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Abstract

Medical imaging is an important means for early illness detection in the majority

of medical fields, which provides better prognosis to the patients. But properly

interpreting medical images needs highly trained medical experts: it is difficult,

time-consuming, expensive, and error-prone. It would be more beneficial to have a

computer-aided diagnosis (CAD) system that can automatically outline the possible

ill tissues and suggest diagnosis to the doctor. Current development in deep learning

methods motivates us to improve current medical image analysis systems.

In this thesis, we have considered three different medical diagnosis, such as breast

cancer from mammograms and ultrasound images, skin lesion from dermoscopic

images, and retinal diseases from fundus images. These tasks are very challenging

due to the several sources of variability in the image capturing processes.

Firstly, we propose a method to analyze the breast cancer in mammograms.

In a first stage, we utilize the Single Shot Detector (SSD) method to locate the

possibly abnormal regions, which are called regions of interest (ROIs). Then, in a

second stage we apply a conditional generative adversarial network (cGAN) method

to segment possible masses within the ROIs. This network works efficiently with

a reduced number of training images. In a third stage, a convolutional neural

network (CNN) has been introduced to classify the shape of the masses (round, oval,

lobular and irregular). Besides, we also try to classify those masses into four distinct

breast cancer molecular subtypes (Luminal-A, Luminal-B, Her-2, and Basal-like),

based on its shape and also on the micro-texture rendered in the image pixels.

Moreover, for ultrasound image processing, we extended the proposed cGAN model

by introducing a novel channel attention and weighting (CAW) block, which improves

the robustness of segmentation by fostering the more relevant features of the masses.

Some statistical analysis corroborate the accuracy of the segmented masks. Finally,

we also performed a classification between benign and malignant tumors based on

the shape of the segmented masks.

Second, skin lesion segmentation in dermoscopic images is still challenging due to

the low contrast and fuzzy boundaries of lesions. Besides, lesions have high similarity
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to healthy regions. To overcome this problems, we introduce a novel layer inside the

encoder of the cGAN, called factorized channel attention (FCA) block. It integrates

a channel attention mechanism and a residual 1-D kernel factorized convolution.

The channel attention mechanism increases the discriminability between the lesion

and non-lesion features by taking into account feature channel interdependencies.

The 1-D factorized kernels provide extra convolutional layers with a minimal set of

parameters and a residual connection that minimizes the impact of image artifacts

and irrelevant objects.

Third, segmentation of retinal optic disc in fundus photographs plays a critical

role in the diagnosis, screening and treatment of many ophthalmologic diseases.

Therefore, we have applied our cGAN method to the task of optic disc segmentation,

obtaining promising results with a really short number of training samples (less than

twenty).

Experiments with these three kinds of medical image diagnosis have been

performed for quantitative and qualitative comparisons with other state-of-the-art

methods, to show the advantages of the proposed detection, segmentation and

classification techniques.

Keywords: Medical image analysis, Deep learning, Breast cancer, Skin

lesion, Retinal fundus image, Convolutional neural network, Conditional generative

adversarial network, Detection, Segmentation, Classification.
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CHAPTER1

Introduction

This first chapter highlights the details about medical image analysis along with deep

learning and explains the major objectives of this thesis. Also, it presents some of the

leading publications concluded from the thesis, as an index of its scientific quality,

as well as the thesis organization.

1.1 Medical image analysis

Medical image analysis is the ability to examine medical issues based on various

imaging modalities. It consists of obtaining images from the human body to

help doctors in making an accurate diagnosis of possible illnesses. The most

common types of medical images include X-rays, MRI (Magnetic Resonance Image),

CT (Computerized Tomography), PET (Positron Emission Tomography), and

ultrasounds, which allow obtaining a visualization of the inside of body parts without

1
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2 Chapter 1. Introduction

Figure 1.1: Examples of radiological and camera based images.

surgery. Moreover, some medical images use visible light cameras to capture images

from outside of the body, like skin images (dermoscopy), eye fundus, endoscopic

images and histological images for analyzing the shape of cells. Figure 1.1 shows

some examples of these types of medical images.

Radiologists are doctors specialized in analyzing these kinds of medical images.

They need a lot of practice to achieve high experience of being capable of providing

accurate diagnosis. The current course of action of examining medical images

is labor-intensive, time-consuming, expensive, and error-prone. It would be

more useful to apply Computer Vision (CV) algorithms capable of extracting

high-level information from numerical images. Those algorithms will lead to

automatic or semiautomatic systems that can help radiologists by providing clues

for more reliable diagnosis and treatment recommendations. This is known as

Computer-Aided Diagnosis (CAD) systems.
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1.2. Deep learning 3

1.2 Deep learning

Machine learning comprises a collection of algorithms that enables a computer to

determine significant patterns from data without human intervention. With rapid

advancing of computational power and the availability of large amounts of data,

deep learning LeCun et al. (2015) has become the default machine-learning method

that is used because it can determine significantly higher complex patterns than

traditional machine-learning methods. Deep learning has been a great and strong

device to foster Artificial Intelligence (AI) in the recent few years. It has performed

remarkable or yet superior human-level performance on image classification He et al.

(2016a), speech identification Xiong et al. (2018), and reading knowledge Devlin

et al. (2018).

Therefore, this is particularly essential for the field of medical imaging analysis.

Recent success in deep learning enables us to rethink clinical diagnostic methods

based on medical images Litjens et al. (2017), Maier et al. (2019), Hesamian et al.

(2019). In all deep learning approaches, CNNs are of exceptional concern. By

utilizing confined connectivity patterns, such as those employed in the ImageNet

competition Krizhevsky et al. (2012), CNNs have fast enhanced the state-of-the-art

approach for image processing. It is crucial for the current CAD systems to provide

accurate and efficient diagnosis and to deal with various types of medical data.

Medical image analysis tasks include detection, segmentation and recognition of

organs or lesions from images pixels provided in mammograms, ultrasound, CT or

MRI images. These are very challenging assignments for traditional Computer Vision

algorithms, but they can be efficiently tackled with deep learning methods.

1.3 Motivation

Our main motivation for the thesis is to create an advanced CAD system for any

type of medical image modality with high sensitivity and specificity rates based

on deep learning techniques. More specifically, we want to improve the automatic

method of detection of Regions of Interest (ROI), which are areas of the image that
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4 Chapter 1. Introduction

contain possible ill tissues, as well as segmentation of the findings (delimitation with a

boundary), and ultimately, a prediction of a most suitable diagnose (classification).

In this thesis, we focus on several topics including mammograms and ultrasound

images to diagnose breast cancer, skin lesions analysis in dermoscopic images and

retinal fundus images examination to avoid diabetic retinopathy.

1.4 Thesis objectives

The main objectives of this thesis are:

• To classify the breast cancer molecular subtypes only from mammogram

images.

• To develop a CAD system for breast cancer diagnosis, able to detect, segment

and classify mass regions in mammograms. Moreover, to possibly predict the

molecular subtypes of masses based on segmented shape features.

• To segment and classify breast lesions also in breast ultrasound images. The

diagnosis of this system can complement the output of the previous system.

• To segment the optic disc from retinal fundus image to address the problem of

diabetic retinopathy.

• To provide a fully automatic skin lesion boundary segmentation from

dermoscopic images.

1.5 Scientific dissemination

The list below shows the main generated publications depending on the type of

dissemination.

1.5.1 Journal articles

1. Vivek Kumar Singh, Hatem A. Rashwan, Santiago Romani, Farhan Akram,

Nidhi Pandey, Md Mostafa Kamal Sarker, Adel Saleh, Meritxell Arenas,

Miguel Arquez, Domenec puig, Jordina Torrents Barrena, “Breast Tumor
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Segmentation and Shape Classification in Mammograms using

Generative Adversarial and Convolutional Neural Network”,

Experts Systems with Applications. Impact Factor: 4.29 (Q1). (Singh et al.

(2020))

2. Vivek Kumar Singh, Mohamed Abdel-Nasser, Hatem A. Rashwan, Farhan

Akram, Nidhi Pandey, Santiago Romani, Domenec Puig, “An Efficient

Solution for Breast Tumor Segmentation and Classification in

Ultrasound Images using Deep Adversarial Learning”, IEEE

Transaction on Biomedical Engineering. Impact Factor: 4.28 (Q1). (To be

submitted).

3. Vivek Kumar Singh, Mohamed Abdel-Nasser, Hatem A. Rashwan, Farhan

Akram, Nidhi Pandey, Alain Lalande, Benoit Presles, Santiago Romani,

Domenec Puig, “FCA-Net: Adversarial Learning for Skin Lesion

Segmentation based on Multi-scale Features and Factorized

Channel Attention”, IEEE Access Journal. Impact Factor: 4.09 (Q1).

(Accepted).

1.5.2 Conference proceedings

1. Vivek Kumar Singh, Santiago Romani, Hatem A Rashwan, Farhan Akram,

Nidhi Pandey, Md. Mostafa Kamal Sarker, Saddam Abdulwahab, Jordina

Torrents-Barrena, Adel Saleh, Miguel Arquez, Meritxell Arenas, Domenec

Puig, “Conditional Generative Adversarial and Convolutional

Networks for X-ray Breast Mass Segmentation and Shape

Classification”, Proceeding of 21st International Conference on Medical

Image Computing and Computer-Assisted Intervention (MICCAI2018), pp.

833-840, 2018 Springer, Cham. Core A. (Singh et al. (2018b))

2. Md. Mostafa Kamal Sarker, Hatem A Rashwan, Farhan Akram, Syeda Furruka

Banu, Adel Saleh, Vivek Kumar Singh, Forhad U H Chowdhury, Saddam

Abdulwahab, Adel Saleh, Santiago Romani, Petia Radeva, Domenec Puig,

“SLSDeep: Skin Lesion Segmentation based on Dilated Residual
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and Pyramid Pooling Networks”, Proceeding of 21st International

Conference on Medical Image Computing and Computer-Assisted Intervention

(MICCAI2018), pp. pp. 21-29, 2018 Springer, Cham. Core A. (Sarker et al.

(2018))

3. Vivek Kumar Singh, Santiago Romani, Jordina Torrents-Barrena, Farhan

Akram, Nidhi Pandey, Md Mostafa Kamal Sarker, Adel Saleh, Meritxell

Arenas, Miguel Arquez, Domenec Puig, “Classification of Breast Cancer

Molecular Subtypes from Their Micro-Texture in Mammograms

using a VGGNet-Based Convolutional Neural Network”, 20th

International Conference of the Catalan Association for Artificial Intelligence

(CCIA 2017), pp. 76-85, IOS press, 2017. (Singh et al. (2017))

4. Vivek Kumar Singh, Hatem A Rashwan, Farhan Akram, Nidhi Pandey, Md

Mostafa Kamal Sarker, Adel Saleh, Saddam Abdulwahab, Najlaa Maaroof,

Jordina Torrents-Barrena, Santiago Romani, Domenec Puig, “Retinal

Optic Disc Segmentation using Conditional Generative Adversarial

Network”, 21st International Conference of the Catalan Association for

Artificial Intelligence (CCIA 2018), pp. 373-380, IOS press, 2018. (Singh

et al. (2018a))

5. Vivek Kumar Singh, Mohamed Abdel-Nasser, Hatem A. Rashwan, Farhan

Akram, Rami Haffar, Nidhi Pandey, Md. Mostafa Kamal Sarker, Sebastian

Kohan, Josep Guma, Santiago Romani, Domenec Puig, “Mass Detection

in Mammograms using a Robust Deep Learning Model”, 22nd

International Conference of the Catalan Association for Artificial Intelligence

(CCIA 2019), 2019. (Accepted)

6. Farhan Akram, Miguel Angel Garcia, Vivek Kumar Singh, Nasibeh Saffari,

Md. Mostafa Kamal Sarker, Domenec Puig, “Image Segmentation using

Active Contours Driven by Bias Fitted Image Robust to Intensity

Inhomogeneity”, 20th International Conference of the Catalan Association

for Artificial Intelligence (CCIA 2017), pp. 146-155, IOS press, 2017.

7. Farhan Akram, Vivek Kumar Singh, Miguel Angel Garcia, Md. Mostafa
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Kamal Sarker, Domenec Puig, “Brain MR Image Segmentation using

Multiphase Active Contours Based on Local and Global Fitted

Images”, 21st International Conference of the Catalan Association for

Artificial Intelligence (CCIA 2018), pp. 325-324, IOS press, 2018.

8. Mohamed Abdel-Nasser, Antonio Moreno, Mohamed A. Abdelwahab, Adel

Saleh, Saddam Abdulwahab, Vivek Kumar Singh, Domenec Puig, “Matching

Tumour Candidate Points in Multiple Mammographic Views for

Breast Cancer Detection”, International Conference on Innovative Trends

in Computer Engineering (ITCE), pp. 202-207. IEEE, 2019.

1.5.3 Book chapters

1. Vivek Kumar Singh, Hatem A. Rashwan, Mohamed Abdel-Nasser, Farhan

Akram, Rami Haffar, Nidhi Pandey, Sebastian Kohan, Josep Guma, Santiago

Romani, Domenec Puig, “A Computer-Aided-Diagnosis System for

Breast Cancer Molecular Subtypes Prediction in Mammographic

Images”, State of the Art in Neural Networks, Elsevier, 2019. (To be

submitted)

1.6 Thesis organization

The thesis is outlined as follows:

In Chapter 2, we design a CAD system able to classify the four breast cancer

molecular subtypes just from the image pixels of digital mammography. The

proposed method is based on a VGGNet-based deep learning techniques that are

able to learn the micro-texture features of image pixels from tumor area. We have

collected 716 image samples of 100 × 100 pixels wide, manually extracted from

real tumor image areas that had been labeled in the digital mammography by a

radiologist, jointly with the corresponding oncologist diagnose based on histological

indicators. Using this ground truth, we have been able to train and test the proposed

CNN, which can achieve a promising accuracy rate. The results of the this chapter

are published in Singh et al. (2017).
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8 Chapter 1. Introduction

In Chapter 3, we propose a cGAN devised to segment a breast tumor within

a region of interest (ROI) in a mammogram. The generative network learns to

recognize the tumor area and to create the binary mask that outlines it. In turn, the

adversarial network learns to distinguish between real (ground truth) and synthetic

segmentations, thus enforcing the generative network to create binary masks as

realistic as possible. The cGAN works well even when the number of training

samples is limited. As a consequence, the proposed method outperforms several

state-of-the-art approaches. Our working hypothesis is corroborated by diverse

segmentation experiments performed on INbreast and a private in-house dataset.

The proposed segmentation model working on an image crop containing the tumor

as well as a significant surrounding area of healthy tissue (loose frame ROI), provides

a significant improvement in terms of Dice Coefficient and Intersection over Union

(IoU). In addition, a shape descriptor based on a CNN is proposed to classify the

generated masks into four tumor shapes: irregular, lobular, oval and round. The

proposed shape descriptor outperforms state-of-the-art methods on DDSM dataset.

At the end, a study of tumor shape and molecular subtype correlation has been

presented. The results of the this chapter are partially published in Singh et al.

(2018b) and they will be fully covered in Singh et al. (2020).

In Chapter 4, we propose to add an atrous convolution layer to the cGAN

segmentation model to learn tumor features at different resolutions of breast

ultrasound images. To automatically re-balance the relative impact of each of the

highest level encoded features, we also propose to add a channel-wise weighting block

in the network. In addition, the SSIM and L1-norm loss with the typical adversarial

loss are combined in an overall loss function to train the model. The propose model

outperforms other state-of-the-art segmentation models. In the classification stage,

we show that few statistic features extracted from the shape of the boundaries of the

predicted masks can properly discriminate between benign and malignant tumors

with a promising accuracy. The results of the this chapter are under review in paper

2 from the journal publication list (1.5.1).
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In Chapter 5, we propose an application of cGAN to segment the optic disc

from retinal fundus images. Experiments were performed on two publicly available

dataset; DRISHTI GS1 and RIM-ONE. The proposed model outperformed several

state-of-the-art methods. The results of the this chapter are published in Singh et al.

(2018a).

In Chapter 6, we propose an accurate skin lesion segmentation model based on a

modified cGAN. We introduce a new block in the encoder of cGAN called factorized

channel attention (FCA), which exploits both channel attention mechanism and

residual 1-D kernel factorized convolution. The channel attention mechanism

increases the discriminability between the lesion and non-lesion features by taking

feature channel interdependencies into account. The 1-D factorized kernel block

provides extra convolutions layers with a minimum number of parameters to make

computations of higher-order convolutions easier. Besides, we use a multi-scale

input strategy to encourage the development of filters which are scale-invariant (i.e.,

constructing a scale-invariant representation). The proposed model is assessed on

three skin challenge datasets. It yields competitive results when compared to several

state-of-the-art methods. The results of this chapter will be published as paper 3

from the journal publication list (1.5.1).

In Chapter 7, presents the conclusion of the thesis and some lines of future

research.

References are presented at the end of the thesis.
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CHAPTER2

Classification of Breast Cancer Molecular

Subtypes from their Micro-Texture in

Mammograms

Breast cancer can be detected at early stages by radiologists from periodic screening

mammography. However, just by viewing the mammogram they cannot discern

the subtype of the cancer, which is a crucial information for the oncologist to

decide the appropriate therapy. Consequently, a painful biopsy must be carried out

for determining the tumor subtype from cytological and histological analysis of the

extracted tissue. This second chapter presents the method to classify the breast cancer

molecular subtypes from mammographic images by utilizing deep learning method

called VGGNet. The work aims to reduce or avoid the biopsy procedure.

11
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12 Chapter 2. Classification of Breast Cancer Molecular Subtypes

2.1 Introduction

Breast cancer is one of the main causes of high mortality among women Howell

et al. (2014). For oncologists, it is critical to correctly identify the malignant breast

cancer molecular subtypes (e.g. Luminal A, Luminal B, Her-2+ and Basal-like) to

treat them with the appropriate therapy. Digital mammography is the most common

acquisition protocol used to detect and locate breast tumors. In Figure 2.1 shows the

four breast cancer molecular subtypes in separate regions of interest extracted from

digital mammograms. Even for specialized radiologists, it is currently impossible to

identify the breast cancer molecular subtypes of a previously detected tumor just

by visual inspection of prompts in mammogram images. Hence, a needle biopsy

procedure is required to obtain the histological prognostic factors of a suspicious

tissue, which provides reliable information to uncover its breast cancer molecular

subtypes.

(a) (b) (c) (d)

Figure 2.1: Regions of interest of the four breast cancer molecular subtypes (from left to right):
(a) Luminal A, (b) Luminal B, (c) Her-2+ and (d) Basal-like.

2.2 Related work

Up to date, numerous approaches have been proposed to classify the breast cancer

tumor subtypes based on histological information. The method designed by

Perou et al. (2000) performed a breast cancer classification into certain intrinsic

subtypes based on gene expression patterns. Harbeck et al. (2013) presented

the guidelines for the breast cancer molecular subtypes categorization based on

several immunohistochemistry (IHC) biomarkers such as estrogen receptors (ER),

progesterone receptors (PR), human epidermal growth factor receptor 2 (HER-2) and

antigen KI-67 (Ki67) has been presented in Table 2.1. Moreover, Spanhol et al. (2016)
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avoided the traditional hand-crafted features to propose a deep learning approach

characterized by a modified AlexNet CNN architecture. Experiments were conducted

using the well-known BreaKHis database1. Jeleń et al. (2008) presented a malignant

Table 2.1: Biological markers in the primary tumour including Estrogen receptor (ER),
Progesterone receptor (PR), Human epidermal growth factor receptor-2 (HER-2) Falck et al. (2013)

Molecular subtypes ER PR Her-2
Luminal-A + + -
Luminal-B + + +
Her-2 - - +
Basal-like - - -

breast cancer classification from cytological images acquired via fine-needle aspiration

biopsies. Authors tested the classification performance using several models such

as multilayer perceptron (MLP), probabilistic neural networks, learning vector

quantization and support vector machines. From the results, they demonstrated the

predictive ability of both probabilistic neural networks and support vector machines

versus the learning vector quantization and MLP. In addition, Dev et al. (2012)

proposed the use of genomic information according to patient treatment to build

a CAD system capable of identifying tumor cells. Authors found that their novel

fused approach based on both Functional Link Artificial Neural Network (FLANN)

and Particle Swarm Optimization (PSO) predict better than other state-of-the-art

methods.

