
NUMERICAL ALGORITHMS FOR THREE DIMENSIONAL

COMPUTATIONAL FLUID DYNAMIC PROBLEMS

Josué Mora Acosta

TESIS DOCTORAL

presentada al
Departamento de Máquinas i Motores Térmicos

E.T.S.E.I.T
Universidad Politécnica de Catalunya

para la obtención del grado de

Doctor Ingeniero Industrial

Terrassa, 2001

NUMERICAL ALGORITHMS FOR THREE DIMENSIONAL

COMPUTATIONAL FLUID DYNAMIC PROBLEMS

Josué Mora Acosta

Directores de la Tesis

Dr. Assensi Oliva LLena
Dr. Manel Soria Guerrero

Tribunal calificador

Dr. Carlos David Pérez Segarra
Universitat Politècnica de Catalunya

Dr. Eduard Egusquiza Estévez
Universitat Politècnica de Catalunya

Dr. Jess Labarta Mancho
Universitat Politècnica de Catalunya

Dr. José Julio Guerra Macho
Universitat de Sevilla

Dr. Antonio Pascau Benito
Universitat de Zaragoza

iii

iv

Abstract

NUMERICAL ALGORITHMS FOR THREE DIMENSIONAL
COMPUTATIONAL FLUID DYNAMIC PROBLEMS

The target of this work is to contribute to the enhancement of numerical methods for the

simulation of complex thermal systems. Frequently, the factor that limits the accuracy of

the simulations is the computing power: accurate simulations of complex devices require

fine three-dimensional discretizations and the solution of large linear equation systems.

Their efficient solution is one of the central aspects of this work. Low-cost parallel

computers, for instance, PC clusters, are used to do so. The main bottle-neck of these

computers is the network, that is too slow compared with their floating-point performance.

Before considering linear solution algorithms, an overview of the mathematical models

used and discretization techniques in staggered cartesian and cylindrical meshes is provided.

The governing Navier-Stokes equations are solved using an implicit finite control volume

method. Pressure-velocity coupling is solved with segregated approaches such as SIMPLEC.

Different algorithms for the solution of the linear equation systems are reviewed: from

incomplete factorizations such as MSIP, Krylov solvers such as BiCGSTAB and GMRESR

to acceleration techniques such as the Algebraic Multi Grid and the Multi Resolution Anal-

ysis with wavelets. Special attention is paid to preconditioned Krylov solvers for their

application to parallel CFD problems.

The fundamentals of parallel computing in distributed memory computers as well as

implementation details of these algorithms in combination with the domain decomposition

method are given. Two different distributed memory computers, a Cray T3E and a PC

cluster are used for several performance measures, including network throughput, perfor-

mance of algebraic subroutines that affect to the overall efficiency of algorithms, and the

solver performance. These measures are addressed to show the capabilities and drawbacks

of parallel solvers for several processors and their partitioning configurations for a problem

model.

Finally, in order to illustrate the potential of the different techniques presented, a three-

dimensional CFD problem is solved using a PC cluster. The numerical results obtained are

validated by comparison with other authors. The speedup up to 12 processors is measured.

An analysis of the computing time shows that, as expected, most of the computational effort

is due to the pressure-correction equation, here solved with BiCGSTAB. The computing

time of this algorithm, for different problem sizes, is compared with Schur-Complement and

Multigrid.

v

Acknowledgements

During the development of this dissertation at Centre Tecnològic de Transfèrencia de Calor
(CTTC) I have received help and encouragement from many people which I would like to
acknowledge.
• I am indebted to Prof. A.Oliva, for giving me the opportunity to work on Computa-

tional Fluid Dynamics (CFD) and directing my dissertation.

• I gratefully acknowledge to Prof. M.Soria, co-director of this work. His knowledge
and experience in algebraic multigrid and parallel computing as well as many helpful
discussions with him have been invaluable in the development of many parts of this
work.

• I would like to thank R.Alba, for providing me the technical support, in both hardware
and software sense, in the code development of numerical algorithms for CFD.

• I am grateful to K.Claramunt for his collaboration at benchmarking stage of the CFD
code.

• I am also grateful to S.Buxton for suggestions and corrections of my english style.

• Many thanks to G.Colomer for helping me with the edition of this document.

• Many thanks are also due to Profs. D.Pérez Segarra and M.Costa for reading, revising
and proving helpful comments.

During my stay in Japan at Industrial Institute of Science (IIS) in Tokyo, I had the benefit
of learning on parallel computing of Large Eddy Simulations (LES).

• I wish to thank to Profs. T.Kobayashi and N.Taniguchi for their generosity to allow
me to use their computer facilities.

• I am grateful to K. Kobayashi and T. Kogaki for their advice on parallel computing
for LES.

I am grateful to the computer centers (CC) who allowed to me to use their facilities

• CESCA and CEPBA, Origin2000, HP2250, IBMSP2

• CIEMAT, Cray T3E

• CC of University of Tokyo, Hitachi SR8000

I would like to thank among many friends, Prof. M.Ishikawa and his wife for their hospitality
during my stay in Japan.
Finally, I am deeply grateful to my family and specially to Mari Carmen Hoyas, for their
patient, support and love through these years.

This research has been financially supported by the Generalitat de Catalunya, under grant
TDOC98-00, CTTC under grant I0341 and by the ”Comisión Interministerial de Ciencia y
Tecnoloǵia” Spain project TIC99-0770.

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Overview of parallel computing in CFD problems 2

1.2.1 Computer technology . 2
1.2.2 Numerical algorithms . 3
1.2.3 Software engineering: layering . 5

1.3 Scope of the work . 5

2 Modelization of CFD problems 9
2.1 Description of the governing equations . 9

2.1.1 Cartesian and cylindrical coordinate systems 10
2.2 Discretization by finite volume method . 13

2.2.1 The SIMPLE-like algorithms . 16
2.2.2 Time marching algorithm . 18
2.2.3 Calculation of the time step . 19

2.3 Boundary conditions . 20
2.3.1 Dirichlet and Neumann conditions 20
2.3.2 Periodic condition . 22

2.4 Stopping criteria for a simulation . 23
2.5 Nomenclature . 26

3 Linear solvers 27
3.1 Features of equation systems . 27

3.1.1 Sparse matrix formats . 30
3.2 Solving equation systems . 34

3.2.1 LU solver . 34
3.2.2 ILU solver . 35

3.3 Krylov solvers . 38
3.3.1 CG solver . 40
3.3.2 BiCGSTAB solver . 41
3.3.3 GMRESR solver . 43

3.4 Preconditioners . 45
3.4.1 Factorizations and SPAI . 46

3.5 Algebraic Multigrid algorithm . 49
3.5.1 Transfer operators . 51

vii

3.6 Multiresolution Analysis with wavelets . 55
3.6.1 Multilevel representation of a function 56
3.6.2 Multiresolution decomposition and reconstruction 57
3.6.3 Mallat’s transform and inverse transform 58
3.6.4 Wavelet transfer operators . 59
3.6.5 The Haar’s wavelet transfer operator 60

3.7 Comparison between AMG and MRA . 62
3.8 Stopping criteria . 62
3.9 Sequential performance of solvers . 63

3.9.1 CFD model problem . 63
3.9.2 Sequential performance . 65

3.10 Nomenclature . 71

4 Parallel linear solvers 73
4.1 Introduction . 73

4.1.1 Hardware for parallel computing . 73
4.1.2 Parallel programming models . 74
4.1.3 Message-passing programming . 77

4.2 Performance measurements of an implementation 77
4.3 Modellization of the communication time 80
4.4 Communication modes . 83
4.5 Domain decomposition . 87

4.5.1 Block vector . 88
4.5.2 Block matrix . 91

4.6 Exchange of data blocks . 92
4.7 Algebraic operations with vectors and matrices 101

4.7.1 Addition, difference and scaling of vectors 101
4.7.2 Saxpy operation . 102
4.7.3 Inner product of vectors . 102
4.7.4 Matrix-vector product . 107
4.7.5 Minimum matrix-vector product size per processor 108

4.8 Parallel performance of solvers . 115
4.9 Nomenclature . 128

5 Parallel CFD in PC clusters 129
5.1 Implementation details of the SIMPLE-like in parallel 129
5.2 Benchmarking the parallel implementation 135
5.3 Performance measure of the parallel implementation 141
5.4 Other alternatives not based on Krylov solvers 148

5.4.1 Results of the alternatives . 148
5.5 Nomenclature . 151

6 Conclusions 153

viii

A Facilities 157
A.1 JFF PC cluster at CTTC . 157
A.2 SGI/Cray T3E at CIEMAT . 160

B Software layers in CFD code 163
B.1 Description of layers . 163

Bibliography 165

ix

x

List of Algorithms

1 SIMPLE-like . 18
2 SIMPLE-like plus time marching . 19
3 Complete LU factorization: LU . 34
4 Incomplete LU factorization: ILU . 35
5 Strongly Implicit Solver: SIS . 38
6 Conjugate Gradient: CG . 40
7 Bi Conjugate Gradient STABilized: BiCGSTAB 42
8 Generalized Minimal RESidual Restarted: GMRESR(m) 44
9 Left preconditioner . 45
10 Symmetric preconditioner . 45
11 Preconditioned BiCGSTAB . 47
12 Preconditioned GMRESR(m) . 48
13 Algebraic Multi Grid: AMG . 50
14 Prediction . 50
15 Correction . 51
16 AMG + solver + preconditioner + criteria 64
17 Preconditioned solver . 66
18 Sequential performance of solvers . 66
19 SPMD model . 74
20 SPMD example: y=Ax . 75
21 Synchronization of computation and communication 75
22 Communication + synchronization . 76
23 Master-slave paradigm . 76
24 Latency and bandwidth parameters . 81
25 Blocking communication . 83
26 Non blocking communication (xp) . 84
27 Blocking and non-blocking communication modes 85
28 Copy vect(xp, yp) . 91
29 Update (ov, xp) . 94
30 operation vect(xp, yp, zp) . 101
31 Scal vect(xp, α, zp) . 101
32 Saxpy(xp, α, yp, zp) . 102
33 Inner product(xp, yp, ρ) . 103
34 Norm vect(xp, ρ) . 103
35 Mat vect (Ap, xp, yp) . 107

xi

36 Residual(Ap, xp, bp, rp) . 108
37 Serial local computation of y=Ax . 108
38 Exchange of halos ov=1 of x . 109
39 Performance of operations . 112
40 Parallel SIMPLE-like plus time marching 131

xii

Acronyms

ACM Additive Correction Multigrid
AMG Algebraic Multi Grid
BiCGSTAB Bi Conjugate Gradient STABilized
CFD Computational Fluid Dynamics
CFL Courant Friedrich Levy condition
CG Conjugate Gradient
CGA Coarse Grid Approximation
CTTC Centre Tecnologic de Transferencia de Calor
DFT Discrete Fourier Transform
DPC Biblioteca per al Desenvolupament de

Programes aplicats a la resolucio de
problemes Combinats de transferencia de calor i massa

DDACM Domain Decomposed ACM
FVM Finite Volum Method
GMRESR Generalized Minimal RESidual Restarted
GS Gauss-Seidel
HPC High Performance Computing
HMT Heat and Mass Transfer
ILU Incomplete Lower Upper
JFF Joan Francesc Fernandez PC cluster
LU Lower Upper decomposition
MIMD Multiple Instruction Multiple Data
MG Multi Grid
MPI Message Passing Interface
MPMD Multiple Program Multiple Data
MRA Multi Resolution Analisys
MSIP Modified Strogly Implicit Procedure
PC Personal Computer
SC Schur Complement method
SIMD Single Instruction multiple Data
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
SIP Strongly Implicit Procedure
SIS Strongly Implicit Solver
SPAI SParse Approximate Inverse
SPMD Single Program Multiple Data

xiii

xiv

Chapter 1

Introduction

1.1 Motivation

Computational Fluid Dynamics (CFD), enable us to deal with a wide range of engineering
problems related with heat and mass transfer (HMT) by means of the numerical solution
of the governing equations, i.e. the conservation of mass, momentum and energy.

With the help of digital computers it has been possible to solve numerically these equa-
tions and simulate engineering problems including different phenomena (from pure diffusion
to natural or forced convection), flow structures (laminar and turbulent), states of flows
(single or two phase flows) and geometries (from simple to complex cavities, channels, bluff
bodies, etc.).

The purpose of these simultations is that they may be a laboratory of accurate numer-
ical experiments for predicting complex phenomenologies and a supply of information to
less detailed solutions for engineering problems. However, the experimental research (not
done in this work) cannot be underestimated in front of the numerical experiments. These
experimental cases are chosen carefully to show either the limitations or the range of appli-
cation of the models implemented. Once the code has been ”checked”, the simulations that
it provide are a tool for the design and optimization of engineering solutions.

The target of this work is to contribute to the development of numerical techniques that
will allow the detailed numerical simulation of complex heat and mass transfer phenomena
inside thermal equipments, such as melting for heat storage (1), heat looses due to the
natural convection in solar colectors (2) and ventilated facades (3), turbulence inside the
chamber or through the valves of a reciprocating compressor for refrigeration (4), thermal
stratification in tanks for heat storage (5), etc.. All of them, should be simulated in detail
for an improvement of their performances.

For a given equipment, the different levels of complexity of modellization could be dis-
cussed from the accuracy and feasibility points of view of the results. If a relatively simple
model is used with a global conservation of mass, momentum and energy balances over
the parts of the equipment, and additionally, with the help of experimental coefficients (i.e.
friction factor, heat transfer coefficient in convection, void fraction, pressure-loss coefficient,
etc.) we can expect to obtain, with low computational resources (i.e. memory storage and
cpu time), global results. Indeed, the accuracy of results depends on the accuracy of the
experimental coefficients and their suitability for such model.

1

2 1. Introduction

Conversely, a complex and detailed model with less use of experimental coefficients would
give very accurate and detailed results, but it demands large computational resources. For
instance, the modellization of an element such as the reciprocating compressor is based on
the integration of the governing equations in the whole compressor domain (compression
chamber, valves, manifolds, mufflers, connecting tubes, parallel paths, shell, motor, etc.)
featured by complex heat transfer and fluid flow phenomena: 3D turbulent, pulsatory and
compressible flow, fast transient processes, complex geometries, moving surfaces, etc.

Hence, for an accurated solution of these phenomena, in order to be used in the design
and optimization processes, a very fine spatial and temporal discretization of the governing
equations is required, resulting into a large number of systems of equations with hundreds of
thousands and even millions of unknowns. Moreover, the treatment of the high convective
terms of the governing equations, the pressure-velocity coupling and the boundary condi-
tions lead to non linear and ill-conditioned systems of equations which are more difficult to
solve.

Therefore, the feasibility to solve in detail problems with sets of large systems of equa-
tions is constrained by the current technology of the computing science applied to CFD
problems: large computational resources and powerful solvers.

1.2 Overview of parallel computing in CFD problems

In order to deal with a problem such as the presented above, the parallel computation on
multiprocessor architectures and the numerical algorithms which exploit the capabilities of
these machines offers the possibility to solve large CFD problems. To do so, current re-
search efforts are being stressed in two areas: computational resources based on distributed
memory architectures and numerical algorithms (i.e. the discretization and solution of
the governing equations). It is worth noting that, the developement of high performance
software follows the current software enginering philosofy: the layering or block-building
technique.

1.2.1 Computer technology

The computer technology is continuously changing in order to afford the present and future
of a wide number of disciplines. Few of them are work-office, entertainment (multimedia),
data base and High Performance Computing (HPC). Here we are interested on the appli-
cation of the emerging technologies to HPC, and more precisely, to the simulation of CFD
problems.

Single-processor architecture machines, in spite of their increasing improvements in com-
putational power, are incapable to afford the numerical simulations of our interest. For
instance, to carry out a numerical simulation within a reasonable time it would require an
speed of the processor over the physical limits of the current technology. Moreover, the size
of the problem is too large and hence, its storage in RAM is another limiting factor. The
development and progressive introduction of the operating system Linux in PCs gives the
equivalent reliability and performance features to the work-stations with UNIX.

Conventional parallel computers with either shared or distributed memories and with
high speeds of communication among processors, represent an important advance respect

1.2. Overview of parallel computing in CFD problems 3

to the above machines. These machines use UNIX based operating systems. However, this
computational power is tightly linked with an expensive cost.

Nowadays, it is being both a decreasing cost of personal computers (PCs) with fast
processors and a rapid development of the communication technologies that improve data
transfer rates in networks. As a result of this scenario, the PC clusters are an alternative
to the supercomputation of distributed applications.

For similar computational power per processor, the PC clusters have a cost per processor
lower than supercomputers. However, the main disadvantage of PC clusters relays on
their limited capacity of communication, roughly 10 times slower than in the case of the
supercomputers. Since the parallel performance is directly affected by the communication,
it is very difficult to design the numerical algorithms, i.e. the parallel solvers for CFD
problems.

The computer technology advances are also concerned with faster communications.
Therefore, they have also to be considered for the improvement of our parallel implemen-
tations. These advances are summarized below from the hardware and software points of
view.

• With respect to the hardware for networks, the advances are directed to increase
the transfer rate of data per second, i.e. the bandwidth and to reduce the start-up
time of the communication, i.e. the latency. Examples of network connections are
Fastethernet(100Mb/sec) and Myrinet(1Gb/sec) (6). The connections are joined in
the switch elements that accept transference of data from all the processors simulta-
neously and in both directions, i.e. in full duplex communication. Furthermore, these
elements enable the clustering of several tens of processors, and hence, the increase of
the potential scalability or computational power in distributed applications.

• With respect to the software for networks, the advances have been directed to the
development of efficient, reliable and portable message passing libraries. For example,
the Message Passing Interface (7) (MPI) is becoming an standard de facto.

1.2.2 Numerical algorithms

Current research efforts on numerical algorithms are being stressed in the development of
accurate and fast solutions of CFD and HT problems by means of new discretization pro-
cedures of the governing equations and new solvers for both single and distributed memory
multiprocessor architectures.

The accuracy of results is achieved by either a grid refinement on the spatial and tem-
poral coordinates for a given discretization scheme or by an improved discretization scheme
for a given grid. However, the grid refinement leads to larger systems of equations while the
discretization with higher order schemes, following conservative and stability criteria, leads
to more complex computational molecules, and hence, to more dense matrices. Moreover,
the discretization procedure has to consider the coupling problem among the mass, momen-
tum and energy systems of equations. Segregated and coupled discretization procedures
and solvers are continuously being revised (8; 9).

Since the most computation-intensive part of a simulation is the solution of the algebraic
systems of equations, the research is also focused on fast and robust solvers. These solvers

4 1. Introduction

are featured by an increase of efficiency and scalability to deal with difficult and large
systems of equations. Furthermore, the research and development of new solvers is closely
related with the sequential and parallel computers, and hence, leading to sequential and
parallel solvers respectively.

Within the framework of solvers for CFD problems, current sequential solvers are based
in iterative methods (e.g. the incomplete factorizations SIP (10), MSIP (11) and SIS (12;
13)) which exploit, better than direct methods (e.g. the complete factorization (14)), the
sparsity of the large matrices that arise in the discretization of the governing equations.

Apart from the improvements of the iterative solvers on the reduction of both the number
of floating point operations and memory storage requirements, the main improvements are
obtained when combining any of them with a Multi Grid acceleration technique (15; 16)
(MG) for the solution of large linear systems of equations. It is well known the degradation
of the efficiency of these iterative solvers, so called smoothers in the context of MG, for these
systems of equations. The major improvements are done in the development of algebraic
restriction and prolongation transfer operators which lead to the Algebraic Multi Grid
(AMG) (17; 18; 19) as well as in the implementation of different solvers at different grid levels
(e.g. the use of a iterative solvers at finer levels plus a direct solver at the coarsest level).
An emerging approach to the acceleration techniques with similar results to AMG is the
Multi Resolution Analysis (MRA) (20; 21; 22) with wavelets (23). It offers a generalization
of the transfer operators, and hence, a designing tool of them.

Nevertheless, the elliptic nature of the governing equations and the coupling among the
fluid-flow variables constrain their fast solution with sequential solvers to not too large size
problems (e.g. up to a half million of unknowns).

The strategy based on parallel solvers is the key to scale the problem size to several
millions of unknowns at low computational cost time. Although the solvers mentioned above
are powerful in sequential (i.e. execution in single processor architectures), the inherent
sequential parts contained within the algorithm (e.g. incomplete LU factorizations) and
the large number of communications disable their efficient implementation in distributed
memory multiprocessor architectures. For instance, in a parallel implementation of the
algebraic multigrid, several communication steps are required at each level leading to a low
ratio of the time of computation with the time of communication for the coarser levels.

Furthermore, the efficient parallelization of CFD problems with large systems of equa-
tions not only depends on this ratio but also on the distribution of data (or load) among
the processors (i.e. the load balancing). The addition of the domain decomposition (24)
with the Krylov space based iterative methods (25) is the most widely adopted technique.
However, the efficiency of this strategy is strongly dependent on the partitioning directions
of the domain and on the parallel efficiency of the preconditioner for the Krylov solver.
The most common preconditioners are based in incomplete factorizations (26), polynomial
preconditioners (27) and approximate inverses (28; 29). However, due to the inherent se-
quential parts of the incomplete factorization, the efficiency decreases with the number of
processors. The polynomial preconditioner parallelize well but it needs an accurate approx-
imation of the singular values, task as difficult as to solve the system of equations. And,
the approximate inverse preconditioner requires, in advance, the knowledge of the pattern
of the inverse of the matrix problem.

1.3. Scope of the work 5

1.2.3 Software engineering: layering

Software engineers often recommend the abstraction and encapsulation by layers in devel-
oping software components(30). They recommend the layering of new components on top of
existing components, using only information about the functionality and interfaces provided
by the existing components. This layering approach is in contrast to a direct implementation
of new components, utilizing unencapsulated access to the representation data structures
and code present in the existing components. By reusing the existing components, the lay-
ering approach intuitively result in reduced development costs, and in increased quality for
the new components.

Following this idea a CFD code based on a structure of four layers may be proposed:
the user layer, the solver layer, the algebra layer and the communication layer. These layers
are linked and integrated to build an structure which looks like an iceberg (see Fig. 1.1).

COMMUNICATION

ALGEBRA

SOLVER

USER

Figure 1.1: Iceberg built by layers: user layer, solver layer, algebra layer and communication
layer.

The concept of the iceberg comes from the idea that only the top of the iceberg or the
last layer is visible while the rest of the iceberg or layers are hidden below the water. This
top end is called the user layer, the only layer visible to the end user of the CFD code. The
rest of layers are hidden from the user, i.e. the user does not access to the remaining layers.

In order to build the CFD code in layers it is very important to specify clearly which
are the subroutines of each layer and which layer is supported by another, i.e, to define the
dependencies between layers in only one direction. This dependency goes from the top to
the base as shown with the arrows in figure 1.1. The detailled description of these layers is
given in appendix.

1.3 Scope of the work

This work is aimed to contribute to the development of numerical algorithms for CFD
problems using both sequential and parallel computers based on clusters of commodity

6 1. Introduction

computers. The purpose of this work is fourfold; it is to provide with:

• The derivation of the systems of equations of a CFD model problem.

• A review of the sequential and parallel solvers for these systems.

• A parallel implementation of the domain decomposition and Krylov solvers.

• A performance study of such implementation for a benchmark problem.

These items are described in the forthcoming chapters as follows. In chapter 2, the
fundamentals of fluid dynamics and heat transfer in 3D phenomena are reviewed through
the governing equations (i.e. the conservation of mass, momentum and energy) and the
boundary conditions. The discretization of the governing equations for both cartesian and
cylindrical coordinates is based on the Finite Volume Method (FVM) on staggered grids.
Numerical techniques such the discretization schemes, implementation of boundary condi-
tions and solution procedures for incompressible and unsteady flow problems are reviewed.

The chapter 3 is concerned with the analysis and solution of these systems of equations.
This analysis is focused on the matrix properties of systems of equations such the sparsity
of matrices, the stability criteria associated with the matrix coefficients and the convergence
behavior for different boundary conditions. On the other hand, this chapter is a review of
the implementation details of several suitable solvers for these systems of equations. This
review covers the basic iterative methods based on incomplete factorizations, the algebraic
multigrid, the multiresolution analysis with wavelets and the Krylov space based solvers
with incomplete LU factorizations as preconditioners. These implementation descriptions
are completed with a set of performance tests by means of the comparison of the time of
computation and the memory requirements for a sequential execution.

In chapter 4, the concepts of parallel computing in distributed memory machines and
performance parameters are defined and measured for two well differentiated architectures:
the Cray T3E and a PC cluster (see Appendix). In this work the MPI library has been
adopted for the implementation of the exchange of data among processors. This MPI
implementation is submitted to a set of performance tests where the communication and
computational efficiencies (i.e. the speed-up and the scalability) of both the algebraic
operations and the Krylov solvers are measured. Since these tests have been executed in
both architectures, the comparison of the communication and computation performances
has reported valuable information about the range of application of these solvers (i.e. the
scalability and the speed-up) and the cost-effectiveness of each machine.

This is the base of the parallel implementation of the systems of equations and solvers
under an algebraic implementation of the domain decomposition technique. The idea is to
decompose the algebraic operations involved in all procedures by means of the distribution
of vector and matrix data among the processors. The operations over data and the data
follow the so called Single Program and Multiple Data (SPMD) paradigm. This paradigm
suits well for distributed memory machines such as the PC clusters.

In chapter 5, several of the above techniques are applied to the solution of a CFD
problem: the domain decomposition technique, the incomplete factorization solver for the
solution of momentum equations and BiCGSTAB preconditioned for the solution of the
pressure correction equation. The well known 3D lid driven cavity problem is chosen to

1.3. Scope of the work 7

firstly benchmark the accuracy of results and secondly to analyze the speed-up and the
scalability of the parallel implementation for several number of processors, partitioning
configurations and problem sizes. Bottlenecks within the algorithm and solution alternatives
to the current implementation are also outlined.

The concluding remarks of the solution of large systems of equations in PC clusters and
further trends on parallel computing of CFD problems are discussed in chapter 6.

8 1. Introduction

Chapter 2

Modelization of CFD problems

2.1 Description of the governing equations

The fluid flow and heat transfer phenomena assumed throughout this work can be summa-
rized in the following hypotheses and restrictions:

• Two or three dimensional flow structure

• Steady or unsteady flow

• Laminar flow

• Newtonian and incompressible fluid

• Constant physical properties

• Buoyancy effect modeled by the Boussinesq’s hypothesis

• Neglected viscous dissipation

• Neglected radiation

• Single phase fluid

• Single component

A detailed explanation of these hypothesis can be found in any book of fundamentals of
CFD (31; 32; 33). Under these hypotheses it is possible to cover a wide range of engineering
applications.

The governing equations, i.e. the conservation of mass, momentum and energy equations
give us the tools necessary to deal mathematically with these applications. These equations
are written in differential form as:

• Conservation of mass (continuity equation)

∇ ◦ ~V = 0

9

10 2. Modelization of CFD problems

• Conservation of momentum (Navier-Stokes equations)

∂~V

∂τ
+ ~V

(
∇~V

)
= −1

ρ
∇P + ν∇2~V + ~gβ (T − T0)

• Conservation of energy

∂T

∂τ
+ ~V (∇T) =

κ

ρcp
∇2T +

ST
ρcp

The solution of these equations reports a detailed information of the fluid-flow variables
involved in the phenomena of study: the velocity ~V = {u, v, w}, the pressure P and the
temperature T .

Since the geometry of the domain of study has a strong influence in the pattern flow, it
is suitable to choose the coordinate system which represent this pattern better. By doing
so, generality is gained for the development of successive sections.

2.1.1 Cartesian and cylindrical coordinate systems

The governing equations are represented in two orthogonal coordinate systems: the cartesian
{x, y, z} and the cylindrical {r, θ, z} (see Fig. 2.1).

d

dr

dz

θ

z θ

r

dx

dy

z

x

y

dz

Figure 2.1: Coordinate systems: cartesian (left) and cylindrical (right).

Hence, the representation of the governing equations in the cartesian coordinate system
leads to:

• Conservation of mass or continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

2.1. Description of the governing equations 11

• Conservation of momentum in x direction

∂u

∂τ
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂P

∂x
+ ν

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

]
+ gxβ(T − T0)

• Conservation of momentum in y direction

∂v

∂τ
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂P

∂y
+ ν

[
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

]
+ gyβ(T − T0)

• Conservation of momentum in z direction

∂w

∂τ
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂P

∂z
+ ν

[
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

]
+ gzβ(T − T0)

• Conservation of energy

∂T

∂τ
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

κ

ρcp

[
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

]
+ ST

They are all summarized in the so called convection and diffusion equation (32) for the
cartesian coordinate system as:

∂φ

∂τ
+
∂uφ

∂x
+
∂vφ

∂y
+
∂wφ

∂z
= Γφ

[
∂2φ

∂x2
+
∂2φ

∂θ2
+
∂2φ

∂z2

]
+ Sφ

Where the values of φ, Γφ and Sφ are summarized in table 2.1.

Equation φ Γφ Sφ

Continuity 1 0 0

Momentum in x direction u ν −1
ρ

∂P

∂x
+ gxβ(T − T0)

Momentum in y direction v ν −1
ρ

∂P

∂y
+ gyβ(T − T0)

Momentum in z direction w ν −1
ρ

∂P

∂z
+ gzβ(T − T0)

energy T
κ

ρcp

ST
ρcp

Table 2.1: Values of φ, Γφ and Sφ for the convection and diffusion equation in a cartesian
coordinate system

12 2. Modelization of CFD problems

The representation of the governing equations for the cylindrical coordinate system leads
to:

• Conservation of mass or continuity equation

1
r

∂ru

∂r
+

1
r

∂v

∂θ
+
∂w

∂z
= 0

• Conservation of momentum in r direction

∂u

∂τ
+ u

∂u

∂r
+
v

r

∂u

∂θ
− v2

r
+ w

∂u

∂z
=

−1
ρ

∂P

∂r
+ ν

[
∂

∂r

(
1
r

∂ru

∂r

)
+

1
r2

∂2u

∂θ2
− 2
r2

∂v

∂θ
+
∂2u

∂z2

]
+ grβ(T − T0)

• Conservation momentum in θ direction

∂v

∂τ
+ u

∂v

∂r
+
v

r

∂v

∂θ
+
uv

r
+ w

∂v

∂z
=

− 1
ρr

∂P

∂θ
+ ν

[
∂

∂r

(
1
r

∂rv

∂r

)
+

1
r2

∂2v

∂θ2
+

2
r2

∂u

∂θ
+
∂2v

∂z2

]
+ gθβ(T − T0)

• Conservation of momentum in z direction

∂v

∂τ
+ u

∂v

∂r
+
v

r

∂v

∂θ
+
uv

r
+ w

∂v

∂z
=

− 1
ρr

∂P

∂θ
+ ν

[
∂

∂r

(
1
r

∂rv

∂r

)
+

1
r2

∂2v

∂θ2
+

2
r2

∂u

∂θ
+
∂2v

∂z2

]
+ gzβ(T − T0)

• Conservation of energy

∂T

∂τ
+ u

∂T

∂x
+
v

r

∂T

∂θ
+ w

∂T

∂z
=

κ

ρcp

[
1
r

∂

∂r

(
r
∂T

∂r

)
+

1
r2

∂2T

∂θ2
+
∂2T

∂z2

]
+ ST

Analogously as in the cartesian coordinate system, they are written in the convection and
diffusion equation for the cylindrical coordinate system.

