented the minimum 

concentrations in the CU station and surroundings, and the maximum concentration at 

station 14. The temperatures ranged from 20.7 to 29.6 ºC (25.6 ± 23.8 ºC), with 

maximum values in the Equatorial Counter Current (~0–20° N, 29.1–29.6 ºC), and 

minimum values around the CU and in the southernmost stations of the OAO (22.6–

23.6 ºC). The salinity ranged between 34.8 and 37.4, with the minimum values in the 

Equatorial Counter Current and the maximum values around 10–30º S. The Chl a 

concentration was low and quite homogeneous (0.36 ± 0.22 mg m
-3

), even at the CU 

(0.25 mg m
-3

). 

In the Northeastern Subtropical Gyre and the Canary Current Coastal (stations 1 to 7, 

Fig. 1.1) Chl a concentration ranged from 0.24 to 0.37 mg m
-3

.  The phytoplankton 

biomass was generally dominated by Prochlorococcus, with an average of 1.68 × 10
5 

± 

0.81 × 10
5
 cells mL

-1
, which corresponded to a biomass of 8.58 ± 4.16 µg C L

-1
. TEP 

concentration in this region ranged from 54.2 to 131.7 µg XG eq L
-1

 (average 73.9 ± 

27.3 µg XG eq L
-1

). In the station 8 we sampled the edge of the CU. The decrease in 

silicate (0.26 µmol L
-1

) was accompanied by a relative increase in diatoms (9.4–fold 

increase) and dinoflagellates (1.3–fold increase) with respect to surrounding stations 

(Fig. 1.2b,e). Prochlorococcus abundance decreased to 9 × 10
3
 cell mL

-1
 and a biomass 

of 0.46 µg C L
-1

. In this station, TEP concentrations were the highest found along the 

whole transect (446.7 µg XG eq L
-1

) but the Chl a concentration (0.25 mg m
-3

) was 

lower than in the neighbouring region. Consequently the TEP:Chl a ratio was the 

highest of the whole transect (1760.4). Moving south, the North Tropical Gyre (stations 

9 to 13) showed an increase in silicate concentration, from 0.20 to 0.79 µmol L
-1

. The 

Chl a concentration ranged from 0.41 to 0.57 mg m
-3

 (Fig. 1.2c). In the northernmost 

part of this region (stations 9 to 11), phytoplankton biomass was dominated by 
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Synechococcus, with an average of 7.7 × 10
4 

± 0.8 × 10
4
 cells mL

-1
, which corresponded 

to a biomass of 13.5 ± 1.4 µg C L
-1

. By contrast, the southernmost stations (12 and 13) 

were dominated by Prochlorococcus, with an average of 2.6 × 10
5
 ± 0.5 × 10

5
 cells mL

-

1
, that corresponded to a biomass of 13.2 ± 2.7 µg C L

-1
 (Fig. 1.2e). TEP concentrations 

were similar to those in the Northeastern Subtropical Gyre and the Canary Current 

Coastal, ranging between 78.1 and 123.9 µg XG eq L
-1

. Station 14, with a relatively 

high temperature (29.0 ºC) and low salinity (35.2) was probably the most influenced by 

the Equatorial Counter Current. In this station, the silicate concentration (1.41 µmol L
-1

) 

was the maximum observed in the whole transect, and there was an increase in 

dinoflagellates and “other microalgae”, and a decrease in Prochlorococcus. The Chl a 

concentration (0.48 mg m
-3

) was similar to the surrounding stations and TEP were 49.4 

µg XG eq L
-1

. Moving further south, in the Western Tropical and the South Tropical 

Gyre (stations 15 to 31) Chl a ranged from 0.20 to 0.41 mg m
-3

 and the silicate 

concentration decreased (0.42–1.39 µmol L
-1

). TEP presented the lowest average values 

of the whole transect, ranging from 25.5 to 80.4 µg XG eq L
-1

. Overall in the OAO 

(excluding CU), TEP ranged from 18.3 to 131.7 µg XG eq L
-1 

(average 59.9 ± 27.4 µg 

XG eq L
-1

) and the TEP:Chl a ratio ranged between 81 and 360 (average 183 ± 56; 

Table 1.1). 

The southernmost part of the cruise transect corresponded to the SWAS (stations 32 to 

41). In this region, temperature (7.6–13.9 ºC) and salinity (32.6–33.6) were lower on 

average than those found in the OAO (Table 1.1). The SWAS could be further divided 

into two regions according to different inorganic nutrient (nitrate and phosphate) 

concentrations (p < 0.05) and phytoplankton composition. The northern SWAS (stations 

32 to 36) presented lower nitrate (0.16 to 4.15 µmol L
-1

) and phosphate (0.31 to 0.62 

µmol L
-1

) concentrations than the southern SWAS (stations 37 to 41; nitrate: 2.16 to 

8.92 µmol L
-1

, phosphate: 0.51 to 0.89 µmol L
-1

). Silicate was more homogeneous 

throughout (0.31 to 1.27 µmol L
-1

). Chl a concentration across the entire SWAS (1.07–

3.75 mg m
-3

) was significantly higher than in the OAO, with no major differences 

between the northern and the southern parts. In most of the northern SWAS, 

phytoplankton biomass was dominated by “other microalgae”, with an average of 10.2 

× 10
5
 ± 6.1 10

5
 cells L

-1
, which corresponded to a biomass of 43.7 ± 25.8 µg C L

-1
. In 

station 35, an increase in diatoms (58121 cells L
-1

 and a biomass of 145.2 µg C L
-1

) and 

dinoflagellates (44896 cells L
-
1 and a biomass of 3.3 µg C L

-1
) was observed, 
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coinciding with a decrease in silicate (0.32 µmol L
-1

). Here in northern SWAS, TEP 

ranged from 98.6 to 427.2 µg XG eq L
-1

, with the maxima in stations 34 and 35 (Fig. 

2f). In the southern SWAS (stations 37 to 41), phytoplankton biomass was dominated 

by picoeukaryotes, with an average of 6.34 × 10
4
 ± 1.93 × 10

4
 cells mL

-1
, which 

corresponded to a biomass of 83.6 ± 25.5 µg C L
-1

. TEP concentration ranged 168.6–

395.7 µg XG eq L
-1

. Overall in the SWAS, TEP ranged from 98.6 to 427.2 µg XG eq L
-

1 
(average 255.7 ± 130.4 µg XG eq L

-1
)  and  the TEP:Chl a ratio ranged from 31 to 165 

(average 97 ± 42) (Table 1.1).   

Table 1.1. Mean, standard deviation and range of temperature (ºC), salinity, 24 h-accumulated solar 

irradiance (W m-2), nitrate (µmol L-1), silicate (µmol L-1), phosphate (µmol L-1), Chl a (mg m-3), POC 

(µmol L-1), HPA (× 105 cells mL-1), TEP (µg XG eq L-1) and TEP:Chl a in the OAO, the edge of the 

Canary Coastal Upwelling (CU) and the SW Atlantic Shelf. 

 OAO CU SW Atlantic Shelf 

 Mean ± SD (ranges) n Value (n = 1) Mean ± SD (ranges) n 

Temperature (ºC) 26.0 ± 2.1 (22.6–29.6) 30 23.6 10.7 ± 2.2  (7.6–13.9) 9 

Salinity 36.4 ± 0.6 (34.8–37.4) 30 36.1 33.2 ± 0.3 (32.6–33.6) 9 

Solar irradiance 24 h (W m-2) 265 ± 73  (144–362) 26 – 369 ± 52  (264–425) 10 

Nitrate (µmol L-1) 0.49 ± 0.53 (0.09–0.77) 30 0.13 4.08 ± 3.08 (0.16–8.9) 10 

Silicate (µmol L-1) 0.74 ± 0.27 (0.20–1.41) 30 0.26 0.63 ± 0.35 (0.31–1.27) 10 

Phosphate (µmol L-1) 0.11 ± 0.06 (0.05–0.18) 30 0.16 0.57 ± 0.21 (0.31–0.89) 10 

Chl a (mg m-3) 0.32 ± 0.10 (0.20–0.57) 29 0.25 2.73 ± 0.87 (1.07–3.75) 10 

POC (µmol L-1) 4.2 ± 1.9 (1.7–7.1) 12 – 16.6 ± 15.8 (6.8–44.3) 5 

HPA (× 105 cells mL-1) 7.83 ± 2.16 (4.34–14.90) 30 14.56 29.04 ± 5.39 (13.00–70.20) 10 

TEP (µg XG eq L-1) 59.8 ± 27.4 (18.3–131.7) 30 446.8 255.7 ± 130.4 (98.6–427.2) 10 

TEP:Chl a 183.1 ± 55.8 (81.2–359.7) 29 1760.4 97.2 ± 42.1 (30.8–164.9) 10 

 

1.3.2 TEP contribution to POC  

TEP and POC covaried significantly and positively across the entire TransPEGASO 

transect (Spearman rs analysis, r = 0.91, p< 0.01, n = 17). The contribution of TEP–C to 

the POC pool (TEP–C%POC) ranged between 34 and 103 % in the OAO (average 66 ± 

19 %), and between 28 and 110 % in the SWAS (average 73 ± 36 %). POC was not 

analyzed in the CU (Fig. 3). To better explore the importance of TEP–C with respect to 
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other major quantifiable POC pools, we estimated phytoplankton biomass (phyto–C) 

and HP biomass (HP–C) throughout the whole cruise (Fig. 1.2). It is worth mentioning 

that POC also includes other fractions of nonliving non–TEP organic carbon (e.g., cell 

fragments and Coomassie stainable particles), but phytoplankton and heterotrophic 

prokaryotes are generally considered the most abundant in open sea water (Ortega-

Retuerta et al., 2009b; Yamada et al., 2015).  TEP–C contributed the most to the POC 

pool in the OAO, where it represented twice the share of phyto–C and HP–C. In the 

SWAS, conversely, TEP–C was not significantly different than phyto–C, and was 3 

times higher than HP–C (Fig. 1.3).   

1.3.3 Relationship to other variables 

TEP were significantly and positively related to Chl a along the entire transect (R
2
 = 

0.61, p< 0.001, n = 39, table 1.3). The regression equation for log converted TEP vs Chl 

a was log TEP  = 2.09 (± 0.04) + 0.66 (± 0.08) × log Chl a. Considering the two study 

regions separately, only in the OAO was the relationship significant, with a higher slope 

than in the entire transect (log TEP = 2.31 (± 0.10) + 1.13 (± 0.20) × log Chl a; R
2
 = 

0.56, p< 0.001, n = 29).  

Across the whole transect, TEP presented a significant (p< 0.05) positive relationship 

with total phytoplankton biomass (Table 1.3) and with some phytoplankton biomass 

groups: Synechococcus (R
2
 = 0.30), picoeukaryotes (R

2
 = 0.49), diatoms (R

2
 = 0.19) and 

“other microalgae” (R
2
 = 0.27), and with HPA (R

2
 = 0.60). TEP were negatively related 

to silicate (R
2
 = 0.19) and coccolithophores (R

2
 = 0.15). Some differences arose from 

examining the two regions separately. Within the OAO, TEP presented a significant (p< 

0.001) positive relationship with Chl a (R
2
 = 0.56), total phytoplankton biomass (R

2
 = 

0.47) and some phytoplankton groups (Synechococcus, picoeukaryotes, diatoms, 

dinoflagellates and “other microalgae”, Table 1.3), but not with HPA. TEP showed a 

significant (p< 0.001) negative relationship with the previous 24 h averaged solar 

irradiance (R
2
 = 0.43, Fig. 1.4). Multiple regression analyses showed the combined 

positive effect of Chl a and HPA on TEP distribution in the OAO (Table 1.4). By 

contrast, within the SWAS, TEP only presented a significant (p< 0.05) positive 



Chapter 1 

 
59 

relationship with total phytoplankton biomass (R
2
 = 0.62) and HNA (R

2
 = 0.46, Table 

1.3). 

1.4 Discussion 

1.4.1 TEP across the surface Atlantic Ocean 

We present the first distribution of surface (4 m) TEP concentration along a latitudinal 

gradient in the Atlantic Ocean, covering both open sea and shelf waters. It is worth 

mentioning that vertical variability within the top surface meters (< 4 m) has sometimes 

been observed (Wurl et al., 2009), but 4 m is usually considered “surface ocean” in 

studies where samples are collected with either an oceanographic rosette or an 

underway pumping system. The existing information about TEP distribution in surface 

waters of the open oceans is compiled in Table 1.2.  The TEP concentrations we 

measured across the OAO (CU included) generally fall within the range reported in 

other studies from the open ocean (Table 1.2). However, our levels are higher than those 

observed in the Mediterranean Sea (Ortega-Retuerta et al., 2010; Ortega-Retuerta et al., 

2017), Pacific Ocean (Ramaiah et al., 2005; Kodama et al., 2014; Iuculano et al., 2017c) 

and one study in the Northwestern Atlantic Ocean (Cisternas-Novoa et al., 2015), and 

lower than that reported in the Eastern Mediterranean Sea (Bar-Zeev et al., 2011). We 

believe that one of the reasons for the higher values found in our study compared with 

these previous studies is the depth. Mean TEP values in some of them (Ortega-Retuerta 

et al., 2010; Kodama et al., 2014; Cisternas-Novoa et al., 2015; Ortega-Retuerta et al., 

2017) correspond to the above mixed layer depth or from 0 to 100 or 200 m. As TEP 

tend to accumulate in the surface and our values correspond only to the surface (4 m), 

this could explain the higher values obtained in our dataset. Another reason seems to be 

the different Chl a concentrations, as the main TEP producer is phytoplankton. Chl a 

concentration in the OAO (0.4 ± 0.2 mg m
-3

 (0.2–0.6 mg m
-3

)) was generally higher 

than in the other studies referred in the Table 1.2. For example, in Iuculano et al. 

(2017c) Chl a ranged 0.05–0.31 mg m
-3

, and in (Kodama et al., 2014) it averaged 0.05 ± 

0.01 mg m
-3

. We also cannot discard either that differences in TEP chemical 

composition could cause differences in staining capacity. 
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We found maximum TEP concentrations in the regions with high nutrient supply, 

namely in the station located in the CU and within the SWAS. Ours are the first TEP 

concentrations ever measured in the SWAS (Table 1.1), and only three more studies 

have reported TEP concentrations in coastal or shelf waters of the Atlantic Ocean 

(Harlay et al., 2009; Harlay et al., 2010; Jennings et al., 2017).  The SWAS is a high-

nutrient region due to the arrival of cold nutrient-rich Subantarctic water with the 

Malvinas Current. This current collides near 40 ºS with the southward-flowing Brazil 

Current (Gordon, 1989; Piola and Gordon, 1989; Peterson and Stramma, 1991; Palma et 

al., 2008). The nutrient–rich water in the region is responsible for the proliferation of 

phytoplankton and HP, which could partly explain the high TEP concentrations in this 

region. It is also known that large freshwater discharges occur in the shelf (Piola, 2005). 

These discharges could bring allochtonous HP directly to the shelf or bring DOM loads, 

which would stimulate autochtonous microbes. Besides, DOM inputs associated with 

freshwater discharges could also contain TEP and their precursors. Although no 

previous information on TEP distribution exists for this area, previous studies in 

similarly productive areas or during phytoplankton blooms already observed high TEP 

concentrations (Long and Azam, 1996; Harlay et al., 2009; Klein et al., 2011).  The TEP 

levels we measured at the SWAS are generally within the range of those reported for 

coastal areas (Passow and Alldredge, 1995; Passow et al., 1995a; Riebesell et al., 1995; 

Kiorboe et al., 1996; Hong et al., 1997; Jähmlich et al., 1998; Wild, 2000; Ramaiah et 

al., 2001; Engel et al., 2002b; García et al., 2002; Radic et al., 2005; Scoullos et al., 

2006; Sugimoto et al., 2007; Harlay et al., 2009; Wurl et al., 2009; Harlay et al., 2010; 

Fukao et al., 2011; Klein et al., 2011; Sun et al., 2012; Van Oostende et al., 2012; 

Dreshchinskii and Engel, 2017; Jennings et al., 2017). Only two studies, in the western 

Baltic Sea and the Dona Paula Bay (Arabian Sea), reported TEP levels higher than ours  

(Engel, 2000; Bhaskar and Bhosle, 2006).  
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Table 1.2. Review of open–ocean surface TEP concentrations (mean and ranges; µg XG eq L-1), Chl a (mean and ranges; mg m-3) and TEP:Chl a ratio (mean ± SE and/or 

range) available in the literature. bdl: below detection limit. 

Geographic area Conditions Sampling date Depth (m) TEP mean (range) 

(µg XG eq. L-1) 

Chl a mean (range) 

(mg m-3) 

TEP:Chl a mean 

(range) 

Reference 

Fram Strait (Arctic Ocean) Bloom and non 

bloom 

Summer 2009–2012 

and 2014 (time 

series) and summer 

2014 (transect) 

5–150 75 ± 78  

(5–517) 

0–4.2 45 ± 3–107 ± 10 Engel et al. (2017) 

Arctic Ocean 

 

 

Eastern tropical and Eastern 

subarctic, North Pacific 

Ocean 

Sea ice covered 

 

 

Eutrophic and 

oligotrophic 

 

Autumn and Spring 

2009–2010 

 

Summer 2009 

Above mixed 

layer depth  

 

Above mixed 

layer depth  

 

 

125–1750a 

 

 

78–970a 

 

0.1–7.8b 

 

 

0.3–1.7b 

 

– 

 

 

– 

Wurl et al. (2011a) 

 

Wurl et al. (2011) 

Western subarctic and North 

Pacific Ocean 

 

Non bloom 

 

Summer 2001 5 40–60 0.2–1.9 – Ramaiah et al. (2005) 

Northeast Atlantic Ocean Different bloom 

stages 

Summer 1996 

 

Autumn 1996 

0–70 

 

0–50 

10c–124 

 

28.5 ± 10.2 

0.1–1.1c,d 

 

0.07–0.6 

49–104 

 

61 

 

Engel (2004) 

Northeast Atlantic Ocean Late stages 

bloom 

Spring 2005 0–10 20–420c 

 

0.1–3c,e – Leblanc et al. (2009) 

Western tropical North 

Pacific Ocean 

 

Non bloom 

Oligotrophic 

Spring 2013 Surface mixed 

layer (36 ± 

12) 

43 ± 7 (18–67c) 0.05 ± 0.01 832 ± 314 Kodama et al.        ( 2014) 

Western North Atlantic 

Ocean 

Oligotrophic Spring 2014 1 161–460 0.1–1c – Jennings, et al.  

( 2017) 

Western North Atlantic 

Ocean and Sargasso Sea 

 

Eutrophic and 

oligotrophic 

Spring 2014 2–5 100–200c ̴0.1–2.2 – Aller (2017) 

Sargasso Sea Oligotrophic Spring, summer, 

autumn 2012 and 

spring 2013 

0–100 21 ± 2– 57 ± 3  0.05–1 c – Cisternas–Novoa et al. 

(2015) 

Mediterranean Sea Non bloom Spring 2007 Upper mixed 29 (19–53) bdl–1.8f  484 (178–1293) Ortega–Retuerta et al. 
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layer (2010) 

 

Western Mediterranean Sea Oligotrophic Spring 2012 0–200 16–25c,g,h 0.1–0.7c,h – Ortega–Retuerta et al. 

(2017) 

Eastern Mediterranean Sea 

 

Oligotrophic 

 

Winter–Autumn 

2008 

Summer 2009 

5 345 ±143.2 (116–420) 0.04 ± 0.01 (0.04–

0.07) 

– Bar–Zeev et al.      (2011) 

Gulf of Aqaba (Eilat, Israel) Oligotrophic Spring 2008 5 110–228c 

 

0.3–1.3i – Bar-Zeev et al. (2009) 

Tropical Atlantic Ocean 

 

Pacific Ocean 

Oligotrophic 

 

 

Oligotrophic 

Spring–Summer 

2011 

 

 

Spring–Summer 

2011  

3 

 

 

3 

8.18 ± 4.56 

 

 

24.45 ± 2.3 

 

0.05–0.31 78.6 ± 9.3 

 

 

357 ± 127 

 

 

Iuculano et al. (2017b) 

 

Iuculano et al. (2017b) 

Global Subtropical Atlantic, 

Indian and Pacific Oceans 

Non bloom 

 

Winter 2010–

Summer 2011 

0–200 

 

14.0 (0.4–173.6) 

 

0–3c – Mazuecos (2015) 

 

North Indian Ocean 

-Arabian Sea  

-Bay of Bengal  

 

Eutrophic  

-August 1996 

-September 1996 

 

0–1000 

 

 

-60 j,k (< 5–102j) 

-7–13c,j 

 

– – Kumar et al. (1998), 

Ramaiah et al. (2000) 

OAO 

OAO (CU excluded) 

CU 

Oligotrophic 

 

Autumn 2014 4 

 

 

72 ± 74 (18–446) 

60 ± 27(18–132) 

446 

0.4 ± 0.2 (0.2–0.6) 

0.3 ± 0.1 (0.2–0.6) 

0.25 

236 ± 293 (81–1760) 

183 ± 56 (81–360) 

1760 

This study 

 

Ross Sea  

 

Bloom Spring 1994 Surface 308 (0–2800) 3.6 (0.3–8.8) 85 Hong et al. (1997) 

a TEP concentrations were given in µmol C L-1. For transformation into XG units, the Engel and Passow (2001) conversion factor of 0.51 μg TEP-C L−1 per µg XG eq L-1 was 

applied. b 1–8 m. c extracted from graphs. d 5 m. e TChl a. f 0–200 m. g Depth–averaged TEP. h stations 6–9. i DCM (30–40 m). j TEP concentrations were given in milligram 

equivalent of alginic acid L-1 and absorbance was measured at 745 nm instead of 787 nm. k 0–50 m. 
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Figure 1.2: Variations of sea surface temperature (SST, ºC) and salinity (panel (a)), nitrate, silicate and 

phosphate (µmol L-1) (panel (b)), Chl a (mg m-3) and POC (µmol L-1) (panel (c)), biomass of 

phytoplankton and HP (µg CL-1) (panel (d)), biomass of  Prochlorococcus, Synechococcus, 

picoeukaryotes, diatoms, dinoflagellates,  coccolithophores and “other microalgae” (µg CL-1) (panel (e): 

For OAO use left axis, for SWAS use right axis) and TEP (µg XG eq L-1) (panel (f)) in the 

TransPEGASO cruise. 
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1.4.2 TEP as an important contributor to ocean surface POC  

The significant positive correlation between TEP and POC observed in our study 

highlighted the importance of TEP-determining POC horizontal variations in the surface 

Atlantic Ocean, suggesting a high contribution of TEP to this pool.  A few values of 

TEP–C%POC were unrealistically higher than 100 %, a feature that has also been 

observed in other studies (Engel and Passow, 2001; Bar-Zeev et al., 2011; Yamada et 

al., 2015). This suggests the inaccuracy of the use of standard TEP–to–carbon 

conversion factors (CFs, 0.51 μg TEP–C L
−1

 (μg Xeq. L
−1

)
 
in our case). Therefore there 

is a need to define specific CFs for diverse regions or environmental conditions. 

Nonetheless, an alternative explanation for the apparent oversizing of the relative TEP–

C pool may be strictly methodological: TEP are determined on filters of 0.4 µm pore 

size, whereas POC is measured on glass fibre filters with nominal pore size of 0.7 µm. It 

is plausible, thus, that some of the smaller TEP particles are not taken into account in 

the POC measurement.  

All in all, our results clearly show that TEP–C constituted an important portion of the 

POC pool in the Atlantic Ocean (from 28 to 110 %). This contribution is comparable to 

that reported in the eastern Mediterranean Sea (Bar-Zeev et al., 2011; Parinos et al., 

2017), lower than in the western Arctic (Yamada et al., 2015), but higher than in the 

Northeast Atlantic Ocean (Harlay et al., 2009; Harlay et al., 2010).  Both in the OAO 

and SWAS, TEP comprised the largest share of the POC pool, with phyto–C being 

equal or the second most important contributor to POC (Fig. 1.3). Phyto–C surpassed 

TEP–C in only one station in the WAS. The contribution of phyto–C and HP–C to the 

POC pool should be considered with caution, as the glass fibre filters (nominal pore size 

0.7 µm) used to analyze POC could have not retained all the small phytoplankton 

organisms and prokaryotes (Gasol and Morán, 1999), causing underestimation of the 

actual POC pool. Furthermore, conversion factors carry quite an uncertainty, as pointed 

out in the Methods section. 

A previous study in a eutrophic system reported TEP–C as the dominant POC 

contributor(Yamada et al., 2015),whereas others found that phyto–C represented the 

largest share to POC compared to TEP–C and HP–C (Bhaskar and Bhosle, 2006; 
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Ortega-Retuerta et al., 2009b; de Vicente et al., 2010). With our results taken all 

together, we hypothesize that in oligotrophic conditions TEP–C is the predominant POC 

fraction, because nutrient limitation favors TEP production by phytoplankton and limits 

TEP consumption by bacteria. Conversely, in eutrophic conditions, the predominant 

POC fraction depends on many variables like the community composition, the bloom 

stage and sources of TEP other than phytoplankton. 

Figure 1.3: Average and standard deviation of the contribution of TEP, phytoplankton and HP to the 

POC pool (%) in the OAO and the SWAS. 

1.4.3 Main drivers of TEP distribution in the surface ocean 

In order to better understand and even predict the occurrence of TEP in the surface 

ocean, it is important to describe their distribution together with those of their main 

putative sources (phytoplankton and heterotrophic prokaryotes), sinks and 

environmental modulators, across large–scale gradients. However, most of the previous 

studies of TEP in the Atlantic Ocean were restricted to local areas, and, to our 

knowledge, only one included a complete description of these variables together in a 

long transect  (Mazuecos, 2015).   
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Our dataset suggests that phytoplankton is the main driver of TEP distribution in the 

surface Atlantic Ocean at the horizontal scale, since significant positive relationships 

were observed between TEP and both Chl a and phytoplankton biomass (Table 1.3). It 

is worth noting that Chl a was a good estimator of phytoplankton biomass when the 

entire cruise was considered, as these variables were tightly related (R
2
 = 0.79, p value 

< 0.001, n = 36). The slope of the log converted TEP–Chl a relationship for the whole 

study (β = 0.66 ± 0.08, Table 1.3) was within the upper range amongst published data 

(Fig. 1.5), and the slope in the OAO (β = 1.13 ± 0.20) was the highest reported so far 

(Table 1.3, Fig. 1.5). In the SWAS, the TEP–Chl a relationship was not significant (p 

value > 0.05), yet it was for TEP–phytoplankton biomass (see below).  

TEP:Chl a ratios were significantly (p < 0.001) higher in the OAO (both including or 

excluding the CU) than in the SWAS (Table 1.1), with the maximum value in the 

station located in the CU. TEP:Chl a values in the OAO (CU included) were 

comparable to those observed in other oligotrophic areas (Riebesell et al., 1995; García 

et al., 2002; Prieto et al., 2006; Harlay et al., 2009; Ortega-Retuerta et al., 2010; 

Kodama et al., 2014; Iuculano et al., 2017c; Parinos et al., 2017)  (Table 1.2), while the 

values in the SWAS were comparable to those reported in eutrophic waters (Hong et al., 

1997; Ramaiah et al., 2001; Engel et al., 2002b; Corzo et al., 2005; Ortega-Retuerta et 

al., 2009b). The higher TEP:Chl a ratios in oligotrophic waters (Prieto et al., 2006) are 

related to nutrient scarcity, which is suggested to enhance TEP production by 

phytoplankton and prokaryotes (Myklestad, 1977; Guerrini et al., 1998; Mari et al., 

2005; Beauvais et al., 2006). The highest TEP:Chl a ratio of the entire transect observed 

in the station located in the CU was probably associated with the high relative 

abundance of diatoms and dinoflagellates. These groups are known to be strong TEP 

producers (Passow and Alldredge, 1994), and besides, previous studies have shown that 

TEP production rates reach maxima at late stages of the growth cycle, once nutrients 

have been exhausted (Corzo et al., 2000; Pedrotti et al., 2010; Borchard and Engel, 

2015). In the CU, the relatively low Chl a level along with low silicate concentrations 

suggests that the upwelling–triggered bloom maximum had already passed, which 

resulted in a high TEP:Chl a ratio. Although POC was not measured in the CU, high 

TEP:Chl a suggests a high proportion of TEP with respect to other organic particles. In 

the SWAS, the lower TEP:Chl a ratios could be related with a lower rate of TEP 

production under relatively replete nutrient conditions. Extending our comparison to the 
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literature, the TEP:Chl a ratio is generally higher in oligotrophic regions (Prieto et al., 

2006; Ortega-Retuerta et al., 2010; Kodama et al., 2014; Iuculano et al., 2017c) than in 

eutrophic regions (Hong et al., 1997; Engel et al., 2002b; Corzo et al., 2005; Ortega-

Retuerta et al., 2009b; Klein et al., 2011; Engel et al., 2017). 