On the other hand, Torrents-Barrena et al. (2015b) presented the first work

to determine the feasibility of using a CAD system to differentiate among all

breast cancer molecular subtypes in mammograms. They hypothesized that

computer vision and machine learning algorithms can offer benefits to address the

aforementioned problem. Authors designed two classification experiments: Luminal

A vs. Luminal B, and Luminal A vs. Luminal B vs. Her-2+ vs. Basal-like. Support

Vector Machines (SVM) and Local Binary Patterns (LBP) yielded the best accuracy:

75% and 52.17%, respectively. Moreover, they designed in Torrents-Barrena et al.

(2015a) a new methodology based on fractal texture analysis and unsupervised /

1http://web.inf.ufpr.br/vri/breast-cancer-database

UNIVERSITAT ROVIRA I VIRGILI 
SEGMENTATION AND CLASSIFICATION OF MULTIMODAL MEDIAL IMAGES BASED ON GENERATIVE ADVERSARIAL LEARNING 
AND CONVOLUTIONAL NEURAL NETWORKS 
Vivek Kumar Singh 
 



14 Chapter 2. Classification of Breast Cancer Molecular Subtypes

supervised classifiers. SVM also achieved the best performance (76.48% and 55.67%,

respectively). The main drawback of both works was the limited number of Her-2+

and Basal-like samples.

In this chapter, we propose an automated CAD system to classify the four

molecular subtypes of breast cancer from full-field digital mammograms (FFDM).

A modified V GG16 Simonyan and Zisserman (2014) CNN architecture is presented

to learn the underlying micro-texture patterns of the mammogram image pixels for

each subtypes. Our approach only requires a manual ground truth of the tumor

region made by expert radiologists to predict its molecular subtypes without the

need of any histological information. Although there is still much room for further

improvements, classification results achieved through our methodology is better than

our previous methods based on hand-crafted features and that, besides our previous

papers, there are no other attempts to solve it.

2.3 Proposed methodology

Recognition of texture patterns in mammograms is challenging due to the high

variability of the gray levels of pixels, which correlate to the amount of radiologic

energy that has crossed the breast tissue Wong et al. (2012). This variability comes

basically from signal noise, from the specific settings of the mammographer, and

the tissue features of the breast under inspection. Besides, the micro-texture of the

pixels in the tumor area is affected not only by the tumor cells but also by normal

tissue around the tumor, as the mammography is a 2D projection of the radioactive

beam crossing a full 3D body Bovis and Singh (2000).

Nowadays, Neural Networks have achieved great success in modeling highly

complex and unstructured information. Specifically, CNN have shown significant

improvements in image recognition tasks, greatly outperforming other classical

Computer Vision strategies. Indeed, CNNs have been successfully applied to solve

various problems in biomedical image analysis Litjens et al. (2017).

However, the majority of the papers propose to train the CNN to recognize
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2.3. Proposed methodology 15

full objects of interest, e.g., abnormal cells, breast microcalcifications, lung nodules,

blood vessels, colon polyps, etc. Materka et al. (1998). In other approaches,

the CNN is trained to detect the texture features of the region of interest (ROI)

corresponding to body areas suspicious to be ill, like hippocampal sclerosis in brain

MRI areas Döhler et al. (2008). Our method belongs to the second strategy, using

a VGGNet-based architecture for learning and classifying micro-texture patterns in

the ROIs of mammograms corresponding to manually segmented breast tumors.

We use the term micro-texture for referring to similar pixel intensity variations

at pixel-wide local areas, corresponding to less than 1 square millimeter, so those

similarities are unnoticeable to humans. In contrast, macro-texture refers to

repetitions of visible shadings across the ROI. Since macro-texture patterns are not

present in the sampled tumors we have seen so far, it is not possible to classify the

subtypes of the tumor by mere visual inspection.

Therefore, we hypothesize that a CNN conveniently designed can learn the

prototypical underlying micro-textures of each cancer subtypes and that those

prototypes are characteristic of each subtype, i.e., they are similar to all samples

of the same subtypes but different from the micro-texture prototypes of the other

cancer subtypes. Hence, the trained CNN should be able to predict the subtypes

of any new breast tumor, given an ROI sample extracted from its corresponding

segmented mammography.

The details related to the proposed methodology are discussed below.

2.3.1 VGGNet-based convolutional neural network

architecture

The VGGNet architecture was proposed in 2014 for the contest ImageNet Large

Scale Visual Recognition Challenge (ILSVRC 2014) Simonyan and Zisserman (2014)

of large-scale image classification and also for localizing learning objects within the

image. This model demonstrated that the depth of the network (16 or 19 layers)

improves the classification performance significantly.

We will base our design on the V GG16 architecture, since it uses small area filters
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16 Chapter 2. Classification of Breast Cancer Molecular Subtypes

(3× 3) that we expect they are well suited for micro-texture prototype learning, in

contrast to other CNN architectures (e.g. AlexNet Krizhevsky et al. (2012)) that

use larger filters (11× 11) to look for edges, macro-textures or other salient features

of the objects.

Since our CNN must learn just pixel-wide micro-texture prototypes (not the

full tumor shapes) of only four classes of cancer subtypes, we have checked several

simplifications of the V GG16 original architecture (see Figure 2.2). Concretely, we

have defined smaller sets of filters and reduced the number of neuron layers.

For example, in the first convolutional layer, we use just 32 filters, instead of

the 64 filters defined by V GG16. We expect that these 32 filters will be enough

for representing the most frequent 3 × 3 pixel configurations of the micro-texture

prototypes. This reduction of filters can also be observed in the rest of the

convolutional layers.

Figure 2.2: Our modified V GG16-based CNN architecture.

For the number of layers, we eliminated the last (higher level) set of 3

convolutional layers, and also removed the second fully connected layer. The first

fully connected layer contains 1024 neurons (instead of 4096) and has a dropout ratio

of 0.5. The last fully connected layer contains 4 neurons (instead of 1000), using

the softmax classifier to assign the final membership degree of the input sample to

each class. Thus, we only use 10 convolutional layers and 2 fully connected layers,

instead of 13 convolutional layers and 3 fully connected layers proposed in the original

V GG16. Once more, the reduction in the number of layers is possible because of the

less complexity and fewer number of patterns that the neural network must model.
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2.4 Experiments and discussion

2.4.1 Dataset

To prove the feasibility of our proposal, we have conducted several experiments

using our own set of mammograms, obtained from patients with breast cancer at

the Universitary Hospital Sant Joan de Reus, Spain. The duty of confidentiality and

security measures were fully complied, in accordance with the current legislation

on the Protection of Personal Data (article 7.1 of the Organic Law 15/1999, 13th

of December). The Hospital also wrote an authorization/consent form including

all measures to provide this information to the volunteer patients. Our dataset

consists of 203 tumors captured with full-field digital mammograms. For each

patient, we usually have 4 images, two per breast (CC and MLO), except for patients

with mastectomy. So we have selected only images with cancer tumors, with two

views per tumor. An expert radiologist has marked the area of each breast tumor,

yielding 192 regions of interest (ROIs). Within each ROI, we have manually cropped

squared windows of 100 × 100 pixels, which constitute the input samples to our

CNN. Depending on the size of the tumor, we have extracted from one to three

image samples per ROI. The samples have been labeled according to its true breast

cancer molecular subtypes, which had been diagnosed by an oncologist based on

histopathological information obtained from tissues extracted by biopsy. For our

study, we ended up with a total of 179 image samples, distributed in 64, 63, 25 and

27 samples for classes Luminal A, Luminal B, Her-2+ and Basal-like, respectively.

The last two classes, Her-2+ and Basal-like, are less frequent among the population,

so we could not collect as many cases as for the two Luminal classes. Nonetheless,

we expected that the shorter number of samples would be significant enough, as we

will discuss below.

2.4.2 Pre-processing and data augmentation

To get rid of signal noise, we have applied a soft Gaussian smoothing to the

mammography pixels, with sigma equal to 0.75 in image coordinates. Afterward, we
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18 Chapter 2. Classification of Breast Cancer Molecular Subtypes

have scaled down the 10-bit or 12-bit values of the pixels of processed mammograms

into 8-bit values with a simple linear transformation, to accommodate input data to

the range expected by the CNN.

Neural Networks usually need from tens of thousands to millions of training

samples for a proper fitting of the weights of all neuron inputs, because the number

of neuron inputs can be of that orders of magnitude. Since we just have hundreds of

tumor samples, we apply data augmentation techniques to obtain diversified views

of the available information. For our experimental framework, we have chosen to

rotate the original samples 90◦, 180◦ and 270◦, thus multiplying by four the initial

set of image samples, thus yielding a total of 716 image samples. Fortunately, image

rotations of 90◦ preserve the spatial scale of the pixel-value variation, while it provides

different orientations of the portrayed micro-texture patterns.

2.4.3 CNN model training

When training CNNs, one usually starts from a pre-trained set of weights and

then fine tunes the fitting of the parameters with specific training samples of the

environment in which the final CNN must work on Tajbakhsh et al. (2016). However,

we decided to start from scratch to check the intrinsic ability of the proposed

architecture to fit the weights of the neuron inputs for discerning the underlying

micro-texture patterns present in the given image samples.

To train our CNN model, we split our dataset into 70% image samples for training,

15% for validation and 15% for testing. Figure 2.3, shows six examples of samples

for each of the four subtypes of cancer to be recognized. Some of these samples

are used for training, validation or testing: we have chosen the better defined (well

contrasted, sharper, no artifacts) to be the training samples, expecting that they

would carry essential micro-texture patterns information of each class. For example,

we excluded samples with microcalcification’s, such as the sixth example (starting

from the left) of Luminal A and the third example of Luminal B.

In the definition of training hyperparameters, we found that 0.01 is a proper

learning rate. Higher learning rates will decay the loss faster but they can get stuck
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Figure 2.3: 24 examples of input image samples, 6 for each of the 4 molecular subtypes of breast
cancer

at worse loss values. This is because there is too much ”energy” in the parameters

and the optimization can bounce around chaotically. To avoid that, the learning rate

is reduced by a factor of 10 at every 5 epochs. Furthermore, the Adadelta optimizer

is used with the momentum of 0.9 and we have set up mini-batches of 10 images.

For obtaining the maximum accuracy, we have checked dozens of different network

architectures, tweaking the hyperparameters such the number of layers, filters per

layer, number of nodes in fully connected layers and others (e.g. learning rate,

momentum).

The process of training a CNN is extremely computationally expensive, due to the

huge amount of calculations on arrays of data and weights that must be carried out.

To perform the experiments, we used a PC with an Intel I3, 64-bit 2.90GHz quad-core

CPU with 4GB of memory space, running an Ubuntu 14.04 Linux operating system.

We used CPU to simulate the CNN model on the deep learning framework Keras

Chollet et al. (2015).
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20 Chapter 2. Classification of Breast Cancer Molecular Subtypes

2.4.4 Experimental results

In order to validate our approach, we grouped the test samples according to their

ground truth labels and passed them as input to the trained CNN. After comparing

the predicted class with the true class, we can obtain an accuracy index of our

classification system. More specifically, we have computed confusion matrices.

Firstly, we have checked the performance of our model by training and validating

the network with regards to the first two classes, Luminal A and Luminal B, which

correspond to the less aggressive cancer subtypes. Table 2.2 depicts the confusion

matrix for our best 2-class classification.

Table 2.2: Confusion matrix for the 2-class experiment: each cell shows both the number of
samples of each ground truth group (rows) classified to each available class (columns), as well as
its corresponding percentage with respect to the total number of test samples of the group.

Prediction
Luminal A Luminal B # Test samples

Ground Truth Luminal A 36 (95%) 2 (5%) 38
Luminal B 15 (39%) 23 (61%) 38

A significant amount of samples has been correctly classified to their ground truth

class, as can be seen in the diagonal of the previous confusion matrix. Our network

has performed well on Luminal A samples, achieving a 95% of accuracy. On the

other hand, just 61% of Luminal B samples had been correctly classified, while the

remaining 39% had been misclassified as belonging to Luminal A. That indicates

that the network fitting had slightly biased to the Luminal A class. Nevertheless,

our network renders an overall accuracy around 78%, which is quite a good result

taking into account the evident lack of visual patterns in the image samples (see

fig.2.3).

In addition to confusion matrices, we also present plots rendering the loss and

accuracy evolution through the iterative training+validation phase. The evolution of

each indicator is shown for both training and validation samples. Theoretically, the

loss should tend to 0.0 (no misclassification) and the overall accuracy should tend to

1.0 (100% of accuracy), after a certain number of epochs.

Plots in Figure 2.4 show the evolution of loss and accuracy for the 2-class
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experiment. As can be observed, the loss reduces and the accuracy increases as

the training procedure evolve through epochs, which indicates that the network

parameters are being nicely optimized. The validation indicators are less stable

than the training ones, but one can say that they follow the expected tendency, on

average.

The second experiment we present here corresponds to the full 4-class

classification, i.e., including all breast cancer subtypes. Table 2.3 shows the confusion

matrix for the whole 106 test image samples. From the results, Luminal A and

Table 2.3: Confusion matrix for the 4-class classification

Prediction
Luminal A Luminal B Her-2+ Basal-like # Test samples

Ground Truth Luminal A 31 (82%) 7 (18%) 0 (0%) 0 (0%) 38
Luminal B 14 (37%) 24 (63%) 0 (0%) 0 (0%) 38

Her-2+ 0 (0%) 0 (0%) 10 (71%) 4 (29%) 14
Basal-like 2 (13%) 0 (0%) 8 (50%) 6 (37%) 16

Her-2+ have performed reasonably good, taking into account that the complexity

of the classification has increased significantly. However, the accuracies for Luminal

B are fair and Basal-like are poor. This performance could be induced by a lack of

micro-texture templates in Basal-like tumors, or because of a high degree of similarity

between tissue density of the Her-2+ and Basal-like, but we also must notice that

the number of samples for these classes are around one half of the number of the

two other classes, so the network may be biasing it’s learning to the micro-texture

patterns of Luminal A and B samples. From the individual accuracy, we can obtain

Figure 2.4: Evolution of loss (left plot) and accuracy (right plot) of the 2-class experiment, for
both training and validation samples.
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22 Chapter 2. Classification of Breast Cancer Molecular Subtypes

an overall accuracy as the weighted average concerning the number of test samples

of each class, obtaining a fair 67% of good predictions.

Nevertheless, the majority of misleading predictions of Her-2+ and Basal-like

classes are located within this group of two classes, and the misleading predictions of

Luminal A and B are also located within the group of the former two classes. That

indicates that the network is distinguishing well between samples of the two groups.

Therefore, one could try another experiment for classifying samples to the group of

Luminal A and B classes, which are less harmful cancers (malignant but with better

prognosis), or to the group of Her-2+ and Basal-like classes, which are more severe

cancers (worse prognosis).

Figure 2.5: Evolution of loss (left plot) and accuracy (right plot) of the 4-class experiment.

Figure 2.5 shows the evolution of loss and overall accuracy for the 4-class

experiment. The plots show the same behavior than in the 2-class experiment, i.e.

properly stable tendencies, which indicates that the training process has done a good

optimization in about 100 epochs.

2.4.5 Discussion

From the experimental results shown above, we can deduce (cautiously) that our

hypothesis seems to be true, i.e., different subtypes of malignant cancers depict

intrinsic (and reduced) sets of micro-texture patterns in their mammographic

projections.

Our CNN architecture has been simplified to learn such micro-texture templates.
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In our framework, CNN does not have to learn full objects. Therefore, the network

just can track for similarities in the pixel intensity distribution within tiny areas of

the samples: all convolutional filters are applied in windows of 3× 3 positions of the

feature maps, which is ideal to account for micro-texture. Indeed, from the second

convolutional layer, the sensitivity of filters spread across larger areas of the input

image (5× 5, 7× 7, etc.), due to the chaining of the neuron layers.

We have reduced the original VGGNet architecture to end up with a network of

about 11 million parameters, which is a small fraction of the 138 million parameters

of the original V GG16 network. Nevertheless, to successfully train a neural network

from scratch, one had to feed a number of training samples of one order of magnitude

above the number of parameters. So, how is it possible that our network has

been properly fitted with less than one thousand samples? Our explanation is the

following: notice that each image sample of 100× 100 pixels actually contains 98x98

windows of 3× 3 pixels, for convolutional filters moving at a stride of 1 pixel in each

direction. Since the subsequent convolutional layers account for wider windows, we

can add 96 × 96 windows of 5 × 5 pixels per sample, and so on. At the end, the

number of examples of micro-texture per sample is very high, approaching to the

order of 105. Thus, multiplying by 103 samples, we get a total of 108 examples of

micro-texture, which can guide the fitting of 107 parameters.

2.5 Conclusion

In this chapter, we have presented a supervised breast cancer molecular subtypes

classification method based on a CNN that analyse manually selected areas of breast

tumors found in DICOM images of mammograms. To the best of our knowledge,

this is the first effort to predict the molecular subtypes of malignant tumors just

from image excerpts of digital mammograms using CNNs. Before, we tried other

approaches to the same problem using classical texture descriptors (Uniform Local

Binary Patterns, Histogram of Gradients, Gabor filters, Fractal dimension), but with

less degree of accuracy ([7]: 75% — 52%; [8]: 76% — 56%; current approach: 78%

UNIVERSITAT ROVIRA I VIRGILI 
SEGMENTATION AND CLASSIFICATION OF MULTIMODAL MEDIAL IMAGES BASED ON GENERATIVE ADVERSARIAL LEARNING 
AND CONVOLUTIONAL NEURAL NETWORKS 
Vivek Kumar Singh 
 



24 Chapter 2. Classification of Breast Cancer Molecular Subtypes

— 67%). Other authors have only focused on automatic detection of tumors and

determining if the tumor is benign or malignant.

The obtained results suggest that the proposed CNN architecture is able to learn

the intrinsic micro-texture patterns of Luminal A and Luminal B image samples,

giving a good prediction rate of about 78%. Although the individual accuracies for

Her-2+ and Basal-like classes cannot be accepted as good, we have found that the

textural features of the samples of these two classes seems to be very different from

the ones of the two Luminal classes, which is a good hint to continue our research

in this direction. Our proposed method does not need any histopathological data or

gene test to classify the cancer subtypes of breast tumors.
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CHAPTER3

Breast Tumor Segmentation and

Classification in Mammograms

Mammogram inspection in search of breast tumors is a tough assignment that

radiologists must carry out frequently. Therefore, image analysis methods are

needed for the detection and delineation of breast tumors, which portray crucial

morphological information that will support reliable diagnosis. This third chapter

presents the method of fully automated CAD system for breast diagnosis which

involves the detection of the mass region, segmentation of ROI and tumor shape

classification from mammograms. Also, to find out the malignancy of the mass, we

provide a correlation study between tumor shape and molecular subtypes.

25
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Chapter 3. Breast Tumor Segmentation and Classification in

Mammograms

3.1 Introduction

Mammography is a world recognized tool that has been proven effective to reduce

the mortality rate, since it allows early detection of breast diseases Lauby-Secretan

et al. (2015). Breast masses are the most important findings among diverse types

of breast abnormalities, such as micro-calcification and architectural distortion. All

these findings may point out the presence of carcinomas Rangayyan et al. (2010).

Moreover, morphological information of tumor shape (irregular, lobular, oval and

round) and margin type (circumscribed, ill defined, spiculated and obscured) also

play crucial roles in the diagnosis of tumor malignancy Tang et al. (2009).

