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ABSTRACT 

Global climate change effects on agroecosystems together with increasing world population is 

already threatening food security and endangering ecosystem stability. Meet global food demand 

with crops production under climate change scenario is the core challenge in plant research 

nowadays. Thus, there is an urgent need to better understand the underpinning mechanisms of plant 

acclimation to stress conditions contributing to obtain resilient crops. Also, it is essential to develop 

new methods in plant research that permit to better characterize non-destructively plant traits of 

interest. In this sense, the advance in plant phenotyping research by high throughput systems is key 

to overcome these challenges, while its verification in the field may clear doubts on its feasibility. To 

this aim, this thesis focused on wheat and secondarily on maize as study species as they make up the 

major staple crops worldwide. A large panoply of phenotyping methods was employed in these 

works, ranging from RGB and hyperspectral sensing to metabolomic characterization, besides of 

other more conventional traits. All research was performed with trials grown in the field and diverse 

stressor conditions representative of major constrains for plant growth and production were studied: 

water stress, nitrogen deficiency and disease stress. Our results demonstrated the great potential of 

leave-to-canopy color traits captured by RGB sensors for in-field phenotyping, as they were accurate 

and robust indicators of grain yield in wheat and maize under disease and nitrogen deficiency 

conditions and of leaf nitrogen concentration in maize. On the other hand, the characterization of 

the metabolome of wheat tissues contributed to elucidate the metabolic mechanisms triggered by 

water stress and their relationship with high yielding performance, providing some potential 

biomarkers for higher yields and stress adaptation. Spectroscopic studies in wheat highlighted that 

leaf dorsoventrality may affect more than water stress on the reflected spectrum and consequently 

the performance of the multispectral/hyperspectral approaches to assess yield or any other relevant 

phenotypic trait. Anatomy, pigments and water changes were responsible of reflectance differences 

and the existence of leaf-side-specific responses were discussed. Finally, the use of spectroscopy for 

the estimation of the metabolite profiles of wheat organs showed promising for many metabolites 

which could pave the way for a new generation phenotyping. We concluded that future phenotyping 

may benefit from these findings in both the low-cost and straightforward methods and the more 

complex and frontier technologies.  
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INTRODUCTION 

Climate change and global warming: global and regional aspects 
 

The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) did evidence 

that physical and biological systems on all continents and in most oceans are already affected by 

recent climate changes (Rosenzweig et al., 2017). According to the last  IPCC report (Allen et al., 2018) 

human-induced global warming reached approximately 1°C above pre-industrial levels in 2017, 

currently increasing at 0.2°C per decade. However, warming greater than the global average has 

already been experienced in many regions and seasons, with higher average warming over land than 

over the ocean. Between 20–40% of the global human population is living in regions that, by the 

decade 2006–2015, had already experienced warming of more than 1.5°C above pre-industrial values. 

Past emissions alone are unlikely to raise global-mean temperature to 1.5°C above pre-industrial 

levels, but past emissions do commit to other climate processes and drivers that exacerbate the 

effects of global warming, even if all anthropogenic emissions were reduced to zero immediately. In 

global terms, there is evidence that the number and intensity of hot days have increased markedly in 

the last three decades and the occurrence of heat waves has doubled; and these increases will 

continue through the 21st century (Fig. 1). In addition, extreme phenomena such as heavy rainfalls 

may become more frequent during the 21st century in many parts of the world which may lead to 

more intense soil erosion even if the total rainfall does not increase (IPCC, 2014a). 

 

That said, global change has a strong regional component. In Europe, average temperature has 

continued to increase, with regionally and seasonally different rates of warming, being the strongest 

over Scandinavia, especially in winter, whereas the Iberian Peninsula warmed mostly in summer (IPCC, 

2014b). In agreement, for all emission scenarios the strongest warming is projected in Southern 

Europe in summer, and in Northern Europe in winter (Goodess et al., 2009; Kjellström et al., 2011). 

Even under an average global temperature increase limited to 2°C compared to preindustrial times, 

the climate of Europe is simulated to depart significantly in the next decades from today’s conditions 

(Van der Linden and Mitchell, 2009; Jacob and Podzun, 2010).  
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FIGURE 1. OBSERVED AND PROJECTED CHANGES IN ANNUAL AVERAGE SURFACE TEMPERATURE. IT ILLUSTRATES 

TEMPERATURE CHANGE OBSERVED TO DATE (TOP) AND PROJECTED WARMING (BOTTOM) UNDER AMBITIOUS 

MITIGATION (RCP 2.6) AND UNDER CONTINUED HIGH EMISSIONS (RCP 8.5) EXTRACTED FROM IPCC (2014A) 

REPORT 

 

Precipitation changes associated with global warming are less clear and vary regionally and seasonally. 

Even so, increasing precipitation in Northern Europe and decreasing in Southern Europe are observed 

with a medium confidence level (Kjellström et al., 2011)(Fig. 2). Consequently, dryness has increased 

mainly in Southern Europe and this may magnify regional differences for agriculture and forestry. 

Climate projections warn of a marked increase in extremes in Europe, including heat waves, droughts, 

and heavy precipitation events (Beniston et al., 2007; Lenderink and van Meijgaard, 2008). Southern 

Europe may likely suffer more intense and longer meteorological droughts and their soil water content 

will decline. Changes in the patterns of soil saturation and drainage, snow accumulation and melting  

will impact by reducing groundwater recharge and/or water table level by the end of the 21st century 

(García-Ruiz et al., 2011; Goderniaux et al., 2011; Guardiola-Albert and Jackson, 2011). In addition, soil 
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degradation is already intense in parts of the Mediterranean and Central-Eastern Europe and, 

together with prolonged drought periods and fires, is already contributing to an increased risk of 

desertification. Projected risks for future desertification are the highest in these areas where extreme 

events may contribute about half of total erosion. 

 

FIGURE 2. OBSERVED AND PROJECTED CHANGES IN ANNUAL AVERAGE SURFACE PRECIPITATION. IT ILLUSTRATES 

CHANGES OBSERVED TO DATE (TOP) AND PROJECTED CHANGES (BOTTOM) UNDER AMBITIOUS MITIGATION (RCP 2.6) 

AND UNDER CONTINUED HIGH EMISSIONS (RCP 8.5). EXTRACTED FROM IPCC (2014A) REPORT 

 

Effects on agroecosystems 

From early 1950s, a conjunction of advances and technology transfer initiatives in agronomy led to an 

unprecedented increase in agricultural productivity, particularly affecting the so called, small grain 

cereals. This was called Green Revolution and included the development of high yielding varieties, the 

massive synthesis and use of chemicals fertilizers as well as an increase in the level of mechanisation 

in cultivation. However, this intensification had several negative impacts on the ecological properties 

of agricultural systems, such as carbon sequestration, nutrient cycling, soil structure and functioning, 
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water eutrophication and pollination. At present, agriculture is an important land user across the 

world, covering about 35% of the total land area of western Europe (Rounsevell et al., 2006). In terms 

of water use, agriculture accounts for 24% of total national freshwater abstraction in Europe and more 

than 80% in some Southern European countries (EEA, 2009).  

On the other hand, excessive heat interacts with key physiological processes in plants leading to 

shortening of crop cycle, growth cessation and even early senescence and leaf defoliation (Teixeira et 

al., 2013). At the global scale, increased frequency of unusually hot nights and extremely high daytime 

temperatures are damaging and occasionally lethal to crops (Schlenker and Roberts, 2009; Peng et al., 

2004; Porter and Gawith, 1999). In balance, local temperature increases of 2ºC or more -above late 

20th century levels- will negatively impact production of major crops (wheat, rice and maize), although 

certain temperate regions may benefit (Fig. 3).  

  

 

FIGURE 3. PERCENTAGE CHANGE IN SIMULATED WATER-LIMITED YIELD FOR WINTER WHEAT (WITHOUT ADAPTATION) 

IN 2030 WITH RESPECT TO THE 2000 BASELINE FOR THE A1B SCENARIO USING ECHAM5 (A) AND HADCM3 (B) 

MODELS. EXTRACTED FROM IPCC (2014B) REPORT. 

Increases on global temperature together with the reduction in precipitation in many regions will 

affect global water demand of crops, with projected increases between 7 to 21% (Wada et al., 2013) 

with a pronounced regional pattern. As consequence, agriculture production will be threatened (Trnka 

et al., 2011; Daccache and Lamaddalena, 2010), particularly in those regions, such as the 

Mediterranean area, where irrigation might not be a viable option due to the projected declines in 

total surface water streams and groundwater resources (Olesen et al., 2011). 

In terms of crop production, there is already evidence of negative effect of climate changes on the 

production of major crops such as wheat and maize in many regions, and medium confidence for 
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negative impacts on global production (Lobell et al., 2011). For instance, heat waves and droughts 

events in 2003 and 2010 summers caused grain losses of up to 20-30% in some growing regions of 

Europe and Russia, whereas in the Iberian Peninsula cereal production fell by 40% at 2004/2005 

drought (Barriopedro et al., 2011; Ciais et al., 2005). Therefore, crop suitability is likely to change, 

particularly in regions like Southern Europe where yield losses may reach 25% by 2080 (Ciscar et al., 

2011), with increased risks of rainfed-crops failure (Ferrara et al., 2010; Bindi and Olesen, 2011). At 

the world level, projections also identified South Asia and Southern Africa as the most potentially 

affected regions, suffering the most negative impacts on wheat, maize, sorghum and millets 

production (Lobell et al., 2008). It must also be noted that climate changes, particularly temperature 

increases, may result in changes in overwintering, summer survival and geographic ranges of pests 

and diseases, with subsequent increases in potential yield losses. 

Several experimental studies in CO2 enriched environments (growing chambers or free-air CO2 

enrichment trials) point out an initial benefit from increasing CO2 concentration in photosynthesis, 

plant growth and yield. Furthermore, CO2-induced stomatal resistance may trigger a stronger 

response to elevated CO2 in water-stressed crops than in well-watered ones. Thus, in some cases, 

elevated atmospheric CO2 concentration could have fertilizer effect and might partly cancel out the 

adverse effect of climate change, increasing water use efficiency of crops while reducing water 

demand (Konzmann et al., 2013). Even in this optimistic case, future irrigation demand is projected to 

exceed local water availability in many regions such as Southern Europe (Wada et al., 2013).  

 

Agriculture challenges and adaptation strategies 

In the context of the explained climate changes associated with past greenhouse gases (GHG) 

emissions and considering the very high likelihood of additional emissions and climate changes, and 

the impacts on food security and production, agricultural systems require some level of adaptation. 

Also, the agriculture sector will need to reduce its contribution to total anthropogenic GHG emissions, 

besides facing a changing and more variable climate (Lavalle et al., 2009; Smith and Olesen, 2010). It 

is also paramount to consider that global agricultural demand is expanding because of increasing 

world population as well as by changes in dietary habits in emerging economies and increasing 

competition of crops as sources for bio-energy, fibres and other industrial purposes (Rahaman et al., 

2015). Indeed, the Food and Agriculture Organization (FAO) has projected that cereal production must 

be doubled before 2050 in order to meet crop production demand, evidencing the urgency to adopt 

new strategies and develop novel methods in plant biology.   

Strategies to adapt agriculture are broad and include from alteration in agronomy practices and 

management to plant breeding. Adjusting cultivation in terms of sowing and harvest times is already 
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adopted by farmers in some regions and may be an effective adaptation enhancing food security and 

sustainable livelihoods (IPCC, 2014b). However, this strategy may not be effective in many regions 

such those with Mediterranean climates, where early sowing of cereals depends on adequate rains in 

autumn and these are projected to decrease. In these circumstances, the use of short cycle cultivars 

has been proposed as a mitigation option in order to reduce exposure to terminal droughts and high 

temperatures (Orlandini et al., 2009). Another group of strategies to adapt cropping systems are those 

practiced in conservation agriculture: reduced tillage, addition of crop residues and manure to the soil 

and increase diversity in crops rotation, which contribute to increase soil carbon and nitrogen, reduce 

soil erosion and improve soil water holding capacity (Smith and Olesen, 2010). Other pathways would 

be the implementation of more efficient irrigation and drainage systems and, ultimately, the change 

in land allocation and in the cultivated varieties or even crop species. Considering the projected 

climate scenarios, a conjunction of all possible strategies will need to be applied. Even so, plant 

breeding is the only way to obtain more resilient cultivars to future stressor scenarios reducing risks 

of yield shortfall (Olesen et al., 2011; Ventrella et al., 2012). In this sense, breeding challenges are 

several: improving cultivar tolerance to high temperatures and drought while optimizing water use 

efficiency. Furthermore, taking in consideration that a new variety usually takes between 8 to 14 years 

to be delivered (Ziska et al., 2012), much more efforts must be dedicated in the development of plant 

breeding.  

 

Basics on cereal biology and cultivation  

Cereals are a diverse group of monocots grasses typically cultivated for their edible grains (caryopsis) 

and forage uses and belong to the family of Poaceae. This family is characterized for its cosmopolitan 

distribution due to the great adaptability to diverse soil and climate environments. Cereals comprise 

many cultivated species sown (in temperate climates) at spring like rice, sorghum and maize and other 

typically sown at autumn such as wheat, barley and oats. Cereals, together with legumes (Fabaceae) 

were the first plant families cultivated and domesticated, beginning about 12000 years ago, in the 

transition between the Epipaleolithic and the Neolithic in nuclear regions (e.g. Near East and East 

China) and permitted the sedentarism of human populations and the development of the first Great 

Civilizations. Wild varieties were initially cultivated and over time, these species were probably 

domesticated gradually by the selection of advantageous characteristics. In the case of cereal grasses, 

this human selection -in different sites and from different species- converged in some traits: from 

small-sized, naturally dispersed and coated seeds into larger seeds and devoid of dormancy and 

dispersal ability (Remigereau et al., 2011). In the case of wheat, domestication of diploid (Triticum 

monococcum, 2n=2x=14) and tetraploid (Triticum turgidum, 2n=4x=28) forms is thought to have 

occurred at least 9000 years ago, whereas hybridization event producing hexaploid wheat (Triticum 
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aestivum, 2n=6x=42) probably occurred 6000 years ago, although this chronology is not yet entirely 

sure and in fact radiocarbon calibrated evidence of domesticated wheats and barley older that these 

dates have been published (e.g. Araus et al. 2014). Thus, ancestral selection resulted in the obtention 

of cereal species with which populations were feed, typically wheat and barley in Near-Middle East 

and Europe, rice in Far East, maize in America and millet in Africa. At present, more than 50% of caloric 

intake by world population is derived directly from cereal grain consumption (Awika, 2011). From 

these cereals, wheat is the most widely cultivated staple cereal worldwide with over 218 Mha in 

cultivation whereas maize is the second one and the most commonly cultivated cereal in Africa in 

terms of land area and production (FAO, 2013). 

Regarding growth and development, cereals are herbaceous, annual and predominantly self-

pollinating plants (not for maize). Despite clear similarities, cereals encompass several subfamilies and 

tribes so that further explanation of cereal biology will be focused predominantly on wheat as it is the 

main species studied in the current thesis and secondly on maize.   

Wheat plants have a principal stem from which alternate leaves emerge. The stem is composed by 

repeating segments -phytomers- that contain a node, an internode and a leaf. The stem is erect and 

hollow -fistulous- except in the node, where the other tissues converge, and terminates in the ear. 

The leaf is made up of the leaf blade and the leaf sheath, which is inserted in the node and wraps the 

inter-node below. In the junction between the blade and the sheath there is a ligule and a pair of 

auricles, which are characteristic structures of cereals. Cereal leaves are amphistomatous and 

isobilateral and basically consist in an epidermis covered with an epicuticular wax and these enclose 

the mesophyll that is transected by the vascular tissues. The terminal leaf in cereals is called flag leaf. 

Besides, wheat plants have secondary tillers, which are lateral branches originated from the main stem 

and have the same morphoanatomical traits as the main tiller. Wheat has two types of roots: i) seminal 

or primary roots are the first root type to emerge and sustain plant development during the first stages 

and ii) the nodal or secondary roots that develop as tillering starts. Wheat root system can grow up to 

2 m deep, but most roots are concentrated in the top 30 cm of soil. The ear -or spike- of wheat is an 

inflorescence that has a central rachis that supports two rows of spikelets and these in turn contain 

the florets (flowers). Spikelets are surrounded by protective bracts called glumes, whereas florets are 

enclosed by other bracts, a lemma (outer position) and a palea (inner position). In some varieties, 

lemmas may form an awn in their top. The sexual tissues of florets are composed of the carpel, 

containing the ovary and the stigmas, and three stamen and anthers enclosing the pollen grains. 

Finally, wheat caryopsis or grain is made up of external bran coat consisting of the pericarp, the testa 

and the aleurone layers; enclosed is the endosperm that stores the starch and proteins and separated 

by the scutellum is the embryo containing the root radicle and the shoot apex surrounded by the 

coleoptile.     
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Regarding plant development, the main stages in wheat growth are germination, seedling growth, 

tillering, stem elongation, booting, awn emergence, flowering, grain filling (comprising milk and dough 

development) and ripening (Fig. 4). The vegetative shoot apex initiates variable number of leaf 

primordia after seed germination. Leaf appearance and extension will be mainly influenced by 

temperature. Nodal roots develop simultaneously and roots originating from tillers start developing 

after a tiller has formed three leaves. Stem elongation coincides with the growth of leaves, tillers, 

roots and the inflorescence. The first tillers emerge from the axils of the coleoptile; in winter wheat 

few of them may form in autumn or winter followed by a rapid increase in tiller number with warmer 

spring temperatures. Elongation of the stem begins when most florets on the developing spike have 

initiated stamen primordia. The peduncle is the final segment to elongate. Reproductive stage begins 

once the ear is formed and emerges, afterwards flowering -anthesis- occurs followed by fertilization, 

grain filling and ripening. Cereal development is usually quantified by decimal codes among which 

Zadoks’ scale is the most widely used (Zadoks et al., 1974).    

On the other hand, maize is a typically tropical and subtropical crop but is has been adopted in many 

temperate regions and it is of great importance for human consumption, animal feed and for its 

derived products like corn ethanol. The origin of maize occurred in the Mesoamerican region, probably 

in the Balsas River Valley, whereas several theories have been proposed for its domestication. It is 

generally accepted that a small annual Teosinte species (likely Zea mays ssp. parviglumis) is the genetic 

background of modern maize (Matsuoka et al., 2002) although the hybridization with other grasses 

like Zea diploperennis and/or Tripsacum dactyloides during domestication process has also been 

proposed (Eubanks, 1997). Maize is a tall, monoecious and annual plant that produces large, narrow, 

opposite leaves borne from the stem. Ears (female inflorescences) develop approximately in the 

midsection of the plant between the stem and the leaf sheath whereas tassels (male inflorescences) 

forms in the apex of the stem.  

It should be mentioned that, as a C4 species, maize leaves have a typical Kranz anatomy in which 

carbon fixation is compartmentalized, so that small mesophyll cells surround a sheath of parenchyma 

cells called bundle sheath, where carbon enters the Calvin Cycle. Maize development is split into 

vegetative and reproductive stages, and these are listed depending on the number of fully developed 

leaves (with visible collar) and on the development of the forming grains, respectively (Fig. 4). After 

seedling (or sprouting) stage, there is an initial gradual development and extrusion of leaf blades, 

followed by a rapid growth (usually at V10-V17) called Grand Growth Phase, as long as stress, moisture 

and temperature permit. Vegetative stage terminates when tassels make visible (VT) and plants have 

attained their maximum height. Thereafter, the extrusion of silks (elongated stigmas) from the husks 

marks the first reproductive stage, silking stage (R1), that involves the maturity of female flowers. At 

this point, pollination phase can be initiated. After fertilization, development stages comprised in grain 
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filling are classified by grain maturity, from soft-dough (R2-R3, milky stage) to hard-dough grain (R4-

R5, maturity stage).   

 

FIGURE 4. WHEAT (ABOVE) AND MAIZE (BELOW) DEVELOPMENT AND GROWTH STAGES. ZADOKS GROWTH SCALE IS 

SHOWN FOR WHEAT 

 

Stresses constraining agroecosystems and crop production 

In broad sense, it is considered that plant stress occurs when the genetic potential for plant growth 

and reproduction is constrained by any biotic or abiotic factor (Jones and Qualset, 1984). In general 

terms, we can distinguish two types of stress: abiotic stress, which refers to any environmental 

conditions or combination of them affecting plant growth like heat, drought, freezing and salinity; 

whereas biotic stress refers to any damage in the plant done by other organisms like fungi, bacteria, 

insects, viruses and herbivores. All agroecosystems are subjected to some degree of stress in their life 

history, but undoubtedly the severity of the stresses will exacerbate under climate change scenarios, 

particularly due to heat and water stresses. 

Water stress occurs when water absorption by the plant -associated with root characteristics and soil 

properties- is lower than the evaporative demand of the atmosphere. Water stress occasioned by 

water scarcity may trigger several mechanisms of acclimation such as changes in genetic expression 

and modulation of plant metabolism, physiology and morphoanatomy leading to homeostatic 
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compensation (Flexas et al., 2006). Furthermore, the extent of the impact of water stress on plant 

growth and reproduction is stage dependent as certain development stages are particularly sensitive. 

In the case of cereals, although water stress may occur in any stage due to environment factors, the 

most critical phase may occur from double ridge to anthesis, when the potential number of kernels is 

determined. In the beginning of crop growth, water scarcity may reduce seed germination and crop 

establishment, with subsequent effect on crop early vigor. After emergence, total leaf area 

development is the most affected trait as a result of reduced leaf expansion and tillering, whereas the 

number of spikelet primordia may also decrease (Peterson et al., 1984; Rickman et al., 1983; 

Oosterhuis and Cartwright, 1983). In the period comprised from booting to anthesis there is a very 

active plant growth, so that water-stress in this stage involves a decrease in cell growth and leaf area 

with a consequent decrease in photosynthetic area. This may be followed by an increase in stomatal 

resistance, involving a decrease in leaf internal CO2 (Ci) which leads to reduced net photosynthesis 

(Acevedo et al., 1991). Water stress affecting from anthesis to grain filling causes an acceleration of 

crop development by shortening of grain filling period and an early senescence. Consequently, grain 

weight is affected negatively (Kobata et al., 1992). Reports indicate that more than 50% of land where 

wheat is grown is already affected by periodic droughts during flowering and grain filling stages 

(Pfeiffer et al., 2005). In the case of maize, anthesis to silking interval (ASI) has been directly related 

to the degree of the stress so that the higher stress suffered the longer ASI.  

Regarding heat stress, it causes an acceleration of plant development, a dysfunctional photosynthesis, 

lower fertility and poor fruit formation, having subsequent effects on crop yield. Heat stress may be 

mainly avoided by transpiration permitting the cooling of tissues. However, heat stress is often 

accompanied by water deficit; that is the case of the typical Mediterranean hot and dry summer. In 

such cases, non-limited transpiration as strategy may not be implemented, so that cereal breeding 

purposes should address heat and water stresses in combination. 

Nutrient deficiency is usual in agroecosystems and may originate diverse kinds of nutrient stress. 

Major nutrients constraining ecosystem and crop growth are nitrogen, phosphorus and in a minor 

extent potassium or iron. Plant symptoms of nutrient deficiency are element-specific, in general 

chlorosis, necrosis, reduced growth and reduced tillering and yield in cereals are usual. At the 

metabolic level, nutrient deficiency may involve enzyme dysfunction or degradation like in the cases 

of Rubisco and Nitrate Reductase complexes. Focusing on crops, low soil fertility, together with 

drought and heat, is a major stress factor limiting productivity globally (Stewart et al., 2005). In certain 

regions such as sub-Saharan Africa, agricultural productivity remains the lowest in the world partly, 

due to low soil fertility particularly poor in nitrogen (Cairns et al., 2013; Fischer et al., 2014). In 

developed countries the intensive use of fertilizers has enabled to increase crop production but 

serious environmental problems such as groundwater pollution and eutrophication have been 
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generated. Therefore, an optimization of nutrients use efficiency of crops is critical to ensure food 

security, especially in the low productive regions, while an appropriate fertilization management may 

prevent further degradation of the environment. 

Biotic stress is an additional constraint to ecosystem and crop production that yearly causes certain 

percentage of losses, in the case of wheat and maize crops they have been estimated in 28% and 31% 

of production loss worldwide, respectively (Oerke, 2006). Biotic stress may be exerted by many 

organisms that cause diseases, pests and competition for resources in plants, like bacteria, fungi, 

arthropods and nematodes besides of herbivory and weeds. From an ecosystemic or agricultural point 

of view, the presence of certain organisms causing damage in plants is unavoidable and admissible as 

long as its incidence is not dramatic. However, weather seasonal variability and climate changes 

associated with global warming can aggravate the level of spread of pests and diseases and 

occasionally cause great impacts on ecosystems and crops production. Also, intrusion of foreign 

disease-causal agents, due to global market trade or to changes in their geographical ranges, entail 

further hazards to ecosystem stability and food security. For instance, the appearance of new races of 

yellow rust (Puccinia striiformis f.sp. tritici) has recently threatened durum wheat production in 

Mediterranean regions and temperate Europe where the losses due to this fungal disease were 

previously minimal (Almacellas et al., 2013; Martinez-Moreno and Solís, 2019). Due to abnormally cool 

temperatures and high humidity this rust spread epidemically and caused widespread yield losses in 

Spain (Almacellas et al., 2013). Development of resistant varieties is essential for effective control; 

however, to date no variety with resistance to the strain has been recommended in Spain (Martinez-

Moreno and Solís, 2019).  

Events stated above evidence the urgency to breed for new-tolerant crop varieties to face these 

challenges, besides other strategies that may be adopted. Furthermore, in the case of post-green 

revolution wheats, the genetic gain has stagnated or even declined (Chairi et al., 2018) so that 

breeding for stress tolerance is urgent, particularly in regions that are highly sensitive to climate 

change such as the Mediterranean Basin (Field et al., 2014). In this sense, recent investigations on the 

role of plant tissues other than leaves revealed that the performance of the ears could be particularly 

relevant under stress acclimation (Tambussi et al., 2007; Sanchez-Bragado et al., 2014; Merah et al., 

2017; Vicente et al., 2018), which offers new opportunities for plant breeding.  

 

Ecophysiology and the study of plant-crop traits and phenotypes: tools and 

techniques in plant biology research and phenotyping  

Plant ecophysiology refers to the study of plant functioning (i.e. physiology) including the responses 

to environmental conditions. Unlike animals, plant cannot -literally- hide or scape from unfavorable 
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conditions so that they must trigger acclimation mechanisms to endure these conditions which is 

possible because of the great phenotypic plasticity of plants. The concept phenotype refers to the set 

of observable characteristics of an organism, which includes in broad sense its morphological, 

physiological and biochemical traits, among other. This term was first proposed by the Danish botanist 

Wilhelm Johannsen in 1911 in order to differentiate the genetic heredity (genotype) from the 

observed traits of an individual (phenotype) as a result of its interaction with the environment.  Thus, 

the phenotype of an organism is basically the product of the expression of its genetic code over the 

course of development influenced by environmental factors. Likewise, phenotyping refers to the study 

and characterization of phenotypes and their -genetic, metabolic, physiological, morpho-anatomical, 

etc.- particularities. Another recently coined terms are phenome and phenomics, referring to the 

complete set of phenotypes of an organism and their systematic study, respectively. These require 

the acquisition of high-dimensional phenotypic data (i.e. different categories of phenotypic traits 

measured at different spatial and temporal resolutions), aiming to understand the pathways 

connecting genotypes to phenotypes (Houle et al., 2010; Großkinsky et al., 2018). The integration of 

multi-omics techniques (including the physiological approach) into phenomics is proposed for this 

understanding (Rahaman et al., 2015; Großkinsky et al., 2018). Indeed, plant metabolome and 

proteome (and enzymes activity level or activomics) constitutes the internal phenotype, which is 

determined by the genome by interacting with the environment (concerning the fields of epigenomics 

and transcriptomics) (Großkinsky et al., 2018; Großkinsky et al., 2015). These internal phenotypes in 

turn shape external phenotypes that can be determined by non-invasive techniques (e.g. imaging) 

(Fig. 5). 

 

FIGURE 5. SCHEMATIC ILLUSTRATION OF VARIOUS ‘OMICS’ TECHNIQUES AIMED TO ANALYZE PLANTS BY 

DETERMINING THE INTERNAL PHENOTYPE ON THE PHYSIOLOGICAL AND BIOCHEMICAL LEVEL, AND BY NON-
INVASIVE IMAGING, TO DETERMINE THE EXTERNAL PHENOTYPE. ADAPTED FROM GROßKINIKY (2015). 
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The development and implementation of bioinformatics and modeling is a crucial part of the 

phenotyping pipeline that enables to process and integrate huge amount of information and 

databases. With regard to the advancement of crop breeding, phenotyping is considered nowadays a 

major bottleneck (Araus and Cairns, 2014; Araus et al., 2008; Cabrera-Bosquet et al., 2012). The efforts 

of researchers and an adequate financing have made possible the advance in the design of new 

techniques, applications and experimental platforms, particularly aimed to practical phenotyping 

under field conditions, usually called high-throughput phenotyping (HTP) systems. The development 

of meaningful high throughput phenotyping (HTP) systems require an ecophysiological understanding 

of plant responses to new environmental conditions to connect plant genotype to phenotype to 

environment (Araus and Cairns, 2014). In this sense, it is fundamental that experimental set up, 

including the chosen methodology and phenotyping tools are appropriate for the purposes of the 

investigation (i.e. for the studied phenotypic traits and plant processes). Also, new generation 

phenotyping should reflect the different realities and needs and aspire to the acquisition of broad-use 

and affordable methods while exploiting the capabilities of other methods (Araus and Kefauver, 2018).   

Conventional phenotyping -implemented as decision criteria in breeding programs- has been based 

principally on quantitative measurements of agronomic traits like grain yield and its components such 

as the harvest index, thousand kernel weight, ear density and the number of kernels per ear. 

Obviously, this kind of characterization requires to complete the whole crop cycle which implies a 

delay in breeding programs advance. Instead, early vigor and crop establishment measurements that 

are related with potential yield can be assessed at the beginning of growth, but they may be deceptive 

about cultivar performance in the coming conditions. Gas exchange and florescence can be directly 

measured in the field through infrared gas analyzer systems and fluorimeters, providing valuable 

information about photosynthesis, transpiration or respiration functioning. However, these 

measurements are considerably time-consuming when diverse experimental conditions or large 

number of genotypes are considered or when response curves are performed.  

In plant research, compositional and morphological traits usually analyzed are the water content, the 

relative water content, the water potential, the specific leaf area (or leaf mass per area), leaf thickness, 

plant height, nitrogen concentration, nitrogen per unit leaf area or the carbon to nitrogen ratio, 

informing on water status, nitrogen use efficiency and leaf construction or the prevalence of 

supporting elements (Poorter and Evans, 1998; Feng et al., 2008; Taylor et al., 1989). Other 

morphoanatomical approaches address the quantitative measurement at the microscope of tissue or 

organ traits of interest, like epidermis and cuticle thickness and composition, stomatal density or leaf 

glaucousness. Morphoanatomical traits can be determinant of photosynthesis under stress (by 

influencing light distribution, delivery of CO2 and water relations), including diseases (due to mesophyll 

structure), whereas their adaptation may improve water-use efficiency and drought resistance 
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(Djanaguiraman et al., 2011; Tholen et al., 2012; Rosyara et al., 2007; Ennajeh et al., 2015; Sagaram 

et al., 2007). While all these traits can be used for characterizing plant stress and functioning, and for 

screening ecotypes and provenances for breeding, their routinely use in HTP in the field is not feasible. 

This is because they usually require cooling or freezing temperatures at sampling, chemical fixation 

(for the measurement of anatomy traits), besides of carrying samples to the lab where physiologic, 

compositional and anatomic analyses can be performed.  

The study of stable isotope composition in plant-tissues dry matter is a reliable information for 

phenotyping as it constitutes an integrative indicator of plant status during growth (Masuka et al., 

2012). Carbon isotope composition (δ13C) is indicative of water use efficiency and water stress, 

nitrogen isotope composition (δ15N) may inform about nitrogen use efficiency (Serret et al., 2008), 

whereas oxygen isotope composition (δ18O) provides information regarding leaf evaporative 

conditions throughout the crop cycle and water use (Barbour et al., 2000; Cabrera-Bosquet et al., 

2009). Although isotope analyses are usually done from oven-dried samples (so there is no need for 

freezing or fixation at sampling) with subsequent grinding, they do require a precision weighing and 

sealing at the lab prior to detection with an isotope-ratio mass-spectrometry elemental analyzer.    

 

Sensing methods and imaging systems 

Sensing methods make use of a set of non-destructive techniques for the acquisition of information 

of an object or phenomenon from more or less distant sensors, without making direct contact to them. 

Remote and proximal sensing may be implemented in plant sciences including plant physiology, 

ecology and agronomy and aim to phenotype plant and crop performance in the field. In general 

terms, sensing technologies are based on the detection of a propagated signal (e.g. electromagnetic 

radiation) from an object throughout the electromagnetic spectrum. Remote sensing sensors are 

classified as active if they emit a signal and its reflection by the object is detected by the sensor (e.g. 

Radar and LiDAR); and passive if they detect the radiation emitted by the object which comes from 

another source, usually sunlight (e.g. radiometers and photography). Furthermore, this set of sensors 

can be implemented at diverse scales: remote sensing evaluation, including satellites and manned and 

unmanned aerial systems and at the ground level. Different categories of sensors may be deployed, 

including among others: spectrometers, thermal sensors and RGB imagers (Fig. 6). Logically, the 

choice of appropriate sensors, platforms (e.g. aerial vehicles, buggies and stationary platforms) and 

range of application is fundamental and directly impacts the scale of the research conducted (e.g. 

from ecosystem to single plant), the trait of interest (e.g. from biome primary production to leaf 

photosystems status) and the associated costs.  
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FIGURE 6. POTENTIAL AND ACTUAL GROUND AND AERIAL PHENOTYPING PLATFORMS, ALONG WITH THE SPECTRAL 

RANGES USED FOR DIFFERENT REMOTE SENSING TOOLS. X AXIS CORRESPONDS TO THE SPECTRAL RANGE OF SENSORS 

AND Y AXIS CORRESPONDS TO THE SCALE OF APPLICATIONS AND PLATFORMS EMPLOYED. VIS, VISIBLE; IR, INFRA-RED; 
NIR, NEAR-INFRARED; SWIR, SHORT-WAVE INFRARED; TIR, THERMAL INFRARED; LWIR, LONG WAVE-INFRARED; 
LIDAR, LIGHT DETECTION AND RANGING SENSORS. REDRAWN FROM ARAUS ET AL. (2018).    

 

The spectral ranges measured through imagery systems, radiometers or other types of sensors are 

typically split in the ultraviolet (UV, 10-400 nm), visible (VIS, 400-700 nm), near infrared (NIR, 700-

1400 nm), short wave infrared (SWIR, 1400-2500 nm) and the thermal infrared (TIR, 3 to 15 m). Two 

important aspects, that must be taken in consideration, are, the spatial resolution which is the real 

area size corresponding to a pixel; and when spectroradiometers are considered, the spectral 

resolution which is the wavelength range recorded per each frequency band. In that sense, one can 

distinguish multispectral systems that records spectral information in multiple wavebands (usually 
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broadbands), and the hyperspectral systems which generates a continuous spectrum (whose range 

depends on the sensor) with narrow spectral bands. Earth observation systems integrated in launched 

satellites are commonly multispectral imagers such as those in Landsat, NOAA and Sentinel programs. 

On the other hand, at the proximal and field levels, both multispectral and hyperspectral systems can 

be employed providing higher spatial resolution, which is particularly important when investigating 

small land areas such as crop plots and forest trees.  

Remote and proximal sensing are broadly used in plant sciences for the understanding of the 

functioning, structure and dynamics of agroecosystems and for the monitoring and mapping of traits 

of interest, like ecosystem biodiversity and its biochemical and mineral content. The basis for the 

spectroscopic studies of vegetation lies on the interaction of radiation with foliage which has a 

characteristic spectral signal. Thus, vegetation-plant spectrum is the result of combined spectral 

signatures of its components, mainly pigments (in the VIS), water (in the NIR-SWIR), nitrogen-protein 

molecules and carbon compounds (in the SWIR), besides of the effects of plant architecture and turgor 

on the reflected spectrum (Homolová et al., 2013; Pauli et al., 2016). The classical approach has 

involved the development of numerous vegetation spectral reflectance indices (calculated from the 

combination of specific wavebands) associated with vegetation traits such as above-ground biomass, 

vegetation coverage, water content, pigments -mainly chlorophyll- content, nitrogen and phenolic 

content and other structural plant compounds like lignin and cellulose (Ustin et al., 2009; Kokaly and 

Skidmore, 2015; Kokaly et al., 2009; Boegh et al., 2002; Peñuelas et al., 1993). Recent studies have 

addressed the use of hyperspectral reflectance for the evaluation of diverse physiological traits such 

as photosystems functioning, including maximum Rubisco activity and dark respiration (Lobos et al., 

2019; Coast et al., 2019). Furthermore, the biophysical and structural traits of single plants and 

communities, such as leaf mass per area, leaf area index or plant height may potentially be estimated 

(Yang et al., 2016; Olsoy et al., 2016). Despite all these spectroscopic applications, the retrieval of 

biochemical compounds has not been addressed in terms of broad metabolite profiles, which might 

open the door of a new generation of phenotyping applications.  