∂φ

∂τ
+

1
r

∂ruφ

∂r
+
∂vφ

∂θ
+
∂wφ

∂z
= Γφ

[
1
r

∂

∂r

(
r
∂φ

∂r

)
+

1
r2

∂2φ

∂θ2
+
∂2φ

∂z2

]
+ Sφ

2.2. Discretization by finite volume method 13

with φ, Γφ and Sφ values summarized in table 2.2

Equation φ Γφ Sφ

Continuity 1 0 0

Momentum in r direction u ν −1
ρ

∂P

∂r
+ grβ(T − T0) +

v2

r
− ν 2

r2

∂v

∂θ
− ν u

r2

Momentum in θ direction v ν −1
ρ

∂P

∂y
+ grβ(T − T0)− uv

r
+ ν

2
r2

∂u

∂θ
− ν v

r2

Momentum in z direction w ν −1
ρ

∂P

∂z
+ gzβ(T − T0)

Energy T
κ

ρcp

ST
ρcp

Table 2.2: Values of φ, Γφ and Sφ for the convection and diffusion equation in a cylindrical
coordinate system

These equations are written in differential form and all together, they represent a system
of partial differential equations with non linear terms and coupling between variables. It is
clear that no analytical solution is feasible in a general case. Conversely, numerical methods
such as finite differences, finite elements or finite volumes can handle this problem.

2.2 Discretization by finite volume method

The finite volume method is used here because it is easy to understand from the physical
point of view. In this sense, the work done by Patankar (32) for the discretization of the
governing equations and the linking procedure between systems of equations was adopted
and followed.

Firstly, the domain is discretized into a finite number of volumes covering all domain.
The grid defined by this discretization is called the centered grid. At the center of these
volumes, the scalar variables P and T are evaluated. In addition three staggered grids in
each direction of the coordinate system, i.e. the {x, y, z} directions for the cartesian and the
{r, θ, z} directions for the cylindrical, are also used for the evaluation of each component of
the velocity vector ~V = {u, v, w}.

The integration of these partial differential equations in the respective grid can be briefly
described by means of the integration of the convection and diffusion equation for a general
grid whether it is centered or staggered.

The convection and diffusion equation composed by four terms, i.e. the convection,
the diffusion, the source term and the unsteady term, is integrated in a generic volume
V. Fig. 2.2 shows the geometry of the volume, as well as the faces and distances between
centers of the neighbour volumes.

14 2. Modelization of CFD problems

r

θ

z

∆s

∆w

∆ t ∆e

n∆

∆b
∆e

∆b

∆ t

∆w

∆s

n∆∆z

∆x
∆y

∆z

∆ r

θ∆(r+ r)∆

θ∆rE
T

W B

y

z

x

S

W

P

T

PS N

N

E

B

Figure 2.2: Coordinate systems: left, cartesian {y, y, z} and right, cylindrical {r, θ, z}.

In both pictures, it is followed the same notation. The uppercase letters {P,W,E, S,N,B, T}
represent the values of the variable φ at the center of volumes whilst the lowercase letters
represent the values at faces f = {w, e, s, n, b, t}.

Therefore, the resulting integrated convection and diffusion equation is expressed in
algebraic form as

ρV
∆τ

(φP − φ0
P) +

Feφe − Fwφw +
Fnφn − Fsφs +
Ftφt − Fbφb =

De(φE − φP)−Dw(φP − φW) +
Dn(φN − φP)−Ds(φP − φS) +
Dt(φT − φP)−Db(φP − φB) + SφV

where Ff and Df are the convective and diffusive transport coefficients respectively of the
variable φ at face f with surface Sf

Ff = (ρuS)f , Df =
(

Γ
S
∆

)
f

The algebraic equation for a given volume P can be solved to find the variable φ at its
center φP .

It is worth noting that this equation contains also the variables of its neighbour volumes
φNGB. Values of variables at faces φf are evaluated by interpolations of second order of
accuracy or using higher order schemes that consider the closest values at centered points
and the Peclet number at face f .

Pef =
Ff
Df

The deferred correction (34) is one of these approaches.

2.2. Discretization by finite volume method 15

The set of coefficients of the resulting algebraic equation has the following structure

aP,φφP +
∑
NGB

aNGB,φφNGB = bP,phi

where

aW,φ = DwA(Pew) + Fwmax(Fw, 0)
aE,φ = DeA(Pee) + Femax(−Fe, 0)
aS,φ = DsA(Pes) + Fsmax(Fs, 0)
aN,φ = DnA(Pen) + Fnmax(−Fn, 0)
aB,φ = DbA(Peb) + Fbmax(Fb, 0)
aT,φ = DtA(Pet) + Ftmax(−Ft, 0)

aP0 =
ρ(V)
∆τ

aP,φ = −(aW,φ + aE,φ + aS,φ + aN,φ + aB,φ + aT,φ) + ρ
V

∆τ

bP,φ = ρ
V

∆τ
φ0
P + SφV

where A(Pef) is a scheme function whose argument is the Peclet number. Further details
of these implementations may be found in Patankar (32) and others (33).

The integration of the convection and diffusion equation for all volumes at all domain
leads to an algebraic system of equations for a single variable φ.

By doing so for the momentum equations at each direction and in the respective stag-
gered grid and the energy equation in the centered grid, an amount of four algebraic systems
of equations is obtained.

aP,uuP +
∑
NGB

aNGB,uuNGB = bP,u

aP,vvP +
∑
NGB

aNGB,vvNGB = bP,v

aP,wwP +
∑
NGB

aNGB,wwNGB = bP,w

aP,TTP +
∑
NGB

aNGB,TTNGB = bP,T

Where the subscript P represent a generic point of the domain but into their respective
grids.

Regarding these systems, the right hand side of the first three systems of equations
contains the pressure gradient, the temperature effects over the density, i.e. the Boussinesq’s
hypothesis, and the source term derived from the cylindrical coordinate system on their
respective directions.

bP,u = −PE − PP
∆e

Vu + SuVu = −cu (PE − PP) + SuVu

16 2. Modelization of CFD problems

bP,v = −PN − PP
∆n

Vv + SuVv = −cv (PN − PP) + SvVv

bP,w = −PT − PP
∆t

Vw + SuVw = −cw (PT − PP) + SwVw

Where Vu, Vv and Vw are the volumes for each staggered direction.
For the resulting four systems of equations, it is said to have a coupling between the fluid-

flow variables ~V = {u, v, w}, T and P . The first three systems give the velocity components
under the assumption of a pressure field, whilst the last one gives the temperature field.
Therefore, the complete solution of the problem, i.e. the solution of the pressure P , would
require an additional system of equations.

2.2.1 The SIMPLE-like algorithms

For the above three systems of equations that represent the momentum equations in each
direction, a field of pressures P ∗ has to be guessed in order to solve the velocities say ~V ∗.
This is written as:

aP,uu
∗
P +

∑
NGB

aNGB,uu
∗
NGB = −cu (P ∗E − P ∗P) + SuVu

aP,vv
∗
P +

∑
NGB

aNGB,vv
∗
NGB = −cv (P ∗N − P ∗P) + SuVv

aP,ww
∗
P +

∑
NGB

aNGB,ww
∗
NGB = −cw (P ∗T − P ∗P) + SuVw

Since the velocities evaluated with momentum equations satisfy only the momentum, there
is no guaranty about continuity. In this sense, the continuity equation serves to introduce
the correction values of velocities ~V ′.

~V = ~V ∗ + ~V ′

Moreover, it is necessary to evaluate the right value of the pressure P . This is carried out
by the addition of a pressure correction P ′.

P = P ∗ + P ′

If the correction of the velocities ~V ′ is set in function of a pressure correction rate ∆P ′ such
that

uP = u∗P + u′P = u∗P − du
(
P ′E − P ′P

)
uP = u∗P + u′P = v∗P − dv

(
P ′N − P ′P

)
wP = w∗P + w′P = w∗P − dw

(
P ′T − P ′P

)
The substitution of these expressions in the respective algebraic systems of equations under
the assumption that the ~V ∗ values satisfy each equation, the following systems of equations
in ~V ′ and P ′ are obtained.

aP,uu
′
P +

∑
NGB

aNGB,uu
′
NGB = −du

(
P
′
E − P

′
P

)

2.2. Discretization by finite volume method 17

aP,vv
′
P +

∑
NGB

aNGB,vv
′
NGB = −dv

(
P
′
N − P

′
P

)
aP,ww

′
P +

∑
NGB

aNGB,ww
′
NGB = −dw

(
P
′
T − P

′
P

)
For a first approach of du, dv and dw the neighbour summation of each system can be

neglected yielding to

du = − cu
aP,u

, dv = − cv
aP,v

, dw = − cw
aP,w

This approach has been named SIMPLE (32). A much better improvement is SIMPLEC (35)
wich considers the neighbour summation.

du = − cu
aP,u −

∑
NGB aNGB,u

, dv = − cv
aP,v −

∑
NGB aNGB,v

, dw = − cw
aP,w −

∑
NGB aNGB,w

Finally, the values of pressure corrections P ′ are obtained from the continuity equation
by substitution of the velocities ~V by the guessed velocities ~V ∗ plus the corrections ~V ′

expressed in terms of the pressure corrections.
Integrating the convection and diffusion equation for φ = 0 there is the continuity

equation:
ρueSe − ρuwSw + ρvnSn − ρvsSs + ρwtSt − ρwbSb = 0

where the velocities at faces are

ue = u∗P |e − du|e
(
P ′E − P ′P

)
= u∗e − du|e

(
P ′E − P ′P

)
vn = v∗P |n − dv|n

(
P ′N − P ′P

)
= v∗n − dv|n

(
P ′N − P ′P

)
wt = w∗P |t − dw|t

(
P ′T − P ′P

)
= w∗t − dw|t

(
P ′T − P ′P

)
Substituting these velocities in the continuity equation leads to

ρ
(
u∗e − du|e

(
P ′E − P ′P

))
Se − ρ

(
u∗w − du|w

(
P ′P − P ′W

))
Sw +

ρ
(
v∗n − dv|n

(
P ′N − P ′P

))
Sn − ρ

(
v∗s − dv|s

(
P ′P − P ′S

))
Ss +

ρ
(
w∗t − dw|t

(
P ′T − P ′P

))
St − ρ

(
w∗b − dw|b

(
P ′P − P ′B

))
Sb = 0

The arrangement of terms of ~V ∗ to the right hand side gives the so called pressure
correction equation.

aP,P ′P
′
P +

∑
NGB

aNGB,P ′P
′
NGB = bP ′

Where

aW,P ′ = DwA(Pew) +max(Fw, 0)
aE,P ′ = DeA(Pee) +max(−Fe, 0)
aS,P ′ = DsA(Pes) +max(Fs, 0)
aN,P ′ = DnA(Pen) +max(−Fn, 0)
aB,P ′ = DbA(Peb) +max(Fb, 0)
aT,P ′ = DtA(Pet) +max(−Ft, 0)
aP,P ′ = −(aW,P ′ + aE,P ′ + aS,P ′ + aN,P ′ + aB,P ′ + aT,P ′)
bP ′ = ρu∗wSw − ρu∗eSe + ρv∗sSs − ρv∗nSn + ρw∗bSb − ρw∗tSt

18 2. Modelization of CFD problems

Solving this system of algebraic equations the desired map of pressure corrections P ′ is
obtained. With it, the pressure and velocities are corrected satisfying both criteria momen-
tum and continuity.

Finally, the system of equations for the temperature is solved with the corrected veloci-
ties. By doing so iteratively, the coupling between all variables ~V , P and T is achieved. The
coupling of the segregated systems is summarized in the so called SIMPLE-like algorithm
(see Alg. 1).

Algorithm 1: SIMPLE-like

start with k = 0
~V (k), P (k), T (k)

do

new iteration k = k + 1
guess fluid flow variables

~V ∗ = ~V (k−1), P ∗ = P (k−1), T ∗ = T (k−1)

evaluate coefficients of Navier-Stokes equation using: ~V ∗, P ∗, T ∗

solve aP,uu
(k)
P +

∑
NGB aNGB,uu

(k)
NGB = bP,u

solve aP,vv
(k)
P +

∑
NGB aNGB,vv

(k)
NGB = bP,v

solve aP,ww
(k)
P +

∑
NGB aNGB,ww

(k)
NGB = bP,w

evaluate coefficients of continuity equation using: ~V (k)

solve aP,P ′P
′(k)
P +

∑
NGB aNGB,P ′P

′(k)
NGB = bP,P ′

correct the velocity and the pressure
~V (k) = ~V (k) + αV ~V

′(k)

P (k) = P (k) + αPP
′(k)

evaluate coefficients of energy equation using: ~V (k), T ∗

solve aP,TT
(k)
P +

∑
NGB aNGB,TT

(k)
NGB = bP,T

until (mass, momentum and energy conservation)

Notice that the velocities and pressures are underrelaxed with αV , αP for convergence at
time of the correction step. Typical values of these parameters are αV = 0.5 and αP = 0.8.

2.2.2 Time marching algorithm

The algorithm outlined below enable us to evaluate all variables for a given instant of time
τ , say ~V τ , P τ and T τ under the initial conditions at previous time step τ − ∆τ . This
algorithm so called time marching (32) is carried out advancing in time until arriving at
the steady state of all variables.

This algorithm completes the full simulation from an initial state which originates an
unsteady state and the evolution to a final steady state. The full algorithm (see Alg. 2)
including the time marching and coupling of systems is written down.

2.2. Discretization by finite volume method 19

Algorithm 2: SIMPLE-like plus time marching

start with τ = 0
~V τ , P τ , T τ

do

new time step τ = τ + ∆τ
start with k = 0

~V (k) = ~V τ−∆τ , P (k) = P τ−∆τ , T (k) = T τ−∆τ

do

new iteration k = k + 1
guess fluid flow variables

~V ∗ = ~V (k−1), P ∗ = P (k−1), T ∗ = T (k−1)

evaluate coefficients of Navier-Stokes equations using: ~V ∗, P ∗, T ∗

solve aP,uu
(k)
P +

∑
NGB aNGB,uu

(k)
NGB = bP,u

solve aP,vv
(k)
P +

∑
NGB aNGB,vv

(k)
NGB = bP,v

solve aP,ww
(k)
P +

∑
NGB aNGB,ww

(k)
NGB = bP,w

evaluate coefficients of continuity equation using: ~V (k)

solve aP,P ′P
′(k)
P +

∑
NGB a

(k)
NGB,P ′P

′(k)
NGB = bP,P ′

correct the velocity and the pressure
~V (k) = ~V (k) + αV ~V

′(k)

P (k) = P (k) + αPP
′(k)

evaluate coefficients of energy equation using: ~V (k), T ∗

solve a
(k)
P,TT

(k)
P +

∑
NGB a

(k)
NGB,TT

(k)
NGB = b

(k)
P,T

until (mass, momentum and energy conservation)
~V τ = ~V (k), P τ = P (k), T τ = T (k)

until (steady state of all variables)

2.2.3 Calculation of the time step

In previous sections a spatial ∆x,∆y,∆z and temporal ∆τ discretizations of the CFD
problem were supposed. Since the formulation is fully implicit, there is no stability criterion
that needs to be met in determining the time step ∆τ . However, in order to model the
transient phenomena properly, it is necessary to set ∆τ at least one order of magnitude
smaller than the smallest time constant in the system being modeled. A good way to
judge the choice of ∆τ is to observe the number of iterations SIMPLE-like algorithm needs
to converge at each time step. The ideal number of iterations per time step is 10-20. If
SIMPLE-like algorithm needs substantially more, the time step is too large. If SIMPLE-like
algorithm needs only a few iterations per time step, ∆τ may be increased. Frequently a
time-dependent problem has a very fast startup transient that decays rapidly. It is thus

20 2. Modelization of CFD problems

often wise to choose a conservatively small ∆τ for the first 5-10 time steps. ∆τ may then
be gradually increased as the calculation proceeds.

At glance, a conservative approach (36) to ∆τ for implicit methods is obtained from an
explicit criteria based on the Courant-Friedrichs-Levy condition (CFL) and applied to all
ijk point of the domain:

∆t ≤ minijk

([
|u|
∆x

+
|v|
∆y

+
|w|
∆z

+ 2ν
(

1
∆x2

+
1

∆y2
+

1
∆z2

)]−1
)

The physical meaning underlying this expression is that, the time step ∆τ has to be small
enough to take account of variations of fluid flow due to the convection and diffusion effects
produced in small regions of dimension V = ∆x×∆y ×∆z.

2.3 Boundary conditions

In previous section, the time marching algorithm and the set of initial conditions were
described and they closed the problem in the temporal direction. With respect to the
spatial directions, the problem is constrained by the boundary conditions. Due to the
importance of the discretization of the boundary conditions this section is reserved.

2.3.1 Dirichlet and Neumann conditions

The first kind of boundary conditions to be treated is the Dirichlet boundary condition. It
sets a prescribed value φ̄ to the variable φ at fixed points P of the domain.

φ|P = φ̄

An example of this condition for viscous flows is the non-slip condition ~Vwall = 0 that
appears in wall bounded viscous flows (see Fig. 2.3).

Figure 2.3: Velocity profiles and non-slip boundary condition at wall due to the viscous
effects.

This condition is added to the rest of equations of momentum in their respective direc-
tions as

u|wall = 0, v|wall = 0, w|wall = 0

2.3. Boundary conditions 21

If the problem has inlets the value of the velocity at these entrances is prescribed with either
a fixed value or a velocity profile. For thermal problems, some regions of the domain can
be fixed at a prescribed distribution of temperatures.

T |wall = T̄

In general, the Dirichlet condition is translated into an algebraic expression and included
within the rest of the algebraic equations in order to close the system. The set of coefficients
that represents this condition are

aP,φ = 1, bP,φ = φ̄, aNGB,φ = 0

The second kind of boundary condition is the Neumann boundary condition. It is
associated to the numerical treatment of the phenomena where the derivative of the variable
φ is prescribed. Let P be a point of the boundary of the domain, the prescription with a
value q̄φ is written as

∂φ

∂x

∣∣∣∣
P

= q̄φ

For example, the free-slip condition or the null derivative of velocities should be fixed at
outlets, where the structure of the flow remains constant downstream. For instance, a fully
developed channel flow should consider this condition written as

∂~V

∂x

∣∣∣∣∣
outlet

= 0

For wall bounded domains and due to the non-slip condition, a zero pressure gradient at
the pressure correction equation is set.

∂P

∂x

∣∣∣∣
W

= 0 ,
∂P

∂x

∣∣∣∣
E

= 0

∂P

∂y

∣∣∣∣
S

= 0 ,
∂P

∂y

∣∣∣∣
N

= 0

∂P

∂z

∣∣∣∣
B

= 0 ,
∂P

∂z

∣∣∣∣
T

= 0

For thermal problems, Neumann conditions describe heat fluxes (e.g. adiabatic walls).

∂T

∂x

∣∣∣∣
W

= q̄T

See Fig. 2.4 for a schematic representation of the points involved in the discretization of the
adiabatic wall condition.

22 2. Modelization of CFD problems

Figure 2.4: Adiabatic wall at west face of a domain.

Analogously to the Dirichlet condition, the Neumann condition is translated to an alge-
braic expression and included within the rest of algebraic equations and closing the system.
For instance, let us to specify an adiabatic wall condition in the west face of a square box
domain. The adiabatic wall condition is mathematically expressed as:

−Γ
∂T

∂x

∣∣∣∣
w

= 0

Using the Taylor’s series the derivative is expanded and truncated to the first term.

−Γ
∂T

∂x

∣∣∣∣
w

= −Γ
TE − TP

∆x
= 0

And rearranging terms it yields

aP,T = 1, aE,T = −1, bP,T = 0, aNGB,T = 0

Discretization of these boundary conditions with higher accuracies (37) are out of scope
of this work.

2.3.2 Periodic condition

For those problems where the discretization is done in the cylindrical coordinate system,
there appears a spatial periodicity condition in the angular direction θ. That implies a con-
nection between the variables at the beginning and end of the angular coordinate. Fig. 2.5
shows graphically this connection.

2.4. Stopping criteria for a simulation 23

n

1

2

3

n-1

n-2

PW

N

S

θ

Figure 2.5: Periodicity in the angular direction θ.

Where
φN,n = φP,n+1 = φP,1

φS,1 = φP,0 = φP,n

There are two ways to implement these conditions and to close the system of equations.
The first one is simply adding explicitly the periodicity by including the two previous
expressions in the system as follows:

θ = n+ 1, aP,φ = 1, bP,φ = φP,1, aNGB,φ = 0

θ = 0, aP,φ = 1, bP,φ = φP,n, aNGB,φ = 0

A similar treatment (38) is also used in cartesian coordinate systems for periodic and
antiperiodic boundary conditions where an inlet flow is given by the outlet flow.

The second one is considering implicitly the periodicity in the solver and then no ad-
ditional algebraic equations are needed. This implicit treatment of the periodicity will be
discussed in the next chapter.

2.4 Stopping criteria for a simulation

An important issue in a simulation is the stopping criteria. The stopping criteria have
mainly to cover two issues: the coupling and the transition to the steady state.

The first one is the coupling between the velocity field ~V , the pressure P and the
temperature T at each time step. For this purpose, after the correction of velocities (mass
balance satisfied), the balance of momentum of each component of the velocity field and
the balance of energy must be guaranteed.

The measure of the conservation of the momentum and energy is summarized into a
global value by joining all balances previously normalized and non dimensionalized. The
normalization adopted in this work is based on the 2-norm || · ||2 of the residual r(k) at a
given iteration k of each algebraic system.

24 2. Modelization of CFD problems

Rewriting each algebraic systems of equations for their respective variable φ = {u, v, w, T}
for a given k iteration, there are:

A(k)
u u(k) = b(k)

u −→ r(k)
u = b(k)

u −A(k)
u u(k)

A(k)
v v(k) = b(k)

v −→ r(k)
v = b(k)

v −A(k)
v v(k)

A(k)
w w(k) = b(k)

w −→ r(k)
w = b(k)

w −A(k)
w w(k)

A
(k)
T T (k) = b

(k)
T −→ r

(k)
T = b

(k)
T −A

(k)
T T (k)

where A(k)
φ is the matrix of coefficients, φ(k) the variable expressed as a vector and the right

hand side b(k)
φ another vector, all of them at iteration k.

The normalization and nondimesionalization, say coupling(k)
φ , is evaluated by

coupling
(k)
φ =

||r(k)
φ ||2
||b(k)
φ ||2

The addition of all of these quantities is the overall criterion of coupling of the systems for
a given time step t.

coupling(k) = coupling(k)
u + coupling(k)

v + coupling(k)
w + coupling

(k)
T

Another coupling criterion based on the mass balance may be used rather than the
described above. The reason is that the coupling among systems is strongly affected by the
velocities and pressure. Hence the guarantee of the continuity (after the correction step) for
each volume and in overall is an enough criterion to ensure the coupling among all variables.

The normalized mass balance based coupling criterion may be written as

coupling(k) =

√∑
ijk(ρu

(k)
w Sw − ρu(k)

e Se + ρv
(k)
s Ss − ρv(k)

n Sn + ρw
(k)
b Sb − ρw

(k)
t St)2∑

ijk ρV
∆τ

The second issue is the transition of the fluid flow from the unsteady state to the steady
state. After the steady state there is no need to continue evaluating the variables at new
time steps. Therefore a simply comparison of each variable in two close time steps is enough
to decide if the steady state is achieved. For a given variable φ evaluated at time step τ the
steady state steadytφ is measured as follows:

steadyτφ =

∑
ijk |φτ − φτ−∆τ |∑

ijk |φτ |

where | · | is the absolute value of the quantity between bars.
Since the steady state of the fluid flow is achieved when all variables have arrived at the

steady state, all measures in a single value are joined:

steadyτ = steadyτu + steadyτv + steadyτw + steadyτT

2.4. Stopping criteria for a simulation 25

Once evaluate both measures coupling(k) and steadyτ the stopping criteria for numerical
simulations is fixed in the following values:

coupling(k) ≤ 10−6, steadyτ ≤ 10−3

These values have been chosen experimentally in order to guarantee the numerical coupling
of variables at each time step and an estimated situation of the steady state. Higher values
of the coupling criterion may not ensure convergence of the pressure correction system or
produce inaccurate field solutions. And higher values of the steady criterion may stop a
slow fluid flow transition, for example in natural convection phenomena. Conversely, smaller
values of the steady criterion may never stop the algorithm. The numerical perturbations of
the algorithm and solvers masquerade the steady fluid flow state, and hence, the sensibility
of the criterion cannot detect that the simulation has already reached the steady state.

26 2. Modelization of CFD problems

2.5 Nomenclature

A discretization matrix
a coeff. in A
b discretization right hand side
CV control volume
cp specific heat
D diffusion coefficient
d coeff. of the pressure diff. term
F flow rate through the CV face
f general face
~g gravitational force
P pressure
Pe Peclet number
q net flux
r residual, radial coordinate
S general source term
T temperature
~V fluid flow velocity vector
{u, v, w} fluid flow velocity components
{x, y, z} cartesian coordinates
{r, θ, z} cylindrical coordinates

Greek symbols
β thermal volumetric expansion coeff.
∆ general width of a CV
∆r r-direction width of CV
∆x x-direction width of CV
∆y similar to ∆x
∆z similar to ∆x
∆τ time step
∆θ similar to ∆x
Γ general diffusion coeff.
κ thermal conductivity
ε precission
µ dinamic viscosity
ν kinematic viscosity
ρ density
φ general dependent variable
τ time
θ angular coordinate

Other symbols
S surface of CV
V volume of CV

Subscripts
B neighbour at the bottom
b CV face between P and B
E neighbour at the east side
e CV face between P and E
N neighbour on the north side
NGB general neighbour grid point
n CV face between P and N
P central grid point
S neighbour on the south side
s CV face between P and S
T neighbour at the top
t CV face between P and T
W neighbour at the west side
w CV face between P and W

Superscripts
(k) k-th iteration
τ time value
∗ guessed value
′ correction value
- prescribed value

Chapter 3

Linear solvers

3.1 Features of equation systems

In previous chapter, the algebraic equation systems arising from both Navier-Stokes and
mass equations were derived. It is to be stressed that each of these systems, in spite of
their coupling, is solved separately with the SIMPLE-like algorithm (32; 35). The Navier-
Stokes system of equations solves the velocities ~V = {u, v, w} with the assumption of the
known pressure P ∗ and temperature T fields. Then, the pressure correction system of
equations solves P ′ with the guessed velocity field just evaluated in the previous step. Once
the velocities and pressures are corrected, it is the turn of the energy equation, where the
temperature T is obtained. Following this iterative procedure it is possible to uncouple the
equation systems and focus efforts on each of these systems.

Algorithms (8; 39; 9) which consider directly the coupling between velocity and pressure
fields within a single system of equations are not considered in this work, but most of the
ideas that will be exposed throughout this chapter can be extended to the coupled systems.

It is well known that Navier-Stokes equations, once discretized and linearized, give a set
of algebraic equation systems with non symmetric coefficients in their matrices. Meanwhile
the continuity equation leads to a linear system of equations with symmetric coefficient
matrix. This fact should be in mind when a solver is used which one suits for symmetric
matrices or suits for non symmetric matrices. It is to be mentioned that a symmetric
matrix can be considered as a special case of non symmetric matrix from the solver point
of view. Thus a solver which treats with non symmetric matrices deals also with the
symmetric matrices. Nevertheless, although such kind of solvers are robust and feasible for
any linear system of equations, the efficiency in symmetric matrices decreases. For instance,
for symmetric matrices the CG solver is faster than the robust BiCGSTAB solver, which
performs double number of operations per iteration. Therefore, it is suggested to use a
solver for non symmetric matrices and another one for symmetric matrices instead of a
general and robust solver which is less efficient for symmetric matrices. Further guidelines
on suitable solvers for symmetric and non symmetric matrices may be found in (40).

In addition, any algebraic system includes the set of equations derived from the dis-
cretization of the boundary and initial conditions. Typical boundary conditions are non-slip
conditions, free-slip conditions, convective conditions and periodic conditions for Navier-
Stokes equations (see details in chapter 2). And the pressure gradient is fixed to a value

27

28 3. Linear solvers

in the pressure correction equation . The initial conditions give the starting point of all
variables at time τ = 0. They all close the problem in order to supply only one solution at
each successive time step τ + ∆τ (i.e. the linear system with the boundary conditions and
initial conditions included has a non singular matrix).

Furthermore, some of these conditions, say strong conditions, enhance the convergence
and offer stability to any solver. While the non-slip and initial conditions shall consider
strong sets of equations, the free-slip, fixed gradients, convective and periodic boundary
conditions are considered weak sets of equations. For instance, the pressure correction
system of equations plus zero gradient in boundaries appear in problems with bounded
domains. This system of equations is weakly closed. Since the matrix turns into singular,
there are an infinite number of shifted solutions. Luckily, if one point is fixed to a constant
value during all the procedure it is enough to get a single solution. Fixing a point means
replacing one of the equations of the system in order to obtain a non singular matrix. By
doing so, a shifted solution is obtained which matches with the pressure correction system
of equations.

Another example is a repeated flow pattern in some directions which is treated with
periodicity in these directions. So in these cases all boundary conditions are weak, and it
is necessary to fix a value in one point.

A simple example with either double periodicity or free gradient in a two dimensional
case shows an infinitive number of shifted solutions if no additional information (i.e. fixed
point) is given. The partial differential equation and the boundary conditions are

∂2φ

∂xixi
= b, i = {1, 2}, xi ∈ [0, 2π]

b = cos(x1)sin(x2)

See Fig. 3.1 for different shifted solutions φ which match the partial differential equation.
As mentioned before, equation systems with strong or weak sets of boundary conditions

have different behaviours when attempts are made to solve them. In addition, these systems
are affected by other important factors: the stability and sensitivity of the problem of
perturbations. Since neither problem data nor computer arithmetic is exact the solution
will not be exact. How small changes in the system of equations affects the final solution is
a critical point in the discretization and the design of a robust or a stable solver.

From the point of view of the discretization process, stability is ensured if Scarborough’s
criterion (32) is satisfied. Or in other words, the coefficients of the matrix A are diagonally
dominant. Then, once the discretization is done, the sensitivity is dealt in consideration
to the solver. Let Ax = b be a given system of equations, the sensitivity of this system is
expressed mathematically as

||A+ δA||2||x+ δx||2 = ||b+ δb||2

Ax = b is a well-conditioned system if for small changes or perturbations in the system (i.e.
the matrix ||δA||2 or the right hand side ||δx||2) the changes in the solution ||δx||2 are equal
or smaller than the perturbations.

||δA||2, ||δb||2 ≥ ||δx||2

3.1. Features of equation systems 29

0

2

4

6

0

2

4

6

x

0

2

4

6

y

φ1

φ2

Figure 3.1: Two shifted solutions of the 2D problem with periodic boundary conditions.

Conversely, if small perturbations produce large changes in the solution, then it is said that
the system is ill-conditioned.

||δA||2, ||δb||2 < ||δx||2

It is easy to imagine what it means when solving a linearized system with an iterative
procedure. Coefficients of matrix and right hand side term are updated at each iteration
in function of values of an approximate solution. Then the system is solved again for a
new iteration obtaining a different solution from the previous one and so on. For an ill-
conditioned system, the differences between successive solutions increase at each iteration,
i.e. the solution diverge.

This fact appears in both Navier-Stokes and pressure correction equation systems. From
Navier Stokes system the convective term is linearized at each iteration of the global pro-
cedure (see SIMPLE-like algorithm in previous chapter). For high Reynold’s numbers, this
term dominate over the rest of the terms in the set of equations. Similar situation happens
in the pressure correction system of equations for an incompressible fluid. Although the
coefficients of the matrix remain constant during the overall algorithm the right hand side

30 3. Linear solvers

becomes very sensitive to small variations of the divergence of mass.

Since these equation systems are very sensitive to changes in solutions one simple way
to prevent the divergence is based on the underrelaxation of solutions.

x(k+1)
new = αx

(k+1)
old + (1− α)x(k)

Where α is the relaxation parameter, a scalar value within the range [0, 1].

Another more complicate way (41) but effective is based on the measure of how well or
ill-conditioned is the matrix problem. That is to the condition number of the matrix κ(A).
A high value of the condition number points out an ill-conditioned matrix, while a low value
indicates a well-conditioned matrix. Therefore, if one changes the problem for another with
the same solution, say Āx = b̄, but in addition, it has a reduced condition number

κ(Ā) < κ(A)

then this problem would be easier to solve. Details of such technique (the so called precon-
ditioning) are explained later on in this chapter.