CAD systems are highly recommended to assist radiologists in detecting breast

tumors and outlining their borders. However, breast tumor segmentation and

classification are still challenges due to low signal-to-noise ratio and variability of

tumors in shape, size, appearance, texture and location. Recently, many studies

based on deep representation of breast images and combining features have been

proposed to improve performance on breast mass classification Jiao et al. (2018) .

In addition, based on mammographic images, it is very complicated for an

expert radiologist to discern the molecular subtypes, i.e., Luminal-A, Luminal-B,

HER-2 and Basal-like (triple negative), which are key for prescribing the best

oncological treatment Cho (2016), Liu et al. (2016a), Tamaki et al. (2011). However,

recent studies point out some loose correlations between visual tumor features (e.g.,

texture and shape) and molecular subtypes. In the previous chapter, we have

introduced a CNN to classify molecular subtypes using texture patches extracted

from mammography Singh et al. (2017), which yielded an overall accuracy of 67%.

However, depending only on texture feature is not sufficient to classify the breast

cancer molecular subtypes from mammograms Tamaki et al. (2011).

In this chapter, we propose a method based on two main stages, one for

breast tumor segmentation and another for tumor shape classification, as shown in

Figure 3.1. Before applying our segmentation approach, the SSD Liu et al. (2016b)

is used to locate the tumor and then our method computes the proper coordinates

to crop the ROI. Afterwards, the first stage segments the breast tumor, contained in
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Figure 3.1: Automatic workflow for our breast tumor segmentation and shape classification
system.

the ROI, as a binary mask. In the second stage, the binary mask is classified to a

shape type (irregular, lobular, oval and round). Unlike traditional object classifiers

Kisilev et al. (2015), Kim et al. (2018) that use texture, intensity or edge information,

our method is forced to learn only morphological features from the binary masks.

The current proposal is a thorough improvement of our previous work Singh et al.

(2018b). The major contributions of this chapter are as follows:

1. We believe this is the first adaptation of cGAN in the area of breast tumor

segmentation in mammograms. The adversarial network yields more reliable

learning than other state-of-the-art algorithms since training data is scarce

(i.e., mammograms with labeled breast tumor boundaries), while it does not

increase the computational complexity at prediction time.

2. The application of a multi-class CNN architecture to predict the four breast

tumor shapes (i.e., irregular, lobular, oval and round) using the binary mask

segmented in the previous stage (cGAN output).

3. An in-depth evaluation of our system’s performance using two public (1,274

images) and one private (300 images) databases. The obtained results

outperform current state-of-the-art in both tumor segmentation and shape

classification.

4. A study of the correlation between the tumor shape predicted by our automatic

method with respect to the ground-truth molecular subtypes of breast cancer,

which reasonably matches with other clinical studies like Boisserie-Lacroix et al.

(2013).
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Chapter 3. Breast Tumor Segmentation and Classification in

Mammograms

3.2 Related work

In the following paragraphs we point out some works mainly focused on breast tumor

segmentation and shape classification in mammography, as well as generic image

analysis methods highly related with our field of interest.

3.2.1 Tumor segmentation background

CNNs can automatically learn features from the given images to represent objects

at different scales and orientations. By increasing the number of layers (depth of

CNN model) more detailed features can be obtained, which play crucial part in

solving different computer vision problems, such as object detection, classification

and segmentation. Thus, numerous methods has been proposed to solve the image

segmentation problem based on deep learning approaches Schmidhuber (2015).

One of the well-known architectures for semantic segmentation is the Fully

Convolutional Network (FCN) Long et al. (2015), which is based on encoding

(convolutional) and decoding (deconvolutional) layers. This approach gets rid of

the fully connected layers of CNNs to convert the image classification networks into

image filtering networks. An improvement of this scheme was proposed by the U-Net

architecture Ronneberger et al. (2015), where skip connections between encoding and

decoding layers are added to retain significant information from the input features.

Later on, a new variation of FCN was proposed Badrinarayanan et al. (2017) named

SegNet, which consists of hierarchy of decoders, each one corresponding to each

encoder. The decoder network uses the max-pooling indices received from the

corresponding encoder to perform non-linear upsampling of their input feature maps.

Since semantic segmentation has achieved great progress with deep learning, there

is recent popularity in applying such models to medical imaging, such as for skin

lesions segmentation (Litjens et al. (2017), Sarker et al. (2018)), and for fundus

photography of the rear of an eye ( Fu et al. (2018a), Singh et al. (2018a)).

For breast tumor detection, segmentation and classification, many medical

image analysis methods have been proposed so far, such as Yassin et al. (2018)

UNIVERSITAT ROVIRA I VIRGILI 
SEGMENTATION AND CLASSIFICATION OF MULTIMODAL MEDIAL IMAGES BASED ON GENERATIVE ADVERSARIAL LEARNING 
AND CONVOLUTIONAL NEURAL NETWORKS 
Vivek Kumar Singh 
 



3.2. Related work 29

and Hamidinekoo et al. (2018). A tumor classification and segmentation method

was proposed Rouhi et al. (2015) using an automated region growing algorithm

whose threshold was obtained by a trained Artificial Neural Network (ANN) and

Cellular Neural Network (CeNN). In turn, to reduce the computational complexity

and increase the robustness, a quantized and non-linear CeNN for breast tumor

segmentation was proposed in Liu et al. (2018). After segmenting the breast tumor

region, a Multilayer Perceptron Classifier was used for tumor classification as benign

or malignant.

Furthermore, Dhungel et al. (2015b) segmented breast tumors using Structured

Support Vector Machines (SSVM) and Conditional Random Fields (CRF). Both

graphical models minimize a loss function build on pixel probabilities provided by

a CNN and Deep Belief Network, a Gaussian Mixture Model (GMM) and shape

prior. The SSVM is based on graph cuts and the CRF relies on tree re-weighted

belief propagation with truncated fitting training Dhungel et al. (2015a). Cardoso

et al. (2015, 2017) tackled the same problem by employing a closed contour fitting in

the mammogram and minimizing a cost function depending on the radial derivative

of the tumor contour. A measure of regularity of the gray pixel values inside and

outside the tumor was also included in Cardoso et al. (2017).

In turn, Zhu et al. (2018) proposed an FCN concatenated to a CRF layer

to impose the compactness of the segmentation output taking into account pixel

position. This approach was trained end-to-end, since the CRF and FCN can

exchange data in the forward-backward propagation. An adversarial term was

introduced to prevent the samples with the worst perturbation in the loss function,

which reduced the overfitting and provided a robust learning with few training

samples. In addition, Al-antari et al. (2018) proposed a CAD system consisting

of three deep learning stages for detecting, segmenting and classifying the tumors

in mammographic images. To locate tumors in a full mammogram, the You Only

Look Once (YOLO) network proposed in Redmon et al. (2016) was used. A Full

resolution Convolutional Network (FrCN) was then used for segmenting the located

tumor region. Finally, a CNN network was used for classifying segmented ROI as
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either benign or malignant.

We believe that Yang et al. (2017) is the first work that exploits GAN

Goodfellow et al. (2014) for medical image segmentation. In particular,

they performed three-dimensional (3D) liver segmentations using abdominal

Computerized Tomography (CT) scans. In Singh et al. (2018b), we adapted

a cGAN image-to-image translation algorithm Isola et al. (2017) to address the

tumor segmentation in two-dimensional (2D) mammograms. With that method,

we achieved state-of-the-art performance on both public and private databases.

3.2.2 Shape classification background

In the literature, many approaches used traditional computer vision techniques to

extract hand-craft features and subsequently classify them. For instance, Matos et al.

(2018) applied the Bag of Features (BoF) paradigm on local feature descriptors, such

as Scale-Invariant Feature Transform (SIFT), Speed Up Robust Feature (SURF) or

Local Binary Patterns (LBP), achieving very high accuracy of 99% in classifying

tumors as malignant or benign.

Recently, deep learning architectures have been designed for 2D and 3D shape

classification Kurnianggoro et al. (2018). For example, topological data analysis

(TDA) using deep learning was proposed in Hofer et al. (2017) to extract relevant

2D/3D topological and geometrical information. In turn, a CNN model was

formulated, which used spectral graph wavelets in conjunction with the BoF

paradigm to target the shape classification problem Masoumi and Hamza (2017).

In addition, the authors in Fang et al. (2015) proposed a CNN based shape

descriptor for retrieving the 3D shapes. A deep neural network named PointNet

was proposed Qi et al. (2017), which directly consumes point cloud for object

classification, localized and global semantic segmentation. Moreover, a deep learning

framework for efficient 3D shape classification Luciano and Hamza (2018) used

geodesic moments by inheriting various properties from the geodesic distance, like

the intrinsic geometric structure of 3D shapes and the invariance to isometric

deformations.
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To date, numerous shape classification methods are applied for medical image

analysis Singh et al. (2018b), and Kim et al. (2018). An automated method for

textual description of anatomical breast tumor lesions was proposed by Kisilev

et al. (2015), which performs joint semantic estimation from image measurements

to classify the tumor shape. In addition, Kisilev et al. (2016) also presented a

multi-task fast region-based CNN Ren et al. (2015) to classify three tumor shapes:

irregular, oval and round. Furthermore, the work in Kim et al. (2018) utilized a

GAN to diagnose and classify tumors in mammograms into four shapes: irregular,

lobular, oval and round. Previously, Singh et al. (2018b) proposed a multi-class

CNN to categorize the tumor shapes into four classes as in Kim et al. (2018) from

the public dataset DDSM1.

3.3 Proposed methodology

The proposed CAD system shown in Fig. 3.1 is divided into two stages: breast tumor

segmentation and shape classification.

3.3.1 Obtaining and processing ROIs

Before feeding an image to the first stage, our optimal workflow applies the SSD

Liu et al. (2016b) to locate the tumor position and fit a bounding box around

it. Based on these bounding coordinates, our method computes new coordinates

containing the tumor (vide infra), and then uses these new coordinates to crop the

mammogram, thus obtaining the Region of Interest (ROI). We evaluated different

detectors based on deep learning models, such as SSD Liu et al. (2016b), YOLO

Redmon et al. (2016) and Faster R-CNN Ren et al. (2015). Empirically, the SSD

detector yields the best results since it is able to detect small tumor regions and

provides an overall accuracy of 97%. We are not targeting object sizes less than 7×7

pixels because those objects are really hard to be identified as tumors. Indeed,

1https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
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they may correspond to other types of findings, such as calcifications. We are

considering only mammograms with tumors, since our main goal is tumor shape

classification following tumor segmentation. Therefore, we have not applied SSD on

normal mammograms (no tumor), although the SSD method is capable of dealing

with this case as well.

To obtain the proper cropping area, our best framing method, so-called loose

frame, expands the original bounding box coordinates by adding extra space

around, so that the cropped ROI always encompasses the tumor as well as some

surrounding area containing healthy tissue (30% and 70% for tumor and healthy

tissues, respectively). The computed coordinates are shifted to make the ROI frame

fit inside the mammogram image. Besides, both sides of the frame are set equal

in order to preserve the original aspect ratio of tumors. Last adjustments required

to make the image square sometimes cause the tumor be out of the ROI center.

However, this does not preclude the segmentation and classification due to the

position-independent nature of convolutional filters.

Moreover, ROI images are scaled to 256×256 pixels, which is the optimal

cGAN input size found experimentally. After scaling, they are pre-processed for

noise removal as proposed in Kshema et al. (2017) (Gaussian filter with σ = 0.5

yields the best segmentation results) and then contrast is enhanced using histogram

equalization, similarly to Cheng et al. (2003). Then, we apply a normalization for

rescaling the pixel values between [0,1].

The prepared data is then fed to the cGAN to obtain a binary mask of the

breast tumor, which is post-processed using morphological operations (we used filter

sizes of 3×3 for closing, 2×2 for erosion, and 3×3 for dilation) to remove small

speckles, as proposed in Hazarika and Mahanta (2018). Fig. 3.2 shows a couple of

examples of these small speckles, enclosed in red boxes, which are filtered out after

post-processing.

In the second stage, the output binary mask is downsampled into 64×64 pixels,

which is then fed to a multi-class CNN shape descriptor to categorize it into four

classes: irregular, lobular, oval and round. The reason of this downsampling is that
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Image Ground-truth
Before

	Post-processing
After

	Post-processing

.

Figure 3.2: Two examples of the effect of morphological post processing after the segmentation.

our shape classification CNN does not need a high resolution image to extract the

core morphological features for each class, since the tumors are represented with flat

white areas in front of a black background. Hence, changes in the image present very

low frequencies.

Our work presented in Singh et al. (2018b) demonstrates the feasibility of

applying the cGAN image-to-image translation approach Isola et al. (2017) to breast

tumor segmentation, since it can be adapted to our problem in the following senses:

1. The Generator G network of the cGAN is an FCN composed of encoding

and decoding layers, which learn the intrinsic features (gray-level, texture,

gradients, edges, shape, etc.) of healthy and unhealthy (tumor) breast tissue,

and generate a binary mask according to these features.

2. The Discriminative D network of the cGAN assesses if a given binary mask is

likely to be a realistic segmentation or not. Therefore, including the adversarial

score in the computation of the generator loss strengthens its capability to

provide a correct segmentation.

The combination of G and D networks allows robust learning with few training

samples. Since the ROI image is a conditioning input for both G and D, the

segmentation result is better fitted to the tumor appearance. Otherwise, regular
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Figure 3.3: Proposed cGAN architecture: generator G (top), and discriminator D (down).

(unconditional) GAN Goodfellow et al. (2014) will infer the segmentation just from

random noise, which will require more training iterations compared to the cGAN to

obtain an acceptable segmentation result.

3.3.2 Tumor segmentation model (cGAN)

Fig. 3.3 represents the suggested architectures for G and D. The former consists

of several encoding and decoding layers (see Fig. 3.3-top). Encoding layers are

composed of a set of convolutional filters followed by batch normalization and the

leaky ReLU (slope 0.2) activation function. Similarly, decoding layers are composed

of a set of deconvolutional filters followed by batch normalization, dropout and ReLU.

Convolutional and deconvolutional filters are defined with a kernel of 4×4 and

stride of 2×2, which respectively downsample and upsample the activation maps

by a factor of 2. Batch normalization is not applied after the first and the last

convolutional filters (Cn1 and Cn8). After Cn8, the ReLU activation function is
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applied instead of leaky ReLU. Dropout is applied only at the first three decoding

layers (Dn1, Dn2 and Dn3). There is no skip connection in the last decoding layer

(Dn8), after which the tanh activation function is applied to generate a binary mask

of the breast tumor.

The architecture of D shown in Fig. 3.3 at down consists of five encoding layers

with convolutional filters with a kernel of 4×4, stride 2×2 at the first three layers and

stride 1×1 at 4th and 5th layers. Batch normalization is applied after Cn2, Cn3 and

Cn4 and a leaky ReLU (slope 0.2) is applied after each layer except for the last one.

The sigmoid activation function is used after the last convolutional filter (Cn5). The

network input is the concatenation of the ROI and the binary mask to be evaluated

(ground truth or predicted). The output segmentation is an array of 30×30 values,

each one from 0.0 (completely fake) to 1.0 (perfectly plausible or real). Each output

value is the degree of proper segmentation likelihood of a crop of the binary mask

and the input image, which corresponds to a 70×70 receptive field for each value.

Dice loss

BCE loss

Tumor ROI
Generated
binary mask

Ground truth
binary mask

Generator
loss

x y

Generator 
network 

Discriminator 
network 

G (x, z)

Figure 3.4: Proposed cGAN framework based on Dice and BCE losses.

Let x be a tumor ROI, y the ground truth mask, z a random variable, λ an

empirical weighting factor, G(x, z) and D(x,G(x, z)) the outputs of G and D,
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respectively. Then, the loss function of G is defined as:

`Gen(G,D) = Ex,y,z(− log(D(x,G(x, z)))) + λEx,y,z(`Dice(y,G(x, z))), (3.1)

where z is introduced as dropout in the decoding layers Dn1, Dn2 and Dn3 at both

training and testing phases, which provides stochasticity to generalize the learning

processes and avoid overfitting.

The optimization process of G will try to minimize both expected values, i.e., the

D values should approach to 1.0 (correct tumor segmentations), and the Dice loss

`Dice should approach to 0.0 (generated masks are equal to ground truth). Both terms

of generator loss enforce the proper optimization of G: the Dice loss term fosters a

rough prediction of the mask shape (central tumor area) while the adversarial term

fosters an accurate prediction of the mask outline (tumor borders). Neglecting one

of the two terms may lead to either very poor segmentation results or slow learning

speed.

In addition, `Dice(y,G(x, z)) is the Dice loss of the predicted mask with respect

to ground truth, which is defined as:

`Dice(y, z) = 1− 2|y ◦G(x, z)|
|y|+ |G(x, z)|

, (3.2)

where ◦ is the pixel wise multiplication of the two images and |.| is the total sum

of pixel values of a given image. If inputs are binary images, then each pixel can be

considered as a boolean value (white is 1 / black is 0 ). The formulation in (3.2) is

equivalent to the Dice coefficient i.e., 2× TP
TP+FN+TP+FP

, but it must be subtracted

from 1.0 because the loss function will be minimized. Let A be the ground truth of

the ROI and B the segmented region. Then the true positive degree (TP) is defined

as TP = A ∩ B, which is the area of the segmented region common in both A and

B. The false positive degree (FP) is defined as A ∩ B, which is the segmented area

not belonging to A. Similarly, the false negative degree (FN) is defined as A ∩ B,

which is the true area missed by the proposed segmentation method.

In our previous methodology proposed in Singh et al. (2018b), the generator
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network loss was formulated by combining the logistic Binary Cross Entropy (BCE)

loss and the L1-norm. In the methodology proposed in this chapter, we replace

the L1-norm loss with the Dice loss as shown in Fig. 3.4. L1-norm loss minimizes

the sum of absolute differences between the ground truth label y and the estimated

binary mask G(x, z) obtained from the generator network, which takes all pixels

into account. In turn, Dice loss is highly dependent on TP predictions, which is the

most influential term in foreground segmentation. Fig. 3.5 shows that the Dice loss

achieves lower values (more optimal) than the L1-norm loss.

0 500 1000 1500 2000 2500 3000 3500 4000
iterations

10 0

10 1

10 2

lo
ss

Dice loss

L1-norm loss

Figure 3.5: Dice and L1-norm loss comparison over iterations.

Moreover, the loss function of D is defined in (6.8):

`Dis(G,D) = Ex,y,z(− log(D(x, y))) + Ex,y,z(− log(1−D(x,G(x, z)))) (3.3)

The optimizer will fit D to maximize the loss values for ground truth masks (by

minimizing − log(D(x, y))) and minimize the loss values for generated masks (by

minimizing − log(1−D(x,G(x, z))). These two terms compute BCE loss using both

masks, assuming that the expected class for ground truth and generated masks is 1

and 0, respectively.

The optimization of G and D is done concurrently, i.e., one optimization step

for both networks at each iteration, where G learns how to compute a valid
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tumor segmentations and D learns how to differentiate between synthetic and real

segmentations.

We have experimented on different hyper-parameters to improve the segmentation

accuracy of our contribution in Singh et al. (2018b). Besides introducing the Dice

loss, we have reduced the number of filters of each network from 64 to 32. We

also explored different learning rates and loss optimizers (SGD, AdaGrad, Adadelta,

RMSProp and Adam), finding the best combination at Adam with β1 = 0.5, β2 =

0.999 and initial learning rate = 0.0002 with batch size 8. In (3.1), the Dice loss

weighting factor λ = 150 was found to be the best choice. Finally, the best results

were achieved by training both G and D from scratch for 150 epochs.

3.3.3 Shape classification model

In the literature, various approaches for tumor shape classification have found

that texture and intensity features are relevant for their proposals. However, in

this proposal we attempt to use only shape context to classify the tumor shapes.

Specifically, we propose a multi-class CNN architecture for breast tumor shape

classification (i.e., irregular, lobular, oval and round) using the binary masks

obtained from the cGAN. Methods attempting to directly categorize the shape

using breast tumor intensity, texture, boundary, etc. include Kisilev et al. (2015,

2016); Ren et al. (2015); Kim et al. (2018), but they all render high computational

complexity. We simplify the problem by extracting morphological features only from

binary masks.