In the OAO, the phytoplankton groups that showed a significant (p < 0.05) positive 

relationship to TEP and hence were candidates to be considered as the main producers 

of TEP or their precursors were Synechococcus, picoeukaryotes, diatoms, 

dinoflagellates and “other microalgae” (Table 1.3). All the abovementioned groups have 

been reported to produce TEP (see references in the introduction). Conversely, 

coccolithophores and Prochlorococcus did not present a significant relationship with 

TEP. It has been shown in cultures that coccolithophores do not produce high amounts 

of TEP (Passow, 2002a), and a previous study showed temporal disconnections between 

coccolithophores and TEP maxima (Ortega-Retuerta et al., 2018). However, in a 

previous study in the Atlantic Ocean, Leblanc et al. (2009) found an association of TEP 

with coccolithophores.  

The oligotrophic ocean covers a big portion of the global ocean and it is mostly 

dominated by picophytoplankton (Agawin et al., 2000), chiefly Prochlorococcus and 

Synechococcus (Partensky et al., 1999). (Iuculano et al., 2017c) reported relatively high 

rates of TEP production by Prochlorococcus in culture, and Mazuecos (2015) found a 

significant and positive relationship of TEP with Prochlorococcus abundance in the 

low-latitude oceans. The absence of significant covariation between TEP and the 

abundant Prochlorococcus in our study suggests that these picophytoplankters are not 

the main TEP producers, or their production is strongly modulated by environmental 

conditions.  It is remarkable that, amongst the phytoplankton groups of the present 

study, Synechococcus biomass presented the highest correlation (R
2
 = 0.72) with TEP 

concentration in the OAO. Deng et al. (2016) demonstrated TEP production by marine 

Synechococcus in a laboratory study, but only Mazuecos (2015) had previously found a 

significant and positive relationship (R
2
 = 0.26–0.36)  between these two variables in 

the ocean, particularly in the Atlantic, North Pacific and Indian oceans. This author 

actually found that Synechococcus was the phytoplankton group with the highest 

relationship with TEP concentration. Our study supports the importance of 

Synechococcus as a TEP source in the oligotrophic ocean.  



Chapter 1 

 

68 

Table 1.3. Regression equations and statistics describing the relationship between TEP and different variables throughout the TransPEGASO cruise (note all variables were 

log10–transformed). B= biomass. 

  Open Atlantic Ocean (CU excluded) SW Atlantic Shelf All 

Dep. Var. Ind. Var. R2 p intercept slope n R2 p intercept slope n R2 p intercept slope 

TEP SST 0.07 0.16   29 0.06 0.51   9 0.48 < 0.001 3.80 -1.43 

Salinity 0.26 < 0.05 21.78 -12.84 29 0.002 0.90   9 0.57 < 0.001 25.13 -14.97 

Solar irradiance 24 h 0.43 < 0.001 5.67 -1.04 30 0.08 0.40   10 0.02 0.33   

Nitrate 0.06 0.21   30 0.002 0.91   10 0.13 0.02 1.97 0.23 

Phosphate 0.04 0.29   30 0.02 0.69   10 0.37 < 0.001 2.39 0.58 

Silicate 0.07 0.15   30 0.24 0.15   10 0.19 < 0.005 1.75 -0.80 

Chl a 0.56 < 0.001 2.31 1.13 29 0.16 0.24   10 0.61 < 0.001 2.09 0.66 

HPA 0.04 0.31   29 0.36 0.06   10 0.60 < 0.001 -4.28 1.03 

HNA 0.01 0.57   29 0.46 0.03 -0.44 0.46 10 0.51 < 0.001 -2.31 0.75 

LNA 0.02 0.43   29 0.02 0.71   10 0.17 < 0.05 -1.96 0.68 

Prochlorococcus B 0.002 0.80   30 - -    - -   

Synechococcus B 0.72 < 0.001 1.72 0.28 30 0.005 0.84   10 0.30 < 0.001 1.87 0.34 

Picoeukaryotes B 0.15 < 0.05 1.68 0.23 30 0.005 0.84   10 0.49 < 0.001 1.71 0.37 

Diatoms B 0.37 < 0.001 1.96 0.26 27 0.40 0.07 2.43 0.14 9 0.23 < 0.05 2.10 0.24 

Dinoflagellates B 0.20 < 0.05 1.70 0.42 27 0.30 0.13   9 0.09 0.07   

Coccolithophores B 0.005 0.73   27 0.002 0.90   9 0.14 < 0.05 1.75 -0.20 

“Other microalgae” B 0.38 < 0.001 1.66 0.37 27 0.0002 0.97   9 0.27 < 0.001 1.79 0.27 

Phytoplankton B 0.53 < 0.001 1.01 0.61 26 0.73 < 0.05 0.24 1.03 9 0.69 < 0.001 0.97 0.65 

R2 explained variance, n sample size, p level of significance 
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In the SWAS, unlike in the OAO, the significant relationship between TEP and the total 

phytoplankton biomass (R
2
 = 0.62) was not accompanied by any relationship to any 

phytoplankton group (Table 1.3). This could be due to the high variability of the 

phytoplankton composition in the SWAS stations. Since many phytoplankton taxa are 

capable of TEP production, it is difficult to discern one group playing the main role. 

Moreover, as mentioned before, in these shelf waters TEP formation could have been 

further modulated by aggregation of colloids carried by freshwater discharges. 

Regarding the influence of abiotic factors in TEP distribution, we found a negative 

relationship (R
2
 = 0.43) between TEP concentration and the 24 h averaged solar 

irradiance in the OAO (Fig. 1.4). The OAO stations were exposed to high solar 

radiation due to water transparency and their location in tropical and subtropical 

regions. Ultraviolet (UV) radiation causes TEP loss by photolysis (Ortega-Retuerta et 

al., 2009a) and inhibits TEP formation from precursors (Orellana and Verdugo, 2003). 

However, it has also been proved that solar radiation harms picophytoplanktonic cells 

through photobiological stress, inducing TEP production (Agustí and Llabrés, 2007; 

Iuculano et al., 2017c). Our results suggest that the roles of UV radiation in breaking up 

TEP and/or limiting their formation from precursors overcome UV stress–induced TEP 

production.  

 

 

Figure 1.4: Relationship between the 24 hour–accumulated (previous to sampling) solar irradiance (W m-

2) and TEP (µg XG eq. L-1) in the OAO (CU sample excluded). The linear regression line is plotted and 

the equation indicated. 
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The role of HPs as potential drivers of TEP distribution is not straightforward, since 

their net effect on TEP accumulation depends on local conditions. Across the entire 

transect, TEP concentration was significantly (p < 0.001) and positively related to HPA 

(Table 1.3). However, the relationship was not significant considering the regions 

separately, and only in the SWAS were TEP significantly (p< 0.05) and positively 

related to HNA, considered to be a proxy of the more active cells (Servais et al., 1999; 

Lebaron et al., 2001). This relationship in the SWAS could indicate that HPs used TEP 

as a significant carbon source or that both HPs and TEP were controlled by the same 

drivers, such as the presence of dissolved polysaccharides, which are substrates for HP 

as well as TEP precursors (Mari and Kiorboe, 1996). In the OAO, despite the lack of a 

paired relationship between TEP and HPA, multiple regression analyses showed that 

both phytoplankton and HPs contributed significantly to explain TEP concentration 

variance (Table 1.4).  

In summary, our study describes for the first time the horizontal distribution of TEP 

across a north–south transect in the Atlantic Ocean. TEP constituted a large portion of 

the POC pool, larger than phytoplankton at most stations and always larger than 

heterotrophic prokaryotic biomass. This supports the important role of TEP in the 

carbon cycle. The drivers of TEP distribution were primarily phytoplankton and, to a 

lesser extent, heterotrophic prokaryotes among sources, with Synechococcus playing an 

outstanding role in the oligotrophic ocean. In the oligotrophic ocean, solar irradiance 

was a major identifiable sink. We call for the need to carry out more extensive studies in 

the ocean, across both space and time, in order to better predict the occurrence of TEP 

and incorporate diagnostic relationships in model projections. These diagnostic studies 

must be combined with further process studies if we are to relate TEP concentrations to 

important biogeochemical processes such as microbial colonization of particles, organic 

matter export to the deep ocean, gas exchange at the air–water interface and organic 

aerosol formation. 
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Table 1.4. Results of multiple regression analyses between TEP and combined variables, all log10–transformed. 

  OAO (CU excluded)  SWAS  All  

Dep. 

Var. 

Ind.Var. Partial 

coefficient 

Partial  

p  

R2 p Partial 

coefficient 

Partial 

p  

R2 p Partial 

coefficient 

Partial 

p  

R2 p 

TEP 

 

Phyto B 

HPA 

0.64 

0.21 

< 0.001 

0.58 

0.60 

 

< 0.001 0.82 

0.38 

< 0.05 

0.13 

0.66 

0.74 

< 0.05 

 

0.52 

0.34 

< 0.001 

0.08 

0.73 

 

< 0.001 

 

 

 Phyto B 

HNA 

0.67 

0.09 

< 0.001 

0.59 

0.59 

 

< 0.001 0.91 

0.08 

0.05 

0.70 

0.74 

 

0.65 

 
0.55 

0.28 

 

< 0.001 

< 0.05 

 

0.75 

 

< 0.001 

 

 Chl a 

HPA 
1.26 

0.56 

< 0.001 

< 0.05 

0.67 < 0.001 0.48 

0.59 

0.26 

0.08 

0.33 0.10 

 
0.39 

0.54 

< 0.005 

< 0.01 

 

0.66 < 0.001 

 

 Chl a 

HNA 

1.28 

0.20 

< 0.001 

0.20 

0.60 < 0.001 0.30 

0.42 

0.48 

0.06 

0.36 0.08 0.47 

0.37 

< 0.001 

< 0.01 

0.67 < 0.001 
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Figure 1.5: Relationship between TEP and Chl a concentration from the TransPEGASO cruise, with the 

linear regression line (regression equation in the text). Two regions are distinguished: open Atlantic 

Ocean (OAO, CU included, filled circles) and SW Atlantic Shelf (SWAS, empty circles). Regression 

lines from the literature are also shown for comparison. α and β indicate the y intercept and slope, 

respectively; log TEP (µg XGeq. L-1) = α + β × log Chl a (mg m-3); [a] α = 2.45 and β = 0.33, (Engel, 

1998 in Passow, 2002a); [b]  α = 2.25 and β = 0.65, (Hong et al., 1997); [c] α = 2.27 and β = 0.24, 

(Yamada et al., 2015); [d] α = 2.06 and β = 0.50, (Ramaiah and Furuya, 2002); [e] α = 1.63 and β = 0.39, 

(Passow and Alldredge, 1995); [f] α = 1.63 and β = 0.32, (Corzo et al., 2005); [g] α = 1.08 and β = 0.38, 

(Ortega–Retuerta et al., 2009b). 
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Abstract   

Transparent exopolymer particles (TEP) are an abundant class of suspended organic 

particles, mainly formed by polysaccharides, which play important roles in 

biogeochemical and ecological processes in the ocean. In this study we investigated 

horizontal and vertical TEP distributions (within the euphotic layer, including the upper 

surface) and their short-term variability along with a suite of environmental and 

biological variables in four distinct regions of the Southern Ocean. TEP concentrations 

in the surface (4 m) averaged 102.3 ± 40.4 µg XG eq L
-1

 and typically decreased with 

depth. Chlorophyll a (Chl a) concentration was a better predictor of TEP variability 

across the horizontal (R
2
= 0.66, p< 0.001) and vertical (R

2
= 0.74, p< 0.001) scales than 

prokaryotic heterotrophic abundance and production. Incubation experiments further 

confirmed the main role of phytoplankton as TEP producers. The highest surface TEP 

concentrations were found north of the South Orkney Islands (144.4 ± 21.7 µg XG eq L
-

1
), where the phytoplankton was dominated by cryptophytes and haptophytes; however, 

the highest TEP:Chl a ratios were found south of these islands (153.4 ± 29.8 µg XG eq 

(µg Chl a)
-1

, compared to a mean of 79.3 ± 54.9 µg XG eq (µg Chl a)
-1

 in the whole 

cruise, in association with haptophyte dominance, proximity of sea ice and high 

exposure to solar radiation. TEP were generally enriched in the upper surface (10 cm) 

respect to 4 m, despite a lack of biomass enrichment, suggesting either upward transport 

by positive buoyancy or bubble scavenging, or higher production at the upper surface 

by light stress or aggregation. TEP concentrations did not present any significant cyclic 

diel pattern. Altogether, our results suggest that photobiological stress, sea ice melt and 

turbulence add to phytoplankton productivity in driving TEP distribution across the 

Antarctic Peninsula area and Atlantic sector of the Southern Ocean.  
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2.1 Introduction    

Transparent exopolymer particles (TEP) are gel-like organic particles stainable with 

Alcian Blue, a specific dye for acidic polysaccharides (Alldredge et al., 1993), that have 

deserved attention due to their influence in biogeochemical and ecological processes 

(Passow, 2002b). TEP are partly formed by the abiotic self-assembly from dissolved 

precursors (Chin et al., 1998; Orellana and Verdugo, 2003), thus connecting the 

dissolved to particulate organic matter continuum (Engel et al., 2004b). In addition, 

TEP affect the biological carbon pump, not only because TEP by themselves may 

comprise a mean of 5-10 % of primary production synthates (Mari et al., 2017) that can 

sink into the deep ocean, but also because they promote particle aggregation (Engel et 

al., 2004b), thus favoring the sinking of marine snow to the deep ocean (Burd and 

Jackson, 2009). TEP also influence air-sea gas exchanges like that of carbon dioxide 

(CO2) (Wurl et al., 2016; Jenkinson et al., 2018), since they tend to accumulate at the 

surface microlayer (SML, the uppermost water layer, Cunliffe et al. (2013)), either after 

ascending through the water column (Azetsu-Scott and Passow, 2004) or upon direct 

production in this layer (Wurl et al., 2011b).  

Phytoplankton are believed to be the main source of TEP and their precursors 

(Alldredge et al., 1993; Passow, 2002b; Van Oostende et al., 2012; Engel et al., 2015), 

being diatoms (Passow et al., 1994; Mari and Burd, 1998; Passow et al., 2001; Passow, 

2002a) and haptophytes, like Phaeocystis (Hong et al., 1997), the groups that seem to 

release larger amounts. Prokaryotic heterotrophs (Stoderegger and Herndl, 1999; 

Ortega-Retuerta et al., 2010) and other organisms, such as suspension feeders 

(Heinonen et al., 2007), zooplankton (Prieto et al., 2001) and seagrass (Iuculano et al., 

2017b), can also produce TEP.  

Sinks of TEP comprise photolysis by UV radiation (Ortega-Retuerta et al., 2009a), 

sinking to the deep ocean, entrance to the atmosphere (Kuznetsova et al., 2005), and 

degradation and consumption by microorganisms (Ling and Alldredge, 2003). Many 

variables influence either sources, sinks or both, hindering the prediction of TEP 

distribution in the ocean. For example, high solar radiation has a dual effect; it 

stimulates TEP release by microbes (Iuculano et al., 2017c) but also causes TEP 

photolysis (Ortega-Retuerta et al., 2009a) or affect positively (Shammi et al., 2017) or 

negatively (Orellana and Verdugo, 2003) the abiotic self-assembly of dissolved 
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exopolymers into TEP. Other variables such as temperature (Nicolaus et al., 1999; 

Claquin et al., 2008), CO2 concentration (Engel, 2002), nutrient availability (Mari et al., 

2005) and viral infections (Nissimov et al., 2018) can also influence TEP cycling. 

Moreover, the TEP production per phytoplankton biomass increases along the bloom 

stages (Pedrotti et al., 2010), thus adding complexity to the TEP dynamics.   

The Southern Ocean (SO) is characterized by the presence of the Antarctic Circumpolar 

Current, which connects the waters of the Pacific, Indian and Atlantic Oceans, and by 

having strong upwellings that enrich surface waters with macronutrients (Sarmiento et 

al., 2004). Productivity is generally limited by the lack of iron in combination with deep 

surface mixing and low light and temperature (Moore et al., 2013; Hoppe et al., 2017), 

although some  regions  are locally supplied with iron, particularly in the vicinity of 

islands (Morris and Sanders, 2011). 

The study of TEP distributions in the SO is of particular importance in light of these 

ocean’s peculiarities. The SO is considered the largest region for anthropogenic CO2 

sequestration in the world (Frölicher et al., 2015), especially around the island systems 

(Pollard et al., 2009), through higher CO2 solubility in cold waters and a relatively high 

particulate organic carbon (POC) surface export flux in comparison to lower latitudes 

(Boyd and Trull, 2007; Marinov et al., 2008). Indeed, C export fluxes have been 

reported to attain 30-50 % of net primary production (Buesseler, 2001). Since TEP may 

account for an important fraction of POC mass (Engel, 2004; Zamanillo et al., 2019c) 

and export flux (Passow, 2002b; Wurl et al., 2011a), their study in the SO is important 

to better predict the magnitude of the biological carbon pump and the future dynamics 

of atmospheric CO2. 

In this study we describe the horizontal and vertical (within the euphotic layer) 

distributions, and short-term (diel) variability of TEP, along with relevant physical, 

chemical and biological variables, in four distinct regions of the SO. The four regions 

were characterized by distinct phytoplankton communities, bloom stages and 

environmental and ecological properties. Our objectives were: (a) to identify the main 

drivers of TEP distribution across contrasting environmental conditions, both 

horizontally and vertically, and (b) to examine the short-term temporal variability of 

TEP and biological variables, over diel cycles. Data co-variation analyses and 
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experimental incubations were conducted to ascertain the role of microorganisms 

(phytoplankton vs. heterotrophic prokaryotes) in TEP production. 

 

2.2 Material and methods    

2.2.1 Study site and sampling        

Sampling was performed during the PEGASO cruise, on board the Spanish R/V 

Hespérides, conducted from 7
th 

January to 3
rd

 February, in the austral summer of 2015. 

A total of 70 stations were sampled within the Southern Ocean (Fig. S2.1). Four regions 

were occupied for several days, following a Lagrangian approach; the north of the South 

Orkney Islands (NSO), the southeast of the South Orkney Islands (SSO), the northwest 

of South Georgia (NSG) and the west of Anvers Island (WA). NSO, NSG and WA were 

selected due to their relatively high chlorophyll a (Chl a) concentrations, different 

nutrient conditions and relatively slow currents with the absence of stable direction 

(Nunes et al., 2019). SSO was selected for its vicinity to the sea ice edge. In order to 

track the studied water bodies, WOCE (World Ocean Circulation Experiment) standard 

drifters provided with Iridium communication system were used in the NSO, NSG and 

WA regions; in SSO, two icebergs were used as natural Lagrangian drifters.  

During the transit between the regions, seawater was collected from 4 m depth using the 

ship’s underway pump (BKMKC–10.11. Tecnium, Manresa, Spain), approximately at 

9:00 and 15:00 local time (UTC-3). During the Lagrangian occupation of the main 

stations, CTD casts were carried out using a SBE 911 Plus probe attached to a rosette of 

24 12-L PVC Niskin bottles, at least once a day, generally at 9:00 and 15:00 local time 

(UTC-3). The underway sampling was used when conditions were too rough for CTD 

launch (a total of 3 times). A 36-h cycle was also sampled in each region, with CTD 

casts every 4 h, generally from 9:30 to 17:00 (solar times) the day after. NASA Solar 

Calculator (https://www.esrl.noaa.gov/gmd/grad/solcalc/, accessed on 15 December 

2017) was used to perform solar time calculations (Nunes et al., 2019). The position of 

the main hydrographic fronts was determined as described in Nunes et al. (2019).  

TEP, major nutrients, POC, prokaryotic heterotrophic abundance (PHA) and production 

(PHP), primary production (PP), phytoplankton recount and identification by 

microscopy and flow citometry, extracellular enzyme activities and virus concentrations 
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were analysed in surface samples. At 7 stations (three in NSO, two in SSO, one in NSG 

and one in WA), Chl a, phytoplankton pigment analyses and PHA were carried out for 6 

different depths, generally from 4 to 120-150 m, while TEP were analysed for 4 depths, 

from 4 m to the second deepest depth. In some of these stations, phytoplankton 

identification and recount by microscopy and flow cytometry were done from 2 to 4 

depths, including the depth of maximum fluorescence.  Mixed layer depth (MLD) 

estimation was done from CTD profiles following Monterey and Levitus (1997).  

A total of 14 samples (one in the transit between regions, seven in NSO, four in SSO, 

one in NSG and one in WA) were collected from the upper surface (10 cm) using a 

zodiac boat, away and upstream from the ship to avoid contamination. Sampling was 

carried out with a device of our own design, consisting of a 50 mL glass syringe 

connected to a PTFE tube 1.5 m long, whose other end was fixed onto a floating item so 

that the inlet of the tube remained at a depth of 10 cm regardless of the motion of the 

sea surface. All material was prewashed with HCl (10 %) and Milli-Q water. Typical 

collected volume was 400 mL; usually, sampling took place around 10:00 local time 

(UTC-3) during standard stations and at 11:00 and 17:00 local time during intensive 

day-night cycles. TEP, Chl a, PHA, PHP and extracellular enzyme activities were 

analysed at the upper surface. In order to compare these measurements with those at the 

nominal surface (4 m depth of the nearest CTD casts), we calculated an enrichment 

factor (EFus), defined as:  

EFus =
[X]upper surface

[X]surface
  

where [X] is the concentration of a given variable, in the upper surface and surface 

respectively. EFus> 1 indicates enrichment of a component in the upper surface and 

EFus< 1 indicates depletion. It is worth mentioning that the time difference between the 

upper surface sampling and the nearest surface sampling was 1-3 h. When the upper 

surface sampling occurred exactly between two CTD casts, the average of the two was 

used. 

2.2.2 Physical measurements 

Surface temperature and salinity were obtained continuously with the SBE21 Sea Cat 

Thermosalinograph, while vertical profiles were recorded down to 400 m with a CTD 
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SBE911 plus. Average diffuse attenuation coefficient in the euphotic zone for PAR 

broadband (400-700 nm; Kd (PAR)), from both CTD and PRR-800 vertical profiles of 

downwelling spectral irradiance (Ed), were determined as the slope of the linear 

regression between logarithmic irradiances and depth. Prior to analysis, the data were 

carefully examined for irregularities (Mueller et al., 2003). Near-surface noise caused 

by smooth waves and ripples was eliminated from Ed (PAR) profiles. The obtained R
2 

of regression analyses were always above 0.98 at all evaluated casts. The depth of the 

euphotic layer was then calculated as 4.605/Kd (PAR), being the depth at which Kd 

(PAR) is reduced to 1 % of its value just below the surface. Solar radiation dose was 

calculated in every station using the following formula: 

 Solar radiation dose=
I

Kd (PAR)×MLD
 × (1-e(-Kd (PAR) × MLD)) 

where, I is the average surface intensity radiation (W m
-2

) in the 24 h previous to 

sampling, Kd (PAR) is the average diffuse attenuation coefficient in the euphotic zone 

for PAR broadband (m
-1

), and MLD is the mixed layer depth (m).  

2.2.3 Chemical and biological analyses 

2.2.3.1 Particulate organic matter (TEP and POC)  

TEP were analysed by spectrophotometry following the method proposed by Passow 

and Alldredge (1995). Samples were filtered under low constant filtration pressure 

(~150 mmHg) in duplicate (200-550 mL) using 25 mm diameter polycarbonate filters 

(DHI) with a pore size of 0.4 µm. All sampling material was pre-washed with HCl (10 

%) and Milli-Q water. Filters were immediately stained with 500 µL of Alcian Blue 

solution (0.02 %, pH 2.5) for 5 s, and then rinsed with Milli-Q water. Two empty filters 

(blanks) were taken at every station and stained in the same way. All filters remained 

frozen until further processing some months later at the home laboratory. There, filters 

were soaked in 80 % sulfuric acid (5 mL) for 3 h and shaked intermittently. Absorbance 

of the acid solutions was then measured at 787 nm with a Varian Cary 100 Bio 

spectrophotometer. The absorbance of filter blanks, taken in duplicate for every batch of 

samples, was subtracted from the absorbance of samples. Calibration of the Alcian Blue 

solution was conducted immediately after the cruise using xanthan gum (XG) solution 

as a standard. The detection limit was set to 0.045 absorbance units,
 
and the mean range 
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between duplicates was 25.5 %. TEP carbon content (TEP-C) was estimated using the 

conversion factor of 0.51 μg TEP-C per µg XG eq (Engel and Passow, 2001).  

For POC analysis, we filtered water samples (1000 mL) through pre-combusted (4 h, 

450 ºC) GF/F glass fiber filters (Whatman) that remained frozen (-20 ºC) until further 

processing. Filters were dried, acidified to remove carbonates and analyzed with an 

elemental analyser (Perkin-Elmer 2400 CHN).  

2.2.3.2 Chl a       

For Chl a analyses, 250 mL of sea water were filtered through 25 mm diameter glass 

filters (Whatman GF/F). Filters were stored frozen (-20 ºC) until further processing in 

the home laboratory.  Ninety % acetone was used to extract pigments at 4 ºC in the dark 

for 24 h. The procedure of Yentsch and Menzel (1963) was followed to measure 

fluorescence of extracts, with a calibrated Turner Designs fluorometer.  

2.2.3.3 Inorganic nutrients 

To analyse dissolved inorganic nutrients (nitrate, phosphate and silicate), unfiltered 

water samples were stored frozen (-20 ºC)  in 10 mL sterile polypropylene bottles and 

further processed in the home laboratory using a Skalar Autoanalyser and the standard 

segmented flow analyses with colorimetric detection elemental analyser (Hansen and 

Grasshoff, 1983). 

2.2.3.4 HPLC pigment analysis and CHEMTAX   

As described in Nunes et al. (2019), HPLC was used to determine pigment composition, 

following Latasa (2014). Thirty-two pigments were identified at 474 and 664 nm. 

Version 1.95 of the CHEMTAX chemical taxonomy software was used to derive the 

contribution of microalgal groups to the total Chl a biomass (ng Chl a L
-1

), from 

pigment data (Mackey et al., 1996). Seven pigmentary classes were quantified: 

chlorophytes, cryptophytes, diatoms, dinoflagellates, haptophytes, prasinophytes and 

pelagophytes. Pigments were also used as indicators of phytoplankton 

photoacclimation. Diadinoxanthin (Ddx) is the main light-protecting pigment in 

diatoms, dinoflagellates, haptophytes and pelagophytes. The Ddx:LHC ratio, between 

Ddx and the sum of the main light-harvesting carotenoids (LHC: fucoxanthin, 19’-

butanoyloxyfucoxanthin, 19’-hexanoyloxyfucoxanthin and peridinin) was measured, 
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since it varies with the exposure of phytoplankton to underwater solar radiation 

(Higgins et al., 2011; Nunes et al., 2019).  

2.2.3.5 Picophytoplankton abundance and biomass   

Abundance of picoplankton was determined by flow cytometry in a FACS Calibur 

instrument (Becton and Dickinson), as described in Zamanillo et al. (2019c). 

Prochlorococcus and Synechococcus were undetectable in all samples. Biomass of 

picoeukaryotic algae was measured using the average C:cell conversion factor from 

Simó et al. (2009): 1319 ± 813 fg C cell
-1

. 

2.2.3.6 Microphytoplankton identification and biomass 

We identified and quantified phytoplankton groups by microscopy, using the inverted 

microscope method (Utermöhl, 1958) as described in Nunes et al. (2019). We measured 

the biomass of phytoplankton groups using conversion equations of Menden-Deuer and 

Lessard (2000), as explained in Zamanillo et al. (2019c). The total biomass of 

phytoplankton (Phyto B) was obtained as the sum of all the phytoplankton groups. 

2.2.3.7 Primary production (PP)   

Phytoplankton primary production rates at four depths within the water column were 

determined by using 20 Ci of NaH
14

CO3 (Steeman-Nielsen, 1952) in a series of 2-3 h-

long, on-deck incubations in flowing surface seawater and under simulated in situ light 

levels. During the 36-h cycles, water was collected directly from the Niskin bottles in 

72 mL acid-washed polystyrene bottles at different sampling times (8:30, 16:30, 4:00 

and 12:00 local time (UTC-3)). PP rates were estimated from radioisotope incorporation 

into particles retained on a 0.2 µm PC filter, after acid removal of inorganic 
14

C and 

substraction of the incorporation in dark controls. Daily rates were estimated by taking 

into account the daylight period. 

2.2.3.8 Prokaryotic heterotrophic abundance (PHA) and production (PHP)  

Prokaryotic heterotrophic abundance (PHA) was determined by flow cytometry 

following standard methods, after fixation with 1 % paraformaldehyde plus 0.05 % 

glutaraldehyde (Gasol and del Giorgio, 2000). PHP was estimated following the 

Kirchman et al. (1985) method after the centrifugation method described in Smith and 
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Azam (1992). Final leucine concentration was 40 nM. The incubations were carried out 

in the dark at in situ temperature in a water bath during 3-4 h.  

2.2.3.9 Viral abundance (VA) 

Viral abundance was quantified using flow cytometry (Brussaard, 2004). We 

discriminated three viral subpopulations with different green fluorescence properties 

(Brussaard et al., 2010) and classified them as “phage viruses” (PV), “large viruses” 

(LV) and “total viruses” (TV). 

2.2.3.10 Extracellular enzyme activities   

We determined the activity of the extracellular enzymes 𝛽-glucosidase, esterase and 

fucosidase following the method detailed in Sala et al. (2016).  