3.1.1 Sparse matrix formats

The equation systems derived from CFD problems have been described mathematically.
Now is time to have a look, from the computational point of view. How to handle and solve
such equation systems is the principal argument of this work.

Since these equation systems contain several thousands (even millions) of unknowns in
three dimensional cases with only a few set of unknowns linked per equation, clearly there
are large matrices which many of the coefficients are zero. For practical reasons, a matrix
is considered sparse if there is an advantage in exploiting the zeros by saving enormous
computational storage and time of operations (14) (some operations are avoided where zero
values are involved).

Due to the structured grid of points over the domain, they were ordered with a lexi-
cographic or natural order. Such organization of unknowns that is ijk or any permutation
of index like jki, kij,... gives a matrix with a constant set of diagonals. A number of di-
agonals depends on the formulation (schemes of discretization) and the dimension of the
problem (two or three dimensional). For two dimensional problems, there arises 5-points
and 9-points formulations while for three dimensional problems there are 7-points and 19-
points formulations (42). The distribution of non zero coefficients (within some example of
matrices) is shown in Figs. 3.2 and 3.3. Therefore it seems convenient and enough to store
the sets of non zero coefficients by diagonals.

3.1. Features of equation systems 31

Figure 3.2: 2D-5PF (left) and 2D-9PF (right) for a 10 × 10 case. Each of these squares
has 10× 10 entries.

Figure 3.3: 3D-7PF (left) and 3D-19PF (right) for a 10 × 10 × 10 case. Each of these
squares has 100× 100 entries.

Another option which exploits such kind of sparsity is the band format. It includes all
coefficients even zero entries contained between both sides of the main diagonal and fitted
in a narrowed band. Although the band width storage format is more general or flexible
than the diagonal storage format due to the possibility of modification of some zero entries

32 3. Linear solvers

by non zero values, it needs to store more values. See Fig. 3.4 for a draft of the band
matrix storage format. Furthermore, a system with lexicographic ordering (i.e. the ijk

band width

Figure 3.4: The draft of the 2D-5PF case with a band width painted in blue. It evolves
the five diagonals.

order) and periodicity in k direction leads to a wider band width than the ordered in ikj or
kij. So in this situation, any of these last orderings is suggested consequently leading to a
reduction of the band width. This problem of reordering can be seen in Figs. 3.5, 3.6, 3.7
for a 10× 10× 10 case with 7-point formulation.

Figure 3.5: The ijk ordering for a 10× 10× 10 case with 7-point formulation.

3.1. Features of equation systems 33

Figure 3.6: The ikj ordering for a 10× 10× 10 case with 7-point formulation.

Figure 3.7: The kij ordering for a 10× 10× 10 case with 7-point formulation.

For periodicity in k direction the ijk ordering has the widest band width. This fact will
be considered in the solvers or preconditioners which handle the system in band matrix
storage format like complete LU decompositions (14; 43).

34 3. Linear solvers

3.2 Solving equation systems

Nowadays a full description and even enumeration of all solvers present in the scientific
literature would be impossible. However this section is firstly aimed to present a review of
the most efficient solvers for CFD equation systems (i.e. the state of the art in CFD solvers).
Although the reader interested in general implementations of each solver will find further
details in the references, this section provides a compact view of them. And secondly, it
will be illustrated not only the advantages and disadvantages of the implementations and
efficiencies but also how to link them in order to obtain a more powerful solver by means
of the efficiencies linked.

3.2.1 LU solver

Solvers based on factorizations are widely used in narrow banded equation systems (14).
The factorization of a non singular matrix A in lower (L) and upper (U) matrices leads in
a direct procedure for the evaluation of the inverse so there by leads to a direct evaluation
of the solution for a given right hand side. Once given b and factorized A in L and U , the
solution is obtained in a two step process (see Alg. 3): a forward substitution followed by
a backward substitution.

Algorithm 3: Complete LU factorization: LU

evaluate complete LU factorization of A
Ax = (LU)x = L(Ux) = Ly = b

solve Ly = b by forward substitution
y = L−1b

solve Ux = y by backward substitution
x = U−1y

Sparse matrices, symmetric or non symmetric, are stored in band matrix formats: A,
L and U . As mentioned in cases with periodicity, it is better to reorder the system of
equations before factorization in order to reduce the band width and definitely to save in
storage requirements and computations. For instance, the well known Cholesky factorization
(14) suits for symmetric matrices where only the half part of the band matrix is needed for
the factorization and storage. The Crout’s factorization (43) suits well for non symmetric
matrices but a partial pivoting by rows is recommended in order to reduce roundoff errors
produced in the inexact arithmetic of the machine.

Although this solver supplies directly the solution within the machine accuracy, it is only
feasible for relatively small size systems. This solver comes to fall into large equation systems
due to the requirements of memory and number of floating point operations. However, for
the pressure correction system of equations where the matrix remains constant along the
iterative algorithm of coupling and only the right hand side changes, it may be feasible to
compute and store just once such amount of data.

3.2. Solving equation systems 35

3.2.2 ILU solver

The incomplete LU factorization, also so called ILU factorization, overcomes the problems of
the complete LU factorization. It computes and stores the ‘main’ values of L and U matrices
from the factorization of such large matrix size. Since the ILU gives an approximation to
the matrix, it yields in a iterative method.

The several incomplete factorizations (10; 11; 12), are generalized in the concept of
fill-in or ILU(fill-in) and are stored in the band matrix format or the set of diagonals.
Furthermore, a threshold (26) can also be introduced to achieve a significant reduction of
coefficients in cases with a wide band width. These versions lead to different degrees of
sparsity, approximation and finally in more or less efficient iterative algorithms. The ILU
factorization proposed by Stone (10), and Zedan (8) for non symmetric matrices is presented
here (see Alg. 4).

Algorithm 4: Incomplete LU factorization: ILU

evaluate incomplete LU factorization of A
Ax = (M −N)x = (LU −N)x = b
Mx(k+1) = Mx(k) − (Ax(k) − b) = Mx(k) + r(k) , such that ||M || >> ||N ||
M(x(k+1) − x(k)) = Md(k) = LUd(k) = r(k)

LUd(k) = L(Ud(k)) = Ly(k) = r(k)

set a guess
k = 0, x(k)

r(k) = b−Ax(k)

while (||r(k)||2 ≥ ε) do

r(k) = b−Ax(k)

solve Ly(k) = r(k) by forward substitution
y(k) = L−1r(k)

solve Ud(k) = y(k) by backward substitution
d(k) = U−1y(k)

update solution
x(k+1) = x(k) + d(k)

end while

The evaluation of coefficients of the ILU factorization shall be described. Matrices
L and U are selected, such that the product of these two matrix, say M , gives a good
approximation to the matrix A. A first option is the ILU(0) (i.e., the L and U matrices
have the same fill-in that the lower and the upper submatrices of A).

In order to fix ideas, an example for the 3D case with a 19-point formulation is given
(11). Setting an ijk ordering of the unknowns, each diagonal of the matrix A and its
factorization matrices L and U are represented in Figs. 3.8, 3.9 respectively.

36 3. Linear solvers

Figure 3.8: Matrix A with 19-point formulation for a 10×10×10 size. Each of these squares
has 100× 100 entries.

Figure 3.9: (Left) Lower matrix for a 10×10×10 size.(Right) Upper matrix for a 10×10×10
size.

After the product of L by U it can be seen that, in addition to the 19 entries in the
original matrix A, there are 24 additional coefficients in matrix M . Despite of the additional
entries, the equations to be used to determine the coefficients of L and U requires that the
19 coefficients in M remains unchanged from A. In Fig. 3.10, the original entries with points
filled in black and half part of the additional entries filled in blue are pictured.

3.2. Solving equation systems 37

TTW

BE

EE

NN

TNW

TSWW TSW

TSSW TSS

W TSSE

SW

BW

BS

B

S

P

NW

TS

TN

TE

N

E

BN BNE

SE

NWW

TSE

NE

TWW

Figure 3.10: Computational molecule with 19 point formulation. Original entries are
represented with black filled points. The half part of the additional entries are filled in
blue.

The additional 24 entries can be partially canceled through the use of Taylor series
expansions and considering points from the 19 entries. For instance,

NN = α(−P + 2N)

TWW = α(−2P + 2W + T)

BNE = α(−2P + E +N +B)

TSWW = α(−3P + 2W + S + T)

The implementation details can be found in Stone (10) and Zedan (11).
For periodic boundary conditions, it has been seen in previous section that the matrix

A contains few additional entries. These entries match well for the additional entries of M ,
so there is no need to cancel these coefficients. Therefore an ILU for the 3D case is built
with or without periodicity just cancelling the additional entries from the original matrix.

The degree of cancellation is controlled by the cancellation parameter α within a range
of [0 : 1). Some numerical studies (12; 13) show a good performance for α = 0.9 but it is
less stable than α = 0.5.

Another kind of factorization, SIS (13) (see Alg. 5) is implemented in order to reduce the
number of operations, therefore the time of computation per iteration is reduced. Having
a look into this algorithm, the computation of the residual vector is unnecessary.

38 3. Linear solvers

Algorithm 5: Strongly Implicit Solver: SIS

evaluate incomplete LU factorization of A
Ax = (M −N)x = (LU −N)x = b
Mx(k+1) = Nx(k) + b , with ||M || >> ||N ||
Mx(k+1) = LUx(k+1) = c(k)

LUx(k) = L(Ux(k+1)) = Ly(k) = c(k)

set a guess
k = 0, x(k)

r(k) = b−Ax(k)

while (||r(k)||2 ≥ ε) do

evaluate new right hand side
c(k) = Nx(k) + b

solve Ly(k) = c(k) by forward substitution
y(k) = L−1c(k)

solve Ux(k+1) = y(k) by backward substitution
x(k+1) = U−1y(k)

end while

For 2D cases, the number of new entries present in the N matrix is less than the
number of original entries present in the A matrix. Therefore the reduction of the number
of operations when performing the right hand side term c(k) instead of the residual r(k) is
clear. However, there is no advantage for the 3D case. The 24 additional entries are greater
than the 19 entries needed for the evaluation of the residual.

If the additional N entries are used the cancellation parameter is avoided so it is more
robust than SIP and MSIP. Finally, the periodic boundary conditions are treated implicitly
like in SIP or MSIP.

A variable ILU decomposition (26) can be also useful for some matrix whose bandwidth
is not well defined. In such cases a threshold parameter is used in order to neglect some
coefficients, thus decreasing time of computation and saving storage in memory. It is spe-
cially used in high order wavelet matrix transformations (see the section of multiresolution
analysis with wavelets). Following this method a robust ILU is defined without regarding
the real entries of the matrix.

3.3 Krylov solvers

In this section some Krylov solvers (40; 25) shall be described. Although the Krylov solvers
are in theory direct solvers, the inexact arithmetic of that operations leads to iterative
solvers. The derivation of Krylov solvers starts from the idea of finding out the solution for
x of the linear system Ax = b by means of orthogonal directions of descent in a minimization

3.3. Krylov solvers 39

functional problem φ(x) like

φ(x) =
1
2
< x,Ax > − < x, b >

Let us assume that x = (x1, x2), then the minimal of the function φ(x) (see Fig. 3.11 for
descent directions) which is also the solution to the linear system is found.

φ

x1

x2

Figure 3.11: Steepest descent directions over the surface of the function φ until they arrive
to the minimal of the function.

With the initial guess x(0) and the initial residual r(0), the Krylov solver computes in
the k-th iteration the optimal correction p(k) over the k-th Krylov subspace associated with
A and r(0) Kk(A, r(0))

Kk(A, r(0)) ≡ span{r(0), Ar(0), A2r(0), ..., Ak−1r(0)}

in the sense that the 2-norm of the residual r(k) = b − A(x(0) + p(k)) is minimized. The
relation between the minimal residual correction, p(k), and the orthogonality of the new
residual r(k) to the shifted Krylov space AKk(A, r(0))

AKk(A, r(0)) ≡ span{Ar(0), A2r(0), ..., Ak−1r(0)}

is given by the following theorem.
Theorem The vector p(k) ∈ Kk(A, r(0)) satisfies

p(k) = min||b−A(x(0) + p)||2, p ∈ Kk(A, r(0))

if and only if
r0 −Apk ⊥ AKk(A, r(0))

40 3. Linear solvers

�
The Conjugate Gradient solver (CG), the BiConjugate Gradient STABilized solver

(BiCGSTAB), and the Generalized Minimal RESidual solver (GMRES) have been widely
used in CFD problems (44). Features of Krylov solvers and guidelines about their imple-
mentations have been summarized.

3.3.1 CG solver

The Conjugate Gradient (40) (see Alg.6) is an effective solver for symmetric positive definite
matrices. It is based on the steepest descent solver but it is improved using conjugate
directions p(k). Each new direction is orthogonal to the set of previous directions. Moreover
it is scaled by the factor α in order to update the solution minimizing the residual norm.

Algorithm 6: Conjugate Gradient: CG

set a guess
k = 0, x(k)

r(k) = b−Ax(k)

while (||r(k)||2 ≥ ε) do

ρ(k) =< r(k), r(k) >

evaluate new direction and scaled factor
if (k = 0)

p(k+1) = r(k)

else

β =
ρ(k)

ρ(k−1)

p(k+1) = r(k) + βp(k)

end if

evaluate new direction and scaled factor
q(k+1) = Ap(k+1)

α =
ρ(k)

< p(k+1), q(k+1) >

update solution and residual
x(k+1) = x(k) + αp(k+1)

r(k+1) = r(k) − αq(k+1)

k = k + 1

end while

In absence of roundoff errors the series of conjugate directions and series of residuals are
so called A-orthogonal. Then the following theorem is written.
Theorem. Let A be a symmetric positive definite matrix and p(0), ..., p(N−1) are A-
orthogonal, for any x(0) ∈ RN given the algorithm converges to the exact solution in less or

3.3. Krylov solvers 41

equal than N iterations. �

This theorem guarantees not only the convergence of the algorithm but also in exact
arithmetic, it would be a direct solver with N steps.

3.3.2 BiCGSTAB solver

The conjugate gradient method is not suitable for non symmetric matrices because the
series of residual vectors loose its orthogonality. Thus a bi orthogonal process (45) is
done in order to improve the conjugate directions. For BiCGSTAB solver (see Alg. 7), the
conjugate directions and the residuals are updated in two steps. In this case two parameters
α and β are needed to scale the conjugate directions and residuals.

42 3. Linear solvers

Algorithm 7: Bi Conjugate Gradient STABilized: BiCGSTAB

set a guess
k = 0, x(k)

r(k) = b−Ax(k)

while (||r(k)||2 ≥ ε) do

ρ(k) =< r(0), r(k) >
evaluate new direction and scaled factor

if (k = 0)
p(k+1) = r(k)

else

β =
ρ(k)

ρ(k−1)

α

ω
p(k+1) = r(k) + β(p(k) − ωq(k))

end if

evaluate new direction and scaled factor
q(k+1) = Ap(k+1)

α =
ρ(k)

< r(0), q(k+1) >
s(k+1) = r(k) − αq(k)

check direction
if (||s(k+1)||2 < ε)

update solution
x(k+1) = x(k) + αp(k+1)

break while
end if

evaluate new direction and scaled factor
t(k+1) = As(k+1)

ω =
< t(k+1), s(k+1) >

< t(k+1), t(k+1) >

update solution and residual
x(k+1) = x(k) + αp(k+1) + ωs(k+1)

r(k+1) = s(k) − ωt(k+1)

k = k + 1

end while

BiCGSTAB solver can also be used in symmetric positive definite matrices instead of
CG solver. However, the convergence rate is equal to CG but at twice the cost per iteration.

3.3. Krylov solvers 43

3.3.3 GMRESR solver

Like BiCGSTAB solver, the Generalized Minimal RESidual solver (46) and the restarted
version GMRESR (47) deals with the non symmetric matrices. The orthogonalization
process is based on a modified version of the Gram-Schmidt orthogonalization (43). Each
direction is found in order to minimize the following problem.

p(k) = min||b−A(x(0)+p)||2 = min||r(0) −Ap||2, p ∈ Kk(A, r(0))

Let us consider Vk the orthogonal basis for the Krylov’s subspace Kk(A, r(0)) and Hk the
upper k×k Hessenberg matrix generated from the orthogonalization process. The direction
p(k) can be computed as

p(k) = Vky
(k), yk = H−1

k ||r
(0)||2e1

Where e1 is the unit vector e1 = (1, 0, ..., 0)T . Substituting the last expression in the
minimization problem the below is found

x(k) = x0 + Vky
(k) ← min|| ||r(0)||2e1 −Hky

(k) ||2

The solution of the minimization problem is done by a QR factorization with matrix trans-
formations: the Given’s rotations.

QkHk = Rk

Introducing the QR factorization in the 2-norm of the minimization problem

Qk(||r(0)||2e1 −Hky
(k)) = Qk||r(0)||2e1 −Rky(k)

The minimization problem is reduced to solve the following triangular matrix system

Rky
(k) = Qk||r(0)||2e1 = gk

Once evaluated y(k) the found direction p(k) can be updated easily.
Like CG and BiCGSTAB, GMRES converges in no more than N steps so it could

be considered a direct solver. However, the storage of search directions is limited by the
available RAM of the computer. Therefore, a restarted version must be used leading to an
iterative solver, i.e. the named GMRESR(m).

Choosing m of the searched directions, the solution must be updated and directions
cleared. This procedure is repeated until convergence is achieved. If m is too small, GM-
RESR(m) may be slow to converge or even may be stagnated. A large than necessary value
of m will have good convergence rate per iteration but at highly computation cost (time
and storage). Although the range of the restart parameter is fixed between 5 and 50, it is
said to be problem dependent.

Moreover, the inexact arithmetic produces loses of orthogonality in the search of new
directions so a orthogonal check and a reorthogonalization process (48) is added in order to
improve from the robustness point of view the algorithm (see details in Alg. 8).

44 3. Linear solvers

Algorithm 8: Generalized Minimal RESidual Restarted: GMRESR(m)

set a guess
k = 0, x(k)

r(k) = b−Ax(k)

β = ||r(k)||2, q1 =
r(k)

β
g = g(1 : k + 1) = β(1, 0, . . . , 0)T

while (||r(k)||2 ≥ ε) do

orthogonalization by modified Gramm Schmidt
k = k + 1
vk = v, v = Aqk

evaluate Hessenberg matrix
for (i = 1 to k)

Hi,k =< qi, vk >
vk = vk −Hi,kqi

end for
Hk+1,k = ||vk||2

check orthogonality, δ = 10−3

if (||v||2 + δ||vk||2 = ||v||2)
for (i = 1 to k)

µ =< qi, vk >
Hi,k = Hi,k − µ
vk = vk − µqi

end for
end if
qk+1 =

vk
Hk+1,k

evaluate QR factorization by Given’s rotations
if (k > 1)

H∗,k = Qk−1H∗,k
end if

ν =
√
H2
k,k +H2

k+1,k

ck =
Hk,k

ν
, sk =

Hk+1,k

ν
Hk,k = ckHk,k − skHk+1,k, Hk+1,k = 0
g = Gkg, ||r(k)||2 = |gk+1|

restart at m-th vector v
if (k = m)

solve Ry = w where R =upper triangular (H)k×k, w = g(1 : k)
y(k) = R−1w

update solution
x(k) = Qy(k)

set k = 0
end if

end while

3.4. Preconditioners 45

3.4 Preconditioners

In the section 3.1 related with well and ill-conditioned systems it was mentioned that the
convergence rate of the iterative methods depends on the condition number κ(A), or in
other words, on the spectral properties of the coefficient matrix A. Hence the linear system
is transformed into one that has the same solution but has better condition number.

Let us call M the non singular preconditioning matrix operating over the linear system
Ax = b. The matrix A is approximate to the matrix M in such a way that

M−1Ax = M−1b

is easiest to solve than the original system, thus κ(M−1A) < κ(A), in spite of the additional
computational cost and storage. In this case, the preconditioner is applied to the right of
both sides of the linear system. There are two equivalent expressions, the so called left
preconditioner and the symmetric preconditioner.

AM−1Mx = b

M−
1
2AM−

1
2M

1
2x = M−

1
2 b

Preconditioners can be applied explicitly, implicitly and both. However, an explicit left
preconditioner or a symmetric preconditioner can be implemented in a preprocess and post-
process steps. The implementation of each preconditioner into a general solver is outlined
in Algs. 9, 10.

Algorithm 9: Left preconditioner

precondition the problem
Ax = b, M
Ā = M−1A, b̄ = M−1b

solve the preconditioned problem
solve Āx = b̄

Algorithm 10: Symmetric preconditioner

precondition the problem
Ax = b, M

1
2 ,M−

1
2

Ā = M−
1
2AM

1
2 , x̄ = M−

1
2x, b̄ = M−

1
2 b

solve the preconditioned problem
solve Āx̄ = b̄
solve M−

1
2x = x̄

The left preconditioner can be considered as a scaling preprocess. Usually, the main
diagonal of matrix A, say DA serves as M preconditioner. Therefore, the storage is very

46 3. Linear solvers

reduced and the inverse M−1 can be computed directly by the inverse of all coefficients of
DA.

Ā = M−1A = D−1
A A

The right preconditioner is usually implemented implicitly in the algorithm. In the
scientific literature we found many kinds of preconditioners for Krylov’s solvers for sparse
matrix based on scaling (40), incomplete LU factorizations (49), polynomial preconditioners
(27) and sparse approximate inverses (29) (SPAI).

A diagonal preconditioner was explained also as an explicit left preconditioner. It is also
called point jacobi preconditioner, and it is usually considered thought as a scaling technique
instead of a preconditioner. Due to the low efficiency, more powerful preconditioners were
looked for such as those based on ILU factorizations or on SPAI.

The preconditioned Krylov’s solvers can be implemented by adding an intermediate step
into the search direction procedure. For instance, BiCGSTAB and GMRESR algorithms
are rewritten (see Algs. 11, 12 respectively) including this intermediate step where it is
needed.

3.4.1 Factorizations and SPAI

Solvers based on ILU factorizations can be used directly as implicit preconditioners in
Krylov’s solvers. Our work has been focused on the incomplete factorization due to easy
implementation in fixed sparse matrix patterns, low computational cost and low storage
requirements. For instance, if our system has a symmetric coefficient matrix, the CG solver
has to be used with a symmetric incomplete factorization preconditioner like the Incomplete
Cholesky factorization thus leading in the well known ICCG solver (50). For non symmetric
coefficient matrix, the ILU can be implemented into the BiCGSTAB or into the GMRESR.

On the other hand, the Sparse Approximate Inverse preconditioner is given as an alterna-
tive for the common preconditioners pointed above. It is known that a good preconditioner
M must have similar spectral properties to A. Moreover the inverse of the preconditioner
M−1 must also have similar properties to A−1. Therefore we try to directly find the inverse
of the preconditioner by an approximation to the inverse of the matrix A. The inverse is
approximated by rows or columns in the dependence whether it is used as a left or a right
preconditioner.

One possible implementations is given by Grote (28). The main idea of SPAI consists
of guessing the entries of the inverse matrix and finding by minimization in the Frobenius
norm each row or column. The experience in such kind of matrix give us a guideline to
define quickly this shape in band. However the results provided by different authors (51)
show a problem dependent convergence behaviour.

In the following sections two acceleration techniques for any solver are provided. The
first one is based on the algebraic multigrid AMG (16; 18) and the second one on the mul-
tiresolution analysis MRA (20) with wavelets (23). Both accelerators have similar properties
and convergence rates.

3.4. Preconditioners 47

Algorithm 11: Preconditioned BiCGSTAB

set a guess
k = 0, x(k)

r(k) = b−Ax(k)

while (||r(k)||2 ≥ ε) do

ρ(k) =< r(0), r(k) >
evaluate new direction and scaled factor

if (k = 0)
p(k+1) = r(k)

else

β =
ρ(k)

ρ(k−1)

α

ω
p(k+1) = r(k) + β(p(k) − ωq(k))

end if

evaluate new direction and scaled factor
solve the preconditioned problem

Mp̄ = p(k+1)

q(k+1) = Ap̄

α =
ρ(k)

< r(0), q(k+1) >
s(k+1) = r(k) − αq(k)

check direction
if(||s(k+1)||2 < ε)

update solution
x(k+1) = x(k) + αp(k+1)

break while
end if

evaluate new direction and scaled factor
solve the preconditioned problem

Ms̄ = s(k+1)

t(k+1) = As̄

ω =
< t(k+1), s(k+1) >

< t(k+1), t(k+1) >

update solution and residual
x(k+1) = x(k) + αp(k+1) + ωs(k+1)

r(k+1) = s(k) − ωt(k+1)

k = k + 1

end while

48 3. Linear solvers

Algorithm 12: Preconditioned GMRESR(m)

set a guess
k = 0, x(k)

solve the preconditioned problem
Mr(k) = b−Ax(k)

β = ||r(k)||2, q1 =
r(k)

β
g = g(1 : k + 1) = β(1, 0, . . . , 0)T

while (||r(k)||2 ≥ ε) do

orthogonalization by modified Gramm Schmidt
k = k + 1
solve the preconditioned problem

Mv = Aqk
vk = v

evaluate Hessenberg matrix
for (i = 1 to k)

Hi,k =< qi, vk >
vk = vk −Hi,kqi

end for
Hk+1,k = ||vk||2

check orthogonality, δ = 10−3

if (||v||2 + δ||vk||2 = ||v||2)
for (i = 1 to k)

µ =< qi, vk >
Hi,k = Hi,k − µ
vk = vk − µqi

end for
end if
qk+1 =

vk
Hk+1,k

evaluate QR factorization by Given’s rotations
if (k > 1)

H∗,k = Qk−1H∗,k
end if

ν =
√
H2
k,k +H2

k+1,k

ck =
Hk,k

ν
, sk =

Hk+1,k

ν
Hk,k = ckHk,k − skHk+1,k, Hk+1,k = 0
g = Gkg, ||r(k)||2 = |gk+1|

restart at m-th vector v
if (k = m)

solve Ry = w where R =upper triangular (H)k×k, w = g(1 : k)
y(k) = R−1w

update solution
x(k) = Qy(k)

set k = 0
end if

end while

3.5. Algebraic Multigrid algorithm 49

3.5 Algebraic Multigrid algorithm

There are numerous publications (15), tutorials,... about algebraic multigrid (AMG) and
here one refers mainly to Huttchinson (52) and Wesseling (16). AMG is based on a hierar-
chy of linear systems Alxl = bl constructed directly from the original linear system Ax = b
at fine grid l = 1 to a maximal level l = lmax by means of transfer operators. The first
system A1x1 = b1 is solved roughly and the error e1 = x − x1 is erased by adding succe-
sive corrections xl from the different levels l = 2, 3.., lmax. Solving each system, different
frequency range of corrections are dealt with.

For instance, a two level multigrid scheme begins solving the first system A1x1 = b1
within a certain number ν1 of iterations. The measure of the difference from the numerical
solution x1 to the exact solution x in this first level l = 1 is the error e1 = x− x1.

If the frequency components of this error are analyzed at using the discrete Fourier
transform (DFT), the solver smoothes well the high frequency components and keeps the
lowest frequency components nearly untouched. For this reason it is said that the solver
acts as smoother of low frequency components of the error. This iterative process is called
the pre-smoothing step. An additional system may be found in order to compute this error
numerically and then correct the numerical solution.

A1e1 = A1(x− x1) = b1 −A1x1 = r1

Unfortunately, the last linear system is computationally expensive as the first system. Fur-
thermore, this error solution contains low frequencies which cannot be solved efficiently by
the iterative solver at fine grid. Therefore a transformation of this system into another
one is carried out in order to convert the low frequency components into higher frequency
components. This transformation is done with the so called restriction R2

1 and prolongation
P 1

2 operators (16).
A2 = R2

1A1P
1
2

b2 = R2
1r1

A2x2 = b2

Having a look at such transformation a reduced system of equations is obtained, which
seems to be derived from a coarsest problem. Hence, the transformation receives the name
of coarse grid approximation (16) (CGA) of the original problem. Then, a post-smoothing
step is performed within ν2 iterations in order to obtain an approximation to the error e1

but in the coarse level l = 2, let us say x2.
This approximation to the error is also called the correction x2 and it must be transferred

and added to the solution x1 at fine grid. The prolongation operator transfers the vector
from the coarsest level l = 2 to the finest level l = 1.

x1 = x1 + P 1
2 x2

Finally, this algorithm is repeated until a desired error threshold ε is achieved or a maximum
number of iterations itmax is done. The algebraic multigrid (see Alg. 13), the prediction
(see Alg. 14) and the correction (see Alg. 15) algorithms are written as follows:

50 3. Linear solvers

Algorithm 13: Algebraic Multi Grid: AMG

Fix parameters of multigrid cycle
lmax, itmax, ν1, ν2, ε

for(l = 1 to lmax − 1)
evaluate matrix coeff. by Coarse Grid Approximation

Al+1 = Rl+1
l AlP

l
l+1

end do

set a guess in finest level

l = 1, k = 0, x(k)
l

while (||r||2 ≥ ε or k ≤ itmax)
smooth with ν1 iterations

solve Alxl = bl

if(l < lmax)
go to the coarser level l + 1

predict xl+1

add the correction to the level l
correct xl

end if

k = k + 1
end while

Algorithm 14: Prediction

evaluate right hand side of coarser level l + 1
r

(ν1)
l = bl −Alx

(ν1)
l

bl+1 = Rl+1
l r

(ν1)
l

set a guess at coarser level

l = l + 1, k = 0, x(k)
l = 0

smooth with ν1 iterations
solve Alxl = bl

if(l < lmax)
go to the coarser level l + 1

predict xl+1

add the correction to the level l
correct xl

end if

3.5. Algebraic Multigrid algorithm 51

Algorithm 15: Correction

add the correction to the level l
x

(ν1)
l = x

(ν1)
l + P ll+1x

(ν1)
l+1

smooth with ν2 iterations
solve Alxl = bl

3.5.1 Transfer operators

These operators transfer information from one level to the closest level. The restriction
operator does it from the fine level l to the coarse level l + 1 while the prediction transfer
operator does it in an opposite way, (i.e., from the coarse level to the fine level).

In order to give an easy explanation to such operators, a suitable set of two dimensional
piece wise constant (16) restriction and prolongation operators has been chosen and applied
to a two dimensional problem with 5-point formulation.

Let Gl and Gl+1 be a fine and coarse grid respectively defined over the domain Ω (see
Fig. 3.12).

l = {1, 2, . . . , lmax}

Gl = {(x1, x2) ∈ Ω, Ω : [0, L1]× [0, L2]}

xi(j) = {0, . . . , (j − 1)hi, . . . , Li}, j = 1, . . . ,
ni

2l−1
, hi =

Li
ni

2l−1 − 1
, i = {1, 2}

Let (x1, x2) be a point in Gl+1 associated with a (i, j)l+1 index point. Then, there is a
set of index points in Gl which are placed at same position that Gl+1

Gl+1 = {(2i, 2j)l, (2i+ 1, 2j)l, (2i, 2j + 1)l, (2i+ 1, 2j + 1)l

� � � � � � � � � � � �

Figure 3.12: Example of two related grids: G1 : 8 × 8 and G2 : 4 × 4. G2 has double
size-mesh of G1.

52 3. Linear solvers

For a better comprehension, the stencil notation gives a simply representation in two
dimensions of these operators.

xl : Gl → R, xl+1 : Gl+1 → R

Rl+1
l : Gl → Gl+1

Rl+1
l =

[
1 1
1 1

]
xl+1 = Rl+1

l xl

x(i, j)l+1 = x(2i, 2j)l + x(2i+ 1, 2j)l + x(2i, 2j + 1)l + x(2i+ 1, 2j + 1)l

In this example (see Fig. 3.13), the restriction operator R performs a summation over
blocks of four grid points weighted by a unit factor.

Figure 3.13: Restriction process over blocks of four grid points.

