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Chapter 1

Introduction

The global financial crisis of 2007-2009 has demonstrated that the financial system should be re-

garded as a complex network whose nodes are financial institutions and links are financial depen-

dencies. Since the financial system is becoming more complex and interconnected, network theory

provides the ideal toolkit to study systemic crises and contagion events, proving to be crucial for

the design of an appropriate macroprudential policy.

Indeed, while a shock might affect only a small number of banks, the interconnectedness of the

financial system can trigger a default cascade, where contagion is transmitted to banks not directly

exposed to the initial shock. So far, most of network literature focuses exclusively on a single kind

of bank-to-bank connection: unsecured interbank lending. However, banks are directly linked to

each other through a wide variety of financial obligations: CDS protections, payment transfers and

secured (repo) lending. Recently, indirect layers of network connectivity have been also added.

In particular, indirect connections form the backdrop for a new and fast growing literature that

explores: (i) how the reduction in value of an asset spreads across banks investing in the same

assets (ii) how the default of a real sector firm generates distress to its creditor banks.

Within this evolving literature, the aim of the paper The topology of the bank-firm credit

network in Spain, 1997-2007 is to provide an empirical analysis of the Spanish bank-firm net-

work to study the structure of the connections between banking sector and real economy. We use

data from the SABI database to obtain the firm-bank relationships for a sample consisted of over

three hundred banks and over two thousand firms in the period 1997-2007. Particular emphasis

is given to the network of co-financing banks, which is of primary importance to understand how

the exposure to the same firms could create a potential source of systemic risk for the banking

sector. We find three key results. First, credit extended to non-financial firms shares basic stylized
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facts documented for other countries: the distribution of the number of lending relationships is

much more fat-tailed for banks than for firms and the number of lending relationships increases

with size for both bank and firms. Second, the network of co-financing banks is close to a core-

periphery structure. Third, a community structure has been detected in the most significant banks’

co-financing relationships.

While the previous paper focuses on how the topology of bank interconnections affects systemic

risk, the paper The controllability of the repo market in Mexico investigates how the struc-

ture of interbank networks influences the control of central banks on money markets. By using

Mexico’s Central Bank data on interbank transactions in the repo market from 2005 to 2014, we

study the control properties of the Mexican interbank network to detect which banks control the

reallocation of central bank liquidity in the repo market. Our main finding is the identification of

a set of controller banks, which does not correspond with the most connected banks or the largest

lenders of the Mexican repo market. These results point out that a too big to fail policy might be

inadequate to predict the systemically important banks. Moreover, we find that the repo market

is more difficult to control over shorter time horizons, adding further evidence that central bank

actions need to be adjusted to short-run and long-run policy goals.

In the last paper Stress-testing the UK banking system: a network approach to cope

with portfolio overlaps, we go further beyond the traditional channel of contagion created via

interbank credit and we analyze the contagion effects of a toxic asset in the balance sheets of banks.

Indeed, the UK buy-to-let mortgage boom provides us with an excellent experimental setting to

study this contagion channel. By using BankScope balance sheet data for over two hundred banks

at the end of 2015, we assess the resilience of the UK banking system to a shock to real estate loans

by estimating the extent to which portfolio overlaps amplify losses and defaults. The model that

we consider for our stress-testing exercise is the Huang et al. (2013) algorithm, recently introduced

in network literature. We find that the systemic impact of real estate loans has increased in the

period 2007-2015. The stress-test results indicate that market conditions determine the size of the

default cascade regardless of the intensity of the initial shock to real estate loans. This finding

underlines the importance of the interconnectedness between banks’ portfolios in stressed markets,

that is also confirmed by the inadequacy of bank-specific features to predict defaults.
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Introdución

La crisis financiera mundial de 2007-2009 ha demostrado que el sistema financiero debe considerarse

como una red compleja cuyos nodos son instituciones financieras y que los v́ınculos son dependen-

cias financieras. Dado que el sistema financiero se está volviendo más complejo y interconectado,

la teoŕıa de la red proporciona el conjunto de herramientas ideal para estudiar las crisis sistémicas

y los eventos de contagio, demostrando ser crucial para el diseño de una poĺıtica macroprudencial

adecuada.

De hecho, si bien un choque puede afectar sólo a un pequeño número de bancos, la interconexión

del sistema financiero puede desencadenar una default cascade, donde el contagio se transmite a los

bancos no directamente expuestos al choque inicial. Hasta ahora, la mayor parte de la literatura

de la red se centra exclusivamente en una único tipo de conexión de banco a banco: el crédito

interbancario no garantizado. Sin embargo, las conexiones entre bancos son de varios tipos: pro-

tecciones CDS, transferencias de pago y crédito interbancario garantizado. Recientemente, layers

indirectos de conectividad de red han estado también investigando. En particular, las conexiones

indirectas forman el telón de fondo de una literatura nueva y de rápido crecimiento, que explora: (i)

cómo la reducción en el valor de un activo se propaga entre los bancos que invierten en los mismos

activos (ii) cómo el default de una empresa del sector real genera problemas financieros a sus bancos

acreedores.

Dentro de esta literatura en evolución, el objetivo del art́ıculo The topology of the bank-

firm credit network in Spain, 1997-2007 es proporcionar un análisis emṕırico de la red banco-

empresa española para estudiar la estructura de las conexiones entre el sector bancario y la economı́a

real. Utilizamos datos de la base de datos SABI para obtener las relaciones banco-empresa para una

muestra de más de trescientos bancos y dos mil empresas en el peŕıodo 1997-2007. Se hace especial

atención en la red de bancos cofinanciadores, que es de primordial importancia para comprender

cómo la exposición a las mismas empresas podŕıa crear una fuente potencial de riesgo sistémico para

el sector bancario. Encontramos tres resultados clave. En primer lugar, el crédito concedido a las

empresas no financieras comparte stylized facts documentados para otros páıses: la distribución del
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número de relaciones crediticias es mucho más fat-tailed para los bancos que para las empresas y el

número de relaciones crediticias aumenta con el tamaño tanto por los bancos que por las empresas.

En segundo lugar, la red de bancos cofinanciadores está cerca de una estructura core-periphery.

En tercer lugar, se ha detectado una comunity en las relaciones de cofinanciación bancarias más

significativas.

Mientras que los articulo anteriore se centra en cómo la topoloǵıa de las diferentes interconex-

iones bancarias afecta el riesgo sistémico, el art́ıculo The controllability of the repo market

in Mexico investiga cómo la estructura de las redes interbancarias influye en el control de los

bancos centrales en los mercados monetarios. Utilizando los datos del Banco de México sobre las

transacciones interbancarias en el mercado de repos desde 2005 a 2014, estudiamos las propiedades

de control de la red interbancaria mexicana para detectar qué bancos controlan la reasignación de

liquidez del banco central en el mercado de repos. Nuestro principal resultado es la identificación

de un grupo de bancos controladores, que no corresponde con los bancos más conectados o con los

mayores prestamistas del mercado de repos mexicano. Estos resultados señalan que una poĺıtica

too big to fail podŕıa ser inadecuada para predecir los bancos sistemicamente importantes. Por otra

parte, encontramos que el mercado de repos es más dif́ıcil de controlar sobre horizontes de tiempo

más cortos, añadiendo más pruebas de que las acciones de los bancos centrales deben ajustarse a

los objetivos de poĺıtica a corto y largo plazo.

En el ultimo art́ıculo Stress-testing the UK banking system: a network approach to

cope with portfolio overlaps vamos más allá del canal tradicional de contagio creado a través

del crédito interbancario y analizamos los efectos de contagio de un activo tóxico en los balances de

los bancos. De hecho, the buy-to-let mortgage boom en Reino Unido nos proporciona un excelente

escenario experimental para estudiar este canal de contagio. Mediante el uso de datos de BankScope

sobre las balanzas de más de doscientos bancos del Reino Unido a finales de 2015, evaluamos la

resiliencia del sistema bancario del Reino Unido a un shock a los préstamos inmobiliarios al estimar

la medida en que los portfolio overlaps amplifican las pérdidas y los defaults. Como modelo de

riferimento, utilizamos el modelo de red de activos bancarios de Huang et al. (2013), recientemente

introducido en la literatura de la red. Encontramos que el impacto sistémico de los préstamos

inmobiliarios ha aumentado en el peŕıodo 2007-2015. Los resultados indican que las condiciones

del mercado determinan los defaults independientemente de la intensidad del choque inicial en los

préstamos inmobiliarios. Este resultado señala la importancia de la interconexión entre las carteras

de los bancos, lo que se confirma también por la insuficiencia de las caracteŕısticas espećıficas de

los bancos para predecir los defaults.
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Chapter 2

The topology of the bank-firm

credit network in Spain, 1997-2007

Co-Authored with: Mattia Montagna (European Central Bank), Thomas Lux (University of

Kiel and University Jaume I) and Simone Alfarano (University Jaume I)1

1The views expressed in this paper do not reflect those of the European Central Bank (ECB). The authors thank
Manuel Illueca for sharing his data set of bank-firm financial relations collected from the SABI (Sistema de Análisis
de Balances Ibéricos) registry.
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2.1 Introduction

The 2007-2008 financial crisis and the collapse of the interbank lending brought a surge of interest

in the topology of the interbank market and formal modelling of interbank linkages via network

analysis. This approach allows to take advantage of empirical concepts and theoretical models

developed in network theory to study the structure of the banking system and its implications for

systemic risk. Examples of empirical applications of network theory to the interbank market are:

Bech et al. (2010) for the US Federal funds market, Boss et al. (2004) for the Austrian interbank

market, Iori et al. (2008) for the Italian interbank market, Martinez-Jaramillo et al. (2014) for the

Mexican interbank market and Soromäki et al. (2007) for the US Fedwire network.

However, direct interbank credit is only one particular source of systemic risk. The joint expo-

sure via loans to non-financial firms is another important channel of distress in the banking system

that so far has received much less attention than interbank credit. To the best of our knowledge,

references are limited to: De Masi and Gallegati (2012) for the Italian bank-firm network De Masi

et al. (2011), Marotta et al. (2015) for Japanese data and De Castro Miranda and Tabak (2013)

for the Brazilian credit network. They have found that: (i) bank-firm networks are quite large (i.e.

39,194 firms and 508 banks for the Italian dataset in 2003) (ii) banks have more links and a more

heterogeneous degree distribution than firms (iii) the number of links tends to increase with the size

for both banks and firms, although there is no monotonic relationship between size and degree (iv)

clustering coefficients are usually quite small and there is an inverse relationship between degree

and clustering.

In these studies, the set of bank-firm credit relationships is represented as a bipartite network.

Bipartite networks are composed of two disjoint sets of nodes, such that every link connects a node

in the first set (banks) with a node of the second set (firms). Most of the literature on bank-firm

networks focuses on, as it was previously mentioned, the bank-projection. The bank- projection is

the network of co-financing banks, which is obtained by setting a link between banks when they

share common firms in the original bipartite network, providing an insight into the structure of

interconnectedness across the interbank system via its exposure to borrowers in the real sector.

However, while monopartite networks have been extensively studied, considerably less attention

has been paid to bipartite networks (for review see Dormann et al. (2009)). Many prior studies actu-

ally tend to analyze the projections with the current null models available for monopartite networks.

But such an approach suffers from several limitations because the information on the heterogeneity

in degree associated with the two sets of nodes in the original bipartite network is partially lost in

the one-mode projections, as demonstrated in the emerging literature on null models for bipartite

networks. For example, Saracco et al. (2015) extend the null model for monopartite networks by

Squartini and Garlaschelli (2011) to bipartite networks. They generate randomized ensembles of

bipartite networks based on the maximum entropy principle, where each network realization of the
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randomized ensemble is assigned a probability that maximizes the Shannon-Gibbs entropy under

the constraint that the randomized ensemble has on average the same degree sequences of the two

sets of nodes as the real network. By contrast, Tuminello et al. (2011) do not enforce the constraint

on the degree sequences in the bipartite network on average. They rather use the hypergeometric

distribution as null model for each link of the one-mode projections, which allows to take into

account the degrees of the endpoints in the bipartite network in order to statistically validate the

presence of a link in the projections.

In this paper, we provide an empirical analysis of the network structure of the Spanish credit

market from 1997 to 2007 based on the SABI (Sistema de Análisis de Balances Ibéricos) database.

We describe the yearly bank-firm relationships in terms of binary bipartite networks (loan exposures

are not available). To anticipate the results, our basic data-analytical findings are in line with pre-

vious literature: banks exhibit a fat-tailed distribution of degrees, while firms tend to have a single

or small number of lending relationships and the number of credit relationships is size dependent

(non monotonically) for firms. We also investigate the properties of the bank-firm network in terms

of degree correlation and clustering against a null-hypothesis preserving bank and firm degrees, but

the results are statistically indistinguishable from the null-model. We also find that a significant

persistence in bank-firm relationships from one year to the next exists.

We go beyond previous analyses by applying a core-periphery approach to the one-mode pro-

jection for banks. As it turns out, this framework provides a robust characterisation of the linkages

created via joint exposures with a small error score that could not be spuriously explained by other

popular network generating mechanisms such as purely random or scale-free networks. Our results

also hold against random networks preserving the degree sequences of the bipartite network of banks

and firms. To our knowledge this is the first time, that a core-periphery model has been applied to

this particular layer of connectivity of financial institutions. Another important finding is that the

structure of the bank-projection is strongly affected by the bank degrees in the original bipartite

network. We follow the approach by Tuminello et al. (2011) and we provide evidence that around

90% of bank relationships are explained as a consequence of the bank lending activity and it would

be therefore misleading to identify them as banks sharing preferentially the same borrowers.

This paper is organized as follows. Section 2 introduces the data set for the Spanish bank-firm

network. Section 3 describes the network measures used to describe the bipartite bank-firm net-

work. Section 4 presents the topological analysis for the bank-firm network and Section 5 for the

bank network. Section 6 reports the results of the estimation of the core-periphery model to the

bank network. Section 7 introduces the method used to track the time evolution of the preferential

bank relationships and the results obtained. Section 8 concludes.
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2.2 The data set and the structure of the Spanish banking sector

During the period from 2000 to 2007 the Spanish economy has experienced a period of high growth

(the so-called “Spanish economic miracle”), followed by a deep crisis. The Spanish system of banks

and firms has some peculiar aspects. First of all, we observe the presence of savings banks (the

so-called cajas de ahorros). They are historically focused on retail banking, especially on mortgage

lending to households, with little experience and expertise in commercial lending. The cajas have

historically been non-profit organization, since their profits must be either retained or distributed

in cultural and social community programs. The governance of savings banks is shared among rep-

resentatives of several stakeholder groups: public authorities (from local and regional government),

the founding entity, depositors and workers. Moreover, the banking system is characterized by com-

mercial banks and credit cooperatives. The former are for-profit organizations under shareholders

control, performing universal banking-services according to reasonable efficiency standards com-

pared with banks from other European countries. Credit cooperatives are the smallest and most

numerous of Spain’s financial institutions. They are quite different from other banks, although

they compete under bank legislation in loan, deposit and financial service markets. On one side,

they are customer-based in comparison to product-based banks, as they are created specifically for

small-size entrepreneurs based rurally in the least privileged areas of the country. On the other,

they are owned by their members, since every depositor becomes an owner.