2.2.3.11 Maximum quantum efficiency of photosystem II photochemistry (Fv:Fm)  

Maximum quantum efficiency of photosystem II photochemistry (Fv:Fm) was measured 

using a Fast Repetition Rate fluorometer (FRRf; FASTracka, Chelsea Technologies, 

Surrey, UK) on continuous seawater pumped from ca. 4 m deep, as described in Royer 

et al. (2015).   

2.2.4 TEP production by microbes during experimental incubations  

To examine TEP production by microbes (phytoplankton and heterotrophic 

prokaryotes), we conducted two incubation experiments using surface water (4 m) from 

the NSO (Experiment NSO) and the NSG (Experiment NSG). Seawater was prefiltered 

trough 200 m to exclude the presence of mesozooplankton. Each experiment consisted 

of two treatments: 1) unfiltered seawater (total (T) treatment), 2) seawater filtered 

through 0.8 m pore-size Nucleopore filters to exclude most phytoplankton and 

heterotrophic flagellates, leaving mainly prokaryotes (prokaryotic (P) treatment). Both 

treatments were set up in triplicates in 25 L teflonated containers under in situ irradiance 

and temperature conditions. Treatments were incubated for 8 and 13 days for the 

experiments NSO and NSG, respectively. Experiment NSO was sampled at initial time 

(t0) and after 3 (t1) and 8 (t2) days, and the experiment NSG was sampled at initial time 

(t0) and after 2 (t1) and 13 (t2) days. The variables analysed were TEP, PHP and Chl a, 

and we calculated TEP production rate per growth rate (ΔTEP: ΔChl a).  
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2.2.5 Statistical analyses       

The packages lmodel2 and ggplot2 of R software were used to test for covariations and 

to study the potential control of variables on TEP distribution in this study. Bivariate 

analyses (ordinary least squares, OLS) between TEP concentrations and different 

chemical, physical and biological variables were used to determine their main 

predictors. Although ranged major axis (RMA) regression would have been more 

suitable, due to the presence of errors in our dependent and independent variables, we 

performed OLS regressions to better compare the slopes between our study and others 

present in the literature. We used pairwise Spearman correlation analyses to compare 

different variables in the upper surface (10 cm) and in the surface (4 m). The data were 

log-transformed to fulfil the requirements of parametric tests. Non-parametric ANOVA 

followed by post-hoc tests (Tukey) were carried out to compare variables among the 

four regions. Principal component analysis (PCA) (devtools and ggbiblot packages in R) 

was applied to all samples after centering and scaling variables. One PCA was done 

with a total number of 21 physical, chemical and biological variables, TEP included, 

while the other one was done replacing TEP and Chl a by the TEP:Chl a ratio, which is 

indicative of how prone the plankton community was to net TEP production. The map 

in Fig. S2.1 was produced using the Ocean Data View software (version 4) (Schlitzer 

and 2017). The rest of plots were drawn using R programing software (version 3.5.1). 

    

2.3 Results       

2.3.1 General characterization of sea surface waters 

The four study regions (NSO, SSO, NSG and WA, Fig. S2.1) presented distinct 

physical, chemical and biological properties, summarized in Table 21. Surface 

temperatures in the whole transect ranged from -0.9 to 5.1 ºC and salinity varied over a 

narrow range (33.1-34.2). Surface nitrate concentrations ranged from 14.6 to 32.5 µmol 

L
-1

 and covaried with those of phosphate (1.0-2.5 µmol L
-1

). Silicate concentrations 

were significantly lower in the NSG region (2.0 ± 0.4 µmol L
-1

) than in the other three 

regions (48.1 ± 4.2 µmol L
-1

). Within the whole transect, surface Chl a concentrations 

ranged between 0.28 and 8.95 μg L
-1 

and averaged 2.36 ± 1.92 μg L
-1

, with a coefficient 

of variation of 81 %. PHA ranged from 1.60 to 8.44 ×10
5 

cells mL
-1

, while PHP ranged 
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between 0.09 and 2.65 mg C m
-3

 d
-1

. POC ranged from 3.85 to 25.63 µmol L
-1

 and was 

higher in NSG and WA (11.37-25.63 µmol L
-1

). Primary production was highest in the 

NSG, averaging 111.6 ± 85.4 mg C m
-3

 d
-1

, while in the other three regions it averaged 

16.2 ± 15.8 mg C m
-3

 d
-1

, being lower in the SSO (3.7 ± 0.8 mg C m
-3

 d
-1

). Solar 

radiation dose and Ddx:LHC ratio were higher in the NSO and SSO regions, whereas 

Fv:Fm was  lower in these regions.  

The NSO was located within a meander of the Southern Boundary of the Antarctic 

Circumpolar Current (Fig. S2.1) and two months before sampling, this region was 

covered by > 25 % of sea ice (https://seaice.uni-bremen.de/start/). The average values of 

the surface temperature were 0.59 ± 0.15 ºC (Fig. S2.2). The Chl a concentration 

averaged 1.87 ± 0.23 μg L
-1

 (Fig. 2.1), and phytoplankton was dominated by 

cryptophytes, haptophytes and diatoms (Fig. S2.2). The main planktonic cells identified 

by microscopy at the surface of this region included the diatoms Corethron pennatum, 

Fragilariopsis spp. and Thalassiosira spp., unidentified autotrophic cryptophytes and 

nanoflagellates, and heterotrophic (like Gyrodinium spp.) and autotrophic 

dinoflagellates (Nunes et al., 2019).   

The SSO was placed north of the Weddell Front (Fig. S2.1). During the sampling 

month, the ice cover was > 25 % in the region (https://seaice.uni-bremen.de/start/) 

(Nunes et al., 2019). The month before, the ice cover was > 50 %; therefore, we 

sampled waters of the receding ice edge. The surface temperature was the lowest among 

the four regions (-0.75 ± 0.11 ºC). Surface Chl a averaged 0.32 ± 0.06 μg L
-1

, i.e., 

significantly (p< 0.05) lower than in the other regions (Fig. 2.1). Phytoplankton was 

dominated by haptophytes, followed by cryptophytes, chlorophytes and diatoms (Fig. 

S2.2). The main planktonic cells identified by microscopy were the same as in the NSO 

but with a higher proportion of Fragilariopsis spp., a characteristic diatom marker of 

sea ice influence. The SSO presented the highest Ddx:LHC ratio (0.58 ± 0.09; Fig. 2.1) 

and the lowest Fv:Fm ratio (0.16 ± 0.05), consistently indicating exposure to higher solar 

radiation intensities in a shallower mixed layer (Table 2.1). 

The NSG was located right south of the Polar Front, north of the subAntarctic South 

Georgia Islands (Fig. S2.1). Sea surface temperature was the highest among regions 

(4.77 ± 0.45 ºC), and the MLD was deepest. The relatively low silicate concentrations 

found in this region coincided with the dominance of well-silicified diatoms in the 

https://seaice.uni-bremen.de/start/


Chapter 2 

 
88 

 

 

Figure 2.1: Boxplots of transparent exopolymer particles (TEP), chlorophyll a (Chl a), TEP:Chl a, 

contribution of TEP-C to the POC (particulate organic carbon) pool (TEP-C%POC), solar radiation dose, 

Ddx:LHC ratio (Ddx: Diadinoxanthin, LHC: sum of the main light-harvesting carotenoids), prokaryotic 

heterotrophic abundance (PHA) and prokaryotic heterotrophic production (PHP) in the surface of the four 

visited regions :North of the South Orkney Islands (NSO), South of the South Orkney Islands (SSO), 

Northwest of South Georgia Island (NSG), West of Anvers Island (WA).  The horizontal lines of the 

boxes represent 25%, 50% (median) and 75% percentiles (from bottom to top). Whiskers represent 

minimum and maximum values. 
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phytoplankton community (like Eucampia Antarctica, Thalassiosira and Porosira spp. 

and Odontella weissflogii; Fig. S2.2) and a smaller proportion of haptophytes and 

pelagophytes. Surface Chl a concentration averaged 4.59 ± 1.97 μg L
-1

 (Fig. 2.1). The 

phytoplankton community was complemented by haptophytes and pelagophytes. Total 

viral abundances (TVA), PHP, PHA and Fv:Fm were significantly higher (p< 0.05) in 

this region than in the others, whereas the solar radiation dose and Ddx:LHC were the 

lowest.  

The WA region was placed at the southernmost limit of the Antarctic Circumpolar 

Current (Southern Boundary) (Fig. S2.1). The average surface temperature was 1.46 ± 

0.09 ºC. Chl a concentration was slightly lower than in the NSG, with an average of 

4.05 ± 0.48 μg L
-1

 (Fig. 2.1). The phytoplankton community was dominated by 

cryptophytes, haptophytes and diatoms (Fig. S2.2).  

2.3.2 TEP concentrations, TEP:Chl a, TEP:Phyto B and TEP:PP ratios and 

contribution of TEP to POC in the sea surface of the study regions 

Surface TEP concentrations in the entire study regions and transects ranged from 39.2 

to 177.6 µg XG eq L
-1

 and averaged 102.3 ± 40.4 µg XG eq L
-1

, with a coefficient of 

variation of 39 %. Mean TEP concentrations were significantly different among regions 

(p< 0.05; Table 2.1). NSO presented the maximum TEP concentrations (144.4 ± 21.7 

µg XG eq L
-1

) and SSO presented the lowest ones (48.1 ± 6.5 µg XG eq L
-1

), while 

NSG and WA presented similar TEP concentrations (125.5 ± 21.1 and 111.6 ± 13.0 µg 

XG eq L
-1

, respectively; Fig. 2.1).  

The TEP:Chl a ratios were also significantly different among regions (p< 0.05; Fig. 

2.1). SSO presented the highest TEP:Chl a values (153.4 ± 29.8), while NSG and WA 

presented the lowest ratios (32.3 ± 15.0 and 28.2 ± 4.8, respectively; Fig. 2.1). The ratio 

in NSO was 76.7 ± 10.6. In the case of TEP:Phyto B and TEP:PP ratios, the SSO 

presented the highest values and the NSG the lowest ones (Table 2.1).  

TEP and POC were significantly and positively correlated across the entire transect 

(R
2
= 0.70, p< 0.001, n= 68; Table 2.2). The contribution of TEP-C to the POC pool 

(TEP-C%POC) ranged between 17.9 and 97.3 % (average 38.8 ± 12.3 %). TEP-

C%POC in the NSO and the SSO were similar (44.7 ± 6.7 and 38.5 ± 8.7 %, 

respectively) and higher than in NSG (30.6 ± 6.2 %) and WA (25.2 ± 5.3 %; Fig. 2.1).  
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Table 2.1. Mean ± standard deviation of several variables and dominant phytoplankton groups in the sea 

surface (4 m depth) of the four study regions. MLD: mixed layer depth. Phyto B: Phytoplankton biomass. 

PP: Primary production. POC: Particulate organic carbon. PHA and PHP: Prokaryote heterotrophic 

abundance and production, respectively. TVA and LVA: Total and large viral abundance, respectively. 

Fv:Fm: Maximum quantum efficiency of photosystem II photochemistry. Ddx:LHC: Ddx, diadinoxanthin; 

LHC, sum of the main light-harvesting carotenoids. TEP: Transparent exopolymer particles. See Fig. 2.1 

for abbreviations of regions. 

 

 NSO (n= 16) SSO (n= 15) NSG (n= 14) WA (n= 9) 

Date (d/m/y) 10-15/01/2015 16-20/01/2015 23-25/01/2015 02-03/02/2015 

Temperature (ºC) 0.59 ± 0.15 a -0.75 ± 0.11 b 4.77 ± 0.45 c 1.46 ± 0.09 d 

Salinity 33.83 ± 0.08 a 33.15 ± 0.05 b 33.74 ± 0.02 c 33.41 ± 0.03 d 

MLD (m) 28.9 ± 11.8 a 15.8 ± 5.4 b 49.3 ± 11.8 c 22.9 ± 5.6 ab 

Ice cover (%) 0e > 25 0 0 

Solar radiation dose (W m-2) 80.3 ± 40.4 a 101.7 ± 20.3 a 22.4 ± 5.4 b 47.0± 10.6 b 

Nitrate (µmol L-1) 27.3 ± 1.9 a 27.5 ± 3.2 a 17.2 ± 1.6 b 18.7 ± 0.9 b 

Phosphate (µmol L-1) 2.0 ± 0.2 aa 2.1 ± 0.3 ab 1.3 ± 0.2 c 1.8 ± 0.2 aa 

Silicate (µmol L-1) 47.9 ± 4.1 a 47.3 ± 4.7 a 2.0 ± 0.4 b 49.7± 3.7 a 

Chl a (μg L-1) 1.87 ± 0.23 a 0.32 ± 0.06 b 4.59 ± 1.97 c 4.05 ± 0.48 c 

Phyto B (μg C L-1) 95.7 ± 21.0 a 22.3 ± 4.4 b 222.1 ± 53.1 c 94.4 ± 37.5 a 

PP (mg C m-3 d-1) 13.0 ± 4.0 a 3.7 ± 0.8 a 111.6 ± 85.4 b 34.6 ± 15.7 a 

POC (µmol L-1) 13.8 ± 2.6 a 5.5 ± 1.2 b 18.0 ± 4.4 c 19.3 ± 3.5 c 

PHA (cells mL-1 × 105) 2.34±0.46 a 2.89±0.70 ab 5.68±0.98 c 3.43±0.95b 

PHP (µg C L-1 d-1) 0.50 ± 0.16 a 0.32 ± 0.19 a 1.23 ± 0.66 b 0.40 ± 0.14 a 

TVA (virus mL-1 × 105) 44.8±21.8 a 32.3±17.1 a 211.2±99.8 b 137.1±42.5 c 

LVA (virus mL-1 × 105)  2.8±0.9 a 2.5±2.3 a 25.3±19.5 b 8.9±5.1 a 

Dominant phytoplankton 

groups 

Cryptophytes > 

haptophytes > 

diatoms 

Haptophytes > 

cryptophytes ~ 

chlorophytes ~ 

diatoms 

Diatoms Cryptophytes 

>>haptophytes 

> diatoms 

Fv:Fm  0.18 ± 0.06 a 0.16±0.05 a 0.29±0.05 b 0.21±0.06 a 

Ddx:LHC 0.36 ± 0.06 a 0.58 ± 0.09 b 0.19 ± 0.04 c 0.25 ± 0.04 c 

TEP (µg XG eq L-1) 144.4 ± 21.7a 48.1 ± 6.5b 125.5 ± 21.1c 111.6 ± 13.0c 

TEP:Chl a (µg XG eq µg -1) 76.7 ± 10.6 a 153.4 ± 29.8 b 32.3 ± 15.0 c 28.2 ± 4.8 c 

TEP:Phyto B 1.56 ±0.35 a 2.24 ± 0.54 b 0.61 ± 0.18 c 1.26 ± 0.36 a 

TEP:PP  12.5 ± 3.1 a,b 14.0 ± 5.7 a 1.8 ± 1.3 c 4.6 ± 4.1 b,c 

TEP:POC (µg XG µg C-1 ) 0.9±0.1 a 0.8±0.2a 0.6±0.1 b 0.5±0.1 b 

a, b, c, d significantly different (p< 0.05) groups using non-parametric ANOVA followed by post-hoc tests 

(Tukey). e ice cover was > 25 % two months before our study 
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Table 2.2. Regression equations and statistics describing the relationship between transparent exopolymer 

particles (TEP) (dependent variable) and several independent variables across surface samples in the 

entire PEGASO cruise (note all variables were log10-transformed). Regressions with p< 0.05 are 

highlighted in bold. PVA: phage viral abundance. See Table 2.1 for abbreviations. 

Dep. var. Independent var. R2 p Intercept Slope n 

TEP Temperaturea 
0.27 < 0.001 -78.1 32.8 66 

Salinity  0.25 < 0.001 -33.74 23.38 66 

Wind speed 0.08 < 0.05 2.13 -0.19 67 

Nitrate 0.10 < 0.05 2.84 -0.63 69 

Phosphate 0.14 < 0.05 2.18 -0.77 69 

Silicate 0.06 < 0.05 2.08 -0.08 69 

Solar radiation dose 0.24 < 0.001 2.65 -0.38 46 

Chl a 0.66 < 0.001 1.90 0.35 65 

Phyto B 0.66 < 0.001 1.17 0.43 67 

PP 0.43 < 0.05 1.67 0.25 19 

PHA 0.01 > 0.05   71 

PHP 0.18 < 0.001 2.07 0.25 68 

TVA 0.16 < 0.001 0.45 0.22 71 

LVA 0.08 < 0.05 1.27 0.12 71 

PVA 0.18 < 0.001 0.41 0.23 71 

POCb 0.70 < 0.001 -1.00 1.03 68 

PHA:Chl a 0.71 < 0.001 4.07 -0.39 64 

Fv:Fm 0.04 > 0.05   71 

Ddx:LHC 0.18 < 0.001 1.74 -0.42 68 

Prasinophytesc 
0.68 < 0.001 1.86 0.14 37 

Chlorophytesc 
0.17 < 0.05 1.72 0.23 38 

Dinoflagellatesc 
0.67 < 0.001 1.57 0.32 38 

Cryptophytesc 
0.47 < 0.001 1.65 0.18 38 

Diatomsc 
0.67 < 0.001 1.62 0.18 38 

Pelagophytesc 
0.58 < 0.001 1.83 0.15 38 

Haptophytesc 
0.52 < 0.001 0.78 0.51 38 

R2: explained variance; p: level of significance; n: sample size 
a Kelvin degrees, b POC as dependent variable, c ng Chl a L-1 
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2.3.3 TEP in relation with other variables at the sea surface 

TEP were significantly and positively related to Chl a across the entire study area (R
2
= 

0.66, p< 0.001, n= 65; Table 2.2) and phytoplankton biomass (R
2
= 0.66, p< 0.001, n= 

67; Table 2.2). The regression equation for log converted TEP vs Chl a was log TEP = 

1.90 (± 0.02) + 0.35 (± 0.03) ×  log Chl a.  

TEP also presented significant positive relationships with temperature, salinity (p< 

0.001) and all the phytoplankton groups (p< 0.05; Table 2.2), with explained variances 

higher than 60 % for prasinophytes, dinoflagellates and diatoms. By contrast, TEP were 

negatively related to the solar radiation dose, PHA:Chl a, Ddx:LHC, nutrients and wind 

speed at the sampling time (1-h average; Table 2.2). TEP did not present any significant 

relationship with PHA, although it was weakly but significantly related to PHP (Table 

2.2).  

PCA(a) and PCA(b) were performed to visualize the differences between regions and 

the subset of variables that better explained TEP and TEP:Chl a patterns (Fig. 2.2). At 

PCA(a) principal components 1 and 2 explained 57.1 % and 16.5 % of the variability, 

respectively. SSO and NSG occupied the extremes of the PC1 gradient, characterized by 

high solar radiation dose and Ddx:LHC ratio on one side (SSO) and higher TEP 

concentrations and phytoplankton abundance, and lower macronutrient availability on 

the other (NSG). WA and NSO showed intermediate values of PC1, but their position in 

relationship with PC2, indicating an association with high cryptophytes and low wind 

speed values, was opposite to that of SSO and NSG. At PCA(b), where TEP and Chl a 

were replaced by TEP:Chl a, the regions were separated along PC1 and 2 similarly to 

PCA(a). The major loadings to component 1 positively related to Ddx:LHC, TEP:Chl a 

and solar radiation dose, and negatively related to diatoms, temperature and POC. The 

major loadings to component 2 included cryptophytes, chlorophytes and, negatively, 

wind speed, Fv:Fm and TVA.  
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Figure 2.2: Principal component analyses (PCA) of surface (4 m) samples. The % of the overall 

explained variance is given on each principal component axis. The plot (b) is the same as (a) plot after 

replacing transparent exopolymer particles (TEP) and chlorophyll a (Chl a) by TEP:Chl a. Note that the 

opposite direction of axes in PCA(a) and (b) is only due to calculations Chlorophytes (Chlor), 

cryptophytes (Crypt), diatoms (Diat), dinoflagellates (Dinof), haptophytes (Hapt), prasinophytes (Pras), 

pelagophytes (Pelago), Ddx:LHC (see Fig. 2.1 for abbreviations), Maximum quantum efficiency of 

photosystem II photochemistry (FvFm), temperature (Temp), total viral abundance (TVA), prokaryotic 

heterotrophic production (PHP) and particulate organic carbon (POC). 
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2.3.4. TEP vertical distribution and relationship with other variables 

TEP concentrations were generally higher within the upper mixed layer (average 119.2 

± 39.0 µg XG eq L
-1

) than below it (average 53.1 ± 45.2 µg XG eq L
-1

), and decreased 

with depth in 4 out of 7 stations. In the other three stations, TEP maxima were found at 

the deep Chl a maximum (DCM) or close to it (Fig. 2.3). The vertical distribution of 

Chl a differed among regions, but Chl a concentration was generally higher in the upper 

50 m of the water column. TEP vertical distributions were significantly related to those 

of Chl a considering profiles of all regions (R
2
= 0.74, p< 0.001, n= 26). The equation 

obtained for the TEP-Chl a vertical relationship is log10 (TEP) = 1.78 (± 0.04) + 0.67 (± 

0.08) ×  log10 (Chl a). By contrast, the relationship between TEP and PHA was weak 

(R
2
= 0.18, n= 24, p< 0.05). The Ddx:LHC ratio decreased strongly below 20-40 m 

depth in all regions. TEP:Chl a ratios increased towards the surface in the NSO and 

SSO, while in the other regions were constant or with the opposite pattern (Fig. S2.3). 

TEP:Phyto B ratios, when available, generally followed a similar pattern than TEP:Chl 

a ratios in the profiles (data not shown).  

In NSO and WA, TEP vertical distribution was highly coupled with haptophytes and 

cryptophytes (Fig. 2.3). In the NSO diatoms were higher below TEP maximum. In the 

SSO, TEP maxima were found above or coincident with the Chl a peaks and always 

above PHA maxima, and the most important phytoplankton groups (haptophytes and 

diatoms) increased their concentration deeper in the water column (Fig. 2.3). In NSG, 

the vertical TEP profile was similar to that of diatoms, which dominated the 

phytoplankton assemblage at all depths (Fig. 2.3).   
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Figure 2.3: Vertical profiles of temperature (Temp), salinity (Sal), concentration of the different 

phytoplankton groups derived from CHEMTAX (see Fig. 2.2 for abbreviations), transparent exopolymer 

particles (TEP), chlorophyll a (Chl a) and prokaryotic heterotrophic abundance (PHA) in every region 

(see Fig. 2.1 for abbreviations of regions).  
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2.3.5. Organic matter accumulation in the upper surface (10 cm)   

Among all the parameters measured in the upper surface, TEP concentration (r= 0.71, 

n= 14), Chl a concentration (r= 0.70, n= 13), PHA (r= 0.71, n= 13), fucosidase (r=0.56, 

n= 14) and esterase activity (r= 0.82, n= 12) were significantly correlated (Spearman) 

with the measurements of the same variables at 4 m depth (p< 0.05).  

At most stations, TEP and the activity of the enzymes β-glucosidase, esterase and 

fucosidase were enriched in the upper surface (10 cm; Fig. 2.4) relative to 4 m. TEP-

EFus averaged 1.19 ± 0.19, and the EFus average for the enzymatic activities were 2.75 ± 

3.24 (β-glucosidase), 4.75 ± 1.19 (esterase) and 31.40 ± 100.78 (fucosidase). TEP-EFus 

was positively related to the 1 h-average wind speed at the time of the upper surface 

sampling (R
2
= 0.58, p< 0.005, n= 14) (log10 transformed), which varied among 0.5 and 

8.6 m s
-1

, with an average of 5.4 ± 2.5 m s
-1

.  

By contrast, Chl a, PHA and PHP were not usually enriched in the upper surface. Their 

enrichment factors averaged 0.97 ± 0.37 (Chl a), 1.00 ± 0.27 (PHA) and 0.77 ± 0.47 

(PHP) (Fig. 2.4, 2.7). TEP-EFus and Chl a-EFus were not significantly related (p> 0.05), 

but TEP:Chl a ratios were generally higher at the upper surface than at the surface 

(average TEP:Chl a-EFus 1.37 ± 0.44).  

 

Figure 2.4: Boxplots of EFus of transparent exopolymer particles (TEP), chlorophyll a (Chl a), TEP:Chl 

a, prokaryotic heterotrophic abundance (PHA), prokaryotic heterotrophic production (PHP), and 

fucosidase, esterase and β-glucosidase activities across the study regions (n= 14). See Fig. S2.4 for the 

definition of EFus. 
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2.3.6 TEP variations in the 36-h cycles    

We did not detect recurrent diel patterns of Chl a, PHP or TEP in the diel cycle studies 

(Fig. S2.5). TEP showed a relative amplitude (max-min/mean) of 0.31, 0.20, 0.29 and 

0.31 in NSO, SSO, NSG and WA, respectively. Chl a relative amplitude (0.33, 0.07, 

0.95 and 0.37, respectively) was highest in NSG. Looking at covariations (Spearman) of 

TEP with other biological variables in diel cycles, TEP were only significantly (p< 

0.05) coupled with Chl a (r= 0.81, n= 8) in NSG. 

2.3.7 TEP production by microbes during experimental incubations  

In the two incubation experiments (conducted in NSO and NSG), and in both treatments 

(T and P), all measured variables (TEP, Chl a and PHP) increased over time, except 

PHP in experiment NSG (Fig. 2.5). In the T treatments, the increases were steeper 

(higher daily increase rates), and TEP evolved in parallel with Chl a concentration. The 

TEP production rate per growth rate was 78 in the experiment NSO and 18 in the 

experiment NSG. These values were very similar to the TEP:Chl a ratio average of the 

regions where the water was collected from (76.7 ± 10.6 in the NSO and 32.5 ± 14.5 in 

the NSG). 
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Figure 2.5: Incubation experiments at NSO (top) and NSG (bottom). Transparent exopolymer particles 

(TEP) concentration (blue circle), prokaryotic heterotrophic production (PHP) (pink triangle) and 

chlorophyll a (Chl a) (green square) are plotted over time (h). Filled symbols and continuous lines: 

unfiltered water (treatment T). Empty symbols and dashed lines: water filtered through 0.8 µm, hence, 

only with prokaryotes (treatment P). 

 

2.4 Discussion  

2.4.1 TEP concentrations in the Southern Ocean 

In the present study, we advance the existing knowledge on TEP variability across 

environmental conditions in the Southern Ocean, with a combination of surface 

observations, vertical profiles, short-term variability and changes associated with 

microbial growth during laboratory incubations. The few previous studies describing 

TEP distributions in the Southern Ocean were located around the Antarctic Peninsula 

(Passow et al., 1995b; Corzo et al., 2005; Ortega-Retuerta et al., 2009b), the Drake 

Passage (Corzo et al., 2005) and the Ross Sea (Hong et al., 1997). Our study was carried 

out in four distinct regions of the peninsular area, and the PCA analyses (Fig. 2.2) 

confirmed a clear separation of these regions.  
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Our surface TEP concentrations are in the upper range of published values from around 

the Antarctic Peninsula (Corzo et al., 2005; Ortega-Retuerta et al., 2009b; Table S2.1). 

In contrast, the TEP:Chl a ratios in our study are not substantially higher than those 

reported in previous works. It is worth mentioning that Ortega-Retuerta et al. (2009b) 

found remarkably lower TEP and TEP:Chl a ratios in the western Weddell Sea area 

compared with our SSO data (northern Weddell Sea), although the two sampling sites 

are geographically close. Difference in the sampling periods can account for this 

variability, since the previous study was conducted later in the season, when TEP may 

have been consumed or degraded. The values reported by Hong et al. (1997) in the Ross 

Sea were higher than our observations in NSO and SSO, probably because they found a 

bloom of colonial Phaeocystis antarctica with higher Chl a concentrations and the 

characteristic presence of mucilage flocs. Regarding vertical TEP distribution, the 

general pattern of higher TEP concentrations in the upper mixed layer has already been 

reported in previous studies in the SO (Hong et al., 1997; Corzo et al., 2005; Ortega-

Retuerta et al., 2009b) and potential causes for this pattern will be discussed below. 

 2.4.2 TEP distribution and its main drivers in the Southern Ocean  

Phytoplankton appears to be the main driver of TEP distribution in this study at both the 

horizontal and vertical scales, as suggested by the positive relationships between TEP 

and Chl a and phytoplankton biomass. However, it is worth mentioning that the 

coefficient of variation of surface Chl a concentration along the entire cruise track (81 

%) was much higher than that of TEP (39 %). This suggested that TEP concentrations 

were relatively more stable than those of their main sources: total phytoplankton 

biomass expressed as Chl a concentration and biomass of the different phytoplankton 

groups. Considering surface (4 m) samples only, the slope of the log-converted TEP-

Chl a relationship for the entire study (β= 0.35 (± 0.03); Table 2.2, Fig. 2.6) was very 

similar to that obtained in the Antarctic Peninsula area (Corzo et al., 2005; Ortega-

Retuerta et al., 2009b) but lower than those observed in the Ross Sea (Hong et al., 

1997), driven by the aforementioned  bloom of the TEP-producing Phaeocystis, and in 

the Gerlache Strait (Corzo et al., 2005). Concerning surface waters, TEP presented 

significant positive relationships with all the phytoplankton groups. At the vertical 

scale, the positive relationship between TEP and Chl a corroborates findings of previous 

studies in the area (Corzo et al., 2005; Ortega-Retuerta et al., 2009b) and suggests that 

phytoplankton abundance, generally higher in the upper mixed layer, is the main cause 
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for the general higher TEP concentrations found in this layer too. Our work presents for 

the first time the vertical TEP distribution along with the phytoplankton group 

distributions in the SO, showing that haptophytes and cryptophytes were closely 

associated with TEP vertical distribution in the NSO and WA regions, while diatoms 

did in the NSG region.  