Although multi and hyper-spectral sensors and imagers are becoming more affordable recently, they 

are still expensive and complex from the operational point of view. As a low-cost and user-friendly 

alternative, vegetation indices derived from conventional Red Green Blue (RGB) digital imaging have 

demonstrated to be feasible and high-throughput indicators of plant and crop traits. The use of these 

technologies is currently expanding due to their versatility and affordability (Araus and Kefauver, 

2018). Digital cameras operating in the field (usually taken zenithal images), integrated in RPAs or at 

the single leaf level have shown great capabilities for the assessment of crop growth and yield, 

fertilization requirements and incidence of foliar diseases (Kampmann and Hansen, 1994; Adamsen et 

al., 1999; Casadesús et al., 2007; White et al., 2012; Andrade-Sanchez et al., 2014; Svensgaard et al., 
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2014). Also, these applications offer an additional interest; RGB cameras of mobile phones could be 

used to take field images that may be processed through specific apps and/or can be easily connected 

to databases and decision support systems (Araus and Kefauver, 2018; Aquino et al., 2017; 

Confalonieri et al., 2017). 

Lastly, the implementation of thermal imaging systems enables rapid observations of plant-crop water 

status and its cooling ability (Araus and Cairns, 2014; Araus et al., 2008). Temperature of vegetation 

covers, and single plants depends on plant transpiration, which is mainly related to water availability 

but also to genotypic resistance to loss water. Under water scarcity conditions, plants tend to limit 

stomatal conductance, preventing water loss and plant cooling, therefore increasing the temperature 

of the organs. Thereby, this technology can be employed for monitoring on real time plant water 

status at different organization scales (single organ, individual plants, plots, crop field or even larger 

extensions), and can be useful for irrigation scheduling or as a phenotyping trait when breeding for 

drought resilience. 

Currently, many research institutions have developed costly and advanced plant phenotyping 

platforms such as IPK Gatersleben (Germany), the Plant Accelerator in Adelaide (Australia), Crop 

Design in Gent (Belgium), the PhenoArch in Montpellier (France) and the Maricopa Phenotyping in 

Arizona (USA). In addition, the International Plant Phenotyping Network (http://www.plant-

phenotyping.org) was formed to provide leadership and coordinate multinational research efforts for 

plant phenotyping.   

 

Molecular approaches in plant research 

Metabolomics as proteomics may became a new frontier for deep plant phenotyping, even under field 

conditions, disentangling complex and dynamic phenotypic responses. In molecular biology, the 

development of analytical procedures based on big databases like metabolomics, transcriptomics or 

proteomics, is crucial to understand the underlying molecular mechanisms of plant responses that 

confer genotypic resilience to stress conditions. The fields of genetics, transcriptomics, and 

proteomics have been extensively used to study stress response pathways so that many key enzymes 

in biosynthetic and detoxification pathways and transcription factors playing essential roles in plant 

stress responses have been identified (Maruyama et al., 2014; Nakashima et al., 2014). Metabolomics 

defines the final products of gene expression and protein activities in a given moment and conditions, 

providing a high-throughput tool to understand physiological responses to environment while 

depending on phenology and genotype (Bundy et al., 2009; Saia et al., 2019). However, cereals and 

especially wheat metabolomics remain understudied. Metabolite profiling has been proposed as a 

http://www.plant-phenotyping.org/
http://www.plant-phenotyping.org/
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molecular phenotyping approach due to the large effect of genotype by environment interaction 

(Beleggia et al., 2013; Saia et al., 2019).  

In particular, water stress is known to trigger major reprogramming of plant metabolism, including a 

decrease in photosynthetic carbon metabolism, an increase in photorespiration and accumulation of 

reactive oxygen species, a generalized inhibition of nitrogen assimilation and accumulation of certain 

amino acids that function as osmoprotectants and signaling molecules (Tezara et al., 1999; Ergen et 

al., 2009; Xu and Yu, 2006; Bown and Shelp, 2016; Ullah et al., 2017). Initial accumulation of 

metabolites is produced because growth processes (carbon demand) are affected earlier than 

assimilation processes (carbon supply), and some of the metabolites may function as 

osmoprotectants, antioxidants and carbon storage (Fàbregas and Fernie, 2019; Obata et al., 2015; 

Muller et al., 2011).The metabolic profiles of leaves and roots in cereals have even been used for 

predicting complex agronomic traits including yield (Riedelsheimer et al., 2012; Obata et al., 2015; Xu 

et al., 2016; de Abreu e Lima et al., 2017). However, the metabolome of wheat organs other than 

leaves such as ear bracts, and their response to stress has still to be elucidated. Therefore, these 

techniques may contribute to link plant metabolism with plant-crop performance in the field and may 

enhance stress resilience by identifying key molecular mechanisms or proper biomarkers. As a 

drawback, sample preparation and data processing can be time consuming and requires costly 

laboratory equipment. For this reason, the possibility of non-destructively estimate the metabolite(s) 

content from proximal sensors, such as hyperspectral techniques, as done for other plant constituents 

(e.g. pigments, nitrogen and lignin) could offer new opportunities.   

 

In summary, the research lines around phenotyping and ecophysiology that make up the present 

thesis are: low-cost approaches using RGB imagers, as compared to the performance of the more 

stablished approaches like spectroradiometrics in an application area such as N fertilization, where 

typically these sensors (e.g. canopy NDVI and chlorophyll meters) have been the canonical approach 

(Vergara-Díaz et al., 2016; Vergara-Diaz et al., 2015). We further moved to more sophisticated, and 

still expensive, sensing approaches which may indeed represent the future frontier of phenotyping, 

such is the use of hyperspectral sensors to assess biochemical and anatomy responses to drought 

(Vergara-Díaz et al., 2018) as well as the metabolite profiles at the single organ and whole canopy 

levels (Vergara-Díaz et al., submitted b), besides to deepening into the metabolomic response of 

different wheat organs to water stress (Vergara-Díaz et al., submitted a). 
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OBJECTIVES 

The thesis presented has the general objective of contributing to the advancement of plant 

phenotyping and ecophysiology while providing new approaches and methods of broad application, 

including low-cost approaches together with frontier technologies. The works presented hereafter 

were performed under diverse environmental stress conditions with trials grown in the field where 

different panels of wheat and maize were studied. Thereby, we aimed to develop novel and high 

throughput phenotyping systems for the study of cereal performance under a broad range of 

conditions. These environmental conditions included biotic and abiotic stresses, since the incidence 

of a fungal disease (yellow rust), water stress and nitrogen deficiency were targeted. Therefore, we 

consider that this investigation is proper and valuable since the stressor conditions addressed are 

representative of some of the most important plant-crop constraints and challenges in plant breeding, 

particularly under the scenarios projected of global change. 

A wide corpus of analytical and remote-proximal sensing methods was employed for these purposes 

and their performance for specific aims were evaluated such as the prediction of agronomic traits and 

the retrieval of plant biochemical compounds. Initially, we assessed the potential and capabilities of 

RGB-derived vegetation indices, particularly as compared to the most widely used spectral vegetation 

index, the NDVI, at both the canopy and the single leaf levels. Thus, we aimed to test and develop the 

applications of this low-cost and easy-to-use technique, as it may contribute to overcome the needs 

for plant breeding, particularly in developing countries. Also, the capabilities of spectroscopic 

approaches were explored with the aim of increase the knowledge and the potential utilities for the 

extraction of phenotyping traits of interest under water stress conditions. Furthermore, metabolomic 

approach was employed with the aim of deep into the metabolic processes that drives water stress as 

well as inter-tissue and genotypic variability associated with yield performance and their relationship 

with field spectroscopy.  

 

Specific aims 

i) The first chapter of the current thesis focus on biotic stress and aimed to assess the sensitivity of a 

panel of winter wheat (Triticum turgidum subsp. durum) modern varieties to yellow rust (Puccinia 

striiformis f. sp. tritici) under field conditions. For this, diverse field phenotyping methods were tested 

including RGB and spectral (NDVI) derived vegetation indices of canopies, canopy temperature, leaf 

chlorophyll content (measured with a portable device) and stomatal conductance. Although RGB 

image analysis techniques have previously been employed to detect the presence of pests and 

diseases, these were performed using organ (leaves or grains) images instead of plot canopy images, 

so the approach presented represents a novel and practical alternative. Thus, we aimed to relate these 
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phenotypic traits to grain yield and yield losses associated with the severity of yellow rust spread. In 

addition, the effects of yellow rust on agronomic yield components and their cross-relations were 

dissected. Lastly, the best remotely sensed vegetation indices and agronomic metrics in terms of their 

relation to grain yield were combined in stepwise multivariate regression models for the prediction of 

grain yield and yield losses. This work was published in The Crop Journal.  

ii) The second chapter of the thesis addressed other important environmental constraint, nitrogen 

deficiency, in another key cereal worldwide, maize crop (Zea mays subsp. mays). We aimed to develop 

affordable easy-to-use phenotyping tools that increase selection efficiency for grain yield and leaf 

nitrogen concentration under contrasting nitrogen fertilization conditions in a set of ten maize hybrids 

grown in the field. For this, we compared the accuracy of RGB-derived vegetation indices and the NDVI 

spectral index for the assessment of maize grain yield and leaf nitrogen concentration. In this study, 

RGB indices were obtained at the plot level from ground-based measurements and at the leaf level 

whereas the spectral index NDVI was measured at the plot level from ground-based measurements 

and from an unmanned aerial vehicle. Firstly, we assessed the performance of these phenotypic traits 

when combining all fertilization levels together, and subsequently we dissected the correlations within 

each nitrogen level for further discussion. Secondly, simple regression models were made for grain 

yield prediction and these models were tested and validated against the experimental yield of another 

trial. Additionally, the performance of the leaf compositional and biophysical traits nitrogen per leaf 

area, carbon to nitrogen ratio, specific leaf area, and the δ13C and δ15N were related to crop 

performance and vegetation indices. This work was published in Frontiers in Plan Science journal. 

iii) The third chapter of the thesis focused on water stress and leaf dorsoventrality effects when 

implementing hyperspectral measurements. Its aim was to investigate the effect of water regime as 

well as leaf-side-specific responses on flag leaf reflectance traits in field-grown durum wheat. 

Therefore, we intended to elucidate how in a species such as wheat, with isobilateral leaf blades, a 

basic aspect such as leaf side (adaxial versus abaxial) may affect the spectrum of the reflected radiation 

and the different categories of spectral indices. A wide collection of spectral reflectance indices was 

calculated for both the adaxial and abaxial leaf sides and diverse leaf compositional and anatomical 

traits were measured. Thus, we aimed to discuss the effect of water stress on leaf spectral properties 

and their association with diverse physiological, biochemical and anatomical traits of the leaf. Lastly, 

the similarity and dissimilarities between both leaf spectra and that of the spectrum of the canopy, 

and their implications for yield prediction were also addressed. This work was published in the Journal 

of Experimental Botany. 

iv) The fourth chapter of the thesis aimed to characterize the metabolite profiles of wheat flag leaves 

and ear bracts (glumes and lemmas) in response to water stress. In addition, we explored the existence 

of organ-specific metabolic traits and physiological functions and identify metabolites associated with 
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genotypic outperformance. Finally, we modelled metabolite-grain yield association aiming to identify 

metabolic functions related to yield performance in each tissue as well as to identify possible 

biomarkers for yield improvement under water stress. This work has been submitted (2nd revision) to 

the Journal of Experimental Botany.  

v) The fifth chapter of the thesis aimed to assess the metabolome of different plant tissues from 

hyperspectral information. To that aim, we tested the performance of multiple regression models for 

the prediction of flag leaves and ear bracts (glumes and lemmas) metabolite profiles using the 

reflectance spectra of the flag leaves, ears and plot canopies. Whereas the prediction of grain yield 

from hyperspectral data using canopy or leaf reflectance is not novel, the employment of ear spectrum 

has not been tested so far and was evaluated in this work. Finally, we aimed to assess which 

wavebands of the spectrum are related with specific metabolites. This work has been submitted to 

The Plant Journal. 
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REPORT OF THE THESIS DIRECTOR 

 

 

 

 

 

Integrative Crop Ecophysiology Group 

https://integrativecropecophysiology.com  

Plant Physiology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, 

Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain. Tel. 934 021 465, 

Fax 934 112 842  

Dr. José Luis Araus, as director of the thesis titled “High-throughput field phenotyping in cereals and 

implications in plant ecophysiology” which was developed by the doctoral student Omar Vergara Díaz, 

reports about the impact factor and the participation of the doctoral student in the articles included 

as chapters in the doctoral thesis. 

 

Chapter 1: The article “Grain yield losses in yellow-rusted durum wheat estimated using digital and 

conventional parameters under field conditions” published in The Crop Journal in 2015 with an impact 

factor of 3.179 in 2018, is a journal placed within the first decile of the science area: Agricultural and 

Biological Sciences: Plant Science and Agronomy and Crop Science. To date, this work has accumulated 

27 citations (Google Scholar). In this study, RGB images of field plots were processed and subsequent 

RGB indices were used to predict grain yield and yield losses associated with yellow rust disease in 

wheat. We concluded that this approach outperformed other phenotypic traits (SPAD-meter, CTD, 

NDVI, gs) and enabled to accurately assess grain yield under disease conditions. To our knowledge, 

https://integrativecropecophysiology.com/
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this was the first work addressing disease incidence with RGB methods in the field using plot images, 

at the time of publication. The doctoral student was involved in field data collection, image processing, 

statistical analysis of data; moreover, the doctoral student drafted the manuscript.  

Chapter 2: The article “A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different 

Conditions of Nitrogen Fertilization” was published in the open access journal of Frontiers in Plants 

Science with an impact factor of 4.495 in the year of publication and of 4.106 in 2018, is a journal 

placed within the first decile of the science area: Agricultural and Biological Sciences: Plant Science. 

To date, this work has accumulated 50 citations (Google Scholar). In this study, RGB images of field 

plots and of leaves were processed and subsequent RGB indices were used to predict grain yield and 

leaf nitrogen concentration in maize leaves. The results demonstrated the high success of RGB 

methods for capturing high-throughput phenotypic information and were particularly accurate for 

characterizing genotypes within nitrogen application levels. The doctoral student was involved in field 

data collection and sampling, laboratory processing, image processing and statistical analysis of data; 

moreover, the doctoral student drafted the manuscript. All field data and samples were collected by 

the doctoral student during his stay in the International Maize and Wheat Improvement Center 

(CIMMYT) in Harare (Zimbabwe).  

Chapter 3: The article “Leaf dorsoventrality as a paramount factor determining spectral performance 

in field-grown wheat under contrasting water regimes” submitted to the Journal of Experimental 

Botany with an impact factor of 5.36 in 2018, therefore placed in the first decile of the science areas: 

Agricultural and Biological Sciences: Plant Science - Biochemistry, Genetics and Molecular Biology: 

Physiology. In this work, we addressed the importance of leaf dorsoventrality and the effect of water 

stress by analyzing the spectral performance of wheat leaves in the field. We concluded that the 

spectral traits studied were more affected by the leaf side than by the water regime, and 

compositional changes could also be inferred, showing that the importance of dorsoventrality in 

spectral traits is paramount, even in isobilateral leaves. This work was the first addressing 

dorsoventrality in wheat leaves from a spectroscopic approach. The doctoral student was involved in 
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field data collection and sampling, laboratory processing, spectroscopic data microscope images 

processing, and statistical analysis of data; moreover, the doctoral student drafted the manuscript. 

Chapter 4: The article “Metabolome profiling supports the key role of the spike in wheat yield 

performance” has been submitted to the Journal of Experimental Botany (2nd revision).  In this work, 

we characterized the metabolome of wheat leaves and spike bracts, its responsiveness to water stress 
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ABSTRACT 

The biotrophic fungus Puccinia striiformis f. sp. tritici is the causal agent of the yellow rust in wheat. 

Between the years 2010–2013 a new strain of this pathogen (Warrior/Ambition), against which the 

present cultivated wheat varieties have no resistance, appeared and spread rapidly. It threatens 

cereal production in most of Europe. The search for sources of resistance to this strain is proposed 

as the most efficient and safe solution to ensure high grain production. This will be helped by the 

development of high performance and low-cost techniques for field phenotyping. In this study we 

analyzed vegetation indices in the Red, Green, Blue (RGB) images of crop canopies under field 

conditions. We evaluated their accuracy in predicting grain yield and assessing disease severity in 

comparison to other field measurements including the Normalized Difference Vegetation Index 

(NDVI), leaf chlorophyll content, stomatal conductance, and canopy temperature. We also discuss 

yield components and agronomic parameters in relation to grain yield and disease severity. RGB-

based indices proved to be accurate predictors of grain yield and grain yield losses associated with 

yellow rust (R2=0.581 and R2=0.536, respectively), far surpassing the predictive ability of NDVI 

(R2=0.118 and R2=0.128, respectively). In comparison to potential yield, we found the presence of 

disease to be correlated with reductions in the number of grains per spike, grains per square meter, 

kernel weight and harvest index. Grain yield losses in the presence of yellow rust were also greater 

in later heading varieties. The combination of RGB-based indices and days to heading together 

explained 70.9% of the variability in grain yield and 62.7% of the yield losses. 
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ABSTRACT 

Maize crop production is constrained worldwide by nitrogen (N) availability and particularly in poor 

tropical and subtropical soils. The development of affordable high-throughput crop monitoring and 

phenotyping techniques is key to improving maize cultivation under low-N fertilization. In this study 

several vegetation indices (VIs) derived from Red-Green-Blue (RGB) digital images at the leaf and 

canopy levels are proposed as low-cost tools for plant breeding and fertilization management. They 

were compared with the performance of the normalized difference vegetation index (NDVI) 

measured at ground level and from an aerial platform, as well as with leaf chlorophyll content (LCC) 

and other leaf composition and structural parameters. A set of ten hybrids grown under five different 

nitrogen regimes were tested at the CIMMYT station of Harare (Zimbabwe). Grain yield and leaf N 

concentration across N fertilization levels were strongly predicted by most of these RGB indices (with 

R2 ~ 0.7), outperforming the prediction power of the NDVI and LCC. RGB indices also outperformed 

the NDVI when assessing genotypic differences in grain yield and leaf N concentration within a given 

level of N fertilization. The best predictor of leaf N concentration across the five N regimes was LCC 

but its performance within treatments was inefficient. The leaf traits evaluated also seemed 

inefficient as phenotyping parameters. It is concluded that the adoption of RGB-based phenotyping 

techniques may significantly contribute to the progress of plant breeding and the appropriate 

management of fertilization
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Supplementary Tables 

Table S1. Determination coefficients (R2) of RGB-indices from canopy RGB images explaining the 

variation between replicated plot images (n = 57). Indices were calculated from images taken in the 

same set of plots in a sunny and a cloudy days nearly consecutive.  

  R2 p-value 

RGBcanopy indices   

 hue 0.437 <0.001 

 a* 0.716 <0.001 

 b* 0.597 <0.001 

 u* 0.722 <0.001 

 v* 0.541 <0.001 

 GA 0.895 <0.001 

 GGA 0.795 <0.001 
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Table S2. Pearson correlation coefficients between leaf and canopy RGB indices, NDVI at ground and 

aerial levels, leaf chlorophyll content (LCC) and grain yield (GY) with nitrogen per unit area (N/area), 

the carbon to nitrogen ratio (C/N), nitrogen isotope composition (15N), carbon isotope composition 

(13C), specific leaf area (SLA) and leaf nitrogen concentration (%N). *, P < 0.05; **, P < 0.001; ns, 

non-significant. 

 
  

N/LA C/N 15N 13C SLA %N 

RGBleaf indices 
      

 
hue -0.451 ** 0.503 ** 0.464 ** 0.278 * -0.068 ns -0.540 **  
a* 0.718 ** -0.854 ** -0.505 ** -0.566 ** 0.120 ns 0.831 **  
b* -0.645 ** 0.826 ** 0.485** 0.579 ** -0.193 ns -0.788 **  
u* 0.725 ** -0.843 ** -0.511 ** -0.542 ** 0.093 ns 0.826 **  
v* -0.621 ** 0.843 ** 0.553 ** 0.589 ** -0.259* -0.802 **  
GA -0.005 ns -0.243 * -0.418 ** -0.187 ns 0.373 ** 0.220 *  
GAA -0.107 ns -0.184 ns -0.377 ** -0.047 ns 0.450** 0.159 ns 

RGBcanopy indices 
      

 
hue 0.362 ** -0.462 ** -0.313 * -0.028 ns 0.098 ns 0.430 **  
a* 0.000 ns 0.096 ns 0.092 ns -0.215 * -0.076 ns 0.032 ns  
b* -0.058 ns 0.010 ns -0.076 ns -0.022 ns 0.047 ns -0.030 ns  
u* -0.174 ns 0.301 * -0.248 * 0.101 ns -0.124 ns -0.245 *  
v* -0.518 ** 0.604 ** 0.486 ** 0.361 ** -0.142 ns -0.623 **  
GA 0.397 ** -0.558 ** -0.562 ** -0.124 ns 0.181 ns 0.529 **  
GAA 0.398 ** -0.574 ** -0.527 ** -0.118 ns 0.202 * 0.533 ** 

Spectral Indices 
      

 
NDVIaerial 0.221 * -0.495 ** -0.672 ** -0.190 ns 0.298 * 0.477 **  
NDVIground 0.271 * -0.364 ** -0.350 ** 0.043 ns 0.199 * 0.341 ** 

LCC 0.748 ** -0.898** -0.678 ** -0.464 ** 0.195 ns 0.905 ** 

GY 0.608 ** -0.676 ** -0.555 ** -0.249 * 0.102 ns 0.687 ** 

%N 0.816 ** -0.967 ** -0.580 ** -0.590 ** 0.220 * 1 
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ABSTRACT 

The effects of leaf dorsoventrality and its interaction with environmentally induced changes in the 

leaf spectral response are still poorly understood, particularly for isobilateral leaves. We investigated 

the spectral performance of 24 genotypes of field-grown durum wheat at two locations under both 

rainfed and irrigated conditions. Flag leaf reflectance spectra in the VIS-NIR-SWIR (visible–near-

infrared–short-wave infrared) regions were recorded in the adaxial and abaxial leaf sides and at the 

canopy level, while traits providing information on water status and grain yield were evaluated. 

Moreover, leaf anatomical parameters were measured in a subset of five genotypes. The spectral 

traits studied were more affected by the leaf side than by the water regime. Leaf dorsoventral 

differences suggested higher accessory pigment content in the abaxial leaf side, while water regime 

differences were related to increased chlorophyll, nitrogen, and water contents in the leaves in the 

irrigated treatment. These variations were associated with anatomical changes. Additionally, leaf 

dorsoventral differences were less in the rainfed treatment, suggesting the existence of leaf-side-

specific responses at the anatomical and biochemical level. Finally, the accuracy in yield pre- diction 

was enhanced when abaxial leaf spectra were employed. We concluded that the importance of 

dorsoventrality in spectral traits is paramount, even in isobilateral leaves
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ABSTRACT 

Although the relevance of spike bracts in stress acclimation and contribution to yield 

was recently revealed, the metabolome of this organ and its response to water stress is 

still unknown. The metabolite profiles of flag leaves, glumes and lemmas were 

characterized under contrasting field water regimes in five durum wheat cultivars. 

Water conditions during growth were characterized through spectral vegetation indices, 

canopy temperature and isotope composition. Spike bracts exhibited better 

coordination of carbon and nitrogen metabolisms than the flag leaves in terms of 

photorespiration, nitrogen assimilation and respiration paths. This coordination 

facilitated an accumulation of organic and amino acids in spike bracts, especially under 

water stress. The metabolomic response to water stress also involved an accumulation 

of antioxidant and drought tolerance related sugars, particularly in the spikes. 

Furthermore, certain cell wall, respiratory and protective metabolites were associated 

with genotypic outperformance and yield stability. In addition, grain yield was strongly 

predicted by leaf and spike bracts metabolomes independently. This study supports the 

role of the spike as a key organ during wheat grain filling, particularly under stress 

conditions and provides information fundamental to explore new ways to improve 

wheat productivity including important biomarkers for yield prediction. 
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Title: Metabolome profiling supports the key role of the spike in wheat yield performance 

Running title: Spike versus leaf metabolome and yield performance in wheat 

Abstract  

Although the relevance of spike bracts in stress acclimation and contribution to yield was recently 

revealed, the metabolome of this organ and its response to water stress is still unknown. The 

metabolite profiles of flag leaves, glumes and lemmas were characterized under contrasting field 

water regimes in five durum wheat cultivars. Water conditions during growth were characterized 

through spectral vegetation indices, canopy temperature and isotope composition. Spike bracts 

exhibited better coordination of carbon and nitrogen metabolisms than the flag leaves in terms of 

photorespiration, nitrogen assimilation and respiration paths. This coordination facilitated an 

accumulation of organic and amino acids in spike bracts, especially under water stress. The 

metabolomic response to water stress also involved an accumulation of antioxidant and drought 

tolerance related sugars, particularly in the spikes. Furthermore, certain cell wall, respiratory and 

protective metabolites were associated with genotypic outperformance and yield stability. In 

addition, grain yield was strongly predicted by leaf and spike bracts metabolomes independently. 

This study supports the role of the spike as a key organ during wheat grain filling, particularly under 

stress conditions and provides information fundamental to explore new ways to improve wheat 

productivity including important biomarkers for yield prediction. 

Abbreviations 

CQAs, caffeoylquinic acids; DR, detection rate; DHA, dehydroascorbate; GABA, -aminobutyric acid; 

GNY, grain nitrogen yield; GY, grain yield; HI, harvest index; HY, high yielding; LY, low yielding; PH, 

plant height; Pyr, pyruvate; TKW, thousand kernel weight; WS, water stress; 2OG, 2-oxoglutarate. 

 

Introduction 

The projections of the effects of global change, including increases in temperature and dryness in 

many regions, threaten crop production in the coming years (Field et al., 2014; Asseng et al., 2015). 

Wheat is particularly sensitive to drought at the flowering and grain filling stages, while more than 

50% of the land where wheat is grown is already affected by periodic droughts (Pfeiffer et al., 2005). 

Durum wheat is the primary crop in the south and east of the Mediterranean basin with the European 

Union being the leading global producer (Lidon et al., 2014). In addition, genetic gain in the post-

green revolution wheats has stagnated or even declined (Chairi et al., 2018). In this sense, wheat 

breeding for water stress tolerance is urgent, particularly in regions that are highly sensitive to global 
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climate change such as the Mediterranean Basin (Field et al., 2014). Strategies to combat these 

challenges should involve enhancing stress resilience and progressing field-based high-throughput 

phenotyping.  

Multi-omics techniques have recently been used for the characterization of wheat performance 

under water stress (Vicente et al., 2018b; Michaletti et al., 2018). These are crucial to understand 

the underlying molecular mechanisms of plant responses that confer genotypic resilience to stress 

conditions. Water stress is known to trigger major reprogramming of plant metabolism including a 

decrease in photosynthetic carbon metabolism via restriction in CO2 diffusion and inhibition of CO2 

assimilation (Tezara et al., 1999), whereas photorespiration and the accumulation of reactive oxygen 

species increases (Ergen et al., 2009). Furthermore, water stress generally inhibits nitrogen 

assimilation and stimulates amino acid catabolism, while the accumulation of certain amino acids 

can function as osmoprotectants or signaling molecules (Xu and Yu, 2006; Bown and Shelp, 2016; 

Ullah et al., 2017). For instance, an accumulation has long been documented for certain amino acids 

such as proline, -aminobutyryc acid (GABA) and isoleucine in wheat leaves in response to water 

stress (Ibrahim and Abdellatif, 2016; Lou et al., 2018; Michaletti et al., 2018). However, no previous 

evidence for a functional role of these metabolites has been reported in spike bracts. 

In the last few years, far more attention has been paid to the role of photosynthetic organs other 

than the leaf blades in plant stress acclimation, with the spikes being particularly relevant. Indeed, 

the spike has been shown to be a major contributor of photosynthates (Sanchez-Bragado et al., 

2014). Some studies have revealed that the contribution of wheat bracts to grain filling is 

considerable due to their higher and/or more steady photosynthesis, high carbon refixation rates, 

delayed senescence and high-water use efficiency compared to the flag leaves, particularly under 

water stress conditions (Tambussi et al., 2007; Sanchez-Bragado et al., 2014a; Jia et al., 2015; Merah 

et al., 2017; Vicente et al., 2018b). In addition, an up-regulation of nitrogen and respiration 

metabolism has been reported in wheat spikes under water stress, revealing that spike bracts are 

active sites for nitrogen assimilation (Vicente et al., 2018b). In sharp contrast, the metabolic and 

transcriptomic profiles of leaves and roots in cereals have been used for predicting complex 

agronomic traits including yield (Riedelsheimer et al., 2012a,b; Obata et al., 2015; Xu et al., 2016; de 

Abreu e Lima et al., 2017). However, the metabolome of wheat spike bracts and their response to 

water stress has not been characterized and, in fact, the metabolic role of the spike is not yet 

understood to any depth. In the present work we aimed to i) characterize the metabolome of the 

flag leaf and spike bracts -specifically the spike glumes and lemmas- in durum wheat in response to 

water stress, ii) explore the existence of organ-specific metabolic traits and physiological functions, 

iii) identify metabolites associated with genotypic outperformance, and iv) model metabolite-grain 

yield association. 
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Materials and Methods 

 Plant material and experimental set up  

Field trials were carried out during the 2014/15 growing season at three locations with different 

growth conditions in Spain. Agronomic information together with weather, irrigation and soil 

information are detailed in Table 1.  

The study is based on five durum wheat (Triticum turgidum L. subsp durum (Desf) Husn.) modern 

(i.e. semidwarf) commercial varieties released during the last thirty years in Spain. The varieties Sula, 

Dorondon, Pelayo, Don Sebastian and Kiko Nick, registered in the years 1994, 1999, 2003, 2004 and 

2009, respectively, were selected from a panel of 20 semi-dwarf post-Green-Revolution varieties as 

they have been demonstrated to be representative of yield performance variability under water 

stress conditions while neither phenology differences -days to heading- nor genotype per 

environment interaction were shown (Chairi et al., 2018; Fig. S1). 

For each trial, plants were sown in a randomized block design with three replicates and four growing 

conditions were considered. First, two rainfed trials in Colmenar de Oreja and Zamadueñas that are 

highly restrictive environments were grouped as water stress (WS) conditions. Second, the 

supplemental irrigation trial of Zamadueñas and the rainfed trial of El Majano which is characterized 

as a high yielding environment due to its closeness to the Guadalquivir River (i.e. high-water table 

level) were hereafter considered as high yielding (HY) conditions. Trial grouping was further 

supported by yield and carbon isotope data of the same plant material in retrospective studies (Chairi 

et al., 2018; Medina et al., 2019) (Fig. 1) as well as by the similarities in metabolite variability between 

the rainfed and irrigated trials of Zamadueñas (Table S2). 

Plant height (PH) was measured at grain filling. At harvest, grains were dried in an oven at 60ºC for 

48 hours to steady weight and grain yield (GY) was determined by harvesting the whole plot. In 

addition, total biomass was measured and the number of grains spike-1 was counted in a set of 10 

plants per plot. Then, thousand kernel weight (TKW) and harvest index (HI) were calculated. 

Spectral and thermal field measurements 

 The flag leaf, spike and canopy spectral signatures were measured around midday on sunny days with 

a FieldSpec4 (ASD Inc. PANalytical Company, Boulder, USA) full-range portable spectroradiometer. 

The reflectance spectra of three flag leaves and three spikes were recorded for each plot with an ASD 

leaf clip accessory. Canopy spectra were measured with a pistol grip coupled by an optical fiber to the 

FieldSpec4 spectrometer. Measurements were made one meter above the plot canopy in a zenithal 

plane and the reflectance was calibrated every 15-20 minutes with a Spectralon white reference 

panel. Spectra were acquired at the crop development stages of anthesis and grain filling, which are 
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69 and 74 in the Zadoks scale (Zadoks et al., 1974) respectively, on 13 April and 11 May in El Majano, 

12 and 25 May in Colmenar de Oreja and 15 and 28 May in Zamadueñas. Then, three water-related 

spectral reflectance indices were calculated: the Normalized Difference Water Index (NDWI; Gao, 

1996), the Normalized Water Index (NWI; Babar et al., 2006) and the Normalized Difference Moisture 

Index (NDMI; Lobos et al., 2014). 

Canopy temperature was acquired in the afternoon (about 4PM) from a remotely piloted aircraft 

system flown in clear sky conditions using a Mikrokopter Oktokopter 6S12 XL eight rotor UAV 

(HiSystems GmbH, Moomerland, Germany) at an above ground level altitude of 50 m. A FLIR Tau2 

640 (FLIR Systems, Nashua, NH, USA) thermal camera was mounted on a MK HiSight SLR2 camera 

platform and programmed for continuous capture with an image acquisition rate of 20 s-1, a 

resolution of 640 x 520 pixels and an estimated ground spatial resolution of 54 mm per pixel. Thermal 

images were exported using the TEAX ThermoViewer v1.3.12 and converted to 32bit temperature in 

Celsius using a custom batch processing macro function in FIJI software (Schindelin et al., 2012). 

 Leaf and spike metabolite profiling and isotope analyses  

Three flag leaf blades and three spikes per plot were harvested and immediately frozen in dry ice at 

the stages of anthesis and middle grain filling on the same dates mentioned before. All glumes and 

lemmas of each of the three collected spikes per replicate were separated, and the three partitioned 

organs were ground in liquid nitrogen. Although awns can be important photosynthetic bracts 

contributing to yield (Sanchez-Bragado et al., 2016) they are more affected by early senescence and 

were discarded in the current work. One hundred milligrams of fresh material powder from 360 

samples were used for gas chromatography-mass spectrometry (GC-MS).  

Metabolite extraction and derivatization were performed as an adaptation of the procedure 

described in Lisec et al. (2006) and Witt et al. (2012). One l of each sample solution was injected 

into a gas chromatography time-of-flight mass spectrometry (GC–TOF–MS) system (Pegasus III, Leco, 

St Joseph, USA). The chromatogram was evaluated using GC-TOF-MS ChromaTOF software (Pegasus, 

LECO, St Joseph, USA). Peaks in the chromatograms were manually annotated and ion intensity was 

determined using TagFinder software (Luedemann et al., 2011) and with a reference library derived 

from the Golm Metabolome-Database for compound identification (Kopka et al., 2005).  

The stable carbon (13C:12C) isotope ratio as well as the nitrogen concentration (%N) were measured 

in the flag leaves at grain filling and in mature grain dry matter using an elemental analyzer (Flash 

1112 EA; Thermo Finnigan, Bremen, Germany) coupled with an isotope ratio mass spectrometer 

(Delta C IRMS, Thermo Finnigan) operating in a continuous flow mode. Samples of 0.7–1 mg of leaf 

and grain dry matter from each plot, together with reference materials, were weighed and sealed 

into tin capsules. Measurements were conducted at the Scientific Facilities of the University of 
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Barcelona. Isotopic values were expressed in composition notation (δ) as follows: δ13C (‰) 

=[(13C/12C)sample/(13C/12C)standard]–1, where ‘sample’ refers to plant material and ‘standard’ to 

international secondary standards of known 13C:12C ratios (IAEA CH7 polyethylene foil, IAEA CH6 

sucrose, and USGS 40 L-glutamic acid) calibrated against Vienna Pee Dee Belemnite calcium 

carbonate with an analytical precision (standard deviation) of 0.10‰. Grain nitrogen yield (GNY) was 

then calculated as the product of GY and grain %N per plot.  

 Statistical analysis 

R 3.5.1 (R Core Team, 2018) was used for conducting multivariate ANOVAs and heatmap analyses 

were undertaken with the GPLOTS package (Warnes et al., 2009). Principal component analysis (PCA) 

and correlation network analyses were performed with the PCA3D and QGRAPH packages, 

respectively (Epskamp et al., 2012; January Weiner, 2017). Figures were drawn with SigmaPlot 10.0 

(Systat Software Inc., San Jose, CA, USA).  