In 1989 a national law allowed saving banks to open branches nationwide, removing any entry

restrinctions in geographical markets, hence their legal status became close to that of a commercial

no-profit organization, with a growth strategy in commercial lending. Therefore, the Spanish bank-

ing system transformed from a strongly regulated oligopoly in the 1960s and 1970s into a highly

liberalised system in the early 1990s, when commercial and savings banks can freely compete on

prices and services.

As a consequence of the liberalisation, savings banks increased significantly the number of lend-

ing relationships with SMEs from 26 percent in 1996 to 35 percent in 2005 (Montoriol-Garriga

(2008)), mainly in order to expand to new provinces.2 Illueca et al. (2014) have documented how

lending standards have deteriorated in the years before the crisis due to the attempts of the cajas

to get market access to other provinces.

As the global financial crisis started with the consequent burst of the real estate in Spain, a con-

siderable number of savings banks was converted into banks (cajas-banks) or merged with healthier

savings banks after a rescue operation financed by the bank restructuring fund (FROB) of the

Bank of Spain, amounting to about 16 billion euros (Etxezarreta et al. (2011)). This is a clear

evidence in support of the crucial role of financial liberalization processes (and the corresponding

2Most notably, lending activity of savings banks was concentrated on the building and real estate sector and
mortgages. Moreover, many of them had even their own real estate companies.
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fast geographic expansion of savings banks) in the Spain’s boom-bust.

Another point of interest of Spanish economy is the presence of few global player firms in

strategic sectors, the so-called national champions, such as: Telefonica, Banco Santander, Banco

Bilbao Vizcaya Argentaria (BBVA), Zara, Mango, Repsol, Ferrovial, Sacyr, Abertis and Aguas de

Barcelona. Most of them were previously public companies, that were privatised during the 90s.

During the boom period, the oligopoly power (or monopoly power in some cases) in the domestic

market gave them the chance to expand overseas throughout the credit provided by the interna-

tional markets. Clearly, it implied a growth of the external debt, due to an increase in both the

deficit in current account (at least in the short run) and the debt of financial institutions.

It seems interesting under this historical perspective to study the salient features and the evolu-

tion of the bank-firm credit network as it has developed over this time of major structural changes.

Here, we analyze a comprehensive data set extracted from the SABI (Sistema de Análisis de Balances

Ibéricos) database, which is based on the public commercial registry in Spain. This database con-

tains accounting information and additional information on firm characteristics on 268,485 Spanish

firms for the period from 1997 to 2007, which is the final phase of savings bank geographic expan-

sion. The available information we have on firms is: the size (total asset), the headquarter location

(province), the sector and the identity of banks with whom they have financial relations (Bank of

Spain Code). Most notably, in our analysis a firm is assumed to have a lending relationship with

a bank when a firm reports the bank ID number, although the data does not strictly indicate a

lending relationship, but just a provision of financial services (following Illueca et al. (2009) among

others). Moreover, we point out that we do not know the name of the bank, though the variable

“bank ID number” tracks the type of financial institution, i.e. commercial bank, savings bank and

credit cooperative.3 The data does not provide bank and loan information, i.e. the number of loans,

their maturity (short term or long term) and their amount. In total, 263 banks (128 commercial

banks, 52 savings banks and 83 credit cooperatives) and 268,485 firms were active in the lending

market at least once during the period of analysis, while only 22,149 firms were active in all of the

years in the sample period. The sample is comprised of 2,129,733 bank-firm links corresponding

to 542,913 bank-firm relationships. The maximum number of active firms is reached in 2006 with

206,106 firms corresponding to 349,054 bank-firm relationships.4 At the yearly level on average

firms exhibit 1.86 bank relationships and firms borrow from no more than ten banks and 53% of

firms have a single bank relationship, while 90% of firms maintain a relationship with a number

between one and three of banks. The average number of bank relationships is, therefore, very close

to the numbers reported for Italy and Japan using similarly comprehensive data sets (de Masi et

al. (2011), de Masi and Gallegati (2013)).

3The first digit of the bank ID number identifies the type of financial institution, i.e. the first digit is equal to 0
or 1, 2 and 3 if the bank is a commercial bank, savings bank or credit cooperative respectively.

4Foreign banks are not present in the data set.
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Figure 2.1: The number of banks and firms (left), the number of lending relationships for each
type of bank (commercial bank and savings bank) and for the total banks (middle) and the asset
growth rate of the real estate and construction firms, the other firms and the total firms (right)
in each year from 1997 to 2007.

From the left panel of Figure 2.1, we see a clear upward trend in the number of firms over

time, along with a slight and constant decrease in the number of banks. The overall numbers

reflect the boom in the period 2005-2007: in 2005 the number of firms was roughly four times

higher than in 1997, while the number of banks fell to their lowest level. However, we should

note that the overall downward trend of the number of banks was due to the the decrease in the

number of the commercial banks, while the number of savings banks remained almost unchanged.

This suggests that the main reasons for the decrease of the number of commercial banks are the

mergers and acquisitions (M&A) within the commercial banking.5 It is important to mention that

the ownership structure of savings banks implies that they cannot be acquired by other banks

(i.e. commercial banks) or companies outside the savings bank sector, as they are owned by the

respective local or regional public authority. Moving to the number of lending relationships in the

central panel of Figure 2.1, we observe, as expected, the same general pattern as with the number

of firms: the number of lending relationships increases susbstantially over time, especially between

2005 and 2007 it is roughly three times higher than in 1997. Interestingly, the lending activity of

savings banks grew at a considerably faster rate than that of commercial banks (4.48% between

1997 and 2007, which was roughly twice the increase of lending by commercial banks).

If we consider the evolution of capital of real estate and construction firms in the right panel

of Figure 2.1, we also observe that these growth rates soared during the years of higher increase

of wholesale financing, peaking in 2003 with a growth rate of 44.6%. Compared to real estate

and construction firms, the asset growth rates of the other firms are lower and much more stable,

with an average annual growth rate of around 8%. We remark that we focus on total assets of

non-financial firms6 active in any of the years in the sample period, which are winsorized at the

5For instance, Montoriol-Garriga (2008) documents that in the period 1996-2005 40 mergers and acquisitions
(M&A) took place: 24 mergers were between two commercial banks, 8 acquisitions of a commercial bank by a
savings bank, 4 mergers between two savings banks and 4 mergers involved one official credit institution.

6In particular, we dismiss companies from the following sectors: Depository Institutions, Non-depository Credit In-
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98th percentile of the distribution of the average annual asset growth rate. As a result, our final

sample consists of 22,149 firms. This assumption is, however, quite restrictive, as the composition

of banks changes over time.

2.3 Network analysis

We start with some basic definitions: a network (or graph) g is defined by a pair of sets (N, E),

which stands for the set N = 1, ..., n of nodes (or vertices) and the set E of edges (or links)

respectively. For an edge e = uv ∈ g, the vertices u and v are its ends.

The order of g is the number of nodes and the size of g is the number of edges established in

the network.

A graph is directed if the edges are a set of ordered pairs. That is, the edges have a direction

uv 6= vu. Otherwise, the graph is undirected. A further generalization is to assign a value w(e) to

each one of the edges e. In this case, we would speak of a weighted graph.

A network g is a bipartite (or two-mode) network if the set N has a partition to two subsets X

and Y such that each edge uv ∈ g connects a vertex of X and a vertex of Y. That is, all the edges

are between nodes that are separated into two classes of nodes (two-mode). In this case, g is (X,Y)-

bipartite and can be “projected” into the two one-mode projections. The X and Y-projections are

two new graphs composed of nodes belonging to the same set, where there is a link between two

nodes if they share common links in the original (X,Y)-bipartite graph.

In addition to the graphical visualization, a network is represented from a mathematical point

of view by an adjacency matrix A, where the element aij = 1 means that an edge between nodes i

and j exists. Otherwise, aij = 0.7 For a weighted graph, a wij element of the weighted matrix W

is the weight (a real number) associated with the edge between nodes i and j.

In the following, we will introduce a list of metrics which are commonly used to describe the

topology of financial networks.

2.3.1 Density

The density (or connectivity) of a network is defined as the proportion of actual links (E) relative

to the total possible number of links. For an undirected network, the density is computed as:

stitutions, Security and Commodity Brokers, Dealers, Exchanges and Services, Insurance Carriers, Insurance Agents,
Brokers and Services (NACE Rev.2 codes 64,65,66).

7In everything that follows, bold capital letters refer to matrices and bold lower-case letters to vectors.
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ρ =
2E

N(N − 1)
(2.1)

This metric has to be divided by two for a directed graph. The index is closer to 1, as the

network gets denser. In the extreme case where all the possible edges are established, the graph is

complete and the index is equal to 1. Conversely, the graph with no edges has an index of 0.

2.3.2 Degree

The degree of a node i measures the number of nodes that a node is connected to. The degree ki

of the node i is defined as:

ki =
∑

j∈N(i)

aij (2.2)

where N(i) is the set of neighbors of vertex i.

In a directed network, the out-degree kouti is the number of links which originate from the node

i and the in-degree kini is the number of links which end at the node i.

2.3.3 Assortativity

Assortativity or degree correlation refers to the similarity between the degree of a node i and the

degrees of its neighbours (Newman (2003)):

knn(i) =
1

ki

∑
j∈N(i)

kj (2.3)

A network is assortative if nodes with high-degree are more likely to have links with nodes of

similar degree, i.e. knn(i) is increasing with ki. Conversely, a network is disassortative when nodes

with high degrees are more likely to be connected to nodes with low degrees (and vice versa), i.e.

knn(i) is decreasing with ki. In a uncorrelated network, there is no dependence between the degree

of a node and the degrees of its neighbors.
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For bipartite networks, the Pearson correlation is widely used to compute the degree assortativ-

ity because in bipartite networks nodes are divided in two classes of nodes with two different sets

of degree α and β:

r(α, β) =
E−1

∑
i

[
(jαi − jα)(hβi − hβ)

]
σασβ

(2.4)

where E the number of edges, jαi and hβi the α and β degree of the end vertices of edge i,

jα = E−1
∑
i j
α
i , σα =

√
E−1

∑
i (jαi − jα)

2
, hβ and σβ similarly defined.

2.3.4 Clustering coefficient

The clustering coefficient is a measure of the density of the connections around a vertex. In a binary

undirected network the clustering coefficient of a vertex i is defined as (Watts and Strogatz (1998)):

ci =
2

ki(ki − 1)

∑
j,h

aijaihajh (2.5)

The clustering coefficient represents the proportion of nearest neighbors of a node i, which are

linked to each other and it is calculated as the fraction of triangles present in the network out of

all the possible triangles that could be formed. The average clustering coefficient C measures the

density of the triangles in the system:

C =
1

N

N∑
i

ci (2.6)

The traditional clustering coefficient cannot be used to quantify the clustering pattern of a

bipartite network since it always gives a zero value. Lind and Herrmann (2006) propose a variant

counting the rectangular relations instead of triadic clustering, which can be applied to bipartite

networks. The density of cycles of size 4 surronding a node i computes the number of squares over

the total number of possible squares including the node i and its pairs of neighbors, say m and n

with degree km and kn respectively:
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cc2(i) =

∑ki
m=1

∑ki
n=m+1 qimn∑ki

m=1

∑ki
n=m+1

[
(km − ηimn)(kn − ηimn) + qimn

] (2.7)

where qimn is the number of common neighbors between m and n (not counting i) and ηimn =

1 + qimn + θmn with θmn = 1 if neighbors m and n are connected with each other and 0 otherwise.

2.3.5 Components of a network

An undirected network is connected if there is a path connecting every pair of nodes, i.e. every

pair of nodes in the network is reachable. Otherwise, the network is disconnected. A disconnected

network can be partioned into a set of connected components (CC). All nodes within each component

connect to each other via undirected paths, while no paths between nodes in different components

exist. Let g be a graph and C(g) the set of components of g:

g =
⋃

g∈C(g)

g (2.8)

Analogously, in a directed network a component can be strongly connected (SCC) if each pair

of nodes is connected via directed path or weakly connected (WCC) if only undirected paths are

considered.

2.3.6 Similarity measure

For binary data, it is standard to use the Jaccard index as the similarity measure between two

networks. It can be calculated as:

JI =
S11

S01 + S10 + S11
(2.9)

where S11 refers to the number of links which are present both in the two networks. S01 denotes

the number of links which are not present in the first network, but they are present in the second

one and vice versa for S10.
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2.4 The topology of the bank-firm network

Given the restrictions of our data set to binary observations, the structure of the set of firm-bank

relationships can be studied in terms of the statistical and topological properties of an undirected

bipartite network. We start by considering the degree distributions of banks and firms.

Figure 2.2: Gini coefficient of bank degree distribution between 1997 and 2007 for
bank-firm network (left) and complementary cumulative distribution function (CCDF)
of bank degrees kb in logarithmic scale for bank-firm network in year 1997 (right).

degree distribution for bank-firm network

statistics bank firm

median 34.50 2.00
mean 415.55 2.04
max 11,180 10.00
75th percentile 256.25 3.00

Table 2.1: Descriptive statistics of the distribution of bank degrees (left column) and firm
degrees (right column) for the bank-firm network in the year 1997.

The complementary distribution function of the degree kb and firm degree kf for the year 1997

are plotted in the right panel of Figures 2.2 and 2.3 respectively.

The reason we will restrict ourselves to comment on the results concerning only the year 1997

is that they are comparable to those for the other years in the sample period (not reported), since

the inequality of the distribution of bank degrees and firm degrees remains substantially unchanged

over time, as indicated by the Gini coefficient in the left panel of Figures 2.2 and 2.3 respectively.

In 1997 our data set is quite similar in its order of magnitude to that of De Masi and Gallegati

(2012) on the Italian bank-firm system: 46,938 versus 39,194 firms, 237 versus 508 banks. As
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Figure 2.3: Gini coefficient of firm degree distribution between 1997 and 2007 for
bank-firm network (left) and complementary cumulative distribution function (CCDF)
of firm degrees kf in logarithmic scale for bank-firm network in year 1997 (right).

shown by De Masi and Gallegati (2012), firms tend to have a single or a small number of lending

relationships (the largest kf is 10). For instance, Table 2.1 shows that 75% of firms have less than

three lending relationships and the median number of relationships is 2. In contrast, we observe

a much more heterogeneous behaviour among banks: the bank degree ranges over four orders of

magnitude from 1 to 11,180. In addition, we see that the banks’ degrees in the right panel of

Figure 2.2 display a fat-tailed distribution. Most of the banks indeed finance a restricted number

of firms, while some banks finance a substantially larger number of firms. These are the hubs of

the network. The default of such a hub could spread to firms through network connection creating

default cascades in both banking and real sector.