As shown in Fig. 3.6, our model consists of three convolutional layers with kernel

sizes 9×9, 5×5 and 4×4, respectively, and two fully connected (FC) layers. The

first two convolutional layers are followed by 4×4 max-pooling with stride 4×4. The

output of the last convolutional layer is flattened and then fed into the first FC layer

with 128 neurons. These four layers use ReLU as activation function. A dropout

of 0.5 is used to reduce overfitting in the first FC layer. Finally, the last FC layer

with 4 neurons applies the softmax function to generate the final membership degree

of the input binary mask to each class. A weighted categorical cross-entropy loss is
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Figure 3.6: CNN architecture for tumor shape classification.

used to avoid the problem of unbalanced dataset. The class weight is one minus the

ratio of samples per class to the total number of samples.

The RMSProp is employed for optimizing the model with learning rate = 0.001,

momentum = 0.9 and batch size = 16. The network is trained from scratch and the

weights of five layers are randomly initialized. During training, we experimentally

found the best architecture, number of layers, filters per layer, and number of neurons

in FC layers.

3.4 Experiments and discussion

We have evaluated the performance of proposed models on two public mammography

datasets and one private dataset:

INbreast dataset 2

It is a publicly available database containing a total of 115 cases (410 mammograms),

which include: masses, calcifications, asymmetries and distortions. However, only

106 out of 410 mammograms have their corresponding ground truth of binary masks.

Thus, we only used this 106 mammograms to test our detection and segmentation

model.

2http://medicalresearch.inescporto.pt/breastcancer/index.php/Get INbreast Database/

UNIVERSITAT ROVIRA I VIRGILI 
SEGMENTATION AND CLASSIFICATION OF MULTIMODAL MEDIAL IMAGES BASED ON GENERATIVE ADVERSARIAL LEARNING 
AND CONVOLUTIONAL NEURAL NETWORKS 
Vivek Kumar Singh 
 

http://medicalresearch.inescporto.pt/breastcancer/index.php/Get_INbreast_Database/


40
Chapter 3. Breast Tumor Segmentation and Classification in

Mammograms

DDSM dataset

It is a publicly available digital database for screening mammography containing

2, 620 mammography studies. In this work, 1, 168 cases of breast tumors with their

corresponding ground truths are used for shape classification, where 504, 473, 115

and 76 tumors are labeled as irregular, lobular, oval and round, respectively. The

remaining images are excluded since they do not provide shape labels. We have used

75% of the images for training and the rest for testing the tumor shape classification

model.

Hospital Sant Joan de Reus dataset

It is our private dataset that contains 300 malignant tumors (123 Luminal-A, 107

Luminal-B, 33 Her-2 and 37 Basal-like) with their respective ground truth binary

masks obtained by radiologists. The SSD detector and proposed cGAN segmentation

model is trained and tested using 220 and 80 images, respectively.

The proposed method was implemented using Python with PyTorch3 running on

a 64-bit Ubuntu operating system using a 3.4 GHz Intel Core-i7 with 16 GB of RAM

and NVIDIA GTX 1070 GPU with 8 GB of video RAM.

3.4.1 Tumor detection experiments

In order to localize the tumor in the input mammographies, we compared different

common deep learning detectors, such as Dhungel et al. (2017), Kozegar et al. (2013),

Faster R-CNN Ren et al. (2015) , YOLO Redmon et al. (2016), and SSD Liu et al.

(2016b). The tested detectors were trained with the Hospital Sant Joan de Reus

dataset and tested with the INbreast dataset. Table 3.1 presents a quantitative

comparison in terms of True Positive Rate (TPR) and False Positive Rate (FPR) with

respect to the degree of overlapping between predicted and ground truth bounding

boxes containing the tumor. To consider a true positive prediction, we require at

least 60% of area overlapping.

3https://pytorch.org/
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Table 3.1: Mass detection accuracy of proposed method compared with the existing
state-of-the-art methods.

Dataset Method TPR (%) FPR(%)

INbreast

Dhungel et al. (2017) 96.00 1.20
Kozegar et al.(2013) 87.00 3.67
Faster R-CNN Ren et al. (2015) 96.00 2.94
YOLO Redmon et al. (2016) 96.35 2.40
SSD Liu et al. (2016b) 97.00 1.10

The SSD method yields the best results, with the highest TPR and lowest FPR.

In turn, YOLO, Faster R-CNN and Dhungel et al. (2017) models have properly

detected masses in the input mammograms, but with slightly worse quantitative

results. Consequently, we have chosen the SSD model in order to locate tumors in

mammograms.

3.4.2 Tumor segmentation experiments

Evaluation Metrics : Assume A is the ground truth and B is the segmented

region (using a segmentation model). True positive (TP), False Positive (FP) and

False Negative (FN) rates have been defined above, when introducing equation 3.2. In

turn, the true negative rate is defined as TN = A∩B, which is the area not belonging

to any of the two masks A and B. Below, we present the mathematical expression of

the accuracy (ACC), Dice coefficient (Dice), IoU (Jaccard Index), sensitivity (SEN),

and specificity (SPE).

ACC =
TP + TN

TP + TN + FN + FP
(3.4)

Dice =
2.TP

2.TP + FP + FN
(3.5)

IoU =
TP

TP + FP + FN
(3.6)

SEN =
TP

TP + FN
(3.7)

SPE =
TN

TN + FP
(3.8)
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The proposed breast tumor segmentation method is compared with the

state-of-the-art methods and evaluated both quantitatively and qualitatively. For

the quantitative analysis, segmentation accuracy is computed using Dice and IoU.

For the qualitative analysis, segmentation results with the their respective ground

truth binary masks are compared visually. These experiments have been carried

using three different framing of the tumor ROI: full mammogram, loose and tight

frames (see Fig. 3.7). The ideal CAD system should be able to automatically segment

the breast tumor from a full mammogram. However, this is a very difficult task

due to high similarity between gray level pixel distributions of healthy and tumorous

tissue. Therefore, removing most of non-ROI portions of the image logically helps the

model on learning the visual features that differentiate breast tumor from non-tumor

areas. As mentioned in the methodology section, for computing the loose and tight

frames we rely on the initial tumor delimitation provided by the SSD method Liu

et al. (2016b). The loose frame provides a convenient proportion between healthy

and tumorous pixels. The tight frame is a square shrunk on the tumor, as it is

intended to evaluate the behavior of the segmentation model when the majority of

ROI contains tumor pixels. (see Fig. 3.9).

(a) (b) (c)

Figure 3.7: Three cropping strategies: (a) full mammogram, (b) loose frame, (c) tight frame.

The three cropping strategies are evaluated on our cGAN and eleven baseline

segmentation models, referred as FCN, FCN-ResNet101, UNet, UNet-VGG16,
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SegNet, SegNet-VGG16, CRFCNN, SLSDeep, cGAN-ResNet101, cGAN-ResNet101

(Dice Loss) and proposed cGAN (without post-processing). FCN, UNet, SegNet,

CRFCNN and proposed cGAN are trained from scratch. FCN-ResNet101,

UNet-VGG16, SegNet-VGG16 and cGAN-ResNet101 (with and without Dice loss)

are modifications of the original models, where the filters of the starting encoding

layers are replaced by the starting convolutional layers of the well-known VGG (16

layers) and ResNet (101 layers) models, which were pre-trained on the ImageNet

database. Thus, we loaded the pre-trained weights and fine tuned the network.

When using cGAN-ResNet101 Isola et al. (2017), we replaced the L1-norm loss with

the Dice loss in the generator loss function to see how the base line model will behave

under such change. We called this model cGAN-ResNet101 (Dice loss) to compare

the segmentation results with our proposal. The results depicted in Table 3.2 are

divided in two sections, one for our private dataset and another for the INbreast

dataset. Note that all models are trained on the private dataset, and then tested

using our private dataset as well as the INbreast dataset without fine tuning.

According to the results, our method outperforms the compared state-of-the-art

methods in all cases except for the IoU computed on tight crops in our private

dataset. The SLSDeep approach yielded the best IoU (79.93%), whereas our method

yielded the second best result (79.87%) with a very small difference of 0.06%. The

post-processing improved the results of our model by 1% with the three framing

inputs.

All models yielded their worst segmentation results with full mammograms

compared to other framing inputs, which is logical taking into account the difficulties

stated earlier in this section. Most of the models have obtained their best results for

the tight frame crops except for CRFCNN and our proposal, which yielded their best

results for loose frame crops. However, the good results for tight crops may be due to

the imbalance of tumor/non-tumor pixels, since the former class is present in more

than 90% of the image area. The learning can be biased towards this class, which

makes rough solutions (almost everything is tumor) to provide very high ranks of

performance. Loose frame crops, on the contrary, have a more balanced proportion
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Table 3.2: Dice and IoU metrics obtained with the proposed model with/without post-processing
and ten alternatives evaluated on the testing sets of our private and INbreast datasets, for the
three cropping strategies. Best results are marked in bold. Dashes (-) indicate that results are not
reported in referred papers.

Dice(%) IoU(%)
Dataset Methods Full Loose Tight Full Loose Tight

FCN 59.06 74.94 80.20 39.92 62.21 78.89
FCN-ResNet101 59.21 77.42 82.78 40.26 68.16 77.32
UNet 63.69 78.03 83.15 46.73 68.36 78.81
UNet-VGG16 59.27 78.57 83.71 42.13 69.71 79.42
SegNet 59.87 80.26 82.33 42.79 70.07 76.17
SegNet-VGG16 61.59 81.09 81.41 41.61 68.19 77.82
CRFCNN 53.21 71.33 63.52 41.38 65.24 54.28
SLSDeep 59.64 71.10 84.28 43.89 60.16 79.93
cGAN-ResNet101 58.37 80.11 86.22 42.12 71.91 76.62
cGAN-ResNet101 (Dice Loss) 61.49 86.57 86.37 45.90 76.32 77.26
Proposed cGAN (without post-processing) 65.17 88.42 87.77 48.45 80.67 78.22

Private

Proposed cGAN (with post-processing) 66.38 89.99 88.12 49.68 81.81 79.87
FCN 54.36 66.12 81.74 36.88 49.38 77.33
FCN-ResNet101 51.76 83.80 82.38 38.49 74.12 78.09
UNet 55.58 77.92 80.76 38.46 70.83 77.97
UNet-VGG16 56.79 78.02 80.89 39.65 68.32 78.13
SegNet 53.33 79.06 81.11 36.36 65.37 77.02
SegNet-VGG16 56.27 80.17 81.75 39.46 69.79 78.68
CRFCNN 52.96 73.25 65.41 40.41 67.14 57.69
SLSDeep 60.35 75.90 85.53 44.63 65.16 80.26
cGAN-ResNet101 54.69 87.19 89.17 37.94 77.51 82.26
cGAN-ResNet101 (Dice Loss) 59.72 88.89 90.42 44.89 82.58 82.95
Proposed cGAN (without post-processing) 67.55 93.64 91.47 50.05 86.29 83.58

INbreast

Proposed cGAN (with post-processing) 68.69 94.07 92.11 52.31 87.03 84.55
Dhungel et al. (2015b) − − 90.00 − − −
Cardoso et al. (2017) − − 90.00 − − −
Zhu et al. (2018) − − 90.97 − − −
Al-antari et al. (2018) − − 92.69 − − 86.37

of pixels for both classes, which makes them ideal to learn and evaluate the model

on a realistic situation: it is more convenient for radiologists to provide a fast frame

drawing around the breast tumor rather than a tight frame.

Comparing the general results for both datasets, most methods performed better

on INbreast rather than on private dataset with loose and tight framing. This effect

can be explained by the fact that INbreast provides more detailed ground truths,

which leads to better testing results, despite all network training has been conducted

on our private dataset.

In general, our proposal, with and without post-processing, has performed well

in terms of both Dice and IoU metrics. For private dataset, in Dice/Loose frame

column, our model with post-processing score (89.99%) is almost 9% above the
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second best model, SegNet-VGG16 (81.09%). In the IoU/Loose frame column,

our model percentage (81.81%) is almost 10% above the second best model,

cGAN-ResNet101 (71.91%). For INbreast dataset, our loose frame results for

DIC and IoU are again the best (94.07%, 87.03%), where cGAN-ResNet101 is the

second best model for both metrics (87.19%, 77.51%). Thus, our model provides

an improving of 7% and 10%, respectively. The fact that the second best results

are obtained by the cGAN-ResNet101 model indicates that the adversarial network

really helps in training the generative network. In turn, the results obtained by the

cGAN-ResNet101 (Dice Loss) mixture model are in-between the cGAN-ResNet101

and our proposal, since the Dice loss term substitution improves the accuracy of

tumor segmentations.

For the INbreast dataset, we have included the results mentioned in four related

papers Dhungel et al. (2015b), Cardoso et al. (2017), Zhu et al. (2018) and Al-antari

et al. (2018). For these methods, we could not compute the metrics for all columns,

since they have not released their source code. Our method outperformed the first

three papers under similar framework conditions. However, Al-antari et al. (2018)

yielded better results for Dice (92.69%) and IoU (86.37%) than our model in the

Tight frame columns. Nevertheless, our results in the Loose frame columns surpass

their results. For a fair comparison, however, it should be checked how the referenced

methods would perform on loose frame crops.

The box-plot in Figure 3.8 shows Dice and IoU values obtained for the 106

testing samples from INbreast dataset with loose frames using FCN-ResNet101,

Unet-VGG16, SegNet-VGG16, SLSDeep, cGAN-ResNet101 and proposed cGAN.

The two models based on cGAN provide small ranges of Dice and IoU values. For

instance, the proposed cGAN is in the range 0.89 to 0.93 for Dice and 0.80 to 0.91

for IoU values, while other deep segmentation methods, SLSDeep, Unet-VGG16 and

FCN-ResNet101, show a wider range of values. Moreover, there are many outliers

in the results for the segmentation based on the cGAN using pre-trained ResNet101

layers, while using our cGAN trained from scratch there are few number of outliers.

The high Dice and IoU metrics obtained by our model empirically support our
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Figure 3.8: Boxplot of Dice (Top) and IoU (Bottom) score over five models compared to our
method on loose frames of the test subset of INbreast dataset (106 samples). Blue boxes indicate
the interquartile range (Q3-Q1) of the metrics distribution, the red line inside each box represents
the median value, the whiskers extend 1.5 times the length of Q1 and Q3, and (+) indicate outlier
values, i.e. metrics out of the whiskers.

hypothesis that it achieves accurate tumor segmentation. In Fig. 3.9, we show some

examples of our model segmentations using two tumors from the INbreast dataset by

applying all three cropping strategies. For each experiment, we show the original ROI

image and the comparison of predicted and ground truth mask, color coded to mark

up the true positives (TP:yellow), false negatives (FN:red), false positives (FP:green)
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B : Loose frame

C : Tight frame

A : Full mammogram (1) (2) 

(1) (2) 

(2) (1) 

FNTP TNFP

Figure 3.9: Segmentation results of two testing samples extracted from the INbreast dataset with
the three cropping strategies.

and true negatives (TN:black). For the full mammogram, the ROI image (1) is an

example of good segmentation, since yellow and black pixels depict a high degree of

confidence between predicted and real masks. On the contrary, the ROI image (2)

is an example of poor segmentation, since red pixels mark up a high portion of the

breast tumor area that has been misclassified as healthy area (FN). At the same time,

a tiny region of green pixels shows the mis-classification of healthy tissue as breast

tumor area (FP). Nevertheless, even in this second segmentation, there is a very high

rate of black pixels (TN), which indicates that the model easily recognizes non-tumor

areas. In the loose frame segmentations (middle row), specially with example (2),

the results contain very few FN and FP pixels. For example (1), a modest amount

of green pixels indicate that our model expands the tumor segmentation beyond
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Tumor ROI FCNResNet101 UNetVGG16 cGAN (Proposed)SegNetVGG16 CRFCNN
SLSDeep
ResNet101

TP FN FP TN

cGAN
ResNet101

Figure 3.10: Segmentation results of seven models with the INbreast dataset and two cropping
strategies: loose frame (the first four rows) and tight frame (the last four rows). (Col 1) original
images, (Col 2) FCN-ResNet101, (Col 3) UNet-VGG16, (Col 4) SegNet-VGG16, (Col 5) CRFCNN,
(Col 6) SLSDeep, (Col 7) cGAN-ResNet101, and (Col 8) proposed cGAN.
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its respective ground truth. In the tight frame crops (bottom row), besides the

green areas, our model also has missed some tumor areas i.e., the red pixels (FN).

The mistaken areas (red and green) are mostly around the tumor borders, since

these areas have a mixture of healthy and unhealthy cells. At the same time, the

inner part of the tumor as well as the image regions outside of tumors are properly

classified, which indicates the stability of our model.

Fig. 3.10 shows a comparison between our and other six segmentation models,

which worked on loose and tight frame crops using four tumors from the INbreast

dataset. For the loose frame cases (four top rows), our method clearly outperforms

the rest for all tumors except for the second one, where the majority of models

provided a similar degree of accuracy. In these four tumors, UNet-VGG16 and

CRFCNN provided the worst results. Moreover, cGAN-ResNet101 also performed

bad in the fourth example.

For the tight frame cases (four bottom rows), our method also provides the lowest

degrees of FN and FP compared to the rest of the models. Our cGAN and the

cGAN-ResNet101 model yield irregular borders compared to FCN-ResNet101 and

SLSDeep, since GAN models strive for higher accuracy on edges. However, in the

third tight frame sample (seventh row), both cGAN-ResNet101 and our proposal

generated an irregular border that slightly differs from the smooth ground truth

border, which results in lower segmentation accuracy around the edges. Although

the rest of the models generate smoother borders, the resulting segmentations may

differ from the ground truth significantly.

From the experimental results, it can be concluded that the proposed breast

tumor segmentation method is the most effective to date compared to the currently

available state-of-the-art methods. However, our method needs a loose crop around

the tumor to obtain a proper segmentation, which can be done by the SSD model.

Our segmentation model contains about 13, 607, 043 parameters for tuning the

generator part in the cGAN network. In addition, our method is fast in both training

i.e., around 30 seconds per epoch (220 loose frames) and predicting, around 7 images

per second. That is 7 to 8 times faster than the segmentation method proposed in
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Al-antari et al. (2018) and 10 to 15 times faster than the FCN model.

3.4.3 Shape classification experiments

For validating the tumor shape classification performance, we computed the

confusion matrix and the overall classification accuracy on the test set of the DDSM

dataset. This set contains 292 images divided into 126, 117, 31 and 18 for irregular,

lobular, oval and round classes, respectively.

Table 3.3: Confusion matrix of the tumor shape classification of testing samples of the DDSM
dataset.

Prediction /
Ground Truth

Irregular Lobular Oval Round Total

Irregular 96 (76%) 30 0 0 126
Lobular 33 83 (71%) 1 0 117
Oval 0 1 26 (84%) 4 31
Round 0 1 1 16 (89%) 18

However, The DDSM dataset does not have the ground truth binary masks for

the breast tumor segmentation. Thus, we applied active contours Akram et al.

(2015), which was also used in our work Singh et al. (2018b), to generate the ground

truths of the breast tumor regions. Previously, Kisilev et al. (2015) also used active

contours Lankton and Tannenbaum (2008) to generate the ground truths in a similar

fashion. These ground truth masks are verified by expert radiologists of the hospital

of Sant Joan de Reus. In addition, for reliable performance results, we used a

stratified 5 fold cross validation with 50 epochs per fold.

In Table 3.3, the proposed method yielded around 73% of classification accuracy

for irregular and lobular classes. The relatively high degree of confusion between

these two classes is logical, since both shapes have similar irregular boundaries.

In turn, our model yielded classification accuracies of 84% and 89% for oval and

round shape classes, respectively. For a quantitative comparison, we compared three

state-of-the-art tumor shape classification methods Singh et al. (2018b); Kisilev et al.