The metabolite data used for the prediction models of GY were first revised so that those metabolites 

with more than 10% missing data over all samples were removed from the dataset. The remaining 

missing values were then interpolated with the DMwR package (Torgo, 2016) with the K-Nearest 

Neighbor Classification method using RStudio 3.2.2.  

Yield prediction models were performed with flag leaves and spike bracts metabolite profiles at the 

anthesis and grain filling stages and by considering an additional log2-transformation of metabolite 

intensities. Individual (i.e. single plot) metabolic data for the HY and WS conditions were combined 

into one dataset.  Identification of metabolite GY associations and GY prediction based on metabolite 

data was performed using least absolute shrinkage and selection operator (LASSO) regression. LASSO 

is a penalized logistic regression that can handle large number of predictors, which are in turn highly 

collinear, and precise variable selection and prediction despite small sample size. Analysis was 

carried out with SAS software 9.4 (SAS Institute Inc., Cary, NC, USA) applying the proc glmselect 

procedure. To increase the robustness of the results, five-fold cross-validation (CV) was conducted. 

In total 100 CV runs (20 times five-fold CV) were performed. For these, 100 subsets were extracted 

from the full dataset. Each of the subsets comprised 75% of the data points and was randomly 

selected. The subsets were taken as training sets for the identification of metabolite grain yield 

associations and for the estimation of their effects. The remaining 25% of the data was used as a 

validation set. To estimate the proportion of variance in grain yield explained by the model, the 

unbiased estimator Adj-R2 (Draper and Smith, 1981) was calculated for each subset. As a measure of 

accuracy, the root mean square error (RMSE) was calculated. Effects for each metabolite were 

extracted as a regression coefficient of the respective metabolite directly from the LASSO model. In 

addition, the count of each metabolite over all training sets was recorded and referred to as the 
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detection rate. This value was taken as a measure of importance of the specific metabolite grain yield 

association. To determine the predictive ability of the full model for grain yield, the regression 

estimates, obtained using the training sets, were used to predict the grain yield value of the 

remaining 25% of data forming the validation sets. The predictive ability was defined to be the 

squared Pearson product-moment correlation between predicted and observed phenotypic values. 

The statistics provided for each model (R2, Adj-R2, RMSE, and metabolite effect for the training and 

validation sets) were averaged across all 100 CV runs to obtain the results. 

In addition to the predictive ability that was estimated based on the validation dataset by combining 

data of HY and WS conditions, the predictive ability of the models was tested in HY and WS conditions 

separately. For this, multiple regression was performed by setting the metabolites that showed a 

detection rate of at least 70% according to the LASSO variable selection. 

 

Results 

All the agronomic traits studied decreased significantly under water stress (WS) conditions compared 

to the high yielding (HY) environment (Table 2); biomass decreased by 24.6%, grain yield (GY) by 

37.3%, grain nitrogen yield (GNY) by 27%, thousand kernel weight (TKW) by 19.1%, harvest index (HI) 

by 13.8% and the number of grains spike-1 by 10.3%. In addition, genotypic differences were detected 

in GY, TKW and in the number of grains spike-1. GY was significantly higher in Pelayo and Sula, 

followed by Kiko Nick and Dorondon with intermediate GYs, and, lastly, Don Sebastian showed the 

lowest grain yield. TKW was higher in Don Sebastian, Pelayo and Kiko Nick and lower in Sula and 

Dorondon. The number of grains spike-1 was higher in Dorondon and Sula, intermediate in Pelayo 

and lower in Kiko Nick and Don Sebastian. Grain nitrogen content was significantly higher under WS 

conditions, whereas it was significantly lower in the genotypes Dorondon and Sula, intermediate in 

Kiko Nick and Pelayo and higher in Don Sebastian.  

At both growth stages canopy temperature was significantly higher under WS conditions (Table 3). 

The three spectral reflectance indices selected for the assessment of canopy, leaf and spike water 

status (NDMI, NDWI and NWI) showed a significantly higher water signal under HY conditions 

compared to WS conditions at both growth stages. Both leaf and grain 13C were significantly higher 

under WS conditions. No significant genotype per environment interaction was obtained for any of 

these agronomic or phenotypic traits.  

Metabolome differences between organs and growth stages  

Marked differences in the metabolite profiles were in part attributed to inter-organ and growth stage 

variability. At anthesis, the PCA (Fig. 1) explained up to 61.9% of metabolome variance with samples 
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being grouped according to the organ and growing environment. The separation between spike 

bracts and environments was less clear at grain filling. Several environments per organ and/or stage 

interactions were significant because metabolic changes were closely associated with the organ 

whereas many metabolites showed differential increasing or decreasing phenological patterns.  

Except for Asp, malate, raffinose, trans-caffeate and threonate, which were more abundant in the 

leaves, there was a significantly larger accumulation of metabolites in the spike organs compared to 

flag leaves (Fig. 2). Additionally, the phenylpropanoids 3-cis and 3-trans-caffeoylquinic acids (CQAs), 

were only detected in the leaves. Concerning metabolomic differences between the two studied 

spike organs, many of the detected metabolites had accumulated to higher levels in the glumes than 

in the lemmas. Many amino acids (Hyp, Pro, 5-oxoproline, Orn, Thr, Trp and GABA) and sugars (Fru, 

Glc, Suc, myo-inositol-P, Rha), as well as many metabolites involved in respiration and 

photorespiration (isocitrate, succinate, 3-phosphoglycerol, Gly, Ser, glycolate and glycerate) as well 

as ascorbate metabolism (threonate, galactonate-1,4-lactone and glucarate-1,4-lactone) 

accumulated to significantly higher levels in glumes than in lemmas. In contrast, some sugars 

(erythrose, trehalose and maltose) and metabolites involved in respiration (2OG and Pyr) were more 

abundant in lemmas than in glumes.  

Most of amino acids and all photorespiration intermediates decreased in all organs and conditions 

from anthesis to grain filling (Fig. 2). Regarding major carbohydrates, Suc, Glc and Fru contents 

decreased in all organs from anthesis to the grain filling stage under WS whereas in HY conditions 

metabolic variation depended on the organ in particular. Lastly, trehalose, erythrose, Fuc and 

maltose increased in leaves but decreased in spike organs from anthesis to grain filling. The relative 

contents of aromatic amino acids, Orn and threonate were higher during grain filling compared to 

anthesis in all organs and conditions and DHA, His and Lys content in spike bracts were also increased 

at grain filling. With respect to respiratory metabolites, some were generally increased (isocitrate, 

citrate, malate) and other decreased (2OG, fumarate and pyruvate) from anthesis to the grain filling 

stage and these changes were more pronounced under WS conditions.  

Changes in the metabolome due to water stress  

Wide differences in the metabolomes of leaves and spike organs were found between WS and HY 

conditions, with these changes being partly dependent on the organ studied and phenological stage 

(Fig. 3). In the following section, results are presented for the first sampling (anthesis) because at 

grain-filling, the differences in metabolite abundances between water conditions were less 

contrasted than at anthesis but the main trends were still comparable. 

In all the studied organs, Fru, Glc and Suc contents increased significantly under WS compared to HY 

conditions. Similarly, raffinose, maltose, isomaltose and trehalose were generally increased in the 
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spike organs, whereas erythrose increased in the flag leaves under WS. Galactinol decreased 

significantly in all the organs, particularly in the spikes, whereas myo-inositol and myo-inositol-P 

decreased in leaves and lemmas. Regarding cell wall metabolites, the Fuc relative content decreased 

in the flag leaves and lemmas, with Rha increasing in the leaves and glumes, whereas cellobiose 

increased only in glumes.  

In the case of amino acids, WS generally induced an increase in all the studied organs, but this 

increase was particularly pronounced in the spikes. In both spike organs Val, Ala, Asp, Gln, Met, Thr, 

Ile, Lys, Trp, Hyp, GABA, -Ala, 5-oxoproline, Pro, Orn and His increased in response to WS. 

Additionally, Tyr, Phn, Hse, Glu and Arg content also increased in glumes under WS. In the leaves, 

Hyp, Arg, Lys and Pro increased significantly but Asn decreased under WS. 

Whereas in leaves the relative content of photorespiratory metabolites decreased (glycerate, 

glycolate and Ser), in the spike bracts an increasing significant trend was observed under WS. In 

relation to the glycolytic pathway, Pyr decreased significantly in the leaves under WS. In the 

tricarboxylic acid (TCA) cycle, different changes were observed. In leaves 2OG, succinate and 

fumarate decreased, and citrate increased under WS. In the spike bracts malate increased under WS, 

whereas isocitrate increased and succinate decreased significantly in the lemmas alone, and 

fumarate decreased only in glumes. With regards to energy and nucleic acid metabolism, the 

nicotinate and adenine content increased significantly in glumes and lemmas. Meanwhile in leaves 

and lemmas, AMP increased and phosphate decreased under WS.  

In addition, 3-phosphoglycerol increased in the spikes under WS whereas phenylpropanoids 

decreased significantly in the flag leaf (3-cis-caffeoilquinic acid, trans-caffeate and quinic acid) and in 

lemmas (quinic acid). The relative content of other secondary metabolites related to ascorbate 

metabolism (glucarate-1,4-lactone, galactonate-1,4-lactone and threonate) increased significantly in 

glumes but in leaves a variable trend was evidenced. Furthermore, in bracts there was a significant 

general increase across aromatic compounds. 

Genotypic differences in metabolite profiles  

Two genotypes contrasting in their performance under the two water conditions were considered: 

Pelayo, as a high yielding genotype, and Don Sebastian, as a low yielding genotype. The metabolite 

profiles of flag leaves, lemmas and glumes differed significantly between the two genotypes within 

each growing stage and environmental condition (Fig. 4).  

In leaves, Pelayo generally exhibited higher levels of major sugars, glycan-related sugars and others 

(Suc, Fru, Fuc, Xyl, Rha and isocitrate) than in Don Sebastian, whereas the opposite occurred with 

phenylpropanoids, aromatics, some amino acids and other metabolites (CQAs, trans-caffeate 
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hydroxy-pyridines, adenine, GABA, Gly, Trp, Orn, Ser, glycolate, galactinol and trehalose). In the two 

spike bracts, Pelayo showed generally higher contents of 4-hydroxy-trans-cinnamate and isocitrate 

compared with Don Sebastian, while in lemmas there was higher contents of threonate and glycerate 

and in glumes higher levels of Fru, isomaltose, Fuc and Xyl in Pelayo than in Don Sebastian. 

At anthesis, spike bracts of Don Sebastian exhibited in general higher content in most of amino acids 

at anthesis and other metabolites such as DHA, malate and 3-phosphoglycerol than Don Sebastian. 

In contrast, the opposite trend was observed at grain filling but no significant differences between 

genotypes (except for Hyp in lemmas) were detected. It is likely that the higher amino acid contents 

in bracts of Don Sebastian at anthesis were due to lower rates of spike growth, while N assimilation 

continued to be active. In addition, the higher grain %N in Don Sebastian would likely be a 

consequence of the remobilization of N compounds to its lower number of grains spike-1 rather than 

a higher rate of N assimilation occurring in Don Sebastian compared to Pelayo. 

Predicting yield from metabolite profiles  

The metabolome of the flag leaf blade and spike bracts proved strongly associated with GY and the 

closest fitting regression models were obtained when the metabolite profiles at anthesis were 

employed (Table 4). The metabolite profiles of leaves (raw metabolite intensity) explained up to 

73.6% (Adj-R2) of GY variability in the training set and 65.2% of yield variability in the validation set 

(RMSE=0.882). The metabolite profiles of the lemmas (log2-transformed metabolite intensity) 

explained up to 83.4% of yield variability in the training set and 65.5% in the validation set 

(RMSE=0.878). Finally, the glume metabolite profiles (raw metabolite intensity) explained 78.4% of 

yield variability in the training set and 56.2% in the validation set (RMSE=0.975). At the grain filling 

stage, the metabolite profiles of leaves, glumes and lemmas still explained much of the GY variability; 

63.8%, 45.7% and 35.8% for the validation sets, respectively (Table 4). 

The metabolites with the highest detection rate (DR) in the LASSO variable selection, along with their 

positive or negative effect on yield, are shown in Table 5. Calculation of the DR revealed variation in 

the importance of metabolite-GY associations between organs and growth stages. Whereas amino 

acids generally related to yield negatively, some organic acids and sugars related to protective, 

osmotic or cell wall metabolisms affected yield positively (Table 5). Thus, correlations of leaf and 

spike bracts metabolites with GY were particularly strong for fucose (positive correlation) and proline 

(negative correlation) (Fig. S3). 

In the multiple regression models (using metabolites with DR≥70%), the metabolite profiles of leaves, 

lemmas and glumes significantly predicted yield variability in the whole set of data at anthesis as well 

as in the WS and HY growing conditions, separately (Fig. 5A). In this analysis, the lemma metabolome 

provided the most accurate yield prediction from its metabolite profile, explaining up to 83.9% of 
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yield variability, followed by leaves (Adj-R2= 0.764) and glumes (Adj-R2=0.712) for the whole set of 

data. Despite all regressions being significant, under WS the metabolite variability always enhanced 

the yield prediction accuracy compared to HY conditions. 

GY variance explained by the metabolites for the three organ-specific models showed that in leaves 

Fuc and Pro jointly explained above 36% of GY variation, succinate and glucarate-1,4-lactone 

explained about 28% and the remaining explained 12% of yield variation (Fig. 5B). In bracts, Val 

explained between 25 to 34% and isomaltose between 10 to 19% of yield variation in lemmas and 

glumes, respectively. Besides, in lemmas malate and Hyp jointly reached 32% of yield variation, 

raffinose and glycerol explained almost 12% whereas succinate, threonate and GABA content jointly 

explained 5% of yield variation. Additionally, in glumes, the remaining Glu, N-acetylserine and myo-

inositol jointly explained above 18% of yield variation.  

At anthesis, the Pro (and usually Hyp) contents of the leaves, lemmas and glumes were associated 

with decreasing PH, biomass, HI, number of spikes m-2 and TKW and with increasing 13C (Fig. S2). 

Respiratory metabolites in both leaves and spike bracts were largely positively associated with 

increasing PH, biomass, HI, spikes m-2 and TKW. In leaves and glumes, the sugar alcohols (glycerol, 

galactinol and myo-inositol) were positively correlated with increasing HI, TKW, biomass, spikes m-2 

and grains spike-1. However, 3-phosphoglycerol in bracts was negatively correlated with PH and HI 

and strongly positively correlated with 13C. By contrast, amino acids in the leaves and bracts were 

generally positively associated with increasing spikes m-2, PH, HI and with decreasing grains spike-1 

and biomass. Most amino acids also correlated negatively with 13C, except Ala, Glu and -Ala in the 

spikes, which correlated positively with this parameter. Several sugars (mostly maltose, isomaltose, 

Fru, and Glc, but in some cases Rha, trehalose, raffinose and erythrose) correlated negatively with 

spikes m-2, biomass, PH and HI, but positively correlated with grain 13C. Fuc content in leaves and 

lemmas correlated positively with the number of grains m-2, GNY, HI, and Biomass 

 

Discussion 

In this study, the decrease in biomass, GY and all yield components under WS conditions compared 

with the high yielding trials was associated with water stress as shown by the increase in leaf δ13C, 

an even larger increase in grain δ13C (Table 3) and the strong negative correlation between δ13C and 

grain yield across genotypes, plots and trials (adj.R2 = 0.405; p-value < 0.0001; not shown)(Araus et 

al., 2003, 2013). In addition, thermal and spectral indices also evidenced the better water status in 

the high yielding trials at both the canopy and plant levels (Zarco-Tejada et al., 2004; Araus and 

Cairns, 2014).  
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Genotypic differences in final yield among the five genotypes tested were partly explained by the 

decreased number of grains spike-1, which may be the consequence of smaller spike size together 

with a poorer grain set due to water stress (Farooq et al., 2014).     

   Metabolic overview of wheat flag leaves and spike bracts and their phenology-associated 

changes 

The observed higher levels of the majority of detected metabolites in glumes and lemmas compared 

to flag leaves (Fig. 2) may be a consequence of i) the closeness to the grain (Bort et al., 1995) and ii) 

the active metabolic role of spikes as sink organs, but iii) also due to their role in assimilation and 

refixation (Tambussi et al., 2007; Vicente et al., 2018b). Higher levels of the major sugars and of most 

of the amino acids in the spike bracts, particularly in the glumes, may indicate the significant 

contribution of wheat bracts to grain carbon, via photosynthesis and carbon refixation, and of 

nitrogen, via primary assimilation and/or recycling, particularly under water stress (Tambussi et al., 

2007; Sanchez-Bragado et al., 2014a; Jia et al., 2015; Merah et al., 2017; Vicente et al., 2018b). Higher 

levels of photorespiratory and TCA-cycle intermediates in the spikes suggest the occurrence of 

considerable photorespiratory rates, recycling of ammonia and provision of carbon skeletons which 

facilitated the increased synthesis and/or accumulation of amino acids in the spike bracts (Keys and 

Leegood, 2002). 

The ascorbate dependent detoxification machinery seemed to be increased in glumes, which is in 

agreement with recent work at the transcript and enzyme activity levels (Lou et al., 2018; Vicente et 

al., 2018b). Furthermore, some sugars in lemmas (trehalose, maltose and erythrose) could have 

relevant functions as sugar storage, signaling and water stress tolerance (Martínez-Barajas et al., 

2011; Alam et al., 2014; Ilhan et al., 2015; Ibrahim and Abdellatif, 2016). In contrast, higher raffinose 

and malate content in leaves may be evidence the accumulation of photosynthates (Van den Ende, 

2013) and/or a role in osmotic regulation (Acosta-Motos et al., 2017) among other functions.  Unlike 

spikes, the outstanding detection of phenylpropanoids in leaves may act as sun-screens and 

antioxidants (Masuda et al., 2008; Cheynier et al., 2013). 

Concerning metabolome changes from anthesis to grain filling (Fig. 2), most metabolites decreased 

in leaves and spike bracts, which can be attributed to sugar and amino acid catabolism and 

remobilization to the grains. However, in spikes the aromatic and urea-cycle amino acids showed 

increasing trends over time, mainly under WS conditions, suggesting amino acid catabolism and N 

remobilization (Hildebrandt et al., 2015). The increased intermediates of the TCA-cycle in the spikes, 

mainly under WS, could meet the increasing demand for amino and organic acids, via anaplerotic 

reactions, for their remobilization to the grain. Moreover, the increase in DHA and threonate levels 
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in the spike bracts suggest that antioxidant machinery was likely involved in the maintenance of spike 

functioning at the end of plant cycle (Lou et al., 2018).   

Water stress effects on flag leaf and spike metabolomes  

Water stress impacted broadly on leaf and spike bract metabolomes, particularly at the anthesis 

stage with a remarkable accumulation of major sugars and the amino acids Pro, Hyp and Lys (Fig. 3, 

6). These changes were likely due to growth cessation and a reduction in the consumption of 

metabolites and may participate in cell osmotic adjustment (Obata and Fernie, 2012). At grain filling, 

water stress-induced differences were mostly observed in the spike bracts (Table S1), which 

displayed a greater metabolic response than flag leaves (Tambussi et al., 2007; Jia et al., 2015; Merah 

et al., 2017). 

The water stress-induced increase in amino acid content was remarkably more prominent in spike 

bracts than in flag leaves (Fig. 3). In Vicente et al. (2018), an upregulation of NR, NIR and GS2 genes, 

the key enzymes in the primary N assimilation pathway, was observed in durum wheat spikes, in 

contrast to flag leaves under water stress. These changes, together with the increase in several 

organic and amino acids in the present study, support an optimal coordination of carbon and 

nitrogen metabolism in spikes for the provision of nitrogen-rich compounds to the developing grain. 

This coordination was previously observed in durum wheat leaves (Vicente et al., 2018a), but has not 

previously been observed in spikes.  

In concordance with the changes observed in gene expression (Vicente et al., 2018b), respiratory 

intermediates generally decreased in leaves, while they increased in spike bracts under WS. The 

strong decrease in 2-oxogluatarate (a key metabolite required for ammonia assimilation) in leaves, 

could indicate a breakdown in the link between C and N metabolism under WS, while no changes 

were observed in spike bracts. At the same time, the increased photorespiration intermediates in 

spike organs in response to WS could be attributed to higher rates of photorespiration under drought 

(Timm et al., 2013). This may support an enhancement of N recycling in coordination with respiratory 

metabolism, thereby contributing to the increased biosynthesis of amino acids in spike bracts 

(Rachmilevitch et al., 2004; Zhao et al., 2015). In addition, the remarkable increase of the branched 

chain amino acids in spikes under WS may be physiologically relevant as alternative respiratory 

substrates under stress, either directly via electron transfer to the flavoprotein complex or indirectly 

via the TCA-cycle from their catabolic products (Obata and Fernie, 2012; Hildebrandt et al., 2015).  

Unlike leaves, the increase of other sugars in spikes, particularly glumes, (raffinose, maltose, 

isomaltose and trehalose) may prevent oxidative damage (Van den Ende, 2013) and could contribute 

to water stress tolerance (Martínez-Barajas et al., 2011; Ibrahim and Abdellatif, 2016) which partly 

explains the strong performance of spikes under stress (Tambussi et al., 2007; Vicente et al., 2018b). 
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Other water stress-induced metabolic changes concern structural elements (cell wall related sugars, 

phenylpropanoids and Hyp) perhaps promoting a modulation in the composition of the cell wall and 

membranes and cell wall thickening (Zhao et al., 2015) assisting in tolerance of water stress.  

Recent studies have reported higher antioxidant enzyme activities and transcript abundances in 

wheat spikes compared to flag leaves (Kong et al., 2015; Lou et al., 2018; Vicente et al., 2018b). In 

our study, the increased precursors of ascorbate in glumes and leaves may be as a consequence of a 

higher sun-exposition during the reproductive period of the crop. Complementarily, the moderate 

increase in aromatic amino acids in glumes under WS could be evidence of an increasing demand for 

precursors for the synthesis of antioxidants (e.g. flavonoids) (Bowne et al., 2012). The accumulation 

of other metabolites (GABA, 5-oxoproline, adenine and aromatics) in spike bracts under WS could 

also have a protective function (Noctor et al., 2012; Sukrong et al., 2012; Hildebrandt et al., 2015; 

Bown and Shelp, 2016).  

Genotypic metabolic variation   

Genotypic differences associated with yield performance (Fig. 4, 6) involved two main metabolic 

events: changes in cell structural elements and carbon assimilation. 

Firstly, in Pelayo (HY genotype) the accumulation of cell-wall monosaccharides, involved in glycan-

structures synthesis, in the leaves and cinnamic acids, related with lignin composition, in the spikes 

suggest that alterations in the cell wall and membranes may occur contributing to drought 

acclimation and yield stability (Vanholme et al., 2010; Salvador et al., 2013; Quan et al., 2016). By 

contrast, the increase in leaf phenylpropanoids and precursors in Don Sebastian (LY genotype) may 

result in an increase in lignin deposition and consequently an inhibition of growth (Bubna et al., 

2011). 

Secondly, increasing photosynthates in the leaves and glumes of the HY genotype suggest enhanced 

carbon assimilation including refixation (Zhao et al., 2015) and carbon remobilization to the grain. 

The generally increased isocitrate content in leaves and bracts of Pelayo could be associated with 

energy metabolism, but also with secondary metabolism (Araújo et al., 2014) and with the 

accumulation of carbon compounds when N is limited (Popova and Pinheiro de Carvalho, 1998). 

Further research on this topic may clarify how isocitrate contributes to genotypic outperformance. 

Prediction of yield by spike bracts and flag leaf metabolomes 

The LASSO statistical approach has proven its performance in metabolomic data sets with 

improvements over standard linear regression models, including PLS-based models (Bujak et al., 

2016). Obata et al. (2015) predicted satisfactorily maize grain yield from the leaf metabolome, 

revealing metabolic traits that may contribute to yield maintenance under abiotic stress conditions. 
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In our study using wheat, the spike bract metabolome, particularly of the lemmas, proved to be as 

determinant for final crop yield determination as the leaves, confirming the relevance of spike 

metabolism (Sanchez-Bragado et al., 2014a; Vicente et al., 2018b).  

The negative association of amino acids with yield (Table 5, Fig. 5B) supports the concept that some 

metabolites classically assumed to have a drought-tolerance role (e.g. proline) (Saeedipour, 2013) 

were instead stress indicators that accumulated as compatible solutes and osmoprotectants. 

Interestingly, in the spikes Val rather than Pro seemed to play a key role as indicator of stress severity 

and yield losses, likely functioning as osmoprotectants and/or substrate for further energetic 

reactions (Araujo et al., 2010; Hildebrandt et al., 2015). Also, 3-phosphoglycerol in spike bracts 

appeared to be an excellent indicator of water stress as inferred by its strong correlation with grain 

13C (Fig. S2) which increases with increasing water stress throughout crop growth. 

In leaves, Fuc may confer firmer and more resistant cell walls (Reiter et al., 1993), while succinate 

most likely feeds energetic and anaplerotic pathways, thus showed interesting metabolic targets for 

higher yields (Fig. S3). In the spike bracts, HY performance was positively associated with, among 

other things i) ascorbate and glutathione-related metabolites (N-acetylserine and threonate) which 

make up an essential antioxidant system and have a role in plant development and stress responses 

(Noctor et al., 2012), ii) myo-inositol as an abiotic stress tolerance inducer (Obata et al., 2015), iii) 

GABA and glycerol likely involved in osmotic adjustment, redox control and carbon-nitrogen balance 

(Chen and Jiang, 2010; Bouché and Fromm, 2004; Batushansky et al., 2014). Therefore, the existence 

of active antioxidant and osmoprotective machinery in spike bracts is likely to have enabled 

appropriate functioning of other metabolic processes such as C and N assimilation during water 

stress conditions (Kong et al., 2015) or counteracted the typically higher temperatures observed in 

bracts compared to leaves (Vicente et al., 2018b), contributing positively to crop yield. 

Finally, the positive correlation of leaf and spike bract respiratory intermediates and sugar alcohols 

with grain yield and most of the agronomical yield components (Fig. S2), including HI and TKW, 

suggests a direct or indirect role of these metabolites in grain filling that should be studied further. 

 Concluding remarks 

Our study revealed that the spike bract metabolome is strongly responsive to water stress, and far 

more noticeably than the flag leaf. Unlike leaves, a strong coordination between C and N 

metabolisms via primary nitrogen assimilation, the photorespiratory nitrogen cycle and the TCA-

cycle was evidenced in wheat spikes, particularly under WS, culminating in an active biosynthesis of 

organic and amino acids (Fig. 6). Additionally, the levels of carbon fixation and/or refixation in spikes 

were remarkable as inferred by the levels of photosynthates. The superior physiological 

outperformance of the spikes compared to the flag leaf under WS was furthermore related to an 
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active antioxidant machinery. Moreover, metabolite-GY association models indicated the key 

metabolites associated with genotypic outperformance, highlighting the association of respiratory, 

cell wall and antioxidant metabolites with water stress acclimation and yield stability. Drought 

resilience may be mediated, at least in part, by the high performance of the spikes. These findings 

therefore indicate that spike metabolic traits are a suitable breeding target. The results from the 

current study provide information fundamental to the understanding of wheat physiology as well as 

providing important biomarkers for yield prediction. 
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Tables  

 

 

Table 1. Geographic, climatic, agronomic, and soil information for each study site. Colmenar de 
Oreja and El Majano experimental stations belong to the Instituto Nacional de Investigación y 
Tecnología Agraria y Alimentaria (INIA) of Spain and Zamadueñas experimental station belong to 
the Instituto Tecnológico Agrario de Castilla y León (ITACyL). 

 

  

  

Zamadueñas 

experimental station 

Colmenar de Oreja  

experimental station 

El Majano 

experimental station 

Altitude (mamsl) 700 590 20 

Coordinates 41º 42' N, 4º 42' W 40º 04' N, 3º 31' W 37°14' N, 6°03' W 

Mean Temp.b (ºC) 10.73 13.01 14.5 

Max. mean Temp.b (ºC) 17.45 21.45 21.6 

Min. mean Temp.b (ºC) 4.64 5.36 8.3 

Precipitationb (mm) 258.4 206.8 161.8 

Sowing date 24.11.2014 21.11.2014 11.12.2014 

Harvest date 22.07.2015 20.07.2015 11.06.2015 

Sowing density (seeds m-2) 250 250 250 

Plot surface (m2) 10.5 (7x1.5) 10.5 (7x1.5) 10.5 (7x1.5) 

Irrigation provideda (mm) 125 - - 

Fertilization 
  

 

 
1st application 300 kg ha-1 NPK 8:15:15 400 kg ha-1 NPK 15:15:15 500 kg ha-1 NPK 15:15:15 

  2nd application 300 kg ha-1 CAN 27%N 150 kg ha-1 Urea 46% 100 kg ha-1 Urea 46% 

Soil texture Loam Clay-loam Silty clay loam 

Soil pH 8.44 8.1 7.6 

ain the irrigated treatment  

bduring the growing season  
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Table 2. Means of grain yield (GY), grain nitrogen yield (GNY), biomass, thousand kernel weight 
(TKW), harvest index (HI), number of grains spike-1, grain and leaf nitrogen concentration for the 
high yielding (HY) and water stress (WS) conditions and for each genotype along with the 
significance level of the respective two-way ANOVA. Values for conditions are averaged over 
genotypes and values for genotypes are averaged over conditions. Letters correspond to Tukey’s 
b separation. P-values are for conditions (PC), genotypes (PG) and the interaction (PCxG). 

        
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 GY 

(Mg ha-1) 

GNY 

(kg ha-1) 

Biomass 

(Mg ha-1) 

HI 

(%) 

TKW 

(g) 

Grains 

Spike-1 

Grain N 

(%) 

Leaf N 

(%) 

Conditions         

HY 6.98 165.3 19.53 36.04 49.48 34.62 2.39 3.92 

WS 4.38 120.6 14.72 31.06 40.03 31.04 2.70 3.99 

Genotypes         

Pelayo 6.26b 152.2 18.10 34.45ab 46.11b 33.05b 2.52ab 3.99 

Kiko Nick 5.84ab 147.9 17.66 33.03ab 48.03b 28.01a 2.55ab 4.04 

Dorondon 5.27ab 128.9 15.13 36.47b 38.77a 40.32c 2.38a 3.86 

Sula 6.04b 138.0 17.83 33.64ab 40.74a 37.31c 2.50a 3.82 

Don Sebastian 4.98a 135.5 17.40 30.64a 50.11b 25.45a 2.75b 4.01 

Max. 8.24 203.5 35.14 43.15 63.80 51.10 3.48 4.83 

Min. 3.18 71.7 9.45 17.10 27.90 21.40 0.98 2.71 

CV (%) 25.9 21.6 24.3 17.9 17.3 21.8 14.5 9.4 

ANOVA         

PC 0.000 0.000 0.000 0.002 0.000 0.002 0.000 0.375 

PG 0.005 0.086 0.261 0.094 0.000 0.000 0.005 0.519 

PC*G 0.063 0.517 0.716 0.935 0.918 0.166 0.104 0.788 
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Table 3. Means of canopy temperature (T), the canopy normalized difference moisture index 
(NDMI), the leaf normalized difference water index (NDWI) and the spike normalized water index 
(NWI) at the anthesis and grain filling stages and grain and leaf stable carbon isotope composition 
(δ13C) at grain filling under high yielding (HY) and water stress (WS) conditions and for each 
genotype, along with the significance level of the respective two-way ANOVA. Values for 
conditions are averaged over genotypes and values for genotypes are averaged over conditions. 
Letters correspond to Tukey’s b separation. P-values are for conditions (PC), genotypes (PG) and the 
interaction (PCxG). 

 

 Anthesis Grain filling 

  T  
Canopy 
NDMI 

Leaf 
NDWI 

Spike 
NWI 

T 
Canopy 
NDMI 

Leaf 
NDWI 

Spike  
NWI 

Grain 

13C (‰) 

Leaf 

13C (‰) 

Conditions         
  

HY 15.71 -.792 0.0442 -0.061 26.09 -.695 0.0462 -0.061 -26.65 -28.47 

WS 18.22 -.747 0.0395 -0.068 33.44 -.607 0.0394 -0.071 -25.03 -27.85 

Genotypes           

Pelayo 17.40 -0.773 0.0402 -0.065 ab 29.96 -.654 0.0412 -0.065 -26.00 -28.11 

Kiko Nick 17.29 -0.761 0.0413 -0.068 a 31.53 -.644 0.043 -0.074 -26.16 -28.50 

Dorondon 17.61 -0.766 0.0414 -0.065 ab 30.77 -.633 0.0401 -0.061 -26.04 -28.16 

Sula 17.32 -0.782 0.0466 -0.067 a 31.16 -.651 0.0478 -0.066 
-26.00 -27.94 

Don Sebastian 17.31 -0.767 0.0398 -0.058 b 31.53 -.674 0.0422 -0.065 
-25.49 -28.12 

ANOVA           

PC 
0.000 0.000 0.000 0.000 0.000 0.001 0.015 0.005 0.000 0.000 

PG 
0.952 0.683 0.058 0.007 0.952 0.885 0.145 0.150 0.699 0.196 

PC*G 
0.994 0.957 0.842 0.599 0.987 0.993 0.347 0.648 0.995 0.675 
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Table 4. LASSO regression models for the prediction of grain yield from leaf, glume and lemma 

metabolite profiles (metabolites as predictor variables) at the anthesis and grain filling stages. 

Regression models were performed using raw metabolite intensity (upper part of table) and log2-

transformed metabolite intensity. The statistics represent the mean across the 100 cross-

validation runs. 

      Anthesis stage Grain filling stage 

      R2 Adj R2 RMSE R2 Adj R2 RMSE 

Raw intensity             

 Leaves        

  Training set 0.801 0.736 0.758 0.774 0.702 0.805 

  Validation set 0.684 0.652 0.882 0.673 0.638 0.891 

 Glumes        

  Training set 0.837 0.768 0.679 0.612 0.508 1.040 

  Validation set 0.602 0.562 0.975 0.437 0.381 1.180  

 Lemmas        

  Training set 0.845 0.762 0.709 0.514 0.385 1.160  

    Validation set 0.651 0.616 0.925 0.252 0.178 1.370  

Log2-transformed intensity             

 Leaves        

  Training set 0.855 0.788 0.669 0.808 0.741 0.744  

  Validation set 0.645 0.609 0.908 0.659 0.623 0.909  

 Glumes        

  Training set 0.850 0.784 0.653 0.736 0.642 0.885  

  Validation set 0.582 0.539 0.998 0.507 0.457 1.110  

 Lemmas        

  Training set 0.897 0.834 0.589 0.758 0.633 0.891  

    Validation set 0.687 0.655 0.878 0.417 0.358 1.210  

R2, coefficient of determination; Adj-R2, adjusted coefficient of determination; RMSE, root 

mean square error. 
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Table 5. Ten metabolites at anthesis and grain filling showing the highest importance in yield 

prediction models based on 100 cross-validation runs and their effect on yield.  

 

  Leaves Glumes Lemmas 

  metabolite effect 
DR 
(%) metabolite effect 

DR 
(%) metabolite Effect 

DR 
(%) 

Anthesis            

 fucose + 100 Val - 93 Val - 99 

 rhamnose - 100 isomaltose - 84 malate - 98 

 Pro - 99 Glu - 83 Hyp - 97 

 succinate + 98 N-acetylSer + 82 glycerol + 96 

 glucarate-1,4-lactone - 77 myo-inositol + 77 threonate + 79 

 uracil + 73 cellobiose - 69 GABA + 75 

 galactonate + 58 glycerol-3P - 67 succinate + 74 

 Trp - 58 malate - 66 raffinose - 71 

 3-cis-caffeoylquinic acid - 49 Asn - 64 isomaltose - 71 

  Asp - 48 maltose - 63 Ala - 63 

Grain filling            

 fucose + 100 fucose + 100 trehalose + 100 

 rhamnose - 100 rhamnose - 100 Asp - 99 

 Trp - 98 Trp + 99 Hyp - 98 

 phosphate + 93 Glu - 92 xylose + 94 

 tyramine - 88 Hyp - 91 phosphate + 85 

 Asn + 87 Ala + 66 citrate - 84 

 -Ala - 79 salicylate - 62 isocitrate + 65 

 maltose + 70 tyramine + 53 4hydroxypyridine + 64 

 Pro - 68 xylose + 49 succinate - 63 

  erythrose - 38 trehalose + 44 
4-hydroxy-trans-
cinnamate + 59 

DR, detection rate in 100 cross validation runs; +/- , positive/negative effect of each metabolite on 

grain yield.  
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Figure legends 

Figure 1. Principal component analysis of metabolite profiles of leaves, glumes and lemmas at the 

anthesis (A) and grain filling stages (B). Individuals are numbered in the graph and labeled in the 

legend by the five cultivars: DO, Dorondon; DS, Don Sebastian; KN, Kiko Nick; PE, Pelayo; SU, Sula; 

and by the four environments: HYE1 and HYE2, high yielding  environments 1 and 2 (corresponding 

to the irrigated trial of Zamadueñas and to El Majano trial, respectively); WSE1 and WSE2, water 

stress environments 1 and 2 (corresponding to the rainfed trials of Aranjuez and Zamadueñas, 

respectively).  