We then analyze the correlation between the firm degrees (number of credit relationships) versus

the firm size. We observe that size is weakly correlated with the total degree of firms (correlation

coefficient around 0.2). This indicates that there is only a weak relationship between the two

variables. Indeed, single and multiple lending relationships are present for both small and large

firms. In Figure 2.4 we consider the degree distributions for firms, dividing them into four equally

populated groups on the basis of their balance sheet size.

According to the colours specified in the caption, we see an heterogeneous lending behaviour of

firms related to the same group: both single (kf = 1) and multiple (kf > 1) bank relationships are

present in all the four groups. Nevertheless, the tendency to be connected to multiple lenders is

stronger for large firms, since the distribution of firm degree is shifted towards higher values of kf

as the size increases.

We now turn to the network metrics, introduced in the previous section, for bipartite networks
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Figure 2.4: Frequency distribution of firm degrees kf for the
year 1997. We indicate firms in increasing order of the size
with the colours: blue (less than 450), green (450-1,165), yel-
low (1,165-3,475) and red (over 3,475). The size is expressed in
thousands.

to characterize the structure of the bank-firm lending market. Three measures of the network

structure with direct economic interpretation are: the degree assortativity, the Jaccard index and

the clustering coefficient. The degree assortativity, quantified by the Pearson correlation coefficient,

captures the lending pattern and two bordeline cases are possible. The first is that highly (lowly)

connected banks prefer to lend to highly (lowly) connected firms. The second is that highly (lowly)

connected banks prefer to lend to lowly (highly) connected firms. The preference of the first lending

pattern is captured by a positive Pearson correlation coefficient, while the second lending pattern

is captured by a negative Pearson correlation coefficient. The Jaccard index of two networks for

adjacent years measures the stability of the bank-firm relationships over time. The persistence of

links implies that borrowers are not selected “randomly”, but stable lending relationships between

firms and their ”house bank” do exist. Finally, the clustering coefficient, in its bipartite form

proposed by Lind and Herrmann (2006), is the probability that a bank lends to two firms, which

have a common bank and it thus measures the tendency of banks to finance a common subset of

firms.

In order to be able to control for spurious effects, we compare the observed statistics of the bank-

firm network with the properties expected from a null model. The chosen null model preserves

the degree of each node in the real network (i.e. randomizing the network while preserving its

row and column-wise sums) and it thereby enables us to test if the properties of the network

are a mere consequence of the particular (bivariate) degree distribution or whether they convey

additional information on the structural characteristics of the network. We generate the random
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networks by adapting the switching algorithm by Milo et al. (2004) to bipartite networks. The

switching algorithm uses a Markov chain and proceeds through a series of Montecarlo switching-

steps to generate random networks starting from a one-mode network without changing its degree

distribution. The same randomization algorithm can be easily adapted to a bipartite network g

containing a set E of edges and two classes of nodes X and Y as follows:

1. randomly select two edges (a, b) and (c, d) ∈ E with a, c ∈ X and b, d ∈ Y

2. if a 6= c, b 6= d, (a, d) /∈ E and (c, b) /∈ E then:

� add edges (a, d) and (c, b) to E

� remove edges (a, b) and (c, d) from E

otherwise do not modify the network

3. iterate steps 1 and 2 QN times where Q = 100 and N the number of edges. Note that

switching steps which are not performed are still counted.

Milo et al. (2004) empirically show that the minimum number K of switching steps required is

100 times the number of edges (K = 100N) in order to minimize the initial bias of the Markov

chain. Since our adjacency matrix is very large (i.e. for the year 2006 195 banks and 206,453 firms),

the rewiring procedure is computationally expensive and we therefore generate only 100 random

networks.8 To assess the significance of empirical statistics, we calculate their one-sided p-value as

the fraction of cases (i.e. the randomized networks with preserved degree sequences) that have a

equal or higher value of the network metrics.

Figures 2.5, 2.6 and 2.7 summarize the results. As can be seen from the plots, we observe

zero-correlation between bank and firm degrees that is virtually zero, high persistence of bank-firm

relationships from one year to the next and relatively small clustering coefficient of about 0.1.

However, all the results are significant at 1% statistic level, but only the results of the Jaccard

index are distinctly different from the null model: the rewiring procedure completely destroys the

stability of bank-firm relationship, which is observed empirically between consecutive years from

1997 to 2007. As shown in Figure 2.6, the Jaccard index at lag one between the original networks

is 10 times higher than the Jaccard index at lag one between the rewired networks, indicating that

the stability of bank-firm relationships from one year to the next is not imposed by the constraints

of the degree distributions but results from active choices of counterparties. In particular, we see

a high degree of stability of lending relationships with a Jaccard index around 0.7 between two

successive years9 and a progressive decline with the increase of the lag. Note that our random

8The random networks are generated by a greedy algorithm by using C++ Boost Graph Library.
9Note that the lending boom in 2005 clearly leads to a decline of the Jaccard index.
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networks could not reproduce either the exact values of the degree correlation or the exact values

of the clustering coefficient. It seems interesting that the real network displays systematically a

slightly higher clustering tendency than the random networks. This is because more banks and

firms are simultaneously active in the temporal vicinity rather than for years much earlier or later.

Figure 2.5: Degree correlation (Pearson correlation) of the bank-firm
network and the average Pearson correlation and standard deviations (er-
ror bars) of 100 realizations of random bank-firm networks with preserved
degree-sequences.

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

pearson r -0.002* -0.007* -0.042* -0.033* -0.031* -0.0079 * -0.002* 0.012* 0.046* 0.041* 0.040*

simulation average -0.082 -0.083 -0.103 -0.113 -0.114 -0.102 -0.102 -0.099 -0.067 -0.069 -0.067
(0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.002) (0.001) (0.001) (0.002) (0.001)

Table 2.2: Degree correlation (Pearson correlation) of the bank-firm network and average Pearson correla-
tion of 100 realizations of random bank-firm networks with preserved degree-sequences with the associated
standard errors in parenthesis. The asterix denotes statistical significance at 1% confidence level.
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Figure 2.6: Contour plot of the Jaccard Index between all pairs of years in the sample period
1997-2007. Jaccard Index for the original bank-firm network (left) and the average Jaccard Index
of 100 realizations of random bank-firm networks with preserved degree-sequences (right).
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1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

1997 0.742* 0.546* 0.398* 0.335* 0.295* 0.256* 0.215* 0.116* 0.091* 0.088*

1998 0.657* 0.475* 0.397* 0.336* 0.290* 0.244* 0.131* 0.112* 0.099*

1999 0.615* 0.514* 0.415* 0.356* 0.299* 0.154* 0.132* 0.118*

2000 0.693* 0.543* 0.461* 0.384* 0.188* 0.162* 0.144*

2001 0.624* 0.525* 0.435* 0.212* 0.181* 0.161*

2002 0.796* 0.638* 0.303* 0.259* 0.226*

2003 0.769* 0.357* 0.303* 0.263*

2004 0.429* 0.357* 0.306*

2005 0.732* 0.579*

2006 0.755*

(a) Real Jaccard Index

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

1997 0.061 0.058 0.053 0.049 0.041 0.038 0.034 0.020 0.019 0.017
(0.0004) (0.0005) (0.0004) (0.0004) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002) (0.0002)

1998 0.063 0.059 0.054 0.045 0.041 0.037 0.023 0.021 0.019
(0.0004) (0.0004) (0.0003) (0.0003) (0.0004) (0.0003) (0.0002) (0.0002) (0.0002)

1999 0.076 0.069 0.057 0.052 0.047 0.029 0.026 0.024
(0.0005) (0.0005) (0.0003) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)

2000 0.084 0.069 0.062 0.057 0.035 0.032 0.030
(0.0004) (0.0004) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)

2001 0.074 0.067 0.061 0.038 0.035 0.032
(0.0004) (0.0004) (0.0004) (0.0004) (0.0002) (0.0001)

2002 0.076 0.069 0.044 0.041 0.038
(0.0002) (0.0003) (0.0003) (0.0002) (0.0002)

2003 0.075 0.048 0.045 0.041
(0.0004) (0.0003) (0.0002) (0.0002)

2004 0.053 0.049 0.045
(0.0002) (0.0002) (0.0003)

2005 0.060 0.054
(0.0002) (0.0002)

2006 0.062
(0.0002)

(b) Rewired Jaccard Index

Table 2.3: Jaccard Index between all pairs of years in the sample period 1997-2007 and the asterix
denotes statistical significance at 1% confidence level (Panel A). The average Jaccard Index of 100
realizations of random bank-firm networks with preserved degree-sequences with the associated
standard errors in parenthesis (Panel B).

2.5 The bank network

We now extract the bank-projection from the bipartite network of banks and firms. The bank-

projection is the network of co-financing banks, which is only composed of one kind of node (banks)

and a link between two banks exists whenever they are jointly exposed via loans to the same
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Figure 2.7: Bipartite clustering coefficient in logarithmic scale for banks
and average bipartite clustering coefficient and standard deviations (er-
ror bars) of 100 realizations of random bank-firm networks with preserved
degree-sequences.

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

clustering 0.083* 0.088* 0.10* 0.139* 0.142* 0.143* 0.147* 0.149* 0.133* 0.136* 0.119*

simulation average 0.056 0.058 0.075 0.092 0.091 0.083 0.081 0.078 0.067 0.070 0.072
(0.005) (0.004) (0.005) (0.006) (0.006) (0.006) (0.005) (0.005) (0.005) (0.004) (0.004)

Table 2.4: Bipartite clustering coefficient for banks and average bipartite clustering coefficient of 100
realizations of random bank-firm networks with preserved degree-sequences with the associated standard
errors in parenthesis. The asterix denotes statistical significance at 1% confidence level.

firms. The bank network is undirected and unweighted and can be represented as a (n× n) square

matrix B, where n is the number of banks. An element bij of this matrix equal to 1 indicates that

bank i and bank j have at least one common firm. The bank network is graphed in Figure 2.8.

The Kamada-Kaway algorithm (Kamada and Kawai, 1989) has been employed, which positions

more interconnected nodes spatially closer. At first glance, the bank network seems to have a core-

periphery structure: a small set of core nodes highly connected and a periphery, where the nodes are

not connected to each other but only to the core. Moreover, we see a noticeable color patterns from

the core to the periphery. The core is dominated by the commercial banks (yellow nodes), which

are highly interconnected (closer placement on the layout) and linked to the peripheral nodes. The

rings of nodes standing just a notch outside the core are mainly the savings banks (green nodes),

while the outer peripherical nodes are principally the credit cooperatives (red nodes). Moreover,

the banks in the periphery are connected to the other banks in the core, but not to each other,

suggesting a strongly connected network on the one hand and a very sparse adjacency matrix on

the other hand. Indeed, the bank projection turns out to be: (i) a fully connected network in each
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period, i.e. there are no isolated components and every bank is reachable from every other bank by

‘travelling’ along the edges10; (ii) a sparse network with an average density equal to 0.168± 0.012

(mean ± standard deviation over the sample period).

Next, we report the distribution of the number of the number of co-financing banks at annual

time scale. Again, we will focus on the year 1997 because the Gini coefficient in the left panel of

Figure 2.9 shows that dispersion of degrees remains almost constant over the sample period. In

the right panel of Figure 2.9 we observe a fat-tailed degree distribution: a small number of banks

finances at least one firm in common with a large number of banks.

Figure 2.8: The bank network in the year 1997. 233 nodes and 4,312 undirected links. Nodes are
colored according to the type of bank: yellow commercial banks (109), green savings banks (50)
and red credit cooperatives (74). The network is represented using Kamada-Kaway algorithm.

Indeed, a very small number of banks has at least one firm in common with 83% of the total

banking system (192 banks), while 75% of banks have firms in common with less than 50 banks

(see Table 2.5). This discontinuity in degree is a further indication for a distinction between core

and periphery in the bank network.

10Note that the same result holds for the firm projection, that forms a fully connected network in each year of the
sample except for some disconnected pairs of firms.
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Figure 2.9: Gini coefficient of degree distribution between 1997 and 2007 for bank
network (left) and complementary cumulative distribution function (CCDF) of degrees
kb for bank network in year 1997 (right).

bank network

statistics degrees weights

median 23.00 152
mean 37.81 614.28
max 192.00 9,395
75th percentile 50.50 428

Table 2.5: Descriptive statistics of the degree (left column) and the weight (right
column) distribution in the year 1997 for the bank network. The degrees are the
number of co-financing banks and the weights are the number of common firms.

We now turn to the degree correlation. This is measured here by the correlation between the

number of banks with which a bank shares the same firms versus the number of banks with which its

co-financing banks share the same firms. We describe the degree correlation of the bank network in

terms of the assortativity coefficient (Newman (2003)). Figure 2.10 reports the assortativity of the

bank projection together with the average assortativity calculated on 100 simulations of the bank

projection preserving the bank and firm degrees of the original bipartite network. As we can see,

both the bank network and the simulated networks display disassortativity around values of −0.4

with negligible variance over the sample period. This implies that the tendency of high-degree banks

(banks financing firms in common with several other banks) of sharing firms with low-degree banks

(banks financing firms in common with a few banks) is a consequence of the degree distributions

of the bank-firm network and it is not an authentic property of the bank projection. Finally, the

fact that the bank network displays disassortativity is an additional indication of a core-periphery

structure because it reflects the tendency of low-degree banks (the periphery) to be attached to

high-degree banks (the core).
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Figure 2.10: Assortativity of the bank projection and the average assor-
tativity and standard deviations (error bars) of 100 simulations of the bank
projection preserving the bank and firm degree-sequences of the original
bipartite network.

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

assortativity -0.433* -0.433* -0.433* -0.438* -0.447* -0.448 * -0.459* -0.453* -0.449* -0.454* -0.459*

simulation average -0.451 -0.454 -0.449 0.465 -0.467 -0.463 -0.467 -0.468 -0.448 -0.454 -0.461
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Table 2.6: Assortativity of the bank projection and average assortativity of 100 simulations of the bank
projection preserving the bank and firm degree-sequences of the original bipartite network. Standard
errors indicated in parentheses. The asterix denotes statistical significance at 1% confidence level.

2.6 Core-Periphery structure in the bank network

In the previous section we have argued that the disassortavity and the heterogeneity in degrees

provide a first indication that the bank network displays a core-periphery (C-P) structure. Now

we use the following framework and we estimate the structure of a C-P model and its statistical

significance against standard random networks.

Core-periphery network models were introduced by Borgatti and Everett (2000). Craig von

Peter (2014), Fricke and Lux (2015) and van Lelyveld and in’t Veld (2012) have recently applied

the C-P models to interbank networks. The basic idea of a C-P model is that a network can be

divided into a core and a periphery: the core consists of a small set of Nc nodes highly connected

to each other and the periphery is made of Np nodes which are connected to the core without

reciprocal connections.

In blockmodelling terms, an “ideal” C-P structure M contains a core/core region as a 1-block

and a periphery/periphery region as a 0-block in the upper left-hand side and lower right-hand side
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of the adjacency matrix, respectively. The 1-block denotes a (Nc ×Nc) submatrix of ones and the

0-block denotes a (Np ×Np) submatrix of zeros.