(2015); Kim et al. (2018) with three variations of our shape classification model: one

is fed with a binary mask with the ground-truth, the second is fed with a binary
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Figure 3.11: Mean ROC curve of 5 folds, for TPR and FPR from shape classification result of
292 test images from DDSM dataset.

mask generated by our segmentation stage and the third is fed with the original ROI

image masked with the segmented area (with pixel-wise multiplication). The five

methods were evaluated on the DDSM dataset.

We have computed the overall accuracy of each method by averaging the correct

predictions (i.e., true positive) of the four classes, weighted with respect to the

number of samples per class. As shown in Table 3.4, our classifier based only on

binary masks yields an overall accuracy of 80%, outperforming the second best

results Kim et al. (2018); Singh et al. (2018b) by 8%. The 83% obtained with our

method fed with the original ground truth cannot be considered as a valid result for

comparison, since it is the training data accuracy. We provide this result only to show

the low degree of overfitting achieved by our network. In turn, the proposed method

fed with the masked ROI images provided 70% of overall accuracy. This experiment

indicates that gray-level variations inside the segmented area is somehow confusing

our shape classification network. In another hand, the multi-task CNN proposed

in Kim et al. (2018) based on a pre-trained VGG-16 yielded the worst overall accuracy

(66%), probably because the input mammograms are gray-scale images, while the

VGG-16 network was trained on color-scale images. In addition, Fig. 3.11 shows
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ROC curve illustrating that our model attained area under the curve (AUC) about

0.8.

Furthermore, the proposed shape descriptor contains 767,684 parameters, which

can be trained in less than a second per epoch, and predict in about 6 milliseconds

per image.

Table 3.4: Shape classification overall accuracy with the DDSM dataset resulting from Kisilev
et al. (2015); Kim et al. (2018); Singh et al. (2018b) and our model. Best result is marked in bold.

Methods Test samples Accuracy (%)

(SSVM) Kisilev et al. (2015) 515 71
(Multi-task CNN) Kim et al. (2018) 218 66
(ICADx) Kim et al. (2018) 218 72
Singh et al. (2018b) 113 72
Proposed (with ground-truth masks) 292 83
Proposed (generated masks) 292 80
Proposed (masked ROI images) 292 70

3.4.4 Shape features correlation to breast cancer molecular

subtypes

Table 3.5: Distribution of breast cancer molecular subtypes samples from the hospital dataset
with respect to its predicted mask shape.

Shape Classes /
Molecular Subtypes

Irregular Lobular Oval Round Total

Luminal-A 67 29 10 17 123
Luminal-B 58 24 14 11 107
Her-2 6 4 8 15 33
Basal-like 5 10 9 13 37

Tumor shape could play an important role to predict the breast cancer molecular

subtypes Tamaki et al. (2011). Thus, we have computed the correlation between

breast cancer molecular subtypes classes of our in-house private dataset with the

four shape classes. As shown in Table 3.5, most of Luminal-A and -B samples

(i.e., 96/123 and 82/107 for Luminal-A and -B, respectively) are mostly assigned to

irregular and lobular shape classes. In turn, oval and round tumors give indications

to the Her-2 and Basal-like samples, (i.e., 23/33 and 22/37 for Her-2 and Basal-like,
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respectively). Moreover, some images related to Basal-like are moderately assigned

to the lobular class. Afterwards, from the visual inspection, if the tumor shape

is irregular or lobular then radiologist can suspect that it belongs to the Luminal

group. In turn, if the tumor shape is round or oval then it is more probable that the

tumor is a Her-2 or Basal-like Tamaki et al. (2011). Therefore, this study shows the

importance of tumor shape, which can be considered as a key feature to distinguish

between different malignancies of breast cancer.

3.4.5 Limitations

For the segmentation stage, our model has only one significant limitation. If there

are two tumors (i.e., one is with complete shape and the other is incomplete) in the

loose framing, the proposed segmentation methods will be able to properly segment

the complete tumor and it will fail to segment the incomplete one.

As shown in Fig. 3.12, we found three samples that are mis-segmented because

they contained two tumors, the one in the center, which is properly segmented,

and another that is shown partially in the left-down border of the image, which is

wrongly ignored as non-tumor region (FN). When the bigger tumor is located in

the center of the crop, nevertheless, it is correctly segmented. To classify the tumor

TP FN FP TN

Figure 3.12: Three mis-segmented tumor of non-full tumor shapes with INbreast dataset. The
red part in the down-left border.

shape, we depend only on the DDSM dataset to train our model, since it is the only

public dataset that has the shape classification information. Thus, more databases

containing more samples are required to improve the classification accuracy of four

shape classes.
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To study the molecular subtypes of breast cancer, Her-2 and Basal-like classes

have less samples compared to the other two classes, Luminal-A and Luminal-B.

Indeed, we used a weighted loss function to train our shape classification model in

order to make a balance between the four classes. However, we anticipate that, by

increasing the samples related to the Her-2 and Basal-like classes, we will improve

the prediction of molecular subtypes from tumor shape information.

3.5 Conclusion

In this chapter, we propose a two stage breast tumor segmentation and classification

method, which first segments the breast tumor ROI using a cGAN and then classify

its binary mask using a CNN based shape descriptor.

The segmentation results reveal the importance of the adversarial network in the

optimization of the generative network. cGAN-ResNet101 shows an improvement of

about 1% to 3% in both Dice and IoU metrics in comparison to the other non-GAN

methods. In turn, the proposed method yields an increment of about 10% over the

results of cGAN-ResNet101 by training our model from scratch, and replacing the

L1-norm with the Dice loss using loose frame crop on the given datasets. The breast

tumor segmentation from full-mammograms yields low segmentation accuracy for all

models including the proposed cGAN. For the tight frame crop, the proposed cGAN

yields similar or better segmentation accuracy compared to the other methods.

The classification results show that our second stage properly infers the tumor

shape from the binary mask of the breast tumor, which was obtained from the first

stage (cGAN segmentation). Hence, we have empirically shown that our CNN is

focusing its learning on the morphological structure of the breast tumor, while the

rest of approaches (Kisilev et al. (2015), Kim et al. (2018), Kisilev et al. (2016), Ren

et al. (2015)) rely on the original pixel variations of the input mammogram to make

the same inference. Moreover, in Al-antari et al. (2018) they used a hybrid strategy

in which they include the pixel variability within the mask of breast tumor region

to retain the intensity and texture information. However, the higher performance
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obtained by our method supports our initial idea that the second stage CNN can

reliably recognize the tumor shape based only on morphological information.

Furthermore, this chapter provided a study of correlation between the tumor

shape and the molecular subtypes of the breast cancer. Most samples of the

Luminal-A and -B group are assigned to irregular shapes. In turn, the majority of

Her-2 and Basal-like samples are assigned to regular shapes (e.g., oval and round

shapes). That gives an indication that the tumor shape can be considered for

inferring the molecular subtype of the tumor.
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CHAPTER4

Breast Tumor Segmentation and

Classification in Ultrasound Images using

Adversarial Learning

This fourth chapter presents a method of adversarial training to segment breast

lesions in ultrasound images. Also, to show the efficacy of the proposed segmentation

model, statistical features has been extracted from the generated mask in order to

perform the classification of the lesions into benign and malignant.

4.1 Introduction and related work

Ultrasound has been recommended as a powerful adjunct screening tool for detecting

breast cancers that may be occluded in mammographies Lauby-Secretan et al. (2015)

57
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(e.g., in the case of dense breasts). CAD systems are widely used to detect, segment

and classify masses in breast ultrasound (BUS) images. One of the main steps of

BUS CAD systems is tumor segmentation.

Over the last two decades, several BUS image segmentation methods have

been proposed, which can be categorized into semi-automated and fully automated

according to the degree of human intervention. In Abdel-Nasser et al. (2017), a

region growing based algorithm was used to automatically extract the regions that

contain the tumors, and image super-resolution and texture analysis methods were

used to discriminate benign tumors from the malignant ones. Recently, some deep

learning based models have been proposed to improve the performance of breast

tumor segmentation methods. In Xu et al. (2019), two CNN architectures have been

used to segment BUS images into the skin, mass, fibro-glandular, and fatty tissues

( 90% of accuracy). Hu et al Hu et al. (2019) combined a dilated FCN with a

phase-based active contour model to segment breast tumors, achieving a Dice score

of 88.97%.

Although these methods and others proposed in the literature do provide useful

techniques, there are still challenges due to the high degree of speckle noise present

in the ultrasound images, as well as to the high variability of tumors in shape, size,

appearance, texture, and location. In this chapter, we propose an efficient solution for

breast tumor segmentation and classification in BUS images using deep adversarial

learning.

The main contribution of this chapter is to develop an efficient deep model for

segmenting the breast tumor in BUS by combining an atrous convolution network

(AC) and channel attention with channel weighting (CAW) in a cGAN model in order

to enhance the discriminability of feature representations at multi-scale. Besides, we

demonstrate that the proposed segmentation model can be used for characterizing

accurate shape features from the segmented mask to distinguish between benign and

malignant tumors.
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4.2 Proposed methodology

4.2.1 Integration of channel attention and channel weighting

(CAW) block

reshape and transpose

reshape

reshape

reshape

C x H x WC x H x W

C x C
softmax

Output

Channelwise 
 weighting

global average pooling C

C/4

sigmoidReLU

Figure 4.1: The proposed integration of channel attention and channel weighting module

Fig. 4.1 represents the two processes performed by this block, the channel

attention process Fu et al. (2018b) (top branch) and the channel weighting process

Hu et al. (2018) (bottom branch). Since we have placed our CAW block after the

last encoder layer, the processed activation map has spatial dimensions (H ×W ) of

1× 1: indeed, it is a vector of C= 512 scalars. Hence, the method works only on the

channel feature space.

The attention mechanism computes a feature correlation matrix of C × C

elements, as the multiplication of the input vector by its transposed. Then, the

input vector is multiplied by the transposed of this matrix, in order to enhance

the relevance of features that show similar values for a given image. The enhanced

version of the vector is then multiplied by a learnable scalar parameter and summed

to the original vector.

We define the channel attention map X ∈ RC×C from the original features γ ∈

RC×H×W . Specifically, we reshape γ to RC×N , then perform a matrix multiplication

between γ and the transpose of γ. Finally, we apply a softmax layer to make the
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channel attention map X ∈ RC×C :

xj i =
exp(γi.γj)∑C
i=1 exp(γi.γj)

(4.1)

where xj i estimate the ith channels impact on the jth channel. Moreover, we

implement a matrix multiplication between the transpose of X and γ and reshape

their result to RC×H×W . Later we multiply the result by a scale parameter β and do

an element-wise sum operation with γ to get the final output E ∈ RC×H×W :

E = α
C∑
i=1

(xj iγi) + γj (4.2)

where α is weight factor.

In channel weighting, the weighting mechanism starts with a global average

pooling to transform each channel map into a single value (squeeze), but we can

omit this step since we already have one value per channel. The next step is based

on two fully connected layers, the first one with C/4 neurons and the second one

with C neurons, which learn to output C weights (one per channel), which multiply

the original vector values in order to dynamically re-calibrate the importance of the

features for each sample (excitation).

At the end, the output vectors of the two branches are summed. With this

structure, in the training phase the back-propagated gradient is allowed to flow

through both branches, which both are intended to boost the features that are more

relevant to the final segmentation: the attention method promotes the high-level

features that repeat their values for given input image patterns, which may indicate

that these shared features are core for the target classes; the excitation method

looks for the optimal non-linear re-calibration of the high-level features that tends to

provide better inferences of the final output. In this manner, we have increased the

representational power of the highest level features of the generator network, which

turns out in a clear improvement from baseline (BL) model and achieved a Dice

and IoU scores about 9% and 11% respectively of the breast tumor segmentations in

ultrasound images.
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4.2.2 Network architecture

The proposed BUS image segmentation technique is based on generative adversarial

training, which involves two interdependent networks: a generator G and a

discriminator D. (Fig. 4.2). The generator generates a fake example from input

noise z, while discriminator determines the probability that the fake example is from

training data rather than generated by the generator.

Generator: The generator network incorporates an encoder section, made

of seven convolutional layers (En1 to En7), and a decoder section, made of

seven deconvolutional layers (Dn1 to Dn7) layers. We have modified the plain

encoder-decoder structure by inserting an atrous convolution block Yu and Koltun

(2015) between En3 and En4, in addition to a CAW block between En7 and Dn1.

The CAW block is an aggregation of a channel attention module Fu et al. (2018b)

with channel weighting block Hu et al. (2018). In turn, the CAW block increases the

representational power of the highest level features of the generator network, which

turns out in a clear improvement of the accuracy of the breast tumor segmentation

in ultrasound images.

By including the atrous convolutional block in-between encoder layers En3 and

Encoder
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Figure 4.2: The architecture of the proposed segmentation model for BUS images.
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En4, the generator network is enabled to characterize features at different scales

and also to expand the actual receptive field of the filters. As a consequence, the

network is more aware of contextual information without increasing the number of

parameters or the amount of computation. Fig 4.3 presents the different atrous

convolutional network rates. The atrous convolution helps to manage the resolution

of the feature responses computed from the CNN. To incorporate context, without

increasing parameters, it also helps to enlarge the field of view of filters and find the

best trade-off between small and large field-of-view.

r = 1 r = 2 r = 3

Figure 4.3: The different rates of atrous convolution (r = 1, 2 and 3).

Each layer in the encoder section is followed by batch normalization (except for

En1 and En7) and LeakyReLU with slope 0.2, except for En7, where the regular

non-linearity ReLU activation function is used. The decoder section is a sequence of

transposed-convolutional layers followed by batch normalization, dropout with rate

0.5 (only in Dn1, Dn2, and Dn3) and ReLU. The filters of the convolutional and

deconvolutional layers are defined by a kernel of 4 × 4 and they are shifted with a

stride of 2. We add padding of 2 after En4, yielding a 4 × 4 × 512 output feature

map. We also add skip connection between the corresponding layers in the encoder

and decoder sections, which improve the features in the output image by merging

deep, coarse, semantic information and simple, fine, appearance information. After

the last decoding layer (Dn7), the Tanh activation function is used as a non-linear

output of the generator, which is trained to generate a binary mask of the breast

tumor.

Discriminator: It is a sequence of convolutional layers applying kernels of size

4 × 4 with a stride of 2, except for Cn4 and Cn5 where the stride is 1. Batch

normalization is employed after Cn2 to Cn4. LeakyReLU with slope 0.2 is the
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non-linear activation function used after Cn1 to Cn4, while the sigmoid function

is used after Cn5. The input of the discriminator is the concatenation of the BUS

image and a binary mask marking the tumor area, where the mask can either be

the ground truth or the one predicted by the generator network. The output of the

discriminator is a 10 × 10 matrix having values varying from 0.0 (completely fake)

to 1.0 (real).

Loss Functions: Assume x is a BUS image containing a breast tumor, y is the

ground truth mask of that tumor within the image, G(x, z) and D(x,G(x, z)) are

the outputs of the generator and the discriminator, respectively. The loss function of

the generator G comprises three terms: adversarial loss (binary cross entropy loss),

L1-norm to boost the learning process, and SSIM loss Wang et al. (2004) to improve

the shape of the boundaries of segmented masks:

`Gen(G,D) = Ex,y,z(− log(D(x,G(x, z))))+

λEx,y,z(`L1(y,G(x, z))) + αEx,y,z(`SSIM(y,G(x, z)))
(4.3)

where z is a random variable and λ and α are empirical weighting factors. The

variable z is introduced as a dropout in the decoding layers Dn1, Dn2 and Dn3 at

both training and testing phases, which helps to generalize the learning processes

and avoid overfitting. If the generator network is properly optimized, the values of

D(x,G(x, z)) should approach 1.0, meaning that discriminator cannot distinguish

generated tumor masks from ground truth masks, while L1 and SSIM losses should

approach to 0.0, indicating that every generated mask matches the corresponding

ground truth both in overall pixel-to-pixel distances (L1) and in basic statistic

descriptors (SSIM).

The loss function of the discriminator D can be formulated as follows:

`Dis(G,D) = Ex,y,z(− log(D(x, y))) + Ex,y,z(− log(1−D(x,G(x, z)))) (4.4)

The optimizer will fit D to maximize the loss values for ground truth masks (by

minimizing − log(D(x, y))) and minimize the loss values for generated masks (by
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minimizing − log(1−D(x,G(x, z))). These two terms compute BCE loss using both

masks, assuming that the expected class for ground truth and generated masks

are 1 and 0, respectively. G and D networks are optimized concurrently: one

optimization step for both networks at each iteration, where G tries to generate

a valid tumor segmentation and D learns how to differentiate between the synthetic

and real segmentation.

Model training: In the preprocessing step, each BUS images is rescaled to

96× 96 pixels, and pixel values are normalized between [0,1]. In the postprocessing

step, morphological operations (3×3 closing, 2×2 erosion) are used to suppress most

of the outlier predictions (speckled pixels). The hyperparameters of the model were

experimentally tuned. We also explored several optimizers, such as SGD, AdaGrad,

Adadelta, RMSProp, and Adam with different learning rates. We achieved the best

results with Adam optimizer (β1= 0.5, β2= 0.999) and learning rate = 0.0002 with a

batch size of 8. The SSIM loss and L1-norm loss weighting factors λ and α were set

to 10 and 5, respectively. The best results were achieved by training both generator

and discriminator from scratch for 40 epochs.

4.2.3 Breast tumor classification

To classify the breast tumor into benign and malignant, we propose to rely on

statistic features of the segmented tumor mask. Malignant breast tumors and benign

lesions have different shape characteristics: the malignant lesion usually is irregular,

speculated or microlobulated. However, benign lesion mainly has smooth boundaries,

round, oval or macrolobulated shape Yang et al. (2008).

In Fig 4.4, each BUS image is fed into the trained generative network to obtain

the boundary of the tumor, and then we compute 13 statistical features from that

boundary: fractal dimension, lacunarity, convex hull, convexity, circularity, area,

perimeter, centroid, minor and major axis length, smoothness, Hu moments (6

values) and central moments (order 3 and below). We implemented an Exhaustive

Feature Selection (EFS) algorithm to select the best set of features. The EFS

algorithm indicates that the fractal dimension, lacunarity, convex hull, and centroid
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Figure 4.4: Proposed method for Breast tumor classification.

are the 4 optimal features. The selected features are fed into a Random Forest

classifier, which is later trained to discriminate between benign and malignant

tumors.

4.3 Experiments and discussion

BUS dataset: We evaluated the performance of the proposed model using the

Mendeley Data BUS dataset, which is publicly available Rodrigues (2017). This

dataset contains 150 malignant and 100 benign tumors contained in BUS images.

To train our model, we randomly divided the dataset into the training set (70%),

a validation set (10%) and testing set (20%). The dataset does not have a ground

truth for tumor segmentation. Thus, cooperative experts have manually segmented

the tumors appearing in the BUS images.

Data augmentation: To augment the current set of available examples, we

applied different operations: 1) scale the images by factors varying from 0.5 to 2

with steps of 0.25, 2) apply gamma correction on the BUS images by factors varying

from 0.5 to 2.5 with steps of 0.5, and 3) flip and rotate the images. These operations

yield 8K BUS images.

4.3.1 Breast tumor segmentation results

In Table 4.1, we compare the baseline cGAN model Isola et al. (2017) with

three variations of our model: cGAN with atrous convolution (cGAN+AC), cGAN
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with channel attention and weighting (cGAN+CAW), and cGAN with AC and

CAW (cGAN+AC+CAW). All of these variations are also compared with five

state-of-the-art image segmentation methods: FCN Long et al. (2015), UNet

Ronneberger et al. (2015) SegNetBadrinarayanan et al. (2017), ERFNet Romera

et al. (2018), and Deep Convolutional Generative Adversarial Network (DCGAN)

Kim et al. (2017). All methods are evaluated both quantitatively and qualitatively.