If natural ordering is considered by applying the restriction operator to the example
with fine level l = 1, and coarse level l = 2 leads to the matrix form

x1 = (x(1, 1)1, x(2, 1)1, . . . , x(7, 8)1, x(8, 8)1)T64×1

x2 = (x(1, 1)2, x(2, 1)2, . . . , x(3, 4)2, x(4, 4)2)T16×1

x2 = R2
1x1 = R2

1,yR
2
1,xx1

3.5. Algebraic Multigrid algorithm 53

R2
1,x =



 11
· · ·

11


4×8

. . .  11
· · ·

11


4×8


32×64

R2
1,y =



 1 1
· · ·
1 1


4×8

. . .  1 1
· · ·
1 1


4×8


16×32

In general, weight factors in restriction operator must satisfy certain rule (16):

∑
i,j

Ri,j =
(
hl+1

hl

)α

Where α varies from inside to boundary points and depends of boundary conditions imple-
mented. Here let us assume α = 2 in the whole domain. Then

∑
i,j Ri,j = 4 everywhere.

Prolongation operator P (see Fig. 3.14) is expressed in matrix form as the transpose of
the restriction operator R. P ll+1 = Rl+1,T

l .

P ll+1 : Gl+1 → Gl

P ll+1 =
[

1 1
1 1

]

xl = P ll+1xl+1

x(2i, 2j)l = x(2i+ 1, 2j)l = x(2i, 2j + 1)l = x(2i+ 1, 2j + 1)l = x(i, j)l+1

54 3. Linear solvers

Figure 3.14: Prolongation process to blocks of four grid points.

Furthermore the product of both operators leads into a scaled identity matrix.

P ll+1R
l+1
l = αI

In this example with piece wise constant operators, α = 4. However, it is possible to find
a pair of transfer operators were the product is equal to the identity. In such case, there is
an important feature between transfer operators

P ll+1 = Rl+1,T
l = Rl+1,−1

l

This feature points out the ability to use a single matrix and its transpose like a prolon-
gation or a restriction operator. This idea will be recovered and exploited in multiresolution
analysis by wavelets (21).

Finally, the coarse grid approximation is evaluated by

Al+1 = Rl+1
l,y R

l+1
l,x AlP

l
l+1,yP

l
l+1,x

Seeing the example, each 2 × 2 set of equations on fine grid Gl is transformed in to one
equation on coarse grid Gl+1 with the same stencil.

Al =

 Anl
Awl Apl Ael

Asl



Al+1 =

 Anl+1

Awl+1 Apl+1 Ael+1

Asl+1



3.6. Multiresolution Analysis with wavelets 55

Where

Asl+1(i, j) = Asl (2i, 2j) +Asl (2i+ 1, 2j)

Awl+1(i, j) = Awl (2i, 2j) +Awl (2i, 2j + 1)

Ael+1(i, j) = Ael (2i+ 1, 2j) +Ael (2i+ 1, 2j + 1)

Anl+1(i, j) = Anl (2i, 2j + 1) +Anl (2i+ 1, 2j + 1)

Apl+1(i, j) = Apl (2i, 2j) +Apl (2i+ 1, 2j) +
Apl (2i, 2j + 1) +Apl (2i+ 1, 2j + 1) +
Asl (2i, 2j + 1) +Asl (2i+ 1, 2j + 1) +
Awl (2i+ 1, 2j) +Awl (2i+ 1, 2j + 1) +
Ael (2i, 2j) +Ael (2i, 2j + 1) +
Anl (2i, 2j) +Anl (2i+ 1, 2j)

Similar expressions can be obtained for the 9-point formulation, the 7-point formulation
and the 19-point formulation. Instead of a transfer operator acting over a 2× 2 set of grid
points for a 5-point formulation, the extension can be derived at the 9-point formulation
with 3× 3 set of grid points. In three dimensional cases, for the 7-point formulation there
is 2× 2× 2 set of grid points and for the 19-point formulation 3× 3× 3 set of grid points.

However, for three dimensional cases the stencil notation does not helps to the repre-
sentation of these operators and only an algebraic expression can be given as

Al+1 = Rl+1
l,x R

l+1
l,y R

l+1
l,x AlP

l
l+1,zP

l
l+1,yP

l
l+1,x

A more detailed description of transfer operators is exposed in Zeeuw (17).

3.6 Multiresolution Analysis with wavelets

The basic idea behind wavelet multiresolution analysis (20) (MRA) is to represent a function
in terms of basis of functions called wavelets (23) having discrete scales and locations. In
other words, wavelet analysis can be viewed as a multilevel or multiresolution representation
of a function, where each level of resolution consists of basis of functions having the same
scale but located at different positions.

Therefore, a function (continuous or sampled), a vector or a matrix can be split by
wavelet analysis into low and high frequency parts. Both resulting parts have about half
the dimension of the original one. Again the part containing the low frequency components
can be decomposed in the same way. This procedure predestines the wavelets to serve as a
restriction and prolongation operators (22) in the usual multigrid method.

56 3. Linear solvers

3.6.1 Multilevel representation of a function

In order to develop a multilevel representation of a function f(x) in L2(R) a sequence of
embedded subspaces Vi is looked for

{0} · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 · · · ⊂ L2(R)

with the following properties:

1.
⋃
l∈Z Vl is dense in L2(R).

2.
⋂
l∈Z Vl = {0}.

3. The embedded subspaces are related by a scaling law

f(x) ∈ Vl ⇐⇒ f(2x) ∈ Vl−1

4. Each subspace is spanned by integer translates of a single function g(x) such that

f(x) ∈ V0 ⇐⇒ f(x+ 1) ∈ V0

Since the space V1 lies within the space V0, we can express any function in V1 in terms
of the basis of functions of V0. In particular,

φ(x) =
∞∑

i=−∞
aiφ(2x− i), i ∈ Z

where i is a finite number and ai is a square summation sequence. This equation is called
dilation equation or scaling relation.

If we define
φl,i = 2l/2φ(2l − i)

then φl,i, i ∈ Z forms a basis for the space Vl. The dilation parameter l shall be referred to
as the scale.

In general, a function may be approximated by the projection Plf onto the space Vl:

Plf =
∞∑

i=−∞
cl,iφl,i(x), i ∈ Z

and in fact Plf approaches f when l→∞.
Let us now define a new subspace Wl+1 such that it is the orthogonal complement of

Vl+1 in Vl,
Vl = Vl+1 ⊕Wl+1, Vl+1 ⊥Wl+1

where ⊕ represents a direct sum. Let us introduce a wavelet function ψ such that ψ(x− i)
form a basis for the subspace W0. Then

ψl,i = 2
l
2ψ(2lx− i)

3.6. Multiresolution Analysis with wavelets 57

It is a basis for Wl. If in addition, the {ψ(x − i), i ∈ Z} forms an orthonormal set of
functions, then it follows that {ψl,i, l, i ∈ Z} forms an orthonormal basis for L2(R).

Let us denote the projection of f on Wl as Qlf . Then we have

Plf = Pl+1f +Ql+1f

This means that Qlf represents the detail that needs to be added to get from one level of
approximation to the next finer level of approximation.

Furthermore, since the space W1 is contained in the space V0, the wavelet function can
be expressed in terms of the scaling function at the next higher scale,

ψ(x) =
∞∑

i=−∞
biψ(2x− i), i ∈ Z

There is a relation between the so called filter coefficients ai and bi

bi = (−1)iaN−1−i

The derivation (53) of filter coefficients requires the solution of an N coefficient system
where the approximation of order p = N

2 of any function f is involved.

3.6.2 Multiresolution decomposition and reconstruction

Multiresolution decomposition (54) takes the values cl,i of a function f vector xl or a matrix
Al at level l and decomposes them into

1. The values cl+1,i of the approximation, Pl+1f (low frequency components) at next
coarser level l + 1.

2. The values dl+1,i of the detail component, Ql+1f = Plf − Pl+1f (high frequency
components) at next coarser level l + 1.

Consider a function f . Let Plf denote the projection of f onto the subspace Vl and Qlf
denote the projection onto the subspace Wl. Thus,

Plf =
∞∑

i=−∞
cl,iφl,i(x), cl,i =< f, φl,i >

Qlf =
∞∑

i=−∞
dl,iψl,i(x), dl,i =< f, ψl,i >

Since Wl+1 is the orthogonal complement of Vl+1 in Vl

Pl+1f = Plf −Ql+1f

Substituting this in
cl+1,i =< Pl+1f, φl+1,i >

58 3. Linear solvers

leads to the following result:

cl+1,i =
1√
2

∞∑
j=−∞

cl,jaj−2i

Similarly, it can be shown that

dl+1,i =
1√
2

∞∑
j=−∞

dl,jaN−1−j+2i

Multiresolution reconstruction (54) uses coefficients cl+1,i and dl+1,i at level l + 1 to
reconstruct the coefficients cl,i at next finer level l.

Since Wl+1 is the orthogonal complement of Vl+1 in Vl,

Plf = Pl+1f +Ql+1f

Substituting this in
cl,i =< Plf, φl,i >

leads to

cl,i =
1√
2

∞∑
j=−∞

cl+1,jai−2j +
1√
2

∞∑
j=−∞

dl+1,j(−1)iaN−1−i+2j

3.6.3 Mallat’s transform and inverse transform

The Mallat’s transform (54) provides a simple means of transforming data from one level
of resolution, l, to the next coarser level of resolution l+ 1. The inverse Mallat’s transform
is a transformation from the coarser level l + 1 to the finer level l.

The Mallat’s transform algorithm implements the decomposition process as follows.
Consider a string of data cl,i of finite and even length n which represents the approximation
, Plf , to a function. For convenience, suppose that this data is periodic with period n >> N .
Then the matrix form of multiresolution decomposition equation is

cl+1,0

×
cl+1,1

×
cl+1,2

×
· · ·
· · ·

cl+1,n
2
−1

×


=

1√
2



a0 a1 a2 · · · aN−1 · · · 0
0 a0 a1 · · · aN−2 · · · 0
0 0 a0 · · · aN−3 · · · 0
0 0 0 · · · aN−4 · · · 0
· ·
0 0 0 · · · · · · · · · aN−1

aN−1 0 0 · · · · · · · · · aN−2

· ·
a2 a3 a4 · · · 0 · · · a1

a1 a2 a3 · · · 0 · · · a0





cl,0
cl,1
cl,2
cl,3
· · ·
· · ·
· · ·
· · ·
cl,n−2

cl,n−1


in which × represents information of no value. The effect of the periodicity is simply a wrap
around of the coefficients at the bottom left corner of the matrix.

3.6. Multiresolution Analysis with wavelets 59

A similar process gives the coefficients, dl+1,i of the detail which is lost in reducing the
resolution of the data. The matrix form is

dl+1,0

×
dl+1,1

×
dl+1,2

×
· · ·
· · ·

dl+1,n
2
−1

×


=

1√
2



aN−1 −aN−2 · · · −a0 · · · 0
0 aN−1 · · · a1 · · · 0
0 0 · · · −a2 · · · 0
0 0 · · · a3 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · · · · · · · −a0

−a0 0 · · · · · · · · · a1

· · · · · · · · · · · · · · · · · ·
aN−3 −aN−4 · · · 0 · · · −aN−2

−aN−2 aN−3 · · · 0 · · · aN−1





cl,0
cl,1
cl,2
cl,3
· · ·
· · ·
· · ·
· · ·
cl,n−2

cl,n−1


The inverse Mallat transform implements the reconstruction process. The matrix form

is 

cl,0
cl,1
cl,2
cl,3
· · ·
· · ·
· · ·
· · ·
cl,n−2

cl,n−1


=

1√
2



a0 0 0 · · · aN−1 · · · a1

a1 a0 0 · · · 0 · · · a2

a2 a1 a0 · · · 0 · · · a3

a3 a2 a1 · · · 0 · · · a4

· ·
aN−2 aN−3 aN−4 · · · · · · · · · aN−1

aN−1 aN−2 aN−3 · · · · · · · · · 0
· ·
0 0 0 · · · aN−3 · · · 0
0 0 0 · · · aN−2 · · · a0





cl+1,0

0
cl+1,1

0
cl+1,2

0
· · ·
· · ·

cl+1,n
2
−1

0



+
1√
2



aN−1 0 0 · · · −a0 · · · −aN−2

−aN−2 aN−1 0 · · · a1 · · · aN−3

aN−3 −aN−2 aN−1 · · · −a2 · · · −aN−4

−aN−4 aN−3 −aN−2 · · · 0 · · · aN−5

· ·
a1 −a2 a3 · · · · · · · · · −a0

−a0 a1 −a2 · · · · · · · · · 0
· ·
0 0 0 · · · −a2 · · · 0
0 0 0 · · · a1 · · · aN−1





dl+1,0

0
dl+1,1

0
dl+1,2

0
· · ·
· · ·

dl+1,n
2
−1

0


3.6.4 Wavelet transfer operators

Let us denote the Mallat transformations H,G of a vector x ∈ Rn,with n even.

H,G : Rn → R

n
2

xl = cl,i, i = 0, · · · , n− 1

Hxl = cl+1,i, i = 0, · · · , n− 1
2

60 3. Linear solvers

Gxl = dl+1,i, i = 0, · · · , n− 1
2

The Mallat transformations satisfy

HTH +GTG = I

HHT +GGT = I

GHT = HGT = 0

We use I to denote the identity matrix of appropriate size. Therefore, H may be interpreted
as an averaging or smoothing operator whose smoothing effect increases with N . Conversely,
G can be viewed as a difference approximation operator.

Following the philosophy of the multigrid methods, we first apply to the l-system Alxl =
bl the iterative solver as pre-smoother ν1 times with the initial guess x(0)

l . An approximate
solution x

(ν1)
l is obtained. In general, the smoother only reduces error components in the

direction of eigenvectors corresponding to large eigenvalues of Al (22). But in the presence
of strong anisotropies, say in x-direction, the error e(ν1)

l = x − x(ν1)
l may contain not only

a part which is a low frequency in both the x and y-directions, but also a part which is a
high frequency in x direction. Consequently, we approximate the error e(ν1)

l in both spaces
V xl+1 ⊗ V yl+1 and Wxl+1 ⊗ V yl+1 instead of only in V xl+1 ⊗ V yl+1 as in a standard
multigrid procedure. Where ⊗ denotes the tensor product of the spaces, operators and
vectors. Then, the resulting coarse grid correction for the two level multigrid is

xl = x
(ν1)
l + [(HT

x ⊗HT
y)A−1

l+1(Hx ⊗Hy) + (GTx ⊗HT
y)A−1

l+1(Gx ⊗Hy)](bl −Alx
(ν1)
l)

It may be viewed as an additive subspace correction with respect to the orthogonal subspaces
V xl+1 ⊗ V yl+1 and Wxl+1 ⊗ V yl+1.

One has to remark that the transition from Al to Al+1 increases the band width moder-
ately as far as N becomes not too large. This fact must be kept in mind in order to obtain
a constant band width if an incomplete LU factorization with fixed number of off diagonals
is used for all levels.

3.6.5 The Haar’s wavelet transfer operator

The Haar basis (53) is an orthogonal basis which has been known since 1910. It is also the
earliest known example of wavelet basis, and perhaps one of the simplest. Furthermore,
Haar wavelets supplies transfer operators without increasing the bandwidth of matrix. In
this case N = 2 and the Mallat’s transformation is quite close to piece wise constant
restriction and prolongation operators described in the algebraic multigrid section.

a0 = 1, a1 = 1

Hx =
1√
2
Rx

Hy =
1√
2
Ry

3.6. Multiresolution Analysis with wavelets 61

H2
1,x =

1√
2



 11
· · ·

11


4×8

. . .  11
· · ·

11


4×8


32×64

H2
1,y =

1√
2



 1 1
· · ·
1 1


4×8

. . .  1 1
· · ·
1 1


4×8


16×32

Finally, the transformation of Al into Al+1 for a 5-point formulation matrix leads

Al+1 = HyHxAlH
t
yH

t
x

Asl+1(i, j) =
1
4

(Asl (2i, 2j) +Asl (2i+ 1, 2j))

Awl+1(i, j) =
1
4

(Awl (2i, 2j) +Awl (2i, 2j + 1))

Ael+1(i, j) =
1
4

(Ael (2i+ 1, 2j) +Ael (2i+ 1, 2j + 1))

Anl+1(i, j) =
1
4

(Anl (2i, 2j + 1) +Anl (2i+ 1, 2j + 1))

Apl+1(i, j) = 1
4 (Apl (2i, 2j) +Apl (2i+ 1, 2j) +

Apl (2i, 2j + 1) +Apl (2i+ 1, 2j + 1) +
Asl (2i, 2j + 1) +Asl (2i+ 1, 2j + 1) +
Awl (2i+ 1, 2j) +Awl (2i+ 1, 2j + 1) +
Ael (2i, 2j) +Ael (2i, 2j + 1) +
Anl (2i, 2j) +Anl (2i+ 1, 2j))

For a 7-point formulation in a three dimensional case the Haar wavelet is already used

Al+1 = HzHyHxAlH
T
z H

T
y H

T
x

For a 9-point formulation in a two dimensional case or a 19-point formulation in a three
dimensional case, it is better to use a wavelet with N > 2. For example the Daubechies
wavelet (53) of fourth order N = 4. However, as it was pointed out above, the pattern
of the resulting matrix changes to a more dense pattern. The number of diagonal entries
increases slightly at each level.

62 3. Linear solvers

3.7 Comparison between AMG and MRA

We have seen that AMG and MRA share the same algorithm. Both of them have different
grids or levels of resolution and the corrections or the details to the finest grid solution
are added. Furthermore, the algebraic expression of the coarse grid approximation is quite
similar. However, the transfer operators are implemented in different ways. For AMG,
the restriction and prolongation operators act in blocks well defined (i.e. 2 × 2, 3 × 3,
2 × 2 × 2 and 3 × 3 × 3). Hence it is necessary to know the grid size and the distribution
of grid points. For MRA based on wavelets, the transfer operators are applied directly as
they were defined: products between matrices and vectors. This fact gives to the wavelet
multiresolution analysis a great generalization to any sparse matrix pattern. Moreover, just
changing the order of a wavelet, say Daubechies with orders 4, 6, 12 and 20, different coarse
grid approximations can be more easily obtained than AMG does by blocking in predefined
sets of grid points.

Finally this generalization can be extended even to non structured grids in order to have
a non structured multigrid (55).

3.8 Stopping criteria

We have already described some families of iterative solvers based on ILU’s and Krylov’s
subspaces. In the algorithm of each iterative solver, there is a common step, the stopping
criterion. It decides when the algorithm has achieved the right solution within a certain
error. Since the error in such linear systems is never known, the 2-norm of the residual
vector ||r||2 has to be used.

||r||2 =
√∑
i,j,k

r2
i,j,k

Thus, let k be the k-th iteration, if the ||r(k)||2 is small enough, say smaller than a given
threshold ε, the iterative solver can be stopped and get the solution of x(k).

Most solvers perform at least once the computation of the residual vector so it is easy
to implement the stopping criterion based on its 2-norm. Others like GMRESR performs
this computation directly without needing the residual vector. And others perform an
approximation to the residual like the SIS (13). In any case, the 2-norm of the residual
vector leads to a good criterion of convergence to the solution.

However, this criterion must be generalized for all kind of problems. Different coefficient
matrices and right hand sides can have solutions with large values and generate large residual
values. Conversely, solutions with small values generate small residual values. Therefore a
relative residual norm ρ(k) should be used instead of the residual norm ||r(k)||. For instance
the residual norm is divided by the factor ||b||2 which features the problem.

ρ(k) =
||r(k)||2
||b||2

, ||b||2 6= 0

Another stopping criterion is based on a fixed number of iterations ν. The solver stops
when the counter of iterations achieve this value. That happens, for example, in inner loops
of the multigrid in the pre-smoothing and the post-smoothing steps. In this case, the global

3.9. Sequential performance of solvers 63

stopping criterion is based on the residual norm of the finest level. And the fixed number of
iterations can be used as local criterion. For example, the preconditioning step is included
in the krylov’s solver and since it has to be with low computational cost, it performs only
a fixed small number ν of iterations.

Since the number of iterations does not change, we say that the criterion is static. In
other cases, the local number of iterations is dynamic and limited by a relative threshold εr
and a maximum number of iterations itmax. The relative threshold εr is usually fixed in the
range 70%− 90% of the residual norm ||r(0)||2 at the guessed solution or before performing
the local iterations.

εr = α||r(0)||2, α ∈ [0.7, 0.9]

Finally, there is another dynamic criterion based on the convergence rate of the local iter-
ative solver. The convergence rate βk for the k-th iteration is expressed as

β(k) =
r(k−1)

rk

Representing β(k) versus the iteration number stagnation can be detected in the iterative
procedure and exit the algorithm. This dynamic criterion is used in the decision of change
to a coarse grid or a coarse multiresolution within the multigrid algorithm.

These criteria are embedded in the multigrid algorithm 16 with a preconditioned solver 17.

3.9 Sequential performance of solvers

The scope of this section is to provide a comparison between the different solvers built in
the solver layer for a given model problem. The comparison is based on two issues: the time
spent in the resolution until a defined residual criterion and the amount of memory needed
to store the vectors and matrices involved in the computation of the solution. On the other
hand, the model problem is designed to show the stability and convergence behaviour of
each solver. The main idea underlying on this test is to find out a robust solver of a wide
range of CFD problems.

3.9.1 CFD model problem

We are interested on the behaviour of solvers for convection and diffusion equations under
the boundary conditions that produce ill conditioned linear systems. For this purpose, a
two-dimensional partial differential equation with different boundary conditions has been
designed:

∂uφ

∂x
+
∂vφ

∂y
− ∂2φ

∂x2
+
∂2φ

∂y2
= f

(x, y) ∈ Ω : [0, 2]× [0, 2]

Where the velocity field ~V = {u, v} in function of the Reynolds number satisfies the mass
conservation equation.

u = x2(1− 2y)Re, v = 2x(y2 − y)Re

64 3. Linear solvers

Algorithm 16: AMG + solver + preconditioner + criteria

if(l = 1)
fix parameters of multigrid cycle

lmax, itmax, ν1, ν2, ε, α, β

for(l = 1 to lmax − 1)
evaluate matrix coeff. by Coarse Grid Approximation

Al+1 = Rl+1
l AlP

l
l+1

εr = ε
end do

else
evaluate right hand side of coarse level l + 1

rl = bl −Alxl
bl+1 = Rl+1

l rl

l = l + 1
εr = αε

end if

set a guess in level l

k = 0, x(k)
l

global static iteration
while(ρ(k) ≥ ε and k ≤ itmax)

solve Alxl = bl with preconditioner

if (l < lmax)
go to the coarser level l + 1

call AMG at l+1

add the correction to the level l
xl = xl + P ll+1xl+1

solve Alxl = bl with preconditioner
end if
k = k + 1;

end while

3.9. Sequential performance of solvers 65

Then, the convective and diffusive terms are discretized to obtain the coefficient matrix A
with a 5-point formulation.

In order to satisfy all boundary conditions (i.e. Dirichlet, Neumann and periodic con-
ditions), a single solution φ is set to this problem.

φ = cos(πx) + cos(πy) + cos(3πx) + cos(3πy)

Finally, the right hand side b is evaluated from the product of the matrix A by the
vector φ instead of the integration of f at each volume V.

b = fV = Aφ

If the solution φ is known, it is possible to evaluate and analyze at each iteration the
numerical error e(k) at any iteration k. Therefore a comparison of the convergence rates
between solvers may be done. In this sense the Discrete Fourier Transform of the error help
us to explain the spectral properties of the different solvers.

3.9.2 Sequential performance

For the given problem, the performance of each solver in a single process np = 1 is done.
Since no communications are needed the convergence behaviour of each solver gives an idea
of how good may it be solving the problem in a np parallel environment.

Solvers are compared from two points of view: the convergence behaviour and the
memory resources required. A list of solvers is given in table 3.1.

Solver Implementation features
0 band LU Crout’s implementation + partial pivoting
1 Gauss-Seidel not overrelaxed
2 ILU MSIP implementation, α = 0.5
3 BiCGSTAB preconditioned with MSIP(α = 0.5)
4 GMRESR restart=10, preconditioned with MSIP(α = 0.5)
5 AMG 10 levels, smoother MSIP(α = 0.5)
6 MRA 10 levels, smoother MSIP(α = 0.5)

Table 3.1: List of the solvers used in this test.

Each solver performs iterations until the normalized residual norm reaches the accuracy
ε = 10−4.

||r(k)||2
||b||2

< ε

A battery of cases for different Reynolds numbers and different square grid sizes I×I are
tested following Alg. 18. The results of the test, executed in the PC cluster (see appendix),
are grouped by the Reynolds number and represented with the pair of axis: size problem(x)
- time of computation(y). For Dirichlet boundary conditions, the results for three Reynolds
(0, 102, 104) are given in Figs. 3.15, 3.16 and 3.17.

66 3. Linear solvers

Algorithm 17: Preconditioned solver

local dynamic iteration

while(||r
(k−1)||2
||r(k)||2

≥ β and k < ν1)

solve Alxl = bl
local static iteration
for (k = 1 to k = ν2)

solve Mlp̄l = pl
end for

end while

Algorithm 18: Sequential performance of solvers

for (solver = 0 to solver = 6)
for (Re = 0 to Re = 10000, Re = Re ∗ 100)

for (I = 32 to I = 512, I = I ∗ 2)
generate the problem Ax = b
fix accuracy of the solution to ε = 10−4

initialize unknown x = 0
t0=start wall clock(gettimeofday)

solve Ax = b such that ||r
2||

||b2|| < ε

t1=stop wall clock(gettimeofday)
tcomp=t1-t0

write throughput: tcomp and memory resources

end for
end for

end for

3.9. Sequential performance of solvers 67

 N

se
co

nd
s

102 103 104 105 10610-3

10-2

10-1

100

101

102

103

104

band LU
G-S
MSIP
BiCGSTAB
GMRESR (10)
ACM, MRA

Figure 3.15: Time of computation at Re=0 for different size problems.

68 3. Linear solvers

 N

se
co

nd
s

102 103 104 105 10610-3

10-2

10-1

100

101

102

103

104

band LU
G-S
MSIP
BiCGSTAB
GMRESR (10)
ACM, MRA

Figure 3.16: Time of computation at Re=100 for different size problems.

 N

se
co

nd
s

102 103 104 105 10610-3

10-2

10-1

100

101

102

103

104

band LU
G-S
MSIP
BiCGSTAB
GMRESR (10)
ACM, MRA

Figure 3.17: Time of computation at Re=10000 for different size problems.

3.9. Sequential performance of solvers 69

Although full results have not been shown due to the large amount of tested cases, the
above results show that ACM and MRA are the best solvers for all Reynolds numbers and
problem sizes. Furthermore, the difference of time of computation among solvers grows with
the size problem, being the worst case for the pure diffusion problem, (i.e. Re = 0) where
the matrix is symmetric. For large Reynolds numbers the matrix becomes non symmetric
and the solvers work better. Since the pure diffusion problem is the hardest case, we reduce
the number of cases here in after to such case and for any boundary condition.

For Neumann boundary conditions and for the pure diffusion case, (i.e. Re = 0), the
same sequential performance test is repeated. Since the Neumann boundary conditions lead
to a singular matrix, a point at the center of the domain is fixed in order to set a single
solution. The results represented in Fig. 3.18 are quite similar to the obtained for Dirichlet
boundary conditions.

 N

se
co

nd
s

102 103 104 105 10610-3

10-2

10-1

100

101

102

103

104

band LU
G-S
MSIP
BiCGSTAB
GMRESR (10)
ACM, MRA

Figure 3.18: Time of computation at Re=0 for different size problems.

Fig. 3.18 shows that although BiCGSTAB reported good results the best convergence
behaviour is with ACM and MRA solvers.

The memory requirements for each solver at each size are represented in Fig. 3.19.

70 3. Linear solvers

 N

K
B

102 103 104 105 106101

102

103

104

105

106

107

band LU
G-S
MSIP
BiCGSTAB
GMRESR (10)
ACM, MRA

Figure 3.19: Memory requirements in Kbytes for different size problems.

It is worth noting that GMRES with a restart of 10 requires more memory resources
than the rest of solvers. A higher value of the restart parameter is also tested but it increases
largely the memory without a reduction of the time of computation. Therefore, ACM and
MRA are also better than BiCGSTAB and GMRESR from the cost-memory point of view.

3.10. Nomenclature 71

3.10 Nomenclature

A discretization matrix
a coeff. in A

filter coeff.
b right hand side, filter coeff.
CV control volum
c filter coeff.
d auxiliar vector
e unit vector
G grid
g similar to d
H Hessenberg matrix, Haar wavelet
I unknowns per direction
ILU incomplete LU decomposition
i index coordinate
K Krylov space
L lower matrix from LU
LU lower upper decomposition
l coeff. of matrix L
M auxiliar matrix for LU
N number of unknowns, similar to M
P prediction, projection
p similar to d
Q matrix from QR, projection
QR QR factorization
q similar to d
R restriction, similar to Q
Re Reynolds number
r residual
s similar to d
t similar to d
U upper matrix from LU
u coeff. of matrix U ,
V Krylov base, subspace
v similar to d
W wavelet, subspace
w similar to d
x unknown
y similar to d
z similar to d
{u, v, w} fluid flow velocity components
{x, y, z} cartesian coordinates

Greek symbols
α relaxation parameter, scalar value
β scalar value
δ general perturbation
κ condition number
ε precission
µ similar to β
ν fixed number of iterations
Ω domain
ω similar to β
φ general variable, scaling function
ψ wavelet function
ρ similar to β

Other symbols
5− PF five point formulation
7− PF seven point formulation
9− PF nine point formulation
19− PF nineteen point formulation
V volume of the CV
<,> inner product
||.||2 Euclidean norm
⊕ tensor product

Subscripts
NGB general neighbour grid point
∗, for all elements of a row
, ∗ for all elements of a column
l level, go down to the level l

Superscripts
(k) k-th iteration
−1 inverse
T transpose
1
2 square root
− modified value
l go up to the level l

72 3. Linear solvers

Chapter 4

Parallel linear solvers

4.1 Introduction

The reliability of the engineering community on CFD is growing due to the ability to solve
complex fluid flow and heat transfer phenomena with accuracy and within a reasonable
elapsed time. During the past decade, the increase of the speed of processors and memories
has contributed to the reduction of this time, and hence, it has enabled to afford large
engineering problems. However, while the complexity of such problems grows, the improve-
ments in processor technology become physically limited. For that reason, only parallelism
is able to boost performance significantly and to deal with long time and large memory
consuming problems.

4.1.1 Hardware for parallel computing

Among the different architecture types derived along the past two decades, only a few of
them have become nowadays the commonly used machines for scientific computing.

Following the classification of computers introduced by Flynn (1972), the most recent ar-
chitectures fit into the SIMD (Single Instruction stream/Multiple Data stream) and MIMD
(Multiple Instruction stream/Multiple Data stream) categories. The term stream relates
to the sequence of data or instructions as seen by the machine during the execution of a
program. However, it was not until the early to mid 1980s that machines conforming to the
MIMD classification were available commercially. At this point, it is worth distinguishing
between two MIMD categories, shared memory and distributed memory MIMD computers.
The shared memory machines are considered to be tightly coupled, whilst the distributed
memory machines are regarded as loosely coupled and employ the relatively slow message
passing approach. See (56) for a comparative study of various computers.

More recently and following the development of distributed memory computers, there
is an increasing interest in the use of clusters of workstations (57) connected together by
high speed networks. The trend is mainly driven by the cost effectiveness of such systems
as compared to large multiprocessor systems with tightly coupled processors and memories.

Although the numerical algorithms presented throughout this work are developed for
any MIMD machine, the validation and measures of performance are carried out only for
distributed memory machines. A Cray T3E with 32 tightly coupled processors and a 32 PC

73

74 4. Parallel linear solvers

cluster with fast ethernet based network are used for the numerical experiments. Further
details of these computers may be found in the appendix.