M =

(
CC CP

PC PP

)
=

(
1 CP

PC 0

)

The CC-block is a fully connected subnetwork where each core-node is connected to all core-

nodes and the PP-block is an empty subnetwork where there are no links between the periphery-

nodes. The relations within the core and the periphery can be specified or alternatively treated as

missing data without any constraints on the off-diagonals blocks CP and PC, as it is recommended

by Borgatti and Everett (2000).

We use this approach and we use a C-P model without any constraints on the density of the

CP and PC block. The objective is therefore to identify the optimal core-periphery bipartition C∗,

which maximizes the density in the core-block and minimizes the density in the periphery- block,

without regard for the density in the off-diagonal blocks. In this way, a data-driven identification of

the ‘core’ banks is achieved without prespecifying their exact number. We employ the algorithm by

Lipp (2013) to fit the C-P model to the bank network, where the subdivision of nodes into a core and

a periphery depends exclusively on the degree distribution of the network, moving systematically

nodes with a high degree into the core. The measure of distance between the bank network B

and the ‘ideal’ C-P model M of the same dimension is the total error score. The total error score

aggregates the inconsistencies between the bank network and the ideal C-P structure. A missing

link in the CC-block represents an inconsistency with respect to the model, as a core bank would not

be connected with another core bank. Similarly, the existence of a link in the PP-block represents

an inconsistency, as a periphery bank would be connected with another periphery bank.

The aggregate inconsistencies across the CC and PP-block read:

E =

(
ECC ECP

EPC EPP

)
=

(
[c]Nc(Nc − 1)−

∑
i,j∈C aij 0

0
∑
i,j /∈C aij

)

The total error score e(C) aggregates the inconsistencies across the main diagonal blocks CC

and PP and we normalize it to the number of links N:

e(C) =
ECC + EPP

N
(2.10)

The optimal core C∗ is therefore the set of banks that produces the smallest error score:
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C∗ = argmin e(C) = {C ∈ Γ | e(C) ≤ e(c)∀c ∈ Γ} (2.11)

where Γ denotes all strict and non-empty subset of population {1, 2, . . . , n}.
Next, we report the results of fitting the discrete C-P model with arbitrary structure of the CP

and PC blocks to the bank network. For the reference year 1997, we find an optimal core C∗ of 37

banks, which corresponds to 15.54% of banks active in the lending market. The error score is 19.2%

of network links, where the majority of errors occur because there are links within the periphery11.

Most importantly, the core we estimated is highly persistent. In Figure 2.11 we show that the size

of the core and the associated error score are stable over time with a core size of 32.8± 2.2 banks

and an error score of 19.8± 0.6%.

Figure 2.11: The size of the estimated core (left axis) and
the associated error score expressed as a percentage of links
(right axis) for the bank network.

Moreover, the composition of banks within the core is stable over the sample. On average 94.4%

of the core banks remains in the core the next year. Likewise, the banks in the periphery also tend

to remain in the periphery over time, as shown by the values close to unity on the main diagonal of

the transition matrix in Table 2.7. In Figure 2.12 we also show the transition probabilities between

core and periphery for each single year, which provides further evidence that the C-P structure is

highly stable over time.12

11The total number of errors is 830, comprising 43 errors for the CC-block (missing links within the core) and 787
for the PP-block (links within the periphery).

12Table 2.7 and Figure 2.12 contain ’entry/exit’ as an additional category since we have to take into account the
changing composition of the population.
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Figure 2.12: Transition probabilities for each year of the
sample. For instance, prob(C|P) in yellow indicates the
probability that a bank moves from the periphery to the
core the next year.

Ct Pt Et

Ct−1 0.944 0.012 0.044

Pt−1 0.010 0.919 0.070

Et−1 0.000 0.108 0.892

Table 2.7: Transition matrix. The first row indicates the probability of a core bank in (t− 1)
(Ct−1) of remaining in the core in t (Ct), moving to the periphery (Pt) or exiting from the market
(Et). The column E takes account of the exit from the sample of banks having co-financing
relationships and the reason could be (i) exit from the lending market (ii) M&A or failures (iii)
not sharing common lending relationships anymore. These probabilities are aggregate values
over the sample, for instance P (Ct | Ct−1) reads: on average 94.4% of the core banks remain in
the core the next year.

As a last step, we test the significance of the core we estimated for the reference year 1997 against

standard network structures as explanatory models. The first class of networks is the Erdös-Rényi

(ER) random graphs. An ER random graph is obtained by connecting any two nodes with a fixed

and independent probability p. Any realization of such a network has an expected density p. The

degree distribution follows a Binomial, converging to Poisson distribution for large networks. The

second class of standard networks is the scale-free (SF) networks whose degree distribution follows

a power law. The most popular mechanism to generate SF networks is preferential attachement

introduced by Barabasi and Albert (1999), where new nodes preferentially attach to existing nodes

with probability proportional to the degrees of the target node.

We therefore generate 1,000 ER random graphs and SF networks with the same dimension and

density as the bank network (n = 233, d = 0.15). For the SF networks we have used the algorithm

by Goh et al. (2001) with scaling parameter α = 2.3. We then fit the C-P model to each realization

and we compute the error score distribution for both random networks. Figure 2.13 compares the
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Figure 2.13: Error score from fitting the C-P model to the bank network
for the reference year 1997 (e(C∗) = 0.192 shown as a red arrow) versus
the empirical distribution function of error score for 1,000 Erdös-Rényi
(ER) random graphs (black) and scale-free (SF) networks (blue) with the
same dimension and density as the bank network. Error scores have been
normalized to the number of links.

error score of the bank network against the bootstrap distributions obtained for the two random

networks. The ER random graphs exhibit error scores concentrated around 0.77, while the SF

networks scores around 0.56. As expected, the error score of SF networks is closer because SF

networks are generated by preferential attachement mechanism producing a few highly connected

hubs, which leads to network structures similar to C-P structures. Overall, the error score of the

empirical bank network e(C∗) = 0.192 is lower than any possible percentile of the error distribution

for both random networks and, hence, the identified C-P structure could not have been obtained

spuriously from a random structure of links following one of these two generating mechanisms.

It is interesting to underline that the fit of the C-P model to the bank projection (in terms of

the error score) seems to be even better than the fit of the C-P model to bank credit networks

(e.g. Fricke and Lux, 2015). Overall, this result indicates that the C-P model might be an useful

model for different layers of the complex universe of connections of the banking sector. Note that

the closeness to a C-P structure, however, does not imply that the core would be the same for

different network layers. Indeed, Langfield et al. (2013) demonstrate that different banks turn out

to constitute the core of the UK banking system for different dimensions of network connections.

Finally, we also test the C-P structure against random bank networks preserving bank and

firm degrees of the original bipartite network. The average error score over 100 rewired networks
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is 0.056 ± 0.003, which represents an almost perfect fit. However, the average size of the core is

74.72 ± 0.87 banks (approximately the double of the core of the real network) and we, therefore,

conclude that the fit of the bank projection to a C-P structure is not attributed to the degree

distributions of the bank-firm network.

2.7 Quantifying preferential bank relationships

While we have used the binary projection for the estimation of the C-P model, we now consider the

weighted projection of the bank network. We, therefore, define a (n× n) square matrix W, where

the entry wij indicates the number of firms that bank i and bank j finance in common.

The distribution of the number of common firms for the year 1997 is plotted in the right panel

of Figure 2.14. Again we have restricted our analysis to just one year because the Gini coefficient in

the left panel of Figure 2.14 shows that the dispersion of the weights (number of common firms) is

almost constant over the sample period. We see that the distribution of the weights is fat-tailed: a

small percentage of banks shares around 9,000 firms in common with other banks. In contrast, the

median and the 75th percentile values are considerably smaller (152 and 428 respectively), pointing

towards a pronounced heterogeneity in the distribution of the number of common firms.

Figure 2.14: Gini coefficient of weight distribution between 1997 and 2007 for bank
network (left) and complementary cumulative distribution function (CCDF) of weights
(wb) in logarithmic scale for bank network in the year 1997 (right). The weights are
the number of common firms.

The fat-tailed distribution indicates clearly that a small set of banks shares a very large number

of firms with other banks and this is a hint at the existence of preferential bank relationships, i.e.
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pairs of banks preferentially sharing the same firms.

However, the distribution of the number of common firms could merely reflect the strong het-

erogeneity in the number of lending relationships of banks (see Figure 2.2). Again, the question

is to isolate the effect of the heterogeneity in the degrees of banks in order to identify structural

features that are not an automatic consequence of the construction of a network composed of two

populations (banks and firms) with very heterogenous members. In order to asses the significance

of the observed co-financing bank relationships, we thus compare the actual bank network against a

random null hypothesis, which takes into account the heterogeneity of banks in terms of degrees in

the bank-firm network. For each pair of banks, say i and j, we test the observed number of common

firms ηij against an hypergeometric null hypothesis by using the statistical test by Tumminello et

al. (2011).

Under the null hypothesis the probability of observing ηij common firms between bank i and j,

given their number of lending relationships ηi and ηj respectively, reads:

H(ηij |N, ηi, ηj) =

(
ηi

ηij

)(
N − ηi

ηj − ηij

)
(
N

ηj

) (2.12)

The basic idea is that H(ηij |N, ηi, ηj) provides the probability that ηij are common firms with

bank i in a random sample of ηj firms drawn from the N firms present in the lending market, where

ηi firms belonging to bank i are present.

All in all, the hypergeometric distribution is an appropriate random benchmark because first

it takes into account the heterogeneity of banks in terms of the number of lending relationships.

Second, the hypergeometric distribution gives the same probability of bank j having ηij common

firms with bank i and bank i having ηij common firms with bank j given their number of lending

relationships, since we get the same probability exchanging ηi and ηj :

H(ηij |N, ηi, ηj) = H(ηij |N, ηj , ηi) (2.13)

We therefore associate the right tail p-value with the observed number ηij of common firms

between bank i and bank j as:
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p(ηij) =

Min[ηi,ηj ]∑
X=ηij

H(X|N, ηi, ηj) (2.14)

We calculate the right tail p-value because we are interested in testing whether the co-financing

relationship between bank i and bank j is over-represented in the data respect to the null hypothesis

of independence of the financing decisions of each pair of banks. Given a significance level s, the

co-financing relationship between bank i and j is statististically significant if p(ηij) < s. In this

case, we say that bank i and bank j preferentially share the same firms. By calculating the p-value

for all the E edges in the bank network, we therefore run E statistical tests and we use the False

Discovery Rate (FDR) as a correction for multiple tests at a statistical significance level of 0.05.

We thus refer to the network of the significant bank relationships as the FDR network.
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Figure 2.15: The FDR network for the year 1997. The colours of the nodes indicate the node
membership to the 7 largest partitions detected by InfoMap (unweighted option).

In Figure 2.15 we show the FDR network for the year 1997. The nodes in the network are

coloured according to the 7 largest partitions detected by using the InfoMap method by Rosvall and

Bergstrom (2008). We see that reducing the weighted bank projection into a simpler binary network

composed only of the significant co-financing bank relationships reveals a clustered structure. Figure
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Figure 2.16: The number of links in the original bank network (left) and in the FDR network
(middle) from 1997 to 2007. The ratio between the number of links in the FDR network and in
the original bank network expressed as a percentage from 1997 to 2007 (right).

2.15 also shows that a core of the clusters emerges from the FDR network. We therefore compare

this core with the core of the binary projection estimated in Section 2.6. We find that half of

the banks in the core of the bank projection is also present in the core of the clusters, meaning

that this small sample of banks (around 15 banks) identifies the authentic lobby group of the

credit market, that acts as “influencer” of the lending decisions. The middle panel of Figure 2.16

reports the evolution over time of the significant bank relationships. The FDR network retains only

14.6 ± 2.2% of the links of the original bank network for the considered time period (right panel

of Figure 2.16), suggesting that the heterogeneity of banks in the number of lending relationships

plays a crucial role in determining the structure of the co-financing bank relationships. Moreover,

the original network and the FDR network show a similar trend with an approximately constant

decline of the number of links. As expected, when considering the ratio between the number of

links of the FDR network and the original network we find a drop in ratio of significant links after

the Spanish lending boom.

Note, however, that the structure of Figure 2.16 emerges only after discarding the majority of

links which are not “conspicuous” or are not in full agreement with a random draw of the bank-firm

links given the existing degree distributions.
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2.8 Conclusions

The structure of the credit relationships in Spain has been scrutinized, applying a network approach

to a yearly series of bank-firm data from December, 1997 to December, 2007.

The Spanish credit market has the following main topological features. First, banks have more

lending relationships and a more heterogeneous distribution of the lending relationships than firms.

Second, the number of credit relationships is size dependent (non monotonically) for firms. Third,

bank-firm relationships display a high degree of persistence from one year to the next.

A stable and significant core-periphery structure against standard random networks and rewired

networks with prescribed degree sequences has been found in the network of co-financing banks.

Finally, around 15% of the co-financing bank relationships appear unusually strong under the null

model of a hypergeometric distribution of the number of common firms preserving the degrees in

the bank-firm network. By taking the hypergeometric distribution as null model, the members of

the core acting as the lobby banks of the lending market are also validated. This findings provide

evidence that the analysis of the bank projection requires special care because the weights of their

edges incorporate information on the bipartite data instead of displaying truly structural features

of the projection.

Further related research work may come in several forms. First, it is imperative to test the

robustness of the results for the estimation of the core-periphery structure in the bank network.

Second, it is advisable to employ a more complex null model to test the significance of the properties

of the bank-firm network instead of a null hypothesis obtained by rewiring the original network, such

as the maximum entropy model for bipartite networks with prescribed degree sequences proposed

by Saracco et al. (2015). Third, it may be interesting to investigate the network of the co-financing

bank relationships which are not explained by the heterogeneity of bank degrees in much more

details.
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Chapter 3

The controllability of the repo

network in Mexico

This work was carried out during my internship at Banco de México, Directorate of Payment

Systems.1

1I am thankful to Javier Pérez Estrada, Serafin Mart́ınez Jamarillo and Stefano Battiston for their comments and
suggestions. The views and conclusions presented in this article are exclusively the responsibility of the author and
do not necessarily reflect those of Banco de México.
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3.1 Introduction and related literature

Control theory is a mathematical branch of engineering with applications to electric circuits, man-

ufacturing processes, communication systems, aircraft and robots. The main objective of control

theory is to control a system. The controllability of a system can be defined as the ability of an

external controller to move the state of a system from any initial state to any other final state

throughout the appropriate manipulation of a few input variables in a finite time interval. A toy

example of controllability could be the control of the speed of a car, where the driver is the external

controller who can change the initial speed to the target speed by manipulating the pedals.