1, HYE1 leaf KN; 2, HYE1 leaf PE; 3, HYE1 leaf DO; 4, HYE1 leaf DS; 5, HYE1 leaf SU; 6, HYE2 leaf KN; 7, 

HYE2 leaf PE; 8, HYE2 leaf DO; 9, HYE2 leaf DS; 10, HYE2 leaf SU; 11, WS1 leaf KN; 12, WS1 leaf PE; 

13, WS1 leaf DO; 14, WS1 leaf DS; 15, WS1 leaf SU; 16, WS2 leaf KN; 17, WS2 leaf PE; 18, WS2 leaf 

DO; 19, WS2 leaf DS; 20, WS2 leaf SU; 21, HYE1 glume KN; 22, HYE1 glume PE; 23, HYE1 glume DO; 

24, HYE1 glume DS; 25, HYE1 glume SU; 26, HYE2 glume KN; 27, HYE2 glume PE; 28, HYE2 glume DO; 

29, HYE2 glume DS; 30, HYE2 glume SU; 31, WS1 glume KN; 32, WS1 glume PE; 33, WS1 glume DO; 

34, WS1 glume DS; 35, WS1 glume SU; 36, WS2 glume KN; 37, WS2 glume PE; 38, WS2 glume DO; 39, 

WS2 glume DS; 40, WS2 glume SU; 41, HYE1 lemma KN; 42, HYE1 lemma PE; 43, HYE1 lemma DO; 

44, HYE1 lemma DS; 45, HYE1 lemma SU; 46, HYE2 lemma KN; 47, HYE2 lemma PE; 48, HYE2 lemma 

DO; 49, HYE2 lemma DS; 50, HYE2 lemma SU; 51, WS1 lemma KN; 52, WS1 lemma PE; 53, WS1 lemma 

DO; 54, WS1 lemma DS; 55, WS1 lemma SU; 56, WS2 lemma KN; 57, WS2 lemma PE; 58, WS2 lemma 

DO; 59, WS2 lemma DS; 60, WS2 lemma SU.   

Figure 2. Heatmap of the metabolite profiles of leaves, lemmas and glumes at the anthesis (A) and 

grain filling (GF) stages under high yielding (HY) and water stress (WS) conditions. P-values are shown 

for the organ (Po) and stage (Ps) factors and their interaction (Po*s). The red-blue color scale was 

obtained from Z-score transformation of actual values. Black color indicates those metabolites not 

detected. 

Figure 3. Water stress-induced changes in metabolite content at anthesis. Blue-red color scale 

represents log2-fold change, blue means higher metabolite content under water stress conditions 

and red stands for higher content under high yielding conditions. Black color indicates those 

metabolites not detected. *, p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001. 

Figure 4. Genotypic differences in metabolite content between the drought-tolerant genotype 

Pelayo and the drought sensitive genotype Don Sebastian in leaves, lemmas and glumes at anthesis 

(S1) and grain filling (S2) under high yielding (HY) and water stress (WS) conditions. The blue-red 

color scale represents log2-fold change, blue means higher metabolite content in Pelayo and red 

stands for higher content in Don Sebastian. Asterisks indicate significant genotypic differences. *, p-

value < 0.05; **, p-value < 0.01; ***, p-value < 0.001 
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Figure 5. Multiple regression models with the variables selected by 70% of model runs (A) and their 

respective relative importance analyses for the variables (B). Blue: fitted line for HY, red: fitted line 

for WS, dotted line: fitted line for WS and HY conditions combined. Below, doted bars indicate 

metabolites negatively affecting grain yield (GY) and horizontal pattern bars indicate metabolites 

positively affecting GY. 

Figure 6. Illustration of the principal metabolic trends shown in leaves and spike bracts in response 

to water stress and in the high yielding scenario. Blue and red colours refer to increasing and 

decreasing metabolic paths, respectively. Genotypic changes in yield components refer to the two-

ways ANOVA by selecting the genotypes Pelayo and Don Sebastian only (data not shown). aa, amino 

acids; GNY, grain nitrogen yield; GY, grain yield; HI, harvest index; TKW, thousand kernel weigth. 
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Figure 2 
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Figure 5 
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Figure 6 
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Supplementary material 

Title 

Metabolome profiling supports the key role of the spike in wheat yield performance 

 

Table S1. Differences in the relative content of metabolites between growing 

conditions in leaves, lemmas and glumes at anthesis and grain filling expressed as log2-

fold change (log2-FC) together with the corresponding statistical significance (p-value). 

Positive log2-FC values indicate higher relative content under water stress conditions 

and negative log2-FC values indicate higher content under high yielding conditions.  

 

    Anthesis Grain filling 

  Leaf Lemma Glume Leaf Lemma Glume 

    log2-FC p-value log2-FC p-value log2-FC p-value log2-FC p-value log2-FC p-value log2-FC p-value 

Carbon metabolism              

 Fru 1.31 0.000 0.56 0.000 0.95 0.000 0.35 0.053 0.48 0.006 0.55 0.028 

 Glc 1.37 0.000 0.85 0.000 0.84 0.000 0.17 0.307 0.54 0.002 0.59 0.034 

 Suc 0.36 0.016 0.37 0.011 0.39 0.014 0.12 0.631 0.09 0.506 0.23 0.064 

 raffinose -1.68 0.164 0.65 0.003 0.58 0.008 0.12 0.591 0.50 0.351 0.15 0.549 

 isomaltose - - 0.80 0.000 0.88 0.000 - - 0.05 0.673 0.04 0.835 

 maltose -0.28 0.075 0.28 0.254 0.53 0.026 -0.33 0.026 -0.10 0.660 -0.10 0.573 

 glycerol -0.25 0.225 0.14 0.220 0.06 0.553 -0.17 0.583 -0.13 0.491 -0.40 0.076 

 galactinol -0.57 0.005 -0.66 0.000 -0.67 0.000 -0.09 0.553 -0.84 0.000 -0.39 0.007 

 trehalose -0.05 0.072 0.19 0.114 0.50 0.002 -0.30 0.019 -0.76 0.000 -0.29 0.064 

 erythrose 0.76 0.046 0.56 0.148 -0.42 0.654 0.75 0.002 -0.08 0.816 - - 

 myo-inositol -0.21 0.016 -0.31 0.000 -0.14 0.068 0.08 0.448 0.21 0.381 0.02 0.922 

  myoinositol-1-P -0.33 0.001 -0.25 0.132 -0.08 0.566 - - -0.11 0.461 -0.36 0.061 

 glycerol-3P - - 0.95 0.008 0.99 0.008 - - - - -0.38 0.526 

Amino acid metabolism              

 Hyp 0.80 0.001 0.65 0.000 1.07 0.000 0.47 0.066 0.57 0.003 0.52 0.037 

 Ala -0.15 0.047 0.43 0.000 0.51 0.002 -0.07 0.669 -0.06 0.699 -0.06 0.570 

 Asn -0.74 0.001 0.43 0.117 0.35 0.168 -0.26 0.409 0.26 0.612 0.17 0.690 

 Asp -0.18 0.115 1.27 0.000 1.34 0.000 0.52 0.208 1.15 0.000 1.01 0.001 

 b-Ala -0.08 0.512 0.25 0.038 0.39 0.004 0.59 0.001 0.31 0.059 0.07 0.648 

 Glu -0.63 0.149 0.42 0.144 0.74 0.006 0.44 0.146 0.76 0.016 0.57 0.012 

 Gln -0.20 0.437 0.81 0.005 0.44 0.007 -0.24 0.648 0.54 0.194 0.62 0.423 

 His 0.82 0.126 0.94 0.001 0.64 0.004 0.13 0.751 0.74 0.166 0.60 0.298 

 Ile 0.38 0.156 1.49 0.000 1.00 0.000 0.12 0.735 0.75 0.015 0.70 0.056 

 Lys 0.88 0.004 0.94 0.002 0.76 0.001 0.29 0.212 1.13 0.037 0.44 0.409 

 Met 0.44 0.276 0.69 0.001 0.55 0.004 -0.07 0.872 0.67 0.146 0.93 0.103 

 Orn 0.86 0.157 1.04 0.015 0.89 0.001 0.16 0.868 1.06 0.073 0.46 0.456 

 Phe -0.13 0.630 0.21 0.139 0.43 0.035 0.11 0.772 0.06 0.824 0.27 0.527 

 Pro 2.98 0.028 2.96 0.000 2.47 0.000 1.33 0.069 1.27 0.005 1.19 0.011 

 5-oxoproline -0.20 0.225 0.68 0.001 0.65 0.004 0.07 0.691 0.23 0.428 0.18 0.622 

 Thr -0.14 0.104 0.83 0.000 0.51 0.000 0.16 0.344 0.49 0.016 0.40 0.052 
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 Trp 0.22 0.187 0.33 0.006 0.31 0.012 0.42 0.005 -0.26 0.026 -0.25 0.045 

 tyramine 0.07 0.181 -0.04 0.941 -0.11 0.358 0.67 0.015 -0.01 0.938 -0.07 0.615 

 Tyr -0.03 0.255 0.22 0.185 0.44 0.017 0.17 0.502 0.05 0.856 -0.03 0.934 

 Val 0.38 0.067 1.63 0.000 1.12 0.000 0.08 0.803 0.76 0.011 0.68 0.085 

 GABA 0.06 0.663 0.20 0.049 0.27 0.015 0.38 0.117 0.08 0.707 0.03 0.870 

 Arg 0.82 0.018 - - 0.56 0.000 0.42 0.135 0.99 0.045 0.88 0.147 

 Hse - - - - 0.58 0.002 - - - - - - 

 N-acetyl-Ser - - - - 0.07 0.616 - - - - - - 

  O-acetyl-Ser - - - - -0.05 0.815 - - - - - - 

Photorespiration              

 glycerate -0.54 0.003 0.10 0.196 0.20 0.014 -0.38 0.154 0.06 0.770 -0.10 0.502 

 glycolate -0.21 0.026 0.18 0.022 0.12 0.118 0.04 0.838 0.04 0.748 -0.14 0.461 

 Gly -0.34 0.121 0.37 0.533 0.84 0.006 -0.44 0.030 0.44 0.055 0.33 0.263 

  Ser -0.43 0.002 0.78 0.000 0.78 0.000 -0.04 0.863 0.36 0.181 0.33 0.249 

Respiration              

  2OG -2.56 0.015 -0.48 0.077 -0.08 0.789 -0.74 0.543 0.01 0.915 0.75 0.098 

 citrate 0.45 0.003 -0.32 0.316 0.00 0.990 -0.18 0.459 0.32 0.144 0.42 0.034 

 fumarate -0.30 0.005 -0.15 0.398 0.38 0.017 0.08 0.696 0.33 0.260 0.33 0.204 

 isocitrate -0.33 0.478 0.71 0.012 0.52 0.055 -0.22 0.209 0.35 0.163 0.14 0.492 

 MALATE -0.88 0.145 0.59 0.000 0.99 0.000 0.00 0.979 1.15 0.320 -0.94 0.007 

 pyruvate -0.92 0.023 0.14 0.508 -0.02 0.868 -0.44 0.050 0.26 0.563 0.53 0.230 

 succinate -0.54 0.000 -0.18 0.040 0.08 0.409 -0.14 0.339 0.05 0.815 -0.03 0.866 

Cell Wall              

 cellobiose - - - - 0.50 0.000 - - - - -0.05 0.859 

 fucose -0.65 0.001 -0.35 0.003 -0.06 0.446 -0.45 0.000 - - -0.68 0.000 

 xylose 0.00 0.994 -0.08 0.571 0.02 0.893 -0.14 0.366 -0.02 0.848 -0.21 0.022 

  rhamnose 0.45 0.000 - - 0.61 0.000 0.42 0.000 - - 0.13 0.269 

Energy & Nucleic              

 AMP 0.86 0.037 0.58 0.005 0.15 0.270 - - - - 0.14 0.630 

 nicotinate 0.34 0.064 0.65 0.027 0.41 0.033 0.02 0.897 0.16 0.344 -0.22 0.044 

 guanidine -1.87 0.137 0.37 0.266 -1.12 0.340 0.64 0.156 0.23 0.353 0.05 1.000 

 Adenine 0.22 0.623 1.06 0.019 1.41 0.032 - - 0.01 0.992 - - 

 uracil -0.48 0.019 0.16 0.263 0.15 0.314 0.23 0.447 0.80 0.004 0.09 0.758 

  phosphate -1.20 0.002 -0.49 0.039 -0.19 0.372 -0.72 0.028 -0.11 0.842 -0.69 0.078 

Ascorbate metabolism              

 DHA 0.22 0.124 0.10 0.414 -0.02 0.617 0.17 0.314 0.07 0.633 0.19 0.163 

 

glucarate-1,4-
lactone 1.53 0.000 - - 0.74 0.000 - - - - 0.81 0.025 

 

galactonate-1,4-
lactone - - - - 0.38 0.000 - - - - 0.04 0.759 

  threonate -0.30 0.000 0.19 0.062 0.29 0.001 0.04 0.704 0.02 0.907 -0.11 0.227 

Phenylpropanoids              

 

4-hydroxy-trans-
cinnamate 0.51 0.138 0.14 0.340 0.12 0.432 0.02 0.943 -0.16 0.397 -0.36 0.067 

 3-cis-CQA -1.03 0.007 - - - - 0.07 0.966 - - - - 

 3-trans-CQA -0.80 0.088 - - - - -0.16 0.811 - - - - 

 trans-caffeate -0.31 0.008 - - - - -0.02 0.808 - - - - 

  quinic acid -0.95 0.001 -0.90 0.002 -0.62 0.101 -0.74 0.026 -0.33 0.157 -0.85 0.002 

Aromatics & Other              

 4-hydroxybenzoate - - 0.41 0.006 0.72 0.001 - - 0.26 0.103 -0.04 0.874 

 benzoate -0.12 0.202 0.20 0.033 0.26 0.006 0.09 0.498 0.14 0.259 -0.40 0.018 
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 3-hydroxypyridine -0.39 0.000 0.13 0.347 0.60 0.000 -0.20 0.237 - - -0.13 0.404 

 4-hydroxypyridine -0.39 0.034 0.03 0.819 0.29 0.037 -0.24 0.214 -0.08 0.544 -0.10 0.627 

 lactate -0.33 0.059 -0.23 0.032 - - -0.28 0.092 -0.50 0.119 -0.25 0.468 

 malonate - - - - - - - - - - -0.93 0.000 

 salicylate - - - - - - 0.07 0.609 - - -0.09 0.160 

 putrescine 0.46 0.013 -0.28 0.110 -0.14 0.513 0.09 0.711 - - 0.84 0.340 

  maleate -0.22 0.512 0.33 0.094 3.92 0.482 0.16 0.590 0.33 0.260 -0.94 0.014 

 
 

Table S2. Metabolite content change (log2-fold change) between the Zamadueñas rainfed and 
Zamadueñas irrigated trials at anthesis stage. Blue color is indicative of increasing metabolite 
under WS environment. *, p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001; ns, non-
significant. 

 

Metabolites Leaves Lemmas Glumes 

5-oxoproline 0.45** 0.51** 0.22ns 

Ala -0.41*** 0.20* 0.36* 

Arg 0.38**  0.18ns 

Asn -0.70* -0.28ns 0.24ns 

Asp 0.22ns 2.09*** 1.89*** 

-Ala -0.34ns 0.21ns 0.39* 

GABA 0.16ns 0.09ns -0.05ns 

Gln 0.22ns 0.60* 0.10ns 

Glu 1.93** 1.15** 1.25** 

His 0.31ns 0.57ns 0.05ns 

Hse    0.32ns 

Hyp 1.29*** 1.00*** 1.20*** 

Ile -0.26ns 1.38*** 0.85*** 

Lys 0.15ns 0.23ns -0.03ns 

Met -0.22ns 0.60* 0.33ns 

N-acetyl-Ser    -0.71*** 

O-acetyl-Ser    -0.54** 

Orn 0.64ns 0.15ns 0.01ns 

Phe -1.56*** -0.08ns -0.02ns 

Pro 4.56*** 3.09*** 2.45*** 

Thr 0.02ns 0.73*** 0.44*** 

Trp -0.28ns -0.31* -0.19ns 

Tyr -1.44*** 0.20ns 0.11ns 

tyramine -0.23ns 0.14ns -0.06ns 

Val -0.06ns 1.47*** 1.00*** 

3-hydroxypyridine -0.33** -0.09ns 0.59* 

4-hydroxybenzoate   0.29ns 0.44ns 

4-hydroxypyridine -0.30* 0.00ns 0.35ns 

benzoate -0.35* 0.13ns -0.02ns 

lactate -0.29ns -0.22ns   
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maleate -0.29ns 0.12ns 0.11ns 

putrescine 0.29ns -0.20ns -0.19ns 

DHA -0.13ns 0.27* 0.05ns 

galactonate-1,4-lactone    0.55*** 

glucarate-1,4-lactone 1.43***  1.02*** 

threonate -0.44*** -0.02ns 0.13ns 

erythrose 0.46ns 0.69**  ns 

Fru 1.02*** 0.72*** 0.88*** 

galactinol -0.64*** -0.05ns -0.19ns 

Glc 1.18*** 1.22*** 1.22*** 

glycerol -1.05*** -0.23* -0.29** 

glycerol-3P   1.26*** 1.27*** 

isomaltose   0.82*** 0.94*** 

maltose 0.28ns 0.52* 0.95ns 

myo-inositol -0.13ns 0.00ns -0.02ns 

myoinositol-1-P -0.12ns 0.31ns 0.05ns 

Raf -0.74ns 0.51ns 0.75* 

Suc 0.80*** 1.04*** 1.15*** 

trehalose 0.19ns 0.52*** 0.90*** 

cellobiose    0.90*** 

fucose -0.80*** -0.19* 0.01ns 

rhamnose 0.25ns  0.43*** 

xylose -0.34* -0.32*** -0.24* 

Adenine -0.60ns 0.17ns -0.56ns 

AMP 0.76ns 0.75* 0.23ns 

guanidine -0.85ns -0.55ns -1.54ns 

nicotinate -0.47** -0.14ns -0.05ns 

phosphate 0.03ns -0.16ns 0.06ns 

uracil -1.15*** -0.16ns -0.06ns 

3-cis-CQA -0.25ns    

3-trans-CQA -0.14ns    
4-hydroxy-trans-
cinnamate 0.31ns 0.27ns 0.00ns 

quinic acid -0.24ns   
trans-caffeate -0.14ns    

Gly -0.38* 0.38ns 0.52ns 

glycerate -0.33** 0.14ns 0.14ns 

glycolate -0.28* 0.02ns 0.20* 

Ser 0.21ns 0.67*** 0.79*** 

2OG 0.33ns 0.07ns 0.14ns 

citrate   -2.04*** -2.43*** 

fumarate -0.33ns 0.07ns 0.64** 

isocitrate   -0.28ns -0.33ns 

malate -0.37ns 0.79*** 0.87* 

pyruvate -0.67** 0.34ns 0.01ns 

succinate -0.43*** -0.28* -0.18ns 
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Figures 

Figure S1. Mean values of grain yield in a collection of twenty post-green revolution durum wheat 

genotypes under high yielding (HY) and water stress (WS) conditions as indicated in the Materials 

and Methods. Red bars correspond to the five selected genotypes in this study.  
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Figure S2. Correlation networks between metabolite contents and agronomic and physiological 

traits. The maximum alpha value was fixed at 0.001 and weaker correlations were omitted. Green 

lines stand for positive correlations and red lines for negative correlations. Greater line thickness 

indicates higher correlation coefficients.  

 

2OG, 2-oxoglutarate; cCQA, 3-cis-caffeoylquinic acid; 3HP, 3-hydroxypyridine; G3P, 3-

phosphoglycerol; tCQA, 3-trans-caffeoylquinic acid; 4HB, 4-hydroxybenzoate; Hyp, 4-hydroxyproline; 
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4HP, 4-hydroxypyridine; 4HP, 4-hydroxypyridine; HTC, 4-hydroxy-trans-cinnamate; 5-oxoPro, 5-

oxoproline; A,adenine; AMP, adenosine monophosphate; Ala, alanine; Arg, arginine; Asn, 

asparagine; Asp, aspartate; -Ala, -alanine; Benz, benzoate; BA, benzylalcohol; BMS, biomass; 13C, 

carbon isotope composition; Cel, cellobiose; Cit, citrate; DTH, days to heading; DHA, 

dehydroascorbate; ears m-2, ears per square meter; Eryt, erythrose;  Fru, fructose; F6P, fructose-6-

phosphate; Fuc, fucose; Fum, fumarate; Galac, galactinol; Ga14l, galactonate-1,4-lactone; GABA, -

aminobutyric acid; Gl14l, glucarate-1,4-lactone; Glc, glucose; Glu, glutamate; Gln, glutamine; Glycer, 

glycerate; Glyol, glycerol; Gly, glycine; Glyol, glycolate; %Cg, grain carbon concentration; %Ng, grain 

nitrogen concentration; GNY, grain nitrogen yield; GY, grain yield; grains ear-1, grains per ear; grains 

m-2, grains per square meter; Guan, guanidine; HI, harvest index; His, histidine; Hse, Homoserine; 

Icit, isocitrate; Ile, isoleucine; Imalt, isomaltose; Lac, lactate; Lys, lysine; Mal, malate; Male, maleate; 

Malt, maltose; Met, methionine; MI, myo-inositol; MIP, myoinositol-1-P; NAS, N-acetyl-Serine; Nic, 

nicotinate; OAS, O-acetyl-Serine; Orn, ornithine; Phe, phenylalanine; phosphate, PO4
3-; Pic, 

picolinate; PH, plant height; Pro, proline; Put, putrescine; Pyr, pyruvate; QA, quinic acid; Raf, 

raffinose; Rha, rhamnose; Ser, serine; Succ, succinate; Suc, sucrose; TKW, thousand kernel weight; 

Threo, threonate; Thr, threonine; Caff, trans-caffeate; Treh, trehalose; Trp, tryptophan; Tyra, 

tyramine; Tyr, tyrosine; U, uracil; Val, valine; Xyl, xylose.  
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Figure S3. Scatter plots between grain yield and fucose (Fuc), proline (Pro) and hydroxyproline 

(Hyp) relative content in leaves, glumes or lemmas at anthesis and grainfilling stages. *, p-value < 

0.05; **, p-value < 0.01; ***, p-value < 0.001; ns, non-significant. 
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ABSTRACT 

Hyperspectral techniques are currently used to retrieve information concerning plant biophysical 

traits, predominantly targeting pigments, water and nitrogen-protein contents, structural elements, 

and the leaf area index. Even so, hyperspectral data could be more extensively exploited to overcome 

the breeding challenges being faced under global climate change by advancing high throughput field 

phenotyping. In this study, we explore the potential of field spectroscopy to predict the metabolite 

profiles in flag leaves and ear bracts in durum wheat. The full range reflectance spectra (VIS-NIR-

SWIR) of flag leaves, ears and canopies were recorded in a collection of contrasting genotypes grown 

in four environments under different water regimes. GC-MS metabolite profiles were analysed in the 

flag leaves, ear bracts, glumes and lemmas. The results from regression models exceeded 50% of the 

explained variation (adj-R2 in the validation sets) for at least 15 metabolites in each plant organ, 

whereas their errors were considerably low. The best regressions were obtained for malate (82%), 

glycerate and serine (63%) in leaves; myo-inositol (81%) in lemmas; glycolate (80%) in glumes; 

sucrose in leaves and glumes (68%); GABA in leaves and glumes (61% and 71%, respectively); proline 

and glucose in lemmas (74% and 71%, respectively) and glumes (72% and 69%, respectively). The 

selection of wavebands in the models and the performance of the models based on canopy and VIS-

organ spectra and yield prediction are discussed. We feel that this technique will likely be of interest 

due to its broad applicability in ecophysiology research, plant breeding programs and the agri-food 

industry. 
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Summary 

Hyperspectral techniques are currently used to retrieve information concerning plant biophysical 

traits, predominantly targeting pigments, water and nitrogen-protein contents, structural elements, 

and the leaf area index. Even so, hyperspectral data could be more extensively exploited to overcome 

the breeding challenges being faced under global climate change by advancing high throughput field 

phenotyping. In this study, we explore the potential of field spectroscopy to predict the metabolite 

profiles in flag leaves and ear bracts in durum wheat. The full range reflectance spectra (VIS-NIR-

SWIR) of flag leaves, ears and canopies were recorded in a collection of contrasting genotypes grown 

in four environments under different water regimes. GC-MS metabolite profiles were analyzed in the 

flag leaves, ear bracts, glumes and lemmas. The results from regression models exceeded 50% of the 

explained variation (adj-R2 in the validation sets) for at least 15 metabolites in each plant organ, 

whereas their errors were considerably low. The best regressions were obtained for malate (82%), 

glycerate and serine (63%) in leaves; myo-inositol (81%) in lemmas; glycolate (80%) in glumes; 

sucrose in leaves and glumes (68%); GABA in leaves and glumes (61% and 71%, respectively); proline 

and glucose in lemmas (74% and 71%, respectively) and glumes (72% and 69%, respectively). The 

selection of wavebands in the models and the performance of the models based on canopy and VIS-

organ spectra and yield prediction are discussed. We feel that this technique will likely be of interest 

due to its broad applicability in ecophysiology research, plant breeding programs and the agri-food 

industry. 
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Significance statement 

The study of the light reflected from plant surfaces can inform us about compositional traits. The 

development of this technique is critical for advances in field phenotyping and thereby plant 

breeding. This study aims to predict the metabolite profiles of wheat leaves and ear bracts from 

hyperspectral data recorded in the field. Key sugars, organic acids and amino acids in central 

metabolism were satisfactorily predicted, illustrating the great potential of this technique. 

Introduction 

The current urgency to obtain crops that are more resilient to climate change or with improved 

quality traits requires new technical and methodological advances that overcome the plant 

phenotyping bottleneck (Araus and Cairns, 2014). In this sense, spectroradiometric techniques offer 

potential opportunities not only at the laboratory level, but by using portable imaging systems (or 

even imaging from satellites), also in the field. In this manner plant performance can be assessed in 

single tissues or plants or in entire crops or even whole ecosystems.  

The development of high spectral resolution systems has been driven by the need for quantitative 

estimation of plant biochemical and physiological traits as well as characterising canopy architecture. 

Spectroscopic studies at the laboratory scale were the basis for the development of field evaluation 

systems that are nowadays used in agricultural and ecological monitoring and research. Plant 

pigments, including chlorophyll, carotenoids and anthocyanins, are the most studied traits and have 

been precisely retrieved from leaf and canopy spectral reflectance data (Homolová et al., 2013). In 

addition, the retrieval of data on plant macronutrients, mainly nitrogen and phosphorus (Mutanga 

et al., n.d.; Pimstein et al., 2011), canopy water content (Clevers et al., 2010), some structural 

components such as lignin and cellulose (Kokaly et al., 2009) or even plant polyphenols (Skidmore et 

al., 2009; Kokaly and Skidmore, 2015) have also been reported. Recent studies have addressed the 

use of hyperspectral reflectance for the evaluation of diverse physiological traits such as 

photosystem functioning, maximal Rubisco activity and dark respiration (Lobos et al., 2019; Coast et 

al., 2019; Silva-Perez et al., 2018). Furthermore, the biophysical and structural traits of single plants 

and communities (including crops), such as leaf mass per area, leaf area index or plant height greatly 

affect the reflectance spectra and may thus also potentially be estimated by this reason (Yang et al., 

2016; Olsoy et al., 2016). These advances can undoubtedly serve as excellent tools in plant 

ecophysiology studies, including the assessment of nutritional and water status, and potentially offer 

a great contribution to plant phenotyping and agronomy.  

From a different perspective, recent studies have reported close relationships between the plant 

metabolome, yield performance and stress resilience (Obata et al., 2015). In addition, novel studies 

have revealed that in cereals such as wheat, the ears can perform as major photosynthetic organs 
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during grain filling and have great relevance during plant N-assimilation and antioxidant metabolism, 

particularly under stress conditions (Sanchez-Bragado et al., 2014; Tambussi et al., 2007; Vicente et 

al., 2018). The use of molecular spectroscopy includes but is not limited to the pharmaceutical and 

agri-food industries (Osborne, 2000; Luypaert et al., 2007). In this sense, the possibility of predicting 

certain leaf and ear metabolites from remotely sensed data, particularly under field conditions, might 

enable in vivo metabolomics (metabolite characterization) and open the door to a new generation 

of plant phenotyping approaches. However, the retrieval of information pertaining to biochemical 

compounds has not yet been addressed in terms of broad metabolite profiles. Furthermore, the 

assessment of plant biochemical traits at the canopy scale still faces considerable limitations due to 

canopy structure and density, while such assessments in ear bracts could also be challenging due to 

their morphoanatomical and compositional characteristics. 

In this study we set out to predict the metabolite profiles of wheat flag leaves and ear bracts, as well 

as grain yield, using the visible-near infrared-short waved infrared (VIS-NIR-SWIR) reflectance spectra 

of plant flag leaves, ears and plot canopies by least absolute shrinkage and selection operator 

(LASSO) regression. Although the prediction of grain yield from hyperspectral data using canopy or 

leaf reflectance in cereals (Weber et al., 2012) including wheat (Garriga et al., 2017; Montesinos-

López et al., 2017; Hernandez et al., 2015) is not novel, the use of the ear spectrum for prediction 

has not been tested so far. Secondly, we aim to assess which wavebands of the spectrum are related 

to specific metabolites or groups of metabolites.  

Results 

Spectral overview and grain yield association (or grain yield prediction) 

Leaf, ear and canopy spectra were clearly separated by both principal component (PC) analysis of 

original reflectance (Fig. 1 upper) and derivative (Fig. 1 lower) spectra and explained 94.3% and 71.0% 

of the data variability, respectively. The contribution of the wavebands to the PCs and hence to the 

group separation was clearer when the derivative spectra were employed, although the cumulative 

percentage of variance decreased compared to that of original reflectance. PC1 was principally 

determined by the reflectance in the VIS (R500, R550, R650 and R680) and NIR (R830, R880, R1000 and R1225) 

bands, while PC2 was mainly affected by the derivative spectra in the SWIR (R1750, R2040 and R2300-2400) 

but also in certain wavebands in the NIR (R1060 and R1400). 

Grain yield prediction models using leaf, ear and canopy spectra (sample size = 288) explained above 

80% of yield variability in the training sets and up to 74.0%, 72.8% and 72.1% in the validation sets 

of the leaf, ear and canopy models, respectively (Table 1). In the models that used leaf and canopy 

spectra, prediction accuracy was slightly increased when applying spectral information recorded at 

the grain filling stage (RMSE = 0.783 and 0.813, respectively), whereas ear spectra at anthesis 
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provided the best prediction accuracy (RMSE = 0.802). Leaf and ear spectral information explained a 

slightly higher proportion of grain yield as compared to the canopy spectral data, but the differences 

were minor (Table 1).  

Waveband selection in the yield prediction models differed according to the measured trait: the 

specific organ spectrum and the canopy spectrum (Fig. 2). In the case of the model based on the leaf 

spectrum, the highest detection rate occurred in the violet (400-440 nm) and in the red-edge (780 

nm) wavebands as well as in the first part of the NIR (895-1000 nm) region (and precisely in the SWIR 

2310 nm). In the case of the canopy spectrum-based model for yield prediction, the highest detection 

rates principally occurred in the terminal region of the NIR (1360-1400 nm) and in the SWIR (1800 

nm, 2065 nm and 2280-2385 nm). Secondarily, some detection peaks were shown in the VIS-NIR 

range (515 nm, 760 nm, 1023 nm, 1130 nm). Finally, in the case of the ear spectrum model, the 

selection of wavebands exhibited an intermediate performance compared to the two other models; 

the highest detection rates were found in the violet and blue region (400-490 nm), in the first part 

of the NIR (800-880 nm, 985 nm, 1085 nm) and in the SWIR region (2210 nm, 2305 nm, 2385 nm).        

Metabolite-spectrum association in leaves and ears 

GC-MS based metabolite profiling of wheat flag leaves and ear bracts detected 66 metabolites for 

leaves, 70 metabolites for glumes and 64 metabolites for lemmas, 60 of which were detected in all 

tissues (Table 2). In general terms, diverse regions of the leaf and ear spectra were identified as 

closely correlated with much of the metabolite content (Fig. 3). However, the strength of correlations 

was not uniform throughout the spectrum and depended on the measured organ (i.e. on the 

specificity between the organ spectrum and tissue metabolome).  

In leaves, the highest correlations between derivative spectrum and leaf metabolites were observed 

in the VIS region of the spectrum (400-770 nm) but also in certain NIR wavebands (about 1200 nm 

and 1350 nm) and SWIR (about 1500 nm, 1800 nm, 2000 nm, 2150 nm and 2200 nm) and included, 

among others, many amino acids (threonine, serine, alanine, GABA, aspartate, asparagine and -

alanine), organic acids (glycolate, glycerate, fumarate, citrate and pyruvate) and sugars (myo-inositol, 

glycerol, sucrose and xylose). Less prominently, another group of leaf metabolites was more 

correlated with the NIR-SWIR regions (centred on 1200 nm, 1500 nm, 1800 nm, 2000 nm and 2200 

nm) such as glycine, arginine, dehydroascorbate, 2-oxoglutarate, tryptophan, hydroxyproline, and 

proline; whereas predominantly some sugars (fucose, raffinose, trehalose, myo-inositol-P and 

erythrose) and amino acids (lysine, phenylalanine, methionine) correlated moderately with 

reflectance spectra in the VIS and SWIR regions. Correlation between ear bract metabolites and the 

ear spectrum showed similar trends. For several metabolites -particularly in lemmas- higher 

coefficients were observed in the NIR-SWIR spectral regions (about 1100 nm, 1275-1450 nm, 1500-
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1700 nm, 1750 nm, 1850 nm and about 2000-2200 nm) and to a minor extent in the VIS (centred on 

450 nm, 600 nm and 750 nm). According to their coefficients of correlation, in lemmas the strongest 

association was found for the sugars xylose, glucose, maltose and the sugar derivatives glycerol and 

myo-inositol; for the organic acids pyruvate, fumarate succinate and glycerate; and for the amino 

acids -alanine, threonine, serine and GABA. Following this trend, in glumes the strongest 

correlations were found for the sugars and sugar derivatives - fructose, glucose, sucrose, myo-

inositol, myo-inositol-P, maltose and raffinose; for the organic acids glycerate and glycolate; and for 

the amino acids GABA, serine, threonine, asparagine, proline and alanine.  

Regarding the positive or negative relationships between the derivative reflectance and metabolite 

content some general trends can be mentioned, although these are not applicable for all metabolites 

because metabolite-spectrum specificity occurred. In ear bracts, most metabolites correlated 

positively with the derivative spectrum in the wavebands 695-780 nm, 990-1055 nm, 1225-1260 nm, 

1470-1690 nm and 2020-2225 nm, whereas they correlated negatively with the derivative 

reflectance centred on 400-475 nm, 550-625 nm, 925-975 nm, 1075-1175 nm, 1260-1460 nm, 1700-

1790 nm, 1815-1890 nm, 1920-2010 nm and 2250-2400 nm. Note that the strengths of these 

correlations as well as the concrete range of these wavebands were metabolite-dependent. 

However, some ear amino acids (tyrosine, phenylalanine and tryptophan) and organic acids (citrate, 

threonate and isocitrate) exhibited the opposite trend in terms of their correlation coefficient with 

the derivative spectrum, at least in the wavebands centred on 1350 nm and 1550 nm. Unlike the 

ears, the relationship between the derivative spectrum and metabolite content in leaves was still 

more heterogeneous. For many metabolites, higher positive correlation coefficients were observed 

for the wavebands 555-676 nm, 720-800 nm and secondarily in the regions centred on 1100 nm, 

1350 nm, 1800 nm and 2200 nm. Conversely, the derivative reflectance wavebands that negatively 

correlated were primarily 400-553 nm and 680-717 nm and secondarily in wavebands centred on 

1190 nm, 1475 nm, 2000 nm and 2150 nm. Even so, for some metabolites (most of them amino acids) 

the opposite correlation coefficients were observed, particularly in wavebands around 1500 nm and 

2000 nm (Fig. 3). 