 

Figure 2.6: Log-log relationship between transparent exopolymer particles (TEP) and chlorophyll a (Chl 

a) concentration from the PEGASO cruise, with the linear regression line (regression equation in the 

text). Four regions are distinguished: NSO (empty circles), SSO (empty triangles), NSG (filled circles), 

WA (crosses) (see Fig. 2.1 for abbreviations of regions), T: transect (plus). Regression lines from the 

literature in the Southern Ocean are also shown for comparison. α and β indicate the intercept and the 

slope, respectively; log TEP (μg XG eq L-1) = α + β × log Chl a (μg L-1); [a] α = 2.25 and β = 0.65, (Hong 

et al., 1997); [b] α = 1.63 and β = 0.32, (Corzo et al., 2005); [c] α = 1.52 and β = 0.67, (Corzo et al., 

2005); [d] α = 1.08 and β = 0.38, (Ortega–Retuerta et al., 2009b). 

 

The fact that TEP:Chl a and TEP:Phyto B ratios were different across regions and 

depths, further supports the role of drivers other than phytoplankton biomass on TEP 

distribution. On this line, phytoplankton light stress appeared to control TEP 

distributions in our study area. The SSO presented the highest solar radiation doses and 

Ddx:LHC ratios, and the lowest Fv:Fm values, which indicates stronger sunlight 

exposure and the need for active photoacclimation (Bergmann et al., 2002; Kaiblinger et 

al., 2007). The NSO also presented relatively high Ddx:LHC ratios and solar radiation 

doses (Table 2.1). In these regions, TEP:Chl a ratios were the highest, which could be 
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related to a decrease of Chl a per cell due to photoadaptation (Kiefer et al., 1976) but 

also to a stimulation of TEP production, as previously suggested by Iuculano et al. 

(2017c) and Agustí and Llabrés (2007). The fact that TEP:Phyto B and TEP:PP ratios 

were also higher in these regions than in the NSG and WA is in line with this second 

explanation. In the PCA(b) analysis (Fig. 2.2), we could clearly determine that high 

TEP:Chl a ratios corresponded to regions with higher macronutrient availability, solar 

radiation dose and Ddx:LHC ratio, highlighting the role of light stress in driving 

TEP:Chl a ratios.  

The occurrence of sea ice cover and sea ice melting also seemed to influence TEP 

concentration in the SSO region. It is known that microorganisms living in sea ice 

release organic substances (Assmy et al., 2013; Vancoppenolle et al., 2013), including 

TEP, as a survival strategy (Ewert and Deming, 2013). In fact, TEP concentrations 

measured in sea ice samples during our cruise were > 600 µg XG eq L
-1

, i.e., way above 

concentrations in sea water, although it must be noticed that the selection of ice chunks 

was based on their colour, picking the brownish as indicative of colonisation by algae 

(Dall'Osto et al., 2017). The lower salinity at the surface and the larger proportion of 

Fragilariopsis spp. were indicative of sea ice melt influence in SSO (Cefarelli et al., 

2011). Consequently, the highest TEP:Phyto B ratios in surface waters of SSO may 

have partially resulted from an enhancement of TEP release due to sea ice melt. This 

result agrees with previous studies suggesting sea ice melt being a source of TEP into 

seawater (Assmy et al., 2013; Galgani et al., 2016), although this role should be studied 

more in detail if we are to predict TEP concentrations in polar regions. 

Nutrient depletion and the phase stage of the phytoplankton blooms could have also 

influenced TEP distribution too, but we cannot assess this hypothesis with the data at 

hand. NSG was the only case that presented macronutrient-deplete conditions (silicate 

restriction; Nunes et al., 2019). The other regions probably were iron-limited, but this 

micronutrient was not monitored. Regarding the phase stage of the phytoplankton 

blooms, since in NSO the sea ice retreat occurred earlier in the season, we hypothesize 

that NSO hosted an advanced phase of the SSO bloom, favoring TEP production (Corzo 

et al., 2000). Therefore, the bloom phase as sea ice recedes, the influence of sea ice 

melt, and the aforementioned high insolation in shallow mixed layer, all possibly 

contributed to TEP distribution. 
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Regarding the vertical distribution, the increase of Ddx:LHC above 20-40 m in all 

cases, indicative of protection against light stress, suggests that light stress could have 

also triggered TEP production near surface of some regions (Iuculano et al., 2017c). 

NSO and SSO, the regions with the strongest solar radiation doses, presented a general 

increase of TEP:Chl a ratio towards the surface (Fig. S2.1), and also of TEP:Phyto B 

ratio in the single profile from SSO. However, caution must be taken due to the limited 

data available of TEP:Phyto B ratios across the profiles. 

Heterotrophic prokaryotes did not contribute significantly to explain TEP variations 

across the horizontal or vertical scales, given the weak relationship between TEP and 

PHA and PHP (Table 2.2). Other studies have also found a lack or a negative 

relationship between TEP and PHA or PHP (Passow and Alldredge, 1994; Bhaskar and 

Bhosle, 2006; Zamanillo et al., 2019c). In contrast, some works, including two in the 

Southern Ocean, have found a positive relationship between these variables (Passow et 

al., 2001; Hung et al., 2003b; Santschi et al., 2003; Corzo et al., 2005; Ortega-Retuerta 

et al., 2009b; Ortega-Retuerta et al., 2010; Zamanillo et al., 2019c).  

Viral abundances did not significantly contribute to explain TEP variations neither in 

the horizontal nor in the vertical scale (Table 2.2), although some studies have found a 

link between TEP production and the viral infection of different phytoplankton taxa, 

such as Emiliania huxleyi (Nissimov et al., 2018), Phaeocystis globosa (Grossart et al., 

1998; Stoderegger and Herndl, 1999; Passow, 2002b; Brussaard et al., 2005; Mari et al., 

2005) and Micromonas pusilla (Lønborg et al., 2013). This result suggests the 

predominance of other factors driving TEP distribution in this study.   

Few studies have measured and compared the distribution of TEP and other organic 

matter compounds within the first few meters of the ocean surface (Wurl et al., 2011a; 

Bélanger et al., 2013; Taylor et al., 2014; Thornton et al., 2016). The significant positive 

correlations we found for most of the measured parameters (TEP, Chl a, PHA, esterase 

and fucosidase activities) at 10 cm vs 4 m, indicates that the horizontal variability of 

these parameters at the surface (4 m) is mirrored at the upper surface (10 cm). TEP were 

generally enriched in the upper surface. The TEP-EFus average  (1.19 ± 0.19) was lower 

than that found in the SML with respect to underlying water in most previous studies 

(Wurl and Holmes, 2008; Cunliffe et al., 2009; Wurl et al., 2009; Wurl et al., 2011b; 

Engel and Galgani, 2016; Galgani et al., 2016). This is somehow expected owing to the 
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distinct properties of the SML, which forms by the accumulation of surface-active 

compounds (Wurl et al., 2017). However, despite the modest TEP enrichment at 10 cm, 

TEP could be responsible for the enhancement of the activities of the ectoenzymes β-

glucosidase, fucosidase and esterase (Fig. 2.4), which are secreted by heterotrophic 

prokaryotes to hydrolyze polysaccharides such as TEP into smaller, bio-available 

macromolecules (Bar-Zeev and Rahav, 2015).  

The enrichment of TEP in the upper surface was not associated with higher abundances 

of microorganisms or higher prokaryotic heterotrophic activity (Fig. S2.4). Chl a and 

PHA were not generally enriched in the upper surface. Therefore, reasons for the TEP 

enrichment could be the following; (1) the increase of per-cell TEP production in the 

upper surface due to high solar radiation (Ortega-Retuerta et al., 2009a; Iuculano et al., 

2017c); (2) an allochthonous source of TEP and/or their precursors at 10 cm, namely 

sea ice melt waters of lower density; (3) ascending TEP from underlying waters, 

embedded in low density particles or captured and transported by air bubbles (Zhou et 

al., 1998); and (4) an increase of TEP self-assembly of dissolved precursors in the upper 

surface due to higher turbulence (Passow, 2000; Beauvais et al., 2006). The last two 

mechanisms are the most plausible since we found a positive relationship between TEP-

EFus and wind speed (R
2
= 0.58) (Fig. S2.4). Winds stronger than about 5 m s

-1
 cause the 

entrainment of bubbles down from breaking waves (Andreas and Monahan, 2000; 

Deane and Stokes, 2002), and when these bubbles rise they can bring TEP or their 

precursors towards the surface, among other items such as prokaryotic cells (Mayol et 

al., 2017), where aggregation is favoured by enhanced turbulence. A recent study 

(Robinson et al., 2019c) has shown that deliberate bubbling of seawater (mimicking the 

effect of wind in the field) increases TEP concentrations in the SML, and although they 

did not observe an increase of TEP concentration at 1 m, it is plausible that an increase 

at 10 cm was also occurring, which is in line with our observations. 

2.4.3 TEP variations in the 36-h cycle 

We did not find a cyclic diel pattern of any of the measured variables (TEP, Chl a and 

PHP) similarly to the outcome of the only published study on short-term TEP variation 

(Ortega-Retuerta et al., 2017). This result illustrates the influence of many processes in 

driving TEP distribution. 
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 2.4.4 TEP production by microbes in incubation experiments 

The results of the incubation experiments supported the idea that phytoplankton are the 

main TEP producer in the study area (Fig. 2.5). In treatments with only prokaryotes, 

TEP were formed at low rates by abiotic self-assembly and/or the action of 

heterotrophic prokaryotes and archaea. In unfiltered treatments, TEP increased much 

faster and nearly parallel to the Chl a increase. Net TEP production rates per net 

phytoplankton growth rate varied between experiments and were very similar to the 

average of TEP:Chl a ratios of the respective regions, confirming our observations that 

phytoplankton were the main TEP producers in the study area. Interestingly, TEP 

production rate per phytoplankton growth rate was higher in the NSO experiment than 

in the NSG experiment, despite the higher biomass and dominance of diatoms in the 

latter. This contradicts the common view that diatoms are highly specific TEP producers 

(Passow, 2002a), and supports the aforementioned discussed idea that environmental 

conditions,  associated physiological stress and the phytoplankton bloom stage influence 

TEP production by phytoplankton beyond biomass, primary productivity and 

taxonomical composition.  

 

2.5 Conclusions 

Our study expands the existing knowledge on TEP distribution in the Southern Ocean 

and for the first time provides information on TEP variability in the first meters of the 

ocean surface and with high temporal resolution. Phytoplankton abundance was the 

main predictor of TEP distribution in both the horizontal and vertical scales, and the 

outcome of experimental incubations further supported this observation in situ. 

Photoacclimation and sea ice melt played complementary but important roles driving 

differences in TEP distribution across regions. Phytoplankton composition was also an 

important driver, especially along the vertical scale, but diatoms were not the main 

producers. TEP were generally enriched at centimetres under the surface, likely due to 

scavenging by bubbles and turbulence-derived aggregation, contrasting with the null 

enrichment of microorganism abundances. We highlight the need to carry out more field 

studies in the area, extending to temporal dynamics along the entire ice-receding and 

ice-free season, to better predict TEP concentration in the Southern Ocean and 
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quantitatively evaluate their effects in biogeochemical processes such as the biological 

carbon pump and organic aerosol formation. 
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2.7 Supplementary material 

2.7.1 Supplementary Figures 

 

Supplementary Figure S2.1. Study area. Ship trajectory (blue line) and the four case studies with 

Lagrangian occupation (circles, see Fig. 1 for abbreviations of regions). Main hydrographic fronts (black 

lines) along the cruise: Antarctic Polar Front (PF), Southern Antarctic Circumpolar Current Front 

(SACCF), Southern Boundary of the Antarctic Circumpolar Current (SB), and Weddell Scotia 

Confluence Zone (WSCF). Figure produced with the Ocean Data View software. 
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Supplementary Figure S2.2: Average concentration of each phytoplankton group in the sea surface of 

the four visited regions derived from CHEMTAX (contribution to the total Chl a, ng Chl a L-1) (see Fig. 1 

for abbreviations of regions). 

 

Supplementary Figure S2.3: Vertical profiles of TEP:Chl a ratio (transparent exopolymer particles 

(TEP), chlorophyll a (Chl a)) in every study region (see Fig. 1 for abbreviations of regions). 
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Supplementary Figure S2.4: Enrichment factor between the upper surface (10 cm) and the surface (4 m) 

(EFus= [X] upper surface/ [X] surface) for transparent exopolymer particles (TEP), chlorophyll a (Chl a), 

prokaryotic heterotrophic abundance (PHA) and prokaryotic heterotrophic production (PHP) (bars) in the 

different regions (see Fig. 1 for abbreviations of regions). Horizontal line denotes EFus= 1. Wind speed is 

indicated by filled circles. T: transect. 
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Supplementary Figure S2.5: Transparent exopolymer particles (TEP) concentration (blue circle), 

prokaryotic heterotrophic production (PHP) (pink triangle) and chlorophyll a (Chl a) (green square) in the 

36-h cycles (local time, UTC-3) in every visited region (see Fig. 1 for abbreviations of regions). Grey 

shaded areas indicate night by enclosing the period when global solar radiation was < 10 W m-2.  
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2.7.2 Supplementary Table. 

Supplementary Table S2.1. Compilation of published transparent exopolymer particles (TEP) concentrations (mean ± SE and ranges; µg XG eq L-1), chlorophyll a (Chl a) 

concentrations (mean ± SE and ranges; μg L-1) and TEP:Chl a ratios (mean ± SE and ranges; µg XG eq (µg Chl a)-1) in the Southern Ocean. Bdl: below detection limit. 

Location Comments TEP Chl a TEP:Chl a Reference 

Anvers Island Summer (November 1994-February 

1995) 

2- 6 m, coastal samples 

Two blooms observed 

(Cryptomonads and diatoms) 

15 -  >500 - 

 

- Passow et al. (1995) 

Kita-no-seto Strait Mid-January 1994 

15 m 

26 ±6-41±4 particles mL-1 - - Marchant et al. (1996) 

Ross Sea Summer (November, December 

1994) 0-150 m, 

Phaeocystis and diatoms bloom 

Surface 308 (0-2800) 3.61 (0.27-8.81) 

(surface) 

 

89.1 (surface) Hong et al. (1997) 

Bransfield Strait Summer (13 December 1990- 3 

January 2000) 

0-100 m 

56.77 ± 54.50   (bdl-345.9) 0.98 ± 0.83 (0.05-4.81) 51.0 Corzo et al. (2005) 

Gerlache Strait 38 (0-283) 1.16 32.7 

Drake Passage 35 (0-157) 1.17 29.9 

Antarctic Peninsula 

(all the study) 

Summer (February 2005), 

0-200 m 

15.4 ± 10.0 (bdl-48.9) 0.01-5.36 40.9 ± 157.8 (bdl-1492)  Ortega-Retuerta et al. 

(2009b) 

Bellingshausen Sea 14.3±9.5 (bdl–33.8) 84.2±257.5 (bdl–1492) 

Weddell Sea 16.3±12.5 (bdl–48.9) 9.8±7.4 (1.2–28.4) 

Bransfield and 

Gerlache Strait 

15.8±8.9 (bdl–35.8) 15.0±20.4 (3.0–18.0) 

Southern Ocean (all 

transect) 

Summer (7 January-3 February 

2015) 

4 m 

102.3 ± 40.4 (39.2- 177.6) 

  

2.36 ± 1.92 (0.28-8.95) 

 

79.3 ± 54.9 (10.9-239.0) 

 

This study 

South Orkney Islands 

(NSO) 

 

 144.4 ± 21.7 (97.8-177.6) 

 

1.87 ± 0.23 (1.58-2.21) 

 

76.7 ± 10.6 (60.4-97.5) 

 

southeast of the 

South Orkney Islands 

(SSO) 

  48.1 ± 6.5 (39.2-63.8) 

 

 

0.32 ± 0.06 (0.28-0.45) 

 

 

153.4 ± 29.8 (102.5-211.6) 

 

 

northwest of South 

Georgia (NSG) 

 

 

125.5 ± 21.1 (93.6-157.4) 

 

4.59 ± 1.97 (1.92-8.95) 

 

32.3 ± 15.0 (17.6-70.0) 

 

west of Anvers 

Island (WA) 

 111.6 ± 13.0 (90.5-125.0) 

 

4.05 ± 0.48 (3.41-4.91) 

 

28.2 ± 4.8 (18.4-34.9) 
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Abstract 

Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) are 

gel-like particles, ubiquitous in the ocean, that affect important biogeochemical 

processes such as the ocean carbon cycle mediated by planktonic food webs. However, 

whether they are distinctly stainable fractions of the same particles or independent 

substances is still unclear. To elucidate this, we describe the surface temporal dynamics 

of both TEP and CSP particles over two complete seasonal cycles at two coastal sites in 

the Northwestern Mediterranean Sea, the Blanes Bay Microbial Observatory (BBMO) 

and the L’Estartit Oceanographic Station (EOS), as well as their spatial distribution 

along a coast-to-offshore transect nearby. Biological, chemical and physical variables 

were measured and analyzed in parallel. The dynamics of TEP and CSP were uncoupled 

at both coastal sites and the transect, suggesting they are different types of particles. 

Surface TEP concentrations averaged 36.7 ± 21.5 µg XG eq L
-1

 at BBMO and 36.6 ± 

28.3 µg XG eq L
-1

 at EOS, showing similar seasonal dynamics between the two sites, 

with higher concentrations in summer. In contrast, CSP seasonality was different 

between the two stations, though showing highest concentrations from late winter to 

early summer in both cases. Surface CSP concentrations averaged 11.9 ± 6.1 µg BSA eq 

L
-1

 at BBMO and 13.0 ± 5.9 µg BSA eq L
-1

 at EOS. Vertical TEP distributions, only 

recorded at EOS, were quite uniform, except in summer that they were higher at depths 

shallower than 20 m. Conversely, highest CSP concentrations were detected at the 

surface in spring. Phytoplankton were the main drivers of TEP and CSP distributions, 

although other factors such as nutrient limitation, saturating irradiance and the 

proportion of TEP and solid particles in aggregates also seemed to play important roles 

driving TEP distribution across the temporal scale.  
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3.1 Introduction  

Gel-like exopolymer particles, such as transparent exopolymer particles (TEP) and 

Coomassie stainable particles (CSP), have gained interest for their roles in ocean 

biogeochemistry. TEP are a relevant player in the carbon cycle since they constitute an 

estimated mean of 5-10 % of primary production in the ocean (Mari et al., 2017) and 

favour the aggregation and sinking of suspended particles (Engel et al., 2004a; Burd and 

Jackson, 2009). In addition, due to their low density (Azetsu-Scott and Passow, 2004), 

TEP can ascend through the upper water column, accumulate in the sea surface 

microlayer (SML) and influence air-sea gas exchanges (Calleja et al., 2009; Wurl et al., 

2016; Jenkinson et al., 2018). They can also be released to the atmosphere, contributing 

to organic aerosols (Aller et al., 2005) and impacting the Earth’s radiative budget 

(Brooks and Thornton, 2018). Unlike TEP, CSP do not seem to significantly impact 

aggregation processes (Prieto et al., 2002; Cisternas-Novoa et al., 2015), although more 

studies should be done to address this issue. CSP also accumulate in the SML (Wurl et 

al., 2011b; Engel and Galgani, 2016; Zancker et al., 2017; Sun et al., 2018) and have 

been observed in sea spray aerosols (Kuznetsova et al., 2005; Aller et al., 2017). 

TEP and CSP are transparent gel particles mostly formed by acidic polysaccharides and 

proteins, respectively. These particle types are defined by their capability to be stained 

with specific dyes: Alcian Blue in the case of TEP (Alldredge et al., 1993; Passow and 

Alldredge, 1995), and Coomassie brilliant blue for CSP (Long and Azam, 1996; Engel, 

2009). CSP are thought to present five to seven times greater nitrogen content than TEP  

(Engel and Passow, 2001; Mari et al., 2001). TEP have been largely studied in the ocean 

(reviewed by Passow (2002b), Bar-Zeev et al. (2015) and Mari et al. (2017)). 

Conversely, CSP have been scantly described since a spectrometric method, which is 

less time consuming and labor intensive than the classical microscopic quantification, 

has been developed only recently (Cisternas-Novoa et al., 2014). There is growing 

evidence that both particle types are ubiquitous in the ocean and are present in similar 

concentrations, but they likely represent independent particle fractions with distinct 

properties and distribution (Cisternas-Novoa et al., 2015; Thornton et al., 2016; 

Thornton and Chen, 2017); this latter issue requires confirmation. 

Phytoplankton are the main source of TEP and presumably also of CSP in the ocean 

(Passow, 2002b; Thornton and Chen, 2017), although heterotrophic prokaryotes (HP) 
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can also produce them (Stoderegger and Herndl, 1999; Radic et al., 2006). Diatoms and 

cyanobacteria have been shown to produce both CSP and TEP. Although CSP 

production by other phytoplankton groups have not been tested yet (reviewed in 

Thornton (2018)), it is known that dissolved organic nitrogen (DON), including 

proteins, are released by phytoplankton into the surrounding medium (Hu and Smith Jr., 

1998; Suratman et al., 2008). TEP can also form abiotically from precursors through 

ionic bonding (Alldredge et al., 1993; Thornton, 2004); so do presumably CSP 

(Cisternas-Novoa et al., 2015), but this has not yet been directly tested. Zooplankton 

(Ling and Alldredge, 2003) and HP (Passow, 2002a; Grossart et al., 2006; Azam and 

Malfatti, 2007) can use TEP as a food source; this is probably the case for CSP too 

Endres et al. (2013); (Cisternas-Novoa et al., 2015; Engel et al., 2015), and indeed  CSP 

have also been found colonized by HP. Environmental and biological variables other 

than taxon composition impact the production of TEP in the ocean: phytoplankton 

physiological state (Passow, 2002a), temperature (Claquin et al., 2008), light intensity 

(Trabelsi et al., 2008) and nutrient availability (Radic et al., 2006). TEP loss is affected 

by UV-induced photolysis (Ortega-Retuerta et al., 2009a). Owing to the lack of similar 

studies with CSP (Thornton and Chen, 2017), it is not yet known which and how 

biological and environmental factors affect CSP production.  

The Mediterranean Sea is a temperate, oligotrophic sea, characterized by the 

enhancement of water stratification in late spring and summer due to solar radiation 

increase, which leads to low nutrient concentrations in surface waters (Sala et al., 2002; 

Duarte et al., 2004; Lucea et al., 2005), and by vertical mixing in fall through winter. 

Chlorophyll a (Chl a) concentration is usually highest in late winter or early spring 

months, triggered by the onset of thermal stratification after winter mixing, coinciding 

with nutrient availability and high light (Buchan et al., 2014; Gasol et al., 2016). 

However, the exact conditions that prompt the onset of the bloom in the Mediterranean 

Sea and other regions is still debatable (Smetacek and Cloern, 2008; Behrenfeld, 2010; 

Taylor and Ferrari, 2011). Minimum Chl a values are found at the end of the summer 

period, due to the strong stratification. 

Previous studies of the temporal dynamics of TEP in the Mediterranean Sea, other than 

those conducted in eutrophic coastal areas or zones heavily influenced by the presence 

of seagrass meadows (Radic et al., 2005; Scoullos et al., 2006; Iuculano et al., 2017b), 

showed  maximum TEP concentrations in summer, both at coastal and offshore sites 
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(Beauvais et al., 2003; Ortega-Retuerta et al., 2018), with a temporal disconnection 

between TEP and Chl a (Ortega-Retuerta et al., 2018).  

Temporal dynamics of CSP in the Mediterranean Sea have not been studied before. A 

previous study on temporal CSP dynamics took place in a temperate coastal system in 

the Baltic Sea and showed that CSP, measured in both the SML and the subsurface 

water (SSW), increased in summer, and CSP abundance was generally similar to that of 

TEP (Dreshchinskii and Engel, 2017). Another study in the Sargasso Sea showed that 

both particle types presented different temporal and vertical distributions (Cisternas-

Novoa et al., 2015). TEP were higher in the shallowest sample (usually 50 m), while 

CSP were maximum between 70 and 100 m, coinciding with the Chl a fluorescence 

maximum. In addition, Cisternas-Novoa et al. (2015) observed, in a mesocosm, 

nutrient-induced phytoplankton bloom, that TEP and CSP were temporally uncoupled, 

being CSP better related to Chl a than TEP, and showing their maximum coinciding 

with the Chl a peak. 

In this study, for the first time we describe the temporal dynamics of TEP and CSP 

simultaneously over two complete seasonal cycles at two coastal sites of the 

Northwestern (NW) Mediterranean Sea. In one of them we also examined seasonal 

variations in TEP and CSP vertical distributions. Physical, chemical and biological 

variables were measured and analyzed in parallel. In addition, TEP and CSP were also 

analysed at two depths in a nearby coast-to-offshore transect in the NW Mediterranean 

Sea. The objectives of the study were to elucidate whether or not these two pools of 

organic particles follow similar trends along the year and also over the horizontal and 

vertical scales.  Based on previous works, we hypothesize that CSP distributions and 

temporal dynamics would be closely related to those of phytoplankton biomass, while 

TEP distribution and dynamics would be rather related to the combination of 

phytoplankton biomass, solar radiation and nutrient limitation. 
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3.2 Material and methods    

3.2.1 Study sites and sampling 

Samples were collected in different locations within the Catalan Sea (NW 

Mediterranean): (1) the Blanes Bay Microbial Observatory (BBMO, 

http://www.icm.csic.es/bio/projects/ icmicrobis/ bbmo/) (41.40º N, 2.48º E), (2) the 

L’Estartit Oceanographic Station (EOS), 70 km north (42.05º N, 3.25º E), and (3) a 

transect between the Catalan Coast and north of Mallorca Island, on board the RV 

“García del Cid” (cruise Mifasol II) (Fig. 3.1). The BBMO is located around 800 m 

offshore, in an open bay with shallow waters (sandy bottom at 20 m depth), where most 

terrestrial inputs arrive as runoff from the surrounding coastal area (details in Guadayol 

et al. (2009) and Gasol et al. (2012)). The EOS is located 3.2 km off the main coast and 

2 km off the Medes Islands,  within a ~92 m water depth (Fig. 3.1), and it is 

characterized by its proximity to an area catalogued as a “Specially Protected Area of 

Mediterranean Importance (SPAMI)” zone. 

The BBMO and EOS samplings were performed once per month (plus the June solstice 

in BBMO), from June solstice 2015 to October 2017, except during adverse weather 

conditions. At BBMO, water samples were taken with an acid-cleaned bucket from the 

surface (0.5 m) and kept in 20-L acid-cleaned polycarbonate carboys, after water pre-

filtration through acid-cleaned 200-μm mesh net to remove large planktonic organisms. 

Carboys were preserved under dim light, covering with black plastic bags to avoid 

photo-degradation. Further processing of samples was done within 1.5 h in the home 

laboratory. At EOS, four depths (0.5, 20, 50 and 80 m) were sampled using 5 L Niskin 

bottles, and then filtered through acid-cleaned 200-μm nylon mesh. Water for TEP and 

CSP analyses were collected in 1 L acid-cleaned polycarbonate bottles, while those for 

the rest of variables were kept in 8 L acid-cleaned polyethylene carboys, all of them 

covered with black plastic bags. Polycarbonate bottles were transported in a fridge with 

pack ice. Sample processing was done in the home laboratory within 4 h.  

The coast-to-offshore transect was conducted during the Mifasol II cruise, from 22
nd

 to 

24
th

 October 2015, including stations on the shelf (M1), slope (M2-4) and basin (M5-7), 

until 145 km from the shore. Seawater was collected at 2 depths (surface (5 m) and 

DCM (when present)) using a rosette on CTD casts (12 Niskin bottles with external 

spring, 12 L each).  

http://www.icm.csic.es/bio/projects/%20icmicrobis/%20bbmo/
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Figure 3.1: Map of the study area. The Blanes Bay Microbial Observatory (BBMO, 

green circle), L’Estartit Oceanographic Station (EOS, pink circle) and the transect 

between the Catalan Coast and north of Mallorca Island (M1-M7, blue circles).  

 

3.2.2 Physical variables 

A calibrated SAIVA/S SD204 sensor was used to measure vertical profiles of 

temperature and salinity with 0.5 and 1 m resolution in BBMO and EOS, respectively. 