Liu et al. (2011) have recently applied the concept of controllability to networks. The idea is

that the whole network can be controlled by acting on a specific set of nodes. Put differently, the

state of a system of N nodes can be steered from an initial state to a desired final state if an external

signal is applied to a selected minum number of nodes (the so-called drivers). This method can be

applied to the interbank market in order to study its role for monetary policy transmission. Imagine

that a central bank wants to increase the amount of money in the banking system and uses open

market operations (OMOs) as monetary policy instrument. Central banks aim at manipulating the

amount of money in the banking system (or equivalently, the interbank interest rate) by injecting

liquidity to the minimum number of banks to meet their monetary goal. Since the effectiveness of

the OMOs crucially depends on the key players of the interbank market, the concept of driver can

be readily employed to identify the main conduits of the monetary policy.

In this paper we apply such a methodology to the Mexican repo network. By using a detailed

dataset available at the Mexico’s Central Bank containing all the repo transactions between any

two Mexican banks from January 2005 to December 2014, we explore the central bank’s control over

the interbank market from three different perspectives. First, the time horizon because a central

bank de facto changes its strategy with respect to short-run and long-run policy goals. Second, the

stability of the set of driver banks, which is a critical issue from a central bank’s perspective. If a

group of banks constantly play a pivotal role in providing credit, a central bank needs to monitor

them carefully to ensure that the monetary policy is effective. Third, the size of the driver banks

in order to test whether the too big to fail (TBTF) policy is adequate to predict the systemically

important banks (SIBs) or whether complexity and interconnectedness go beyond the bank size.

Our main finding is the identification of a highly persistent set of drivers, which does not cor-

respond with the most connected banks or the largest lenders of the Mexican repo market. These

results shed light on the existence of a group of banks contributing constantly to the monetary

transmission, which would have not detected by looking at TBTF banks. From a regulator point of

view, network controllability appears to be a feasible method for identifying the SIBs. We system-

atically find a fraction of drivers below the 60%, which is a reasonable number of banks receiving

liquidity during the OMOs. Moreover, we find that the fraction of drivers decreases with the time
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horizon. This is in line with the empirical evidence of a lower volatility of the interbank funds over

longer time horizons, which clearly leads to a lower number of banks needed to achieve full control

over the interbank market.

Over the last few years, the research on interbank networks has been growing fast. Network

theory has been used to analyze the connections between banks and to explain how they impact

on financialy stability and on systemic risk. A well-established set of stylized facts has been found:

disassortativity, power law degree distribution and core-periphery structure. Some of the most

relevant studies on the structure of interbank networks are: Boss et al. (2004) for the Austrian

interbank market, van Lelyveld and in’t Veld (2014) for the Dutch interbank market, Craig and

von Peter (2014) for the German interbank market, De Masi et al. (2006), Fricke and Lux (2015a),

Fricke and Lux (2015b) and Iori et al. (2008) for the the Italian e-MID, Martinez-Jaramillo et

al. (2014) and Molina-Borboa et al. (2015) for the Mexican interbank market and Langfield et al.

(2014) for the UK interbank market.

Besides the empirical literature, theoretical models have been also developed to study the link

between the structure of interbank networks and contagion. Since the pioneering work by Allen

and Gale (2000), research has made considerable efforts to understand which topological properties

make a financial system more resilient or fragile. Nowadays, the literature widely agrees on the

robust-yet-fragile nature of financial systems and in particular on the role of connectivity in ampli-

fying its stability or instability under certain connectivity thresholds (Nier et al. (2008), Gai et al.

(2011) and Haldane and May (2011), among others).

However, despite the large literature on the impact of the network structure on systemic risk,

researchers have only recently examined how the network structure affects the control of the in-

terbank lending. So far, only three papers have applied control theory to an interbank network.

Delpini et al. (2013) use the e-MID data to explore the controllability of the Italian interbank mar-

ket across different time horizons. They characterize the drivers in terms of degrees (the number of

lending relationships) and out-strength (the total amount lent). They estimate a fraction of drivers

below the 70 % at any time scale and a power law decay of the fraction of drivers as function of

the time horizon. Moreover, the set of drivers they find are neither the high degree nodes of the

network nor the largest lenders. Galbiati et al. (2013) analyze the controllability properties of the

TARGET2 (T2), the payment system for the Eurozone. Again, the drivers do not correspond with

the standard centrality measures. The T2 drivers are not the most central nodes (according to

centrality measures based on the centrality of the neighbors, the so-called feedback centralities) or

the banks processing the largest value of payments. Finally, Galbiati and Stanciu-Vizeteu (2015)

characterize the set of drivers for a simulated T2 network. They simulate a payment network with

very simple rules, where the willingness of a bank to make a payment depends on its own stock of

liquidity and on the bilateral netting against the counterparty. Like for the real network, they find

that the drivers are not the most central nodes or the largest banks.
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Although the Mexican repo network displays a completely different structure with respect to

the e-MID network, namely homogeneous the first and scale-free the second (De Masi et al. (2006)),

our results are similiar to those by Delpini et al. (2013). This may suggest that these properties

of the drivers are constant across the markets regardless of the structure of the network, providing

new stylized facts for interbank markets.

Finally, there is also another paper including the central bank in an interbank network, that is

the one by Léon et al. (2014). They use data from the Colombian large-value payment system and

they merge the interbank loans and the central bank’s repos into a single network. They identify the

drivers (or the central bank liquidity super-spreaders employing Léon et al. (2014)’s terminology)

of the interbank funds and central bank’s repo network by using a centrality measure based on the

HITS (Hypertext Induced Topic Search) algorithm by Kleinberg (1998). This metrics is based on

two distinct eigenvector centralities, namely the authority centrality and the hub centrality, which

are associated with the in-degree and the out-degree of a node respectively. By using this approach,

the SIBs are identified not only by their role as lenders in the interbank market, but also by their

ability to access to central bank funding.

This paper is organized as follows. Section 2 describes the repo market and its regulatory sys-

tem. Section 3 presents the dataset. Section 4 provides a short introduction to networks. Section

5 reports the main properties of the Mexican repo network. Section 6 briefly introduces control

theory and presents the results of the controllability analysis. Section 7 concludes and drives the

policy implications.

3.2 The repo market and the institutional background

Before describing the institutional structure of the Mexican repo market, we give a brief description

of the main features of a repo contract.

A repurchase agreement, or repo, involves the simultaneous sale and forward agreement to re-

purchase the same, or a similar, security on a specified future date at a prearranged price. It

is equivalent to a collateralized loan in which a cash-lender (repo-buyer) lends to a cash-borrower

(repo-seller) and receives securities as collateral until the loan is repaid. At the beginning of the con-

tract the repo-seller sells the security to the repo-buyer and takes cash. At maturity the repo-seller

returns the capital lent plus interest (repo rate) to the repo-buyer and receives back the security.

In order to protect the cash-lender from the risk of a reduction in the value of the collateral, repos

usually involve overcollateralization and the difference between the value of the collateral and the

value of the cash is the haircut, which is expressed as a percentage of the market value of the

collateral. For example, a repo loan of MXN 95m with a collateral of MXN 100m is equivalent to

an haircut of 5% .
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According to the degree of intermediation between the cash-borrower and the cash-lender, repos

can be distinguished in three types: OTC bilateral, tri-party repos and central clearing counterparty

(CCP)-based. On the OTC market, the cash-lender and the cash-borrower transact directly with

each other. Haircuts are part of the negotiation and both parties bear the risk of the transaction,

in addition to settling the transaction themselves. Bilateral repos can allow for general collateral

or impose strict standard securities. In tri-party repos, a clearing bank stands as an agent between

the cash-borrower and the cash-lender. The clearing bank provides settlement and collateral man-

agement services to the parties, such as the selection and the valuation of the collateral and the

transfer of cash and securities. However, the clearing bank does not take the risk that a counter-

party defaults and the counterparty risk remains with the repo traders. Non-government bonds and

equity are predominantly employed as collateral in tri-party repos. Finally, in CCP-based repos a

central counterparty bears the counterparty risk and the lender is therefore protected from losses in

case of default of the borrower. The transaction takes place anonymously via electronic platforms

and the cash-lender and the cash-borrower do not have any direct exposure to each other. The CCP

interposes itself between the cash-borrower and the cash-lender: it borrows the security (and lends

cash against it) from the cash-borrower, and lends the security to the cash-lender (and borrows

cash in exchange). The haircuts in this market are set centrally by the CCP, which is also in charge

of the risk management duties. The operations are settled through a multilateral netting scheme

and it means that the CCP nets the transactions between the participants, resulting in smaller net

payment and collateral delivery obligations between the banks and the CCP. In contrast to tri-party

repos, government bonds and other relatively safe securities are the most commonly-used type of

collateral in CCP-based repos.

Repo clearing and settlement arrangements vary considerably across countries. In Europe CCP-

based repos constitute the majority of the interbank repo market with a market share of 70 % (ECB,

2015). The assets financed are exclusively government bonds and the market is dominated by banks.

By opposite, the tri-party market is the most important segment of the U.S. repo market, where

they are currently two third parties: Bank of New York and JP Morgan Chase. Moreover, the

cash-borrowers are not banks, but non-bank institutions without access to central bank’s liquidity.

Hence, the repo market represents for the shadow banking system an essential short-term funding

source. Another difference between the two markets is that in U.S. the collateral is concentrated

in private assets that are not backed by the U. S government or its agencies and that exhibit sig-

nificant price volatility and illiquidity in crisis times. Indeed, several studies, such as Gorton and

Metrick (2009) and Krishnamurthy et al. (2014), identify the uncertainty about the quality of the

asset-backed securities (ABS) used as collateral as the main cause of the freezing of the U.S. repo

market during the last financial crisis.

In the Mexican case repos are traded over the counter (OTC) and government securities are

the most used collateral. Most of the lending is at very short maturities, typically from one to
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three days. Credit institutions (commercial banks and development banks) and brokerage houses

are allowed to lend and to borrow in the Mexican repo market, while the other participants, such

as physical and legal persons (companies and persons), mutual funds, insurance companies, invest-

ment funds and the government’s treasury, can act only as lenders. Repos are also an important

monetary policy instrument for the Mexico’s Central Bank. Central bank’s repos correspond to

the liquidity provided by the Mexico’s central bank to the banking system throughout open market

operations (OMOs), where the eligible collateral is mainly local sovereign securities.

3.3 Data set

Our dataset is provided by the Mexico’s Central Bank and it consists of the repo transactions in

Mexico during the period 2005-2014. For each repo trade we have access to: the institutions’ ID

number (the identity is anonymised), the type of institution, the repo position (repo-buyer or repo-

seller), the maturity, the amount (expressed in Mexican Pesos) and the date of the transaction.

As can be seen from Figure 3.1, our data confirms that repos are almost exclusively overnight

loans in Mexico and the collateral is concentrated in government securities. Moreover, the right

panel of Figure 3.1 decomposes the repo market by type of participant. Participants are grouped

into: banks (commercial banks and development banks), authorities (the Mexico’s Central Bank),

other financial institutions (brokerage houses, insurance companies and investment funds), phys-

ical and legal persons and public sector (the government’s treasury and state-owned companies).

Physical and legal persons and banks are the two largest participants and they account together for

nearly 80 % of the value of the transactions. Overall, it is also striking that the amount of repos

traded has a positive trend with a significant increase after the end of the financial crisis: it peaks

in 2012 and then remains substantially at the same level.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

banks 35 37 42 45 43 41 43 44 45 45

volume (MXN billion) 78.04 79.55 80.10 82.11 84.18 93.78 117.36 137.79 133.95 127.87

trades 59,825 59,898 60,095 62,868 65,213 69,332 72,196 72,624 71,750 70,759

links 493 529 548 547 516 508 573 566 554 578

trades per link 121.35 113.23 109.66k 114.93 126.38 136.48 125.99 128.31 129.51 122.42

Table 3.1: Evolution of the repo market from 2005 to 2014 in terms of: number of active banks, volume
(MXN billion), number of trades, number of links and number of trades per link.
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Figure 3.1: Evolution of the total value of repo loans in billion Mexican pesos (MXN) in the period
2005-2014. In the left panel by time to maturity: 1 day and greater than 1 day. In the middle panel by type
of collateral: bank securities, private securities and government securities. In the right panel by type of
participant: banks (commercial banks and development banks), authorities (the Mexico’s Central Bank),
other financial institutions (brokerage houses, insurance companies and investment funds), physical and
legal persons and public sector (the government’s treasury and state-owned companies).

For our study we include only overnight transactions, that involve commercial banks and devel-

opment banks because by Mexican law they are the only credit institutions which can get funding

through the repo market. Moreover, exclusively repos with sovereign securities are considered. The

number of transactions covered in our dataset is 5,412, which corresponds to an amount approx-

imately equal to MXN 999.73 billion. Table 3.1 presents some basic descriptive statistics for our

sample. The number of banks is remarkably stable, ranging from 35 to 45, while the trading volume

tends to increase over time, even though the number transactions remains constant, which implies

an increase in the size of the repos. Finally, Figure 3.2 reports information on the total amount and

on the number of loans made and received by type of participant. As expected, commercial banks

account for 75 % of the repo market in terms of volume and number of transactions, reflecting a

minor role for development banks.
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Figure 3.2: The total amount (top) and the number of transactions (bottom) from
the borrower and lender-side for each type of bank (commercial bank and development
bank).

3.4 Network analysis

All these overnight repos form a network G = (V,E), where the set V of vertices are the banks and

the set E of links represents the repo contracts among them. The network is directed and weighted,

which means that the links have a direction (from one node to another) and an associated value

according to their importance. Namely, a link goes from the repo-buyer to the repo-seller and a

weight is attached to each link in terms of the total amount of money lent by the repo-buyer to

the repo-seller. From a mathematical point of view, a repo network of N banks is represented by
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a square matrix A of size N .2 Since the network is directed, the adjacency matrix is asymmetric

and a nonzero element aij in A represents the amount of repo loans that bank i extends to bank j.

Degree. In network theory the number of links of a node is known as its degree and in the case of

a directed network there are two kinds of degree: in-degree and out-degree. The in-degree of a node

is the number of its incoming links and the out-degree of a node is the number of its outcoming

links. Formally, the in-degree kini and the out-degree kouti of a node i in a network of size N can

be defined as follows:

kini =

N∑
j=1

aji (3.1)

kouti =

N∑
j=1

aij (3.2)

In our study aij = 1 if bank i provides a repo loan to bank j and aij = 0 otherwise. The

in-degree of a bank is the number of banks from whom receives a repo loan, namely the number

of its repo-buyers. Similarly, the out-degree of a bank is the number of banks to whom extends a

repo loan, namely the number of its repo-sellers.

Strength. In a weighted network the strength of a node is computed as the sum of the weights

of all the links attached to it. Similarly to the degree, two kinds of strength are defined in the

case of a directed network: in-strength and out-strength. The in-strength of a node is the sum of

the weights of its incoming links and the out-strength of a node is the sum of the weights of its

outcoming links. Formally, the in-strength sini and the out-strength souti of a node i in a network

of size N can be defined as follows:

sini =

N∑
j=1

wji (3.3)

souti =
N∑
j=1

wij (3.4)

In our study wij is the amount of repo that bank i extends to bank j. The in-strength sini of

bank i corresponds to the total amount of money borrowed by bank i in the repo market and the

out-strength souti of bank i corresponds to the total amount of money lent by bank i in the repo

market.