4.1.2 Parallel programming models

The two basic models used in parallel computing are the Single Program Multiple Data
(SPMD) model and the Multiple Program Multiple Data (MPMD) model. For our pur-
pouses, i.e. CFD problems, the model most commonly used is SPMD. In this approach,
each processor p runs an identical program but only computes on its own data datap. To
do so, the whole data or computational domain is distributed over all the processors, say
np. For CFD problems, the distribution of data is done via domain decomposition, as it
will be described later on. Furthermore, since the communication of data among processors
may be necesary, each processor knows who is it and who are its neighbour processors nbgp.
Hence, the SPMD model is written in Alg. 19 as follows.

Algorithm 19: SPMD model

get a processor, an identification number from 1, .., np : p
set the neighbour processors: ngbp
get a portion of data from the np-partitioned domain: datap

compute on datap
communicate with ngbp

This model enables the programmer to write the same or different operations (both
computations and communications) for each processor. This depends on the parallelization
of the operations.

For example, the matrix-vector product, say y = Ax, where A, x and y represent the
whole computational domain is partitioned into np subdomains containing the data: Ap,
xp and yp for p = 1.., np. In order to perform the global product, each processor performs
its own subproduct and exchanges data with its neighbour processors ngbp where needed.
Since all processors does the same this operation is summarized with independence of the
processor in Alg. 20.

4.1. Introduction 75

Algorithm 20: SPMD example: y=Ax

get a processor, an identification number from 1, .., np : p
set the neighbour processors: ngbp
get a portion of data from the np-partitioned domain: datap

Ap=partition(A,np)
xp=partition(x, np)
yp=partition(y, np)

exchange data with processors ngbp
evaluate the matrix-vector product with the p-portion of the domain

yp = Apxp

Although Alg. 20 will be explained in detail later on, it is executed at each processor
doing more or less all processors the same, and hence, taking similar timings. However, this
fact depends on the load of processors in both the computation and communication sense.
It is worth noting that a significative delay among processors would produce bottlenecks.
Hence, in order to ensure the high efficiency of the parallel algorithm, a few synchronizations,
like barriers, must be introduced in strategic points and for all processors. By doing so, the
processors drop the continuously unbalanced load that may arise during the computation
or communication of several, say k, consecutive steps. The synchronization points are
introduced implicitly in the communication steps such as the represented in Alg. 21.

Algorithm 21: Synchronization of computation and communication

computation (1)
communication + synchronization (1)

computation (2)
communication + synchronization (2)

. . .

computation (k)
communication + synchronization (k)

More precisely, the communication is composed by an exchange of data followed by a
synchronization. At the exchange step, there is a pair of send and receive processes from
processor p with the neighbour processors ngbp. Once a processor has finished these tasks,
it waits until the rest have done their respective tasks. This procedure is detailed in Alg.
22.

76 4. Parallel linear solvers

Algorithm 22: Communication + synchronization

communications of processor p
send local data to neighbour processors ngbp
receive local data from neighbour processors ngbp

synchronization with all processors
wait for all processors

MPI implements this algorithm in different manners as it will be discussed in detail later
on.

Although most of the parallel algorithms implemented under the SPMD model do the
same operations for all processors, there are few operations that, for their implementation,
require a hierarchy of processors, and hence, a different set of operations. As an example,
we refer to the master-slave paradigm.

An example of the master-slave paradigm is the following. There is a master processor
(often it is identified with p = 0) which collects the data sent from the rest of processors,
named slaves (for p = 1, . . . , np). The master carries out a set of operations which are
considered global operations, and finally, if it is required, the final result is distributed back
to all the slaves. As represented in Alg. 23, there is an idle step for the group of slave
processors while the master is doing its work. Therefore, a synchronization point at the end
of the algorithm must be introduced in order to drop the arising bottlenecks.

Algorithm 23: Master-slave paradigm

if (p=master)
receive local data from p =slaves
compute master operations
send global data to p =slaves

end if

if (p=slave)
send local data to p =master
keep waiting idle
receive global data from p =master

end if

synchronize master and slaves

The inner product of two vectors can be coded as an example of the master-slave
paradigm. Although all processor compute a part of the inner product, namely local in-
ner product, one processor (the master) collects these partial results and compute a global
summation. After that, the master distributes back to the rest of processor (the slaves) the
resulting value. However, there are better implementations of this operation by minimizing

4.2. Performance measurements of an implementation 77

the number of messages and hence, improving the efficiency. Other operations that can be
implemented with the master-slave paradigm are the input(read)/output (write) of global
results from/to a file disk respectively.

4.1.3 Message-passing programming

On these distributed memory machines, the parallel programming model is based on ex-
plicit message-passing programming. The first MIMD machines implemented proprietary
message-passing libraries, basically specifying the sending and receiving messages between
processors and grouped in two categories of communication: the point-to-point communi-
cation and the group communication. Although the concepts of these proprietary libraries
were equal, the no portability between platforms was not considered as ideal. For that rea-
son, research efforts have been conducted to develop portable and standard message-passing
libraries. Currently, the PVM (Parallel Virtual Machine) and more recently, MPI (Message
Passing Interface) are adopted by all of the parallel computer vendors.

Since MPI is becoming de-facto standard for message passing, it has been set for the
implementation and description of the communication subroutines of this work.

4.2 Performance measurements of an implementation

Once an algorithm is implemented for the parallel execution the next step is the evaluation
of the parallel performance for np processors. To do so, we compare the wall clock time of
the computation of the parallel implementation, denoted by τ(np) with the wall clock time
of computation of the sequential version, namely τ(1). We call this rapport the efficiency
E(np) of the parallel implementation for np processors.

E(np) =
τ(1)

npτ(np)

If a parallel implementation with np processes was ideally 100% efficient, it means a np
reduction of the time of computation respect to the computation with one processor. This
reduction is called the speed-up S(np) and it is measured as

S(np) = npE(np) =
τ(1)
τ(np)

This is the ideal case but under certain circumstances, it is also possible to obtain a super
linear speed-up. This usually occurs when the sparsity of a matrix is exploited on a parallel
architecture or advantageous caching occurs.

It should be noted that there is currently some debate as to which sequential time, the
parallel computation should be compared to. In this work the sequential time has been
evaluated from the serialized version np = 1 of the parallel implementations.

The efficiency and speed-up are closely related and give an indication of how well bal-
anced the computational load is and how the problem scales. In practice, an ideal speed-up
cannot be attained and there are several reasons for this, which are:

• Inherent sequential parts

78 4. Parallel linear solvers

• Unbalanced load

• Overhead of the communication and synchronization

The first item refers to the those parts of the algorithm that may not be perfectly parallel.
For example, the inner product between two vectors and the factorization of a matrix. The
second one refers to a the different distribution of load among processors. For example, the
computational domain may not be equally distributed, or some operations require a master
which performs more tasks than the slaves. These factors may be more or less controlled
by our implementation. However, the major factor that contributes to the decrease of the
efficiency of the parallel implementation is the overhead due to the exchange of data among
processors. Each time a message is sent, an overhead in timing cost is incurred. Therefore, if
these factors are included in the efficiency formula, it is possible to point out the drawbacks
to a given implementation.

For instance, an improved measure of the efficiency is based on an accurate description
of the operations and the time spent in each operation. This is in essence the measure of
the sequential algorithm. For the parallel algorithm, we have to add the time spent in the
communication processes needed in some operations. Then the efficiency is computed as

E(np) =
no(1)τo

np(no(np)τo + nc(np)τc(np))

Where no stands for the number of operations, τo the time spent in one of these operations,
nc(p) the number of communications and τc(np) the time spent in one of these communi-
cations. Notice that the time spent in the communication process depends on the number
of processors p. More processors means more number of communications nc(np) but the
quantity of data transferred per communication and processor is reduced. Furthermore it
is convenient to express more accurately the time of communication τc split into two parts:
the proper time of communication when sending a packet of data with size d at β−1 rate of
communication and the time of setting up the communication τs.

τc(np) = τs + βd

Since the bandwidth β and the latency τs are hardware dependent parameters, the efficiency
would be very different when it is evaluated in either tightly coupled processors or loosely
coupled processors. Introducing these concepts in the previous expression the efficiency
leads to

E(np) =
no(1)τo

np(no(p)τo + nc(np)(τs + βd(np)))

Having a look at this expression and assuming that no(1) ≈ npno(np) in our algorithms,
we see that the efficiency is always less than 100% and it decreasses as np increases. The
number of communications nc(np) increases linearly with np, and although the time of
communication of data τc(np) decreases because the overall data are better distributed, the
latency remains constant and hence the overall time of communication per process increases.

If we partition our domain with a certain overlapping, the number of operations per-
formed in sequential and in parallel per processor np is different. If we express the number
of operations per process no(np) in terms of the number of control volumes handled by the

4.2. Performance measurements of an implementation 79

processor ncv(np) multiplied by the number of operations per control volume ocv(np), we
get

no(np) = ncv(np)ocv(np)

and substituting it into the efficiency, we obtain an expression with three component effects:
algorithm Ea(np), load El(np) and communication Ec(np).

E(np) = Ea(np)El(np)Ec(np)

Where

Ea(np) =
ocv(1)
ocv(np)

, El(np) =
ncv(1)

npncv(np)
, Ec(np) =

1

1 + nc(np)
no(np)

τs+βd(np)
τo

The first effect means the rapport of operations performed in the sequential algorithm
versus the parallel algorithm. For Krylov solvers, we consider an equal number of operations
so this effect is neglected. The second effect takes account of the overlapping ov. Each
processor contains its own data plus an overlapping. However for large scale problems
the overlapping is much smaller than the data contained in the processor so this effect is
reduced. The third effect is the rapport between the amount of work done of computation
and communication per processor. Therefore, the efficiency not only depends on the parallel
implementation but also on the parameters of communication, i.e. the latency τs and the
bandwidth β−1 which are hardware dependent.

80 4. Parallel linear solvers

Finally, there is another performance measure so called scalability, which is related with
the computing time of the problem with np and how it increase when increasing in the same
ratio (e.g. doubling) both the problem size and the number of processors. It is clear that, for
an ideal scalability of the implementation, the computing time will remain constant. Hence,
the problem may be scaled by two, four, and so on, by means of 2np, 4np, ... processors.

Thus, the scalability may be computed as

Sc(np) =
τnpsizenp
τnpsize1

4.3 Modellization of the communication time

As mentioned above, the loss of performance of the parallel algorithm depends directly on
the time spent in the communication of data between processors. A low communication
cost is always desirable for high performance computing. The time of communication while
sending a block of data is affected by two parameters the latency or setup time τs and
the bandwidth or byte transferred rate per second β−1 . The correlation between the time
of communication τc (given in seconds) and the transferred data d (given in bytes) was
expressed in the first approximation by a linear equation:

τc = τs + βd

Indeed, both parameters depend clearly on the hardware (netcards, switch and crossbars)
and the software (operating system, TCP/IP and MP library implementations, compilation
and executing flags). Details about the influence of such hardware and software issues over
the communication performance are out of the scope of this work.

An approximate evaluation of the latency and bandwidth parameters can be done by
sending blocks of data with different sizes, and measuring the time spent in the commu-
nication (56). This procedure or test is commonly named microbenchmark of the network
because it transfers small data packets that takes short time of communication. Since the
measure of time can be either intrusive or do nor have enough accuracy, the time of commu-
nication is enlarged by returning the same packets of data (i.e. a round-trip of the packets)
and halving the measured time. The test does a thousand of experiments by sampling the
size of the packed data randomly within a range of 0-1MB and measuring the time of the
round-trip. For instance, the type of data transferred is the char, which size in bytes is the
unit.

In order to ensure non overlapped send and receive process which can reduce the time
of the round-trip, the block communication mode is used. Alg. 24 summarizes this test.

4.3. Modellization of the communication time 81

Algorithm 24: Latency and bandwidth parameters

for (sample = 1 to sample ≤ 1000)
set size[sample]=random(0,1000000)
synchronize processors

MPI Barrier(MPI COMM WORLD)
time the round-trip

t0=MPI Wtime()
if (fmod(rank,2)=0)

MPI Send(char send,size[sample],rank+1,..,..)
MPI Recv(char recv,size[sample],rank+1,..,..)

else
MPI Recv(char recv,size[sample],rank-1,..,..)
MPI Send(char send,size[sample],rank-1,..,..)

end if
t1=MPI Wtime()
time[sample]=(t1-t0)/2

end for

The MPI Barrier step ensures the synchronization of the measured times and therefore
reduces the dispersion of results. Furthermore, this test is executed by a wide range of
even numbers of processors 2,4,6,8 obtaining results (see Fig. 4.2) without significative
differences.

This figure shows the linear behaviour of the communication time of the transferred
pack of bytes. The difference of slopes for each facility indicates different byte rates per
second. For the estimation of the slope, the range of large messages (1KB,..,1MB) has been
used. And the inverse of the slope is the estimated bandwidth.

For the estimation of the latency parameter, there are two possibilities. The first one is
taking the time value for a zero pack of bytes. But as mentioned before, time measure may
be inaccurate. In a second approach, a zoom (see Fig. 4.1) near the short transferred pack of
bytes (0,..,1KB) is used with a linear fit regression. The latency parameter is then estimated
for a zero pack of bytes. The different values of latency and bandwidth parameters for both
facilities are summarized in the table 4.1.

Facility Latency (1) µsec Latency (2) µsec Bandwidth MB/sec
PC cluster 226.98 218.95 10.46
Cray T3E 23.17 21.18 119.98

Table 4.1: Latencies measured (1) and estimated (2) and bandwidth estimated.

82 4. Parallel linear solvers

bytes transferred

se
co

nd
s

0 250 500 750 1000
0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

JFF cluster
cray T3E

Figure 4.1: Zoom of previous figure near the short transferred pack of bytes.

bytes transferred

se
co

nd
s

0 250000 500000 750000 1000000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09 JFF cluster
cray T3E

Figure 4.2: Timing results on two facilities the PC cluster and the Cray T3E.

4.4. Communication modes 83

These values clearly show the great difference of communication performance between
facilities. The low latency and large bandwidth of the Cray T3E explain in part the high
price against the PC cluster.

4.4 Communication modes

The exchange of data among processors can be performed over two different modes of
communication: blocking and non blocking. The blocking communication mode disables
the processors to perform other operations while the communication is being done. Since
the process of sending or receiving the data involves the access to the buffer of memory,
MPI library protects the data by blocking the processor and hence, avoiding the access to
the data for reading or writing. The blocking communication mode among processor p and
its neighbours ngbp for a given buffer of data, say datap, is described in Alg. 25.

Algorithm 25: Blocking communication

send datap to neighbours ngbp
block send (datap, ngbp)

receive datap from neighbours ngbp
block receive (datap, ngbp)

Since the communications in this mode follow the order of the algorithm, processors
either the sender or the receiver keep idle waiting for completion of the communication
processes, and hence, resulting in poor efficiency. However this mode has an implicit syn-
chronization procedure so it is not necessary to explicitly synchronize the processors after
the ends of the pairs of send and receive processes.

The order of the communication processes among processors has to be considered care-
fully. A very important fact in a bad scheduled communication is the dead lock. It appears
when two or more processors send and receive data in a wrong order. When this happens,
the processors do not understand themselves and keep waiting infinitely for the communica-
tion request. The dead lock may be avoided by organizing the communication in two simple
steps. Firstly, all procesors send their respective data to their respective receivers, i.e., the
neighbour processors. Any order for the senders could be defined. Secondly, the senders
are ready to receive the data from their respective receivers. The dead locks are avoided
by ensuring the existence of pairs of send and receive messages. If not, it will appear to
have an orphan message process (a sender without a receiver or a receiver without a sender)
and thus resulting into a dead lock. The use of tags is convenient for the right schedule of
sending and receiving data.

84 4. Parallel linear solvers

The other mode of communication to be used in data exchange is the non blocking
communication. Each processor copies the data to communicate xp to another buffer yp.
Then MPI library acts on that data without blocking the processors to perform other
operations on the original buffer. The non blocking communication for the same vector is
described in Alg. 26.

Algorithm 26: Non blocking communication (xp)

copy data from xp into another buffer yp

send data of yp from p to neighbours ngbp
non block send (yp, ngbp)

operate over xp

. . .

receive data in yp from neighbours ngbp to p
non block receive (yp, ngbp)

operate over xp

. . .

synchronize all processes
wait for all

copy data from yp into the buffer xp

However, this procedure could reduce the performance of parallel algorithms due to the
elapsed times of the pre step of copying data from the buffer xp to the buffer yp and, after
the communication step, the post step of copying back the data to the original buffer. In
addition, for large amounts of data, the performance of buffering decreases due to the cache
missings.

Furthermore, the data in xp to be exchanged, e.g. halos and inside blocks, are usually
located in non contiguous locations of the buffer. Therefore the data must be arranged
continuously in the buffer yp before any communication. After the communication is done,
the data contained in the buffer yp must be redistributed to xp in the non contiguous
locations.

In order to see the differences of performance of both modes of communication, a second
test is done. This test (see Alg. 27) shows the performance of the implementation of an
exchanged pack of bytes.

4.4. Communication modes 85

Algorithm 27: Blocking and non-blocking communication modes

for (mode=blocking to mode=non-blocking)
for (sample=1 to 1000)

size[mode][sample]=random(0,1000000)

MPI Barrier(MPI COMM WORLD)

t0=MPI Wtime()
if (mode=blocking)

if (fmod(rank,2)=0)
MPI Send(char send,size[mode][sample],rank+1,..,..)
MPI Recv(char recv,size[mode][sample],rank+1,..,..)

else
MPI Recv(char recv,size[mode][sample],rank-1,..,..)
MPI Send(char send,size[mode][sample],rank-1,..,..)

end if
end if

if (mode=non-blocking)
if (fmod(rank,2)=0)

MPI Isend(char send,size[mode][sample],rank+1,..,..)
MPI Irecv(char recv,size[mode][sample],rank+1,..,..)

else
MPI Isend(char send,size[mode][sample],rank-1,..,..)
MPI Irecv(char recv,size[mode][sample],rank-1,..,..)

end if

MPI Wait(send)
MPI Wait(recv)

end if
t1=MPI Wtime()
time[mode][sample]=t1-t0

end for
end for

Regarding the blocking communication mode, it performs the send and the receive
processes of a given pack of bytes consecutively. It is like the round-trip of the pack described
in the previous test, but the measure of time is not halved.

If the network enables communications among processors in both senses at same time
(i.e. duplex network), a pair of send and receive processes can be done in half of time.
Conversely, the non-blocking communication mode enables one to do this pair of processes
at same time and to wait until it completes the two processes independently.

Like in the previous test, a thousand of experiments with randomized packet sizes of
type char and covering the range of (0,..,1MB) is done.

86 4. Parallel linear solvers

Due to the duplex network feature, the order of the non-blocking communication pro-
cesses within the algorithm does not affect the communication procedure and therefore
no dead-locks could arise. The scope of the MPI Wait step is to wait for termination of
communication processes.

The test is carried out, analogously to the previous test, on both facilities PC cluster
and Cray T3E, whose networks are duplex. The results are shown in Fig. 4.3.

bytes exchanged

se
co

nd
s

0 250000 500000 750000 1E+06
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

blocking, JFF cluster
non-blocking, jFF cluster
blocking, cray T3E
non-blocking, cray T3E

Figure 4.3: Blocking and non-blocking communication modes for the PC cluster and the
Cray T3E.

Fig. 4.3 shows that the behaviour of both communication modes are similar in both
machines but at different scales of time. The non-blocking communication of any pack of
bytes is performed more efficiently and nearly at half time of the the time taken by the
blocking communication. The byte exchanged rates (i.e. the inverse of the slopes), for each
implementation and their rapports are given in table 4.2.

Therefore, it is convenient to use a non-blocking communication implementation for
those operations where an exchange of information is required such the matrix-vector prod-
uct. For that reason, MPI library provides a set of data types which enables to skip these
pre and post copying steps, and hence, to improve the communication performance.

4.5. Domain decomposition 87

modes PC cluster Cray T3E
blocking (1) MB/sec 5.255 60.321

non-blocking (2) MB/sec 7.889 110.387
rapport: (2)/(1) 0.66 0.54

Table 4.2: Megabyte exchanged rates (MB/sec) and rapports for both modes of communi-
cation on the PC cluster and the Cray T3E.

4.5 Domain decomposition

The most popular approach to solving CFD problems on MIMD architectures whether
it is memory shared or memory distributed is that of the domain decomposition (58).
The objective is to distribute the computational domain onto a number of processors such
that the work load on each processor is equivalent. The practical application involves the
discretization and the solution of the systems of equations derived in previous chapters on
an equally distributed load per processor. The details of the implementation of the domain
decomposition are given hereinafter from an algebraic point of view.

Most algebraic operations involved in the discretization and solution procedures are
based on the addition, the subtraction and the product of three types of objects: scalars,
vectors and matrices. The implementation of these operations on these objects can be
thought to be performed either in sequential or in parallel. In a one-processor machine the
operation and the storage of objects are done as it is expressed mathematically. However,
in a MIMD machine, the algebraic operations are performed on a part of the objects. The
vector object, for example, is equally distributed as much as possible and stored among all
processors. This equally distribution of objects is stressed to balance the load, and hence,
to obtain a good efficiency of the implementation.

From here on, we shall use subindex for distinct parts of the objects. If we have a np-
processor machine where np stands for the number of processors and object, named o, the
object is partitioned into np objects and stored at each processor. Labeling the resulting
objects from p = 1 to p = np it follows that

o =
⋃

p=1,...,np

oi

An algebraic operation, named for generality ⊕, between two objects x and y is performed
in each process p using only the respective parts xp and yp. The result can be stored in
another distributed object z.

z = x⊕ y ⇐⇒ zp = xp ⊕ yp, p = 1, . . . , np

Thinking this way, it seems easy to implement parallel np > 1 or sequential np = 1 algebraic
operations with distributed objects. Nevertheless, some operations like the inner product
between two vectors or the 2-norm of a vector, the maximum and minimum value of the
components of a vector, and the product of a matrix with a vector involve information
stored in the closest processors or even in all processors. Therefore, this information must

88 4. Parallel linear solvers

be copied from these processors, named neighbour processors ngpp to the affected processor
p. This yields to an extra information per processor of the object.

ov 6=
⋂

p=ngbp

op

Hereinafter, we shall call this additional information as the overlapping values ov. Most
operations requires an overlapping of a single point, one line of points or a surface of points
for a one, two or three dimensional object respectively. The implementation of these ideas
to vectors and matrices are developed in next subsections.

4.5.1 Block vector

Let us suppose x to be a vector object which maps a d-dimensional domain Ω. The partition
of this domain in np parts is carried out in an equally distributed manner among the np
processors. Assuming that the domain Ω is discretized onto a structured grid of points, the
partition is performed easily following the orthogonal directions. For instance, a vector that
maps a three dimensional domain (see Fig. 4.4) is partitioned in two orthogonal directions
p1 = 2 and p2 = 3 leading into 6 block vectors xp with p = 1, . . . , np = p1 × p2.

4

1

5

2

6

3

p2

p1

Figure 4.4: Two dimensional partition of a vector that maps a three dimensional domain.

Let I×J×K be the overall grid points over the domain Ω, the block vector xp maps the
p-part of the domain at least in (I/p1)× (J/p2)×K grid points. Notice that, a perfect load
balancing in all directions is considered. An unbalanced partition leads into a generalized
grid size id× jd× kd. Fig. 4.5 shows the mapping of xp with a generalized index i, j, k.

4.5. Domain decomposition 89

i1,j1,k2

i2,j1,k1

i1,j2,k1

i2,j2,k2

i2,j1,k2

i1,j2,k2

i1,j1,k1

kd

id

jd

i2,j2,k1

Figure 4.5: Generalized id× jd×kd partition xp of a three dimensional vector x. The index
i, j, k has a range from i1, j1, k1 to i2, j2, k2.

The overlapping ov is added in those directions where the information of the neighbour
processors is needed. The blue dashed lines in Fig. 4.6 show the overlapping areas among
processors.

4

1

5

2

6

3

p2

p1

Figure 4.6: Overlapping areas ov for a 2×3 partitioned vector that maps a three dimensional
domain.

90 4. Parallel linear solvers

The resulting dimension of a generalized xp vector with grid size id× jd× kd and with
the same overlapping ov in all directions is represented in Fig. 4.7.

i1,j1,k2

i2,j1,k1

i1,j2,k1

i2,j2,k2

i2,j1,k2

i1,j2,k2

i1,j1,k1

kd

id

jd

i2,j2,k1

ov

ovov

ov

ov
ov

Figure 4.7: Overlapping areas ov for a generalized id × jd × kd partition xp of a three
dimensional vector x.

Therefore, the three dimensional vector x that represents the domain Ω is expressed in
terms of a set of np partitioned vectors xp with a defined size id×jd×kd plus an overlapping
of ov. For practical implementation reasons, this overlapping is added to all block vectors
and in all directions whether there are neighbour processors or not.

In order to gain clarity of the algebraic representation of the full vector x, the overlapping
information is omitted yielding to a representation of the vector as follows

x = (x1, x2, . . . , xnp−1, xnp)T

By doing so, it is easy to represent the operations with vectors. For instance, the copy
of a vector x into another vector y is represented by omitting the overlapping as

y = x⇐⇒



x1

x2
...

xnp−1

xnp


=



y1

y2
...

ynp−1

ynp



4.5. Domain decomposition 91

However, the implementation of this operation considers the overlapping. Alg. 28 gives
such example considering an overlapping of ov.

Algorithm 28: Copy vect(xp, yp)

for (i = i1− ov to i = i2 + ov)
for (j = j1− ov to j = j2 + ov)

for (k = k1− ov to k = k2 + ov)
yp(i, j, k) = xp(i, j, k)

end for
end for

end for

4.5.2 Block matrix

Let A be a N -square matrix such that N = (I × J ×K) arises from the discretization of
the governing equations of a CFD problem onto a grid of I × J ×K points. We represent
the matrix A partitioned by rows as balanced as possible in np blocks of matrices Ap:

A =


A1

A2
...

Anp−1

Anp


Each of these matrices Ap contains the matrix coefficients of the linear system Ax = b
associated with the partition p.

A1

A2
...

Anp−1

Anp





x1

x2
...

xnp−1

xnp


=



b1
b2
...

bnp−1

bnp


In previous chapter, we described the different patterns of these sparse matrices for a natural
ordering (i.e. the 7-point and the 19-point formulation in a three dimensional CFD problem.
Since a narrowed band of coefficients are non zero, we shall store only the blocks of non
zero coefficients of each partition.

Here, we used the following notation for a one dimensional partition:
A1 A1,2 0 · · ·
A2,1 A2 A2,3 0 · · ·

0 · · · · · · · · · · · · 0
· · · 0 Anp−1,np−2 Anp−1 Anp−1,np

· · · 0 Anp,np−1 Anp




x1

x2
...

xnp−1

xnp


=



b1
b2
...

bnp−1

bnp



92 4. Parallel linear solvers

Having a look at the structure of this matrix each process p stores two different matrices Ap
and Ap,ngbp . Where ngbp stands for the neighbour processes of process p. The first matrix
indicates the operations performed with the information stored within the processor p and
the second one indicates the operations performed with the information stored at neighbour
processors.

For a generalized partition in two or three directions, the structure of blocks of matrix
A the linear system is written as follows:

A1

A2
...

Anp−1

Anp





x1

x2
...

xnp−1

xnp


+


Angb1
Angb2

...
Angbnp−1

Angbnp





xngb1
xngb2

...
xngbnp−1

xngbnp


=



b1
b2
...

bnp−1

bnp


Thus, a set of communications between the processes involved in such operations must share
the information of the ngbp process to the p process. In the chapter ahead, we shall explain
some issues of this communication between the different processes.

4.6 Exchange of data blocks

MPI data type has been used to send and receive at once the non contiguous data yp of
a vector xp. MPI data type provides a new type of variables in order to send and receive
blocks of information located in different points of the buffer at once. By doing so, we can
reduce, on one hand, the number of communications and latency, and on the other, the
number of cache missings in the buffering processes. A sender processor can explicitly pack
noncontiguous data into a contiguous buffer and then send it. A receiver processor can
explicitly unpack data received in a contiguous buffer and store in noncontiguous locations.

For simplicity, let us suppose that a xp vector has dimensions 4×4 and the noncontiguous
data yp has dimensions 2× 3 (see Fig. 4.8).

3

7

1513 14

109

5

11

1

2

3

4

43

2

6

1

21

0

4

8

12

Figure 4.8: The 4× 4 xp vector and the 2× 2 yp data filled in blue. The numbers written
within the xp vector represent the order of data in the buffer.

4.6. Exchange of data blocks 93

A schematic representation of the buffer (see Fig. 4.9) shows the noncontiguous data yp
embedded in the map xp.

bl=2

str=4

bl=2

str=4

1 2 3 4 6 7 8 9 10 11 12 13 1514 0 5

cnt=3

bl=2

Figure 4.9: Buffer representation of xp and the noncontiguous data yp. The noncontiguous
data follows a pattern of cnt = 3 noncontiguous blocks of length bl = 2 separated with an
stride of str = 4.

Notice that the noncontiguous data follows a pattern of 3 noncontiguous blocks of di-
mension 2 separated with an stride of 4. This information is enough to construct a new
data type with continuous data by packing the yp data.

This idea has been easily extended to more complex noncontiguous data such as a three
dimensional vectors, with two different number of blocks with different lengths and strides.
Fig. 4.10 shows a three dimensional xp vector with dimensions I × J ×K and a i × j × k
noncontiguous data yp.

i
j

i
j

J

k

I

I

K

J

k

str2=IJ, cnt2=k, bl2=1
str1=I, cnt1=j, bl1=i

Figure 4.10: Representation of xp vector and the noncontiguous data yp. The noncontiguous
data follows a pattern of two noncontiguous blocks cnt1, cnt2 with different lengths bl1, bl2
separated with strides str1 and str2 respectively.

In this case, we apply recursively two data types. The first one has j blocks of length i
with an stride of I. The second one put over the first one, has k blocks of length 1 with an
stride of IJ .

94 4. Parallel linear solvers

Finally, the data type implementation over a non blocking communication leads to Alg.
29, used in the product of a matrix by a vector.

Algorithm 29: Update (ov, xp)

set the data type yp for noncontiguous data of xp
data type (ov, xp, yp)

send yp data from p to neighbours ngbp
non blocking send (yp, ngbp)

compute over xp

. . .

receive yp data from neighbours ngbp to p
non blocking receive (yp, ngbp)

compute over xp

. . .

synchronization of all process
wait for all

Further details on data types can be found in MPI documentation available in internet
(7).

The following test measures and compares the communication performance of two pos-
sible implementations of the update(ov, xp) subroutine. Both implementations use the
non-blocking mode of communication which has been tested to be the better. Furthermore,
both implementations perform a copy of values to be exchanged to a buffer and then they
are exchanged. By doing so, it is possible to perform operations with the original values
and exchange a copy at same time. Therefore, this procedure increases the performance of
operations because it overlaps the computation and the communication. A draft (see Fig.
4.11) of the processes shows this procedure.

However the implementation of the buffering process affects this overlapping. The orig-
inal buffer contains the amounts of data in non-contiguous blocks and the copied buffer
must contains the data in contiguous blocks before they are sent to another process. This
process is called packing. Conversely, after the communication is done, the received pack
of data contained in a contiguous buffer has to be unpacked at non-contiguous locations in
the original buffer of the receiver process.

In order to reduce the time of the whole procedure of exchange of data, an efficient
implementation of the packing and unpacking procedures is desired. A first implementation
does an explicit copy of the non-contiguous blocks of data in a contiguous buffer. This
implementation is tedious to implement: dynamic allocations, initializations and copying
data from one buffer to the other. In addition, it may suffer possible overheads due to the
cache missings. This implementation is called simply non-blocking.

4.6. Exchange of data blocks 95

Figure 4.11: Pack, exchange and unpack procedure between two processes

A second and easier implementation use the MPI datatype to do implicitly the copy
from the original and non-contiguous buffer to a contiguous buffer, thus reporting coding
and time savings. This implicit copy means that only a structure of pointers to the different
locations of the non-contiguous blocks are stored in a MPI datatype. After that, the MPI
library performs the packing and unpacking processes implicitly and in an efficient way
when the non-blocking send and receive subroutines are called.