For the quantitative analysis, we calculate the ACC, Dice, IoU, SEN and SPE

metrics.

As shown in Table 4.1, the added AC and CAW blocks improves the results of

the baseline cGAN model. In addition, our model (cGAN+AC+CAW) outperforms

the rest in all metrics. It achieves Dice and IoU scores of 93.76% and 88.82%,

respectively, which are the metrics that better represent the degree of coincidence

between predicted and ground truth segmentation. These two results outperform

the ones from the second best model in the table, the UNet model, in 5% to 6%

absolute points over the full range, which is quite significant taking into account their

proximity to the maximum value. The SegNet and ERFNet models yield the worst

segmentation results on BUS images. The results of the proposed model have also

been compared with other methods evaluated on different datasets. For instance, Hu

et al. (2019) yielded an IoU of 85.10% on a private BUS image dataset. In addition,

Xu et al. (2019) achieved a Dice score of 89.00%.

Table 4.1: Segmentation results of the proposed model(cGAN+AC+CAW) and compared models
FCN Long et al. (2015), SegNetBadrinarayanan et al. (2017), UNet Ronneberger et al. (2015),
ERFNet Romera et al. (2018), DCGAN Kim et al. (2017) and cGAN Isola et al. (2017).

Methods Dice(%) IoU(%)

FCN 79.73± 0.102 66.29± 0.116
SegNet 50.35± 0.295 41.65± 0.274
UNet 88.28± 0.090 82.23± 0.096
ERFNet 67.02± 0.206 53.32± 0.185
DCGAN 85.55± 0.154 75.28± 0.128
cGAN 86.04± 0.095 77.56± 0.080
cGAN + AC 87.14± 0.084 80.77± 0.081
cGAN + CAW 90.65± 0.075 83.40± 0.069
Ours 93.76± 0.037 88.82± 0.064
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Figure 4.5: Boxplots of IoU and Dice metrics of the proposed model and FCN Long et al. (2015),
SegNetBadrinarayanan et al. (2017), ERFNet Romera et al. (2018) and UNet Ronneberger et al.
(2015).

Figure 4.5 shows boxplots of Dice and IoU values obtained for the 50 testing

samples using FCN, SegNet, ERFNet, UNet and the proposed model. Our model

based on cGAN provided the smallest range and highest median of Dice and IoU

values. For instance, the mid-half of results (quartiles Q2 and Q3) output by our

model is in the range 88% to 94% for Dice and 80% to 89% for IoU, while FCN,

SegNet, ERFNet and UNet show less median values and wider ranges of values.

Moreover, there are many outliers (results far below the Q1 threshold) in ERFNet

and UNet methods, while using our proposal there are none.

Fig 4.6 presents the AUC of the receiver operating characteristic (ROC) curve of

different baseline segmentation models and our model with the BUS image dataset.

The proposed model gives the best AUC value (97.35%). Figure 4.7 presents a

comparison between tumor segmentations obtained with our model and other six

models. As shown, SegNet and ERFNet yield the worst results since there are large
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Figure 4.6: The ROC curve of the segmentation models.
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Figure 4.7: Segmentation results on four samples of the BUS dataset. The rows (a) and (b) show
benign samples while rows (c) and (d) rows show malignant samples.
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false negative areas (in red), as well as some false positive areas (in green). FCN

also shows rather significant erroneous areas, although it has fairly segmented the

second example (b). In turn, UNet, DCGAN, cGAN provide good segmentation but

our model is more accurate in the boundary of breast tumors.

Effect of loss functions and optimizers

Fig 4.8 presents the performance of the proposed model with different combinations

of loss functions: BCE, BCE+L1-norm, BCE+SSIM, BCE+Lovasz Hinge and

BCE+L1-norm+SSIM loss, achieving the best results with the later combination.

We choose this combination because L1-norm loss helps the generator network to

provide the sharpen image. In turn, SSIM loss enforces the generator to efficiently

learn shape information of BUS image and to provide more accurate segmentation.

BCE BCE+L1-norm BCE+SSIM BCE+Lovasz-Hinge BCE+L1+SSIM
Loss Function
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Figure 4.8: The performance of the proposed model with different combinations of loss functions.
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Figure 4.9: The Dice (left) and IoU (right) scores of our model with four optimizers: SGD,
RMSProp, Adam and Adadelta.
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Table 4.2: Breast tumor classification results

Methods Precision Recall Accuracy F1-Measure
FCN 62.0± 0.138 70.0± 0.154 69.0± 0.128 68.0± 0.135
SegNet 51.0± 0.216 62.0± 0.238 53.0± 0.200 51.0± 0.229
UNet 70.0± 0.098 81.0± 0.104 77.0± 0.091 77.0± 0.087
ERFNet 58.0± 0.162 66.0± 0.205 61.0± 0.146 59.0± 0.172
DCGAN 71.0± 0.098 82.0± 0.081 75.0± 0.105 73.0± 0.107
cGAN 71.0± 0.083 84.0± 0.095 78.0±0.079 77.0± 0.776
cGAN+AC 73.0± 0.060 87.0± 0.068 80.0± 0.053 81.0± 0.059
cGAN+CAW 74.0± 0.052 88.0± 0.070 82.0±0.056 82.0± 0.054
Lee et al. (2018) 78.0 90.0 83.0 83.0
Ours 81.0± 0.021 92.0± 0.028 85.0± 0.196 84.0± 0.024

Fig 4.9 shows the Dice and IoU scores of our model with four optimizers: SGD,

RMSProp, Adam and Adadelta, finding that Adam optimizer yielded the best

results.

4.3.2 Breast tumor classification results

We have checked our classification strategy (random forest over four optimal tumor

shape statistics) with different segmentation methods’ output with the leave-one-out

cross-validation technique and calculated the precision, recall, accuracy and F1-score

metrics. Furthermore, we have also obtained the same metrics from the work of Lee

et al. (2018), who proposed a stack denoising autoencoder method to segment and

classify breast tumors from the same BUS dataset that we use in this study. As

shown in Table 4.2, the proposed breast tumor classification method outperforms

Lee et al. (2018), with a total accuracy degree of 85%.

4.4 Conclusion

In this chapter, we have proposed an efficient solution for tumor segmentation and

classification in BUS images. We have proposed to add an atrous convolution blocks

to the generator network to learn tumor features at different resolutions of BUS

images. We also have used a channel-wise weighting block in the generator network

to automatically re-balance the relative impact of each of the highest level encoded

UNIVERSITAT ROVIRA I VIRGILI 
SEGMENTATION AND CLASSIFICATION OF MULTIMODAL MEDIAL IMAGES BASED ON GENERATIVE ADVERSARIAL LEARNING 
AND CONVOLUTIONAL NEURAL NETWORKS 
Vivek Kumar Singh 
 



4.4. Conclusion 71

features. Our model outperforms the FCN, SegNet, ERFNet, UNet, DCGAN and

cGAN segmentation models in terms of Dice and IoU metrics, achieving the top

scores of 93.76% and 88.82% respectively. In the classification stage, we used four

optimal statistics features extracted from the segmented tumor masks, obtaining an

accuracy of 85%, which is 2% over a state-of-the-art related method that uses the

same database.
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CHAPTER5

Applying Adversarial Network to Retinal

Optic Disc Segmentation

Segmenting the optic disc is a crucial step in designing a structure of reference for

diagnosing optic nerve severe problems such as glaucoma. This chapter presents an

application of our devised adversarial network from chapter three to segment the optic

disc from the retinal fundus image.

5.1 Introduction

Retinal fundus image analysis is very important for doctors to deal with the medical

diagnosis, screening and treatment of opthalmologic diseases. The morphology of the

optic disc (OD), which is the location where ganglion cell axons exit the eye to form

the optic nerve, in which visual information of the photo-receptors is transmitted

73
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Segmentation

to the brain, is an important structural indicator for assessing the presence and

severity of retinal diseases, such as diabetic retinopathy, hypertension, glaucoma,

hemorrhages, vein occlusion, and neovascularization MacGillivray et al. (2014).

Retinal OD segmentation is the first step for a significant investigation of retinal

images Almazroa et al. (2015).

The OD appears as a bright yellowish oval region within color fundus images

through which the blood vessels enter the eye. The macula is the center of the retina,

which is responsible for our central vision. Figure 5.1 shows a sample of a color retinal

fundus image with the key anatomical structures denoted. For ophthalmologists

and eye care specialists, an automated segmentation and analysis of fundus optic

disc plays an important role to diagnose and treat the retinal diseases. Numerous

Optic Disc

Blood Vessels

Macula

Figure 5.1: Structures in a fundus image.

methods has been proposed to detect and segment the optic disc. For the diagnosis

of glaucoma, Chrástek et al. (2005) proposed an automated segmentation algorithm

to segment the optic nerve head. They firstly removed the blood vessel by using a

distance map algorithm and a morphological operation, and then used an anchored

active contour model to segment the optic disc. Lowell et al. (2004) proposed a

deformable contour model to segment the optic nerve head boundary of retinal images

by using a template matching and a directionally sensitive gradient to discard the

interference of vessels. In turn, Welfer et al. (2010) proposed an automated OD

segmentation in a fundus image using an adaptive morphological operation. They

then used a watershed transform marker to define the OD boundary. In addition,

the vessel obstruction is minimized by morphological erosion.
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With the increase of using deep learning models in segmentation tasks, many

methods have recently been proposed based on CNN. An automatic optic disc and

cup image segmentation has been proposed in Al-Bander et al. (2018) based on a

stack of deep UNet models. Each model in a cascade refines the result of the previous

one.

In this chapter, we show an application of cGAN model proposed in chapter

3 to perform retinal OD segmentation. To the best of our knowledge, this is the

first application of a conditional generative adversarial training for retinal optical

disc segmentation. The proposed cGAN network consists of two combined networks:

generator and discriminator. The generator network learns the mapping from the

input, a fundus image, to the output, a segmented image (binary mask). In turn,

the discriminator (i.e, adversarial term) learns a loss function to train this mapping

by comparing the ground-truth and the predicted output. Finally, the whole cGAN

network optimizes a loss function that combines a conventional binary cross-entropy

loss with an adversarial term. The adversarial term encourages the generator to

produce output that cannot be distinguished from ground-truth ones.

5.2 Experiments and discussion

We conducted a comprehensive set of experiments to validate the potential of

our proposal on two datasets such as DRISHTI-GS1 Sivaswamy et al. (2015) and

RIM-ONE Fumero et al. (2011):

DRISHTI-GS1: this dataset is publicly available and comprises 101 images, which

are divided into a training and a testing set of images. Training and testing sets

consist of 50 and 51 images respectively. These images have their corresponding

binary mask as ground truth.

RIM-ONE: this dataset is publicly available and particularly intended for optic

nerve head segmentation. It has a total of 169 high resolution images with their

corresponding ground truth. We have used 100 images as training and the rest 69

images for testing.
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Segmentation

For quantitative assessment of the performance of OD segmentation, we have

computed ACC, Dice, IoU score, SEN and SPE as detailed in Table 5.1. We have

performed the experiments using the two datasets with three common segmentation

methods, FCN Long et al. (2015), UNetRonneberger et al. (2015) and SegNet

Badrinarayanan et al. (2017). In addition, we compared our results with three

baseline state-of-the-art methods, such as Shankaranarayana et al. (2017), Maninis

et al. (2016) and Zilly et al. (2015).

Table 5.1: Evaluation of the cGAN, FCN, SegNet and UNet models, in addition to three
baseline methods evaluated on DRISHTI GS1 and RIM-ONE. The best results are marked in
bold. Non-reported results are indicated with a dash (-).

Methods Dataset ACC Dice IoU SEN SPE

FCN
DRISHTI GS1 0.93 0.91 0.89 0.92 0.96

RIM-ONE 0.94 0.92 0.87 0.88 0.95

SegNet
DRISHTI GS1 0.94 0.88 0.83 0.89 0.95

RIM-ONE 0.93 0.85 0.78 0.86 0.94

UNet
DRISHTI GS1 0.97 0.95 0.90 0.96 0.98

RIM-ONE 0.94 0.92 0.89 0.93 0.97

Shankaranarayana et al. (2017)
DRISHTI GS1 - - - - -

RIM-ONE - 0.98 0.88 - -

Maninis et al. (2016)
DRISHTI GS1 - - - - -

RIM-ONE 0.96 0.89 - -

Zilly et al. (2015)
DRISHTI GS1 - 0.97 0.91 - -

RIM-ONE - 0.94 0.89 - -

cGAN (our proposal)
DRISHTI GS1 0.98 0.97 0.93 0.98 0.99

RIM-ONE 0.98 0.98 0.93 0.98 0.99

With DRISHTI-GS1, our cGAN model can segment the OD regions with around

98%, 97%, 96%, 97% and 99% of ACC, Dice, IoU, SEN and SPE, respectively,

mostly outperforming the rest six tested segmentation models. However, the Maninis

et al. (2016) model also provided the top Dice result, however our cGAN model

achieved high IoU of 93% as compared to 88%. The UNet model also provided

acceptable results and comparable to our’s. The three tested baseline methods have

only computed the Dice and IoU as shown in Table 5.1. The work proposed in Zilly

et al. (2015) yielded feasible scores with around 97% and 91% of the Dice and IoU,

respectively.

Furthermore, in order to support the aforementioned results, we evaluated our

model on RIM-ONE dataset. The resulted Accuracy, Dice, IoU score, sensitivity

and specificity scores with our model were around 98%, 98%, 93%, 97% and
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99%, respectively, also outperforming the rest six compared approaches, except for

Shankaranarayana et al. (2017) in Dice, since it yielded the top mark (98%). Again,

our result in IoU surpasses the one provided by the other method in 2 percentage

points. In addition, The UNet model has still provided good results compared the

our method.

Image Ground Truth FCN UNet SegNet cGAN

Figure 5.2: Examples of retinal optic disc segmentation : (col 1) retinal images, (col 2)
ground-truth masks, (col 3) FCN, (col 4) UNet, (col 5) SegNet and (col 6) generated masks with
the cGAN.

A qualitative comparison of segmentation results with the state-of-the-art

methods using both retinal optic disc datasets is shown in Figure 5.2. As shown,

the OD segmentation with the proposed method is closer to the ground truth

with accurate boundaries compared to results of the state-of-the-art methods. The

visualization supports our numerical results. The UNet also provided acceptable

segmentation. In turn, the SegNet yielded the worst segmentation among the tested

methods.
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Segmentation

5.3 Conclusion

This chapter proposes a deep learning framework based on cGAN to segment the

retinal fundus optic disc. The cGAN consists of two networks: generator and

discriminator. The cGAN network does not require a large number of images to be

trained properly. In addition, it renders a high segmentation performance without

adding extra complexity, since the final segmentation is only achieved with the

generator network. Experimental results show that the cGAN slightly outperforms

the state-of-the-art OD segmentation methods.
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CHAPTER6

Skin Lesion Segmentation Based on

Multi-scale Features and Factorized

Channel Attention

Skin lesion segmentation in dermoscopic images is still a challenge due to the low

contrast and fuzzy boundaries of lesions. Moreover, lesions have high similarity with

healthy regions. In this chapter, we present a fully automated method to segment skin

lesions in dermoscopic images.

6.1 Introduction

According to the world health organization (WHO), around 100,000 melanoma skin

cancer cases appear every year Stewart et al. (2014). For early diagnosis, different

79
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80 Chapter 6. Skin Lesion Segmentation from Dermoscopic Image

Figure 6.1: Examples of skin lesions with presence of hair, illumination changes, noise, color
variations and fuzzy boundaries.

diagnostic algorithms Argenziano et al. (2003), such as the ABCD Dermoscopy Rule

and 7-Point Check List, have been utilized. For example, the ABCD rule helps

dermatologist to discriminate between benign and malignant tumors by analyzing

the following features of the lesion: asymmetry (A), border irregularity (B), color

(C) and dermoscopic structures (D).

Nowadays, CAD systems are widely used for an early-stage diagnosis of skin

diseases using dermoscopic images. These CAD systems are also used to train

inexperienced dermatologists and to devise automated diagnostic procedures. One

of the important tasks of these systems is to accurately segment the lesions from

dermoscopic images, which helps to follow-up these lesions are growing. Moreover,

CAD systems are also designed to extract basic features (e.g., ABCD features) that

can be used for in-depth lesion patterns analysis.

Figure 6.1 presents four examples of skin images containing lesions. As can be

seen, there are many challenges for skin lesion segmentation methods to properly

segregate the observed lesions, such as the presence of hair, illumination changes,

noise, color variations, and fuzzy boundaries Day and Barbour (2000). These

challenges degrade the performance of automatic segmentation methods.

Several skin lesion segmentation methods have been proposed in the literature

Bi et al. (2017), Al-Masni et al. (2018), Yuan (2017), and Berseth (2017), which

are based on traditional computer vision, machine learning and/or deep learning

techniques. Regarding traditional computer vision techniques, adaptive thresholding,

region growing, and contour-based methods have been used to segment skin lesions

Rahman et al. (2016). However, these methods yield poor results on low contrast

skin images.
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6.1. Introduction 81

Recently, different deep learning techniques have been used to segment biomedical

images Du et al. (2018), He et al. (2017), Singh et al. (2018b), Singh et al. (2018a).

Several approaches Berseth (2017); Codella et al. (2018) have been proposed to

automatically segment skin lesions. These methods yield more accurate results

than traditional ones. However, most methods apply several pre-processing (e.g.,

hair removal, color space transformation and data augmentation) or post-processing

techniques (e.g. morphological operations) to improve their results. Among of deep

models, cGAN, a cutting-edge idea in image-to-image translation, has been used to

segment skin lesions Xue et al. (2018), giving an overall Dice coefficient of 86.7%.

Enhancing the contextual information extracted by some layers of the cGAN

model could increase the segmentation accuracy. In order to do so, a dual

attention block has been proposed that integrates the spatial and channel long-range

dependencies for general scene segmentation Fu et al. (2018b). However, the dual

attention block significantly increases the number of training parameters, especially

in the spatial attention branch. Therefore, we propose to substitute that branch with

a residual connection joined with four layers of 1-D factorized kernel convolution.

The factorization method proposed in Romera et al. (2018) further helps in reducing

the trainable parameters of the equivalent two layers of 2D kernel convolution.

Consequently, for our skin lesion segmentation method, we introduce a novel layer,

called FCA, which integrates channel attention and residual 1-D factorized kernel

convolutions. On the one hand, we assume that a high cross-channel correlation

in activation maps of the encoder layers indicates the presence of relevant cues

for distinguishing skin lesion pixels from normal skin pixels. On the other hand,

we also assume that the residual convolutions can learn some spatial dependencies

in neighboring positions of the feature maps, which lead to a more compact pixel

labeling of the lesion regions, but with a minimal set of trained parameters.

Consequently, by integrating both methods in Fu et al. (2018b) and Romera et al.

(2018), we are able to formulate an efficient and accurate segmentation network.

The main contributions of this chapter are outlined below:

1. We propose a fully automated skin lesion segmentation model based on cGAN,
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82 Chapter 6. Skin Lesion Segmentation from Dermoscopic Image

which can learn more effective features for small-size skin lesions without

using pre-processing (e.g., color space transformation) or data augmentation

techniques.

2. To model channel and spatial inter-dependencies inside the feature maps of the

encoder layers, we introduce the FCA block, which integrates channel attention

and residual 1-D factorized convolutions to boost feature discriminability

between lesion and non-lesion pixels.

3. We also use a multi-scale input strategy, in which the input images are

resized into three different scales of the original size. Thus, the FCA-Net

can explicitly deal with variation in resolution, object size and image scale,

by encouraging the development of filters which are scale-variant, while

constructing a scale-invariant representation.

6.2 Related work

Table 6.1 summarizes some of the skin lesion segmentation methods that have been

published recently. These methods include traditional computer vision techniques,

CNN and GAN based methods.