Reciprocity. In a directed network reciprocity refers to the fraction of links present in both

2In everything that follows, bold capital letters refer to matrices and bold lower-case letters to vectors.
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directions out of the total number of links. Formally, reciprocity for a network with E↔ bidirectional

links is defined as:

r =
E↔

E
(3.5)

For a repo network reciprocity can be seen as the number of repos where banks enter both as

repo-buyer and repo-seller.

Density. The density of a network is defined as the proportion of actual links E relative to the

total possible number of links. For a directed network of size N , the density is computed as:

ρ =
E

N(N − 1)
(3.6)

The index is closer to 1, as the network gets denser. In the extreme case where all the possible

edges are established, the graph is complete and the index is equal to 1. For a repo network the

density can be computed as the ratio between the number of realized repo contracts and the number

of all the possible repo contracts.

3.5 The Mexican repo network

Based on the concepts and metrics described before, in this section we present the main properties

of the Mexican repo network. We study the repo network for: daily, weekly, monthly and quarterly

time scale. We obtain the weekly, monthly and quarterly networks by aggregating the daily loans

over a 5, 21 and 63-day period respectively. The four networks at the different time aggregations

are displayed in Figure 3.3. Each vertex corresponds to a financial institution and each arrow

represents the existence of a repo transaction between two financial institutions. The direction of

the arrow corresponds to the direction of the original transaction (i.e. from the repo-buyer to the

repo-seller).

From the plots it is clear that the four networks are particularly sparse and they become denser

as the time aggregation increases. This is expected because the networks are obtained by summing

the edges across time and they therefore become denser with the time scale by construction. Table

3.2 provides further evidence of the decay of the density with the time aggregation. An average

density of around 10% for the daily and weekly networks has been found, whereas an average density

of around 20% for the monthly and quarterly networks.
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Figure 3.3: Repo network for the different time scales. Top left: the daily network
for April 15th, 2013. Top right: the weekly network for the second week of April,
2013. Bottom left: the monthly network for April, 2013. Bottom right: the quarterly
network for 2013 second quarter. The network are represented by using Kamada-
Kaway algorithm.
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density day week month quarter

mean 0.08 0.13 0.19 0.24

standard deviation 0.006 0.01 0.015 0.018

Table 3.2: Density for the daily, weekly, monthly and quarterly network. Averages
and standard deviations based on all the networks at the different time scales.

Figure 3.4: Left: mean and median for in- and out-degrees (directed network).
Right: mean and median for total degrees (undirected network).

Before analyzing the distributions of the number of lending relationships (degrees) across banks,

we briefly illustrate their evolution over time by using data on a quarterly basis. Left panel of Figure

3.4 shows the in- and out-degrees from the directed networks. The median value for in-degree

and out-degree is approximately the same, suggesting that in- and out-degree follow the same

distribution. In addition, the Kolmogorov-Smirnoff test is also performed for all the sample periods

and the null hypothesis of the equality of the in- and out-degree distributions is not rejected at a

signicance level of 1 %. Such results seem to indicate that the directed version of the network does

not contain additional information on the dymamics of the degrees. Further evidence is provided

by the correlation between in- and out-degrees and the link reciprocity, which are plotted in the left

panel and in the right panel of Figure 3.5 respectively. The correlation between in and out-degrees

is remarkably high 0.82 ± 0.04 and the reciprocity of the network is also high 0.73 ± 0.02. This

means that: (i) a high level of correlation between the number of repos in which a bank is involved

as a borrower and those in which is involved as a lender (ii) banks predominantly borrow and lend

money from the same banks.
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Figure 3.5: Left: correlation in- and out-degrees. Right: reciprocity.

Therefore, in the following we will work with the undirected version of the repo networks without

a significant loss in accuracy.

The right panel of Figure 3.4 shows the evolution of the mean and the median for the degrees

from the undirect networks. We do not observe any breaks in the mean and median values and

we therefore analyze the degree distribution without splitting the data into different time-periods.

Noticeably, the mean and the median are approximately the same, indicating that the distribution

is symmetric. Figure 3.6 reports the degree distributions for daily, weekly, monthly and quarterly

aggregation periods. The plots correspond to a single reference time period because, as formerly

pointed out, we do not observe any breaks in the time series of the mean and the median. The

plot read as follows. For a given point of the degree distribution function, the y-axis coordinate

gives the number of banks holding the number of links equal to the value of the x-axis coordinate.

It is evident that distribution of the degrees is quite homogeneous at any time scale, although the

repo market is more hetereogeneous at shorter time scales. Moreover, the daily network displays

a smooth right-skewed distribution with a skewness around 3, while the monthly and quarterly

networks are perfectly symmetric with a skewness near zero.
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Figure 3.6: Degree distributions for the different time scales. Top left: the daily
network for April 15th, 2013. Top right: the weekly network for the second week of
April, 2013. Bottom left: the monthly network for April, 2013. Bottom right: the
quarterly network for 2013 second quarter.

3.6 Controllability analysis

3.6.1 Method

Given a weighted and directed graph G = (V,E) of N nodes, we consider a linear time-invariant

(LTI) continuous dynamics for the state x of the network

dx(t)

dt
= Ax(t) + Bu(t) (3.7)
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The vector x(t) of size N represents the state of the network at time t. A is a square matrix of

size N and represents the transpose of the adjacency matrix of the network. B is a N ×M matrix

and provides the weights of the links between the nodes of the graph and (M ≤ N) external signals,

indicated by the vector u(t) of size M .

Controllability is equivalent to find the M signals u such that x is equal to the desired final

state for a given network represented by the adjacency matrix A. Note that the assumption of

linearity in Eq. (7) refers exclusively to the control of the state of the network and do not specify

any network formation process.

A sufficient and necessary condition for a network to be controllable is given by the Kalman

rank condition. For a given realization of A and B, the state of a network is controllable if and

only if the N ×NM controllability matrix C

C = (B,A ·B,A2 ·B, . . . ,AN−1 ·B) (3.8)

has full rank.

rank(C) = N (3.9)

However, the rank condition has no practical application for the control of a network. First, it

does not specify how to identify the signals u. In other words, which are the nodes to which the

signals must be applied in order to achieve the full control of the network, the so-called drivers.

Second, the computation of the rank is computationally demanding for large networks, since the

rank of C must be calculated for 2N − 1 different combinations.

In order to overcome these limitations, Liu et al. (2011) have recently proposed a feasible method

to identify the minimum number of drivers for a directed network of arbitrary size. They adopt

the framework of structural control of Lin (1974), that is based on a more practical definition of

control, which does not require the exact value of the elements of A in order to deal with incomplete

knowledge of most real-world systems. The entries of A and B in Eq. (7) are therefore assumed

to be fixed zeros and free parameters, which means that a network is controllable in the usual

sense (rank(C) = N) for any realization of A and B with the same non-zero elements. Note that

structural control depends exclusively on the structure of the network (the presence or absence of

links) and it is set apart from the weights of the links.
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Figure 3.7: (a): a directed network with 6 nodes. (b): the bipartite representation of the directed network
in (a). Nodes (1,2,3,4,5,6) of the out set correspond to the nodes (7,8,9,10,11,12) of the in set respectively.
For instance, a directed link from node 1 to node 3 in (a) corresponds to a link between the node 1 in the
out set and the node 9 in the in set. (c): a maximum matching of the bipartite network is shown in red.
Matched nodes are shown in turquoise, while unmatched nodes in white. Note that (1-9, 2-11) is not the
unique maximum matching. Other maximum matchings are: (1-9, 2-12), (1-10, 2-11), (1-10, 2-12). (d):
the minimum number of drivers of (a) based on the maximum matching (1-9, 2-11). The drivers (marked
in green) are the unmatched nodes.
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A schematic representation of the Liu et al. (2011)’s methodology is reported in Figure 3.7.

The method encompasses two steps. First, a directed network (Figure 7a) is transformed into an

equivalent bipartite network (Figure 7b), which is obtained in the following way. Nodes are divided

into two distinct sets out and in. A link between a node i in the out set and a node j in the in set

exists if a link goes from node i to node j in the original network. Second, a maximum matching

is computed in the bipartite network (Figure 7c). For a bipartite graph (or, more generally, for

an undirected graph), a matching M is a subset of edges without common vertices. A matching

that contains the largest possible number of edges is a maximum matching.3 A vertex is matched

if it is a node in the in set, which is incident to an edge in the matching. Otherwise, the vertex is

unmatched.

The authors proved that the minimum number of drivers need to fully control a network is equal

to the number of unmatched nodes in any maximum matchings, providing an efficient methodol-

ogy for network controllability. As it is evident from the toy example in Figure 3.7, the theorem

(the so-called Minimum Input Theorem) has an intuitive explanation. For instance, consider the

maximum matching (1-9, 2-11) in Figure 7c. The matched nodes 3 and 5 are internally controlled4

(Figure 7d) because node 1 points to 3 and node 2 to 5. By contrast, the unmatched nodes 1,2,4

and 6 are out of control. Nodes 1 and 2 have no nodes pointing to them, whereas nodes 4 and 6

share the unique node, which points to them with a matched node: node 4 shares 1 with 3 and

node 6 shares 2 with 5. Therefore, the unmatched nodes identify exactly which nodes need to be

externally controlled. That is, where the signals must be injected into a network in order to ensure

that each node has its own controller, so that the full control is achieved.

As a last step of their analysis, Liu et al. (2011) explore the network characteristics that affect

controllability. It turns out the degree distribution mainly determines the controllability, measured

by the density of the drivers. The sequence of random networks preserving the in-degree and the

out-degree sequences predicts extremely well the density of the drivers of several real networks. The

simulation results are also validated analytically by using the cavity method (Mézard and Parisi

(2001)), revealing that hetereogeneous and sparse networks are the hardest to control.

In this paper we apply the method developed by Liu et al. (2011) to detect the SIBs of the

Mexican interbank market, focusing on the repo segment. In this context, controllability is equiv-

alent to select the minimum number of driver banks that, if refinanced by the central bank, steer

the liquidity in the interbank market into the defined target for the overnight rate. Figure 3.8

provides a stylised illustration of how central bank liquidity is redistributed in the interbank mar-

ket throughout the driver banks. We identify the state x of the repo network with the aggregate

lending, namely the total amount of money lent in the repo market. A is the transpose of the

adjacency matrix of the repo network, where an element aij corresponds to the amount of repo

3Note that, a maximum matching is not necessarily unique. See, for example, Figure 7c.
4The nodes 3 and 5 are the univariate representation of the nodes 9 and 11 respectively.
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Figure 3.8: Example of the control of an interbank market. The bank funding
can be completely controlled whether the central bank refinances the driver banks.
The control of the interbank funds works hierarchically. The central bank provides
liquidity directly to the driver banks (green nodes). Then, the drivers lend to other
banks (white nodes, first layer), which, in turn, provide funding to the rest of the
interbank market (white nodes, second layer).

borrowed by bank i from bank j. The external controller is the central bank. The entries of

the vector u identify the central bank refinancing operations with B providing the amounts. We

emphasize that the refinancing operations must be strictly at the initiative of the central banks,

such as open market operations, because in our framework the signals are imposed by the external

controller.5

It is worthwhile to highlight that the dynamics for the control of the interbank funds in Eq. (7)

5As a matter of fact, standing facilities are excluded.
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rely on three strong assumptions. First, the lending volume of a bank is proportional to the lending

volume of its lenders. While it is reasonable to hypothesize that the funding of a bank depends

on the funding of its lenders, it is certainly too simplistic to assume a linear relation. Second,

the lending relationships are assumed constant, since the zero and non-zero entries of A are fixed.

Third, the SIBs are selected merely on the basis of the structure of the lending relationships (who

lends to whom/who borrows from whom), without taking into account neither the amount of the

interbank loans nor the amount of the central bank refinancing operations. In practice, this means

that for any interbank market with a given set of lending relationships, the banks offering full

control over the interbank funds are the same regardless how much they lend to the other banks

and how much they take from the central bank.

In the following, we provide some technical details how we estimated the driver banks. We use

the well-known Hopcroft-Karp algorithm to find a maximum matching in the bipartite version of the

repo network. The edges in a matching are recursively increased by finding the so-called augmenting

paths. The augmenting paths are sequences of edges, which start at a matched node and end at an

unmatched node, by alternating edges inside and outside the matching. The algorithm iteratively

swaps which edges are inside and which edges are outside the matching through a Breadth-First

Search (BFS) in order to produce the matching with the largest possible number of edges. Finally,

from the different maximum matchings we select the maximum matching with the maximum sum

of the weights of the edges to incorporate somehow the information on the amount of the loans.

Intuitevely, including the largest bilateral exposures we are maximizing the impact of the SIBs on

the interbank market.

3.6.2 Results

In this section we report the results of our study on the controllability of the Mexican repo network

in the period 2005-2014 for the overnight interbank market.

We estimate the network controllability for the daily, weekly, monthly and quarterly scale. We

are interested in estimating the controllability of the repo network for different time horizons because

different time horizons reflect different supervision purposes and different network structures. We

then proceed to compare the set of driver banks with the standard network centrality measures,

such as degrees (the number of counterparties) and out-strength (the total amount of repos lent).

In the last step we analyze the stability of the drivers over time. We use the fraction of the driver

banks nD as the metrics of the control efficiency of the network. A large value of nD indicates a

low degree of the controllability of the network because a high number of driver nodes is required

to control the state of the whole network.
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Figure 3.9: Evolution of the fraction of drivers for daily, weekly,
monthly and quarterly networks.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

day 0.523 0.488 0.548 0.543 0.567 0.563 0.572 0.543 0.556 0.567
(0.052) (0.054) (0.052) (0.044) (0.039) (0.034) (0.034) (0.037) (0.039) (0.047)

week 0.416 0.373 0.463 0.481 0.501 0.495 0.498 0.468 0.478 0.490
(0.045) (0.040) (0.049) (0.034) (0.033) (0.027) (0.031) (0.034) (0.034) (0.051)

month 0.324 0.308 0.381 0.436 0.453 0.444 0.436 0.409 0.424 0.423
(0.039) (0.041) (0.048) (0.032) (0.034) (0.025) (0.028) (0.023) (0.025) (0.030)

quarter 0.286 0.261 0.325 0.401 0.428 0.391 0.372 0.377 0.396 0.377
(0.044) (0.032) (0.064) (0.023) (0.040) (0.010) (0.031) (0.012) (0.035) (0.025)

Table 3.3: Average fraction of drivers for daily, weekly, monthly and quarterly networks. Standard
deviations in parenthesis.

Figure 3.9 plots the evolution of the fraction nD at the different time scales. The most evident

observation is that the controllability of the repo network increases monotonically with the time

scale. The reason is that the denser and homogeneous a network is, fewer drivers are needed to

control it. Liu et al. (2011) show analytically that the minimum number of drivers required to

control a network is mainly determined by the degree distribution, finding that heterogeneous and

sparse networks report a higher number of drivers. As it turns out, the density and the homogeneity

in degrees increase with the aggregation period (see Section 5), which makes it easier for central
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banks to control interbank funds over longer time horizons. However, an intuitive explanation is

that interbank funds are less volatile in the long run, and for this reason they are easier to control.