In August 2016 in BBMO and from May to June 2016 at EOS, the sensor was 

inoperative. We calculated the mixed layer depth (MLD) as the depth where 

temperature changed more than 0.15 ºC with respect to a reference depth of 1 m. At 

BBMO, we calculated a stratification index that we defined as the temperature 
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difference between the surface and near the sea bottom (20 m). Water transparency (in 

meters) was measured with a Secchi disk in the BBMO and with white-faced Niskin 

bottles (used as analogous of a Secchi disk) in the EOS. The light extinction coefficient 

(Kd; m
-1

) was calculated as 1.7/water transparency (Kirk, 1994). Total irradiance was 

recorded hourly by a pyranometer at Malgrat de Mar station (approximately 40 km 

southwest of BBMO) and Sant Pere Pescador station (approximately 7 km southwest of 

EOS) (Catalan Meteorological Service, SMC). We measured the average solar radiation 

of the 24 h previous to the sampling, and calculated the daily-averaged solar radiation 

dose, defined as: 

Solar radiation dose =
I

Kd × MLD
 × (1 − e(−Kd × MLD)) 

where, I is the average surface irradiance (W m
-2

) in the 24 h previous to sampling, Kd is 

the light extinction coefficient (m
-1

), and MLD is the mixed layer depth (m).  

During the MIFASOL II cruise, the hydrological and optical variables were measured 

with a Sea-Bird Conductivity-Temperature-Depth (CTD) profiler, a WET Labs C-Star 

transmissometer and a SeaPoint optical backscatter sensor coupled to the rosette.  

3.2.3 Chemical and biological variables 

3.2.3.1 Particulate organic matter (TEP, CSP, POC and PON)     

Transparent exopolymer particles (TEP) were analysed following the 

spectrophotometric method proposed by Passow and Alldredge (1995). Filtration of 

samples (150-500 mL)  was done in duplicate under low constant pressure (~150 mm 

Hg) onto 25 mm diameter 0.4 µm pore size Polycarbonate filters (DHI). Immediately, 

filters were stained with Alcian Blue solution (500 µL, 0.02 %, pH 2.5) for 5 s, and 

rinsed with Milli-Q water. All sampling material was pre-washed with HCl (10 %) and 

Milli-Q water, and the first millilitres of sample were discarded. All filters remained 

frozen until further processing. Filters were soaked in 5 mL of 80 % sulfuric acid for 3 

h, shaking them intermittently, and absorbance of the solution was measured with the 

spectrophotometer at 787 nm (Varian Cary 100 Bio). The absorption of every batch of 

Alcian Blue was calibrated using a Xanthan Gum (XG) solution that was homogenized 

with a tissue grinder and measured by weight difference. A total of 7 calibrations of 

different Alcian Blue solutions were carried out during the temporal series, and 
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detection limits ranged from 0.0210 to 0.0480 absorbance units. Duplicate blanks 

(empty filters stained with Alcian Blue) were also prepared with every batch of filtered 

samples. We conducted TEP analyses in formalin-fixed (1% final concentration) 

samples, which were preserved at 4 °C until filtration (within 4 months at most). We 

decided to conduct TEP analyses on fixed samples, since formalin does not interfere 

with the measurement (Passow and Alldredge, 1995; Ortega-Retuerta et al., 2018), in 

order to optimize the number of samples processed every time a new calibration curve 

was constructed (one every four months). The conversion factor of 0.51 μg TEP-C µg 

XG eq
-1 

(Engel and Passow, 2001) was used to estimate TEP carbon content (TEP-C). 

CSP concentration was determined by spectrophotometry following (Cisternas-Novoa 

et al., 2014). Duplicate samples (200-350 mL) were filtered onto 25 mm diameter 0.4 

µm pore size Polycarbonate filters (Whatman and DHI) using a constant low filtration 

pressure (~150 mmHg). The samples were immediately stained with 1 mL of 

Coomassie Brilliant Blue (CBB-G 250) solution (0.04 %, pH 7.4) for 30 s, prepared 

always with the same filtered 0.2 µm seawater from Medes, 80 m depth, and rinsed with 

Milli-Q water three times. The filters were stored frozen in 15mL- polypropylene tubes 

until further processing in the laboratory (within 4 months). Duplicate blanks (empty 

filters stained as stated earlier) were prepared with every batch of filtered samples. Both 

the sample and blank filters were soaked in 4 mL of extraction solution (3 % SDS in 50 

% isopropyl alcohol) and the tubes were incubated in a water bath for 2 h at 37 ºC. The 

filters were shaken every 30 minutes during this period. We avoided sonication since it 

was previously observed that DHI filters did not resist sonication. We tested previously 

that the water bath and shaking were enough to remove the stain from the filters. We 

measured the absorbance after extraction in the water bath for 2 h, and then we 

sonicated the same filters for 2 h and measured the absorbance again. More than 90 % 

of absorbance was recuperated without sonication in our samples. The samples were 

then measured spectrophotometrically at 615nm (Varian Cary 100 Bio and Shimadzu 

UV–Vis spectrophotometer UV120). Concentrations of CSP are reported relative to a 

bovine serum albumin standard and expressed in micrograms of bovine serum albumin 

equivalents per liter (µg BSA eq L
-1

) after Cisternas-Novoa et al. (2014). A total of 3 

calibrations of different CBB solutions were carried out during the temporal series, and 

detection limits ranged from 0.0440 to 0.0609 absorbance units. 
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At BBMO in four months (November 2016 and April, August and October 2017), TEP 

and CSP were also measured following the microscopy method (Engel et al., 2015) 

Duplicate samples of 50 mL were filtered onto 25 mm diameter 0.4 µm pore size 

Polycarbonate filters (DHI), stained, and the excess dye was removed. Blanks were 

prepared as empty filters stained. The filters were placed on the white side of a semi- 

transparent glass slide (CytoClear, Poretics Corp., Livermore, US) and stored frozen 

(−20 ºC) until microscopic analysis. Following Engel (2009), abundance, area and size–

frequency distribution of TEP and CSP in the size range 1–760 µm were determined 

using a light microscope (Olympus Bx61) connected to a camera (Olympus DP72). 

Filters were screened at 200× magnification. Thirty pictures were taken randomly from 

each filter along two perpendicular cross sections (15 pictures each; resolution 

1360×1024 pixel, 8 bit color depth). WCIF ImageJ image analysis software (version 

1.44, public domain, developed at the US National Institutes of Health, courtesy of 

Wayne Rasband, National Institute of Mental Health, Bethesda, Maryland) was used to 

semi-automatically analyse particle numbers and area. TEP-C content was calculated 

following Mari (1999). We compared TEP-C estimates with those from the 

spectrophotometry method.  

For particulate organic carbon (POC) and nitrogen (PON) analyses, seawater (1000 mL) 

was filtered through combusted (4 h, 450 ºC) GF/F glass fibre filters (Whatman) and 

filters were frozen at -20 ºC until processed. Prior to analysis, the filters were thawed in 

an HCl-saturated atmosphere for 24 h to remove inorganic compounds. Then the filters 

were dried and analysed with an elemental analyser (Perkin-Elmer 2400 CHN).  

3.2.3.2 Chlorophyll a (Chl a) 

Chl a measurements started filtering 150 mL (BBMO) or 100 mL (EOS) of seawater on 

GF/F filters (Whatman, 25 mm diameter) and storing filters at -20 ºC until further 

processing. The pigment was extracted in acetone (90 % v:v) at 4 ºC in the dark for 24 

hours. Fluorescence was measured with a calibrated Turner Designs fluorometer, 

following Yentsch and Menzel (1963). 

3.2.3.3 Inorganic nutrients 

Dissolved inorganic nutrients (nitrate, phosphate and silicate) were measured with 

standard segmented flow analysis with colorimetric detection (Hansen and Grasshoff, 
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1983), using a SEAL Auto Analyzer AA3 HR (BBMO) or Bran + Luebe autoanalyser 

(EOS).  

3.2.3.4 Phytoplankton identification and biomass 

Phytoplankton were identified and counted with an inverted microscope. Seawater was 

fixed with hexamine-buffered formaldehyde solution (4 % final concentration) and 100 

mL were allowed to settle in Utermöhl chambers at 4 ºC until analysis (Guadayol et al., 

2009). Phytoplankton was identified to the species level when possible, and finally 

classified into four groups: diatoms, dinoflagellates, coccolithophores and other 

microplankton cells classified as “other microalgae”. We used conversion equations to 

calculate the cell C content (Menden-Deuer and Lessard, 2000). For diatoms we used 

log pg C cell
−1

 =log −0.541 (0.099) + 0.811 (0.028) × log V, and for the other algae 

groups, log pg C cell
−1

 =log−0.665 (0.132) + 0.939 (0.041) × log V, where V is cell 

volume in µm
3
 and the values inside parentheses are the 95 % confidence intervals.  

 

3.2.3.5 Picophytoplankton and prokaryotic heterotrophic (PH) abundance  

Enumeration of picophytoplankton and heterotrophic prokaryotes (PH) was done by 

flow cytometry after fixation with 1% paraformaldehyde plus 0.05% glutaraldehyde 

(final concentrations), following standard methods (Gasol and del Giorgio, 2000). The 

carbon content of PH was estimated empirically from the bead-standardized side scatter 

of the relevant populations following Calvo-Díaz and Morán (2006). Size was 

converted to C content following Norland (1993). The estimated average value of PH 

biomass per cell was 19 ± 0.5 fg C. 

3.2. 4 Statistical analyses       

Tukey Test was used to check for statistical differences of the different environmental 

variables among seasons. The seasons were separated by the winter/summer solstices 

and the spring/fall equinoxes. We used the nonparametric Wilcoxon-Mann-Whitney to 

test for statistical differences of the different variables among regions (BBMO and 

EOS). We performed pairwise Spearman correlation analyses to test for covariations 

between environmental and biological variables in the BBMO, EOS and Mifasol II 

dataset and also to test for covariations of these variables between BBMO and EOS. 

Bivariate analyses (ordinary least squares, OLS) between TEP and CSP concentrations 

and several biological, chemical and physical variables were performed in EOS profiles. 

We log transformed data to fulfil the requirements of parametric tests. Principal 
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component analysis (devtools and ggbiplot packages in R) was applied to all samples of 

BBMO and EOS dataset after centering and scaling a total number of 20 and 19 

physical, chemical and biological variables, respectively. At EOS, we calculated depth 

integrated values for the water column (0-92 m) by linear interpolation of values 

obtained at 4 sampling depths in the range 0-92 m. Depth averaged values were 

measured dividing depth integrated values by depth (92 m). Statistical tests, calculations 

and illustration were performed with Microsoft Offce Excel 2010, Ocean Data View 

software (version 4) (Schlitzer and 2017) and R programing software (version 3.5.1).  

 

3.3 Results    

3.3.1 Variation of the main physical and chemical variables over the time series 

BBMO and EOS are two sites relatively unaffected by human impacts and river 

discharges (Guadayol et al., 2009; Ros and Gili, 2015), where oceanographic variables 

present  a seasonal cycle typical for a temperate coastal system. Sea surface temperature 

(SST) was similar in BBMO and EOS, following a marked seasonal cycle due to the 

differences in the number of light hours through the year (maximum in June and July 

and minimum in December and January). SST changed from an average of 13.4 ± 0.4 

ºC (BBMO) and 13.2 ± 0.5 ºC (EOS) in winter to 22.9 ± 2.2 ºC (BBMO) and 22.6 ± 1.4 

ºC (EOS) in summer (Figs. 3.2 and 3.3). In summer, high surface temperatures caused 

the presence of a shallower stratified layer (average MLD of 6.5 ± 5.7 m in BBMO and 

4.6 ± 4.7 m in EOS) (Table 3.1). Water transparency ranged from 5 to 20 m in BBMO 

and 5 to 24 m in EOS, with the highest values in summer at both stations. Dissolved 

nitrate and silicate concentrations in the surface were lowest in summer in both BBMO 

and EOS (Table 3.1). However, surface phosphate concentrations (average 0.04 ± 0.02 

µmol L
-1

 in BBMO and 0.04 ± 0.06 µmol L
-1 

in EOS) did not exhibit marked seasonal 

variations but were low throughout the year in both stations (Table 3.1). Looking at the 

vertical distribution of dissolved inorganic nutrients in EOS, these usually increased 

with depth in summer, while they were more homogeneously distributed in the other 

seasons, though with variations (Fig. S3.1 and Table 3.1).  
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Figure 3.2: Values of a) temperature, salinity and one-day averaged solar radiation dose (SRD), b) 

nitrate, phosphate and silicate c) particulate organic carbon (POC) and chlorophyll a (Chl a), d) 

phytoplankton and heterotrophic prokaryotic (PH) biomasses, e) transparent exopolymer particles (TEP) 

and Coomassie stainable particles (CSP) concentrations, f) Prochlorococcus, Synechococcus and 

picoeukaryotes biomasses, g) diatoms and dinoflagellates biomasses, h) coccolithophores and “other 

microalgae” biomasses, over the study in BBMO. Time scale is in Julian days, starting on 1 June 2015. 

Every tick indicates the sampling month.  



Chapter 3 

 
128 

 

 



Chapter 3 

 
129 

 

 

 

Figure 3.3: Values of a) temperature, salinity and one-day averaged solar radiation dose (SRD) in the 

surface (0.5 m) and b) nitrate, phosphate and silicate, c) particulate organic carbon (POC), chlorophyll a 

(Chl a) and phytoplankton biomass, d) transparent exopolymer particles (TEP) and Coomassie stainable 

particles (CSP) concentrations, e) Prochlorococcus, Synechococcus and picoeukaryotes biomasses, f) 

diatoms and dinoflagellates biomasses, g) coccolithophores and “other microalgae” biomasses, depth-

averaged over the study in EOS. Time scale is in Julian days, starting on 1 June 2015. Every tick indicates 

the sampling month. 
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Table 3.1. Averages and standard deviation (SD) of the main physical and biological variables in each season at the surface of the BBMO (0.5 m) and EOS (0.5 m) time 

series, between June 2015 and November 2017. MLD: mixed layer depth, Chl a: chlorophyll a, POC: particulate organic carbon, PON: particulate organic nitrogen, PHA: 

prokaryotic heterotrophic abundance, TEP: transparent exopolymer particles, CSP: Coomassie stainable particles, C: phytoplankton biomass.  

 BBMO    EOS     

 Winter Spring Summer Fall Winter Spring Summer Fall 

Variable Average (± SD) Average (± SD) Average (± SD) Average (± 

SD) 

Average (± 

SD) 

Average (± SD) Average (± SD) Average (± SD) 

Temperature (ºC) 13.4 ± 0.4a 16.8 ± 3.0a,c 22.9 ± 2.2b 17.9 ± 2.7b,c 13.2 ± 0.5a 15.7 ± 1.7b,a 22.6 ± 1.4c 17.2 ± 1.8b 

Salinity 38.2 ± 0.1a 38.1 ± 0.1a 37.9 ±0.1a 37.9 ± 0.7a 38.0 ± 0.4a 37.8 ± 0.3a 37.8 ± 0.2a 37.9 ± 0.4a 

Stratification Index (º C) 0.04 ± 0.06a 1.24 ± 1.35a 2.01 ± 1.73a 0.49 ± 1.63a - - - - 

Water transparency (m) 11.0 ± 4.0a 16.5 ± 3.1b 17.5 ± 3.0a,b 15.3 ± 3.5a,b 11.2± 2.9a 12.8 ± 3.6a 17.7 ± 3.5a 14.2 ± 6.7a 

MLD (m) 10.0 ± 3.2 8.6 ± 6.8 6.5 ± 5.7 13.9 ± 5.4 76.8 ± 31.9 6.0 ± 5.7 4.6 ± 4.7 52.2 ± 38.8 

Averaged-24h solar 

radiation dose (Wm-2) 

40.2 ± 25.7a 

 

179.3 ±  102.9b 220.4 ± 72.b 61.1 ± 30.8a 10.8 ± 5.7a 221.0 ± 99.5b 235.2 ± 80.6b 36.9 ± 56.6a 

Nitrate (µmol L-1) 0.89 ± 0.47a 0.34 ± 0.29a,b 0.22 ± 0.18b 0.68 ± 0.65a,b 1.67 ± 0.20a 0.77 ± 0.58a 0.27 ± 0.41a 1.36 ± 1.23a 

Phosphate (µmol L-1) 0.06 ± 0.04a 0.03 ± 0.01a 0.04 ± 0.02a 0.04 ± 0.01a 0.02 ± 0.01a 0.03 ± 0.02a 0.03 ± 0.01a 0.08 ± 0.10a 

Nitrate:P  15.7 ± 8.5a 10.9 ± 6.4a 5.3 ± 2.9a 17.7 ± 17.2a 81.5 ± 27.7a 42.5 ± 41.2a,b 8.3 ± 8.7b 37.0 ± 54.0a,b 

Silicate (µmol L-1) 1.35 ± 0.38a 1.04 ± 0.50a,b 0.69 ± 0.47b 0.91 ± 0.50a,b 1.53 ± 0.33a 1.29 ± 0.42a,b 0.48 ± 0.17b 1.03 ± 0.80a,b 

Chl a (μg L-1) 1.07 ± 0.36a 0.32 ± 0.13b,c 0.23 ± 0.11b 0.57 ± 0.33c 0.50 ± 0.20a 0.27 ± 0.12a,b 0.14 ± 0.03b 0.33 ± 0.19a,b 

POC (µmol L-1) 12.4 ± 4.5a 11.0 ± 3.7a 11.8 ± 5.4a 13.1 ± 9.4a 8.8 ± 2.1a 10.8 ± 3.4a 10.2 ± 4.8a 9.7 ± 5.1a 

PON (µmol L-1) 1.7 ± 0.7a 1.6 ± 0.6a 1.7 ± 1.0a 2.0 ± 1.6a 1.0 ± 0.3a 1.3 ±  0.6a 1.1 ± 0.6a 2.3 ± 3.0a 
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PHA (x 105 cells mL-1) 9.04 ± 3.09a 10.21 ± 4.04a 8.35 ± 1.64a 9.69 ± 2.51a - - - - 

TEP (µg XG eq L-1) 32.2 ± 9.9a 34.5 ± 22.0a 42.3 ± 25.2a 33.9 ± 24.5a 25.8 ± 20.2a 29.2 ± 8.7a 57.2 ± 38.3a 28.2 ± 23.6a 

CSP (µg BSA eq L-1)  8.8 ± 3.8a 15.5 ± 6.7a 11.0 ± 4.6a 12.1 ± 8.0a 11.0 ± 6.6ab 19.8 ± 2.5a 12.8 ± 4.3a,b 9.3 ± 4.6b 

TEP:Chl a 37.0 ± 26.3a 125.8 ± 76.9a,b 202.4 ± 123.1b 60.2 ± 24.8a 48.8 ± 39.9a 136.2 ± 98.2a,b 443.9 ± 314.4b 94.7 ± 86.1a 

CSP:Chl a 9.0 ± 3.8a 53.2 ± 23.5b 59.0 ± 18.0b 23.2 ± 16.4a 20.5 ± 13.7a 87.8 ± 51.5a 86.2 ± 25.8a 42.9 ± 47.0a 

TEP:C 1.98 ± 1.13a 1.64 ± 1.22a 2.88 ± 1.64a 1.99 ± 1.25a 1.58 ± 0.56a 2.52 ± 0.87a,b 4.95 ± 2.62b 2.03 ± 1.42a,b 

CSP:C 0.64 ± 0.30a 0.66 ± 0.36a 0.80 ± 0.28a 0.70 ± 0.41a 0.80 ± 0.43a 1.79 ± 0.64a 1.25 ± 0.60a 0.77 ± 0.08a 

TEP:POC 2.8 ± 0.9a 2.8 ± 1.4a 4.3 ± 3.0a 2.8 ± 1.5a 3.6 ±1.5a 2.7 ±0.5a 5.5±2.2a 3.1±2.0a 

CSP:POC 0.8 ± 0.4a 1.6 ± 1.0a 1.0 ± 0.8a 1.1 ± 0.6a 1.4 ±0.4a 2.0 ±0.7a 1.8 ±0.9a 1.1 ±0.5a 

C: Chl a 20.0 ± 10.5a 85.3 ± 29.7b 69.4 ± 14.1b 34.2 ± 11.8a 31.2 ± 28.5a 50.5 ± 21.3a  83.8 ± 27.6a 51.2 ± 48.9a 

POC:Chl a 154  ± 73a 452 ± 231a,b 712 ± 427b 300 ± 184a 204 ±  49a  565 ± 297a,b 992 ± 413b 429 ± 253a,b 
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3.3.2 Variation of TEP, CSP, POC and PON over the time series 

The ranges and averages of surface TEP concentrations were similar at both coastal 

stations, and they followed similar seasonal dynamics (r= 0.58, p< 0.05, n= 20, Table 

3.2). At BBMO, surface TEP concentrations ranged from 8.4 to 80.9 µg XG eq L
-1

 

(average 36.7 ± 21.5 µg XG eq L
-1

) (Fig. 3.2), while in the EOS they ranged from 5.8 to 

126.7 µg XG eq L
-1

, with an average of 36.6 ± 28.3 µg XG eq L
-1

 (Fig. 3.3). At surface, 

the coefficient of variation of TEP was 58 % in BBMO and 77 % in EOS. Although in 

none of the two stations TEP followed a significant seasonal pattern throughout the 

study (autocorrelation test, p> 0.05), the highest TEP concentrations were recurrently 

observed in early summer (Figs. 3.2 and 3.3). When vertical profiles were measured 

(only in EOS), TEP typically decreased with depth (Fig. 3.4) but differences were found 

among seasons (Fig. S3.1). In the entire sampled water column in EOS, depth-averaged 

TEP values were 31.6 ± 15.3 µg XG eq L
-1

 in summer, 20.4 ± 11.9 µg XG eq L
-1

 in fall, 

19.0 ± 5.5 µg XG eq L
-1

 in winter and 23.8 ± 9.7 µg XG eq L
-1

 in spring (Table 3.3).  

In summer, TEP peaks were found at the surface or at 20 m, coinciding with shallow 

mixed layers, while they were usually homogenously distributed during the rest of the 

year, despite the presence of a mixed layer in certain months (April, May, September 

and October 2017). Conversely, in December 2016, although the water column was 

mixed, a TEP peak at the surface was observed (Fig. S3.1). 

Regarding TEP size distribution, determined by image analysis in the surface of EOS in 

4 months, one per season (November 2016 and April, August and October 2017), it 

followed an exponential distribution, with the smallest particles, ranging 0-1.25 µm, 

being the most abundant in 3 of the 4 samples. In April 2017, particles ranging 2.50-

3.54 µm were the most abundant, followed by the smallest ones (Fig. S3.3).  
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Table 3.2. Spearman correlations of environmental and biological variables between BBMO and surface 

EOS during the 2015-2017 period. ns: no significant. TEP: transparent exopolymer particles. CSP: 

Coomassie stainable particles. Chl a: chlorophyll a. B: biomass. POC: particulate organic carbon.  

 

Variable r p n 

TEP 0.58 <0.05 20 

CSP  ns 17 

Temperature (ºC) 0.97 <0.001 21 

Salinity  ns 21 

Water transparency (m)  ns 21 

Solar radiation dose (Wm
-2

) 0.93 <0.001 17 

Nitrate (µmol L
-1

) 0.56 <0.05 20 

Phosphate (µmol L
-1

)  ns 20 

Silicate (µmol L
-1

) 0.65 <0.05 20 

Chl a (μg L
-1

) 0.72 <0.001 19 

Prochlorococcus  (µg C L
-1

) 0.64 <0.05 19 

Synechococcus (µg C L
-1

) 0.58 <0.05 19 

Picoeukaryotes (µg C L
-1

) 0.87 <0.001 19 

Dinoflagellates (µg C L
-1

) 0.67 <0.001 19 

Diatoms (µg C L
-1

)  ns 19 

Coccolithophores (µg C L
-1

) 0.56 <0.05 19 

“Other microalgae” (µg C L
-1

)  ns 19 

Phytoplankton B (C) (µg C L
-1

) 0.61 <0.05 19 

POC (µmol L
-1

)  ns 19 

r: Spearman’s correlation coefficient; p: level of significance; n:sample size 

 

Table 3.3. Depth-averages and standard deviation (SD) of the main physical and biological variables in 

each season at EOS time series, between June 2015 and November 2017. POC: particulate organic 

carbon, TEP: transparent exopolymer particles, CSP: Coomassie stainable particles. 

 EOS     

 Winter Spring Summer Fall 

Variable Average (± SD) Average (± SD) Average (± SD) Average (± SD) 

Nitrate (µmol L
-1

) 1.71 ± 0.35a 1.10 ± 0.93a 1.54 ± 1.09a 0.55 ± 0.19a 

Phosphate (µmol L
-1

) 0.03 ± 0.01a 0.02 ± 0.01a 0.03 ± 0.01a 0.03 ± 0.01a 

Silicate (µmol L
-1

) 1.32 ± 0.29a 1.36 ± 0.32a 1.13 ± 0.28a 1.02 ± 0.19a 

Chl a (μg L
-1

) 0.37 ± 0.20a 0.27 ± 0.09a,b 0.21 ± 0.07b 0.31 ± 0.10a,b 

POC (µmol L
-1

) 6.9 ± 1.3a 8.4 ± 2.6a 7.5 ± 1.8a 8.1 ± 2.4a 

TEP (µg XG eq L
-1

) 19.0 ± 5.5a 23.8 ± 9.7a 31.6 ± 15.3a 20.4 ± 11.9a 

CSP (µg BSA eq L
-1

)  7.6 ± 1.6a 15.2 ± 5.4a 10.6 ± 6.5a 9.0 ± 3.5a 
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Figure 3.4: Average values along the whole temporal series in the vertical profile at EOS of a) temperature and salinity, b) nitrate, phosphate and silicate, c) particulate 

organic carbon (POC), chlorophyll a (Chl a) and carbon biomass (C) d) transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) concentration, e) 

Prochlorococcus, Synechococcus and picoeukaryotes biomasses, f) diatoms and dinoflagellates biomasses, g) coccolithophores and “other microalgae” biomasses. Bm: 

biomass. 
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Ranges and averages of surface Coomassie stainable particles (CSP) concentrations 

were also similar for both coastal stations, but temporal dynamics were different, 

resulting in no significant correlation (p> 0.05) (Table 3.4).  In BBMO, surface CSP 

concentration varied between 4.7 and 24.8 µg BSA eq L
-1

 (average 11.9 ± 6.1 µg BSA 

eq L
-1

) (Fig. 3.2), while in EOS it varied between 4.5 and 22.4 µg BSA eq L
-1

 (average 

13.0 ± 5.9 µg BSA eq L
-1

) (Fig. 3.3). At the surface, the coefficient of variation of CSP 

was 51 % in BBMO and 46 % in EOS. They did not follow recurrent seasonal patterns 

throughout the study (autocorrelation test, p> 0.05), but they always presented highest 

concentrations between late winter and early summer (Fig. 3.3). There were also 

differences among seasons in CSP vertical distributions in EOS (Fig. S3.1). In the entire 

sampled water column, depth-integrated CSP values were the highest in spring (average 

15.2 ± 5.4 µg BSA eq L
-1

) and summer (average 10.6 ± 6.5 µg BSA eq L
-1

), and the 

lowest in fall (average 9.0 ± 3.5 µg BSA eq L
-1

) and winter (average 7.6 ± 1.6 µg BSA 

eq L
-1

). In summer, CSP concentrations were always higher at 20 m, i. e., below the 

mixed layer depth. In spring, concentrations were higher within the mixed layer depth, 

although in April and May 2017, there was also a peak at 60 m. In fall, CSP 

concentrations were homogenously distributed in 3 out of 4 samples, except in 

December 2015, where a peak at the surface occurred. In winter there was no clear 

pattern of CSP distribution in the vertical scale (Fig. S3.1). On average, CSP decreased 

with depth (Fig. 3.4). CSP size distribution followed an exponential shape towards 

higher abundances of the smaller particles in the four samples (Fig. S3.3).  

Particulate organic carbon (POC) and nitrogen (PON) concentrations were also similar 

in both coastal stations. In BBMO, surface POC ranged from 5.82 to 33.16 µmol L
-1

 

(average 12.1 ± 6.0 µmol L
-1

) (Fig. 3.2); in EOS, it ranged from 4.33 to 18.02 µmol L
-1

 

(average 9.9 ± 4.1 µmol L
-1

) (Fig. 3.3). PON surface concentrations averaged 1.8 ± 1.0 

µmol L
-1 

in BBMO and 1.5 ± 1.7 µmol L
-1 

in EOS. Surface POC and PON 

concentrations did not present clear seasonal cycling during the study. In BBMO and 

EOS, TEP and POC dynamics were significantly correlated (r= 0.40, p<0.05, n=29 in 

BBMO and r= 0.50, p<0.05, n=19, Table 3.4) while CSP was coupled neither to TEP 

nor to POC (p > 0.05, Table 3.5). In EOS, CSP were correlated to PON (r= 0.57, p< 

0.05, n= 16, Table 3.5).  
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Table 3.4. Spearman correlations between transparent exopolymer particle (TEP) concentration and other 

environmental and biological variables during the 2015-2017 period in surface BBMO and EOS. ns: no 

significant. CSP: Coomassie stainable particles. Chl a: chlorophyll a. B: biomass. POC: particulate 

organic carbon. PON: particulate organic nitrogen. PHA: prokaryotic heterotrophic abundance. 