Metabolite estimation models using the VIS-NIR-SWIR organ spectrum 

Flag leaf and ear bract metabolites were targeted as response variables and predicted from leaf and 

ear full-range spectra, respectively. From this collection, the overall results showed that LASSO 

regression models were able to explain more than 30% of the variability for 32 metabolites in 

lemmas, 36 metabolites in leaves and 40 metabolites in glumes according to the adj-R2 in their 

validation sets (n=120) (Table 3). A higher proportion of explained variance was generally achieved 

when the metabolite content was expressed as log2-transformed relative content and the spectra 

were introduced as original reflectance. For at least 15 metabolites in leaves and ears, prediction 
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models achieved more than 50% of explained variation according to their adj-R2 in the validation sets 

(Fig. 4). These metabolites were predominantly sugars (glucose, sucrose, fructose, raffinose, maltose, 

xylose, rhamnose, fucose and erythrose), sugar alcohols (myo-inositol, 3-phosphoglycerol, galactinol 

and glycerol), organic acids (malate, citrate, glycerate, fumarate, glycolate and pyruvate) and amino 

acids (proline, serine, threonine, GABA, alanine and tryptophan). Considering the range of variation 

within the metabolites and their standard deviations in the data set (in their respective original 

intensity or the log2-transformed intensity), the considerably low RMSE in the models indicated the 

good to very good prediction accuracies of these models. The strength of the prediction for each 

metabolite depended partly on the tissue (i.e. the best prediction models in each tissue did not 

always match the same metabolites).    

According to the adjusted determination coefficients in the validation sets, the best predicted 

metabolites of leaves were the organic acids malate (82%) and glycerate (63%), the amino acids 

serine (63%), GABA (61%) and alanine (61%), and sucrose (68%) (Fig. 4). In the case of the lemma’s 

metabolites, higher prediction robustness was shown for myo-inositol (81%), proline (74%), glucose 

(71%), glycerate (63%) and maltose (60%). Finally, in glumes the highest proportions of metabolite 

content variance were obtained for the organic acids glycolate (80%) and glucarate-1,4-lactone 

(64%), for the amino acids proline (72%) and GABA (71%), and for the sugars 3-phosphoglycerol 

(72%), glucose (69%), sucrose (68%), maltose (61%) and raffinose (60%).  

Metabolite estimation models using the VIS-organ spectrum and the canopy spectrum 

In comparison to the prediction models using the full range spectra of leaves and ears, there was an 

evident loss of a proportion of variance explained in the metabolite prediction models when only the 

VIS spectrum was employed. Even so, some metabolites were considerably well predicted; for seven 

metabolites in leaves, eleven metabolites in glumes, and three metabolites in lemmas the proportion 

of variance explained by the model exceeded 50% in the validation sets (Fig. 4). The highest 

determination coefficients of the regressions were shown for myo-inositol (Adj-R2 = 58-71%) and 

glucose (Adj-R2 = 57-60%) in ear bracts, glycerate (Adj-R2 = 59%) in lemmas and glycolate (Adj-R2 = 

63%) in glumes. Finally, in leaves the highest proportions of phenotypic variance explained were 

found for serine (Adj-R2 = 65%), malate (Adj-R2 = 62%), glycerate (Adj-R2 = 60%) and sucrose (Adj-R2 

= 57%). On the other hand, the use of canopy spectra for the estimation of the leaf and ear bract 

metabolite profiles (Fig. 4) resulted, on average, in slightly worse determination coefficients relative 

to the VIS-NIR-SWIR models. The best estimation models based on Adj-R2 values were obtained for 

malate (71%), glycerate (69%), serine (65%) and phosphate (61%) in leaves; for myo-inositol (76%) 

and glycerate (64%) in lemmas; and for GABA (75%), glycolate (74%), glycerol-3-P (64%), phosphate 

(63%), myo-inositol (63%), glucose (63%) and proline (60%) in glumes. It is, however, worth 

mentioning that in some cases the metabolite variance explained from the canopy spectra slightly 
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surpassed the VIS-NIR-SWIR models from individual organ spectra, as in the case of phosphate in 

leaves and glumes; GABA and myo-inositol in glumes; citrate, putrescine and threonine in leaves; and 

glycerol-3-P, uracil, alanine, trehalose and fucose in lemmas.  

Waveband selection in metabolite estimation models 

Figure 5 presents the detection rates of wavebands throughout the VIS-NIR-SWIR spectrum for 

certain metabolite estimation models using the respective organ spectrum or the canopy spectrum. 

Regardless of the specific metabolite prediction model, common trends in waveband selection were 

clear. When the canopy spectrum was employed the 1300-1400 nm and 2200-2400 nm regions were 

mainly selected with secondary bands around 1700 nm, whereas when the organ (i.e. leaf and ear) 

spectra were used, the 400-500 nm region was selected principally and the secondary wavebands 

lay between 600-700 nm, 800-1000nm and 2200-2400 nm.  

Waveband selection for the prediction of metabolites such as serine and glycerate in leaves and 

lemmas varied depending on the organ measured. Some spectral regions were selected in both 

models (i.e. leaf metabolites vs. leaf spectrum; lemma metabolites vs. ear spectrum) in the prediction 

of serine (about 400 nm and 800 nm) and glycerate (about 400 nm), but many other wavebands 

selected were model/organ-dependent (Fig. 5). Similarly, when GABA and sucrose were compared, 

some wavebands were commonly selected from both leaf and ear spectra (around 400 nm for GABA 

and around 450 nm, 850-900 nm and 1700 nm for sucrose) while other wavebands were selected 

differentially between models. Furthermore, the prediction models for lemma and glume proline 

from the ear spectrum selected wavebands around 400-500 nm, 600-700 nm and 1700-1800 nm in 

both cases.   On the other hand, waveband selection also differed depending on the spectrum used, 

whether it was the canopy spectrum or that of the respective organ. For instance, in the prediction 

of leaf metabolites some selected wavebands were coincident in organ and canopy models (around 

1350 nm for serine, 2400 nm for GABA, 2350 nm for malate and 600 nm for sucrose) but many others 

were specifically detected in the canopy or organ models. For prediction of lemma metabolites, the 

wavebands detected in both the canopy and organ models were around 400 nm and 2350 nm for 

serine; 450 nm, 800 nm and 2400 nm for glycerate; 400 nm for myo-inositol; and 2300-2400 nm for 

glucose (Fig. 5). Finally, in the case of glume metabolite prediction, wavebands around 400 nm and 

1350 nm for GABA; 450 nm, 1000 nm and 2250-2400 nm for sucrose and 400 nm for 3-

phosphoglycerol were detected in both scaling approaches.  

Regarding waveband selection from the canopy spectrum for estimation of metabolites in the leaves 

and ear bracts, a certain amount of specificity between wavebands and metabolites was observed. 

For instance, canopy models selected around 750 nm, 1350 nm and 2350 nm for leaf and lemma 
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serine, 1350 nm and 2350 nm for leaf and lemma glycerate, and 1350 nm and 2400 nm for leaf and 

glume sucrose.  

Discussion 

Previous work addressing grain yield prediction achieved 70.7% and 69.5% of the explained 

variability from leaf and canopy VIS-NIR-SWIR spectra, respectively, through application of PLS 

regression models (Weber et al., 2012).  While this previous study was performed in maize, the 

present work in wheat slightly improved this accuracy by achieving up to 74% of the explained yield 

with the use of LASSO regression, which has proven its greater performance over standard linear 

regression models (Bujak et al., 2016). Also, similar to the leaf and canopy spectra, for the first time 

a relationship was established between the ear spectrum and final yield (adj-R2 = 73% in validation 

set) in terms of explained variance. 

The most relevant wavelengths for predicting grain yield have previously been associated with 

photosynthetic capacity (495–680 nm), the red inflection point (680–780 nm) and plant water status 

(900, 970, and 1450 nm, 1150–1260 nm, and 1520–1540 nm) (Hernandez et al., 2015; Weber et al., 

2012). In the current work, the strong detection of violet-blue (400-490 nm) wavebands in leaf and 

ear-based models was likely associated with chlorophyll absorption and amino acid-protein 

absorption (Schmid, 2001). Additional detection peaks in the NIR wavelengths in leaf (780 nm, 895-

1000 nm) and ear-based models (800-880 nm, 985 nm, 1085 nm) may be partly associated with 

structural discontinuities in the tissues (i.e. cell layers, interfaces and mesophyll structure), water 

content, brown pigment content (i.e. carotenoids and flavonoids) (Peñuelas and Filella, 1998; 

Ceccato et al., 2001; Homolová et al., 2013) and sugar concentration (900-990 nm) (Golic et al., 

2003). Also, important detection peaks in the SWIR region in ear-based models (2210 nm, 2305 nm, 

2385 nm) and to a weaker extent in leaf-based models (2310 nm) can be related to absorptions by 

amino acid-protein, sugars, lignin, and/or cellulose (Thulin et al., 2014) among others. In the case of 

the canopy-based yield prediction model, the most relevant wavebands detected could be 

associated with protein, sugar and/or cellulose absorptions (2065 nm, 2280-2385 nm). The other 

important detection peak located in the 1360-1400 nm waveband has been previously attributed to 

the absorption of organic carbon in soils (Homhuan et al., 2016), specifically cellulose, lignin and/or 

sugar absorptions (Curran et al., 1992; Ben-Dor et al., 1997). Additional wavelengths detected in the 

VIS (480 nm, 515 nm) and NIR regions (760 nm, 1023 nm, 1130 nm) could be related to 

photosynthetic capacity, water vapour and N-H bond absorption features (Lugassi et al., 2014; Ben-

Dor et al., 1997). Thus, in our study, yield performance was associated with photosynthetic traits, 

water content and brown pigment content in both leaves and ear bracts and specifically with sugar, 

amino acids-protein and structural elements (i.e. cellulose and lignin), particularly in bracts. For its 

part, waveband detection in canopy-based models reveals the importance of the 1360-1400 nm peak 
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as a likely indicator of biomass quantity and quality in the plot (i.e. organic carbon including structural 

elements), and in turn these are related to grain yield (Reynolds et al., 2007), while other peaks may 

be attributed to photosynthetic activity, nitrogen and water content signals.  

In the literature, spectroscopic studies addressing the retrieval of plant (leaf) biochemicals have 

mostly targeted pigments, nitrogen-protein, structural elements (cellulose and lignin) and mineral 

compounds (e.g. phosphorus and potassium) (Thulin et al., 2014; Kokaly et al., 2009; Skidmore et al., 

2009). However, to the best of our knowledge, the estimation of specific plant metabolites through 

VIS-NIR-SWIR spectral data in the field is still non-existent. This work has shown, for the first time, 

the robust capabilities of hyperspectral field-sensors for the non-destructive estimation of leaf and 

ear metabolite profiles. From the metabolites detected in wheat leaves and ear bracts by GC-MS 

profiling, about one quarter were satisfactorily predicted with accuracies over 50% (in the validation 

sets) including many sugars, amino acids and organic acids that play a central role in primary and 

secondary metabolism. Among them, some can be highlighted for their relevance in plant 

physiological functioning: i) major sugars involved in photosynthetic metabolism, carbon partitioning 

and storage (sucrose, fructose and glucose); ii) other sugars and sugar alcohols associated with 

protective functions, osmotic adjustment and stress tolerance (raffinose, maltose, glycerol, 3-

phosphoglycerol and myo-inositol) (Obata et al., 2015; Ibrahim and Abdellatif, 2016; Van den Ende, 

2013); iii) amino acids such as proline, GABA, alanine, aspartate and tryptophan, with some of them 

involved in osmotic regulation, signalling and in the synthesis of secondary metabolites (Hildebrandt 

et al., 2015; Chen and Jiang, 2010; Bown and Shelp, 2016); iv) photorespiration intermediates 

(glycerate, serine and glycolate); and v) other organic acids (malate, fumarate and pyruvate) related 

to osmoprotection and respiratory metabolism (Acosta-Motos et al., 2017). By contrast, the 

unsatisfactory estimation of some metabolites (e.g. ornithine, lysine, glycine, 2-oxoglutarate, 

glutamate, fucose, arginine, methionine, isoleucine and valine) could be, among other reasons, due 

to the fact that (i) they do not exhibit any differentiable or appreciable spectral absorption, (ii) their 

spectral signal were (mostly) masked by other major spectral signals such as water and pigments 

and/or (iii) their amounts or the range of sample variation were small, which did not favour a good 

fit to the models.   

Knowledge of the VIS-NIR-SWIR spectral features (spectral signals in plant reflectance) of the 

metabolites that we have characterised here has been considerably limited because typically other 

approaches have been used such as UV, MIR, X-ray, Raman or FTIR spectroscopy (Zhu et al., 2011; 

Barth, 2000; Meyer et al., 2017). This contrasts with the broader information available on generic 

constituents such as protein-N and sugars across many wavebands of the VIS-NIR-SWIR spectrum. 

For instance, the N-protein content has been mainly retrieved from three broad spectral regions: the 

red-edge region (680–780 nm), the NIR region around 1200 nm and the SWIR region where three 
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main protein absorption features are located around 1680 nm, 2050 nm and 2170 nm (Homolová et 

al., 2013; Kumar et al., 2002; Thulin et al., 2014), whereas absorption in the blue (around 405 nm) 

and in the NIR (895-990 nm) has been associated with the total amino acid content (Bao et al., 2012). 

For its part, absorption wavebands for sugar (and particularly starch) have been reported in the NIR 

(around 900 nm) and in the SWIR (1450 nm, 1700 nm, 1950 nm, 2100 nm, 2250 nm, 2300 nm and 

2350 nm) (Kuska et al., 2018).  

When examining organ spectral properties in this study, the blue region proved to be the most 

relevant waveband for metabolite prediction (Fig. 5), regardless of the metabolite examined. In the 

same way, in all canopy models the 1300-1400 nm and 2200-2400 nm regions were always the best 

determinants for metabolite prediction, and were coincident with some of the absorption bands 

associated with sugars and N compounds. In addition, the existence of some metabolites (e.g. serine, 

proline, GABA, sucrose or glycerate) that were easily predicted in two or three tissues may be 

because (i) these compounds had prominent absorptions in at least some of the wavebands and (ii) 

their variation was closely related to the spectral signal of other traits like water, nitrogen and 

pigments. Besides, some degree of specificity between certain metabolites and the spectra used 

could be associated with morpho-anatomical particularities affecting the reflected radiation such as 

cuticle thickness and composition, the level of differential cell packing, or organ shape (e.g. flatness) 

(Ollinger, 2011; Carter and Knapp, 2001).  

On the other hand, metabolite prediction models based on canopy reflectance or on the VIS organ 

spectrum still proved robust although in a minor extent than those using VIS-NIR-SWIR organ 

spectrum. These results encourage the up-scaling of data collection via UAVs as hyperspectral 

sensors become more affordable, which has been proposed for assessment of mineral constituents 

(Skidmore et al., 2009), whereas the employment of VIS field spectrometers could be a low-cost 

robust alternative. High spatial resolution hyperspectral imaging from UAVs along with image 

segmentation techniques (Fernandez-Gallego et al., 2018; Parraga et al., 2019; Gracia-Romero et al., 

2019) might also enable the simultaneous and yet separate retrieval of the spectra of different crop 

canopy components such as flag leaves and ears. Altogether, these advances open the door for non-

invasive and rapid field monitoring of key traits in flag leaves and/or ear bracts associated with 

photosynthesis and photorespiration, sugar accumulation, and stress-response and drought-

tolerance metabolites. In this way it would be possible to study spatial-temporal variation in 

metabolite content (at least in some cases) and their response to stress conditions. In conclusion, 

this technique may be of interest for its broad applicability in plant breeding programs, 

ecophysiology research, and the agri-food industry. Future research may develop additional spectral 

transformations and automate metabolite retrieval models with spectral-managing software in 

order to make these data accessible to potential users such as breeders and ecophysiologists. In this 
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sense, previous computing efforts in radiative transfer models, currently included in ARTMO (Verrelst 

et al., 2016; Verrelst et al., 2015; Feret et al., 2008; Atzberger et al., 2003), which were developed 

for the retrieval of biophysical traits (chlorophyll, brown pigments, leaf water content, leaf area index 

and fluorescence) at the canopy and leaf levels are excellent precedents and may pave the way for 

collection of metabolite content data.   

Experimental procedures 

 Plant material and experimental set up  

Field trials were carried out during the 2014/15 growing season at three locations: in north Spain at 

the experimental station of Zamadueñas (Valladolid), belonging to the Instituto Tecnológico Agrario 

de Castilla y León (ITACyL), in central Spain at the experimental station of Colmenar de Oreja 

(Madrid), and in south Spain at the experimental station of El Majano (Seville), both belonging to the 

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) of Spain. Geographic and 

agronomic information, together with weather, irrigation and soil information are detailed in Table 

3.  

Plant material consisted of 24 commercial durum wheat (Triticum turgidum L. subsp durum (Desf) 

Husn.) varieties released during the last thirty years in Spain. The varieties Don Sebastian, Dorondon, 

Kiko Nick, Pelayo and Sula (Chairi et al., 2018) were selected as representative of yield performance 

variability and subsequently used for metabolite profiling and spectral prediction models. 

For each trial, plants were sown in randomized block designs with three replicates. A total of four 

growing conditions were considered: three rainfed trials (one rainfed trial at each of the 

experimental stations) and one supplemental irrigated trial at Zamadueñas. While the rainfed 

environments of Colmenar and Zamadueñas are highly restrictive, the rainfed trial of El Majano is 

characterized as a high yielding environment due to its closeness to the Guadalquivir River (i.e. high 

level water table). At harvest, grains were dried in an oven at 60ºC for 48 hours and grain yield (GY) 

was determined.  

Spectral field measurements 

The flag leaf, ear and canopy spectral signatures were measured around midday on sunny days with 

a Field-Spec4 (ASD Inc. PANalytical Company, Boulder, USA) full-range portable spectroradiometer. 

The reflectance spectra of three flag leaves and three ears were recorded for each plot with an ASD 

leaf clip accessory assembled on an ASD standard plant contact probe provided with a halogen bulb 

coupled to the FieldSpec4 spectrometer with an optical fibre. Canopy spectra were measured with a 

pistol grip coupled to the optical fibre. Measurements were made one metre above the plot canopy 

in a zenithal plane and the reflectance was calibrated every 15-20 minutes with a Spectralon white 



 

160 
 

reference panel. Spectra were acquired at the crop development stages of anthesis and grain filling, 

which are stages 69 and 74 in the Zadoks scale (Zadoks et al., 1974), respectively, on 13 April and 

11 May at El Majano, 12 and 25 May at Colmenar de Oreja, and 15 and 28 May at Zamadueñas. For 

the prediction models the spectra were tested as original reflectance spectra and as derivative-

transformed reflectance spectra.    

 Leaf and ear metabolite profiling and isotope analyses  

Three flag leaf blades and three ears per plot were harvested and immediately frozen in dry ice at 

the anthesis and middle grain filling stages on the same dates mentioned before. Then, the glumes 

and lemmas of the ears were separated, and the three organs were ground in liquid nitrogen. One 

hundred milligrams of powdered fresh material of each of the 360 samples were used for gas 

chromatography-mass spectrometry (GC-MS).  

Metabolite extraction and derivatisation were performed as an adaptation of the procedure 

described in Lisec et al. (2006) and Witt et al. (2012). One l of each sample was used to inject into 

a gas chromatography-time of flight- mass spectrometry (GC–TOF–MS) system (Pegasus III, Leco, St 

Joseph, USA). The relative changes in the metabolite pools were analysed using GC-TOF-MS 

ChromaTOF software (Pegasus, LECO, St Joseph, USA). Peaks in the chromatograms were manually 

annotated and ion intensity was determined by the aid of TagFinder (Luedemann et al., 2011) using 

a reference library derived from the Golm Metabolome-Database for compound identification 

(Kopka et al., 2005).  

 Statistical analysis 

R 3.5.1 (R Core Team, 2018) was used for conducting principal component analysis (PCA) with the 

PCA3D package (January Weiner, 2017). Figures were drawn with SigmaPlot 10.0 (Systat Software 

Inc., San Jose, CA, USA).  

Grain yield and metabolite prediction models were performed with canopies, flag leaves and ears 

reflectance spectra. To fit the models for grain yield and for metabolite predictions, individual (i.e. 

single plot) leaf, ear and canopy spectra were used and data for the HY and WS conditions were 

combined into one dataset. Identification of spectrum-metabolite and spectrum-GY associations and 

their predictions based on spectral data was performed using least absolute shrinkage and selection 

operator (LASSO) regression. Analysis was carried out with SAS software 9.4 (SAS Institute Inc., Cary, 

NC, USA) applying the proc glmselect procedure. To increase the robustness of the results, five-fold 

cross-validation (CV) was conducted. In total 100 CV runs (20 times five-fold CV) were performed. 

For these 100 subsets were extracted from the full dataset. Each subset comprised 75% of the data 

points each, randomly selected. The subsets were taken as training sets for the identification of 
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spectrum metabolite and grain yield associations and for the estimation of their effects. The 

remaining 25% of the data was used as validation set. To estimate the proportion of variance in the 

grain yield and the metabolite relative content explained by the model, the unbiased estimator Adj-

R2 (Draper and Smith, 1981) was calculated for each subset. As a measure of accuracy, the root mean 

square error (RMSE) was calculated. Effects for each waveband were extracted as a regression 

coefficient of the respective waveband directly from the LASSO model. In addition, the count of each 

waveband over all training sets was recorded and referred to as the detection rate. This value was 

taken as a measure of importance of the associations of grain yield and metabolite content with 

specific wavebands. To determine the predictive ability of the full model for grain yield and for each 

metabolite, the regression estimates, obtained using the training sets, were used to predict the grain 

yield and metabolite value of the remaining 25% of data forming the validation sets. The predictive 

ability was defined to be the squared Pearson product-moment correlation between predicted and 

observed phenotypic values. The statistics provided for each model (R2, Adj-R2, RMSE, and waveband 

effect for the training and validation sets) were averaged across all 100 CV runs to obtain the final 

results. 

Before running LASSO regression models, the regions from 350 to 400 nm and 2400 to 2500 nm were 

removed from all reflectance data to avoid the noisy bands in the spectra. Additionally, in plant 

canopy spectra the region from 1800 to 2000 nm was also removed because it is strongly affected 

by water vapour absorption.  
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Tables 

 

Table 1. Performance of leaf, ear and canopy spectra for the prediction of grain yield using LASSO 

models. Statistics are provided for the training and validation sets. 

 

 

 

 

 

 

 

 

 

 

Table 2. LASSO regression models for the prediction of leaf and ear bract metabolites from leaf and 
ear reflectance, respectively. The LASSO statistics provided were the adjusted coefficient of 
determination (adj-R2) and the root mean squared error (RMSE). Descriptive statistics of 
metabolite relative intensities are maximum and minimum values (MAX and MIN), mean and 
standard deviation (SD) values. The best model (mod) in terms of proportion of explained variance 
is shown for each metabolite, the acronyms of the models are: RR, raw metabolite intensity 
combined with original reflectance; RD, raw metabolite intensity combined with the first 
derivative spectra; LR, log2-transformed metabolite intensity combined with original reflectance; 
LD, log2-transformed metabolite intensity combined with the first derivative spectra. 

 

 

 

 

 

    Leaf spectrum Ear spectrum Canopy spectrum 

 R2 Adj-R2 RMSE 
Spectral 

transformation R2 Adj-R2 RMSE 
Spectral 

transformation R2 Adj-R2 RMSE 
Spectral 

transformation 

Anthesis             

  Training set 0.871 0.816 0.659 Original 0.928 0.869 0.554 First 0.883 0.806 0.678 First 

 Validation set 0.715 0.710 0.828 reflectance 0.733 0.728 0.802 derivative 0.665 0.659 0.897 derivative 

Grain filling               

 Training set 0.907 0.848 0.598 Original 0.923 0.854 0.587 First 0.925 0.863 0.569 Original 

  Validation set 0.744 0.740 0.783 reflectance 0.700 0.695 0.852 derivative 0.726 0.721 0.813 reflectance 
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Leaves Lemmas Glumes 

 
LASSO model Descriptive Statistics LASSO model Descriptive Statistics LASSO model Descriptive Statistics 

metabolite adj-R2 RMSE mod MAX MIN MEAN SD adj-R2 RMSE mod MAX MIN MEAN SD adj-R2 RMSE mod MAX MIN MEAN SD 

malate 0.817 20.630 RD 131.012 1.679 55.755 28.483 0.018 23.63 RR 108.73 0.3 4.51 15.194 0.56 0.981 LR 4.821 -2.193 1.449 1.511 

sucrose 0.684 2.380 RD 13.134 0.127 4.119 4.354 0.173 2.250 RR 11.292 0.087 6.533 2.502 0.681 0.754 LD 6.148 1.680 3.858 1.360 

glycerate 0.634 0.56 LR 3.189 -0.799 1.687 0.959 0.634 0.519 LD 3.452 -0.044 2.159 0.887 0.315 0.427 LD 3.578 1.313 2.597 0.526 

serine 0.626 0.653 LR 2.140 -2.224 0.349 1.197 0.581 0.67 LR 3.396 -1.348 1.569 1.074 0.565 0.764 LD 3.966 -1.185 1.991 1.205 

GABA 0.614 0.583 RD 2.963 0.009 1.000 0.969 0.235 0.33 RD 1.868 0.036 0.822 0.385 0.705 0.93 LR 3.120 -3.206 0.648 1.751 

alanine 0.605 0.415 LD 3.471 0.508 2.365 0.675 0.428 4.270 RD 27.883 2.428 12.686 5.775 0.426 0.544 LR 5.358 1.899 3.720 0.736 

raffinose 0.592 1.630 LR 7.525 -0.526 4.033 2.618 0.484 0.926 LR 6.819 -0.184 2.296 1.314 0.598 1.080 LR 6.644 -0.641 3.457 1.753 

tryptophan 0.583 0.379 LD 2.699 -0.22 1.211 0.603 0.269 0.405 LR 2.942 0.684 1.611 0.481 0.357 0.384 LR 4.224 1.594 2.589 0.489 

erythrose 0.578 0.89 LD 7.783 2.117 5.040 1.410 0.223 181.94 RD 867.34 12.38 281.84 
212.81

8 
0.035 0.831 LD 8.980 4.420 5.635 0.946 

glycerol 0.568 0.741 LD 3.794 -1.302 1.330 1.148 0.388 3.550 RD 26.730 1.381 9.952 4.695 0.394 3.690 RD 22.057 1.769 10.939 4.842 

aspartate 0.554 0.644 RD 2.121 -4.224 1.446 0.993 0.395 1.110 LR 2.729 -3.729 0.243 1.454 0.333 1.130 LD 3.221 -3.966 0.672 1.413 

pyruvate 0.551 0.571 LR 5.708 0.141 2.030 1.238 0.186 1.480 LR 9.534 1.993 7.010 1.668 0.251 1.370 LR 9.812 3.148 6.465 1.591 

proline 0.499 1.370 LR 8.675 0.714 4.050 1.970 0.736 1.05 LR 9.92 2.09 6.09 2.087 0.724 1.250 LR 12.016 1.674 6.960 2.451 

citrate 0.462 0.709 LD 4.218 -0.126 2.522 1.004 0.501 0.903 LD 6.428 1.356 4.386 1.312 0.341 0.836 LD 6.376 1.107 4.184 1.091 

trehalose 0.454 0.473 LD 3.861 0.462 2.006 0.651 0.323 0.618 LR 6.835 3.067 5.396 0.771 0.355 0.531 LD 6.421 2.772 4.837 0.682 

putrescine 0.448 6.840 RR 57.265 1.149 10.633 9.652 0.087 0.95 LD 7.737 2.441 4.852 1.004 0.071 1.130 LR 9.318 2.343 4.606 1.199 

threonate 0.448 0.375 LD 4.640 1.964 3.136 0.518 0.221 0.393 LD 3.852 1.493 2.354 0.452 0.237 2.150 RD 15.400 2.862 8.412 2.491 

threonine 0.445 0.429 LD 2.832 0.267 1.850 0.597 0.526 0.558 LR 4.560 0.17 2.819 0.838 0.568 0.581 LR 4.582 0.298 3.138 0.92 

phenylalanine 0.409 0.672 LR 4.523 -1.091 1.481 0.898 0.057 0.595 LR 4.207 0.247 1.883 0.623 0.096 0.68 LR 5.177 0.679 1.688 0.736 

quinic acid 0.405 0.687 LR 4.138 0.265 2.004 0.905 0.382 0.632 LR 5.012 0.872 3.128 0.821 0.42 5.140 RD 35.917 2.857 11.209 7.227 

phosphate 0.397 1.220 LR 3.368 -3.707 -0.195 1.593 0.356 1.150 LR 6.702 0.3 3.457 1.466 0.571 1.340 LR 7.089 -6.115 4.111 2.119 

4-hydroxypyridine 0.39 0.488 LR 2.062 -0.948 0.503 0.634 0.255 0.424 RD 2.905 0.396 1.269 0.501 0.095 0.673 LR 2.883 -0.454 1.409 0.713 

uracil 0.39 2.180 RD 14.908 0.623 4.426 2.857 0.502 1.016 LD 6.870 -0.896 4.713 1.494 0.402 0.828 LR 6.356 0.558 4.437 1.101 

glucose 0.371 0.697 RD 4.897 0.16 1.509 0.906 0.705 0.564 LD 4.005 -0.674 1.526 1.081 0.687 1.280 LR 6.541 -2.531 2.572 2.358 

glycolate 0.364 0.439 LD 3.663 1.155 2.716 0.56 0.121 0.376 LD 3.621 1.292 2.775 0.41 0.795 15.080 RR 102.07 0.434 38.516 34.164 
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isocitrate 0.363 2.100 RD 15.540 0.144 3.391 2.909 0.209 24.000 RR 127.148 1.568 39.847 27.574 0.23 1.090 LR 7.702 0.358 5.741 1.286 

fructose 0.335 0.777 LD 2.355 -1.916 0.588 0.97 0.506 0.852 RD 6.260 0.689 2.560 1.249 0.567 1.195 LR 4.999 -3.807 1.708 1.856 

fumarate 0.335 0.5 LD 1.688 -1.626 0.209 0.625 0.568 1.130 LR 3.302 -2.735 0.213 1.755 0.148 0.727 LD 3.555 -0.441 1.656 0.797 

tyrosine 0.325 0.631 LR 4.162 -0.406 1.587 0.784 0.022 1.960 RR 36.880 2.494 8.556 5.625 0.16 0.692 LD 5.504 1.295 2.419 0.769 

hydroxyproline 0.319 0.594 LR 3.664 0.021 1.390 0.741 0.351 9.640 RD 76.884 4.011 20.536 12.512 0.459 9.350 RR 84.173 5.315 20.934 13.314 

nicotinate 0.309 1.520 RD 9.857 1.333 4.027 1.870 0.389 1.780 RD 22.492 0.64 3.303 2.810 0.272 2.960 RD 35.958 3.689 8.797 4.041 

asparagine 0.303 0.98 LR 4.218 -0.721 1.932 1.198 0.369 1.250 LR 8.539 0.787 5.309 1.602 0.409 1.460 LR 8.893 0.668 5.596 1.934 

lysine 0.288 0.795 LR 5.968 1.418 3.557 0.953 0.139 1.150 LR 9.605 3.431 5.761 1.249 0.13 1.060 LD 9.456 3.369 5.613 1.145 

myo-inositol 0.288 0.341 LR 3.650 1.604 2.818 0.412 0.807 0.53 LR 5.776 1.590 4.179 1.246 0.587 0.554 LR 5.960 2.648 4.560 0.884 

oxoglutarate 0.266 1.320 LD 9.106 2.314 4.171 1.648 0.357 1.350 LR 12.137 4.853 8.965 1.702 0.126 1.440 LR 12.128 5.456 9.044 1.552 

glutamate 0.264 1.170 LD 5.277 -1.253 1.908 1.384 0.212 9.490 RD 72.298 1.191 13.584 11.144 0.117 10.950 RD 88.247 1.615 18.001 12.199 

glycine 0.255 0.65 LR 2.400 -0.922 0.653 0.762 0.185 0.861 LR 6.500 0.629 2.445 0.962 0.309 0.902 LR 5.881 -0.517 2.792 7.877 

fucose 0.252 0.438 LR 2.058 -0.485 1.006 0.513 0.313 0.463 LR 2.356 -0.766 1.614 0.653 0.496 0.34 LD 2.738 0.314 1.618 0.489 

DHA 0.249 0.6 LR 5.361 1.804 3.916 0.705 0.232 12.600 RD 98.266 10.486 36.682 14.742 0.182 9.620 RR 73.590 14.574 38.107 10.878 

maleate 0.237 3.750 RR 24.910 0.368 4.595 4.429 0.163 3.750 RD 22.401 0.221 6.308 4.219 0.255 1.140 LD 5.525 -2.086 2.400 1.387 

arginine 0.235 0.73 LD 5.807 1.150 2.825 0.843 0.098 1.490 LD 8.947 2.559 5.549 1.603 0.29 89.370 RD 828.093 2.523 71.833 106.049 

benzoate 0.234 0.374 LD 1.637 -0.144 0.677 0.435 0.057 0.418 LR 1.984 -0.312 1.019 0.434 0.371 0.843 RR 5.346 0.302 2.272 1.087 

-alanine 0.233 0.592 LD 3.372 0.022 1.785 0.689 0.542 0.508 LD 5.049 1.891 3.400 0.767 0.365 3.890 RD 27.908 3.391 11.888 5.019 

myo-inositol-P 0.231 0.329 LD 4.022 2.375 3.177 0.385 0.374 0.548 LR 6.957 4.069 5.413 0.708 0.581 0.518 LR 7.461 4.481 6.056 0.821 

methionine 0.211 0.957 LR 7.998 1.935 3.988 1.105 0.077 1.210 LR 10.507 4.125 7.366 1.269 0.26 1.550 LD 11.030 -2.361 7.022 1.868 

maltose 0.187 0.523 LD 5.647 2.182 3.847 0.588 0.595 43.83 RD 345.81 15.53 91.9 73.396 0.612 24.950 RD 253.052 17.679 62.711 44.139 

succinate 0.181 3.330 RD 27.082 4.189 9.763 3.879 0.374 0.488 LD 5.730 2.745 4.181 0.629 0.118 10.680 RD 76.296 14.794 29.504 11.843 

histidine 0.174 1.060 LR 6.442 -0.236 2.363 1.194 0.087 1.240 LR 8.303 1.853 4.498 1.312 0.122 1.210 LR 8.532 1.551 4.349 1.301 

ornithine 0.171 1.070 LR 5.270 -1.304 0.908 1.201 0.191 1.650 LR 8.424 -2.208 3.854 1.858 0.166 1.420 LD 9.047 -1.210 4.751 1.607 

xylose 0.17 0.453 LR 1.712 -0.602 0.428 0.501 0.542 0.487 LD 3.506 0.194 1.685 0.731 0.311 0.39 LD 3.475 -0.133 1.745 0.485 

pyroglutamate 0.149 0.58 LR 2.275 -0.917 0.423 0.639 0.279 0.819 LR 4.610 0.29 2.742 0.974 0.353 1.060 LR 5.293 -0.419 2.932 1.340 

AMP 0.146 2.850 RD 22.340 1.068 4.286 3.752 0.038 0.73 LR 5.397 2.091 3.691 0.759 0.421 0.816 LD 5.974 1.252 4.480 1.100 

thydroxypyridine 0.14 0.524 LR 2.303 -0.627 0.907 0.572 0.213 0.424 RD 4.137 0.652 2.177 0.756 0.084 1.500 RR 10.620 1.183 3.724 1.616 
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isoleucine 0.124 0.754 LR 4.880 0.126 1.879 0.819 0.272 0.821 LR 6.228 2.118 3.941 0.972 0.348 0.857 LR 6.799 1.406 4.093 1.074 

tyramine 0.118 0.588 LD 2.558 -1.594 0.428 0.639 0.394 3.010 RR 19.628 2.119 7.749 3.984 0.047 4.570 RR 22.137 2.812 13.353 4.682 

glutamine 0.115 0.923 LR 7.589 1.236 3.387 1.010 0.263 1.170 LR 8.949 2.860 6.076 1.373 0.22 1.630 LR 9.993 0.097 5.799 1.885 

t-hydroxy-
cinnamate 

0.05 0.915 RR 5.730 0.799 2.326 0.979 0.159 0.915 RR 82.751 3.946 31.847 15.513 0.057 24.300 RR 147.561 15.294 54.096 25.337 

valine 0.048 0.618 LR 3.377 -0.782 0.602 0.646 0.302 0.832 LR 4.705 0.5 2.357 1.002 0.287 0.893 LR 5.608 -0.025 2.508 1.068 

galactinol 0.041 0.51 LR 1.174 -1.504 -0.184 0.524 0.525 0.669 RR 4.855 0.146 1.390 0.993 0.403 0.595 RR 5.127 0.309 1.491 0.794 

adenine 0.033 1.020 LR 6.470 2.134 3.579 1.051 0.15 111.050 RD 942.301 5.956 124.015 
136.89

0 
0.389 1.040 LD 9.444 2.830 5.464 1.429 

lactate 0.026 0.646 LR 2.953 -0.854 1.385 0.664 0.328 0.842 LR 3.913 -1.280 2.020 1.049 - - - - - - - 

3-phosphoglycerol - - - - - - - 0.53 1.134 RD 9.282 0.123 2.006 1.872 0.717 1.160 LR 3.678 -4.509 -0.692 2.242 

isomaltose - - - - - - - 0.104 0.551 LD 3.208 -0.042 1.445 0.586 0.293 0.533 LD 3.336 0.15 1.194 0.647 

4-
hydroxybenzoate 

- - - - - - - 0.252 0.546 LD 4.533 0.625 2.603 0.648 0.348 0.702 LR 5.434 0.344 2.968 0.893 

rhamnose 0.561 0.31 LR 4.655 2.059 3.501 0.478 - - - - - - - 0.356 0.398 LD 5.567 3.326 4.354 0.508 

glucaratelactone 0.414 0.811 LR 3.177 -1.540 0.643 1.108 - - - - - - - 0.642 0.808 LR 6.095 -0.009 3.454 1.385 

transcaffeate 0.074 0.446 LR 4.896 2.441 3.162 0.472 - - - - - - - - - - - - - - 

c-CQA 0.371 1.640 LR 4.386 -3.617 0.275 2.102 - - - - - - - - - - - - - - 

t-CQA 0.569 1.580 LR 6.582 -3.565 1.818 2.444 - - - - - - - - - - - - - - 

cellobiose - - - - - - - - - - - - - - 0.134 2.960 RR 19.711 3.269 8.753 3.253 

galactonate-1,4-
lactone 

- - - - - - - - - - - - - - 0.292 0.424 RD 2.917 0.692 1.652 0.515 

malonate - - - - - - - - - - - - - - 0.267 0.657 LD 4.387 0.222 1.971 0.794 

N-acetylserine - - - - - - - - - - - - - - 0.185 0.504 LD 2.320 -0.238 1.127 0.577 

O-acetylserine - - - - - - - - - - - - - - 0.425 0.367 LD 3.110 0.382 1.858 0.521 
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Table 3. Geographic, climatic, agronomic, and soil information for each study site. Colmenar de 

Oreja and El Majano experimental stations belong to the Instituto Nacional de Investigación y 

Tecnología Agraria y Alimentaria (INIA) of Spain and Zamadueñas experimental station belongs 

to the Instituto Tecnológico Agrario de Castilla y León (ITACyL). 