However overall, the repo network exhibits a high degree of controllability at any time scale

with variations below 10% (see Table 3.3). Even the daily network requires only about the 50% of

driver banks to achieve the full control over the network. From a monetary policy perspective, a

fraction of drivers below 60% at any time scale reflects the possibility for central banks of ad-hoc

liquidity injections to a feasible number of banks. Our results are similar to those by Delpini et al.

(2013) for the Italian interbank market, who find a high level of controllability of the system at any

time scale and a power-law decay of the fraction of drivers with the time horizon. In the following,

we characterize the driver banks with standard network centrality measures, namely degrees and

out-strength. For the sake of completeness, we consider the total degrees (the sum of in-degrees and

out-degrees) from the direct networks, which provide information on the number of relationships

in which a bank acts as repo-buyer and as repo-seller. In the left panel of Figure 3.10 we plot

the average degree of the drivers against the average degree of the network. It is clear that the

drivers are the low-degree nodes of the network at every time scale because the average degree of

the drivers is constantly lower than the average degree of the network.

Next, we move to the volumes and we assess the extent to which the drivers correspond with the

largest lenders of the repo market. For simplicity, we identify the top-lenders as the first mtop lenders

whose volume accounts for approximately 80% of the total lending. In the right panel of Figure

3.10 we plot the fraction of top-lenders which are also the drivers of the network. Surprisingly, not

all the top-lenders are drivers. On average around 10 % of the top-lenders are drivers at quarterly

scale and the percentage gradually increases at shorter time scales. Again,

Figure 3.10: Left: scatterplot of the average degree of the driver nodes versus the
average network degree. Right: fraction of the top-lenders being also the drivers of
the network.
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Figure 3.11: Empirical survival function for the drivers. The plot can be read
as follows. For a given point of the curve, the y-axis coordinate gives the average
proportion of drivers which survives after a number of days equal to the value of the
x-axis coordinate.

similar results are reported by Delpini et al. (2013), who also find that the drivers are typically

neither the largest lenders nor the high degree nodes of the network. Overall, our analysis supports

the view that the traditional focus on TBTF institutions could be misleading and the intercon-

nections among banks should be also considered for the design of a robust policy guide. Standard

centrality metrics, such as the degrees and the size, do not capture the topology of the network

and control theory could be therefore of interest to central banks for a too-interconnected-to-fail

(TITF) assessment. Moreover, we would like to point out that even though the Mexican network is

homogeneous and the Italian network is scale-free (De Masi et al. (2006)), our results are similiar

to those by Delpini et al. (2013). This may suggest that these properties of the drivers are a com-

mon feature of interbank markets, which exist independently of the network-specific characteristics.

Finally, in Figure 3.11 we test whether the driver banks remain stable over time. No significant

changes in the composition of the drivers are observed when we track the survival function: around

65 % of the drivers are still the drivers of the network after 392 days (around 18 months) at any

time scales. Thus, the flow from and to the driver set is only a small percentage, which supports

the evidence that we have identified a truly structural feature of the interbank market. Moreover,

the fact that the persistence of the drivers decreases with the time scale makes sense and could be

due to the more structural changes of the interbank relations over longer time horizons.
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3.7 Conclusions and policy implications

The main findings of our paper are the following. We find a highly persistent set of drivers in the

Mexican interbank network for the repo market in the period 2005-2014. The identified drivers do

not coincide with the most connected banks or with the largest lenders. Our results are similar

to those by Delpini et al. (2013) for the Italian interbank market, albeit the different types of

network topology. Scale-free the Italian network and homogeneous the Mexican network. Evidence

advocates that the finding of a stable set of drivers with the above-mentioned features is unlikely

to be a coincidence. Therefore, we expect that other interbank markets display similar properties,

which might be classified as new “stylized facts” of the controllability of interbank networks.

Although network controllability is not ready yet for a formal policy design and concrete policy

realizations, it certainly provides interesting insights into the financial institutions, which should be

monitored. In our view, there are mainly three reasons why control theory might offer a convenient

way to identify the SIBs of the Mexican repo market. First, it does not require the exact knowledge

of the size of the loans, which is a particularly nice feature for regulators because a complete picture

of the interbank interactions is often missing. Second, it identifies a fraction of drivers below the

60%, which makes it possible for the central bank to implement ad hoc liquidity injections to a

feasible number of banks. Third, it takes into account the time dimension of the monetary policy

actions. The fraction of drivers changes with the time scale and this is an appealing result for

regulators because the provision of liquidity is reasonably adjusted to the time horizon of interest.

Finally, the following extensions are possible. An useful test is to compare the drivers with the

banks, which receive money from the Mexico’s Central Bank throughout OMOs. Such a comparative

exercise may provide an understanding of the cause and effect relationship between the identification

of the SIBs and the effectiveness of Mexico’s Central Bank monetary policy. In this respect, it is

also advisable to match our results with the dates of OMOs and with the interbank interest rates.

Furthermore, it would be interesting to compare the drivers with centrality measures, which also

include the dimension of interconnectedness in order to control that driverness is not a redundant

property, but provides additional explanatory power. Possible candidates could be the so-called

feedback centralities, such as Katz centrality and PageRank, which give a measure of the direct

and indirect links in the network by ranking the centrality of a node on the basis of the centrality

of its neighbors.
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Chapter 4

Stress-testing the UK banking

system: a network approach to

cope with portfolio overlaps
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4.1 Introduction and related literature

The emerging risks in the housing market are the central focus of the Bank of England’s 2017 stress

test.1 Indeed, low interest rates and an easing of mortgage constraints have led to a substantial

increase in UK household debt in recent years. The greater mortgage debt raises concerns about

the vulnerabilities of the household sector to changes in income and interest rates with strong

implications for the stability of the financial system.

In this respect, the Prudential Regulation Authority has introduced a loan-to-income limit for

mortgages exceeding £100 million per annum, that requires that no more than 15 % of mortgages

issued should exceed a loan-to-income ratio of 4.5.

Another important policy issue is the correlation between credit (mortgage) cycle and house

prices. Mortgage market expansions often coincide with housing price booms, creating a procyclical

mechanism of financial fragility, where more credit available allows more potential buyers to bid

up house prices.2. Housing prices in United Kingdom, are soaring rapidly3 and it is the question

whether or not this is supported by economic fundamentals. Of particular concern are tier 1 cities,

such as London and Oxford, where house price boom goes hand-in-hand with an increasing mortgage

lending to buy-to-rent (known as buy-to-let) purchasers, who are driving de facto the housing boom

into a bubble (Bracke 2015; Rafa Batista et al. 2016).

This paper proposes a stress test to assess the resilience of the UK financial system to an

hypothetical burst of the housing bubble. We hypothesize that a sharp drop in house prices leads

to a devaluation of residential mortgages (Mayer et al. 2009; Cho 1995 among ohers), which may in

turn trigger a cascade of defaults through mark-to-market losses. Suppose a bank defaults and its

assets are entirely liquidated. The price of these assets will then be driven down, which generates

losses to the other banks exposed to the same assets, triggering further defaults and price falls in a

vicious downward spiral (Shleifer and Vishny 2011).

In spirit of the state-of-the-art stress tests carried out at central banks (see Constâncio 2015),

our framework emphasizes the role of portfolio overlaps as a source of contagion by taking full

account of the second round effects that arise from common exposure to the same assets. Such

contagion dynamics does not depend on the direct connections between banks (i.e. interbank credit

(Allen and Gale 2000; Gai et al. 2011; Battiston et al. 2012; Co-Pierre 2013), CDS protections

(Markose et al. 2012; Peltonen et al. 2014; Puliga et al. 2014) or payment obligations (Galbiati and

Soramäki 2012; Diehl 2013; Pröpper 2013; Léon and Berndsen 2014) but it depends on the indirect

connections, that arise when defaulted banks are forced to liquidate their portfolios.

1See: http://www.bankofengland.co.uk/financialstability/Documents/stresstesting/2017/keyelements.pdf
2US, Spain, Ireland and other Eurozone economies experienced credit and house price booms prior to the 2007-

2009 financial crisis.
3For more details, see: the Land Registry: http://http://landregistry.data.gov.uk/app/ukhpi
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In order to capture this layer of contagion, we embed our stress testing exercise into a bipartite

network model composed of banks and assets. In such type of networks, nodes represent banks

and assets, while links connect banks to the assets in their portfolios, with the caveat that the

links are not allowed within banks and assets. As our workhorse model, we use the cascading

default algorithm by Huang et al. 2013 that is simple enough to allow us to study the importance

of portfolio overlaps as a contagion channel under different scenarios by varying the intensity of the

initial shock and market liquidity. It is also in line with top-down stress testing practice (see for a

review Henry and Kok 2013) to disentangle first-round and second-round effects in order quantify

separately the contribution of the initial shock and contagion to systemic risk. Moreover, modelling

contagion through portfolio overlaps has the advantage of using balance sheet data, providing an

useful alternative to overcome the usual shortcomings in the availability of bank-by-bank bilateral

exposures (Anand et al. 2015; Ha laj and Kok 2013; Mistrulli 2011; Upper 2011).

The literature on contagion via portfolio overlaps is sizeable and we therefore mention only

some important recent contributions. Levy-Carciente et al. 2015 present a dynamic version of the

Huang et al. 2013 model to assess the impact of the legal reforms of the banking sector on the asset

allocation decisions in Venezuela for the period 1998-2013, detecting changes in the stability of the

financial system. Caccioli et al. 2014 develop a network model to study contagion via portfolio

overlaps, providing an analytical estimation of the stability region of the bank-asset system where

no cascade failures occur. Caccioli et al. 2015 present a stress-testing framework for the Austrian

banking system where the contagion mechanism is a two-way interaction between portfolio overlaps

and direct interbank credit. Greenwood et al. 2015 propose a model in which fire sales propagate

shocks across banks’ balance sheets, providing macroprudential metrics based on the vulnerability

and the contribution to systemic risk of each single financial institution. An empirical application

of the model by Greenwood et al. 2015 to US banks has been done by Duarte and Eisenbach 2015.

The rest of the paper is organized as follows. In Section 1 we present the Huang et al. 2013

model and we show how it can be applied to a stress-test framework for the UK banking system.

In Section 2 we present the dataset and we discuss the results of our stres-test exercise. In Section

4 we conclude and we drive the policy implications.

4.2 Model

We propose a simple model of financial contagion based on Huang et al. 2013 to design a consistent

stress scenario for the UK banking system. Since the burst of the housing bubble represents a severe

yet plausible adverse scenario, we are interested in assessing the resilience of UK banks to a shock

to real estate loans by estimating the extent to which portfolio overlaps amplify losses and defaults.

This approach allows us to go beyond the first-round effects of an initial shock to mortgage market
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Figure 4.1: Left panel: a bipartite network of 5 banks and 5 assets. Banks (A,B,C,D,E) are
denoted by green cycles and assets (1,2,3,4,5) by yellow squares. Edges indicate ownership of
assets by banks. Right panel: the common exposure network extracted from the network of
exposures in the left panel. Edges indicate overlapping exposures to the assets.

and to include the second-round effects throughout interbank contagion.

The stress test methodology can be summarized as follows. We consider a bipartite network of

N banks (indexed by i = 1, . . . , N) and M assets (indexed by j = 1, . . . ,M). Whenever a bank i

holds an asset j in its portfolio, a link connects bank i to asset j. Links are only allowed between

banks and assets, meaning that banks are never directly linked to other banks and assets are never

directly linked to other assets. A graphical representation of a bipartite network of banks and assets

is reported in Figure 4.1.

At time t, we populate the bank-asset system by banks’ balance sheet data and each bank i is

initially endowed with assets Ati, cash Ci and liabilities Li. Ci and Li are simply constant book-

keeping entities, while the time-dependent variable Ati is the key variable in our contagion process

via portfolio overlaps. The assets Ati of each bank i are allocated over M asset classes, whose value

at time t is equal to:

Ati =

M∑
j=1

ai,jp
t
j (4.1)

where the constant ai,j is the number of shares of asset j held by bank i and ptj the price of asset

j at time t. In our dynamics, the number of shares is assumed constant and banks sell assets only

when they go bankrupt and they are forced to liquidate their portfolios. This allows us to isolate

the impact of fire-sales on asset prices, by excluding asset sales for regular portfolio adjustments.
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At time t + 1, the stress scenario starts and an exogeneous shock s ∈ [0, 1] is applied to real

estate loans. Let the asset class j be the real estate loans. If bank i holds ai,j amount of real estate

loans, then the value of its assets evolves from time t to time t+ 1 as follows:

At+1
i = Ati − s · ai,jptj (4.2)

If the equity Et+1
i becomes negative, then bank i defaults. The default condition is therefore

formally expressed as:

Et+1
i < 0 (4.3)

Et+1
i = At+1

i + Ci − Li

When a bank defaults, we assume that its assets are immediately liquidated. Fire-sales of

defaulted banks induce a decrease in the value of their assets and thus a reduction of equity of

the banks holding the same assets in their portfolios. Let us formalize the mechanism. If bank i

defaults at time t+ 1, all its assets At+1
i are entirely liquidated. Let ai,j′ be the amount of asset j′

that has been liquidated (j 6= j′). At time t+ 2, its value V t+2
j′ is reduced to:

V t+2
j′ = V t+1

j′ − α · ai,j′pt+1
j′ ∀j′ : Et+1

i < 0 (4.4)

V t+2
j′ =

N∑
i=1

ai,j′p
t+2
j′

where the parameter α ∈ [0, 1] is the market illiquidity, namely the difficulty of the market to

sell an asset without causing a drastic change in the price.4

Eq. (4.4) should be interpreted as follows: fire-sale of an asset j′ at time t + 1 generates a

devaluation at time t + 2, that is proportional to the amount sold ai,j′ with a positive multiplier

α, that amplifies the asset devaluation as markets become less liquid. In other words, we assume

that assets are devalued according to a simple linear price impact function with market liquidity

being a constant parameter. In our fire-sale scenario, therefore, only the amount sold determines

how much the price will fall and the heterogeneity in the liquidity of asset classes is not taken into

account.5

4If N banks default, Eq. (4.4) can be written as follows: V t+2
j′ = V t+1

j′ −
N∑
i=1

α · ai,j′pt+1
j′

5It is certainly too simplistic to assume that all assets have identical liquidity. In future work, we plan to relax
this strong assumption and to introduce heterogeneity in the liquidity of asset classes.
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At time t+ 2, contagion via the devaluation of asset j′ propagates to, say, bank k according to:

At+2
k = At+1

k −

(
1−

V t+2
j′

V t+1
j′

)
ak,j′ (4.5)

where ak,j′ is the number of shares of asset j′ hold by bank k. Eq. (4.4) describes how contagion

spreads across banks throughout the exposure to the same assets under the market-price channel.

From the point of view of contagion dynamics, this is a mechanistic model of loss-redistribution,

where behavioral rules are missing and banks record their losses without any adjustment strategies.