Differences of both implementations are tested as follow. A three dimensional halo with
random size in k direction is updated between two processes, left and right. It has been
chosen to vary the k direction instead of i or j since the distribution of non-contiguous
blocks is sparser and may produce more cache missings. See Fig. 4.12 for details of block
data sizes and graphical explanation of the communication process.

96 4. Parallel linear solvers

Figure 4.12: Update of ov halo between processes left and right.

The test is run at PC cluster for three different halos: ov=1, ov=2 and ov=4, which
are often used in the algebraic operations with communications. For each size of halo, two
measures of times are taken. The time of packing and unpacking, called pack, and the time
of communication, called comm. These results and the overall time (i.e. the addition of
these quantities) are presented for both implementations.

4.6. Exchange of data blocks 97

A comparison of all cases is given in Fig. 4.13:

bytes exchanged / ov

se
co

nd
s

200000 250000 300000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

pack+comm, non-blocking
pack+comm, MPI datatype

ov=2

ov=4

ov=1

Figure 4.13: Comparison of both implementations for all halo sizes.

For each size of halos, the times of packing and unpacking of both implementations are
very different. The details of each case are reported in Figs. 4.14, 4.15, 4.16, 4.17, 4.18 and
4.19.

The efficiency of the MPI datatype implementation at PC cluster is based on the cache
optimization for non-contiguous blocks when they are packed and unpacked. In addition,
the packing and unpacking processes of this implementation have to be done only once
because it only points to the non-contiguous data. Conversely, in the first implementation,
the packing and unpacking processes are done at each exchange thus it is an explicit copy.
So the performance of the overall communication is poor.

Although the results of Cray T3E has not been presented here, the difference of both
implementations are not meaningful. We guess that this fact is due to the special cache
built-in the cpu (see hardware issues in Appendix).

98 4. Parallel linear solvers

bytes exchanged

se
co

nd
s

200000 250000 300000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

comm, MPI datatype, ov=1
pack, MPI datatype, ov=1
pack+comm, MPI datatype, ov=1

Figure 4.14: Update of ov = 1 with MPI datatype.

bytes exchanged

se
co

nd
s

200000 250000 300000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

comm, non-blocking, ov=1
pack, non-blocking, ov=1
pack+comm, non-blocking, ov=1

Figure 4.15: Update of ov = 1 with explicit copy.

4.6. Exchange of data blocks 99

bytes exchanged

se
co

nd
s

400000 500000 600000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

comm, MPI datatype, ov=2
pack, MPI datatype, ov=2
pack+comm, MPI datatype, ov=2

Figure 4.16: Update of ov = 2 with MPI datatype.

bytes exchanged

se
co

nd
s

400000 500000 600000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

comm, non-blocking, ov=2
pack, non-blocking, ov=2
pack+comm, non-blocking, ov=2

Figure 4.17: Update of ov = 2 with explicit copy.

100 4. Parallel linear solvers

bytes exchanged

se
co

nd
s

800000 1E+06 1.2E+06
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

comm, MPI datatype, ov=4
pack, MPI datatype, ov=4
pack+comm, MPI datatype, ov=4

Figure 4.18: Update of ov = 4 with MPI datatype.

bytes exchanged

se
co

nd
s

800000 1E+06 1.2E+06
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

comm, non-blocking, ov=4
pack, non-blocking, ov=4
pack+comm, non-blocking, ov=4

Figure 4.19: Update of ov = 4 with explicit copy.

4.7. Algebraic operations with vectors and matrices 101

4.7 Algebraic operations with vectors and matrices

Three types of algebraic operations are detailed: those without communication between
processors, so the parallel efficiency is 100%, those operations that combine computation
and communication, and those operations where most part of the job is the communication.

4.7.1 Addition, difference and scaling of vectors

The addition or the difference of two vectors x and y is stored in a third vector z. The
algorithm (see Alg. 30) that represents any of these operations may be written as

Algorithm 30: operation vect(xp, yp, zp)

for (i = i1 to i = i2)
for (j = j1 to j = j2)

for (k = k1 to k = k2)
zp(i, j, k) = xp(i, j, k)± yp(i, j, k)

end for
end for

end for

Another 100% parallel algebraic operation is the vector scaling (see Alg. 31). A vector
x can be scaled by a real value α leading to a vector z.

Algorithm 31: Scal vect(xp, α, zp)

for (i = i1 to i = i2)
for (j = j1 to j = j2)

for (k = k1 to k = k2)
zp(i, j, k) = αxp(i, j, k)

end for
end for

end for

Notice that we have not considered the overlapping area in the computation of the vector
z. This fact reduces the number of floating point operations, and it produces a reduction
of time of the computation. Furthermore, it is possible to perform these operations reusing
any vector, e.g., x = x±x, x = x±y and x = αx, and hence, reducing storage requirements.

102 4. Parallel linear solvers

4.7.2 Saxpy operation

The name of the subroutine saxpy (59) comes from the scientific literature and it represents
a composition of two previous types of operations.

z = x+ αy

Although it can be implemented in two steps by means of the above algebraic operations,
it has been packed in one step. Alg. 32 also enables the reuse of any vector.

Algorithm 32: Saxpy(xp, α, yp, zp)

for (i = i1 to i = i2)
for (j = j1 to j = j2)

for (k = k1 to k = k2)
zp(i, j, k) = xp(i, j, k) + αyp(i, j, k)

end for
end for

end for

4.7.3 Inner product of vectors

The computation of the inner product of two vectors is one of the most important keys in
the parallel efficiency of most solvers, because it involves a global communication between
all processors. Let

ρ =< x, y >

be the inner product of two vectors, it is performed in two steps (see Alg. 33). It starts
with the inner product of each pair of sub vectors xp and yp where p = {1, 2, . . . , np}.
The resulting set of np inner products is stored in an auxiliar variable ρp. Then a global
sum of these values is performed and shared to all the processors by means of a global
communication, so there is a fraction of time spent on the communication, and hence a lose
of efficiency.

4.7. Algebraic operations with vectors and matrices 103

Algorithm 33: Inner product(xp, yp, ρ)

evaluate inner product of vectors xp , yp
ρp = 0

for (i = i1 to i = i2)
for (j = j1 to j = j2)

for (k = k1 to k = k2)
ρp = ρp + xp(i, j, k)yp(i, j, k)

end for
end for

end for

evaluate global summation of ρp
global sum (ρp, ρ)

Notice that Alg. 33 enables to compute the 2-norm of a vector x (see Alg. 34).

The inner product operation contains a global communication that broadcast each sub
inner product to the rest of processors. After that, a sum of all values is performed in each
processor. The implementation of this broadcast plus the summation relays on the MPI
library and it is performed in the MPI Allreduce subroutine.

Algorithm 34: Norm vect(xp, ρ)

compute the inner product of x with itself.
inner product(xp, xp, ρ0)

evaluate the 2-norm of x
ρ =
√
ρ0

Since the number of messages and data does not depend on the partitioning configura-
tion, differences of the speed-ups are due to the differences in computation. Therefore, only
the cache missing effects may arise for some configurations for a given case with large size.
For instance, the size of vectors are 20× 20× 20, 40× 40× 40, 60× 60× 60, 80× 80× 80
and 100× 100× 100.

The test is executed on both facilities, PC cluster and Cray T3E within the range of 1
to 12 processors and for different partitioning directions (see Fig. 4.20).

104 4. Parallel linear solvers

0 1

2x 1y 1z

6 7

4 5
2 3

0
2x 2y 2z

1

0 1
3x 2y 1z

2

3 54

0 1 2

54

0 1
3x 2y 2z

2

3 54

3

0 1 2

4x 1y 1z

3
3

0
2x 2y 1z

1

2

1

0 1x 2y 1z

1

0

1x 1y 2z

x

y

z

Figure 4.20: partitioning directions that yield different topologies of processors: (line,
plane and hexahedron) with 2, 4, 6, 8 and 12 processors.

The results are represented in terms of the speed-up in Figs. 4.21,4.22 and tables 4.3,4.4
for PC cluster and the Cray T3E respectively.

4.7. Algebraic operations with vectors and matrices 105

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
100x100x100
ideal speed-up

Figure 4.21: Speed-up for the inner product of 3D vectors in PC cluster.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80 100× 100× 100
1 1x1y1z 1.00 1.00 1.00 1.00 1.00
2 1x1y2z 0.27 1.30 1.71 1.22 1.85
4 1x1y4z 0.13 1.63 1.82 3.15 3.38
4 1x2y2z 0.13 1.42 2.49 3.09 3.35
6 1x1y6z 0.12 2.00 3.14 4.10 4.71
6 1x2y3z 0.12 2.02 3.11 3.77 4.73
8 1x1y8z 0.11 2.00 3.30 4.80 5.80
8 1x2y4z 0.11 1.95 3.38 4.72 3.99
8 2x2y2z 0.11 1.98 3.55 4.76 5.86
10 1x1y10z 0.09 1.74 3.41 5.02 6.20
10 1x2y5z 0.09 1.73 3.25 5.28 5.99
12 1x1y12z 0.09 1.73 3.75 5.73 5.03
12 1x2y6z 0.09 1.71 3.90 5.48 7.29
12 1x3y4z 0.09 1.68 3.79 5.68 7.30
12 2x2y3z 0.09 1.64 3.60 5.29 7.33

Table 4.3: Speed-up of the inner product of 3D vectors in the PC cluster.

106 4. Parallel linear solvers

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
ideal speed-up

Figure 4.22: Speed-up for the inner product of 3D vectors in the Cray T3E.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80
1 1x1y1z 1.00 1.00 1.00 1.00
2 1x1y2z 1.70 2.23 1.96 1.98
4 1x1y4z 2.72 4.14 3.77 3.84
4 1x2y2z 2.70 4.21 3.82 3.88
6 1x1y6z 2.74 5.85 5.32 5.66
6 1x2y3z 2.94 5.74 5.47 5.79
8 1x1y8z 3.96 7.18 7.28 7.26
8 1x2y4z 3.85 7.51 7.24 7.46
8 2x2y2z 3.92 7.47 7.29 7.49
10 1x1y10z 3.08 7.66 7.90 8.71
10 1x2y5z 3.23 8.18 8.54 9.10
12 1x2y12z 3.57 8.94 9.36 10.96
12 1x2y6z 3.53 9.38 10.01 10.80
12 1x3y4z 3.60 9.36 10.03 11.01
12 2x2y3z 3.28 9.25 10.09 10.96

Table 4.4: Speed-up of the inner product of 3D vectors in the Cray T3E.

4.7. Algebraic operations with vectors and matrices 107

As stated above, the effect of the partitioning configuration has a slight influence on the
inner product speed-up.

4.7.4 Matrix-vector product

This operation appears in almost all the solver algorithms. Due to the intensive computa-
tional work, it is even used as a work counter in solvers instead of the number of iterations
which involve additional operations but with cheaper work. Moreover in a np-parallel
machine, the matrix-vector product becomes less effective due to the extra work of commu-
nication among the the processor p and the neighbour processors ngbp. The information of
neighbour processors ngbp is previously ”passed” and stored in the mentioned overlapping
areas of processor p and then the operation is fully performed in processor p as

yp = Apxp +Angbpxngbp

Indeed the size of the overlapping area plays an important role in the time spent in the
communication processes. Furthermore, the type of formulation defines the sparsity of the
matrix or in other words, the dependencies between the nodes stored in the processor p
and those nodes stored in the neighbour processors ngbp. For a matrix-vector product in
a 5,7,9 or 19-point formulation, it is only necessary an overlapping of one (ov = 1) in the
orthogonal directions of the domain.

Higher order schemes lead to formulations where the overlapping must be higher (ov ≥
2), and thus, the amount of data passed among processes increases the time of communi-
cation. A generalization of the product of a 7-point formulation matrix with a 3D vector
named mat− vect is written for a given overlapping ov in Alg. 35.

Algorithm 35: Mat vect (Ap, xp, yp)

update overlapped information of xp
update(ov, xp)

evaluate the matrix-vector product
for (i = i1− ov + 1 to i = i2 + ov − 1)

for (j = j1− ov + 1 to j = j2 + ov − 1)
for (k = k1− ov + 1 to k = k2 + ov − 1)

yp(i, j, k) = App(i, j, k)xp(i, j, k)+
Awp (i, j, k)xp(i− 1, j, k) +Aep(i, j, k)xp(i+ 1, j, k)+
Asp(i, j, k)xp(i, j − 1, k) +Anp (i, j, k)xp(i, j + 1, k)+
Abp(i, j, k)xp(i, j, k − 1) +Atp(i, j, k)xp(i, j, k + 1)

end for
end for

end for

At this point, the above algebraic operations enable us to build more complicate op-
erations. For example, let us show how the residual needed in the stopping criteria for a
7-point formulation matrix is built in Alg. 36.

108 4. Parallel linear solvers

Algorithm 36: Residual(Ap, xp, bp, rp)

evaluate the operation rp = Apxp
mat vect (Ap, xp, rp)

evaluate the operation rp = bp − rp
diff vect (bp, rp, rp)

4.7.5 Minimum matrix-vector product size per processor

The following test models the communication and computation timings of the matrix-vector
product. It is designed to show the need of an overlapping of the communication and the
serial local computation within the operation. The matrix-vector operation for both two
dimensional I × I and three dimensional I × I × I CFD problems has been taken (i.e.
5-point and 7-point formulations respectively). The measures of both times, the serial
local computation of the matrix-vector product and the exchange of halos of size ov=1, are
compared for a wide range of size problems.

The measures of the serial local computation timings are carried out in one processor
for different size problems. For instance, the two dimensional problem version is described
in Alg. 37.

Algorithm 37: Serial local computation of y=Ax

for (sample = 1 to sample = 1000)
I[sample]=J[sample]=random(1,1000)
MPI Barrier()
t0=MPI Wtime()
for (j = 1 to j = J [sample])

for (i = 1 to i = I[sample])
y(i, j) = Ap(i, j)x(i, j)

+ Aw(i, j)x(i− 1, j)
+ Ae(i, j)x(i+ 1, j)
+ As(i, j)x(i, j − 1)
+ An(i, j)x(i, j + 1)

end for
end for
t1=MPI Wtime()
tcomp[sample]=t1-t0

end for

Meanwhile, the exchange of halos is simulated in only two processors for the same range
of size problems and on the assumption that the exchange of halos is in all directions. The
measure of the times while the exchange of the halos of x for the two dimensional problem
is described in Alg. 38.

4.7. Algebraic operations with vectors and matrices 109

Algorithm 38: Exchange of halos ov=1 of x

for (sample = 1 to sample = 1000)
I[sample]=random(1,1000)
MPI Barrier()

exchange sides
t0=MPI Wtime()
exchange(I[sample]*ov)
t1=MPI Wtime()
tcomm[sample]=4*(t1-t0)

end for

Here, in order to reduce as much as possible the time of communication, the exchange
subroutine transfers the packed data from one processor to another in the non-blocking
mode.

The test is run in both machines PC cluster and the Cray T3E. The time results versus
the size problem are presented in Figs. 4.23, 4.24, 4.25 and 4.26.

If the communication process and the serial local computation process are performed
consecutively (i.e. in non-overlapped fashion), the intersection points for each case define
the minimum estimate sizes of the local problem which a processor could do with a parallel
efficiency of 50%.

Let tcomp(1) and tcomp(p) + tcomm(p) be the sequential and parallel (for np processors)
timings of the overall operation, the efficiency is approximately expressed as

E(np) =
tcomp(1)

np(tcomp(np) + tcomm(np))
≈

nptcomp(np)

np(tcomp(np) + tcomm(np))

In the intersection point tcomm(np) = tcomp(np). Therefore

E(np) =
np tcomp(np)

np(tcomp(np) + tcomp(np))
=

1
2

These points are given in table 4.5:

Problem PC cluster Cray T3E
Two dimensional 40.000 = (200× 200) 2.500 = (50× 50)

Three dimensional 64.000 = (40× 40× 40) 3.375 = (15× 15× 15)

Table 4.5: Minimum estimate size per processor for a parallel efficiency of 50% for the
non-overlapped computation and communication.

Analogously to the previous section, the measure of the speed-up of the matrix-vector
product for a given size problem is obtained by timing the algebraic operation at different

110 4. Parallel linear solvers

N

se
co

nd
s

100 101 102 103 104 105 10610-7

10-6

10-5

10-4

10-3

10-2

10-1

100

tcomm
tcomp

Figure 4.23: Timings of computation and communication of a two-dimensional matrix-
vector product in PC cluster.

N

se
co

nd
s

100 101 102 103 104 105 10610-7

10-6

10-5

10-4

10-3

10-2

10-1

100

tcomm
tcomp

Figure 4.24: Timings of computation and communication of a two-dimensional matrix-
vector product in the Cray T3E.

4.7. Algebraic operations with vectors and matrices 111

N

se
co

nd
s

100 101 102 103 104 105 10610-7

10-6

10-5

10-4

10-3

10-2

10-1

100

tcomm
tcomp

Figure 4.25: Timings of computation and communication of a three-dimensional matrix-
vector product in PC cluster.

N

se
co

nd
s

100 101 102 103 104 105 10610-7

10-6

10-5

10-4

10-3

10-2

10-1

100

tcomm
tcomp

Figure 4.26: Timings of computation and communication of a three-dimensional matrix-
vector product in the Cray T3E.

112 4. Parallel linear solvers

number of processors. The test is executed within the range of 1 to 12 processors in both
facilities PC cluster and Cray T3E. Indeed, partitioning in two or three directions affects
the efficiency due to (1) the different ratios of computation versus the exchange of data and
(2) the cache effects for large amounts of data distributed in few processors.

These effects are analyzed for a set of cases (20×20×20), (40×40×40), (60×60×60),
(80× 80× 80) and (100× 100× 100) (the last one only for PC cluster).

As mentioned above, the size of all of these cases is over the minimum estimated for the
Cray T3E (15 × 15 × 15) so one may expect efficiencies higher than 50%. For PC cluster,
these efficiencies are expected under the (40× 40× 40) size.

The experiment is repeated several times for each number of processors and for each
partitioning configuration. The speed-up for each case is evaluated with the averaged tim-
ings. Full results (all partitioning configurations) are represented in Figs. 4.27, 4.28 and
tables 4.6, 4.7 for the PC cluster and the Cray T3E respectively.

The successive experiments have been computed with a generalized algorithm 39 where
the number of processors, partitioning configurations, and problem sizes are expressed in a
set of nested loops.

Algorithm 39: Performance of operations

for (np = 1 to np = 12)
for (partitions = px, py, pz = 1 to 12, such that pxpypz = np)

for (size = 20 to size = 100, size=size+20)
for (sample = 1 to sample = 20)

MPI Barrier()
t0=MPI Wtime()
evaluate algebraic operation or solve a problem
t1=MPI Wtime()
time=time + t1-t0

end for

tcomp[operation][size][partition][np] =
time

20
end for

end for
end for

Where the algebraic operations are the matrix vector product and inner product, and the
solvers are Jacobi, Gauss-Seidel, MSIP, Conjugate Gradient, BiCGSTAB and GMRESR.

4.7. Algebraic operations with vectors and matrices 113

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
100x100x100
ideal speed-up

Figure 4.27: Speed-up for the matrix-vector product in PC cluster.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80 100× 100× 100
1 1x1y1z 1.00 1.00 1.00 1.00 1.00
2 1x1y2z 1.04 1.04 1.90 0.84 1.82
4 1x1y4z 1.29 1.87 1.10 2.79 2.97
4 1x2y2z 0.93 1.13 3.08 3.38 3.50
6 1x1y6z 1.36 2.30 3.42 3.50 3.81
6 1x2y3z 0.71 2.09 3.37 3.22 4.57
8 1x1y8z 1.43 2.55 3.03 3.95 4.45
8 1x2y4z 0.71 2.33 3.91 3.81 2.91
8 2x2y2z 0.53 2.01 4.33 5.14 6.36
10 1x1y10z 1.52 2.63 4.26 3.74 4.10
10 1x2y5z 0.72 2.50 4.62 5.32 4.62
12 1x2y12z 1.51 2.67 4.59 4.80 3.31
12 1x2y6z 0.72 2.74 5.04 5.19 6.95
12 1x3y4z 0.52 2.31 4.53 6.37 7.48
12 2x2y3z 0.37 1.85 4.50 4.47 7.75

Table 4.6: Speed-up of matrix-vector product in PC cluster.

114 4. Parallel linear solvers

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
ideal speed-up

Figure 4.28: Speed-up for the matrix-vector product in the Cray T3E.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80
1 1x1y1z 1.00 1.00 1.00 1.00
2 1x1y2z 2.12 2.09 1.97 2.02
4 1x1y4z 3.29 3.84 3.74 3.92
4 1x2y2z 3.46 4.03 3.31 3.67
6 1x1y6z 5.20 5.96 5.30 5.85
6 1x2y3z 4.70 5.78 5.21 5.63
8 1x1y8z 7.29 6.42 7.21 7.38
8 1x2y4z 5.47 7.15 6.66 6.83
8 2x2y2z 3.96 6.44 6.79 7.44
10 1x1y10z 6.89 8.01 8.29 8.78
10 1x2y5z 6.04 8.96 8.12 9.31
12 1x2y12z 8.65 9.77 7.98 11.47
12 1x2y6z 7.62 10.59 8.93 11.18
12 1x3y4z 6.65 10.44 9.84 9.99
12 2x2y3z 4.56 9.18 9.06 10.91

Table 4.7: Speed-up of matrix by vector in the Cray T3E.

4.8. Parallel performance of solvers 115

Seeing these figures it is stated that for a given size of the problem and number of pro-
cessors, the partitioning configuration is definitively a critical factor on the speed-up. The
reason is that while the time of computation remains constant independently of the parti-
tioning configuration, the time of communication varies strongly. Then the ratio between
the times of computation and communication varies with the partitioning configuration.
This ratio in PC cluster is greater than the obtained in the Cray T3E because the time of
communication of any packet of data is longer in PC cluster while the time of computation
is quite similar in both facilities.

4.8 Parallel performance of solvers

The parallel implementation of these solvers has been tested and the performance, in terms
of the speed-up, is measured for a three dimensional Laplace problem (e.g. the 3D heat
conduction problem) with full Dirichlet boundary conditions. In this test, the stopping
criterion of ε = 10−6 has been chosen and analogously to the parallel performance of the
algebraic operations, the different partitioning configurations have been tested in different
sizes of problems: 20× 20× 20, 40× 40× 40, 60× 60× 60, 80× 80× 80, 100× 100× 100.
For each solver, size of problem number of processors and partitioning configurations, the
test is repeated several times and the timings are averaged.

The test is executed at both computers PC cluster and the Cray T3E. The results are
summarized by means of the speed-ups. Figures and tables for each solver are reported
below.

• For Jacobi solver see Figs. 4.29, 4.30 and tables 4.8,4.9.

• For Gauss-Seidel solver see Figs. 4.31, 4.32 and tables 4.10,4.11.

• For MSIP solver with α = 0.5 see Figs. 4.33, 4.34 and tables 4.12,4.13.

• For preconditioned BiCGSTAB solver see Figs. 4.35, 4.36 and tables 4.14,4.15.

• For preconditioned GMRESR(10) solver see Figs. 4.37,4.38 and tables 4.16,4.17.

116 4. Parallel linear solvers

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
100x100x100
ideal speed-up

Figure 4.29: Speed-up for the Jacobi in PC cluster.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80 100× 100× 100
1 1x1y1z 1.00 1.00 1.00 1.00 1.00
2 1x1y2z 1.32 1.09 2.04 0.94 1.93
4 1x1y4z 1.74 2.52 1.39 3.31 3.47
4 1x2y2z 1.41 1.52 3.71 3.92 3.78
6 1x1y6z 1.77 3.33 4.30 4.28 4.37
6 1x2y3z 1.28 3.28 4.38 3.47 5.21
8 1x1y8z 1.85 3.94 3.63 4.68 5.28
8 1x2y4z 1.26 3.73 5.47 4.46 3.40
8 2x2y2z 1.05 3.34 5.77 6.50 7.39
10 1x1y10z 1.75 4.12 5.68 4.41 4.72
10 1x2y5z 1.24 4.02 6.94 6.79 5.49
12 1x2y12z 1.74 4.03 6.12 6.04 3.72
12 1x2y6z 1.23 4.49 8.01 6.11 8.46
12 1x3y4z 0.99 3.91 6.94 8.72 9.05
12 2x2y3z 0.77 3.42 6.89 5.90 10.04

Table 4.8: Speed-up of Jacobi solver in PC cluster.

4.8. Parallel performance of solvers 117

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
ideal speed-up

Figure 4.30: Speed-up for the Jacobi in the Cray T3E.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80
1 1x1y1z 1.00 1.00 1.00 1.00
2 1x1y2z 1.86 1.95 1.96 1.95
4 1x1y4z 3.69 3.75 3.88 3.85
4 1x2y2z 3.78 4.00 3.97 3.80
6 1x1y6z 4.62 5.17 5.69 4.67
6 1x2y3z 4.83 5.43 5.82 5.61
8 1x1y8z 6.12 7.37 7.06 7.33
8 1x2y4z 5.62 7.01 6.87 7.51
8 2x2y2z 6.53 7.25 7.76 7.94
10 1x1y10z 8.05 8.47 9.13 9.35
10 1x2y5z 6.93 8.47 9.44 9.12
12 1x2y12z 8.18 8.51 10.59 10.59
12 1x2y6z 7.13 9.41 10.48 10.43
12 1x3y4z 6.62 10.14 11.35 10.71
12 2x2y3z 5.48 9.52 10.40 10.74

Table 4.9: Speed-up of Jacobi solver at Cray T3E.

118 4. Parallel linear solvers

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
100x100x100
ideal speed-up

Figure 4.31: Speed-up for the Gauss Seidel in PC cluster.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80 100× 100× 100
1 1x1y1z 1.00 1.00 1.00 1.00 1.00
2 1x1y2z 1.21 1.07 2.03 0.92 1.91
4 1x1y4z 1.49 2.32 1.25 3.14 3.35
4 1x2y2z 1.19 1.38 3.54 3.88 3.77
6 1x1y6z 1.42 2.91 4.00 4.12 4.33
6 1x2y3z 1.06 2.87 4.10 3.48 5.13
8 1x1y8z 1.47 3.33 3.50 4.67 5.03
8 1x2y4z 1.02 3.22 5.18 4.34 3.32
8 2x2y2z 0.84 2.86 5.29 6.27 7.24
10 1x1y10z 1.33 3.40 4.98 4.17 4.60
10 1x2y5z 0.98 3.40 6.15 6.87 5.51
12 1x2y12z 1.33 3.15 5.16 5.53 3.52
12 1x2y6z 0.95 3.73 7.06 5.91 8.13
12 1x3y4z 0.78 3.28 6.22 8.28 8.86
12 2x2y3z 0.62 2.85 6.13 5.77 9.72

Table 4.10: Speed-up of Gauss-Seidel solver in PC cluster.

4.8. Parallel performance of solvers 119

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
ideal speed-up

Figure 4.32: Speed-up for the Gauss Seidel in the Cray T3E.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80
1 1x1y1z 1.00 1.00 1.00 1.00
2 1x1y2z 1.84 1.86 1.93 1.98
4 1x1y4z 3.43 3.67 3.80 3.94
4 1x2y2z 3.50 3.97 3.73 3.93
6 1x1y6z 4.20 4.93 5.50 4.97
6 1x2y3z 4.42 5.23 5.55 5.76
8 1x1y8z 5.56 6.87 6.75 7.55
8 1x2y4z 5.96 7.01 7.42 7.61
8 2x2y2z 4.97 6.75 6.47 7.73
10 1x1y10z 6.97 7.86 8.67 9.40
10 1x2y5z 6.30 7.97 8.89 9.31
12 1x2y12z 7.00 7.77 9.91 10.32
12 1x2y6z 6.32 9.12 9.84 10.57
12 1x3y4z 5.70 9.68 10.62 10.98
12 2x2y3z 4.86 8.80 9.80 11.03

Table 4.11: Speed-up of Gauss-Seidel solver at Cray T3E.

120 4. Parallel linear solvers

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
100x100x100
ideal speed-up

Figure 4.33: Speed-up for the MSIP in PC cluster.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80 100× 100× 100
1 1x1y1z 1.00 1.00 1.00 1.00 1.00
2 1x1y2z 1.10 1.01 1.96 0.85 1.89
4 1x1y4z 1.19 2.05 1.22 2.93 3.22
4 1x2y2z 0.85 1.15 3.18 3.46 3.59
6 1x1y6z 1.02 2.56 3.78 3.84 4.07
6 1x2y3z 0.77 2.42 3.80 3.14 4.89
8 1x1y8z 1.03 2.79 3.04 3.99 4.78
8 1x2y4z 0.77 2.77 4.49 3.91 2.92
8 2x2y2z 0.60 2.41 4.69 5.43 6.47
10 1x1y10z 0.95 2.78 4.59 3.52 3.92
10 1x2y5z 0.73 2.85 5.69 5.85 5.07
12 1x2y12z 0.91 2.57 4.56 4.97 3.16
12 1x2y6z 0.69 3.15 6.13 5.14 7.60
12 1x3y4z 0.61 2.81 5.52 7.10 8.09
12 2x2y3z 0.45 2.42 5.56 4.78 8.62

Table 4.12: Speed-up of MSIP solver with α = 0.5 in PC cluster.

4.8. Parallel performance of solvers 121

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
ideal speed-up

Figure 4.34: Speed-up for the MSIP in the Cray T3E.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80
1 1x1y1z 1.00 1.00 1.00 1.00
2 1x1y2z 1.53 1.74 1.97 1.98
4 1x1y4z 2.44 3.10 3.63 3.84
4 1x2y2z 2.22 3.09 3.61 3.73
6 1x1y6z 2.53 4.04 5.02 4.55
6 1x2y3z 2.64 4.11 5.14 5.24
8 1x1y8z 2.90 5.19 5.86 6.72
8 1x2y4z 3.08 5.31 6.58 6.88
8 2x2y2z 2.63 5.05 5.97 7.01
10 1x1y10z 3.44 5.75 7.33 8.03
10 1x2y5z 3.31 5.40 7.84 8.32
12 1x2y12z 3.36 5.33 8.01 8.84
12 1x2y6z 3.18 6.88 8.89 9.19
12 1x3y4z 3.11 7.13 9.30 10.05
12 2x2y3z 2.69 6.70 8.87 9.79

Table 4.13: Speed-up of MSIP solver with α = 0.5 in the Cray T3E.

122 4. Parallel linear solvers

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
100x100x100
ideal speed-up

Figure 4.35: Speed-up for the BiCGSTAB preconditioned with MSIP in PC cluster.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80 100× 100× 100
1 1x1y1z 1.00 1.00 1.00 1.00 1.00
2 1x1y2z 1.40 1.23 1.96 1.02 1.97
4 1x1y4z 1.30 2.58 1.78 3.50 2.91
4 1x2y2z 1.02 1.72 3.83 4.17 3.83
6 1x1y6z 1.48 3.59 4.48 4.79 4.52
6 1x2y3z 0.93 3.30 4.42 4.38 4.88
8 1x1y8z 1.41 4.22 4.02 5.04 5.48
8 1x2y4z 0.97 3.80 5.85 5.23 3.04
8 2x2y2z 0.82 3.50 5.78 7.15 6.66
10 1x1y10z 1.30 3.78 5.40 5.86 4.48
10 1x2y5z 1.01 4.08 6.97 7.56 5.24
12 1x2y12z 1.20 3.91 5.16 7.07 4.10
12 1x2y6z 0.84 4.71 7.40 8.33 7.07
12 1x3y4z 0.85 4.47 7.24 9.07 7.56
12 2x2y3z 0.63 3.52 6.79 7.57 8.82

Table 4.14: Speed-up of BiCGSTAB solver preconditioned with MSIP in PC cluster.