  BBMO   EOS   

Variable  r p n r p n 

TEP Temperature (ºC)  ns 30  ns 20 

 Salinity -0.46 < 0.05 29 -0.48 < 0.05 19 

 Stratification Index (º C)  ns 29  -  

 Water transparency (m)  ns 30  -  

 Solar radiation dose (Wm-2) 0.36 0.06 29 0.58 < 0.05 16 

 Nitrate (µmol L-1)  ns 30  ns 20 

 Phosphate (µmol L-1)  ns 30  ns 20 

 Silicate (µmol L-1)  ns 30 -0.47 < 0.05 20 

 CSP (µg BSA eq L-1)  ns   ns  

 Chl a (μg L-1)  ns 30 -0.47 < 0.05 18 

 Prochlorococcus  (µg C L-1) -0.51 <0.05 30 -0.61 < 0.01 18 

 Synechococcus (µg C L-1) -0.36 0.05 30  ns 18 

 Picoeukaryotes (µg C L-1)  ns 30  ns 18 

 Dinoflagellates (µg C L-1) 0.50 <0.05 30  ns 18 

 Diatoms (µg C L-1) 0.44 <0.05 30  ns 18 

 Coccolithophores (µg C L-1)  ns 30  ns 18 

 “Other microalgae” (µg C L-1) 0.36 0.05 30 0.55 < 0.05 18 

 Phytoplankton B (C) (µg C L-1)  ns 30 0.50 < 0.05 18 

 POC (µmol L
-1

) 0.40 <0.05 29 0.50 < 0.05 19 

 PON (µmol L-1)  ns 29  ns 19 

 PHA (x103 cells mL-1)  ns 30  -  

TEP:Chl a Solar radiation dose (Wm-2) 0.74 <0.001 30 0.96 <0.001 18 

TEP:C Solar radiation dose (Wm-2)  ns 30 0.76 < 0.05 18 

Chl a Solar radiation dose (Wm-2) -0.72 <0.001 30 -0.80 <0.001 18 

C:Chl a Solar radiation dose (Wm-2) 0.72 <0.001 30 0.87 <0.001 18 
r: Spearman’s correlation coefficient; p: level of significance; n:sample size 
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Table 3.5. Spearman correlations between Coomassie stainable particles (CSP) concentration and other 

environmental and biological variables during the 2015-2017 period in surface BBMO and EOS. ns: no 

significant. Chl a: chlorophyll a. B: biomass. POC: particulate organic carbon. PON: particulate organic 

nitrogen. PHA: prokaryotic heterotrophic abundance. PHP: prokaryotic heterotrophic production. 

  BBMO   EOS   

Variable  r p n r p n 

CSP Temperature (ºC)  ns 24  ns 17 

 Salinity  ns 23  ns 16 

 Stratification Index (º C)  ns 23  -  

 Water transparency (m)  ns 24  -  

 Solar radiation dose (Wm
-2

)  ns 23  ns 13 

 Nitrate (µmol L
-1

)  ns 24  ns 17 

 Phosphate (µmol L
-1

)  ns 24  ns 17 

 Silicate (µmol L
-1

)  ns 24  ns 17 

 Chl a (μg L
-1

)  ns 24  ns 15 

 Prochlorococcus  (µg C L
-1

)  ns 24  ns 15 

 Synechococcus (µg C L
-1

)  ns 24  ns 15 

 Picoeukaryotes (µg C L
-1

)  ns 24  ns 15 

 Dinoflagellates (µg C L
-1

) 0.40 0.06 24  ns 15 

 Diatoms (µg C L
-1

)  ns 24  ns 15 

 Coccolithophores (µg C L
-1

)  ns 24  ns 15 

 “Other microalgae” (µg C L
-1

) 0.59 <0.05 24  ns 15 

 Phytoplankton B (C) (µg C L
-1

) 0.46 <0.05 24 0.59 <0.05 15 

 POC (µmol L
-1

)  ns 23  ns 16 

 PON (µmol L
-1

)  ns 23 0.57 <0.05 16 

 PHA (x10
3 
cells mL

-1
)  ns 24  -  

 PHP (µg C L
-1

 d
-1

)  ns 24  -  
r: Spearman’s correlation coefficient; p: level of significance; n:sample size 

 

3.3.3 Variation of biological variables over the time series 

Chlorophyll a (Chl a) concentrations were similar in both stations, varying between 

0.13 and 1.52 µg L
-1

 (average 0.49 ± 0.39 µg L
-1

) in the surface of BBMO (Fig. 3.2), 

between 0.13 and 0.75 µg L
-1

 (average 0.31 ± 0.19 µg L
-1

) in the surface of EOS (Fig. 

3.3) and between 0.05 and 0.84 µg L
-1

 (average 0.34 ± 0.19 µg L
-1

) in the whole water 

column of EOS (Fig. S3.1). Maximum concentrations occurred in winter in both 

stations (Table 3.1). In the surface, the coefficient of variation of Chl a was 79 % in 

BBMO and 61 % in EOS. Total phytoplankton biomass was not correlated with Chl a in 

any of the two stations (p> 0.05), and was maximum in late winter in both cases. 

Prokaryotic heterotrophic abundance (PHA) at surface in BBMO ranged from 5 to 

17.26 χ 10
5
 cell mL

-1
 (Fig. 3.2) (data not available in EOS). 
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Regarding the variability of different phytoplankton groups, they were quite similar in 

both stations; Prochlorococcus, Synechococcus, picoeukaryotes, dinoflagellates and 

coccolithophores were all significantly and positively correlated between stations (Table 

3.2).  

 The highest surface abundances of Prochlorococcus cells were found in fall, whereas 

maxima of Synechococcus occurred in spring. Picoeukaryote abundances were highest 

in the first four months of every year. Dinoflagellates were maxima in late spring. The 

biomass of coccolithophores and “other microalgae” did not present clear seasonal 

variations in any of the stations (Figs. 3.2 and 3.3). The highest diatom biomasses were 

found in late fall (when data available). 

Regarding the entire sampled water column in EOS, Prochlorococcus biomass 

presented high values at 50 m in summer 2015 and 2017. Synechococcus showed 

maximum concentrations at 20 m and/or 40 m in spring and summer. Diatom biomass 

in November 2015 was very high in the upper 50 m (Fig. S3.1).  

3.3.4 Variation of TEP:Chl a, CSP:Chl a, TEP: C, CSP: C, TEP:POC, CSP:POC, 

C:Chl a and POC: Chl a, and contribution of TEP to the POC pool  

Surface average TEP:Chl a ratio was highest in summer in both stations, and so was the 

ratio of TEP to phytoplankton carbon biomass (TEP:C) (Table 3.1, Fig. S3.2). Surface 

average CSP:Chl a ratio was higher in spring and summer, whereas CSP:C was higher 

in summer in BBMO and in spring in EOS (Table 3.1). The minimum values of 

TEP:Chl a and CSP:Chl a occurred in winter in both stations (Table 3.1). The ratio of 

carbon biomass to Chl a (C:Chl a) showed a clear seasonal cycle, with the lowest values 

in winter and fall ( generally below 50), and the highest in spring and summer 

(generally above 50) (Table 3.1). Also the POC:Chl a ratios was highest in summer and 

lowest in winter in both stations (Table 3.1, Fig. S3.2). TEP:POC ratios peaked in 

summer, while CSP:POC peaked in spring  (Table 3.1). 

The estimated contribution of TEP-C to the POC pool in BBMO (surface) and EOS 

(depth-averaged) ranged between 4 and 34 % (average 14 ± 9 %), and between 6 and 24 

% (average 12 ± 4 %), respectively. The highest shares were observed in summer in 

both stations; in this season TEP-C was the largest contributor to the POC pool, whereas 

phytoplankton was the largest POC carrier in spring (Fig. 3.5). 
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Figure 3.5: Averages and standard deviations of the contribution of TEP (estimated with the colorimetric 

method), phytoplankton and PH to the POC pool (%) in every season in BBMO at surface (0.5 m) (upper 

panel) and EOS (depth-integrated) (lower panel). The estimations of the contribution of TEP to the POC 

pool (%) in November 2016, April, August and October 2017 were all inside the range (standard 

deviation), whereas in October 2017 was slightly lower (3.6 %). 

 

 

 



Chapter 3 

 
140 

3.3.5 Environmental and biological variables as potential predictors of seasonal 

TEP and CSP dynamics   

Regarding the correlations of TEP and CSP with other variables at surface in BBMO 

and EOS, differences were found between particle types and sampling stations. In 

BBMO, the variable that best correlated to TEP variability was dinoflagellate 

abundance (r= 0.50, p< 0.05, n= 30), followed by diatoms, “other microalgae” and solar 

radiation dose (Table 3.4). However, there was not a significant relationship with Chl a 

nor phytoplankton biomass, probably because cyanobacteria, which account for a 

remarkable share of phytoplankton biomass, showed a significant negative correlation 

to TEP (Table 3.5). CSP were best correlated to “other microalgae” (r= 0.59, p< 0.05, 

n= 24) and total phytoplankton biomass (r= 0.46, p< 0.05, n= 24) (Table 3.2).  

In EOS, TEP were best positively correlated to the solar radiation dose (r= 0.58, p< 

0.05, n= 16), “other microalgae” (r= 0.55, p< 0.05, n= 18), and total phytoplankton 

biomass (r= 0.50, p< 0.05, n= 18), and negatively correlated to Chl a (r= -0.47, p< 0.05, 

n= 18). CSP positively correlated with total phytoplankton biomass (r= 0.59, p< 0.05, 

n= 15), but not with Chl a. Negative correlations occurred between TEP and 

Prochlorococcus in both study sites (r=-0.51, p< 0.05, n=30 in BBMO and r= 0.61, p< 

0.01, n= 18 in EOS). Also in both study sites, TEP:Chl a ratio was positively correlated 

with solar radiation dose (r=-0.74, p< 0.001, n=30 in BBMO, and r= 0.96, p< 0.001, 

n=18  in EOS). TEP:C was only correlated with solar radiation dose in EOS (Table 3.4). 

At the vertical scale in EOS, TEP were best related to dinoflagellates (R
2
= 0.35, p< 

0.001, n= 75), silicate (R
2
= 0.32), nitrate (R

2
= 0.23), total phytoplankton biomass (R

2
= 

0.22) and “other microalgae” (R
2
= 0.20) (Table 3.6). CSP were best related to total 

phytoplankton biomass (r= 0.31, p< 0.001, n= 63) and Synechococcus (r= 0.29, p< 

0.001, n= 63) (Table 3.6). 
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Table 3.6. Regression equations and statistics describing the relationship between TEP (transparent 

exopolymer particles) or CSP (Coomassie stainable particles) and different variables in the vertical 

profiles of EOS (note all variables were log10 transformed). ns: no significant. Chl a: chlorophyll a. PHA: 

prokaryotic heterotrophic abundance. B: biomass.  

Var. Ind. var R
2
 p Intercept Slope n 

TEP Temperature 0.21 <0.001 -0.83 1.79 83 

 Salinity 0.29 <0.001 89.91 -56.03 79 

 Nitrate 0.23 <0.001 1.25 -0.17 83 

 Phosphate  ns   83 

 Silicate 0.32 <0.001 1.32 -0.73 83 

 Chl a 0.08 <0.05 1.12 -0.28 75 

 PHA  ns   75 

 Prochlorococcus B  ns   75 

 Synechococcus B 0.11 <0.05 1.27 0.23 75 

 Picoeukaryotes B  ns   75 

 Diatmos B  ns   75 

 Dinoflagellates B 0.35 <0.001 1.31 0.39 75 

 Coccolithophores B  ns   75 

 “Other microalgae” B 0.20 <0.001 1.22 0.34 75 

 Phytoplankton B (C) 0.22 <0.001 0.82 0.52 75 

CSP Temperature  ns   68 

 Salinity 0.17 <0.001 66.48 -41.44 64 

 Nitrate  ns   68 

 Phosphate  ns   68 

 Silicate 0.06 <0.05 0.99 -0.37 68 

 Chl a  ns   63 

 PHA  ns   63 

 Prochlorococcus B  ns   63 

 Synechococcus B 0.29 <0.001 0.92 0.38 63 

 Picoeukaryotes B  ns   63 

 Diatmos B  ns   63 

 Dinoflagellates B 0.23 <0.001 0.99 0.33 63 

 Coccolithophores B  ns   63 

 “Other microalgae” B 0.13 <0.05 0.90 0.27 63 

 Phytoplankton B (C) 0.31 <0.001 0.40 0.61 63 
R2: explained variance; p: level of significance; n:sample size 

 

3.3.5 TEP and CSP distribution along the coast-to-open sea transect  

Surface TEP concentrations (5 m) increased from the coast to the open ocean and 

ranged 21.5-36.5 9 µg XG eq L
-1

 (average 30.7 ± 5.4 µg XG eq L
-1

). Surface CSP 

concentrations, which varied between 2.3 and 8.7 µg BSA eq L
-1

 (average 5.2 ± 2.1 µg 

BSA eq L
-1

), decreased from the coast to the slope and beyond (Fig. 3.6), i.e., largely 

opposite to TEP. Surface CSP concentrations significantly and positively correlated 

with Chl a (r= 0.92, p< 0.05, n= 7) and nanoeukaryotes (r= 0.86, p< 0.05, n= 7). At the 

depth of the DCM, TEP and CSP concentrations were generally lower than surface 

concentrations (Fig. 3.6): 11.4 ± 3.6 µg XG eq L
-1

 for TEP and 2.9 ± 0.6 µg BSA eq L
-1
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for CSP. Unlike at surface, TEP concentrations at the DCM decreased from near coast 

to the slope, and so did CSP concentrations (Fig. 3.6).  

 

 

Figure 3.6: Transparent exopolymer particle (TEP) (circles) and Coomassie stainable particle (CSP) 

(triangles) and Chl a (squares) concentrations in the surface (5 m) (closed symbols) and deep chlorophyll 

maximum (DCM) (open symbols) in the transect, showing the distance to the shore. Note that in the M1 

and M2, there was no DCM and the depth sampled was 25 and 200 m, respectively. 

 

 

3.4 Discussion     

3.4.1 Dynamics of TEP and CSP over the seasonal cycle in the NW Mediterranean 

Sea 

We present the first simultaneous distribution of TEP and CSP concentrations over two 

seasonal cycles in the Mediterranean Sea. The methods used to quantify these particles 

are based on the capability of a dye to stain acidic polysaccharides and proteins, 

respectively (Passow and Alldredge, 1995; Cisternas-Novoa et al., 2014). However, the 

actual composition of the particles is unknown and depends on the sources and 

degradation processes (Passow, 2012), and they are probably formed by a mixture of 

different organic and inorganic molecules and microbes. In the last years there has been 

an attempt to elucidate whether these stained particle types (TEP and CSP) are in fact 

the same particles or not (Cisternas-Novoa et al., 2015; Thornton et al., 2016; Thornton 

and Chen, 2017), and results suggest they mostly comprise different particulate 
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substances. Our results also support that TEP and CSP are different particles, since they 

presented uncorrelated temporal dynamics over seasonal cycles in two coastal sites 

(Figs. 3.2 and 3.3, Table 3.4 and 3.5), and also different vertical distributions (Fig. 

S3.1). This also suggests that they are produced by different organisms and/or subject to 

different aggregation and degradation processes, as suggested in previous studies 

(Cisternas-Novoa et al., 2015; Thornton et al., 2016; Thornton and Chen, 2017). It is 

worth mentioning, though, that the absence of parallel temporal patterns of TEP and 

CSP does not totally preclude that both particles are the same, at least in some cases. 

However, a previous study detected, through visual examination of the particles with 

the FlowCAM technique, that the Alcian Blue and CBB stains were frequently present 

in different particle types (Cisternas-Novoa et al., 2015), and therefore it is likely that at 

least some particles present Alcian-Blue stainable substances but not CBB stainable 

substances, and the opposite. On the other hand, Dreshchinskii and Engel (2017) 

observed that TEP and CSP dynamics were coupled during two seasonal cycles in the 

Baltic Sea, both in the SML and in subsurface water, which contrasts with our results. 

TEP seasonality was similar in both coastal sites (r=0.58; Table 3.2), probably 

indicating that the main drivers of TEP concentration were also similar in both stations 

(see next section). The maximum TEP concentrations found in early summer (Figs. 3.2 

and 3.3) are in accordance with previous studies in the Mediterranean Sea (Beauvais et 

al., 2003; Ortega-Retuerta et al., 2018). It has been suggested that TEP maxima in 

summer could be due to the increase of TEP production under nutrient limitation, the 

presence of specific phytoplankton groups, and TEP accumulation due to positive 

buoyancy during water stratification (Ortega-Retuerta et al., 2018). This study expands 

the previous temporal study conducted in the BBMO (Ortega-Retuerta et al., 2018), 

incorporating information about phytoplankton biomass and solar radiation dose.  

Our TEP ranges across the two stations (5.8-126.7 µg XG eq L
-1

) were similar to those 

found by Ortega-Retuerta et al. (2018) in BBMO during the three previous years (11.3-

289.1 µg XG eq L
-1

), and by Iuculano et al. (2017b) in a rocky shore coastal site of the 

Balearic Sea (4.6-90.6 µg XG eq L
-1

), while they were lower than those found in a 

coastal site accumulating Posidonia oceanica leaf litter in the Balearic Sea (26.8-1878.4 

µg XG eq L
-1

) (Iuculano et al., 2017b).  
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Temporal CSP patterns were different between coastal sites (Figs. 3.2 and 3.3), which 

may indicate differences in the main drivers of CSP concentration (see next section). 

Although no correlation was found among CSP and Chl a at any of the stations (Table 

3.5), the highest CSP concentrations were found from late winter to early summer, 

coinciding with periods of relatively high Chl a values. A previous study showed 

stronger relationship with Chl a for CSP than for TEP (Cisternas-Novoa et al., 2015). 

Our surface CSP concentrations in both stations (0.5 and 5 m, respectively) (4.5-24.8 µg 

BSA eq L
-1

) were very similar to those found in the upper 100 m of the Sargasso Sea in 

several seasons of 2012 and 2013 (3.2 ± 0.7 – 22.4 ± 0.4 µg BSA eq L
-1

)  (Cisternas-

Novoa et al., 2015), probably because both the Mediterranean and Sargasso Sea are 

oligotrophic. By contrast, our CSP concentrations  were lower than those found at 1 m 

in the Baltic Sea (Cisternas-Novoa et al., 2019) (Table 3.7), and our CSP microscopy-

derived CSP abundance was lower than in the time series in the Baltic Sea 

(Dreshchinskii and Engel, 2017), probably due to the lower Chl a concentration in our 

study.  

Table 3.7. Compilation of published Coomassie stainable particles (CSP) concentrations (mean ± SE and 

ranges; µg BSA eq L-1), chlorophyll a (Chl a) concentrations (mean ± SE and ranges; μg L-1) and 

CSP:Chl a ratios (mean ± SE and ranges; µg BSA eq (µg Chl a)-1). bdl: below detection limit. 

Location Comments CSP Chl a CSP:Chl a Reference 

Sargasso Sea February, May, August, 

November 2012 and May 

2013 

0-100 m 

3.2 ± 0.7 – 

22.4 ± 0.4 

0.25-0.75a - Cisternas-

Novoa et al. 

(2015) 

Baltic Sea 3-19 June 2015 

1 and 10 m 

 

15-56 a 1.2-1.7 - Cisternas-

Novoa et al. 

(2019) 

Mediterranean 

Sea 

October 2015- October 

2017 (time-series study) 

0.5 m 

4.5-24.8 

(12.4 ± 6.0) 

0.13-1.52  

(0.4 ± 0.3) 

4.8-163.2 

(45.6 ± 35.7) 

This study 

a Extracted from graphs 

3.4.2 Main drivers of TEP and CSP dynamics 

Chlorophyll a (Chl a), typically used as an indicator of phytoplankton biomass, was not 

positively correlated with TEP or CSP in any station, and in EOS it was negatively 

correlated with TEP (r= -0.45, p< 0.05, Table 3.4). Ortega-Retuerta et al. (2018) also 

found negative correlation of TEP with Chl a (r= -0.45, p= 0.007) in BBMO. Previous 

time series studies reported covariation between TEP and Chl a (Beauvais et al., 2003; 

Scoullos et al., 2006; Engel et al., 2017; Parinos et al., 2017), while others did not 

(Bhaskar and Bhosle, 2006; Taylor et al., 2014), or only found it at certain periods of 
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the year (Dreshchinskii and Engel, 2017). However, it is worth mentioning that the 

C:Chl a ratio of phytoplankton changed throughout the year in both BBMO and EOS, in 

accordance with Gasol et al. (2016) and Gutiérrez-Rodríguez et al. (2010) for BBMO, 

being maximum in spring and summer (Table 3.1), which is explained by the high 

irradiance and low nutrients in these seasons (Geider et al., 1998). Consequently, Chl a 

cannot be considered a good indicator of phytoplankton biomass in these study sites. 

CSP was correlated to total phytoplankton biomass in both stations (BBMO, r= 0.46; 

EOS, r= 0.59), while TEP only in EOS (r= 0.50) (Table 3.4 and 3.5). This confirmed 

our hypothesis that CSP distribution and temporal dynamics, at least at sea surface, are 

more closely related to phytoplankton biomass than TEP, in agreement with Cisternas-

Novoa et al. (2015). In addition, the highest CSP concentrations of the time series (from 

late winter to early summer), coincide with the period of maximum primary production 

(spring) recorded in a 12-year study (2003-2014) in the BBMO (Gasol et al., 2016), 

measured with the 
14

C-POC method, that is thought to estimate something near net 

primary production (Marra, 2002). 

The same study observed that the Chl a-specific primary production (production per 

unit of Chl a) was highest in summer and lowest in winter, and that it correlated with 

the summer-enhanced variables (temperature, stratification and light). They suggested 

that the higher Chl a-specific primary production in summer could be due to higher 

efficiency of the phytoplankters that dominate the system in that season. It was reflected 

in their higher maximum Chl a-normalized photosynthetic rate (P
B

max) values and 

higher light utilization in summer. Based on our observations, higher specific primary 

production in summer could be partially explained by the presence of TEP and CSP, 

with relatively high values also in summer, since these particles are partially retained in 

the filters used for PP measurements and thus included as they were phytoplankton 

biomass. 

Our results suggest that TEP dynamics were more strongly affected by variables other 

than phytoplankton than CSP. In fact, CSP did not correlate with any other measured 

variables in any of the two stations (Table 3.5). Instead, TEP and TEP:Chl a correlated 

positively with solar radiation dose in both stations (and TEP: C only in EOS) (Table 

3.4), which could be indicative of either the stimulation of TEP release by microbes by 

light stress, as suggested by Iuculano et al. (2017c), Agustí and Llabrés (2007) and 
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Zamanillo et al. (2019b), or the enhancement of abiotic self-assembly of dissolved 

exopolymers into TEP (Shammi et al., 2017). In EOS, TEP correlated negatively with 

salinity and silicate at surface (Table 3.4) and with nitrate across vertical profiles (Table 

3.6). The negative relationship with nitrate could be due to the stimulation of 

phytoplankton TEP production under nutrient limitation in summer, as suggested by 

Ortega-Retuerta et al. (2018). 

Gasol et al. (2016) found relatively high saturating irradiance or light saturation 

parameter (Ek) values all year round in BBMO, which is typical of regions receiving 

relatively high light intensities. Ek was always within the values delimited by the 

surface irradiance and that at 5 m depth, indicating photoacclimation (physiological 

adjustments in response to changing light) of algal communities. In winter, the observed 

values of Ek are close to the surface irradiance at the time of sampling, whereas in 

summer they are close to the irradiance values observed at 5 m depth. This indicates that 

in summer, the phytoplankton living above 5 m receives irradiance in excess of their 

saturating irradiance, which may favour TEP production. 

Along these same lines, Alonso-Sáez et al. (2008) found that DOC release accounted for 

up to 45 % of total primary production in BBMO, being lower in winter. Since DOC 

can self-assemble to form TEP, and possibly CSP, this release of primary production as 

DOC could have further contributed to increased TEP and CSP concentrations in spring 

and summer.  

Neither TEP nor CSP were correlated with PHA, suggesting that heterotrophic 

prokaryotes played much less of a role than phytoplankton in driving the temporal 

variation of these two particle types. 

Different phytoplankton groups appeared to be responsible for TEP and CSP 

distributions: TEP mainly correlated to dinoflagellates, diatoms and “other microalgae” 

over time (Table 3.4), whereas CSP correlated to dinoflagellates and “other microalgae” 

over time (Table 3.5), and also to Synechococcus in the vertical scale. While 

Synechococcus as a CSP source was already suggested by Cisternas-Novoa et al. 

(2015), this is the first study that suggests dinoflagellates and “other microalgae” to be 

also CSP producers. The lack of correlation of “other microalgae” between the two 

stations (Table 3.2) could be responsible for the differences in the temporal patterns of 

CSP. 
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A recent study has found enhanced production of TEP in a xenic culture of 

Prochlorococcus compared to an axenic one, suggesting that heterotrophic bacteria 

exude TEP or stimulate TEP production by Prochlorococcus. In this study, the negative 

correlation of TEP with Prochlorococcus in both study sites (Table 3.4) indicates that 

either Prochlorococcus were not major TEP producers, in agreement with Zamanillo et 

al. (2019c). 

3.4.3 Contribution of TEP, phytoplankton and PH to the POC pool 

The contribution of TEP to the POC pool in this study was in a similar range to that 

measured in the northeastern Atlantic Ocean (Harlay et al., 2009; Harlay et al., 2010), 

but lower than those reported across the Atlantic Ocean (Zamanillo et al., 2019c), 

eastern Mediterranean Sea (Bar-Zeev et al., 2011; Parinos et al., 2017) and the western 

Arctic (Yamada et al., 2015). Only two previous studies have compared the carbon 

content of TEP estimated with the colorimetric and microscopic methods. Berman and 

Viner-Mozzini (2001) did not find a good correlation, while Engel and Passow (2001) 

obtained similar results with both methods. In this study we have obtained a similar 

result, suggesting a good approximation to the reality.    

Interestingly, only in summer in both stations, the TEP contribution to the POC pool at 

surface was larger than the contribution of phytoplankton and PH (Fig. 3.5). In addition, 

TEP:POC was also higher in summer (Table 3.1), indicating a higher TEP contribution 

to POC pool in this season. This may affect particle density: Particles with relatively 

higher TEP would be low dense (Engel and Schartau, 1999), and, consequently, these 

aggregates would present a lower sinking velocity, or could even ascend (Azetsu-Scott 

and Passow, 2004; Mari et al., 2007), with a tendency to accumulate at or near the 

surface. We hypothesize that the lower density of TEP-rich particles in summer would 

lead to their accumulation in the surface.  

3.4.4 Distribution of TEP and CSP in the coast-to-offshore transect 

The different dynamics of TEP and CSP along the coast-to-offshore transect (Fig. 3.6) 

indicate that the two particle types are also uncoupled at the spatial scale.  The positive 

correlation of CSP with Chl a illustrates, as in the temporal scale, that CSP distribution 

is more strongly affected by phytoplankton biomass than TEP.  
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 3.4.7 Conclusions   

TEP and CSP seem to be independent particles since they followed uncoupled temporal 

dynamics at two coastal sites and at a coast-to-offshore transect in the NW 

Mediterranean Sea. Phytoplankton biomass was the main driver of TEP and CSP 

distribution, although not all phytoplankton groups contributed equally. Diatoms, 

dinoflagellates and “other microalgae” were the main drivers of TEP distribution, 

whereas dinoflagellates, “other microalgae” and Synechococcus were those of CSP. In 

addition, TEP distribution and temporal dynamics were also subjected to nutrient 

limitation, excretion of organics under saturating irradiance, and the proportion of TEP 

and solid particles in aggregates. The fact that two close coastal sites exhibit similar 

seasonal patterns of TEP concentrations indicates that opens up the possibility to define 

(and therefore predict) TEP seasonality in regions with similar biological, chemical and 

physical characteristics.  
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3.6 Supplementary material 

3.6.1 Supplementary Figures 

 

 



Chapter 3 

 
150 

 

 

 

 

 



Chapter 3 

 
151 

 

 

 

 

 



Chapter 3 

 
152 

 

Supplementary Figure S3.1: Water column distribution of a) temperature, b) salinity, nitrate, phosphate, 

silicate, chlorophyll a (Chl a), phytoplankton biomass, transparent exopolymer particles (TEP), 

Coomassie stainable particles (CSP), Prochlorococcus, Synechococcus and picoeukaryotes, diatoms and 

dinoflagellates biomasses, coccolithophores and “other microalgae” biomasses, from June 2017 to 

October 2017. The black dots represent sampling points. Blank spaces represent periods when the 

weather conditions did not allow sampling. The plots were drawn using the software Ocean Data View 

Schlitzer 2017. 



Chapter 3 

 
153 

 

 

 

 

Supplementary Figure S3.2: Values of POC:Chl a, TEP:Chl a and C:Chl a over the study in BBMO. 