 

  

  

Zamadueñas 

experimental station 

Colmenar de Oreja  

experimental station 

El Majano 

experimental station 

Altitude (mamsl) 700 590 20 

Coordinates 41º 42' N, 4º 42' W 40º 04' N, 3º 31' W 37°14' N, 6°03' W 

Mean Temp.b (ºC) 10.73 13.01 14.5 

Max. mean Temp.b (ºC) 17.45 21.45 21.6 

Min. mean Temp.b (ºC) 4.64 5.36 8.3 

Precipitationb (mm) 258.4 206.8 161.8 

Sowing date 24.11.2014 21.11.2014 11.12.2014 

Harvest date 22.07.2015 20.07.2015 11.06.2015 

Sowing density (seeds m-2) 250 250 250 

Plot surface (m2) 10.5 (7x1.5) 10.5 (7x1.5) 10.5 (7x1.5) 

Irrigation provideda (mm) 125 180 - 

Fertilisation 
  

 

 
1st application 300 kg ha-1 NPK 8:15:15 400 kg ha-1 NPK 15:15:15 500 kg ha-1 NPK 15:15:15 

  2nd application 300 kg ha-1 CAN 27%N 150 kg ha-1 Urea 46% 100 kg ha-1 Urea 46% 

Soil texture Loam Clay-loam Silty clay loam 

Soil pH 8.44 8.1 7.6 

ain the irrigated treatment  

bduring the growing season  
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Figure legends  

Figure 1. Means of leaf, ear and canopy VIS-NIR-SWIR reflectance spectra (upper left) and the first 
derivative reflectance spectra (lower left). Standard deviations are plotted in grey. Principal 
component analysis of the reflectance spectra (upper in middle) and the first derivative spectra 
(lower in middle) and the corresponding waveband contribution in the first two components 
(upper and lower right). HY, high yielding environment; R-, rainfed environment. 

 

Figure 2. Detection rate (%) of wavebands in the VIS-NIR-SWIR spectrum in the yield prediction 
models performed from leaf, ear and canopy spectra (n=288). 

 

Figure 3. Heatmap showing the correlation coefficients between the wavebands in the first 
derivative reflectance spectra of leaves and ears and the metabolite profiles of leaves, glumes and 
lemmas. 

 

Figure 4. Bar plot showing the proportion of explained variance (adj-R2 in the validation sets) of 
leaf (A) glume (B) and lemma (C) metabolites in the LASSO regression models based on the VIS-
NIR-SWIR organ spectrum, the VIS organ spectrum and the canopy spectrum.   

 

Figure 5. Waveband detection rates in the prediction models for a selection of leaf, glume and 
lemma metabolites. Green lines correspond to the detection rate of the models based on the VIS-
NIR-SWIR organ spectrum, blue lines indicate the detection rate of wavebands when using the 

canopy spectrum. GABA, -aminobutyric acid; Glc, glucose; Pro, proline; Ser, serine; Suc, sucrose. 
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Figures 
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Figure 2 
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Figure 3 
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Figure 5  
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DISCUSSION 

The current thesis represents a multidimensional attempt to investigate avenues to improve crop 

phenotyping. To that end, a range of  traits involved in the response to the environment and 

performance of maize and wheat, the two major crop species worldwide, together with novel 

phenotyping approaches were investigated: i) crop yield performance under diverse stress conditions, 

ii) genotypic variability providing opportunities to breed for, iii) phenotyping approaches from low-

cost to frontier technologies, iv) plant morphoanatomical and composition traits that affect 

phenotyping and v) metabolomics of wheat tissues, particularly focusing on the ear as a new frontier 

in field phenotyping. In a broad sense, we feel that these studies have contributed to the advancement 

of field phenotyping aimed for breeding and even crop management, while providing new insights in 

ecophysiology, particularly identifying traits for further selection. Therefore, the different chapters 

integrated in this thesis have succeeded in characterizing plant-crop traits from a broad range of 

methods and provided useful advances to be applied not only in field phenotyping, but also for plant 

monitoring and even basic plant research.    

 

Exploring new traits for wheat adaptation to the environment 

In the last years, the growing interest in plant phenotyping research is not casual and has to do with 

the urgency to obtain resilient crops, to understand plant stress responses and to overcome plant 

breeding shortcomings. Thus, plant phenotyping has become the backbone of most studies in ecology, 

agronomy and ecophysiology exploring plant functional diversity, compare the performance of 

species or study plant responses to the environment (Granier and Vile, 2014; Rahaman et al., 2015). 

The phenotypic plant responses to either biotic or abiotic stresses are multidimensional and include 

morpho-anatomic, physiological and molecular variations leading to mechanisms of acclimation or 

avoidance. Also, in the case of wheat, in most of plant ecophysiology studies far more attention has 

been paid to the role of the flag leaf (e.g. traditionally considered as the main photosynthetic organ 

contributing to grain filling). Instead, the understanding of the metabolism of non-laminar organs such 

as the ear may provide further insights on wheat ecophysiology and opportunities to breed for.  

In our work in yellow rusted durum wheat (Vergara-Diaz et al., 2015), changes in yield components 

interrelationships and phenology (days to heading) were associated with disease incidence and  grain 

yield. Thus early-heading genotypes, mitigated the incidence of the disease through a mechanism of 

avoidance, therefore exhibiting higher yields. Previous works proposed to optimize phenology traits, 

especially the timing of reproductive stages, with respect to the historic or predicted future 

occurrence of different types of stresses (Zheng et al., 2015). Our study was limited to sixteen 

commercial varieties; therefore, it could be equivocal to extrapolate this conclusion to a wider 
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collection of genotypes. In other words, the obtention of genetically resistant varieties may not be 

necessarily linked to short-cycle varieties but undoubtedly this trait permits to better scape from this 

disease and accumulate higher yields.  

In other work with wheat, leaf anatomy traits (epidermis and mesophyll metrics) were shown to be 

modulated by dorsoventrality and water stress, with consequent variations on their associated 

spectral signal (Vergara-Díaz et al., 2018). Also, the pigments (chlorophyll, anthocyanin and 

carotenoids) ’spectral signal variation suggested possible side-specific photochemical changes in 

response to water regime. It was proposed that water stress induces structural and pigment changes 

in the leaf that tends to reduce dorsoventral differences (functioning) in the leaf and consequently 

the spectroradiometrical response. Despite of the limitations of this study, it seems clear that 

acclimation mechanisms of plants in response to stress are complex and multidimensional and should 

be carefully/thoroughly addressed. Moreover, even in a species like wheat traditionally considered as 

having isobilateral amphistomatous leaves, dorsoventrality may affect the performance of the remote 

sensing assessed vegetation indices. 

In wheat leaves and roots, osmotic stress imposition generally involves an alteration of nitrogen 

assimilation machinery affecting protein synthesis (i.e. accumulation of free amino acids) and sugar 

content, triggering expression patterns of dehydration-responsive, carbon-metabolism, and nitrogen-

related genes (Annunziata et al., 2016; Yousfi et al., 2016; Brini et al., 2007; Fàbregas and Fernie, 

2019). Whereas the leaves and the roots have been the main plant organs targeted given their role as 

photosynthetic organs or capturing resources (water and nutrients) for the plants other plant parts 

have attracted less attention in the past. However, in the case of wheat, the exploration of the role 

other plant organs, such as wheat ears, is attracting increasing attention as these may enhance the 

understanding of underlying mechanisms implicated in plant acclimation while providing new 

opportunities for breeding. In this line of work, our study in wheat metabolite profiling (Vergara-Diaz 

et al., submitted a) supports previous evidences from other approaches (isotopes, transcriptome and 

enzyme activity studies) that highlighted the role of ears as photosynthetic organs contributing to 

grain filling and nitrogen assimilation and its enhanced antioxidant metabolism, particularly under 

water stress conditions (Vicente et al., 2018; Sanchez-Bragado et al., 2014; Lou et al., 2018; Tambussi 

et al., 2007). We proposed the outperformance of spikes under water stress to be associated with i) 

strong coordination of nitrogen assimilation, photorespiratory nitrogen cycle and TCA cycle, ii) 

remarkable levels of carbon fixation and/or refixation and iii) an active antioxidant machinery. Thus, 

our work evidenced that ear bracts metabolism is strongly responsive to water stress and concluded 

that drought resilience of wheat may be mediated by the high performance of the ear. Besides, 

photosynthetic non-laminar tissues and the inflorescence have been reported to contribute to grain 

carbon in a major extent than the flag leaves (Merah et al., 2017; Sanchez-Bragado, et al., 2014; 
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Sanchez-Bragado et al., 2016). Thus, although many advances have been done in this field recently, 

there is still much to know from ear metabolism. For instance, ear contribution to grain filling is highly 

variable according to environment and genetic factors (Merah et al., 2017; Zhu et al., 2009), so future 

work must address how to assure the heritability of ear outperformance traits, from which breeding 

to improve wheat drought tolerance may benefit. 

 

Detecting genotypic variability for breeding 

Plant phenotyping may provide valuable information for breeding as long as genotypic variability exists 

and can be detected. In the works included in the current thesis, genotypic differences for diverse 

categories of traits have been identified even in small panels/collection of genotypes. 

Although leaf or crop plot colour (derived from RGB imagers) may appear as a simple or even naive 

traits, they have demonstrated to integrate phenotypic information that succeeded in detecting 

genotypic variability associated with traits of interest. For instance, genotypic differences in plot 

colour traits (RGB indices) were closely associated with yellow rust disease incidence and were 

accurate predictors of grain yield (Vergara-Diaz et al., 2015). Instead, in the assayed panel of 

genotypes under disease conditions, stomatal conductance and canopy temperature depression, both 

parameters being closely associated with plant water status, failed to capture genotypic differences, 

although changes in water status associated to yellow rust have been reported(Smith et al., 1986; 

Awad et al., 2015). When measuring stomatal conductance in the field, the limited the number of 

biological replicates (leaves per plot), given the time elapsed by each measurement, the daily patterns 

of this trait and the changing weather conditions (wind and sunlight) may involve methodological 

problems leading to ambiguous results. Canopy temperature measured plot by plot may have some 

comparatively advantages but so far sudden changes in weather prevented to asses genotypic 

differences in tolerance to yellow rust.  In contrast, the almost-instantaneous record of the complete 

field trials (particularly when using thermal cameras mounted in aerial platforms) may solve some of 

the limitations inherent to ground (i.e. individual plot level) measurements of canopy temperature 

and likely provide better results (Araus et al. 2018). 

 In the work developed in maize (Vergara-Díaz et al., 2016) addressing genotypic variability under 

different nitrogen fertilization regimes, the performance of leaf and plot colour traits, was the key 

point of the study. Unlike spectroradiometrical approaches, like NDVI and SPAD-readings, we 

concluded that (RGB) colour traits offer opportunities for the assessment of genotypic variability in 

grain yield and leaf nitrogen content within each nitrogen fertilization level. Thus, RGB-derived 

genotypic characterization may provide information fundamental for the selection of the most 
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efficient genotypes in terms of grain production and nitrogen uptake, responding to the needs of 

breeding for nitrogen deficiency tolerance in maize.  

A last insight on genotypic variability can be extracted from the metabolic study of wheat organs under 

water stress (Vergara-Diaz et al., submitted a). We concluded that genotypic high-yielding behaviour 

was mainly associated with alterations in cell wall metabolism and with carbon assimilation in the leaf 

and spike bracts. We considered that the reported metabolic changes may have contributed to 

drought acclimation and yield stability, thus, the study targets potentially interesting metabolites for 

molecular breeding. Even so, further mechanistic investigation is needed to set the basis of these 

changes observed at the metabolic level while the use of a wider collection of genotypes may enable 

to identify other sources of variation contributing to stress resilience.  In that context genotypic 

differences in metabolites may be assessed in a non-destructively manner using hyperspectral 

approach as detailed below (Vergara-Diaz et al., submitted b). 

 

Phenotyping through proximal sensing:  from the low cost to the frontier 

sensors 

At present, most of what is considered high-throughput phenotyping is based on remote sensing 

(Araus et al., 2018). Imaging systems, including RGB, multi/hyper-spectral, fluorescence and thermal 

sensors, can be deployed on diverse types of platforms: in controlled environments (chambers), 

“pheno-mobiles”, fixed platforms permanently stationed in a given site or in aerial platforms (i.e. 

drones). Among the panoply of new techniques in plant biology for phenotyping, the most frequently 

deployed and versatile are the RGB based technologies, as they have demonstrated to be high-

throughput, while being straightforward from an operational point of view and low-cost (Rahaman et 

al., 2015; Araus et al., 2018). In our research, RGB-derived phenotyping proved to be highly versatile 

and high-throughput method for the retrieval of plant-crop traits under nitrogen deficiency and 

disease conditions. 

Prior to our research on yellow rust in wheat, many studies used RGB images of leaves for the 

detection and classification of diseases and/or for the quantification of disease incidence (Kampmann 

and Hansen, 1994; Camargo and Smith, 2009). Also, recent works, still employing leaf images, have 

developed complex image processing systems, including the integration to deep learning machines 

and sophisticated statistics that successfully characterized diverse diseases symptoms and spread 

severity even in many plant species (Mohanty et al., 2016; Johannes et al., 2017). Therefore, RGB-

assisted disease phenotyping may be of great importance not only for breeding and management but 

also for improving the efficacy of fungicides and new biological control treatments. While we feel that 

these advances are interesting, particularly when integrated in automated phenotyping platforms, 
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these are still away from end users ‘management because of their operational complexity and lack of 

representativeness of cultivars in the field. For instance, one disease-resistant genotype exhibiting 

healthy leaves when tested in pots, may eventually show low vigour (i.e. low biomass and tillering 

rate) in the field, which is not detectable with leaf images, and may provide ambiguous information. 

While detection and identification algorithms are key for disease management, their final application 

should be tested in the field at plot scale of measurements which may provide most valuable 

information for final users: breeders, ecophysiologists and phytopathologists. Our approach (Vergara-

Diaz et al., 2015) was much more straightforward as we did not aim to detect and classify the disease 

(i.e. necrosed areas, yellowish or orange spots and stripes). Instead, zenithal images at the ground 

level (that may be upscaled at the aerial level) enabled to catch high definition colour traits of a 

representative plot area, that were indicative not only of disease spread, but also of biomass and 

green cover. Therefore, the presented approach was more representative of genotype by 

environment performance and satisfactorily integrated information regarding yield losses and grain 

yield. Subsequently, this method proved to detect efficiently maize lethal necrosis disease incidence 

in a study where I was co-author (Kefauver et al., 2015) which demonstrated its broad use for biotic 

stress assessment. Although recent work assessing disease conditions and yield performance at the 

aerial level encountered some limitations (Liu et al., 2018), it is the opinion of authors that biotic stress 

assessment may benefit from the implementation of RGB-based phenotyping at the aerial scale. The 

employment of other sensing methods (thermal, hyperspectral and florescence) may provide more 

complex phenotypic output and may be employed for in-field early (visual-asymptomatic) detection 

of plant diseases, which in fact is the larger challenge together with the distinction of phenotypic signal 

between biotic and abiotic stresses, which frequently overlap (Calderón et al., 2013; Pauli et al., 2016). 

The other RGB-phenotyping approach presented in the current thesis addressed maize performance 

under diverse nitrogen fertilization conditions (Vergara-Díaz et al., 2016). The first works proposing 

the use of RGB sensors for the retrieval of maize traits were performed at the lab and aimed to 

estimate chlorophyll content as compared to the performance of SPAD-meter (Kawashima and 

Nakatani, 1998), since chlorophyll content is closely associated with nitrogen status. Following 

research aimed to determine leaf nitrogen concentration using leaf images (Mercado-Luna et al., 

2010; Ali et al., 2013). Jia et al. (2014) estimated satisfactorily the aboveground nitrogen accumulation 

(rather than its concentration in leaf area basis) as derived from biomass cover from plot images. 

Although the relevance of these results is undoubtedly, it should be noted that the intrinsic association 

between green cover, biomass and total nitrogen accumulation sets certain degree of uncertainty in 

the basis of nitrogen estimation. Although in our research, higher robustness in the prediction of leaf 

nitrogen was shown when employing leaf-RGB derived indices, the canopy RGB indices were still good 

indicators of plant nitrogen. In agreement with our work, more recent studies (Chen et al., 2018) found 

CIE-Lab RGB indices to be closely related with leaf nitrogen content, while other works comparing RGB 
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and NDVI methods to predict grain yield in wheat (Fernández et al., 2019) obtained quite similar 

results. Also, recent evaluation of RGB and multispectral sensors mounted at remotely piloted aircrafts 

(RPA; this term is nowadays preferred instead of the more popular term of unmanned aerial vehicle, 

UAV) for the assessment of nitrogen accumulation in rice showed the better performance of RGB 

indices than the multispectral indices, except by red-edge multispectral indices  (Zheng et al., 2018). 

In this line of research, RGB-derived phenotyping is providing novel methods for crop traits evaluation, 

such as detection and quantification of crop cover, height and volume (Pádua et al., 2018), plant 

emergence and leaf area quantification (Li et al., 2019), or the effect of mineral deficiency on dynamic 

leaf growth and colour (Sun et al., 2018). Thus, we consider that the integration of RGB sensors with 

other imagery sensors in aerial platforms, together with novel computing systems for image 

segmentation and data extraction, will be  key for the acquisition and further evaluation of large 

phenotypic datasets (i.e. hundreds to thousands of genotypes).   

Even so, frontier technologies like field spectroscopy may provide high-dimensional phenotypic data 

contributing to basic and applied research. In Vergara-Díaz et al. (2018) field spectroscopy was 

employed for the analysis of leaf dorsoventrality as compared to water stress effect in wheat, and 

their interaction. Thereby, we could dissect and discuss the major biochemical and biophysical 

changes associated with dorsoventrality and water stress and their implications. Although spectral 

indices can be informative, they use less than 1% of the spectra, whereas the employment of the full 

spectra data (acquired through hyperspectral sensors) can better inform on physiological processes 

and biochemical compositions besides of ecological applications (Turner et al., 2003; Pauli et al., 

2016). Thus, the capability of hyperspectral sensors for the estimation of the metabolite content of 

plant organs in wheat was investigated (Vergara-Díaz et al., submitted b). Although the spectral 

signatures of plant organs and canopies are jointly influenced by environmental and plant structural 

characteristics (i.e. canopy architecture and organs anatomy)(Homolová et al., 2013; Peñuelas and 

Filella, 1998), they still proved to contain valuable information regarding biochemical composition 

(Vergara-Díaz et al., submitted b). In consideration of our findings, much efforts can be dedicated in 

the development of in-field metabolic phenotyping through hyperspectral information. However, still 

certain aspects must be carefully addressed: i) validation of this method in plant material grown under 

different stressor conditions, ii) using a wider range of genotypic variability or even comparing 

different species, iii) testing the possible interferences of stress-associated anatomy changes and iv) 

further validate the retrieval robustness with analytical measurements of metabolite concentration 

rather than the relative metabolite content.  

Deeping in the prediction capability: from grain yield to metabolic profile 

The studies conforming the present thesis, although deploying multiple analytical and statistical 

approaches, converge in the estimation of crop-plant traits, principally the grain yield but also 
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composition traits, including a wide range of metabolites. It is worth to mention that many factors 

(e.g. seasonal variability, variation in the sensors and methodology used and the different stress 

conditions evaluated) may interfere affecting the results of predictive models. Also, the statistical 

approaches performed were specific for each case of study so a strict comparison of their robustness 

and accuracy could be equivocal/ambiguous. That said, we hereafter provide a tentative comparison 

of the diverse methods used in crop-plant traits estimation.   

In the case of yield, RGB-derived phenotypic data, solely or in combination, with a phenology trait 

(days to heading) explained together between 68 to 72% of yield variation (Vergara-Diaz et al., 2015; 

Vergara-Díaz et al., 2016). For its part, the application of spectroscopic methods either with the 

employment of formulated spectral reflectance indices or with variable selection methods from the 

whole spectra of leaves, ears and canopies could enhance the prediction of grain yield, achieving 

between 73 to 90% and 72 to 75% (in the validation sets) of explained yield variability, respectively 

(Vergara-Díaz et al., 2018; Vergara-Díaz et al., submitted b).  From these spectroscopic studies it was 

concluded that i) canopy spectrum generally permit to predict yield with higher precision as it 

integrates phenotypic information regarding biomass and green cover, closely associated with yield, 

ii) ear spectrum is indicative of final yield even in some case reaching the precision of canopy 

spectrum-based models and iii) the use of leaf abaxial spectrum instead of the adaxial enhances yield 

prediction likely due to its greater structural homogeneity.  Finally, yield prediction based on 

metabolite profiles of leaves and ear bracts also yielded very good results, as grain yield explained 

variation ranged between 74 to 83% in the training sets and between 56 to 66% in the validation sets, 

with lemma's metabolite profile providing the most robust prediction followed by the leaves and 

glumes profiles. Nevertheless, direct prediction of yield using the spectral signature was stronger than 

yield prediction based on metabolite profiles. All methods developed have key strengths i) field 

spectroscopy may provide the most robust prediction and permits to deep into the traits associated 

with yield (by documenting the relationship between specific wavebands of the spectrum with crop-

plant constituents or biophysical traits), ii) RGB methods represent the most cost-effective 

phenotyping tool of high operational simplicity while providing high-throughput data and iii) 

metabolite-yield association studies permit to dissect metabolic responses related to yield while 

providing potential biomarkers for breeding.  

Regarding leaf nitrogen content assessment, highest prediction accuracy at the single leaf level was 

given by SPAD-meter (82% of explained variation) but, as previously explained, leaf nitrogen 

differences across genotypes within fertilization levels was far better detected by RGB-derived indices, 

although their prediction of leaf nitrogen content across treatments was more modest (69% of 

explained variation)(Vergara-Díaz et al., 2016). In other words, RGB vegetation indices appear as more 
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robust than the spectral measurement derived from a leaf chlorophyll meter, as a phenotypic 

approach to assess the genotypic variability of maize to different levels of N fertilization.   

Lastly, the use of field spectroscopy permitted to quantitatively estimate several leaf and ear bracts 

metabolites with considerable high prediction accuracy (Vergara-Diaz et al., submitted b), since for at 

least fifteen metabolites per organ, models exceeded 50% of explained variation (validation sets). 

Many of these metabolites are of great relevance as they are representative of or modulate plant 

physiological processes, so that their non-destructive estimation is a highly valuable information for 

molecular and ecophysiological studies as well as for breeding programs. For instance, this could be 

applied to track carbon assimilation, its partitioning and storage, protective and osmotic adjustment 

responses, nitrogen assimilation, signaling and for the assessment of photorespiration and respiratory 

functioning, which are currently some of the promising fields of study in molecular biology (Clément 

et al., 2018; Eisenhut et al., 2019). 

 

Future challenges and concerns in plant phenotyping research 

There exists a perception regarding the cost and complexity of new phenotyping methods which may 

limit their adoption by the private sector or public research (Araus et al., 2018). However, many fields 

of research, from molecular biology to data science, are called to jointly overcome these worries 

convincingly. One key concern refers to the validation of the HTP methods in the field and the 

reliability of the extrapolation of phenotypic data from controlled environments to real (field) 

conditions. This is because controlled systems are unable to replicate environmental variables 

influencing complex traits such as grain yield and drought tolerance (Pauli et al., 2016; but see: Yadav 

et al., 2019 for opposite results). For instance, molecular studies revealed that plant responses to 

drought can vary dramatically between the greenhouse and the field, emphasizing the importance of 

field-based research (Lovell et al., 2016; Pauli et al., 2016). Even, transcriptomic and metabolic 

adjustment can change due to the type of treatment with which stress is imposed (e.g. dehydration 

of detached leaves or water withholding for imposing water stress under controlled environments) as 

well as to the severity and duration of the imposed stress (both in the field and in controlled systems) 

(Fàbregas and Fernie, 2019). Thus, basic standards in terms of stress imposition and evaluation will 

need to be adopted (Fàbregas and Fernie, 2019). Also, recent works have evidenced different 

molecular mechanisms occurring in shoots and roots in response to drought (e.g. 

activation/deactivation of resource uptake, upregulation of transport and biosynthesis of amino acids 

and hormones) (Gargallo-Garriga et al., 2015; Rasheed et al., 2016), whereas novel works on wheat 

ear performance also highlighted its great responsiveness to water stress (Vicente et al., 2018; 

Vergara-Díaz et al., submitted a; Sanchez-Bragado et al., 2016). Therefore, future phenotyping must 



 

189 
 

address spatially different (i.e. intra-plant) responses coping with stress, deepening in wheat 

ecophysiology while providing potential phenotypic traits for breeding for stress resilience.   

Spectacular advances have been done in HTP, such as the combination of numerous high-precision 

sensors (sensor fusion) in phenotyping platforms, for the prediction of complex plant physical traits 

and three-dimensional structure, and capturing physiological and growth dynamics as well as stress-

responsive traits (Deery et al., 2014; Chen et al., 2014). However, there is a need to evaluate whether 

the data generated by HTP is capturing true biological signal and if that signal is worth the investment 

of resources (Pauli et al., 2016). For this, future research must contemplate the promotion of open-

source and low-cost hardware solutions; for instance, through smartphones and tablets apps meeting 

the demands of researchers and farmers. Other concerns for the adoption of HTP encompass 

operational issues such as the need to develop more mobile methods adapted to real conditions. For 

instance, many phenotyping platforms are purpose-developed for a specific research so that they are 

not commonly transferable to other crops and field designs (Pauli et al., 2016). Instead, the use of 

sensors-equipped small aerial vehicles (i.e. RPAS) can be pervasive across experimental designs and 

species although they mostly capture canopies phenotypic traits.   

Extensive phenotyping and multi-omics characterization generate vast amount of data from which 

biological meaning must be extracted. In this sense, part of the current challenges in phenotyping 

concerns data and computer sciences, as these must provide the tools for the acquisition, processing 

(management) and integration of multidimensional data while ensuring operational simplicity and 

data accessibility. Also, there is room for improving the characterization of the environment, whereas 

phenotyping methods must be simple and clear and preferably affordable in order to ensure 

reproducibility and reliability of the data, while promoting a wide adoption of common protocols for 

phenotyping.  
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CONCLUSIONS 

Plant phenotyping and, in a broad sense, plant biology research still must elucidate many aspects of 

plant adaptation to stresses, including how to identify stress resilience and which are the phenotypic 

traits indicative of stress tolerance. While these challenges are huge, it is evident that the intense 

development of very diverse phenotyping systems is paying off, as reported in the conclusions of this 

thesis:  

i) RGB-derived phenotyping is an efficient and cost-effective tool that can be easily 

implemented in plant research, breeding and crop management. RGB-based vegetation 

indices (in this case by a parameterization or colour to HIS, CIE-Lab and CIE-Luv colour 

spaces) obtained from plot images are reliable indicators of green cover (vegetation 

coverage and oppositely, soil exposure) while provide numeric information of colour 

balance in the image (e.g. if mean colour tends to dark green, yellowish green, bluish 

green or red). 

ii) These RGB colour components can be closely associated with a broad range of 

phenomena that generate a visible colour signal such as growth and yield traits, 

physiological processes (e.g. active photosynthetic area and senescence), disease 

spread and leaf nitrogen concentration. . 

iii) On the other hand, field spectroscopy represents a frontier technology for phenotyping 

that can be intended for the disclosure of more complex and hidden plant traits in 

relation to their composition, anatomy and physiological status.  

iv) The interactions between plant reflectance spectrum, leaf anatomy and environmental 

conditions are intricated and must be carefully addressed. While water stress triggers 

anatomy and biochemical modulation in plants that can be detected and evaluated from 

hyperspectral sensors, constitutive differences between leaf sides (leaf dorsoventral 

differences) affect leaf reflectance spectrum even in a larger extent than water stress 

does.  

v) Nevertheless, dorsoventral differences (at the anatomical level and at the biochemical 

spectral signal level) are less evident under rainfed conditions, as compared to well-

watered conditions.  

vi) While the greater structural homogeneity of the abaxial leaf side may favour a less noisy 

spectral signal, the adaxial leaf side is still more representative of canopy reflectance, 

which should be considered for future spectroscopic research in wheat.  

vii) Metabolome characterisation of wheat enables to better understand how plant tissues 

suffer from and adapt to stress contributing to elucidate their physiologic role and 

offering new ways to improve wheat productivity and resilience. 
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viii) The marked accumulation of organic and amino acids in spike bracts, particularly under 

water stress, is facilitated by a better coordination of carbon and nitrogen metabolisms 

in terms of photorespiration, nitrogen assimilation and respiration paths as compared 

to that of the flag leaf, whereas water stress induced accumulation of antioxidants and 

drought tolerance related sugars, particularly in the bracts, support the outperformance 

of the spike as compared to the flag leaf. 

ix) Metabolite-yield association permits to reveal metabolites related to genotypic 

outperformance and yield stability. 

x) Field spectroscopy can be high-throughput tool intended for internal phenotyping of 

metabolite profiles of wheat leaves and ears.  

xi) Important metabolites implicated in sugar, photorespiration, osmoprotection, and 

secondary metabolisms can be estimated with considerably high robustness, which 

could likely be of interest for ecophysiologists, plant breeders and the agri-food 

industry. 

xii) Although the regression models, based on organ full-range reflectance spectrum, 

achieve the higher robustness, models based on canopy and organ-VIS spectra still 

appear promising and offer potential opportunities.   
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RESUM GENERAL DE LA TESI 

Introducció 

L’escalfament global està afectant ja els sistemes biològics i físics d’arreu del món, i ha assolit 

recentment 1ºC per sobre dels nivells preindustrials, incrementant 0.2ºC per dècada. Malgrat això, 

moltes regions del món, particularment poblades, han experimentat un increment de temperatura 

superior a 1.5ºC per sobre dels nivells preindustrials. A més a més, el canvi climàtic, ha comportat un 

increment de la freqüència d’onades de calor, nombre i intensitat de dies calorosos i de fenòmens de 

pluges molt intenses. Cal tenir en compte, però, que el canvi global té un fort component regional. A 

Europa, per exemple, els increments de temperatura observats i projectats es donen als extrems 

latitudinals. Els canvis de precipitació observada i projectada són menys evidents, tot i que 

generalment s’accepta que s’ha produït un increment de precipitació al nord d’Europa i un decrement 

al sud. Aquestes tendències probablement es magnifiquin properament, mentre que la freqüència 

d’episodis de sequeres i pluges intenses també s’agreugi a conseqüència del canvi global. Tot plegat 

repercutirà en la disponibilitat de recursos hídrics al subsol i en superfície així com també en un 

increment de risc d’erosió.     

L’avenç de l’agricultura moderna, amb l’obtenció de varietats altament productives i l‘ús massiu de 

fertilitzants i d’altres productes va comportar un increment de la producció arreu del món però també 

va tenir efectes nocius sobre els agro-ecosistemes. Actualment, l’agricultura ocupa bona part des sòls 

útils i utilitza una part important dels recursos hídrics continentals, particularment a zones del sud 

d’Europa. L’increment de temperatura pot tenir efectes greus en el desenvolupament i producció dels 

cultius principals mentre que n’incrementa la demanda hídrica. Com a resultat, ja s’ha reportat 

pèrdues greus de producció d’alguns cultius i s’ha projectat que a nivell mundial s’incrementin 

aquestes pèrdues, tot i que a nivell regional algunes zones en puguin resultar beneficiades. El canvi 

climàtic també pot tenir efectes sobre la distribució i supervivència de malalties i plagues que puguin 

agreujar el manteniment de la seguretat alimentaria. Molts estudis han identificat efectes positius de 

l’increment de CO2 ambiental com ara una optimització de l’ús de l’aigua, malgrat això l’increment de 

la demanda hídrica dels cultius i els processos fisiològics d’aclimatació posen en qüestió els beneficis 

a llarg termini. 

 

Per tant, els sistemes agrícoles requereixen urgentment un cert grau d’adaptació per tal de fer front 

aquests problemes, reduint la seva pròpia contribució al canvi climàtic i incrementar la producció 

mundial per tal de satisfer l’increment de demanda global. Per a tal fi, l’agricultura haurà de fer ús de 

tot un seguit d’estratègies des de canvis en sistemes de maneig agrícola fins a la millora de varietats. 
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Algunes de les estratègies poden ser  i) ajustar dates de sembra i collita, ii) ús de varietats de cicle curt, 

iii) implementació de tècniques d’agricultura de conservació, iv) canvis dels usos de sòl, v) 

implementació de sistemes de reg altament eficients i vi) canvi de les varietats o espècies cultivades. 

Malgrat això, només amb la millora vegetal es podran obtenir varietats més resilients als escenaris del 

canvi climàtic.    

Els cereals són un grup divers de monocotiledònies herbàcies i anuals de distribució cosmopolita, la 

domesticació i el cultiu de les quals va permetre l’assentament de les poblacions humanes fa 

aproximadament 12000 anys. La domesticació va comportar un increment de la mida dels grans i una 

pèrdua de la seva capacitat de dormició i dispersió.  Actualment, la meitat del consum calòric de la 

població mundial prové directament dels cereals, essent el blat i el blat de moro els més cultivats. Pel 

que fa a l’anatomia i al desenvolupament, el blat té fulles isobilaterals alternes que consten de beina 

i làmina, la tija està composta de nus i entrenús mentre que els fillols tenen la mateixa estructura que 

la tija principal. La tija és fistulosa, tret da’ls nusos, i a la posició terminal hi trobem la fulla bandera i 

l’espiga. El blat té rels primàries inicialment i al filloleig en desenvolupa de secundàries. L’espiga és 

una inflorescència amb un raquis que suporta les espiguetes envoltades per glumes, les quals 

contenen les flors, envoltades per la lema i la pàlea. El carpel conté l’estigma i tres estams i el gra 

resultant consta de testa i capa d’aleurona a l’exterior, i d’endosperma, escutel i embrió a l’interior. 