The contagion process stops once all the remaining banks are solvent (E > 0) after the last

default or when all banks have defaulted. A schematic representation of the contagion process is

reported in Figure 4.2.

shock to real estate loans

losses recorded in
balance sheets

is there any defaults ?

end portfolio liquidation

asset devaluation

yesno

Figure 4.2: The dynamics of the stress-test model in stilized form.
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4.3 Stress test results

For our stress test exercise, we use BankScope balance sheet data for 214 UK financial institutions6

(depositories, broker-dealers, insurance companies, non-depositary institutions and real estate com-

panies) at the end of 2015, which contains information on: total assets, total liabilities and total

equity. The assets are divided into 10 classes: residential mortgage loans, corporate and commercial

loans, other loans, consumer and retail loans, loans to public institutions, held-to-maturity securi-

ties, available for sale securities, other securities, fixed assets and total debt securities.

Table 4.1 and Table 4.2 report over the period 2007-2015 the size (in terms of market share)

and the Herfindhal index respectively, providing information on the systemic importance of an asset

class and its critical function for the stability of the financial system.7 We see from Table 4.1 that

mortgage loans represent the largest asset class over the whole period 2007-2015. After a stagnation

during the 2007–2009 crisis, mortgage loans steadily increase and they account for around 30% of

the market value of the UK financial system after 2013. Figure 4.3 plots the evolution of house

prices, that is coherent with the upward trend of mortgage loans after 2013, underlining the crucial

importance in assessing the impact of a devaluation of mortgage loans in times of house price boom.

With regard to asset concentration, we observe an Herfindhal index in range of 0.1 to 0.5 for

the 10 asset classes over the whole period 2007-2015 (see Table 4.2), meaning that the 10 asset

classes are evenly distributed across all the banks in the system. This clearly shows that balance

sheets are highly interconnected and banks have strong overlapping exposures, demonstrating that

portfolio overlaps are relevant channels of contagion when a bank defaults and liquidates its assets

in portfolio. Therefore, our data seems to confirm that mortgage loans are systemically important

and overlapping portfolios play a key role in contagion, adding further evidence that our stress-test

methodology is able to capture a realistic scenario for the UK financial sysytem.

In the following, we report the results of our stress-test exercise for the UK banking system at

the end of 2015. We begin by comparing the results of the 2015 stress test with the 2009 stress test

in order to emphasize that the vulnerability of the system to the real estate sector has increased

after the mid-2013’s housing boom. We then change the initial shock of the 2015 stress test by

imposing a devaluation to other asset classes to test whether a deterioration of real estate loans

significantly contributes to systemic risk. Figure 4.4 and Figure 4.5 plot the fraction of defaults for

the year 2009 and 2015 respectively by varying the level of s and α for the four largest asset classes:

residential mortgage loans, other loans, other securities and debt securities.

6Hereafter, referred to as banks.
7The Herfindahl index (Hi) is defined as the sum of the squares of the market shares of all the banks in the system,

where the market shares are expressed as fractions. As a general rule, an Hi below 0.2 signals a lowly concentrated
asset, while an index between 0.2 and 0.5 signals a moderately concentrated asset. For an Hi higher than 0.5, an
asset is considered an highly concentrated asset.
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size of the asset class
asset type index balance sheet item 2007 2008 2009 2010 2011 2012 2013 2014 2015

real estate loans 0 residential mortgage loans 0.194 0.167 0.159 0.227 0.263 0.275 0.293 0.325 0.325

other loans 1 corporate and commercial loans 0.105 0.110 0.139 0.131 0.125 0.131 0.155 0.165 0.105

2 other loans 0.154 0.222 0.128 0.196 0.111 0.134 0.084 0.086 0.151

3 consumer and retail loans 0.092 0.038 0.035 0.036 0.036 0.031 0.030 0.030 0.037

4 loans to public institutions 0.002 0.002 0.003 0.002 0.085 0.007 0.003 0.002 0.002

other assets 5 held-to-maturity securities 0.084 0.085 0.098 0.035 0.037 0.038 0.037 0.031 0.049

6 available for sale securities 0.074 0.074 0.104 0.087 0.078 0.067 0.068 0.069 0.071

7 other securities 0.140 0.106 0.154 0.138 0.119 0.197 0.158 0.122 0.157

8 fixed assets 0.005 0.004 0.004 0.005 0.005 0.004 0.004 0.004 0.004

9 total debt securities 0.124 0.164 0.143 0.123 0.122 0.115 0.123 0.113 0.084

Table 4.1: Size (in terms of market share) by asset class, period 2007-2015. Source: BankScope.
Note that only residential mortagage loans are recorded in BankScope for the category real estate
loans, i.e. no loans for constructions or commercial mortgage loans are available.

Herfindhal index of the asset class
asset type index balance sheet item 2007 2008 2009 2010 2011 2012 2013 2014 2015

real estate loans 0 residential mortgage loans 0.145 0.142 0.131 0.132 0.147 0.151 0.130 0.108 0.106

other loans 1 corporate and commercial loans 0.184 0.244 0.215 0.198 0.164 0.165 0.153 0.148 0.142

2 other loans 0.237 0.245 0.145 0.195 0.182 0.200 0.131 0.099 0.098

3 consumer and retail loans 0.297 0.200 0.190 0.163 0.152 0.141 0.150 0.145 0.148

4 loans to public institutions 0.392 0.385 0.426 0.381 0.415 0.490 0.315 0.308 0.229

other assets 5 held-to-maturity securities 0.500 0.501 0.551 0.478 0.523 0.529 0.518 0.468 0.456

6 available for sale securities 0.124 0.128 0.128 0.148 0.169 0.179 0.205 0.192 0.191

7 other securities 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.118

8 fixed assets 0.196 0.197 0.185 0.160 0.146 0.126 0.117 0.101 0.102

9 total debt securities 0.235 0.255 0.320 0.237 0.258 0.272 0.261 0.234 0.195

Table 4.2: Herfindhal index by asset class, period 2007-2015. Source: BankScope. Note that only
residential mortagage loans are recorded in BankScope for the category real estate loans, i.e. no loans
for constructions or commercial mortgage loans are available.
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Figure 4.3: Average house price in United Kingdom, period 1991-2015. Source: Natiowide.

The most evident observation is that when residential mortgage loans are shocked in 2009 (before

the mid-2013’s housing boom), the number of defaults is below 20% for any level of s and α (upper-

left panel of Figure 4.4). By contrast, when we shock residential mortgage loans in 2015 (after the

mid-2013’s housing boom), the number of defaults is highly sensitive to s and α. As we can see from

the upper-left panel of Figure 4.5, no defaults occur for a shock to residential mortgage loans lower

than 0.42. The fraction of defaults increases with α implying a strong sensitivity of the fragility

of the system to the increase of the illiquidity. Indeed, defaults are not correlated with the initial

shock s and market conditions are therefore the driver of the cascade size as long as s ≥ 0.42. This

is because a shock to residential mortgage loans causes a small number of defaults at every level

s ≥ 0.42, that triggers a large number of defaults (i.e. higher than 80%) in the second round only

when markets are stressed (α > 0.6).

This is confirmed in Figure 4.6, where we observe that the number of defaults in the first round

represents only a small number for increasing levels of the initial shock s and the second round

defaults account for a significant percentage of defaults when α > 0.6. Specifically, Figure 4.6
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Figure 4.6: Decomposition of the first and the second round defaults in 2015 with α = 0.47
(left) and α = 0.71 (right). The initial shock s to residential mortgage loans ranges from 0.5 to
1 (no defaults occur for s < 0.42).

displays the decomposition of the first round and the second round defaults in 2015 for α = 0.47

(left) and α = 0.71 (right), which correspond to the minimum α∗ such that the rate of defaults is

greater than or equal to 30% and 80% respectively. It is clear from Figure 4.6 that the 2015 stress

testing results can be misleading if we do not take into account portfolio overlaps as a source of

contagion when markets are illiquid (α > 0.6). When α = 0.71 (right panel), only 4 banks default

in the first round, while 173 banks default in the second round for an initial shock s = 0.5 to

residential mortgage loans.

With respect to the other asset classes (i.e. other loans, other securities and debt securities), in

both 2009 and 2015 we observe a number of defaults below 20% regardless of s and α (see Figure 4.4

and Figure 4.5 respectively), confirming that the systemic importance of mortgage loans changes

significantly between 2009 and 2015 in comparison to the other asset classes.

Finally, we provide further evidence that the 2015 stress testing results can be inaccurate if we do

not consider the interconnectedness between banks’ portfolios by showing that bank-level data are

not able to assess the systemically important financial institutions in stressed liquidity conditions.

In Figure 4.7 we examine whether bank-specific features, such as the weight of real estate loans in

portfolio and the equity-to-asset ratio, are informative on which banks default when α = 0.71. The

top panel of Figure 4.7 shows the complementary cumulative density function (CCDF) of the weight

of real estate loans in portfolio for banks defaulted in the first round (top-left) and in the second

round (top-right). Banks defaulted in the first round tend to have the portfolio concentrated in real

estate loans, while banks defaulted in the second round do not report large exposures to real estate

loans. As we can see in the top-right panel, around 50% of banks defaulted in the second round
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Figure 4.7: Bank-specific features of the defaults in round 1 and in round 2 in 2015 for α =
0.71 and s ranges from 0.6 to 1 (no defaults occur for s < 0.42). Complementary cumulative
density function (CCDF) of portfolio’s weight of real estate loans (top) and equity-to-asset ratio
(bottom).

hold less than 20% of real estate loans in their portfolios for any level s of a shock to real estate

loans. Therefore, it is evident that portfolio concentration in real estate loans is not an adequate

indicator of systemic importance and bank interconnectedness needs also to be taken into account

when markets are illiquid.

This is confirmed in the bottom panel of Figure 4.7, where the complementary cumulative density

function (CCDF) of the equity-to-asset ratio for banks defaulted in the first round (bottom-left)

and in the second round (bottom-right) is plotted. In both round 1 and round 2 almost the totality

of defaulted banks have a equity-to-asset ratio higher than 40%, meaning that: controlling for the

level of equity-to-asset ratio, portfolio concentration in real estate loans determines the defaults in
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the first round, while portfolio interconnections determine the defaults in the second round.

4.4 Conclusions and policy implications

In this paper, we present a stress test framework for the UK banking system. In the context of the

recent housing bubble, this work contributes to the ongoing debate on the risks of a drop in house

prices for the UK economy.

We focus on the role of portfolio overlaps in amplifying an initial shock to real estate loans

under different stress scenarios. We find that the intensity of the initial shock does not matter in

contrast with what one could think ex ante and market conditions are the main drivers of systemic

cascades. When markets are illiquid, the number of defaults in the second round are more than

three times higher than in the first round, pointing out the importance of interconnections among

banks investing in the same assets. The inadequacy of standing-alone balance sheet indicators

in predicting systemic defaults provides further support that stress test methodologies should be

adapted to incorporate the complexity of the financial system.

The present work aims to provide a basic stress-testing framework and can be extended in several

directions. First, one could introduce heterogeneity in the liquidity of assets classes. Indeed, the

liquidity actually varies strongly across assets (i.e. available for sale securities are considered to

be a more liquid asset class than mortgage loans) and our framework does not account for this

heterogeneity. Second, one could model the asset devaluation endogeneously by defining a different

price impact function for each asset class. Finally, another open question in our stress-testing

exercise concerns the optimal asset allocation which minimizes contagion due to portfolio overlaps

for the design of ad hoc macroprudential requirements.
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Chapter 5

Conclusions

Viewing the financial system as a complex network may seem, at least initially, a fuzzy approach

to provide guidance to regulators and policymakers in defining a macroprudential policy agenda.

In this thesis, we have attempted to show that this perspective can indeed offer an intuitive under-

standing of how the network structure affects systemic risk and monetary policy decisions. Looking

at the financial system from this vantage point, we actually emphasize the distinction between

microprudential and macroprudential policy. While the first targets the stability and soundness

of individual financial institution, the second safeguards the stability of the financial system as a

whole by looking at the interactions and feedback in the financial sector and with the rest of the

economy. By going beyond a micro approach, we assess the health of a financial institution in

connection with the other parts of the financial system and with the real economy by addressing a

number of important questions.

In the first paper The topology of the bank-firm credit network in Spain, 1997-2007, we

consider the indirect channel of contagion that arises when banks provide credit to the same firms.

We investigate the relationship between the structure of bank-firm networks and the vulnerability

of the financial system to a shock in the real sector. As a case study, we use the Spanish bank-firm

system in the period 1997-2007. With this approach we have been able to show the existence of a

stable core of the credit market, that involves an over-expression of a group of firms that is jointly

financed. The robustness of our result has been checked against standard random networks and

the bank-firm degree distributions. Although a significant and persistent core has emerged, the

economic reason why the banking sector organizes itself around a lobby group is not clear. Do large

banks influence small banks in selecting firms ? Or do large banks influence each other ? Do banks

have any economic incentives that encourage to finance the same firms ? In order to answer to
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these questions, an economic model is therefore required in order to bridge the emprical evidence

with economic theory.

In the second paper The controllability of the repo market in Mexico, we study the

relationship between the structure of interbank networks and the effectiveness of monetary policies.

Our investigation is performed with tools of control theory, where we detect the banks that control

the provision of the intraday liquidity by using an algorithm, that takes into account recursively

of all the paths in the network. As an application, we analyze a comprehensive dataset on repo

transactions in the Mexican banking system during 2005-2014. We show that a group of banks

constantly controls the interbank liquidity, which does not coincide with the most connected banks

or the largest lenders. To go beyond these suggestive results, advances in the research on the con-

trol of interbank networks are actually needed. For instance, a promising agenda is to study which

network architecture can make the interbank market more controllable. Once one understands the

impact of the network structure on the control, a more ambitious challenge is certainly to take into

account the amount of the loans, without stopping at the paths of the lending relationships.

In the last paper Stress-testing the UK banking system: a network approach to cope

with portfolio overlaps we carry out a stress test on UK financial institutions. Given the neg-

ative outlook for 2017 real estate market, we check the resilience of the UK banking system to a

decrease in the value of residential mortgage loans by exploring how contagion spreads via portfolio

overlaps. Indeed, recent studies as well as empirical evidences, such as the dot-com bubble or the

subprime mortgage crisis, suggest that the main contribution to systemic risk comes actually from

the exposure to common assets. Overall, our results confirm an increase in the vulnerability to

the real estate sector in the period 2007-2015, providing evidence that portfolio overalaps is an

important channel of contagion. The mechanics of distress propogation that we introduce is very

simple: when a bank defaults and liquidates its assets, distress propagates to the banks holding the

same assets, which in turn suffer losses and so on. Therefore, establishing a contagion mechanism

for distressed-but-non-defaulting institutions opens several possible directions for future research.

Moreover, here we have employed an elementary representation of the balance sheets (i.e. assets are

divided into only 10 classes) and we obviously improove the accuracy of our results by using more

granular balance sheet data. Hence, another future extension of the framework could be based on

extracting a higher number of asset classes with a close calibration of the asset liquidity.
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