Time scale is in Julian days, starting on 1 June 2015. Every tick indicates the sampling month. See Figure 

2 for abbreviations. 
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Supplementary Figure S3.3: Size distribution of TEP (upper panel) and CSP (lower panel) (number mL-

1) obtained with the microscopic method for four samplings in BBMO. Numbers of particles are binned 

by their mean diameter: those ranging 0-1.3 µm are grouped as 1.0 µm, those ranging 1.3-1.8 µm as 1.5 

µm, 1.8-2.5 µm as 2.1 µm, 2.5-3.5 µm as 3.0 µm, 3.5-5.0 µm as 4.2 µm, 5.0-7.0 µm as 6.0 µm, 7.0-10.0 

µm as 8.5 µm, and 10.0-14.0 µm as 12.0 µm. In November 2016, total area of TEP and CSP averaged 14 

± 12 and 38 ± 5 mm2 L-1, respectively. In April 2017 they averaged 41 ± 12 and 42 ± 10 mm2 L-1, 

respectively. In August 2017, they averaged 25 ± 7 and 19 ± 4 mm2 L-1, respectively. In October 2017, 

they averaged, 6 ± 3 and 16 ± 1 mm2 L-1, respectively. 
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Abstract 

Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) are 

organic particles that play an important role in ocean biogeochemistry. Since the 

Southern Ocean stands out by its ability to sequester anthropogenic CO2, there is a need 

to understand the role that these particles play in this process and predict their 

distribution around the Southern Ocean. In addition, whether these particles are the 

same or not remains uncertain. Here we have measured, for the first time, TEP and CSP 

concentrations simultaneously over an entire season around Antarctica, from December 

2016 to March 2017, in both the horizontal and vertical scale. In addition, prokaryotic 

heterotrophic abundance, Chl a and other pigments were measured in parallel to study 

the controlling variables of TEP and CSP distribution. TEP and CSP were weakly 

dependent (R
2
= 0.14), suggesting to be different types of particles, and phytoplankton 

were the main biological driver of these particles. TEP concentrations in the entire 

transect ranged from below detection limit to 201.8 µg XG eq L
-
1, and averaged 34.0 ± 

28.8 µg XG eq L
-1

, and their production was spread among many phytoplankton groups. 

CSP concentrations ranged between 0.3 and 52.2 µg BSA eq L
-
1, and averaged 21.9 ± 

10.7 µg BSA eq L
-1

, being diatoms their main producers. Our study also suggests that 

phytoplankton mortality favoured the production of both types of particles.  
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4.1 Introduction 

Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) are 

gel-like exopolymer particles that have been increasingly studied in the last decades 

because of their role in ocean biogeochemistry. They comprise the fraction of the 

natural organic matter present in the ocean that is retained on 0.4 µm polycarbonate 

filters and is stained with Alcian blue in the case of TEP, (Alldredge et al., 1993; 

Passow and Alldredge, 1995) and with Coomassie brilliant blue for CSP (Long and 

Azam, 1996). Their relevance lies in their special properties and characteristics. TEP 

increase the biological carbon pump efficiency via two mechanisms: they account for an 

important fraction of marine primary production, estimated to be 5-10 % (Mari et al., 

2017), and they favour the aggregation of particles and their subsequent sinking into the 

deep ocean (Engel et al., 2004b; Burd and Jackson, 2009). In addition, both particle 

types have been found enriched in the sea surface microlayer. Organic matter 

accumulated in the surface microlayer can influence air-sea gas exchanges (Calleja et 

al., 2009; Jenkinson et al., 2018) and be released to the atmosphere as aerosols (Aller et 

al., 2005; Aller et al., 2017) that affect the Earth’s radiative budget (Brooks and 

Thornton, 2018). 

The Southern Ocean (SO) is thought to sequester a large fraction of the anthropogenic 

CO2 (Frölicher et al., 2015), especially due to the high solubility of this gas in cold 

waters, and to the relatively high export of particulate organic carbon in the high 

latitudes of this ocean (Boyd and Trull, 2007; Marinov et al., 2008). Understanding the 

role that TEP and CSP play in the Southern Ocean and the prediction of their 

distribution should improve our ability to predict the magnitude of the biological carbon 

pump and the future dynamics of atmospheric CO2. However, previous studies of TEP 

in the Southern Ocean are limited to the Antarctic Peninsula (Passow et al., 1995b; 

Corzo et al., 2005; Ortega-Retuerta et al., 2009b; Zamanillo et al., 2019b), South 

Georgia (Zamanillo et al., 2019b) and the Ross Sea (Hong et al., 1997), and there are no 

previous studies of CSP. In the present study we provide the first simultaneous 

distribution of CSP and TEP, in both the horizontal and vertical scales, in the Southern 

Ocean, all around Antarctica. The aims of the study were:  (a) to elucidate whether both 

particle types present similar trends across the horizontal and vertical scales, and (b) to 

identify the main planktonic drivers of TEP and CSP distributions. 
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4.2 Material and methods 

4.2.1 Study site and sampling 

Sampling was performed during the Antarctic Circumnavigation Expedition (ACE) 

across the Southern Ocean, on board the Russian RV Akademik Threshnikov throughout 

an entire austral summer, from 23
rd

 December 2016 to 17
th

 March 2017. A total of 182 

sampling stations were conducted along a circular transit around Antarctica, divided in 

three legs: 1) from Cape Town (South Africa) to Hobart (Australia); 2) from Hobart to 

Punta Arenas (Chile); 3) From Punta Arenas to Cape Town (Fig. 1).  

Seawater surface samples (5 m) were collected four times a day (00:00, 06:00, 12:00 

and 18:00 local time (LT)) from the ship’s underway pump. In addition, vertical profiles 

(6 depths, generally from 5 to 100-150 m) were sampled from 19 CTD casts using a 

SBE 911 Plus attached to a rosette of 24 12-L PVC Niskin bottles. 

4.2.2 Chemical and biological analyses 

4.2.3.1 Particulate organic matter (TEP and CSP) 

TEP concentration was determined by spectrophotometry following Passow and 

Alldredge (1995). Duplicate samples (150-300 mL) were filtered through 25 mm 

diameter 0.4 µm pore size Polycarbonate filters (DHI) using a constant low filtration 

pressure (~150 mmHg). The samples were immediately stained with 500 µL of Alcian 

blue solution (0.02 %, pH 2.5) for 5 s and rinsed with Milli-Q water. Duplicate blanks 

(empty stained filters) were prepared at every station. The filters were stored frozen 

until further processing in the laboratory (within 5-8 months). All sample and blank 

filters were soaked in 5 mL of 80 % sulfuric acid and shaken intermittently for 3 h. The 

samples were then measured spectrophotometrically at 787 nm (Varian Cary 

spectrophotometer). The Alcian blue dye solution calibration was done in January 2017 

using a standard solution of Xanthan Gum (XG). The absorbance values of filter blanks 

did not change substantially between batches of samples, suggesting stability in the 

staining capacity of the Alcian blue solution throughout the cruise. The detection limit 

was 0.04 absorbance units and the mean range between duplicates was 15.7%.    

CSP concentration was determined by spectrophotometry following (Cisternas-Novoa 

et al., 2014). Duplicate samples (150-300 mL) were filtered through 25 mm diameter 



Chapter 4 

 
162 

0.4 µm pore size Polycarbonate filters (Whatman) using a constant low filtration 

pressure (~150 mmHg). The samples were immediately stained with 700 µL of working 

Coomassie Brilliant Blue (CBB-G 250) solution (0.04 %, pH 7.4), which was prepared 

with 0.2-μm filtered sample seawater (one working solution per day) for 30 s, and 

rinsed with Milli-Q water three times. The filters were stored frozen until further 

processing in the laboratory (within 1-4 months). Duplicate blanks (empty filters stained 

as stated earlier) were prepared at every station. Both the sample and blank filters were 

soaked in 4 mL of extraction solution (3 % SDS in 50 % isopropyl alcohol; Ball 1986) 

and the tube sonicated in a water bath (50-60 kHz) for 2 h at 37º C. The filters were 

shaken intermittently during this period. The samples were then measured 

spectrophotometrically at 615 nm (Shimadzu UV–Vis spectrophotometer UV120). The 

CBB dye solution calibrations were done in May 2017. A total of three calibrations 

were conducted, using three sea waters of different salinities (filtered by 0.2-μm) to 

prepare the working CBB solution. These waters were collected during the cruise 

(stations UW 78,143 and 162), whose salinities ranged 31.8-34.6. The f-vaules, 

calculated as 1/slope of the calibration regressions, ranged 93.3-97.1, so we decided to 

use the average f-value to all samples along the cruise. The detection limit was 0.045 

absorbance units and the mean range between duplicates was 15.6 %.  

4.2.3.2 Chl a       

Seawater (up to 2 L) was filtered through 25 mm diameter glass filters (Whatman GF/F) 

under low vacuum pressure and remained frozen (-80 ºC) until further processing on-

board the ship. Pigment extraction was done at 4 ºC in the dark for 24 h with 90 % 

acetone. Fluorescence of extracts was measured with a calibrated AU-10 Turner 

Designs fluorometer (Yentsch and Menzel, 1963). 

4.2.3.3 Prokaryotic heterotrophic abundance (PHA)  

Prokaryotic heterotrophic abundance (PHA) was determined by flow cytometry. 

Samples were fixed with 1% paraformaldehyde plus 0.05 % glutaraldehyde (final 

concentrations), for 15 min at room temperature and stored frozen at -80 ºC. Samples 

were analyzed 12 months after the cruise end, using a Cube 8 flow cytometer equipped 

with a 50 mW argon-ion laser emitting at 488 nm. Before analyses, samples were 

unfrozen, stained with SYBRGreen I (Molecular Probes) (1:100 vol:vol) and left in the 

dark for about 15 min. Samples were run at a low flow rate (approx. 24 μl min
-1

) for 2 
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min with Milli-Q water as a sheath fluid. Heterotrophic prokaryotes were detected by 

their signature in a plot of side scatter versus FL1 (green fluorescence) and they were 

expressed in cells mL
-1

.  

4.2.3.4 HPLC pigment analysis   

HPLC was used to determine pigment composition, following Van Heukelem and 

Thomas (2001) and Ras et al. (2007). Twenty-five pigments were identified between 

450 and 770 nm. Pigments were also used as indicators of phytoplankton 

photoacclimation. Diadinoxanthin (Ddx) is the main light-protecting pigment in 

diatoms, dinoflagellates, haptophytes and pelagophytes. The Ddx:LHC ratio, between 

Ddx and the sum of the main light-harvesting carotenoids (LHC: fucoxanthin, 19’-

butanoyloxyfucoxanthin, 19’-hexanoyloxyfucoxanthin and peridinin) was measured, 

since it varies with the exposure of phytoplankton to underwater solar radiation 

(Higgins et al., 2011; Nunes et al., 2019).  

4.2.4 Statistical analyses 

We performed pairwise Spearman correlation analyses to test for covariations between 

TEP and CSP concentrations with other environmental and biological variables. 

Bivariate analyses (ordinary least squares, OLS) between TEP and CSP concentrations 

with other biological and environmental were also conducted to explore the potential 

controlling variables of TEP and CSP distribution across the transect. We log 

transformed data to fulfil the requirements of parametric tests. Statistical tests, 

calculations and illustration were performed with Microsoft Office Excel 2010, Ocean 

Data View software (version 4) (Schlitzer and 2017) and R programing software 

(version 3.5.1) (RStudio Team, 2016).        

 

4.3 Results  

4.3.1 TEP and CSP distribution across the Southern Ocean 

TEP and CSP presented positively correlated distributions in surface waters (5 m) (r= 

0.39, p< 0.01). Nonetheless, remarkable differences in these distributions (Table 4.2 and 

Figs. 4.1 and 4.2) suggested that they were governed by different sources and 

controlling processes in the different regions. Surface TEP concentrations ranged from 
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below detection limit (bdl) to 201.8 µg XG eq L
-1

 (average 34.0 ± 28.8 µg XG eq L
-1

; 

Table 4.1), and the maximum concentrations were found in coastal Antarctica next to 

Mertz Glacier and Siple Island (Figs. 4.1 and 4.2). Surface CSP concentrations ranged 

from 0.3 to 52.2 µg BSA eq L
-1 

(average 21.9 ± 10.7 µg BSA eq L
-1

; Table 4.1), and 

maximum concentrations were found next to Mertz Glacier and Siple Island, but also in 

the Drake Passage and South Georgia areas. The surface Chl a concentration varied 

widely, from 0.15 to 8.71 µg L
-1 

(1.16 ± 1.46 µg L
-1

; Table 4.1), with the highest values 

next to Mertz Glacier and Siple Island, in a region influenced by the Malvinas current 

and north of Heard and McDonald Islands (Fig. 4.1). CSP:Chl a ratios also varied 

widely, between  0.5 and 136.1 µg BSA eq µg
-1

 (35.7 ± 25.2 µg BSA eq µg
-1

; Table 

4.1), with the highest values at the first half of the second leg, before Mertz glacier, and 

west Antarctic Peninsula (Figs. 4.2 and 4.3). The sea surface temperature during the 

cruise ranged between -0.5 and 13.9 ºC (4.8 ± 3.4 ºC; Table 4.1). Surface prokaryotic 

heterotrophic abundance ranged from 1.08 x 10
5
 to 3.21 x 10

6
 cells mL

-1
 (6.6 ± 4.5 x 

10
5
 cells mL

-1
) (Table 4.1). TEP:Chl a ratios varied widely from 5.1 to 141.5 µg XG eq 

µg
-1

 (average 48.4 ± 34.0 µg XG eq µg
-1

), with the highest values at the end of leg 1, 

south of the west Australian Current (Figs. 4.2 and 4.3).  In the vertical scale, TEP and 

CSP broadly decreased with depth, but they were not generally coupled (Fig. 4.4). A 

peak of TEP was usually found above the deep chlorophyll maximum (DCM) (4 out of 

6), whereas CSP were usually higher at the DCM or quite homogeneous around DCM .  

 

Table 4.1. Average and standard deviation of temperature, transparent exopolymer 

particles (TEP), Coomassie stainable particles (CSP), chlorophyll a (Chl a) and 

prokaryotic heterotrophic abundance (PHA) in the surface (5 m) of ACE cruise. 

 Average ± SD (ranges) n 

Temperature (ºC) 4.8 ± 3.4 (-0.5 – 13.9) 121 

TEP (µg XG eq L
-1

) 34.0 ± 28.8 (bdl – 201.8) 181 

CSP (µg BSA eq L
-1

) 21.9 ± 10.7 (0.3 – 52.2) 181 

Chl a (µg L
-1

) 1.16 ± 1.46 (0.15 – 8.71) 145 

PHA (cell mL
-1

) 6.6 ± 4.5 x 10
5
 121 

TEP:Chl a (µg XG eq µg
-1

) 48.4 ± 34.0 (5.1 –  141.5) 145 

CSP:Chl a (µg BSA eq µg
-1

) 35.7 ± 25.2 (0.5 – 136.1) 145 
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 Figure 4.1. Concentration of transparent exopolymer particles (TEP) (µg XG eq L-1) (upper panel), 

Coomassie stainable particles (CSP) (µg BSA eq L-1) (middle panel) and Chl a (mg m-3) (lower panel) in 

surface waters (5 m) of the ACE cruise, sampled from 23rd December 2016 to 17th March 2017 in the 

Southern Ocean. Values below detection limit are set to 0. 
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Figure 4.2. a) Variations of TEP (µg XG eq L-1), CSP (µg BSA eq L-1) and Chl a (µg L-1) throughout the 

ACE cruise. Values below detection limit are set to 0. Vertical lines separate legs. b) Variations of 

TEP:Chl a and CSP:Chl a. 
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Figure 4.3. TEP:Chl a (µg XG eq µg -1) (upper panel) and CSP:Chl a (µg BSA eq µg -1) (lower panel) 

ratios and Chl a (mg m-3) (lower panel) in surface waters (5 m) of the ACE cruise, sampled from 23rd 

December 2016 to 17th March 2017 in the Southern Ocean. See Figure 4.1 for abbrevations. 

 

4.3.2 Relationship of TEP and CSP with other biological variables  

TEP were significantly and positively correlated to Chl a (r= 0.58, p<0.001, n=145; 

Table 4.2). The regression equation for log converted TEP vs Chl a was log TEP= 1.49 

(±0.02) + 0.50 (±0.06) x log Chl a (R
2
= 0.36, p<0.001, n= 145; Table 4.3). TEP were 

also correlated with Spearman coefficient higher than 0.40 to the following pigments; 

zeaxanthin, alloxanthin, fucoxanthin, peridinin, 19’-hexanoyloxyfucoxanthin, 

chlorophyllide a and phaeophorbid a (Table 4.2). CSP were also significant and 

positively correlated to Chl a, but less than TEP (r= 0.49, p<0.001, n= 145; Table 4.2), 

and to the pigments fucoxanthin (r=0.38, n= 93), chlorophyllide a (r= 0.61, n= 93) and 

phaeophorbid a (r= 0.55, n=93) (Table 4.2). 
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Table 4.2. Spearman correlations between transparent exopolymer particles (TEP) or Coomassie 

stainable particle (CSP) concentrations and other biological variables at 5 m during ACE cruise. Values 

below detection limit are considered as missing values (NA). 

Var.  r p n 

TEP Temperature  ns 121 

 CSP 0.39 <0.001 181 

 Chl a (μg L
-1

) 0.58 <0.001 145 

 PHA (x10
3 
cells mL

-1
)  ns 121 

 Violaxanthin 0.38 <0.05 93 

 Prasinoxanthin  ns 93 

 Lutein  ns 93 
 Zeaxanthin 0.44 <0.01 93 
 Alloxanthin 0.50 <0.01 93 
 Fucoxanthin 0.43 <0.001 93 
 19’-butanoyloxyfucoxanthin 0.27 <0.05 93 
 Peridinin 0.49 <0.001 93 
 19’-hexanoyloxyfucoxanthin 0.41 <0.001 93 
 Chlorophyllide a 0.71 <0.001 93 
 Phaeophorbid a 0.46 <0.001 93 
 Ddx:LHC  ns 93 
CSP Temperature -0.43 <0.001 121 

 TEP 0.39 <0.001 181 

 Chl a (μg L
-1

) 0.49 <0.001 145 

 PHA (x10
3 
cells mL

-1
) -0.20 <0.05 121 

 Violaxanthin  ns 93 
 Prasinoxanthin  ns 93 
 Lutein  ns 93 
 Zeaxanthin  ns 93 
 Alloxanthin  ns 93 
 Fucoxanthin 0.38 <0.001 93 
 19’-butanoyloxyfucoxanthin  ns 93 
 Peridinin  ns 93 
 19’-hexanoyloxyfucoxanthin  ns 93 
 Chlorophyllide a 0.61 <0.001 93 
 Phaeophorbid a 0.55 <0.001 93 
 Ddx:LHC  ns 93 

r: Spearman’s correlation coefficient; p: level of significance; n:sample size 
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4.4 Discussion  

4.4.1 TEP and CSP concentrations in the Southern Ocean 

This is the first study that reports CSP concentrations in the SO. In addition, it is also 

the first time that both TEP and CSP are measured across the SO around Antarctica in 

one same season. Previous TEP studies in the SO where limited to the Antarctic 

Peninsula (Passow et al., 1995b; Corzo et al., 2005; Ortega-Retuerta et al., 2009b; 

Zamanillo et al., 2019b), South Georgia (Zamanillo et al., 2019b), the Drake Passage 

(Corzo et al., 2005) and the Ross Sea (Hong et al., 1997) (see thesis chapter 2). Despite 

the fact that TEP and CSP were positively correlated along the cruise (r=0.39; Table 

4.2), their interdependence was weak and probably driven by the wide range in 

productivity in the visited regions, and one explained a small fraction of the variance of 

the other (R
2
=0.14; Table 4.3). These results indicate that TEP and CSP are different 

particle types that are produced by different organisms and influenced by different 

processes. In fact, previous studies already pointed in that direction (Cisternas-Novoa et 

al., 2015; Thornton et al., 2016; Thornton and Chen, 2017; Zamanillo et al., 2019a). 

Our surface TEP concentrations are lower than those found by Zamanillo et al. (2019b) 

and Hong et al. (1997) in regions of the SO, probably due to lower Chl a concentrations, 

while they are similar to the other SO studies with similar Chl a concentrations (Table 

4.4). Regarding CSP, the previous field studies have been conducted in the Arctic 

Ocean (Galgani et al., 2016; Busch et al., 2017), Baltic Sea (Dreshchinskii and Engel, 

2017; Cisternas-Novoa et al., 2019), Pacific Ocean (Long and Azam, 1996; Engel and 

Galgani, 2016; Thornton et al., 2016), Sargasso Sea (Cisternas-Novoa et al., 2015), 

Arabian Sea (Long and Azam, 1996) and Mediterranean Sea (Zamanillo et al., 2019a), 

but only three used the spectrophotometric method (Cisternas-Novoa et al., 2015; 

Cisternas-Novoa et al., 2019; Zamanillo et al., 2019a). Our CSP concentrations were in 

the same range as in the Baltic Sea, with similar Chl a concentrations, whereas CSP 

concentrations in the Sargasso Sea and the Mediterranean Sea were in the lower range 

of our study, probably due to their lower Chl a concentrations (Table 4.5). 
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Table 4.3. Regression equations and statistics describing the relationship between transparent exopolymer 

particles (TEP) or Coomassie stainable particles (CSP), and several physical, chemical or biological 

variables in surface (5 m) of the ACE cruise. All variables were log10 transformed.  

Var. Ind. var R
2
 p Intercept Slope n 

TEP Temperature (K)  ns   121 

 CSP 0.14 <0.001 0.59 0.64 181 

 Chl a 0.36 <0.001 1.49 0.50 145 

 PHA  ns   121 

 Violaxanthin  ns   93 
 Prasinoxanthin  ns   93 
 Lutein  ns   93 
 Zeaxanthin 0.21 <0.01 2.10 0.27 93 
 Alloxanthin 0.22 <0.01 2.16 0.28 93 
 Fucoxanthin 0.17 <0.001 1.69 0.21 93 
 19’-

butanoyloxyfucoxanthin 

0.10 <0.01 1.77 1.17 93 

 Peridinin 0.14 <0.001 2.11 0.30 93 
 19’-

hexanoyloxyfucoxanthin 

0.22 <0.001 1.87 0.31 93 

 Chlorophyllide a 0.49 <0.001 2.11 0.35 93 
 Phaeophorbid a 0.16 <0.001 1.81 0.22 93 
CSP Temperature (K) 0.07 < 0.01 30.8 -12.10 121 

 TEP 0.14 <0.001 0.99 0.22 181 

 Chl a 0.17 <0.001 1.31 0.24 145 

 PHA  ns   121 

 Violaxanthin  ns   93 
 Prasinoxanthin  ns   93 
 Lutein  ns   93 
 Zeaxanthin  ns   93 
 Alloxanthin  ns   93 
 Fucoxanthin 0.08 <0.01 1.40 0.12 93 
 19’-

butanoyloxyfucoxanthin 

 ns   93 

 Peridinin  ns   93 
 19’-

hexanoyloxyfucoxanthin 

 ns   93 

 Chlorophyllide a 0.23 <0.001 1.78 0.28 93 
 Phaeophorbid a 0.22 <0.001 1.62 0.21 93 

R2: explained variance; p: level of significance; n: sample size 
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Table 4.4. Compilation of published transparent exopolymer particle (TEP) concentrations (mean ± SE and ranges; µg XG eq L-1), chlorophyll a (Chl a) concentrations (mean 

± SE and ranges; μg L-1) and TEP:Chl a ratios (mean ± SE and ranges; µg XG eq (µg Chl a)-1) in the Southern Ocean. bdl: below detection limit. 

Location Comments TEP Chl a TEP:Chl a Reference 

Anvers Island Summer (November 1994-February 

1995) 

2- 6 m, coastal samples 

Two blooms observed 

(Cryptomonads and diatoms) 

15 -  >500 - 

 

- Passow et al. (1995) 

Kita-no-seto Strait Mid-January 1994 

15 m 

26-41 particles mL-1 - - Marchant et al. (1996) 

Ross Sea Summer (November, December 

1994) 0-150 m, 

Phaeocystis and diatoms bloom 

Surface 308 (0-2800) 3.61 (0.27-8.81) 

(surface) 

 

89.1 (surface) Hong et al. (1997) 

Bransfield Strait Summer (13 December 1990- 3 

January 2000) 

0-100 m 

56.77 ± 54.50   (bdl-345.9) 0.98 ± 0.83 (0.05-4.81) 51.0 Corzo et al. (2005) 

Gerlache Strait 38 (0-283) 1.16 32.7 

Drake Passage 35 (0-157) 1.17 29.9 

Antarctic Peninsula 

(all the study) 

Summer (February 2005), 

0-200 m 

15.4 ± 10.0 (bdl-48.9) 0.01-5.36 40.9 ± 157.8 (bdl-1492)  Ortega-Retuerta et al. 

(2009b) 

Bellingshausen Sea 14.3±9.5 (bdl–33.8) 84.2±257.5 (bdl–1492) 

Weddell Sea 16.3±12.5 (bdl–48.9) 9.8±7.4 (1.2–28.4) 

Bransfield and 

Gerlache Strait 

15.8±8.9 (bdl–35.8) 15.0±20.4 (3.0–18.0) 

Southern Ocean (all 

transect) 

Summer (7 January-3 February 

2015) 

4 m 

102.3 ± 40.4 (39.2- 177.6) 

  

2.36 ± 1.92 (0.28-8.95) 

 

79.3 ± 54.9 (10.9-239.0) 

 

Zamanillo et al. (2019b) 

South Orkney Islands 

(NSO) 

 

 144.4 ± 21.7 (97.8-177.6) 

 

1.87 ± 0.23 (1.58-2.21) 

 

76.7 ± 10.6 (60.4-97.5) 

 

southeast of the 

South Orkney Islands 

(SSO) 

  48.1 ± 6.5 (39.2-63.8) 

 

 

0.32 ± 0.06 (0.28-0.45) 

 

 

153.4 ± 29.8 (102.5-211.6) 

 

 

northwest of South 

Georgia (NSG) 

 

 

125.5 ± 21.1 (93.6-157.4) 

 

4.59 ± 1.97 (1.92-8.95) 

 

32.3 ± 15.0 (17.6-70.0) 

 

west of Anvers 

Island (WA) 

 111.6 ± 13.0 (90.5-125.0) 

 

4.05 ± 0.48 (3.41-4.91) 

 

28.2 ± 4.8 (18.4-34.9) 

 

Whole Southern 

Ocean 

Summer (23 December 2016-17 

March 2017) 

34.0 ± 28.8 (bdl-201.8) 1.16 ± 1.46 (0.15-8.71) 48.4 ± 34.0 (5.1- 141.5) This study 
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Table 4.5. Compilation of published Coomassie stainable particles (CSP) concentrations (mean ± SE and ranges; µg BSA eq L-1), chlorophyll a (Chl a) concentrations (mean 

± SE and ranges; μg L-1) and CSP:Chl a ratios (mean ± SE and ranges; µg BSA eq (µg Chl a)-1). bdl: below detection limit. 

Location Comments CSP Chl a CSP:Chl a Reference 

Sargasso Sea February, May, August, 

November 2012 and May 

2013 

0-100 m 

3.2 ± 0.7 – 22.4 ± 0.4 0.25-0.75a - Cisternas-Novoa et al. 

(2015) 

Baltic Sea 3-19 June 2015 

1 and 10 m 

 

15-56 a 1.2-1.7 - Cisternas-Novoa et al. 

(2019) 

Mediterranean Sea October 2015- October 

2017 (time-series study) 

0.5 m 

4.5-24.8 (12.4 ± 6.0)b 0.13-1.52  (0.4 ± 0.3)b 4.8-163.2 (45.6 ± 35.7)b Zamanillo et al. (2019); in 

progress 

Southern Ocean 23 December 2016- 17 

March 2017 

4 m 

0.3 – 52.2 (21.9 ± 10.7) 0.15 – 8.71 (1.16 ± 1.46) 0.5 – 136.1 (35.7 ± 25.2) This study 

a Extracted from graphs; b personally communicated 
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Concerning the vertical distribution of TEP and CSP, the differences between the two 

particle types (Fig. 4.4) is in accordance with previous studies. In the Sargasso Sea, 

Cisternas-Novoa et al. (2015) found that TEP were more abundant in the upper 100 m 

and decreased with depth, with the highest concentrations in the shallowest sample, 

usually at 50 m. CSP were maximum between 70 and 100 m, coinciding with the Chl a 

fluorescence maximum. In the Baltic, Cisternas-Novoa et al. (2019) found vertical 

covariation of TEP and CSP in one sampling station, and differences in another. At both 

stations the highest concentrations occurred in the upper 10 m. Zamanillo et al. (2019a) 

did not find covariations between TEP and CSP in the vertical profiles during a time-

series study in the Mediterranean Sea.  

 

Figure 4.4. Water column distribution of transparent exopolymer particles (TEP) and Coomassie 

stainable particles (CSP). The black dots represent sampling points. The plots were drawn using the 

software Ocean Data View Schlitzer 2017. 
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4.4.2 Main drivers of TEP and CSP distribution in the surface Southern Ocean 

Of the two biological candidates to drive  TEP and CSP concentration distributions,  

phytoplankton and bacterioplankton, the former seem to be the main driver, since a 

significant positive correlation was found with Chl a (r= 0.58 for TEP and r= 0.49 for 

CSP),  and not with PHA (Table 4.2). The fact that TEP were more closely related to 

Chl a than CSP contrasts with previous studies where CSP presented a better 

relationship with Chl a or phytoplankton biomass (Cisternas-Novoa et al., 2015; 

Zamanillo et al., 2019a). The slope of the log-converted TEP:Chl a relationship for the 

entire study (β = 0.50 (± 0.06); Fig. 4.5) was lower than those found by Corzo et al. 