Els estadis de desenvolupament del blat són germinació i creixement de les plàntules, filloleig, 

elongació de les tiges, espigueig, floració, ompliment del gra i maduresa, i s’acostuma a quantificar 

amb l’escala de Zadoks. D’altra banda, el blat de moro és important no només pel consum humà sinó 

també per l’animal i pels seus productes derivats. El seu origen es donà a la regió Mesoamericana, 

probablement a partir d’una espècie Teosinte anual. A diferència del blat, té metabolisme C4, és alt i 

té una sola tija,  fulles oposades, la inflorescència masculina és forma a l’àpex mentre que la femenina 

(panotxa) es forma entre la fulla i la tija a una secció mitja de la planta. El seu desenvolupament es 

divideix en vegetatiu i reproductiu en funció del nombre de fulles formades i el grau de maduresa dels 

grans en formació.  

 

Les plantes estar sotmeses a diferents factors que minven el seu potencial genètic de creixement i 

reproducció. Generalment es divideixen en estressos biòtics, com plagues i fongs, i abiòtics com 

l’excés de calor o la manca d’aigua. Per una banda l’estrès hídric succeeix quan l’absorció d’aigua de 

la planta és menor que la demanda evaporativa. Per adaptar-s’hi, les plantes engeguen tot un seguit 

de mecanismes d’aclimatació a nivell anatòmic, fisiològic i metabòlic. L’efecte i severitat dependrà en 

part de l’estadi fenològic de la planta. En el cas del blat, la fase més crítica es dona entre el filloleig i 

l’antesi, afectant negativament el nombre de grans. Si l’estrès hídric afecta entre l’antesi i l’ompliment 

del gra,  es produeix una acceleració del desenvolupament i una reducció de l’ompliment del gra amb 
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la consegüent reducció del pes del gra. En el cas del blat de moro, l’estrès hídric causa un increment 

de l’interval entre l’alliberament del pol·len i l’emergència dels estigmes. L’estrès per excés de calor 

provoca un accelerament del desenvolupament en detriment de la fertilitat. Malgrat que la 

transpiració pot refrigerar els teixits, l’excés de calor sovint és acompanyat per una manca de 

disponibilitat d’aigua. Les deficiències nutricionals ocasionen un estrès sobre les plantes provocant 

disfuncions metabòliques i limitació del creixement. La baixa fertilitat és un dels factor més limitants 

sobre la producció global com ara a les regions subsaharianes, per això incrementar l’eficiència en l’ús 

dels nutrients és un punt clau. D’altra banda, múltiples organismes poden originar un estrès biòtic a 

les plantes i poden causar pèrdues de producció. Un problema afegit derivat del canvi global és 

l’entrada de nous agents causals de malalties i plagues que eventualment poden causar problemes 

importants sobre ecosistemes i cultius pel que l’obtenció de varietats resistents és essencial. 

L’estudi del funcionament o fisiologia del vegetals en resposta a les condicions ambientals es coneix 

com ecofisiologia. El conjunt de característiques que un organisme pot mostrar es coneix com fenotip, 

que en un sentit ampli inclou la seva variabilitat morfològica, fisiològica o bioquímica, i la seva 

caracterització es coneix com fenotipat. Així, el fenotip es refereix al resultat de la interacció del 

genotip amb l’ambient al llarg del seu desenvolupament. El conjunt de fenotips d’un organisme rep el 

nom de fenoma. Alguns autors diferencien el fenotip intern constituït pel genoma i proteoma (entre 

d’altres), del fenotip extern referit als trets que es poden mesurar amb tècniques no invasives. El 

desenvolupament de la bioinformàtica i de sistemes de fenotipat d’alt rendiment ha de contribuir a 

connectar el genotip al fenotip. El fenotipat convencional integrat en programes de millora s’ha basat 

en la caracterització del creixement i de les components de rendiment. A més a més, altres tècniques 

emprades han estat la caracterització del vigor inicial, del contingut de clorofil·les, del funcionament 

de la fotosíntesi o de la conductància estomàtica. Altres tècniques en recerca han estat l’anàlisi 

composicional, morfològic i anatòmic. Totes aquestes tècniques són útil per caracteritzar l’estrès a la 

planta i per seleccionar ecotips, el seu ús rutinari al camp no és factible.    

Tanmateix, l’ús de tècniques no destructives de detecció remota aporta una basta informació que pot 

ser emprada en ecofisiologia, agronomia i per caracteritzar fenotips al camp. Per a aquest fi, els 

sensors tenen diferents rangs de mesura i poden implementar-se a diferents escales des del seu ús a 

nivell de camp fins al nivell de satèl·lits passant per plataformes aèries. Majorment els sensors utilitzats 

són càmeres RGB, multi/híper-espectrals i tèrmiques. També és clau considerar la resolució espacial i 

espectral que es requereix en funció dels trets d’interès i de l’escala de mesura. Quan s’ha emprat 

tècniques d’espectroscòpia, l’aproximació clàssica ha estat el desenvolupament de nombrosos índexs 

de vegetació associats a trets com la biomassa aèria, la cobertura vegetal, el contingut hídric i 

pigmentari, principalment. Els últims avenços amb aquestes tècniques han permès fins i tot la 

caracterització en profunditat del funcionament dels fotosistemes i de l’avaluació de trets biofísics i 
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bioquímics complexes. D’altra banda, l’ús de sensors RGB representa una alternativa de baix cost, 

maneig senzill i alt rendiment, motius pels quals s’està expandint el seu ús. Així, s’ha emprat per 

avaluar el creixement vegetal o les deficiències minerals. Finalment, l’ús de sensors tèrmics permet 

avaluar en temps real l’estatus hídric de plantes o cultius i és útil pel maneig de cultius i per la selecció 

de cultivars tolerants a la sequera.     

D’altra banda, el desenvolupament i integració de tècniques d’alt rendiment de caracterització 

molecular pot revelar les respostes fenotípiques complexes que confereixen resiliència genotípica a 

cert estrès. En particular, la metabolòmica és el resultat de l’expressió gènica i l’activitat enzimàtica 

en un moment donat, la qual cosa representa una eina d’alt rendiment per entendre les respostes 

fisiològiques a l’ambient. Per exemple, l’estrès hídric desencadena una resposta de reprogramació 

metabòlica incloent-hi una inhibició de l’assimilació de nitrogen, una aturada del creixement o una 

resposta d’osmoprotecció. 

En resum, aquesta tesi és un recull d’estudis on s’empren tècniques de fenotipat RGB, híper-espectral 

i metabolòmica per a la caracterització del comportament de genotips de blat dur i blat de moro sota 

diverses condicions estressants.     

        

 Objectius 

Aquesta tesi té com a objectiu contribuir a l’avenç del fenotipat de camp i de l’ecofisiologia 

proporcionant mètodes i enfocaments d’àmplia aplicació des dels de baix cost i senzills fins als més 

innovadors i sofisticats. Per a aquest fi, s’han caracteritzats genotips de blat i blat de moro en 

condicions de camp i sota diferents condicions estressants. Els objectius específics, corresponents a 

cada capítol són els següents: 

i) Relacionar els índexs de vegetació RGB i altres trets fenotípics amb la incidència de la 

malaltia del rovell lineal del blat predint el rendiment i les pèrdues de rendiment amb 

aquests trets.    

 

ii) Avaluar la deficiència de nitrogen en una panel de genotips de blat de moro, tot 

desenvolupant eines de fenotipat assequibles i de fàcil maneig. Comparar la robustesa 

dels índexs de vegetació RGB amb d’altres com l’NDVI per la predicció del rendiment i 

del nitrogen foliar, així com avaluar la variabilitat dins de cada nivell d’aplicació de 

nitrogen.   
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iii) Investigar l’efecte del règim hídric i de la dorsoventralitat foliar en blat sobre les 

característiques de la reflectància. Elucidar quins són els trets fisiològics, anatòmics i 

bioquímics responsables i quines són les implicacions alhora de predir el rendiment.  

 

iv) Caracteritzar el metaboloma de fulles i bràctees de blat en resposta a l’estrès hídric. 

Investigar l’existència de respostes metabòliques específiques de cada teixit i estudiar 

l’associació entre els metabòlits i el rendiment.  

 

 

v) Investigar l’estimació del contingut de metabòlits a partir d’informació híper-espectral 

a nivell de fulla, espiga i capçada. Avaluar la relació entre determinades bandes de 

l’espectre de reflectància amb certs metabòlits.  

 

 

 

Capítol 1  

El fong biotròfic Puccinia striiformis f. sp. tritici és l’agent causant del rovell groc lineal al blat. D’entre 

els anys 2010 al 2013, una nova soca d’aquest patogen (Warrior/Ambition), contra la qual les 

varietats de blat cultivades al present no presenten resistència, va aparèixer i es va propagar 

ràpidament. Això ha posat en perill la producció de cereals a bona part d’Europa. S’ha considerat que 

la recerca de noves fonts de resistència en vers aquesta soca és la solució més eficient i segura per 

tal de garantir una alta producció de gra. Per a tal fi, el desenvolupament de tècniques de fenotipat 

de camp de baix cost i alt rendiment hi pot contribuir de manera considerable. En aquest estudi 

s’analitzen els índexs de vegetació d’imatges digitals vermell, verd i blau (RGB, de l’anglès red-green-

blue) preses de les capçades dels cultivars en condicions de camp. Es va avaluar la seva precisió i 

robustesa per a la predicció del rendiment de gra i per l’avaluació de la severitat de la malaltia en 

comparació amb altres mesures de camp com ara l’índex de vegetació de la diferència normalitzada 

(NDVI), el contingut foliar de clorofil·la (SPAD), la conductància estomàtica i la temperatura de la 

capçada. A més a més, també es va discutir sobre les components del rendiment i paràmetres 

agronòmics en relació amb el rendiment i amb la severitat de la malaltia. Els índexs basats en RGB 

van demostrar ser uns predictor precisos del rendiment de gra i de les pèrdues de rendiment de gra 

associades al rovell groc (R2 = 0.581 i R2 = 0.536, respectivament) sobrepassant de lluny l’habilitat 

predictiva del NDVI (R2 = 0.118 i R2 = 0.128, respectivament). En comparació amb el rendiment 

potencial, es va trobar que la presència de la malaltia estava correlacionada amb reduccions en el 

nombre de grans per espiga, en el nombre de grans per metre quadrat, amb el pes mig del gra i amb 
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l’índex de collita. Les pèrdues de rendiment de gra en presència del rovell groc van ser també més 

elevades en aquelles varietats de floració més tardana. Finalment, la combinació d’índexs basats en 

RGB juntament amb el nombre de dies fins l’espigat van ser capaços d’explicar el 70.9% de la 

variabilitat del rendiment de gra i el 62.7% de les pèrdues de rendiment.  

 

Capítol 2 

La producció dels cultius de blat de moro està limitada a nivell mundial per la disponibilitat de 

nitrogen, particularment als sòls pobres de les regions tropicals i subtropicals. El desenvolupament 

de tècniques de fenotipat de camp i de monitoreig assequibles i d’alt rendiment és clau per tal de 

millorar el cultiu de blat de moro sota condicions de fertilització baixa en nitrogen. En aquest estudi 

es proposen diversos índexs de vegetació derivats d’imatges digitals del vermell, verd i blau (RGB, de 

l’anglès red-green-blue) a nivell de fulla i de capçada com a eines de baix cost per a la millora vegetal 

i pel maneig de la fertilització. Aquests es van comparar amb el rendiment de l’índex de vegetació de 

la diferència normalitzada (NDVI) mesurat a nivell de camp i des d’una plataforma aèria, així com 

amb el contingut foliar de clorofil·la i d’altres paràmetres referents a la composició i estructura foliar 

a l’estadi de floració. Un conjunt de deu híbrids crescuts sota cinc règims de nitrogen diferents i en 

condicions hídriques òptimes van ser avaluats a l’estació experimental del CIMMYT de Harare 

(Zimbabwe). El rendiment de gra i la concentració de nitrogen foliar entre nivells de fertilització es 

van poder predir de manera robusta a partir de la majoria d’aquests índexs RGB (amb R2∼ 0.7) 

sobrepassant el poder de predicció del NDVI i del contingut foliar de clorofil·les. A més a més, els 

índexs RGB van sobrepassar el rendiment del NDVI en quant a l’avaluació de les diferències 

genotípiques en el rendiment de gra i en la concentració de nitrogen foliar per a cada nivell de 

fertilització nitrogenada. Tot i això, el millor predictor de la concentració de nitrogen foliar entre els 

cinc ambients de fertilització va ser el contingut foliar de clorofil·les però els seu comportament dins 

de cada nivell de fertilització nitrogenada va resultar ineficient. Els altres trets foliars avaluats també 

van resultar ser ineficients com a paràmetres pel fenotipat. Es va concloure que l’adopció de 

tècniques de fenotipat basades en índexs RGB pot contribuir de manera significativa al progrés de la 

millora vegetal i del maneig apropiat de la fertilització.  

 

 

Capítol 3 

Els efectes de la dorsoventralitat de les fulles i la seva interacció amb canvis induïts ambientalment 

en la resposta espectral de les fulles son encara insuficientment coneguts i entesos, particularment 
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en fulles isobilaterals. En aquest estudi s’ha investigat el comportament espectral de vint-i-quatre 

genotips de blat dur crescuts en condicions de camp a dues ubicacions. A totes dues, es va cultivar 

en condicions d’irrigació i de secà. La reflectància espectral de la fulla bandera en l’espectre continu 

del VIS-NIR-SWIR (visible-infraroig proper-infraroig d’ona curta) es va enregistrar per les bandes 

adaxial i abaxial de les fulles així com també a nivell de capçada. A més a més, altres trets relacionats 

amb l’estatus hídric i amb el rendiment de gra van ser també avaluats. També, es van mesurar 

paràmetres anatòmics de la fulla bandera en un subconjunt de cinc genotips.  

Els trets espectrals estudiats van resultar més afectats per la banda de la fulla més que no pas pel 

règim hídric. Les diferències dorsiventrals a la fulla van suggerir l’ocurrència d’un major contingut de 

pigments accessoris a la banda abaxial de la fulla, mentre que les diferències entre règims hídrics van 

estar relacionades amb uns continguts de clorofil·la, nitrogen i aigua més elevats al tractament 

irrigat. Aquestes variacions van ser associades també amb canvis anatòmics. A més a més, les 

diferències dorsiventrals van ser menys acusades en el tractament de secà, la qual cosa va suggerir 

l’existència de respostes específiques de cada banda de la fulla a nivell anatòmic i bioquímic. 

Finalment, la precisió en la predicció del rendiment va millorar quan es va fer servir l’espectre de la 

banda abaxial de la fulla enlloc del de la banda adaxial. Es va concloure que la importància de la 

dorsoventralitat sobre els trets espectrals és fonamental, fins i tot en fulles isobilaterals.     

 

 

Capítol 4 

La rellevància de les bràctees de l’espiga en l’aclimatació a l’estrès així com la seva contribució al 

rendiment ha estat recentment revelada. Tot i així, el metaboloma d’aquest òrgan i la seva resposta 

a l’estrès hídric encara són encara desconeguts.  En aquest estudi, els perfils metabòlics de les fulles 

bandera, de les glumes i de les lemes van ser caracteritzats en condicions de règims hídrics 

contrastants per a cinc genotips de blat dur. Les condicions hídriques durant el creixement van ser 

caracteritzades a través d’índexs de vegetació espectral, de la temperatura de la capçada i de la 

composició isotòpica de carboni.  

Les bràctees de l’espiga varen exhibir una major coordinació dels metabolismes del carboni i nitrogen 

en comparació a la fulla bandera en termes de les vies de fotorespiració, assimilació de nitrogen i 

respiració. Aquesta coordinació va facilitar l’acumulació d’aminoàcids i àcids orgànics a les bràctees 

de l’espiga, especialment sota condicions d’estrès hídric. La resposta metabolòmica a l’estrès hídric 

també va implicar una acumulació de sucres relacionats amb funcions antioxidants i de tolerància a 

la sequera, particularment a les espigues. A més a més, certs metabòlits relacionats amb el 
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metabolisme de la paret cel·lular, la respiració i d’altres amb funcions protectores es van relacionar 

amb un millor comportament genotípic i amb l’estabilitat del rendiment. També, el rendiment de gra 

va ser predit de manera robusta a partir dels metabolomes de fulles i bràctees de manera 

independent. Aquest estudi recolza el rol de l’espiga com a òrgan clau durant l’ompliment del gra al 

blat, particularment en condicions d’estrès, i proporciona informació fonamental per a explorar 

noves vies per a la millora de la productivitat de blat, incloent-hi bio-marcadors importants per a la 

predicció del rendiment.  

 

 

Capítol 5 

A l’actualitat, les tècniques híper-espectrals s’utilitzen per a la recuperació d’informació pel que fa a 

trets biofísics de les plantes, i predominantment s’han centrat en el continguts de components com 

ara els pigments fotosintètics i accessoris, en l’aigua, en el nitrogen o proteïnes, en elements 

estructurals com ara la lignina o d’altres com l’índex d’àrea foliar.  Tot i això, la informació híper-

espectral encara pot ser explotada de manera més extensiva per tal de superar els reptes en la 

millora vegetal en el context del canvi global i avançar en el fenotipat de camp d’alt rendiment. En 

aquest estudi, explorem el potencial de l’espectroscòpia de camp per a la predicció dels perfils 

metabòlics de la fulla bandera i de les bràctees de l’espiga a blat dur. L’espectre de reflectància de 

rang complert (VIS-NIR-SWIR) de les fulles bandera, de les espigues i de les capçades van ser 

enregistrats a una col·lecció de genotips contrastants crescuts a quatre ambients sota diferents 

règims hídrics. El perfils metabòlics de les fulles bandera i de dues bràctees de l’espiga, la lema i la 

gluma, van ser analitzats mitjançant GC-MS.  

Els resultats dels models de regressió van sobrepassar el 50% de variació explicada (adj-R2 als 

conjunts de validació) per a almenys 15 metabòlits de cada òrgan estudiat, mentre que els seus 

respectius errors van ser considerablement baixos. Les millors regressions es van obtenir per al malat 

(82%), glicerat i serina (63%) a fulles; per al mio-inositol (81%) a lemes; pel glicolat (80%) a  glumes; 

per la sucrosa a fulles i glumes (68%); per GABA a fulles i glumes (61% i 71% respectivament); per la 

prolina i la glucosa a lemes (74% i 71%, respectivament) i glumes (72% i 69%, respectivament). També 

es discuteixen la selecció de bandes d’ona als models i el comportament dels diferents models basats 

en l’espectre de la capçada i de l’espectre visible dels respectius òrgans, així com la predicció del 

rendiment. Considerem que aquesta tècnica pot probablement ésser d’interès per la seva àmplia 

aplicabilitat en la investigació ecofisiològica, en programes de millora vegetal així com en la industria 

agro-alimentària.  
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Conclusions  

El fenotipat vegetal, i en sentit ampli, la recerca en biologia vegetal encara ha d’elucidar molts 

aspectes de l’adaptació de les plantes a l’estrès, incloent com identificar la resiliència a l’estrès i quins 

son els trets fenotípics indicatius de la tolerància a l’estrès. Malgrat que els reptes són encara 

considerables, també és evident que l’intens desenvolupament de molt diversos sistemes de 

fenotipat està donant els seus fruits, com es reporta a les conclusions d’aquesta tesi.  

i) El fenotipat derivat de RGB és una eina eficient i econòmica que pot ser fàcilment 

implementada en la recerca i millora vegetal i en el maneig de cultius. Els índexs de 

vegetació basats en sensors RGB (en aquest cas a partir de la parametrització del color 

als espais del color HIS, CIE-Lab i CIE-Luv) obtinguts a partir d’imatges a nivell de parcel·la 

són indicadors fiables de la coberta verda i proporcionen informació numèrica del 

balanç de color a la imatge.  

ii) Aquests components RGB del color s’associen estretament amb un ampli ventall de trets 

que generin una senyal visible, com ara el creixement i els rendiment, processos 

fisiològics, dispersió de malalties així com el contingut foliar de nitrogen.  

iii) D’altra banda, l’espectroscòpia de camp és una tecnologia d’avantguarda que pot ser 

empleada per elucidar trets de les plantes més complexos en relació a la seva 

composició, anatomia i estatus fisiològic.  

iv) Les interaccions entre la reflectància espectral de les plantes, l’anatomia foliar i les 

condicions ambientals són intricades i han de ser adreçades de manera curosa. Si ve 

l’estrès hídric desencadena una modulació anatòmica i bioquímica a les plantes que pot 

ser detectada i avaluada amb sensors híper-espectrals, d’altres factors com les 

diferències constitutives entre les bandes de la fulla (diferències dorsiventrals) també 

afecten la reflectància fins i tot en major grau que no pas l’estrès hídric. 

v) Malgrat això, les diferències dorsiventrals (a nivell anatòmic i les bioquímiques inferides 

a partir de la seva senyal espectral) són menys evidents sota condicions de secà que no 

pas en condicions d’adequada irrigació.  

vi) Mentre que la major homogeneïtat estructural de la banda abaxial de la fulla pot 

proporciona una senyal espectral més nítida, la banda adaxial de la fulla continua essent 

més representativa de la reflectància de la capçada, la qual cosa ha de ser considerat en 

futurs estudis espectroscòpics en blat.  

vii) La caracterització metabolòmica del blat permet un millor enteniment de com els teixits 

vegetals pateixen l’estrès i com se n’adapten, tot contribuint a elucidar el seu rol 

fisiològic i oferint noves vies per a millorar la productivitat del blat i la seva resiliència.  
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viii) La destacada acumulació d’aminoàcids i àcids orgànics a les bràctees de l’espiga, 

particularment sota condicions d’estrès hídric, és facilitada per una millor coordinació 

dels metabolismes del carboni i del nitrogen en termes de fotorespiració, assimilació de 

nitrogen i respiració en comparació a la fulla bandera.  La particular acumulació a les 

bràctees de sucres i d’altres metabòlits relacionats amb funcions antioxidants i de 

tolerància a la sequera recolza el millor comportament de l’espiga en comparació a la 

fulla bandera. 

ix) L’estudi de l’associació entre metabòlits i rendiment permet revelar aquells relacionats 

amb el millor comportament genotípic i amb l’estabilitat del rendiment. 

x) L’espectroscòpia de camp pot ser una eina d’alt rendiment quan s’utilitza pel fenotipat 

intern dels perfils metabòlics de les fulles i espigues de blat.  

xi) És possible d’estimar amb una robustesa considerablement elevada tot un seguit de 

metabòlits implicats en el metabolisme dels sucres, de la fotorespiració, de 

l’osmoprotecció així com metabòlits secundaris, la qual cosa pot ser d’ampli interès pels 

ecofisiòlegs, milloradors i per la industria agro-alimentaria.  

xii) Tot i que les millors prediccions de metabòlits s’obtenen a partir de l’espectre de rang 

complert dels òrgans, els models basats en l’espectre de la capçada i de l’espectre visible 

de l’òrgan per sí sol són prometedors i ofereixen altres oportunitats potencials.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

207 
 

 

 

 

 

 

 

 

 

 

REFERENCES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

208 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

209 
 

 REFERENCES 

Abreu e Lima, F. de, Westhues, M., Cuadros-Inostroza, Á., Willmitzer, L., Melchinger, A.E. and Nikoloski, Z. 
(2017) Metabolic robustness in young roots underpins a predictive model of maize hybrid 
performance in the field. Plant J., 90, 319–329. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/28122143 [Accessed August 23, 2018]. 

Acevedo, E., Fereres, E., Giménez, C. and Srivastava, J.P. (1991) Improvement and management of winter 
cereals under temperature, drought and salinity stresses, Instituto Nacional de Investigaciones 
Agrarias. 

Adamsen, F.G., Pinter, P.J., Barnes, E.M., LaMorte, R.L., Wall, G.W., Leavitt, S.W. and Kimball, B.A. (1999) 
Measuring Wheat Senescence with a Digital Camera. Crop Sci., 39, 719. Available at: 
https://www.crops.org/publications/cs/abstracts/39/3/CS0390030719 [Accessed July 3, 2019]. 

Ali, M., Al-Ani, A., Eamus, D. and Tan, D. (2013) An Algorithm Based on the RGB Colour Model to Estimate 
Plant Chlorophyll and Nitrogen Contents. In International Conference on Sustainable Environment 
and Agriculture. International Association of Computer Science & Information Technology Press, pp. 
52–56. Available at: https://opus.lib.uts.edu.au/handle/10453/28424 [Accessed August 8, 2019]. 

Allen, M.R., Dube, O.P., Solecki, W., et al. (2018) Framing and Context. In: Global Warming of 1.5°C. An 
IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and 
related global greenhouse gas emission pathways, in the context of strengthening the global 
response to the,. 

Almacellas, J., López Querol, A., Álvaro Sánchez, F., Serra Gironella, J., Capellades Pericas, G. and Marín 
Sánchez,  y J.P. (2013) La roya amarilla de los trigos, un problema emergente,. 

Andrade-Sanchez, P., Gore, M.A., Heun, J.T., Thorp, K.R., Carmo-Silva, A.E., French, A.N., Salvucci, M.E. 
and White, J.W. (2014) Development and evaluation of a field-based high-throughput phenotyping 
platform. Funct. Plant Biol., 41, 68. Available at: http://www.publish.csiro.au/?paper=FP13126 
[Accessed July 3, 2019]. 

Annunziata, M.G., Ciarmiello, L.F., Woodrow, P., Maximova, E., Fuggi, A. and Carillo, P. (2016) Durum 
Wheat Roots Adapt to Salinity Remodeling the Cellular Content of Nitrogen Metabolites and 
Sucrose. Front. Plant Sci., 7, 2035. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28119716 
[Accessed September 3, 2019]. 

Aquino, A., Diago, M.P., Millán, B. and Tardáguila, J. (2017) A new methodology for estimating the 
grapevine-berry number per cluster using image analysis. Biosyst. Eng., 156, 80–95. Available at: 
https://www.sciencedirect.com/science/article/pii/S1537511016300940 [Accessed August 6, 
2019]. 

Araus, J.L. and Cairns, J.E. (2014) Field high-throughput phenotyping: the new crop breeding frontier. 
Trends Plant Sci., 19, 52–61. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24139902 
[Accessed July 19, 2018]. 

Araus, J.L. and Kefauver, S.C. (2018) Breeding to adapt agriculture to climate change: affordable 
phenotyping solutions. Curr. Opin. Plant Biol., 45, 237–247. Available at: 
https://www.sciencedirect.com/science/article/pii/S1369526618300098 [Accessed July 5, 2019]. 

Araus, J.L., Kefauver, S.C., Zaman-Allah, M., Olsen, M.S. and Cairns, J.E. (2018) Translating High-
Throughput Phenotyping into Genetic Gain. Trends Plant Sci., 23, 451–466. Available at: 
https://www.sciencedirect.com/science/article/pii/S1360138518300207 [Accessed August 7, 
2018]. 

Araus, J.L., Slafer, G.A., Royo, C. and Serret, M.D. (2008) Breeding for Yield Potential and Stress 
Adaptation in Cereals. CRC. Crit. Rev. Plant Sci., 27, 377–412. Available at: 
http://www.tandfonline.com/doi/abs/10.1080/07352680802467736 [Accessed July 3, 2019]. 



 

210 
 

Awad, Y.M., Abdullah, A.A., Bayoumi, T.Y., Abd-Elsalam, K. and Hassanien, A.E. (2015) Early Detection of 
Powdery Mildew Disease in Wheat (Triticum aestivum L.) Using Thermal Imaging Technique. In 
Springer, Cham, pp. 755–765. Available at: http://link.springer.com/10.1007/978-3-319-11310-
4_66 [Accessed August 15, 2019]. 

Awika, J.M. (2011) Advances in Cereal Science: Implications to Food Processing and Health Promotion, 
Available at: https://pubs.acs.org/doi/10.1021/bk-2011-1089.ch001. [Accessed June 5, 2019]. 

Barbour, M.M., Fischer, R.A., Sayre, K.D. and Farquhar, G.D. (2000) Oxygen isotope ratio of leaf and grain 
material correlates with stomatal conductance and grain yield in irrigated wheat. Funct. Plant Biol., 
27, 625. Available at: http://www.publish.csiro.au/?paper=PP99041 [Accessed August 21, 2019]. 

Barriopedro, D., Fischer, E.M., Luterbacher, J., Trigo, R.M. and García-Herrera, R. (2011) The hot summer 
of 2010: redrawing the temperature record map of Europe. Science, 332, 220–4. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/21415316 [Accessed July 2, 2019]. 

Beleggia, R., Platani, C., Nigro, F., Vita, P. De, Cattivelli, L. and Papa, R. (2013) Effect of genotype, 
environment and genotype-by-environment interaction on metabolite profiling in durum wheat 
(Triticum durum Desf.) grain. J. Cereal Sci., 57, 183–192. Available at: 
https://www.sciencedirect.com/science/article/pii/S0733521012001828 [Accessed September 3, 
2019]. 

Beniston, M., Stephenson, D.B., Christensen, O.B., et al. (2007) Future extreme events in European 
climate: an exploration of regional climate model projections. Clim. Change, 81, 71–95. Available at: 
http://link.springer.com/10.1007/s10584-006-9226-z [Accessed July 2, 2019]. 

Bindi, M. and Olesen, J.E. (2011) The responses of agriculture in Europe to climate change. Reg. Environ. 
Chang., 11, 151–158. Available at: http://link.springer.com/10.1007/s10113-010-0173-x [Accessed 
July 2, 2019]. 

Boegh, E., Soegaard, H., Broge, N., Hasager, C.B., Jensen, N.O., Schelde, K. and Thomsen, A. (2002) 
Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and 
photosynthetic efficiency in agriculture. Remote Sens. Environ., 81, 179–193. Available at: 
https://www.sciencedirect.com/science/article/abs/pii/S003442570100342X [Accessed July 3, 
2019]. 

Bown, A.W. and Shelp, B.J. (2016) Plant GABA: Not Just a Metabolite. Trends Plant Sci., 21, 811–813. 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/27542324 [Accessed August 27, 2018]. 

Brini, F., Hanin, M., Lumbreras, V., Irar, S., Pagès, M. and Masmoudi, K. (2007) Functional characterization 
of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat 
(Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci., 
172, 20–28. Available at: https://www.sciencedirect.com/science/article/pii/S0168945206002111 
[Accessed September 3, 2019]. 

Bundy, J.G., Davey, M.P. and Viant, M.R. (2009) Environmental metabolomics: a critical review and future 
perspectives. Metabolomics, 5, 3–21. Available at: http://link.springer.com/10.1007/s11306-008-
0152-0 [Accessed September 3, 2019]. 

Cabrera-Bosquet, L., Crossa, J., Zitzewitz, J. von, Serret, M.D. and Luis Araus, J. (2012) High-throughput 
Phenotyping and Genomic Selection: The Frontiers of Crop Breeding ConvergeF. J. Integr. Plant 
Biol., 54, 312–320. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22420640 [Accessed July 3, 
2019]. 

Cabrera-Bosquet, L., Sánchez, C. and Araus, J.L. (2009) Oxygen isotope enrichment (Δ 18 O) reflects yield 
potential and drought resistance in maize. Plant. Cell Environ., 32, 1487–1499. Available at: 
http://doi.wiley.com/10.1111/j.1365-3040.2009.02013.x [Accessed August 21, 2019]. 

Cairns, J.E., Hellin, J., Sonder, K., Araus, J.L., MacRobert, J.F., Thierfelder, C. and Prasanna, B.M. (2013) 



 

211 
 

Adapting maize production to climate change in sub-Saharan Africa. Food Secur., 5, 345–360. 
Available at: http://link.springer.com/10.1007/s12571-013-0256-x [Accessed July 3, 2019]. 

Calderón, R., Navas-Cortés, J.A., Lucena, C. and Zarco-Tejada, P.J. (2013) High-resolution airborne 
hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using 
fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ., 139, 231–245. 
Available at: https://www.sciencedirect.com/science/article/abs/pii/S0034425713002435 
[Accessed August 28, 2019]. 

Camargo, A. and Smith, J.S. (2009) An image-processing based algorithm to automatically identify plant 
disease visual symptoms. Biosyst. Eng., 102, 9–21. Available at: 
https://www.sciencedirect.com/science/article/pii/S1537511008002870 [Accessed August 6, 
2019]. 

Casadesús, J., Kaya, Y., Bort, J., et al. (2007) Using vegetation indices derived from conventional digital 
cameras as selection criteria for wheat breeding in water-limited environments. Ann. Appl. Biol., 
150, 227–236. Available at: http://doi.wiley.com/10.1111/j.1744-7348.2007.00116.x [Accessed July 
3, 2019]. 

Chairi, F., Vergara-Diaz, O., Vatter, T., Aparicio, N., Nieto-Taladriz, M.T., Kefauver, S.C., Bort, J., Serret, 
M.D. and Araus, J.L. (2018) Post-green revolution genetic advance in durum wheat: The case of 
Spain. F. Crop. Res., 228, 158–169. Available at: 
https://www.sciencedirect.com/science/article/pii/S0378429017321081 [Accessed September 14, 
2018]. 

Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T. and Klukas, C. (2014) Dissecting the 
Phenotypic Components of Crop Plant Growth and Drought Responses Based on High-Throughput 
Image Analysis. Plant Cell, 26, 4636–4655. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/25501589 [Accessed August 28, 2019]. 

Chen, Z., Wang, X. and Wang, H. (2018) Preliminary research on total nitrogen content prediction of 
sandalwood using the error-in-variable models based on digital image processing. PLoS One, 13. 
Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6103514/ [Accessed August 7, 2019]. 

Ciais, P., Reichstein, M., Viovy, N., et al. (2005) Europe-wide reduction in primary productivity caused by 
the heat and drought in 2003. Nature, 437, 529–533. Available at: 
http://www.nature.com/articles/nature03972 [Accessed July 2, 2019]. 

Ciscar, J.-C., Iglesias, A., Feyen, L., et al. (2011) Physical and economic consequences of climate change in 
Europe. Proc. Natl. Acad. Sci., 108, 2678–2683. Available at: 
https://www.pnas.org/content/108/7/2678 [Accessed July 2, 2019]. 

Clément, G., Moison, M., Soulay, F., Reisdorf-Cren, M. and Masclaux-Daubresse, C. (2018) Metabolomics 
of laminae and midvein during leaf senescence and source–sink metabolite management in 
Brassica napus L. leaves. J. Exp. Bot., 69, 891–903. Available at: 
https://academic.oup.com/jxb/article/69/4/891/4105913 [Accessed July 15, 2019]. 

Coast, O., Shah, S., Ivakov, A., et al. (2019) Predicting dark respiration rates of wheat leaves from 
hyperspectral reflectance. Plant. Cell Environ., pce.13544. Available at: 
https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13544 [Accessed April 10, 2019]. 

Confalonieri, R., Paleari, L., Foi, M., et al. (2017) PocketPlant3D: Analysing canopy structure using a 
smartphone. Biosyst. Eng., 164, 1–12. Available at: 
https://www.sciencedirect.com/science/article/pii/S1537511017306384 [Accessed August 6, 
2019]. 

Daccache, A. and Lamaddalena, N. (2010) Climate change impacts on pressurised irrigation systems. Proc. 
Inst. Civ. Eng. - Eng. Sustain., 163, 97–105. Available at: 
http://www.icevirtuallibrary.com/doi/10.1680/ensu.2010.163.2.97 [Accessed July 2, 2019]. 



 

212 
 

Deery, D., Jimenez-Berni, J., Jones, H., Sirault, X. and Furbank, R. (2014) Proximal Remote Sensing Buggies 
and Potential Applications for Field-Based Phenotyping. Agronomy, 4, 349–379. Available at: 
http://www.mdpi.com/2073-4395/4/3/349 [Accessed August 27, 2019]. 

Djanaguiraman, M., Prasad, P.V. V., Boyle, D.L. and Schapaugh, W.T. (2011) High-Temperature Stress and 
Soybean Leaves: Leaf Anatomy and Photosynthesis. Crop Sci., 51, 2125. Available at: 
https://www.crops.org/publications/cs/abstracts/51/5/2125 [Accessed August 21, 2019]. 

EEA (2009) Water Resources Across Europe – Confronting Water Scarcity and Drought., Luxembourg. 

Eisenhut, M., Roell, M. and Weber, A.P.M. (2019) Mechanistic understanding of photorespiration paves 
the way to a new green revolution. New Phytol., 223, 1762–1769. Available at: 
https://onlinelibrary.wiley.com/doi/abs/10.1111/nph.15872 [Accessed September 9, 2019]. 

Ennajeh, M., Vadel, A.M., Cochard, H. and Khemira, H. (2015) Comparative impacts of water stress on the 
leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J. Hortic. Sci. Biotechnol., 
85, 289–294. Available at: 
http://www.tandfonline.com/doi/full/10.1080/14620316.2010.11512670 [Accessed August 21, 
2019]. 

Ergen, N.Z., Thimmapuram, J., Bohnert, H.J. and Budak, H. (2009) Transcriptome pathways unique to 
dehydration tolerant relatives of modern wheat. Funct. Integr. Genomics, 9, 377–396. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/19330365 [Accessed August 27, 2018]. 