Traditional computer vision methods. These methods usually exploit pixel

values, color, texture and shape statistics, i.e., hand-crafted features used for the

segmentation process. For instance, Rahman et al. (2016) proposed an automatic

lesion segmentation using adaptive thresholding and region growing methods to

segment skin lesions. These areas were then fed into an extreme learning machine

(ELM) to classify skin lesions. The main drawback of thresholding based methods

is that they can achieve good results only if there is a high contrast between the

lesion area and the surrounding skin region, which is not always the case. Also,

Wong et al. (2011) suggested an iterative stochastic region-merging approach, which

was employed to segment skin lesions from macroscopic images. In this method,

stochastic region merging was initialized on a pixel level, and then on a regional

level until convergence. An active contour method (snakes) based on gradient vector
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flow (GVF) was proposed in Erkol et al. (2005) for lesion contour extraction. An

extension of GVF based on a mean shift method was proposed in Zhou et al. (2013).

In Silveira et al. (2009), two contour-based methods were applied to skin images:

adaptive snake and active contour. However, contour-based methods usually fail in

the presence of hair or air bubbles and if the transition between the lesion and the

surrounding skin is smooth.

CNN-Based methods. Nowadays, deep CNN are widely used to analyze

natural and medical images for the tasks of detection, segmentation and classification.

Several relevant deep learning-based image segmentation methods have been

proposed in the last five years. One of the prominent models is the FCN Long

et al. (2015) that includes encoder and decoder layers. In Ronneberger et al. (2015),

the UNet model was proposed for biomedical image segmentation. It adapted the

FCN model by using a skip connection from each encoder layer to the corresponding

decoder layer to keep the features extracted from the first layers. Furthermore, the

SegNet model was proposed in Badrinarayanan et al. (2017) to improve the accuracy

of image segmentation by using a max pooling in the decoder layers that extends

from the corresponding encoder layer to achieve a non-linear upsampling of their

input feature maps.

Recently, researchers have used state-of-the-art image segmentation based deep

learning models to obtain more accurate skin lesion segmentation. In Yu et al. (2017),

a CNN-based fully convolutional residual network (FCRN) and multiscale contextual

information were proposed to segment skin lesions. However, this method is not able

to properly segment low contrast dermoscopic images or those that includes hairs and

irregular skin lesion shapes. Also, this method cannot develop the full discrimination

capability of a deep CNN with limited training data, according to the authors of the

paper. Furthermore, Bissoto et al. (2018) used the UNet network to segment skin

lesions. They assessed their model on the ISIC2018 skin lesion dataset and achieved

an IoU score of 72.8%. The main limitation of this method is that it requires several

pre-processing steps for removing signal noise in dermoscopic images.
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To accurately segment the lesion boundaries, Vesal et al. (2018) proposed the

SkinNet model, which is based on the UNet architecture. The authors replaced

standard convolution layers at every level of both the encoder and decoder, with

densely connected convolution layers. The SkinNet model was evaluated on ISBI2017

dataset and achieved a Dice of 85.10% and an IoU score of 76.7%. To extract rich

features from a dermoscopic image, Sarker et al. (2018) utilized a residual network

weighting and a spatial pyramid pooling network. They also proposed the use of

a loss function called End Point Error (EPE) to preserve the lesion boundaries.

Furthermore, Jahanifar et al. (2019) integrated a multilevel segmentation algorithm,

regional contrast, background descriptors, and a random forest regressor to create

saliency scores for each region in the image. This method gives poor segmentation

results with low contrast dermoscopic images.

To add image appearance information as well as contextual information,

Mirikharaji et al. (2018) employed a UNet based method to predict the pixel-wise

probability of a skin lesion segmentation. It achieved a Dice of 90.11% and an

IoU score of 83.30% on ISBI2016 dataset. Furthermore, Li et al. (2018) proposed a

transformation consisting of a self-ensemble model, which enhances the regularization

effects by utilizing the unlabeled data. It achieved a Dice of 87.40% and IoU scores

79.87% on ISBI2017 dataset. In turn, Venkatesh et al. (2018) used a UNet model

that is based on multi-scale input with a shortcut connection at each block of

the UNet. The suggested method has evaluated on ISBI2017 dataset, obtaining

a Dice and IoU scores of 85.60% and 76.40%, respectively. Galdran et al. (2017)

also exploited an UNet architecture and used color constancy methods to normalize

the color throughout the dataset images while retaining the estimated illumination

information, enabling them to randomly change the color and illumination of

normalized images during the training process. They achieved a Dice of 82.40%

on ISBI2017 dataset.

Bi et al. (2019) proposed a FCN-based class-specific training to extract

visible features of different kinds of skin lesions and a probability-based step-wise

combination of the derived class-specific segmentation maps to guarantee visible
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persistence of the segmented regions. Also, Yuan (2017) introduced a FCN-based

model, which contains 29 layers to segment skin lesions from dermoscopic images.

They have employed an upsampling and deconvolutional layers to compute

multi-resolution loss while carrying over the global perspective from pooling layers.

However, their model requires several pre- and post-processing operations, such as

color space transformations and threshold selection. Moreover, Al-Masni et al. (2018)

proposed a full resolution convolutional networks (FrCN), which directly learns the

full resolution features of each pixel of the input data without the requirement of pre

or post-processing methods.

GAN-based methods. Recently, several GAN-based segmentation models have

been applied to medical images. For instance, cGAN has been used in Singh et al.

(2018b), Singh et al. (2020) to segment breast cancer sub-types, in which a Dice

loss is introduced in the generator network to refine pixel-wise segmentation results.

To segment skin lesions, Xue et al. (2018) proposed an adversarial-based model with

residual blocks and skip connections. The model was evaluated on ISBI2017 dataset,

achieving a Dice of 86.70% and an IoU score of 78.50%. Moreover, Bisla et al. (2019)

introduced the DCGAN and ResNet-50 models to jointly segment the skin lesion

and classify the lesions into benign and malignant. They exploited pre-processing

steps to suppress the artifacts from the skin images. With ISBI2017 and ISIC2018

test datasets, they obtained IoU scores of 77.00% and 70.20%, respectively.

Most of the methods stated in Table 6.1 have utilized data

augmentation/preprocessing techniques in the training phase while others applied

postprocessing techniques (e.g., morphological operations) on the resulting masks.

In turn, during the training of the proposed FCA-Net, we utilize the original

images of ISBI2016, ISBI2017, and ISIC2018 datasets without applying any data

augmentation technique. For a fair comparison with the state-of-the-art methods,

we separately trained and tested the proposed model on the training and testing

sets of the aforementioned datasets. The proposed cGAN model that includes FCA

blocks and a multi-scale stage highlights the most important features (of a highly

receptive field) and disregards the artifacts from images.
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6.3 Methodology

6.3.1 The factorized channel attention block

Figure 6.2 presents the design of the proposed FCA block, which applies a

weighted aggregation between the output features of two mechanisms: channel

attention (upper branch) Fu et al. (2018b) and residual 1-D factorized convolutions

(lower branch) Romera et al. (2018). The proposed FCA block increases the

representational power of features computed by encoder layers in generator and

discriminator networks.
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Figure 6.2: Proposed FCA block with integration of channel attention and residual 1-D factorized
convolution.

Channel attention. This mechanism is intended to boost feature channels

that have similar values in the same image positions. Assume that γ ∈ RC×H×W

is the activation map (i.e. set of features) obtained by the original encoder layer.

To calculate the channel attention map X ∈ RC×C , γ is firstly reshaped to RC×N

(N = H × C), then multiplied by its transpose, and finally normalized with the

softmax function:

xji =
exp(γi.γj)∑C
i=1 exp(γi.γj)

(6.1)

where γi and γj are vectors of length N, containing the values of all map positions
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in channels i and j, respectively, and γi.γj represents their dot product. Hence, xji

represents a normalized correlation degree between those two channels. The output

of the channel attention branch, O1 ∈ RC×H×W , can be expressed for each channel j

as follows:

O1j = η
C∑
i=1

(xjiγi) + γj (6.2)

where
∑C

i=1(xjiγi) includes the feature values of all channels modulated by the

correlation degree between each channel with respect to the jth channel. Moreover,

this summation is weighted by η, which is a learned weighting parameter and then

added to the original activation map. In this way, channels that present more

similarities increase their relevance in the output. This mechanism improves the

segmentation accuracy because relevant patterns corresponding to skin lesion areas

create high activation values in several feature channels, while other irrelevant

patterns, like healthy skin areas or hairs, may have associated very few feature

channels as they representatives.

Residual 1-D factorized convolutions. This mechanism is intended to boost

feature values that are similar in different image positions. The core working is the

same as a typical residual convolution, i.e., to learn the difference between input

and output activation maps, but using factorized 1-D kernels instead of regular 2D

kernels. We hypothesize that the output of this branch will tend to detect image

areas that present similar skin patterns in neighboring image positions. This output

does not entirely assume the role of the full spatial attention mechanism, where

similar patterns in disconnected image areas can be enhanced. Nevertheless, in the

skin lesion context, the residual convolution is enough if we assume that most of the

lesions are contained in a contiguous image region.

Factorized kernels can effectively preserve the spatial information of regular 2D

kernels and maintain the accuracy with significantly less computation.

Assume that W ∈ RC×dh×dv×F are the weights of a typical 2D convolutional

layer, where C is the number of input planes (channels), F is the number of output

planes (i.e. feature maps) and dh×dv is the kernel size of each feature map (typically

dh = dv = d). fi ∈ Rdh×dv is the ith kernel in the layer. As proposed in Romera et al.
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(2018), fi can be expressed as a linear combination of 1-D filters:

fi =
K∑
k=1

σi
kv̄

i
k

(
h̄ik
)T

(6.3)

where σi
k is a scalar weight, K is the rank of fi, v̄ik and

(
h̄ik
)T

are vectors of length

d. The ith output of the decomposed layer, O2i can be expressed as a function of its

input γ, as follows:

O2i = ϕ

(
bhi +

L∑
l=1

h̄Til ∗
[
ϕ

(
bvl +

C∑
c=1

v̄lc ∗ γc
)])

+ γi (6.4)

where ϕ(.) represents the non-linearity of the 1-D decomposed filters (where we used

ReLU), bhi and bvl are the horizontal and vertical biases of each filter. The residual

strategy of this branch combines the original features provided by the previous layer

with a new set of feature maps with 1-D convolutional filters. 1-D convolutional filters

have intrinsically less computational cost and less number of parameters than their

2D equivalent filters. Additionally, the 1-D combinations improve the compactness

of the generator layers by minimizing redundancies in the features coming from the

previous 2D convolution layers and theoretically improving the learning capacity.

Besides, the residual 1-D kernel factorization is faster in terms of computation time

than the normal non-bottleneck design He et al. (2016b).

To determine the final output of the FCA block, we aggregate the channel

attention and the residual 1-D factorized convolutions outputs as follows:

O = (1− Ω)×O1 + Ω×O2 (6.5)

Here, Ω is the weighting factor. We checked the system performance for Ω values

from 1.0 to 0.0, in steps of 0.1. We have found that Ω = 0.3 provides the best results.
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6.3.2 Network architecture

The proposed model comprises a generator and a discriminator network. The

generator network includes an encoder section and a decoder section. As shown

in Figure 6.3, both encoder and decoder sections include seven sequential layers (En

refers to an encoder layer and Dn refers to a decoder layer).
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Figure 6.3: The architecture of the generator network.

The encoder. We use a multi-scale input strategy Van Noord and Postma

(2017), where the input images are resized into three different scales with ratios of

1/8, 1/4 and 1/2 of the original size. In this way, the FCA-Net explicitly deals with

variation in resolution, object size and image scale, by encouraging the development

of filters which are scale-variant, while constructing a scale-invariant representation.

This strategy helps to segment some small skin lesion pixels. After each scale, we

add a convolution layer with 3 × 3 kernels along with the proposed FCA block to

extract more rich features from a skin lesion. The sizes of the features that are fed

into the aggregation module are 128 × 128 × 64, 64 × 64 × 64, 32 × 32 × 64 and

16 × 16 × 64, respectively. Before aggregation, lower-scale features are upsampled

to the size of the feature vector extracted from the original image (128× 128× 64),

and then inputted into the encoder layers. We added the proposed FCA block in

all layers of the encoder part, and we did not add it to the decoder layers. We used

batch normalization with LeakyReLU (slope 0.2) after the first six layers of encoder

and the ReLU activation function after E7. The size of all convolutional kernels is

4× 4 with a stride of 2. The encoder can learn low-level features of the skin images,

such as spatial information (e.g., edge, intensity, texture) throughout the training
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Figure 6.4: The architecture of the discriminator network.

process.

The decoder. To avoid overfitting, we used batch normalization and dropout

(rate = 0.5) in D1, D2 and D3. We added the ReLU activation function after each

layer of the decoder. The size of the deconvolutional kernels is 4×4 with a stride of 2.

We also added skip connections between each convolutional layer to its corresponding

deconvolutional layer. To outline the segmented skin lesion into a binary mask, we

added Tanh after D7. We used a threshold of 0.5 to convert the output of Tanh

activation function to binary masks.

The discriminator network. In Figure 6.4, similar to the generator network,

we apply a multi-scale stage with the FCA block to enhance the scale independence

of the discriminator between the ground truth and the generated masks. The masks

are also resized into three scales with ratios 1/8, 1/4 and 1/2 of the original image

size. The extracted features are up-sampled, concatenated and inputted into two

successive convolutional layers A1 and A2. We add LeakyReLU activation function

in A1 and sigmoid function in A2.

6.3.3 Loss function

To optimize the proposed segmentation model, we employ a loss function composed

of three terms: Adversarial loss as Binary Cross Entropy (BCE), `L1 loss and EPE

proposed in Sarker et al. (2018). Assume x is the skin image containing a lesion, y
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is the ground truth mask, G(x, z) and D(x,G(x, z)) are the outputs of the generator

and the discriminator, respectively. The loss function of the generator network G is

as follows:

`Gen(G,D) = Ex,y,z(− log(D(x,G(x, z))))

+ λEx,y,z(`L1(y,G(x, z)))

+ βEx,y,z(`EPE(y,G(x, z)))

(6.6)

where z is a random variable, and β and λ are empirical weighting factors. The

`L1 loss forces the model to suppress the outliers and artifacts and speed up the

optimization process.

The EPE loss Baker et al. (2011) compares the magnitude and orientation of the

edges of the predicted mask with its ground truth for preserving the boundaries of

the segmented regions. The EPE can be defined as:

Lepe =
√

(G(x, z)x − yx)2 + (G(x, z)y − yy)2 (6.7)

where (G(x, z)x, G(x, z)y) and (yx, yy) are the first derivatives in x and y directions

of G(x, z) and y, respectively.

In the discriminator network, we only used the BCE loss, which is defined as:

`Dis(G,D) = Ex,y,z(− log(D(x, y)))

+ Ex,y,z(− log(1−D(x,G(x, z))))
(6.8)

The optimizer will fit D to maximize the loss values for ground truth masks (by

minimizing − log(D(x, y))) and minimize the loss values for generated masks (by

minimizing − log(1−D(x,G(x, z))). The generator and discriminator networks are

optimized concurrently, one optimization step for both networks at each iteration,

where G tries to generate an accurate lesion segmentation mask and D learns how

to discriminate between the synthetic and the real segmentation masks.
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6.4 Experimental results and discussion

Datasets. To assess the efficacy of the proposed model, we use three skin lesion

challenge datasets, which are publicly available: ISBI20161 Gutman et al. (2016),

ISBI20172 Codella et al. (2018) and ISIC20183 Codella et al. (2019). The images

of the datasets were acquired using different devices at several medical centers

worldwide. In the ISBI2016 dataset, the training set has 900 annotated images

while the testing set has 379 annotated images. The size of the images varies from

542× 718 to 2848× 4288 pixels. The ISBI2017 dataset has three sets: the training

set (2000 images), validation set (150 images) and testing set (600 images). In

the ISIC2018 dataset, the training set has 2594 images, the validation set has 100

images and the testing set contains 1000 images. Ground truth of mask images

(provided for training and used internally for scoring validation and test phases)

were generated using several techniques, but all data were reviewed and curated by

practicing dermatologists with expertise in dermoscopy. Our model has been trained

on randomly chosen 2546 skin lesion images from the ISIC 2018 dataset and validated

on the rest 48 images. The model is then evaluated on the validation and testing sets.

This process has only been used to tune the hyperparameters of the model. Note

that the trained model is evaluated on the testing sets of ISBI2016 and ISBI2017

datasets. Our model is further assessed on the ISIC2018 validation and test sets.

Parameter settings. Each input image is resampled to 128 × 128 pixels and

normalized for rescaling the pixel values between [0, 1], before feeding it into our

network. The hyper-parameters of the model were empirically tuned. We used

Adam optimizer with β1= 0.5 and β2= 0.999, a learning rate of 0.0002 and a batch

size of 2. The weighting factors of the `L1 and EPE losses (λ and β) were set to 100

and 50, respectively. We have trained our model for 300 epochs, although the best

results were obtained on 240 epochs.

Implementation details. The experiments were conducted on an NVIDIA

GeForce GTX 1070 with 8 GB of video RAM. The operating system was Ubuntu

1https://challenge.kitware.com/challenge/560d7856cad3a57cfde481ba
2https://challenge.kitware.com/challenge/583f126bcad3a51cc66c8d9a
3https://challenge.kitware.com/challenge/5aab46f156357d5e82b00fe5
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Table 6.2: Performance metrics of different configurations of the proposed method with ISBI2016
and ISBI2017 datasets.

Methods
ISBI2016 ISBI2017

ACC Dice IoU SEN SPE ACC Dice IoU SEN SPE
BL 92.66 88.23 81.59 86.78 94.42 92.08 83.52 69.36 76.47 94.11
BL+CA 93.67 88.97 82.62 87.78 94.91 93.86 83.99 73.50 79.37 94.64
BL+FK 94.95 90.33 84.16 86.36 96.61 94.29 84.52 75.10 83.46 96.79
FCA-Net w/o MS 95.69 91.75 86.01 91.47 97.88 95.11 86.54 76.88 87.36 96.92
FCA-Net 96.97 93.94 87.58 92.42 98.62 96.29 88.28 78.94 88.09 97.36

16.04 using a 3.4 GHz Intel Core-i7 with 16 GB of RAM. The main required packages

involve Python 3.6, CUDA 9.1, cuDNN 7.0 and PyTorch 0.4.1. The codes of the

proposed model are publicly available at https://github.com/vivek231/Skin-Project.

6.4.1 Ablation study

We have run an ablation study to demonstrate the effect of each part of the proposed

block. We firstly trained a baseline (BL) model without adding the channel attention

or factorized convolution blocks. Then, we added the channel attention block to the

encoder layers of the generator network (called the BL+CA model). Furthermore,

the factorized kernel was also separately added to the encoding layers (called the

BL+FK model). Finally, the proposed model (FCA-Net) is constructed by adding

both CA and FK blocks with and without multi-scale. Note that all models used

in this ablation study have been trained on the ISIC2018 dataset and tested on the

ISBI2016 and ISBI2017 datasets. We did not consider the testing images of ISBI2016

and ISBI2017 that appear in the training set of the ISIC2018 dataset.

Table 6.2 presents the results of the ablation study. With the dataset of

ISBI2016 dataset, the BL model yields a Dice and IoU scores of 88.23% and 81.59%

respectively, while the BL+CA model provides a small improvement of 0.74% and

1.03% for Dice and IoU scores, respectively. This improvement is achieved because

the CA block explicitly models inter-dependencies among channels. Besides, the

BL+FK model gives a Dice of 90.33% and an IoU score of 84.16%, yielding better

improvement than the BL+CA model. In turn, the proposed FCA-Net achieves

an improvement of around 4.0% and 3.0% of Dice and IoU scores, respectively,

with respect the BL model. Similarly, on ISBI2017 dataset, FCA-Net improved the
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results comparing with other checked strategies and achieved a Dice of 88.28% and

IoU scores of 78.94%.