4.8. Parallel performance of solvers 123

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
ideal speed-up

Figure 4.36: Speed-up for the BiCGSTAB preconditioned with MSIP in the Cray T3E.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80
1 1x1y1z 1.00 1.00 1.00 1.00
2 1x1y2z 1.97 1.71 1.60 1.69
4 1x1y4z 3.23 3.50 3.95 3.61
4 1x2y2z 2.99 3.91 3.43 3.51
6 1x1y6z 4.13 5.15 4.70 4.36
6 1x2y3z 3.65 5.07 5.00 5.40
8 1x1y8z 4.87 7.05 5.77 6.72
8 1x2y4z 4.71 6.83 7.25 7.65
8 2x2y2z 4.19 6.59 6.11 7.26
10 1x1y10z 6.14 7.41 7.90 9.17
10 1x2y5z 5.70 7.86 8.28 8.47
12 1x2y12z 5.58 7.46 9.50 9.12
12 1x2y6z 4.85 9.66 9.33 11.12
12 1x3y4z 5.62 10.45 10.50 10.13
12 2x2y3z 4.24 8.67 9.04 10.64

Table 4.15: Speed-up of BiCGSTAB solver preconditioned with MSIP in the Cray T3E.

124 4. Parallel linear solvers

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
100x100x100
ideal speed-up

Figure 4.37: Speed-up for the GMRESR preconditioned with MSIP in PC cluster.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80 100× 100× 100
1 1x1y1z 1.00 1.00 1.00 1.00 1.00
2 1x1y2z 1.15 1.27 1.94 1.05 1.73
4 1x1y4z 1.07 2.30 1.59 3.08 3.22
4 1x2y2z 0.94 1.56 3.06 3.35 3.43
6 1x1y6z 1.09 3.07 4.27 3.99 4.04
6 1x2y3z 0.73 2.67 3.95 3.38 4.54
8 1x1y8z 0.88 3.18 3.81 4.78 4.82
8 1x2y4z 0.70 3.04 4.58 4.74 3.49
8 2x2y2z 0.62 2.81 4.63 7.14 5.55
10 1x1y10z 0.80 3.17 4.84 4.26 5.07
10 1x2y5z 0.67 3.16 5.64 6.72 5.01
12 1x2y12z 0.74 3.05 5.13 5.24 3.58
12 1x2y6z 0.66 3.37 6.72 6.26 7.55
12 1x3y4z 0.58 3.10 5.87 9.70 7.76
12 2x2y3z 0.49 2.77 5.34 5.04 3.02

Table 4.16: Speed-up of GMRESR solver preconditioned with MSIP in PC cluster.

4.8. Parallel performance of solvers 125

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12
20x20x20
40x40x40
60x60x60
80x80x80
ideal speed-up

Figure 4.38: Speed-up for the GMRESR preconditioned with MSIP in the Cray T3E.

np partition 20× 20× 20 40× 40× 40 60× 60× 60 80× 80× 80
1 1x1y1z 1.00 1.00 1.00 1.00
2 1x1y2z 1.99 2.06 1.98 1.56
4 1x1y4z 3.63 3.59 3.90 3.03
4 1x2y2z 3.67 3.78 3.52 3.87
6 1x1y6z 4.13 4.91 5.71 3.57
6 1x2y3z 3.59 4.60 5.52 3.98
8 1x1y8z 4.34 6.05 6.66 5.65
8 1x2y4z 4.67 6.11 6.93 6.44
8 2x2y2z 4.14 5.86 6.20 7.32
10 1x1y10z 4.83 7.00 8.30 7.41
10 1x2y5z 5.19 6.96 8.20 6.28
12 1x2y12z 5.17 7.09 9.00 7.20
12 1x2y6z 4.91 8.06 10.25 7.99
12 1x3y4z 4.74 8.22 9.94 10.60
12 2x2y3z 4.06 7.74 8.46 7.04

Table 4.17: Speed-up of GMRESR solver preconditioned with MSIP in the Cray T3E.

126 4. Parallel linear solvers

It is shown in these figures that both facilities PC cluster and the Cray T3E have
reported similar behaviours in spite of the differences on their respective communication
networks, being the speed ups in the PC cluster as good as those of the Cray T3E.

An unexpected result observed in these figures is that matrix-vector product’s speed-
ups are worst than Jacobi or Gauss-Seidel’s speed-ups for a given problem size. The reason
may be due to the better computation with communication ratio in solvers. I.e. the
computational load in solvers embeds other operations apart of the matrix-vector product
(e.g. the difference of vectors for the computation of the residual and its norm) while the
additional communication load, (e.g. communication in the inner product) doesn’t increase
as the computational load.

Apart from the Jacobi and Gauss-Seidel solvers, there is a similar degradation of MSIP
solver and MSIP preconditioner based solvers, i.e. BiCGSTAB and GMRESR. The degra-
dation increases for the one partitioning direction while the multiple partitioning direction
reduce this degradation. This seems in contradiction with a bigger number of communi-
cation messages for a 3D partitioned domain respect to the 1D partitioned domain. The
reason is that the global ILU factorization, e.g. MSIP, is better represented by local ILU
factorizations in multiple directions.

This fact is also observed in the increment of the number of iterations when the the
number of processors in one direction increases. These numbers have been reported in the
table 4.18 for the case of 100× 100× 100, i.e. a linear system of 106 unknowns.

np partition Jacobi Gauss MSIP biCGSTAB+prec GMRESR(10)+prec
1 1x1y1z 6040 3021 634 35 32
2 1x1y2z 6040 3041 666 34 36
4 1x1y4z 6040 3063 700 41 35
4 1x2y2z 6040 3060 712 35 36
6 1x1y6z 6040 3084 731 33 37
6 1x2y3z 6040 3072 730 38 38
8 1x1y8z 6040 3105 763 34 37
8 1x2y4z 6040 3083 745 41 35
8 2x2y2z 6040 3080 755 38 40
10 1x1y10z 6040 3127 794 41 34
10 1x2y5z 6040 3093 761 41 40
12 1x2y12z 6040 3149 826 35 40
12 1x2y6z 6040 3103 776 41 38
12 1x3y4z 6040 3094 770 41 38
12 2x2y3z 6040 3092 772 39 40

Table 4.18: Iterations for the solution of a linear system with 1000000 unknowns.

It is worth noting that the Jacobi number of iterations remains constant and in the
case of the BiCGSTAB it also decreases for some partitioning configurations. In order to
represent these numbers, the increment of the number of iterations respect to the sequential
computation have been calculated and given in terms of the percentage in figure 4.39.

4.8. Parallel performance of solvers 127

np

%
in

cr
em

en
to

fi
te

ra
tio

ns

1 2 3 4 5 6 7 8 9 10 11 12
-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

Jacobi
Gauss
MSIP
biCGSTAB + prec MSIP
GMRESR(10) + prec MSIP

Figure 4.39: Percentage of increment of iterations for the solution of a linear system with
106 unknowns when increasing number of processors.

128 4. Parallel linear solvers

4.9 Nomenclature

A discretization matrix
a coeff. in A
b right hand side
bl block lenght
d block of data
E efficiency
I unknowns in x-direction
i index for x-direction
J unknowns in y-direction
j similar to i
K unknowns in z-direction
k similar to i
N number of unknowns
n number of
np number of processors
ngb neighbour processors
o operations of
ov overlapping area
p processor identification number
Re Reynolds number
r residual
S speed up
str stride
t measure of time
x unknown
y auxiliar vector, buffer vector
z auxiliar vector
{x, y, z} cartesian coordinates

Greek symbols
α network latency
β network bandwidth
ε precission
ρ scalar value

Other symbols
7− PF seven point formulation
<,> inner product
||.||2 2-norm of a vector
⊕ general algebraic operation

Superscripts
(k) k-th iteration

Chapter 5

Parallel CFD in PC clusters

5.1 Implementation details of the SIMPLE-like in parallel

From chapter 2 to chapter 4, we have introduced the different ingredients needed for the
computation in parallel of CFD problems by means of the domain decomposition technique
in MIMD machines.

• Governing equations, discretization, SIMPLE-like and time marching algorithms in
chapter 2.

• Computation of the solution of linear systems of algebraic equations in single processor
architectures in chapter 3.

• Parallel computation of the solution of these systems of equations in a PC cluster and
the Cray T3E by means of the domain decomposition technique, in chapter 4.

In this chapter, all of these ingredients are reused and applied to an incompressible fluid
flow problem with a three dimensional and complex flow structure that requires a fine grid
discretization. The solution of a large size problem such as the presented later on, cannot
be carried out by a single processor architecture due to high demand of computational
resources, i.e., it requires both a high speed of processor and large RAM storage devices.

However, if the original problem is split in sub domains small enough to be fitted and
distributed among processors of a MIMD machine and a communication system is provided
for sharing data, then each processor can solve independently and in parallel their own part
being feasible the solution of the overall problem.

To do so, we re-write the SIMPLE-like algorithm embedded in the time marching method
to be used in parallel with the communication steps explicitly remarked. The flowchart and
its implementation are described in Fig. 5.1 and Alg. 40 respectively

129

130 5. Parallel CFD in PC clusters

y,∆x,∆ z,∆ y,∆x,∆ z,∆

P=P+P’

U=U+U’
V=V+V’
W=W+W’

Discretization

Solving

Discretization

Solving

Solving

Discretization

new

new

iteration

time step

new

new

iteration

time step

P=P+P’

U=U+U’
V=V+V’
W=W+W’

continuity continuity

energy

Geometry Geometry

X,Y,Z X,Y,Z

correction correction

energy

U,V,W T

Navier-Stokes Navier-Stokes

U,V,W

convergence ?

steady state ?

END

Yes

Yes

No

No

No

No

(k) (k-1)

P TU,V,WU,V,W P T
(k-1) (k-1) (k-1)(k-1)

(k)(k)
U,V,W U,V,W

(k) (k)
U,V,W U,V,W

(k) (k)
P’ P’

(k)

(k)

(k)

(k)

(k)

(k)

(k)

(k)

(k)
T T

(k)

(k) (k-1)
T

processor left processor right

Figure 5.1: parallel SIMPLE plus time marching flowchart.

5.1. Implementation details of the SIMPLE-like in parallel 131

Algorithm 40: Parallel SIMPLE-like plus time marching

start with τ = 0
~V τ , P τ , T τ

do

new time step τ = τ + ∆τ
start with k = 0

~V (k) = ~V τ−∆τ , P (k) = P τ−∆τ , T (k) = T τ−∆τ

do

new iteration k = k + 1
guess fluid flow variables

~V ∗ = ~V (k−1), P ∗ = P (k−1), T ∗ = T (k−1)

evaluate coefficients of Navier-Stokes equations

solve aP,uu
(k)
P +

∑
NGB aNGB,uu

(k)
NGB = bP,u

solve aP,vv
(k)
P +

∑
NGB aNGB,vv

(k)
NGB = bP,v

solve aP,ww
(k)
P +

∑
NGB aNGB,ww

(k)
NGB = bP,w

communication of du, dv, dw
evaluate coefficients of continuity equation

solve aP,P ′P
′(k)
P +

∑
NGB a

(k)
NGB,P ′P

′(k)
NGB = bP,P ′

correct the pressure
P (k) = P (k) + αPP

′(k)

communication of P (k)

correct the velocity
~V (k) = ~V (k) + αV ~V

′(k)

evaluate coefficients of energy equation

solve a
(k)
P,TT

(k)
P +

∑
NGB a

(k)
NGB,TT

(k)
NGB = b

(k)
P,T

communication of ~V (k), P (k), T (k)

until (mass, momentum and energy conservation)
~V τ = ~V (k), P τ = P (k), T τ = T (k)

until (steady state of all variables)

By comparison with the sequential one, it is worth noting that only few new steps have
been introduced while the remaining steps, and in general, the algorithm has been kept
unchanged. From the implementation point of view of this algorithm, it is better to start
with a description of the grid generation and the grid point indexation of centered and
staggered grids for each subdomain.

For simplicity, a two dimensional rectangular domain is considered and divided by two
in x direction obtaining two parts the left and the right (see Fig. 5.2). The division or

132 5. Parallel CFD in PC clusters

Figure 5.2: Top, centered (solid line) and staggered (dashed line) grids in x direction for
the overall domain. Center, centered grid in blue split in x direction. Bottom, staggered
grid in red in x direction.

5.1. Implementation details of the SIMPLE-like in parallel 133

partition is done on the centered grid (see grid painted in black for the original and in blue
for the partitioned) as balanced as possible. Once we have the centered grids associated to
each processor, the staggered grids can be build independently at each processor (shown
here in red for the x direction).

It is shown in the figure the index of each grid point for both partitions left and right.
The zones enclosed with dashed lines contain the grid points that are involved in the com-
munication processes between both processors. For the centered grids, these points stand
for the pressure and pressure correction variables while for the staggered grid ones in x
direction the zone enclose the velocity variable in x direction that will be involved in the
communication processes.

These zones define the boundaries in contact between the processors for each subdomain.
If the boundaries of a subdomain do not keep in contact with other subdomains, then we
have to fix them with the boundary conditions explained in chapter 2, i.e., the Dirichlet,
Neumann or periodic boundary conditions in order to close the problem for each subdomain.

Following with the explanation and related with the communication issues there are two
points inside the algorithm where the communications are required: the communication of
the set of variables before the evaluation of the coefficients of each system of the SIMPLE
algorithm and the communication of a single variable inside the solver when needed. The
first type of communications, say update of variables, are needed before the evaluation
of coefficients near the boundaries in contact with neighbour processors. For instance, in
order to evaluate the convective term of the Navier-Stokes equations at such boundaries, it
may be necessary the velocity placed at the neighbour processor. The amount of velocity
points from the neighbour processor depends on the scheme used. For our purpose, i.e.,
the Upwind and the Central Difference Schemes only one line of points is required. For
higher order schemes, two or even more lines of points are needed. If that is extrapolated
to the three dimensional case, a thin slice of one point is needed for Upwind and Central
Difference Schemes.

The Navier-Stokes equations require also the gradient of the pressure variable so it is
also necessary to obtain those points placed at the neighbour processors. It is worth noting
that each variable has its own indexation system per processor and the communication of
the variables of these systems must be considered carefully in order to place at the right
location these variables on the receiver processor. Conversely it is also important to give
the right location of the variables to be sent to the neighbour processors.

Fig. 5.3 show the communications needed from the processor right to the processor left
before the evaluation of the Navier Stokes coefficients in x direction. The velocities U, V
(figured with straight arrows) and the pressure P (figured with filled dots) are sent (figured
with curved arrows) from the enclosed zones of the right processor to the left processor.

134 5. Parallel CFD in PC clusters

Figure 5.3: Communications from the right processor to the left processor before the
evaluation of the coefficients of the Navier Stokes equation in x direction.

Once, all of these communications are done, i.e., the U, V,W and P the algorithm
proceeds to the evaluation of the coefficients of Navier-Stokes equations for each direction.

5.2. Benchmarking the parallel implementation 135

Another point within the algorithm that requires such communications is placed before
the evaluation of the coefficients of the continuity equation. In this case, the evaluation
of these coefficients require the values of du, dv and dw that have been evaluated in the
Navier-Stokes equations. Since these values are placed on staggered grids and the continuity
equation is placed on the centered grid, we have take carefully the indexation of each original
and destination location for each value.

Finally, the correction step and for instance, the correction of the velocities requires the
gradients of the correction pressure so it is necessary to receive the correction pressures that
are placed in neighbour processors. Again, the index of the centered grid associated to the
pressure correction is different to the index of the staggered grids. Therefore, we have to
consider the locations from the centered grid of the neighbour processors to the staggered
grids of the receiver processors.

Once the systems of equations are defined the solver can compute the solution for each
subdomain in parallel. Since these systems, as explained in chapter 3, are featured by
non symmetric coefficient matrices, we have adopted the incomplete factorization solver
MSIP for the three systems of Navier-Stokes equations and the Krylov space based method
BiCGSTAB preconditioned with MSIP for the computation of the solution of the remaining
equations, i.e. the continuity equation and the energy equation.

5.2 Benchmarking the parallel implementation

The lid driven cavity flow is one of the well known benchmark test for a CFD code. It
has been chosen among other benchmark tests due to its geometric simplicity but complex
flow structure. As was shown by Koseff and Street (60), the flow structure in a 3D cavity
becomes more complex than a 2D cavity. Their experiments demonstrated that the presence
of side-walls produced a three-dimensional structure that significantly altered the primary
flow in the central plane, behaviour that 2D simulations simply could not capture. In Fig.
5.4 the experimental setup and a sketch of the flow structure are shown. The flow structure
is composed by a primary eddy, a downstream secondary eddy, an upstream tertiary eddy
and a corner eddy.

For laminar flows (Re < 6000) they found two sources of 3D structure. Examining a
plane parallel to the downstream wall, corner eddies were caused at the juncture of the side-
walls and the ground. Downstream secondary vortices caused as well by centrifugal forces
along the downstream eddy separation surface were found along the span. These came to be
known as Taylor-Gortler-Like vortices (61) in reference to their curvature-induced origins.
The number and location of these vortices were function of Reynolds number.

Simulations were performed for cavities of SAR (Span Aspect Ratio) 1:1 and 3:1 for a
wide range of Reynolds numbers: 103 − 104. Koseff and Street reported on one hand the
nondimensionalized height of the downstream secondary eddy with the Reynolds number
and on the other hand the central and end-wall plane velocity profiles for a Reynolds number
of 3200.

These experimental results are compared with a 3D simulation based on the SIMPLE
and time marching algorithms onto a 120× 120× 120 grid of points. In order to reduce the
computational effort, the domain has been divided among 8 processors with a partitioning

136 5. Parallel CFD in PC clusters

configuration of 2x× 2y × 2z (see Fig. 5.4), such that each processor contains 60× 60× 60
grid points.

Figure 5.4: Domain partitioned in three directions 2x × 2y × 2z in order to be simulated
with 8 processors

The first results provided by the simulation refer to the Reynolds number 3200. The
fluid-flow variables are depicted in figure 5.5 with stream lines at few locations inside the
domain and they are conducted to show the 3D structure of the flow. The three orthogonal
central planes X, Y and Z are also shown for clarity of the structure of flow. The velocity
vectors have been scaled for a better visualization.

5.2. Benchmarking the parallel implementation 137

Lx=1

Ly
=

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Z- wal l pl ane

Lx=1

Ly
=

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Z- cent er pl ane

Lz=3

Ly
=

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z- wal l pl aneZ- cent er pl ane

X- cent er pl ane

Lz=1

Lx
=

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z- wal l pl aneZ- cent er pl ane

Y- cent er pl ane

Figure 5.5: Left-top, Z central plane. Right-top Z end-wall plane. Center, Y central plane.
Bottom X central plane.

The U and V velocity profiles for the Z central plane have been compared with the

138 5. Parallel CFD in PC clusters

experimental data of Koseff and Street (see Fig. 5.6). The figure shows the good agreement
for two simulations with grids 60× 60× 60 and 120× 120× 120 executed in parallel with 8
processors at PC cluster.

U

V

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5 U num 120 3

V num 120 3

U exp
V exp
U num 60

 3

V num 60 3

Figure 5.6: Numerical and experimental velocity profiles for Reynolds number of 3200 at Z
central plane.

It is worth noting the main differences produced at the vivicinity of walls that could be
reduced by refining the grid, concentrating grid points onward walls and using high order
schemes.

5.2. Benchmarking the parallel implementation 139

Moreover, numerical results provided by DPC code developed at CTTC (see DPC and
CTTC in acronyms page) have been added to the validation of the current code. The DPC
code is also based on the finite volume method with SIMPLE-like coupling algorithm, and
hence, the numerical results at same grid should be identical.

For DPC code, a maximum of 60×60×60 regular grid points with upwind scheme may
be fitted in a single processor. Concentration grid factors at the vicinity of the walls as
well as higher order schemes such those based on the deferred correction, produce several
instabilities for this Reynolds number.

The agreement of the numerical results with the experimental data give small discrep-
ancies at maximun values of center lines (see table 5.1).

data source experimental DPC present code present code
grid – 60× 60× 60 60× 60× 60 120× 120× 120
Vmax 0.19 0.18 0.20 0.25

x location Vmax -0.41 -0.31 -0.39 -0.35
Vmin -0.38 -0.32 -0.35 -0.45

x location Vmin 0.46 0.45 0.45 0.45
Umin -0.28 -0.20 -0.23 -0.29

y location Umin -0.40 -0.33 -0.39 -0.40

Table 5.1: Discrepancies of results.

The second results presented refer to the height of the downstream secondary eddy when
varying the Reynolds number from 1000 to 8000 (see Fig. 5.7).

The differences respect to the experimental data may be due to different factors. From
the numerical point of view, we do not know if the grid mesh is fine enough to simulate
accurately the fluid flow phenomena. Furthermore, since the upwind scheme has been used
for the treatment of the convective terms, it introduces a numerical diffusion of the velocity
values and hence it affect to the global result. A more detailed simulation by means of a finer
grid would reveal the tendency of the numerical solution. However, the storage capacity
of computers is limited even in distributed machines so this study has been stopped at
this stage. From the experimental point of view, Koseff et al. reported a measured error
of 1 − 10% at all ranges of velocities. Therefore, the agreement between numerical and
experimental results has been considered satisfactory.

140 5. Parallel CFD in PC clusters

uncertainty in the experimental measure

U

dse

Reynolds number

do
w

ns
tr

ea
m

se
co

nd
ar

y
ed

dy
(d

se
)

2000 4000 6000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6 central plane numerical
central plane experimental
end-wall plane numerical
end-wall plane experimental

Figure 5.7: Height of the downstream secondary eddy for different Reynolds numbers

Finally, if the simulation is carried out for Reynolds numbers larger than 6000, the
structure of the flow becomes unstable (60) being more difficult the convergence. At those
Reynolds, the Taylor-Gortler-like vortices and the corner vortices are clearly visible. The
longitudinal Taylor-Gortler-like vortices are formed because the surface of separation be-
tween the primary eddy and the downstream secondary eddy is effectively a concave wall.
The curved separation surface promotes the instability caused by the centrifugal forces on
this wall, leading to the formation of Taylor-Gortler-like structures. The corner vortex orig-
inates from the adjustment of the shear and pressure forces acting on the recirculating fluid
to the non-slip condition imposed by the presence of the end-wall.

5.3. Performance measure of the parallel implementation 141

These structures are the most evident manifestation of three-dimensionally in this flow
and they have been simulated at Reynolds number 8000 onto a 120x120x120 grid of points
with 8 processors. The streamlines of the flow near the corner composed by the end-wall,
ground and downstream-wall are represented in Fig. 5.8.

Z

Y

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

central plane

Figure 5.8: Pairs of Taylor-Gortler-like vortex along the span wise direction for a Reynolds
number of 8000. There are also shown the corner vortex at both end walls.

5.3 Performance measure of the parallel implementation

In previous chapter, we have done an analysis of the parallel performance of several solvers
once given a model problem and submitted to different number of processors, partitioning
configurations and varying the size of the problem. Following this scheme, the 3D lid driven
cavity for a Reynolds number of 1000 in a 1×1×1 cubic box has been chosen for the parallel
performance of the SIMPLE and time-marching algorithm in parallel. The measured wall
clock time catches the time elapsed from the initial state up to the steady state. Several
grid sizes 20×20×20, 40×40×40, 60×60×60, 80×80×80i100×100×100 have been used
in order to see the effect of the grid size per processor and to give an idea of the scalability.
The measures of the speed-up have been done within a range of 1-12 processors.

Analogously to the results presented in the previous chapter, the speed-ups are given
in tables 5.2, 5.3 and represented in Figs. 5.9, 5.10 for both machines, i.e., PC cluster and
the Cray T3E. It is worth noting that in the case of the Cray T3E, the maximum grid size
that can be hold in RAM by a single processor is limited to a 60× 60× 60.

142 5. Parallel CFD in PC clusters

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12

40x40x40
60x60x60
80x80x80
100x100x100
ideal speed-up

Figure 5.9: Speed-up in PC cluster.

np partition 40× 40× 40 60× 60× 60 80× 80× 80 100× 100× 100
1 1x1y1z 1.00 1.00 1.00 1.00
2 2x1y1z 1.16 1.88 1.10 1.92
4 2x2y1z 1.49 3.51 3.87 3.88
8 2x2y2z 3.16 5.82 6.96 7.22
12 3x3y2z 3.12 6.75 6.71 9.74

Table 5.2: Speed-up in PC cluster.

5.3. Performance measure of the parallel implementation 143

np

sp
ee

d-
up

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12

20x20x20
40x40x40
60x60x60
ideal speed-up

Figure 5.10: Speed-up in the Cray T3E

np partition 20× 20× 20 40× 40× 40 60× 60× 60
1 1x1y1z 1.00 1.00 1.00
2 2x1y1z 1.51 1.79 1.86
4 2x2y1z 2.41 3.59 3.27
8 2x2y2z 2.95 6.27 5.80
12 3x3y2z 2.50 7.73 8.38

Table 5.3: Speed-up in the Cray T3E.

From the results presented above, we state that the performance at both machines is
similar and the configurations of 8 and 12 processors have reported good speed-ups of 7
and 10 respectively when the grid size of the problem increase. This behaviour is due
to the two factors mentioned in previous chapter. The minimum grid size per processor
constrains the efficiency of the parallel computation to large grid sizes. Conversely, given
a problem with a fixed grid size, there is a loose of efficiency when increasing the number

144 5. Parallel CFD in PC clusters

of processors in one direction. This fact is due to the degradation of the solver and more
precisely to the degradation of the incomplete factorizations used within the solver or within
the preconditioner.

This loose of efficiency is much more significative within the solution of the continuity
equation than the solution of the Navier-Stokes equations. In order to show this, an analysis
of the timings of each step of the SIMPLE-like algorithm are provided. The computation
and the communication times have been expressed in terms of the percentages respect to
the overall wall clock time of the simulation.

The two bar-graphs (see Figs. 5.11, 5.12), one for PC cluster and the other for the Cray
T3E, show this percentages from one of the examples with a grid size of 80 × 80 × 80 and
executed with 8 processors with a partitioning configuration of 2x× 2y × 2z.

Timings in %

20 40 60 80 100

% Time communication
% Time computationMomentum Discretization

Momentum Solution

Continuity Discretization

Continuity Solution

Correction

Continuity check

Steady check

SIMPLE + time marching algorithm

56%

15%

17%

1%

5%

3%

1%

0%

< 1%

< 1%

< 1%

< 1%

< 1%

1%

Figure 5.11: Timings in % of SIMPLE at PC cluster

5.3. Performance measure of the parallel implementation 145

At glance, there are no significative differences between both machines. The results
show that roughly the 60−70% from the overall wall clock time of the simulation is carried
out at the solution of the continuity equation, meanwhile the remaining time is distributed
among the solution of the Navier-Stokes equations, the correction of fluid flow variables,
and in less percentage, in the continuity and the steady checkings.

Timings in %

20 40 60 80 100

% Time communication
% Time computationMomentum Discretization

Momentum Solution

Continuity Discretization

Continuity Solution

Correction

Continuity check

Steady check

SIMPLE + time marching algorithm

66%

3%

22%

< 1%

7%

1%

< 1%

0%

< 1%

< 1%

< 1%

< 1%

< 1%

< 1%

Figure 5.12: Timings in % of SIMPLE in the Cray T3E

This 60− 70% of time is composed by a percentage of time of computation and a per-
centage of time of communication that differ from one to the other machine. On PC cluster,
the 56% of time is taken in the computation and the 15% is taken in the communication.
On the Cray T3E, the 66% of time is taken in the computation and only the 3% of the time
is taken in the communication. Clearly, this is the main difference between both machines,
i.e., the ratio of the time of computation with the time of communication.

146 5. Parallel CFD in PC clusters

From the optimization point of view of the algorithm, it is remarkable that a reduction
of the times of computation and communication of the solution of the continuity equation
would reduce globally the overall wall clock time of the simulation.

Therefore, an analysis more detailed of the operations involved within the BiCGSTAB
preconditioned with MSIP enable us to evaluate the bottlenecks that affect to the overall
time.

The two bar-graphs 5.13,5.14 show the percentages of time of computation and com-
munication of each algebraic operation involved within the solver respect to the wall clock
time of the solver, i.e., the 60− 70% of the overall time of the simulation.

Timings in %

0 20 40 60 80 100

% Time communication
% Time computation

alloc (1) / free (1)

decomposition (1)

vector-vector (6)

matrix-vector (2)

preconditioner (2)

saxpy (4)

48%

1%

0%

0%

1%

7%

9%

15%

0%

3%

8%

8%

Figure 5.13: Timings in % of BiCGSTAB at PC cluster

Both graphs show analogous percentages for each algebraic operation. Clearly, the
largest percentage is related with the preconditioner. The 60% of the time is taken within

5.3. Performance measure of the parallel implementation 147

the preconditioner, the 20% in matrix-vector product operations and the 10% of time in
the vector-vector product. All of them require communications. It is worth noting that
the time of computation of the incomplete decomposition is small compared to the above
timings.

Timings in %

0 20 40 60 80 100

% Time communication
% Time computation

alloc (1) / free (1)

decomposition (1)

vector-vector (6)

matrix-vector (2)

preconditioner (2)

saxpy (4)

56%

1%

0%

0%

6%

3%

6%

20%

0%

< 1%

2%

5%

Figure 5.14: Timings in % of BiCGSTAB at Cray T3E

Therefore, the bottleneck arises in the preconditioner that not only it takes the longest
time of computation and communication but also, since its algorithm is inherently sequen-
tial, there is a degradation of the efficiency when the number of processors is increased at
each direction.

148 5. Parallel CFD in PC clusters

5.4 Other alternatives not based on Krylov solvers

As seen in previous section, the time of computation needed for the solution of the continuity
equation is critical for the overall time of computation of the simulation. Research efforts
in parallel preconditioners such as SPAI and polynomial preconditioners (see chapter 3,
preconditioners section) are contributing to the improvement of the performance of Krylov
solvers.

Other alternatives not based on Krylov solvers are the Schur Complement (SC) and the
algebraic multigrid (ACM). In this work, BiCGSTAB has been compared with DDACM
(Domain Decomposed Additive Correction Multigrid) described in (39) and SC described
in (24; 62).

• SC is a direct parallel method, based on the use of non-overlapping subdomains with
implicit treatment of interface conditions. Its main feature is that each processor has
to solve only twice its own subdomain plus an interface problem in order to obtain
the exact solution of the subdomain, with just one global communication operation.

• DDACM is a multigrid algorithm based on ACM, with both pre and post smoothing
for the finest levels and the Schur Complement solver for the coarsest level. Although
ACM is formulated with a recursive formulation, a non-recursive formulation is used
for better control of the communications of DDACM.

5.4.1 Results of the alternatives

Since the available implementations of SC and DDACM are two dimensional and the im-
plementation of BiCGSTAB is only three dimensional, only a qualitative comparison is
possible. The extension of SC and DDACM to three dimensions is not straightforward.

The execution times compared are:

• BiCGSTAB: 3D lid driven cavity problem (described in this chapter), ε=10−4, np=8,
solved with a PC cluster described in the Appendix.

• DDACM: 2D model problem (described in (39)), ε=10−6, np=9, solved with a 700
MHz PC cluster with a fastethernet (100Mb/sec) network.

• SC: 2D natural convection problem (described in (63)), ε ≈ 10−11, np=8, solved with
a PC cluster described in the Appendix.

5.4. Other alternatives not based on Krylov solvers 149

The results of the times of computation are shown in Fig. 5.15.

N

se
co

nd
s

103 104 105 10610-3

10-2

10-1

100

101

102

BiCGSTAB
DDACM
SC

Figure 5.15: Times of computation of the continuity equation solved with the BiCGSTAB,
SC and DDACM. N is the problem size.