Eubanks, M.W. (1997) Molecular analysis of crosses between Tripsacum dactyloides and Zea 
diploperennis (Poaceae). Theor. Appl. Genet., 94, 707–712. Available at: 
http://link.springer.com/10.1007/s001220050469 [Accessed July 29, 2019]. 

Fàbregas, N. and Fernie, A.R. (2019) The metabolic response to drought. J. Exp. Bot., 70, 1077–1085. 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/30726961 [Accessed August 30, 2019]. 

FAO (2013) Statistical yearbook 2013, World Food and Agriculture, Available at: http://faostat.fao.org/. 

Feng, Y.-L., Fu, G.-L. and Zheng, Y.-L. (2008) Specific leaf area relates to the differences in leaf 
construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and 
noninvasive alien congeners. Planta, 228, 383–390. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/18392694 [Accessed July 3, 2019]. 

Fernández, E., Gorchs, G. and Serrano, L. (2019) Use of consumer-grade cameras to assess wheat N status 
and grain yield. PLoS One, 14, e0211889. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/30768611 [Accessed August 7, 2019]. 

Ferrara, R.M., Trevisiol, P., Acutis, M., Rana, G., Richter, G.M. and Baggaley, N. (2010) Topographic 
impacts on wheat yields under climate change: two contrasted case studies in Europe. Theor. Appl. 
Climatol., 99, 53–65. Available at: http://link.springer.com/10.1007/s00704-009-0126-9 [Accessed 
July 2, 2019]. 

Field, C.B., Barros, V.R., Intergovernmental Panel on Climate Change. Working Group II, D., et al. (2014) 
Climate change 2014 : impacts, adaptation, and vulnerability : Working Group II contribution to the 
fifth assessment report of the Intergovernmental Panel on Climate Change,. 

Fischer, T., Byerlee, D. and Edmeades, G. (2014) Crop yields and global food security. Will yield increase 
continue to feed the world?, Available at: https://www.aciar.gov.au/node/12101. 

Flexas, J., Bota, J., Galmés, J., Medrano, H. and Ribas-Carbó, M. (2006) Keeping a positive carbon balance 
under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol. 
Plant., 127, 343–352. Available at: http://doi.wiley.com/10.1111/j.1399-3054.2006.00621.x 
[Accessed July 3, 2019]. 

García-Ruiz, J.M., López-Moreno, J.I., Vicente-Serrano, S.M., Lasanta–Martínez, T. and Beguería, S. (2011) 



 

213 
 

Mediterranean water resources in a global change scenario. Earth-Science Rev., 105, 121–139. 
Available at: https://www.sciencedirect.com/science/article/pii/S0012825211000134 [Accessed 
July 2, 2019]. 

Gargallo-Garriga, A., Sardans, J., Pérez-Trujillo, M., et al. (2015) Opposite metabolic responses of shoots 
and roots to drought. Sci. Rep., 4, 6829. Available at: http://www.nature.com/articles/srep06829 
[Accessed September 2, 2019]. 

Goderniaux, P., Brouyère, S., Blenkinsop, S., Burton, A., Fowler, H.J., Orban, P. and Dassargues, A. (2011) 
Modeling climate change impacts on groundwater resources using transient stochastic climatic 
scenarios. Water Resour. Res., 47. Available at: 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010WR010082 [Accessed July 2, 2019]. 

Goodess, C., Jacob, D., Deque, M., Guttierez, J., Huth, R., Kendon, E., Leckebusch, G., Lorenz, P. and 
Pavan, V. (2009) Downscaling methods, data and tools for input to impacts assessments. Available 
at: https://ueaeprints.uea.ac.uk/31098/ [Accessed July 2, 2019]. 

Granier, C. and Vile, D. (2014) Phenotyping and beyond: modelling the relationships between traits. Curr. 
Opin. Plant Biol., 18, 96–102. Available at: 
https://www.sciencedirect.com/science/article/pii/S1369526614000259 [Accessed August 6, 
2019]. 

Großkinsky, D.K., Pieruschka, R., Svensgaard, J., Rascher, U., Christensen, S., Schurr, U. and Roitsch, T. 
(2015) Phenotyping in the fields: dissecting the genetics of quantitative traits and digital farming. 
New Phytol., 207, 950–952. Available at: http://doi.wiley.com/10.1111/nph.13529 [Accessed 
September 3, 2019]. 

Großkinsky, D.K., Syaifullah, S.J. and Roitsch, T. (2018) Integration of multi-omics techniques and 
physiological phenotyping within a holistic phenomics approach to study senescence in model and 
crop plants. J. Exp. Bot., 69, 825–844. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/29444308 [Accessed September 3, 2019]. 

Guardiola-Albert, C. and Jackson, C. (2011) Potential Impacts of Climate Change on Groundwater Supplies 
to the Doñana Wetland, Spain. Wetlands, 31, 907–920. 

Homolová, L., Malenovský, Z., Clevers, J.G.P.W., García-Santos, G. and Schaepman, M.E. (2013) Review of 
optical-based remote sensing for plant trait mapping. Ecol. Complex., 15, 1–16. 

Houle, D., Govindaraju, D.R. and Omholt, S. (2010) Phenomics: the next challenge. Nat. Rev. Genet., 11, 
855–866. Available at: http://www.nature.com/articles/nrg2897 [Accessed June 19, 2019]. 

IPCC (2014a) Climate Change 2014 Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral 
Aspects. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change, Available at: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-
PartA_FINAL.pdf. 

IPCC (2014b) Climate change 2014 Impacts, Adaptation and Vulnerability. Part B: Regional Aspects. 
Working Group II. Contribution to the fifth assessment report of the International Panel on Climate 
Change, Available at: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartB_FINAL.pdf. 

Jacob, D. and Podzun, R. (2010) Global warming below 2oC relative to pre-industrial level: How might 
climate look like in Europe. Nov. Acta Leopoldina, 71–76. 

Jia, B., He, H., Ma, F., Diao, M., Jiang, G., Zheng, Z., Cui, J. and Fan, H. (2014) Use of a digital camera to 
monitor the growth and nitrogen status of cotton. ScientificWorldJournal., 2014, 602647. Available 
at: http://www.ncbi.nlm.nih.gov/pubmed/24723817 [Accessed August 7, 2019]. 

Johannes, A., Picon, A., Alvarez-Gila, A., Echazarra, J., Rodriguez-Vaamonde, S., Navajas, A.D. and Ortiz-
Barredo, A. (2017) Automatic plant disease diagnosis using mobile capture devices, applied on a 



 

214 
 

wheat use case. Comput. Electron. Agric., 138, 200–209. Available at: 
https://www.sciencedirect.com/science/article/pii/S016816991631050X [Accessed August 6, 
2019]. 

Jones, R.A. and Qualset, C.O. (1984) Breeding Crops for Environmental Stress Tolerance. In Applications of 
Genetic Engineering to Crop Improvement. Dordrecht: Springer Netherlands, pp. 305–340. Available 
at: http://www.springerlink.com/index/10.1007/978-94-009-6207-1_10 [Accessed August 23, 
2019]. 

Kampmann, H.H. and Hansen, O.B. (1994) Using colour image analysis for quantitative assessment of 
powdery mildew on cucumber. Euphytica, 79, 19–27. Available at: 
http://link.springer.com/10.1007/BF00023572 [Accessed July 3, 2019]. 

Kawashima, S. and Nakatani, M. (1998) An Algorithm for Estimating Chlorophyll Content in Leaves Using a 
Video Camera. Ann. Bot., 81, 49–54. Available at: https://academic.oup.com/aob/article-
lookup/doi/10.1006/anbo.1997.0544 [Accessed August 7, 2019]. 

Kefauver, S.C., El-Haddad, G., Vergara-Diaz, O. and Araus, J.L. (2015) RGB picture vegetation indexes for 
High-Throughput Phenotyping Platforms (HTPPs). In C. M. U. Neale and A. Maltese, eds. 
International Society for Optics and Photonics, p. 96370J. Available at: 
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2195235 [Accessed 
August 9, 2019]. 

Kjellström, E., Nikulin, G., Hansson, U., Strandberg, G. and Ullerstig, A. (2011) 21st century changes in the 
European climate: uncertainties derived from an ensemble of regional climate model simulations. 
Tellus A Dyn. Meteorol. Oceanogr., 63, 24–40. Available at: 
https://www.tandfonline.com/doi/full/10.1111/j.1600-0870.2010.00475.x [Accessed July 2, 2019]. 

Kobata, T., Palta, J.A. and Turner, N.C. (1992) Rate of Development of Postanthesis Water Deficits and 
Grain Filling of Spring Wheat. Crop Sci., 32, 1238. Available at: 
https://www.crops.org/publications/cs/abstracts/32/5/CS0320051238 [Accessed August 23, 2019]. 

Kokaly, R.F., Asner, G.P., Ollinger, S. V., Martin, M.E. and Wessman, C.A. (2009) Characterizing canopy 
biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. 
Environ., 113, S78–S91. Available at: http://dx.doi.org/10.1016/j.rse.2008.10.018. 

Kokaly, R.F. and Skidmore, A.K. (2015) Plant phenolics and absorption features in vegetation reflectance 
spectra near 1.66 μm. Int. J. Appl. Earth Obs. Geoinf., 43, 55–83. Available at: 
https://www.sciencedirect.com/science/article/pii/S0303243415000112 [Accessed April 1, 2019]. 

Konzmann, M., Gerten, D. and Heinke, J. (2013) Climate impacts on global irrigation requirements under 
19 GCMs, simulated with a vegetation and hydrology model. Hydrol. Sci. J., 58, 88–105. Available at: 
http://www.tandfonline.com/doi/abs/10.1080/02626667.2013.746495 [Accessed July 2, 2019]. 

Lavalle, C., Micale, F., Houston, T.D., Camia, A., Hiederer, R., Lazar, C., Conte, C., Amatulli, G. and 
Genovese, G. (2009) Climate change in Europe. 3. Impact on agriculture and forestry. A review. 
Agron. Sustain. Dev., 29, 433–446. Available at: http://link.springer.com/10.1051/agro/2008068 
[Accessed July 2, 2019]. 

Lenderink, G. and Meijgaard, E. van (2008) Increase in hourly precipitation extremes beyond expectations 
from temperature changes. Nat. Geosci., 1, 511–514. Available at: 
http://www.nature.com/articles/ngeo262 [Accessed July 2, 2019]. 

Li, B., Xu, X., Han, J., Zhang, L., Bian, C., Jin, L. and Liu, J. (2019) The estimation of crop emergence in 
potatoes by UAV RGB imagery. Plant Methods, 15, 15. Available at: 
https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0399-7 [Accessed August 
7, 2019]. 

Linden, P. Van der and Mitchell, J. (2009) ENSEMBLES: Climate Change and its Impacts: Summary of 



 

215 
 

research and results from the ENSEMBLES project, Available at: https://www.eea.europa.eu/data-
and-maps/indicators/global-and-european-temperature-1/ensembles-climate-change-and-its 
[Accessed July 2, 2019]. 

Liu, W., Cao, X., Fan, J., Wang, Z., Yan, Z., Luo, Y., West, J.S., Xu, X. and Zhou, Y. (2018) Detecting Wheat 
Powdery Mildew and Predicting Grain Yield Using Unmanned Aerial Photography. Plant Dis., 102, 
1981–1988. Available at: https://apsjournals.apsnet.org/doi/10.1094/PDIS-12-17-1893-RE 
[Accessed August 6, 2019]. 

Lobell, D.B., Burke, M.B., Tebaldi, C., Mastrandrea, M.D., Falcon, W.P. and Naylor, R.L. (2008) Prioritizing 
climate change adaptation needs for food security in 2030. Science, 319, 607–10. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/18239122 [Accessed July 2, 2019]. 

Lobell, D.B., Schlenker, W. and Costa-Roberts, J. (2011) Climate trends and global crop production since 
1980. Science, 333, 616–20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21551030 
[Accessed July 2, 2019]. 

Lobos, G., Escobar-Opazo, A., Estrada, F., et al. (2019) Spectral Reflectance Modeling by Wavelength 
Selection: Studying the Scope for Blueberry Physiological Breeding under Contrasting Water Supply 
and Heat Conditions. Remote Sens., 11, 329. Available at: http://www.mdpi.com/2072-
4292/11/3/329 [Accessed March 29, 2019]. 

Lou, L., Li, X., Chen, J., Li, Y., Tang, Y. and Lv, J. (2018) Photosynthetic and ascorbate-glutathione 
metabolism in the flag leaves as compared to spikes under drought stress of winter wheat (Triticum 
aestivum L.). PLoS One. Available at: 
http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194625&type=printable 
[Accessed June 11, 2018]. 

Lovell, J.T., Shakirov, E. V., Schwartz, S., et al. (2016) Promises and Challenges of Eco-Physiological 
Genomics in the Field: Tests of Drought Responses in Switchgrass. Plant Physiol., 172, 734–748. 
Available at: 
http://www.plantphysiol.org/content/172/2/734?ijkey=4cddda4b53d7b44c3efd349debfa1c586c4c
6c28&keytype2=tf_ipsecsha [Accessed August 22, 2019]. 

Martinez-Moreno, F. and Solís, I. (2019) Wheat rust evolution in Spain: an historical review. Phytopathol. 
Mediterr., 58, 3–16. 

Maruyama, K., Urano, K., Yoshiwara, K., et al. (2014) Integrated Analysis of the Effects of Cold and 
Dehydration on Rice Metabolites, Phytohormones, and Gene Transcripts. Plant Physiol., 164, 1759–
1771. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24515831 [Accessed September 2, 2019]. 

Masuka, B., Araus, J.L., Das, B., Sonder, K. and Cairns, J.E. (2012) Phenotyping for Abiotic Stress Tolerance 
in MaizeF. J. Integr. Plant Biol., 54, 238–249. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/22443263 [Accessed July 3, 2019]. 

Matsuoka, Y., Vigouroux, Y., Goodman, M.M., Sanchez G, J., Buckler, E. and Doebley, J. (2002) A single 
domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. U. S. 
A., 99, 6080–4. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11983901 [Accessed July 29, 
2019]. 

Merah, O., Evon, P. and Monneveux, P. (2017) Participation of Green Organs to Grain Filling in Triticum 
turgidum var durum Grown under Mediterranean Conditions. Int. J. Mol. Sci., 19. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/29295600 [Accessed June 20, 2018]. 

Mercado-Luna, A., Rico-García, E., Lara-Herrera, A., Soto-Zarazúa, G., Ocampo-Velázquez, R., Guevara-
González, R., Herrera-Ruiz, G. and Torres-Pacheco, I. (2010) Nitrogen determination on tomato 
(Lycopersicon esculentum Mill.) seedlings by color image analysis (RGB). African J. Biotechnol., 9. 
Available at: https://www.ajol.info/index.php/ajb/article/view/92074/81517 [Accessed August 7, 
2019]. 



 

216 
 

Mohanty, S.P., Hughes, D.P. and Salathé, M. (2016) Using Deep Learning for Image-Based Plant Disease 
Detection. Front. Plant Sci., 7, 1419. Available at: 
http://journal.frontiersin.org/article/10.3389/fpls.2016.01419/full [Accessed August 6, 2019]. 

Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M. and Gibon, Y. (2011) Water deficits 
uncouple growth from photosynthesis, increase C content, and modify the relationships between C 
and growth in sink organs. J. Exp. Bot., 62, 1715–1729. Available at: 
https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erq438 [Accessed September 3, 
2019]. 

Nakashima, K., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2014) The transcriptional regulatory network in 
the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. 
Front. Plant Sci., 5, 170. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24904597 [Accessed 
September 2, 2019]. 

Obata, T., Witt, S., Lisec, J., Palacios-Rojas, N., Florez-Sarasa, I., Yousfi, S., Araus, J.L., Cairns, J.E. and 
Fernie, A.R. (2015) Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field 
Trials Reveal the Relationship between Metabolism and Grain Yield. Plant Physiol., 169, 2665–83. 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/26424159 [Accessed July 6, 2018]. 

Oerke, E.C. (2006) Crop losses to pests. J. Agric. Sci., 144, 31–43. Available at: http://www. [Accessed July 
8, 2019]. 

Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvåg, A.O., Seguin, B., Peltonen-Sainio, P., Rossi, F., Kozyra, J. 
and Micale, F. (2011) Impacts and adaptation of European crop production systems to climate 
change. Eur. J. Agron., 34, 96–112. Available at: 
https://www.sciencedirect.com/science/article/abs/pii/S1161030110001061 [Accessed July 2, 
2019]. 

Olsoy, P.J., Mitchell, J.J., Levia, D.F., Clark, P.E. and Glenn, N.F. (2016) Estimation of big sagebrush leaf 
area index with terrestrial laser scanning. Ecol. Indic., 61, 815–821. Available at: 
https://www.sciencedirect.com/science/article/pii/S1470160X15005853 [Accessed January 21, 
2019]. 

Oosterhuis, D.M. and Cartwright, P.M. (1983) Spike Differentiation and Floret Survival in Semidwarf 
Spring Wheat as Affected by Water Stress and Photoperiod. Crop Sci., 23, 711. Available at: 
https://www.crops.org/publications/cs/abstracts/23/4/CS0230040711 [Accessed August 23, 2019]. 

Orlandini, S., Bindi, M. and Howden, M. (2009) Plant Biometeorology and Adaptation. In Biometeorology 
for Adaptation to Climate Variability and Change. Dordrecht: Springer Netherlands, pp. 107–129. 
Available at: http://link.springer.com/10.1007/978-1-4020-8921-3_6 [Accessed July 2, 2019]. 

Pádua, L., Marques, P., Hruška, J., et al. (2018) Multi-Temporal Vineyard Monitoring through UAV-Based 
RGB Imagery. Remote Sens., 10, 1907. Available at: http://www.mdpi.com/2072-4292/10/12/1907 
[Accessed August 8, 2019]. 

Pauli, D., Chapman, S.C., Bart, R., Topp, C.N., Lawrence-Dill, C.J., Poland, J. and Gore, M.A. (2016) The 
Quest for Understanding Phenotypic Variation via Integrated Approaches in the Field Environment. 
Plant Physiol., 172, 622–634. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27482076 
[Accessed August 22, 2019]. 

Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S. and 
Cassman, K.G. (2004) Rice yields decline with higher night temperature from global warming. Proc. 
Natl. Acad. Sci. U. S. A., 101, 9971–5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15226500 
[Accessed July 2, 2019]. 

Peñuelas, J. and Filella, L. (1998) Visible and near-infrared reflectance techniques for diagnosing plant 
physiological status. Trends Plant Sci., 3, 151–156. 



 

217 
 

Peñuelas, J., Gamon, J.A., Griffin, K.L. and Field, C.B. (1993) Assessing community type, plant biomass, 
pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral 
reflectance. Remote Sens. Environ., 46, 110–118. Available at: 
https://www.sciencedirect.com/science/article/abs/pii/003442579390088F [Accessed July 3, 2019]. 

Peterson, C.M., Klepper, B., Pumphrey, F. V. and Rickman, R.W. (1984) Restricted Rooting Decreases 
Tillering and Growth of Winter Wheat. Agron. J., 76, 861. Available at: 
https://www.agronomy.org/publications/aj/abstracts/76/5/AJ0760050861 [Accessed August 23, 
2019]. 

Pfeiffer, W., Trethowan, R., Ginkel, M., Ortiz-Monasterio, I. and Rajaram, S. (2005) Breeding for abiotic 
stress tolerance in wheat. Abiotic stresses plant resistance through breeding and molecular 
approaches. In No. CIS-4737. CIMMYT, pp. 401–489. Available at: http://www.sidalc.net/cgi-
bin/wxis.exe/?IsisScript=CIMMYT.xis&method=post&formato=2&cantidad=1&expresion=mfn=0403
11 [Accessed August 7, 2018]. 

Poorter, H. and Evans, J.R. (1998) Photosynthetic nitrogen-use efficiency of species that differ inherently 
in specific leaf area. Oecologia, 116, 26–37. Available at: 
http://link.springer.com/10.1007/s004420050560 [Accessed July 3, 2019]. 

Porter, J.R. and Gawith, M. (1999) Temperatures and the growth and development of wheat: a review. 
Eur. J. Agron., 10, 23–36. Available at: 
https://www.sciencedirect.com/science/article/abs/pii/S1161030198000471 [Accessed July 2, 
2019]. 

Rahaman, M.M., Chen, D., Gillani, Z., Klukas, C. and Chen, M. (2015) Advanced phenotyping and 
phenotype data analysis for the study of plant growth and development. Front. Plant Sci., 6, 619. 
Available at: http://journal.frontiersin.org/Article/10.3389/fpls.2015.00619/abstract [Accessed 
August 1, 2019]. 

Rasheed, S., Bashir, K., Matsui, A., Tanaka, M. and Seki, M. (2016) Transcriptomic Analysis of Soil-Grown 
Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress. Front. Plant Sci., 7, 180. 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/26941754 [Accessed September 2, 2019]. 

Remigereau, M.-S., Lakis, G., Rekima, S., Leveugle, M., Fontaine, M.C., Langin, T., Sarr, A. and Robert, T. 
(2011) Cereal domestication and evolution of branching: evidence for soft selection in the Tb1 
orthologue of pearl millet (Pennisetum glaucum [L.] R. Br.). PLoS One, 6, e22404. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/21799845 [Accessed June 5, 2019]. 

Rickman, R.W., Klepper, B.L. and Peterson, C.M. (1983) Time Distributions for Describing Appearance of 
Specific Culms of Winter Wheat. Agron. J., 75, 551. Available at: 
https://www.agronomy.org/publications/aj/abstracts/75/3/AJ0750030551 [Accessed August 23, 
2019]. 

Riedelsheimer, C., Lisec, J., Czedik-Eysenberg, A., et al. (2012) Genome-wide association mapping of leaf 
metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. U. S. A., 109, 8872–7. 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/22615396 [Accessed August 23, 2018]. 

Rosenzweig, C., Arnell, N.W., Ebi, K.L., et al. (2017) Assessing inter-sectoral climate change risks: the role 
of ISIMIP. Environ. Res. Lett., 12, 010301. Available at: http://stacks.iop.org/1748-
9326/12/i=1/a=010301?key=crossref.8b61ee6c8aa6d3b1b3ec37505238fb98 [Accessed July 2, 
2019]. 

Rosyara, U.R., Duveiller, E., Pant, K. and Sharma, R.C. (2007) Variation in chlorophyll content, anatomical 
traits and agronomic performance of wheat genotypes differing in spot blotch resistance under 
natural epiphytotic conditions. Australas. Plant Pathol., 36, 245. Available at: 
http://link.springer.com/10.1071/AP07014 [Accessed August 21, 2019]. 

Rounsevell, M.D.A., Reginster, I., Araújo, M.B., et al. (2006) A coherent set of future land use change 



 

218 
 

scenarios for Europe. Agric. Ecosyst. Environ., 114, 57–68. Available at: 
https://www.sciencedirect.com/science/article/pii/S0167880905005347 [Accessed July 2, 2019]. 

Sagaram, M., Lombardini, L. and Grauke, L.J. (2007) Variation in Leaf Anatomy of Pecan Cultivars from 
Three Ecogeographic Locations. J. Am. Soc. Hortic. Sci., 132, 592–596. Available at: 
https://journals.ashs.org/jashs/view/journals/jashs/132/5/article-p592.xml [Accessed August 21, 
2019]. 

Saia, S., Fragasso, M., Vita, P. De and Beleggia, R. (2019) Metabolomics Provides Valuable Insight for the 
Study of Durum Wheat: A Review. J. Agric. Food Chem., 67, 3069–3085. Available at: 
https://pubs.acs.org/doi/10.1021/acs.jafc.8b07097 [Accessed September 3, 2019]. 

Sanchez-Bragado, R., Elazab, A., Zhou, B., Serret, M.D., Bort, J., Nieto-Taladriz, M.T. and Araus, J.L. (2014) 
Contribution of the ear and the flag leaf to grain filling in durum wheat inferred from the carbon 
isotope signature: Genotypic and growing conditions effects. J. Integr. Plant Biol., 56, 444–454. 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/24028829 [Accessed July 9, 2018]. 

Sanchez-Bragado, R., Molero, G., Reynolds, M.P. and Araus, J.L. (2016) Photosynthetic contribution of the 
ear to grain filling in wheat: a comparison of different methodologies for evaluation. J. Exp. Bot., 67, 
2787–2798. Available at: https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erw116 
[Accessed March 19, 2019]. 

Sanchez-Bragado, R., Molero, G., Reynolds, M.P. and Araus, J.L. (2014) Relative contribution of shoot and 
ear photosynthesis to grain filling in wheat under good agronomical conditions assessed by 
differential organ δ13C. J. Exp. Bot., 65, 5401–13. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/25053645 [Accessed March 12, 2019]. 

Schlenker, W. and Roberts, M.J. (2009) Nonlinear temperature effects indicate severe damages to U.S. 
crop yields under climate change. Proc. Natl. Acad. Sci. U. S. A., 106, 15594–8. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/19717432 [Accessed July 2, 2019]. 

Serret, M.., Ortiz-Monasterio, I., Pardo, A. and Araus, J.. (2008) The effects of urea fertilisation and 
genotype on yield, nitrogen use efficiency, δ 15 N and δ 13 C in wheat. Ann. Appl. Biol., 0, 
080617165316730-??? Available at: http://doi.wiley.com/10.1111/j.1744-7348.2008.00259.x 
[Accessed July 3, 2019]. 

Smith, P. and Olesen, J.E. (2010) Synergies between the mitigation of, and adaptation to, climate change 
in agriculture. J. Agric. Sci., 148, 543–552. Available at: 
https://www.cambridge.org/core/product/identifier/S0021859610000341/type/journal_article 
[Accessed July 2, 2019]. 

Smith, R.C.G., Heritage, A.D., Stapper, M. and Barrs, H.D. (1986) Effect of stripe rust (puccinia striiformis 
west.) and irrigation on the yield and foliage temperature of wheat. F. Crop. Res., 14, 39–51. 
Available at: https://www.sciencedirect.com/science/article/pii/0378429086900456 [Accessed 
August 15, 2019]. 

Stewart, W.M., Dibb, D.W., Johnston, A.E. and Smyth, T.J. (2005) The Contribution of Commercial 
Fertilizer Nutrients to Food Production. Agron. J., 97, 1. Available at: 
https://www.agronomy.org/publications/aj/abstracts/97/1/0001 [Accessed July 3, 2019]. 

Sun, Y., Tong, C., He, S., et al. (2018) Identification of Nitrogen, Phosphorus, and Potassium Deficiencies 
Based on Temporal Dynamics of Leaf Morphology and Color. Sustainability, 10, 762. Available at: 
http://www.mdpi.com/2071-1050/10/3/762 [Accessed August 8, 2019]. 

Svensgaard, J., Roitsch, T., Christensen, S., Svensgaard, J., Roitsch, T. and Christensen, S. (2014) 
Development of a Mobile Multispectral Imaging Platform for Precise Field Phenotyping. Agronomy, 
4, 322–336. Available at: http://www.mdpi.com/2073-4395/4/3/322 [Accessed July 3, 2019]. 

Tambussi, E.A., Bort, J., Guiamet, J.J., Nogués, S. and Araus, J.L. (2007) The Photosynthetic Role of Ears in 



 

219 
 

C 3 Cereals: Metabolism, Water Use Efficiency and Contribution to Grain Yield. CRC. Crit. Rev. Plant 
Sci., 26, 1–16. Available at: http://www.tandfonline.com/doi/abs/10.1080/07352680601147901 
[Accessed July 5, 2018]. 

Taylor, B.R., Parkinson, D. and Parsons, W.F.J. (1989) Nitrogen and Lignin Content as Predictors of Litter 
Decay Rates: A Microcosm Test. Ecology, 70, 97–104. Available at: 
http://doi.wiley.com/10.2307/1938416 [Accessed July 3, 2019]. 

Teixeira, E.I., Fischer, G., Velthuizen, H. van, Walter, C. and Ewert, F. (2013) Global hot-spots of heat 
stress on agricultural crops due to climate change. Agric. For. Meteorol., 170, 206–215. Available at: 
https://www.sciencedirect.com/science/article/pii/S0168192311002784 [Accessed July 2, 2019]. 

Tezara, W., Mitchell, V.J., Driscoll, S.D. and Lawlor, D.W. (1999) Water stress inhibits plant photosynthesis 
by decreasing coupling factor and ATP. Nature, 401, 914–917. Available at: 
http://www.nature.com/articles/44842 [Accessed August 27, 2018]. 

Tholen, D., Boom, C. and Zhu, X.-G. (2012) Opinion: Prospects for improving photosynthesis by altering 
leaf anatomy. Plant Sci., 197, 92–101. Available at: 
https://www.sciencedirect.com/science/article/pii/S0168945212001963 [Accessed August 21, 
2019]. 

Trnka, M., Olesen, J.E., Kersebaum, K.C., et al. (2011) Agroclimatic conditions in Europe under climate 
change. Glob. Chang. Biol., 17, 2298–2318. Available at: http://doi.wiley.com/10.1111/j.1365-
2486.2011.02396.x [Accessed July 2, 2019]. 

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E. and Steininger, M. (2003) Remote sensing 
for biodiversity science and conservation. Trends Ecol. Evol., 18, 306–314. Available at: 
https://www.sciencedirect.com/science/article/abs/pii/S0169534703000703 [Accessed August 29, 
2019]. 

Ullah, N., Yüce, M., Neslihan Öztürk Gökçe, Z. and Budak, H. (2017) Comparative metabolite profiling of 
drought stress in roots and leaves of seven Triticeae species. BMC Genomics, 18, 969. Available at: 
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-4321-2 [Accessed July 2, 
2018]. 

Ustin, S.L., Gitelson, A.A., Jacquemoud, S., Schaepman, M., Asner, G.P., Gamon, J.A. and Zarco-Tejada, P. 
(2009) Retrieval of foliar information about plant pigment systems from high resolution 
spectroscopy. Remote Sens. Environ., 113, S67–S77. Available at: 
http://dx.doi.org/10.1016/j.rse.2008.10.019. 

Ventrella, D., Charfeddine, M., Moriondo, M., Rinaldi, M. and Bindi, M. (2012) Agronomic adaptation 
strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation 
and nitrogen fertilization. Reg. Environ. Chang., 12, 407–419. Available at: 
http://link.springer.com/10.1007/s10113-011-0256-3 [Accessed July 2, 2019]. 

Vergara-Diaz, O., Kefauver, S.C., Elazab, A., Nieto-Taladriz, M.T. and Araus, J.L. (2015) Grain yield losses in 
yellow-rusted durum wheat estimated using digital and conventional parameters under field 
conditions. Crop J., 3, 200–210. Available at: 
https://www.sciencedirect.com/science/article/pii/S2214514115000355 [Accessed July 3, 2019]. 

Vergara-Díaz, O., Zaman-Allah, M.A., Masuka, B., Hornero, A., Zarco-Tejada, P., Prasanna, B.M., Cairns, J.E. 
and Araus, J.L. (2016) A Novel Remote Sensing Approach for Prediction of Maize Yield Under 
Different Conditions of Nitrogen Fertilization. Front. Plant Sci., 7, 666. Available at: 
http://journal.frontiersin.org/Article/10.3389/fpls.2016.00666/abstract [Accessed July 3, 2019]. 

Vergara-Díaz, O., Chairi, F., Vicente, R., Fernandez-Gallego, J.A., Nieto-Taladriz, M.T., Aparicio, N., 
Kefauver, S.C. and Araus, J.L. (2018) Leaf dorsoventrality as a paramount factor determining 
spectral performance in field-grown wheat under contrasting water regimes. J. Exp. Bot., 69, 3081–
3094. Available at: https://academic.oup.com/jxb/article/69/12/3081/4957039 [Accessed April 25, 



 

220 
 

2019]. 

Vergara-Diaz, O., Vatter, T., Vicente, R., Obata, T., Nieto-Taladriz, T., Aparicio, N., Kefauver, S.C., Fernie, 
A.R., and  Araus, JL. (2019a) Metabolome profiling supports the key role of the spike in wheat yield 
performance. Submitted.  

Vergara-Diaz, O., Vatter, T., Kefauver, S.C., Obata, T., Fernie A.R. and Araus, J.L. (2019b) Assessing durum 
wheat ear and leaf metabolomes in the field through hyperspectral data . Submitted. 

Vicente, R., Ver.gara-Díaz, O., Medina, S., Chairi, F., Kefauver, S.C., Bort, J., Serret, M.D., Aparicio, N. and 
Araus, J.L. (2018) Durum wheat ears perform better than the flag leaves under water stress: Gene 
expression and physiological evidence. Environ. Exp. Bot., 153, 271–285. Available at: 
https://linkinghub.elsevier.com/retrieve/pii/S0098847218301795 [Accessed June 19, 2018]. 

Wada, Y., Wisser, D., Eisner, S., et al. (2013) Multimodel projections and uncertainties of irrigation water 
demand under climate change. Geophys. Res. Lett., 40, 4626–4632. Available at: 
http://doi.wiley.com/10.1002/grl.50686 [Accessed July 2, 2019]. 

White, J.W., Andrade-Sanchez, P., Gore, M.A., et al. (2012) Field-based phenomics for plant genetics 
research. F. Crop. Res., 133, 101–112. Available at: 
https://www.sciencedirect.com/science/article/pii/S037842901200130X [Accessed July 3, 2019]. 

Xu, S., Xu, Y., Gong, L. and Zhang, Q. (2016) Metabolomic prediction of yield in hybrid rice. Plant J., 88, 
219–227. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27311694 [Accessed August 23, 
2018]. 

Xu, Z.-Z. and Yu, Z.-W. (2006) Nitrogen metabolism in flag leaf and grain of wheat in response to irrigation 
regimes. J. Plant Nutr. Soil Sci., 169, 118–126. Available at: 
http://doi.wiley.com/10.1002/jpln.200420418 [Accessed August 27, 2018]. 

Yadav, A.K., Carroll, A.J., Estavillo, G.M., Rebetzke, G.J. and Pogson, B.J. (2019) Wheat drought tolerance 
in the field is predicted by amino acid responses to glasshouse-imposed drought. J. Exp. Bot. 
Available at: https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz224/5514325 
[Accessed September 9, 2019]. 

Yang, X., Tang, J., Mustard, J.F., Wu, J., Zhao, K., Serbin, S. and Lee, J.E. (2016) Seasonal variability of 
multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests. Remote Sens. 
Environ., 179, 1–12. Available at: http://dx.doi.org/10.1016/j.rse.2016.03.026. 

Yousfi, S., Márquez, A.J., Betti, M., Araus, J.L. and Serret, M.D. (2016) Gene expression and physiological 
responses to salinity and water stress of contrasting durum wheat genotypes. J. Integr. Plant Biol., 
58, 48–66. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25869057 [Accessed September 3, 
2019]. 

Zadoks, J.C., Chang, T.T. and Konzak, C.F. (1974) A decimal code for the growth stages of cereals. Weed 
Res., 14, 415–421. Available at: http://doi.wiley.com/10.1111/j.1365-3180.1974.tb01084.x 
[Accessed October 1, 2018]. 

Zheng, B., Chapman, S., Christopher, J., Frederiks, T. and Chenu, K. (2015) Frost Trends and their 
Estimated Impact on Yield in the Australian Wheatbelt. Procedia Environ. Sci., 29, 171–172. 
Available at: https://www.sciencedirect.com/science/article/pii/S1878029615005216 [Accessed 
August 28, 2019]. 

Zheng, H., Cheng, T., Li, D., et al. (2018) Evaluation of RGB, Color-Infrared and Multispectral Images 
Acquired from Unmanned Aerial Systems for the Estimation of Nitrogen Accumulation in Rice. 
Remote Sens., 10, 824. Available at: http://www.mdpi.com/2072-4292/10/6/824 [Accessed August 
8, 2019]. 

Zhu, L., Liang, Z.S., Xu, X., Li, S.H. and Monneveux, P. (2009) Evidences for the association between carbon 



 

221 
 

isotope discrimination and grain yield—Ash content and stem carbohydrate in spring wheat grown 
in Ningxia (Northwest China). Plant Sci., 176, 758–767. Available at: 
https://www.sciencedirect.com/science/article/pii/S0168945209000661 [Accessed August 14, 
2019]. 

Ziska, L.H., Bunce, J.A., Shimono, H., et al. (2012) Food security and climate change: on the potential to 
adapt global crop production by active selection to rising atmospheric carbon dioxide. Proc. R. Soc. 
B Biol. Sci., 279, 4097–4105. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22874755 
[Accessed July 2, 2019]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

222 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

223 
 

 

 

 

 

 

 

 

 

 

 

 

  

  

 


	OVD_COVER
	TESI-Omar Vergara Diaz_ULTIMA