To demonstrate the effectiveness of the multi-scale stage, Table 6.2 also

provides the results of FCA-Net with the multi-scale stage and without employing

the multi-scale stage (w/o MS). As shown, the multi-scale stage improves the

segmentation performance of the proposed FCA-Net model with an increment of

approximately 2% in Dice and IoU scores.

Image

(a) BL (b) CA (c) FK (d) FCA-Net

Conv 2 Conv 3 Deconv 7

(a) BL (b) CA (c) FK (d) FCA-Net (a) BL (b) CA (c) FK (d) FCA-Net

D=82.14 J=73.49 D=86.21 J=81.58 D=89.60 J=83.79 D=93.34 J=86.61

D=83.26 J=75.92 D=87.19 J=80.75 D=88.68 J=83.66 D=93.83 J=88.49

(1)

(2)

Figure 6.5: Visualization of two sample images and the corresponding activation maps generated
by the second and third convolutional layers of the generator network in four variants w.r.t. the
use of the FCA block: BL is our baseline cGAN; CA includes the channel attention branch; FK
includes the residual 1-D factorized convolutions; FCA-Net is our fully-fledged network. The figure
also shows the output (Deconv7) of the variants, graphically compared with the ground truth
segmentation, color-coded as yellow: TP, green: FP, red: FN and black: TN, as well as the Dice
and IoU indexes for each experiment.

In Fig. 6.5, we present a couple of difficult samples, jointly with visualizations of

the activation maps created by the second (Conv2) and third (Conv3) encoder layers,

as well as the output of the last decoder layer (Deconv7) graphically compared with

the ground truth segmentation (more examples in Fig. 6.7). The layer outputs have

been obtained with four variants of the FCA block (see figure caption).

The BL variant (basic cGAN) can distinguish lesion from non-lesion areas in

low-level layers of the network, as shown with pink and green zones in Conv2

activation maps, but artifacts like hair and texture/color variability are interfering

with the detection of the lesion area. Besides, for image 2 there is a false lesion

detection at the left of the true lesion. Although next layers can get rid of such

inaccuracies up to a certain degree, the final outputs show a high amount of false

negatives (red pixels in output 1) or a fair amount of false positives (green pixels in

output 2). Also, note that the output for image 1 comprises small holes (red spots

inside the yellow area).
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The CA variant obtains a more consistent identification of the target classes. In

Conv2, almost all lesion region renders one single color (dark red), although their

pixels show varying shading due to different activation degrees (especially for image

1). In Conv3, the lesion areas are more compact (shaded in dark blue), but for

image 1 there is a visible break. Nevertheless, this groove will be filled in by further

layers. Noticeably, the final output of CA for image 1 has reduced the number of

FN with respect to the baseline output, although there are still too many red pixels.

The output for image 2 has not trimmed the false (green) elongation at the right

of the lesion, but it has trimmed the extra green pixels at its left boundary, so the

performance metrics have been improved. Despite that these outputs still present

some misled areas, the obtained degree of improvement empirically proves that the

channel attention mechanism can significantly smooth the effect of artifacts since

lesion features are consistently enhanced.

The FK variant obtains a much more compact coloring of the target areas, thanks

to the local spatial coherence provided by the residual filters. Despite this good

property, lesion regions in Conv2 maps contain different colors (red, pink, dark

blue), which indicates that several feature channels are responsible for characterizing

different areas of the lesions. In Conv3, however, the lesion features are more

consistent, showing one single blue color. Segmentation outputs are better than

outputs from BL and CA variants, which indicates that the residual branch is

enhancing the compactness of the output activation maps.

Finally, the FCA-Net combines the good properties of CA and FK variants, since

the activation maps from Conv2 and Conv3 tend to be both spatial and channel

coherent within the lesion area. For the non-lesion area, however, in Conv3 there

is a color gradation (halo) around the lesion, which may turn out into misleading

boundary delineation, like the small green area on top of the lesion in the final

segmentation of image 1. This inconvenience is largely compensated by the significant

reduction of false negatives in output 1. At the same time, there is also a significant

reduction of false positives in output 2. In summary, the combination of the two

branches of the FCA block helps each other to provide the best results of the four
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variants.

Table 6.3: Analysis of the effect of the FCA block on different segmentation models with ISBI2016
dataset.

Methods
Without FCA Block With FCA Block

ACC Dice IoU SEN SPE ACC Dice IoU SEN SPE
FCN8 90.10 80.60 72.52 81.11 97.17 91.02 83.37 74.42 85.15 98.39
UNet 89.23 79.51 71.66 80.26 96.87 91.22 82.10 73.92 84.92 97.41
SegNet 92.36 83.74 75.92 84.67 97.02 93.41 86.61 78.45 87.51 97.87
Link-Net 92.97 84.76 77.01 85.97 97.26 93.74 87.53 79.46 88.02 97.98
RefineNet 93.03 83.97 75.58 86.08 95.71 93.19 85.82 77.71 89.41 96.76
FCA-Net 92.66 88.23 81.59 86.78 94.42 96.97 93.94 87.58 92.42 98.62

Table 6.4: Analysis of the effect of the FCA block on different segmentation models with ISBI2017
dataset.

Methods
Without FCA Block With FCA Block

ACC Dice IoU SEN SPE ACC Dice IoU SEN SPE
FCN8 86.38 64.55 57.38 61.71 88.26 89.93 68.85 59.98 64.90 92.82
UNet 85.84 63.03 55.39 60.87 88.24 90.04 67.89 59.39 63.20 95.03
SegNet 88.76 72.45 64.30 71.52 92.44 91.66 75.24 66.06 74.68 96.02
LinkNet 89.62 75.97 69.37 73.81 94.35 92.57 79.59 71.20 77.77 96.01
RefineNet 88.28 74.05 63.64 73.88 94.36 91.52 75.31 67.82 74.92 95.57
FCA-Net 92.08 83.52 76.36 84.47 94.11 96.29 88.28 78.94 88.09 97.36

In our experiments, we added the proposed FCA block to different state-of-the-art

image segmentation methods (FCN8 Long et al. (2015), UNet Ronneberger et al.

(2015), SegNet Badrinarayanan et al. (2017), LinkNet Chaurasia and Culurciello

(2017) and RefineNet Lin et al. (2017)) and evaluated them on ISBI2016 and

ISBI2017 dataset. Tables 6.3 and 6.4 present the results of all models with and

without the proposed FCA block. For a fair comparison, all models have the same

configuration of the multi-scale input layer. As can be observed, all models give

better results when adding the FCA block. Besides, our model gives the best results

among all evaluated models.

Fig. 6.6 shows boxplots of Dice and IoU scores of the proposed model, as well

as the FCN8, UNet, SegNet, LinkNet and RefineNet models, evaluated on ISBI2016

and ISBI2017 datasets. As shown in plot (a), the proposed model has the highest

median Dice and the smallest range with few outliers. In plot (b), with the 379

images of the test set of ISBI2016, the proposed model produces 13 outliers with IoU

scores while the LinkNet and SegNet models have 18 and 17 outliers, respectively.
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Figure 6.6: Boxplots of Dice and IoU scores for all test samples in ISBI2016 dataset in the upper
row (plots a, b) and ISBI2017 dataset in the bottom row (plots c, d). Different color boxes indicate
the score range of several methods, the red line inside each box represents the median value, box
limits include interquartile ranges Q2 and Q3 (from 25% to 75% of samples), upper and lower
whiskers are computed as 1.5 times the distance of upper and lower limits of the box, and all values
outside the whiskers are considered as outliers, which are marked with the (+) symbol.

In turn, plot (d) shows that the FCN8 and UNet models have no outliers but the

range of IoU metric is much bigger than the one from our model. With the 600

images of the test set of ISBI2017, our model has 10 outliers with IoU scores while

the RefineNet model has 14 outliers.

6.4.2 Comparisons

In Table 6.5, the FCA-Net model is compared with 8 state-of-the-art skin lesion

segmentation methods on ISBI2016 dataset. For fair comparisons, we have also

trained and tested FCA-Net with the ISBI2016 training set and evaluate them with

the ISBI2016 test set. As shown, FCA-Net gives a Dice score of 92.80% and an IoU

score of 86.41%, which are the second best values in each metric. Li et al. (2019) also

achieves a sensitivity score higher than our model but we obtain better specificity
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and accuracy.

Table 6.5: Comparing the proposed model with 8 state-of-the-art methods on ISBI2016 dataset.
Best results are marked in bold.

Methods ACC Dice IoU SEN SPE
ExB4 95.30 91.00 84.30 91.00 96.50
Mirikharaji et al. (2018) 95.02 90.11 83.30 90.15 97.00
Li et al. (2019) 95.90 93.10 87.00 95.10 96.00
Bi et al. (2019) 95.80 91.70 85.90 93.10 96.00
Jahanifar et al. (2019) 94.30 90.70 83.80 90.10 96.60
CUMED Yu et al. (2017) 94.90 89.70 82.90 91.10 95.70
Rahman et al. (2016) 95.20 89.50 82.20 88.00 96.90
Yuan (2017) 95.50 91.20 84.70 91.80 96.60
FCA-Net 95.93 92.80 86.41 91.63 97.07

Table 6.6 shows a comparison between the results of our FCA-Net and 11

state-of-the-art skin lesion segmentation methods on ISBI2017 dataset. For fair

comparisons, we have also trained FCA-Net with the ISBI2017 training set and

evaluated it with the ISBI2017 test set. Although the IoU score of Li et al. (2018)

is slightly better than our’s, we have achieved the second best result. Moreover, we

have achieved the best Dice and accuracy scores. Also, Sarker et al. (2018) equals

the best Dice score and obtains the best specificity score, 1% higher than FCA-Net,

but significantly lower sensitivity and 1% less accuracy than our model. In the IoU

score, which is the most strict metric, it performed slightly lower than our’s, so we

conclude that our method can be ranked as the second best, closely followed by

Sarker et al. (2018).

The performance of FCA-Net is also assessed on the validation set of ISIC2018.

The segmented images are submitted to the Leaderboards platform, which calculates

an IoUth score of the provided results. Note that this IoUth score is computed as

follows Codella et al. (2019):

IoUth =

IoU, if IoU > 0.65

0, otherwise.

(6.9)

On the validation set of the live leaderboard, our model has achieved an IoU score
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Table 6.6: Comparing the proposed model with 11 the state-of-the-art methods on ISBI2017
datasets. Best results are marked in bold. Dashes (-) indicate that results are not reported in the
cited papers.

Methods ACC Dice IoU SEN SPE
Bisla et al. (2019) - - 77.00 - -
Al-Masni et al. (2018) 94.03 87.08 77.11 85.40 96.69
Li et al. (2018) 94.30 87.40 79.80 87.90 95.30
Xue et al. (2018) 94.10 86.70 78.50 - -
Yuan (2017) 93.40 84.90 76.50 82.50 97.50
Berseth (2017) 93.20 84.70 76.20 82.00 97.80
Jahanifar et al. (2019) 93.00 83.90 74.90 81.00 98.10
Venkatesh et al. (2018) 93.60 85.60 76.40 83.00 97.60
Galdran et al. (2017) 92.30 82.40 73.50 81.30 96.80
Sarker et al. (2018) 93.60 87.80 78.20 81.60 98.30
Vesal et al. (2018) 93.20 85.10 76.70 93.00 90.50
FCA-Net 94.95 87.80 78.65 87.91 97.05

of 77.2%. On the test set (with 1000 skin images), it has achieved an average Dice

score of 85.8% and IoU score of 78.2%.

An additional comparison has been performed by comparing the FCA-Net model

with FCN, UNet, SegNet, FrCN (reported in Al-masni et al. (2018)), GAN-FCN Bi

et al. (2018), and Hardie et al. (2018). In the case of GAN-FCN model, GAN is

used to derive additional training data from ISIC2018 dataset, and then this data

is combined with the original training data to train an FCN model for skin lesion

segmentation. The authors of Hardie et al. (2018) transform skin images to the RGB

space and train a color classifier to discriminate between lesions and normal skin

tissue based only on RGB color vectors. Then, they use a Gaussian mixture model

(GMM) to model the probability density functions of skin lesions and a support

vector machine regression algorithm to segment the images. As shown in Table 6.7,

our model achieves an IoU score close to the best one provided by GAN-FCN. In

turn, the UNet model yields the worst results with an IoU of 54%.

Fig. 6.7 presents qualitative results of skin lesion segmentation that include a

variety of challenging conditions: hair presence, blurriness, illumination variations

(intensity, chromaticity, fading, etc.), fuzzy or irregular borders, big and small lesions,

and multi-color lesions. Each row of Fig. 6.7 includes a skin lesion image along with
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Table 6.7: The performance of FCA-Net on the ISIC2018 validation dataset. The proposed model
has been evaluated on skin lesion leaderboard (https://submission.challenge.isic-archive.com/)

Methods IoUth(%)
FCN 74.70
UNet 54.40
SegNet 69.50
FrCN 74.60
GAN-FCN Bi et al. (2018) 77.80
Hardie et al. (2018) 66.30
FCA-Net 77.20

its segmentation obtained with FCN8, UNet, SegNet, Refine-Net, LinkNet and the

proposed model. To visualize the accuracy of each model, we compare the ground

truth mask with the generated mask and use four different color codes to mark up

the classification result for each pixel. Note that yellow refers to TP, red refers to

FN, green refers to FP and black refers to TN. An ideal segmentation model will

assign yellow to skin lesion pixels and black to the background pixels.

For all examples, our model achieves the best Dice and IoU scores in all images,

as shown in the scores printed on each output image. Moreover, it produces a tiny

amount of red or green pixels, which are usually distributed around the border of

the skin lesion, while the other methods have a higher number of FP and FN.

The sample in the first row has a small lesion with thick hair in the background.

The UNet model failed to properly segment by over-extending the lesion area, while

the rest of the models give accurate segmentation and high Dice and IoU results. The

sample of the second row has low contrast with bad illumination conditions, along

with a framing effect due to the optic lenses. In this case, FCN8, UNet, SegNet,

RefineNet, and LinkNet give a low Dice and IoU scores (≤ 88%), while our method

outputs a decent result. In the third row, the pixels inside the lesion region have

inhomogenous colors, and some of them are similar to the ones of the background.

The UNet and LinkNet method give bad segmentation results while the proposed

model achieves the most accurate fit of the lesion, with very high Dice and IoU

scores. In the fourth row, the lesion region is not homogeneous and has low contrast.

With this case, our model achieves a Dice of 87.34% and an IoU of 77.53%, which

correspond to the best matching of the lesion. The last row has a small skin lesion
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TP FN FP TN
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Figure 6.7: Skin lesion segmentation using the FCN8, UNet, SegNet, RefineNet, LinkNet and
FCA-Net models. Note that D and J represent the Dice and IoU scores, respectively. Further
visualization for the segmentation results of the proposed method can be found at https://youtu.
be/GeUM8FglhFA.

with very dense hair in the background. For this sample, the proposed model obtains

promising segmentation results compared to the other models.

6.4.3 Limitations

Although the proposed FCA-Net outperforms several deep learning-based models

(FCN8, UNet, SegNet, RefineNet and LinkNet), it may produce inaccurate results

with some cases as shown in Figure 6.8. As we can see, it is difficult to segment

such images manually. The skin image of the first row has fuzzy boundaries, low

contrast and intensity inhomogeneity. With this case, our model achieves a Dice

of 84.21% and an IoU score of 78.56%. The other five tested models provide less

accurate segmentation results, while the FCA-Net almost fit the lesion area. The

second sample has two distinct color shades in the lesion. All models have failed to
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D=62.92  J=48.48D=59.27  J=45.76D=63.61  J=49.77D=61.55  J=47.89D=52.91  J=38.10D=50.26  J=36.54
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Figure 6.8: Examples of inaccurately segmented lesions with the proposed FCA-Net model and
compared with other baseline segmentation models. Note that D and J represent the Dice and IoU
scores, respectively.

accurately segment the lesion because of this dual shading, selecting the stronger one

as the lesion and misclassifying the weaker one as background. It leads to IoU scores

less than 50% in all segmentations, although FCA-Net has achieved the second best

result.

6.5 Conclusion

In this chapter, we have proposed an accurate skin lesion segmentation model based

on a generative adversarial network with the proposed FCA block that integrates

a channel attention mechanism with residual 1-D factorized kernels convolutions.

The FCA block noticeably improves the performance of our cGAN model as

well as other well-known architectures (FCN8, UNet, etc.). We have run several

qualitative and quantitative experiments that show how both channel attention and

1-D residual convolution mechanisms contribute to the segmentation improvement.

Those mechanisms boost similar features across all channels and in neighboring

regions of the encoder activation maps. As we expected, those similar features tend

to correspond more robustly with relevant patterns of lesion/non-lesion areas.

Our model is fully automated and fully self-contained, in the sense that we did

not use any data augmentation techniques in the training phase or pre-processing

steps. The efficacy of the proposed model is assessed on three publicly available skin

lesion segmentation challenge datasets: ISBI2016, ISBI2017, and ISIC2018. Our
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model outperforms several state-of-the-art methods, such as FCN8, UNet, SegNet,

ExB, CUMED, MResNet-Seg, and FrCN, in terms of Dice and IoU metrics.
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CHAPTER7

Concluding remarks

This final chapter presents the most important contributions and main conclusions of

this dissertation, emphasizing their significance. Likewise, the chapter also includes

approaches for future work.

7.1 Thesis highlights

The main contribution of this thesis is the method for segmenting different types

of lesions in several modalities of medical images, which is based on conditional

cGAN. This type of network is able to learn the intrinsic features of the lesions

from a relatively low number (hundreds) of training samples, and then generate

the corresponding image mask that selects the pixels belonging to the ill tissue.

Numerous experiments performed in the thesis reveal that the proposed method

segments very efficiently either breast tumors in mammograms and ultrasound
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images, skin lesions in dermoscopic images or optic disc in fundus images. Numerical

and visual comparisons indicate that the proposed method is better than other

state-of-the-art segmentation methods in the majority of situations.

To address the problems due to the inherent sources of variability and uncertainty

present in all types of medical images, the thesis also proposes several extensions to

enhance the core cGAN, being the most noticeable the CAW block and the FCA

block, which has improved significantly (> 7% in Jaccard index) the segmentation

performance for breast tumors in ultrasound images and skin lesions in dermoscopic

images, respectively. Other variants include different loss functions, which has lead

to slight improvements.

Besides, the thesis also proposes several CNNs to classify the segmented regions

into different types of findings, for example, the shape of a breast tumor (irregular,

lobular, oval and round), its molecular subtype (Luminal A/B, Her-2 and Basal-like)

and if it is benign or malignant. Although the results are not as outstanding as

the segmentation ones (around 80% of classification accuracy compared to more

than 90% in segmentation accuracy), they are still better than other state-of-the-art

methods in these fields.

In summary, according to the obtained results it can be assessed that CNNs in

general and cGANs in particular are highly reliable for the tasks of medical image

segmentation and classification on different types of image modalities and different

organs. One can expect that this statement will hold for other modalities and organs

than the ones experimented in this thesis.

7.2 Future research lines

The work explained in this thesis and the achieved results permit to foresee future

research lines. Some of them are studies that were omitted from the thesis due to

time restrictions, and others are new predictions originated from issues that emerged

during the outcome of the investigation.

Deep learning-based medical image analysis is always a challenging task that
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requires a large amount of data and huge computational power. Designing a

lightweight network with less number of parameters and the same degree of accuracy

of our current model is an exciting direction for our research.

On the other hand, the medical image datasets to train the model are usually

small in the number of samples. This situation reduces the generalization capacity

of the model, which means that it may fail to correctly process test examples that

exhibit small variations in the expected patterns. For example, the same body

part of the same patient can be interpreted differently by the model when gathered

with different image-acquisition machines. Another source of variability is to try to

handle medical images from a different population of patients than the one used as

a reference set. Our final target will be to design a robust deep learning architecture

able to overcome such variability, thus truly increasing the efficacy of the CAD

systems. Moreover, our future model should be suitable for being trained and process

different modalities of medical images.
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