(2005) in the Gerlache Strait and Hong et al. (1997), and higher than those found by 

Zamanillo et al. (2019b), Ortega-Retuerta et al. (2009b) and Corzo et al. (2005) in the 

Antarctic Peninsula and South Georgia. 

 

Figure 4.5. Log-log relationship between transparent exopolymer particle (TEP) and chlorophyll a (Chl 

a) concentrations from the ACE cruise, with the linear regression line (regression equation in the text). 

The three legs are distinguished by markers: Leg 1 (filled circles), Leg 2 (empty circles), Leg 3 (empty 

triangles). Regression lines from the literature in the Southern Ocean are also shown for comparison. α 

and β indicate the intercept and the slope, respectively; log TEP (μg XG eq. L−1)= α + β × log Chl a 

(μgL−1); [a] α = 2.25 and β = 0.65, (Hong et al., 1997); [b] α =1.63 and β =0.32, (Corzo et al., 2005); [c] α 

=1.52and β = 0.67, (Corzo et al., 2005); [d] α =1.08 and β =0.38, (Ortega-Retuerta et al., 2009b); [e] α 

=1.90 and β =0.35, (Zamanillo et al., 2019b). 



Chapter 4 

 
175 

According to their correlations and regressions to pigments, the phytoplankton taxa that 

are behind the distributions of TEP and CSP are different (Table 4.2). Pigments carry 

chemotaxonomic information of the phytoplankton community structure; for example, 

19’-hexanoyloxyfucoxanthin generally indicates the presence of haptophytes, peridinin 

is a biomarker of dinoflagellates, alloxanthin of cryptophytes, and fucoxanthin is a 

pigment most commonly associated with diatoms, although other taxa such as 

pelagophytes and haptophytes also contain it (Mendes et al., 2015; Araujo et al., 2017). 

In the case of TEP, the positive correlation with most pigments suggests that there were 

no single phytoplankton group responsible for most of TEP production but it was spread 

amongst diatoms, dinoflagellates, haptophytes, cryptophytes, pelagophytes, 

prasinophytes and chlorophytes. In contrast, CSP were only correlated significantly 

correlated with fucoxanthin, thus suggesting that diatoms were the main responsible for 

CSP production. Indeed, previous studies have reported that diatoms are dominant in 

Antarctic waters (Bouman et al., 2003; Bouman et al., 2005; Mendes et al., 2015), 

where a large part of our study took place. Another large part of our cruise track was in 

Subantarctic waters, where nanoflagellates contribute large shares of phytoplankton 

biomass (Bouman et al., 2003; Bouman et al., 2005; Mendes et al., 2015). Previous 

studies have already found that diatoms can produce CSP (Bhaskar et al., 2005; 

Grossart et al., 2006; Galgani and Engel, 2013; Thornton, 2014; Thornton and Chen, 

2017). In the future, it is planned to calculate the relative contribution of the main 

phytoplankton groups to total (T) Chl a from CHEMTAX analysis in this study to better 

relate phytoplankton community with TEP and CSP. 

Regarding factors other than phytoplankton community composition  driving TEP and 

CSP distribution, our results suggest that grazing pressure and senescence of 

phytoplankton cells also played an important role, since a remarkable positive 

correlation was found between the two particle types and the pigments chlrophyllide a 

and phaeophorbid a (Table 4.2). These pigments are products of Chl a and pheophytin a 

degradation, respectively, and therefore are used as proxies of phytoplankton mortality 

(Jeffrey, 1974). Physical disruption of the cells through mechanisms such as sloppy 

feeding by grazers (Møller et al., 2003; Møller, 2007)  and viral lysis (Bratbak et al., 

1993; Gobler et al., 1997; Mojica et al., 2016) are expected to play a significant role in 

TEP and CSP production. Previous studies have found that TEP production increases 

during the senescence phase in some cultured strains (Grossart and Simon, 1997; 
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Grossart et al., 1998; Cisternas-Novoa et al., 2015; Thornton and Chen, 2017), and as a 

consequence of viral infection (Brussaard et al., 2005; Vardi et al., 2012; Nissimov et 

al., 2018). Factors affecting CSP abundance have been scarcely investigated, but a 

previous study in an experimental mesocosms showed that CSP were maximum during 

the exponential growth phase of the phytoplankton, instead of the senescent phase 

(Cisternas-Novoa et al., 2015). Another study found that CSP dynamics did not 

correlate to indicators of cell death (Thornton and Chen, 2017). All in all, our results 

contrast with previous studies and suggest that phytoplankton mortality may also play 

an important role driving CSP distribution. More studies are needed to improve our 

knowledge on factors influencing TEP and CSP distribution in the ocean. 

 In conclusion, our results agree with previous studies in showing that TEP and CSP are 

different and independent particle types. Phytoplankton were the main drivers of their 

distribution in the SO, but the phytoplankton groups responsible for their production 

differed between the two types: while TEP correlate with diverse taxa, diatoms were the 

main CSP producer. Our data also suggests that phytoplankton mortality favours TEP 

and CSP production. 
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Given the important roles that TEP and CSP play in the ocean carbon cycle (see 

introduction), there is a growing interest in finding the main drivers of these particles to 

predict their distribution in the ocean. In order to address this issue, we have gathered in 

situ measurements of these particle types in wide regions of the ocean, across the 

horizontal, vertical and temporal scales, and along with other biological, physical and 

chemical variables.  

We showed that Chl a variations do not always mimic those of phytoplankton 

abundances due to changes in the C:Chl a ratios associated with processes such as 

photoacclimation. However, due to the simplicity and replicability of the measurement, 

Chl a is widely used as an estimator of phytoplankton biomass in the ocean, one that 

can also be estimated by remote sensing. Therefore, parallel measurements of Chl a and 

TEP and CSP across our study regions and seasons allow us to perform an 

intercomparison between this thesis’ regions and other previously published (Fig. 1).  

We observed a temporal disconnection between TEP, CSP and Chl a in the NW 

Mediterranean Sea, similar to various previous studies (Bhaskar and Bhosle, 2006; 

Taylor et al., 2014). We can conclude that Chl a is not a good predictor of TEP nor CSP 

at temporal scales, although it could work regionally at certain places, namely those 

with periods of high productivity such as the Arctic Ocean (Engel et al., 2017). 
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Figure 1. Relationship between TEP (upper panel) or CSP (lower panel) and Chl a concentration in this 

and other studies. Colour lines show the linear regressions of the present work (Chapters 1, 2, 4), while 

regressions from the literature are shown with black lines: (a) Baltic Sea (Engel, 1998 in Passow, 2002a); 

(b)  Ross Sea (Hong et al., 1997); (c) Tokyo Bay (Ramaiah and Furuya, 2002); (d) Western Arctic 

(Yamada et al., 2015); (e) Gerlache Strait (Corzo et al., 2005); (f) Santa Barbara Channel (Passow and 

Alldredge, 1995); (g) Bransfield Strait (Corzo et al., 2005); (h) Antarctic Peninsula (Ortega-Retuerta et 

al., 2009b). 
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On the other hand, Chl a seems to be a good predictor of TEP and CSP concentrations 

across spatial scales (Fig. 1). However, the differences in the regression equations point 

to region-specific relationships between phytoplankton and TEP or CSP that are 

dependent on phytoplankton composition but also on environmental factors such as 

nutrient limitation and solar radiation. Therefore, TEP prediction from Chl a would 

work better on a regional scale. Indeed, if we take into account the TEP vs. Chl a 

relationship in the whole thesis dataset (temporal series excluded), the percentage of 

TEP variance explained by the linear model was lower (R
2
 = 0.34, p <0.001) than that 

found in every region separately: Atlantic Ocean (R
2
 = 0.61, p <0.001, chapter 1), 

Southern Ocean (R
2
 = 0.66, p <0.001, chapter 2; R

2
 = 0.36, p <0.001, chapter 4). 

 

Table 1. Review of the slope (β) of the regression equations:  log TEP (µg XG eq L−1)=α+β×log Chl a 

(mg m−3), and Chl a. α: y interception. 

Geographic area β Chl a range (mean ± SE) Study 

Antarctic Peninsula 0.38 0.01-5.36 Ortega-Retuerta et al. (2009b) 

Bransfield Strait 0.32  0.05-4.81 (0.98 ± 0.82) Corzo et al. (2005) 

Gerlache Strait 0.67 1.16 mean Corzo et al. (2005) 

Ross Sea 0.65 0.3–8.8 (3.6) Hong et al. (1997) 

Antarctic Peninsula-

South Georgia 

0.35 0.28 – 8.95 (2.36 ± 1.92) Zamanillo et al. (2019b) 

Southern Ocean 0.50  0.15 – 8.71 (1.16 ± 1.46) Chapter 4 

Atlantic Ocean 0.66 0.20-3.75 Zamanillo et al. (2019c) 

Open Atlantic Ocean 1.13 0.20–0.57 (0.32±0.10) Zamanillo et al. (2019c) 

Western Arctic 0.24 <0.1–4.8 Yamada et al. (2015) 

Santa Barbara 

Channel 

0.39 -- Passow and Alldredge (1995) 

Tokyo Bay 0.50 -- Ramaiah and Furuya (2002) 

Baltic Sea 0.33 -- Engel, 1998 in Passow, (2002a) 
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Table 2. Review of open-ocean surface TEP concentrations (mean and ranges; µg XG eq L-1), Chl a (mean and ranges; mg m-3) and TEP:Chl a ratio (mean ± SE and/or 

range) available in the literature. bdl: below detection limit. 

Geographic area Conditions Sampling date Depth (m) TEP mean (range) 

(µg XG eq. L-1) 

Chl a mean (range) 

(mg m-3) 

TEP:Chl a mean 

(range) 

Reference 

Fram Strait (Arctic Ocean) Bloom and 

non bloom 

Summer 2009–2012 

and 2014 (time series) 

and summer 2014 

(transect) 

5–150 75 ± 78 (5–517) 0–4.2 45 ± 3–107 ± 10 Engel et al. (2017) 

Arctic Ocean 

 

 

Eastern tropical and Eastern 

subarctic, North Pacific Ocean 

Sea ice 

covered 

 

Eutrophic and 

oligotrophic 

Autumn and Spring 

2009–2010 

 

Summer 2009 

Above 

mixed layer 

depth  

 

 

125–1750a 

 

 

78–970a 

 

0.1–7.8b 

 

 

0.3–1.7b 

 

– 

 

 

– 

Wurl et al. (2011a) 

 

 

 

Western subarctic and North 

Pacific Ocean 

Non bloom 

 

Summer 2001 5 40–60 0.2–1.9 – Ramaiah et al. (2005) 

Northeast Atlantic Ocean Different 

bloom stages 

Summer 1996 

 

Autumn 1996 

0–70 

 

0–50 

10c–124 

 

28.5 ± 10.2 

0.1–1.1c,d 

 

0.07–0.6 

49–104 

 

61 

Engel (2004) 

Northeast Atlantic Ocean Late stages 

bloom 

Spring 2005 0–10 20–420c 

 

0.1–3c,e – Leblanc et al. (2009) 

Western tropical North Pacific 

Ocean 

 

Non bloom 

Oligotrophic 

Spring 2013 Surface 

mixed layer 

(36 ± 12) 

43 ± 7 (18–67c) 0.05 ± 0.01 832 ± 314 Kodama et al. (2014) 

Western North Atlantic Ocean Oligotrophic Spring 2014 1 161–460 0.1–1c – Jennings et al. (2017) 

 

Western North Atlantic Ocean 

and Sargasso Sea 

Eutrophic and 

oligotrophic 

Spring 2014 2–5 100–200c ̴0.1–2.2 – Aller et al. (2017) 

Sargasso Sea Oligotrophic Spring, summer, 

autumn 2012 and 

spring 2013 

0–100 21 ± 2– 57 ± 3  0.05–1 c – Cisternas-Novoa et al. 

(2015) 

 

Mediterranean Sea Non bloom Spring 2007 Upper 

mixed layer 

29 (19–53) bdl–1.8f  484 (178–1293) Ortega-Retuerta et al. 

(2010) 

 

Western Mediterranean Sea Oligotrophic Spring 2012 0–200 16–25c,g,h 0.1–0.7c,h – Ortega-Retuerta et al. 

(2017) 

 

Western Mediterranean Sea Oligotrophic Autumn 2015 5 30.7 ±5.4 (21.4–36.5) 0.19 ± 0.07 (0.14-

0.31) 

181 ± 76 (69-253) Chapter 3, transect 

Eastern Mediterranean Sea 

 

Oligotrophic 

 

Winter–Autumn 2008 

Summer 2009 

5 345 ±143.2 (116–420) 0.04 ± 0.01 (0.04–

0.07) 

– Bar-Zeev et al. (2011) 
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Gulf of Aqaba (Eilat, Israel) Oligotrophic Spring 2008 5 110–228c 0.3–1.3i – Bar-Zeev et al. (2009) 

Tropical Atlantic Ocean 

 

Pacific Ocean 

Oligotrophic 

 

Oligotrophic 

Spring–Summer 2011 

 

Spring–Summer 2011  

3 

 

3 

8.18 ± 4.56 

 

24.45 ± 2.3 

0.05–0.31 78.6 ± 9.3 

 

357 ± 127 

Iuculano et al. (2017c) 

 

Global Subtropical Atlantic, 

Indian and Pacific Oceans 

Non bloom 

 

Winter 2010–Summer 

2011 

0–200 

 

14.0 (0.4–173.6) 

 

0–3c – Mazuecos (2015) 

 

North Indian Ocean 

-Arabian Sea  

-Bay of Bengal  

Eutrophic  

-August 1996 

-September 1996 

0–1000 

 

 

-60 j,k (< 5–102j) 

-7–13c,j 

– –  

Kumar et al. (1998), 

Ramaiah et al. (2000) 

Nearshore Cape Verde 

 

Baltic Sea 

 

Norwegian Sea 

Oligotrophic 

 

Oligo-

eutrophic 

 

September 2016 SML 

 

SML and 1 

 

SML and 1 

94-187 

 

123-1340 

 

50-424 

0.29±0.1 

 

0.68- 1.56 

 

0.29- 1.64 (SML) 

– Robinson et al. (2019b) 

Open Atlantic Ocean (OAO) 

OAO (CU excluded) 

CU (Canary Coastal 

Upwelling 

SWAS (coast) 

Oligotrophic 

 

 

 

Eutrophic 

Autumn 2014 4 

 

 

72 ± 74 (18–446) 

60 ± 27(18–132) 

446 

 

256±130 (99–427) 

0.4 ± 0.2 (0.2–0.6) 

0.3 ± 0.1 (0.2–0.6) 

0.2 

 

2.7±0.9 (1.1–3.7) 

236 ± 293 (81–1760) 

183 ± 56 (81–360) 

1760 

 

97±42 (31–165) 

Zamanillo et al. 

(2019c),Chapter 1 

NSO, North of the South 

Orkney Islands 

SSO, South of the South 

Orkney Islands 

NSG, Northwest of South 

Georgia Island 

WA, West of Anvers Island 

Oligotrophic-

eutrophic 

Austral summer 

2015 

4 144.4 ± 21.7 (98-168) 
 

48.1 ± 6.5 (39-64) 
 

125.5 ± 21.1 (94-157) 

 

111.6 ± 13.0 (90-125) 

1.87 ± 0.23 

 

0.32 ± 0.06 

 

4.59 ± 1.97 

 

4.05 ± 0.48 

76.7 ± 10.6 

 

153.4 ± 29.8 

 

32.3 ± 15.0 

 

28.2 ± 4.8 

Zamanillo et al. (2019b), 

Chapter 2 

Southern Ocean, circular 

transect around Antarctica 

Oligotrophic-

eutrophic 

Austral summer 

2017 

5 34.0 ± 28.8 (bdl – 

201.8) 

1.16 ± 1.46 (0.15 – 

8.71) 

48.4 ± 34.0 (5.1 –  

141.5) 

Chapter 4 

Ross Sea  Bloom Spring 1994 Surface 308 (0–2800) 3.6 (0.3–8.8) 85 Hong et al. (1997) 
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The slope of the TEP vs. Chl a regression equations varied widely among regions, 

ranging from 0.24 to 1.13 (Table 1). Although a more detailed analyses, including 

environmental and biological variables, would be needed, it seems that the highest 

slopes are characteristic of oligotrophic regions, whereas the lowest occur in eutrophic 

ones. That is, relative increases in phytoplankton abundance in oligotrophic waters 

would be accompanied by larger increases in TEP. Indeed, we found the highest slope 

reported so far in the oligotrophic open Atlantic Ocean (1.13 ± 0.20) (Table 1, Chapter 

1). 

The ratio TEP:Chl a also varied widely among regions. Grouping our samples by 

regions (Tropical Atlantic Ocean, Subtropical Atlantic Ocean, NW Mediterranean Sea 

and Southern Ocean), the TEP:Chl a ratio tends to decrease from the equator to the 

poles (Fig. 2), in parallel with a negative gradient in oligotrophy but also in irradiance. 

If we are to compare our TEP:Chl a values with other studies, we can observe a similar 

trend, with the highest values in the tropical ocean and the lowest in the poles (Table 2). 

In our study we have found that some variables other than phytoplankton are important 

drivers of TEP and CSP distributions (Fig. 3), and therefore could be responsible for the 

variations of TEP:Chl a and CSP:Chl a ratios, such as sea ice melting, nutrients, 

phytoplankton mortality and solar radiation. Although we found contrasting results 

regarding the role of solar radiation on TEP production (negative relationship in the 

open Atlantic Ocean and positive relationship in the Southern Ocean and Mediterranean 

Sea), the positive relationship (R
2
= 0.56, p<0.001) between TEP:Chl a and solar 

radiation dose in the whole study (Mediterranean and Southern Ocean together) (Table 

3) suggests that, at global scale, stimulation of TEP production by solar radiation would 

be more important than its degradation.  
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Figure 2. Boxplots of transparent exopolymer particles (TEP), Coomassie stainable particles (CSP), 

chlorophyll a (Chl a), TEP:Chl a, CSP:Chl a, prokaryotic heterotrophic abundance (PHA), averaged-24h 

surface irradiance, and averaged-24h solar radiation dose in the upper mixed layer, across regions visited 

for this work: tropical and subtropical Atlantic Ocean (4 m, chapter 1),  NW Mediterranean Sea (BBMO 

(0.5 m), EOS (0.5 m) and transect (5 m), chapter 3) and Southern Ocean (4-5 m, chapters 2,  4). The 

horizontal lines of the boxes represent 25%, 50% (median) and 75% percentiles (from bottom to top). 

Whiskers represent minimum and maximum values. 
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Table 3. Regression equations and statistics describing the relationship between transparent exopolymer 

particles (TEP), Coomassie stainable particles (CSP), TEP:Chl a, CSP:Chl a and other physical and 

biological variables: temperature, chlorophyll a (Chl a), and prokaryotic heterotrophic abundance (PHA) 

in the surface of the ocean across all of the regions (Atlantic Ocean (4 m, chapter 1), NW Mediterranean 

Sea (BBMO (0.5 m), EOS (0.5 m) and transect (5 m), chapter 3) and Southern Ocean (4-5 m, chapters 2, 

4). ns: not significant. All variables were log10 transformed. 

 

Var. Ind. var R2 p Intercept Slope n 

TEP Temperature (K)  ns   279 

 Chl a 0.29 <0.001 1.69 (± 0.02) 0.46 (± 0.04) 297 

 PHA  ns   259 

 Averaged-24h Irradiance (W/m2) 0.07 <0.001 0.74 (± 0.31) 0.46 (± 0.13) 154 

 Averaged-24h Solar radiation dose   ns   92 

TEP:Chl a Averaged-24h Irradiance (W/m2) 0.23 <0.001 -0.06 (± 0.31) 0.88 (± 0.14) 154 

 Averaged-24h Solar radiation dose 0.56 <0.001 0.58 (± 0.12) 0.71 (± 0.07) 92 

CSP Temperature (K) 0.25 <0.001 33.3 (± 4.2) -13.1 (± 1.7) 168 

 Chl a 0.21 <0.001 1.28 (± 0.02) 0.30 (± 0.04) 154 

 PHA  ns   149 

 Averaged-24h Irradiance (W/m2) 0.11 <0.05 0.50 (± 0.25) 0.24 (± 0.11) 48 

 Averaged-24h Solar radiation dose 0.14 <0.05 0.75 (± 0.12) 0.15 (± 0.06) 37 

CSP:Chl a Averaged-24h Irradiance (W/m2) 0.45 <0.001 -0.53 (± 0.37) 0.92 (± 0.16) 46 

 Averaged-24h Solar radiation dose 0.52 <0.001 0.47 (± 0.17) 0.54 (± 0.09) 35 

Chl a Averaged-24h Irradiance (W/m2) 0.03 <0.05 0.75 (± 0.45) -0.40 (± 0.20) 154 

 Averaged-24h Solar radiation dose 0.24 <0.001 0.93 (± 0.21) .0.59 (± 0.11) 92 

 

Phytoplankton has been found to be the main driver of TEP and CSP distributions in 

this thesis. In contrast, prokaryotic heterotrophs (PH) were only significantly related 

with TEP in the entire transect of the Atlantic Ocean (chapter 1). Considering the 

SWAS and OAO separately, only in the SWAS were TEP related to HNA, although in 

the OAO, multiple regression analyses showed that both PH and phytoplankton 

contributed to explain TEP concentration variance.  

In the open Atlantic Ocean, Synechococcus and picoeukaryotes were best correlated to 

TEP (Chapter 1). In the Southern Ocean, diatoms and dinoflagellates were the best 

correlated (Chapters 2 and 4), and diatoms were the best correlated to CSP (Ch. 4). 

Finally, diatoms, dinoflagellates, and “other microalgae” were the groups explaining 

most of the variance of TEP throughout the time series in the NW Mediterranean Sea, 

whereas dinoflagellates and “other microalgae” were those of CSP at the same location. 

At the vertical scale in the NW Mediterranean Sea, the main apparent drivers of TEP 
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and CSP were dinoflagellates (R
2
= 0.35, p< 0.001, n= 75) and Synechococcus (r= 0.29, 

p< 0.001, n= 63), respectively. 

 

 

Figure 3. Main drivers of TEP and CSP distribution suggested from this thesis’ results. +: positive 

relationship; -: negative relationship. Ch: chapter 

Regarding the potential overlap of TEP and CSP, we observed that they followed 

distinct dynamics in both the Mediterranean Sea (Chapter 3) and the Southern Ocean 

(Chapter 4). This suggests they are different particles, produced by different organisms 

and/or subject to different aggregation and degradation processes, as suggested in 

previous studies (Cisternas-Novoa et al., 2015; Thornton et al., 2016; Thornton and 

Chen, 2017). However, the absence of parallel temporal patterns of TEP and CSP does 

not totally preclude that, on occasions, both particle types overlap by getting coloured 

by the two stains, and more research is needed. 
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All in all, in this thesis we have shed light on the possibility to predict TEP and CSP 

distribution in the surface ocean and the main drivers of their distribution. Out of the 

myriad of variables potentially involved in TEP and CSP production, accumulation and 

cycling in the surface ocean, we show that phytoplankton, Chl a or biomass are the only 

ones that hold predictive capability for the two particle types, even though they hardly 

explain more than one third of their variance. The fact that the TEP:Chl a and CSP:Chl 

a ratios are better correlated to the daily solar radiation dose in the upper mixed layer 

across the entire data set (with R
2
 > 0.5, Table 3) opens the possibility to estimate 

surface ocean TEP and CSP distributions from remote sensing and climatological data. 

 

 However, if we are to predict the role of TEP and CSP in several biogeochemical 

processes, such as the ocean carbon cycle, the air-sea gas and particle exchanges and the 

formation of clouds, more studies are required to connect the distribution of these 

particle types with measurements of their specific impact on these processes, because it 

is anticipated that the biogeochemical impacts of TEP and CSP do not only depend on 

their concentration but also on many other process-driving variables. Before that, the 

role of CSP on processes like the biological carbon pump has not been yet demonstrated 

and needs to be further investigated.  

 

Not all the work conducted during my PhD is reflected in this thesis. Some experiments 

did not go beyond the trial phase, and some measurements belong in side projects where 

they constitute a necessary yet not principal component. I have collaborated to explore 

the effects of TEP on aerosol composition and cloud formation, by carrying out sea-

spray generation experiments. A tank was filled with seawater or melted sea ice from 

the Southern Ocean, aerosol was generated by bubble bursting caused by a recirculated 

jet stream, and the composition of both the bubbled sample and the generated aerosol 

were analysed. Results were compared with analyses of ambient ocean samples and 

aerosols. We showed that seawater or sea-ice TEP were not a good predictor of organic 

aerosol, and other components came into play (Dall'Osto et al., 2017). 

I also tried to develop high-throughput methods to measure gel particles with different 

compositions and properties, using the dyes Nile Red (which stains lipidic material), 

DAPI (which stains DNA) and chlortetracycline (CHTC, which stains the calcium 

bridges that stabilize polymer gels). The idea was to quantify them by flow cytometry, 

which is a fast, repeatable and cost efficient technique. We started following Orellana et 
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al. (2011), who reported a method to quantify microgels by flow cytometry using 

CHTC. However, despite our efforts and the collaboration with Jordi Petriz (Institut de 

Recerca Contra la Leucèmia Josep Carreras), we did not obtain reliable results and we 

turned towards a more descriptive thesis using the state-of-the-art staining method. 
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1. Across the studied regions, TEP concentrations ranged from below detection 

limit to 446 µg XG eq L
-1

. Highest TEP concentrations were found in regions 

with high local productivity; such as upwellings (edge of the Canary Coastal 

Upwelling, 446 µg XG eq L
-1

), or areas influenced by rivers (Southwestern 

Argentinian Shelf, 256±130 µg XG eq L
-1

) or ice (Siple Island (202 µg XG eq L
-

1
) and Mertz Glacier (160 µg XG eq L

-1
)). 

 

2. TEP:Chl a ratios ranged from 4 to 1760. The highest TEP:Chl a ratios were 

found in the tropical and subtropical Atlantic Ocean (81-1760) and in the 

Mediterranean Sea in summer (277.9 ± 223.2 (69.5-940.4)), whereas the lowest 

were found in winter in the Mediterranean Sea (41.7 ± 30.8), northwest of South 

Georgia (32.3 ± 15.0), west of Anvers Island (28.2 ± 4.8), and south of South 

Africa (29.2 ± 11.7). 

 

3. CSP concentrations were measured for the first time in the Mediterranean Sea 

and in the Southern Ocean, where they ranged between 0.3 and 52.2 µg BSA eq 

L
-1

. The highest concentration was found in the Southern Ocean, specifically 

next to the Mertz Glacier. CSP:Chl a ratio varied widely in both the 

Mediterranean Sea (5-163) and the Southern Ocean (0.5-136.1). 

 

4. The estimated contribution of TEP to the POC pool ranged between 28 and 110 

% (average 67 ± 19 %) in the Atlantic Ocean, 18 and 97 % (average 39 ± 12 %) 

in the Southern Ocean, and 3-44 % (average 15 ± 9 %) in the NW Mediterranean 

Sea. In the open Atlantic Ocean, TEP contributed the most to the POC pool, 

representing twice the contribution of phytoplankton. In the SWAS, conversely, 

the contribution of TEP was not significantly different from that of 

phytoplankton. In the Mediterranean Sea, only in summer the TEP contribution 

to the POC pool at surface was larger than the contribution of phytoplankton. 

 

5. In the Southern Ocean, we found a general enrichment of TEP in the upper 

surface (10 cm), with respect to the underlying water (4 m). This TEP 

enrichment could be responsible for enhanced β-glucosidase, fucosidase and 

esterase activities in the upper surface. The positive relationship between TEP 

enrichment and wind speed, but not with Chl a and PHA, suggest that the 
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enrichment ia mainly caused by wind, probably through bubble scavenging and 

rising. 

 

6. TEP and CSP temporal patterns were uncoupled in two coastal stations in the 

NW Mediterranean Sea. Similarly, the two particle types showed uncoupled 

horizontal distributions around the Southern Ocean. These results support the 

idea that they are different particle types that are produced by different 

organisms and/or subject to different formation and degradation processes. 

 

7. Regression analyses suggested that phytoplankton were found to be the main 

driver of TEP and CSP distribution in the ocean, although the taxonomic groups 

most contributing to the correlation varied among regions and were different for 

TEP and CSP. In the open Atlantic Ocean, Synechococcus and picoeukaryotes 

were the best correlated to TEP. In the Southern Ocean, diatoms and 

dinoflagellates were the best associated with TEP, and only diatoms with CSP. 

Over the time series in the NW Mediterranean Sea, diatoms, dinoflagellates, and 

“other microalgae” mainly drove TEP dynamics, whereas dinoflagellates and 

“other microalgae” were most coupled to CSP. 

 

8. TEP distribution was also influenced by the daily solar radiation dose (in all 

studied regions), surface irradiance, sea ice melt (in Antarctic waters), nutrients 

(in the Southern Ocean and the Mediterranean Sea) and phytoplankton mortality 

(in the Southern Ocean). Only phytoplankton mortality provided additional 

explanation to CSP variance in the Southern Ocean. 

 

9. The good statistical relationship found across the entire study between the 

TEP:Chl a and the CSP:Chl a ratios and the daily solar radiation dose opens the 

possibility to predict the surface ocean concentrations of the two particle types 

from satellite and climatological data. 
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