Computation times of SC and DDACM are notably smaller than the BiCGSTAB ones.
A part of this difference might be due to the differences between the problems solved.
Additionally, in order to compare the different solvers, other factors have to be considered,
such as preprocess time, storage requirements and algorithmic degradation with the number
of processors np. The differences of these factors for the SC and BiCGSTAB are outlined
below:

• With respect to the preprocess time, the SC takes a preprocess much higher than the
solution time (on the order of hours), and hence, this solver is only feasible for constant
coefficient matrices, i.e. for incompressible fluid flow problems. Therefore, SC is not
applicable to compressible fluid flow problems. However, the BiCGSTAB takes a
meaningless preprocess so it is applicable to both incompressible and compressible
fluid flow problems, where the coefficients of the continuity equation change at each
iteration.

150 5. Parallel CFD in PC clusters

• With respect to the storage, the requirements of memory are not a limiting factor for
the BiCGSTAB, and hence, it enables the solution of large three dimensional problems.
For the SC, the requirements of memory are large in two dimensional problems and
even much more in three dimensional problems. See (62) for an estimation of the
memory requirements with the problem size N and number of processors np.

• With respect to the algorithmic degradation with np, the preconditioner of the BiCGSTAB
based on the incomplete factorization degrades with np. For the SC, the efficiency is
kept for any np (but at the expense of an increase of memory).

With respect to DDACM, the preprocess, storage requirements and efficiency of DDACM
are strongly dependent on the number of levels. More levels implies a reduction of both
preprocess time and storage. Therefore, this reduction enables the application of DDACM
to incompressible three dimensional fluid flow problems. However, the solver becomes more
iterative and the number of communications per processor increases. Moreover, the high
latency in networks of PC clusters reduce the efficiency with the number of levels.

5.5. Nomenclature 151

5.5 Nomenclature

A discretization matrix
a coeff. in A
b discretization right hand side
np number of processors
P pressure
Re Reynolds number
r residual
T temperature
~V fluid flow velocity vector
{u, v, w} fluid flow velocity components
{x, y, z} cartesian coordinates

Greek symbols
ε precission
τ time

Subscripts
NGB general neighbour grid point
P central grid point under consideration

Superscripts
(k) k-th iteration of
τ new value at time τ + ∆τ of
∗ guessed value of
′ correction value of

152 5. Parallel CFD in PC clusters

Chapter 6

Conclusions

The detailed simulation of complex heat and mass transfer phenomena (i.e. detailed CFD
simulation) requires a fine discretization of the governing equations (conservation of mass,
momentum and energy) in both time and space. This leads to a set of strongly coupled non
linear systems of equations with a large number of unknowns per system. Although the
use of high order schemes is intended for the reduction of the size of these systems without
loosing the accuracy of results, the number of unknowns per system is over several millions.
E.g., a detailed three dimensional simulation of an incompressible and isothermal laminar
flow within a 200 × 200 × 200 grid points, leads to 4 coupled systems of equations (three
velocity components {u, v, w} and pressure P) with 8 millions of unknowns per system.

Dealing with such problems means computing the solution of these systems by com-
bining the different numerical algorithms with the current hardware and software within
a reasonable time. Hence, we have focussed our attention on solvers, parallelization by
domain decomposition and computation in distributed memory machines (for instance, in
clusters of personal computers).

It has been done, with respect to the solvers, a revision of those iterative methods for
non symmetric matrices (hence, the symmetric matrices are considered a particular case)
suitable for CFD problems: the incomplete factorizations or ILUs such as MSIP and SIS,
Krylov space based solvers such as BiCGSTAB and GMRESR with their preconditioners
and accelerating techniques such as the algebraic multigrid (AMG) and multiresolution
analysis (MRA) with wavelets. These solvers exploit the matrix sparcity of these systems
and reduce the storage in memory. Hence, GMRESR and BiCGSTAB have also been
preconditioned with ILUs.

Furthermore, each of them may be used as black box and even combined among them
because the operations are purely algebraic and there are no dependencies with the geome-
try of the problem, boundary conditions (Dirichlet, Neumann and periodic) and phenomena
(the discretization of the advection and diffusion terms leads to non symmetric and sym-
metric coefficients within the matrices respectively).

This revision is completed with a comparative study of both the computing time in
sequential and memory storage for a two dimensional problem with few thousands of un-
knowns. For different boundary conditions and for a wide range of convective with diffusive
ratios the results show, with independence of the case, that the acceleration with either
AMG or MRA improves the convergence rates but at expense of an slightly increase in

153

154 6. Conclusions

memory storage. However, these techniques are unable to bear problems with several mil-
lions of unknowns in single processor machines since their processing speed (i.e. number of
floating point operations per second) and storage capacity are limited.

To overcome these difficulties, the path of the parallel computation in distributed mem-
ory multiprocessors, and for instance, in PC clusters has been adopted. The data exchange
among processors is performed by means of message passing software such as MPI. By com-
parison with conventional distributed memory supercomputers, PC clusters have powerful
processors at lower cost and larger scalabilities that compensate the slower communication
throughputs (i.e. high latency and low bandwidth).

A comparative study, from the parallel performance point of view, carried out on two dif-
ferent machine architectures, the Cray T3E and a PC cluster (see appendix), has strength-
ened this position. The evaluation of the parameters affecting to this performance has
shown, for both machines, similar processor performances but different network throug-
puts, being at Cray T3E 10 times faster than PC cluster.

This implies, from the design and implementation points of view of the parallel algo-
rithms that the computational load per processor must be large and balanced, and the
communication among processors must be minimized (e.g. nonblocking point to point com-
munications), thus reducing the penalty in the performance. Hence, larger computation
with communication ratios will provide better performances, i.e. better speed-ups.

For this reason, given the same computation load (number of flops) and communica-
tion load (number of communications and data to be transferred) for both computers, the
performance is greater at computers with faster networks, and for instance, at Cray T3E.
This fact oblige to work at PC clusters with larger problems per processor in order to keep
a similar performance. E.g. in order to have a minimum efficiency of 50% in a parallel
matrix-vector product, having the matrix a 7-point stencil, the estimation of the minimum
size per processor is 20× 20× 20 at Cray T3E and 30× 30× 30 at PC cluster.

Indeed, this strategy is concerned with the domain decomposition of the problem and
the application of the numerical algorithms at each subdomain. Thus, the discretization of
the governing equations over the decomposed domain leads to a set of coupled systems of
equations composed by matrices and vectors distributed among processors in block matrix
and block vector structures respectively.

Krylov space based solvers are suitable algorithms for the parallel solution of these
systems since the involved algebraic operations (matrix-vector and vector-vector products)
may be computed efficiently in parallel. However, these solvers need a preconditioner for
better convergence behaviour. In this work, it has been used an incomplete factorization
wich exploits the sparsity of block matrices. The drawback of the preconditioned solvers is
the loss of efficiency or degradation of such preconditioners when the number of processors
is increased. This is due to the evaluation whithout communications of local factorizations
(at each subdomain), and hence, losing global convergence rate.

In this sense, a numerical experiment has been performed by partitioning a large three
dimensional model problem (i.e. a large linear system of equations) into several directions.
The results have pointed out, with independence of the computer, the degradation of the
parallel algorithms with the number of processors and their limited performance. The best
results have been obtained with BiCGSTAB preconditioned with MSIP.

Finally, these techniques have been applied to the solution of large coupled systems of

155

equations derived from a well known CFD problem: the three dimensional isothermal lid
driven cavity flow for laminar Reynolds numbers. The detailed simulation with a 120×120×
120 grid has been carried out at PC cluster. It has been successfully benchmarked with
both experimental and numerical simulation (in single processor) data provided by other
authors. By using MSIP for the momentum equations and BiCGSTAB preconditioned with
MSIP for the continuity equation, the simulation has been computed for several processors
(from 1 up to 12 processors) and partitioning configurations.

The most significative results are speed-ups of 7 with 8 processors and 10 with 12
processors. Slightly better speed-ups have been obtained at Cray T3E with differencies of
15% at most of the overall time of simulation.

From the timing analysis of SIMPLE algorithm it is shown, as expected, that the most
time consuming part (roughly the 60-70%) is wasted in the solution of the continuity equa-
tion. Therefore, any improvement on numerical algorithms aimed to the computing time
reduction in the solution of the continuity equation, will represent a notably reduction in
the overall time of simulation.

In this sense, alternative methods such as Algebraic Multigrid and Schur Complement
have been qualitatively compared with BiCGSTAB. The comparison has shown that these
alternatives provide better speed-ups. However, they present several constraints such as the
application only to incompressible fluid flow problems, the need of a large preprocess step
and the requirement of a large storage capacity.

Hence, further improvements may be stressed in several in combinations of the above
mentioned methods. Following this working line, the research should be focused on efficient
parallel preconditioners with the number of processors, and following the cited alternatives,
on the reduction of the preprocess step and storage requirements.

156 6. Conclusions

Appendix A

Facilities

A.1 JFF PC cluster at CTTC

The JFF PC cluster is sited at CTTC (Centre Tecnològic de Transferència de Calor) in
Terrassa (Spain). This acronym has been adopted in memorial of Joan Francesc Fernandez,
computer science professor of the Polytechnic University of Catalonia. The JFF cluster is a
network of 35 commodity processors connected with fast ethernet NICs (Network Interface
Cards) and two full duplex switches. Each processor runs the operating system Linux with
a minimal installation with a source Message Passing library.
Details of the cluster configuration are given in table A.1.

element type model
main board 35×ASUS a7V AMD-751 chipset

processor (32bits) 5×600MHz + 28×900MHz AMD-K7
cache (L1+L2) 128KB of L1 + 512KB of off-chip L2

RAM 2×1GB + 33×512MB SDRAM 133MHz
HD 25GB on server + 34 × 18GB IDE

SWAP double RAM per processor
NICs (100Mb/s) 2 on server + 34 × 1 3C905B-TX-NM
switch (100Mb/s) 24 full duplex ports, scalable 3C16980

matrix cable 1 matrix cable connecting 2 switches 3C16965
OS Linux Debian v2.2.17

batch system none
MP library MPI LAM 6.1
compilers C,C++,F77 gcc v2.7, g77 v0.5.24

Table A.1: Cluster configuration

Few pictures A.1,A.2 and A.3 of the JFF cluster have been attached to show the distri-
bution and connection of the commodity PCs and switches on shells.

157

158 A. Facilities

Figure A.1: Front view of the JFF cluster

Figure A.2: Front of the switches and connections

A.1. JFF PC cluster at CTTC 159

Figure A.3: Back of the switches and connections

In order to manage the cluster, there is a server node with x-server and equipped with
two NICs (Network Interface Cards), one connected to the 34 nodes of the private net and
the other connected to the public network. Users access to the cluster on this second NIC.
Tasks of compilation and debugging may be done in this node. The compiler and loader
for sequential jobs is the gcc, with the following flags and mathematic library:

> gcc -O3 -w -Wall -pedantic source-files.c -o object-files.o
> gcc object-files.o -lm executable-file
For parallel jobs, the compiler and loader is the hcc,with the MPI library:
> hcc -O3 -w -Wall -pedantic source-files.c -o object-files.o
> hcc object-files.o -lm -lmpi executable-file
After that, directories and executable files needed for execution are copied to nodes with

the remote commands rsh and rcp.
Since we are in the beginnings of the JFF cluster, there is not yet a batch system.

Therefore the execution of sequential and parallel jobs is done either in interactive mode or
in background with the command nohup.

For sequential jobs the following command line is used:
> nohup /work-diretory/executable-file &
For parallel jobs with LAM MPI library three steps must be followed:
> lamboot -v nodes
> nohup mpirun -v -c np -O -w /work-directory/executable-file &
> wipe -v nodes

160 A. Facilities

The first step initialize the lam daemon process and ‘awakes’ the np node-processors
listed in the nodes file. The second step runs with the mpirun command np copies of the
executable file in np processors placed in the work directory. The -O flag tells to the lam
daemond that the network of processors is homogeneous (it does not data conversion among
nodes), and the -w flag waits for all process to complete before exiting mpirun and reports
abnormal exit codes. Once the execution has ended, the daemon process is killed with the
wipe command.

Although Linux is a multiprocess operating system it is desirable to minimize the number
of processes for performance measures (i.e. timings of subroutines). During these measures,
each process whether it is originated by the operating system (i.e. the daemons) or by the
executable file (i.e. the output of results) produce perturbations in these measures. For this
reason every experiment must be repeated many times to give an averaged measure.

A.2 SGI/Cray T3E at CIEMAT

The SGI/Cray T3E supercomputer of 32 air cooled nodes is sited at CIEMAT (Centro de
Investigaciones Energéticas, Medioambientales y Tecnológicas) in Madrid (Spain). Details
of the configuration are given in table A.2.

element type model
processor (64bits) 32×300MHz, super scalar RISC DEC 21164

cache (L1+L2) 8KB of L1 + 96KB 3-way of L2
RAM 32×128MB DRAM
HD 130GB distributed for every 8np Giga Ring, SCSI

SWAP none
net (1Gb/s) 3-D torus of low latency

OS Unix Unicos/mk v2.0.4.34
batch system Network Queuing Environment NQE v3.3
MP library PVM,MPI optimized for Cray
compilers C,C++,F77,F90 optimized for Cray

Table A.2: SGI/Cray T3E configuration

The SGI/Cray T3E has two processors dedicated to the surveillance and maintenance
of the global system (i.e. the Global Resource Manager) and file server for the rest of nodes.
Four processors for interactive tasks such as user sessions, compiling and debugging. Only
they support multiprocess (time sharing). The rest of processors (i.e. 26 processors) do
parallel applications throughout the command mpprun. Each processor accepts only one
process and the total amount of memory available without swap is 128MB.

A.2. SGI/Cray T3E at CIEMAT 161

Sequential and parallel jobs are submitted to a batch system (for instance, the Network
Queuing Environment) using the following script, called job.sh:

QSUB -l mpp p=np limit
QSUB -l mpp t=hh:mm:ss limit
QSUB -eo
QSUB -o job.sh
cd /work-directory
mpprun -n np executable-file

Further details may be found at the Ciemat’s web site www.ciemat.es.

162 A. Facilities

Appendix B

Software layers in CFD code

B.1 Description of layers

The CFD code is structured in four layers: the user layer, the solver layer, the algebra layer
and the communication layer. These layers are linked and integrated to build an structure
which looks like an iceberg (see Fig. B.1).

COMMUNICATION

ALGEBRA

SOLVER

USER

Figure B.1: Iceberg built by layers: user layer, solver layer, algebra layer and communication
layer.

The concept of the iceberg comes from the idea that only the top of the iceberg or the
last layer is visible while the rest of the iceberg or layers are hidden below the water. This
top end is called the user layer, the only layer visible to the end user of the CFD code. The
rest of layers are hidden from the user, i.e. the user does not access to the remaining layers.
In order to build the CFD code in layers it is very important to specify clearly which are
the subroutines of each layer and which layer is supported by another, i.e, to define the
dependencies between layers in only one direction. This dependency goes from the top to
the base as shown with the arrows in the in figure B.1.

163

164 B. Software layers in CFD code

The description of these layers is given below.

• The user layer can be structured into a set of modules, each of them with different
functions. For example the graphic module, the data module and the model module.
The graphic module represents the front-end of the CFD code. The data module
contains all information needed for running a case. These, a specific information of
the case (e.g. geometry, boundary conditions, initial conditions, properties of fluid
and flow), and a specific information about how to run the case (e.g. algorithm
or procedure, solver, iterations, convergence criteria) must be included. The model
module performs the translation from the real case to the set of algebraic systems
of equations (e.g. finite volume methods, schemes, set of physic hypotheses). This
translation is the discretization of the partial differential equations involved in the
case. Since this work has been focused on how to solve such algebraic systems by
using solvers and parallel computing, the above modules are compacted in the concept
of the user layer.

• The solver layer performs the evaluation of the solution of the algebraic systems
of equations. This layer specifies a wide range of solvers based on classic methods
(e.g. Jacobi, TDMA, Gauss), decompositions (e.g. complete and incomplete LU
decompositions), Krylov space based methods helped by preconditioners (e.g. CG,
BiCGSTAB, GMRESR) and acceleration techniques (e.g. Algebraic MultiGrid and
MultiResolution Analysis with wavelets).

• Each of these solvers contains some common basic operations which have been inte-
grated in a more basic layer so called algebra layer. By this, we refer mainly to the
algebraic operations between vectors and matrices (e.g. matrix-vector product, inner
product between vectors, addition and subtraction between vectors, norm of vectors),
and some transformations over vectors, matrix and maps of scalars (e.g. discrete
Fourier transform, discrete wavelet transform).

• The above layers are supported by the communication layer. It is also called the com-
munication layer because its main task is the communication inside a layer between
processors: mainly the domain decomposition at the user, solver and algebra layers
. If the CFD code is thought in sequential, this layer can be eliminate at all, but
in parallel, part of the task are done at the communication layer. For example, the
parallel algebraic operations are performed in the algebra layer except the exchange
of data among the processors that is performed in the communication layer (e.g. the
matrix-vector product, the norm of a vector and the maximum or the minimum value
of a map distributed among the processors). The subroutines embedded in this layer
contain calls to the parallel library MPI. It is worth noting that the from the pro-
gramming point of view of the CFD code it is based on the SPMD (Single Program
and Multiple Data) paradigm.

B.1. Description of layers 165

Most of these subroutines have been summarized for each layer in Fig. B.2.

=<x,y>a az=x+ y =||x||a

User Layer

Hypothesis

Discretization Schemes Stopping Criteria

Gauss-Seidel Band LU ILU

GC BiCGSTAB GMRESR AMG MRA

Solver Layer

Algebra Layer

z=x+y z=x-y

y=Ax r=b-Ax y=DFT(x) y=DWT(x)

Communication Layer

partition

MPIOperating system Network protocol

block matrix global sumupdate

Boundary Conditions

block vector

Figure B.2: Main subroutines of the CFD code grouped by layers.

166 B. Software layers in CFD code

Bibliography

[1] M. Costa, A. Oliva, and C. Pérez Segarra, “A three-dimensional numerical study of
melting inside a heated horizontal cylinder,” Numerical Heat Transfer, vol. Part A,
no. 32, pp. 531–553, 1997.

[2] H. Schweiger, A. Oliva, M. Costa, and C. Pérez Segarra, “Numerical experiments
on laminar natural convection in rectangular cavities with and without honeycomb-
structures,” International Journal of Numerical Methods for Heat and Fluid Flow,
vol. 5, no. 5, pp. 423–445, 1995.

[3] M. Soria, H. Costa, M. Schweiger, and A. Oliva, “Design of multifunctional venti-
lated facades for mediterranean climates using a specific numerical simulation code,”
in Eurosun98 Conference, Slovenia, 1998.

[4] C. Pérez Segarra, J. Cadafalch, J. Rigola, and A. Oliva, “Numerical study of turbu-
lent fluid-flow through valves,” in International Conference on Compressors and Their
Systems, London, 1999.

[5] A. Ivancic, A. Oliva, C. Pérez Segarra, and M. Costa, “Heat transfer simulation in
vertical cylindrical enclosures for supercritic rayleigh number and arbitrary side-wall
conductivity,” International Journal of Heat and Mass Transfer, vol. 42, no. 2, pp. 323–
343, 1999.

[6] Myricom, “Creators of myrinet.” http://www.myri.com.

[7] M. P. I. Forum, “Mpi forum, mpi: A message-passing interface standard.”
http://www.mpi-forum.org.

[8] M. Zedan and G. Schneider, “A coupled strongly implicit procedure for velocity and
pressure computation in fluid flow problems,” Numerical Heat Transfer, part B, vol. 8,
pp. 537–557, 1985.

[9] X. Chuan and D. Keyes, “Nonlinear preconditioned inexact newton algorithms,” 2000.
Technical Report, Departement of Computer Science, University of Colorado, Boulder.

[10] H. Stone, “Iterative solution of implicit approximation of multidimensional partial
differential equations,” SIAM Journal of numerical analysis, vol. 5, pp. 530–558, 1968.

[11] M. Zedan and G. Schneider, “A three-dimensional modified strongly implicit procedure
for heat conduction,” AIAA, vol. 21, pp. 295–303, Feb 1983.

167

168 Bibliography

[12] M. Peric, “An efficient semi-implicit solving algorithm for nine-diagonal coefficient
matrix,” Numerical Heat Transfer, vol. 11, no. Part B, Fundamentals, pp. 251–279,
1987.

[13] S. Lee, “A strongly implicit solver for two dimensional elliptic differential equations,”
Numerical Heat Transfer, vol. 16, no. Part B, Fundamentals, pp. 161–178, 1989.

[14] I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices. New York:
Oxford University Press, 1986.

[15] C. Craig, “Mgnet.” Web site www.mgnet.org.

[16] P. Wesseling, An Introduction to Multigrid Methods. Pure and Applied Mathematics,
John Wiley and Sons, 1992.

[17] P. Zeeuw, Acceleration of Iterative Methods by Coarse Grid Corrections. PhD thesis,
Amsterdam University, 1997.

[18] C. Wagner, “Introduction to algebraic multigrid,” 1999. Course Notes of an Algebraic
Multigrid Course, Heidelberg University.

[19] J. Mora, M. Soria, and A. Oliva, “Uso de multigrid algebráico para la resolución de
los sistemas de ecuaciones discretos obtenidos en transferencia de calor y dinámica de
fluidos,” in XIII Congreso Nacional de Ingenieŕıa Mecánica, 1998.

[20] J. Williams and K. Amaratunga, “Introduction to wavelets in engineering,” I. J. Nu-
merical Methods in Engineering, vol. 37, pp. 2365–2388, 1994.

[21] R. Wells and X. Zhou, “Wavelet interpolation and approximate solutions of elliptic par-
tial differential equations,” 1992. Technical Report 92-03, Computational Mathematics
Laboratory, Rice University.

[22] A. Rieder, R. Wells, and X. Zhou, “A wavelet approach to robust multilevel solvers for
anysotropic elliptic problems,” 1992. Technical Report 93-07, Computational Mathe-
matics Laboratory, Rice University.

[23] R. DeVore and B. Lucier, “Wavelets,” 1992. Technical Report, Preprint 92-026, Uni-
versity of Minnesota.

[24] E. Simons, “Domain decomposition methods for separable elliptic equations suitable
for les of complex flows,” 1995. Technical Report, von Karman Institute for Fluid
Dynamics, Belgium.

[25] Y. Saad, “Krylov subspace method for solving large unsymmetric linear systems,”
Math. Comput., vol. 37, pp. 105–126, 1981.

[26] Y. Saad and J. Zhang, “Diagonal threshold techniques in robust multi-level ilu precon-
ditioners for general sparse linear systems,” Numerical Linear Algebra, vol. 6, no. 4,
pp. 257–280, 1999.

Bibliography 169

[27] A. Basermann, B. Reichel, and C. Schelthoff, “Preconditioned cg methods for sparse
matrices on massively parallel machines,” Parallel Computing, vol. 26, pp. 381–398,
1997.

[28] M. Grote and T. Huckle, “Parallel preconditioning with sparse approximate inverses,”
SIAM J. Scientific Computing, vol. 18, no. 3, pp. 838–853, 1997.

[29] M. Benzi and M. Tuma, “A sparse approximate inverse preconditioner for nonsymmet-
ric linear systems,” SIAM J. Sci. Comput., vol. 19, pp. 968–994, 1998.

[30] S. Zweben, S. Edwards, B. Weide, and J. Hollingsworth, “The effects of layering and
encapsulation on software development and quality,” IEEE Transactions on software
engineering, vol. 21, no. 3, pp. 200–208, 1995.

[31] W. Rohsenow, J. Hartnett, and E. Ganic, Handbook of Heat Transfer Fundamentals.
Mc. Graww-Hill Book Company, 1985.

[32] S. Patankar, Numerical Heat Transfer and Flow. New York: Hemisphere, 1980.

[33] J.H.Ferziger and M.Peric, Computational Methods for Fluid Dynamics. Springer-
Berlag, 1996.

[34] M. Darwish and F. Moukalled, “The normalized variable and space formulation
methodology for high resolution schemes,” Numerical Heat Transfer, vol. Part B, fun-
damentals, no. 26, pp. 79–96, 1994.

[35] J. Van Doormal and G. Raithby, “Enhancements of the simple method for predicting
incompressible fluid flows,” Numerical Heat Transfer, part B, vol. 7, pp. 147–163, 1984.

[36] K. Aksevol and P. Moin, “Large eddy simulation of turbulent confined coanular jets and
turbulent flow over a backward facing step,” 1992. Technical Report TR-63, Research
Center of Turbulence,U.S.

[37] J. Mora, “A nine point formulation of poisson equation with a fourth order scheme,”
2000. Technical Report of CTTC, Polytechnical University of Catalonia.

[38] M. Quispe, J. Cadafalch, M. Costa, and M. Soria, “Comparative study of flow and
heat transfer periodic boundary conditions,” in ECCOMAS, 2000.

[39] M. Soria, Parallel Multigrid Algorithms for Computational Fluid Dynamics and Heat
Transfer. PhD thesis, Polytechnical University of Catalonia, 2000.

[40] R. Barrett et al., “Templates for the solution of linear systems: Building blocks for it-
erative methods.” Downloadable document at ftp.netlib.org/templates/templates.ps.

[41] S. Rump, “Ill conditioned matrices are component wise near to singularity,” SIAM
Review, vol. 41, no. 1, pp. 102–112, 1999.

[42] W. Spotz and G. Carey, “A high-order compact formulation for the 3d poisson equa-
tion,” Numerical Methods for Partial Differential Equations, vol. 12, pp. 235–243,
1996.

170 Bibliography

[43] W. Press et al., Numerical Recipes in C. The art of Scientific Computing. Cambridge
University Press, 1994.

[44] C. Vuik, “Solution of the discretized icompressible navier-stokes equations with the
gmres method,” I. J. for Numerical Methods in Fluids, vol. 16, pp. 507–523, 1993.

[45] H. Vorst, “Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution
of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput., vol. 13, pp. 631–644,
1992.

[46] M. Saad, Y. ahd Schultz, “Gmres: A generalized minimum residual algorithm for
solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput., vol. 7, pp. 856–
869, 1986.

[47] H. Vorst and C. Vuik, “Gmresr: A family of nested gmres methods,” 1991. Technical
Report, Delft University of Technology.

[48] M. Trummer, “Iterative methods in linear algebra,” 1997. Technical Report, Dept.
Mathematics and Statistics. Simon Fraser University.

[49] H. Vorst and G. Sleijpen, “The effect of incomplete decomposition preconditioning on
the convergence of conjugate gradients.,” 1992. Incomplete Decompositions, Proceed-
ings of the Eight GAMM Seminar, Delft University of Technology.

[50] S. Dupont and J. Marchal, “Preconditioned conjugate gradients for solving the tran-
sient boussinesq equations in three-dimensional geometries,” I. J. for Numerical Meth-
ods in Fluids, vol. 8, pp. 283–303, 1988.

[51] G. Larrazábal and J. Cela, “Study of spai preconditioners for convective problems,”
1999. Technical Report, Dept. Computer Architecture. Polytechnical University of
Catalonia.

[52] B. Hutchinson and G. Raithby, “A multigrid method based on the additive correction
strategy,” Numerical Heat Transfer, vol. Part B, no. 9, pp. 511–537, 1986.

[53] I. Daubechies, Ten Lectures on Wavelets. Pure and Applied Mathematics, Philadelphia:
SIAM, 1992.

[54] S. Mallat, “A theory for multiresolution signal decomposition the wavelet representa-
tion,” Communications in Pure and Applied Mathematics, vol. 41, pp. 674–693, 1988.

[55] J. Xu and W. Shann, “Galerkin-wavelet methods for two-point boundary value prob-
lems,” Numerical Mathematics, vol. 63, pp. 123–144, 1992.

[56] J. Dongarra and T. Dunigan, “Message passing performance of various computers,”
1996. Technical Report, University of Tennessee. Oak Ridge National Laboratory.

[57] G. Editorial, “Parallel computing on clusters of workstations,” Parallel Computing,
vol. 26, pp. 295–303, 2000.

Bibliography 171

[58] J. Cadafalch et al., “Domain decomposition as a method for the parallel computing of
laminar incompressible flows,” 1996. Proceedings of the Third ECCOMAS Computa-
tional Fluid Dynamics Conference.

[59] H. Gilbert et al., “Sparse matrices in matlab: design and implementation,” SIAM J.
Matrix Analysis Applications, vol. 13, no. 1, pp. 333–356, 1992.

[60] J. Koseff, “On end wall effects in a lid driven cavity flow,” Journal of Fluid Engineering,
vol. 106, pp. 385–389, 1984.

[61] H. Gortler, “On the three-dimensional instability of laminar boundary layers on concave
walls,” NACA Techinical mem., no. 1375, 1954.

[62] M. Soria, C. Perez-Segarra, and A. Oliva, “A direct algorithm for the efficient solu-
tion of the pressure-correction equation of incompressible flow problems using loosely
coupled parallel computers,” (Submitted) Numerical Heat Transfer, vol. Part B, Fun-
damentals, 2001.

[63] S. Paolucci, “Direct numerical simulation of two-dimensional turbulent natural convec-
tion in an enclosed cavity,” Journal of Fluid Mechanics, vol. 215, pp. 229–262, 1990.

	1 Introduction
	1.1 Motivation
	1.2 Overview of parallel computing in CFD problems
	1.2.1 Computer technology
	1.2.2 Numerical algorithms
	1.2.3 Software engineering: layering

	1.3 Scope of the work

	2 Modelization of CFD problems
	2.1 Description of the governing equations
	2.1.1 Cartesian and cylindrical coordinate systems

	2.2 Discretization by finite volume method
	2.2.1 The SIMPLE-like algorithms
	2.2.2 Time marching algorithm
	2.2.3 Calculation of the time step

	2.3 Boundary conditions
	2.3.1 Dirichlet and Neumann conditions
	2.3.2 Periodic condition

	2.4 Stopping criteria for a simulation
	2.5 Nomenclature

	3 Linear solvers
	3.1 Features of equation systems
	3.1.1 Sparse matrix formats

	3.2 Solving equation systems
	3.2.1 LU solver
	3.2.2 ILU solver

	3.3 Krylov solvers
	3.3.1 CG solver
	3.3.2 BiCGSTAB solver
	3.3.3 GMRESR solver

	3.4 Preconditioners
	3.4.1 Factorizations and SPAI

	3.5 Algebraic Multigrid algorithm
	3.5.1 Transfer operators

	3.6 Multiresolution Analysis with wavelets
	3.6.1 Multilevel representation of a function
	3.6.2 Multiresolution decomposition and reconstruction
	3.6.3 Mallat's transform and inverse transform
	3.6.4 Wavelet transfer operators
	3.6.5 The Haar's wavelet transfer operator

	3.7 Comparison between AMG and MRA
	3.8 Stopping criteria
	3.9 Sequential performance of solvers
	3.9.1 CFD model problem
	3.9.2 Sequential performance

	3.10 Nomenclature

	4 Parallel linear solvers
	4.1 Introduction
	4.1.1 Hardware for parallel computing
	4.1.2 Parallel programming models
	4.1.3 Message-passing programming

	4.2 Performance measurements of an implementation
	4.3 Modellization of the communication time
	4.4 Communication modes
	4.5 Domain decomposition
	4.5.1 Block vector
	4.5.2 Block matrix

	4.6 Exchange of data blocks
	4.7 Algebraic operations with vectors and matrices
	4.7.1 Addition, difference and scaling of vectors
	4.7.2 Saxpy operation
	4.7.3 Inner product of vectors
	4.7.4 Matrix-vector product
	4.7.5 Minimum matrix-vector product size per processor

	4.8 Parallel performance of solvers
	4.9 Nomenclature

	5 Parallel CFD in PC clusters
	5.1 Implementation details of the SIMPLE-like in parallel
	5.2 Benchmarking the parallel implementation
	5.3 Performance measure of the parallel implementation
	5.4 Other alternatives not based on Krylov solvers
	5.4.1 Results of the alternatives

	5.5 Nomenclature

	6 Conclusions
	A Facilities
	A.1 JFF PC cluster at CTTC
	A.2 SGI/Cray T3E at CIEMAT

	B Software layers in CFD code
	B.1 Description of layers

